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ABSTRACT 

Interactive computational steering provides users with the opportunity to tackle new 
problems in a way that helps them to learn about the computation in a highly engaging, 
interactive, visual environment.  Causal consistency is an important feature of interactive 
steering of distributed computations, as it is often required to maintain the correctness of 
the computation.  However, due to the asynchronous nature of distributed computations, 
it is difficult to coordinate steering changes across processes to guarantee that the 
changes are applied consistently at all processes.     

This thesis introduces a transaction-based computation model for distributed 
computation.  This abstract model not only gives users a simple and high-level view of 
distributed computation, but also simplifies reasoning consistency problem by reducing 
the amount of information to be handled. 

Furthermore, this work investigates two approaches for achieving consistent steering: 
conservative steering and optimistic steering.  The performance of conservative and 
optimistic steering approaches is evaluated in term of perturbation and lag.  Our 
experiments show that when the percentages of consistency on the first attempt are large 
enough and the size of checkpoint is not too large, the optimistic approach will achieve 
better performance; otherwise, the conservative approach will be better. 
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CHAPTER 1 

INTRODUCTION 

Interactive computational steering provides users with the opportunity to tackle new 

problems in a way that helps them to learn about the computation in a highly engaging, 

interactive, visual environment.  Causal consistency is an important feature of interactive 

steering of distributed computations, as it is often required to maintain the correctness of 

the computation.  However, due to the asynchronous nature of distributed computations, 

it is difficult to coordinate steering changes across processes to guarantee that the 

changes are applied consistently at all processes.   

Two general approaches exist for achieving consistent steering: conservative steering 

and optimistic steering.  The conservative steering approach avoids inconsistent steering 

by strictly adhering to the causality constraint.  This typically involves blocking the 

computation before a consensus decision is made and steering changes are applied.  On 

the other hand, the optimistic steering approach assumes that the next steerable points are 

consistent, and invokes the steering change at the next steerable point at each involved 

process without concern for or knowledge of the state of any other process.  This 

eliminates the need for blocking steered processes.  However, the optimistic steering 

approach must be able to detect any inconsistent steering transaction and provide a 

checkpointing/rollback mechanism to restore the computation to a correct state.  Such 

optimistic techniques have the potential to reduce both the perturbation of the 

computation and the lag associated with interactive steering. 
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Given the size and complexity of distributed computations, a formal treatment of a set 

of events in a distributed computation into higher-level events is crucial in modeling 

distributed activities to provide different abstract views [Lam86].  In our monitoring and 

steering system, the overall computation is abstracted to an interleaving of atomic state 

changes involving one or more processes – by analogy with databases, we call such state 

transitions transactions.  This abstraction not only gives users a simple and high-level 

view of distributed computation, but also simplifies reasoning consistency problem by 

reducing the amount of information to be handled. 

In this thesis, I present a transaction-based computation model for distributed 

computation and two approaches for consistent steering of distributed computations: 

conservative steering and optimistic steering.  Optimistic techniques have been used to 

enhance performance in various areas such as concurrency control and discrete event 

simulation.  This work represents a novel application of optimistic techniques to 

interactive steering. 

1.1 Interactive Steering 

The interactive steering of computations permits users to monitor a program’s 

execution and to adjust both application parameters and the allocation of resources in an 

online fashion.  This interactivity provides a powerful tool for application scientists, 

researchers, and algorithm developers in the process of “charting unknown waters”, 

whether exploring new computational solutions to problems that are not yet well 

understood, or attempting to select ideal parameters for familiar algorithms applied to 

new data sets or problem areas.  The ability to monitor a program in execution and 

observe intermediate results, coupled with the ability to tweak application parameters, 
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select or install new control algorithms, and direct the allocation of resources, provides 

users with the opportunity to improve the performance of the computation or the quality 

of solution for a particular run of the program.  In addition, the experience of observing 

and interacting with the running computation can help the researcher to better understand 

the dynamics of the execution behavior, provide insight into the target problem and data, 

and build intuition that can lead to the selection of better default parameters and the 

development of algorithms more highly tailored to the target domain.  Applications for 

which steering is useful are typically long-running, complex simulation, modeling, or 

control programs executing in parallel or distributed environments. 

1.2 Consistency, Perturbation and Lag 

Users of an interactive steering system observe visualizations of the program’s state, 

behavior, and performance.  Based on these visualizations, users may issue a steering 

command, an instruction to alter some aspect of the computation.  Examples of steering 

commands include a request to change the value of a variable at one process, a request to 

change the value of a variable at many or all processes, or to perform a reallocation of 

resources.  A global state change resulting from one steering command is called a 

steering transaction.  A steering transaction can be decomposed into modifications of the 

local states of one or more processes, known as steering events.  The constraints that 

steering changes must adhere to vary considerably from application to application.  Some 

steering changes may be applied at any of the participating processes at any point in the 

computation.  However, if a steering transaction is intended to update critical control 

parameters or change the global configuration, causal consistency is often required to 
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maintain the correctness of the computation.  That is, all local steering changes must be 

applied concurrently across all participating processes. 

Other important concerns in interactive steering include the perturbation induced by 

steering and the lag.  Steering perturbs the execution of the application system.  

Perturbation measures how the underlying application is affected by the presence and use 

of the steering software.  Local perturbation describes the effect on a single process.  The 

primary source of local perturbation is the execution of additional instructions for 

steering changes of the local process state.  The overall effect on the application, 

including the local perturbations, message traffic, and consistency controls, comprise the 

global perturbation.  Latency or lag refers to elapsed time.  Presentation lag is the elapsed 

time between the existence of a state in the program’s execution and the presentation of 

that state to the viewer.  Steering lag refers to the elapsed time between the initiation of a 

steering command by the user and the application of the associated steering changes at 

the process of the computation.   

The ideal system would feature strong consistency, and low latency and perturbation. 

1.3 An Example 

Consider, for example, simulation programs that employ the higher KdV equation 

[BSS87, Tah92].  As seen in Fig. 1 and Fig. 2, numerical simulations of this equation 

show that its solitary-wave solutions are unstable, and in fact, that neighboring solutions 

emanating from smooth initial data appear to form singularities in finite time, which 

means that the solution “blows up” in finite time [BSS87, FW78].  Usually, numerical 

schemes for solving this equation are based on an explicit timestep method, which 

extrapolates the solution of the current timestep based on the calculations of previous 
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Fig. 1.1 Higher KdV Equation: Initial Conditions T = 0.0
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steps.  Due to the computational complexity, parallel algorithms are often employed 

plement these numerical schemes [Tah92, JT02].  Both the mesh size in the spatial 

tion, ∆x, and the size of the timestep, ∆t, are tunable.  The choice of ∆x and ∆t in 

 methods affect the execution time and accuracy of the computation.  Typically, 

l ∆x and ∆t will produce more accurate results, but will require much longer 

ution time.  Experiments show that when solutions are relatively stable, solutions of 

er KdV equation are almost the same no matter how large ∆x and ∆t are as long as 

atio between ∆t and ∆x is small enough [JT02].  However, solutions become more 

more sensitive to large ∆x and ∆t when solutions become more and more unstable 

there are more and more peaks in the solution waves, as seen in Fig. 1.2).  Therefore, 

an choose relatively large ∆x and ∆t to compute the solutions of early timesteps 

kly, and can then alter ∆x and ∆t to smaller values on-the-fly to get more accurate 

ions before they “blow up”.  By doing this, we could get accurate results with 
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shorter computation time.  However, a change to ∆x and ∆t may result in incorrect 

solutions of the equation if applied in an inconsistent manner, i.e., applied at different 

timesteps in the execution at different processes, or in the midst of a timestep.  In this 

paper, we will show how an optimistic approach can be used to coordinate steering 

changes across processes so that they are performed concurrently.   
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Fig.1.2 Higher KdV Equation: Solutions When T = 0.25
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onservative Approaches vs. Optimistic Approaches 

lobally consistent steering updates typically require that a computation reach 

scence [DS80, Lyn96] before a steering change is applied; the computation blocks 

re a consensus decision is made and steering changes are applied.  This is a nontrivial 

ess in a distributed, asynchronous environment, requiring centralized control of the 

putation, and with the potential to cause considerable perturbation of the computation 
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and significant steering lag [KDR98].  In contrast to this conservative approach, we 

present another approach called optimistic steering.  In optimistic steering, the system 

invokes each steering event in the steering transaction at the respective process without 

concern for or knowledge of the state of any other process.  Therefore, the consistency of 

the global state of the computation, and specifically, the consistency of the steering 

transaction, must be checked.  If the consistency is verified, the computation continues.  

If the steering transaction is found to be inconsistent, then the earliest time at which the 

steering event could be consistently applied at each process is calculated.  The 

computation must then rollback to its state prior to the application of the steering change, 

execute forward, and then apply the steering change at the consistent time.  This approach 

is expected to perform well in the case that steering is relatively rare and that the 

processes of the computation tend to remain roughly synchronized because of 

coordination at the application level.  This is often the case, as processes typically wait 

for messages from one another or synchronize at barriers.  Accordingly, while the 

overhead of state saving and some logging will be incurred for each steering transaction, 

rollback and re-execution will be incurred only in the case of inconsistent steering, and 

both logging and re-execution will be of limited scope and duration. 

1.5 Related Work 

The work related to this research includes: computational steering environments, 

optimism, causality, vector times, and atomic events in distributed computations. 

1.5.1 Computational Steering 

An early computational steering environment was VASE, the Visualization and 

Application Steering Environment, developed at the University of Illinois [HBJJ92, 
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JBBH93].  The VASE system requires special annotation to existing Fortran code and 

permits the user to alter the values of “key” parameters and to add code at “key” points.  

However, VASE does not support the coordinated steering of multiple processes.  

SCIRun supports computational steering in a multithreaded application that runs on a 

single multiprocessor machine [PG95, PWJ97].  However, it assumes that the underlying 

program consists of a number of separate modules.  The SCIRun system generates a 

script that controls the invocation of these modules.  The steering process involves 

altering these scripts—thus, changes occur only between modules, not within modules.  

The script itself is executed sequentially.  No support for coordination of distributed 

changes is required.  Progress [VS95] and its successor Magellan [VS97] also provide 

interactive environments for computational steering.  Both these systems were designed 

to run on multiple multiprocessor machines.  Progress does not support coordinated 

steering of multiple processes.  Magellan was extended to support such coordinated 

steering of multiple processes but requires synchronization points be placed in an 

application.  Before a steering change can take place the application must first halt.  Thus, 

Magellan can be said to support the conservative approach to the interactive steering of 

distributed computations.  CUMULVS was developed at Oak Ridge National Laboratory 

to support the monitoring and steering of distributed computations [GKP97].  To allow 

steering, the user interface process creates a loosely synchronized connection with the 

application, which guarantees that all tasks apply the steering updates at the same time or 

point in the application, also falling into a conservative steering model.  Yet another 

computational steering environment is the VIPER project [RL97].  VIPER is based on a 

client/server/client architecture.  One client is the parallel computation, the other client is 
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the visualization unit, and the server acts as a governing body for both information and 

data extraction and steering application.  Each application has synchronization points at 

which time the server has the ability to consistently apply the steering changes requested 

by the user.  Finally, the CSE environment provides a computational steering 

environment similar to those already described [LMW97, WL97].  In this system, there 

exist data manager and satellite worker processes.  The data manager is responsible for 

gathering the monitored data, all communication, and application of steering changes.  

Like the other environments that support simultaneous steering events, this system also 

requires its source code be annotated with special synchronization variables.  During 

synchronization, the data manager can consistently apply the steering changes. 

1.5.2 Optimism 

Optimistic Concurrency Control 

Concurrency control is a technique for scheduling concurrent operations in such a 

way that they appear to have been executed in a single sequence with respect to the data 

objects that they share.  Such a schedule is called serializable [GR92].  However, it is 

possible to schedule such operations concurrently, so that non-interfering operations are 

executed in parallel.  A conservative scheduling approach, such as two-phase locking 

[EGLT76] and timestamp ordering [BG80], would look at each operation, and try to find 

a schedule that does not force any of the operations to roll back.  However, there are no 

deadlock-free conservative protocols that always provide high concurrency [KR81].  

