

CONSISTENT, INTERACTIVE STEERING OF DISTRIBUTED COMPUTATIONS:

ALGORITHMS AND IMPLEMENTATION

by

JINHUA GUO

(Under the Direction of Eileen Kraemer)

ABSTRACT

Interactive computational steering provides users with the opportunity to tackle new
problems in a way that helps them to learn about the computation in a highly engaging,
interactive, visual environment. Causal consistency is an important feature of interactive
steering of distributed computations, as it is often required to maintain the correctness of
the computation. However, due to the asynchronous nature of distributed computations,
it is difficult to coordinate steering changes across processes to guarantee that the
changes are applied consistently at all processes.

This thesis introduces a transaction-based computation model for distributed
computation. This abstract model not only gives users a simple and high-level view of
distributed computation, but also simplifies reasoning consistency problem by reducing
the amount of information to be handled.

Furthermore, this work investigates two approaches for achieving consistent steering:
conservative steering and optimistic steering. The performance of conservative and
optimistic steering approaches is evaluated in term of perturbation and lag. Our
experiments show that when the percentages of consistency on the first attempt are large
enough and the size of checkpoint is not too large, the optimistic approach will achieve
better performance; otherwise, the conservative approach will be better.

INDEX WORDS: interactive steering, distributed algorithms, distributed

computation, consistency, termination, causality, vector time,
transaction, checkpoint, message logging, rollback.

CONSISTENT, INTERACTIVE STEERING OF DISTRIBUTED COMPUTATIONS:

ALGORITHMS AND IMPLEMENTATION

by

JINHUA GUO

B.E., Dalian University of Technology, China, 1992

M.E., Dalian University of Technology, China, 1995

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2002

© 2002

Jinhua Guo

All Rights Reserved

CONSISTENT, INTERACTIVE STEERING OF DISTRIBUTED COMPUTATIONS:

ALGORITHMS AND IMPLEMENTATION

by

JINHUA GUO

Approved:

Major Professor: Eileen Kraemer

Committee: E. Rodney Canfield
Thiab Taha
John Miller
Valery Alexeev

Electronic Version Approved:

Gordhan L. Patel
Dean of the Graduate School
The University of Georgia
August 2002

DEDICATION

To my wife Honglei and my daughter Jennifer

 iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my major Professor, Dr. Eileen

Kraemer, for the long hours she spent with me discussing and refining this project and

revising a lot of my writings. I really appreciate her encouragement during the arduous

odyssey and her willingness to share her experiences with qualitative research. Her

support and guidance helped me complete this phase of life and my career.

I would like to thank my thesis committee, Dr. E. Rodney Canfield, Dr. Thiab Taha,

Dr. John A. Miller, and Dr. Valery Alexeev, for their effort, advice and guidance.

I would like to thank a lot of people who have contributed to this project: Delbert

Hart, Gruia-Catalin Roman, David Miller, Arumugaraja Selvaraj, Yin Xiong, Brandon

Kohn, Navin Gupta, and Himabindu Vuppula.

Last but not least, I would like to thank my wife, Honglei, for her devoted love,

support, and patient.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES..viii

CHAPTER

1 INTRODUCTION... 1

1.1 Interactive Steering ... 2

1.2 Consistency, Perturbation and Lag.. 3

1.3 An Example... 4

1.4 Conservative Approaches vs. Optimistic Approaches 6

1.5 Related Work... 7

1.6 Organization .. 15

2 PATHFINDER SYSTEM ... 16

2.1 Monitoring... 17

2.2 Steering.. 18

3 TRANSACTION-BASED COMPUTATIONAL MODEL.................................. 19

3.1 Transaction .. 19

3.2 Transaction-based Causality and Concurrency Relations......................... 23

3.3 Transaction-based Vector Time .. 25

4 CONSISTENT STEERING .. 29

4.1 Conservative Approach ... 29

 vi

4.2 Optimistic Approach ... 37

4.3 Comparison of Conservative Approach and Optimistic Approach........... 56

4.4 Experiments... 62

5 CONCLUSIONS... 73

5.1 Summary ... 73

5.2 Future Work .. 74

REFERENCES.. 76

 vii

LIST OF FIGURES

Page

Figure 1.1: Higher KdV Equation: Initial Conditions T = 0.0 .. 5

Figure 1.2: Higher KdV Equation: Solutions When T = 0.25 .. 6

Figure 2.1: The Pathfinder Architecture ... 16

Figure 3.1: Global Transactions .. 20

Figure 3.2: Transaction Annotation .. 22

Figure 3.3: Transaction Relations ... 24

Figure 4.1: Process Synchronization... 32

Figure 4.2: Conservative Steering Algorithm ... 35

Figure 4.3: Process States in Optimistic Steering ... 39

Figure 4.4: Optimistic Steering Example.. 40

Figure 4.5: Steering Example: Consistent Steering Transaction....................................... 43

Figure 4.6: Steering Example: Inconsistent Steering Transaction 44

Figure 4.7: History-Based Consistency Detection Algorithm .. 48

Figure 4.8: Memory Protection Example.. 50

Figure 4.9: The index-based communication-induced checkpointing algorithm.............. 53

Figure 4.10: Distributed computation without steering .. 56

Figure 4.11: Conservative steering, the next steerable points are consistent 57

Figure 4.12: Optimistic steering, the next steerable points are consistent 58

Figure 4.13: Conservative steering, the next steerable points are inconsistent................. 59

 viii

Figure 4.14: Optimistic steering, the next steerable points are inconsistent 60

Figure 4.15: Perturbation for Small Transactions .. 64

Figure 4.16: Perturbation for Large Transactions ... 64

Figure 4.17: Percentages of Steering Transactions Consistent on First Attempt.............. 66

Figure 4.18: Average IM Local Steering Lag for Small Transaction 68

Figure 4.19: Average IM Local Steering Lag for Large Transaction 69

Figure 4.20: Average IM Local Steering Lag for Small Transaction 69

Figure 4.21: IM Lags and SM Lags for Small Transaction, 8 Processes 70

Figure 4.22: IM Lags and SM Lags for Large Transaction, 8 Processes.......................... 70

Figure 4.23: Lags in Different Communication Patterns, Large Transactions 71

 ix

CHAPTER 1

INTRODUCTION

Interactive computational steering provides users with the opportunity to tackle new

problems in a way that helps them to learn about the computation in a highly engaging,

interactive, visual environment. Causal consistency is an important feature of interactive

steering of distributed computations, as it is often required to maintain the correctness of

the computation. However, due to the asynchronous nature of distributed computations,

it is difficult to coordinate steering changes across processes to guarantee that the

changes are applied consistently at all processes.

Two general approaches exist for achieving consistent steering: conservative steering

and optimistic steering. The conservative steering approach avoids inconsistent steering

by strictly adhering to the causality constraint. This typically involves blocking the

computation before a consensus decision is made and steering changes are applied. On

the other hand, the optimistic steering approach assumes that the next steerable points are

consistent, and invokes the steering change at the next steerable point at each involved

process without concern for or knowledge of the state of any other process. This

eliminates the need for blocking steered processes. However, the optimistic steering

approach must be able to detect any inconsistent steering transaction and provide a

checkpointing/rollback mechanism to restore the computation to a correct state. Such

optimistic techniques have the potential to reduce both the perturbation of the

computation and the lag associated with interactive steering.

 1

Given the size and complexity of distributed computations, a formal treatment of a set

of events in a distributed computation into higher-level events is crucial in modeling

distributed activities to provide different abstract views [Lam86]. In our monitoring and

steering system, the overall computation is abstracted to an interleaving of atomic state

changes involving one or more processes – by analogy with databases, we call such state

transitions transactions. This abstraction not only gives users a simple and high-level

view of distributed computation, but also simplifies reasoning consistency problem by

reducing the amount of information to be handled.

In this thesis, I present a transaction-based computation model for distributed

computation and two approaches for consistent steering of distributed computations:

conservative steering and optimistic steering. Optimistic techniques have been used to

enhance performance in various areas such as concurrency control and discrete event

simulation. This work represents a novel application of optimistic techniques to

interactive steering.

1.1 Interactive Steering

The interactive steering of computations permits users to monitor a program’s

execution and to adjust both application parameters and the allocation of resources in an

online fashion. This interactivity provides a powerful tool for application scientists,

researchers, and algorithm developers in the process of “charting unknown waters”,

whether exploring new computational solutions to problems that are not yet well

understood, or attempting to select ideal parameters for familiar algorithms applied to

new data sets or problem areas. The ability to monitor a program in execution and

observe intermediate results, coupled with the ability to tweak application parameters,

 2

select or install new control algorithms, and direct the allocation of resources, provides

users with the opportunity to improve the performance of the computation or the quality

of solution for a particular run of the program. In addition, the experience of observing

and interacting with the running computation can help the researcher to better understand

the dynamics of the execution behavior, provide insight into the target problem and data,

and build intuition that can lead to the selection of better default parameters and the

development of algorithms more highly tailored to the target domain. Applications for

which steering is useful are typically long-running, complex simulation, modeling, or

control programs executing in parallel or distributed environments.

1.2 Consistency, Perturbation and Lag

Users of an interactive steering system observe visualizations of the program’s state,

behavior, and performance. Based on these visualizations, users may issue a steering

command, an instruction to alter some aspect of the computation. Examples of steering

commands include a request to change the value of a variable at one process, a request to

change the value of a variable at many or all processes, or to perform a reallocation of

resources. A global state change resulting from one steering command is called a

steering transaction. A steering transaction can be decomposed into modifications of the

local states of one or more processes, known as steering events. The constraints that

steering changes must adhere to vary considerably from application to application. Some

steering changes may be applied at any of the participating processes at any point in the

computation. However, if a steering transaction is intended to update critical control

parameters or change the global configuration, causal consistency is often required to

 3

maintain the correctness of the computation. That is, all local steering changes must be

applied concurrently across all participating processes.

Other important concerns in interactive steering include the perturbation induced by

steering and the lag. Steering perturbs the execution of the application system.

Perturbation measures how the underlying application is affected by the presence and use

of the steering software. Local perturbation describes the effect on a single process. The

primary source of local perturbation is the execution of additional instructions for

steering changes of the local process state. The overall effect on the application,

including the local perturbations, message traffic, and consistency controls, comprise the

global perturbation. Latency or lag refers to elapsed time. Presentation lag is the elapsed

time between the existence of a state in the program’s execution and the presentation of

that state to the viewer. Steering lag refers to the elapsed time between the initiation of a

steering command by the user and the application of the associated steering changes at

the process of the computation.

The ideal system would feature strong consistency, and low latency and perturbation.

1.3 An Example

Consider, for example, simulation programs that employ the higher KdV equation

[BSS87, Tah92]. As seen in Fig. 1 and Fig. 2, numerical simulations of this equation

show that its solitary-wave solutions are unstable, and in fact, that neighboring solutions

emanating from smooth initial data appear to form singularities in finite time, which

means that the solution “blows up” in finite time [BSS87, FW78]. Usually, numerical

schemes for solving this equation are based on an explicit timestep method, which

extrapolates the solution of the current timestep based on the calculations of previous

 4

time

to im

direc

these

smal

exec

high

the r

and

(i.e.

we c

quic

solut

Fig. 1.1 Higher KdV Equation: Initial Conditions T = 0.0

-1
0
1
2
3
4
5
6
7
8

-40 -20 0 20
X

U

steps. Due to the computational complexity, parallel algorithms are often employed

plement these numerical schemes [Tah92, JT02]. Both the mesh size in the spatial

tion, ∆x, and the size of the timestep, ∆t, are tunable. The choice of ∆x and ∆t in

 methods affect the execution time and accuracy of the computation. Typically,

l ∆x and ∆t will produce more accurate results, but will require much longer

ution time. Experiments show that when solutions are relatively stable, solutions of

er KdV equation are almost the same no matter how large ∆x and ∆t are as long as

atio between ∆t and ∆x is small enough [JT02]. However, solutions become more

more sensitive to large ∆x and ∆t when solutions become more and more unstable

there are more and more peaks in the solution waves, as seen in Fig. 1.2). Therefore,

an choose relatively large ∆x and ∆t to compute the solutions of early timesteps

kly, and can then alter ∆x and ∆t to smaller values on-the-fly to get more accurate

ions before they “blow up”. By doing this, we could get accurate results with

5

shorter computation time. However, a change to ∆x and ∆t may result in incorrect

solutions of the equation if applied in an inconsistent manner, i.e., applied at different

timesteps in the execution at different processes, or in the midst of a timestep. In this

paper, we will show how an optimistic approach can be used to coordinate steering

changes across processes so that they are performed concurrently.

1.4 C

G

quie

befo

proc

com

Fig.1.2 Higher KdV Equation: Solutions When T = 0.25

-1
0
1
2
3
4
5
6
7
8

-40 -20 0 20

X

U

onservative Approaches vs. Optimistic Approaches

lobally consistent steering updates typically require that a computation reach

scence [DS80, Lyn96] before a steering change is applied; the computation blocks

re a consensus decision is made and steering changes are applied. This is a nontrivial

ess in a distributed, asynchronous environment, requiring centralized control of the

putation, and with the potential to cause considerable perturbation of the computation

6

and significant steering lag [KDR98]. In contrast to this conservative approach, we

present another approach called optimistic steering. In optimistic steering, the system

invokes each steering event in the steering transaction at the respective process without

concern for or knowledge of the state of any other process. Therefore, the consistency of

the global state of the computation, and specifically, the consistency of the steering

transaction, must be checked. If the consistency is verified, the computation continues.

If the steering transaction is found to be inconsistent, then the earliest time at which the

steering event could be consistently applied at each process is calculated. The

computation must then rollback to its state prior to the application of the steering change,

execute forward, and then apply the steering change at the consistent time. This approach

is expected to perform well in the case that steering is relatively rare and that the

processes of the computation tend to remain roughly synchronized because of

coordination at the application level. This is often the case, as processes typically wait

for messages from one another or synchronize at barriers. Accordingly, while the

overhead of state saving and some logging will be incurred for each steering transaction,

rollback and re-execution will be incurred only in the case of inconsistent steering, and

both logging and re-execution will be of limited scope and duration.

1.5 Related Work

The work related to this research includes: computational steering environments,

optimism, causality, vector times, and atomic events in distributed computations.

