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ABSTRACT
This dissertation proposes novel methods phylogenetic comparative methods for
studying complex biologicataits and investigates the evolutionary history of heavy
metal hyperaccumulation in a comparative framework. Current phylogenetic comparative
methods, which limit trait observations to univariate means with normally distributed
errors, are unable to incamate several biologically important trait types, including
phenotypic plasticity and dosesponse curves. The ability to study such phenotypes,
known as functiosvalued traits, in a comparative framework is critical to unifying the
historically disparatéields of evolutionary biology and toxicology. Two methdused
chapters lay out a framework for explicitly accounting for functialued traits in in the
context of macroevolution, representing a substantial improvement in comparative
methods which areurrently limited regarding the capacity to incorporate complex
multivariate traits. The first of these chapters extends phylogenetic generalized least
squares methods to allow for functigalued traits assuming a Brownian motion model
of evolution. Thenext chapter expands functiealued and other higimensional

comparative analyses to allow for the incorporation of alternative evolutionary models,



fixed effects, withinspecies variation, and missing data, and also addresses issues of
statistical powe model flexibility, and computational tractability.

The next two chapters explore the evolution of metal hyperaccumulation in the
Helianthusgenus (sunflowers). First, the elemental defense hypothesis, an adaptive
hypothesis for metal hyperaccumulatiohigh predicts a deterrent effect of leaf metals
on herbivory, is evaluated lelianthusand the generalist herbivov&nessa carduihe
Painted Lady butterfly) using a comparative approach. Mixed support for the elemental
defense hypothesis is found, wherbivores exhibiting a preference for leaves from non
metattreated plants over mettakated plants in certain species. However, in the absence
of a choicey. carduiwere not deterred by leaf metals. Next, the evolutionary history of
As, Cd, Cr, Cu, N Pb, Se, and Zn accumulation was investigated a¢tesanthus
Hyperaccumulation of Cd, Ni, and Zn is widespread througHelianthus Cd and Zn
hyperaccumulation, as well as elevated Ni accumuldilaly evolved in wild
Helianthusprior to sunflover domestication. These results, in conjunction with the
comparative methods developed in this dissertation, provide a framework for further

investigation of metal hyperaccumulation as a funetialued trait.

INDEX WORDS: Elemental defense hypothesisnEtionvalued traitsHelianthus
Herbivory, Highdimensional phenotypes, Macroevolutidfetal
hyperaccumulatiorPhylogenetic comparative methods,

Sunflower.
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

Hyperaccumulation is a rare plant tlaytwhich plants accumulate extremely
high concentrations of metals.¢.,0 1 , 0 0 On lgaftissdies Wwithout suffering toxicity
(Reeves and Baker 200@Ithough the physiology and genetics of this phenomenon
have been extensively studied, very little information exists regarding the complex
evolutionary dynamics of tolerance and hyperaadation,its adaptive significance, and
potential tradeoffs with key functional plant tra&udying theevolutionof
hyperaccumulationequires the integration of two disparate figldsvolutionary biology
and toxicology, the study of which are botlrimsically linked to understanding the
physiological responses of organisms to their environment througliBicldham 2011)
Despite their common objectives, theoretical obstacles and practical limitations have
historically restricted the integrated syuaf evolution and toxicolog{Bickham 2011,
Goolshy 2015)

The study of phenotypic evolution is itself complicated by theindependence
of species phenotypes due to shared ancestry. Three decades ago, the basis of modern
phylogenetic comparative metrd e mer ged wi th the devel opmer
phylogenetically independent contragtglsenstein 19855ince then, comparative
methods have seen an explosion in capabiliti@scestral state reconstructi@@®arland
et al. 1999)estimation of phylogegtic signal(Pagel 1999, Blomberg et al. 2003)

comparing evolutionary rat¢®'Meara et al. 2006gstimation of nofBrownian



evolutionary modelgHansen 1997, Harmon et al. 2018)d the ability to account for
within-species variatio(lves et al. 2007Felsenstein 2008, Hansen and Bartoszek 2012)
and missing datéBruggeman et al. 2009\Ilthough these methods are primarily focused
on the evolution of univariate traits, more recent methods have sought to incorporate a
multivariate framework, includinghylogenetic principal components analysis (PCA)
(Revell 2009) phylogenetic path analydqislardenberg and Gonzaloyer 2013) and
comparative analysis of higfimensional morphometric traigddams 2014c, b, a,

Adams and Felice 2014pespite the numerguand diverse capabilities offered by
univariate phylogenetic comparative methods, these approaches are seldom integrated for
multivariate analyses. For instance, phylogenetic PCA anddigansional

morphometric analyses offer no approaches for dealitignenBrownian evolutionary
models or withirspecies variation. These limitations are problematic, as several
simulated and empirical analyses have demonstrated that substantial bias is introduced
when intraspecific variation is ignor¢dansen and Barszek 2012, Silvestro et al. 2015)
or when a Brownian motion model of evolution is inappropriately appRednell et al.
2015, Uyeda et al. 2015)

In approaching toxicology in an evolutionary framework, current phylogenetic
comparative methods fall sh@s they are unable to incorporate phenotypically plastic
traits, such as developmental trajectories, environmental variation, and exposure to toxic
substances. This is because comparative methods operate under the assumption that
species trait values arxéd with normally distributed error. Although appropriate for
some traits, many traits relevant to evolutionary biology (particularly those relating to

toxicology) are phenotypically plastic along environmental and temporal gradients (e.g.,



phenotypic rgsonses to abiotic stress, developmental trajectories, etc.). Such traits are
more appropriately described by mathematical functions rather than univariate trait
means.

This dissertation seeks to bridge the current barriers separating evolutionary
biology and toxicology, drawing from the rapidly emerging theoretical, computational,
and empirical resources relevant to their study. The second chapter proposes statistical
tools for expanding phylogenetic comparative methods for the incorporation of function
valued traits. The ability to directly study the evolutionary interactions of funetdured
traits is critical for the study of many biologically important traits, as well as for
integrating toxicological data, such as dosgponse curve, in a macroevabumary
framework. These tools are fully compatible with several recently developed high
dimensional comparative methods, which can be used to test for phylogenetic signal
(Adams 20143g)assess correlated trait evolutig@dams 2014b, Adams and Felice 2014)
perform phylogenetic ANOVAAdams 2014h)and compare evolutionary rai@ams
2014c) all in a functiorvalued context.

With the flexibility of high-dimensional comparative methods also comes its
associated limitations an apparent inability to incorpate intraspecific functionalued
variation and alternative evolutionary mod@slams 2014c, b, a, Adams and Felice
2014) In addition to functiorvalued phenotypes, many important biological traits are
inherently multidimensional, such as shape/morphlomeata, physiological
suites/syndromes, and tolerance to toxic substances. For such traits, the number of
dimensions for a given trait may be large, often exceeding the number of observed

individuals or species. Conventional phylogenetic comparatitistgtal methods are



unable to handle such higlimensional phenotypes, as the number of parameters to
estimate increases polynomially with increases in trait dimensioiidiityand Ane
2014) Consequently, dramatic reductions in statistical power, iatoetoglikelihoods,
and lack of parameter identifiability inhibit meaningful inference for such traits. Recent
advances in higdimensional comparative methods have enabled simple investigations
but are limited to a small class of model specificatioh® third chapter of this
dissertation addresses these limitations using a likeldbasdd extension of the methods
proposed in the second chapter that eliminates these shortcomings for both function
valued and other higtlimensional morphometric traitshis chapter develops a flexible
framework for analyzing higdimensional traits in a phylogenetic comparative context
which allows for complex model specification while maintaining high statistical power
and parameter identifiability. These novel methdtsiafor ultra-high dimensional
phenotypes to be studied using both frequentist and Bayesian approaches.

Unlike most hyperaccumulator species, domesticated sunfléveéa(ithus
annuu$ is a hyperaccumulator of multiple metals, including As, Cd, Cr, andHlNi
annuusgs also capable of accumulating high concentrations of several other metals, such
as Cu, Fe, Zn, Mn, U, Cs, and ®tamey et al. 1986, Lin et al. 2003, Prasad and Freitas
2003, Solhi et al. 2005, Cutright et al. 2010, Walliwalagedara et H)).2ild
Helianthusoccurs across North America in a variety of habitats, including serpentine
soils, beaches, coastal prairies, deserts, salt marshes, mountain meadows, and open
woodlands, and are adapted to a range of strong environmental stres$oas, drorght,
salinity, and low nutrient availabilitfHeiser et al. 1969, Stephens et al. 20R5)ealth

of genetic, phylogenetic, and physiological data and resources are available for wild and



domesticated sunflowe(bleiser et al. 1969, Timme et aD@7, Mandel et al. 2011,
Mandel et al. 2013, Stephens et al. 20h%gkingHelianthusideal study system for
investigating metal hyperaccumulation and placing it in an integrated evolutionary
toxicology framework.

