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ABSTRACT 

 In the oceans, the transfer of energy and cycling of elements is predominantly controlled 

by bacterioplankton, such that any understanding of marine ecosystems requires knowledge 

about bacterial activities and functional capabilities. Metatranscriptomics, the direct retrieval and 

sequencing of environmental RNA, is a powerful tool that can identify active community 

members and their expressed functional capabilities.  This dissertation is composed of three 

studies that used metatranscriptomics to gain fundamental insights into the ecology and 

biogeochemistry of coastal microbial communities. In the first study, an internal standard 

approach was developed to make absolute (per liter) estimates of transcript numbers, a 

significant advantage over proportional estimates. Expression levels of genes diagnostic for 

transformations in the marine nitrogen, phosphorus and sulfur cycles were determined, as well as 

the total size of the mRNA pool. By representing expression in absolute units, 

metatranscriptomics extends beyond relative comparisons, allowing for direct comparisons with 

other biogeochemical measurements. In the second study, a metatranscriptomic dataset revealed 

an unexpected abundance of transcripts to ‘Candidatus Nitrosopumilus maritimus’, an ammonia 

oxidizing Archaea whose presence has significant implications in the carbon and nitrogen cycles. 



 

Reads assigned to genes for ammonia uptake and oxidation accounted for 37% of N. maritimus 

transcripts. In contrast, transcripts from co-occurring ammonia oxidixing Bacteria were in much 

lower abundance, with no transcripts related to ammonia oxidation or carbon fixation. This study 

suggests that these two members of the ammonia oxidizing functional guild respond differently 

to the same environmental cues. The third study used metatranscriptomics to examine how 

differences in expression among taxa can be indicative of niche diversification. The sequencing 

of transcripts from four coastal bacterial communities revealed the expression and activity of 

thousands of different taxa. The genes carried by these taxa have extensive overlap, and the 

majority of highly expressed genes were for redundant functions. To identify unique ecological 

roles for these taxa, a method was developed to classify genes both by their expression level and 

their frequency in genomes. The results show clear functional delineations across broad 

phylogenetic groupings and provide insights into the diversity of lifestyle strategies that supports 

complex microbial assemblages. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 Of the major advances in ecology in the last century, the recognition that microbes are 

central to ecosystem function is arguably one of the most important.  Nowhere is this more 

apparent than in the oceans (Pomeroy, 1974; Azam et al., 1983) where the sheer abundance of 

marine bacteria (Whitman et al., 1998) is strong evidence for their influence on energy transfer 

and elemental cycling. Indeed, bacteria are both the dominant primary producers (Chisholm et 

al., 1988) and the dominant consumers of fixed carbon in the ocean (Azam, 1998) and have a 

major role in the sequestration and turnover of inorganic nutrients. Their genetic plasticity and 

physiological diversity allows them to occupy every imaginable niche and facilitates their 

interactions with members of the community ranging from fellow bacteria to large metazoans. 

Given their influence, understanding the genetic, ecological, and evolutionary forces that shape 

and control bacterial activities is critical to understanding ecosystem structure and function.  

However, much of our current knowledge about bacterial activities is derived from bulk 

measurements of mixed species communities and cannot distinguish the identity or functional 

roles of individual taxa. This obscures details about the underlying processes that lead to 

emergent ecosystem properties; limiting our ability to extend insights gained in one system to 

another and making it difficult to predict how systems will respond to natural or anthropogenic 

perturbations.  
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  An inherent difficulty in microbial taxonomy is a lack of morphological markers that 

allow individual cells to be grouped into species whose activities can be characterized. However, 

molecular markers have proved to be a powerful alternative and, since the late 1980’s, have 

revolutionized the field of microbial ecology. Ribosomal RNA sequences have been used to 

catalog the taxonomic composition and phylogenetic relatedness of members of microbial 

communities (Giovannoni et al., 1990; Amann et al., 1995), taking the first steps in revealing in 

situ microbial populations. This allowed for the targeted isolation and cultivation of 

environmentally relevant organisms, whose phenotypic and genotypic properties could be 

examined directly in the laboratory (Gonzalez et al., 2000; Rappe et al., 2002; Moran et al., 

2004;  Giovannoni et al., 2005). Recent 16S rRNA surveys, particularly those using next 

generation sequencing technologies, have demonstrated that most microbial assemblages are 

composed of thousands of different taxa (Sogin et al., 2006; Huber et al., 2007 ), with only a 

small minority having relatives in culture. This high taxonomic richness raises questions as to 

how so many different types of bacteria can exist simultaneously (Hutchinson, 1961) and what 

biogeochemical roles each plays.  Metagenomics can provide some insight into these questions 

by simultaneously examining the distribution of taxa and their potential functional mechanisms 

in a culture independent manner (Venter et al., 2004; Rusch et al. 2007), but it can say nothing 

about which of these mechanisms are actively being expressed. Metatranscriptomics, the direct 

retrieval and sequencing of environmental RNA, looks at only those genes expressed in response 

to immediate environmental conditions and thus targets only active taxa and their realized 

functional capabilities.  

  The potential for metatranscriptomics to be a powerful tool for microbial community 

analysis has been demonstrated by several previous studies. Poretsky et al., (2005) conducted the 
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first metatranscriptomic analysis using clone libraries and Sanger sequencing, identifying several 

hundred protein encoding transcripts and demonstrating the ability of the technique to capture 

environmentally representative transcripts, and identify expression of biogeochemically 

diagnostic genes. Since that time, advances in next generation sequencing technologies have 

increased sequencing capabilities by more than six orders of magnitude (Margulies et al., 2005), 

providing an improvement in coverage of transcript pools (Stewart et al., 2010). The first studies 

that used the new sequencing capabilities were largely descriptive, examining relative 

differences in community transcription segregated either temporally (Gilbert et al., 2011; 

Poretsky et al., 2009) or spatially (Frias-Lopez et al., 2008; Hewson et al., 2010; Shi et al., 2011; 

Stewart et al., 2011b) in a variety of open ocean and coastal habitats. However, 

metatranscriptomics can extend beyond purely descriptive studies to analyze differences in 

expression in experimental manipulations, such as dissolved organic matter (DOM) additions 

(Poretsky et al., 2010; Mckarin et al., 2010; Vila-Costa et al., 2010) or artificially induced 

phytoplankton blooms (Gilbert et al., 2008). The method has also illuminated the abundant 

expression of small, regulatory RNAs in microbial communities (Shi et al., 2009) as well as 

provided insights into the molecular evolution of microbial genes (Stewart et al., 2011a).  

These studies have raised several methodological and ecological questions about 

expression in microbial communities, particularly in relation to quantification, coverage, and 

niche diversification. Because the total number of transcripts in any given sample is typically not 

known and only a small subsample is sequenced, analyses are limited to relative interpretations 

of read counts (i.e., as percent of transcriptome) rather than more environmentally meaningful 

units (i.e., per volume or mass). This has limited direct comparisons to other biogeochemical 

measurements, such as standing stocks or activity rates. Furthermore, with no knowledge of the 
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total transcript pool size, it is not possible to determine how deeply a sample is sequenced. An 

examination of collector’s curves from several studies (Poretsky et al., 2009; Stewart et al., 

2010) suggest that coverage of the community transcriptome is very low, and that the transcripts 

sequenced most often are those encoding basic cellular machinery that is shared among most 

taxa (Hewson et al., 2009). Yet the simultaneous presence of so many active taxa suggests that 

the dominance of cellular housekeeping transcripts is likely obscuring less abundant transcripts 

for ecological or biogeochemical processes that may be indicative of niche diversification. 

Furthermore, for those taxa that do share a substantial amount of biogeochemical functional 

overlap, expression analysis has yet to resolve the heterogeneity in their responses to shared 

environmental conditions that may lead to niche separation between members of the same 

functional guild.  

 

Chapter Overview 

The aim of this dissertation is to examine the activities and functional organization of 

microbial communities via expression analysis, with a specific emphasis on using 

metatranscriptomics to make quantitative insights into biogeochemical activities and niche 

diversification. The focus of the research spans several levels of ecological organization, from 

characterizing the basic properties of mRNA pools, to the analysis of individual bacterial 

populations, and finally to a holistic examination of a community assemblage. The work will 

address the following broad questions: 
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Question 1:  Can an internal standard approach be used to make metatranscriptomic 

interpretations quantitative? 

a) How deeply is the transcript pool sequenced?  

b) What is the environmental concentration of transcripts for diagnostic 

biogeochemical genes?  

c) Are current sequencing strategies sufficient to detect differences in gene 

transcription between samples? 