1.5.1 Computational Steering

An early computational steering environment was VASE, the Visualization and

Application Steering Environment, developed at the University of Illinois [HBJJ92,

 7

JBBH93]. The VASE system requires special annotation to existing Fortran code and

permits the user to alter the values of “key” parameters and to add code at “key” points.

However, VASE does not support the coordinated steering of multiple processes.

SCIRun supports computational steering in a multithreaded application that runs on a

single multiprocessor machine [PG95, PWJ97]. However, it assumes that the underlying

program consists of a number of separate modules. The SCIRun system generates a

script that controls the invocation of these modules. The steering process involves

altering these scripts—thus, changes occur only between modules, not within modules.

The script itself is executed sequentially. No support for coordination of distributed

changes is required. Progress [VS95] and its successor Magellan [VS97] also provide

interactive environments for computational steering. Both these systems were designed

to run on multiple multiprocessor machines. Progress does not support coordinated

steering of multiple processes. Magellan was extended to support such coordinated

steering of multiple processes but requires synchronization points be placed in an

application. Before a steering change can take place the application must first halt. Thus,

Magellan can be said to support the conservative approach to the interactive steering of

distributed computations. CUMULVS was developed at Oak Ridge National Laboratory

to support the monitoring and steering of distributed computations [GKP97]. To allow

steering, the user interface process creates a loosely synchronized connection with the

application, which guarantees that all tasks apply the steering updates at the same time or

point in the application, also falling into a conservative steering model. Yet another

computational steering environment is the VIPER project [RL97]. VIPER is based on a

client/server/client architecture. One client is the parallel computation, the other client is

 8

the visualization unit, and the server acts as a governing body for both information and

data extraction and steering application. Each application has synchronization points at

which time the server has the ability to consistently apply the steering changes requested

by the user. Finally, the CSE environment provides a computational steering

environment similar to those already described [LMW97, WL97]. In this system, there

exist data manager and satellite worker processes. The data manager is responsible for

gathering the monitored data, all communication, and application of steering changes.

Like the other environments that support simultaneous steering events, this system also

requires its source code be annotated with special synchronization variables. During

synchronization, the data manager can consistently apply the steering changes.

1.5.2 Optimism

Optimistic Concurrency Control

Concurrency control is a technique for scheduling concurrent operations in such a

way that they appear to have been executed in a single sequence with respect to the data

objects that they share. Such a schedule is called serializable [GR92]. However, it is

possible to schedule such operations concurrently, so that non-interfering operations are

executed in parallel. A conservative scheduling approach, such as two-phase locking

[EGLT76] and timestamp ordering [BG80], would look at each operation, and try to find

a schedule that does not force any of the operations to roll back. However, there are no

deadlock-free conservative protocols that always provide high concurrency [KR81].

Thus the problem of finding a schedule forms a serial bottleneck to the concurrent

execution of operation on shared data.

 9

Kung and Robinson’s Optimistic Concurrency Control [KR81] is an optimistic

algorithm for scheduling concurrent transactions. They make the optimistic assumption

that, for sufficiently large sets of data objects, operations usually do not conflict, and so it

is possible to optimistically schedule all transactions to be executed concurrently as they

arrive for processing, and detect and correct concurrency errors post hoc. If the

optimistic assumption is correct often enough, this optimistic approach will achieve

higher concurrency than a conservative schedule.

The optimistic method permits transactions to proceed until they are to commit. At

commit time, the system checks for conflicts. If conflicts are detected, some transactions

are aborted. This results in relatively efficient operation when there are few conflicts, but

a substantial amount of work may have to be repeated when a transaction is aborted.

Parallel and Distributed Simulation

 Discrete event simulation is a computing application that simulates the behavior of

complex systems for the purposes of design and modeling. The number of

”events” being simulated in such a system is often very large, and so such simulations

may run for a long time. Since most events are independent of one another, discrete

event simulation is amenable to speedup through parallelism. However, when simulating

a given event, it is often not decidable at the time whether the event in question is

independent of other events in the system: is there a factor that this event has not yet

learned of ? Conservatively waiting for such confirmation imposes a limitation on the

available concurrency in a simulation. Optimistically assuming that such a contributing

factor does not exit increases available parallelism.

 10

 Jefferson’s Virtual Time [Jef85] is an algorithm for distributed process

synchronization that has been widely studied. Time Warp is a discrete event simulation

system based on the Virtual Time concept that provides the illusion of a globally

synchronized clock that can be used to preserve a total ordering across the system as

defined by Lamport [Lam78], even though processes actually are being executed out of

order. Thus, the semantics that it guarantees are those of a sequentially executed series of

computations.

 Time Warp optimistically assumes that messages are processed in receive timestamp

order, i.e. if the local clock is advanced, no message will ever arrive with a time stamp

preceding the new clock setting. Thus every advance of the local copy of the virtual time

is a speculative action that may have to be rolled back. If a message arrives with a time

stamp that precedes the current local time, then the process is rolled back to a saved state

of a simulated time no later than the time stamp of the arriving message.

Variations on the Time Warp model have been proposed [CS89a, CS89b]. The Time

Warp protocol uses a detection-and-recovery protocol to synchronize the computation

[Fuj89]. The Time Warp mechanism has also been used for optimistic concurrency

control in distributed databases, using object-rollback, rather than blocking, as the

fundamental means of synchronization [JM86]. Further work on the application of

speculative execution to real-time systems has been investigated in [GFS93].

Optimistic methods appear to offer greater hope for general-purpose simulation, if

state-saving overhead is kept within a manageable level [Fuj90]. Nevertheless,

conservative methods have also been found to offer great potential for certain classes of

 11

applications, particularly when ample application-specific knowledge of the systems

being simulated is available, as in [MRR90].

1.5.3 Causality, Time, and Vector Time

Causality is fundamental to many problems in distributed computing. For example,

determining a consistent global snapshot of a distributed computation [CL85, FZ90]

requires finding a set of local snapshots such that the causal relation between all events

included in the snapshots is respected in the following sense: if e’ is contained in the

global snapshot formed by the union of local snapshots, and e→e’ holds, then e must also

be included in the global snapshot. Thus, the notion of consistency in distributed systems

is basically an issue of correctly reflecting causality. Many important applications of

causal consistency are summarized by Schwarz and Mattern in [SM94].

An important characteristic of distributed systems is that there is no global clock.

Consequently, ordering the events in a distributed system can be challenging. Lamport

[Lam78] introduced an efficient mechanism called logical clocks for totally ordering the

events in a distributed system, but the mechanism is not sufficiently powerful to allow

concurrent events to be identified. Mattern [Mat89] and Fidge [Fid88] independently

developed vector clocks, which precisely capture the causal ordering between distributed

events. The main difference between Mattern and Fidge vector time schemes and ours is

that we measure logical time in terms of “number of past local transactions” at a process,

rather than “number of past events” at that process.

Netzer and Xu [NX95] introduced the notions of Z-paths and Z-cycles, and pointed

out that a local checkpoint is useless iff it is involved in a Z-cycle. In the transaction-

based computational model, if a checkpoint is taken, all participant processes in a global

 12

transaction take the checkpoint at the end of transaction. In this way, no local checkpoint

will be involved in a Z-cycle because there is no message in transit at the end of

transaction.

1.5.4 Atomic Events in Distributed Computations

In the literature on distributed computations, much attention has been focused on

model events in order to reason better about the computations. Thus far, events have

been implicitly modeled in the isolated contexts of various applications. A formal

treatment of grouping events in a distributed computation into higher-level events is

crucial in modeling distributed activities to provide different abstract views [Lam86].

Event abstraction also provides simplicity to the programmer and system designer in

reasoning at the appropriate level of atomicity by reducing the amount of information to

be handled. Kshemakalyani presents a unifying framework for expressing and analyzing

events at various level of atomicity [Ksh98]. Events in distributed computations are

defined at four levels of atomicity: primitive send and receive events, send and receive

constructs, reactive events, and events between transitless cuts.

The most elementary events are certain “basic” communication actions [CL94] at

both processes and communication channels in distributed computations, and are defined

as the first level events. This level of atomicity is useful for designing complex

communication constructs and for comparing their flexibility with that of primitive

communication events at this lowest level of atomicity as a benchmark. At the second

level, the events are abstract send and receive events executed at the processes. Modeling

events at this level of atomicity has implicitly been done by many applications such as

distributed snapshots [CL85], modeling distributed computations [Fid88, Lam78, Mat89],

 13

transfer of knowledge [CM86], leader election, and mutual exclusion [Sin93]. The next

level in the atomicity hierarchy has events that are reactive in nature, i.e., each event

denotes activity at a process in response to messages received from other processes.

Modeling events at this level of the hierarchy has been used for distributed debugging

[KF93, NM92] and distributed termination detection [Mat87]. Another level of the

hierarchy has events such that each event is affected by and affects the rest the

computation only by the process states at the start and end of events, respectively. In this

view of the computation, the global state of the system before and after any events is a

transitless global state, i.e., there are no messages in transit between any pair of processes

in this state. Transitless states are therefore used in applications such as checkpointing

and recovery [SY85], atomic transactions [BHG87, FGL82], and fault-tolerant

computations [Ran75], in which a past global state may need to be restored.

In our transaction-based computation model, global transactions are another

implementations of the fourth level events, events between transitless cuts. However, our

transaction-based computation model has some distinguishing features. In the fault

tolerance [Ran75], transitless states are created through synchronization at the cost of

restricted interprocess communication. The transaction model of [FGL82] uses a non-

intrusive scheme of replicating parts of the database to create and record a transitless

state. In the Pathfinder system, transitless states are automatically recognized by the

system with the proper annotations of source code at meaningful points by the users, and

there is no need for global synchronization or data replication.

 14

1.6 Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the

Pathfinder system, a system that we have developed for monitoring and steering of

distributed computations. Chapter 3 presents the transaction-based computation model.

Chapter 4 presents two algorithms for consistent steering of distributed computations:

conservative steering and optimistic steering. Finally, conclusions and future work are

presented in Chapter 5.

 15

CHAPTER 2

PATHFINDER SYSTEM

We have developed an exploratory visualization system that allows a user to pose

queries and visualize program data in a real-time fashion. Through this system, the user

may monitor attributes and variables of the distributed computation. This system, known

as Pathfinder, serves as the base upon which optimistic steering is implemented, see Fig.

2.1. In this section, we describe the components of the Pathfinder system and their

function, and explain how optimistic steering is integrated into these components.

Through the integrated system, users may dynamically manipulate program variables or

adjust resource allocation, without compromising the correctness of the underlying

computation. In Chapter 3, we describe the underlying model of computation.

Snapshot
Manager

User
InterfaceInteraction Managers

P1

Pn

Steering
Streams

Snapshot
Streams

Fig.2.1 The Pathfinder Architecture

16

2.1 Monitoring

The exploratory visualization system focuses on a class of distributed computations

that can be abstracted to an interleaving of atomic state changes involving one or more

processes. It is assumed that communication patterns are not affected by steering

changes and remain the same during rollback and re-execution. These atomic state

changes, or transactions, correspond to logical actions performed by the computation. A

transaction boundary is specified explicitly by end-of-transaction (EOT) annotations in an

application program [HKR97, Har00, VKH00]. Placement of EOTs controls the

granularity of the view of the distributed computation. Annotation may be performed

manually or through automated means.

The Pathfinder system is constructed in three parts: Interaction Managers (IM), a

Snapshot Manager (SM), and a User Interface (UI), seen in Fig. 2.1. The IM exists as an

instrumentation layer that resides between the process and its communication

environment. The IM collects local snapshots (sets of local variable values) and

transaction labeling information, then sends both to the SM. Transaction labeling

information includes information about the processes that participate in each transaction

(membership) and the dependence relationships between transactions (ordering)

[VKH00].

The SM serves as a central observer. The SM is responsible for merging local

snapshots from the IMs to produce consistent global snapshots based on the transaction

labeling information [KHR98]. For these global snapshots to accurately reflect the state

of the distributed computation, local snapshots must be grouped together and ordered in a

 17

manner that does not violate the causal relationships in the distributed computation

[Lam78].

Finally, the global snapshots are sent to the UI to be visualized. The UI oversees the

decoding of global snapshots into animation actions, the control of visualizations, and the

interpretation of user interactions with the visualizations into monitoring directives.

2.2 Steering

When users observe a certain state and want to respond to it. He may issue a steering

command at any time and make the on-the-fly changes of the state of the computation.

The UI provides the interface through which users may issue steering commands to the

computation at runtime. The SM is responsible for coordinating global steering

activities. The direct steering changes, such as manipulating program variables or

adjusting resource allocation, are performed by the IMs.

For optimistic steering approach, local checkpointing, message logging, and rollback

are performed by the IMs. The detection of inconsistency, verification of consistency

and calculation of the earliest consistent steering time of a steering transaction all require

knowledge of all participating processes. Therefore, the SM performs all these

operations.

For conservative steering approach, the global synchronization of steered processes

are controlled by the IM. While the SM is responsible for check the termination

conditions, such as whether or not all steered processes become passive, and whether or

not the global transaction involved with steered process are complete.

 18

CHAPTER 3

TRANSACTION-BASED COMPUTATION MODEL

In this section, we define the model of computation upon which our system,

algorithms, and definitions are based.

A distributed system consists of a set of processes that cooperate to achieve a

common goal and communicate only through message passing. A local computation of a

process is a totally ordered sequence of events. The concurrent and coordinated

execution of local algorithms forms a distributed computation. Events are classified, as

described in [SM94], into three types: send events, receive events and internal events.

The event-based causality relation (denoted →) is a transitive relation satisfying the

following conditions: (1) if e and e’ are events of the same local computation and e’ is the

next event after e, then e→e’; (2) if e is a send event and e’ is the corresponding receive

event, then e→e’. If, for two events e and e’, neither e→e’, nor e’→e holds, then we say

e and e’ are concurrent (denoted as e || e’) [SM94].

