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ABSTRACT 

This dissertation proposes novel methods phylogenetic comparative methods for 

studying complex biological traits and investigates the evolutionary history of heavy 

metal hyperaccumulation in a comparative framework. Current phylogenetic comparative 

methods, which limit trait observations to univariate means with normally distributed 

errors, are unable to incorporate several biologically important trait types, including 

phenotypic plasticity and dose-response curves. The ability to study such phenotypes, 

known as function-valued traits, in a comparative framework is critical to unifying the 

historically disparate fields of evolutionary biology and toxicology. Two methods-based 

chapters lay out a framework for explicitly accounting for function-valued traits in in the 

context of macroevolution, representing a substantial improvement in comparative 

methods which are currently limited regarding the capacity to incorporate complex 

multivariate traits. The first of these chapters extends phylogenetic generalized least 

squares methods to allow for function-valued traits assuming a Brownian motion model 

of evolution. The next chapter expands function-valued and other high-dimensional 

comparative analyses to allow for the incorporation of alternative evolutionary models, 



fixed effects, within-species variation, and missing data, and also addresses issues of 

statistical power, model flexibility, and computational tractability. 

The next two chapters explore the evolution of metal hyperaccumulation in the 

Helianthus genus (sunflowers). First, the elemental defense hypothesis, an adaptive 

hypothesis for metal hyperaccumulation which predicts a deterrent effect of leaf metals 

on herbivory, is evaluated in Helianthus and the generalist herbivore Vanessa cardui (the 

Painted Lady butterfly) using a comparative approach. Mixed support for the elemental 

defense hypothesis is found, with herbivores exhibiting a preference for leaves from non-

metal-treated plants over metal-treated plants in certain species. However, in the absence 

of a choice, V. cardui were not deterred by leaf metals. Next, the evolutionary history of 

As, Cd, Cr, Cu, Ni, Pb, Se, and Zn accumulation was investigated across Helianthus. 

Hyperaccumulation of Cd, Ni, and Zn is widespread throughout Helianthus. Cd and Zn 

hyperaccumulation, as well as elevated Ni accumulation, likely evolved in wild 

Helianthus prior to sunflower domestication. These results, in conjunction with the 

comparative methods developed in this dissertation, provide a framework for further 

investigation of metal hyperaccumulation as a function-valued trait. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Hyperaccumulation is a rare plant trait by which plants accumulate extremely 

high concentrations of metals (e.g., Ó1,000 ppm) in leaf tissues without suffering toxicity 

(Reeves and Baker 2000). Although the physiology and genetics of this phenomenon 

have been extensively studied, very little information exists regarding the complex 

evolutionary dynamics of tolerance and hyperaccumulation, its adaptive significance, and 

potential tradeoffs with key functional plant traits. Studying the evolution of 

hyperaccumulation requires the integration of two disparate fields ï evolutionary biology 

and toxicology, the study of which are both intrinsically linked to understanding the 

physiological responses of organisms to their environment through time (Bickham 2011). 

Despite their common objectives, theoretical obstacles and practical limitations have 

historically restricted the integrated study of evolution and toxicology (Bickham 2011, 

Goolsby 2015). 

The study of phenotypic evolution is itself complicated by the non-independence 

of species phenotypes due to shared ancestry. Three decades ago, the basis of modern 

phylogenetic comparative methods emerged with the development of Felsensteinôs 

phylogenetically independent contrasts (Felsenstein 1985). Since then, comparative 

methods have seen an explosion in capabilities ï ancestral state reconstruction (Garland 

et al. 1999), estimation of phylogenetic signal (Pagel 1999, Blomberg et al. 2003), 

comparing evolutionary rates (O'Meara et al. 2006), estimation of non-Brownian 
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evolutionary models (Hansen 1997, Harmon et al. 2010), and the ability to account for 

within-species variation (Ives et al. 2007, Felsenstein 2008, Hansen and Bartoszek 2012) 

and missing data (Bruggeman et al. 2009). Although these methods are primarily focused 

on the evolution of univariate traits, more recent methods have sought to incorporate a 

multivariate framework, including phylogenetic principal components analysis (PCA) 

(Revell 2009), phylogenetic path analysis (Hardenberg and Gonzalez-Voyer 2013), and 

comparative analysis of high-dimensional morphometric traits (Adams 2014c, b, a, 

Adams and Felice 2014). Despite the numerous and diverse capabilities offered by 

univariate phylogenetic comparative methods, these approaches are seldom integrated for 

multivariate analyses. For instance, phylogenetic PCA and high-dimensional 

morphometric analyses offer no approaches for dealing with non-Brownian evolutionary 

models or within-species variation. These limitations are problematic, as several 

simulated and empirical analyses have demonstrated that substantial bias is introduced 

when intraspecific variation is ignored (Hansen and Bartoszek 2012, Silvestro et al. 2015) 

or when a Brownian motion model of evolution is inappropriately applied (Pennell et al. 

2015, Uyeda et al. 2015). 

In approaching toxicology in an evolutionary framework, current phylogenetic 

comparative methods fall short as they are unable to incorporate phenotypically plastic 

traits, such as developmental trajectories, environmental variation, and exposure to toxic 

substances. This is because comparative methods operate under the assumption that 

species trait values are fixed with normally distributed error. Although appropriate for 

some traits, many traits relevant to evolutionary biology (particularly those relating to 

toxicology) are phenotypically plastic along environmental and temporal gradients (e.g., 
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phenotypic responses to abiotic stress, developmental trajectories, etc.). Such traits are 

more appropriately described by mathematical functions rather than univariate trait 

means. 

This dissertation seeks to bridge the current barriers separating evolutionary 

biology and toxicology, drawing from the rapidly emerging theoretical, computational, 

and empirical resources relevant to their study. The second chapter proposes statistical 

tools for expanding phylogenetic comparative methods for the incorporation of function-

valued traits. The ability to directly study the evolutionary interactions of function-valued 

traits is critical for the study of many biologically important traits, as well as for 

integrating toxicological data, such as dose-response curve, in a macroevolutionary 

framework. These tools are fully compatible with several recently developed high-

dimensional comparative methods, which can be used to test for phylogenetic signal 

(Adams 2014a), assess correlated trait evolution (Adams 2014b, Adams and Felice 2014), 

perform phylogenetic ANOVA (Adams 2014b), and compare evolutionary rates (Adams 

2014c), all in a function-valued context. 

With the flexibility of high-dimensional comparative methods also comes its 

associated limitations ï an apparent inability to incorporate intraspecific function-valued 

variation and alternative evolutionary models (Adams 2014c, b, a, Adams and Felice 

2014). In addition to function-valued phenotypes, many important biological traits are 

inherently multidimensional, such as shape/morphometric data, physiological 

suites/syndromes, and tolerance to toxic substances. For such traits, the number of 

dimensions for a given trait may be large, often exceeding the number of observed 

individuals or species. Conventional phylogenetic comparative statistical methods are 
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unable to handle such high-dimensional phenotypes, as the number of parameters to 

estimate increases polynomially with increases in trait dimensionality (Ho and Ane 

2014). Consequently, dramatic reductions in statistical power, intractable log-likelihoods, 

and lack of parameter identifiability inhibit meaningful inference for such traits. Recent 

advances in high-dimensional comparative methods have enabled simple investigations 

but are limited to a small class of model specifications. The third chapter of this 

dissertation addresses these limitations using a likelihood-based extension of the methods 

proposed in the second chapter that eliminates these shortcomings for both function-

valued and other high-dimensional morphometric traits. This chapter develops a flexible 

framework for analyzing high-dimensional traits in a phylogenetic comparative context 

which allows for complex model specification while maintaining high statistical power 

and parameter identifiability. These novel methods allow for ultra-high dimensional 

phenotypes to be studied using both frequentist and Bayesian approaches. 

Unlike most hyperaccumulator species, domesticated sunflower (Helianthus 

annuus) is a hyperaccumulator of multiple metals, including As, Cd, Cr, and Ni. H. 

annuus is also capable of accumulating high concentrations of several other metals, such 

as Cu, Fe, Zn, Mn, U, Cs, and Sr (Blamey et al. 1986, Lin et al. 2003, Prasad and Freitas 

2003, Solhi et al. 2005, Cutright et al. 2010, Walliwalagedara et al. 2010). Wild 

Helianthus occurs across North America in a variety of habitats, including serpentine 

soils, beaches, coastal prairies, deserts, salt marshes, mountain meadows, and open 

woodlands, and are adapted to a range of strong environmental stressors, such as drought, 

salinity, and low nutrient availability (Heiser et al. 1969, Stephens et al. 2015). A wealth 

of genetic, phylogenetic, and physiological data and resources are available for wild and 
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domesticated sunflowers (Heiser et al. 1969, Timme et al. 2007, Mandel et al. 2011, 

Mandel et al. 2013, Stephens et al. 2015), making Helianthus ideal study system for 

investigating metal hyperaccumulation and placing it in an integrated evolutionary 

toxicology framework. 

The fourth chapter of this dissertation tests the most commonly cited explanation 

regarding selective benefits of metal hyperaccumulation, the elemental defense 

hypothesis, which predicts an anti-herbivore or anti-pathogen effect of high leaf metal 

concentrations. Specifically, the anti-herbivore aspect of the elemental defense 

hypothesis is evaluated in a phylogenetic context using a small clade within wild 

Helianthus closely related to domesticated sunflower using control, nickel, and cadmium 

treatments. The fifth chapter investigates the evolutionary histories of eight different 

metals and metalloids (As, Cd, Cr, Cu, Ni, Pb, Se, and Zn) in the entire Helianthus genus. 