Thus the problem of finding a schedule forms a serial bottleneck to the concurrent 

execution of operation on shared data. 
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Kung and Robinson’s Optimistic Concurrency Control [KR81] is an optimistic 

algorithm for scheduling concurrent transactions.  They make the optimistic assumption 

that, for sufficiently large sets of data objects, operations usually do not conflict, and so it 

is possible to optimistically schedule all transactions to be executed concurrently as they 

arrive for processing, and detect and correct concurrency errors post hoc.  If the 

optimistic assumption is correct often enough, this optimistic approach will achieve 

higher concurrency than a conservative schedule. 

The optimistic method permits transactions to proceed until they are to commit.  At 

commit time, the system checks for conflicts.  If conflicts are detected, some transactions 

are aborted.  This results in relatively efficient operation when there are few conflicts, but 

a substantial amount of work may have to be repeated when a transaction is aborted. 

Parallel and Distributed Simulation 

 Discrete event simulation is a computing application that simulates the behavior of 

complex systems for the purposes of design and modeling.  The number of  

”events” being simulated in such a system is often very large, and so such simulations 

may run for a long time.  Since most events are independent of one another, discrete 

event simulation is amenable to speedup through parallelism.  However, when simulating 

a given event, it is often not decidable at the time whether the event in question is 

independent of other events in the system: is there a factor that this event has not yet 

learned of ?  Conservatively waiting for such confirmation imposes a limitation on the 

available concurrency in a simulation.  Optimistically assuming that such a contributing 

factor does not exit increases available parallelism. 
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 Jefferson’s Virtual Time [Jef85] is an algorithm for distributed process 

synchronization that has been widely studied.  Time Warp is a discrete event simulation 

system based on the Virtual Time concept that provides the illusion of a globally 

synchronized clock that can be used to preserve a total ordering across the system as 

defined by Lamport [Lam78], even though processes actually are being executed out of 

order.  Thus, the semantics that it guarantees are those of a sequentially executed series of 

computations. 

 Time Warp optimistically assumes that messages are processed in receive timestamp 

order, i.e. if the local clock is advanced, no message will ever arrive with a time stamp 

preceding the new clock setting.  Thus every advance of the local copy of the virtual time 

is a speculative action that may have to be rolled back.  If a message arrives with a time 

stamp that precedes the current local time, then the process is rolled back to a saved state 

of a simulated time no later than the time stamp of the arriving message.  

Variations on the Time Warp model have been proposed [CS89a, CS89b].  The Time 

Warp protocol uses a detection-and-recovery protocol to synchronize the computation 

[Fuj89].  The Time Warp mechanism has also been used for optimistic concurrency 

control in distributed databases, using object-rollback, rather than blocking, as the 

fundamental means of synchronization [JM86].  Further work on the application of 

speculative execution to real-time systems has been investigated in [GFS93]. 

Optimistic methods appear to offer greater hope for general-purpose simulation, if 

state-saving overhead is kept within a manageable level [Fuj90].  Nevertheless, 

conservative methods have also been found to offer great potential for certain classes of 
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applications, particularly when ample application-specific knowledge of the systems 

being simulated is available, as in [MRR90]. 

1.5.3 Causality, Time, and Vector Time 

Causality is fundamental to many problems in distributed computing.  For example, 

determining a consistent global snapshot of a distributed computation [CL85, FZ90] 

requires finding a set of local snapshots such that the causal relation between all events 

included in the snapshots is respected in the following sense: if e’ is contained in the 

global snapshot formed by the union of local snapshots, and e→e’ holds, then e must also 

be included in the global snapshot.  Thus, the notion of consistency in distributed systems 

is basically an issue of correctly reflecting causality.  Many important applications of 

causal consistency are summarized by Schwarz and Mattern in [SM94].   

An important characteristic of distributed systems is that there is no global clock.  

Consequently, ordering the events in a distributed system can be challenging.  Lamport 

[Lam78] introduced an efficient mechanism called logical clocks for totally ordering the 

events in a distributed system, but the mechanism is not sufficiently powerful to allow 

concurrent events to be identified.  Mattern [Mat89] and Fidge [Fid88] independently 

developed vector clocks, which precisely capture the causal ordering between distributed 

events.  The main difference between Mattern and Fidge vector time schemes and ours is 

that we measure logical time in terms of “number of past local transactions” at a process, 

rather than “number of past events” at that process.   

Netzer and Xu [NX95] introduced the notions of Z-paths and Z-cycles, and pointed 

out that a local checkpoint is useless iff it is involved in a Z-cycle.  In the transaction-

based computational model, if a checkpoint is taken, all participant processes in a global 
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transaction take the checkpoint at the end of transaction.  In this way, no local checkpoint 

will be involved in a Z-cycle because there is no message in transit at the end of 

transaction.  

1.5.4 Atomic Events in Distributed Computations 

In the literature on distributed computations, much attention has been focused on 

model events in order to reason better about the computations.  Thus far, events have 

been implicitly modeled in the isolated contexts of various applications.  A formal 

treatment of grouping events in a distributed computation into higher-level events is 

crucial in modeling distributed activities to provide different abstract views [Lam86].   

Event abstraction also provides simplicity to the programmer and system designer in 

reasoning at the appropriate level of atomicity by reducing the amount of information to 

be handled.  Kshemakalyani presents a unifying framework for expressing and analyzing 

events at various level of atomicity [Ksh98].   Events in distributed computations are 

defined at four levels of atomicity: primitive send and receive events, send and receive 

constructs, reactive events, and events between transitless cuts. 

The most elementary events are certain “basic” communication actions [CL94] at 

both processes and communication channels in distributed computations, and are defined 

as the first level events.  This level of atomicity is useful for designing complex 

communication constructs and for comparing their flexibility with that of primitive 

communication events at this lowest level of atomicity as a benchmark.  At the second 

level, the events are abstract send and receive events executed at the processes.  Modeling 

events at this level of atomicity has implicitly been done by many applications such as 

distributed snapshots [CL85], modeling distributed computations [Fid88, Lam78, Mat89],  
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transfer of knowledge [CM86], leader election, and mutual exclusion [Sin93].  The next 

level in the atomicity hierarchy has events that are reactive in nature, i.e., each event 

denotes activity at a process in response to messages received from other processes.  

Modeling events at this level of the hierarchy has been used for distributed debugging 

[KF93, NM92] and distributed termination detection [Mat87].  Another level of the 

hierarchy has events such that each event is affected by and affects the rest the 

computation only by the process states at the start and end of events, respectively.  In this 

view of the computation, the global state of the system before and after any events is a 

transitless global state, i.e., there are no messages in transit between any pair of processes 

in this state.  Transitless states are therefore used in applications such as checkpointing 

and recovery [SY85], atomic transactions [BHG87, FGL82], and fault-tolerant 

computations [Ran75], in which a past global state may need to be restored.   

In our transaction-based computation model, global transactions are another 

implementations of the fourth level events, events between transitless cuts.  However, our 

transaction-based computation model has some distinguishing features.  In the fault 

tolerance [Ran75], transitless states are created through synchronization at the cost of 

restricted interprocess communication.  The transaction model of [FGL82] uses a non-

intrusive scheme of replicating parts of the database to create and record a transitless 

state.  In the Pathfinder system, transitless states are automatically recognized by the 

system with the proper annotations of source code at meaningful points by the users, and 

there is no need for global synchronization or data replication. 
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1.6 Organization 

The remainder of this thesis is organized as follows.  Chapter 2 describes the 

Pathfinder system, a system that we have developed for monitoring and steering of 

distributed computations.  Chapter 3 presents the transaction-based computation model.  

Chapter 4 presents two algorithms for consistent steering of distributed computations: 

conservative steering and optimistic steering.  Finally, conclusions and future work are 

presented in Chapter 5. 
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CHAPTER 2 

PATHFINDER SYSTEM 

We have developed an exploratory visualization system that allows a user to pose 

queries and visualize program data in a real-time fashion.  Through this system, the user 

may monitor attributes and variables of the distributed computation.  This system, known 

as Pathfinder, serves as the base upon which optimistic steering is implemented, see Fig. 

2.1.  In this section, we describe the components of the Pathfinder system and their 

function, and explain how optimistic steering is integrated into these components.  

Through the integrated system, users may dynamically manipulate program variables or 

adjust resource allocation, without compromising the correctness of the underlying 

computation.    In Chapter 3, we describe the underlying model of computation. 

 

Snapshot
Manager

User
InterfaceInteraction Managers

P1

Pn

Steering
Streams

Snapshot
Streams

Fig.2.1 The Pathfinder Architecture
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2.1 Monitoring 

The exploratory visualization system focuses on a class of distributed computations 

that can be abstracted to an interleaving of atomic state changes involving one or more 

processes.  It is assumed that communication patterns are not affected by steering 

changes and remain the same during rollback and re-execution.  These atomic state 

changes, or transactions, correspond to logical actions performed by the computation.  A 

transaction boundary is specified explicitly by end-of-transaction (EOT) annotations in an 

application program [HKR97, Har00, VKH00].  Placement of EOTs controls the 

granularity of the view of the distributed computation.  Annotation may be performed 

manually or through automated means. 

The Pathfinder system is constructed in three parts: Interaction Managers (IM), a 

Snapshot Manager (SM), and a User Interface (UI), seen in Fig. 2.1.  The IM exists as an 

instrumentation layer that resides between the process and its communication 

environment.  The IM collects local snapshots (sets of local variable values) and 

transaction labeling information, then sends both to the SM.  Transaction labeling 

information includes information about the processes that participate in each transaction 

(membership) and the dependence relationships between transactions (ordering) 

[VKH00].     

The SM serves as a central observer.  The SM is responsible for merging local 

snapshots from the IMs to produce consistent global snapshots based on the transaction 

labeling information [KHR98].  For these global snapshots to accurately reflect the state 

of the distributed computation, local snapshots must be grouped together and ordered in a 
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manner that does not violate the causal relationships in the distributed computation 

[Lam78]. 

Finally, the global snapshots are sent to the UI to be visualized.  The UI oversees the 

decoding of global snapshots into animation actions, the control of visualizations, and the 

interpretation of user interactions with the visualizations into monitoring directives.   

2.2 Steering 

When users observe a certain state and want to respond to it.  He may issue a steering 

command at any time and make the on-the-fly changes of the state of the computation.  

The UI provides the interface through which users may issue steering commands to the 

computation at runtime.  The SM is responsible for coordinating global steering 

activities.  The direct steering changes, such as manipulating program variables or 

adjusting resource allocation, are performed by the IMs.   

For optimistic steering approach, local checkpointing, message logging, and rollback 

are performed by the IMs.  The detection of inconsistency, verification of consistency 

and calculation of the earliest consistent steering time of a steering transaction all require 

knowledge of all participating processes.  Therefore, the SM performs all these 

operations.   

For conservative steering approach, the global synchronization of steered processes 

are controlled by the IM.  While the SM is responsible for check the termination 

conditions, such as whether or not all steered processes become passive, and whether or 

not the global transaction involved with steered process are complete. 
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CHAPTER 3 

TRANSACTION-BASED COMPUTATION MODEL 

In this section, we define the model of computation upon which our system, 

algorithms, and definitions are based. 

A distributed system consists of a set of processes that cooperate to achieve a 

common goal and communicate only through message passing.  A local computation of a 

process is a totally ordered sequence of events.  The concurrent and coordinated 

execution of local algorithms forms a distributed computation.  Events are classified, as 

described in [SM94], into three types: send events, receive events and internal events.  

The event-based causality relation (denoted →) is a transitive relation satisfying the 

following conditions: (1) if e and e’ are events of the same local computation and e’ is the 

next event after e, then e→e’; (2) if e is a send event and e’ is the corresponding receive 

event, then e→e’.  If, for two events e and e’, neither e→e’, nor e’→e holds, then we say 

e and e’ are concurrent (denoted as e || e’) [SM94].  