3.1 Transaction

Given the size and complexity of distributed computations, it is important to have a

presentation that provides a simple, accurate, and flexible view of an execution. In our

monitoring and steering system, the overall computation is abstracted to an interleaving

of atomic state changes involving one or more processes – by analogy with databases, we

call such state transitions transactions. This abstraction not only gives users a simple and

high-level view of distributed computation, but also simplifies reasoning about

 19

consistency problems by reducing the amount of information to be handled. Our

transactions are constructed based on end-of-transaction (EOT) annotations placed at

appropriate points in the code. We define transactions as follows:

Definition 3.1 A local transaction is a sequence of events between EOTs (or between

the start of the program and the first EOT) of a process.

Definition 3.2 A transaction relation T is an equivalence relation on a set of all local

transactions such that for two local transactions a and b of different processes, if a

contains a send event and the corresponding receive event is in b, then (a, b) is in T.

Definition 3.3 Local transactions can be partitioned in one and only one way into sets

called equivalence classes according to the transaction relation, and each equivalence

class is called a global transaction.

LT11 LT12
Fig. 3.1 Global Transactions. Processes P1, P2, P3, and P4 are shown as arrows
with time increasing from left to right. Each local transaction is shown as a
shaded area containing application events (circles). The boundaries of the shaded
areas represent annotations demarking the transaction boundaries. Messages are
shown as arrows between process events.

P1

P2

P3

P4

LT21 LT22

LT31
LT32

LT42

LT41 LT43

20

Fig. 3.1 shows an example of a distributed computation consisting of three global

transactions, T1 = {LT11, LT21, LT41}, T2 = {LT31, LT42} and T3 = {LT12, LT22, LT32,

LT43}. Local transactions LT11 and local transaction LT21 are transaction-related because

local transaction LT11 sends a message to local transaction T21. Similarly, transactions

LT11 and local transaction LT41 are transaction-related. Therefore, local transactions

LT11, LT21 and LT41 all belong to the same equivalence class, a global transaction.

Similarly, local transactions LT31 and LT42 belong to one global transaction and local

transactions LT12, LT22, LT32 and LT43 belong to another.

We then view the local computation of a process as a sequence of local transactions

and a distributed computation as a set of partially ordered global transactions. The reason

that the model refers to the logical actions taken by the distributed application as

transactions is because to the user they appear to exhibit the ACID properties [GR92]:

• Atomicity: To the user, a global transaction is an atomic unit of computation.

Each global transaction consists of at most one local transaction at each process.

• Consistency: After the execution of global transactions, process states consist of a

consistent global system state because no messages are in-transit.

• Isolation: For global transactions, Ta and Tb, if the local transaction of Ta precedes

the local transaction of Tb in one process, then in every other process, the local

transactions of Ta must precede the local transactions of Tb.

• Durability: To the user, the values changed by the transaction persist after the

transaction successfully completes.

The main difference between Pathfinder transactions and database transactions is that

Pathfinder recognizes program transactions and enforces only steering transactions.

 21

Computations that satisfy the above properties are well-formed. Well-formed

computations permit the calculation of equivalence classes, reflecting an ordering of the

transactions in the computation.

Im

forme

transa

transa

a resu

annot

proce

Fig. 3

comp

Tb
Fig. 3.2 Transaction Annotations. The solid block indicates the annotation of the end-of-
transaction. (a). This shows an improper annotation. Local transactions of transaction Tb
precede local transactions of transaction Ta in process P1 and P2, while local transactions of
transaction Ta precede local transactions of transaction Tb in process P3 and P4. (b) This
shows a proper annotation after removing the first EOT annotations of all processes.

Ta

P1

P2

P3

P4

P1

P2

P3

P4

(a) (b)

proper annotation may result in the appearance of a computation that is not well-

d, as seen Fig. 3.2 (a). In processes P1 and P2, local transactions of Tb precede local

ctions of Ta, while in processes P3 and P4, local transactions of Ta precede local

ctions of Tb. This violates the isolation requirement. However, we note that this is

lt of the annotation, rather than structure of the computation itself. If we re-

ate, removing the first EOT annotations of all processes, then all events of all

sses belong to a global transaction and the computation is well-formed, as seen in

.2 (b). Careful placement of end-of-transaction annotations will allow nearly any

utation to exhibit the "well-formed" property. Although program instrumentation

22

requires extra work for the programmer, it is not difficult for the programmer to identify

the logical units of source codes.

3.2 Transaction-based Causality and Concurrency Relations

In evaluating the consistency of a steering transaction, we may need to evaluate the

concurrency and causality relations between pairs of steering events, pairs of

transactions, and between steering events and transactions. In this section, we define the

relations necessary to evaluate these relationships. Further, we give a definition of a

consistent steering transaction. Since we view transactions as atomic state changes,

steering changes are constrained to be applied between transactions. For example, in the

program for solving higher KdV equations discussed in Chapter 1, changes of ∆x or ∆t

can only be applied between timesteps, modeled as transactions.

Definition 3.4 The transaction-based causality relation t→ between two global

transactions Ta and Tb is a transitive relation satisfying the following condition: if there

exists a process Pi that participates in both Ta and Tb, and the local transaction of Ta in Pi

precedes the local transaction of Tb in Pi, then Ta t→ Tb.

For example, in the execution depicted in Figure 3.3, T1 t→ T2 because P2

participated in both global transactions, and participated in T1 before T2.

Definition 3.5 The transaction-based concurrency relation t|| between two global

transactions is defined as: Ta t|| Tb iff ¬(Ta t→ Tb) and ¬ (Tb t→ Ta).

For example, in Fig. 3.3, T0 t|| T1. However, we note that the transaction-based

causality relation is more constrained than the event-based causality relation; the

concurrency relation does not exist between T1 and T3. In Fig. 3.3, in terms of the event-

based causality and concurrency relations, s1 || s3, s1 || r3, r1 || s3, and r1 || r3; therefore,

 23

global transaction T1 would be considered concurrent with global transaction T3.

However, in terms of the transaction-based causality and concurrency relations, T1 t→

T2, and T2 t→T3, thus T1 t→ T3. The transaction-based causality relation is stronger

because of the view that global transactions are logically atomic actions.

In

concu

steerin

D

in pro

condi

in T

transa

Fo

T1
T2

T3

Fig. 3.3 Transaction Relations. Each global transaction is shown as a shaded area
containing application events (circles). The boundaries of the shaded areas
represent annotations demarking the transaction boundaries. Messages are shown
as arrows between process events. Steering events are shown as diamonds.

s1

s2

s3

r1 r2

r3

e1

e2

e3

P1

P2

P3

P4

T0

 the remainder of this section, we define transaction-based causality and

rrency relations between a steering event and a global transaction and between two

g events. Further, we give a definition of a consistent steering transaction.

efinition 3.6 The transaction-based causality relation t→ between a steering event e

cess Pi and a global transaction T is a transitive relation satisfying the following

tion: if process Pi participates in global transaction T, and the local transaction of Pi

precedes the steering event, then T t→ e; if process Pi participates in global

ction T, and the local transaction of Pi in T is after the steering event, then e t→T.

r example, in Fig. 3.3, e1 t→T1 and T2 t→ e2.

24

Definition 3.7 The transaction-based causality relation t→ between two steering

events ei and ej is defined as: ei t→ ej iff there exists a global transaction T, such that (ei

t→T) and (T t→ej).

For example, in Fig. 3.3, e1 t→ T1 and T1 t→ T2, thus e1 t→ T2. Further, T2 t→ e2 , so

e1 t→e2.

Definition 3.8 The transaction-based concurrency relation t|| between two steering

events ei and ej is defined as: ei t|| ej iff ¬(ei t→ ej) and ¬ (ej t→ ei).

For example, in Fig. 3.3, since neither e1 t→ e3 nor e3 t→ e1 holds, then e1 t|| e3.

Definition 3.9 Let ei denote the steering event of process Pi, and let SP denote the set

of processes that participate in a steering transaction. A steering transaction is said to be

causally consistent if: for all i, j, i ≠ j, i ∈ SP and j ∈ SP, ei t|| ej.

That is, a steering transaction is causally consistent if and only if all steering changes

of that transaction are applied concurrently. For example, in Fig. 3.3, suppose steering

events e1, e2 and e3 belong to the same steering transaction, the steering transaction is not

consistent because e1 t→e2.

3.3 Transaction-based Vector Time

A straightforward approach for consistency detection is to identify the concurrency

relation between all steering events of a given steering transaction. If all steering events

are concurrent, then the steering transaction is consistent; otherwise, it is inconsistent.

Vector time schemes [Fid88, Mat89] have proved a good way for identifying concurrent

events in a distributed system. Here, we describe a vector time based algorithm for

identifying the concurrency relation between steering events. In our transaction-based

system, the logical time of each process is measured by the number of past local

 25

transactions that have occurred at the process. The vector time of process Pi can be

defined as follows:

Definition 3.10 Let P1, …, PN denote the processes of a distributed computation. The

vector time Vi of process Pi is maintained according to the following rules:

(1) Initially, Vi[k] = 0 for k = 1,…,N

(2) On each steering event e, process Pi increments Vi as follows: Vi [i] = Vi[i] + 0.5;

(3) At the start of each new local transaction, process Pi increments Vi as follows:

;  5.0][][+= iViV ii

(4) At the end of a global transaction T, update V for j = 1, …, n. (,][][max jVj k
SPk

i
∈

=)

Since at the end of a global transaction T, all participating processes will exchange

their knowledge about logical times of other processes and synchronize their vector

clock, as described in the rule (4), then the vector clocks of all participating processes

will be the same when the global transaction T is completed, which is denoted as V(T).

V(T) is said to be the vector timestamp of global transaction T. Let V(e) denote the

vector time Vi that results from the occurrence of steering event e in process Pi. V(e) is

said to be the vector timestamp of steering event e. Informally, the component Vi[i] of

process Pi’s current vector time reflects the accurate logical time at Pi (measured in

“number of past local transactions” at Pi), while Vi[k] is the best estimate Pi is able to

derive about Pk’s current logical clock value Vk[k].

Definition 3.11 Let u, v denote vector times of dimension m [SM94].

(1) u ≤ v iff u[k] ≤ v[k] for k = 1, …, m

(2) u < v iff u ≤ v and u ≠v

(3) u || v iff ¬(u < v) and ¬ (v < u).

 26

Theorem 3.12 For two global transactions Ta and Tb of a distributed computation, we

have

(1) Ta t→ Tb iff V(Ta) < V(Tb)

(2) Ta t|| Tb iff V(Ta) || V(Tb)

Proof.

Suppose Ta t→ Tb holds. Then, by the definition of the transaction-based causality

relation, there exists a sequence of global transactions such that Ta = T0 t→ T1 t→… t→

Ts = Tb, where there exists a process Pj that participates in both Ti and Ti+1, and Ti+1 is the

next global transaction after Ti in Pj. According to the definition of vector time, we have

V(Ti+1) [j] = V(Ti)[j] +1 > V(Ti)[j] and V(Ti+1)[k] ≥ V(Ti)[k] for k = 1, …, n, which

implies V(T i+1) > V(T i). Therefore, V(Ta) = V(T0) < …<V(Ts) = V(Tb).

Conversely, suppose V(Ta) < V(Tb) holds. Assume Pi is a process that participated in

global transaction Ta. Then, V(Ta)[i] is the accurate number of local transactions that

happened at Pi when Ta happened, and V(Tb)[i] is the best estimate that participant

processes in Tb were able to derive about the number of local transactions that happened

at Pi. Since V(Tb)[i] ≥ V(Ta)[i], then either Ta must happen before Tb, or Ta is the same

as Tb. Since V(Ta) < V(Tb), then they cannot be the same. Therefore, Ta t→ Tb.

Property (2) follows immediately from (1) and the definition of the transaction-based

concurrency relation. �

Theorem 3.13 For two steering events ei and ej of a distributed computation, we have

(1) ei t→ ej iff V(ei) < V(ej)

(2) ei t|| ej iff V(ei) || V(ej)

Lemma 3.14 For two steering events ei in process Pi and ej in process Pj, we have,

 27

(1) ei t→ ej iff V(ei)[i] ≤ V(ej)[i]

(2) ei t|| ej iff V(ei)[i] > V(ej)[i] and V(ej)[j] > V(ei)[j]

Lemma 3.14 states that we can restrict the comparison to just two vector components

in order to determine the precise causal relationship between two steering events if their

origins Pi and Pj are known. The intuitive meaning of the lemma is easy to understand. If

the “knowledge” of steering event ej in process Pj about the number of local transactions

in Pi is at least as accurate as the corresponding “knowledge” V(ei)[i] of ei in Pi, then

there must exist a chain of transactions which propagated this knowledge from ei at Pi to

ej at Pj, hence ei t→ ej must hold. On the other hand, if event ej is not aware of as many

events in Pi as is event ei, and event ei is not aware of as many events in Pj as is event ej,

then both events have no knowledge about each other, and thus they are concurrent.

 28

CHAPTER 4

CONSISTENT STEERING

In this research, we investigate two approaches for achieving consistent steering:

conservative steering and optimistic steering. The conservative steering approach avoids

inconsistent steering by strictly adhering to the causality constraint. This typically

involves blocking the computation before a consensus decision is made and steering

changes are applied. On the other hand, the optimistic steering approach assumes that the

next steerable points are consistent, and invokes the steering change at the next steerable

point at each involved process without concern for or knowledge of the state of any other

process. This eliminates the need for blocking steered processes. However, the

optimistic steering approach must be able to detect any inconsistent steering transaction

and provide a checkpointing/rollback mechanism to restore the computation to a correct

state.

In this chapter, we first present the two approaches for consistent steering of

distributed computations, the conservative approach and the optimistic approach. Both

approaches have been implemented in the Pathfinder system. We then discuss the

relative costs and benefits of the optimistic and conservative approaches.

4.1 Conservative Approach

The conservative steering approach avoids inconsistent steering by strictly adhering

to the causality constraint. That is, no two steering events in the steering transaction may

 29

be causally dependent. Thus, in conservative steering, steering changes cannot be

applied until the next steerable points are confirmed to be concurrent.