Together, these chapters develop a framework for the study of metal hyperaccumulation 

in the context of evolutionary toxicology. 
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PHYLOGENETIC COMPARATIVE METHODS FOR EVALUATING THE 
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ABSTRACT  

Phylogenetic comparative methods offer a suite of tools for studying trait 

evolution. However, most models inherently assume fixed trait values within species. 

Although some methods can incorporate error around species means, few are capable of 

accounting for variation driven by environmental or temporal gradients, such as trait 

responses to abiotic stress or ontogenetic trajectories. Such traits, often referred to as 

function-valued or infinite-dimensional, are typically expressed as reaction norms, dose-

response curves, or time plots and are described by mathematical functions linking 

independent predictor variables to the trait of interest. Here, I introduce a method for 

extending ancestral state reconstruction to incorporate function-valued traits in a 

phylogenetic generalized least squares (PGLS) framework, as well as extensions of this 

method for testing phylogenetic signal, performing phylogenetic ANOVA, and testing for 

correlated trait evolution using recently proposed multivariate PGLS methods. Statistical 

power of function-valued comparative methods is compared to univariate approaches 

using data simulations, and the assumptions and challenges of each are discussed in 

detail. 
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INTRODUCTION 

Phylogenetic comparative methods such as ancestral state reconstruction, 

phylogenetically independent contrasts (PICs), and phylogenetic generalized least 

squares (PGLS) comprise a suite of tools for inferring the evolutionary history of traits 

and for testing hypotheses of trait evolution (Felsenstein 1985; Grafen 1989; Martins and 

Hansen 1997). Although intraspecific differences due to measurement error, sampling 

error, or natural variation can be incorporated into error structures, these models 

generally operate under the assumption that individual species possess a fixed mean for 

any given trait (Martins and Hansen 1997; Ives et al. 2007). Many traits relevant to 

ecology and evolutionary biology are inherently function-valued, including 

developmentally varying traits, niche preference, thermal performance, life history 

patterns, plant ecophysiological strategies, responses to environmental hazards such as 

heavy metals and anthropogenic contaminants, and tolerance to abiotic stressors such as 

salinity, drought, and nutrient limitation. Rather than a single mean value, function-

valued traits are best represented by curves defined by mathematical functions. 

Accordingly, univariate analytical approaches to such traits, which fail to account for trait 

dependence on independent exogenous variables such as time or environment, are 

statistically inappropriate (Kingsolver et al. 2001; Rocha and Klaczko 2012; Stinchcombe 

et al. 2012; Donovan et al. 2014). 

Until recently, standard phylogenetic comparative methods have lacked tools for 

direct incorporation of function-valued analyses. Instead, many researchers have 

approached evolutionary questions regarding function-valued traits by summarizing trait 

curves with univariate mean values and applying these values directly to comparative 
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methods. This approach typically utilizes one of two metrics: mean trait values evaluated 

at specific environmental levels (Pollard et al. 2001; Pigliucci et al. 2003), or inverse 

functions evaluated at a standardized biological response (Guenard et al. 2011; Strachan 

et al. 2011; Larras et al. 2014). The inverse of a function Ὢὼ ώ is the function 

Ὢ ώ ὼ that gives the value of x that is expected to produce a response y. For 

example, in toxicological studies, statistical responses to chemicals are typically 

expressed as inverse functions rather than response at a specific dose (the 50% lethal 

response dose (LD50) of a chemical is the dose expected to cause mortality in 50% of 

exposed subjects). For linear functions with similar slopes, both approaches typically 

yield consistent results; for nonlinear functions, approaches using mean trait values 

across treatment levels are unreliable. Conversely, inverse evaluation of monotonic 

functions at analogous reference trait values across species (e.g., LD50) is a valid 

approach regardless of linearity or nonlinearity. This is because inverse function 

evaluation at a fixed biological endpoint returns the value of the independent variable that 

produces said response, and is thus not subject to weighting by curve thresholds or other 

nonlinear features. However, summary values such as LD50 only capture a single 

dimension of function-valued traits and are likely to mask important trait variation across 

species. Consider two aquatic species exhibiting identical LD50 values for salinity 

toxicity, but the slope of the dose-response curve for one species is much steeper than the 

dose-response curve of the other species. In this example, interpretation of the LD50s in 

isolation might lead to the incorrect conclusion that salinity tolerance in the two species is 

identical. Similarly, other univariate summaries of function-valued traits, such as area 

under the curve, fail to distinguish biological differences such as generalist-specialist 
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shifts in which the shape of the curve changes but the total area under the curve remains 

constant (Izem and Kingsolver 2005; Stinchcombe et al. 2012). For these reasons, 

evolution of function-valued traits should be studied using methods that incorporate 

entire species trait curves rather than univariate summaries. 

One particularly important challenge related to function-valued traits is the study 

of plasticity, which is the focus of the next section. However, it should be noted that the 

principles of function-valued traits discussed in the next section, in addition to trait 

plasticity, apply broadly to other classes of function-valued traits as well (e.g., 

environmental tolerance, ontogenetic variation, etc.). 

Plastic traits: motivation for study, common approaches, and challenges. A 

central question implicit to the study of phenotypic plasticity is how plasticity affects 

evolutionary processes, such as gene flow, speciation, diversification, and persistence in 

novel environments (Wund 2012). Questions concerning the evolutionary dynamics of 

phenotypic plasticity, plasticity costs, and tradeoffs are also of particular interest 

(Callahan et al. 2008). Such questions may be applied to exploring evolvability and rates 

of evolutionary change of both plastic and fixed traits to better understand or anticipate 

species responses to processes such as environmental pollution (Guenard et al. 2011; 

Guenard et al. 2013; Larras et al. 2014), climate change (Bradshaw and Holzapfel 2006), 

and species invasions (Richards et al. 2006). By inferring the evolutionary history of trait 

responses to environmental conditions, evolutionary hypotheses relating to phenotypic 

plasticity, such as adaptive plasticity, plasticity costs, and tradeoffs in plastically varying 

traits, may be tested. Additionally, by taking into account phylogenetic variation in 

reaction norms, certain patterns previously obscured or falsely detected, either due to 
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sampling traits in too few or too narrowly varying environments, assuming linearity of 

nonlinear reaction norms, or failing to consider interspecific differences in phenotypic 

minimum and maximum values, may be clarified. 

Traits are often sampled under natural field conditions and assumed to be fixed 

(non-plastic), despite clear evidence in many traits of substantial variation driven by 

environment and development (Whitman and Agrawal 2008; Mason et al. 2013; Donovan 

et al. 2014). By failing to account for environmental or ontogenetic variation, or by 

assuming that environmental differences can be treated as covariates that uniformly affect 

all species of interest, statistical and biological inferences may be unreliable (Fig. 2.1a) 

(Rocha and Klaczko 2012). Additionally, environmental variation may obscure 

evolutionary signatures, leading to the incorrect conclusion that a trait is too labile for 

phylogenetic analysis (Revell 2010). 

As an alternative to field measurements, studies may be performed in 

homogenous laboratory settings to minimize plastic intraspecific variation, with the 

intention of ñremovingò the effect of environment and allowing ñbaselineò phenotypic 

expression. However, uniform environments fail to capture the full extent of trait 

combinations possible within a species; instead, only a snapshot of possible trait 

combinations is identified, which is potentially problematic when making evolutionary 

inferences on putatively adaptively plastic traits. Another strategy involves estimating the 

difference in field trait values with controlled common environment trait values as a 

measure of total trait plasticity (Knight and Ackerly 2003). Although an improvement, 

this method has several limitations: 1) the ability to isolate specific drivers of trait 

plasticity is limited; 2) providing a single ideal environment for multiple species native to 
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diverse habitats may not be possible, so some species might be stressed under common 

environment conditions; and 3) it is unlikely that the full range of trait plasticity is 

captured by sampling traits under field and single-treatment lab conditions (Fig. 2.1b) 

(Jacobs and Latimer 2012). 

Researchers can capture a more comprehensive representation of the capacity for 

plasticity by exposing species to a controlled common environment while manipulating a 

single environmental variable. Such environmental manipulations often involve treating 

continuous variables as arbitrarily categorized treatments (e.g., ñlowò and ñhighò), which 

inherently impose the assumption of linearity and normality of data. Accordingly, 

problems are likely to arise if the slope, strength, or shape of reaction norms or plastically 

induced shifts in correlated traits differs across species (Fig. 2.1c) (Rocha and Klaczko 

2012). Furthermore, categorical environmental manipulations pose several analytical 

challenges. In particular, trait measurements must be made under comparable treatment 

levels, and sampling differences and missing data are incompatible with many statistical 

methods. Additionally, the magnitude of arbitrarily categorized or binned continuous 

treatment values is ignored, thus sacrificing statistical power and limiting the ability to 

predict trait values at unobserved levels (Griswold et al. 2008; Stinchcombe et al. 2012). 

