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ABSTRACT 

This dissertation proposes novel methods phylogenetic comparative methods for 

studying complex biological traits and investigates the evolutionary history of heavy 

metal hyperaccumulation in a comparative framework. Current phylogenetic comparative 

methods, which limit trait observations to univariate means with normally distributed 

errors, are unable to incorporate several biologically important trait types, including 

phenotypic plasticity and dose-response curves. The ability to study such phenotypes, 

known as function-valued traits, in a comparative framework is critical to unifying the 

historically disparate fields of evolutionary biology and toxicology. Two methods-based 

chapters lay out a framework for explicitly accounting for function-valued traits in in the 

context of macroevolution, representing a substantial improvement in comparative 

methods which are currently limited regarding the capacity to incorporate complex 

multivariate traits. The first of these chapters extends phylogenetic generalized least 

squares methods to allow for function-valued traits assuming a Brownian motion model 

of evolution. The next chapter expands function-valued and other high-dimensional 

comparative analyses to allow for the incorporation of alternative evolutionary models, 



fixed effects, within-species variation, and missing data, and also addresses issues of 

statistical power, model flexibility, and computational tractability. 

The next two chapters explore the evolution of metal hyperaccumulation in the 

Helianthus genus (sunflowers). First, the elemental defense hypothesis, an adaptive 

hypothesis for metal hyperaccumulation which predicts a deterrent effect of leaf metals 

on herbivory, is evaluated in Helianthus and the generalist herbivore Vanessa cardui (the 

Painted Lady butterfly) using a comparative approach. Mixed support for the elemental 

defense hypothesis is found, with herbivores exhibiting a preference for leaves from non-

metal-treated plants over metal-treated plants in certain species. However, in the absence 

of a choice, V. cardui were not deterred by leaf metals. Next, the evolutionary history of 

As, Cd, Cr, Cu, Ni, Pb, Se, and Zn accumulation was investigated across Helianthus. 

Hyperaccumulation of Cd, Ni, and Zn is widespread throughout Helianthus. Cd and Zn 

hyperaccumulation, as well as elevated Ni accumulation, likely evolved in wild 

Helianthus prior to sunflower domestication. These results, in conjunction with the 

comparative methods developed in this dissertation, provide a framework for further 

investigation of metal hyperaccumulation as a function-valued trait. 

INDEX WORDS: Elemental defense hypothesis, Function-valued traits, Helianthus, 

Herbivory, High-dimensional phenotypes, Macroevolution, Metal 

hyperaccumulation, Phylogenetic comparative methods, 

Sunflower. 
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1 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Hyperaccumulation is a rare plant trait by which plants accumulate extremely 

high concentrations of metals (e.g., ≥1,000 ppm) in leaf tissues without suffering toxicity 

(Reeves and Baker 2000). Although the physiology and genetics of this phenomenon 

have been extensively studied, very little information exists regarding the complex 

evolutionary dynamics of tolerance and hyperaccumulation, its adaptive significance, and 

potential tradeoffs with key functional plant traits. Studying the evolution of 

hyperaccumulation requires the integration of two disparate fields – evolutionary biology 

and toxicology, the study of which are both intrinsically linked to understanding the 

physiological responses of organisms to their environment through time (Bickham 2011). 

Despite their common objectives, theoretical obstacles and practical limitations have 

historically restricted the integrated study of evolution and toxicology (Bickham 2011, 

Goolsby 2015). 

The study of phenotypic evolution is itself complicated by the non-independence 

of species phenotypes due to shared ancestry. Three decades ago, the basis of modern 

phylogenetic comparative methods emerged with the development of Felsenstein‟s 

phylogenetically independent contrasts (Felsenstein 1985). Since then, comparative 

methods have seen an explosion in capabilities – ancestral state reconstruction (Garland 

et al. 1999), estimation of phylogenetic signal (Pagel 1999, Blomberg et al. 2003), 

comparing evolutionary rates (O'Meara et al. 2006), estimation of non-Brownian 
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evolutionary models (Hansen 1997, Harmon et al. 2010), and the ability to account for 

within-species variation (Ives et al. 2007, Felsenstein 2008, Hansen and Bartoszek 2012) 

and missing data (Bruggeman et al. 2009). Although these methods are primarily focused 

on the evolution of univariate traits, more recent methods have sought to incorporate a 

multivariate framework, including phylogenetic principal components analysis (PCA) 

(Revell 2009), phylogenetic path analysis (Hardenberg and Gonzalez-Voyer 2013), and 

comparative analysis of high-dimensional morphometric traits (Adams 2014c, b, a, 

Adams and Felice 2014). Despite the numerous and diverse capabilities offered by 

univariate phylogenetic comparative methods, these approaches are seldom integrated for 

multivariate analyses. For instance, phylogenetic PCA and high-dimensional 

morphometric analyses offer no approaches for dealing with non-Brownian evolutionary 

models or within-species variation. These limitations are problematic, as several 

simulated and empirical analyses have demonstrated that substantial bias is introduced 

when intraspecific variation is ignored (Hansen and Bartoszek 2012, Silvestro et al. 2015) 

or when a Brownian motion model of evolution is inappropriately applied (Pennell et al. 

2015, Uyeda et al. 2015). 

In approaching toxicology in an evolutionary framework, current phylogenetic 

comparative methods fall short as they are unable to incorporate phenotypically plastic 

traits, such as developmental trajectories, environmental variation, and exposure to toxic 

substances. This is because comparative methods operate under the assumption that 

species trait values are fixed with normally distributed error. Although appropriate for 

some traits, many traits relevant to evolutionary biology (particularly those relating to 

toxicology) are phenotypically plastic along environmental and temporal gradients (e.g., 
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phenotypic responses to abiotic stress, developmental trajectories, etc.). Such traits are 

more appropriately described by mathematical functions rather than univariate trait 

means. 

This dissertation seeks to bridge the current barriers separating evolutionary 

biology and toxicology, drawing from the rapidly emerging theoretical, computational, 

and empirical resources relevant to their study. The second chapter proposes statistical 

tools for expanding phylogenetic comparative methods for the incorporation of function-

valued traits. The ability to directly study the evolutionary interactions of function-valued 

traits is critical for the study of many biologically important traits, as well as for 

integrating toxicological data, such as dose-response curve, in a macroevolutionary 

framework. These tools are fully compatible with several recently developed high-

dimensional comparative methods, which can be used to test for phylogenetic signal 

(Adams 2014a), assess correlated trait evolution (Adams 2014b, Adams and Felice 2014), 

perform phylogenetic ANOVA (Adams 2014b), and compare evolutionary rates (Adams 

2014c), all in a function-valued context. 

With the flexibility of high-dimensional comparative methods also comes its 

associated limitations – an apparent inability to incorporate intraspecific function-valued 

variation and alternative evolutionary models (Adams 2014c, b, a, Adams and Felice 

2014). In addition to function-valued phenotypes, many important biological traits are 

inherently multidimensional, such as shape/morphometric data, physiological 

suites/syndromes, and tolerance to toxic substances. For such traits, the number of 

dimensions for a given trait may be large, often exceeding the number of observed 

individuals or species. Conventional phylogenetic comparative statistical methods are 
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unable to handle such high-dimensional phenotypes, as the number of parameters to 

estimate increases polynomially with increases in trait dimensionality (Ho and Ane 

2014). Consequently, dramatic reductions in statistical power, intractable log-likelihoods, 

and lack of parameter identifiability inhibit meaningful inference for such traits. Recent 

advances in high-dimensional comparative methods have enabled simple investigations 

but are limited to a small class of model specifications. The third chapter of this 

dissertation addresses these limitations using a likelihood-based extension of the methods 

proposed in the second chapter that eliminates these shortcomings for both function-

valued and other high-dimensional morphometric traits. This chapter develops a flexible 

framework for analyzing high-dimensional traits in a phylogenetic comparative context 

which allows for complex model specification while maintaining high statistical power 

and parameter identifiability. These novel methods allow for ultra-high dimensional 

phenotypes to be studied using both frequentist and Bayesian approaches. 

Unlike most hyperaccumulator species, domesticated sunflower (Helianthus 

annuus) is a hyperaccumulator of multiple metals, including As, Cd, Cr, and Ni. H. 

annuus is also capable of accumulating high concentrations of several other metals, such 

as Cu, Fe, Zn, Mn, U, Cs, and Sr (Blamey et al. 1986, Lin et al. 2003, Prasad and Freitas 

2003, Solhi et al. 2005, Cutright et al. 2010, Walliwalagedara et al. 2010). Wild 

Helianthus occurs across North America in a variety of habitats, including serpentine 

soils, beaches, coastal prairies, deserts, salt marshes, mountain meadows, and open 

woodlands, and are adapted to a range of strong environmental stressors, such as drought, 

salinity, and low nutrient availability (Heiser et al. 1969, Stephens et al. 2015). A wealth 

of genetic, phylogenetic, and physiological data and resources are available for wild and 
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domesticated sunflowers (Heiser et al. 1969, Timme et al. 2007, Mandel et al. 2011, 

Mandel et al. 2013, Stephens et al. 2015), making Helianthus ideal study system for 

investigating metal hyperaccumulation and placing it in an integrated evolutionary 

toxicology framework. 

The fourth chapter of this dissertation tests the most commonly cited explanation 

regarding selective benefits of metal hyperaccumulation, the elemental defense 

hypothesis, which predicts an anti-herbivore or anti-pathogen effect of high leaf metal 

concentrations. Specifically, the anti-herbivore aspect of the elemental defense 

hypothesis is evaluated in a phylogenetic context using a small clade within wild 

Helianthus closely related to domesticated sunflower using control, nickel, and cadmium 

treatments. The fifth chapter investigates the evolutionary histories of eight different 

metals and metalloids (As, Cd, Cr, Cu, Ni, Pb, Se, and Zn) in the entire Helianthus genus. 

Together, these chapters develop a framework for the study of metal hyperaccumulation 

in the context of evolutionary toxicology. 
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ABSTRACT  

Phylogenetic comparative methods offer a suite of tools for studying trait 

evolution. However, most models inherently assume fixed trait values within species. 

Although some methods can incorporate error around species means, few are capable of 

accounting for variation driven by environmental or temporal gradients, such as trait 

responses to abiotic stress or ontogenetic trajectories. Such traits, often referred to as 

function-valued or infinite-dimensional, are typically expressed as reaction norms, dose-

response curves, or time plots and are described by mathematical functions linking 

independent predictor variables to the trait of interest. Here, I introduce a method for 

extending ancestral state reconstruction to incorporate function-valued traits in a 

phylogenetic generalized least squares (PGLS) framework, as well as extensions of this 

method for testing phylogenetic signal, performing phylogenetic ANOVA, and testing for 

correlated trait evolution using recently proposed multivariate PGLS methods. Statistical 

power of function-valued comparative methods is compared to univariate approaches 

using data simulations, and the assumptions and challenges of each are discussed in 

detail. 
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INTRODUCTION 

Phylogenetic comparative methods such as ancestral state reconstruction, 

phylogenetically independent contrasts (PICs), and phylogenetic generalized least 

squares (PGLS) comprise a suite of tools for inferring the evolutionary history of traits 

and for testing hypotheses of trait evolution (Felsenstein 1985; Grafen 1989; Martins and 

Hansen 1997). Although intraspecific differences due to measurement error, sampling 

error, or natural variation can be incorporated into error structures, these models 

generally operate under the assumption that individual species possess a fixed mean for 

any given trait (Martins and Hansen 1997; Ives et al. 2007). Many traits relevant to 

ecology and evolutionary biology are inherently function-valued, including 

developmentally varying traits, niche preference, thermal performance, life history 

patterns, plant ecophysiological strategies, responses to environmental hazards such as 

heavy metals and anthropogenic contaminants, and tolerance to abiotic stressors such as 

salinity, drought, and nutrient limitation. Rather than a single mean value, function-

valued traits are best represented by curves defined by mathematical functions. 

Accordingly, univariate analytical approaches to such traits, which fail to account for trait 

dependence on independent exogenous variables such as time or environment, are 

statistically inappropriate (Kingsolver et al. 2001; Rocha and Klaczko 2012; Stinchcombe 

et al. 2012; Donovan et al. 2014). 

Until recently, standard phylogenetic comparative methods have lacked tools for 

direct incorporation of function-valued analyses. Instead, many researchers have 

approached evolutionary questions regarding function-valued traits by summarizing trait 

curves with univariate mean values and applying these values directly to comparative 
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methods. This approach typically utilizes one of two metrics: mean trait values evaluated 

at specific environmental levels (Pollard et al. 2001; Pigliucci et al. 2003), or inverse 

functions evaluated at a standardized biological response (Guenard et al. 2011; Strachan 

et al. 2011; Larras et al. 2014). The inverse of a function  ( )    is the function 

   ( )    that gives the value of x that is expected to produce a response y. For 

example, in toxicological studies, statistical responses to chemicals are typically 

expressed as inverse functions rather than response at a specific dose (the 50% lethal 

response dose (LD50) of a chemical is the dose expected to cause mortality in 50% of 

exposed subjects). For linear functions with similar slopes, both approaches typically 

yield consistent results; for nonlinear functions, approaches using mean trait values 

across treatment levels are unreliable. Conversely, inverse evaluation of monotonic 

functions at analogous reference trait values across species (e.g., LD50) is a valid 

approach regardless of linearity or nonlinearity. This is because inverse function 

evaluation at a fixed biological endpoint returns the value of the independent variable that 

produces said response, and is thus not subject to weighting by curve thresholds or other 

nonlinear features. However, summary values such as LD50 only capture a single 

dimension of function-valued traits and are likely to mask important trait variation across 

species. Consider two aquatic species exhibiting identical LD50 values for salinity 

toxicity, but the slope of the dose-response curve for one species is much steeper than the 

dose-response curve of the other species. In this example, interpretation of the LD50s in 

isolation might lead to the incorrect conclusion that salinity tolerance in the two species is 

identical. Similarly, other univariate summaries of function-valued traits, such as area 

under the curve, fail to distinguish biological differences such as generalist-specialist 
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shifts in which the shape of the curve changes but the total area under the curve remains 

constant (Izem and Kingsolver 2005; Stinchcombe et al. 2012). For these reasons, 

evolution of function-valued traits should be studied using methods that incorporate 

entire species trait curves rather than univariate summaries. 

One particularly important challenge related to function-valued traits is the study 

of plasticity, which is the focus of the next section. However, it should be noted that the 

principles of function-valued traits discussed in the next section, in addition to trait 

plasticity, apply broadly to other classes of function-valued traits as well (e.g., 

environmental tolerance, ontogenetic variation, etc.). 

Plastic traits: motivation for study, common approaches, and challenges. A 

central question implicit to the study of phenotypic plasticity is how plasticity affects 

evolutionary processes, such as gene flow, speciation, diversification, and persistence in 

novel environments (Wund 2012). Questions concerning the evolutionary dynamics of 

phenotypic plasticity, plasticity costs, and tradeoffs are also of particular interest 

(Callahan et al. 2008). Such questions may be applied to exploring evolvability and rates 

of evolutionary change of both plastic and fixed traits to better understand or anticipate 

species responses to processes such as environmental pollution (Guenard et al. 2011; 

Guenard et al. 2013; Larras et al. 2014), climate change (Bradshaw and Holzapfel 2006), 

and species invasions (Richards et al. 2006). By inferring the evolutionary history of trait 

responses to environmental conditions, evolutionary hypotheses relating to phenotypic 

plasticity, such as adaptive plasticity, plasticity costs, and tradeoffs in plastically varying 

traits, may be tested. Additionally, by taking into account phylogenetic variation in 

reaction norms, certain patterns previously obscured or falsely detected, either due to 
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sampling traits in too few or too narrowly varying environments, assuming linearity of 

nonlinear reaction norms, or failing to consider interspecific differences in phenotypic 

minimum and maximum values, may be clarified. 

Traits are often sampled under natural field conditions and assumed to be fixed 

(non-plastic), despite clear evidence in many traits of substantial variation driven by 

environment and development (Whitman and Agrawal 2008; Mason et al. 2013; Donovan 

et al. 2014). By failing to account for environmental or ontogenetic variation, or by 

assuming that environmental differences can be treated as covariates that uniformly affect 

all species of interest, statistical and biological inferences may be unreliable (Fig. 2.1a) 

(Rocha and Klaczko 2012). Additionally, environmental variation may obscure 

evolutionary signatures, leading to the incorrect conclusion that a trait is too labile for 

phylogenetic analysis (Revell 2010). 

As an alternative to field measurements, studies may be performed in 

homogenous laboratory settings to minimize plastic intraspecific variation, with the 

intention of “removing” the effect of environment and allowing “baseline” phenotypic 

expression. However, uniform environments fail to capture the full extent of trait 

combinations possible within a species; instead, only a snapshot of possible trait 

combinations is identified, which is potentially problematic when making evolutionary 

inferences on putatively adaptively plastic traits. Another strategy involves estimating the 

difference in field trait values with controlled common environment trait values as a 

measure of total trait plasticity (Knight and Ackerly 2003). Although an improvement, 

this method has several limitations: 1) the ability to isolate specific drivers of trait 

plasticity is limited; 2) providing a single ideal environment for multiple species native to 
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diverse habitats may not be possible, so some species might be stressed under common 

environment conditions; and 3) it is unlikely that the full range of trait plasticity is 

captured by sampling traits under field and single-treatment lab conditions (Fig. 2.1b) 

(Jacobs and Latimer 2012). 

Researchers can capture a more comprehensive representation of the capacity for 

plasticity by exposing species to a controlled common environment while manipulating a 

single environmental variable. Such environmental manipulations often involve treating 

continuous variables as arbitrarily categorized treatments (e.g., “low” and “high”), which 

inherently impose the assumption of linearity and normality of data. Accordingly, 

problems are likely to arise if the slope, strength, or shape of reaction norms or plastically 

induced shifts in correlated traits differs across species (Fig. 2.1c) (Rocha and Klaczko 

2012). Furthermore, categorical environmental manipulations pose several analytical 

challenges. In particular, trait measurements must be made under comparable treatment 

levels, and sampling differences and missing data are incompatible with many statistical 

methods. Additionally, the magnitude of arbitrarily categorized or binned continuous 

treatment values is ignored, thus sacrificing statistical power and limiting the ability to 

predict trait values at unobserved levels (Griswold et al. 2008; Stinchcombe et al. 2012). 

Evaluating traits at multiple levels along a continuous environmental gradient 

offers the opportunity to more fully assess the function-valued relationship between 

environment and plastically varying traits (Fig. 2.1d) (Kingsolver et al. 2001; Rocha and 

Klaczko 2012; Stinchcombe et al. 2012; Murren et al. 2014). In general, function-valued 

analyses offer several advantages to other approaches: 1) they are robust to sampling 

differences; 2) there is no need for measurements to be conducted at identical treatment 
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levels (provided measurements provide sufficient coverage of the range of interest to 

accurately estimate function parameters); 3) they have higher statistical power; 4) they 

incorporate the magnitude and trend from continuous predictor variables; and 5) they 

allow prediction of trait responses in extant and ancestral taxa at unobserved levels 

(Kingsolver et al. 2001). 

A novel approach for function-valued phylogenetic comparative methods. 

Although several studies have implemented function-valued analyses for studying and 

predicting the evolution of function-valued traits within a single species (Stinchcombe et 

al. 2012), methods for analyzing function-valued traits in an explicitly phylogenetic 

context have only recently begun to emerge. Recently, a method called phylogenetic 

Gaussian process regression (PGPR), an extremely flexible method for reconstructing the 

evolutionary history of function-valued traits, was proposed (Aston et al. 2012; 

Hadjipantelis et al. 2013; Jones and Moriarty 2013). In PGPR, curves of any shape may 

be analyzed without a priori assumptions of function structure, multiple sources of 

uncertainty may be incorporated, and a variety of evolutionary models may be tested 

(Hadjipantelis et al 2013). Despite its flexibility, PGPR currently lacks compatibility with 

several commonly used comparative methods such as phylogenetic regression and 

estimation of phylogenetic signal, as such methods inherently rely on phylogenetic 

generalized least squares (PGLS)-based reconstruction of ancestral states (Martins and 

Hansen 1997; Blomberg et al. 2003). 

Here, I present a function-valued extension of ancestral state reconstruction in a 

PGLS framework. This method inherits the flexibility of PGLS and is fully compatible 

with several recently proposed multivariate PGLS-based methods which can be used to 
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test for phylogenetic signal (Adams 2014a), perform phylogenetic ANOVA (Adams 

2014b), evaluate correlated trait evolution between functions and univariate traits (Adams 

2014b) or between multiple functions (Adams and Felice 2014), and test for shifts in 

evolutionary rates of function-valued traits (Adams 2014c). 