The fourth chapter of this dissertatiosteethe most commonly cited explanation
regarding selective benefits of metal hyperaccumulation, the elemental defense
hypothesis, which predicts an ahgrbivore or antpathogen effect of high leaf metal
concentrations. Specifically, the aherbivoreaspect of the elemental defense
hypothesis is evaluated in a phylogenetic context using a small clade within wild
Helianthusclosely related to domesticated sunflower using control, nickel, and cadmium
treatments. The fifth chapter investigates the evahatiy histories of eight different
metals and metalloids (As, Cd, Cr, Cu, Ni, Pb, Se, and Zn) in the Eefisnthusgenus.
Together, these chapters develop a framework for the study of metal hyperaccumulation

in the context of evolutionary toxicology.
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ABSTRACT

Phylogenetic comparative methods offer a suite of toolsttmtyingtrait
evolution. However, most models inherently assume fixed trait values within species.
Although some methods can incorporate error around species means, few are capable of
accaunting for variation driven by environmental or temporal gradients, such as trait
responses to abiotic stress or ontogenetic trajectories. Such traits, often referred to as
functionvalued or infinitedimensional, are typically expressed as reaction naiose
response curves, or time plots and are described by mathematical functions linking
independent predictor variables to the trait of interest. Hamgpduce a methotbr
extendingancestral state reconstructimnincorporate functioiwalued traitsn a
phylogenetic generalized least squares (PGLS) framewasnkell as extensions of this
method fortestingphylogenetic signaperforming phylogenetic ANOVAandtestingfor
correlated trait evolutionsing recently proposed multivariate PGLS meth&dstistical
power of tinctionvalued comparativenethodss compared to univariatgproaches
usingdata simulationsand the assumptions and challenges of each are discussed in

detail.
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INTRODUCTION

Phylogenetic comparative methods such as ancetdtalreconstruction,
phylogenetically independent contrasts (PICs), and phylogenetic generalized least
squares (PGLS)omprisea suite of tool$or inferring the evolutionary history of traits
and for testing hypotheses of trait evolut{®elsensteii985 Grafen1989 Martins and
Hansen 199)7 Although intraspecific differences due to measurement error, sampling
error, or natural variation can be incorporated into error structures, these models
generally operate under the assumption that individual sppossess a fixed mean for
any given trai{Martins and Hansen 1997; Ives et al. 200fany traits relevant to
ecology and evolutionary biology are inherently functi@atued, including
developmentally varying traits, niche preference, thermal performbigckistory
patterns, plant ecophysiological strategresponseto environmental hazardgsich as
heavy metalsind anthropogenic contaminants, and tolerance to abiotic stressors such as
salinity, drought, and nutrient limitation. Rather than a singdéan value, function
valued traits are best represented by curves defined by mathematical functions.
Accordingly, univariate analytical approaches to such traits, whitto accounfor trait
dependence on independerbgenousariables such as time environmentare
statistically inappropriatéKingsolver et al. 2001; Rocha and Klaczko 2012; Stinchcombe
et al. 2012; Donovan et al. 2014)

Until recently,standard phylogenetic comparative methioaigelackedtools for
direct incorporabn of functionvalued analyses. Insteadanyresearchers have
approached evolutionary questions regarding funetedued traitdoy summarizingrait

curveswith univariatemean values anapplyingthese values directhp comparative
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methods. This approach typicallyli#zes one of two metrics: mean trait values evaluated
at specific environmental leve(®ollard et al. 2001; Pigliucci et al. 2008y} inverse
functions evaluated atstandardized biological respon$&uenard et al. 2011; Strachan

et al. 2011; Larras e. 2014) The inverse of a functioi2w  wis the function

"Q w wthat gives the value ofthat is expected to produce a respondeor

example, in toxicological studies, statistical responses to chemicals are typically
expressed as inverse functions rather than responseeatificspose (the 50% lethal
response dose (LD50) of a chemical is the dose expected to cause mortality in 50% of
exposed subjectdsfor linearfunctions with similar slope®oth approaches typically

yield consistent resultor nonlinearfunctions appr@achesusing mean trait values

across treatment levels are unrelialenversely,nverse evaluatioof monotonic

functions at analogous reference trait values across species (e.g., LD50) is a valid
approactregardles of linearity or nonlinearityl his isbecause inverse function
evaluationata fixed biological endpoint returns the value of ithdeependent variable that
produce said respons@ndis thus not subject to weighting leyirvethresholds or other
nonlinear featuresdowever, summary values suas LD50 only capture a single
dimension of functiofvalued traits and are likely to mask important trait variation across
species. Consider two aquatic species exhibiting identical LD50 values for salinity
toxicity, but the slope of the dosesponse cue for one species is much steeper than the
doseresponse curve of the other species. In this example, interpretation of the LD50s in
isolation might lead to the incorrect conclusion that salinity tolerance in the two species is
identical. Similarly, otheunivariate summaries of functiaralued traits, such as area

under the curve, fail tdistinguishbiological differences such generalistspecialist
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shiftsin which the shape of the curve changes but the total area under the curve remains
constan{lzemand Kingsolver 2005; Stinchcombe et al. 20E2y. these reasons,
evolution of functiorvalued traits should be studied using methods that incorporate
entire species trait curves rather than univariate summaries.

One particularly important challenge redtto functiorvalued traits is the study
of plasticity, which is the focus of the next section. However, it should be noted that the
principles of functiorvalued traits discussed in the next section, in addition to trait
plasticity, apply broadly to othelasses of functionalued traits as well (e.qg.,
environmental tolerance, ontogenetic variation, etc.).

Plastic traits: motivation for study, common approaches, and challenges
central question implicit to the study of phenotypic plasticity is howtiplgsaffects
evolutionary processes, such as gene flow, speciation, diversification, and persistence in
novel environmentéNund 2012) Questions concerning the evolutionary dynamics of
phenotypic plasticity, plasticity costs, and tradeoffs are alsamiplar interest
(Callahan et al. 2008puch questions may be applied to exploring evolvability and rates
of evolutionary change of both plastic and fixed traits to better understand or anticipate
species responses to processes such as environmehiap¢Guenard et al. 2011;
Guenard et al. 2013; Larras et al. 2QXlimate changéBradshaw and Holzapfel 20Q6)
and species invasioifRichards et al. 2006By inferring the evolutionary history of trait
responses to environmental conditions, evohary hypotheses relating to phenotypic
plasticity, such as adaptive plasticity, plasticity costs, and tradeoffs in plastically varying
traits,may be tested. Additionally, by taking into account phylogenetic variation in

reaction norms, certain patterngyiously obscured or falsely detected, either due to
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sampling traits in too few or too narrowly varying environments, assuming linearity of
nonlinear reaction norms, or failing to consider interspecific differences in phenotypic
minimum and maximum valuemay be clarified

Traitsare often samplednder naturalield conditions and assumed to be fixed
(non-plastic), despite clear evidenicemany traitof substantial variation driveloy
environment and developmegihitman and Agrawal 2008; Mason et2013; Donovan
et al. 2014)By failing to account for environmental or ontogenetic variation, or by
assuming that environmental differences can be treated as covariates that uniformly affect
all species of interest, statistical and biological inferencesbeainreliabléFig. 21a)
(Rocha and Klaczko 2012Additionally, environmental variation may obscure
evolutionary signatures, leading to the incorrect conclusioratinait is too labile for
phylogenetic analysis (Revell 2010).