3.1 Transaction 

Given the size and complexity of distributed computations, it is important to have a 

presentation that provides a simple, accurate, and flexible view of an execution.  In our 

monitoring and steering system, the overall computation is abstracted to an interleaving 

of atomic state changes involving one or more processes – by analogy with databases, we 

call such state transitions transactions.  This abstraction not only gives users a simple and 

high-level view of distributed computation, but also simplifies reasoning about 
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consistency problems by reducing the amount of information to be handled.  Our 

transactions are constructed based on end-of-transaction (EOT) annotations placed at 

appropriate points in the code.  We define transactions as follows: 

Definition 3.1 A local transaction is a sequence of events between EOTs (or between 

the start of the program and the first EOT) of a process. 

Definition 3.2 A transaction relation T is an equivalence relation on a set of all local 

transactions such that for two local transactions a and b of different processes, if a 

contains a send event and the corresponding receive event is in b, then (a, b) is in T. 

Definition 3.3 Local transactions can be partitioned in one and only one way into sets 

called equivalence classes according to the transaction relation, and each equivalence 

class is called a global transaction.  

 

 

LT11 LT12
Fig. 3.1 Global Transactions.  Processes P1, P2, P3, and P4 are shown as arrows 
with time increasing from left to right.  Each local transaction is shown as a 
shaded area containing application events (circles).  The boundaries of the shaded 
areas represent annotations demarking the transaction boundaries.  Messages are 
shown as arrows between process events.
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Fig. 3.1 shows an example of a distributed computation consisting of three global 

transactions, T1 = {LT11, LT21, LT41}, T2 = {LT31, LT42} and T3 = {LT12, LT22, LT32, 

LT43}.  Local transactions LT11 and local transaction LT21 are transaction-related because 

local transaction LT11 sends a message to local transaction T21.  Similarly, transactions 

LT11 and local transaction LT41 are transaction-related.  Therefore, local transactions 

LT11, LT21 and LT41 all belong to the same equivalence class, a global transaction.   

Similarly, local transactions LT31 and LT42 belong to one global transaction and local 

transactions LT12, LT22, LT32 and LT43 belong to another. 

We then view the local computation of a process as a sequence of local transactions 

and a distributed computation as a set of partially ordered global transactions.  The reason 

that the model refers to the logical actions taken by the distributed application as 

transactions is because to the user they appear to exhibit the ACID properties [GR92]: 

• Atomicity: To the user, a global transaction is an atomic unit of computation.  

Each global transaction consists of at most one local transaction at each process.  

• Consistency: After the execution of global transactions, process states consist of a 

consistent global system state because no messages are in-transit. 

• Isolation: For global transactions, Ta and Tb, if the local transaction of Ta precedes 

the local transaction of Tb in one process, then in every other process, the local 

transactions of Ta must precede the local transactions of Tb. 

• Durability:  To the user, the values changed by the transaction persist after the 

transaction successfully completes. 

The main difference between Pathfinder transactions and database transactions is that 

Pathfinder recognizes program transactions and enforces only steering transactions. 
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Computations that satisfy the above properties are well-formed.  Well-formed 

computations permit the calculation of equivalence classes, reflecting an ordering of the 

transactions in the computation.   
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Fig. 3.2 Transaction Annotations.  The solid block indicates the annotation of the end-of-
transaction. (a). This shows an improper annotation.  Local transactions of transaction Tb
precede local transactions of transaction Ta in process P1 and P2, while local transactions of 
transaction Ta precede local transactions of transaction Tb in process P3 and P4. (b) This 
shows a proper annotation after removing the first EOT annotations of all processes.
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proper annotation may result in the appearance of a computation that is not well-

d, as seen Fig. 3.2 (a).  In processes P1 and P2, local transactions of Tb precede local 

ctions of Ta, while in processes P3 and P4, local transactions of Ta precede local 

ctions of Tb.  This violates the isolation requirement.  However, we note that this is 

lt of the annotation, rather than structure of the computation itself.  If we re-

ate, removing the first EOT annotations of all processes, then all events of all 

sses belong to a global transaction and the computation is well-formed, as seen in 

.2 (b).  Careful placement of end-of-transaction annotations will allow nearly any 

utation to exhibit the "well-formed" property.  Although program instrumentation 
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requires extra work for the programmer, it is not difficult for the programmer to identify 

the logical units of source codes. 

3.2 Transaction-based Causality and Concurrency Relations 

In evaluating the consistency of a steering transaction, we may need to evaluate the 

concurrency and causality relations between pairs of steering events, pairs of 

transactions, and between steering events and transactions.  In this section, we define the 

relations necessary to evaluate these relationships.  Further, we give a definition of a 

consistent steering transaction.  Since we view transactions as atomic state changes, 

steering changes are constrained to be applied between transactions.  For example, in the 

program for solving higher KdV equations discussed in Chapter 1, changes of ∆x or ∆t 

can only be applied between timesteps, modeled as transactions. 

Definition 3.4 The transaction-based causality relation t→ between two global 

transactions Ta and Tb is a transitive relation satisfying the following condition:  if there 

exists a process Pi that participates in both Ta and Tb, and the local transaction of Ta in Pi 

precedes the local transaction of Tb in Pi, then Ta t→ Tb. 

For example, in the execution depicted in Figure 3.3, T1 t→ T2 because P2 

participated in both global transactions, and participated in T1 before T2. 

Definition 3.5 The transaction-based concurrency relation t|| between two global 

transactions is defined as: Ta t|| Tb    iff  ¬(Ta t→ Tb) and  ¬ (Tb t→ Ta).   

For example, in Fig. 3.3, T0 t|| T1.  However, we note that the transaction-based 

causality relation is more constrained than the event-based causality relation; the 

concurrency relation does not exist between T1 and T3.  In Fig. 3.3, in terms of the event-

based causality and concurrency relations, s1 || s3, s1 || r3, r1 || s3, and r1 || r3; therefore, 
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global transaction T1 would be considered concurrent with global transaction T3.  

However, in terms of the transaction-based causality and concurrency relations, T1 t→ 

T2, and T2 t→T3, thus T1 t→ T3.   The transaction-based causality relation is stronger 

because of the view that global transactions are logically atomic actions. 
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Fig. 3.3 Transaction Relations.  Each global transaction is shown as a shaded area 
containing application events (circles).  The boundaries of the shaded areas 
represent annotations demarking the transaction boundaries.  Messages are shown 
as arrows between process events.  Steering events are shown as diamonds.
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 the remainder of this section, we define transaction-based causality and 

rrency relations between a steering event and a global transaction and between two 

g events.  Further, we give a definition of a consistent steering transaction.   

efinition 3.6 The transaction-based causality relation t→ between a steering event e 

cess Pi and a global transaction T is a transitive relation satisfying the following 

tion:  if process Pi participates in global transaction T, and the local transaction of Pi 

precedes the steering event, then T t→ e; if process Pi participates in global 

ction T, and the local transaction of Pi in T is after the steering event, then e t→T. 

r example, in Fig. 3.3, e1 t→T1 and T2 t→ e2. 
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Definition 3.7 The transaction-based causality relation t→ between two steering 

events ei and ej is defined as: ei t→ ej  iff there exists a global transaction T, such that  (ei 

t→T) and (T t→ej). 

For example, in Fig. 3.3, e1 t→ T1 and T1 t→ T2, thus e1 t→ T2.  Further, T2 t→ e2 , so 

e1 t→e2.  

Definition 3.8 The transaction-based concurrency relation t|| between two steering 

events ei and ej is defined as: ei  t|| ej    iff  ¬( ei t→ ej ) and  ¬ (ej t→ ei ).   

For example, in Fig. 3.3, since neither e1 t→ e3 nor e3 t→ e1 holds, then e1 t|| e3. 

Definition 3.9 Let ei denote the steering event of process Pi, and let SP denote the set 

of processes that participate in a steering transaction.  A steering transaction is said to be 

causally consistent if: for all i, j, i ≠ j, i ∈  SP and j ∈  SP, ei t|| ej.   

That is, a steering transaction is causally consistent if and only if all steering changes 

of that transaction are applied concurrently.  For example, in Fig. 3.3, suppose steering 

events e1, e2 and e3 belong to the same steering transaction, the steering transaction is not 

consistent because e1 t→e2.  

3.3 Transaction-based Vector Time  

A straightforward approach for consistency detection is to identify the concurrency 

relation between all steering events of a given steering transaction.  If all steering events 

are concurrent, then the steering transaction is consistent; otherwise, it is inconsistent.  

Vector time schemes [Fid88, Mat89] have proved a good way for identifying concurrent 

events in a distributed system.  Here, we describe a vector time based algorithm for 

identifying the concurrency relation between steering events.  In our transaction-based 

system, the logical time of each process is measured by the number of past local 
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transactions that have occurred at the process.  The vector time of process Pi can be 

defined as follows: 

Definition 3.10 Let P1, …, PN denote the processes of a distributed computation. The 

vector time Vi of process Pi is maintained according to the following rules: 

(1) Initially, Vi[k] = 0 for k = 1,…,N 

(2) On each steering event e, process Pi increments Vi as follows: Vi [i] = Vi[i] + 0.5; 

(3) At the start of each new local transaction, process Pi increments Vi as follows: 

;  5.0][][ += iViV ii

(4) At the end of a global transaction T, update V  for j = 1, …, n. ( ,][][ max jVj k
SPk

i
∈

= )

Since at the end of a global transaction T, all participating processes will exchange 

their knowledge about logical times of other processes and synchronize their vector 

clock, as described in the rule (4), then the vector clocks of all participating processes 

will be the same when the global transaction T is completed, which is denoted as V(T).  

V(T) is said to be the vector timestamp of global transaction T.  Let V(e) denote the 

vector time Vi that results from the occurrence of steering event e in process Pi.  V(e) is 

said to be the vector timestamp of steering event e.  Informally, the component Vi[i] of 

process Pi’s current vector time reflects the accurate logical time at Pi ( measured in 

“number of past local transactions” at Pi), while Vi[k] is the best estimate Pi is able to 

derive about Pk’s current logical clock value Vk[k].    

Definition 3.11 Let u, v denote vector times of dimension m [SM94]. 

(1) u  ≤ v  iff  u[k] ≤ v[k] for k = 1, …, m 

(2) u < v  iff  u  ≤ v and u ≠v  

(3) u || v iff  ¬( u < v) and  ¬ (v < u).   
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Theorem 3.12 For two global transactions Ta and Tb of a distributed computation, we 

have 

(1) Ta t→ Tb iff  V(Ta) < V(Tb) 

(2) Ta t|| Tb iff  V(Ta ) || V(Tb) 

Proof. 

Suppose Ta t→ Tb holds.  Then, by the definition of the transaction-based causality 

relation, there exists a sequence of global transactions such that Ta = T0 t→ T1 t→… t→ 

Ts  = Tb, where there exists a process Pj that participates in both Ti and Ti+1,  and  Ti+1 is the 

next global transaction after Ti in Pj.  According to the definition of vector time, we have 

V(Ti+1) [j] = V(Ti)[j] +1 > V(Ti)[j] and V(Ti+1)[k] ≥ V(Ti)[k] for k = 1, …, n, which 

implies V(T i+1) > V(T i).  Therefore, V(Ta) = V(T0) < …<V(Ts) = V(Tb). 

Conversely, suppose V(Ta) < V(Tb) holds.  Assume Pi is a process that participated in 

global transaction Ta.  Then, V(Ta)[i] is the accurate number of local transactions that 

happened at Pi when Ta happened, and V(Tb)[i] is the best estimate that participant 

processes in Tb were able to derive about the number of local transactions that happened 

at Pi.  Since V(Tb)[i] ≥ V(Ta)[i],  then either Ta must happen before Tb, or Ta is the same 

as Tb.  Since V(Ta) < V(Tb), then they cannot be the same.  Therefore, Ta t→ Tb. 