 

METHODS 

Conceptually, a function-valued trait is composed of infinite discrete landmarks 

along a curve that evolve as a single multivariate trait (Adams 2014a). Representation of 

a function for a given species can be approximated with a finite-length sequence of 

landmarks described by x,y coordinates. However, prior to performing PGLS-based 

comparative analyses, functions must first be aligned to make landmarks analogous 

across species (Adams 2014a). Depending on specific function-valued attributes, 

landmark alignment may be accomplished using a variety of techniques, such as inverse 

function alignment, dynamic time warping (Myers et al. 1980; Giorgino 2009), and 

generalized time warping (Zhou and De la Torre 2012), as described in the following two 

sections. 

Ancestral curve reconstruction of sigmoidal curves. Monotonic functions with 

constant minimum and maximum values, such as sigmoidal functions (e.g., as with 

binomial, proportional, or probabilistic data), are a special case of function-valued traits 

in which the y-axis represents absolute endpoints that are comparable across species. In 

such cases, the y-axis serves as a pre-aligned point of reference, and function-valued 

evolution of these types of curves need only be expressed along the x-axis using inverse 

functions evaluated at a constant vector of y-values spanning minimum and maximum 
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function values (e.g., between 0 and 1) for each species. In this way, the trait being 

studied is the vector of x-values that corresponds to a fixed vector of reference y-values 

for a given species. For example, in dose-response curves, the LD50 is a comparable 

landmark across species that can be appropriately analyzed using conventional univariate 

phylogenetic comparative methods. Conversely, the response at a specific dose is not 

comparable across species due to the non-linearity of sigmoidal curves, and inferences 

based on such approaches are incorrect. 

Univariate ancestral state reconstruction can be easily extended to incorporate 

function-valued traits using a PGLS framework (Martins and Hansen 1997). First, 

parameters for function-valued traits  ( ) are estimated for each of N species. The 

reconstructed vector of function-valued landmarks at the root of the tree,      , is then 

calculated using the generalized least squares formula 

where   is the matrix of expected trait variance-covariance given by the phylogenetic tree 

and assuming a specific model of trait evolution (e.g., Brownian motion),   is an     

matrix of ones,   is a vector of   evenly spaced y-axis landmarks between   and   (0 and 

1 for binomial data), and   is the     matrix of inverse functions      
   evaluated at y. 

Root vector       is extended into an     matrix  , and each row is filled with      . 

Next, the matrix of   internal node landmark vectors is calculated 

where   is the     matrix of expected covariance between internal nodes and tips as 

specified by the phylogenetic tree and model of evolution,   
    is an     matrix 

consisting of M columns each filled with      .        represents       
  ( ) in the set of 

       (      )         (1) 

        (    (   ))
 
   

    (2) 
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landmark coordinates (      
  ( )  ), which can then be used to estimate parameters for 

curves at each node. A hypothetical example of ancestral curve reconstruction of a 

sigmoidal trait is visualized in figure 2.2. 

Variance and 95% confidence intervals may also be estimated for reconstructed 

ancestral curves (Rohlf 2001). First, the Brownian motion parameter    is estimated for 

each landmark i from 1 to n 

Next, variance is calculated for each reconstructed landmark at each internal node 

where    is the     matrix of expected covariance among internal nodes due to 

phylogeny and the specified evolutionary model, and    is an  -length vector of ones 

(Cressie 1993). Finally, 95% confidence intervals for each curve can be calculated as 

           (      ). 

Ancestral curve reconstruction of other function types. Many function-valued 

traits cannot be appropriately expressed with y-bounded sigmoidal functions. In such 

cases, inverse function alignment does not properly align curves across species. For 

instance, unimodal and multimodal functions lack a unique inverse solution for any given 

y-value. Additionally, certain function-valued traits require complex curve specification 

such as with Gaussian process regression. For such traits, ancestral curve reconstruction 

must be performed on both the x-axis and the y-axis, both of which must first be aligned 

across species. This can be accomplished for most function-valued relationships using a 
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non-linear alignment method called generalized time warping (Zhou and De la Torre 

2012), a multi-sequence extension of dynamic time warping (Myers et al. 1980; Giorgino 

2009). Although applicable to a wide variety of complex curve shapes, the 

appropriateness of time warping methods to specific function types should be assessed, 

and individual time warping parameters may require specification. For a more in-depth 

discussion, see Giorgino (2009). 

For ancestral state reconstruction of aligned curves, Equations (1) and (2) must be 

applied individually to both the x-axis and the y-axis. For x-axis ancestral state 

reconstruction,   is the     matrix of aligned x-values; for y-axis ancestral state 

reconstruction,   is the     matrix of aligned y-values. The resulting set of        

forms coordinates (             ) which are then used to estimate parameters for       . 

Similarly, variance and 95% confidence intervals for reconstructed curves must be 

applied on both the x and y axes for curves aligned with time warping. For monotonic 

sigmoidal function-valued traits, inferences from inverse function approaches and time 

warping alignment are equivalent (R code provided in supplementary material). 

Compatibility with distance-based multivariate phylogenetic comparative 

methods. Recently, several multivariate extensions of phylogenetic comparative methods 

have been proposed for high-dimensional traits (Adams 2014a; Adams 2014b; Adams 

2014c; Adams and Felice 2014). These methods allow quantification of metrics such as 

multivariate phylogenetic signal, correlated trait evolution, phylogenetic ANOVA, and 

evolutionary rates. Distance-based comparative methods rely on removal of phylogenetic 

covariance from data by projecting phenotypic data onto the phylogenetic matrix   

(Garland and Ives 2000): 
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where   and   are eigenvectors and eigenvalues of the phylogenetic covariance matrix 

 . Although primarily presented as tools for analyzing Procrustes-aligned morphometric 

data (Rohlf and Slice 1990), these methods are not limited to the number of supplied trait 

dimensions and can handle hundreds of non-isotropic covarying dimensions. In 

particular, unlike covariance-based approaches, distance-based multivariate comparative 

methods maintain statistical power as the number of trait dimensions increases, and 

uniquely allow the number of dimensions to far exceed the number of species in the 

phylogeny. Thus, the evolution of function-valued traits can be appropriately analyzed 

using distance-based multivariate comparative methods (Adams 2014a). 

As with Procrustes-aligned landmark coordinates (Adams 2014a; Adams 2014b), 

function-valued traits are supplied to multivariate methods in the form of coordinate 

sequences from generalized time warping alignment (for curves of any form), or in the 

case of inverse function evaluations (for sigmoidal curves), only        
  ( ) is supplied. 

Estimation of the phylogenetic mean is inherent to distance-based multivariate 

phylogenetic methods. Importantly, the estimated phylogenetic mean for distance-based 

methods is equivalent to the root estimate       obtained from Equation (1) when applied 

to properly aligned landmarks of function-valued data. Specific applications and 

methodological details of applying distance-based multivariate comparative methods to 

function-valued traits are discussed in the following sections. 

Phylogenetic signal of function-valued traits. Phylogenetic signal is a measure 

of the extent to which species exhibit phenotypic similarity due to phylogenetic 

relatedness. Various methods of signal quantification have been proposed, including 

   (    ⁄   )
  

 (5) 
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Blomberg‟s K (Blomberg et al 2003), Pagel‟s λ (Pagel 1999), autocorrelation techniques 

(Pavoine and Ricotta 2012), and correlation-based methods (Zheng et al. 2009). 

Blomberg‟s K is based on the ratio of observed variation relative to the variation expected 

under Brownian motion: 

where   is an     vector of phenotypic values for a univariate trait and  ( ) is the 

phylogenetic mean (estimated phenotypic value at the root of the phylogeny), Thus, the 

expectation of K under Brownian motion is 1. Phylogenetic permutation can be used to 

statistically test if K represents significant phylogenetic signal (Blomberg et al. 2003). 

Adams (2014a) proposed a multivariate generalization of Blomberg‟s K (Kmult) 

which allows phylogenetic signal to be estimated in high-dimensional traits. Kmult utilizes 

a distance-based approach which produces identical estimates of K when applied to 

univariate traits but also allows for calculations of Kmult for multivariate traits. Kmult is 

calculated as follows: 

where     ̂ is an     vector of Euclidian distances between species means and the root 

of the phylogeny, as expressed by 

and       is an     vector of Euclidean distances of species means to the origin 

projected onto the phylogenetic transformation matrix   from Equation (6). Current 

software implementations of Kmult in the R (R Core Team 2014) library geomorph 2.0 
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(physignal function) (Adams and Otárola-Castillo 2013; Adams et al. 2014) can readily 

incorporate the PGLS-based function-valued approaches presented here. For function-

valued trait analysis utilizing inverse functions for alignment,   is the     matrix of 

inverse functions      
   evaluated at y, and  ( ) calculated by the physignal function is 

equivalent to the     vector       obtained from Equation (1). For function-valued 

landmarks aligned using generalized time-warping, x,y coordinates are analyzed as an 

     matrix of function-valued landmark coordinates. Again, the resulting  ( ) is 

equivalent to results obtained from       in Equation (1). 

Correlated evolution between function-valued traits and categorical 

(ANOVA) or continuous (PGLS) univariate traits. Distance-based comparative 

approaches can be implemented to apply phylogenetic ANOVA or assess for correlated 

evolution between univariate and function-valued traits using a multivariate extension of 

PGLS called D-PGLS (Adams 2014b). In D-PGLS, independent variable   (a column of 

ones followed by one or more columns of values for independent variables) and 

dependent variable   (an     or      matrix, depending on whether inverse 

functions or generalized time warping alignment is used) are both projected onto   to 

remove phylogenetic covariance from trait data, resulting in      and     .      is 

regressed on      to obtain predicted values   ̂, and      is regressed on      to obtain 

predicted values for   ̂. Next, the trace of the outer-product of predicted values is used to 

calculate variation explained by the model: 

 
      ((  ̂    ̂)(  ̂    ̂)

 
* (9) 
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    and residuals of (         ) are then used to calculate F-ratios and R
2
, and 

phylogenetic permutation is used to determine the significance of the correlation. D-

PGLS is implemented in the procD.pgls function in the R package geomorph (Adams and 

Otárola-Castillo 2013; Adams 2014b; Adams et al. 2014). 

Additional distance-based multivariate phylogenetic comparative methods. 

Although not discussed in in detail here, similar methods are available to address 

questions such as correlated evolution between two separate function-valued traits (or 

between a function-valued trait and some other multivariate trait) using phylogenetic 

partial least squares (Adams and Felice 2014), as implemented in the phylo.pls function 

in geomorph (Adams and Otárola-Castillo 2013; Adams et al. 2014). Additionally, 

multivariate rates of evolution may be quantified, and evolutionary rates of function-

valued traits for subgroups within a phylogeny may be statistically compared (Adams 

2014c), as implemented in the compare.evol.rates function in geomorph (Adams and 

Otárola-Castillo 2013; Adams et al. 2014). For example, one could test the hypothesis 

that a function-valued plastic response to a particular environmental variable evolves 

more rapidly in a clade exposed to high levels of the environmental variable than a non-

exposed clade. As distance-based multivariate methods continue to be developed, 

additional phylogenetic comparative methods, such as testing alternative models of 

evolution (e.g., Ornstein-Uhlenbeck) are expected to be available for further study of 

function-valued trait evolution (Adams 2014b). 

Statistical performance. Function-valued trait evolution was simulated under 

various conditions to evaluate the performance of function-valued ancestral curve 

reconstruction and to assess the statistical power of Kmult and D-PGLS when applied to 
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function-valued traits. All curve simulations were based on evolution of a generalized 

linear model using a logit link function: 

Curve evolution was simulated by evolving a root curve defined by two independently 

simulated function features, the median response level (     ⁄ ) and the slope at the 

median response level (   ⁄ ), using the fastBM function in the R library phytools 

(Revell 2012). Internal node values were preserved and “true” regression parameters for 

each node were subsequently back-calculated. To simulate correlated evolution between 

curves and univariate traits, sim.corrs was used to generate correlated evolution of a 

univariate trait with the curve median response level. Root curves parameters were set to 

         and       , and to maintain positively-sloped curves in the first quadrant 

(as with a typical dose-response curve), median response slopes of evolved curves were 

bounded between 0.2 and 1.0, and median response levels were bounded between 2.0 and 

20.0. 

For ancestral curve reconstruction, 1000 simulations were performed on randomly 

generated 128-taxa trees as described above. Ancestral curve reconstruction was 

performed on inverse tip functions (Equations (1) and (2)) and regression parameters 

were estimated for each node. For comparison with non-function-valued approaches (in 

which a single arbitrary x-value is chosen for evaluation of  ( | ) and the function-

valued relationship is ignored), univariate ancestral state reconstruction was conducted 

individually at 100 evenly spaced tip evaluations of  ( | ) where   ranges from 0.0 to 

15.0 (spanning the entire sigmoid portion of curves for all species). Coefficients of the 

known root state and the root state estimated from ancestral curve reconstruction were 

 
 ( | )  

    (     )

      (     )
 (10) 



 

28 

evaluated at  ( | ) at the same 100 points for which univariate ancestral state 

reconstruction was conducted. The difference between the true value of  ( |     ) and 

values obtained from both ancestral curve reconstruction and individual univariate 

ancestral state reconstruction were averaged across 1000 simulations and compared. 

PGPR ancestral curve reconstruction was also conducted for these simulated datasets 

using the R implementation provided in the supplement of Hadjipantelis (2013). 

All simulations related to Kmult and D-PGLS were carried out on randomly 

generated pure-birth trees with 128 taxa, and all simulations were conducted 1000 times 

with randomly generated data. For Kmult and D-PGLS hypothesis testing, 999 iterations of 

phylogenetic permutation were conducted. Varying numbers of trait dimensions (p = 2, 5, 

10, 25, and 50) were simulated in order to estimate the optimal number of dimensions for 

representing logit-type functions. Dimensions were input as sequences evaluated at 

   ( | ) where   is a sequence of evenly divided numbers from 0.001 to 0.999 of length 

p. Type I error and power were quantified for Kmult using the proportion of significant 

Kmult values for data simulated under λ tree transformations (0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 

and 1.0). For D-PGLS Type I error and power analysis, functions and a continuous 

univariate trait were simulated with covariances of   0.0, 0.1, 0.3, 0.5, 0.7, and 0.9 and 

the proportion of significant correlations was recorded. For comparison, all multivariate 

simulations were performed alongside analogous univariate approaches (Blomberg‟s K 

and PGLS) which were performed at 100 individual evaluations of  ( | ) where x 

ranges from 0.0 to 15.0. R code for all simulations is available in the online 

supplementary material. 
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RESULTS AND DISCUSSION 

Performance of ancestral curve reconstruction. Root estimations of ancestral 

curve reconstruction were compared to simulated logit curve evolution using the inverse 

function approach described in previous sections. Root coefficients were estimated from 

reconstructed inverse functions (Equation (1)), and both the known and estimated 

functions were evaluated along 100-length evenly spaced x-values ranging from 0.0 to 

15.0.  ( |          ) and  ( |     ) were compared at each point. The average 

predicted curve for each method is plotted in figure 2.3a. The same approach was applied 

to reconstructed curves obtained from PGPR. For comparison with univariate methods in 

which the function-valued nature of the trait is ignored, ancestral state reconstruction of 

each observed tip y-value at each x-value is also plotted. 95% confidence intervals were 

calculated for PGLS (Fig. 2.3b), PGPR (Fig. 2.3c), and univariate (Fig. 2.3d) ancestral 

reconstruction methods using a single representative simulation (Rohlf 2001; 

Hadjipantelis et al. 2013). On average, ancestral curve reconstruction using PGLS-based 

and PGPR-based methods yielded similar results (Fig. 2.3a). The small discrepancies that 

are present are likely attributable to differences such as the underlying assumptions of the 

Brownian motion simulations performed here and the assumption of an Ornstein-

Uhlenbeck model of evolution inherent to PGPR. Although univariate ancestral state 

reconstruction visually appears to give similar results to both PGLS and PGPR ancestral 

curve reconstruction, in practice, the entire curve would not be reconstructed with this 

approach; rather, univariate ancestral state reconstruction is typically performed in 

isolation at a single x-level, and no knowledge of surrounding parts of the curve would be 

represented. Therefore, only instantaneous deviation from the true y-value at an 
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individual x-value should be considered for univariate ancestral state reconstruction (i.e., 

not the sum of the resulting curve as a whole). 

Even for x-values where the estimated univariate response is identical to the true 

response, a function-valued trait cannot be properly represented by a single value. Such 

attempts are likely to produce misleading inferences and potentially contradictory 

conclusions based on the arbitrary x-value choice at which the trait is evaluated. These 

issues are further highlighted in simulations of phylogenetic signal and correlated trait 

evolution. 

In contrast to univariate ancestral state reconstruction, PGPR ancestral curve 

reconstruction should be taken in context of the entire reconstructed curve. Accordingly, 

PGPR ancestral curve reconstruction provided similar results to PGLS-based curve 

reconstruction overall (Fig. 2.3a). Therefore, both methods provide vastly superior 

representations of ancestral function-valued traits than univariate attempts at ancestral 

state reconstruction. 

Statistical power of Kmult and D-PGLS. Type I error and statistical power of 

Kmult and D-PGLS for function-valued traits were assessed using the methods described 

above. Type 1 error rates for all simulations of Kmult and D-PGLS where p≥5 (as 

determined by data simulations on star trees and input covariance of zero, respectively) 

were approximately 0.05. Similarly, Type I error rates were approximately 0.05 for 

univariate Blomberg‟s K and PGLS evaluated at arbitrary x-levels. As expected, 

statistical power increased for Kmult and D-PGLS as the number of dimensions increased 

(Adams 2014a; Adams 2014b) (Fig. 2.4). Dimensionality beyond p = 25 resulted in 

diminishing gains in statistical power, coupled with a substantially increased 
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computational burden. Kmult power scaled approximately linearly with λ transformations 

up to 1.0, whereas D-PGLS power reached 1.0 with input covariation of 0.5 and higher 

(Fig. 2.5). For univariate methods, statistical power varied widely depending on the x-

level at which the trait was assessed, although statistical power approached that of Kmult 

and D-PGLS when x-level was near the median response level of the root function and 

phylogenetic signal or input covariation was high. It should be noted that these results do 

not suggest that univariate approximations of phylogenetic signal or correlated trait 

evolution can be applied to function-valued traits. Indeed, phylogenetic comparative 

experiments evaluating species traits at a single level are blinded to true function-valued 

relationships, so the potential for erroneously drawn conclusions is likely to be 

overlooked, and such attempts provide no means for validation of results. 

Overall, Type I error rates and statistical power of Kmult and D-PGLS suggest that 

distance-based multivariate phylogenetic comparative methods can be appropriately 

applied to the study of function-valued trait evolution, and further highlight that 

univariate approaches to function-valued traits are inappropriate. 

Limitations. Function-valued phylogenetic comparative methods offer promising 

improvements over conventional methods for many types of analyses. However, several 

assumptions and limitations must be accounted for in order to properly take advantage of 

these methods. First, a substantial amount of data is required for every species at multiple 

levels to accurately infer function parameters (Stinchcombe et al. 2012). Second, even 

with large amounts of data, function parameters are estimated with error, but the methods 

described here assume species curves are estimated without error. Third, a thorough 

understanding of function-valued relationships is necessary to appropriately align 
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function-valued landmarks and to express function-valued trait evolution appropriately. 

Finally, no methods for testing alternative models (e.g., Ornstein-Uhlenbeck) of high-

dimensional multivariate trait evolution are currently available. Further development of 

distance-based multivariate phylogenetic comparative methods offers promising 

expansions of the possibilities of approaching function-valued trait evolution. 

 

CONCLUSIONS 

Phylogenetic comparative methods have transformed the field of comparative 

biology. While extensive work has contributed to the integration of evolution with 

inherently function-valued applications in developmental biology, toxicology, gene 

expression, and trait plasticity (particularly the prediction of species short-term 

evolutionary trajectories in responses to selective gradients), few methods exist to unite 

function-valued approaches with phylogenetic comparative methods. Building on the 

methods presented here, future work should seek to address issues such as testing 

alternative evolutionary models, developing methods for dealing with sparse data, 

incorporating parameter estimation error into models, accounting for phylogenetic 

uncertainty, and applying the methods described here in alternative statistical 

frameworks, such as Bayesian approaches. 