As an alternative toéid measurementstudiesmay beperformed in
homogenougaboratory settingtd minimize plastic intraspecific variatigrwith the
intention of Aremovingo the effect of envi
expressionHowever, uniform environmesifail to capture the full extent of trait
combinations possible within a species; instead, only a snapshot of possible trait
combinations is identified, which is potentially problematic when making evolutionary
inferences on putatively adaptively pladtigits. Anotherstrategy involves estimating the
difference in field trait values with controlled common environment trait values as a
measure of total trait plasticifiKnight and Ackerly2003) Although an improvement,
this method has several limitatiorlg the ability to isolatespecific drivers of trait

plasticityis limited; 2) providingasingleideal environment for multiple species native to
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diverse habitatsmay not be possibleso some species might be stressed under common
environment conditionsand 3) it isunlikely that the full range of trait plasticity is
captured by sampling traits under field and sistgatment lab condition$ig. 21b)
(Jacobs and Latimer 2012)

Researchers can capt@enore comprehensive representabbthe capacityfor
plasticityby exposing species ta controlled common environmenthile manipulating a
singleenvironmental variableSuch environmental manipulations often involve treating
continuous variables as arbitrarily categorized treatments fii@gwg andfhighd), which
inherentlyimpose the assumption lriearity and normality of dat&ccordingly,
problems are likely to arise if the slope, strength, or shape of reaction norms or plastically
induced shifts in correlated traits differs across sp€Eigs2.1c) (Rocha and Klaczko
2012) Furthermore, ategorcal environmental manipulations pose several analytical
challenges. In particular, trait measurements must be made under comparable treatment
levels, and sampling differences and missing data are indiinepaith many statistical
methods. Additionally, the magnitude of arbitrarily categorized or binned continuous
treatment values is ignored, thus sacrificing statistical power and limiting the ability to
predict trait values at unobserved ley@&siswoldet al. 2008; Stinchcombe et al. 2012)

Evaluating traits at multiple levels along a continuous environmental gradient
offersthe opportunity to more fully assess thactionvaluedrelationship between
environment and plastically varying tra{tsg. 21d) (Kingsolver et al. 2001; Rocha and
Klaczko 2012; Stinchcombe et al. 2012; Murren et al. 20b4jeneralfunctionvalued
analyse®ffer several advantagés other approache$) they arerobust to sampling

differences; 2jhere isno need for measurents to be conducted at identical treatment
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levels (provided measurements provide sufficient coverage of the range of interest to
accuratelyestimatefunction parameters); 3hey have highestatistical power; 4) they
incorporate thenagnitude and trenflom continuous predictor variablesnd5) they

allow prediction oftrait responses in extant and ancestral taxanobserved levels
(Kingsolver et al. 2001)

A novel approach for function-valued phylogenetic comparative methods
Although ®veral studiebave implemented functievalued analyses for studying and
predicting the evolution of functiemalued traitswithin a single specigStinchcombe et
al. 2012) methods for analyzing functievalued traits in an explicitly phylogenetic
contexthave only ecently begun to emerge. Recently, a method called phylogenetic
Gaussian process regression (PGPR), an extremely flexible method for reconstructing the
evolutionary history of functiowalued traits, was proposééiston et al. 2012
Hadjipantelis et al. 2I8; Jones and Moriarty 2013h PGPR, curves of any shape may
be analyzed withow priori assumptions of function structure, multiple sources of
uncertainty may be incorporated, and a variety of evolutionary models may be tested
(Hadjipanteliset al 2013. Despitets flexibility, PGPR currently lacks compatibility with
several commonly used comparative methods such as phylogenetic regression and
estimation of phylogenetic signal, as such methods inherently rgliydogenetic
generalized least squaré¥3LS-based reconstruction of ancestral staiéar{ins and
Hansen 1997Blomberg et al. 2003).

Here | present functiorvalued extension of ancestral state reconstruction in a
PGLS frameworkThis method inherits the flexibility of PGLS and is fully coatible

with several recently proposed multivariate P@i&sed methodshich can be used to
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test for phylogenetic signghdams 2014g)perform phylogenetic ANOVA (Adams
2014b),evaluate correlated trait evolutibletween functions and univariate traitsléfns
2014b) or between multiple functions (Adams and Felice 2@1%) test foshifts in

evolutionary rates of functiemaluedtraits (Adams 2014c)

METHODS

Conceptually, a functionalued trait is composed of infinite discrete landmarks
along a curve tht evolve as a single multivariate trgféidams 2014a)Representation of
a function for a given species can be approximated with a-femggth sequence of
landmarks described byy coordinatesHowever, prior to performin§GLSbased
comparative analgs,functionsmust first be alignetb make landmarks analogous
across species (Adams 2014a). Depending on specific funalaad attributes,
landmark alignment may be accomplished using a variety of techniques, such as inverse
function alignment, dynaroitime warping iMyers et al. 1980; Giorgino 209%nd
generalized time warping (Zhou abe la Torre2012), as described in the following two
sections.

Ancestral curve reconstruction of sigmoidal curvesMonotonic functions with
constaniminimum and maxiram values, such as sigmoidal functions (e.g., as with
binomial, proportional, or probabilistic data), are a special case of funalaed traits
in which they-axis represents absolute endpoints that are comparable across species. In
such cases, theaxis serves as a padigned point of reference, and functivalued
evolution of these types of curves need only be expressed alosgtiseusing inverse

functions evaluated at@nstantector ofy-values spanning minimum and maximum
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function values (@., between 0 and 1) for each species. In this way, the trait being
studied is the vector ofvalues that corresponds to a fixed vector of refergnadues

for a given species. For example, in dosgponse curves, thé50is a comparable

landmark aarss species that can be appropriately analyzed using conventional univariate
phylogenetic comparative methods. Conversely, the response at a specific dose is not
comparable across species due to thelmaarity of sigmoidal curves, and inferences
based o such approaches are incorrect.

Univariate ancestral state reconstruction can be easily extended to incorporate
functionvalued traits using a PGLS framewdMartins and Hansen 199First,
parameters for functiomalued traitsQw are estimated fagach ofN species. The
reconstructed vector of functiaralued landmarks at the root of the triele, , isthen
calculated using the geralized least squares formula

H A A f 1)
where’Ais the matix of expected trait varianeeovariancegiven by the phylogenetic tree
and assuming a specific model of trait evolution (e.g., Brownian metiag)an0  p
matrix of onesgis a vector of evenly spaceg-axislandmarksetweeryando(0 and
1 for binomial datg)andn is thed & matrix ofinverse function&Q evaluated ay.
Root vecto,  is extended into ad € matrixr), and each row is filled with}

Next, the matrix ofd internal noddandmark vedirs is calculated

H AA A non (2)
whereAis thed 0 matrix ofexpected covariandsetween internal nodesd tips as
specified by the phylogenetic tree and model of evolufion, isané 0 matix

consisting oM columns each filled witl, . H representy w in the set of
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landmark coordinatesQ w fo , which can then be used to estimate parameters for
curvesat each nodeA hypothetial example of ancestral curve reconstruction of a
sigmoidal trait is visualized ifigure 22.

Variance and 95% confidence intervals may also be estimated for reconstructed
ancestral curves (Rohlf 2001). First, the Brownian motion parameterestinated for

each landmarkfrom 1 ton

©)

S
T
1>
=
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Next, variance is calculated for each reconstructed landmark at each internal node
. , AEAC AA A
) ) 4)
© AA A ©AA

whereA" is thed U matrix of expected covariance among internal nodes due to
phylogeny and the specified evolutionary model, ahis an0 -length \ector of ones
(Cressie 1993Finally, 95% confidence intervals for each curve can be calculated as
H P& @,

Ancestral curve reconstruction of other function typesMany functiorvalued
traits cannot be appropriately expresgatth y-bounded sigmoidal functions. In such
cases, inverse function alignment does not properly align curves across species. For
instance, unimodal and multimodal functions lack a unique inverse solution for any given
y-value. Additionally, certain funain-valued traits require complex curve specification
such as with Gaussian process regression. For such traits, ancestral curve reconstruction

must be performed on both tkeaxis and the-axis, both of which must first be aligned

across species. This cka accomplished for most functimalued relationships using a
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nonlinear alignment method called generalized time warping (Zhowand Torre

2012), a multisequence extension of dynamic time wargdiMgers et al. 1980; Giorgino
2009) Although applichle to a wide variety of complex curve shapes, the
appropriateness of time warping methods to specific function types should be assessed,
and individual time warping parameters may require specification. For a moegtim
discussion, see Giorgino (2009).

For ancestral state reconstruction of aligned curves, Equations (1) and (2) must be
applied individually to both the-axis and thg-axis. Forx-axisancestral state
reconstructiongis thed &€ matrix of alignedk-values; fory-axis ancestral state
reconstructiongis thed € matrix of alignedy-values. The resulting set of
forms coordinatesw heo which are then used to estimate parameter£Xor .
Similarly, variance and 95% confidence imas for reconstructed curves must be
applied on both the andy axes for curves aligned with time warpitfgar monotonic
sigmoidal functiorvalued traits, inferences from inversaftion approaches and time
warping alignment are equivale® €ode prouded insupplementary material).