Evaluating traits at multiple levels along a continuous environmental gradient 

offers the opportunity to more fully assess the function-valued relationship between 

environment and plastically varying traits (Fig. 2.1d) (Kingsolver et al. 2001; Rocha and 

Klaczko 2012; Stinchcombe et al. 2012; Murren et al. 2014). In general, function-valued 

analyses offer several advantages to other approaches: 1) they are robust to sampling 

differences; 2) there is no need for measurements to be conducted at identical treatment 
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levels (provided measurements provide sufficient coverage of the range of interest to 

accurately estimate function parameters); 3) they have higher statistical power; 4) they 

incorporate the magnitude and trend from continuous predictor variables; and 5) they 

allow prediction of trait responses in extant and ancestral taxa at unobserved levels 

(Kingsolver et al. 2001). 

A novel approach for function-valued phylogenetic comparative methods. 

Although several studies have implemented function-valued analyses for studying and 

predicting the evolution of function-valued traits within a single species (Stinchcombe et 

al. 2012), methods for analyzing function-valued traits in an explicitly phylogenetic 

context have only recently begun to emerge. Recently, a method called phylogenetic 

Gaussian process regression (PGPR), an extremely flexible method for reconstructing the 

evolutionary history of function-valued traits, was proposed (Aston et al. 2012; 

Hadjipantelis et al. 2013; Jones and Moriarty 2013). In PGPR, curves of any shape may 

be analyzed without a priori assumptions of function structure, multiple sources of 

uncertainty may be incorporated, and a variety of evolutionary models may be tested 

(Hadjipantelis et al 2013). Despite its flexibility, PGPR currently lacks compatibility with 

several commonly used comparative methods such as phylogenetic regression and 

estimation of phylogenetic signal, as such methods inherently rely on phylogenetic 

generalized least squares (PGLS)-based reconstruction of ancestral states (Martins and 

Hansen 1997; Blomberg et al. 2003). 

Here, I present a function-valued extension of ancestral state reconstruction in a 

PGLS framework. This method inherits the flexibility of PGLS and is fully compatible 

with several recently proposed multivariate PGLS-based methods which can be used to 
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test for phylogenetic signal (Adams 2014a), perform phylogenetic ANOVA (Adams 

2014b), evaluate correlated trait evolution between functions and univariate traits (Adams 

2014b) or between multiple functions (Adams and Felice 2014), and test for shifts in 

evolutionary rates of function-valued traits (Adams 2014c). 

 

METHODS 

Conceptually, a function-valued trait is composed of infinite discrete landmarks 

along a curve that evolve as a single multivariate trait (Adams 2014a). Representation of 

a function for a given species can be approximated with a finite-length sequence of 

landmarks described by x,y coordinates. However, prior to performing PGLS-based 

comparative analyses, functions must first be aligned to make landmarks analogous 

across species (Adams 2014a). Depending on specific function-valued attributes, 

landmark alignment may be accomplished using a variety of techniques, such as inverse 

function alignment, dynamic time warping (Myers et al. 1980; Giorgino 2009), and 

generalized time warping (Zhou and De la Torre 2012), as described in the following two 

sections. 

Ancestral curve reconstruction of sigmoidal curves. Monotonic functions with 

constant minimum and maximum values, such as sigmoidal functions (e.g., as with 

binomial, proportional, or probabilistic data), are a special case of function-valued traits 

in which the y-axis represents absolute endpoints that are comparable across species. In 

such cases, the y-axis serves as a pre-aligned point of reference, and function-valued 

evolution of these types of curves need only be expressed along the x-axis using inverse 

functions evaluated at a constant vector of y-values spanning minimum and maximum 
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function values (e.g., between 0 and 1) for each species. In this way, the trait being 

studied is the vector of x-values that corresponds to a fixed vector of reference y-values 

for a given species. For example, in dose-response curves, the LD50 is a comparable 

landmark across species that can be appropriately analyzed using conventional univariate 

phylogenetic comparative methods. Conversely, the response at a specific dose is not 

comparable across species due to the non-linearity of sigmoidal curves, and inferences 

based on such approaches are incorrect. 

Univariate ancestral state reconstruction can be easily extended to incorporate 

function-valued traits using a PGLS framework (Martins and Hansen 1997). First, 

parameters for function-valued traits Ὢὼ are estimated for each of N species. The 

reconstructed vector of function-valued landmarks at the root of the tree, Ⱨ , is then 

calculated using the generalized least squares formula 

where Ἅ is the matrix of expected trait variance-covariance given by the phylogenetic tree 

and assuming a specific model of trait evolution (e.g., Brownian motion),  is an ὔ ρ 

matrix of ones, ώ is a vector of ὲ evenly spaced y-axis landmarks between ὥ and ὦ (0 and 

1 for binomial data), and ἧ is the ὔ ὲ matrix of inverse functions Ὢ  evaluated at y. 

Root vector Ⱨ  is extended into an ὔ ὲ matrix ἠ, and each row is filled with Ⱨ . 

Next, the matrix of ὓ internal node landmark vectors is calculated 

where Ἆ is the ὓ ὔ matrix of expected covariance between internal nodes and tips as 

specified by the phylogenetic tree and model of evolution, ἠ  is an ὲ ὓ matrix 

consisting of M columns each filled with Ⱨ . Ⱨ  represents Ὢ ώ in the set of 

 Ⱨ Ἅ Ἅ ἧ (1) 

 Ⱨ ἎἍ ἧ ἠ ἠ  (2) 
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landmark coordinates Ὢ ώȟώ, which can then be used to estimate parameters for 

curves at each node. A hypothetical example of ancestral curve reconstruction of a 

sigmoidal trait is visualized in figure 2.2. 

Variance and 95% confidence intervals may also be estimated for reconstructed 

ancestral curves (Rohlf 2001). First, the Brownian motion parameter „  is estimated for 

each landmark i from 1 to n 

Next, variance is calculated for each reconstructed landmark at each internal node 

where Ἆᶻ is the ὓ ὓ matrix of expected covariance among internal nodes due to 

phylogeny and the specified evolutionary model, and ᶻ is an ὓ-length vector of ones 

(Cressie 1993). Finally, 95% confidence intervals for each curve can be calculated as 

Ⱨ ρȢωφ„ . 

Ancestral curve reconstruction of other function types. Many function-valued 

traits cannot be appropriately expressed with y-bounded sigmoidal functions. In such 

cases, inverse function alignment does not properly align curves across species. For 

instance, unimodal and multimodal functions lack a unique inverse solution for any given 

y-value. Additionally, certain function-valued traits require complex curve specification 

such as with Gaussian process regression. For such traits, ancestral curve reconstruction 

must be performed on both the x-axis and the y-axis, both of which must first be aligned 

across species. This can be accomplished for most function-valued relationships using a 

 

„
ἧ Ⱨ Ἅ ἧ Ⱨ

ὔ ρ
 

(3) 

 „ „ÄÉÁÇἎᶻ ἎἍ Ἆ

ᶻ ἎἍ Ἅ ᶻ ἎἍ  

(4) 
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non-linear alignment method called generalized time warping (Zhou and De la Torre 

2012), a multi-sequence extension of dynamic time warping (Myers et al. 1980; Giorgino 

2009). Although applicable to a wide variety of complex curve shapes, the 

appropriateness of time warping methods to specific function types should be assessed, 

and individual time warping parameters may require specification. For a more in-depth 

discussion, see Giorgino (2009). 

For ancestral state reconstruction of aligned curves, Equations (1) and (2) must be 

applied individually to both the x-axis and the y-axis. For x-axis ancestral state 

reconstruction, ὣ is the ὔ ὲ matrix of aligned x-values; for y-axis ancestral state 

reconstruction, ὣ is the ὔ ὲ matrix of aligned y-values. The resulting set of ‘  

forms coordinates ὼ ȟώ  which are then used to estimate parameters for Ὢ . 

Similarly, variance and 95% confidence intervals for reconstructed curves must be 

applied on both the x and y axes for curves aligned with time warping. For monotonic 

sigmoidal function-valued traits, inferences from inverse function approaches and time 

warping alignment are equivalent (R code provided in supplementary material). 

Compatibility with distance-based multivariate phylogenetic comparative 

methods. Recently, several multivariate extensions of phylogenetic comparative methods 

have been proposed for high-dimensional traits (Adams 2014a; Adams 2014b; Adams 

2014c; Adams and Felice 2014). These methods allow quantification of metrics such as 

multivariate phylogenetic signal, correlated trait evolution, phylogenetic ANOVA, and 

evolutionary rates. Distance-based comparative methods rely on removal of phylogenetic 

covariance from data by projecting phenotypic data onto the phylogenetic matrix Ἇ 

(Garland and Ives 2000): 
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where ἣ and ἥ are eigenvectors and eigenvalues of the phylogenetic covariance matrix 

Ἅ. Although primarily presented as tools for analyzing Procrustes-aligned morphometric 

data (Rohlf and Slice 1990), these methods are not limited to the number of supplied trait 

dimensions and can handle hundreds of non-isotropic covarying dimensions. In 

particular, unlike covariance-based approaches, distance-based multivariate comparative 

methods maintain statistical power as the number of trait dimensions increases, and 

uniquely allow the number of dimensions to far exceed the number of species in the 

phylogeny. Thus, the evolution of function-valued traits can be appropriately analyzed 

using distance-based multivariate comparative methods (Adams 2014a). 

As with Procrustes-aligned landmark coordinates (Adams 2014a; Adams 2014b), 

function-valued traits are supplied to multivariate methods in the form of coordinate 

sequences from generalized time warping alignment (for curves of any form), or in the 

case of inverse function evaluations (for sigmoidal curves), only  Ὢ ώ is supplied. 