4.1.1 Conservative Approach Overview

A user can issue a steering request at anytime during the computation. Upon

receiving a steering request from the user, the SM sends out the prepare-to-steer to all

steered processes. A process receiving a prepare-to-steer message from the SM will

block its execution at the next steerable point (EOT point), report back to the SM, and

wait for the confirmation from the SM. A blocked (passive) process may become active

again when another process requests it either to send a message or to receive a message in

order that all steered processes reach a consistent point. When the SM has determined

that all steered processes have blocked at a consistent point, it then issues a steering-

change command to all steered processes. Upon receiving the steering-change command,

the steered processes then apply steering changes and continue execution. Thus, the

conservative steering approach requires that all steered processes be synchronized at the

consistent steerable point before steering changes are applied. In conservative steering,

the computation blocks while the SM is checking the consistency.

In the following section, we will discuss process state and some control messages for

conservative steering. Consistency checking and process synchronization will be

discussed in section 4.1.3.

4.1.2 Process State and Control Message

Within the Pathfinder system, communication traffic exists between both the

executing processes and between the various control modules of the Pathfinder system.

We refer to these messages, respectively, as application messages and control messages.

 30

For the conservative approach, control messages include prepare-to-steer messages,

steering-change messages, message-send-request messages, and message-receive-request

messages. A prepare-to-steer message informs a process that it is involving a steering

transaction. A steering-change message informs a process that it can go ahead to apply

the steering change. Both message-send-request and message-receive-request messages

are used for synchronizing steered processes. A message-send-request informs a process

that it must send the requested message before it blocks (become passive). Similarly, A

message-receive-request informs a process that it must receive the requested message

before it blocks (become passive).

A steered process is defined as a process that has already received the prepare-to-

steer command. An affected process is defined as a process that participates in the same

transaction with a steered process. A process may be in one of two states: active or

passive. Active processes are those currently working on a computation; passive

processes are waiting. However, a passive process can still be able to process any control

messages, such as message-request, steering-flag, etc. A process may go through several

state changes from passive to active and from active to passive before it reaches a

consistent point. A steered active process becomes passive when it reaches a steerable

point, no process is requesting additional messages, and no process is requesting it to

receive a message. A passive process becomes active if a message-send-request message

or a message-receive-request message arrives, forcing it to participate in another

transaction.

When all steered processes in the system are passive and every global transaction that

steered processes were involved in has completed (this guarantees that passive processes

 31

will not become active), steering changes then can be applied concurrently across all

involved processes.

4.1.3 Consistency Checking and Process Synchronization

Within the Pathfinder system, the SM is responsible for checking consistency.

When a steered process becomes passive, it will report its state to the SM. A consistent

point is reached when (1) all steered processes in the system are passive and (2) each

global transaction that involved steered processes has completed. The first condition

guarantees that all steered processes have reached a steerable point. The second

condition guarantees that no two steering events can be causally dependent on each other.

SM SM

C

able

seen

send

mess

S. T

R

S

Prepare-to-steer

R

S

Prepare-to-steer

Fig. 4.1 Process Synchronization. (a) A passive process S must become active again when it
need send a message to a steered process; (b) A passive process R become active again when it
need receive a message from a steered process.

(a) (b)

End of Transaction (EOT) Point Process blocked at (EOT) point

onsistency checking appears very simple. However, a steered process may not be

to reach a steerable point if it is waiting for a message from a passive process, as

 in Fig. 4.1 (a). In this case, the sender must become active and execute forward to

 the message. For this reason, when a steered process R attempts to receive a

age M and M has not arrived, R sends a message-send-request message to the sender

he message M may not have arrived because its sender S is passive or because the

32

execution of S is slow. If M has not been sent because S is passive, then S becomes

active and executes forward to send M. Process S remains active and continues

execution until it sends the message M and reaches the next steerable point. If M has not

been sent because S is slow, then S remains active and continues execution until it sends

the message M and reaches the next steerable point. If M has already been sent, process

S ignores the request. Here, we assume that the receiver always knows which process is

the message sender.

Another potential problem is that a global transaction that involves steered processes

may not be able to complete if the receiver of a message from a steered process is

blocked at an earlier steerable point, as seen in Fig. 4.1 (b). In this case, the receiver

must become active and executed forward to receive the message in order to complete the

global transaction. For this reason, before a process become passive, it will broadcast a

message-receive-request message to all its neighbors, processes with which it has

communicated. This informs its neighbors that all messages it has sent should be

received in order to complete the global transaction. If M has not been received, then R

becomes active and executes forward to receive M. Process R remains active and

continues execution until it reaches the next steerable point. If M has already been

received, process R ignores the request.

In a message-send-request message, it is necessary to specify which message must be

sent. The message-send-request contains an identifying message number, the number of

messages that have been received from S by the receiver. Similarly, in a message-

receive-request message, it is necessary to specify which message must be received. The

message-receive-request contains an identifying message number, the number of

 33

messages that have been sent by the sender. The IM counts the messages sent to or

received from every process and uses this count to uniquely identify messages.

Here, we borrow some ideas from the halting algorithm for a global Conjunctive

Predicate [MI92], a variation of the distributed termination detection problem [DS80].

However, there are several special properties when the computation is transaction based.

First, termination is detected when all steered processes in the system are passive and

each global transaction that involved steered processes has completed. Second, it is only

necessary to block steered processes, not all processes. Finally, a passive process must

become active again when it needs to receive a message from a steered process or when it

needs to send a message to a steered process in order to complete the current transaction.

When termination is detected, the SM then knows a consistent point has been reached

and issues a steering-change command to all steered processes. Upon receiving the

steering-change command, the steered processes then apply steering changes and

continue execution. Thus, the conservative steering approach requires that all steered

processes be synchronized at the consistent steerable point before steering changes are

applied. A detailed description of the conservative steering algorithm is shown in Fig.

4.2.

 34

Fig. 4.2 Conservative Steering Algorithm

Snapshot Manager:

Send prepare-to-steer to all steered processes;

IF (all steered processes are passive) AND

 (global transactions that each steered process Pi was involved in at LVTi are completed)
Send steering-change to all steered processes;

Interaction Manager / User Process:

 // Initialization
 state := active;
 steeringFlag := false;

 for i := 1 to N do { // N = number of processes
 s[i] := 0; // the number of messages sent to Pi
 r[i] := 0; // the number of messages received from Pi
 rs[i] := 0; // Pi requested to send up to rs[i]
 rr[i] :=0; // Pi requested to receive up to rr[i]
 }

When message arrives from the SM:

 SWITCH message type
 CASE prepare-to-steer:

steeringFlag := true;

IF the process is waiting for a message from Pi THEN

 k := r[i] + 1;
 send a message-send-request(k) to Pi;
 END IF

 CASE steering-change:
 apply the steering change;
 steerFlag := false;
 state := active;
 continue execution;
 END SWITCH;

 EOT:
 IF steeringFlag = true THEN
 IF for all i (s[i] >= rs[i]) AND (r[i] >=rr[i]) THEN

 FOR each process Pi DO
 send message-receive-request (s[i]) to Pi;
 END FOR

 state := passive;
 send (passive, LVTi) to the SM;
 sleep;

 END IF;
 END IF

 35

 Message Send to Pi:

 s[i]++;

send the message;

 Message Receive from Pi:

 IF the message is not in the queue THEN
 IF steeringFlag = true THEN
 k := r[i] + 1;

 send a message-send-request(k) to Pi;
 END IF

wait for the message until it arrives;
END IF
r[i]++;
process the message;

When control message arrives from Pi:

 SWITCH message type
CASE message-send-request(k):
 rs[i] := k;

 IF steeringFlag = false Then
 steeringFlag := true;
 END IF;

 IF state = passive THEN
 IF s[i] < rs [i] THEN
 state := active;
 continue execution;
 END IF
 END IF

 CASE message-receive-request(k):
 rr[i] := k;
 IF steerFlag = false THEN
 steerFlag := true;

 END IF

 IF (k > r[i]) AND (state = passive) THEN
 state := active;
 continue execution;

 END IF
 END SWITCH;

 36

4.2 Optimistic Approach

 In contrast to the conservative approach, the optimistic approach to steering assumes

that the next steerable points are consistent, and invokes the steering change at the next

steerable point at each involved process without concern for or knowledge of the state of

any other process. This eliminates the need for blocking steered processes. However, the

optimistic steering approach must be able to detect any inconsistent steering transaction

and provide a checkpointing/rollback mechanism to restore the computation to a correct

state.

In optimistic steering, IMs are responsible for applying steering changes, taking

checkpoints, logging in-transit messages and carrying out rollback commands. The SM

plays a central role, as it is responsible for issuing steering commands, detecting

inconsistency, verifying consistency and sending out rollback orders when necessary.

4.2.1 Optimistic Steering Algorithm Overview

A user can issue a steering request at anytime during the computation. Upon

receiving a steering request from the user, the SM sends out the steering command to the

involved processes. Processes receiving a steering command from the SM apply the

steering action at the next EOT (end of transaction) and then report back to the SM. The

processes need not know the states of other processes involved in the steering transaction.

Upon receiving acknowledgements from all the processes involved in the steering

transaction, the SM carries out a consistency check. Based on the local steering times

and information available from TLP messages, the SM can determine if the steering

update was applied consistently. If the steering transaction is consistent, the SM will

broadcast an OK message to each process. Upon receiving the OK message, the

 37

processes enter a normal state, cease logging and delete all logs. If an inconsistency is

detected, the SM issues a rollback command to each process and provides the correct

steering time to all the processes involved in the inconsistent steering. Upon receiving a

rollback command from the SM, the processes that were affected by the steering

transaction will roll back to their previous checkpoints, execute forward, and then reapply

the steering changes at the consistent point specified by the SM. Note that the

consistency check and application execution are concurrent. While the SM is verifying

the consistency of a steering transaction, the application continues its execution.

In optimistic steering, the overhead of state saving and some logging will be incurred

for each steering transaction; however, rollback and re-execution will be incurred only in

the case of inconsistent steering.

In the following section, we discuss two consistency detection algorithms: the vector

time based algorithm and the history-based algorithm. The checkpointing/rollback

algorithms will be discussed in detail in section 4.2.4.

4.2.2 Process State and Application Message Type

The application processes may be in any one of three states: normal, tentative, or

recovering, as seen in Figure 4.3. A normal state implies that neither the consistency of

a steering change is in question nor is the correction of an inconsistency underway. A

tentative state implies that a process is executing speculatively, its result will be canceled

if the steering transaction is determined to be inconsistent. A process enters a tentative

state from a normal state when its state is affected by a steering transaction. A process

can be affected by a steering transaction, either directly by applying a steering change or

indirectly by receiving a message from a process already in a tentative state. In order to

 38

be able to cancel the speculative execution if the steering transaction is determined to be

inconsistent, the process must take a checkpoint before entering the tentative state.

Finally, a process may only enter a recovering state if it is in a tentative state and the

associated steering transaction is determined to be inconsistent.

For o

OK mes

followin

transacti

tells the

message

across p

been app

steering

No Message in
Queue and
Steering
Reapplied (if
applicable)

Receive Rollback Message

Receive OK M
essage

Apply Steering Change

Receive Tentative Message

Tentative

Normal

Recovering

Fig. 4.3 Process States in Optimistic Steering.

ptimistic steering, control messages include Steering messages, ACK messages,

sages and Rollback messages. These control messages will be discussed in the

g section. A Steering message informs a process that it involves in a steering

on and should apply the change at the next steerable point. An ACK message

 SM that the process has applied a steering change at the certain time. OK

s inform processes that the steering changes have been applied consistently

rocesses. Rollback messages inform processes that the steering changes have

lied inconsistently, the computation must roll back to the state before applying

changes.

39

SM

A

mess

the t

may

tenta

tenta

alrea

the a

mess

when

be c

the r

in-tr

P0

P1

P2

P3

Local checkpoint Steering event

Steering

m1

m2

m3

m4

Ack OK/Rollback

C3,0

C2,0

C1,0

Fig. 4.4 Optimistic Steering Example

Normal State Tentative State

pplication messages can be further grouped into normal messages, tentative

ages, and in-transit messages. A message is a tentative message if the sender is in

entative state. Depending on the state of the steering transaction, tentative messages

 be in any one of three states: unconfirmed, confirmed, obsolete. Upon receiving a

tive message, if the associated steering transaction has not been confirmed, the

tive message is in an unconfirmed state; if the associated steering transaction has

dy been confirmed to be consistent, the tentative message is in a confirmed state; if

ssociated steering transaction has been determined to be inconsistent, the tentative

age is in an obsolete state. A process in the normal state will enter the tentative state

 it receives an unconfirmed tentative message. A confirmed tentative message will

onsidered as a normal message. An obsolete tentative message will be discarded by

eceiver because it is out of date and will be resent during recovery. A message is an

ansit message if the sender is in the normal state and the receiver is in the tentative

40

state. An in-transit message cannot be resent during recovery. Thus, it must be recorded

by the receiving process. Within the Pathfinder system, the recording of the in-transit

message is referred as message logging.

For example, in figure 4.4, message m1 is a normal message because both the sender

P3 and receiver P2 are in the normal state. Message m2 is an in-transit message because

the sender P1 is in the normal state and the receiver P3 is in the tentative state. Message

m3 is an unconfirmed tentative message because the sender P2 is in the tentative state and

the consistency of the associated steering transaction has not been determined when m3 is

received by P1. Tentative message m4 is received after the steering transaction has been

confirmed, so its state will depend on the state of the steering transaction. If the steering

transaction is determined to be consistent, message m4 will be in the confirmed state, and

process P0 will merely receive it and remain in the normal state. If the steering

transaction is determined to be inconsistent, message m4 will be in the obsolete state, and

process P0 will discard this message and wait for a new copy of the message.

4.2.3 Consistency Detection

As described earlier, in optimistic steering, the system invokes each steering event in

the steering transaction at the respective process without concern for or knowledge of the

state of any other process. Therefore, the consistency of the steering transaction must be

checked. If the consistency is verified, the computation continues. If the steering

transaction is found to be inconsistent, then the earliest time at which the steering event

could be consistently applied at each process is calculated. In this section, we describe

two algorithms for the detection of inconsistency, verification of consistency and

calculation of the earliest consistent steering time.

 41

4.2.3.1 Vector Time Based Approach

To detect the consistency of a steering transaction, we can compute the causality and

concurrency relations between steering events by comparing the vector timestamps of all

steering events according to theorem 3.13. If they are concurrent, then the steering is

consistent, otherwise not. To do this, we need m * (m-1) / 2 vector comparisons in the

worst case, where m is the number of affected processes. This is easy, but not efficient.