Property (2) follows immediately from (1) and the definition of the transaction-based 

concurrency relation. � 

Theorem 3.13 For two steering events ei and ej of a distributed computation, we have 

(1) ei t→ ej iff  V(ei) < V(ej) 

(2) ei t|| ej iff  V(ei) || V(ej) 

Lemma 3.14 For two steering events ei in process Pi and ej in process Pj, we have, 
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(1) ei t→ ej  iff  V(ei)[i] ≤ V(ej)[i] 

(2) ei  t|| ej  iff  V(ei)[i] > V(ej)[i] and V(ej)[j] > V(ei)[j]  

Lemma 3.14 states that we can restrict the comparison to just two vector components 

in order to determine the precise causal relationship between two steering events if their 

origins Pi and Pj are known.  The intuitive meaning of the lemma is easy to understand.  If 

the “knowledge” of steering event ej in process Pj about the number of local transactions 

in Pi is at least as accurate as the corresponding “knowledge” V(ei)[i] of ei in Pi, then 

there must exist a chain of transactions which propagated this knowledge from ei at Pi to 

ej at Pj, hence ei t→ ej must hold.  On the other hand, if event ej is not aware of as many 

events in Pi as is event ei, and event ei is not aware of as many events in Pj as is event ej, 

then both events have no knowledge about each other, and thus they are concurrent. 
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CHAPTER 4 

CONSISTENT STEERING 

In this research, we investigate two approaches for achieving consistent steering: 

conservative steering and optimistic steering.  The conservative steering approach avoids 

inconsistent steering by strictly adhering to the causality constraint.  This typically 

involves blocking the computation before a consensus decision is made and steering 

changes are applied.  On the other hand, the optimistic steering approach assumes that the 

next steerable points are consistent, and invokes the steering change at the next steerable 

point at each involved process without concern for or knowledge of the state of any other 

process.  This eliminates the need for blocking steered processes.  However, the 

optimistic steering approach must be able to detect any inconsistent steering transaction 

and provide a checkpointing/rollback mechanism to restore the computation to a correct 

state. 

In this chapter, we first present the two approaches for consistent steering of 

distributed computations, the conservative approach and the optimistic approach.  Both 

approaches have been implemented in the Pathfinder system.  We then discuss the 

relative costs and benefits of the optimistic and conservative approaches.   

4.1 Conservative Approach 

The conservative steering approach avoids inconsistent steering by strictly adhering 

to the causality constraint.  That is, no two steering events in the steering transaction may 
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be causally dependent.  Thus, in conservative steering, steering changes cannot be 

applied until the next steerable points are confirmed to be concurrent. 

4.1.1 Conservative Approach Overview 

A user can issue a steering request at anytime during the computation.  Upon 

receiving a steering request from the user, the SM sends out the prepare-to-steer to all 

steered processes.  A process receiving a prepare-to-steer message from the SM will 

block its execution at the next steerable point (EOT point), report back to the SM, and 

wait for the confirmation from the SM.  A blocked (passive) process may become active 

again when another process requests it either to send a message or to receive a message in 

order that all steered processes reach a consistent point.  When the SM has determined 

that all steered processes have blocked at a consistent point, it then issues a steering-

change command to all steered processes.  Upon receiving the steering-change command, 

the steered processes then apply steering changes and continue execution.  Thus, the 

conservative steering approach requires that all steered processes be synchronized at the 

consistent steerable point before steering changes are applied.  In conservative steering, 

the computation blocks while the SM is checking the consistency.   

In the following section, we will discuss process state and some control messages for 

conservative steering.   Consistency checking and process synchronization will be 

discussed in section 4.1.3.   

4.1.2 Process State and Control Message 

Within the Pathfinder system, communication traffic exists between both the 

executing processes and between the various control modules of the Pathfinder system.  

We refer to these messages, respectively, as application messages and control messages.  
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For the conservative approach, control messages include prepare-to-steer messages, 

steering-change messages, message-send-request messages, and message-receive-request 

messages.  A prepare-to-steer message informs a process that it is involving a steering 

transaction.  A steering-change message informs a process that it can go ahead to apply 

the steering change.  Both message-send-request and message-receive-request messages 

are used for synchronizing steered processes.  A message-send-request informs a process 

that it must send the requested message before it blocks (become passive).  Similarly, A 

message-receive-request informs a process that it must receive the requested message 

before it blocks (become passive). 

A steered process is defined as a process that has already received the prepare-to-

steer command.  An affected process is defined as a process that participates in the same 

transaction with a steered process.  A process may be in one of two states: active or 

passive.  Active processes are those currently working on a computation; passive 

processes are waiting.  However, a passive process can still be able to process any control 

messages, such as message-request, steering-flag, etc.  A process may go through several 

state changes from passive to active and from active to passive before it reaches a 

consistent point.  A steered active process becomes passive when it reaches a steerable 

point, no process is requesting additional messages, and no process is requesting it to 

receive a message.  A passive process becomes active if a message-send-request message 

or a message-receive-request message arrives, forcing it to participate in another 

transaction.   

When all steered processes in the system are passive and every global transaction that 

steered processes were involved in has completed (this guarantees that passive processes 
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will not become active), steering changes then can be applied concurrently across all 

involved processes.   

4.1.3 Consistency Checking and Process Synchronization 

Within the Pathfinder system, the SM is responsible for checking consistency.    

When a steered process becomes passive, it will report its state to the SM.  A consistent 

point is reached when (1) all steered processes in the system are passive and (2) each 

global transaction that involved steered processes has completed.  The first condition 

guarantees that all steered processes have reached a steerable point.  The second 

condition guarantees that no two steering events can be causally dependent on each other. 
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Fig. 4.1 Process Synchronization.  (a) A passive process S must become active again when it 
need send a message to a steered process; (b) A passive process R become active again when it 
need receive a message from a steered process. 
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End of Transaction (EOT) Point Process blocked at (EOT) point

onsistency checking appears very simple.  However, a steered process may not be 

to reach a steerable point if it is waiting for a message from a passive process, as 

 in Fig. 4.1 (a).  In this case, the sender must become active and execute forward to 

 the message.  For this reason, when a steered process R attempts to receive a 

age M and M has not arrived, R sends a message-send-request message to the sender 

he message M may not have arrived because its sender S is passive or because the 

32



execution of S is slow.  If M has not been sent because S is passive, then S becomes 

active and executes forward to send M.  Process S remains active and continues 

execution until it sends the message M and reaches the next steerable point.  If M has not 

been sent because S is slow, then S remains active and continues execution until it sends 

the message M and reaches the next steerable point.  If M has already been sent, process 

S ignores the request.  Here, we assume that the receiver always knows which process is 

the message sender. 

Another potential problem is that a global transaction that involves steered processes 

may not be able to complete if the receiver of a message from a steered process is 

blocked at an earlier steerable point, as seen in Fig. 4.1 (b).  In this case, the receiver 

must become active and executed forward to receive the message in order to complete the 

global transaction.  For this reason, before a process become passive, it will broadcast a 

message-receive-request message to all its neighbors, processes with which it has 

communicated.  This informs its neighbors that all messages it has sent should be 

received in order to complete the global transaction.  If M has not been received, then R 

becomes active and executes forward to receive M.  Process R remains active and 

continues execution until it reaches the next steerable point.  If M has already been 

received, process R ignores the request.   

In a message-send-request message, it is necessary to specify which message must be 

sent.  The message-send-request contains an identifying message number, the number of 

messages that have been received from S by the receiver.  Similarly, in a message-

receive-request message, it is necessary to specify which message must be received.  The 

message-receive-request contains an identifying message number, the number of 
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messages that have been sent by the sender.  The IM counts the messages sent to or 

received from every process and uses this count to uniquely identify messages.   

Here, we borrow some ideas from the halting algorithm for a global Conjunctive 

Predicate [MI92], a variation of the distributed termination detection problem [DS80].  

However, there are several special properties when the computation is transaction based.  

First, termination is detected when all steered processes in the system are passive and 

each global transaction that involved steered processes has completed.  Second, it is only 

necessary to block steered processes, not all processes.  Finally, a passive process must 

become active again when it needs to receive a message from a steered process or when it 

needs to send a message to a steered process in order to complete the current transaction. 

When termination is detected, the SM then knows a consistent point has been reached 

and issues a steering-change command to all steered processes.  Upon receiving the 

steering-change command, the steered processes then apply steering changes and 

continue execution.  Thus, the conservative steering approach requires that all steered 

processes be synchronized at the consistent steerable point before steering changes are 

applied.  A detailed description of the conservative steering algorithm is shown in Fig. 

4.2. 

 34



 

Fig. 4.2 Conservative Steering Algorithm 
 
Snapshot Manager: 

Send prepare-to-steer to all steered processes; 
 
IF (all steered processes are passive) AND  

    (global transactions that each steered process Pi was involved in at LVTi are completed) 
Send steering-change to all steered processes; 

 
Interaction Manager / User Process: 
  
 // Initialization 
 state := active; 
 steeringFlag := false; 
 
 for i := 1 to N do { // N = number of processes 
  s[i] := 0;  // the number of messages sent to Pi  
  r[i] := 0;  // the number of messages received from Pi  
  rs[i] := 0; // Pi requested to send up to rs[i] 
  rr[i] :=0;   // Pi requested to receive up to rr[i] 
 } 
 

When message arrives from the SM: 
 

  SWITCH message type 
   CASE  prepare-to-steer: 

steeringFlag := true; 
   
IF the process is waiting for a message from Pi THEN 

     k := r[i] + 1; 
   send a message-send-request(k) to Pi;  
 END IF   

 
   CASE  steering-change: 
    apply the steering change; 
    steerFlag := false; 
    state := active; 
    continue execution;  
  END SWITCH; 
 
 EOT: 
  IF steeringFlag = true THEN 
   IF for all i (s[i] >= rs[i]) AND (r[i] >=rr[i]) THEN 

   FOR each process Pi DO 
     send message-receive-request (s[i]) to Pi; 
    END FOR 

   state := passive; 
   send (passive, LVTi) to the SM; 
   sleep; 
 

   END IF; 
  END IF 
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 Message Send to Pi: 
 
  s[i]++; 

send the message; 
   
 Message Receive from Pi: 
 
  IF the message is not in the queue THEN 
   IF steeringFlag = true THEN 
    k := r[i] + 1; 

   send a message-send-request(k) to Pi;  
       END IF   

wait for the message until it arrives; 
END IF 
r[i]++;  
process the message; 
 

When control message arrives from Pi: 
 

  SWITCH message type 
CASE  message-send-request(k): 
 rs[i] := k; 
  
 IF steeringFlag = false  Then 
  steeringFlag := true; 
 END IF; 
 

    IF state = passive THEN 
     IF s[i] < rs [i] THEN 
      state := active; 
      continue execution; 
     END IF 
    END IF 

 
  CASE  message-receive-request(k): 
   rr[i] := k; 
   IF steerFlag = false THEN 
    steerFlag := true; 

    END IF 
    

    IF (k > r[i]) AND (state = passive) THEN 
     state := active; 
     continue execution; 

  END IF 
  END SWITCH; 
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4.2 Optimistic Approach 

 In contrast to the conservative approach, the optimistic approach to steering assumes 

that the next steerable points are consistent, and invokes the steering change at the next 

steerable point at each involved process without concern for or knowledge of the state of 

any other process.  This eliminates the need for blocking steered processes.  However, the 

optimistic steering approach must be able to detect any inconsistent steering transaction 

and provide a checkpointing/rollback mechanism to restore the computation to a correct 

state.   

In optimistic steering, IMs are responsible for applying steering changes, taking 

checkpoints, logging in-transit messages and carrying out rollback commands. The SM 

plays a central role, as it is responsible for issuing steering commands, detecting 

inconsistency, verifying consistency and sending out rollback orders when necessary. 