 

SUPPLEMENTARY MATERIAL – Data available from the Dryad Digital Repository. 

doi:10.5061/dryad.5nd50. 
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FIGURES 

 

Figure 2.1 Hypothetical result of performing phylogenetic comparative analysis on 

plastic traits from species traits a) measured in nature; b) measured in the field and in a 

controlled common environment; c) measured in a controlled common environment at 

two different treatment levels; and d) measured in a controlled common environment at 

multiple treatment levels. The x-axis represents an environmental gradient; the y-axis 

represents the trait value. In 1a, the vertical dotted line represents the value of the 

environmental variable for each species collected in nature; in 1b, the vertical dotted line 

represents the value of the environmental variable for the controlled common 

environment, and the second point represents the trait value measured in nature; and in 

1c, the vertical lines represent the two treatment levels of the environmental variable in 

the controlled common environment. Solid lines in 1b and 1c represent inferred reaction 

norms, several of which deviate considerably from true reaction norms. Depending on 

specific assumptions regarding the method used, contrasting conclusions regarding trait 

phylogenetic signal, model of evolution, and evolutionary history may be drawn. 
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Figure 2.2 Ancestral curve reconstruction of a simulated dataset for a proportion-based 

trait response (y-axis) in response to an environmental gradient (x-axis). 
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Figure 2.3 Average result of ancestral root curve reconstruction (a) from 1000 simulated 

datasets (N=128) for PGLS-based ancestral curve reconstruction (circles), PGPR 

(diamonds), and univariate ancestral state reconstruction (squares). 95% confidence 

intervals of root reconstructions are presented from a single representative simulation for 

b) PGLS, c) PGPR, and d) univariate curve reconstruction. All three methods produced 

resulting curves similar to the actual root curve (solid line). However, univariate methods 

are only evaluated at a single point (not in the context of an entire curve), so only 

deviation from the true curve at individual x-levels should be considered for the 

univariate approach. Univariate representations of function-valued traits are inappropriate 

regardless of the instantaneous deviation from the actual curve, and such approaches are 

likely to result in incorrect interpretations. Therefore, despite greater absolute deviation 

from the root at various x-levels than univariate approaches, the overall performance of 

PGPR was comparable to that of PGLS, with both methods providing root curve 

estimates close to actual root curve. 
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Figure 2.4 Results from Kmult (left) and D-PGLS (right) type I error and power from 1000 

data simulations (N=128) with increasing trait dimensionality (p=2, 5, 10, 25, 50). 
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Figure 2.5 Statistical power of univariate Blomberg‟s K (left) and PGLS (right) at 

individual x-levels ranging from 0.00 to 15.00 (N=128). Kmult and D-PGLS power results 

(p=50) are plotted as horizontal lines for comparison. Statistical power for univariate 

approaches to function-valued traits varies widely for these tests. 

 

 

  



 

46 

 

 

CHAPTER 3 

LIKELIHOOD-BASED PARAMETER ESTIMATION FOR HIGH-DIMENSIONAL 

PHYLOGENETIC COMPARATIVE MODELS: OVERCOMING THE LIMITATIONS 

OF 'DISTANCE-BASED' METHODS
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ABSTRACT 

Recently proposed distance-based (Q-mode) multivariate phylogenetic 

comparative methods can be expressed in a covariance-based (R-mode) framework. It is 

shown that a properly specified covariance-based approach performs identically to 

distance-based approaches and can be performed using fast linear-time algorithms. 

Additionally, a composite likelihood approach is introduced for maximum 

pseudolikelihood parameter estimation, opening up the ability to estimate alternative 

evolutionary models, allow missing data, and incorporate within-species variation. 

Simulations reveal low statistical power and high Type I error for distance-based methods 

under various scenarios, whereas composite likelihood approaches demonstrate 

appropriate Type I error and high statistical power while substantially expanding model 

flexibility. These methods are implemented in the R package phylocurve. 
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INTRODUCTION 

Phylogenetic comparative methods provide a framework for testing hypotheses in 

comparative biology while accounting for statistical non-independence of hierarchically 

related species. In recent years, multivariate traits in the of context comparative data have 

been of increasing interest, leading to the development of multivariate extensions of 

phylogenetic comparative methods (Revell 2009; Bartoszek et al. 2012; Adams 2013). Of 

particular interest are high-dimensional traits, such as with morphometric data (Adams 

2014a-c; Adams and Felice 2014; Adams and Collyer 2015; Denton and Adams 2015) 

and function-valued traits (Goolsby 2015), which pose computational and statistical 

challenges as the number of trait dimensions increases. Namely, as the number of 

parameters to be estimated increases for a given sample size, statistical power decreases 

substantially (Adams 2014b). Additionally, when the number of trait dimensions equals 

or exceeds the number of species in a study, maximum likelihood trait covariance 

matrices are non-invertible and thus cannot be used for calculations central to most 

phylogenetic comparative methods (Adams 2014b). Finally, even assuming 

computational feasibility and adequate statistical power, it may be difficult to draw 

unified conclusions from multiple (and potentially conflicting) individual dimension-

specific metrics. 

Accordingly, it is potentially beneficial to approach comparative analyses of high-

dimensional traits with single generalized multivariate metrics rather than many 

dimension-specific metrics. Adams (2014a-c) proposed a suite of multivariate 

phylogenetic comparative methods for studying high-dimensional traits while 

maintaining statistical power and providing generalized test statistics for multivariate 
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traits as a whole. The methods, which include multivariate extensions of Blomberg‟s K 

(Adams 2014a), phylogenetic generalized least squares (Adams 2014b; Adams and 

Collyer 2015), comparisons of evolutionary rates (Adams 2014c; Denton and Adams 

2015), and phylogenetic partial least squares (Adams and Felice 2014), avoid the problem 

of dealing with non-invertible covariance matrices and can even handle traits in which 

the number of dimensions far exceeds the number of species in the study. This is 

accomplished by phylogenetic transformation of the data and subsequent distance-based 

(Q-mode), rather than conventional covariance-based (R-mode), analyses. When applied 

to a single univariate trait, distance-based methods and conventional phylogenetic 

comparative methods provide identical results. When applied to higher-dimensional 

traits, such as landmark coordinates of morphometric shape data (e.g., leaf shape 

coordinates obtained from Procrustes analysis (Chitwood et al. 2014)) or function-valued 

traits (e.g., species reaction norms of a phenotypically plastic trait (Goolsby 2015)), 

distance-based comparative methods fit a single consensus metric that attempts to capture 

the variation of the entire high-dimensional trait as a whole. 

Limitations of distance-based comparative methods. Despite potential 

advantages, the distance-based comparative framework involves considerable 

shortcomings. Specifically, the inability to calculate log-likelihoods restricts distance-

based models to Brownian motion. Additionally, model selection is limited to relatively 

simple hypothesis tests, lacking any clear way to compare complex combinations of 

model specifications (e.g., simultaneous modeling of fixed effects, phenotypic 

integration, rate heterogeneity, etc.). Certain distance-based methods also suffer from 

inappropriately high Type I error and low statistical power under a variety of 
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evolutionary scenarios. Distance-based methods also require eigendecomposition and 

inversion of the phylogenetic covariance matrix, which is extremely time-consuming and 

inefficient for large phylogenies. 

Although the methods described above are explicitly distance-based, an 

equivalent covariance-based (R-mode) formulation can be expressed. Like the Q-mode, 

the corresponding R-mode approach retains identical Type I error and statistical power as 

trait dimensionality increases when correctly specified and avoids inversion of singular 

matrices. Fast linear-time computational methods for performing relevant calculations 

can also be used to perform covariance-based calculations (Felsenstein 1973; Freckleton 

2012; Ho and Ané 2014), thus reducing the computational challenges posed by extremely 

large phylogenies and high-dimensional data. Finally, a composite likelihood approach 

for parameter estimation and model selection is introduced, providing a flexible and 

statistically powerful framework for expanding high-dimensional comparative methods. 

 

A COVARIANCE-BASED (R-MODE) RE-EXPRESSION OF MULTIVARIATE DISTANCE-BASED 

(Q-MODE) COMPARATIVE METHODS 

To address issues of statistical power and non-invertible matrices, and to provide 

a framework for estimating generalized statistics for high-dimensional multivariate traits, 

Adams (2014 a-c) proposed several phylogenetic comparative methods based on a 

distance-based (Q-mode) approach. Consider a phylogeny with   extant species on 

which   traits are observed, given as an     data matrix ( ). The     phylogenetic 

covariance matrix ( ) is parameterized by branch lengths and the specified evolutionary 
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model (e.g., Brownian motion). The eigenvectors ( ) and diagonal matrix of eigenvalue 

square roots (   ⁄ ) of   are used to construct the phylogenetic transformation matrix ( ) 

which is then matrix multiplied by relevant matrices of interest (e.g.,   ,   ,  (  

 ( ))) to remove phylogenetic covariance from the data (Garland and Ives 2000). Next, 

the Euclidean distances of phylogenetically transformed data from the origin are 

calculated (  ), resulting in an  -length vector which is then used for multivariate 

comparative calculations. 

Evolutionary rates: distance-based (Q-mode) methods. Various methods have 

been proposed to quantify and compare evolutionary rates for univariate traits, including 

contrast-based (Garland 1992), generalized least squares-based (Martins and Hansen 

1997), and likelihood-based (O‟Meara et. al 2006; Thomas et al. 2006), as well as 

Bayesian methods (Rabosky et al. 2014). For high-dimensional data, Adams (2014c) 

proposed an estimate called      
 , which is a single consensus evolutionary rate for the 

entire multivariate trait.      
  is estimated by dividing the Euclidean distance of the 

cross-product of phylogenetically transformed residuals from the origin is by the total 

number of observations (  ): 

The estimate of      
  can be used to statistically compare evolutionary rates 

among groups of species (Adams 2014c) or among groups of traits (Denton and Adams 

2015). To test whether      
  differs among species groups (as implemented in the 

geomorph function compare.evol.rates), subset groups of size              
 are used to 

  (    ⁄   )
  

 (1) 

 
     

  
     ( )  

      ( )  

  
 (2) 
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estimate             
  for each species group by replacing      ( )   with 

(     ( )  )            
 and   with              

 in equation (2). The observed ratio of 

regime-specific             
  values is compared to the null distribution of             

  

ratios via phylogenetic simulation (Adams 2014c). Similarly, to test for differences in 

     
  among groups of traits (as implemented in the geomorph function 

compare.multi.evol.rates),           
  is calculated for each trait group by replacing   with 

            
 and      ( )   with       (  )   in equation (2) (where    contains 

           
 variables), and the observed ratio of group-specific           

  values is 

compared to the null distribution of           
  via phylogenetic simulation (Denton and 

Adams 2015). 

Evolutionary rates: covariance-based (R-mode) methods. The calculation of 

     
  can be simplified considerably using a covariance-based approach, as      

  is 

simply the arithmetic mean of maximum likelihood evolutionary rates for each trait 

considered individually: 

Similarly,           
  for a trait group subset   is simply the arithmetic mean of 

evolutionary rates for individual traits in   . 

The calculation of regime-specific             
  can be calculated as the mean 

maximum likelihood variance of the phylogenetically transformed residuals ( (  

 ( ))
           

). Alternatively, the computation of   can be avoided using either the 

„noncensored‟ or „censored‟ approach described by O‟Meara et. al (2006), the latter of 

 

     
  

∑ ((    (  ))
 
   (    (  ))*

 
   

  
 

(3) 
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which provides an efficient closed-form estimate of             
 , in which equation (3) is 

applied to a phylogeny and dataset pruned to only contain the species represented in 

regime j. The censored estimate is not identical to the distance-based estimate of 

            
  (the censored approach estimates a separate  ( ) for each pruned tree). 

However, the censored approach is a close approximation, retains appropriate Type I 

error and statistical power, and is far more efficient than the eigendecomposition of   and 

subsequent inversion of an     matrix (which is required in equation (1) in order to 

construct the phylogenetic transformation matrix  ). If phylogenetic transformation 

cannot be avoided, an alternative to equation (1) which avoids matrix inversion can be 

used to construct the phylogenetic transformation matrix: 

where    is an     diagonal matrix with √  ⁄  along the diagonal, where   contains 

the eigenvalues of   (Li 2007). If   is singular, infinite or undefined values in    may be 

replaced with zero (although the consequences of proceeding with comparative analyses 

on singular matrices are largely untested). Functions for comparing evolutionary rates 

using the described covariance-based approach are implemented in the phylocurve 

functions fast.geomorph.compare.evol.rates and fast.geomorph.compare.multi.evol.rates. 

These functions (and all other phylocurve functions that begin with „fast.geomorph.‟) are 

implemented to demonstrate the equivalence and application of fast linear-time 

computations for analogous distance-based functions in geomorph (see below for a 

discussion of fast covariance-based approaches). 

Phylogenetic signal (Blomberg’s K). Blomberg‟s K (Blomberg 2003), which in 

univariate form is calculated as 

        (4) 
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can be extended to multivariate form       (Adams 2014a, as implemented in the 

geomorph function physignal) using the distance-based formula 

where      is the non-phylogenetically transformed Euclidean distance between some 

matrix and the origin. As with      
 , the value       can be calculated using a 

covariance-based approach (implemented in the phylocurve function 

fast.geomorph.physignal) by considering the sums of squared residuals for each 

individual trait: 

As with univariate Blomberg‟s K, significance of       is determined by phylogenetic 

permutation (Blomberg 2003; Adams 2014a). 

Phylogenetic generalized least squares. Distance-based phylogenetic 

generalized least squares (D-PGLS, as implemented in the geomorph function 

procD.pgls) regression can be performed by regressing       and       to obtain 

predicted values  ̂  and  ̂ , which is then used to calculate summary statistics including 

sums of squares, F-ratios, and   , and significance is determined by phylogenetic 

permutation (Adams 2014b). To perform the covariance-based equivalent of D-PGLS 

regression (phylocurve function fast.geomorph.procD.pgls), first, a     (where   is the 
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number of regression coefficients to be estimated for each trait dimension) matrix of 

dimension-specific regression coefficients is calculated as 

where   is the     model matrix for PGLS regression, typically consisting of a column 

of ones and one or more columns of univariate predictor variables (Martins and Hansen 

1997; Revell 2010). Note that   is an     matrix in equation (8), unlike univariate 

PGLS in which   is an     vector. Next,     matrices of predicted species values 

from the regression  ̂     and null model  ̂     ( ) are used to calculate residuals, 

and sums of squares are obtained from    ̂ 
 ∑ ((     ̂ 

)
 
   (     ̂ 

)* 
    and 

   ̂ 
 ∑ ((     ̂ 

)
 
   (     ̂ 

)* 
    to calculate mean squared error, F-ratios, and 

  . Phylogenetic permutation is then performed to determine significance, and results are 

identical to D-PGLS regression (Adams 2014b; Adams and Collyer 2015). It should be 

noted that although phylogenetically independent contrasts can be used to calculate these 

quantities (Felsenstein 1985), phylogenetic permutation must be performed on raw 

permuted values (not contrasts), and then independent contrasts must be recalculated for 

each permutation (Adams and Collyer 2015). However, in contrast to the findings of 

Adams and Collyer (2015), an appropriately and efficiently implemented 

phylogenetically independent contrasts-based approach is indeed faster than D-PGLS 

(Fig. 3.2 c-d). 

Phylogenetic partial least squares. In addition to the methods discussed above, 

Adams and Felice (2014) proposed a distance-based method for evaluating covariation 

between two multivariate traits    and    called phylogenetic partial least squares (PLS). 

  (      )         (8) 
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First, the evolutionary rate matrix   for   is calculated using the generalized least squares 

restricted maximum likelihood estimator: 

The covariance of    and    is partitioned into four blocks  

and singular-value decomposition is subsequently performed on    . Next, the values 

   ( ) are projected onto the phylogenetic transformation matrix  , and  (   

 (  )) and  (    (  )) are matrix multiplied by the left ( ) and right ( ) singular 

vectors of    , respectively. The first two columns of the resulting scores are regressed to 

determine the evolutionary correlation between    and   , and phylogenetic permutation 

is used to assess significance of the PLS regression (Adams and Felice 2014; geomorph 

function phylo.pls). To perform the covariance-based equivalent of phylogenetic PLS (as 

implemented in the phylocurve function fast.geomorph.phylo.pls), (    (  ))   and 

(    (  ))   are regressed using phylogenetically independent contrasts (Felsenstein 

1985) regressed through the origin, or equivalently using PGLS. The resulting regression 

correlation is equivalent to the PLS correlation obtained from distance-based 

phylogenetic PLS, and significance is assessed using phylogenetic permutation (Adams 

and Felice 2014). 

 

PAIRWISE COMPOSITE LIKELIHOOD FOR HIGH-DIMENSIONAL COMPARATIVE MODELS 

Distance-based methods (and covariance-based equivalents) offer an algorithmic 

solution to high-dimensional comparative problems. However, parameters for many types 
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of models (e.g., non-Brownian evolution, missing data, within-species variation) lack 

closed-form solutions, and parameters must be estimated by maximizing the likelihood 

function. Because there is no likelihood function for distance-based methods, a 

covariance-based framework is vital to expanding the capabilities of high-dimensional 

comparative methods. For multivariate phylogenetic comparative models, the log-

likelihood function is defined as 

and the restricted log-likelihood is defined as 

where   contains species values for each trait stacked into a single      column 

vector and   is an      matrix consisting of ones and zeros describing which rows 

and columns correspond to elements of   (      when     and       when    ). 

Unfortunately, the likelihood function become unstable as the number of traits 

approaches the number of species, and is undefined when    . Additionally, the 

number of parameters to estimate for an     symmetric matrix is (    )  ⁄   , 

which may fail to converge on the maximum likelihood parameters even with moderate 

trait dimensionality. 

A potential solution to this dilemma is the substitution of a pseudolikelihood 

metric into existing likelihood-based estimation methods. It has been shown that the 
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product of the likelihoods (i.e., the sum of the log-likelihoods) for all possible pairwise 

combinations of variables, termed pairwise composite likelihood, shares many desirable 

properties with the full likelihood function. In particular, maximum pairwise composite 

likelihood estimates are consistent, unbiased, and asymptotically normal (Cox and Reid 

2004; Varin and Vidoni 2005; Fieuws and Verbeke 2006). It is straightforward then to 

reduce high-dimensional problems into multiple small maximum likelihood estimation 

problems. 

Specifically, for   traits, (    )  ⁄  pairwise models must be estimated. 

Although this is a large number of models, each individual estimation problem contains 

an extremely small number of parameters which can be estimated for each pairwise trait 

combination using efficient linear-time computations (Felsenstein 1973; Freckleton 2012; 

Ho and Ané 2014). Additionally, the log-likelihood function for each pairwise trait 

combination is computationally stable because    . For ultra-high dimensional traits 

(e.g.,       ), pairwise composite log-likelihood can be approximated using Monte 

Carlo sampling, as the total number of pairwise likelihood combinations may be 

computationally prohibitive. 

A general framework for hypothesis testing and model selection using 

pairwise composite likelihoods. Despite the reliability of maximum pairwise composite 

likelihood estimates, pairwise likelihoods represent overlapping information (and are 

therefore non-independent from one another), so pairwise composite likelihoods cannot 

be used for conventional model selection criteria such as AIC, BIC, and likelihood ratio 

tests (Varin and Vidoni 2005). Similarly, standard errors of parameter estimates based on 
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Fisher information matrices (which are also non-independent among pairwise trait 

combinations) are uninterpretable (Fieuws and Verbeke 2006). 

Instead, a parametric bootstrapping procedure is adapted from the methods 

developed by Boettiger et al. (2012). To compare two models, the pairwise composite 

log-likelihood is calculated for the null model (e.g., simple Brownian motion) and for the 

alternative model (e.g., Brownian motion with different rates for two groups of species, 

as in Adams 2014c). Next, random data is simulated from the parameters of the null 

model 1,000 (or more) times, and pairwise composite log-likelihoods are estimated for 

both the null and alternative models (refit to the simulated data). The likelihood ratio test 

statistic     (                ) is computed for the observed data (    ) and for 

the data simulated under the null hypothesis (         ). For a nominal significance level 

of       , the critical value for the test statistic (  ) is set so that 95% of           

values fall under   . The proportion of times                provides an approximation 

of the P-value for comparing the null model to the alternative model. A similar procedure 

can be applied to assess the statistical power of a model comparison by simulating the 

alternative model many times (1,000 or more) and calculating         . The proportion of 

         values greater than or equal to    provides an approximation of the statistical 

power of the test (Boettiger et al. 2012). 