 

Previous metatranscriptomic studies have been limited to relative interpretations due to 

variations in sequencing depth between samples. In chapter 2, a quantitative approach to 

metatranscriptomics was developed based on the addition of an internal RNA standard. Two 

replicate samples from the Sapelo Island Microbial Observatory (SIMO) time series were 

processed for this analysis and sequenced with two 454 pyrosequencing runs each, producing 

over 2 million reads. Based on the sequence coverage of the internal standard added, we 

estimated the size of the transcript pool in each sample and how deeply it was covered. Sequence 

counts could then be transformed to concentrations in the original seawater sample, a more 

meaningful ecological unit that allowed for direct comparisons across different samples and with 

other biogeochemical measurements. The concentration of transcripts for 82 diagnostic genes of 

the marine nitrogen, phosphorus, and sulfur cycles was determined, as well as the ability to make 

statistical distinctions in their abundance between the two replicate samples.  

Appendix A gives a detailed description of the quantitative metatranscriptomic protocol, 

including methods for sample collection, internal standard addition, custom rRNA reduction, 
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linear amplification, and cDNA synthesis. Considerations for designing internal standard 

sequences, as well as their construction are also given.  

 

Question 2: What information can metatranscriptomic analyses provide about the in situ 

distribution and ecology of marine ammonia oxidizing archaea?  

a) How does the presence and activity of ammonia oxidizing populations vary with 

 time? 

b) What can transcripts tell us about the metabolism of these populations? 

c) What external factors regulate competition between marine ammonia oxidizing 

archaea and other members of the same functional guild?  

 

One of the advantages of metatranscriptomics is that it requires no prior information on 

the community, offering the potential to make insights into the functional activities of taxa not 

previously known to be important to a system. Chapter 3 examines the unexpected presence and 

activity of ammonia oxidizing archaea in coastal waters of the southeastern U.S. The importance 

of archaea to the subeuphotic regions of the open ocean is well recognized, and though they have 

been examined in coastal sediments, they were not thought to be abundant or active in the water 

column of shallow coastal ecosystems. Metatranscriptomic analysis of a summer SIMO sample 

revealed an abundance of transcripts with high sequence homology to the Thaumarchaeota 

Nitrosopumilus maritimus, and qPCR analysis of samples collected throughout 2008 showed a 

distinct increase in their distribution in the summer sample. Transcript sequences covered almost 

half the genes in the N. maritimus genome and were particularly enriched for genes related to 

ammonia oxidation. In contrast to the archaea, transcript abundances for ammonia oxidizing 
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bacteria were consistently low. The analysis thus provided insight into the physiological and 

environmental factors that influence archaeal distributions in coastal waters, as well as the 

potential factors leading to niche segregation among members of the ammonia oxidizing 

functional guild.  

 

Question 3:  Can expression analysis reveal the distinct ecological roles of taxonomic 

groups within the bacterioplankton?  

a) Can expression data be used as a proxy for relative activity among groups? 

b) Is there a difference in expression levels of genes shared among many taxa versus 

those shared among few? 

c) Is niche diversification driven by differences in expression of shared functional 

capabilities or by unique functional capabilities?  

 

 In contrast to macroorganism communities, where obvious delineations typically exist in 

functional roles among community members, the divisions of niche space within microbial 

communities has remained elusive. This is due in large part to the functional redundancy found 

in microbial genomes and metagenomes. In chapter 4, metatranscriptomics is used to look at 

expression patterns across phylogenetically distinct microbial groups sharing the same 

environment in order to identify their unique ecological niches. Illumina sequencing of four 

seasonal samples from the SIMO time series produced over 11 million protein-encoding reads, 

providing a robust view of the gene expression of hundreds of different taxa. The relative 

abundance of ribosomal proteins among the top 200 reference bins showed distinct differences in 

activity among taxa. A strong positive relationship between expression level and functional 
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redundancy provided a method of examining genes with atypically high expression within an 

ortholog group, which were indicative of genes for niche specialization. The results show clear 

delineations in gene expression patterns across broad taxonomic groupings and provide insights 

into the diversity of ecological strategies that characterize a complex microbial assemblage. 
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Abstract 

The potential of metatranscriptomic sequencing to provide insights into the 

environmental factors that regulate microbial activities depends on how fully the sequence 

libraries capture community expression (i.e., sample sequencing depth and coverage depth), and 

the sensitivity with which expression differences between communities can be detected (i.e. 

statistical power for  hypothesis testing). Here we use an internal standard approach to make 

absolute (per liter) estimates of transcript numbers, a significant advantage over proportional 

estimates that can be biased by expression changes in unrelated genes. Coastal waters of the 

southeastern U.S. contain 1 x 1012 bacterioplankton mRNA molecules per liter of seawater (~200 

mRNA molecules per bacterial cell). Even for the large bacterioplankton libraries obtained here 

(~500,000 possible protein-encoding sequences in each of two libraries after discarding rRNAs 

and small RNAs from >1 million 454 FLX pyrosequencing reads), sample sequencing depth was 

only 0.00001%. Expression levels of 82 genes diagnostic for transformations in the marine 

nitrogen, phosphorus, and sulfur cycles ranged from below detection (<1 x 106 transcripts L-1) 

for 36 genes (e.g., phosphonate metabolism gene phnH, dissimilatory nitrate reductase subunit 

napA) to >2.7 x 109 transcripts L-1 (ammonia transporter amt and ammonia monooxygenase 

subunit amoC). Half of the categories for which expression was detected, however, had too few 

copy numbers for robust statistical resolution, as would be required for comparative 

(experimental or time-series) expression studies. By representing whole community gene 

abundance and expression in absolute units (per volume or mass of environment),"omics" data 

can be better leveraged to improve understanding of microbially-mediated processes in the 

ocean.  
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Introduction 

Metatranscriptomics is a powerful tool for capturing gene expression patterns in natural 

microbial communities without prior assumptions as to the ongoing activities or dominant taxa 

(Frias-Lopez et al., 2008; Poretsky et al., 2005). In contrast to metagenomics, which provides an 

inventory of the community gene pool, metatranscriptomics identifies which of those genes are 

being transcribed in a given ecological context, including under experimentally manipulated 

conditions (Gilbert et al., 2008; Poretsky et al., 2010).  

The advent of second generation sequencing has increased metatranscriptome library 

sizes by orders of magnitude (Frias-Lopez et al., 2008; Hewson et al., 2009a; Poretsky et al., 

2005; Poretsky et al., 2009b; Urich et al., 2008), yet how deeply a community transcriptome is 

“covered” by the sequence library remains a critical issue. If too shallow, libraries will be 

dominated by transcripts from metabolic pathways shared by most cells and poor in those 

representing specialized biogeochemical pathways (Hewson et al., 2009b; Poretsky et al., 

2009b). As a consequence, unique expression patterns within a community may be missed, and 

comparative analyses between communities can be insensitive.  

Variability in sample sequencing depth between community metatranscriptomes, 

regardless of coverage level, further limits the power of comparative analyses by restricting 

assessments to relative data (i.e., as a proportion of the transcriptome; Fig. 2.1). This is 

problematic because changes occurring in the abundance of some mRNAs in response to shifting 

conditions (Hannah et al., 2008; Robinson and Oshlack, 2010; van de Peppel et al., 2003) leads 

to changes in the percent representation of other mRNAs whose absolute abundance has not 

changed (Fig. 2.1). Comparative analyses based on ratios of mRNA copies to DNA copies [i.e., 

relative abundance in metatranscriptomes vs. relative abundance in metagenomes; (Frias-Lopez 
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et al., 2008)] doesn’t solve this problem, since both are similarly affected by unknown and 

possibly different sample sequencing depths. Thus as currently obtained, metatranscriptomic data 

provide information on enrichment or depletion of a transcript category in the community 

transcriptome, but not on the absolute abundance of these transcript categories per volume or 

mass of environment (Fig. 2.1), which is the most relevant comparison for biogeochemical 

studies and ecosystem modeling. Metagenomic-, metaproteomic-, and environmental 

microarray-based studies suffer these same proportional data constraints. 