Compatibility with distance-based multivariate phylogenetic comparative
methods Recently, several multivariate extensions of phylogenetic comparative methods
have been proposed for higimensional traits (Adams 2014a; Ada2014b; Adams
2014c; Adams and Felice 2014). These methods allow quantification of metrics such as
multivariate phylogenetic signal, correlated trait evolution, phylogenetic ANOVA, and
evolutionary rates. Distandesed comparative methods rely on rema¥ghylogenetic
covariance from data by projecting phenotypic data onto the phylogenetic Watrix

(Garland and Ives 2000)
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AR TR Q
wherer andr] are eigenvectors and eigenvalues of the phylogenetic covariance matrix
‘A Although primarily preented as tools for analyzing Procrusikgned morphometric
data (Rohlf ad Slice 1990)these methods are not limited to the number of supplied trait
dimensions and can handle hundreds ofisotropic covarying dimensions. In
particular, unlike covarianeleased approaches, distasiimsed multivariate comparative
methods mainia statistical power as the number of trait dimensions increases, and
uniquely allow the number of dimensions to far exceed the number of species in the
phylogeny. Thus, the evolution of functizalued traits can be amgpriately analyzed
using distancérased multivariate comparative methods (Adams 2014a).

As with Procrustesligned landmark coordinates (Adams 2014a; Adams 2014b),
functionvalued traits are supplied to multivariate methods in the form of coordinate
sequences from generalized time warpilgnanent (for curves of any form), or in the
case of inverse function evaluations (for sigmoidal curves), @ly w is supplied.
Estimation of the phylogenetic mean is inherent to disthased multivariate
phylogenetic methods. Importantly, the estimated phylogenetic foedistancebased
methods is equivalent to the root estimdte obtained from Equatio(l) when applied
to properly aligned landmarks of functiealued data. Specific applications and
methodological details of applying distarcgsed multivariate comparative methods to
functionvalued traits are discussed in thedaling sections.

Phylogenetic signal of functionvalued traits, Phylogenetic signal is a measure
of the extent to which species exhibit phenotypic similarity due to phylogenetic

relatedness. Various methods of signal quantification have been proposeatingclu
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Bl ombEKfBlbember g et adRagel21999)dupcorreRteprgtechniyses
(Pavoine and Ricotta 2012), and correlati@sed methods (Zheng et al. 2009).
Bl o mb Kis lgases on the ratio of observed variation relative to the variatpectd

under Brownian motion:

O
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whererj is an  p vector of phenotypic values for a univariate trait @ is the
phylogenetic mearegtimated phenotypic value at the root of the phylogeny), Thus, the
expectation oK under Brownian motion is 1. Phylogenetic permutation can be used to
statistically test iK represents significant phylogeneticred) (Blomberg et al. 2003).

Adams (201dpr oposed a mul tivariatkKgener al iz
which allows phylogenetic signal to be estimated in {dghensional traitsKy utilizes
a distancébased approach which produces identical estimatiésadifen applied to
univariate trait$ut also allows for calculations &, for multivariate traitsKmyi; is

calculated as follows:

ArAr O O A @)
BB 5 o

whereA  isan(  p vector ofEuclidian distances between species means and the root

of the phylogeny, as expressed by

A f: OR A Of (8)

and’BA j isan( p vector of Euclidean distances of specie=ans to the origin
projected onto thphylogenetic transformation matrifrom Equation §). Current

sdtware implementations d€ in the R(R Core Team 2014jbrary geomorph 2.0
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(physignal functioh (Adams and Otaroi€astillo 2013; Adams et al. 2014) can readily
incorporate the PGL-Based functiorvalued approaches presented here. For function
valued trait analysis utilizing inverse functions for alignm@ris the) & matrix of
inverse function&) evaluated ay, andO i calculated by the physignal functien
equivalent to thep € vectorH  obtained from Equatiol). For functionrvalued
landmarks aligned using generalized tim&rping,x,y coordinatesre analyzed as an
0  ¢& matrix of functionvalued landmark coordines. Again, the resultin® R} is
equivalent to results obtained frafn  in Equation(1).

Correlated evolution between functionrvalued traits and categorical
(ANOVA) or continuous (PGLS) univariate traits. Distancebased comparative
approaches can be implemented to appifagenetic ANOVA or assess for correlated
evolution between univariate and functiealued traits using a multivariate extension of
PGLS called>-PGLS(Adams 2018). In D-PGLS, independent variable(a column of
ones followed by oneranore columns of \aes for independent variables) and
dependent variablg® (an £ or0  ¢& matrix, depending on whether inverse
functions or generalized time warping alignment is used) are both projecte@tonto
remove phylogenetic covariance from trait data, respulhy  andfy .0 is
regressed ofj  to obtain predicted values , andf]  is regressed on  to obtain
predicted values faf . Next, the trace of the outeroduct of predicted values is used

calculate variation explained by the model:

Y'Y 00R A A ©

i}
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"Y"Yand residuals offf * R are then used to calculater&ios and??, and
phylogenetic permutation is used to deterenihe significance dahe correlationD-
PGLS is implemented in the procD.pgls function in the R package geoiffapms and
OtérolaCastillo 2013; Adams 2014b; Adams et al. 2014).

Additional distance-based multivariate phylogenetic comparative methods
Although not discussed in in detail here, similar methods are available to address
guestions such as correlated evolution between two separate fuvaltied traits (or
between a functiowalued trait and some other multivariate trait) using phylogenetic
partial least squares (Adams and Felice 2014), as implementedphytloepls function
in geomorphAdams and Otarot&astillo 2013; Adams et al. 2014Additionally,
multivariate rates of evolution may heantified, and evolutionary rates of function
valued traits for subgroups within a phylogeny may be statistically compadaans
2014c),as implemented in the compare.evol.rates function in geomorph (Adams and
OtérolaCastillo 2013; Adams et al. 2014or example, one could test the hypothesis
that a tinctionvalued plastic response to a particular environmental variable evolves
more rapidly in a clade exposed to high levels of the environmental variable than a non
exposed cladeAs distancébased multivariate methodsntinue to be developed,
additiona phylogenetic comparative methods, such as testing alternative models of
evolution (e.g., Ornsteiblhlenbeck) are expected to be available for further study of

functionvalued trait evolution (Adams 2014b).

Statistical performance Functionrvalued trait golution was simulated under
various conditions to evaluate the performance of funatadned ancestral curve

reconstruction and to assess the statistical powern@fandD-PGLS when applied to
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functionvalued traits. All curve simulations were basedewolution of a generalized
linear model using a logit link function:

Aogp —
p Ao —

"Qug— (10)

Curve evolution was simulated by evolving a root curve defined by two independently
simulated function features, theedian response level {- —) and the slope at the
median responsevVel (— 1), using theastBM function in the R librarphytools
(Revell2012)I nt er nal node values were preserved
each node were subsequently baakculated. To simulate correlated evolution between
curves andinivariate traits, sim.corrs was used to generate correlated evolution of a
univariate trait with the curve median response level. Root curves parameters were set to
— p Brand— ¢8t and to maintain positivelgloped curves in the first quadtan
(as with a typical doseesponse curve), median response slopes of evolved curves were
bounded between 0.2 and 1.0, and median response levels were bounded between 2.0 and
20.0.

For ancestral curve reconstruction, 1000 simulations were performed omigndo
generated 128&xa trees as described abo&acestral curve reconstruction was
performed on inverse tip functions (Equations (1) andg@gl regression parameters
were estimated for each node. For comparison withfaoction-valued approaches (in
which a single arbitrary-value is chosen for evaluation '€¥cs— and the function
valued relationship is ignored), univariate ancestral state reconstruction was conducted
individually at 100 evenly spaced tip evaluation&afs— wherewranges fom 0.0 to
15.0 (spanning the entire sigmoid portion of curves for all species). Coefficients of the

known root state and the root state estimated from ancestral curve reconstruction were
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evaluated alQus— at the same 100 points for which univariateestral state
reconstruction was conducted. The difference between the true valdesef and
values obtained from both ancestral curve reconstruction and individual univariate
ancestral state reconstruction were averaged across 1000tsinsuéand compared.

PGPR ancestral curve reconstruction was also conducted for these simulated datasets
using the R implementation provided in the supplement of Hadjipantelis (2013).