4.2.1 Optimistic Steering Algorithm Overview 

A user can issue a steering request at anytime during the computation.  Upon 

receiving a steering request from the user, the SM sends out the steering command to the 

involved processes. Processes receiving a steering command from the SM apply the 

steering action at the next EOT (end of transaction) and then report back to the SM.  The 

processes need not know the states of other processes involved in the steering transaction. 

Upon receiving acknowledgements from all the processes involved in the steering 

transaction, the SM carries out a consistency check.  Based on the local steering times 

and information available from TLP messages, the SM can determine if the steering 

update was applied consistently.  If the steering transaction is consistent, the SM will 

broadcast an OK message to each process. Upon receiving the OK message, the 
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processes enter a normal state, cease logging and delete all logs. If an inconsistency is 

detected, the SM issues a rollback command to each process and provides the correct 

steering time to all the processes involved in the inconsistent steering.  Upon receiving a 

rollback command from the SM, the processes that were affected by the steering 

transaction will roll back to their previous checkpoints, execute forward, and then reapply 

the steering changes at the consistent point specified by the SM.  Note that the 

consistency check and application execution are concurrent.  While the SM is verifying 

the consistency of a steering transaction, the application continues its execution. 

In optimistic steering, the overhead of state saving and some logging will be incurred 

for each steering transaction; however, rollback and re-execution will be incurred only in 

the case of inconsistent steering.   

In the following section, we discuss two consistency detection algorithms: the vector 

time based algorithm and the history-based algorithm.  The checkpointing/rollback 

algorithms will be discussed in detail in section 4.2.4.   

4.2.2 Process State and Application Message Type 

The application processes may be in any one of three states: normal, tentative, or 

recovering, as seen in Figure 4.3.  A normal state implies that neither the consistency of 

a steering change is in question nor is the correction of an inconsistency underway.  A 

tentative state implies that a process is executing speculatively, its result will be canceled 

if the steering transaction is determined to be inconsistent.  A process enters a tentative 

state from a normal state when its state is affected by a steering transaction.  A process 

can be affected by a steering transaction, either directly by applying a steering change or 

indirectly by receiving a message from a process already in a tentative state.  In order to 
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be able to cancel the speculative execution if the steering transaction is determined to be 

inconsistent, the process must take a checkpoint before entering the tentative state.  

Finally, a process may only enter a recovering state if it is in a tentative state and the 

associated  steering transaction is determined to be inconsistent. 

For o
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Fig. 4.3 Process States in Optimistic Steering.  

ptimistic steering, control messages include Steering messages, ACK messages, 

sages and Rollback messages.  These control messages will be discussed in the 

g section.  A Steering message informs a process that it involves in a steering 

on and should apply the change at the next steerable point.  An ACK message 

 SM that the process has applied a steering change at the certain time.  OK 

s inform processes that the steering changes have been applied consistently 

rocesses.  Rollback messages inform processes that the steering changes have 

lied inconsistently, the computation must roll back to the state before applying 

changes.  
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Normal State Tentative State

pplication messages can be further grouped into normal messages, tentative 

ages, and in-transit messages.  A message is a tentative message if the sender is in 

entative state.   Depending on the state of the steering transaction, tentative messages 

 be in any one of three states: unconfirmed, confirmed, obsolete.  Upon receiving a 

tive message, if the associated steering transaction has not been confirmed, the 

tive message is in an unconfirmed state; if the associated steering transaction has 

dy been confirmed to be consistent, the tentative message is in a confirmed state; if 

ssociated steering transaction has been determined to be inconsistent, the tentative 

age is in an obsolete state.  A process in the normal state will enter the tentative state 

 it receives an unconfirmed tentative message.  A confirmed tentative message will 

onsidered as a normal message.  An obsolete tentative message will be discarded by 

eceiver because it is out of date and will be resent during recovery.  A message is an 

ansit message if the sender is in the normal state and the receiver is in the tentative 
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state.  An in-transit message cannot be resent during recovery.   Thus, it must be recorded 

by the receiving process.  Within the Pathfinder system, the recording of the in-transit 

message is referred as message logging.   

For example, in figure 4.4, message m1 is a normal message because both the sender 

P3 and receiver P2 are in the normal state.  Message m2 is an in-transit message because 

the sender P1 is in the normal state and the receiver P3 is in the tentative state.  Message 

m3 is an unconfirmed tentative message because the sender P2 is in the tentative state and 

the consistency of the associated steering transaction has not been determined when m3 is 

received by P1.  Tentative message m4 is received after the steering transaction has been 

confirmed, so its state will depend on the state of the steering transaction.  If the steering 

transaction is determined to be consistent, message m4 will be in the confirmed state, and 

process P0 will merely receive it and remain in the normal state.  If the steering 

transaction is determined to be inconsistent, message m4 will be in the obsolete state, and 

process P0 will discard this message and wait for a new copy of the message.   

4.2.3 Consistency Detection 

As described earlier, in optimistic steering, the system invokes each steering event in 

the steering transaction at the respective process without concern for or knowledge of the 

state of any other process.  Therefore, the consistency of the steering transaction must be 

checked.  If the consistency is verified, the computation continues.  If the steering 

transaction is found to be inconsistent, then the earliest time at which the steering event 

could be consistently applied at each process is calculated.  In this section, we describe 

two algorithms for the detection of inconsistency, verification of consistency and 

calculation of the earliest consistent steering time. 
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4.2.3.1 Vector Time Based Approach 

To detect the consistency of a steering transaction, we can compute the causality and 

concurrency relations between steering events by comparing the vector timestamps of all 

steering events according to theorem 3.13.  If they are concurrent, then the steering is 

consistent, otherwise not.  To do this, we need m * (m-1) / 2 vector comparisons in the 

worst case, where m is the number of affected processes.  This is easy, but not efficient.  

The following theorem gives a more efficient way to detect inconsistency, verify 

consistency and calculate the earliest consistent steering time. 

Theorem 4.1 Let V(ei ) denote the vector time of a steering event in process i.  Let 

SP denote the set of processes that participate in a steering transaction.  Let SV be a time 

vector and SV[i] denote the local time at which the steering event actually happened at 

process Pi for all i ∈  SP.  Let CV be a time vector and CV[i] denote the time at which the 

steering event could be consistently applied at process Pi for all i ∈  SP.  Then,  

[ ] ( ) 5.0][max +



=

∈
ieViCV k

SPk

,  for all i  ∈   SP 

IF CV[i] =  SV[i], for all i ∈  SP, then the steering is consistent, otherwise not.   

Proof  

(1) We show that CV is consistent.   

For any i, j  ∈   SP, let ei’ denote the steering event that is applied at time CV[i] at 

process Pi, and let ej’ denote the steering event that is applied at time CV[j] at process Pj.  

We have V(ei’)[i] =  > V(e[ ] ( ) 5.0][max +



=

∈
ieViCV k

SPk

j’)[i], which implies V(ei’)[i]  > 

V(ej’)[i].  Similarly, we have V(ej’)[j]  > V(ei’)[j].  By lemma 5.5, we have  ei’ t|| ej’ 

(2) We show that CV is the earliest consistent steering time. 
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If  SV = CV, then CV is the earliest consistent steering time. 

If SV < CV, then for any vector SV’ such that SV ≤ SV’ < CV, we show that steering 

events applied at SV’ are not consistent.  Let ei’ denote the steering event that is applied at 

time SV’[i] at process Pi.  Since SV’ < CV, then there exists at least one element j, SV’[j] 

< CV[j], then SV’[j] + 1 ≤ .  This implies SV’[j] + 0.5 < 

, let’s say that V(e

[ ] ( ) 5.0][max +



=

∈
ieViCV k

SPk

( ) ( ) ][][ maxmax ieVieV k
SPk

k
SPk ∈∈

≤



 k)[j] = .  Then, we have 

V(e

( ) ][max ieV k
SPk∈

j’)[j] = SV’[j] < V(ek)[j] ≤ V(ek’)[j], which implies V(ej’)[j] < V(ek’)[j].  According to 

lemma 3.14, we have ej’ t→ ek’.   Therefore, SV’ is not consistent. � 
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Fig. 4.5 Steering Example: Consistent Steering Transaction.  Each 
global transaction is shown as a shaded area.  Steering events are shown 
as diamonds.  The steering transaction {e1, e2, e4, e5} is consistent.

ig. 4.5 shows an example of a consistent steering transaction, consisting of four 

ing events: e1, e2, e4, and e5.   SV = {1.5, 2.5, -, 2.5, 1.5, -};  V(e1) = {1.5, 1, 0, 0, 0, 

(e2) = {1, 2.5, 1, 1, 0, 0}; V(e4) = {1, 2, 2, 2.5, 1, 1};V(e5) = {1, 2, 2, 2, 1.5, 1};  

rding to theorem 4.1, CV , for all i [ ] ( ) 5.0][max +



=

∈
ieVi k

SPk

 ∈   SP.  Then, we have CV = 

, 2.5, -, 2.5, 1.5, -).  Since SV =CV, the steering transaction is consistent. 
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Fig. 4.6 shows an inconsistent steering transaction, consisting of four steering events: 

e1, e2, e4, and e5.  SV =  (0.5, 1.5, -, 2.5, 1.5, -); V(e1)= {0.5, 0, 0, 0, 0, 0}; V(e2)= {1, 1.5, 0, 

0, 0, 0}; V(e4)= {1, 2, 2, 2.5, 1, 1}; V(e5)= {1, 2, 1, 1, 1.5, 0}; thus,  CV = {1.5, 2.5, -, 2.5, 

1.5, -}.  Since SV ≠ CV, the steering transaction is not consistent.   

1

1

1

1

1

1

2

2

2

2

3

4

3

3

4

4

2

32

e1

e2

e4

e5

Fig. 4.6 Steering Example: Inconsistent Steering Transaction.  Each global 
transaction is shown as a shaded area.  Steering events are shown as 
diamonds. The steering transaction {e1, e2, e4, e5} is inconsistent.  The 
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4.2.3.2 History-Based Approach  

According to definition 3.4, we say that two steering events are causally dependent if 

there exists a transaction T, such that  (ei t→ T) and (T t→ ej).  Further, a steering 

transaction is causally consistent if and only if all steering changes of that transaction are 

applied concurrently.  An equivalent view of consistency considers a steering transaction 

as a program transaction; the consistency criterion is that the computation, including the 

inserted steering transaction, still meets the well-formed requirement.  This equivalence 

suggests that consistency of a steering transaction can be detected by checking the 

consistency between a steering transaction and each program transaction.  The history-

based algorithm is based on this idea. 
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In order to determine the consistency of a steering transaction, the system maintains a 

chronological list of vectors representing a partial ordering of a subset of the program 

transaction history.  The program transactions contained in this subset, or window of 

interest, are all program transactions that occur between the first and last steering events 

of a steering transaction.  To determine the consistency of a steering transaction, a vector 

representing the time of the steering transaction is compared against the partial program 

transaction history.  If the steering transaction is consistent, the algorithm returns such; 

however, if the given steering transaction is inconsistent, the algorithm returns the earliest 

consistent time after the given steering transaction for which the steering changes could 

logically occur.  

To accomplish consistency detection, the algorithm creates a consistency vector 

representing a consistent cut [Lyn96] at which a steering transaction could be applied.  

The algorithm works backward, comparing the steering transaction with each program 

transaction, generating vector times for consistent cuts.  The algorithm stops when all 

program transactions have been checked or the system can decide that all remaining 

transactions happened before the original steering transaction.  The generated consistency 

vector is the earliest time at which the steering transaction could have been consistently 

applied.  If the consistency vector is the same as the steering vector SV, then the steering 

is consistent; otherwise, it is inconsistent.   