Here we report the deep sequencing of two replicate metatranscriptomes from 

southeastern U.S. coastal seawater to characterize microbial gene expression and address three 

critical questions about sequencing effort: 1) What was the sample sequencing depth for the 

bacterioplankton community transcriptome? We used an internal mRNA standard to estimate the 

number of transcripts in the natural sample compared to the number of transcripts sequenced. 2) 

What was the abundance of transcripts representing key bacterial transformations in the nitrogen, 

phosphorus, and sulfur cycles in coastal seawater? We used BLAST analysis normalized to 

internal standard recovery to estimate absolute transcript numbers for over 80 diagnostic steps in 

marine elemental cycles. 3) Was the sequencing strategy sufficient to detect differences in gene 

transcription between samples? We examined the effect of coverage depth on statistical 

comparisons of biogeochemically-diagnostic transcripts in the metatranscriptomes.  

 

Methods 

Sample Collection. Two replicate seawater samples (FN56 and FN57) were collected at 

Marsh Landing, Sapelo Island, Georgia, U.S. (31° 25’ 4.08 N, 81° 17’ 43.26 W; 

www.simo.marsci.uga.edu) on 8 August 2008 at 2330 h local time, 1 h before high tide and 3 h 
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after sunset. These samples are part of a multi-year time series of the Sapelo Island Microbial 

Observatory (www.simo.marsci.uga.edu), in which collections are made every three months and 

each collection set consists of duplicate samples from 4 consecutive high tides (2 day and 2 

night). Surface water (5.75 L from a depth of 0.5 m) was pumped directly through 3 µm and 0.22 

µm filters. The 0.22 µm filter was placed in a Whirl-Pak® bag (Nasco, Fort Atkinson, WI) and 

immediately flash frozen in liquid N2.  Total time from the start of filtration to freezing was ten 

minutes.  While the samples are considered biological replicates within the larger time series, we 

note that there was eight minutes between the end of the first collection (sample FN56) and the 

start of the second (sample FN57). Nutrient data are collected monthly at station GCE6 (~3 km 

from Marsh Landing) as part of the Georgia Coastal Ecosystems Long Term Ecological 

Research program (GCE-LTER; http://gce-lter.marsci.uga.edu).  

RNA Processing and Sequencing. RNA processing in preparation for pyrosequencing 

was done as previously described (Poretsky et al., 2009a; Poretsky et al., 2009b), with the 

exception of the addition of an in vitro transcribed standard to the extraction tube before 

beginning the extraction. The standard was constructed by linearizing a pGem-3Z plasmid 

(Promega, Madison, WI) with ScaI restriction enzyme (Roche, Penzberg, Germany) and cleaned 

with a phenol:chloroform:isoamyl alcohol extraction. Complete digestion of the plasmid was 

confirmed with a 1% agarose gel. The DNA fragment was then in vitro transcribed using the 

Riboprobe in vitro Transcription System (Promega, Madison, WI) according to manufacturer’s 

protocol; an SP6 RNA polymerase was used to create a 994 nt long RNA fragment. The pGem 

plasmid had another internal T7 promoter region, but it was present in the reverse complement 

sequence during in vitro transcription and aRNA amplification (see below) and did not interfere. 

Residual DNA was removed with RQ1 RNase-Free DNase, and the RNA was cleaned with a 
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phenol:chloroform:isoamyl alcohol extraction. The RNA standard was quantified with a 

Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE), and correct fragment size 

was confirmed with an Experion automated electrophoresis system (Bio-Rad, Hercules, CA, 

USA).  

Twenty five nanograms (4.7 X 1010 copies) of the RNA standard was added to a 50 ml 

conical tube containing 8 ml RLT lysis buffer (Qiagen) and 3 g of RNA PowerSoil beads (Mo-

Bio, Carlsbad, CA). The sample filters were removed from -80°C storage, shattered, and added 

to the extraction tubes. RNA was then extracted using an RNEasy kit (Qiagen, Valencia, CA, 

USA), and any residual DNA was removed using the Turbo DNA-free kit (Applied Biosystems, 

Austin, TX, USA).  In order to reduce the number of rRNAs in the pyrosequencing reads, total 

RNA was treated in two ways to enrich for mRNA. Epicentre’s mRNA-Only isolation kit 

(Epicentre, Madison, WI, USA) was first used to decrease rRNA contamination enzymatically. 

The samples were then treated with MICROBExpress and MICROBEnrich kits (both from 

Applied Biosystems) which couple an oligonucleotide rRNA probe with magnetic separation to 

enrich for mRNA.  Successful reduction of rRNA was confirmed by running both pre- and post-

treated samples on an Experion automated electrophoresis system (Bio-Rad, Hercules, CA, 

USA). In order to obtain enough mRNA for pyrosequencing, the samples were linearly amplified 

using the MessageAmp II-Bacteria kit (Applied Biosystems). The amplified RNA was then 

converted to cDNA using the Universal RioboClone cDNA synthesis system with random 

primers (Promega, Madison, WI, USA), which produced cDNAs primarily in the size range of 

200 to 600 bp. Residual reactants and nucleotides from cDNA synthesis were removed from the 

sample using the QIAquick PCR purification kit (Qiagen), and gel-based size selection was used 

to select fragments in the 250 bp to 500 bp range. cDNAs from each replicate sample were 
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loaded into ½ of each of four GS-FLX plates for 454 pyrosequencing. Sequences are deposited 

in the CAMERA Database (http://camera.calit2.net/about-camera/full-datasets) under accession 

name “CAM_PROJ_Sapelo2008”.  

Read Annotation. Duplicate clusters were identified using an online program (Gomez-

Alvarez et al., 2009). Ribosomal RNA sequences were identified with a BLASTn search against 

the small and large subunit SILVA database (http://www.arb-silva.de) with a bit score cutoff ≥ 

50; sequences identified as rRNA were then removed from further consideration. To identify 

small, non protein encoding RNAs (Shi et al., 2009), all non ribosomal reads were compared to 

the RFam database (http://rfam.janelia.org) using BLASTn with a bitscore ≥40, and hits were 

considered putative small RNAs (psRNAs) if the best hit in the RefSeq database was a 

hypothetical protein or if the RFam alignment was > 95 nt (Fig. 2.S1).   

Remaining reads were annotated using BLASTx searches against the NCBI RefSeq and 

Clusters of Orthologous Genes (COG) databases (Tatusov et al., 2003) with a bit score cutoff ≥ 

40. Taxonomic binning was based on RefSeq hit. Collector’s curves were produced from a 

custom script in the R environment (R Core Development Team, 2009). Read coverage of 

proteorhodopsin PU1002_03206 gene bin and the internal standard was assessed by assembling 

reads against the reference sequence using Geneious version 4.8 (Biomatters Ltd., Auckland) 

with gaps and default scoring (word length = 18, max gap size = 1, max gaps per read = 20, max 

mismatches = 20, and max ambiguities = 4) and the consensus sequence representing the 

majority nucleotide at each position. Sequence variation at each nucleotide position was 

determined using a custom script in R with the BioStrings package (Pages et al., 2009).  

Elemental Cycle Transcripts. Reference diagnostic genes representing transformations 

in the N, P, and S cycles were selected from marine Alphaproteobacteria,  Gammaproteobacteria, 
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and Bacteriodetes genomes (the three most common taxa in marine metagenomic libraries), or 

from other taxa if these three groups did not contain an ortholog to the gene of interest. These 

reference sequences were used as query sequences in BLASTx analysis against the 

metatranscriptomic data (bitscore > 40, E-value < 10-3) and redundant hits were removed. 

Remaining hits were manually checked with BLASTx against the RefSeq database and discarded 

if the top 3 hits were not to a similar annotation as the original reference gene.  

Statistics. Pairwise statistical comparisons were carried out with Xipe, a bootstrapped 

difference of means calculation developed by Rodriquez-Brito et al. (2006), using 20,000 

bootstrap iterations and 95% confidence intervals, or with 2 x 2 contingency tables and the 

Fisher’s Exact Test (White et al., 2009) using p < 0.05. Subsampled libraries for Xipe analyses 

were created by sampling without replacement using R (R Core Development Team, 2009). The 

Benjamini-Hochberg correction was used to adjust the Fisher’s Exact Test p-values as a control 

for the False Discovery Rate (FDR) using the R package “multtest” (Strimmer, 2008) and only 

those genes with an adjusted p-value < 0.05 were considered significant. A simulation analysis of 

Fisher’s Exact Test significance threshold as a function of count number was carried out using an 

R script that ran 2 X 2 contingency tables at incrementing count values for library sizes of 

125,000 reads.  