All simulations related t&,,: andD-PGLS were carried out on randomly
generated purbirth trees with 128 taxa, and all simulations were conducted 1000 times
with randomly generated data. ARGy, andD-PGLS hypothesis testing, 999 iterations of
phylogenetic permutation were conducted. Varying numbers of trait dimenpier b,

10, 25, and 50) were simulated in order to estimate the optimal number of dimensions for
representing logitype functions. Dimensions were input as sequences evaluated at

"Q uBs— wherewis a sequence of evenly divided numbers from 0t6@L999 of length

p. Type | error and power were quantified Ky using the proportion of significant

Kmuit Values for data simulated undeiree transformations (0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8,
and 1.0). FoD-PGLS Type | error and power analydisctions and a continuous

univariate trait were simulated with covariances of0.0, 0.1, 0.3, 0.5, 0.7, and 0.9 and

the proportion of significant correlations was recorded. For comparison, all multivariate
simulations were performed alongside analogousi var i ate approaches |
and PGLS) which were performed at 100 individual evaluatiof@d&$— wherex

ranges from 0.0 to 15.® code for all simulations is available in the online

supplementary material.
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RESULTSAND DISCUSSION

Performance of ancestral curve reconstructionRoot estimations of ancestral
curve reconstruction were compared to simulated logit curve evolution using the inverse
function approach described in previous et Root coefficients were estimated from
reconstructedhverse functions (Equation (1)gnd both the known and estimated
functionswere evaluated along 106ngth evenly spacedvalues ranging from 0.0 to
15.0."Qus— and"Qus—  were compared at each point. The average
predicted curve for each method is plottedfignre 23a The same approach was applied
to reconstructed curves obtained from PGPR. For comparison with iateviarethods in
which the functiorvalued nature of the trait is ignored, ancestral state reconstruction of
each observed tipvalue at eachk-value is also plotted®5% confidence intervals were
calculated for PGLSHig. 23b), PGPRKig. 23c), and uniariate Fig. 23d) ancestral
reconstruction methods using a single representative simulation (Rohlf 2001;
Hadjipantelis et al. 20330n average, ancestral curve reconstruction using Hials8d
and PGPRbased methods yielded similar resukgy( 23d). The small discrepancies that
are present are likely attributable to differences such as the underlying assumptions of the
Brownian motion simulations performed here and the assumption of an Ornstein
Uhlenbeck model of evolution inherent to PGPR. Althoughanmate ancestral state
reconstruction visually appears to give similar results to both PGLS and PGPR ancestral
curve reconstruction, in practice, the entire curve would not be reconstructed with this
approach; rather, univariate ancestral state recotisinus typically performed in
isolation at a singl&-level, and no knowledge of surrounding parts of the curve would be

represented. Therefore, only instantaneous deviation from thg-valae atan
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individual x-value should be considered for univagiancestral state reconstruction (i.e.,
not the sum of the resulting curve as a whole).

Even forx-values where the estimated univariate response is identical to the true
response, a functiewalued trait cannot be properly represented by a single valgh. S
attempts are likely to produce misleading inferences and potentially contradictory
conclusions based on the arbitraryalue choice at which the trait is evaluated. These
issues are further highlighted in simulations of phylogenetic signal and tedré&iait
evolution.

In contrast to univariate ancestral state reconstruction, PGPR ancestral curve
reconstructiorshouldbe taken in context of the entire reconstructed curve. Accordingly,
PGPR ancestral curve reconstructmwavided similar results to R(&-based curve
reconstruction overalFjg. 23a). Therefore, both methods provide vastly superior
representations of ancestral functiaadued traits than univariate attempts at ancestral
state reconstruction.

Statistical power of K and D-PGLS. Type lerror and statistical power of
Kmutt andD-PGLSfor functionvalued traits were assessed using the methods described
above. Type 1 error rates for all simulation&gf;; andD-PGLSwherepO Fas
determined by data simulations on star trees and input covariance of zero, respectively)
were approximately 0.05. Similarly, Type | error rates were approximately 0.05 for
uni var i at «arslPGLS bvaluated a arbitrarjevels. As expected
statistical power increzd forK,: andD-PGLS as the number of dimensions increased
(Adams 2014a; Adams 2014¢hig. 24). Dimensionality beyong = 25resulted in

diminishing gains in statistical power, coupled with a substantially increased
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computaibnal burdenK, power scaled approximately linearly wishransformations
up to 1.0, wherea3-PGLSpower reached 1.0 with input covariation of 0.5 and higher
(Fig. 25). For univariate methods, statistical power varied widely depending an the
level at which the trait was assessed, although statistical pppesached that df,,;
andD-PGLSwhenx-level was near the median response level of the root function and
phylogenetic signal or input covariation was high. It should be noted that these results do
not suggest that univariate approximations of phylogjerséggnal or correlated trait
evolution can be applied to functimalued traits. Indeeghhylogenetic comparative
experiments evaluating species traits at a single level are blinded to true fwvadtied
relationships, so the potential for erroneousigwn conclusions is likely to be
overlooked, and such attempts provide no means for validation of results.

Overall, Type | error rates and statistical poweKgfi; andD-PGLSsuggest that
distancebased multivariate phylogenetic comparative method®eappropriately
applied to the study of functievalued trait evolution, and further highlight that

univariate approaches to functiwalued traits are inappropriate.

Limitations . Functiorrvalued phylogenetic comparative methods offer promising
improvemets over conventional methods for many types of analyses. However, several
assumptions and limitations must be accounted for in order to properly take advantage of
these methods. First, a substardi@ount of data is required for every species at multiple
levels to accurately inféunction parametergStinchcombe et al. 201.23econd, even
with large amounts of datéunction parameters are msated with error, but the methods
described here assume species curves are estimated without error. Thirayghthor

understanding of functiemalued relationships is necessary to appropriately align
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functionvalued landmarks and to express funct@tued trait evolution appropriately.
Finally, no methods for testing alternative models (e.g., Ornttbianbeck) ohigh-
dimensional multivariate trait evolution are currently available. Further development of
distancebased multivariate phylogenetic comparative methods offers promising

expansions of the possibilities of approaching funetialued trait evolution.

CONCLUSIONS

Phylogenetic comparative methods have transformed the field of comparative
biology. While extensive work has contributed to the integration of evolution with
inherently functioavalued applications in developmental biology, toxicology, gene
expression, and trait plasticity (particularly the prediction of species -$aort
evolutionary trajectories in responses to selective gradients), few methods exist to unite
functionvalued approaches with phylogenetic comparative mettgdlsling on the
mettods presented herejtéire work should seek to address issues sutdstsg
alternative evolutionary models, developimgthods for dealing with sparse data,
incorporating parameter estimation error into models, acowuiur phylogenetic
uncertainty, ad applying the methods described here in alternative statistical

frameworks, such as Bayesian approaches.

SUPPLEMENTARY MATERIAL | Data available from the Dryad Digital Repository.

doi:10.5061/dryad.5nd50
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FIGURES

Figure 2.1Hypothetical result of performing phylogenetic comparative analysis on
plastic trais from species traits a) measured in nature; b) measured in the field and in a
controlled common environment; ¢) measured in a controlled common environment at
two different treatment levels; and d) measured in a controlled common environment at
multiple reatment levels. Theaxis represents an environmental gradientythgis
represents the trait value. In 1a, the vertical dotted line represents the value of the
environmental variable for each species collected in nature; in 1b, the vertical detted lin
represents the value of the environmental variable for the controlled common
environment, and the second point represents the trait value measured in nature; and in
1c, the vertical lines represent the two treatment levels of the environmental variable i
the controlled common environmeflid lines in 1b and 1c represent inferred reaction
norms, several of which deviate considerably from true reaction norms. Depending on
specific assumptions regarding the method used, contrasting conclusions regaitding

phylogenetic signal, model of evolution, and evolutionary history may be drawn.
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FF

Figure 2.2 Ancestral curve reconstruction of a simulated dataset for a propbedsed

trait responseytaxis) in response to an environmental gradiesatx(s).

41



Figure 2.3Average result of ancestral root curve reconstruction (a) from 1000 simulated
datasetsN=128) for PGLSbased ancestral curve reconstruction (circles), PGPR
(diamonds), and univariate ancestral state reconstruction (squares). 95% confidence
intervals of root reconstructions are presented from a single representative simulation for
b) PGLS, c) PGPR, and d) univariate curve reconstruction. All three methods produced
resulting curves similar to the actual root curve (solid line). However, urieaniethods

are only evaluated at a single point (not in the context of an entire curve), so only
deviation from the true curve at individualevels should be considered for the

univariate approach. Univariate representations of funstabmed traits areappropriate
regardless of the instantaneous deviation from the actual curve, and such approaches are
likely to result in incorrect interpretations. Therefore, despite greater absolute deviation
from the root at various-levels than univariate approashé¢he overall performance of

PGPR was comparable to that of PGLS, with both methods providing root curve

estimates close to actual root curve.
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CHAPTER 3
LIKELIHOOD-BASED PARAMETER ESTIMATION FOR HIGFDIMENSIONAL
PHYLOGENETIC COMPARATIVE MODELS: OERCOMING THELIMITATIONS

OF 'DISTANCEBASED'METHODS?