The following theorem gives a more efficient way to detect inconsistency, verify

consistency and calculate the earliest consistent steering time.

Theorem 4.1 Let V(ei) denote the vector time of a steering event in process i. Let

SP denote the set of processes that participate in a steering transaction. Let SV be a time

vector and SV[i] denote the local time at which the steering event actually happened at

process Pi for all i ∈ SP. Let CV be a time vector and CV[i] denote the time at which the

steering event could be consistently applied at process Pi for all i ∈ SP. Then,

[] () 5.0][max +



=

∈
ieViCV k

SPk

, for all i ∈ SP

IF CV[i] = SV[i], for all i ∈ SP, then the steering is consistent, otherwise not.

Proof

(1) We show that CV is consistent.

For any i, j ∈ SP, let ei’ denote the steering event that is applied at time CV[i] at

process Pi, and let ej’ denote the steering event that is applied at time CV[j] at process Pj.

We have V(ei’)[i] = > V(e[] () 5.0][max +



=

∈
ieViCV k

SPk

j’)[i], which implies V(ei’)[i] >

V(ej’)[i]. Similarly, we have V(ej’)[j] > V(ei’)[j]. By lemma 5.5, we have ei’ t|| ej’

(2) We show that CV is the earliest consistent steering time.

 42

If SV = CV, then CV is the earliest consistent steering time.

If SV < CV, then for any vector SV’ such that SV ≤ SV’ < CV, we show that steering

events applied at SV’ are not consistent. Let ei’ denote the steering event that is applied at

time SV’[i] at process Pi. Since SV’ < CV, then there exists at least one element j, SV’[j]

< CV[j], then SV’[j] + 1 ≤ . This implies SV’[j] + 0.5 <

, let’s say that V(e

[] () 5.0][max +



=

∈
ieViCV k

SPk

() ()][][maxmax ieVieV k
SPk

k
SPk ∈∈

≤



 k)[j] = . Then, we have

V(e

()][max ieV k
SPk∈

j’)[j] = SV’[j] < V(ek)[j] ≤ V(ek’)[j], which implies V(ej’)[j] < V(ek’)[j]. According to

lemma 3.14, we have ej’ t→ ek’. Therefore, SV’ is not consistent. �

1 32e1

F

steer

0}; V

Acco

{1.5

1

1

1

1

1

2

2

2

2

4

3

3

4

4

P1

P2

P3

P4

P5

P6

32 e2

e4

e5

Fig. 4.5 Steering Example: Consistent Steering Transaction. Each
global transaction is shown as a shaded area. Steering events are shown
as diamonds. The steering transaction {e1, e2, e4, e5} is consistent.

ig. 4.5 shows an example of a consistent steering transaction, consisting of four

ing events: e1, e2, e4, and e5. SV = {1.5, 2.5, -, 2.5, 1.5, -}; V(e1) = {1.5, 1, 0, 0, 0,

(e2) = {1, 2.5, 1, 1, 0, 0}; V(e4) = {1, 2, 2, 2.5, 1, 1};V(e5) = {1, 2, 2, 2, 1.5, 1};

rding to theorem 4.1, CV , for all i [] () 5.0][max +



=

∈
ieVi k

SPk

 ∈ SP. Then, we have CV =

, 2.5, -, 2.5, 1.5, -). Since SV =CV, the steering transaction is consistent.

43

Fig. 4.6 shows an inconsistent steering transaction, consisting of four steering events:

e1, e2, e4, and e5. SV = (0.5, 1.5, -, 2.5, 1.5, -); V(e1)= {0.5, 0, 0, 0, 0, 0}; V(e2)= {1, 1.5, 0,

0, 0, 0}; V(e4)= {1, 2, 2, 2.5, 1, 1}; V(e5)= {1, 2, 1, 1, 1.5, 0}; thus, CV = {1.5, 2.5, -, 2.5,

1.5, -}. Since SV ≠ CV, the steering transaction is not consistent.

1

1

1

1

1

1

2

2

2

2

3

4

3

3

4

4

2

32

e1

e2

e4

e5

Fig. 4.6 Steering Example: Inconsistent Steering Transaction. Each global
transaction is shown as a shaded area. Steering events are shown as
diamonds. The steering transaction {e1, e2, e4, e5} is inconsistent. The
earliest consistent steering transaction is shown {e’1, e’2, e4, e5}.

P1

P2

P3

P4

P5

P6

e’1
e’2

4.2.3.2 History-Based Approach

According to definition 3.4, we say that two steering events are causally dependent if

there exists a transaction T, such that (ei t→ T) and (T t→ ej). Further, a steering

transaction is causally consistent if and only if all steering changes of that transaction are

applied concurrently. An equivalent view of consistency considers a steering transaction

as a program transaction; the consistency criterion is that the computation, including the

inserted steering transaction, still meets the well-formed requirement. This equivalence

suggests that consistency of a steering transaction can be detected by checking the

consistency between a steering transaction and each program transaction. The history-

based algorithm is based on this idea.

 44

In order to determine the consistency of a steering transaction, the system maintains a

chronological list of vectors representing a partial ordering of a subset of the program

transaction history. The program transactions contained in this subset, or window of

interest, are all program transactions that occur between the first and last steering events

of a steering transaction. To determine the consistency of a steering transaction, a vector

representing the time of the steering transaction is compared against the partial program

transaction history. If the steering transaction is consistent, the algorithm returns such;

however, if the given steering transaction is inconsistent, the algorithm returns the earliest

consistent time after the given steering transaction for which the steering changes could

logically occur.

To accomplish consistency detection, the algorithm creates a consistency vector

representing a consistent cut [Lyn96] at which a steering transaction could be applied.

The algorithm works backward, comparing the steering transaction with each program

transaction, generating vector times for consistent cuts. The algorithm stops when all

program transactions have been checked or the system can decide that all remaining

transactions happened before the original steering transaction. The generated consistency

vector is the earliest time at which the steering transaction could have been consistently

applied. If the consistency vector is the same as the steering vector SV, then the steering

is consistent; otherwise, it is inconsistent.

This algorithm, seen in figure 4.7, requires six data structures and one Boolean

variable. First, a TLP (Transaction Labeling Protocol) table is used to maintain the

chronological history of program transactions. Next, there are four vector times, a

Boolean vector, and a Boolean variable: TV (Transaction Vector), SV (Steering Vector),

 45

CV (Consistency Vector), CVTemp, Verified, and consistent, respectively. Figure 2.7

shows an example of the initialized data structures. The TV vector holds the row of the

TLP table currently being analyzed. The SV vector contains the timestamps representing

the steering transaction. The CV vector represents the time of a consistent steering

transaction. The CVtemp vector provides a temporary holder of possible new timestamps

for the CV vector. The values of CVtemp should not be committed to the CV vector until

all elements of the SV vector have been compared against corresponding elements in the

TV vector. Both the CV vector and CVtemp vector are initially empty. The Boolean

Verified vector contains flags signifying that the earliest timestamp for a steering event to

occur at each respective process has been verified. If a TRUE flag is present, then no

new timestamp for that process should be added to the CV vector. Verified is initialized

with all elements set to FALSE. Finally, the Boolean variable consistent indicates

whether the values stored in CVtemp should be committed to the CV vector.

At the beginning of each iteration of the WHILE loop beginning on line 16,

consistent is set to TRUE. This WHILE loop is used to determine the stopping point for

the algorithm. The algorithm terminates once all elements of the Verified vector that

correspond to elements of the SV vector have been set to TRUE. The key point of

analysis occurs in the FOR loop starting on line 20. Here, each non-empty element of the

TV vector is compared with the corresponding non-empty element of the SV vector. If

the element compared in the TV vector holds a timestamp equal to or later than that of the

element in the SV vector, then that timestamp is entered into the corresponding element in

CVtemp. If consistent remains TRUE through all iterations of the FOR loop, then the

values of CVtemp are committed to the CV vector. However, if any element of the TV

 46

vector occurred earlier than the corresponding element in the SV vector, then consistent

will be changed to FALSE and the loop will terminate, as seen in lines 33 and 34. All

entries in CVtemp are then purged and all elements of the Verified vector corresponding

to elements of TV are marked as TRUE. This later action indicates that the present TV

vector was concurrent with the SV vector. As explained, any concurrency implies an

inconsistent steering transaction.

One other condition will cause the FOR loop to terminate without completing all

iterations. If any element of the TV vector corresponding to an element of the Verified

vector has already been set to TRUE, then all elements of the Verified vector

corresponding to elements of the TV vector will be set to TRUE, and the loop terminates.

As above, if any element of the TV vector has already been verified, then the earliest time

at which a steering event could have occurred for that process has happened. Therefore,

no other process having direct or transitive communication with that process could

consistently apply a steering action during the program transaction represented by that TV

vector or any earlier TV vector.

Once the condition has been satisfied that all elements of the Verified vector

corresponding to elements of the SV vector have been set to TRUE, the WHILE loop will

terminate and a comparison between the CV vector and SV vector occurs. If the CV

vector and SV vector are found to be identical, the algorithm returns TRUE. The IS

system can then purge all checkpoints and stop any message logging. If the CV vector is

not equal to the SV vector, then the algorithm returns the CV vector. The IS system can

then issue a command for each process to rollback to the checkpoint at the time specified

 47

1. Table TLP /*Table containing transaction history*/
2. Vector TV /*Vector holding information about present transaction in TLP*/
3. Vector SV /*Steering Vector containing list of processes involved in steering transaction*/
4. Vector CV /*Consistent Vector representing when the steering transaction should take place*/
5. Vector CVtemp /*Temporary vector to hold information until it is verified SV has not made TV
6. inconsistent*/
7. Vector Verified /*A Vector of Boolean values set to true when a process listed in SV is at its
8. earliest logical time to have invoked the steering command*/
9. Boolean consistent /*Boolean flag to indicate if SV has made TV inconsistent*/
10.
11. BEGIN
12.
13. set all elements of Verified to FALSE
14. set TV equal to last vector of TLP table
15.
16. WHILE (all processes in SV have not been set to true in Verified)
17. BEGIN
18. consistent set to TRUE
19.
20. FOR (compare each corresponding, non-empty cell in TV and SV)
21. BEGIN
22. IF(any non-empty cell in TV corresponds to a cell marked TRUE
23. in Verified)
24. THEN mark all cells in Verified corresponding to non-
25. empty cells in TV TRUE
26. set consistent to FALSE
27. break
28.
29. IF(TV is greater than or equal to SV)
30. THEN set corresponding cell of CVtemp to TV
31. ELSE

32. Mark Verified cells corresponding to non-empty TV cells to TRUE
33. and mark consistent to FALSE
34. break
35. END

36.
37. IF(consistent)
38. THEN
39. FOR(each non-empty element of CVtemp)
40. set corresponding cells of CV to CVtemp
41.
42. IF(all cells of Verified corresponding to all cells SV are marked true)
43. break
44. ELSE
45. set TV equal to previous vector in TLP
46. END
47.
48. IF(SV equals CV)
49. Return Consistent
50. ELSE
51. Return CV
52.
53. END

 Figure 4.7 – History-Based Consistency Detection Algorithm

 48

4.2.4 Checkpointing, Message Logging, and Rollback

When an inconsistent steering transaction is detected, the system must restore the

computation to a correct state. In this section, we discuss the checkpointing, message

logging, and rollback mechanisms used in the Pathfinder system to permit recovery of

state.

Checkpointing and restart of a process is a standard technique used to protect work in

progress from hardware or software failure. While the checkpointing mechanisms used

in restart are similar to those used in rollback, rollback is distinguished from restart in

that the process P, instead of being killed and recreated, is simply returned to some

previous state. Process P retains its process ID and all associated kernel resources. By

retaining its process ID and kernel resources, other processes in the system can still

communicate with P, and its communication channel and files stay open.

4.2.4.1 Local Checkpoint

The computational state of a process is recorded in the form of a checkpoint before a

steering change can be invoked or before a tentative message can be processed. The

Pathfinder system maintains a checkpoint that includes:

• The state of the execution stack and all local variables

• All dynamic and global variables explicitly listed for protection by the

programmer

• The CPU state, including but not limited to the program counter (PC) and

stack pointer (SP).

Maintaining the execution stack and the CPU state allows the Pathfinder system to

seamlessly restart a process’s execution at the exact point at which the checkpoint was

 49

taken. Since the mechanism is rollback instead of restart, there is no need to restore code

space and kernel space state data.

As described in Chapter 2, in the Pathfinder system each process in a distributed

computation is “wrapped” by an IM, communication layers between the process and its

communication environment. Included in these layers is the optimistic steering module,

which maintains process state, message logs, and checkpoint file handles. Each layer of

the IM is loaded dynamically at runtime and is thus not part of the local set of variables.

During a checkpoint, it is neither desirable nor necessary to record the state of the IM, as

this would introduce both wasted storage for the checkpoint and excessive checkpoint

restoration time during a recovery. Therefore, to allow dynamic memory protection, the

IS system provides the programmer with an explicit protocol through which dynamic

variables created during a process’s execution can be specified for inclusion in

checkpoints. Figure 4.8 provides a code sample illustrating this.

QBV *qbv = new QBV(…); //Allocate first IM layer

char *mem = new char[100]; //Dynamically allocate an array of chars

qbv->protectMem(mem, sizeof(char) * 100);//Memory to include in checkpoints

Fig. 4.8 Memory Protection Example

All checkpoint data is written to two binary files per process. The local variables and

execution stack are written into one file while all protected dynamic memory is written to

a second file. Since the local set of variables and execution stack both lie contiguously in

the program’s stack, a direct memory dump can be made from the program stack to file

 50

during a checkpoint. However, a slightly more elaborate scenario exists for dynamic

memory checkpointing.

Through a Pathfinder protocol, a programmer can explicitly protect any dynamic

memory that needs to be checkpointed. The programmer specifies the base memory

address for a variable and the number of contiguously associated bytes, as seen in Fig.

4.8. This information is then stored in a data structure. During checkpointing, the data

structure of each process is traversed and all specified memory is contiguously dumped to

the second binary file.

Finally, the state of the stack context/environment must be stored out so that on a

rollback the process state is just as it was when the checkpoint was taken. Fortunately,

the setjmp.h library provides an API for both storing out and recovering such

environmental states.