 

Results and Discussion 

Sequence Libraries. cDNAs derived from two replicate coastal bacterioplankton 

samples [samples FN56 and FN57 in the Sapelo Island Microbial Observatory series 

(http://simo.marsci.uga.edu)] were sequenced in four GS-FLX 454 runs (Margulies et al., 2005), 

with four technical sequencing replicates per biological replicate. Over a million reads averaging 
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210 nt in length were obtained per sample (Table 2.1). After removal of rRNAs and putative 

small RNAs [psRNAs; (Shi et al., 2009)], there were ~500,000 possible protein encoding reads 

in each library (Table 1).  

Sample Sequencing Depth. Sample sequencing depth is defined here as the percent of 

mRNA molecules present in a sample that is represented in the sequence library. The greater the 

sequencing depth of an mRNA pool, the more thorough the representation of microbial gene 

transcription. Further, if the volume or weight of the sample is also known, information on the 

sample sequencing depth allows absolute transcript abundance to be calculated for a given 

quantity of the environment, not just proportional abundance in the community transcriptome. To 

estimate sample sequencing depth, a known number of artificial RNA sequences serving as an 

internal standard was added immediately prior to cell lysis at the initiation of nucleic acid 

extraction. This approach may have some biases, for example if the internal standard is more 

susceptible to degradation than natural mRNA or if the efficiency of release of natural mRNA 

from cells is less than 100%, but it provides a consistent accounting across samples through 

extraction, processing, and sequencing steps. Similar approaches have been successfully applied 

to qPCR (Coyne et al., 2005) and microarray studies (Hannah et al., 2008).  

A total of 4,014 internal standards were identified in the FN56 sequence library out of 4.7 

x 1010 copies added prior to cell lysis, leading to an estimate of 1.0 x 1012 bacterioplankton 

mRNA molecules per L of coastal seawater (Table 2.2).  Two other estimates of the size of the 

community transcriptome were derived using literature values for mRNA content of marine 

bacterioplankton (Table 2.2), and these were in reasonable agreement with the internal standard 

method. The sample sequencing depth was therefore ~0.00001%, or 1 in 107 transcripts, with 

FN57 sequenced slightly deeper than FN56 (Table 2).   
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Direct cell counts indicated 4.2 x 109 bacterioplankton cells L-1 in the seawater samples, 

and therefore an average of 190 mRNA transcripts cell-1 (Table 2.2). Laboratory cultures of 

Escherichia coli in exponential growth phase have ~1,400 transcripts cell-1 (Neidhardt and 

Umbarger, 1996). The 7-fold lower estimate for coastal bacterioplankton was not unexpected, 

however, because the cells are considerably smaller in size (Azam and Hodson, 1977) and have 

much lower growth rates (Ducklow, 2000) than laboratory-grown E. coli. Based on this per cell 

abundance estimate, it can be deduced that transcript copy number was lower than gene copy 

number for most of the bacterial and archaeal genes present in this coastal ocean.  

Coverage Depth. Coverage depth is defined here as the percent of the unique mRNAs 

present in a sample that is represented in the sequence library. Sample sequencing depth and 

coverage depth are not strictly coupled, since a low richness/high evenness community 

transcriptome will be well covered even with shallow sample sequencing.  

We evaluated coverage depth for the coastal metatranscriptomes in terms of taxa, 

functional gene categories, and genes. Taxonomic coverage, as assessed by a collector’s curve of 

NCBI taxonomy bins at the species or strain level, was approaching saturation for the library 

(Fig. 2.2 - inset); indeed, 75% of the total taxonomic richness emerging from this analysis would 

have been discovered with <15% of the sequencing effort.  Saturating coverage was also found 

for functional gene assignments based on best hits to the Clusters of Orthologous Genes (COG) 

database (Table 2.1); 75% of the total richness would have been found with <10% of the 

sequencing effort (Fig. 2.2-Inset).  However, these coverage assessments are constrained by the 

composition of the reference database, since apparent richness can be no higher than the number 

of reference bins available for transcript assignment. We found 1,909 taxon bins represented in 
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the metatranscriptomic libraries out of 8,054 entries in the NCBI taxonomy database, and 3,298 

COGs out of 5,666 entries in the COG database. 

When coverage was assessed based on gene assignments in the RefSeq database (>6 

million accession numbers), transcripts binned to over 168,000 different genes (Table 2.1), and 

the collector’s curve indicated that the metatranscriptome library was far from saturating (Fig. 

2.2). Singletons made up 59% of the sequences (Fig. 2.S2), and abundant transcripts (>10 hits · 

accession number-1) and highly abundant transcripts (>100 hits · accession number-1) composed 

only 3% and 0.5% of the library, respectively. While RefSeq binning could overestimate 

transcript richness (because identical transcripts bin to different reference genes due to 

differences in the region sequenced or because of sequencing errors), it also underestimates 

richness (because a variety of sequence variants bin to the same reference gene; Fig. 2.3). In any 

event, despite efforts to sequence more deeply than typical, our libraries exhibited the same low 

coverage that has been reported in previous metatranscriptomic analyses of marine 

bacterioplankton communities (Frias-Lopez et al., 2008; Poretsky et al., 2010; Stewart et al., 

2010).  

Metatranscriptomes might be expected to have lower richness compared to metagenomes 

if expression is limited to a small fraction of the bacterial genome at any one time. In this case, 

they would also have higher coverage than metagenomes for the same size sequence library 

(Gilbert et al., 2008). Yet for this coastal metatranscriptome, the distribution of hits per gene 

(Fig. 2.S2) did not indicate dominance by a limited number of highly transcribed genes (Fig. 

2.2). Similarly, a synchronized clonal population of Bacillus anthracis expressed 40-80% of 

genes under all growth conditions tested (Passalacqua et al., 2009), suggesting that the 

population’s transcriptome was only slightly less rich than its genome. Even allowing for 
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significant advances in sequencing technology, the extremely low sample sequencing depth 

found here suggests that most natural community transcriptomes will continue to be 

undersampled. 

Microdiversity. Assembly of transcripts from the most highly expressed genes (> 1,000 

reads for some) revealed significant variation within reference bins (see Chapter 3). For example, 

the 2,259 reads that binned to the P. ubique HTCC1002 proteorhodopsin gene (PU1002_03206; 

1 of 28 proteorhodopsin bins in the libraries) had high sequence diversity (Fig. 2.3). That this 

observed diversity was in fact real biological variation was substantiated by an assembly of the 

internal standard reads (Fig. 2.3) which indicated a mean sequencing error rate in this study of 

3.7 (±7.4) per 1000 bp compared to a mean sequence variation rate of 97.6  (± 28.0) per 1000 bp 

for transcripts binning to PU1002_03206. Although high diversity in proteorhodopsin genes has 

been found previously in the ocean (Campbell et al., 2008; Rusch et al., 2007), the 

metatranscriptomic data revealed simultaneous expression of scores of microdiverse sequence 

variants. Transcriptome coverage estimates based on gene binning to the RefSeq database are 

considerable underestimates of the true sequence richness. 

Detection of biogeochemically informative transcripts. We determined the absolute 

abundance of transcripts for key genes representing the phosphorus cycle (25 diagnostic genes), 

nitrogen cycle (50 genes), and sulfur cycle (7 genes) (Fig. 2.4). Transcripts were found for 56% 

of genes surveyed. Most P and S cycle transformations were represented by at least one 

transcript. N cycle expression was dominated by ammonia transporter and ammonia 

monooxygenase transcripts, which had the highest copy numbers of any gene category (2.7 x 109 

transcripts L-1; Fig. 2.4); many other N cycle genes were not detected at all.  
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To examine detection of biogeochemically-diagnostic mRNAs in theoretically smaller 

libraries, the full metagenomic libraries were randomly subsampled in silico to generate subsets. 

The majority of the elemental cycle transcripts detected in the full libraries were still evident in 

smaller libraries. For example, >80% of the P-cycle related genes would have had at least one hit 

in a library 1/4th the size (Fig. 2.S3).  