'Goolsby EW. Submitted tdSystematic Biologgn November 2, 2015
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ABSTRACT

Recently proposed distanbased (@mode) multivariate phylogenetic
comparative methods can be expressedciovariancebased (Rnode) framework. It is
shown that a properly specifiedvariancebasedapproactperformsidentically to
distancebasedapproacheand can be performed using fast lingare algorithms
Additionally, a composite likelihood approachngroduced for maximum
pseudtikelihood parameter estimation, opening up the ability to estimate alternative
evolutionary models, allow missing data, and incorporate wapeties variation.
Simulations reveal low statistical power and high Type | doodistancebased methods
under various scenarioshereas composite likelihood approaches demonstrate
appropriate Type | error and high statistical power while substantially expanding model

flexibility. These methods are implemented in the R pacghgecurve
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INTRODUCTION

Phylogenetic comparative methods provide a framework for testing hypotheses in
comparative biology while accounting for statistical fmedependence of hierarchically
related species. In recent years, multivariate traits in thentéxitocomparative data have
been of increasing interest, leading to the development of multivariate extensions of
phylogenetic comparative methods (Revell 2009; Bartoszek et al. 2012; Adams 2013). Of
particular interest are higthimensional traits, such asth morphometric data (Adams
2014ac; Adams and Felice 201Adams and Collyer 201®enton and Adams 2015)
and functionvalued traits (Goolsby 2015), which pose computational and statistical
challenges as the number of trait dimensions increases. Naasehe number of
parameters to be estimated increases for a given sample size, statistical power decreases
substantially (Adams 2014b). Additionally, when the number of trait dimensions equals
or exceeds the number of species in a study, maximum likelitrait covariance
matrices are nemvertible and thus cannot be used for calculations central to most
phylogenetic comparative methods (Adams 2014b). Finally, even assuming
computational feasibility and adequate statistical power, it may be diffictifato
unified conclusions from multiple (and potentially conflicting) individual dimension
specific metrics.

Accordingly, it is potentially beneficial to approach comparative analyses of high
dimensional traits with single generalized multivariate metatser than many
dimensionspecific metrics. Adams (20143 proposed a suite of multivariate
phylogenetic comparative methods for studying kdghensional traits while

maintaining statistical power and providing generalized test statistics for mutivaria
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traits as a whole. The methods, which include multivagatensionsoB| o mb Kr g 6 s
(Adams 2014a), phylogenetic generalized least squares (Adams 2@btbs and
Collyer 2019, comparisosof evolutionary rates (Adams 2014c; Denton and Adams
2015), ad phylogenetic partial least squares (Adams and Felice 2014), avoid the problem
of dealing with norinvertible covariance matrices and can even handle traits in which
the number of dimensions far exceeds the number of species in the study. This is
accomplshed by phylogenetic transformation of the data and subsequent disésece
(Q-mode), rather than conventional covariabesed (Rnode), analysesVhen applied
to a single univariate trait, distanbased methods and conventional phylogenetic
comparatie methods provide identical results. When applied to hidimensional
traits, such as landmark coordinates of morphometric shape data (e.g., leaf shape
coordinates obtained from Procrustes analysis (Chitwood et al. 2014)) or feveltiel
traits (e.g.species reaction norms of a phenotypically plastic trait (Goolsby 2015)),
distancebased comparative methods fit a single consensus metric that attempts to capture
the variation of the entire higimensional trait as a whole.

Limitations of distance-based comparative methods Despite potential
advantages, the distanbased comparative framework involves considerable
shortcomings. Specifically, the inability to calculate-ld@lihoods restricts distanee
based models to Brownian motigkdditionally, model selection is limited to relatively
simple hypothesis tests, lacking algarway to compare complex combinations of
model specifications (e.g., simultaneous modeling of fixed effects, phenotypic
integration, rate heterogeneity, et€prtain distancéased methods also suffer from

inappropriately high Type | error and low statistical power under a variety of
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evolutionary scenariofistancebased methods also require eigendecomposition and
inversion of the phylogenetic covariance matrix, which is extétg timeconsuming and
inefficient for large phylogenies.

Although the methods described above are explicitly disthased, an
equivalent covarianebased (Rmode) formulation can be expressed. Like thmQle,
the correspondingfode approach retaimgentical Type | error and statistiqgabwer as
trait dimensionality increases when correctly specified and avoids inversion of singular
matrices. Fast linedime computational methods for performing relevant calculations
can also be used to perform cagacebased calculation@-elsenstein 1973;réckleton
2012; Ho and Ané 20)4thus reducing the computational challenges posed by extremely
large phylogenies and highmensional dat&inally, a composite likelihood approach
for parameter estimation anabdel selection is introduced, providing a flexible and

statistically powerful framework for expanding highmensional comparative methods.

A COVARIANCE-BASED (R-MODE) RE-EXPRESSION OAMULTIVARIATE DISTANCE-BASED
(Q-MoDE) COMPARATIVE METHODS

To addresssisues of statistical power and Aorertible matrices, and to provide
a framework for estimating generalized statistics for {aighensional multivariate traits,
Adams (2014 &) proposed several phylogenetic comparative methods based on a
distancebased Q-mode) approach. Consider a phylogeny witextant species on
which0 traits are observed, given asi@n 0 data matrixf)). Thel 0 phylogenetic

covariance matriXA is parameterized by branch lengths and the specified evolutionary
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model (e.g., Brownian motionJhe eigenvectors)() anddiagonal matrix otigenvalue
square rootéf] | ) of "Aare used to construct tplylogenetic transformation matrii X

A AR 1)
which is then matrix multiplied by relevant matrices of interest (8.6./1 N A N
‘01 ) to remove phylogenetic covariance from the data (Garland and Ives 2000). Next,
the Euclidean distances of phylogenetically transformed data from the origin are
calculated €A, resulting in ard -length vector which is then used for multivariate
comparative calculations.

Evolutionary rates: distancebased (@mode) methods Various methods have
been proposed to quantify and compare evolutionary rates for univariate traits, including
contrastbased (Garland 1992), generalized least sqimaesd (Marhs and Hansen
1997),andlikelihoodb ased ( O6Meara et. abswelllk® 6; Thoma:
Bayesian methods (Rabosky et al. 20Fr highdimensional data, Adams (2014c)
proposed an estimate called , which is a single consensus evolutionary rate for the
entire multivariate trait, is estimated by dividing the Euclidean distance of the
crossproduct of phylogenetically transformed residuals from the origin is by the total

number & observations{ 0):

LML @

The estimate of can be used to statistically compare evolutionary rates
among groups of species (Adams 2014c) or among groups of traits (Denton and Adams
2015). To test whether differs among species groums(implemented in the

geomorphfunctioncompare.evol.rat§ssubset groups of size g areusedto
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estimate, g for each species group by repla(:l"Eﬁﬁ i | with

~

‘ERA  gh 5 and0 with 0 g inequation (2)The observed ratio of

regimespecific,, g Vvalues is compared to the null distribution,of 4

ratios via phylogenetic simulan (Adams 2014c). Similarly, to test for differences in
" among groups of traif@s implemented in thgeomorphunction
compare.multi.evol.ratg¢s, 4 is calculated for each trait group by replacingvith
0 g and’EA #p Wth"ER 7 j inequation (2) (wher§ contains

0 g variables), and the observed ratio of gr@pecific, g valuesis

compared to the null distribution pf 5 via phylogenetic simulation (Denton and

Adams 2015).
Evolutionary rates: covariancebased (Rmode) nethods The calculation of
” can be simplified considerably using a covariabased approach, as is

simply the arithmetic mean of maximuikdlihood evolutionary rates for each trait

considered individually:

B 6 006 A o ©o

” T (3)
00
Similarly,, g for atrait group subse€is simply the arithmetic mean of
evoluionary rates for individuakaits inf] .
The calculation of regimspecific, g can be calculated as the mean

maximum likelihood variance of the phylogenetically transformed residgafy

on g Alternatively, the omputation of] can be avoided using either the

ononcensoredd or o6censoredd approach
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which provides an efficient closddrm estimate of g »In which equation (3) is
applied to a phylogengnd dataset pruned to only contain the species represented in
regimej. The censored estimate is not identical to the distaased estimate of

" g (the censored approach estimates a sep@rgtefor each pruned tree).