4.2.4.2 Consistent Global System State

Checkpointing and restoring the state of a single process is relatively simple, but

processes interact with other processes. There are mainly two ways for recovering and

restoring the state of a distributed computation: a consistent global checkpoint scheme,

and a dependency tracking scheme. In our implementation, a globally consistent

checkpoint mechanism is used. A consistent system state is one in which every message

that has been received is also shown to have been sent in the state of the sender [CL85].

A global state includes the state of all processes and state of communication channels.

In our implementation, a checkpoint is used for saving process state; message logging

and replay are used for saving and recovering channel state.

 51

The goal of optimistic steering is to avoid global synchronization. Therefore,

coordinated checkpointing that involves global synchronization is not desirable.

However, uncoordinated checkpointing is susceptible to the “domino effect” [Ran75], in

which cascading rollback propagation may force the system to restart from the initial

state. Communication-induced checkpointing allows processes in a distributed

computation to take independent checkpoints and to avoid the domino effect. Therefore,

communication-induced checkpointing is favorable in optimistic steering.

A consistent global state includes process state and channel state. While

checkpointing is used for recording process state, message logging is used for recording

channel state. As described earlier, a process must take a checkpoint before it enters the

tentative state from the normal state. A process enters the tentative state from the normal

state when its state is first affected by the steering transaction, either by applying a

steering change or receiving an unconfirmed tentative message. Every in-transit message

should be logged by the receiving process. To correctly take a checkpoint and log the in-

transit messages, a process must be able to recognize different kind of messages. A

simple index will solve this problem.

Within the Pathfinder system, each process maintains a checkpoint index, initially 0.

Each steering transaction and its steering actions are associated with an index, which is

greater than 0 and sequentially increasing. Every message piggybacks the sending

process’s checkpoint index. A message is an in-transit message if its piggybacked index

is less than the receiving process’s checkpoint index. A message is a tentative message if

its piggybacked index is less than the receiving process’s checkpoint index. Upon

applying a steering change whose index is greater than the local index, a process takes a

 52

checkpoint and sets the local index to the index of the steering action and sets its state to

tentative. Upon receiving a tentative message, the receiver is forced to take a checkpoint

before processing the message to avoid inconsistency. A process in the tentative state

records all incoming in-transit messages. The detailed checkpointing algorithm is shown

in Fig. 4.9.

Fig. 4.9 The index-based communication-induced checkpointing algorithm

a. Each process maintains a checkpointing index, initially 0. Each steering transaction and its
steering actions are associated with an index, which is greater than 0 and sequentially increasing.

b. Upon applying a steering change whose index is greater than the local index, a process takes a
checkpoint and sets the local index to the index of the steering action and sets its state to tentative.

c. When a process is in the tentative state, the checkpoint index will be piggybacked on every post-
checkpoint outgoing message.

d. Upon receiving a message with a piggybacked index greater than the local index, the receiver is
forced to take a checkpoint before processing the message to avoid inconsistency. It then updates
its local index to the piggybacked index, and sets its state to tentative.

e. A process in the tentative state records all incoming normal messages (in-transit messages).

By doing this, all local checkpoints avoid involvement in any Z-cycles [NJ95], which

have the potential to produce “useless” checkpoints. The “useless” checkpoints are

checkpoints that cannot be incorporated into any consistent global checkpoint. Also,

each process need take at most one checkpoint for each steering transaction. Further,

only those processes whose execution is dependent on the consistency assumption need

take a checkpoint.

Therefore, this protocol does not need any extra control messages for synchronization

purposes and all forced checkpoints are needed for recovery. The only synchronization

overhead is the piggybacked index on top of the application message.

4.2.4.3 Rollback and Re-execution

In optimistic steering, the system must have the ability to restore the state to what it

was before the inconsistency occurred and re-execute a portion of the computation to a

 53

consistent state and reapply the steering changes. The SM is responsible for verifying the

consistency of each steering transaction. If the steering transaction is determined to be

consistent, the SM will issue an OK message to all processes, all checkpoints will be

discarded, message log queues cleared, and all processes will transition back into a

normal state. If the steering transaction is determined to be inconsistent, the SM issues a

Rollback message to all processes; any process presently in a tentative state will begin the

recovery process and transition into a recovering state.

Because the SM has no knowledge of processes that have been indirectly affected by

a steering change through the receipt of a tentative message, it must issue a Rollback

message to all processes within the system. Once a process in a tentative state receives a

Rollback message, it transitions into a recovering state and restores its previous state from

the checkpoint. The system resumes execution at the point the checkpoint was taken.

Once a process begins re-executing, on each Receive it first attempts to replay a logged

message from the queue associated with the sender. If no logged message exists, the

system then resorts to performing a normal Receive.

An interesting scenario exists in which a process may send a tentative message that

the receiving process does not process until after the SM has issued either an OK or

Rollback message. To address this, each process maintains a mapping indicating which

steering transactions it knows of, and whether they have been determined to be consistent

or inconsistent. If a process receives a tentative message associated with a steering

transaction that was deemed consistent (confirmed tentative message), it processes the

message as normal and will not take a checkpoint. On the other hand, if a process

receives a tentative message associated with a steering transaction determined to be

 54

inconsistent (obsolete tentative message), it knows that message has been or will be

resent and thus throws away the present message and performs another Receive.

Each recovering process will re-execute forward to the transaction time that was

determined to be a consistent cut by the SM; it will then reapply the steering changes.

Each process transitions back into a normal state of execution once the steering changes

have been reapplied and all of its message queues have been emptied.

4.2.4.4 Example

In Fig. 4.4, we show a computation that consists of four application processes. In this

example, m1 is a normal message, m2 is an in-transit message, m3 is a tentative message,

and m4 is either a confirmed tentative message or obsolete tentative message depending

on the consistency of steering transaction.

In this example, process P2 takes a checkpoint C2,0 before it applies steering changes.

Similarly, process P3 takes a checkpoint C3,0 before it applies steering changes. Upon

receiving the in-transit message m2, process P2 logs the message into the log queue.

Upon receiving the tentative message m3, process P1 takes a checkpoint C1,0 .

If the steering transaction is deemed consist, m4 will be a confirmed tentative message

and be processed as a normal message. The computation will just continue. If the

steering transaction is deemed inconsistent, m4 will be an obsolete tentative message and

be discarded. The computation must roll back to its previous state before the steering

changes. The checkpoints C1,0, C2,0, and C3,0, and the current state of process P0 together

with the log queues for message m2 comprise a consistent global system state. Process

P1, P2, and P3 will roll back to their checkpoints and resume execution. Re-execution is

 55

almost same as the normal execution except that it must check the log queue first for a

possible message replay before it resorts to a normal receive.

4.3 Comparison of Conservative Approach and Optimistic Approach

In this section, we discuss the perturbation and steering lag of the conservative and

optimistic steering algorithms. For the steering lag, we consider three kinds of lag, the

IM local lag, the IM global lag, and the SM lag. The IM local lag refers to the elapsed

time between the first EOT event of a process after receiving the steering request and the

successful application of the steering change at the process. The IM global lag is the

elapsed time between the first EOT event of all processes after receiving the steering

requests and the last successful application of the steering changes among all steered

processes. The SM lag refers to the elapsed time between the time the SM sends out the

steering requests and the last successful application of the steering changes among all

steered processes.

SM

P1

P2

P3

normal execution EOT event

Fig. 4.10 Distributed computation without steering

T1,a T1,b

T2,a T2,b

T3,a T3,b

56

To facilitate illustration of the perturbation and steering lag of the conservative and

optimistic steering algorithms, we first consider a simple example. Fig.4.10 shows a

distributed computation with 3 three processes involved. Local transactions T1,a, T2,a, and

T3,a belong to the same global transaction Ta. Similarly, local transactions T1,b, T2,b, and

T3,b belong to the same global transaction Tb. A steering transaction that involves all

three processes will be consistent if the steering actions are applied all before Ta, or all

after Ta and before Tb, or all after Tb. For this example, we assume that the steering

command is broadcast to all involved processes and is received at roughly at the same

time by each process.

4.3.1 The next steerable points are consistent

S M

W

optimi

4.12,

transa

transa

P 1

P 2

P 3

no rm al ex ecu tio n E O T even t

stee ring e ven tex ecu tio n b locked

F ig . 4 .11 C o nse rva tiv e s teering , the nex t s teerab le p o in ts a re co nsis ten t

T 1 ,a T 1 ,b

T 2 ,a T 2 ,b

T 3,a T 3 ,b

∆ bs ∆ st

im L A G g

sm L A G

hen the next steerable points across steered processes are consistent, both the

stic and conservative approaches will perform well. As seen in Fig. 4.11 and Fig.

all processes in the example execution receive the steering command during the

ction Ta. Thus, the next steerable points, which are points immediately after

ction Ta, are consistent.

57

In the case of conservative steering, depicted in Fig. 4.11, each process blocks its

execution after reaching the end of transaction and until it receives a steering-change

command. Upon receiving the steering-change command, it will apply the steering

change and execute forward. As seen in Fig. 4.11, processes P2 and P3 reach the steerable

points earlier than process P1. P2 and P3 are blocked until P1 reaches the steerable point,

sends its ready message to the SM, and the SM receives all three ready messages and

issues a steering-change command to all steered processes. Upon receiving this steering-

change command, all three processes apply their steering changes and continue their

normal execution. In this case, the perturbation induced by steering for each process

includes the elapsed time when it is blocked for synchronization and the time to perform

the steering change, denoted as ∆bs and ∆st respectively. Therefore, the local perturbation

of each process is ∆bs + ∆st.. In this case, the IM local lag is the same as the local

perturbation. The IM global lag is almost the same as the maximal IM local lag because

all three processes apply their steering changes at almost the same time.

SM

P1

P2

P3

norm al execution E O T event steering event

checkpointingspeculative execution

Fig. 4 .12 O ptim istic steering, the next steerable points are consistent

T 1,a T 1,b

T 2,a T 2,b

T 3,a T 3,b

∆ st∆cp

im LA G g

sm LA G

58

In optimistic steering, depicted in Fig. 4.12, a steered process takes a checkpoint,

applies the steering change, and starts the speculative execution after it reaches the

steerable point. Later, when all steering events have been received by the SM, the SM

then can determine that the steering transaction is consistent and broadcast an OK

message to all involved processes. Upon receiving the OK message, a process then clears

its checkpoint and message logs, and accepts the speculative execution and continues its

normal execution. In this case, the perturbation induced by steering for each process

includes the time to take the local checkpoint (denoted as ∆cp) and the time to perform the

steering change. Therefore, the perturbation is ∆cp + ∆st.. Similarly, the IM local lag is the

same as the local perturbation, and the IM local lags between different processes are

almost the same. However, the IM global lag is much larger than the maximal IM local

lag because processes are not well synchronized.

In summary, in the case of consistent steering, for the conservative steering approach,

the overhead is mainly dependent on how well the computation is synchronized. If the

computation is well synchronized, the average blocking time for each process ∆bs will be

very low. For the optimistic steering approach, the overhead is mainly dependent on the

time for checkpointing. For both approaches, the SM lag is bigger than the IM global

lag. The average difference between the SM lag and the IM global lag is dependent on

the transaction size. The larger the transaction size, the larger the difference.

 59

4.3.2 The next steerable points are inconsistent

As seen in Fig. 4.13 and Fig. 4.14, process P1 and P3 in this example receive the

steering commands during transaction Ta, while process P2 receives the steering

command after it has begun transaction Tb. Thus, the next steerable points are

inconsistent.

P1

P2

P3

SM

normal execution EOT event

steering eventexecution blocked

Fig. 4.13 Conservative steering, the next steerable points are inconsistent

T1,a T1,b

T2,a T2,b

T3,a T3,b

∆bf ∆st∆bs

im LAGg

smLAG

In conservative steering, see Fig. 4.13, processes P1 and P3 block their executions

after they reach the end of transaction of Ta. When process P2 executes forward, it must

send messages to process P1 or P3, or receive messages from P1 or P3 because the current

transaction involves both P1 and P3. Then, processes P1 and P3 will become active and

execute forward. Later, when they reach the end of transaction Tb, they will again block

to wait for the steering-change command. In this case, the perturbation induced by

steering for each process includes the elapsed time when it is first blocked (denoted as

 60

∆bf), the elapsed time when it is blocked for synchronization, and the time for performing

the steering change. Therefore, the total perturbation is ∆bf + ∆bs + ∆st. For process P2,

the local lag is the same as the local perturbation. However, for Process P1 and P3, the

local lags are the local perturbations plus the local transaction size.

P1

P2

P3

SM

norm al execution EOT event steering event

checkpointing rollback recoveryspeculative execution

Fig. 4.14 Optim istic steering, the next steerable points are inconsistent

T 1,a T 1,b

T 2,a T 2,b

T 3,a T 3,b

∆st∆cp ∆se ∆ rr ∆st

im LAG g

sm LAG

In optimistic steering, see Fig. 4.14, a steered process takes a checkpoint, applies the

steering change, and starts the speculative execution after it reaches the steerable point.

Later, when all steering events have been received by the SM, the SM then can determine

that the steering transaction is inconsistent and broadcast a rollback message to all

involved processes. Upon receiving the rollback message, a process will roll back to its

previous state, thus canceling the steering change and its speculative execution. Then,

the process executes forward and applies the steering change at the consistent point. In

this case, the perturbation induced by steering for each process includes the time for

 61

taking the local checkpoint (denoted as ∆cp), twice the time for performing the steering

change, the elapsed time for speculative execution (denoted as ∆se), and the time for

rollback / recovery (denoted as ∆rr). Therefore, the total perturbation is ∆cp + 2 * ∆st + ∆se

+ ∆rr. Similarly, for process P2, the local lag is the same as the local perturbation.

However, for Process P1 and P3, the local lags are the local perturbations plus the local

transaction size

Note that when rollback occurs in optimistic steering, the conservative steering

approach would also have required blocking for a time almost equal to that spent on

wasted computation.