Statistical resolution. Comparative metatranscriptomics seeks to differentiate transcript 

abundance between samples, for example, across natural environmental gradients or in response 

to experimental manipulations. We examined the statistical power of comparative analyses as a 

function of library size, starting first with broad categories of gene function as represented by 

COG assignments. Subsets of each of the replicate libraries were generated in silico and the fold-

difference criteria (high abundance count / low abundance count) needed for statistically 

significant differences were compared using a resampling method based on difference of 

medians (Xipe; Rodriguez-Brito et al., 2006) . Even for libraries 1/4th of the original size, there 

was little effect on the fold-difference threshold required for a COG category to be considered 

significantly different between samples (Fig. 2.5). This was true as well for an alternate 

statistical approach using contingency tables and Fisher’s Exact Test (White et al., 2009) (Fig. 

2.5-inset), and also when analyzing libraries much smaller than the original (for example, the 

average fold-difference threshold for significance in a 10,000 read library was <1% greater than 

in a 500,000 read library).  

Library size, however, had a direct impact on the number of counts in a transcript 

category, thereby affecting the power of statistical comparisons. Transcript categories with low 

copy numbers (defined here as <15 hits in the lower abundance sample) required from 2- to 8-

fold difference between the two samples for statistical significance (Fig. 2.5). For smaller in 
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silico subsets of the libraries or for more specific transcript annotation categories (e.g., RefSeq 

gene bins), both of which result in lower counts per category, the power to detect statistical 

differences between two samples decreased. For example, 17 out of the 25 genes that mediate 

key steps in the marine phosphorus cycle fell into a low count category even with the full-size 

library (Fig. 2.4), and nearly all would do so if the library was 1/4th of the original size. For 

metatranscriptomic libraries of the magnitude obtained here (>1,000,000 454 FLX reads), only 

those transcripts present at concentrations >1 x 106 L-1 had a good probability of being detected, 

and only those present at concentrations >1.5 x 107 (which would exclude all singletons and 

other low-count transcript categories) could be compared across samples with good statistical 

power.  

Replication. The need to improve sample sequencing depth competes with the need for 

replication in comparative metatranscriptomic analyses. Two important sources of variability 

that can be quantified through replication include technical variation during sample 

processing/sequencing, and natural biological variation within the environment sampled.  

For the first type, 454 pyrosequencing is prone to artifacts in which single DNA 

fragments are sequenced more than once ("duplicate sequences"). While artifactual duplicates 

are recognized in metagenomes as sequences with identical 5’ sequence and high identity 

throughout (Dinsdale et al., 2008; Gomez-Alvarez et al., 2009), true duplicate sequences can 

arise in metatranscriptomes from discrete mRNAs from highly expressed genes. In the present 

work, 24% of RefSeq reads were “duplicates” (same start site and >90% identity). Since each 

replicate biological sample was sequenced as four technical replicates (independent emulsion 

PCRs and sequencing runs), and assuming that artifactual duplicates arise during the emulsion 

PCR step (Gomez-Alvarez et al., 2009; Stewart et al., 2010), artifactual duplicates should have 
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uneven distributions across the four 454 runs while natural duplicates should be evenly 

distributed. We found that most duplicate clusters averaged ~25% per technical sequencing 

replicate (Fig. 2.S4), and a statistical comparison of COG assignments for all six within-sample 

pairwise combinations of the technical sequencing replicates indicated that only 0.2% fit the 

pattern for artifactual duplicates (significantly higher in one technical replicate compared to the 

other three). For the transcript with the highest copy number in the combined library (Rac 

prophage; ZP_03400590), removal of duplicate reads would have decreased the count by 98% 

(from 6,235 to 111 hits) despite evidence from technical replicates that many of these are natural 

(Fig. 2.S5). Duplicate removal from metatranscriptomic libraries based on sequence start 

position and percent identity (Gomez-Alvarez et al., 2009, Stewart et al., 2010) may therefore 

produce systematic underestimates of abundance for the most highly transcribed genes in the 

community, and statistical analysis of technical replicates is a recommended alternative.  

For the second type of variation, within-treatment biological variability sets the false 

positive rate against which differences in gene expression patterns across treatments or 

environments can be evaluated (Poretsky et al., 2010). In this study, patchiness in community 

gene transcription patterns was detectable in paired coastal seawater samples separated by ~300 

m (based on tidal flushing rates past a fixed collection point). At the level of functional gene 

categories, pairwise comparisons indicated significant differences between the samples for 461 

of 3,298 COGs (14%) (Xipe, p <0.05). Only 9 significant COGs contained sequences from a 

putative artifactual duplicate cluster (see above), highlighting the benefit of technical replicate 

averaging for reducing spurious differences from sequencing artifacts. In accordance with other 

studies of environmental sequence libraries (Rodriguez-Brito et al., 2006), as well as our 
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observations above, decreasing the library size had a major influence on the number of 

significant differences that were detectable (Table 2.S1).  

Differences between replicate samples at the individual gene level (i.e. transcripts binned 

by RefSeq hits) was also examined, using Fisher's Exact Test coupled with a correction for the 

False Discovery Rate (FDR; Strimmer, 2008) to control for Type I errors arising when 

simultaneously conducting large numbers of statistical tests (in this case, for >186,000 different 

RefSeq bins). Eighty-three (0.05%) of the gene bins were statistically different between the two 

samples (p < 0.05 with Benjamini-Hochberg correction), including those representing phage 

genes, ammonia oxidation genes, and various genes for light driven energy acquisition (Fig. 

2.S6). The replicate samples therefore established within-treatment variability (e.g., Fig. 2.4) for 

future between-treatment comparisons.  

Microbial gene expression in a coastal ocean. Transcripts from the combined library 

binned to genes from 1,909 reference organisms. Thirty-three percent of the sequences had best 

hits to Alphaproteobacteria genes (with roseobacters accounting for 11% and Pelagibacter 

ubique for 7%) and 27% had best hits to Gammaproteobacteria genes (Fig. 2.6). Unexpectedly, 

4% of the transcripts binned to the two archaeal genomes of Nitrosopumilus maritimus (3.3%) 

and Cenarchaeum symbiosum (0.1%). While Archaea are often abundant and active in deep 

ocean environments, they were not expected to contribute significantly to gene expression in this 

shallow coastal water system; the N. maritimus taxonomic bin was the second largest in the 

metatranscriptome (see Chapter 3). The Oligotrophic Marine Gammaproteobacteria (OMG) 

clades, which are usually in low abundance in oceanic 16S rRNA libraries (<3%; Cho and 

Giovannoni, 2004), were also unexpectedly well represented in the metatranscriptome (Fig. 2.6; 

8% of transcripts), and transcripts binning to three genes from a Gammaproteobacteria prophage 
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(3% of transcripts) may indicate an ongoing infection of these OMG populations. Eukaryotic 

transcripts composed 6% of the total, with those binning to Ostreococcus spp. particularly well 

represented (20% of eukaryotic hits).  

Copy numbers of transcripts representing 82 genes diagnostic for P, N, and S cycling 

were determined simultaneously from the metatranscriptomic data (Fig. 2.4). For P 

transformations, annotations suggest bacterioplankton were transporting phosphate by both high 

and low affinity transporters. The expression of low affinity transporters, along with 

polyphosphate storage genes, is consistent with elevated phosphate concentrations (1.2 µM) at 

the time of sampling, which is typical of late summer in this coastal ocean (Fig. 2.4). Expression 

patterns also indicated ongoing utilization of organic phosphorus, including phosphoesters (via 

phoX, phoD, and phoA) and phosphonates (although transcripts for the canonical C-P lyase 

pathway were near the limit of detection). For N transformations, sampling occurred during a 

local ammonia peak (2.6 µM; Fig. 2.4), and transcripts related to the uptake and oxidation of 

ammonia (amt, amoA,B,C) were orders of magnitude higher in abundance than genes mediating 

nitrate or nitrite processing (e.g., nar, nap, and nir genes) (Fig. 2.4). Transcripts for urea 

metabolism, the only representative of dissolved organic nitrogen utilization included in the 

analysis, made up the second most abundant group of N-related sequences (Fig. 2.4). Nitrogen is 

often the limiting nutrient (or co-limiting with carbon; Pomeroy et al., 2000) to microbial activity 

in this ecosystem, and dissolved organic N is 2- to 200-fold higher in concentration than 

inorganic N. For S transformations, gene expression suggested substantial utilization of reduced 

sulfur compounds typically found in high concentrations in marsh-dominated coastal systems 

(Kiene and Capone, 1988; Pakulski and Kiene, 1992). Transcripts were found for metabolism of 

dimethylsulfoniopropionate (dmdA, dddP and dddD), as well as oxidation of sulfide/thiosulfate 



29 

(sox genes) (Fig. 2.4). This broad inventory of P, N, and S cycle transcripts represents an 

absolute benchmark against which time-series and experimentally manipulated transcriptomes in 

this ecosystem can be compared.  