This algorithm, seen in figure 4.7, requires six data structures and one Boolean 

variable.  First, a TLP (Transaction Labeling Protocol) table is used to maintain the 

chronological history of program transactions.  Next, there are four vector times, a 

Boolean vector, and a Boolean variable:  TV (Transaction Vector), SV (Steering Vector), 
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CV (Consistency Vector), CVTemp, Verified, and consistent, respectively.  Figure 2.7 

shows an example of the initialized data structures.  The TV vector holds the row of the 

TLP table currently being analyzed.  The SV vector contains the timestamps representing 

the steering transaction.  The CV vector represents the time of a consistent steering 

transaction.  The CVtemp vector provides a temporary holder of possible new timestamps 

for the CV vector.  The values of CVtemp should not be committed to the CV vector until 

all elements of the SV vector have been compared against corresponding elements in the 

TV vector.  Both the CV vector and CVtemp vector are initially empty.  The Boolean 

Verified vector contains flags signifying that the earliest timestamp for a steering event to 

occur at each respective process has been verified.  If a TRUE flag is present, then no 

new timestamp for that process should be added to the CV vector.  Verified is initialized 

with all elements set to FALSE.  Finally, the Boolean variable consistent indicates 

whether the values stored in CVtemp should be committed to the CV vector.   

At the beginning of each iteration of the WHILE loop beginning on line 16, 

consistent is set to TRUE.  This WHILE loop is used to determine the stopping point for 

the algorithm.  The algorithm terminates once all elements of the Verified vector that 

correspond to elements of the SV vector have been set to TRUE.  The key point of 

analysis occurs in the FOR loop starting on line 20.  Here, each non-empty element of the 

TV vector is compared with the corresponding non-empty element of the SV vector.  If 

the element compared in the TV vector holds a timestamp equal to or later than that of the 

element in the SV vector, then that timestamp is entered into the corresponding element in 

CVtemp.  If consistent remains TRUE through all iterations of the FOR loop, then the 

values of CVtemp are committed to the CV vector.  However, if any element of the TV 
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vector occurred earlier than the corresponding element in the SV vector, then consistent 

will be changed to FALSE and the loop will terminate, as seen in lines 33 and 34.  All 

entries in CVtemp are then purged and all elements of the Verified vector corresponding 

to elements of TV are marked as TRUE.  This later action indicates that the present TV 

vector was concurrent with the SV vector.  As explained, any concurrency implies an 

inconsistent steering transaction. 

One other condition will cause the FOR loop to terminate without completing all 

iterations.  If any element of the TV vector corresponding to an element of the Verified 

vector has already been set to TRUE, then all elements of the Verified vector 

corresponding to elements of the TV vector will be set to TRUE, and the loop terminates.  

As above, if any element of the TV vector has already been verified, then the earliest time 

at which a steering event could have occurred for that process has happened.  Therefore, 

no other process having direct or transitive communication with that process could 

consistently apply a steering action during the program transaction represented by that TV 

vector or any earlier TV vector. 

Once the condition has been satisfied that all elements of the Verified vector 

corresponding to elements of the SV vector have been set to TRUE, the WHILE loop will 

terminate and a comparison between the CV vector and SV vector occurs.  If the CV 

vector and SV vector are found to be identical, the algorithm returns TRUE.  The IS 

system can then purge all checkpoints and stop any message logging.  If the CV vector is 

not equal to the SV vector, then the algorithm returns the CV vector.  The IS system can 

then issue a command for each process to rollback to the checkpoint at the time specified 
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1.     Table TLP /*Table containing transaction history*/ 
2. Vector TV /*Vector holding information about present transaction in TLP*/ 
3. Vector SV /*Steering Vector containing list of processes involved in steering transaction*/ 
4. Vector CV /*Consistent Vector representing when the steering transaction should take place*/ 
5. Vector CVtemp /*Temporary vector to hold information until it is verified SV has not made TV  
6.       inconsistent*/ 
7. Vector Verified /*A Vector of Boolean values set to true when a process listed in SV is at its  
8.      earliest logical time to have invoked the steering command*/ 
9. Boolean consistent /*Boolean flag to indicate if SV has made TV inconsistent*/ 
10. 
11.   BEGIN  
12. 
13. set all elements of Verified to FALSE 
14. set TV equal to last vector of TLP table 
15. 
16. WHILE (all processes in SV have not been set to true in Verified) 
17.  BEGIN  
18.   consistent set to TRUE 
19. 
20.   FOR (compare each corresponding, non-empty cell in TV and SV)  
21.    BEGIN 
22.     IF(any non-empty cell in TV corresponds to a cell marked TRUE  
23.           in Verified) 
24.      THEN mark all cells in Verified corresponding to non- 
25.       empty cells in TV TRUE 
26.       set consistent to FALSE 
27.       break 
28. 
29.     IF(TV is greater than or equal to SV) 
30.      THEN set corresponding cell of CVtemp to TV 
31.     ELSE 

32.      Mark Verified cells corresponding to non-empty TV cells to TRUE  
33.      and mark consistent to FALSE 
34.      break 
35.    END 

36. 
37.   IF(consistent) 
38.    THEN 
39.     FOR(each non-empty element of CVtemp) 
40.      set corresponding cells of CV to CVtemp 
41. 
42.   IF(all cells of Verified corresponding to all cells SV are marked true) 
43.    break 
44.   ELSE 
45.    set TV equal to previous vector in TLP 
46.  END 
47. 
48. IF(SV equals CV) 
49.  Return Consistent 
50. ELSE 
51.  Return CV 
52. 
53. END
 
 

 
 Figure 4.7 – History-Based Consistency Detection Algorithm 
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4.2.4 Checkpointing, Message Logging, and Rollback 

When an inconsistent steering transaction is detected, the system must restore the 

computation to a correct state.  In this section, we discuss the checkpointing, message 

logging, and rollback mechanisms used in the Pathfinder system to permit recovery of 

state.   

Checkpointing and restart of a process is a standard technique used to protect work in 

progress from hardware or software failure.  While the checkpointing mechanisms used 

in restart are similar to those used in rollback, rollback is distinguished from restart in 

that the process P, instead of being killed and recreated, is simply returned to some 

previous state.  Process P retains its process ID and all associated kernel resources.  By 

retaining its process ID and kernel resources, other processes in the system can still 

communicate with P, and its communication channel and files stay open. 

4.2.4.1 Local Checkpoint 

The computational state of a process is recorded in the form of a checkpoint before a 

steering change can be invoked or before a tentative message can be processed.  The 

Pathfinder system maintains a checkpoint that includes: 

• The state of the execution stack and all local variables 

• All dynamic and global variables explicitly listed for protection by the 

programmer 

• The CPU state, including but not limited to the program counter (PC) and 

stack pointer (SP).   

Maintaining the execution stack and the CPU state allows the Pathfinder system to 

seamlessly restart a process’s execution at the exact point at which the checkpoint was 
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taken.  Since the mechanism is rollback instead of restart, there is no need to restore code 

space and kernel space state data.   

As described in Chapter 2, in the Pathfinder system each process in a distributed 

computation is “wrapped” by an IM, communication layers between the process and its 

communication environment.  Included in these layers is the optimistic steering module, 

which maintains process state, message logs, and checkpoint file handles.  Each layer of 

the IM is loaded dynamically at runtime and is thus not part of the local set of variables.  

During a checkpoint, it is neither desirable nor necessary to record the state of the IM, as 

this would introduce both wasted storage for the checkpoint and excessive checkpoint 

restoration time during a recovery.  Therefore, to allow dynamic memory protection, the 

IS system provides the programmer with an explicit protocol through which dynamic 

variables created during a process’s execution can be specified for inclusion in 

checkpoints.  Figure 4.8 provides a code sample illustrating this. 

 

QBV *qbv = new QBV(…); //Allocate first IM layer 

char *mem = new char[100]; //Dynamically allocate an array of chars 

qbv->protectMem(mem, sizeof(char) * 100);//Memory to include in checkpoints 

Fig. 4.8 Memory Protection Example 

 

All checkpoint data is written to two binary files per process.  The local variables and 

execution stack are written into one file while all protected dynamic memory is written to 

a second file.  Since the local set of variables and execution stack both lie contiguously in 

the program’s stack, a direct memory dump can be made from the program stack to file 
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during a checkpoint.  However, a slightly more elaborate scenario exists for dynamic 

memory checkpointing. 

Through a Pathfinder protocol, a programmer can explicitly protect any dynamic 

memory that needs to be checkpointed.   The programmer specifies the base memory 

address for a variable and the number of contiguously associated bytes, as seen in Fig. 

4.8.  This information is then stored in a data structure.  During checkpointing, the data 

structure of each process is traversed and all specified memory is contiguously dumped to 

the second binary file. 

Finally, the state of the stack context/environment must be stored out so that on a 

rollback the process state is just as it was when the checkpoint was taken.  Fortunately, 

the setjmp.h library provides an API for both storing out and recovering such 

environmental states. 

4.2.4.2 Consistent Global System State 

Checkpointing and restoring the state of a single process is relatively simple, but 

processes interact with other processes.  There are mainly two ways for recovering and 

restoring the state of a distributed computation: a consistent global checkpoint  scheme, 

and a dependency tracking scheme.  In our implementation, a globally consistent 

checkpoint mechanism is used.  A consistent system state is one in which every message 

that has been received is also shown to have been sent in the state of the sender [CL85]. 

A global state includes the state of all processes and state of communication channels.  

In our implementation, a checkpoint is used for saving process state; message logging 

and replay are used for saving and recovering channel state.   
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The goal of optimistic steering is to avoid global synchronization.  Therefore, 

coordinated checkpointing that involves global synchronization is not desirable.  

However, uncoordinated checkpointing is susceptible to the “domino effect” [Ran75], in 

which cascading rollback propagation may force the system to restart from the initial 

state.  Communication-induced checkpointing allows processes in a distributed 

computation to take independent checkpoints and to avoid the domino effect.  Therefore, 

communication-induced checkpointing is favorable in optimistic steering. 

A consistent global state includes process state and channel state.  While 

checkpointing is used for recording process state, message logging is used for recording 

channel state.  As described earlier, a process must take a checkpoint before it enters the 

tentative state from the normal state.  A process enters the tentative state from the normal 

state when its state is first affected by the steering transaction, either by applying a 

steering change or receiving an unconfirmed tentative message.  Every in-transit message 

should be logged by the receiving process.  To correctly take a checkpoint and log the in-

transit messages, a process must be able to recognize different kind of messages.  A 

simple index will solve this problem. 

Within the Pathfinder system, each process maintains a checkpoint index, initially 0.  

Each steering transaction and its steering actions are associated with an index, which is 

greater than 0 and sequentially increasing.  Every message piggybacks the sending 

process’s checkpoint index.  A message is an in-transit message if its piggybacked index 

is less than the receiving process’s checkpoint index.  A message is a tentative message if 

its piggybacked index is less than the receiving process’s checkpoint index. Upon 

applying a steering change whose index is greater than the local index, a process takes a 
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checkpoint and sets the local index to the index of the steering action and sets its state to 

tentative.  Upon receiving a tentative message, the receiver is forced to take a checkpoint 

before processing the message to avoid inconsistency.  A process in the tentative state 

records all incoming in-transit messages.   The detailed checkpointing algorithm is shown 

in Fig. 4.9.   

Fig. 4.9 The index-based communication-induced checkpointing algorithm 

a. Each process maintains a checkpointing index, initially 0.  Each steering transaction and its 
steering actions are associated with an index, which is greater than 0 and sequentially increasing. 

b. Upon applying a steering change whose index is greater than the local index, a process takes a 
checkpoint and sets the local index to the index of the steering action and sets its state to tentative.   

c. When a process is in the tentative state, the checkpoint index will be piggybacked on every post-
checkpoint outgoing message. 

d. Upon receiving a message with a piggybacked index greater than the local index, the receiver is 
forced to take a checkpoint before processing the message to avoid inconsistency.  It then updates 
its local index to the piggybacked index, and sets its state to tentative.   

e. A process in the tentative state records all incoming normal messages (in-transit messages).    
 