Estimation of the phylogenetic mean is inherent to distance-based multivariate 

phylogenetic methods. Importantly, the estimated phylogenetic mean for distance-based 

methods is equivalent to the root estimate Ⱨ  obtained from Equation (1) when applied 

to properly aligned landmarks of function-valued data. Specific applications and 

methodological details of applying distance-based multivariate comparative methods to 

function-valued traits are discussed in the following sections. 

Phylogenetic signal of function-valued traits. Phylogenetic signal is a measure 

of the extent to which species exhibit phenotypic similarity due to phylogenetic 

relatedness. Various methods of signal quantification have been proposed, including 

 Ἇ ἣἥ ϳἣ◄  (5) 
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Blombergôs K (Blomberg et al 2003), Pagelôs ɚ (Pagel 1999), autocorrelation techniques 

(Pavoine and Ricotta 2012), and correlation-based methods (Zheng et al. 2009). 

Blombergôs K is based on the ratio of observed variation relative to the variation expected 

under Brownian motion: 

where ἧ is an ὔ ρ vector of phenotypic values for a univariate trait and Ὁἧ is the 

phylogenetic mean (estimated phenotypic value at the root of the phylogeny), Thus, the 

expectation of K under Brownian motion is 1. Phylogenetic permutation can be used to 

statistically test if K represents significant phylogenetic signal (Blomberg et al. 2003). 

Adams (2014a) proposed a multivariate generalization of Blombergôs K (Kmult) 

which allows phylogenetic signal to be estimated in high-dimensional traits. Kmult utilizes 

a distance-based approach which produces identical estimates of K when applied to 

univariate traits but also allows for calculations of Kmult for multivariate traits. Kmult is 

calculated as follows: 

where Ἆȟ is an ὔ ρ vector of Euclidian distances between species means and the root 

of the phylogeny, as expressed by 

and ἜἎ ȟ is an ὔ ρ vector of Euclidean distances of species means to the origin 

projected onto the phylogenetic transformation matrix Ἇ from Equation (6). Current 

software implementations of Kmult in the R (R Core Team 2014) library geomorph 2.0 

 
ὑ

ἧ Ὁἧ ἧ Ὁἧ

ἧ Ὁἧ Ἅ ἧ Ὁἧ
  
ÔÒἍ ὔ Ἅ

ὔ ρ
 (6) 

 
ὑ
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(physignal function) (Adams and Otárola-Castillo 2013; Adams et al. 2014) can readily 

incorporate the PGLS-based function-valued approaches presented here. For function-

valued trait analysis utilizing inverse functions for alignment, ἧ is the ὔ ὲ matrix of 

inverse functions Ὢ  evaluated at y, and Ὁἧ calculated by the physignal function is 

equivalent to the ρ ὲ vector Ⱨ  obtained from Equation (1). For function-valued 

landmarks aligned using generalized time-warping, x,y coordinates are analyzed as an 

ὔ ςὲ matrix of function-valued landmark coordinates. Again, the resulting Ὁἧ is 

equivalent to results obtained from Ⱨ  in Equation (1). 

Correlated evolution between function-valued traits and categorical 

(ANOVA) or continuous (PGLS) univariate traits. Distance-based comparative 

approaches can be implemented to apply phylogenetic ANOVA or assess for correlated 

evolution between univariate and function-valued traits using a multivariate extension of 

PGLS called D-PGLS (Adams 2014b). In D-PGLS, independent variable ἦ (a column of 

ones followed by one or more columns of values for independent variables) and 

dependent variable ἧ (an ὔ ὲ or ὔ ςὲ matrix, depending on whether inverse 

functions or generalized time warping alignment is used) are both projected onto Ἇ to 

remove phylogenetic covariance from trait data, resulting in ἦ  and ἧ . ἧ  is 

regressed on ἦ  to obtain predicted values ἧ, and ἧ  is regressed on  to obtain 

predicted values for ἧ. Next, the trace of the outer-product of predicted values is used to 

calculate variation explained by the model: 

 
ὛὛ ÔÒἧ ἧ ἧ ἧ  (9) 
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ὛὛ and residuals of ἧ ἦͯ  are then used to calculate F-ratios and R
2
, and 

phylogenetic permutation is used to determine the significance of the correlation. D-

PGLS is implemented in the procD.pgls function in the R package geomorph (Adams and 

Otárola-Castillo 2013; Adams 2014b; Adams et al. 2014). 

Additional distance-based multivariate phylogenetic comparative methods. 

Although not discussed in in detail here, similar methods are available to address 

questions such as correlated evolution between two separate function-valued traits (or 

between a function-valued trait and some other multivariate trait) using phylogenetic 

partial least squares (Adams and Felice 2014), as implemented in the phylo.pls function 

in geomorph (Adams and Otárola-Castillo 2013; Adams et al. 2014). Additionally, 

multivariate rates of evolution may be quantified, and evolutionary rates of function-

valued traits for subgroups within a phylogeny may be statistically compared (Adams 

2014c), as implemented in the compare.evol.rates function in geomorph (Adams and 

Otárola-Castillo 2013; Adams et al. 2014). For example, one could test the hypothesis 

that a function-valued plastic response to a particular environmental variable evolves 

more rapidly in a clade exposed to high levels of the environmental variable than a non-

exposed clade. As distance-based multivariate methods continue to be developed, 

additional phylogenetic comparative methods, such as testing alternative models of 

evolution (e.g., Ornstein-Uhlenbeck) are expected to be available for further study of 

function-valued trait evolution (Adams 2014b). 

Statistical performance. Function-valued trait evolution was simulated under 

various conditions to evaluate the performance of function-valued ancestral curve 

reconstruction and to assess the statistical power of Kmult and D-PGLS when applied to 



 

27 

function-valued traits. All curve simulations were based on evolution of a generalized 

linear model using a logit link function: 

Curve evolution was simulated by evolving a root curve defined by two independently 

simulated function features, the median response level (— —ϳ ) and the slope at the 

median response level (— τϳ ), using the fastBM function in the R library phytools 

(Revell 2012). Internal node values were preserved and ñtrueò regression parameters for 

each node were subsequently back-calculated. To simulate correlated evolution between 

curves and univariate traits, sim.corrs was used to generate correlated evolution of a 

univariate trait with the curve median response level. Root curves parameters were set to 

— ρπȢπ and — ςȢπ, and to maintain positively-sloped curves in the first quadrant 

(as with a typical dose-response curve), median response slopes of evolved curves were 

bounded between 0.2 and 1.0, and median response levels were bounded between 2.0 and 

20.0. 

For ancestral curve reconstruction, 1000 simulations were performed on randomly 

generated 128-taxa trees as described above. Ancestral curve reconstruction was 

performed on inverse tip functions (Equations (1) and (2)) and regression parameters 

were estimated for each node. For comparison with non-function-valued approaches (in 

which a single arbitrary x-value is chosen for evaluation of Ὢὼȿ— and the function-

valued relationship is ignored), univariate ancestral state reconstruction was conducted 

individually at 100 evenly spaced tip evaluations of Ὢὼȿ— where ὼ ranges from 0.0 to 

15.0 (spanning the entire sigmoid portion of curves for all species). Coefficients of the 

known root state and the root state estimated from ancestral curve reconstruction were 

 
Ὢὼȿ—
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evaluated at Ὢὼȿ— at the same 100 points for which univariate ancestral state 

reconstruction was conducted. The difference between the true value of Ὢὼȿ—  and 

values obtained from both ancestral curve reconstruction and individual univariate 

ancestral state reconstruction were averaged across 1000 simulations and compared. 

PGPR ancestral curve reconstruction was also conducted for these simulated datasets 

using the R implementation provided in the supplement of Hadjipantelis (2013). 

All simulations related to Kmult and D-PGLS were carried out on randomly 

generated pure-birth trees with 128 taxa, and all simulations were conducted 1000 times 

with randomly generated data. For Kmult and D-PGLS hypothesis testing, 999 iterations of 

phylogenetic permutation were conducted. Varying numbers of trait dimensions (p = 2, 5, 

10, 25, and 50) were simulated in order to estimate the optimal number of dimensions for 

representing logit-type functions. Dimensions were input as sequences evaluated at 

Ὢ ώȿ— where ώ is a sequence of evenly divided numbers from 0.001 to 0.999 of length 

p. Type I error and power were quantified for Kmult using the proportion of significant 

Kmult values for data simulated under ɚ tree transformations (0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 

and 1.0). For D-PGLS Type I error and power analysis, functions and a continuous 

univariate trait were simulated with covariances of „ 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9 and 

the proportion of significant correlations was recorded. For comparison, all multivariate 

simulations were performed alongside analogous univariate approaches (Blombergôs K 

and PGLS) which were performed at 100 individual evaluations of Ὢὼȿ— where x 

ranges from 0.0 to 15.0. R code for all simulations is available in the online 

supplementary material. 
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RESULTS AND DISCUSSION 

Performance of ancestral curve reconstruction. Root estimations of ancestral 

curve reconstruction were compared to simulated logit curve evolution using the inverse 

function approach described in previous sections. Root coefficients were estimated from 

reconstructed inverse functions (Equation (1)), and both the known and estimated 

functions were evaluated along 100-length evenly spaced x-values ranging from 0.0 to 

15.0. Ὢὼȿ—  and Ὢὼȿ—  were compared at each point. The average 

predicted curve for each method is plotted in figure 2.3a. The same approach was applied 

to reconstructed curves obtained from PGPR. For comparison with univariate methods in 

which the function-valued nature of the trait is ignored, ancestral state reconstruction of 

each observed tip y-value at each x-value is also plotted. 95% confidence intervals were 

calculated for PGLS (Fig. 2.3b), PGPR (Fig. 2.3c), and univariate (Fig. 2.3d) ancestral 

reconstruction methods using a single representative simulation (Rohlf 2001; 

Hadjipantelis et al. 2013). On average, ancestral curve reconstruction using PGLS-based 

and PGPR-based methods yielded similar results (Fig. 2.3a). The small discrepancies that 

are present are likely attributable to differences such as the underlying assumptions of the 

Brownian motion simulations performed here and the assumption of an Ornstein-

Uhlenbeck model of evolution inherent to PGPR. Although univariate ancestral state 

reconstruction visually appears to give similar results to both PGLS and PGPR ancestral 

curve reconstruction, in practice, the entire curve would not be reconstructed with this 

approach; rather, univariate ancestral state reconstruction is typically performed in 

isolation at a single x-level, and no knowledge of surrounding parts of the curve would be 

represented. Therefore, only instantaneous deviation from the true y-value at an 
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individual x-value should be considered for univariate ancestral state reconstruction (i.e., 

not the sum of the resulting curve as a whole). 