 

Conclusions 

Addition of an internal mRNA standard provides a significant advantage in 

metatranscriptomics protocols since it allows estimation of the fraction of the microbial 

transcriptome captured in the sequence library, as well as the absolute quantification of transcript 

copy number in the environment (Figs. 2.1, 2.4). While RT-qPCR approaches can also provide 

absolute transcript numbers, often with greater sensitivity (Church et al., 2010), they are 

currently limited to a handful of functional genes at a time. Furthermore, the high microdiversity 

found in many natural gene populations (Fig. 2.3) makes primer design challenging  (Varaljay et 

al., 2010), and likely results in RT-qPCR only quantifying a subset of the total functional gene 

population. Multiple internal standards that vary in length and concentration (van de Peppel et 

al., 2003) will allow for more robust calculations of sequencing depth in future studies, and 

better position "omics" data for integration with biogeochemical rate measurements. 

Because low-count transcript categories are difficult to resolve statistically, library size 

had a critical effect on comparative metatranscriptomic analyses. Many of the biogeochemically 

diagnostic transcripts detected in our libraries would have been detected in ones that were 1/4th 

or 1/10th the size, but these theoretically smaller libraries resulted in a decreased ability to 

statistically differentiate between samples. Typical library sizes for metatranscriptomes (105 to 

106 sequence reads) are therefore sufficient for descriptive studies, but significant gains in 

comparative analyses of biogeochemically-informative gene expression patterns will require a 
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greater sequencing investment. Indeed, 54% of the 46 detected steps in the marine N, P, and S 

cycles would require at least a 2-fold difference in copy number between samples in order to 

meet statistical criteria for hypothesis testing (i.e., p < 0.05). While a 2-fold change in transcript 

abundance is an appropriate minimum criterion for expression studies of clonal bacterial cultures 

in synchronized growth (Bürgmann et al., 2007), it may fail to catch smaller expression 

differences among complex microbial communities that are ecologically relevant. 

Despite a sample sequencing depth of only 1 in 107 transcripts, the libraries provided 

remarkable insights into gene expression in a marine microbial community, including evidence 

for active microbes not known previously to have a major role in the ecosystem and 

quantification of transcripts for scores of steps in marine elemental cycles. These data establish 

the foundation for comparative assessments of diel, seasonal, and annual changes in microbial 

gene expression that will provide insights into the regulation of biogeochemical processes in the 

coastal ocean. 
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Table 2.1 Summary statistics for coastal ocean metatranscriptome datasets. Percentages are of 
total reads. RefSeq Hits = number of reads with significant homology to the RefSeq database; 
RefSeq Genes = number of unique accession numbers within those hits; Unassigned = number 
of possible proteins that did not have a significant hit to either the RefSeq or COG databases 
(47% of possible proteins).  
 

 

  FN56  FN57  Combined  
Total reads 1,067,363  1,114,536  2,181,899  
rRNA 466,834 (44%) 623,804 (56%) 1,090,638 (50%) 
psRNA 100,437 (9%) 25,213 (2%) 125,650 (6%) 
Possible proteins 500,092 (47%) 465,519 (42%) 965,611 (44%) 
      RefSeq Hits 255,280  260,739  516,019  
      RefSeq Genes 96,573  109,395  168,669  

      RefSeq Taxa 1,707  1,761  1,909  
      COG hits 162,925  170,593  333,518  
      Unassigned  244,812  204,780  449,592  

 
 

 
 
  



35 

Table 2.2. Estimation of the number of bacterioplankton mRNA molecules in coastal seawater 
and sequencing depth of the metatranscriptomic libraries. 

Calculation method  Sample mRNA 
molecules per 

liter 

mRNA 
molecules 
per cell2 

Sequencing 
depth (%) 

Internal standard1 FN56 1.0 x 1012 238 0.000009 
 FN57 0.6 x 1012 142 0.000015 
     Extracted RNA mass3 FN56 0.2 x 1012 48 0.000043 
 FN57 0.4 x 1012 95 0.000020 
     Per cell RNA content4 FN56 2.6 x 1012 619 0.000003 

 FN57 2.6 x 1012 619 0.000003 
 

1 The libraries contained 4,014 (FN56) and 6,865 (FN57) copies of the internal standard out of a 
total of 500,092 (FN56) and 465,519(FN57) potential protein encoding sequences. The standard 
was added at 4.7 x 1010 copies/5.75 liters of seawater just prior to cell lysis for total RNA 
extraction (see Methods for details).  
2 Cell numbers in the 3 µM filtrate averaged 4.2 x 109 L-1 based on epifluorescence microscopy. 
3 Extraction yields were 14.4 (FN56) and 32.9 (FN57) µg total RNA from 5.75 liters of seawater. 
Total RNA is assumed to contain 4% mRNA by mass (Neidhardt et al., 1996) and bacterial 
mRNAs are assumed to average 924 nt (Xu et al., 2006). 
4 Marine bacterial cells are assumed to contain 5.7 fg total RNA per cell [midpoint of 1.9-9.5 fg 
range reported by Simon and Azam (1989)]. See footnote 3 for estimate of percent mRNA by 
mass and footnote 2 for cell counts L-1.  
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Table 2.S1. Number of significantly overrepresented COGs detected in comparisons of 
subsamples from either within or between the replicate metatranscriptomes using Xipe. For the 
25% and 50% libraries, the bold numbers are the mean of 7 to 10 replicated subsamples with the 
standard deviation given in parentheses. 
 
 

   Statistically Different COGs 
   Sample A1  Sample B2  Total 

25% 
56 vs 56   12 (2.3)   11 (3.7)   23 (3.7) 
57 vs 57  12 (2.5)  16 (3.6)  28 (4.4) 
56 vs 57   57 (5.2)   94 (7.7)   151 (9.1) 

50% 
56 vs 56   12 (2.9)   14 (2.7)   26 (3.4) 
57 vs 57  16 (3.5)  18 (3.5)  34 (4.0) 
56 vs 57   97 (6.2)   166 (6.0)   264 (9.3) 

75% 56 vs 57   134 (NA)   241 (NA)   375 (NA) 
100% 56 vs 57   160 (NA)   301 (NA)   461 (NA) 