4.4 Experiments

This section presents experiments performed to evaluate performance of the two

consistent steering approaches in term of perturbation and lag. We ran a set of tests

encompassing five variables that may affect our system overhead: communication

pattern, transaction size, number of processes, number of steered processes, steering

status, and size of checkpoints. Three basic types of distributed computation

communication patterns were tested: one in which all processes communicate during

each transaction and synchronize at the end of each transaction (Global); one in which

processes communicate pairwise during each transaction and once in every 10

transactions all processes communicate and synchronize (Mixed); finally, one in which

processes perform only pairwise communication and no global communication or

synchronization takes place (Pairwise). For each communication type, we considered

short transactions in which each process had a .25 second computation and large

transactions in which each process had a 2.5 second computation. For the optimistic

 62

steering approach, we also varied the size of checkpoints, 10KB (Small),

100KB(Medium), and 1MB (Large).

All tests were run on a cluster of 4 Pentium II 450 Mhz workstations with 128 MB of

RAM and running RedHat Linux 7.2. Within Pathfinder, there exist two extra control

processes, one for the SM and one for a daemon process responsible for establishing all

UI and SM communication channels. Only the application and control processes were

executed on the workstations during the tests, and the GUI was run on a separate server,

to avoid workstation load imbalance.

4.4.1 Perturbation

For perturbation tests, each test was run on 2, 4, and 8 processes, taking the average

execution time of 5 runs of 150 transactions for the unmonitored computation, the

monitored computation, the optimistic steered computation with the small checkpoint, the

optimistic steered computation with the medium checkpoint, the optimistic steered

computation with the large checkpoint, and the conservative steered computation. For

each of the runs that included steering, 5 steering transactions took place. Except for the

tests containing only 2 processes, during each run 2 steering transactions contained all the

processes, 2 steering transactions contained 75% of the processes and one steering

transaction contained 50% of the processes. For the 2 processes runs, each steering

transaction affected all processes. This was done because steering only 1 process would

guarantee consistency, and thus would introduce very little overhead and provide less

meaningful performance results.

The average execution times for unmonitored, monitored, optimistic steered (10KB),

optimistic steered (100KB), optimistic steered (1MB), and conservative steered test sets

 63

with small transactions and large transactions are presented in Fig. 4.15 and Fig. 4.16,

respectively.

Fig. 4.15 Perturbation for Small Transactions

20.00
30.00
40.00
50.00
60.00
70.00

Global Mixed Pairwise

Communication Pattern

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

2 4 8 2 4 8 2 4 8

Unmoni Monitor Optimistic
Optimistic Optimistic Conservative

Number of
Processes

Fig. 4.16 Perturbation for Large Transactions

360

370

380

390

400

410

420

Global Mixed Pairwise

Communication Pattern

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

2 4 8 2 4 8 2 4 8

Unmonito Monitored Optimistic Steered
Optimistic Steered Optimistic Steered Conservative

Number of
Processes

On average for small transactions, the optimistic approach with small checkpoint size

(10KB) introduced a 3.39% overhead, the optimistic approach with medium checkpoint

 64

size (100KB) introduced a 6.83% overhead, and the optimistic approach with large

checkpoint size (1MB) introduced a 9.27% overhead, and the conservative approach

introduces a overhead 13.11%. On average for large transactions, the optimistic

approach with small checkpoint size (10KB) introduced a 0.41% overhead, the optimistic

approach with medium checkpoint size (100KB) introduced a 0.87% overhead, and the

optimistic approach with large checkpoint size (1MB) introduced a 1.14% overhead, and

the conservative approach introduces a overhead 1.77%.

For the optimistic approach, a clear trend is that the overhead increases with the size

of checkpoint. However, it is still in the reasonable range. In the case of 2 and 4

processes, the overhead introduced by optimistic steering of any checkpoint size is less

than the overhead introduced by conservative steering approaches. However, for 8

processes with mixed and pairwise communication pattern, the conservative steering

results in a smaller overhead. The main reason is that the percentages of consistency in

these cases are very low, less than 50 percent. On average, the optimistic steering

approach with any checkpoint size is better than the conservative approach.

Fig. 4.17 presents the average percentage of steering transactions applied consistently

on the first attempt, based on the number of application processes, size of transaction, and

communication pattern. Seen in figure 4.17, steering consistency varies with the average

length of time a transaction spends performing the computation, the number of processes,

and the communication pattern between the processes. As we expected, the tests with

only two processes were highly consistent. As the number of processes increases so does

the likelihood of inconsistency. Similarly, mixed and pairwise communication patterns

also increase the likelihood of steering inconsistencies, with an average consistency of

 65

slightly above 80% and 70% respectively while the global communication patterns were

100% consistent. [MGK01] points out that steering inconsistencies can be easily

visualized as a program transaction boundary being cut by a steering transaction; some

steering events occurred before or during the program transaction while others took place

after. With mixed and pairwise communication patterns, where faster processes or

process sets are allowed to progress uninterrupted and then forced to synchronize with

slower processes, this scenario becomes more likely, as can be seen in the mixed

communication tests for 8 processes. Note that the high percentages of inconsistency for

8 processes are also due to the imbalance of workstation load because we had to run

either 2 or 3 processes on each machine in this case.

Fig. 4.17 Percentages of Steering Transactions Consistent on
First Attempt

0%
25%
50%
75%

100%

Global Mixed Pairwise
Communication Pattern

C
on

si
st

en
cy

Pe

rc
en

ta
ge

2 Proc, Small Transaction

8 Proc, Large Transaction

4 Proc, Small Transaction
8 Proc, Small Transaction 2 Proc, Large Transaction
4 Proc, Large Transaction

 Overall, the system provides reasonable performance for monitoring and steering,

both introducing an average overhead of less than 2%. While these test cases are not all

encompassing, they represent some basic communication patterns. The transaction sizes

are meant to serve as benchmarks for performance testing. While the .25 second

 66

transactions size is smaller than we expect in practice, the 2.5 second transaction

represents a reasonable, though still conservative, value. Performing 5 steering

transactions per run, thus steering approximately every minute in the case of the large

transactions, is far more frequent than will occur in practical use. The user must have the

ability to comprehend what is occurring in a computation to make informed and

meaningful steering decisions. Steering is more likely to occur on the scale of once every

1000 transactions, to permit observation of meaningful patterns within the computation.

The study of global perturbation in terms of execution time alone is not sufficient to

gain full insight into the characteristics of the optimistic and conservative approaches.

Next, we will discuss the average steering lag for each steering transaction and define the

tradeoff between the optimistic approach and the conservative approach.

4.4.2 Steering Lags

Lag proved to be both more difficult and more interesting to measure. We consider

three kinds of lag: the IM local lag, the IM global lag, and the SM lag. Since the IM local

lags of different processes may be quite different, we consider maximal IM local lag,

average IM local lag, and minimal IM local lag. As described earlier, the main difference

between the IM lag and SM lag is the elapsed time for the steering request message to

reach the IM from the SM and the elapsed time between the arrival of steering request

message and the occurrence of the first EOT event. This difference is the same for both

the optimistic approach and the conservative approach. Since the main purpose of this

study is to find the components of lag affected by the choice of steering algorithms, we

will mainly focus on the comparison of IM lags. However, we will also discuss the

relationship between IM local lag, IM global lag, and SM lag. As discussed in section

 67

4.3, the steering lags vary greatly depending on whether or not the next steerable points

are consistent. To gain insight into steering lag, we separate the cases when steering

transactions are consistent and inconsistent.

For the steering lags tests, each test was run on 2, 4, and 8 processes. For each run

with 150 program transactions, 15 steering transactions took place. For 2 processes, each

steering transaction contains 2 processes. For 4 processes, during each run 5 steering

transactions contained all the processes, and 10 steering transactions contained 2

processes. For 8 processes, during each run 5 steering transactions contains all the

processes, 5 steering transactions contains 4 processes, and 5 steering transaction

contains 2 processes.

Fig. 4.18 Average IM Local Steering Lag for Small Transaction

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2 Consistent 4 Consistent 8 Consistent 4 Inconsistent 8 Inconsistent

IM
 A

ve
ra

ge
 L

oc
al

 L
ag

 (u
se

c)

Conservative

Optimistic 100KB Optimistic 1MB

Fig. 4.18 and Fig. 4.19 show the average local lags of the optimistic approach with

medium checkpoint size (100KB), the optimistic approach with large checkpoint size

(1MB), and the conservative approach for small transactions and large transactions,

respectively. For the optimistic approach, the steering lag grows with the checkpoint

size. When steering transactions are consistent on the first attempt, the steering lag of the

 68

optimistic approach with both medium and large checkpoint size is smaller than for the

conservative approach. When steering transactions are inconsistent on the first attempt,

the steering lag of both approaches increases dramatically and the steering lag of the

optimistic approach is much larger than the steering lag of the conservative approach.

F i g . 4 . 1 9 A v e r a g e I M L o c a l S t e e r i n g L a g f o r L a r g e T r a n s a c t i o n

0

1 , 0 0 0 , 0 0 0

2 , 0 0 0 , 0 0 0

3 , 0 0 0 , 0 0 0

4 , 0 0 0 , 0 0 0

5 , 0 0 0 , 0 0 0

6 , 0 0 0 , 0 0 0

2 C o n s i s t e n t 4 C o n s i s t e n t 8 C o n s i s t e n t 4 I n c o n s i s t e n t 8 I n c o n s i s t e n t

IM
 A

ve
ra

ge
 L

oc
al

 L
ag

 (u
se

c)

C o n s e r v a t i v e O p t i m i s t i c 1 0 0 K B O p t i m i s t i c 1 M B

Optimistic 1MB Optimistic 10MB

Fig. 4. 20 Average IM Local Steering Lag for Small Transaction

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
3,500,000
4,000,000
4,500,000
5,000,000

2 Consistent 4 Consistent 8 Consistent 4 Inconsistent 8 Inconsistent

IM
 A

ve
ra

ge
 L

oc
al

 L
ag

 (u
se

c)

Optimistic 100KB Conservative

 69

When steering transactions are consistent on the first attempt, the IM steering lag

depends largely on the overhead of checkpointing. When the size of the checkpoint is too

large (i.e. equal to 10MB), the conservative approach will always win, even when the

first attempt is consistent, as seen in Fig. 4.20.

Fig. 4.21 IM Lags and SM Lags for Small Transaction, 8 Processes

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Consistent,
Optimistic 1MB

Inconsistent,
Optimistic 1MB

Consistent
Conservative

Inconsistent
Conservative

st
ee

rin
g

la
g

(u
se

c)

Min IM Local Lag SM Lag

Max IM Local Lag Avg IM Local Lag IM Global Lag

Max IM Local Lag Avg IM Local Lag IM Global Lag

Fig. 4.22 IM Lags and SM Lags for Large Transaction, 8 Processes

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

Consistent,
Optimistic 1MB

Inconsistent,
Optimistic 1MB

Consistent
Conservative

Inconsistent
Conservative

st
ee

rin
g

la
g

(u
se

c)

Min IM Local Lag SM Lag

 70

Fig. 4.21 and Fig. 4.22 show the relationship among IM local lag, IM global lag and

SM lag for small transactions and large transactions, respectively. For the optimistic

approach, the difference between IM global lag and IM local lag increases dramatically

when the transaction size is increased. However, for the conservative approach, the IM

global lag and the maximal IM local lag is almost the same for both small transactions

and large transactions because all steered processes are synchronized at the steerable

points and apply their steering changes at roughly the same time. For both the optimistic

and conservative approaches, the difference between IM global lag and SM lag increases

with the transaction size. This difference is roughly about half of the transaction size.

Fig. 4.23 Lags in Different Communication Patterns and Large
Transactions

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

Global Mixed Pairwise

A
ve

ra
ge

 IM
 L

oc
al

 L
ag

 (u
se

c)

4 Proc, Optimistic 1M 8 Proc, Conservative

4 Proc, Conservative 8 Proc, Optimistic 1MB

Fig. 4.23 shows another interesting trend. For optimistic steering, the steering lag is

roughly the same among three communication patterns. However, for conservative

steering, the steering lag of the mixed communication and the pairwise communication

patterns are more than double that of the global communication pattern. This is because

the processes are not well synchronized with the mixed and pairwise communication

 71

patterns and the steering lag for the conservative approach depends largely on the

synchronization overhead.

In summary, when steering transactions are consistent on the first attempt, the

steering lag of the optimistic approach is mainly due to the checkpointing, and grows

with the size of checkpoint; the steering lag of the conservative approach is mainly due to

processes synchronization, fast processes have to wait for slow processes before steering

changes are applied. When steering transactions are inconsistent on the first attempt, the

steering lags of both approaches increase dramatically and the steering lag of optimistic

approach is much larger than the steering lag of the conservative approach. Tradeoffs

between the optimistic approach and the conservative approach depend on the

percentages of consistency on the first attempt, the size of checkpoint, and I/O

performance. When the percentages of consistency on the first attempt are large enough

(i.e. more than 80 percent) and the size of checkpoint is not too large (i.e. less than or

equal to 1MB), the optimistic approach will win; otherwise, the conservative approach

will win. However, we believe that the overhead of checkpointing can be dramatically

reduced if our tests can be done in a system with high performance I/O.

 72

CHAPTER 5

CONCLUSIONS

In this chapter, we summarize the main contributions of this research and outline the

future directions.

5.1 Summary

Consistent interactive steering of distributed computations is a very interesting but

challenging problem. Most computational steering systems do not address this problem

at all. Those that do address this problem do so in a restricted manner. For example,

CUMULVS requires a computation to have a single main loop, and VASE depends on

the shared global memory architecture. This work presented here is novel in that it solves

the consistency problem in a more general way.

We have developed two approaches for consistent steering of distributed

computations: the optimistic approach and the conservative approach. Algorithms for

both the conservative steering approach and the optimistic steering approach have been

designed, implemented and integrated into the Pathfinder system. The performance of

conservative and optimistic steering approaches have been evaluated in term of

perturbation and lag. Tradeoffs between the optimistic approach and the conservative

approach depend on the percentages of consistency on the first attempt, the size of

checkpoint, and I/O performance. Our experiments show that when the percentages of

consistency on the first attempt are large enough (i.e. more than 80 percent) and the size

of checkpoint is not too large (i.e. less than or equal to 1MB), the optimistic approach

will win; otherwise, the conservative approach will win. However, we believe that the

 73

boundary of checkpoint size can be dramatically increased if our tests can be done in a

system with the high performance I/O.