Even for x-values where the estimated univariate response is identical to the true 

response, a function-valued trait cannot be properly represented by a single value. Such 

attempts are likely to produce misleading inferences and potentially contradictory 

conclusions based on the arbitrary x-value choice at which the trait is evaluated. These 

issues are further highlighted in simulations of phylogenetic signal and correlated trait 

evolution. 

In contrast to univariate ancestral state reconstruction, PGPR ancestral curve 

reconstruction should be taken in context of the entire reconstructed curve. Accordingly, 

PGPR ancestral curve reconstruction provided similar results to PGLS-based curve 

reconstruction overall (Fig. 2.3a). Therefore, both methods provide vastly superior 

representations of ancestral function-valued traits than univariate attempts at ancestral 

state reconstruction. 

Statistical power of Kmult and D-PGLS. Type I error and statistical power of 

Kmult and D-PGLS for function-valued traits were assessed using the methods described 

above. Type 1 error rates for all simulations of Kmult and D-PGLS where pÓ5 (as 

determined by data simulations on star trees and input covariance of zero, respectively) 

were approximately 0.05. Similarly, Type I error rates were approximately 0.05 for 

univariate Blombergôs K and PGLS evaluated at arbitrary x-levels. As expected, 

statistical power increased for Kmult and D-PGLS as the number of dimensions increased 

(Adams 2014a; Adams 2014b) (Fig. 2.4). Dimensionality beyond p = 25 resulted in 

diminishing gains in statistical power, coupled with a substantially increased 
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computational burden. Kmult power scaled approximately linearly with ɚ transformations 

up to 1.0, whereas D-PGLS power reached 1.0 with input covariation of 0.5 and higher 

(Fig. 2.5). For univariate methods, statistical power varied widely depending on the x-

level at which the trait was assessed, although statistical power approached that of Kmult 

and D-PGLS when x-level was near the median response level of the root function and 

phylogenetic signal or input covariation was high. It should be noted that these results do 

not suggest that univariate approximations of phylogenetic signal or correlated trait 

evolution can be applied to function-valued traits. Indeed, phylogenetic comparative 

experiments evaluating species traits at a single level are blinded to true function-valued 

relationships, so the potential for erroneously drawn conclusions is likely to be 

overlooked, and such attempts provide no means for validation of results. 

Overall, Type I error rates and statistical power of Kmult and D-PGLS suggest that 

distance-based multivariate phylogenetic comparative methods can be appropriately 

applied to the study of function-valued trait evolution, and further highlight that 

univariate approaches to function-valued traits are inappropriate. 

Limitations . Function-valued phylogenetic comparative methods offer promising 

improvements over conventional methods for many types of analyses. However, several 

assumptions and limitations must be accounted for in order to properly take advantage of 

these methods. First, a substantial amount of data is required for every species at multiple 

levels to accurately infer function parameters (Stinchcombe et al. 2012). Second, even 

with large amounts of data, function parameters are estimated with error, but the methods 

described here assume species curves are estimated without error. Third, a thorough 

understanding of function-valued relationships is necessary to appropriately align 
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function-valued landmarks and to express function-valued trait evolution appropriately. 

Finally, no methods for testing alternative models (e.g., Ornstein-Uhlenbeck) of high-

dimensional multivariate trait evolution are currently available. Further development of 

distance-based multivariate phylogenetic comparative methods offers promising 

expansions of the possibilities of approaching function-valued trait evolution. 

 

CONCLUSIONS 

Phylogenetic comparative methods have transformed the field of comparative 

biology. While extensive work has contributed to the integration of evolution with 

inherently function-valued applications in developmental biology, toxicology, gene 

expression, and trait plasticity (particularly the prediction of species short-term 

evolutionary trajectories in responses to selective gradients), few methods exist to unite 

function-valued approaches with phylogenetic comparative methods. Building on the 

methods presented here, future work should seek to address issues such as testing 

alternative evolutionary models, developing methods for dealing with sparse data, 

incorporating parameter estimation error into models, accounting for phylogenetic 

uncertainty, and applying the methods described here in alternative statistical 

frameworks, such as Bayesian approaches. 

 

SUPPLEMENTARY MATERIAL ï Data available from the Dryad Digital Repository. 

doi:10.5061/dryad.5nd50. 
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FIGURES 

 

Figure 2.1 Hypothetical result of performing phylogenetic comparative analysis on 

plastic traits from species traits a) measured in nature; b) measured in the field and in a 

controlled common environment; c) measured in a controlled common environment at 

two different treatment levels; and d) measured in a controlled common environment at 

multiple treatment levels. The x-axis represents an environmental gradient; the y-axis 

represents the trait value. In 1a, the vertical dotted line represents the value of the 

environmental variable for each species collected in nature; in 1b, the vertical dotted line 

represents the value of the environmental variable for the controlled common 

environment, and the second point represents the trait value measured in nature; and in 

1c, the vertical lines represent the two treatment levels of the environmental variable in 

the controlled common environment. Solid lines in 1b and 1c represent inferred reaction 

norms, several of which deviate considerably from true reaction norms. Depending on 

specific assumptions regarding the method used, contrasting conclusions regarding trait 

phylogenetic signal, model of evolution, and evolutionary history may be drawn. 
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Figure 2.2 Ancestral curve reconstruction of a simulated dataset for a proportion-based 

trait response (y-axis) in response to an environmental gradient (x-axis). 
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Figure 2.3 Average result of ancestral root curve reconstruction (a) from 1000 simulated 

datasets (N=128) for PGLS-based ancestral curve reconstruction (circles), PGPR 

(diamonds), and univariate ancestral state reconstruction (squares). 95% confidence 

intervals of root reconstructions are presented from a single representative simulation for 

b) PGLS, c) PGPR, and d) univariate curve reconstruction. All three methods produced 

resulting curves similar to the actual root curve (solid line). However, univariate methods 

are only evaluated at a single point (not in the context of an entire curve), so only 

deviation from the true curve at individual x-levels should be considered for the 

univariate approach. Univariate representations of function-valued traits are inappropriate 

regardless of the instantaneous deviation from the actual curve, and such approaches are 

likely to result in incorrect interpretations. Therefore, despite greater absolute deviation 

from the root at various x-levels than univariate approaches, the overall performance of 

PGPR was comparable to that of PGLS, with both methods providing root curve 

estimates close to actual root curve. 
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Figure 2.4 Results from Kmult (left) and D-PGLS (right) type I error and power from 1000 

data simulations (N=128) with increasing trait dimensionality (p=2, 5, 10, 25, 50). 
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Figure 2.5 Statistical power of univariate Blombergôs K (left) and PGLS (right) at 

individual x-levels ranging from 0.00 to 15.00 (N=128). Kmult and D-PGLS power results 

(p=50) are plotted as horizontal lines for comparison. Statistical power for univariate 

approaches to function-valued traits varies widely for these tests. 
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CHAPTER 3 

LIKELIHOOD-BASED PARAMETER ESTIMATION FOR HIGH-DIMENSIONAL 

PHYLOGENETIC COMPARATIVE MODELS: OVERCOMING THE LIMITATIONS 

OF 'DISTANCE-BASED' METHODS
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ABSTRACT 

Recently proposed distance-based (Q-mode) multivariate phylogenetic 

comparative methods can be expressed in a covariance-based (R-mode) framework. It is 

shown that a properly specified covariance-based approach performs identically to 

distance-based approaches and can be performed using fast linear-time algorithms. 

Additionally, a composite likelihood approach is introduced for maximum 

pseudolikelihood parameter estimation, opening up the ability to estimate alternative 

evolutionary models, allow missing data, and incorporate within-species variation. 