 
1,2 Number of statistically greater COGs in FN56 (1) or FN57 (2) when the comparison is between 
biological replicates (i.e. 56 vs 57).  
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Figure 2.1. Effect of sample sequencing depth on quantification of transcripts (or genes) in 
environmental samples. ‘Equal effort’ sequences the same number of reads per sample volume 
regardless of the size of the mRNA pool, and therefore conveys only relative abundance. 
‘Known depth’ sequences a known proportion of the transcript pool (50% for both, in this 
example) and therefore also conveys absolute copy numbers per sample volume. The latter is 
more relevant to biogeochemical rate measurements, since mRNAs of biogeochemical interest 
(gray dots) can make up different proportions in community transcriptomes yet have identical 
numbers in the environment.  
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Figure 2.2. Collector’s curve of gene richness as a function of reads analyzed. Red: FN56;  
Yellow: FN57; Green: combined libraries. Dashed lines indicate the number of reads needed to 
reach quarter percentiles of the total richness of the combined library. Inset: Collector’s curves 
for taxonomic and functional gene category (COG) richness, with the y-axis corresponding to the 
number of unique reference organisms or COG numbers.    
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Figure 2.3. Assembly of 1,825 reads (out of 2,259 total) binning to the P. ubique HTCC1002 
proteorhodopsin gene (PU1002_03206 (left), and of 10,879 reads (out of 10,879 total) binning to 
the internal transcript standard (right). A) Percent nucleotide divergence from the consensus 
sequence. B) Percent nucleotide divergence from the reference sequence. C) Coverage by 
nucleotide position. D) Read assembly to the reference gene (shown in red), with dashed lines 
indicating start and end positions of the reference. Note that the reference gene lengths are 
extended by assembly gaps. Divergence from the consensus sequence (i.e. the majority 
nucleotide at a given position) is indicated as follows: A = red, T = green, C = blue, G = yellow. 
Insets show close-up regions of assemblies.   
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Figure 2.4 Copy numbers of phosphorus, nitrogen, and sulfur cycle transcripts in a coastal ocean 
microbial community. The left line represents the limit of detection for this study, and together 
with the right line defines the region where copy numbers are too low for robust statistical 
analysis (i.e., where the fold-difference requirement is >2).  Symbols indicate copy numbers in 
biological duplicates.  Bottom graphs show monthly nutrient concentrations for GCE LTER 
station 6. The arrows mark the date of sample collection.  
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Figure 2.5. Minimum fold difference required for statistical significance (Xipe, p < 0.05) as a 
function of both the count in the lower abundance sample and the library size. Samples and 
subsamples were from the combined libraries (FN56 and FN57). Marker color is based on the 
statistical outcome (significant or non-significant) and library size (percent of full library). Inset 
A: Zoom of region in the main figure. Note that the minimum fold-difference for significance is 
independent of the three library sizes analyzed. Inset B: An alternative analysis of the 
significance threshold using contingency tables and Fisher’s Exact Test. The minimum fold-
difference threshold at which a low abundance count is significant by the Fisher’s Exact method 
is plotted as a dotted black line. The results from the Xipe analysis (main figure) at the 100% 
library size are also shown in inset B for direct comparison with the Fisher’s Exact method.  
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Figure 2.6. Rank order abundance of taxonomic bins (species or strain level). Main figure: top 
50 taxonomic annotation bins; inset: all 1,909 taxonomic annotation bins.  
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Figure 2.S1. Reads with sequence homology to both the Rfam and RefSeq databases. Points are 
colored by their categorization in RefSeq: blue symbols are annotated as hypothetical proteins; 
red symbols have been given a specific functional annotation. All sequences annotated as 
hypothetical proteins were considered psRNAs, along with those with a RefSeq functional 
annotation but an Rfam alignment length >95 nt.  
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Figure 2.S2. Distribution of the number of reads binning to individual RefSeq genes as a 
percentage of the total reads in the combined library. One equals the percentage singletons, two 
the number of doubletons, etc.  
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Figure 2.S3. Abundance of phosphorus related transcripts. Query gene symbols and descriptions 
are given in the two left columns. Counts indicate the number of hits to the query gene in the 
combined metatranscriptome library and in in silico subsets, with the intensity of shading 
increasing with hit abundance.  
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Figure 2.S4. Distribution of duplicate reads among technical replicates for the largest 100 
duplicate clusters. The percentage of the cluster within a technical replicate is indicated by the 
bar color (replicate 1 = brown, replicate 2 = orange, replicate 3 = green, replicate 4 = red). Data 
are shown for both biological replicates: A = FN56 and B = FN57. The x-axis is ordered by 
cluster size.  
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Figure 2.S5. Distribution of duplicate reads among technical replicates for reads binning to the 
Refseq protein ZP_03400590 (Rac prophage). The percentage of the cluster within a technical 
rep is indicated by the bar color (replicate 1 = blue, replicate 2 = red, replicate 3 = green, 
replicate 4 = purple). Data are shown for library FN56 only, which contained the majority of the 
prophage sequences.  
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Figure 2.S6. M vs. A plot of relative gene abundance showing pairwise comparisons of samples 
FN56 and FN57. Sample percentage equalsf hits for a RefSeq gene over total possible protein 
encoding genes. Gray points = not statistically different (Fishers’ Exact; p < 0.05). Black points 
= statistically different but did not meet the FDR criterion. All colored points were both 
statistically significant and met the FDR criterion.  N.maritimus  = Nitrosopumulis maritimus 
related, phage  = phage related, photosystem = photosystem II protein D1 related, P.ubique  = 
Pelagibacter ubique related, and other = all other significant/FDR points.  
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CHAPTER 3 

METATRANSCRIPTOMIC ANALYSIS OF AMMONIA-OXIDIZING ORGANISMS IN AN 

ESTUARINE BACTERIOPLANKTON ASSEMBLAGE1 
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1Gifford, S.M.*, Hollibaugh, J.T.*, Sharma, J., Bano, B., and Moran, M.A. (2011). ISME-J 
5:866-878. doi:10.1038/ismej.2010.172; 
 Reprinted here with permission of the publisher.  
 *Co-First authors who contributed equally to this work.  
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Abstract 

Quantitative PCR analysis revealed elevated relative abundance (1.8% of prokaryotes) of 

marine group 1 Crenarchaeota (MG1C) in samples of southeastern U.S. coastal bacterioplankton 

collected in August 2008, compared with samples from the same site at other times (mean 

0.026%).  We analyzed the MG1C sequences in metatranscriptomes from these samples to gain 

insight into the metabolism of an MG1C population growing in the environment and for 

comparison with ammonia oxidizing bacteria (AOB) in the same samples.  Assemblies revealed 

low diversity within sequences assigned to most individual MG1C ORFs and high homology 

with “Candidatus Nitrosopumilus maritimus” strain SCM1 genome sequences.  Reads assigned 

to ORFs for ammonia uptake and oxidation accounted for 37% of all MG1C transcripts.  We did 

not recover any reads for Nmar_1354-Nmar_1357, proposed to encode components of an 

alternative, nitroxyl-based ammonia oxidation pathway; however, reads from Nmar_1259 and 

Nmar_1667, annotated as encoding a multicopper oxidase with homology to nirK, were 

abundant.  Reads assigned to 2 homologous ORFs (Nmar_1201 and Nmar_1547), annotated as 

hypothetical proteins, were also abundant, suggesting that their unknown function is important to 

MG1C physiology or ecology.  Transcripts from other metabolic pathways (carbon fixation, 

TCA cycle,) were represented in the metatranscriptome, but at much lower levels than those for 

ammonia oxidation.  Superoxide dismutase and peroxiredoxin-like transcripts were more 

abundant in the MG1C transcript pool than in the complete metatranscriptome, suggesting that 

the MG1C population was selectively exposed to oxidative stress.  qPCR indicated low AOB 

abundance (0.0010 % of prokaryotes) and we found no transcripts related to ammonia oxidation 

and only one RuBisCO transcript among the transcripts assigned to AOB, suggesting they were 

not responding to the same environmental cues as the MG1C population.    
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Introduction 

Marine Group 1 Crenarchaeota (MG1C) are abundant and widespread in meso-pelagic, 

open ocean environments (Fuhrman and Hagström, 2008; Karner et al., 2001).  They have 

proved difficult to culture so that our knowledge of their metabolism is based primarily on 

culture-independent methods (Kirchman et al., 2007; Ouverney and Fuhrman, 2000; Teira et al., 

2004).  Metagenomic data (Treusch et al., 2005; Venter et al., 2004) suggested that MG1C might 

play a role in ammonia oxidation and more recent research (Beman et al., 2008; Hallam et al., 

2006a; Hallam et al., 2006b; Santoro et al., 2010; Wuchter et al., 2006) and the successful 

isolation of a representative MG1C (Konneke et al., 2005) have confirmed this.  As a 

consequence of these findings, the paradigm that members of the β- and γ-Proteobacteria are 

responsible for most of the ammonia oxidation in the ocean has come into question (reviewed in 

(Francis et al., 2007; Prosser and Nicol, 2008). 

Studies of the distributions of planktonic ammonia oxidizing organisms have shown that 

ammonia oxidizing Crenarchaeota (Ammonia Oxidizing Archaea, AOA) tend to be numerically 

dominant in the open ocean (Agogue et al., 2008; Beman et al., 2008; de Corte et al., 2008; 

Kalanetra et al., 2009; Mincer et al., 2007; Santoro et al., 2010; Wuchter et al., 2006) and fjords 

(Urakawa et al., 2010; Zaikova et al., 2010).  Most studies of AOA populations in estuaries 

(Beman and Francis, 2006; Bernhard et al., 2010; Caffrey et al., 2007; Francis et al., 2005; 

Magalhaes et al., 2009; Mosier and Francis, 2008; Santoro et al., 2008) have focused on 

sediments.  From these studies it appears that the relative abundance of ammonia-oxidizing 

Bacteria (AOB) increases in estuaries relative to coastal waters or the open ocean.  The 

environmental factors responsible for the success of AOB versus AOA in estuarine and coastal 

waters are not known, but the shift correlates with salinity in some systems (Bernhard et al., 
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2010; Caffrey et al., 2007; Magalhaes et al., 2009; Mosier and Francis, 2008; Santoro et al., 

2008).  However, the success of one group over the other is not likely to be directly based on 

salinity as AOA can be dominant in the oligohaline reaches of some estuaries (Mosier and 

Francis, 2008) and in soils (Prosser and Nicol, 2008). 