However, the censed approach is a close approximation, retains appropriate Type |
error and statistical power, and is far more efficient than the eigendecomposifanaf
subsequent inversion of @ 0 matrix (which is required in equation (1) in order to
constructthe phylogenetic transformation matfj). If phylogenetic transformation
cannot be avoided, an alternative to equation (1) which avoids matrix inversion can be
used to construct the phylogenetic transformation matrix:
A AR (4)

whererj” is anG 0 diagonal matrix with pj "1along the diagonal, whefecontains
the eigenvalues dA(Li 2007). If "Ais singular, infinite or undefined valuesfijh may be
replaced with zergalthough the consequences of proceeding with compaeialgses
on singulamatrices are largely unteste&unctions for comparing evolutionary rates
using the described covariarased approach are implemented inghglocurve
functionsfast.geomorph.compare.evol.ragsdfast.geomorph.compare.multi.evates
These functions (and all othehylocurvef unct i ons tfésbgeomorgdg)i na rwe t h
implemented to demonstrate the equivalence and application of fasttimear
computations for analogous distasizased functions igeomorphsee below foa
discussion of fast covariantsed approaches).

Phylogenetics g n a | ( B oBnhboent bgetfBlgroksyg 2003), which in

univariate form is calculated as
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, 6 06 o0 0606 o@a O A
0 . (5)
0 0o A o ©Oo L P

can be extended to multivariate foitm  (Adams 2014pas implemented in the

geomorphfunctionphysigna) using the distanebased formula

ESTEIET 5

where’Aw;; is the norphylogenetically transformed Euclidean distance between some

matrix and the origin. As with  , the value) can be calculatedsing a
covariancebased approach (irfgmented in th@hylocurvefunction
fast.geomorph.physignaby considering the sums of squared residuals for each

individual trait:

0 ekt U " (7)
B o6 06 A o6 006 v
As with uni v akK,sigaificance®D o nisbdetermgiried by phylogenetic
permutation (Blomberg 2003; Adams 2014a).

Phylogenetic generalized leastgmares Distancebased phylgenetic
generalized least squard3PGLS as implemented in thggeomorpHunction
procD.pgl9 regression can be performed by regres#fgAfand’Af A to obtain
predicted valueéﬁ andn , which is then used to calculate summaryistias including
sums of squaresfatios, andY , and significance is determined by phylogenetic
permutation (Adams 2014b). To perform the covaridmsed equivalent @-PGLS

regressior{phylocurvefunctionfast.geomorph.procD.pglsfirst, ary 0 (wheren is the
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number of regression coefficients to be estimated for each trait dimension) matrix of
dimensionspecific regression coefficients is calculated as

ARAR AAR (8)
wheren] is thed ) model matrix for PGLSegression, typically consisting of a column
of ones and one or more columns of univariate predictor variables (Martins and Hansen

1997; Revell 2010). Note thtis and 0 matrix in equation (8), unlike univariate

PGLS in whichfj is an()  p vector Next,0 0 matrices ofpredicted species values

from the regressions A and null modefy 'OR are used to calculate residuals,
and sums of squares are obtained fi¥ily B 0 ()ﬁ A O c')ﬁ and
Y'Y B O 0 A 0 o0 tocalculate mean squarerror, Fratios, and

'Y . Phylogenetic permutation is then performed to determine significance, and results are
identical toD-PGLS regression (Adams 2014b; Adams and Collyer 201&)ould be
noted thatalthough phylogenetically independent contrasts can be used to calculate these
guantities (Felsenstein 1985), phylogenetic permutation must be performed on raw
permuted valuesnot contrasts), and then independent contrasts must be recalculated for
each permutation (Adams and Collyer 20Hwever, in contrast to the findings of
Adams and Collyer (2015), an appropriately and efficiently implemented
phylogeneticalf independent contrasbased approach is indeed faster tbaRGLS
(Fig. 32 cd).

Phylogenetic partial least guares In addition to the methods discussed above,
Adams and Felice (2014) proposed a distdraged method for evaluating covariation

betweertwo multivariate traits) andrf] called phylogenetic partial least squares (PLS).
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First, the evolutionary rate matnixfor 1} is calculated using the generalized least squares

restricted maximum likelihood estimator:

n A0 A A NON” ©)
o p

N

The covariance af andf is partitioned into four blocks
g 10)

and singulawvalue decomposition is subsequently performed on Next, the values
N On are projected onto the phylogenetims@rmation matrixj, andfj 1
OR andfj i ONR are matrix multiplied by the leffj() and right §) singular
vectors off] , respectively. The first two columns of the resulting scores are regressed to
determine the evoluinary correlation between andr , and phylogenetic permutation

is used to assess significance of the PLS regression (Adams and Felicge2didrph
functionphylo.pl9. To perform the covariandeased equivalent of phylogenetic P(e8
implemerted in thephylocurvefunctionfast.geomorph.phylo.pls O/ §# and

B 'Of # areregressed using phylogenetically independent contrasts (Felsenstein
1985) regressed through the origin, or equivalently using PGLS. Tii&rrgsegression
correlation is equivalent to the PLS correlation obtained from distaased
phylogenetic PLS, and significance is assessed using phylogenetic permutation (Adams

and Felice 2014).

PaIRWISE COMPOSITELIKELIHOOD FORHIGH-DIMENSIONAL COMPARATIVE MODELS
Distancebased method&nd covariancéased equivalentgffer an algorithmic

solution to highdimensional comparative problems. However, parameters for many types
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of models (e.g., neBrownian evolution, missing data, withgpecies variatin) lack
closedform solutions, and parameters must be estimated by maximizing the likelihood
function. Because there is no likelihood function for distarased methods,
covariancebased framework is vital to expanding the capabilities of-Higkensimal
comparative methods. For multivariate phylogenetic comparative models, the log

likelihood function is defined as

liocd ¢ A Of AsA f OfF  1iws
(11)
001 T
and the restricted letikelihood is defined as
libcd ¢ Of AsA f OF  1iem
(12)

11gens A As 060 0 1T

wherer] contains species values for each trait stacked into a gingle p column
vector andj isan0 O 0 matrix consisting of ones and zeros describing which rows
and columns correspond to element§¢ff  TTwhenQ ‘Gand  pwhen'Q P
Unfortunately, the likelihood function become unstable as the number of traits
approaches the number of species, and is undefinediwhe . Additionally, the
number of parameters to estimate folban O symmetric matrix is0 0 jg 0,
which may fail to converge on the maximum likelihood parameters even with moderate
trait dimensionality.

A potential solution to this dilemma is the substitution of a pseudolikelihood

metric into existing likelihoodased estimation methodshls been shown that the
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product of the likelihood§.e., the sum of the lolikelihoods)for all possible pairwise
combinations of variables, termpdirwise composite likelihogghares many desirable
properties with the full likelihood function. In partilar, maximum pairwise composite
likelihood estimates are consistent, unbiased, and asymptotically normal (Cox and Reid
2004; Varin and Vidon2005; Fieuws and Verbeke 2008)is straightforward then to
reduce highdimensional problems into multiple sthmaximumlikelihood estimation
problems.

Specifically, for0 traits, 0 0 j ¢ pairwise models must be estimated.
Although this is a large number of models, each individual estimation problem contains
an extremely small number of parameters wigigh be estimated for eaphirwisetrait
combination using efficient linedime computationgFelsenstein 1973; Freckleton 2012;
Ho and Ané 2014)Additionally, the loglikelihood function for each pairwise trait
combination is computationally stable basel | ¢. For ultrahigh dimensional traits
(e.g.,0 p T 1), mairwise composite latikelihood can be approximated using Monte
Carlo sampling, as the total number of pairwise likelihcoghbinationsnay be
computationally prohibitive.

A general framework for hypothesis testing and model selection using
pairwise composite ikelihoods. Despite the reliability of maximum pairwise composite
likelihood estimates, pairwise likelihoods represent overlapping information (and are
therefore nofindependent from one anett), so pairwise composite likelihoods cannot
be used for conventional model selection criteria such as AIC, BIC, and likelihood ratio

tests (Varin and Vidoni 2005). Similarly, standard errors of parameter estimates based on
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Fisher information matrices (Wth are also noimdependent among pairwise trait
combinations) are uninterpretable (Fieuws and Verbeke 2006).