This procedure is extremely flexible and maintains appropriate Type I error and 

high statistical power for the comparative methods described here. In particular, because 

the likelihood ratio statistic can be calculated for any model, complex combinations of 

multiple evolutionary hypotheses (e.g., fixed effects, multiple evolutionary rates, 

phylogenetic signal, etc.) may be incorporated simultaneously, whereas hypothesis tests 
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for various distance-based models (which rely on model-specific metrics, such as ratios 

of F-statistics or evolutionary rates) cannot be combined. 

The approach described above (as well as the methods described in the following 

sections) is implemented in phylocurve, in which null and alternative models can be fit 

separately using the evo.model function and subsequently compared via parametric 

bootstrapping (Boettiger et al. 2012) using the compare.models function. 

New hypothesis tests for existing high-dimensional methods. To simulate the 

null hypothesis for comparing rates (     
 ) among regimes (            

 ), traits are 

simulated (for example, by using the sim.char function in geiger (Pennell et al. 2014)) 

using the restricted maximum likelihood evolutionary rate matrix (equation 9; for the 

maximum likelihood rate matrix,     is simply replaced with  ). To simulate the 

alternative hypothesis (distinct evolutionary rates among regimes), the following 

procedure is used: 1) estimate the evolutionary rate matrix for each regime using either 

the censored method (O‟Meara et al. 2006), the noncensored approach (O‟Meara et al. 

2006), or by subsetting transformed residuals (Adams 2014c); 2) determine the 

proportion of each tree edge to be assigned to each respective regime rate matrix, for 

instance by assigning entire clades values of either zero or one (for known discrete 

regime shifts), or by reconstructing the probabilities of ancestral regime states (Yang et 

al. 1995; Pupko et al. 2000; Paradis et al. 2004; Revell 2012); 3) simulate phenotypic 

evolution under the evolutionary rate matrix for each regime by scalar multiplication of 

   by the branch lengths of the phylogeny and by the regime-specific proportions 

determined in (2); and 4) add the resulting simulated phenotypic values together. Note 

that this procedure differs substantially from the null hypothesis described in Adams 
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(2014c), which assumes a diagonal evolutionary rate matrix and results in unacceptably 

high Type I error for correlated traits (see below). In contrast, the procedure described 

here results in appropriate Type I error and statistical power to compare evolutionary 

rates among regimes. 

To compare evolutionary rates among traits (Denton and Adams 2015), the null 

hypothesis is simulated under a modified evolutionary rate matrix in which the diagonal 

of   is constrained to equal      
  (the mean of the diagonal of  ). For the alternative 

hypothesis, the diagonal of   is divided into trait groups subsets, in which subset   is set 

to equal           
 

 
 (the mean of the diagonal of the subset of   corresponding to traits 

represents in trait group  ). In many cases, the resulting matrix is not positive 

semidefinite. Following Denton and Adams (2015), the nearest positive definite matrix to 

the constrained rate matrix is found using the nearPD function in the Matrix package for 

trait simulations (Bates and Maechler 2015). 

To assess correlations between two multivariate traits, the full evolutionary rate 

matrix is partitioned into four blocks (   ,    ,    ,     – see above) in an approach 

comparable to phylogenetic partial least squares (Adams and Felice 2014). However, 

rather than performing singular value decomposition on the evolutionary rate matrix, the 

null hypothesis is simulated by setting all elements of blocks     and     to zero. For the 

alternative hypothesis, data are simulated under the unconstrained rate matrix ( ). In a 

similar manner, the presence of significant evolutionary covariation among traits can be 

tested by setting non-diagonal elements of the rate matrix to zero for null hypothesis 

simulations. 
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To test the significance of fixed effects (as in D-PGLS (Adams 2014b)), both the 

null and alternative hypotheses are simulated under  , and    (equation 8) is added to 

the simulated   under the alternative hypothesis. It should be noted that restricted 

likelihood (or restricted pairwise composite likelihood) cannot be used for model 

comparisons in which fixed effects differ between the null and alternative hypotheses. 

Instead, comparisons must be made using maximum pairwise composite likelihood 

estimates. 

Finally, an alternative method is proposed to test the significance of Blomberg‟s 

K and      . Rather than phylogenetic permutation (Blomberg et al. 2003; Adams 

2014a), phylogenetic simulation of both the null and alternative hypotheses is proposed. 

Under Blomberg‟s K, the null hypothesis is an absence of phylogenetic signal, so data are 

simulated under   on a star phylogeny; for the alternative hypothesis (Brownian motion), 

data are simulated under   on the original phylogeny. For this procedure, K is used as the 

summary statistic (rather than the likelihood ratio  ). 

The null distribution of K is used to calculate the critical value (  ), and the 

proportion of                is the P-value for the test of phylogenetic signal. The mean 

of          provides the expectation of K under Brownian motion (which should be 

approximately 1.0 if the model is correctly specified), and the proportion of             

provides an estimate of the statistical power to detect significant phylogenetic signal. To 

simplify calculations under complex evolutionary models, the expectation of the ratio of 

raw to phylogenetic mean squared error (the denominator of      ) can be approximated 

by simulation under the alternative hypothesis (see below). This implementation of       

is implemented in the phylocurve function K.mult. 
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NEW METHODS FOR HIGH-DIMENSIONAL PHYLOGENETIC COMPARATIVE DATA 

Estimation of alternative evolutionary models. Parameters for alternative 

evolutionary models, such as Early-Burst (Harmon et al. 2010) or Ornstein-Uhlenbeck 

(Hansen 1997), or tree transformations such as Pagel‟s   (Pagel 1999) can be fit to high-

dimensional comparative models by transforming the branch lengths such that a 

Brownian motion-like process of trait evolution applies on the transformed tree. 

Estimation of maximum pairwise composite likelihood tree transformation parameters 

proceeds as follows: 1) transform the phylogeny according to an initial guess for a tree 

transformation parameter (e.g.,   for an Ornstein-Uhlenbeck process); 2) estimate 

maximum likelihood parameters for each pairwise combination of traits using closed-

form solutions (if available) or by numerical optimization; 3) sum the pairwise log-

likelihoods for each combination of traits; 4) repeat steps 1-3 with a new guess for the 

tree transformation parameter until convergence on the maximum pairwise composite 

likelihood estimate is achieved. Given a particular tree transformation, the resulting 

estimates of evolutionary rate and phylogenetic mean for any given trait will be identical 

across individual pairwise models, assuming no missing data and only a single 

observation per species. 

Combining multiple evolutionary hypotheses. The hypothesis testing 

framework described above (based on Boettiger et al. 2012) allows for straightforward 

combinations of multiple evolutionary hypotheses by imposing appropriate alterations or 

constraints to the evolutionary rate matrix or by adding predicted values based on fixed 

effects to simulated data (       ). To incorporate multiple models into tests of 
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phylogenetic signal,      , the expectation of the ratio of raw mean squared error to 

phylogenetically corrected mean squared error 

is estimated by simulation under the hypothesized evolutionary model. Under simple 

Brownian motion, this should yield an estimate of approximately 

(  ( )   (      )  ) (   )⁄  (Blomberg et al. 2003). The observed ratio 

       ⁄  is then scaled by  (       ⁄ ) to calculate      : 

Next, the hypothesized model is simulated on a star phylogeny to obtain the null 

distribution of      , which is used to calculate the critical value (  ). As before, the 

proportion of                is the P-value for testing phylogenetic signal, and the 

proportion of             provides an estimate of the statistical power of the test. Under 

simple Brownian motion, equations 6 and 7 should be nearly identical to 14, whereas 

under deviations from simple Brownian motion, equation 14 yields a generalization of 

      which can incorporate fixed effects (by setting  ( )    ), multiple evolutionary 

rate regimes, non-Brownian evolutionary models, and other model specifications. These 

features are implemented in the phylocurve function K.mult. 

Incorporation of missing data and within-species variation. Several methods 

have been developed to estimate evolutionary trait covariance in the presence of missing 

data and within-species variation (Ives et al. 2007; Felsenstein 2008; Bruggeman et al. 
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2009; Hansen and Bartoszek 2012). These methods can all be estimated in a maximum 

likelihood (or restricted likelihood) framework and can be readily incorporated into 

pairwise composite likelihood estimation. However, for such methods, there is no 

algorithmic solution for estimating evolutionary covariances, so step 2 of the outlined 

method for parameter estimation (see above) requires numerical optimization of 

covariance parameters. Problematically, estimated evolutionary rates for datasets with 

missing data or within-species variation will be different if parameters for pairwise trait 

combinations are estimated separately. One solution is to maximize the pairwise log-

likelihood for all parameters in a single optimization routine, which constrains variance 

parameters for individual traits to be identical across pairwise combinations. This is a 

potentially large optimization problem which may have difficulty converging. A potential 

simplification involves separate maximum likelihood estimation for each pairwise trait 

combination (as described above), followed by averaging each estimate of the 

evolutionary rate for a given trait. The resulting estimates are not equivalent to the 

maximum pairwise composite likelihood estimates but should provide reasonable starting 

parameters for a single optimization routine. Alternatively, the averaged estimates could 

be used as is to approximate the maximum pairwise composite likelihood parameters. 

Optimal strategies for incorporating within-species variation and missing data for high-

dimensional models require further investigation that is beyond the scope of this paper 

(but see Denton and Adams (2015), in which a bootstrapping approach is performed on 

randomly sampled within-species individual observations). Approaches for dealing with 

within-species variation and missing data are not yet (as of the time of publication) 

implemented in phylocurve. 
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FAST COMPUTATIONS FOR HIGH-DIMENSIONAL COMPARATIVE MODELS 

For univariate data, both generalized least squares (GLS) and distance-based 

comparative approaches require the inversion of     matrices. For multivariate data, 

likelihood calculations require inversion of      -dimension matrices. Because the 

memory and computation time required for individual matrix inversions increases 

polynomially with increases in species number, individual matrix inversions for 

extremely large phylogenies may take several hours or fail entirely (Ho and Ané 2014). 

Additionally, maximum likelihood and Bayesian approaches may require thousands or 

millions of matrix inversions. In recent years, several approaches have been developed 

that avoid large matrix inversions entirely and operate with linear time and memory 

requirements, thus substantially reducing the burden of working with large comparative 

datasets. For the covariance-based and pairwise composite likelihood-based high-

dimensional multivariate approaches discussed in this paper, a variety of fast linear-time 

algorithm are implemented in the phylocurve R package using methods adapted from 

Felsenstein (1973; 1985), Freckleton (2012), and Ho and Ané (2014) (see also FitzJohn 

2012). As described in previous sections, all phylocurve functions that begin with 

„fast.geomorph.‟ provide fast covariance-based implementations of analogous geomorph 

functions. These functions, which produce identical results to distance-based methods, 

should not be confused with the pairwise composite likelihood framework described in 

this paper, which is implemented in the phylocurve functions evo.model, 

compare.models, and K.mult. 

Efficient calculations for high-dimensional data. For repeated calculations on a 

given phylogeny (e.g., as is associated with bootstrapping procedures), a substantial 
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portion of the computational burden of phylogenetically independent contrasts (a linear-

time algorithm) is associated with redundant operations (e.g., reordering internal edges, 

conversion of data types, etc.). In some cases, repeating these steps can account for over 

90% of computational time. To minimize redundant operations, all preparation steps can 

be performed in a single function call, and then relevant quantities (e.g., phenotypic data 

or branch lengths) can be updated as needed prior to calling the independent contrasts 

algorithm. Additionally, phylogenetically independent contrasts can be performed 

simultaneously on all traits of interest by performing relevant calculations on the full 

matrix   rather than on individual vectors. Refer to Appendix 1 for details on 

implementing these methods. 

The quantity (   ( ))
 
   (   ( )), which is simply the cross-product of 

the matrix of independent contrasts of  , can be calculated efficiently in linear time using 

the modified phylogenetically independent contrasts algorithm described above. The 

independent contrasts algorithm also automatically calculates  ( ), so a separate 

ancestral reconstruction is unnecessary (see Appendix A). Contrast variances for each 

node ( ) and the length of the two edges extending from the root of the independent 

contrast-transformed tree ( ) can be used to calculate        ∏ ∑ ⁄  and    | |  

   (∏ ∑ ⁄ )  ∑      in linear time (Felsenstein 1985; Freckleton 2012). Using these 

formulas, any quantity of the form        (corresponding to left and right matrices of 

compatible dimensions, such as   and  ) can be computed in linear time as        

  
         ( ) ( ) (      ) (for a related linear-time algorithm, see Ho and Ané 

2014). Quantities required for the multivariate log-likelihood may also be calculated 

efficiently:    |   |      | |      | | and 
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   |  (   )   |      |(                   (      ))|      | | (where p is 

the number of columns of  ). 

A more complex approach is required to accommodate multiple regimes. The 

following algorithm, modified from the linear-time algorithm described by Ho and Ané 

(2014), calculates quantities of the form          and    | | in linear time relative 

to the number of species, where   is the       matrix describing species-trait 

covariance for multiple regimes (under a single regime,      ), and   and   are 

matrices of compatible dimensions (e.g.,   and  ). These quantities can then be used for 

log-likelihood calculations (refer to Ho and Ané (2014) for details of the original 

approach on which the following is based). 

1. For a tree with a single tip, let  ( )  ∑ (        )
 
    be an     matrix 

representing the length of edge e scaled by regime-specific rate matrices and 

their respective proportions assigned to each edge. Then    ( )  
, 

  
     ,    (   ) ,       , and    | |     | ( )|. 

2. For a tree with two or more tips and root edge e, again let  ( )  

∑ (        )
 
   . Then    ∑    ,    | |  ∑    |  |     |   ( )  | , 

    (   ( )  )
  

,   (∑    )      
 (   ( )  )

  
 ( )    ,   

  

(∑     
 

 )(   ( )  )
  

, and   
  ((∑     

 
 )(   ( )  )

  
*
 

. 

3. At the root of the full tree, return   and    | |. 

Fast covariance-based implementations of distance-based methods. The 

computational performance of distance-based methods implemented in geomorph 
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(compare.evol.rates, compare.multi.evol.rates, physignal, phylo.pls, and procD.pgls) 

were compared to fast covariance-based phylocurve functions 

(fast.geomorph.compare.evol.rates, fast.geomorph.compare.multi.evol.rates, 

fast.geomorph.physignal, fast.geomorph.phylo.pls, and fast.geomorph.procD.pgls). 

Computational times for each method were compared using 10, 24, 50, 100, 250, 500, 

and 1,000 species and 10, 24, 50, 100, and 250 traits (Figs. 3.1-3.2). For datasets with a 

low number of species (<50), the speed of distance-based methods was generally 

comparable to covariance-based methods. For datasets with higher numbers of species, 

covariance-based methods were consistently faster (in some cases up to ~1,000 times 

faster). The most time-consuming steps of distance-based methods in geomorph include 

inverting the phylogenetic covariance matrix and performing an eigendecomposition of 

the phylogenetic covariance matrix, both of which are avoided by covariance-based 

methods (with the exception of fast.geomorph.compare.evol.rates, which requires an 

eigendecomposition for computing the phylogenetic transformation matrix, unless the 

censored approach is used). Covariance-based functions that rely on phylogenetic 

permutation for hypothesis tests (fast.geomorph.procD.pgls, fast.geomorph.physignal, 

and fast.geomorph.phylo.pls) operate in linear time relative to the number of species. 

Although fast.geomorph.compare.evol.rates and fast.geomorph.compare.multi.evol.rates 

are substantially faster than compare.evol.rates and compare.multi.evol.rates 

(respectively) for datasets with a large numbers of species, all four functions rely on the 

sim.char function in geiger (Pennell et al. 2014) for hypothesis testing, which operates 

with polynomial increases in time as the number of species increases and is thus a 

nonlinear rate-limiting step for fast.geomorph.compare.multi.  
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Ultra-high dimensional traits. The pairwise composite log-likelihood approach 

may become excessively cumbersome for extremely high-dimensional traits. For 

example, for a 1,024-dimensional trait there are 523,776 pairwise trait combinations, a 

prohibitively large number for parameter estimation, as the pairwise log-likelihood must 

be calculated several times for numerical optimization. For simulation-based hypothesis 

testing, this optimization procedure must be repeated a large number of times. For 

instance, supposing numerical optimization of a tree transformation parameter (e.g., 

Early-Burst rate) requires 50 log-likelihood calculations, and 1,000 null hypothesis 

simulations are performed, a total of                                 pairwise 

log-likelihood evaluations would be required. For such computationally infeasible 

problems, a simple Monte Carlo-based approach is proposed. Rather than computing 

every possible pairwise log-likelihood, a random subset of pairwise combinations is 

sampled, and the subsetted pairwise composite log-likelihood is divided by the number of 

random samples and then multiplied by the total number of possible pairwise 

combinations. As the number of random samples increases, the estimated composite log-

likelihood will approach the true pairwise composite log-likelihood. The composite log-

likelihood surface for the tree transformation parameter is approximated by estimating 

the composite log-likelihood for several parameter values spanning the range of feasible 

parameters. Regression (e.g., polynomial or Gaussian process regression) is then 

performed on the approximated log-likelihood surface, and the parameter value 

corresponding to the maximum predicted value of the regression is used as the parameter 

estimate. 
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SIMULATION METHODS 

To compare the Type I error and statistical power of distance-based methods with 

the pairwise composite log-likelihood approaches described here, simulations were 

performed under a variety of evolutionary scenarios. For each scenario, 1,000 random 

datasets were generated on randomly generated 32-species pure-birth phylogenies using 

the pbtree function in phytools (Revell 2012), and subsequently using the sim.traits and 

sim.groups functions in phylocurve (both of which call the sim.char function in geiger 

(Pennell et al. 2014)). Hypothesis tests were performed using both distance-based and 

pairwise composite log-likelihood-based parametric bootstrapping simulation (Boettiger 

et al. 2012), with 1,000 bootstrap simulations per simulated dataset. 

To evaluate the statistical performance of comparing evolutionary rates among 

regimes, two regimes were assigned 16 species each. For each simulation, a random 

evolutionary rate matrix was simulated by parameterizing the upper triangle of an     

with a randomly generated number drawn from the standard normal distribution. The 

transpose of the matrix was then matrix multiplied by itself, resulting in a random 

positive-definite covariance matrix (     ). For one of the simulated regimes, traits were 

simulated under      ; the other regime was simulated under       scalar multiplied by 

either 1.0 (for Type I error), 1.5, 2.0, 3.0, or 4.0. Simulations were conducted for 2, 16, 

32, and 64 traits. Similarly, the statistical performance of comparing evolutionary rates 

among traits was evaluated by generating      , subdividing the diagonal of       into 

two groups, and setting one group to the mean of the diagonal of       and the other 

group to the mean of the diagonal of       multiplied by either 1.0 (for Type I error), 

1.5, 2.0, 3.0, or 4.0. Simulations were conducted for 4, 8, 16, 32, and 64 traits. For 
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simulations involving fixed effects (for comparison with D-PGLS), the diagonal of   (of 

dimension (   )  (   )) was set to 1.0 and off-diagonal elements were set to 

either 0.0 (for Type I error), 0.1, 0.3, 0.5, 0.7, or 0.9, and data were simulated for 2, 5, 10, 

25, and 32 traits. 

To assess the statistical performance of testing evolutionary covariance between 

two groups of multivariate traits (for comparison with phylogenetic partial least squares), 

the diagonal of   (of dimension    ) was set to 1.0 and off-diagonal elements were 

set to either 0.0 (for Type I error), 0.1, 0.3, 0.5, 0.7, or 0.9. To test the power of 

multivariate phylogenetic signal (     ), trait data was simulated under       on a 

transformed phylogeny with Pagel‟s   set to either 0.0 (for Type I error), 0.05, 0.1, 0.25, 

0.5, 0.75, and 1.0 for 2, 5, 10, 32, and 64 traits. For simulations testing evolutionary 

covariance, traits were simulated under   with the diagonal set to 1.0 and off-diagonal 

elements set to either 0.0 (for Type I error), 0.1, 0.3, 0.5, 0.7, or 0.9 for 2, 5, 10, 32, and 

64 traits. 