By doing this, all local checkpoints avoid involvement in any Z-cycles [NJ95], which 

have the potential to produce “useless” checkpoints.  The “useless” checkpoints are 

checkpoints that cannot be incorporated into any consistent global checkpoint.  Also, 

each process need take at most one checkpoint for each steering transaction.  Further, 

only those processes whose execution is dependent on the consistency assumption need 

take a checkpoint. 

Therefore, this protocol does not need any extra control messages for synchronization 

purposes and all forced checkpoints are needed for recovery.  The only synchronization 

overhead is the piggybacked index on top of the application message. 

4.2.4.3 Rollback and Re-execution 

In optimistic steering, the system must have the ability to restore the state to what it 

was before the inconsistency occurred and re-execute a portion of the computation to a 
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consistent state and reapply the steering changes.  The SM is responsible for verifying the 

consistency of each steering transaction.  If the steering transaction is determined to be 

consistent, the SM will issue an OK message to all processes, all checkpoints will be 

discarded, message log queues cleared, and all processes will transition back into a 

normal state.  If the steering transaction is determined to be inconsistent, the SM issues a 

Rollback message to all processes; any process presently in a tentative state will begin the 

recovery process and transition into a recovering state. 

Because the SM has no knowledge of processes that have been indirectly affected by 

a steering change through the receipt of a tentative message, it must issue a Rollback 

message to all processes within the system.  Once a process in a tentative state receives a 

Rollback message, it transitions into a recovering state and restores its previous state from 

the checkpoint.  The system resumes execution at the point the checkpoint was taken.  

Once a process begins re-executing, on each Receive it first attempts to replay a logged 

message from the queue associated with the sender.  If no logged message exists, the 

system then resorts to performing a normal Receive.   

An interesting scenario exists in which a process may send a tentative message that 

the receiving process does not process until after the SM has issued either an OK or 

Rollback message.  To address this, each process maintains a mapping indicating which 

steering transactions it knows of, and whether they have been determined to be consistent 

or inconsistent.  If a process receives a tentative message associated with a steering 

transaction that was deemed consistent (confirmed tentative message), it processes the 

message as normal and will not take a checkpoint.  On the other hand, if a process 

receives a tentative message associated with a steering transaction determined to be 
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inconsistent (obsolete tentative message), it knows that message has been or will be 

resent and thus throws away the present message and performs another Receive. 

Each recovering process will re-execute forward to the transaction time that was 

determined to be a consistent cut by the SM; it will then reapply the steering changes.  

Each process transitions back into a normal state of execution once the steering changes 

have been reapplied and all of its message queues have been emptied. 

4.2.4.4 Example 

In Fig. 4.4, we show a computation that consists of four application processes.  In this 

example, m1 is a normal message, m2 is an in-transit message, m3 is a tentative message, 

and m4 is either a confirmed tentative message or obsolete tentative message depending 

on the consistency of steering transaction.   

In this example, process P2 takes a checkpoint C2,0 before it applies steering changes.  

Similarly, process P3 takes a checkpoint C3,0 before it applies steering changes.  Upon 

receiving the in-transit message m2, process P2 logs the message into the log queue.  

Upon receiving the tentative message m3, process P1 takes a checkpoint C1,0 . 

If the steering transaction is deemed consist, m4 will be a confirmed tentative message 

and be processed as a normal message.  The computation will just continue.  If the 

steering transaction is deemed inconsistent, m4 will be an obsolete tentative message and 

be discarded.  The computation must roll back to its previous state before the steering 

changes.  The checkpoints C1,0, C2,0, and C3,0, and the current state of process P0 together 

with the log queues for message m2 comprise a consistent global system state.  Process 

P1, P2, and P3 will roll back to their checkpoints and resume execution.  Re-execution is 
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almost same as the normal execution except that it must check the log queue first for a 

possible message replay before it resorts to a normal receive.   

4.3 Comparison of Conservative Approach and Optimistic Approach 

In this section, we discuss the perturbation and steering lag of the conservative and 

optimistic steering algorithms.  For the steering lag, we consider three kinds of lag, the 

IM local lag, the IM global lag, and the SM lag.  The IM local lag refers to the elapsed 

time between the first EOT event of a process after receiving the steering request and the 

successful application of the steering change at the process.  The IM global lag is the 

elapsed time between the first EOT event of all processes after receiving the steering 

requests and the last successful application of the steering changes among all steered 

processes.  The SM lag refers to the elapsed time between the time the SM sends out the 

steering requests and the last successful application of the steering changes among all 

steered processes.  

SM
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To facilitate illustration of the perturbation and steering lag of the conservative and 

optimistic steering algorithms, we first consider a simple example.  Fig.4.10 shows a 

distributed computation with 3 three processes involved.  Local transactions T1,a, T2,a, and 

T3,a belong to the same global transaction Ta.  Similarly, local transactions T1,b, T2,b, and 

T3,b belong to the same global transaction Tb.  A steering transaction that involves all 

three processes will be consistent if the steering actions are applied all before Ta, or all 

after Ta and before Tb, or all after Tb.  For this example, we assume that the steering 

command is broadcast to all involved processes and is received at roughly at the same 

time by each process.   

4.3.1 The next steerable points are consistent 
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hen the next steerable points across steered processes are consistent, both the 

stic and conservative approaches will perform well.  As seen in Fig. 4.11 and Fig. 

all processes in the example execution receive the steering command during the 

ction Ta.  Thus, the next steerable points, which are points immediately after 

ction Ta, are consistent. 
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In the case of conservative steering, depicted in Fig. 4.11, each process blocks its 

execution after reaching the end of transaction and until it receives a steering-change 

command.  Upon receiving the steering-change command, it will apply the steering 

change and execute forward.  As seen in Fig. 4.11, processes P2 and P3 reach the steerable 

points earlier than process P1.  P2 and P3 are blocked until P1 reaches the steerable point, 

sends its ready message to the SM, and the SM receives all three ready messages and 

issues a steering-change command to all steered processes.  Upon receiving this steering-

change command, all three processes apply their steering changes and continue their 

normal execution.  In this case, the perturbation induced by steering for each process 

includes the elapsed time when it is blocked for synchronization and the time to perform 

the steering change, denoted as ∆bs and ∆st respectively.  Therefore, the local perturbation 

of each process is ∆bs + ∆st..  In this case, the IM local lag is the same as the local 

perturbation.  The IM global lag is almost the same as the maximal IM local lag because 

all three processes apply their steering changes at almost the same time.   

SM
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In optimistic steering, depicted in Fig. 4.12, a steered process takes a checkpoint, 

applies the steering change, and starts the speculative execution after it reaches the 

steerable point.  Later, when all steering events have been received by the SM, the SM 

then can determine that the steering transaction is consistent and broadcast an OK 

message to all involved processes.  Upon receiving the OK message, a process then clears 

its checkpoint and message logs, and accepts the speculative execution and continues its 

normal execution.  In this case, the perturbation induced by steering for each process 

includes the time to take the local checkpoint (denoted as ∆cp) and the time to perform the 

steering change.  Therefore, the perturbation is ∆cp + ∆st..  Similarly, the IM local lag is the 

same as the local perturbation, and the IM local lags between different processes are 

almost the same.  However, the IM global lag is much larger than the maximal IM local 

lag because processes are not well synchronized. 

In summary, in the case of consistent steering, for the conservative steering approach, 

the overhead is mainly dependent on how well the computation is synchronized.  If the 

computation is well synchronized, the average blocking time for each process ∆bs will be 

very low.  For the optimistic steering approach, the overhead is mainly dependent on the 

time for checkpointing.  For both approaches, the SM lag is bigger than the IM global 

lag.  The average difference between the SM lag and the IM global lag is dependent on 

the transaction size.  The larger the transaction size, the larger the difference. 
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4.3.2 The next steerable points are inconsistent 

As seen in Fig. 4.13 and Fig. 4.14, process P1 and P3 in this example receive the 

steering commands during transaction Ta, while process P2 receives the steering 

command after it has begun transaction Tb.  Thus, the next steerable points are 

inconsistent. 

P1

P2

P3

SM

normal execution EOT event

steering eventexecution blocked

Fig. 4.13 Conservative steering, the next steerable points are inconsistent
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In conservative steering, see Fig. 4.13, processes P1 and P3 block their executions 

after they reach the end of transaction of Ta.  When process P2 executes forward, it must 

send messages to process P1 or P3, or receive messages from P1 or P3 because the current 

transaction involves both P1 and P3.  Then, processes P1 and P3 will become active and 

execute forward.  Later, when they reach the end of transaction Tb, they will again block 

to wait for the steering-change command.  In this case, the perturbation induced by 

steering for each process includes the elapsed time when it is first blocked (denoted as 
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∆bf), the elapsed time when it is blocked for synchronization, and the time for performing 

the steering change.  Therefore, the total perturbation is ∆bf  + ∆bs + ∆st.  For process P2, 

the local lag is the same as the local perturbation.  However, for Process P1 and P3, the 

local lags are the local perturbations plus the local transaction size. 
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P3

SM

norm al execution EOT event steering event

checkpointing rollback recoveryspeculative execution

Fig. 4.14 Optim istic steering, the next steerable points are inconsistent

T 1,a T 1,b

T 2,a T 2,b

T 3,a T 3,b

∆st∆cp ∆se ∆ rr ∆st

im LAG g

sm LAG

 

In optimistic steering, see Fig. 4.14, a steered process takes a checkpoint, applies the 

steering change, and starts the speculative execution after it reaches the steerable point.  

Later, when all steering events have been received by the SM, the SM then can determine 

that the steering transaction is inconsistent and broadcast a rollback message to all 

involved processes.  Upon receiving the rollback message, a process will roll back to its 

previous state, thus canceling the steering change and its speculative execution.  Then, 

the process executes forward and applies the steering change at the consistent point.  In 

this case, the perturbation induced by steering for each process includes the time for 
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taking the local checkpoint (denoted as ∆cp), twice the time for performing the steering 

change, the elapsed time for speculative execution (denoted as ∆se), and the time for 

rollback / recovery (denoted as ∆rr).  Therefore, the total perturbation is ∆cp + 2 * ∆st + ∆se 

+ ∆rr.  Similarly, for process P2, the local lag is the same as the local perturbation.  

However, for Process P1 and P3, the local lags are the local perturbations plus the local 

transaction size 

Note that when rollback occurs in optimistic steering, the conservative steering 

approach would also have required blocking for a time almost equal to that spent on 

wasted computation.   

4.4 Experiments 

This section presents experiments performed to evaluate performance of the two 

consistent steering approaches in term of perturbation and lag.  We ran a set of tests 

encompassing five variables that may affect our system overhead:  communication 

pattern, transaction size, number of processes, number of steered processes, steering 

status, and size of checkpoints.  Three basic types of distributed computation 

communication patterns were tested: one in which all processes communicate during 

each transaction and synchronize at the end of each transaction (Global); one in which 

processes communicate pairwise during each transaction and once in every 10 

transactions all processes communicate and synchronize (Mixed); finally, one in which 

processes perform only pairwise communication and no global communication or 

synchronization takes place (Pairwise).  For each communication type, we considered 

short transactions in which each process had a .25 second computation and large 

transactions in which each process had a 2.5 second computation.  For the optimistic 
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steering approach, we also varied the size of checkpoints, 10KB (Small), 

100KB(Medium), and 1MB (Large). 

All tests were run on a cluster of 4 Pentium II 450 Mhz workstations with 128 MB of 

RAM and running RedHat Linux 7.2.  Within Pathfinder, there exist two extra control 

processes, one for the SM and one for a daemon process responsible for establishing all 

UI and SM communication channels.  Only the application and control processes were 

executed on the workstations during the tests, and the GUI was run on a separate server, 

to avoid workstation load imbalance.   