Simulations reveal low statistical power and high Type I error for distance-based methods 

under various scenarios, whereas composite likelihood approaches demonstrate 

appropriate Type I error and high statistical power while substantially expanding model 

flexibility. These methods are implemented in the R package phylocurve. 
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INTRODUCTION 

Phylogenetic comparative methods provide a framework for testing hypotheses in 

comparative biology while accounting for statistical non-independence of hierarchically 

related species. In recent years, multivariate traits in the of context comparative data have 

been of increasing interest, leading to the development of multivariate extensions of 

phylogenetic comparative methods (Revell 2009; Bartoszek et al. 2012; Adams 2013). Of 

particular interest are high-dimensional traits, such as with morphometric data (Adams 

2014a-c; Adams and Felice 2014; Adams and Collyer 2015; Denton and Adams 2015) 

and function-valued traits (Goolsby 2015), which pose computational and statistical 

challenges as the number of trait dimensions increases. Namely, as the number of 

parameters to be estimated increases for a given sample size, statistical power decreases 

substantially (Adams 2014b). Additionally, when the number of trait dimensions equals 

or exceeds the number of species in a study, maximum likelihood trait covariance 

matrices are non-invertible and thus cannot be used for calculations central to most 

phylogenetic comparative methods (Adams 2014b). Finally, even assuming 

computational feasibility and adequate statistical power, it may be difficult to draw 

unified conclusions from multiple (and potentially conflicting) individual dimension-

specific metrics. 

Accordingly, it is potentially beneficial to approach comparative analyses of high-

dimensional traits with single generalized multivariate metrics rather than many 

dimension-specific metrics. Adams (2014a-c) proposed a suite of multivariate 

phylogenetic comparative methods for studying high-dimensional traits while 

maintaining statistical power and providing generalized test statistics for multivariate 
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traits as a whole. The methods, which include multivariate extensions of Blombergôs K 

(Adams 2014a), phylogenetic generalized least squares (Adams 2014b; Adams and 

Collyer 2015), comparisons of evolutionary rates (Adams 2014c; Denton and Adams 

2015), and phylogenetic partial least squares (Adams and Felice 2014), avoid the problem 

of dealing with non-invertible covariance matrices and can even handle traits in which 

the number of dimensions far exceeds the number of species in the study. This is 

accomplished by phylogenetic transformation of the data and subsequent distance-based 

(Q-mode), rather than conventional covariance-based (R-mode), analyses. When applied 

to a single univariate trait, distance-based methods and conventional phylogenetic 

comparative methods provide identical results. When applied to higher-dimensional 

traits, such as landmark coordinates of morphometric shape data (e.g., leaf shape 

coordinates obtained from Procrustes analysis (Chitwood et al. 2014)) or function-valued 

traits (e.g., species reaction norms of a phenotypically plastic trait (Goolsby 2015)), 

distance-based comparative methods fit a single consensus metric that attempts to capture 

the variation of the entire high-dimensional trait as a whole. 

Limitations of distance-based comparative methods. Despite potential 

advantages, the distance-based comparative framework involves considerable 

shortcomings. Specifically, the inability to calculate log-likelihoods restricts distance-

based models to Brownian motion. Additionally, model selection is limited to relatively 

simple hypothesis tests, lacking any clear way to compare complex combinations of 

model specifications (e.g., simultaneous modeling of fixed effects, phenotypic 

integration, rate heterogeneity, etc.). Certain distance-based methods also suffer from 

inappropriately high Type I error and low statistical power under a variety of 
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evolutionary scenarios. Distance-based methods also require eigendecomposition and 

inversion of the phylogenetic covariance matrix, which is extremely time-consuming and 

inefficient for large phylogenies. 

Although the methods described above are explicitly distance-based, an 

equivalent covariance-based (R-mode) formulation can be expressed. Like the Q-mode, 

the corresponding R-mode approach retains identical Type I error and statistical power as 

trait dimensionality increases when correctly specified and avoids inversion of singular 

matrices. Fast linear-time computational methods for performing relevant calculations 

can also be used to perform covariance-based calculations (Felsenstein 1973; Freckleton 

2012; Ho and Ané 2014), thus reducing the computational challenges posed by extremely 

large phylogenies and high-dimensional data. Finally, a composite likelihood approach 

for parameter estimation and model selection is introduced, providing a flexible and 

statistically powerful framework for expanding high-dimensional comparative methods. 

 

A COVARIANCE-BASED (R-MODE) RE-EXPRESSION OF MULTIVARIATE DISTANCE-BASED 

(Q-MODE) COMPARATIVE METHODS 

To address issues of statistical power and non-invertible matrices, and to provide 

a framework for estimating generalized statistics for high-dimensional multivariate traits, 

Adams (2014 a-c) proposed several phylogenetic comparative methods based on a 

distance-based (Q-mode) approach. Consider a phylogeny with ὔ extant species on 

which ὓ traits are observed, given as an ὔ ὓ data matrix (ἧ). The ὔ ὔ phylogenetic 

covariance matrix (Ἅ) is parameterized by branch lengths and the specified evolutionary 
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model (e.g., Brownian motion). The eigenvectors (ἣ) and diagonal matrix of eigenvalue 

square roots (ἤϳ ) of Ἅ are used to construct the phylogenetic transformation matrix (ἢ) 

which is then matrix multiplied by relevant matrices of interest (e.g., ἢἦ, ἢἧ, ἢἧ

Ὁἧ ) to remove phylogenetic covariance from the data (Garland and Ives 2000). Next, 

the Euclidean distances of phylogenetically transformed data from the origin are 

calculated (ἜἎ), resulting in an ὔ-length vector which is then used for multivariate 

comparative calculations. 

Evolutionary rates: distance-based (Q-mode) methods. Various methods have 

been proposed to quantify and compare evolutionary rates for univariate traits, including 

contrast-based (Garland 1992), generalized least squares-based (Martins and Hansen 

1997), and likelihood-based (OôMeara et. al 2006; Thomas et al. 2006), as well as 

Bayesian methods (Rabosky et al. 2014). For high-dimensional data, Adams (2014c) 

proposed an estimate called „ , which is a single consensus evolutionary rate for the 

entire multivariate trait. „  is estimated by dividing the Euclidean distance of the 

cross-product of phylogenetically transformed residuals from the origin is by the total 

number of observations (ὔὓ): 

The estimate of „  can be used to statistically compare evolutionary rates 

among groups of species (Adams 2014c) or among groups of traits (Denton and Adams 

2015). To test whether „  differs among species groups (as implemented in the 

geomorph function compare.evol.rates), subset groups of size ὔ Ȣ  are used to 

ἢ ἣἤϳἣ  (1) 

 
„

ἜἎἧ ἧȟἜἎἧ ἧȟ

ὔὓ
 (2) 
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estimate „ Ȣ  for each species group by replacing ἜἎἧ ἧȟ with 

ἜἎἧ ἧȟ Ȣ
 and ὔ with ὔ Ȣ  in equation (2). The observed ratio of 

regime-specific „ Ȣ  values is compared to the null distribution of „ Ȣ  

ratios via phylogenetic simulation (Adams 2014c). Similarly, to test for differences in 

„  among groups of traits (as implemented in the geomorph function 

compare.multi.evol.rates), „ Ȣ  is calculated for each trait group by replacing ὓ with 

ὓ Ȣ  and ἜἎἧ ἧȟ with ἜἎἧ ἧ ȟ in equation (2) (where ἧ contains 

ὓ Ȣ  variables), and the observed ratio of group-specific „ Ȣ  values is 

compared to the null distribution of „ Ȣ  via phylogenetic simulation (Denton and 

Adams 2015). 

Evolutionary rates: covariance-based (R-mode) methods. The calculation of 

„  can be simplified considerably using a covariance-based approach, as „  is 

simply the arithmetic mean of maximum likelihood evolutionary rates for each trait 

considered individually: 

Similarly, „ Ȣ  for a trait group subset Ὧ is simply the arithmetic mean of 

evolutionary rates for individual traits in ἧ. 

The calculation of regime-specific „ Ȣ  can be calculated as the mean 

maximum likelihood variance of the phylogenetically transformed residuals ἢἧ

Ὁἧ
Ȣ

. Alternatively, the computation of ἢ can be avoided using either the 

ónoncensoredô or ócensoredô approach described by OôMeara et. al (2006), the latter of 

 

„
В ὁ Ὁὁ Ἅ ὁ Ὁὁ

ὔὓ
 

(3) 
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which provides an efficient closed-form estimate of „ Ȣ , in which equation (3) is 

applied to a phylogeny and dataset pruned to only contain the species represented in 

regime j. The censored estimate is not identical to the distance-based estimate of 

„ Ȣ  (the censored approach estimates a separate Ὁἧ for each pruned tree). 

However, the censored approach is a close approximation, retains appropriate Type I 

error and statistical power, and is far more efficient than the eigendecomposition of Ἅ and 

subsequent inversion of an ὔ ὔ matrix (which is required in equation (1) in order to 

construct the phylogenetic transformation matrix ἢ). If phylogenetic transformation 

cannot be avoided, an alternative to equation (1) which avoids matrix inversion can be 

used to construct the phylogenetic transformation matrix: 

where ἤᶻ is an ὔ ὔ diagonal matrix with ρἾϳ  along the diagonal, where Ἶ contains 

the eigenvalues of Ἅ (Li 2007). If Ἅ is singular, infinite or undefined values in ἤᶻ may be 

replaced with zero (although the consequences of proceeding with comparative analyses 

on singular matrices are largely untested). Functions for comparing evolutionary rates 

using the described covariance-based approach are implemented in the phylocurve 

functions fast.geomorph.compare.evol.rates and fast.geomorph.compare.multi.evol.rates. 