Additionally, alternative evolutionary models were simulated under a randomly 

      for 2, 5, 10, 25, 31, and 50 traits, and simulations were performed on phylogenies 

with the following tree transformations: Early-Burst (rate = 0.0 (for Type I error), -0.25, -

0.5, -0.75, -1.0), Ornstein-Uhlenbeck (α = 0.0 (for Type I error), 0.25, 0.5, 1.0, 2.0), and 

Pagel‟s   (  = 1.0 (for Type I error), 0.75, 0.5, 0.25, 0.0). R code for performing the 

simulations used to generate Figures 3.3, 3.5, and 3.6 is provided in the Dryad 

supplement. 
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STATISTICAL PERFORMANCE OF PAIRWISE COMPOSITE LOG-LIKELIHOOD: COMPARISONS 

WITH DISTANCE-BASED METHODS 

Comparing evolutionary rates. For comparisons of evolutionary rates among 

regimes (Fig. 3.3 b,d) and among groups of traits (Fig. 3.5 a-b) using both distance-based 

and pairwise composite likelihood-based hypothesis testing, all simulated scenarios 

displayed appropriate Type I error (approximately 0.05). As expected, as trait 

dimensionality was increased, statistical power also increased (as in Adams (2014c) and 

Denton and Adams (2015)), although distance-based approaches exhibited somewhat 

higher statistical power for rate ratios of 1.5 and 2.0 (both methods had statistical power 

of approximately 1.0 at higher rate ratios). Regime-specific evolutionary rates were also 

compared using the censored method (Fig. 3.3c) (O‟Meara et al. 2006), which displayed 

appropriate Type I error and statistical power approximately identical to that of the 

distance-based procedure. 

It should be noted that a modification to the null hypothesis described in Adams 

(2014c) was implemented for comparing rates among regimes. Adams (2014c) simulated 

the null distribution of rate ratios by setting the null hypothesis to be a diagonal 

evolutionary rate matrix, with each trait independently evolving under a Brownian 

motion rate of      
 . Because this approach fails to account for trait covariation, this 

procedure results in unacceptably high Type I error rates (Fig. 3.3a), as trait covariance 

artificially inflates the observed differences among regime-specific rates relative to 

independently simulated traits. This error-prone procedure was implemented in the 

supplemental code provided in Adams (2014c) as well as in the compare.evol.rates 

function in geomorph up to version 2.1.5 (Adams and Otárola-Castillo 2013). As of 
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version 2.1.6 of geomorph, the null hypothesis has been updated to account for trait 

covariance (Denton and Adams 2015). Likewise, earlier versions of phylocurve (1.0.0-

1.3.0), which implemented fast covariance-based analogues of distance-based 

approaches, also used the original null hypothesis specified in Adams (2014c). 

phylocurve versions 2.0.0 and higher implement the modified null hypothesis 

incorporating trait covariance (however, the fast.geomorph.compare.evol.rates can be 

used to perform hypothesis tests under the old null hypothesis, as described in Adams 

(2014c), by setting the force.diag option to TRUE). 

As an example of the potential consequences of failing to account for trait 

covariation, data from Adams (2014c) consisting of 11 cranial landmark coordinates from 

nine Plethodon salamanders was analyzed using the phylocurve function 

fast.geomorph.compare.evol.rates while assuming zero trait covariance (force.diag set to 

TRUE). When failing to account for trait covariance, the rate ratio between the two 

hypothesized regimes (1.84) was found to be significantly different from 1.0 (Fig. 3.4a; 

P=0.005), identical to the result reported in Adams (2014c). Next, the phylocurve 

function compare.models was used to test for significant trait covariation (where the null 

model was fit using evo.model with diag.phylocov set to TRUE and the alternative model 

was fit using evo.model with diag.phylocov set to FALSE). The null hypothesis of zero 

trait covariation was unequivocally rejected (P<0.001). Next, 

fast.geomorph.compare.evol.rates was used while accounting for trait covariance 

(force.diag set to FALSE), and the rate ratio (1.84) was found to be non-significant (Fig. 

3.4a; P=0.261), in conflict with Adams (2014c). 
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To simultaneously assess the statistical significance and statistical power of the 

test using pairwise composite likelihood methods, the phylocurve function 

compare.models was used to compare the null hypothesis of a single rate regime and the 

alternative hypothesis of two regimes. This test, analogous to the 

fast.geomorph.compare.evol.rates test accounting for trait covariance, was also non-

significant (P=0.64) and revealed essentially no statistical power (0.097) to detect a 

significant rate difference given the phylogeny and dataset (Fig. 3.4c). 

Comparing evolutionary rates under violations of distance-based 

assumptions. Distance-based comparisons of evolutionary rates among regimes compare 

rates under the assumption that rate ratios between regimes are consistent among 

individual traits. To assess the consequences of deviations from this model, statistical 

power was assessed under a scenario in which the evolutionary rates among two clades 

differed substantially but in conflicting ways. Specifically, a 100-dimensional trait was 

simulated on a 32-species phylogeny divided into two equally sized regimes. Traits 1-50 

were simulated with an evolutionary rate of 1.0 for the first regime (species 1-16) and an 

evolutionary rate of 4.0 for the second regime (species 17-32). Traits 51-100 were 

simulated with an evolutionary rate of 4.0 for species 1-16 and an evolutionary rate of 1.0 

for species 17-32. Thus, the average simulated evolutionary rate for both regimes was 

2.5, but substantial rate differences existed between regimes for each trait (where half the 

traits had a rate ratio of 4.0 and the other half had a rate ratio of 0.25). Simulations were 

repeated 1,000 times, and the proportion of significant results (corresponding to the 

statistical power of the test) was compared for distance-based and pairwise composite 

likelihood-based hypothesis testing. 
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The statistical power for distance-based methods was approximately 0.05, 

suggesting that distance-based rate comparisons are poorly equipped to detect rate 

differences for the biologically realistic scenario of heterogeneous rate ratios. In contrast, 

the statistical power for pairwise composite likelihood-based regime rates comparisons 

under the described scenario was exactly 1.0. 

Phylogenetic signal:      . For testing the significance of      , distance-based 

testing (Adams 2014a) follows the permutation procedure described in Blomberg et al. 

(2003). For the approach described here, the null hypothesis is simulated on a star 

phylogeny (see above). Results for both approaches yielded appropriate statistical power 

(Fig. 3.5 c-d), although the simulation-based approach exhibited decreasing Type I error 

as trait dimensionality increased (0.008 for simulations with 64 traits), whereas the 

distance-based maintained a Type I error of approximately 0.05. Consistent with Type I 

error findings, statistical power was very similar between the two methods but with 

slightly higher statistical power for distance-based phylogenetic permutation under high 

trait dimensionality (although both methods exhibited higher power as the number of 

traits increased). 

Fixed effects: comparisons with D-PGLS. The statistical performance of testing 

for fixed effects (described above) in which the null hypothesis (without fixed effects) is 

compared to the alternative hypothesis (with fixed effects) was compared to the 

performance of D-PGLS. As with phylogenetic signal, D-PGLS relies on a phylogenetic 

permutation testing procedure. The simulation-based pairwise composite likelihood 

method described here exhibited similar statistical power to D-PGLS (Fig. 3.5 e-f). 

However, D-PGLS exhibited high Type I error, which increased as trait dimensionality 
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was increased (with Type I errors as high as 0.158). In contrast, the simulation-based 

pairwise composite likelihood method exhibited appropriate Type I error which 

decreased with increasing trait dimensionality (0.018 for simulations with 32 traits). 

The reason for the unacceptably high Type I error for D-PGLS in these 

simulations is unknown, as D-PGLS exhibited appropriate Type I error in Adams 

(2014b). One possible explanation is the type of random phylogenies generated for 

simulations: here, pure-birth phylogenies were generated using the pbtree function in 

phytools, but simulations using phylogenies with random splits (using the rtree function 

in ape) and branch lengths computed using Grafen‟s method (1989) (implemented in the 

compute.brlen function in ape) appear to yield appropriate Type I error for D-PGLS, 

suggesting a possible sensitivity of D-PGLS to tree topology and branch lengths. It 

should also be noted that the methods described in the original published version of D-

PGLS were used to assess statistical performance (Adams 2014b) rather than the current 

procD.pgls implementation in geomorph (version 2.1.7-1), the latter of which for 

unknown reasons reported z-scores that conflicted with the original published D-PGLS 

implementation of Adams (2014b) and earlier versions of geomorph, which in turn 

resulted in a Type I error rate of 0.0 and extremely low statistical power under all 

simulated conditions. 

Testing for covariance among two multivariate traits: comparisons with 

phylogenetic partial least squares. Simulations were performed to assess the statistical 

performance of pairwise composite likelihood-based tests for evolutionary covariance 

among multiple traits. This test is analogous to phylogenetic partial least squares, as the 

null hypothesis for both methods is zero evolutionary covariance among two groups of 
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traits (         ) and the alternative hypothesis is          . As with tests for 

phylogenetic signal and fixed effects, phylogenetic partial least squares relies on 

phylogenetic permutation, whereas pairwise composite likelihood-based tests use Monte 

Carlo simulations. However, the results of Adams and Felice (2014) could not be 

replicated for the simulations performed here, as phylogenetic partial least squares 

suffered from extremely high Type I error that was exacerbated by increasing trait 

dimensionality (for simulations with 64 traits, Type I error exceeded 0.90) (Fig. 3.5 g-h). 

In contrast, the Type I error and statistical power for pairwise composite likelihood-based 

tests was appropriate under all simulated scenarios, and statistical power increased with 

increases in trait dimensionality (which reflected the statistical performance originally 

reported for phylogenetic partial least squares by Adams and Felice (2014)). 

In light of these findings, simulations were performed under a variety of scenarios 

in order to identify conditions under which distance-based phylogenetic least squares 

display appropriate Type I error, and it was determined that the statistical performance of 

phylogenetic partial least squares depends at least partially on the input evolutionary rate 

matrix ( ) for simulations under the null hypothesis. Whereas the simulations for Type I 

error used to generate Figure 3.5 g-h assumed independently evolving traits (diagonal  ), 

a fully parameterized   with high covariance within blocks     and     (and     and 

    subsequently set to zero) yielded appropriate Type I error and high statistical power 

for both distance-based and pairwise composite likelihood-based methods, suggesting 

that the robustness of distance-based phylogenetic partial least squares is highly sensitive 

to low or absent within-group covariation. 
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STATISTICAL PERFORMANCE OF PAIRWISE COMPOSITE LOG-LIKELIHOOD: NEW METHODS 

Testing for evolutionary covariation. Simulations were performed to assess the 

statistical performance of testing for the presence of evolutionary covariance in a 

multivariate trait. For this test, the null hypothesis is simulated by constraining the off-

diagonal elements of the evolutionary rate matrix to zero, whereas the alternative 

hypothesis uses an unconstrained evolutionary rate matrix. As expected, this test 

exhibited statistical performance similar to that of tests for evolutionary covariance 

between trait groups (Fig. 3.5h), displaying appropriate Type I error rates and increasing 

statistical power as trait dimensionality increased. 

Alternative evolutionary models: Ornstein-Uhlenbeck, Early-Burst, and 

Pagel’s λ. Type I error and statistical power of maximum pairwise composite likelihood 

estimation was evaluated for three common tree transformations: Ornstein-Uhlenbeck, 

Early-Burst, and Pagel‟s λ (Fig. 3.6). Bias and error of parameter estimates was also 

assessed (Fig. 3.6). Estimates of Pagel‟s λ and the Early-Burst rate parameter were 

generally unbiased, whereas the Ornstein-Uhlenbeck parameter α was strongly biased 

toward 0.5. It should be noted that parameter estimation bias for α was also present in 

conventional (full) maximum likelihood parameter estimation (as the pairwise and full 

log-likelihoods for a dataset with only two traits are identical), so parameter bias should 

not be interpreted as a shortcoming of maximum pairwise composite log-likelihood 

estimation. Estimates of Pagel‟s λ were consistent regardless of the number of simulated 

traits, Early-Burst estimates were moderately consistent, and estimates of α were highly 

variable. Under all scenarios, model tests exhibited appropriate Type I error and 
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increasing statistical power with increases in trait dimensionality, but statistical power for 

α was substantially lower than tests for significant λ and rate. 

Ultra-high dimensional traits. A random 32-species phylogeny was generated 

and multivariate data with 2, 32, 64, and 1,024 traits with random covariance were 

randomly generated under an Early-Burst model with a rate parameter of -0.5. The 

pairwise composite log-likelihood surface was assessed for 50 values (spanning -1 to 0) 

of the Early-Burst rate parameter for the simulated 2, 32, and 64-dimensional traits. For 

the 1,024-dimensional trait, the Monte Carlo-based approach (described above) was 

performed using 10,000 random pairwise combinations to approximate the composite 

log-likelihood surface. Polynomial regression was then performed to obtain a smoothed 

estimate of the pairwise composite log-likelihood surface. The rate value corresponding 

to the maximum predicted value of the resulting polynomial regression was -0.49, 

consistent with simulated conditions and the rates recovered for simulated datasets of 

dimension 2, 32, and 64 (rate=-0.5) (Fig. 3.7). 

 

CONCLUSION 

Distance-based multivariate comparative methods offer a framework for testing 

evolutionary hypotheses for high-dimensional traits while avoiding several problems 

associated with high dimensionality (e.g., singular covariance matrices and low statistical 

power). However, extremely large datasets may be computationally infeasible using a 

distance-based approach. An equivalent covariance-based approach is described that 

allows fast linear-time implementation (implemented in the R package phylocurve), thus 

avoiding most of the computational challenges associated with distance-based methods. 
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A novel approach based on pairwise composite likelihood is also proposed. These 

methods (also implemented in phylocurve) allow for greater flexibility than distance-

based methods, such as the ability to incorporate multiple evolutionary hypotheses and 

alternative evolutionary models. An approach for incorporating within-species variation 

and missing data is also discussed. Simulations revealed high statistical power and 

appropriate Type I error for these methods, whereas some distance-based approaches (D-

PGLS and phylogenetic partial least squares) exhibited elevated Type I error under 

various scenarios, and regime-specific rate comparisons exhibited extremely low 

statistical power when rate ratios differed among traits. 

It is important to note that despite promising results from statistical simulations, 

both distance-based methods and the new methods described here make several critical 

assumptions regarding the evolution of high-dimensional traits. Most notably, all models 

were simulated such that model parameters applied equally to all traits of interest. 

However, the consequences of violating these assumptions are unknown. For instance, 

consider phylogenetic regression on a high-dimensional trait in which a handful of traits 

are strongly driven by a predictor variable but the remaining traits are independent of the 

predictor variable. Regardless of the overall P-value obtained, the biological relevance of 

the result is unclear: a significant finding suggests correlation where none exists for the 

majority of traits, whereas a non-significant result fails to detect potentially important 

correlations for the handful of affected traits. Under such circumstances, generalized 

high-dimensional metrics may not be ideal for testing evolutionary hypotheses, although 

methods to detect this type of situation are currently lacking. While high-dimensional 

comparative methods provide a potentially powerful framework for approaching the 
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study of complex phenotypic evolution, this framework will benefit substantially from 

the development of model diagnostic techniques, such as high-dimensional multivariate 

methods for detecting violations of model assumptions and for assessing model adequacy 

(Pennell et al. 2015). 

 

SUPPLEMENTARY MATERIAL – Data available from the Dryad Digital Repository.  
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FIGURES 

 

 

 

Figure 3.1. Speed comparisons for rate comparisons among species rate regimes using a) 

the distance-based geomorph function compare.evol.rates, b) the covariance-based 

phylocurve function fast.geomorph.compare.evol.rates (based on phylogenetic 

transformation of residuals; censored=FALSE), and c) and the covariance-based 

phylocurve function fast.geomorph.compare.evol.rates using the censored method of 

O'Meara et al. (2006) (censored=TRUE). Speed comparisons were performed on 

randomly generated pure-birth phylogenies containing 10, 24, 50, 100, 250, 500, and 

1,000 species with simulated data containing 10, 24, 50, 100, and 250 traits. Computation 

times on a log10-scaled axis are also plotted for phylocurve functions. 
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Figure 3.2. Speed comparisons for rate comparisons among trait groups using a) the 

distance-based geomorph function compare.multi.evol.rates and b) the covariance-based 

phylocurve function fast.geomorph.compare.multi.evol.rates; tests of Kmult using c) the 

distance-based geomorph function physignal and d) the covariance-based phylocurve 

function fast.geomorph.physignal; multivariate phylogenetic regression using e) the 

distance-based geomorph function procD.pgls and f) the covariance-based phylocurve 

function fast.geomorph.procD.pgls; and phylogenetic partial least squares using h) the 

distance-based geomorph function phylo.pls and i) the covariance-based phylocurve 

function fast.geomorph.phylo.pls. Speed comparisons were performed on randomly 

generated pure-birth phylogenies containing 10, 24, 50, 100, 250, 500, and 1,000 species 

with simulated data containing 10, 24, 50, 100, and 250 traits. Computation times on a 

log10-scaled axis are also plotted for phylocurve functions.  
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Figure 3.3. Statistical performance of evolutionary rate comparisons among regimes 

using a) distance-based hypothesis tests assuming a diagonal evolutionary rate matrix as 

was assumed in Adams (2014c) and implemented in the geomorph function 

compare.evol.rates in versions 1.1.5-2.1.5 (performed using the 

fast.geomorph.compare.evol.rates function in phylocurve with force.diag=TRUE), b) 

distance-based hypothesis tests assuming a fully parameterized evolutionary rate matrix 

is implemented in geomorph versions 2.1.6 and higher (performed using the 

fast.geomorph.compare.evol.rates function in phylocurve with force.diag=FALSE), c) 

distance-based hypothesis tests using a fully parameterized evolutionary rate matrix with 

regime-specific rates using the censored method of O'Meara et al. (2006) (performed 

using the fast.geomorph.compare.evol.rates function in phylocurve with 

censored=TRUE), and d) pairwise composite likelihood methods performed using the 

compare.models function in phylocurve. Failing to account for trait covariance (a) results 

in unacceptably high Type I error. Simulations were performed on 1,000 randomly 

generated 32-species pure-birth phylogenies with 2, 16, 32, and 64 traits simulated under 

two different regimes of equal size with a rate ratio of 1.0 (for Type I error), 1.5, 2.0, 3.0, 

and 4.0. 
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Figure 3.4. Comparison of rate differences among two regimes from nine Plethodon 

salamanders for 11 cranial landmark coordinates (Adams 2014c) using a) distance-based 

hypothesis testing while failing to account for trait covariance, as in Adams (2014c) 

(performed using the phylocurve function fast.geomorph.compare.evol.rates with 

force.diag=FALSE), b) distance-based hypothesis testing while accounting for trait 

covariance (performed using the phylocurve function fast.geomorph.compare.evol.rates 

with force.diag=FALSE), and c) pairwise composite likelihood-based hypothesis testing 

and statistical power assessment (performed the phylocurve function compare.models on 

null and alternative models both fit using the evo.model function), where the left 

distribution is the null distribution (no difference in rate ratio) and the right distribution is 

the alternative distribution (significant difference in rate ratio); the left vertical dotted line 

is the observed test statistic and the right vertical line is the critical value for the test 

statistic (indicating that the observed test statistic falls within the null distribution). While 

failing to account for trait covariance, the rate ratio between the two hypothesized 

regimes (1.84) was found to be significantly different from 1.0 (P=0.005), identical to the 

result reported in Adams (2014c). While accounting for trait covariance, the rate ratio 

(1.84) was found to be non-significant (P=0.261). Pairwise composite likelihood-based 

hypothesis testing was also non-significant (P=0.64) and revealed very little statistical 

power (0.097, the proportion of simulated alternative models greater than the critical 

value) to detect a significant rate difference for the given the phylogeny and dataset. 
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Figure 3.5. Comparisons of the statistical performance of distance-based methods (left) 

and pairwise composite likelihood methods (right) for comparisons of evolutionary rates 

among trait groups (a-b, using the geomorph function compare.multi.evol.rates and the 

phylocurve function compare.models), tests of significant Kmult (c-d, using the geomorph 

function physignal and the phylocurve function K.mult), tests for significant covariation 

with fixed effects (e-f, using the geomorph function procD.pgls and the phylocurve 

function compare.models), and tests for significant covariation among two multivariate 

traits (g-h, using the geomorph function phylo.pls and the phylocurve function 

compare.models). Comparisons of evolutionary rates (a-b) among trait groups were 

simulated with rate ratios 1.0 (for Type I error), 1.5, 2.0, 3.0, and 4.0 for simulated data 

with 4, 8, 16, 32, and 64 traits (where subset trait groups were of size 2, 4, 8, 16, and 32, 

respectively). Both methods exhibited similar statistical performance. Tests of significant 

phylogenetic signal (c-d) were performed using Pagel‟s λ tree transformations of 1.0 (for 

Type I error), 0.75, 0.5, 0.25, and 0.0 on simulated data with 2, 5, 10, 32, and 64 traits. 