Instead, a parametric bootstrapping procedure is adapted from the methods
developed by Boettiger et al. (2012). To compare two models, the paicvmposite
log-likelihood is calculated for the null model (e.g., simple Brownian motion) and for the
alternative model (e.g., Brownian motion with different rates for two groups of species,
as in Adams 2014c). Next, random data is simulated from tlaengders of the null
model1,000(or more) times, and pairwise composite-lixglihoods are estimated for
both the null and alternative modéitsfit to the simulated dataThe likelihood ratio test
statistig ¢l 10C 1 T0C iscomputed for the observed data () and for
the data simulated under the null hypothésis ¢ ). For a nominal significance level
of 0 T8t pthe critical value for the test statistic ) is set so that 95% pf
values fdlundefl .. The proportion of timés 1 g provides an approximation
of theP-value for comparing the null model to the alternative model. A similar procedure
can be applied to assess #tatisticalpower ofamodel comparison by simating the
alternative model many time$,000or more) and calculating g . The proportion of
1 g Values greater than or equal toprovides an approximation of the statistical
power of the test (Boettiger et al. 2012).

This procedus is extremely flexible and maintains appropriate Type | error and
high statistical power for the comparative methods described here. In particular, because
the likelihood ratio statistic can be calculated for any model, complex combinations of
multiple ewlutionary hypotheses (e.g., fixed effects, multiple evolutionary rates,

phylogenetic signal, etc.) may be incorporated simultaneously, whereas hypothesis tests
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for various distanceased models (which rely on modgdecific metrics, such as ratios
of F-statistics or evolutionary rates) cannot be combined.

The approach described above (as well as the methods described in the following
sections) is implemented phylocurve in which null and alternative models can be fit
separately using thevo.modefunction and subsequently compared via parametric
bootstrapping (Boettiger et al. 2012) using ¢benpare.model&inction.

New hypothesis tests for existing higldimensional methods To simulate the
null hypothesis for comparing rates () among regimes, ( g ), traits are
simulated(for example, bysing thesim.charfunction ingeiger(Pennell et al. 201%)
using therestricted maximum likelihood evolutionary rate mategation 9for the
maximum likelihood ratenatrix,0  p is simply replaced witld ). To simulate the
alternative hypothesis (distinct evolutionary rates among regimes), the following
procedure is used: 1) estimate the evolutionary rate matrix for each regime using either
t he censor edr anedthoal .( ODMxr@) , t he noncensor e
2006), or by subsetting transformed residuals (Adams 2014c); 2) determine the
proportion of each tree edge to be assigned to each respective regime rate matrix, for
instance by assigning entire ctadvalues of either zero or offer known discrete
regimeshifts), or by reconstructing the probabilities of ancestral regime states (Yang et
al. 1995;Pupko et al. 200(Paradis et al. 2004; Revell 2012); 3) simulattenotypic
evolution under the evolianary rate matrix for each regime by scalar multiplication of
f by the branch lengths of the phylogeny &ydhe regimespecific proportions
determined in (2); and 4) add the resulting sinradahenotypic values togethlote

that this procedurdiffers substantially from the null hypothesis described in Adams
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(2014c), which assumes a diagonal evolutionary rate matrix and results in unacceptably
high Type | erroffor correlated trait¢see below). In contrast, the procedure described
here resulten appropriate Type | error and statistical power to compare evolutionary
rates among regimes.

To compare evolutionary rates among traits (Denton and Adams 2015), the null
hypothesis is simulated under a modified evolutionary rate matrix in which thendlago
of N} is constrained to equal  (the mean of the diagonal §). For the alternative
hypothesis, the diagonal ffis divided into trait groups subsets, in which sufSistset

toequal, g (the mean of the diagonal dfet subset ofy corresponding to traits

represents in trait grodf. In many cases, the resulting matrix is not positive

semidefinite. Following Denton and Adams (2015), the nearest positive definite matrix to
the constrained rate matrix is found usihgrearPDfunction in theMatrix package for

trait simulations (Bates and Maechler 2015).

To assess correlations between two multivariate traits, the full evolutionary rate
matrix is partitioned into four blockg|( ,1 ,n ,n T see abve)in an approach
comparable to phylogenetic partial least squares (Adams and Felice 2014). However,
rather than performing singular value decomposition on the evolutionary rate matrix, the
null hypothesis is simulated by setting all elements of blgcksandry  to zero. For the
alternative hypothesis, data are simulated under the unconstrained rate mp)atnxa(
similar manner, the presence of significant evolutionary covariatioong traitcan be
tested by setting nediagonal elementsfohe rate matrix to zero for null hypothesis

simulations.
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To test the significance of fixed effects (aPwPGLS (Adams 2014b)), both the
null and alternative hypotheses are simulated ufjdandf (equation 8) is added to
the simulated} under thealternative hypothesis. It should be noted that restricted
likelihood (or restricted pairwise composite likelihood) cannot be used for model
comparisons in which fixed effects differ between the null and alternative hypotheses.
Instead, comparisons must lmade using maximupairwise compositékelihood
estimates

Finally, an alternative method is propo
Kandv . Rather than phylogenetic permutation (Blomberg et al. 2003; Adams
2014a), phylogenetic simulation of both the null and alternative hypotheses is proposed.
Under Bl K thdnllhgpotkesis ian absence gthylogenetic signal, so data are
smulated under) on a star phylogeny; for the alternative hypothesis (Brownian motion),
data are simulated undgron the original phylogeny. For this procedufds used as the
summary statistic (rather than the likelihood ratjo

The null distribuibn of K is used to calculate the critical value), and the
proportion ofo 0 g istheP-value for the test of phylogenetic signal. The mean
of U g provides the expectation Bfunder Brownian motion (which should be
approxmately 1.0 if the model is correctly specified), and the proportian ofg VB
provides an estimate of the statistical power to detect significant phylogenetic anal.
simplify calculations under complex evolutionary models, the expectatithre ratio of
raw to phylogenetic mean squared error (the denominator of) can be approximated
by simulation under the alternative hypothesis (see below). This implementation of

is implemented in thphylocurvefunctionK.mult
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NEW METHODS FORHIGH-DIMENSIONAL PHYLOGENETIC COMPARATIVE DATA

Estimation of alternative evolutionary models Parameters for alternative
evolutionary models, such as EaByrst (Harmon et al. 2010) or Ornstéilinlenbeck
(Hansen 1997), or tree transformations $u a s _RRageklbP98)scan be fit to high
dimensional comparative models by transforming the branch lengths such that a
Brownian motionlike process of trait evolution applies on the transformed tree.
Estimation of maximum pairwise composite likelihood tree fiansation parameters
proceeds as follows: 1) transform the phylogeny according to an initial guess for a tree
transformation parameter (e.g.for an OrnsteirflJhlenbeck process); 2) estimate
maximum likelihood parameters for each pairwise combinatidrai$ using closed
form solutions (if available) or by numerical optimization; 3) sum the pairwise log
likelihoods for each combination of traits; 4) repeat stePsvth a new guess for the
tree transformation parameter until convergence on the maxpaumise composite
likelihood estimate is achieved. Given a particular tree transformation, the resulting
estimates of evolutionary rate and phylogenetic mean for any given trait will be identical
across individual pairwise models, assuming no missingasatanly a single
observation per species.

Combining multiple evolutionary hypothesesThe hypothesis testing
framework described above (based on Boettiger et al. 2012) allows for straightforward
combinations of multiple evolutionary hypotheses by imppsippropriate alterations or
constraints to the evolutionary rate matrix or by adding predicted values based on fixed

effects to simulated datg ( N ). To incorporate multiple models into tests of
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phylogenetic signal)  , the expectation of the ratio of raw mean squared error to

phylogenetically corrected mean squared error

B o6 00 6 00
0-3% 3% O (13)
B 6 00 A 6 00

is estimated by simulation under the hypothesized evolutionary model. Under simple
Brownian motion, this should yield an estimate of approximately
oa o A j 0 p (Blomberg et al. 2003)The observed ratio

- 3 %- 3 % then scaled b® - 3 %- 3 %o calculata)

B 0 0o 0 0o

B o 00 A 6 006 (14)
O- 3% 3%

Next, the hypothesized model is simulated on a star phylogeny to obtain the null
distribution ofo  , which isused to calculate the critical value ). As beforethe
proportion ofo 0 g istheP-value for testing phylogenetic signahd the
proportion ofo g 0. provides an estimate of the statistical powfethe testUnder
simple Brownian motion, equations 6 and 7 should be nearly identical to 14asher
under deviations from simple Brownian motion, equation 14 yields a generalization of
0 which can incorporate fixed effectsy(settingd 3 i ), multiple evolutionary
rate regimes, neBrownian evolutionary models, and other model spedifioa. These
features are implemented in thleylocurvefunction K.mult

Incorporation of missing data and within-species ariation. Several methods
have been developed to estimate evolutionary trait covariance in the presence of missing

data and withirspecies variation (lves et al. 2007; Felsenstein 2008; Bruggeman et al.
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