These functions (and all other phylocurve functions that begin with ófast.geomorph.ô) are 

implemented to demonstrate the equivalence and application of fast linear-time 

computations for analogous distance-based functions in geomorph (see below for a 

discussion of fast covariance-based approaches). 

Phylogenetic signal (Blombergôs K). Blombergôs K (Blomberg 2003), which in 

univariate form is calculated as 

ἢ ἣἤᶻἣ  (4) 
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can be extended to multivariate form ὑ  (Adams 2014a, as implemented in the 

geomorph function physignal) using the distance-based formula 

where Ἆ╧ȟ is the non-phylogenetically transformed Euclidean distance between some 

matrix and the origin. As with „ , the value ὑ  can be calculated using a 

covariance-based approach (implemented in the phylocurve function 

fast.geomorph.physignal) by considering the sums of squared residuals for each 

individual trait: 

As with univariate Blombergôs K, significance of ὑ  is determined by phylogenetic 

permutation (Blomberg 2003; Adams 2014a). 

Phylogenetic generalized least squares. Distance-based phylogenetic 

generalized least squares (D-PGLS, as implemented in the geomorph function 

procD.pgls) regression can be performed by regressing ἏἧͯἏἦ and ἏἧͯἏ  to obtain 

predicted values ἧἦ and ἧ, which is then used to calculate summary statistics including 

sums of squares, F-ratios, and Ὑ , and significance is determined by phylogenetic 

permutation (Adams 2014b). To perform the covariance-based equivalent of D-PGLS 

regression (phylocurve function fast.geomorph.procD.pgls), first, a ὴ ὓ (where ὴ is the 

 
ὑ

ὁ Ὁὁ ὁ Ὁὁ

ὁ Ὁὁ Ἅ ὁ Ὁὁ
  
ÔÒἍ ὔ Ἅ

ὔ ρ
 (5) 

 
ὑ

Ἆἧ ἧȟἎἧ ἧȟ

ἜἎἧ ἧȟἜἎἧ ἧȟ

  
ÔÒἍ ὔ Ἅ

ὔ ρ
 (6) 

ὑ
В ὁ Ὁὁ ὁ Ὁὁ

В ὁ Ὁὁ Ἅ ὁ Ὁὁ
  
ÔÒἍ ὔ Ἅ

ὔ ρ
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number of regression coefficients to be estimated for each trait dimension) matrix of 

dimension-specific regression coefficients is calculated as 

where ἦ is the ὓ ὴ model matrix for PGLS regression, typically consisting of a column 

of ones and one or more columns of univariate predictor variables (Martins and Hansen 

1997; Revell 2010). Note that ἧ is an ὔ ὓ matrix in equation (8), unlike univariate 

PGLS in which ἧ is an ὔ ρ vector. Next, ὔ ὓ matrices of predicted  species values 

from the regression ἧἦ ἦ  and null model ἧ  Ὁἧ are used to calculate residuals, 

and sums of squares are obtained from ὛὛ
ἦ
В ὁ ὁ

ἦ
Ἅ ὁ ὁ

ἦ
 and 

ὛὛ В ὁ ὁ Ἅ ὁ ὁ  to calculate mean squared error, F-ratios, and 

Ὑ . Phylogenetic permutation is then performed to determine significance, and results are 

identical to D-PGLS regression (Adams 2014b; Adams and Collyer 2015). It should be 

noted that although phylogenetically independent contrasts can be used to calculate these 

quantities (Felsenstein 1985), phylogenetic permutation must be performed on raw 

permuted values (not contrasts), and then independent contrasts must be recalculated for 

each permutation (Adams and Collyer 2015). However, in contrast to the findings of 

Adams and Collyer (2015), an appropriately and efficiently implemented 

phylogenetically independent contrasts-based approach is indeed faster than D-PGLS 

(Fig. 3.2 c-d). 

Phylogenetic partial least squares. In addition to the methods discussed above, 

Adams and Felice (2014) proposed a distance-based method for evaluating covariation 

between two multivariate traits ἧ and ἧ called phylogenetic partial least squares (PLS). 

ἦἍ ἦ ἦἍ ἧ (8) 
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First, the evolutionary rate matrix ἠ for ἧ is calculated using the generalized least squares 

restricted maximum likelihood estimator: 

The covariance of ἧ and ἧ is partitioned into four blocks  

and singular-value decomposition is subsequently performed on ἠ . Next, the values 

ἧ Ὁἧ are projected onto the phylogenetic transformation matrix ἢ, and ἢἧ

Ὁἧ  and ἢἧ Ὁἧ  are matrix multiplied by the left (ἣ) and right (ἤ) singular 

vectors of ἠ , respectively. The first two columns of the resulting scores are regressed to 

determine the evolutionary correlation between ἧ and ἧ, and phylogenetic permutation 

is used to assess significance of the PLS regression (Adams and Felice 2014; geomorph 

function phylo.pls). To perform the covariance-based equivalent of phylogenetic PLS (as 

implemented in the phylocurve function fast.geomorph.phylo.pls), ἧ Ὁἧ ἣ  and 

ἧ Ὁἧ ἤ are regressed using phylogenetically independent contrasts (Felsenstein 

1985) regressed through the origin, or equivalently using PGLS. The resulting regression 

correlation is equivalent to the PLS correlation obtained from distance-based 

phylogenetic PLS, and significance is assessed using phylogenetic permutation (Adams 

and Felice 2014). 

 

PAIRWISE COMPOSITE LIKELIHOOD FOR HIGH-DIMENSIONAL COMPARATIVE MODELS 

Distance-based methods (and covariance-based equivalents) offer an algorithmic 

solution to high-dimensional comparative problems. However, parameters for many types 

ἠ
ἧ ἦ Ὁἧ Ἅ ἧ ἦ Ὁἧ

ὔ ρ
 (9) 

ἠ
ἠ

ἠ
 
ἠ

ἠ
 (10) 
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of models (e.g., non-Brownian evolution, missing data, within-species variation) lack 

closed-form solutions, and parameters must be estimated by maximizing the likelihood 

function. Because there is no likelihood function for distance-based methods, a 

covariance-based framework is vital to expanding the capabilities of high-dimensional 

comparative methods. For multivariate phylogenetic comparative models, the log-

likelihood function is defined as 

and the restricted log-likelihood is defined as 

where ἧ contains species values for each trait stacked into a single ὔὓ ρ column 

vector and ἦ is an ὔὓ ὓ matrix consisting of ones and zeros describing which rows 

and columns correspond to elements of ἧ (ἦ π when Ὥ Ὦ and ἦ ρ when Ὥ Ὦ). 

Unfortunately, the likelihood function become unstable as the number of traits 

approaches the number of species, and is undefined when ὓ ὔ. Additionally, the 

number of parameters to estimate for an ὓ ὓ symmetric matrix is ὓ ὓ ςϳ ὓ, 

which may fail to converge on the maximum likelihood parameters even with moderate 

trait dimensionality. 

A potential solution to this dilemma is the substitution of a pseudolikelihood 

metric into existing likelihood-based estimation methods. It has been shown that the 

ÌÏÇὒ ȿἧ
ρ

ς
ἧ Ὁἧ ἠṧἍ ἧ Ὁἧ ÌÏÇȿἠṧἍȿ

ὔὓ ÌÏÇς“  

(11) 
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ς
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product of the likelihoods (i.e., the sum of the log-likelihoods) for all possible pairwise 

combinations of variables, termed pairwise composite likelihood, shares many desirable 

properties with the full likelihood function. In particular, maximum pairwise composite 

likelihood estimates are consistent, unbiased, and asymptotically normal (Cox and Reid 

2004; Varin and Vidoni 2005; Fieuws and Verbeke 2006). It is straightforward then to 

reduce high-dimensional problems into multiple small maximum likelihood estimation 

problems. 

Specifically, for ὓ traits, ὓ ὓ ςϳ  pairwise models must be estimated. 

Although this is a large number of models, each individual estimation problem contains 

an extremely small number of parameters which can be estimated for each pairwise trait 

combination using efficient linear-time computations (Felsenstein 1973; Freckleton 2012; 

Ho and Ané 2014). Additionally, the log-likelihood function for each pairwise trait 

combination is computationally stable because ὔḻς. For ultra-high dimensional traits 

(e.g., ὓ ρπππ), pairwise composite log-likelihood can be approximated using Monte 

Carlo sampling, as the total number of pairwise likelihood combinations may be 

computationally prohibitive. 

A general framework for hypothesis testing and model selection using 

pairwise composite likelihoods. Despite the reliability of maximum pairwise composite 

likelihood estimates, pairwise likelihoods represent overlapping information (and are 

therefore non-independent from one another), so pairwise composite likelihoods cannot 

be used for conventional model selection criteria such as AIC, BIC, and likelihood ratio 

tests (Varin and Vidoni 2005). Similarly, standard errors of parameter estimates based on 
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Fisher information matrices (which are also non-independent among pairwise trait 

combinations) are uninterpretable (Fieuws and Verbeke 2006). 