Statistical performance was similar for both methods, although distance-based tests of 

phylogenetic signal (c) had higher statistical power at higher simulated levels of Pagel‟s 

λ. Multivariate phylogenetic regression (e-f) was simulated with an input covariation 

among simulated data and fixed effects of 0.0 (for Type I error), 0.1, 0.3, 0.5, 0.7, and 0.9 

for data of trait dimension 10, 24, 50, 100, and 250. Distance-based methods (e) exhibited 

elevated Type I error. Tests for significant covariation among multivariate traits (g-h) 

were simulated using an input covariation of 0.0 (for Type I error), 0.1, 0.3, 0.5, 0.7, and 

0.9 for traits of dimension 2, 4, 8, 16, 32, and 64. Distance-based phylogenetic partial 

least squares (g) exhibited extremely high Type I error. All simulations were performed 



 

96 

on 1,000 randomly generated 32-species pure-birth phylogenies.
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Figure 3.6. Results of maximum pairwise composite likelihood tree transformation 

parameters for the Ornstein-Uhlenbeck (a-b), Early-Burst (c-d), and Pagel's lambda (e-f) 

models. Simulations were performed on 1,000 randomly generated pure-birth 

phylogenies using randomly generated data of trait dimension 2, 5, 10, 25, 31, and 50. 

Simulated tree transformation parameters were as follows: Ornstein-Uhlenbeck α=0.0 

(for Type I error), 0.25, 0.5, 1.0, and 2.0; Early-Burst rate=0.0 (for Type I error), -0.25, -

0.5, -0.75, and -1.0; Pagel's λ=1.0 (for Type I error), 0.75, 0.5, 0.25, and 0.0. Left panels 

show mean parameter estimates of 1,000 simulations (grey bars represent standard 

deviation) corresponding to the tree transformation parameter indicated by arrows. Right 

panels indicate Type I error and statistical power under the range of simulated conditions. 

  



 

99 

  



 

100 

 

 

 

Figure 3.7. The pairwise composite log-likelihood surface for the Early-Burst rate 

transformation for trait data of dimension 2, 32, 64, and 1,024, which were simulated on a 

randomly generated 32-species phylogeny under an Early-Burst model of phenotypic 

evolution with a rate parameter of -0.5. For the 1,024-trait dataset, a Monte Carlo 

approach was performed using 10,000 random pairwise combinations to approximate the 

pairwise composite log-likelihood surface, and polynomial regression was performed to 

obtain a smoothed estimate of the likelihood surface. Regardless of the number of traits, 

the simulated Early-Burst rate of -0.5 was strongly identifiable and was recovered via 

maximum pairwise composite likelihood estimation. 
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CHAPTER 4 

EVOLUTION OF METAL ACCUMULATION ACROSS WILD SUNFLOWERS AND 

IMPLICATIONS FOR ELEMENTAL DEFENSE 
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ABSTRACT 

Several adaptive hypotheses concerning the evolution of heavy metal 

hyperaccumulation have been proposed. One of the most popular hypotheses, the 

elemental defense hypothesis, predicts a protective effect against herbivores of elevated 

leaf metal concentrations. Here we assess the evolution of nickel and cadmium 

accumulation in 15 wild sunflower species (Helianthus). We find support for an 

evolutionary origin of elevated nickel and cadmium accumulation ancestral to H. annuus 

(the wild progenitor of domesticated sunflower, which is a nickel and cadmium 

hyperaccumulator), H. exilis (serpentine sunflower, which is known to be tolerant of 

extremely high soil nickel concentrations), and H. argophyllus. We also performed non-

choice and choice feeding trials with larvae of the generalist herbivore Vanessa cardui 

(the painted lady butterfly). Using phylogenetic regression, we find no support for any 

pattern between leaf metal concentration and non-choice herbivory rates among species. 

However, within three focal sunflower species we find mixed results, with variable 

feeding deterrence and feeding stimulation in specific metal treatments and species.  
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INTRODUCTION 

Hyperaccumulators are plants capable of accumulating extremely high foliar 

metal concentrations (>1,000 mg/kg dry leaf weight for most metals) (van der Ent et al. 

2013). Over 75% of known hyperaccumulators (currently exceeding 500 taxa) are nickel 

hyperaccumulators, although some plants hyperaccumulate other elements, including 

arsenic, cadmium, chromium, lead, selenium, zinc, and manganese (Boyd 2012; Cappa 

and Pilon-Smits 2014). Recent evidence suggests that hyperaccumulation has evolved 

many times independently (Broadley et al. 2001; Cappa and Pilon-Smits 2014; Kraemer 

2010; Moray et al. 2015). For example, there are likely at least twelve independent 

origins of this trait in the Brassicaceae family alone (Kraemer 2010). Because 

hyperaccumulation has repeatedly evolved across vascular plants, the evolutionary 

dynamics of metal hyperaccumulation is an area of strong interest in plant evolutionary 

ecology. Several adaptive benefits of hyperaccumulation have been proposed to explain 

why hyperaccumulation has arisen and persisted, including improved resistance to 

herbivores, pathogens, or drought, and decreased competition via metal-enrichment of 

soil from leaf litter (elemental allelopathy) (Cappa and Pilon-Smits 2014; Rascio and 

Navari-Izzo 2011). Hyperaccumulation also has many promising applications for 

humans, including environmental cleanup (phytoremediation), enhanced ability to extract 

precious elements from soils (phytomining), and targeted elemental enrichment of crops 

in malnourished regions (Rascio and Navari-Izzo 2011). However, at present, the 

underlying mechanisms and evolutionary dynamics of hyperaccumulation are poorly 

understood, and an improved understanding of these issues is necessary to maximize 
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benefits while minimizing the unintentional consequences of the applied use of 

hyperaccumulators. 

Several hypotheses regarding the adaptive benefits of metal hyperaccumulation 

have been proposed. Of these, the elemental defense hypothesis, which postulates that 

high foliar metal concentrations help deter herbivores and inhibit microbial growth, has 

received the most attention and empirical support (Boyd 2007, 2012; Rascio and Navari-

Izzo 2011). The elemental defense hypothesis can be extended into two secondary 

hypotheses: the defense trade-off hypothesis and the joint effects hypothesis. The defense 

trade-off hypothesis predicts a negative relationship between leaf metal concentration and 

both physical (e.g.. leaf toughness, trichomes) and chemical (e.g., tannins, glucosinolates) 

plant defenses (Boyd 2012; Moles et al. 2013). Because the use of each defensive 

strategy is putatively energetically costly (costs of metal uptake and tolerance, physical 

structure investment, and chemical biosynthesis, respectively) with potentially 

diminishing marginal returns, a high level of one defense mechanism should lead to 

reduced expression of other defenses. The joint effects hypothesis predicts that metal 

accumulation and chemical or physical defenses can work together in an additive or 

synergistic manner to prevent herbivory or pathogen infection (Boyd 2012). If various 

defenses provide additive or synergistic plant protection, each individual defense strategy 

is expected to be effective at lower levels, thus requiring a lower overall investment in 

each in order to maintain plant protection. The elemental allelopathy hypothesis predicts 

that plants concentrate high levels of metals into senescing leaves as a means of 

increasing soil metal concentrations, thereby making it less likely for less tolerant 

competitors to establish nearby. This hypothesis has received preliminary support in a 
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small number of systems (Cappa and Pilon-Smits 2014; Morris et al. 2009). The drought 

resistance hypothesis predicts that metal hyperaccumulation confers increased drought 

resistance, either by direct osmotic interactions or by priming via induction of plant stress 

response pathways. This hypothesis, the only one to focus on response to abiotic rather 

than biotic factors, has received some experimental support (Cappa and Pilon-Smits 

2014; Rajkumar et al. 2013). 

Although each of these adaptive hypotheses regarding metal hyperaccumulation 

evolution is accompanied by at least some level of empirical support, the overall evidence 

is mixed and sometimes contradictory. These data are also limited to a very small number 

of disparate taxa. Several recent reviews on hyperaccumulation have recommended a 

phylogenetically explicit approach to uncovering ecological dynamics of metal 

hyperaccumulation in an evolutionary framework (Cappa and Pilon-Smits 2014; Pollard 

et al. 2014; van der Ent et al. 2013). Phylogenetically explicit studies will help us to 

answer many important questions, particularly because the independent evolutionary 

origins of hyperaccumulation in multiple clades offer numerous opportunities for 

replicated assessment of its evolution. However, to our knowledge, no published study to 

date has yet examined adaptive hypotheses for metal hyperaccumulation in a 

phylogenetic context. Here, we explore the evolutionary history of nickel and cadmium 

hyperaccumulation in a clade of twelve annual Helianthus species and subspecies and 

two perennial outgroup Helianthus species. We also examine the elemental defense 

hypothesis using the painted lady butterfly Vanessa cardui, an Asteraceae specialist – a 

generalist within the family and known to feed on Helianthus – using phylogenetic 

comparative and experimental approaches. 
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MATERIALS AND METHODS 

Study System. Domesticated sunflower (Helianthus annuus) is uniquely capable 

of hyperaccumulating at least four metals, including As, Cd, Cr, and Ni, and 

accumulating extraordinarily high levels of Cu, Fe, Zn, Mn, Se, U, Cs, Hg, Pb, and Sr 

(Blamey et al. 1986; Cutright et al. 2010; Lin et al. 2003; Prasad and Freitas 2003; Solhi 

et al. 2005; Walliwalagedara et al. 2010). Hyperaccumulation of each of these metals in 

sunflowers likely involves distinct evolutionary histories, genetic bases, and 

physiological mechanisms. Helianthus is an extremely diverse genus of plants, 

possessing substantial variation in many ecologically important traits, including climatic 

niche, abiotic stress tolerance, pathogen resistance, and growth rate (Donovan et al. 2014; 

Heiser et al. 1969). Additionally, wild Helianthus occur across North America in a wide 

variety of habitats, including serpentine soils, beaches, coastal prairies, deserts, salt 

marshes, mountain meadows, and open woodlands, and many species are adapted to 

major environmental stressors, such as drought, salinity, and low nutrient availability 

(Heiser et al. 1969). Furthermore, a recently constructed 170-gene phylogeny (Stephens 

et al. 2015) allows for the robust assessment of sunflower trait evolution using 

phylogenetic comparative methods (Mason et al. 2015; Mason and Donovan 2015). 

Taxa and seed sources. This study focuses on the large annual clade of wild 

sunflowers, which includes the wild progenitor of domesticated sunflower and its diverse 

relatives (Heiser et al. 1969; Stephens et al. 2015; Timme et al. 2007). Twelve annual 

taxa were included: H. annuus, H. argophyllus, H. debilis ssp. debilis, H. debilis ssp. 

silvestris, H. debilis ssp. tardiflorus, H. exilis, H. neglectus, H. niveus ssp. canescens, H. 
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petiolaris, H. praecox ssp. hirtus, H. praecox ssp. praecox, and H. praecox ssp. runyonii.  

Two distantly-related perennial species from outside the annual clade (H. angustifolius 

and H. cusickii) were selected to serve as outgroups. Because H. annuus is the only 

confirmed hyperaccumulator species in the genus, several populations of H. annuus and 

its two sister species (H. argophyllus and H. exilis) were included in the study to capture 

the variation of metal accumulation within these closely-related species. Specifically, ten 

populations of H. annuus, twelve populations of H. exilis, and nine populations of H. 

argophyllus were chosen from across the range of each species. For all other species in 

the study, two to three populations or subspecies were selected, for a grand total of 51 

populations. Seeds for each population were obtained from the USDA National Genetic 

Resources Program (Appendix B). 

Plant growth. Seed germination began in May 2013. Achenes for each species 

were scarified, placed on moistened filter paper in Petri dishes, and stored in darkness for 

24 hours at room temperature. Next, seed coats were removed, and seeds were transferred 

to new Petri dishes with moistened filter paper. Petri dishes were placed under 

fluorescent lights set to a twelve-hour photoperiod, until root and cotyledon development. 

Germination time ranged from three days to one week, depending on species. Germinated 

seedlings were transferred to the greenhouse (Department of Plant Biology, University of 

Georgia, Athens, GA) in seedling trays filled with Fafard 3B mix (Conrad Fafard, 

Aawam, MA, USA) under ambient light with temperature set to 27°C during the day and 

20°C at night. Seedlings were grown in seedling trays for two weeks and then transferred 

to pots. Pots were arranged in a randomized split-plot design, consisting of three 

treatment types: control (no metals added to soil), nickel-amended, and cadmium-
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amended. Each treatment was replicated four times, randomized across the greenhouse. 

Treatment plots consisted of plastic-lined reservoirs, each containing 51 pots (one for 

each represented Helianthus population) filled with Fafard 3B soil mix (Conrad Fafard, 

Agawam, MA, USA). Treatment plots were filled with 70 liters of water (approximately 

two inches of water), which was maintained throughout the experiment, providing water 

to the pots from beneath to ensure high water availability. Non-control reservoirs were 

amended with either nickel sulfate or cadmium sulfate to obtain elemental metal 

concentrations of 30 mg/L. Osmocote Plus 15-9-12 nine month slow-release fertilizer 

with micronutrients (Scotts, Marysville, OH, USA) was applied to the surface of each pot 

to ensure high nutrient availability. 

Leaf measurements. Plants were harvested at a standardized juvenile ontogenetic 

stage, defined by 4-8 fully expanded leaf pairs (Mason et al. 2013). For each plant, the 3 

most recently fully expanded leaf pairs were harvested immediately prior to sunrise: one 

leaf was used for leaf trait measurements, one for non-choice feeding trials, one (or two 

for control plants) for choice feeding trials (restricted to H. annuus, H. argophyllus, and 

H. exilis), and the remaining leaves were harvested and pooled for leaf metal 

quantification. Leaf traits measured included fresh and dry leaf mass, leaf chlorophyll 

content (SPAD-502 meter; Konica Minolta, Tokyo, Japan), and leaf trichome density (a 

putative anti-herbivore defense, as the number of trichomes per square centimeter, 

counted under a dissecting microscope). Fresh and dry masses for each leaf were used to 

calculate leaf water content (a measure of leaf succulence, defined as the ratio of fresh 

leaf water mass to dry mass). Fresh leaf area was quantified from scanned leaf images 

using ImageJ freeware (Schneider et al. 2012) from which leaf dry mass per unit fresh 
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area (LMA) was calculated. Leaves intended for herbivory experiments were placed in 

sealed plastic bags and refrigerated for approximately six hours, until feeding trials 

began. The remaining pooled leaves for metal analysis were dried in a forced-air drying 

oven and ground into a fine powder. Ground leaf tissue for each plant was weighed to 

0.02g, dry-ashed at 450°C overnight, digested in aqua regia (20% nitric acid, 5% 

hydrochloric acid), and analyzed for leaf nickel and cadmium concentration via graphite 

furnace atomic absorption spectroscopy (Shimadzu AA6800 with GFA6500). 

Caterpillar rearing. For herbivory experiments, Vanessa cardui eggs were 

obtained from Carolina Biological Supply Company (Burlington, NC, USA). V. cardui 

eggs were placed on lettuce leaves (Lactuca sativa) in 1200 cm
3
 polyethylene trial 

chambers covered with non-airtight lids. Fluorescent lighting was supplied on a 16-hour 

photoperiod with a constant temperature of 23°C. Larvae emerged within 48 hours, and 

fresh lettuce leaves were continuously provided. Seven days after hatching, larvae were 

randomly selected for choice and non-choice feeding trials. 

Herbivory trials. Feeding trials were conducted with harvested leaves and V. 

cardui larvae. For non-choice feeding trials, a single fresh leaf (one from each plant in 

the greenhouse experiment) was weighed and placed in a trial chamber with a single 

caterpillar. For choice feeding trials, a single control leaf and a single treatment leaf 

(either nickel or cadmium) from plants of the same population were weighed and placed 

in a trial chamber with a single caterpillar. Chambers were maintained under the same 

environmental conditions as caterpillar rearing. After one week, leaves were collected 

from feeding trial boxes and visually scored for percent area consumed (0, 25, 50, 75, or 
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100%). Fresh leaf mass consumed was estimated by multiplying fresh leaf mass and 

percent area consumed. 

Data analysis. To evaluate the evolutionary history of metal accumulation in 

annual sunflowers, maximum likelihood ancestral state reconstruction was performed on 

average leaf metal concentration using the fastAnc function in the R package phytools, 

and phylogenetic signal (as Blomberg‟s K) was assessed using the phytools function 

phylosig (Blomberg et al. 2003; Revell 2012).  Due to insufficient leaf mass, leaf 

cadmium concentrations could not be obtained for H. praecox ssp. runyonii, so an 

estimate for cadmium concentration was imputed for this taxon using the estimated 

phenotypic value for the common ancestor of H. praecox ssp. runyonii and H. praecox 

ssp. hirtus (Bruggeman et al. 2009). For non-choice herbivory experiments, leaf traits 

(leaf metal concentration, LMA, chlorophyll content, water content, and trichome 

density) were regressed against herbivory rates (fresh leaf mass consumed) using 

phylogenetic regression (Felsenstein 1985; Martins and Hansen 1997; Paradis et al. 

2004). 

For choice trials, relative consumption between control and metal-treatment 

leaves was calculated as treatment leaf consumption divided by total consumption of both 

leaves, such that a relative consumption less than 0.50 indicates preference for control 

leaves, a relative consumption greater than 0.50 indicates preference for treatment leaves, 

and a relative consumption equal to 0.50 indicates no preference for either. The four 

replicate choice trials for each metal in each population were averaged to calculate 

population point estimates of relative consumption for that metal treatment. Population 

point estimates were used to calculate species means of relative consumption in each 
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metal treatment, as well as the 95% confidence interval around those means based on the 

number of population point estimates (9-12). 

RESULTS 

Evolutionary history of metal accumulation. Nickel and cadmium leaf 

concentrations were, on average, elevated in H. annuus, H. argophyllus, and H. exilis 

relative to the other species in the study (Fig. 4.1). Nickel accumulation exhibited 

significant phylogenetic signal (Blomberg‟s K=1.27; p=0.02), and ancestral state 

reconstruction of nickel accumulation revealed a likely origin of elevated nickel 

accumulation ability in the common ancestor of H. annuus, H. argophyllus, and H. exilis 

(Fig. 4.1). The capacity for elevated cadmium accumulation also appears to have evolved 

in the common ancestor of H. argophyllus, H. annuus, and H. exilis. However, the 

capacity for cadmium accumulation is more evolutionarily labile (Blomberg‟s K=0.69; 

p=0.54) than nickel accumulation, as elevated cadmium accumulation appears to have 

also evolved independently in H. debilis, H. neglectus, and H. niveus (Fig. 4.1). 

Analysis of herbivory experiments. In non-choice experiments, caterpillars were 

presented with a single leaf from control, nickel, or cadmium treatments. 

Phylogenetically independent contrasts regressed through the origin revealed no 

observable effect of leaf metal concentration on non-choice herbivory rates for either 

nickel-treated (R
2
=0.186; P=0.11) or cadmium-treated (R

2
=0.012; p=0.70) plants

(Felsenstein 1985). Similarly, leaf trichome density (a putative herbivore deterrent) was 

uncorrelated with herbivory rates for all treatments. Conversely, species-specific 

herbivory rates in the control treatment strongly predicted herbivory rates in both nickel 
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(R
2
=0.72; P<0.0001) and cadmium (R

2
=0.81; P<0.0001) treatments. Leaf

ecophysiological traits were also predictive of herbivory rates in both the control and 

nickel treatments (Table 4.1). Additionally, traits indicative of general plant vigor (height 

and leaf size) strongly predict herbivory rates in all treatments. 

For choice feeding trials (which included H. annuus, H. argophyllus, and H. 

exilis), caterpillars were presented with a choice between a control leaf and a leaf from 

either a nickel or cadmium-treated plant. In contrast to non-choice experiments, choice 

feeding trials exhibited treatment-specific preferences in all three species (Fig. 4.2). 

Caterpillars preferentially consumed control leaves over cadmium leaves in both H. 

annuus and H. argophyllus. Caterpillars also displayed a preference for control H. 

argophyllus leaves over leaves from nickel-treated plants, whereas leaves from nickel-

treated H. exilis were preferentially consumed over control leaves (Fig. 4.2). 

DISCUSSION 

Overall, we find mixed support for the elemental defense hypothesis. When faced 

with no alternatives in non-choice trials, herbivores readily consumed leaves from metal-

treated plants without regard to leaf metal concentration. This result, although contrary to 

expectations under the elemental defense hypothesis, may simply suggest that V. cardui 

larvae would prefer to consume unpalatable or toxic leaves rather than starve. These 

results also suggest strong inherent species-level properties (e.g., leaf ecophysiological 

traits or phytochemistry) that may swamp out potential anti-herbivore effects of foliar 

metals. For instance, leaves with extremely high water content (i.e., succulence) are 

known to deter herbivory in other systems (Moles et al. 2013; Pérez-Harguindeguy et al. 
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2003), as was observed here. Negative correlations between herbivory and water content 

were strongest in the control treatment, whereas the relationships in nickel and cadmium 

treatments were weaker. Paradoxically, high LMA leaves, which are generally tougher 

and more physically defended against chewing insects (Moles et al. 2013), correlated 

positively with herbivory rates, with the correlations strongest in the control treatment. 