4.4.1 Perturbation  

For perturbation tests, each test was run on 2, 4, and 8 processes, taking the average 

execution time of 5 runs of 150 transactions for the unmonitored computation, the 

monitored computation, the optimistic steered computation with the small checkpoint, the 

optimistic steered computation with the medium checkpoint, the optimistic steered 

computation with the large checkpoint, and the conservative steered computation.  For 

each of the runs that included steering, 5 steering transactions took place.  Except for the 

tests containing only 2 processes, during each run 2 steering transactions contained all the 

processes, 2 steering transactions contained 75% of the processes and one steering 

transaction contained 50% of the processes.  For the 2 processes runs, each steering 

transaction affected all processes.  This was done because steering only 1 process would 

guarantee consistency, and thus would introduce very little overhead and provide less 

meaningful performance results.   

The average execution times for unmonitored, monitored, optimistic steered (10KB), 

optimistic steered (100KB), optimistic steered (1MB), and conservative steered test sets 
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with small transactions and large transactions are presented in Fig. 4.15 and Fig. 4.16, 

respectively.   

Fig. 4.15 Perturbation for Small Transactions
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Fig. 4.16 Perturbation for Large Transactions
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On average for small transactions, the optimistic approach with small checkpoint size 

(10KB) introduced a 3.39% overhead, the optimistic approach with medium checkpoint 
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size (100KB) introduced a 6.83% overhead, and the optimistic approach with large 

checkpoint size (1MB) introduced a 9.27% overhead, and the conservative approach 

introduces a overhead 13.11%.  On average for large transactions, the optimistic 

approach with small checkpoint size (10KB) introduced a 0.41% overhead, the optimistic 

approach with medium checkpoint size (100KB) introduced a 0.87% overhead, and the 

optimistic approach with large checkpoint size (1MB) introduced a 1.14% overhead, and 

the conservative approach introduces a overhead 1.77%.   

For the optimistic approach, a clear trend is that the overhead increases with the size 

of checkpoint.  However, it is still in the reasonable range.   In the case of 2 and 4 

processes, the overhead introduced by optimistic steering of any checkpoint size is less 

than the overhead introduced by conservative steering approaches.  However, for 8 

processes with mixed and pairwise communication pattern, the conservative steering 

results in a smaller overhead.  The main reason is that the percentages of consistency in 

these cases are very low, less than 50 percent.  On average, the optimistic steering 

approach with any checkpoint size is better than the conservative approach. 

Fig. 4.17 presents the average percentage of steering transactions applied consistently 

on the first attempt, based on the number of application processes, size of transaction, and 

communication pattern.  Seen in figure 4.17, steering consistency varies with the average 

length of time a transaction spends performing the computation, the number of processes, 

and the communication pattern between the processes.  As we expected, the tests with 

only two processes were highly consistent.  As the number of processes increases so does 

the likelihood of inconsistency.  Similarly, mixed and pairwise communication patterns 

also increase the likelihood of steering inconsistencies, with an average consistency of 
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slightly above 80% and 70% respectively while the global communication patterns were 

100% consistent.  [MGK01] points out that steering inconsistencies can be easily 

visualized as a program transaction boundary being cut by a steering transaction; some 

steering events occurred before or during the program transaction while others took place 

after.  With mixed and pairwise communication patterns, where faster processes or 

process sets are allowed to progress uninterrupted and then forced to synchronize with 

slower processes, this scenario becomes more likely, as can be seen in the mixed 

communication tests for 8 processes.  Note that the high percentages of inconsistency for 

8 processes are also due to the imbalance of workstation load because we had to run 

either 2 or 3 processes on each machine in this case. 

Fig. 4.17 Percentages of Steering Transactions Consistent on 
First Attempt
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 Overall, the system provides reasonable performance for monitoring and steering, 

both introducing an average overhead of less than 2%.  While these test cases are not all 

encompassing, they represent some basic communication patterns.  The transaction sizes 

are meant to serve as benchmarks for performance testing.  While the .25 second 
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transactions size is smaller than we expect in practice, the 2.5 second transaction 

represents a reasonable, though still conservative, value.  Performing 5 steering 

transactions per run, thus steering approximately every minute in the case of the large 

transactions, is far more frequent than will occur in practical use.  The user must have the 

ability to comprehend what is occurring in a computation to make informed and 

meaningful steering decisions.  Steering is more likely to occur on the scale of once every 

1000 transactions, to permit observation of meaningful patterns within the computation.   

The study of global perturbation in terms of execution time alone is not sufficient to 

gain full insight into the characteristics of the optimistic and conservative approaches.  

Next, we will discuss the average steering lag for each steering transaction and define the 

tradeoff between the optimistic approach and the conservative approach. 

4.4.2 Steering Lags 

Lag proved to be both more difficult and more interesting to measure.  We consider 

three kinds of lag: the IM local lag, the IM global lag, and the SM lag.  Since the IM local 

lags of different processes may be quite different, we consider maximal IM local lag, 

average IM local lag, and minimal IM local lag.  As described earlier, the main difference 

between the IM lag and SM lag is the elapsed time for the steering request message to 

reach the IM from the SM and the elapsed time between the arrival of steering request 

message and the occurrence of the first EOT event.  This difference is the same for both 

the optimistic approach and the conservative approach.  Since the main purpose of this 

study is to find the components of lag affected by the choice of steering algorithms, we 

will mainly focus on the comparison of IM lags.  However, we will also discuss the 

relationship between IM local lag, IM global lag, and SM lag.  As discussed in section 
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4.3, the steering lags vary greatly depending on whether or not the next steerable points 

are consistent.  To gain insight into steering lag, we separate the cases when steering 

transactions are consistent and inconsistent.   

For the steering lags tests, each test was run on 2, 4, and 8 processes.  For each run 

with 150 program transactions, 15 steering transactions took place.  For 2 processes, each 

steering transaction contains 2 processes.  For 4 processes, during each run 5 steering 

transactions contained all the processes, and 10 steering transactions contained 2 

processes.  For 8 processes, during each run 5 steering transactions contains all the 

processes, 5 steering transactions contains 4 processes, and 5 steering transaction 

contains 2 processes. 

Fig. 4.18 Average IM Local Steering Lag for Small Transaction
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Fig. 4.18 and Fig. 4.19 show the average local lags of the optimistic approach with 

medium checkpoint size (100KB), the optimistic approach with large checkpoint size 

(1MB), and the conservative approach for small transactions and large transactions, 

respectively.  For the optimistic approach, the steering lag grows with the checkpoint 

size.  When steering transactions are consistent on the first attempt, the steering lag of the 
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optimistic approach with both medium and large checkpoint size is smaller than for the 

conservative approach.  When steering transactions are inconsistent on the first attempt, 

the steering lag of both approaches increases dramatically and the steering lag of the 

optimistic approach is much larger than the steering lag of the conservative approach.   
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Fig. 4. 20 Average IM Local Steering Lag for Small Transaction
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When steering transactions are consistent on the first attempt, the IM steering lag 

depends largely on the overhead of checkpointing.  When the size of the checkpoint is too 

large (i.e. equal to 10MB), the conservative approach will always win, even when the 

first attempt is consistent, as seen in Fig. 4.20. 

Fig. 4.21 IM Lags and SM Lags for Small Transaction, 8 Processes
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Fig. 4.22 IM Lags and SM Lags for Large Transaction, 8 Processes
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Fig. 4.21 and Fig. 4.22 show the relationship among IM local lag, IM global lag and 

SM lag for small transactions and large transactions, respectively.  For the optimistic 

approach, the difference between IM global lag and IM local lag increases dramatically 

when the transaction size is increased.  However, for the conservative approach, the IM 

global lag and the maximal IM local lag is almost the same for both small transactions 

and large transactions because all steered processes are synchronized at the steerable 

points and apply their steering changes at roughly the same time.  For both the optimistic 

and conservative approaches, the difference between IM global lag and SM lag increases 

with the transaction size.  This difference is roughly about half of the transaction size. 

Fig. 4.23 Lags in Different Communication Patterns and Large 
Transactions
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Fig. 4.23 shows another interesting trend.  For optimistic steering, the steering lag is 

roughly the same among three communication patterns.  However, for conservative 

steering, the steering lag of the mixed communication and the pairwise communication 

patterns are more than double that of the global communication pattern. This is because 

the processes are not well synchronized with the mixed and pairwise communication 
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patterns and the steering lag for the conservative approach depends largely on the 

synchronization overhead. 

In summary, when steering transactions are consistent on the first attempt, the 

steering lag of the optimistic approach is mainly due to the checkpointing, and grows 

with the size of checkpoint; the steering lag of the conservative approach is mainly due to 

processes synchronization, fast processes have to wait for slow processes before steering 

changes are applied.  When steering transactions are inconsistent on the first attempt, the 

steering lags of both approaches increase dramatically and the steering lag of optimistic 

approach is much larger than the steering lag of the conservative approach.  Tradeoffs 

between the optimistic approach and the conservative approach depend on the 

percentages of consistency on the first attempt, the size of checkpoint, and I/O 

performance.  When the percentages of consistency on the first attempt are large enough 

(i.e. more than 80 percent) and the size of checkpoint is not too large (i.e. less than or 

equal to 1MB), the optimistic approach will win; otherwise, the conservative approach 

will win.  However, we believe that the overhead of checkpointing can be dramatically 

reduced if our tests can be done in a system with high performance I/O. 
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CHAPTER 5 

CONCLUSIONS 

In this chapter, we summarize the main contributions of this research and outline the 

future directions.   

5.1 Summary 

Consistent interactive steering of distributed computations is a very interesting but 

challenging problem.  Most computational steering systems do not address this problem 

at all.  Those that do address this problem do so in a restricted manner.  For example,  

CUMULVS requires a computation to have a single main loop, and VASE depends on 

the shared global memory architecture.  This work presented here is novel in that it solves 

the consistency problem in a more general way. 

We have developed two approaches for consistent steering of distributed 

computations: the optimistic approach and the conservative approach.  Algorithms for 

both the conservative steering approach and the optimistic steering approach have been 

designed, implemented and integrated into the Pathfinder system.  The performance of 

conservative and optimistic steering approaches have been evaluated in term of 

perturbation and lag.  Tradeoffs between the optimistic approach and the conservative 

approach depend on the percentages of consistency on the first attempt, the size of 

checkpoint, and I/O performance.  Our experiments show that when the percentages of 

consistency on the first attempt are large enough (i.e. more than 80 percent) and the size 

of checkpoint is not too large (i.e. less than or equal to 1MB), the optimistic approach 

will win; otherwise, the conservative approach will win.  However, we believe that the 
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boundary of checkpoint size can be dramatically increased if our tests can be done in a 

system with the high performance I/O. 

Furthermore, we introduce a novel transaction-based computation model.  In our 

monitoring and steering system, the overall computation is abstracted to an interleaving 

of atomic state changes involving one or more processes – by analogy with databases, we 

call such state transitions transactions.  This abstraction not only gives users a simple and 

high-level view of distributed computation, but also simplifies reasoning consistency 

problem by reducing the amount of information to be handled.   

5.2 Future Work 

Future efforts of this research will include the following three parts: nested 

transactions, collaborative steering by multiple users, and real world applications. 

One problem with transactions is that the granularity of transaction has a big effect on 

the performance of steering algorithms; large transaction size may result large steering 

lag while small transaction size may result large monitoring perturbation as the state 

information is collected at the end of transaction.  We believe that a nested transaction-

based computational model will solve this problem.  By allowing users to zoom in and 

out to different levels of nesting, we can achieve a good balance between perturbation 

and lag.   

Collaborative steering of a computation by multiple users is another very interesting 

and challenging problem.  We expect that when the user requests do not conflict, i.e. they 

steer different processes, the steering request by different users should permit concurrent 

application.  Otherwise, the conflicting steering changes must be applied in a certain 

order. 
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Interactive steering of computations is a useful approach for users working with long-

running, complex computations with numerous parameters affecting both solutions 

quality and execution performance, such as grand challenge problems in structural 

biology, computational chemistry, computational physics, and large-scale simulations.  In 

the future, we will seek to apply the algorithms, techniques, and systems that we have 

developed in interactive steering to such kind of problems.  The application of such 

interactive steering techniques to those grand challenge problems will be both 

challenging and rewarding. 
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