Furthermore, we introduce a novel transaction-based computation model. In our

monitoring and steering system, the overall computation is abstracted to an interleaving

of atomic state changes involving one or more processes – by analogy with databases, we

call such state transitions transactions. This abstraction not only gives users a simple and

high-level view of distributed computation, but also simplifies reasoning consistency

problem by reducing the amount of information to be handled.

5.2 Future Work

Future efforts of this research will include the following three parts: nested

transactions, collaborative steering by multiple users, and real world applications.

One problem with transactions is that the granularity of transaction has a big effect on

the performance of steering algorithms; large transaction size may result large steering

lag while small transaction size may result large monitoring perturbation as the state

information is collected at the end of transaction. We believe that a nested transaction-

based computational model will solve this problem. By allowing users to zoom in and

out to different levels of nesting, we can achieve a good balance between perturbation

and lag.

Collaborative steering of a computation by multiple users is another very interesting

and challenging problem. We expect that when the user requests do not conflict, i.e. they

steer different processes, the steering request by different users should permit concurrent

application. Otherwise, the conflicting steering changes must be applied in a certain

order.

 74

Interactive steering of computations is a useful approach for users working with long-

running, complex computations with numerous parameters affecting both solutions

quality and execution performance, such as grand challenge problems in structural

biology, computational chemistry, computational physics, and large-scale simulations. In

the future, we will seek to apply the algorithms, techniques, and systems that we have

developed in interactive steering to such kind of problems. The application of such

interactive steering techniques to those grand challenge problems will be both

challenging and rewarding.

 75

REFERENCES

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman, “Concurrency Control and

Recovery in Database Systems,” Addison-Wesley, Reading, MA, 1987.

[BG80] P. Bernstein and N. Goodman. “Timestamp-based algorithms for concurrency

control in distributed database systems,” In VLDB, Montreal, Canada, October

1980.

[BSS87] J. Bona, P. Souganidis, and W. Strauss, “Stability and instability of solitary

waves of Korteweg-de Vries type,” Proc. R. Soc. Lond. A 411, pp. 395-412,

1987.

[CM86] K. Chandy and J. Misra, “How processes learn,” Distributed Computing, 1, pp

40-52, 1986.

[CL85] K. Chandy and L. Lamport, “Distributed Snapshots: Determining Global

States of Distributed Systems,” ACM Transactions on Computer Systems,

3(1): 272-314, Feb. 1985.

[CL94] R. Cypher and E. Leu, “Semantics of blocking and nonblocking send and

receive primitives,” Proc. IEEE Int. Conf. Parallel Processing, pp 729-735,

August 1994.

[CS89a] K.M. Chandy and R. Sherman, “The conditional event approach to distributed

simulation,” in Proceedings of the SCS Multiconference on

Distributed Simulation, 93-99, Mar 1989.

 76

[CS89b] K.M. Chandy and R. Sherman, “Space, time, and simulation,” in Proceedings

of the SCS Multiconference on Distributed Simulation, 53-57, Mar 1989.

[DS80] Dijkstra and B.P. Scholten, “Termination Detections for Diffusing

Computations,” Information Processing Letters, 1980, 11(1): 1-4.

[EGLT76] K. Eswaran, J. Gray, R. Lorie, and I. Traiger, “The notions of consistency and

predicate locks in a database system,” Communications of the ACM,

19(11):624-633, November 1976.

[FGL82] M. Fischer, N. Griffeth, and N. Lynch, “Global states in a distributed system,”

IEEE Trans. Software Engineering, 8(3), pp 198-202, 1982.

[Fid88] C. Fidge, “Timestamps in Message-Passing Systems that Preserve the Partial

Ordering,” Australian Computer Science Communications, 10(1): 56-66, Feb.

1988.

[Fuj89] R. Fujimoto, “Time Warp on a Shared Memory Multiprocessor,” Transactions

of the Society for Computer Simulation 6(3): 211-239, July 1989.

[Fuj90] R. M. Fujimoto, “Parallel discrete event simulation,” Communication of the

ACM, 33(10): 30-53, October 1990.

[FW78] B. Fornberg, and G. Whitham, “A numerical and theoretical study of certain

nonlinear wave phenomena,” Phil. Trans. R. Soc. Lond. A 289, pp. 373-404,

1978.

[FZ90] J. Fowler and W. Zwaenepoel, “Causal Distributed Breakpoints,” in

Proceeding, 10th Int. Conference on Distributed Computing Systems, Paris,

France, 134-141, May 1990.

 77

[GFS93] K. Ghosh, R. Fujimoto and K. Schwan, “A testbed for optimistic execution of

real-time simulations,” in Proceedings of the IEEE Workshop on Parallel

and Distributed Real-Time Systems, Apr 1993.

[GKM02] J. Guo, E. Kraemer and D.W. Miller, “Consistency Detection in a

Transaction-Based Interactive Steering System”, The 21st ACM Symposium

on Principles of Distributed Computing (PODC 2002), in submission.

[GKP96] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos, “CUMULVS: Providing

fault tolerance, visualization, and steering of parallel applications,” SIAM,

Aug. 1996.

[GR92] J. Gray and A. Reuter, “Transaction Processing: Techniques and Concepts,”

Morgan Kaufmann, San Mateo, CA, 1992.

[GT02] Jinhua Guo and Thiab Taha, “Parallel Implementation of the Split-step

Fourier Method and the Pseudospectral Method For Solving Higher KdV

Equation,” In submission, 2002.

[Har00] D. Hart, “Supporting Exploratory Visualization of Distributed Computations,”

Ph.D. dissertation, Department of Computer Science, Washington University,

Aug. 2000.

[HBJJ92] R. Haber, B. Bliss, D. Jablonowski, and C. Jog, “A Distributed Environment

for Running Time Visualization and Application Steering in Computational

Mechanics.” Computing Systems in Engineering, 3(1-4):501-515, 1992.

[HKR97] D. Hart, E. Kraemer, and G.-C. Roman, “Interactive Visual Exploration of

Distributed Computations,” in Proceedings, 11th International Parallel

Processing Symposium, Geneva, Switzerland, 121-127, Apr. 1997.

 78

[JBBH93] D.J. Jablonowski, J.D. Bruner, B. Bliss and R.B. Haber, “VASE: The

Visualization and Application Steering Environment,” in Proceeding, Super

Computing, 560-69, 1993.

[Jef85] D. Jefferson, “Virtual time,” ACM Transactions on Programming Languages

and Systems, 7(3): 404- 425, July 1985.

[JM86] D. R. Jefferson, and A. Motro, “The Time Warp mechanism for database

concurrency control,” in Proceedings of the IEEE 2nd International

Conference on Data Engineering, 141-150, Feb 1986.

[KF93] S. Damodaran-Kamal and J. Francioni, “Nondeterminacy: testing and

debugging in message-passing parallel program,” ACM SIGPLAN Notices,

28(12), pp 118-128, 1993.

[KDR98] E. Kraemer, D. Hart, and G.-C. Roman, “Balancing Consistency and Lag in

Transaction-Based Computational Steering,” in Proceedings, Thirty-First

Annual Hawaii International Conference on System Sciences, 137-147, Jan.

1998.

[KR81] H. Kung and J. Robinson, “Optimistic methods for concurrency control,”

ACM Transactions on Database Systems, Vol. 6, No 2, pp. 213-26, 1981.

[Ksh98] A. Kshemkalyani, “A framework for viewing atomic events in distributed

computations,” Theoretical Computer Science, 196, pp 45-70, 1998.

[Lam78] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed

System,” Communications of the ACM, vol. 21, 558-565, 1978.

[Lam86] L. Lamport, “On interprocess communication. Part 1. basic formalism, Part

II: algorithms,” Distributed Comput, 1, pp 77-101, 1986.

 79

[LMW97] R. Liere, J. Mulder, and J. Wijk, “Computational Steering.” Future

Generation Computer Systems, 12(5):441-450, April 1997.

[Lyn96] N. Lynch, “Distributed Algorithms”, Morgan Kaufmann Publishers, Inc., San

Francisco, California, 1996.

[Mat86] F. Mattern, “Algorithms for distributed termination detection,” Distributed

Computing, 2(3), pp 161-172, 1987.

[Mat89] F. Mattern, “Virtual Time and Global States of Distributed Systems,” Parallel

and Distributed Algorithms, North-Holland, 215-226, 1989.

[MGK01] D.W. Miller, J. Guo, E. Kraemer and Y. Xiong, “On-the-Fly Calculation and

Verification of Consistent Steering Transactions,” Supercomputing

Conference (SC2001), Denver, CO.

[MI92] Y. Manabe and M. Imase, “Global Conditions in Debugging Distributed

Programs”, J. Parallel and Distributed Computing, Vol. 15, pp 62-69, May

1992.

[MRR90] B. Merrifield, S. Richardson, and J. Roberts, “Quantitative studies of discrete

event simulation modeling of road traffic,” Proceedings of the SCS

MultiConference on Distributed Simulation, 22(1):188-193, 1990.

[MWL99] J. Mulder, J. van Wijk, and R. van Liere, “A Survey of Computational

Steering Environments,” Future Generation Computer Systems, 15(2):91-102,

1999.

[NJ95] R. Netzer and J. Xu, “Necessary and sufficient conditions for consistent global

snapshots,” IEEE Transactions on Parallel and Distributed Systems, 6(2):

165-169, Feb. 1995.

 80

[NM92] R. Netzer and B. Miller, “Optimal tracing and replay for debugging message-

passing parallel programs,” In Proceedings of Supercomputing’ 92, pp. 502-

511, November 1992.

[Pla97] J. S. Plank, “An Overview of Checkpointing in Uniprocessor and Distributed

Systems, Focusing on Implementation and Performance,” Technical Report

UT-CS-97372, Department of Computer Science, University of Tennessee,

Knoxville, TN, July 1997.

[PJ95] S. Parker and C. Johnson, “SCIRun: A Scientific Programming Environment

for Computational Steering.” In Proceedings of SuperComputing ’95, 1995.

[PWJ97] S. Parker, D. Weinstein, and C. Johnson, “The SCIRun Computational

Steering Software System.” In E. Arge, A.M. Bruaset, and H.P. Langtangen,

editors, Modern Software Tools for Scientific Computing, pages 1-40.

Birkauser Verlag AG, Switzerland, 1997.

[Ran75] B. Randell, “System structure for software fault tolerance,” IEEE

Transactions on Software Engineering, SE-1(2), June 1975.

[RL97] S. Rathmayer and M. Lenke, “A Tool for On-line Visualization and

Interactive Steering of Parallel HPC Applications.” In Proceedings of the 11th

International Parallel Processing Symposium, IPPS 97, pages 181-186, 1997.

[Sin93] M. Singhal, “A taxonomy of distributed mutual exclusion,” J. Parallel

Distributed Computing, 18(1), pp 94-101, 1993.

[SM94] R. Schwarz, F, Mattern, “Detecting Causal Relationships in Distributed

Computations: In Search of the Holy Grail,” Distributed Computing, 7(3):

149-174, 1994.

 81

[SY85] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,” ACM

Transactions on Computing Systems, 3(3), pp 204-226, 1985.

[Tah92] T. Taha, “A parallel-vector algorithm for an investigation of a self-focusing

singularity of higher KdV equation,” Fifth International Symposium on

Domain Decomposition Methods for PDES, (D, Keyts stal, eds.) SIAM,

Philadelphia, PA, pp. 597-604, 1992.

[VKD00] H. Vuppula, E. Kraemer, and D. Hart, “Algorithms for Collection of Global

Snapshots: An Empirical Evaluation,” ISCA Conference on Parallel and

Distributed Computing, Las Vegas, NV, 197-204, Aug. 2000.

[VS95] J. Vetter and K. Schwan, “PROGRESS: A Toolkit for Interactive Program

Steering,” in Proc. 24th Ann. Conf. on Parallel Processing, 1995.

[VS97] J. Vetter and K. Schwan, “High performance computational steering of

physical simulations,” in Proceedings of the 11th International Parallel

Processing Symposium, Geneva, Switzerland, Apr. 1997.

 82

	guo_jinhua_200208_phd_index.pdf
	ACKNOWLEDGEMENTS

	guo_jinhua_200208_phd_body.pdf
	INTRODUCTION
	
	
	
	Interactive Steering
	
	
	
	Optimistic Concurrency Control

	Netzer and Xu [NX95] introduced the notions of Z-paths and Z-cycles, and pointed out that a local checkpoint is useless iff it is involved in a Z-cycle. In the transaction-based computational model, if a checkpoint is taken, all participant processes in
	�
	CHAPTER 2
	PATHFINDER SYSTEM
	TRANSACTION-BASED COMPUTATION MODEL
	Transaction
	Transaction-based Causality and Concurrency Relations

	For example, in Fig. 3.3, since neither e1 t? e3 nor e3 t? e1 holds, then e1 t|| e3.
	
	Transaction-based Vector Time
	CHAPTER 4
	CONSISTENT STEERING
	Conservative Approach
	Conservative Approach Overview
	Process State and Control Message
	Consistency Checking and Process Synchronization

	Fig. 4.2 Conservative Steering Algorithm

	IF (all steered processes are passive) AND
	(global transactions that each steered process Pi was involved in at LVTi are completed)
	IF state = passive THEN

	Proof
	(1) We show that CV is consistent.
	For any i, j ? SP, let ei’ denote the steering
	(2) We show that CV is the earliest consistent steering time.
	If SV = CV, then CV is the earliest consistent steering time.
	If SV < CV, then for any vector SV’ such that SV
	
	
	
	History-Based Approach

	11. BEGIN
	
	
	31.ELSE

	35.END
	
	
	39.FOR(each non-empty element of CVtemp)

	46.END

	50.ELSE
	Figure 4.7 – History-Based Consistency Detection
	Checkpointing, Message Logging, and Rollback
	Local Checkpoint

	Fig. 4.8 Memory Protection Example
	Consistent Global System State
	Rollback and Re-execution
	Example
	Comparison of Conservative Approach and Optimistic Approach
	The next steerable points are consistent
	The next steerable points are inconsistent
	Experiments
	Perturbation
	CHAPTER 5
	CONCLUSIONS