This result could be explained by the strongly negative correlation between leaf water 

content and LMA (R
2
>0.55 in all three treatments), in which leaf succulence might have 

a stronger anti-herbivore effect than high LMA. Leaf chlorophyll content was also 

positively correlated with herbivory rates in control and nickel treatments, but this 

correlation was absent in the cadmium treatment. Although leaf metals did not appear to 

directly influence herbivory rates, correlations between herbivory rates and leaf 

ecophysiological traits were weaker in metal treatments relative to the control treatment. 

This could reflect an indirect effect of metals on leaf physiology, perhaps via induction or 

suppression of the production of certain secondary plant metabolites, as predicted under 

the defense trade-off and joint effects hypotheses (Boyd 2012). Future work explicitly 

considering the role of metals on chemical defense investment in a phylogenetic 

comparative framework will help to disentangle the evolutionary interplay of the 

defensive role of plant secondary compounds and leaf metal accumulation. The lack of a 

correlation between leaf trichome density and herbivory rates is consistent with previous 

findings in sunflowers, as the role of trichomes in sunflowers may be more tied to 

regulating leaf water balance, irradiance, and temperature rather than defense against leaf 

herbivores (Mason et al. 2015). 
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Herbivory rates also strongly correlated with vigor-related traits, including height 

and leaf area. If growth trades off with defense investment, this pattern may be driven by 

faster-growing species investing relatively less in plant defense. For example, across 

diploid Helianthus species, traits conducive to faster growth are negatively correlated 

with leaf toughness and leaf tannin activity (Mason et al. 2015). Growth may best predict 

herbivory rates because growth may function as an integrated measure of the degree of 

investment in total plant defense, as predicted by the growth-differentiation-balance 

hypothesis and the growth rate hypothesis of plant defense (Stamp 2003). 

Despite the lack of evidence for a general deterrent effect of metals in non-choice 

herbivory trials, certain species-treatment combinations in choice experiments 

demonstrated some support for the elemental defense hypothesis, in which herbivores 

preferred control leaves over leaves from metal-treated plants. Similar findings have been 

found in other systems using Lepidopterans. For instance, elevated cadmium 

concentrations in Arabidopsis halleri reduce herbivory by the Brassicaceae specialist 

Pieris rapae (Plaza et al. 2015), and high leaf nickel content has a deterrent effect on 

Evergestis rimosalis herbivory in Streptanthus polygaloides (Jhee et al. 2005). 

Conversely, the reverse effect has also been observed, in which herbivores may actually 

prefer metal-rich plants, possibly due to a negative relationship between foliar metal 

concentration and secondary plant defense investment (Noret et al. 2007). The literature 

provides mixed evidence for the elemental defense hypothesis, as suggested by a 2009 

meta-analysis of choice feeding trials with hyperaccumulator plants (Vesk and Reichman 

2009) or potential coevolutionary dynamics (Boyd 2009; Pollard 2000). That analysis 

found a wide variety of foliar metal effects on herbivory, ranging from strong deterrence 
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to strong preference, with substantial variation depending on both the plant and herbivore 

species considered. Mixed support for the elemental defense hypothesis could also be the 

result of competing evolutionary forces in different environments, as would be expected 

if metal hyperaccumulation offers multiple distinct adaptive advantages (e.g., enhanced 

drought resistance, decreased competition, antimicrobial effects, etc.) (Boyd 2012; Cappa 

and Pilon-Smits 2014; Rascio and Navari-Izzo 2011). 

Another possibility is that plant species in this study did not achieve sufficient 

quantities of metal to result in consistent herbivore deterrence due to limited metal 

availability in amended soils. Heavy metal hyperaccumulation is an environmentally 

dependent trait – in the absence of soil metals or under low bioavailability, the 

physiological capacity for metal uptake is not realized. Similarly, under limiting 

conditions, hyperaccumulation potential may be masked as metal concentrations are 

diluted by increasing plant biomass (Goolsby and Mason 2016), and it is possible that 

strong anti-herbivore effects only manifest in the presence of extremely high foliar metal 

concentrations. Nevertheless, evidence for the elemental defense hypothesis has been 

observed across a variety of herbivore and plant species at leaf metal concentrations 

comparable to those in this study (Coleman et al. 2005; Cheruiyot et al. 2013). 

Although no plants in this study reached threshold concentrations to constitute 

metal hyperaccumulation, several individuals from H. argophyllus, H. annuus, and H. 

exilis achieved nickel concentrations approaching 100 ppm, 2-3 orders of magnitude 

higher than concentrations found in most eudicots (Broadley et al. 2001), suggesting 

these three species may indeed possess the capacity for heavy metal hyperaccumulation 

under conducive conditions. These results are consistent with previous findings in which 
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domesticated sunflower was demonstrated to accumulate leaf metal concentrations 

(including nickel and cadmium) exceeding established hyperaccumulator threshold 

concentrations (Cutright et al. 2010). Additionally, H. exilis (serpentine sunflower) is 

known to be tolerant of extremely high soil nickel concentrations (Sambatti and Rice 

2006), which is also consistent with the finding of evolutionary conservation of nickel-

related traits in this clade. Our study cannot definitively rule these species out as metal 

hyperaccumulators, nor can we rule out a consistent deterrent effect of metals on leaf 

herbivory. If accumulation and herbivore deterrence only manifest above certain species-

specific thresholds of soil metal concentration, this effect will require investigation under 

multiple soil metal treatments in each species in order to be identified.  

Ideally, future investigations of the evolutionary history of heavy metal 

hyperaccumulation capacity and associated adaptive hypotheses should assess plant metal 

uptake, tolerance, and adaptive dynamics as a function of soil metal concentration, in 

which concentrations are applied over a gradient ranging from zero soil metals to 

excess/non-limiting soil metal concentrations (Goolsby and Mason 2015). Such 

approaches can be applied at a fine scale within species and broadly across large clades 

of species. 

Moreover, phylogenetic comparative methods incorporating an explicitly 

function-valued trait model can be used to explicitly test adaptive hypotheses while 

incorporating the complex evolutionary dynamics of metal accumulation (Goolsby 2015), 

such as the selective pressures involved in the colonization of serpentine habitats by H. 

exilis (Sambatti and Rice 2006). Such approaches, paired with a more thorough 

understanding of the biochemical and physiological processes underlying 
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hyperaccumulation, will provide powerful new insights into the evolutionary dynamics of 

this fascinating trait. 
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FIGURES 

Figure 4.1. Ancestral state reconstructions of nickel (top left) and cadmium (bottom left) 

accumulation ability and mean metal concentrations (right) observed in each species. 

Error bars indicate standard errors. 
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Figure 4.2. Mean relative consumption (treatment leaf consumption divided by total leaf 

consumption) of fresh leaf mass from choice feeding trials for H. annuus, H. argophyllus, 

and H. exilis. Asterisks denote groups in which 95% confidence intervals (represented by 

error bars) do not overlap 0.50, suggesting a significant preference. 
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TABLES 

Table 4.1 Associations between traits and non-choice herbivory (grams of fresh mass 

consumed) by Vanessa cardui in control, nickel, and cadmium treatments. Associations 

were calculated using by regressing phylogenetically independent contrasts through the 

origin. R
2
 values are presented, with directionality in parentheses. Bold relationships are

significant at p<0.05. 

Trait Control Nickel Cadmium 

Plant height (cm) (+) 0.68 (+) 0.42 (+) 0.51 

Leaf area (cm
2
) (+) 0.86 (+) 0.50 (+) 0.66 

LMA (g m
-2

) (+) 0.44 (+) 0.28 (+) 0.22 

Leaf chlorophyll content (SPAD) (+) 0.44 (+) 0.50 (+) 0.03 

Leaf water content (g g
-1

) (-) 0.40 (-) 0.26 (-) 0.23 

Leaf trichome density (cm
-2

) (+) 0.02 (+) 0.07 (-) 0.02 

Leaf metal Content (ppm) -- (+) 0.19 (+) 0.01 
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CHAPTER 5 

EVOLUTION OF MULTIPLE METAL HYPERACCUMULATION IN WILD AND 

CULTIVATED SUNFLOWERS (HELIANTHUS)
1 

1
Goolsby EW, Donovan LA, Shefferson RP. To be submitted to New Phytologist. 
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ABSTRACT 

Plants capable of accumulating high concentrations of normally toxic metals are 

known as hyperaccumulators. The evolution of metal hyperaccumulation is poorly 

understood, and few studies have investigated the macroevolutionary dynamics of 

multiple metal hyperaccumulation at fine-scale taxonomic levels. Here we investigate the 

evolutionary history of metal accumulation for eight metals (As, Cd, Cr, Cu, Ni, Pb, Se, 

and Zn) in 33 wild sunflower (Helianthus) taxa and 12 accessions of cultivated H. annuus 

using a phylogenetic comparative approach in a common garden greenhouse study. We 

identify widespread Cd, Ni, and Zn hyperaccumulation across the entire Helianthus 

genus, as well as possible hyperaccumulation of Cu in two wild taxa. We also find 

potential support for correlated evolution of Cd and Zn hyperaccumulation as binary 

traits. Metal hyperaccumulation in cultivated sunflowers likely evolved in the wild prior 

to sunflower domestication, and the capacity for elevated Cd, Ni, and Zn accumulation 

may be ancestral to the entire genus. 
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INTRODUCTION 

Hyperaccumulation is defined as the ability of a plant to accumulate leaf metal 

concentrations several orders of magnitude higher than what is typically found in most 

plants (Reeves and Baker 2000). For instance, Cd, which is normally toxic to plants at 

extremely low concentrations and plays no known physiological role, is said to be at 

hyperaccumulator concentration if plant leaves exceed 100 mg/kg Cd (mg elemental Cd 

per kg of dried leaf tissue) (Reeves and Baker 2000, van der Ent et al. 2013). 

Hyperaccumulator threshold concentrations for other metals, which tend to occur at 

higher concentrations, are currently set to 1,000 mg/kg for As, Cr, Ni, Pb, and Se, and 

1,0000 mg/kg for Zn and Mn (Reeves and Baker 2000, van der Ent et al. 2013). Large-

scale phylogenetic investigations have determined the approximate number of known 

hyperaccumulator species to include at least 500 taxa spanning over 60 families (Jansen 

et al. 2002, Kraemer 2010, van der Ent et al. 2013, Cappa and Pilon-Smits 2014). The 

broad distribution of hyperaccumulation across plants suggests that hyperaccumulation 

likely evolved independently many times (Broadley et al. 2001, Cappa and Pilon-Smits 

2014, Pollard et al. 2014). However, the evolutionary history of metal hyperaccumulation 

at finer-scale taxonomic levels is poorly understood, as it is unknown what adaptive role, 

if any, hyperaccumulation may play in plant diversification (Boyd 2004, 2007, Rascio 

and Navari-Izzo 2011, Boyd 2012). 

Recent work highlights that plant metal hyperaccumulation and tolerance are 

likely controlled by separate genetic and physiological processes and may possess 

distinct evolutionary trajectories (Hanikenne et al. 2008, O Lochlainn et al. 2011, Pollard 

et al. 2014, Goolsby and Mason 2015, Goolsby and Mason 2016). For example, 
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phylogenetic comparative investigation of Se tolerance and hyperaccumulation in 

Stanleya (Brassicaceae) revealed that Se tolerance likely evolved prior to the evolution of 

Se hyperaccumulation within the genus (Cappa et al. 2015). Phylogenetic comparative 

studies have also revealed that even within relatively narrow taxonomic groups, the 

capacity for hyperaccumulation in two or more species may be the result of multiple 

independent evolutionary origins (Cecchi et al. 2010). 

Here we investigate the evolutionary history of metal hyperaccumulation in wild 

and cultivated Helianthus using a phylogenetic comparative approach. Cultivated 

Helianthus annuus (sunflower) has been shown to be a hyperaccumulator of As, Cd, Cr, 

Ni, and possibly other metals (Cutright et al. 2010). However, the evolutionary origins of 

multiple metal hyperaccumulation in sunflowers are unknown. For instance, it is possible 

that metal hyperaccumulation was inadvertently selected for during sunflower 

domestication or improvement, or metal hyperaccumulation may have already been 

present in wild species prior to domestication. Additionally, most hyperaccumulator 

species are only hyperaccumulators of a single metal. It is therefore unclear whether 

multiple metal hyperaccumulation in sunflowers is the result of a single evolutionary 

event or multiple separate developments. 

In this study, we will address the following questions regarding the evolution of 

As, Cd, Cr, Cu, Ni, Pb, Se, and Zn accumulation in Helianthus: 1) What is the capacity 

for metal accumulation in cultivated H. annuus? 2) Is elevated metal accumulation 

confined to cultivated H. annuus, or is there an apparent ancestral origin? 3) In light of 

multiple metal hyperaccumulation in H. annuus, is the capacity for metal 

hyperaccumulation evolutionarily correlated among metals? 
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MATERIALS AND METHODS 

Study system. Wild Helianthus consists of approximately 40 diploid and 10 

polyploid species, including several perennials and a clade of annual species that includes 

H. annuus (Heiser et al. 1969, Stephens et al. 2015). We selected 34 wild sunflower taxa 

from a recent well-supported molecular phylogeny of Helianthus (Stephens et al. 2015). 

A total of 31 species were represented, with three infraspecific taxa of H. debilis (ssp. 

debilis, ssp. silvestris, and ssp. tardiflorus) and two of H. niveus (ssp. canescens and ssp. 

tephrodes). To capture a snapshot of the variation that exists among cultivated H. annuus, 

we also selected twelve cultivated sunflower (H. annuus) accessions which are known as 

the “core 12” of a sunflower association mapping population (Mandel et al. 2013). 

Together, these twelve lines represent approximately 50% of the allelic diversity known 

among cultivated sunflower germplasm (Mandel et al. 2011). Seeds for wild and 

cultivated accessions were obtained from the USDA National Genetic Resources 

Program (Appendix C). Plants were grown in a common garden greenhouse experiment 

at the University of Georgia Department of Plant Biology greenhouses in Athens, GA in 

the autumn of 2015. 

Plant growth. Achenes were scarified and placed on moistened filter paper in 

Petri dishes and stored in darkness at room temperature for 24 hours. Seed coats were 

then removed and seeds were transferred to new Petri dishes, placed on greenhouse 

benches with ambient photoperiod, and kept moist until germination. Upon the 

production of root hairs, seedlings were transferred to seedling trays filled with 
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moistened sand. After two weeks, seedlings were transferred to 1.75-liter pots arranged in 

a randomized split-plot design. 

The split-plot design consisted of ten treatments, with each treatment replicated 

twice. Each treatment consisted of 46 sand-filled pots (one for each taxa) in a plastic-

lined reservoir, and each pot was filled with 2 kg of sand (dry mass). Reservoirs were 

filled with water to a depth of 5 cm, which was maintained throughout the experiment, 

and each pot was supplied with Osmocote Plus 15-9-12 nine month slow-release fertilizer 

with micronutrients (Scotts, Marysville, OH, USA). Treatments consisted of eight 

different soil metal amendments, including amending soils with As (sodium arsenate), Cd 

(cadmium sulfate), Cr (chromium (III) sulfate), Cu (copper (II) sulfate), Ni (nickel (II) 

sulfate), Pb (lead (II) nitrate), Se (sodium selenate), and Zn (zinc sulfate), as well as a 

control (non-metal-amended) treatment. Metal solutions were added to reservoirs and 

thoroughly mixed so that the ratio of elemental metal mass to dry sand mass was 60 

mg/kg (elemental metal mass per kg sand) for As, Cd, Cr, Cu, Ni, Pb, and Se, and 600 

mg/kg for Zn. Osmocote application and metal amendments were performed two weeks 

prior to plant transplants to allow for soil metal and nutrient equilibration. 

Plant harvest and leaf metal analysis. Plants were harvested at a standardized 

pre-reproductive ontogenetic stage (Mason et al. 2013). All members of a given taxa 

were harvested simultaneously once all surviving plants had produced 4-8 fully-expanded 

leaf pairs. At harvest, plants were scored for survival and for visible signs of metal 

toxicity, including leaf chlorosis and leaf deformation. Plants were then completely 

defoliated, and leaves were dried at 60° C in a forced-air drying oven, and ground into a 

fine power. Samples were analyzed for metal concentrations at the Soil Testing and Plant 
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Analysis Laboratory of the Louisiana State University AgCenter (Baton Rouge, LA). 

Samples were digested in concentrated nitric acid and hydrogen peroxide, and metal 

concentrations were analyzed via inductively coupled plasma atomic emission 

spectrometry, and results were validated by standard reference material (National 

Institute of Standards and Technology, Standard Reference Material 1547, Peach 

Leaves). 

Statistical analysis. Results for leaf metal concentrations were averaged among 

replicates. Due to metal-induced mortality, leaf metal concentrations could not be 

measured for certain wild species-treatment combinations. All plants in the Se treatment 

died shortly after the experiment began due to apparent toxicity, and thus Se was not 

considered further. For other metals, tissue was unavailable for one wild taxon each of 

As, Cr, and Ni treatments; four taxa for the Cd treatment; and five taxa for the Zn 

treatment. Given this missing data, the Rphylopars R package was used to perform 

phylogenetic comparative analyses and estimate trait covariance while accounting for 

incomplete observations (Bruggeman et al. 2009). Two models of metal accumulation 

evolution were fit: 1) a null model assuming the evolution of metal accumulation is 

uncorrelated among metals, and 2) an alternative model allowing for correlated evolution. 

The two models were compared using a likelihood ratio test, and the explanatory power 

of the correlated evolutionary model was not significantly better than the uncorrelated 

null model (D=15.29; df=21; p=1.00). Additionally, the correlated evolutionary model 

was rejected via AIC model comparison (AICnull=2339.24; AICalt=2342.20). Therefore, 

the evolution of metal uptake was assumed to be independent for reconstructing ancestral 

states of metal accumulation of individual metals. 
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Ancestral state reconstructions were performed to calculate the evolutionary mean 

(root state) for accumulation of each metal in wild taxa, and the arithmetic mean was 

calculated for cultivated accessions. Phylogenetic signal was assessed separately for the 

accumulation of each metal using Blomberg‟s K using the phylosig function in the 

phytools R package (Blomberg et al. 2003, Revell 2012). Blomberg‟s K for each metal 

was not significantly different from zero (As K=0.66, p=0.66; Cd K=0.72 p=.64; Ni 

K=0.81, p=0.20; Cr K=.96, p=0.05; Pb K=0.85, p=0.13 ; Zn K=0.96, p=0.06 ; Cu K=0.83, 

p=0.17). 

RESULTS 

Elemental concentrations in the leaves of control plants fell within typical ranges 

for most plants and were as follows: As (0-5.90 mg/kg), Cd (0-2.60 mg/kg), Cr (0-7.22 

mg/kg), Cu (1.11-38.01 mg/kg), Ni (1.18-17.76 mg/kg), Pb (0-6.48 mg/kg), and Zn 

(33.28-347.97 mg/kg) (Broadley et al. 2001, Kraemer 2010, van der Ent et al. 2013). Leaf 

Cr concentrations were similar among Cr and control treatments, with leaf concentrations 

in the Cr treatment ranging from 0-7.23 mg/kg in wild taxa and 0.52-8.28 mg/kg in 

cultivated H. annuus. Plants in the Cr treatment exhibited no visible signs of Cr toxicity. 

A similar result was observed in the Pb treatment, with wild taxa exposed to lead 

exhibiting leaf Pb concentrations of 0-9.74 mg/kg and cultivated H. annuus exhibiting Pb 

concentrations ranging between 0-2.60 mg/kg. Plants in the Pb treatment also exhibited 

no visible signs of metal toxicity. 

In the As treatment, cultivated H. annuus accumulated an average of 36.04 mg/kg 

As (SE=7.47) in leaves, with no mortality and only one individual exhibiting signs of 



 

135 

metal toxicity (chlorotic leaves) (Fig. 5.1). Wild H. annuus accumulated 32.43 mg/kg As, 

and the sister species H. argophyllus accumulated 20.45 mg/kg As. The evolutionary 

mean of leaf As concentration was 11.94 mg/kg (SE=1.05), and the majority of remaining 

taxa accumulated less than 10 mg/kg. No signs of As toxicity were observed in wild 

species. 