Instead, a parametric bootstrapping procedure is adapted from the methods 

developed by Boettiger et al. (2012). To compare two models, the pairwise composite 

log-likelihood is calculated for the null model (e.g., simple Brownian motion) and for the 

alternative model (e.g., Brownian motion with different rates for two groups of species, 

as in Adams 2014c). Next, random data is simulated from the parameters of the null 

model 1,000 (or more) times, and pairwise composite log-likelihoods are estimated for 

both the null and alternative models (refit to the simulated data). The likelihood ratio test 

statistic  ςÌÏÇὒ ÌÏÇὒ  is computed for the observed data ( ) and for 

the data simulated under the null hypothesis ( Ȣ ). For a nominal significance level 

of ὖ πȢπυ, the critical value for the test statistic (z) is set so that 95% of  Ȣ  

values fall under z. The proportion of times   Ȣ  provides an approximation 

of the P-value for comparing the null model to the alternative model. A similar procedure 

can be applied to assess the statistical power of a model comparison by simulating the 

alternative model many times (1,000 or more) and calculating  Ȣ . The proportion of 

 Ȣ  values greater than or equal to z provides an approximation of the statistical 

power of the test (Boettiger et al. 2012). 

This procedure is extremely flexible and maintains appropriate Type I error and 

high statistical power for the comparative methods described here. In particular, because 

the likelihood ratio statistic can be calculated for any model, complex combinations of 

multiple evolutionary hypotheses (e.g., fixed effects, multiple evolutionary rates, 

phylogenetic signal, etc.) may be incorporated simultaneously, whereas hypothesis tests 
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for various distance-based models (which rely on model-specific metrics, such as ratios 

of F-statistics or evolutionary rates) cannot be combined. 

The approach described above (as well as the methods described in the following 

sections) is implemented in phylocurve, in which null and alternative models can be fit 

separately using the evo.model function and subsequently compared via parametric 

bootstrapping (Boettiger et al. 2012) using the compare.models function. 

New hypothesis tests for existing high-dimensional methods. To simulate the 

null hypothesis for comparing rates („ ) among regimes („ Ȣ ), traits are 

simulated (for example, by using the sim.char function in geiger (Pennell et al. 2014)) 

using the restricted maximum likelihood evolutionary rate matrix (equation 9; for the 

maximum likelihood rate matrix, ὔ ρ is simply replaced with ὔ). To simulate the 

alternative hypothesis (distinct evolutionary rates among regimes), the following 

procedure is used: 1) estimate the evolutionary rate matrix for each regime using either 

the censored method (OôMeara et al. 2006), the noncensored approach (OôMeara et al. 

2006), or by subsetting transformed residuals (Adams 2014c); 2) determine the 

proportion of each tree edge to be assigned to each respective regime rate matrix, for 

instance by assigning entire clades values of either zero or one (for known discrete 

regime shifts), or by reconstructing the probabilities of ancestral regime states (Yang et 

al. 1995; Pupko et al. 2000; Paradis et al. 2004; Revell 2012); 3) simulate phenotypic 

evolution under the evolutionary rate matrix for each regime by scalar multiplication of 

ἠ by the branch lengths of the phylogeny and by the regime-specific proportions 

determined in (2); and 4) add the resulting simulated phenotypic values together. Note 

that this procedure differs substantially from the null hypothesis described in Adams 
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(2014c), which assumes a diagonal evolutionary rate matrix and results in unacceptably 

high Type I error for correlated traits (see below). In contrast, the procedure described 

here results in appropriate Type I error and statistical power to compare evolutionary 

rates among regimes. 

To compare evolutionary rates among traits (Denton and Adams 2015), the null 

hypothesis is simulated under a modified evolutionary rate matrix in which the diagonal 

of ἠ is constrained to equal „  (the mean of the diagonal of ἠ). For the alternative 

hypothesis, the diagonal of ἠ is divided into trait groups subsets, in which subset Ὧ is set 

to equal „ Ȣ  (the mean of the diagonal of the subset of ἠ corresponding to traits 

represents in trait group Ὧ). In many cases, the resulting matrix is not positive 

semidefinite. Following Denton and Adams (2015), the nearest positive definite matrix to 

the constrained rate matrix is found using the nearPD function in the Matrix package for 

trait simulations (Bates and Maechler 2015). 

To assess correlations between two multivariate traits, the full evolutionary rate 

matrix is partitioned into four blocks (ἠ , ἠ , ἠ , ἠ  ï see above) in an approach 

comparable to phylogenetic partial least squares (Adams and Felice 2014). However, 

rather than performing singular value decomposition on the evolutionary rate matrix, the 

null hypothesis is simulated by setting all elements of blocks ἠ  and ἠ  to zero. For the 

alternative hypothesis, data are simulated under the unconstrained rate matrix (ἠ). In a 

similar manner, the presence of significant evolutionary covariation among traits can be 

tested by setting non-diagonal elements of the rate matrix to zero for null hypothesis 

simulations. 
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To test the significance of fixed effects (as in D-PGLS (Adams 2014b)), both the 

null and alternative hypotheses are simulated under ἠ, and ἦ  (equation 8) is added to 

the simulated ἧ under the alternative hypothesis. It should be noted that restricted 

likelihood (or restricted pairwise composite likelihood) cannot be used for model 

comparisons in which fixed effects differ between the null and alternative hypotheses. 

Instead, comparisons must be made using maximum pairwise composite likelihood 

estimates. 

Finally, an alternative method is proposed to test the significance of Blombergôs 

K and ὑ . Rather than phylogenetic permutation (Blomberg et al. 2003; Adams 

2014a), phylogenetic simulation of both the null and alternative hypotheses is proposed. 

Under Blombergôs K, the null hypothesis is an absence of phylogenetic signal, so data are 

simulated under ἠ on a star phylogeny; for the alternative hypothesis (Brownian motion), 

data are simulated under ἠ on the original phylogeny. For this procedure, K is used as the 

summary statistic (rather than the likelihood ratio ). 

The null distribution of K is used to calculate the critical value (ὑz), and the 

proportion of ὑ ὑ Ȣ  is the P-value for the test of phylogenetic signal. The mean 

of ὑ Ȣ  provides the expectation of K under Brownian motion (which should be 

approximately 1.0 if the model is correctly specified), and the proportion of ὑ Ȣ ὑz 

provides an estimate of the statistical power to detect significant phylogenetic signal. To 

simplify calculations under complex evolutionary models, the expectation of the ratio of 

raw to phylogenetic mean squared error (the denominator of ὑ ) can be approximated 

by simulation under the alternative hypothesis (see below). This implementation of ὑ  

is implemented in the phylocurve function K.mult. 
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NEW METHODS FOR HIGH-DIMENSIONAL PHYLOGENETIC COMPARATIVE DATA  

Estimation of alternative evolutionary models. Parameters for alternative 

evolutionary models, such as Early-Burst (Harmon et al. 2010) or Ornstein-Uhlenbeck 

(Hansen 1997), or tree transformations such as Pagelôs ‗ (Pagel 1999) can be fit to high-

dimensional comparative models by transforming the branch lengths such that a 

Brownian motion-like process of trait evolution applies on the transformed tree. 

Estimation of maximum pairwise composite likelihood tree transformation parameters 

proceeds as follows: 1) transform the phylogeny according to an initial guess for a tree 

transformation parameter (e.g.,  for an Ornstein-Uhlenbeck process); 2) estimate 

maximum likelihood parameters for each pairwise combination of traits using closed-

form solutions (if available) or by numerical optimization; 3) sum the pairwise log-

likelihoods for each combination of traits; 4) repeat steps 1-3 with a new guess for the 

tree transformation parameter until convergence on the maximum pairwise composite 

likelihood estimate is achieved. Given a particular tree transformation, the resulting 

estimates of evolutionary rate and phylogenetic mean for any given trait will be identical 

across individual pairwise models, assuming no missing data and only a single 

observation per species. 

Combining multiple evolutionary hypotheses. The hypothesis testing 

framework described above (based on Boettiger et al. 2012) allows for straightforward 

combinations of multiple evolutionary hypotheses by imposing appropriate alterations or 

constraints to the evolutionary rate matrix or by adding predicted values based on fixed 

effects to simulated data (ἧ ἦ ). To incorporate multiple models into tests of 
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phylogenetic signal, ὑ , the expectation of the ratio of raw mean squared error to 

phylogenetically corrected mean squared error 

is estimated by simulation under the hypothesized evolutionary model. Under simple 

Brownian motion, this should yield an estimate of approximately 

ÔÒἍ ὔ Ἅ ὔ ρϳ  (Blomberg et al. 2003). The observed ratio 

-3%-3%ϳ  is then scaled by Ὁ-3%-3%ϳ  to calculate ὑ : 

Next, the hypothesized model is simulated on a star phylogeny to obtain the null 

distribution of ὑ , which is used to calculate the critical value (ὑz). As before, the 

proportion of ὑ ὑ Ȣ  is the P-value for testing phylogenetic signal, and the 

proportion of ὑ Ȣ ὑz provides an estimate of the statistical power of the test. Under 

simple Brownian motion, equations 6 and 7 should be nearly identical to 14, whereas 

under deviations from simple Brownian motion, equation 14 yields a generalization of 

ὑ  which can incorporate fixed effects (by setting Ὁἧ ἦ ), multiple evolutionary 

rate regimes, non-Brownian evolutionary models, and other model specifications. These 

features are implemented in the phylocurve function K.mult. 

Incorporation of missing data and within-species variation . Several methods 

have been developed to estimate evolutionary trait covariance in the presence of missing 

data and within-species variation (Ives et al. 2007; Felsenstein 2008; Bruggeman et al. 

Ὁ-3%-3%ϳ Ὁ
В ὁ Ὁὁ ὁ Ὁὁ

В ὁ Ὁὁ Ἅ ὁ Ὁὁ
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