Leaf Cd concentrations ranged from 140.82-380.15 mg/kg in cultivated H. annuus 

(mean=243.13 mg/kg, SE=17.74), and a similar pattern was seen in the three most closely 

related wild taxa, H. annuus (216.78 mg/kg), H. argophyllus (266.95 mg/kg), and H. 

exilis (210.88 mg/kg), with no visible signs of toxicity observed in these taxa (Fig. 5. 1). 

The majority of wild taxa in the Cd treatment also exceeded the hyperaccumulation 

threshold of 100 mg/kg Cd, with an evolutionary mean leaf concentration of 209.21 

mg/kg (SE=11.14). Mortality of both replicates was observed in four wild taxa: H. 

petiolaris, H. niveus ssp. canescens, H. arizonensis, and H. angustifolius. 

The majority of cultivated H. annuus accessions exhibited leaf chlorosis and 

deformation in the Ni treatment, and leaf Ni concentrations ranged between 101.05-

438.80 mg/kg (mean=280.40, SE=27.87) (Fig. 5.1). Similar leaf concentrations were 

observed in H. annuus (224.61 mg/kg), H. argophyllus (682.68 mg/kg), and both of these 

species also exhibited leaf chlorosis and deformation. Sister species H. exilis also 

achieved similar leaf concentrations (229.45 mg/kg) but exhibited no visible signs of Ni 

toxicity. Among wild taxa, Ni concentrations ranged between 89.31-2141.73 

(evolutionary mean=911.10 mg/kg, SE=55.92). Six wild taxa exceeded the Ni 

hyperaccumulator threshold concentration of 1,000 mg/kg: H. microcephalus, H. 

atrorubens, H. mollis, H. porteri, H. cusickii, and H. debilis ssp. silvestris, the last of 
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which exhibited signs of Ni toxicity (leaf chlorosis). One of two replicates of H. 

neglectus exhibited leaf deformation, and mortality was observed in both replicates of H. 

laciniatus. 

Zn accumulation varied widely among cultivated H. annuus (1125.27-53100.85 

mg/kg, mean 11201.07 mg/kg, SE=4269.36), and all cultivated accessions exhibited 

severe Zn toxicity (Fig. 5.1). Similarly, Zn leaf concentrations among wild annual taxa 

were variable, and all wild annual taxa also exhibited severe leaf deformation and 

chlorosis. A total of four cultivated and 13 wild accessions achieved leaf Zn 

concentrations exceeding the hyperaccumulator threshold of 10,000 mg/kg, but only 

seven of the wild taxa achieved Zn hyperaccumulation without suffering visible signs of 

Zn toxicity: H. gracilentus, H. occidentalis, H. heterophyllus, H. silphioides, H. 

atrorubens, H. radula, and H. microcephalus. 

Leaf Cu concentrations among cultivated H. annuus in the Cu treatment were 

slightly elevated relative to controls (34.07-54.54 mg/kg, mean=44.31, mg/kg SE=2.24), 

as were concentrations observed in the majority of wild taxa (evolutionary mean=55.19, 

SE=8.6) (Fig. 5.1). No taxa exceeded threshold concentrations for Cu hyperaccumulation 

(1.000 mg/kg), and seven wild taxa exhibited leaf chlorosis and deformation. 

DISCUSSION 

Here we identify several novel potential hyperaccumulator taxa of Cd (22 wild, 

all 12 cultivated), Ni (6 wild, 0 cultivated), and Zn (13 wild, 4 cultivated). Consistent 

with Cutright et al. (2010), we report Cd hyperaccumulation in cultivated H. annuus. 

However, despite sampling a broad variety of allelic diversity among cultivated H. 
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annuus (Mandel et al. 2011), we fail to replicate findings of As, Cr, and Ni 

hyperaccumulation in any Core 12 accessions of cultivated H. annuus (Cutright et al. 

2010), finding instead relatively low levels of accumulation of these metals among 

cultivated accessions, and extremely low accumulation of Cr across the entire genus 

(relative to current hyperaccumulation threshold criteria). However, moderate (~30 

mg/kg As) uptake of leaf As was observed in most cultivated accessions, and a single 

cultivated accession exhibited leaf As concentrations exceeding 100 mg/kg. Although far 

from the hyperaccumulation threshold criteria, these levels are between 1-2 orders of 

magnitude higher than concentrations typically found in land plants (van der Ent et al. 

2013, Pollard et al. 2014). Similar As concentrations were also observed in wild H. 

annuus and its sister species H. argophyllus, suggesting a possible evolutionary origin of 

the capacity for elevated As accumulation in the most recent common ancestor of H. 

annuus and H. argophyllus. Other isolated instances of elevated As accumulation were 

observed in seven other taxa spread across the genus. These findings, coupled with a non-

significant Blomberg‟s K, suggests that these instances of elevated As accumulation may 

represent additional independent evolutionary origins or repeated losses from an 

accumulating common ancestor. 

We also find elevated Ni accumulation among cultivated H. annuus, exceeding 

leaf concentrations of 100 mg/kg which some authors regard to be the threshold criteria 

for Ni “hemi-accumulation,” an intermediate classification between non-accumulators 

and hyperaccumulators (Boyd and Jaffre 2009, van der Ent et al. 2013). However, 10 out 

of 12 instances of Ni hemi-accumulation in cultivated H. annuus were also accompanied 

by visible signs of Ni toxicity, and similar results were observed in both wild H. annuus 
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and H. argophyllus. Conversely, the serpentine sunflower H. exilis (sister to the common 

ancestor of H. annuus and H. argophyllus), which occurs in serpentine soils with 

extremely high Ni concentrations, exhibited hemi-accumulator properties without 

apparent Ni toxicity. Outside of the annual clade, most species achieved either hemi-

accumulator or hyperaccumulator status, but no taxa exhibited signs of Ni toxicity (with 

the exception of mortality in H. arizonensis). Together, these findings suggest that the 

capacity for elevated Ni accumulation may be ancestral to the genus, with one or 

potentially multiple losses of tolerance within the annual clade. 

Recent studies have proposed lowering the threshold hyperaccumulator 

concentrations for Cu from 1,000 to 300 mg/kg and Zn from 10,000 to 3,000 mg/kg 

(Broadley et al. 2007, Kraemer 2010, van der Ent et al. 2013). Using these modified 

cutoffs, 25 wild taxa and 9 cultivated accessions would meet the threshold for Zn 

hyperaccumulation, and two wild taxa would meet the threshold for Cu 

hyperaccumulation. Additionally, under these criteria, 19 out of 25 observed Zn 

hyperaccumulators would also be Cd hyperaccumulators. However, no evolutionary 

correlation was supported between Cd and Zn accumulation, and the phylogenetic signal 

for both traits was non-significant. Despite this finding, the relative ubiquity of the 

capacity for Cd and Zn hyperaccumulation across the genus strongly suggests a possible 

shared evolutionary origin ancestral to Helianthus. The hyperaccumulation paradigm 

implies a bimodal distribution of metal accumulation in plants, with a clear distinction 

between non-accumulators and hyperaccumulators approximately defined by current 

hyperaccumulator criteria. If this is indeed the case, the study of metal accumulation as a 

continuous trait may fail to detect correlated evolution of presence/absence-type traits. 
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However, no consensus yet exists in phylogenetic comparative biology regarding 

appropriate methods for testing correlated evolution between categorical traits (Maddison 

and FitzJohn 2015). Nevertheless, previous work in other systems points toward a strong 

association between genetic and physiological processes controlling Zn and Cd root-to-

shoot translocation and tolerance, which is consistent with the strong overlap in Zn and 

Cd hyperaccumulator taxa observe within Helianthus (Hanikenne et al. 2008, O 

Lochlainn et al. 2011). 

To maximize the number of taxa and metals considered, this study uses a single 

soil treatment level per metal. Because of this, we cannot fully address here the 

evolutionary history of metal tolerance, a physiologically complex trait which would 

ideally be investigated using a dose-response curve approach over a gradient of soil metal 

treatment concentrations (Cappa et al. 2015). Thanks to recent statistical advances, such 

approaches can now be conducted in a phylogenetic comparative framework (Goolsby 

2015, Goolsby and Mason 2016), providing a powerful means of investigating multiple 

metal tolerance and accumulation in the context of plant physiology. 

 

CONCLUSION 

Here we identify widespread metal hyperaccumulation of Cd and Zn and elevated 

metal accumulation (“hemi-accumulation”) of Ni within cultivated sunflowers. The 

capacity for elevated accumulation of each of these elements appears to have evolved in 

wild Helianthus prior to sunflower domestication, although cultivated sunflowers lack the 

ability to tolerate high foliar concentrations of either Ni or Zn. Additionally, the capacity 

for hyperaccumulation of Cd, Ni, and Zn appears to be widespread throughout wild 
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Helianthus. We find possible support for correlated evolution of Cd and Zn 

hyperaccumulation as categorical presence/absence traits, but further work and statistical 

development is needed to further clarify the relationship. We also identify two instances 

of potential Cu hyperaccumulation (using the criterion of 300 mg/kg Cu) in wild 

Helianthus. No plants exposed to Se treatments in the present study survived, suggesting 

that sunflowers may be too sensitive to Se to properly investigate in the context of 

hyperaccumulation. We also find no evidence of hyperaccumulation of As, Cr, or Pb in 

any Helianthus species. Future work on multiple metal hyperaccumulation in Helianthus 

should further investigate the evolutionary interactions of Cd, Ni, and Zn 

hyperaccumulation and tolerance, as well as what potential adaptive benefits may favor 

metal hyperaccumulation. 
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FIGURES 

Figure 5.1. Elemental concentrations of As, Cd, Ni, Zn, and Cu in dried sunflower leaves 

(mg/kg) for wild and cultivated Helianthus (cultivated H. annuus are represented by a 

polytomy and connected to wild H. annuus via a dotted line). Visible signs of metal 

toxicity (leaf chlorosis or deformation) is indicated by a diagonal slash over the box 

corresponding to a particular species-metal combination. Mortality in one of two 

replicates for a given species-metal combination is denoted by an (X), and mortality in 

both replicates is denoted by a solid black box.
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CHAPTER 6 

CONCLUSIONS 

This dissertation has put forward methods for studying complex phenotypes in 

phylogenetic comparative studies and explored the evolution of heavy metal 

hyperaccumulation in a comparative framework. In Chapter 2, tools were developed to 

extend phylogenetic comparative methods to incorporate function-valued traits. Function-

valued comparative methods inherit the flexibility of many phylogenetic generalized least 

squares (PGLS) based analyses, and the statistical properties of these methods perform 

well assuming a Brownian motion model of evolution. However, the methods of Chapter 

2 are limited in the types of evolutionary models that may be specified, as the PGLS-

based approach lacks a log-likelihood function for estimating model parameters. 

Chapter 3 further develops the methods of Chapter 2 with the introduction of a 

pseudolikelihood-based approach for parameter estimation. This framework allows for 

extremely flexible model specification, including alternatives to Brownian motion 

evolution, incorporation of fixed effects, combinations of multiple evolutionary 

hypotheses, within-species variation, and missing data. In addition to function-valued 

traits, Chapter 3 is applicable to a broad suite of high-dimensional traits, such as 

comparative analysis of morphometrics and expression data. The methods of Chapter 3 

substantially outperform existing “distance-based” in terms of both Type I error and 

statistical power under a variety of evolutionary scenarios. 
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Heavy metal hyperaccumulation in sunflowers is then investigated in a 

phylogenetic context in Chapters 4 and 5. Chapter 4 investigated the elemental defense 

hypothesis, which predicts a negative relationship between foliar metal concentration and 

herbivory rates. Overall, mixed support was found for the elemental defense hypothesis 

as it relates to metal accumulation in sunflowers and the generalist insect herbivore 

Vanessa cardui (the painted lady butterfly): when faced with no choices, V. cardui 

caterpillars readily consumed leaves from plants grown in both Cd and Ni-amended soils 

at similar rates to leaves from plants grown in control (non-metal-amended) soils. In 

contrast, caterpillars tended to prefer control leaves over Cd leaves in both H. annuus and 

H. argophyllus. Similarly, caterpillars displayed a preference for control H. argophyllus 

leaves over nickel-treated plants. However, caterpillars exhibited a small but statistically 

significant preference for nickel-treated H. exilis leaves over control leaves. In Chapter 5, 

the evolutionary history of the capacity for metal accumulation was investigated across 

both wild and cultivated Helianthus for eight metals: As, Cd, Cr, Cu, Ni, Pb, Se, and Zn. 

Hyperaccumulation was identified for Cd and Zn and elevated metal accumulation 

(“hemi-accumulation”) of Ni within cultivated sunflowers. Elevated accumulation of 

these metals appears to have evolved in wild Helianthus prior to sunflower 

domestication, although Ni and Zn tolerance appears to have been lost in cultivated 

sunflowers. Cd, Ni, and Zn hyperaccumulation is also widespread throughout wild 

Helianthus, and elevated Cu accumulation was also observed in two species. No evidence 

of hyperaccumulation was observed for As, Cr, Pb, or Se in any Helianthus species. The 

results from these experiments suggest further work on multiple metal hyperaccumulation 

in Helianthus should focus on the evolutionary interactions of Cd, Ni, and Zn 
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hyperaccumulation and tolerance, as well as what potential adaptive benefits may favor 

metal hyperaccumulation. The tools developed in Chapters 2 and 3 provide the 

framework to explore the evolutionary interactions of metal tolerance and 

hyperaccumulation as distinct function-valued traits, as well as for examining the 

adaptive hypotheses in an integrated comparative framework. 
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 3 

R Code for Efficient Repeated Calculations of Phylogenetically Independent 

Contrasts. 

require(phylocurve) 

require(ape) 

nspecies <- 1000 

ntraits <- 500 

tree <- rtree(n = nspecies) # Simulate a random 1000-species phylogeny 

Y <- matrix(rnorm(nspecies*ntraits),ncol=ntraits) # Generate random 

data 

rownames(Y) <- tree$tip.label 

# Call phylocurve:::prep_multipic (an internal phylocurve function) 

prep.Y <- phylocurve:::prep_multipic(x = Y,phy = tree) 

# Calculate phylogenetically independent contrasts 

# using pic (ape package) 

Y.pics.ape <- apply(X = Y,MARGIN = 2,FUN = pic,phy = tree) 

# Calculate PICs using phylocurve:::multipic 

# returns a list with contrasts, sum_invV, log_detV, root 

# 'contrast' is a matrix of PICs 

# 'sum_invV' is equal to sum(solve(vcv(tree))) 

# 'log_detV' is equal to log(det(vcv(tree))) 

# 'root' is the maximum likelihood phenotypic value at the root 

Y.pics.phylocurve <- do.call(phylocurve:::multipic,prep.Y) 
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# Verify that results are identical 

range(Y.pics.ape - Y.pics.phylocurve$contrasts) 

# Generate 50 random datasets 

niter <- 50 

randomY <- vector(mode = "list",length = niter) 

for(i in 1:niter) 

{ 

  randomY[[i]] <- matrix(rnorm(nspecies*ntraits),ncol=ntraits) 

  rownames(randomY[[i]]) <- tree$tip.label 

} 

####################################################################### 

# Compare time to calculate PICs on 50 random datasets 

# using pic vs multipic 

# 

##### pic function 

system.time(for(i in 1:niter) apply(X = randomY[[i]],MARGIN = 2,FUN = 

pic,phy = tree)) 

##### user  system elapsed  

##### 18.35    0.23   18.61 

##### multipic function 

system.time(for(i in 1:niter) 

{ 

  prep.Y$phe[1:nspecies,] <- randomY[[i]] 

# update prep.Y$phe with new data 

  do.call(phylocurve:::multipic,prep.Y) 

}) 

##### user  system elapsed  

##### 1.38    0.14    1.52 

####################################################################### 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 4 

Dataset B1. USDA-GRIN accession information for all taxa included in this study. 

Taxon Country State/Province PI 

Helianthus angustifolius USA Mississippi 673177 

Helianthus angustifolius USA Tennessee 649936 

Helianthus angustifolius USA North Carolina 664719 

Helianthus annuus USA New Mexico 435473 

Helianthus annuus USA California 435587 

Helianthus annuus USA Oklahoma 468486 

Helianthus annuus USA Idaho 531027 

Helianthus annuus USA North Dakota 539903 

Helianthus annuus USA Montana 586820 

Helianthus annuus USA Arkansas 613727 

Helianthus annuus USA California 649844 

Helianthus annuus USA Ohio 649853 

Helianthus annuus USA California 649858 

Helianthus argophyllus USA Texas 435630 

Helianthus argophyllus USA Texas 435635 

Helianthus argophyllus USA Florida 468651 

Helianthus argophyllus USA Texas 494572 

Helianthus argophyllus USA Texas 494573 

Helianthus argophyllus USA Texas 494576 

Helianthus argophyllus USA Texas 494580 

Helianthus argophyllus USA Texas 494582 

Helianthus argophyllus USA North Carolina 664729 

Helianthus cusickii USA California 649966 

Helianthus cusickii USA Washington 664658 

Helianthus cusickii USA Oregon 664662 

Helianthus debilis subsp. debilis USA Florida 435669 

Helianthus debilis subsp. silvestris USA Texas 435651 

Helianthus debilis subsp. tardiflorus USA Florida 468689 

Helianthus exilis USA California 649886 
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Helianthus exilis USA California 649893 

Helianthus exilis USA California 649895 

Helianthus exilis USA California 649897 

Helianthus exilis USA California 649898 

Helianthus exilis USA California 649899 

Helianthus exilis USA California 649900 

Helianthus exilis USA California 649901 

Helianthus exilis USA California 649902 

Helianthus exilis USA California 664626 

Helianthus exilis USA California 664630 

Helianthus exilis USA California 664631 

Helianthus neglectus USA New Mexico 435769 

Helianthus neglectus USA Texas 468769 

Helianthus neglectus USA New Mexico 468781 

Helianthus niveus subsp. canescens USA California 468788 

Helianthus niveus subsp. canescens USA Arizona 649905 

Helianthus niveus subsp. tephrodes Mexico Sonora 613758 

Helianthus petiolaris subsp. fallax USA Utah 435838 

Helianthus petiolaris subsp. 

petiolaris Canada Saskatchewan 592354 

Helianthus praecox subsp. hirtus USA Texas 435855 

Helianthus praecox subsp. praecox USA Texas 435847 

Helianthus praecox subsp. runyonii USA Texas 435849 



154 

APPENDIX C 

SUPPORTING INFORMfATION FOR CHAPTER 5 

Dataset C1. USDA-GRIN accession information for all taxa included in this study. 

Taxon State/Cultivar PI 

Helianthus agrestis Florida 673205 

Helianthus angustifolius Louisiana 673154 

Helianthus annuus HA 404 597368 

Helianthus annuus RHA 396 597373 

Helianthus annuus HA 314 599783 

Helianthus annuus VIR 847 386230 

Helianthus annuus Mammoth 476853 

Helianthus annuus HA 234 599778 

Helianthus annuus HA 821 599984 

Helianthus annuus RHA 408 603989 

Helianthus annuus RHA 426 617099 

Helianthus annuus RHA 328 664202 

Helianthus annuus HA 316 664225 

Helianthus annuus 

INRA line 

SF_230 SF_230 

Helianthus annuus Utah 673305 

Helianthus argophyllus Texas 494572 

Helianthus arizonensis Arizona 653549 

Helianthus atrorubens Alabama 649940 

Helianthus carnosus Florida 649956 

Helianthus cusickii California 649966 

Helianthus debilis subsp. debilis Florida 648666 

Helianthus debilis subsp. silvestris Texas 435651 

Helianthus debilis subsp. tardiflorus Florida 468689 

Helianthus exilis California 649895 

Helianthus floridanus Florida 673197 

Helianthus giganteus Ohio 664647 

Helianthus gracilentus California 435684 

Helianthus grosseserratus Iowa 613793 

Helianthus heterophyllus Louisiana 673162 
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Helianthus laciniatus New Mexico 653562 

Helianthus longifolius Georgia 650000 

Helianthus maximiliani Iowa 613794 

Helianthus microcephalus South Carolina 664703 

Helianthus mollis Ohio 673147 

Helianthus neglectus Texas 468769 

Helianthus niveus subsp. canescens Arizona 649905 

Helianthus niveus subsp. tephrodes California 650019 

Helianthus nuttallii Montana 531053 

Helianthus occidentalis Ohio 664648 

Helianthus petiolaris Utah 435834 

Helianthus porteri Georgia 649914 

Helianthus praecox subsp. hirtus Texas 435855 

Helianthus radula Louisiana 673163 

Helianthus salicifolius Oklahoma 664781 

Helianthus silphioides Louisiana 673156 