Estuaries are distinct from meso-pelagic open ocean environments in a number of 

important ways:  salinity variation; trace metal availability; concentrations and types of organic 

carbon and other reduced substrates; and other factors known to influence microbes.  As part of a 

program investigating the dynamics of microbial populations in estuarine waters and their 

response to fluctuating environmental variables (SIMO, http://simo.marsci.uga.edu/), samples of 

DNA and RNA from the plankton assemblage have been collected regularly at a station in 

Georgia coastal waters.  Quantitative estimates of amoA gene abundance indicated elevated 

abundance of AOA in samples collected in August 2008.  We analyzed the metatranscriptome of 

two samples collected at this time and studied the distribution of transcripts among MG1C ORFs 

to gain insight into the metabolism of a MG1C population growing in the environment.  An 

additional goal was to understand the factors that regulate competition within the guild of 

ammonia oxidizing microorganisms.  The data also allowed us to examine proposed pathways 

for ammonia oxidation in AOA. 

 
Methods 

Sample Collection.  Near-surface water samples were collected quarterly from a floating 

dock at Marsh Landing on the Duplin River, Sapelo Island, Georgia (31° 25' 4.08” N, 81° 17' 

43.26” W; Supplemental Figure 1), ~6 km from the mouth of Doboy Sound, as described in 

chapter 2.  Briefly, samples were collected twice per day at approximately noon and midnight, 

<1 hr before high tide, over a 2-day period during each sampling campaign.  Samples used for 
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RNA extraction were collected in rapid succession in the middle of the first night of each 

sampling campaign.  A sample (5.75 L) of surface (~0.5 m) sea water was pumped directly from 

the river through 3 µm pore size filters (Capsule Pleated 3 µm Versapor Membrane; Pall Life 

Sciences, Ann Arbor Michigan, USA) then through 0.22 µm pore size filters (Supor 

polyethersulfone; Pall Life Sciences, Ann Arbor Michigan, USA) using a peristaltic pump 

(Supplemental Figure 3.1).  The 0.22 µm filter was placed in a Whirl-Pak® plastic bag and 

immediately flash-frozen in liquid nitrogen.  Total time from the start of filtration to freezing was 

~10 minutes.  We began filtering the second sample (FN57) immediately (~5 minute delay) after 

the filter from the first sample (FN56) was placed in liquid nitrogen.  We collected samples for 

DNA extraction concurrently by filling 20 L carboys with surface water while the RNA samples 

were filtering.  Once the second RNA sample was frozen, we filtered 12 L of the DNA sample 

through 3 µm and 0.22 µm filters as above, and the 0.22 µm filters were flash frozen.   

 mRNA isolation.  mRNA was isolated from the samples as described previously 

(chapter 2).  Before beginning the extraction, 25 ng of a 994 nt RNA standard (derived from the 

pGEM cloning vector) was added to the sample in lysis buffer to serve as an internal standard 

(chapter 2).  Total RNA was extracted from the filters using an RNAEasy kit (Qiagen, Valencia, 

CA, USA) and any residual DNA was removed by treating the sample twice with a Turbo DNA-

Free Kit (Applied Biosystems, Austin, TX, USA).   

The purified RNA preparations (containing 14 and 32 µg total RNA from samples FN56 

and FN57, respectively, 2-5 mg of this RNA was taken through the rRNA removal steps) were 

treated in two ways to remove ribosomal RNA.  Epicentre’s mRNA-Only kit (Epicentre, 

Madison, WI, USA) was used first to decrease rRNA contamination enzymatically.  The samples 

were then treated with MICROBExpress and MICROBEnrich kits (both from Applied 
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Biosystems) that couple rRNA oligonucleotide hybridization probes with magnetic separation to 

enrich for mRNA.  Initial and final RNA extracts were analyzed on an Experion automated 

electrophoresis system (Bio-Rad, Hercules, CA, USA) to verify successful removal of most of 

the rRNA.  RNA remaining in the samples was amplified linearly using the MessageAmp II-

Bacteria kit (Applied Biosystems).  The amplified RNA was then converted to cDNA using the 

Universal RiboClone cDNA synthesis system (Promega, Madison, WI, USA) with random 

hexamer primers.  Left over reactants and nucleotides from cDNA synthesis were removed from 

the sample using the QIAquick PCR purification kit (Qiagen).  

Sequencing and Annotation.  cDNA was sequenced in four GS-FLX runs.  One half of 

each PicoTiter plate was loaded with cDNA from one replicate sample, resulting in each sample 

being sequenced to the equivalent of two full runs divided over four plates (Supplemental Figure 

3.2; described in detail in chapter 2).  Over 2 million sequence reads were produced.  Ribosomal 

RNA sequences in these reads were identified by a BLASTn (Zhang et al., 2000) search against 

the small and large subunit SILVA database (http://www.arb-silva.de) with a bit score cutoff of 

50.  Sequences identified as rRNA (~50% of the total) were excluded from further processing.   

The remaining non-rRNA sequences were queried against NCBI’s RefSeq database using 

BLASTx (Altschul et al., 1997) with a bit score cutoff of 40.  The top hit that exceeded this bit 

score was taken as the ORF assignment for that sequence.  Approximately 50% of the non-rRNA 

sequences were assigned to annotated ORFs by this procedure.  Replicate reads (defined 

according to (Gomez-Alvarez et al., 2009) accounted for 24.4% of this total, but our sequencing 

protocol, which used technical replicates on different plates, allowed us to identify replicates 

arising from methodological artifacts as discussed in (Gomez-Alvarez et al., 2009) versus 

biologically valid replicates (see chapter 2).  Our analysis indicates that most of the replicates are 
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not artifacts, so we retained them in the data set.  As discussed in chapter 2, for the purposes of 

the analyses that follow, we assume that the population of reads returned from the sequencing 

effort is an unbiased sampling of the transcripts present in the populations of Bacteria and 

Archaea in situ.   

Quantitative PCR and sequencing of 16S rRNA and amoA amplicons.  The abundance 

of MG1C and AOB amoA genes and of Crenarchaeota and Bacteria 16S rRNA genes was 

determined by quantitative, real-time PCR (qPCR) as described previously (Caffrey et al., 2007).  

Primers are given in Supplemental Table 3.1.  The abundance of individual genes (copies per ng 

of DNA extracted from the sample) was used to estimate the number of MG1C and AOB cells in 

the sample for the purposes of calculating the number transcripts per cell.  Relative abundance of 

MG1C or AOB was calculated as follows: 

RA = ([A]/(([Cren 16S]/GD) + ([Bact 16S]/GD))) 

Where: 

RA is the relative abundance of the organism of interest; 

[A] is the concentration of the gene of interest, either Crenarchaeota 16S or AOB amoA 

measured by qPCR; 

[Cren 16S] and [Bact 16S] are the concentrations of Crenarchaeota and Bacteria 16S rRNA 

genes; and 

GD is the gene dosage of 16S rRNA genes per genome, taken to be 1 for Marine Group 1 

Crenarchaeota (from genomes annotated in DOE’s IMG database) and 1.8 as an 

average for marine bacteria (Biers et al., 2009).  We used the abundance of AOB 

amoA genes to estimate AOB abundance assuming a gene dosage of 2.5 amoA 

genes/AOB genome (an average from (Norton et al., 2002). 
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The total number of MG1C or AOB cells in the sample was then calculated as:  

RA * (total prokaryote abundance determined by epifluorescence microscopy [4.2 x 109 

cells/L]) * (sample volume [5.75 L]). 

Crenarchaeota 16S rRNA and amoA genes were cloned and sequenced (primers listed in 

Supplemental Table 1) for phylogenetic analysis as described previously (Kalanetra et al., 2009). 

Analysis of MG1C ribotypes.  We compared (using BLASTn) the rRNA reads removed 

from one of the pyrosequencing libraries (FN56) to the “Candidatus Nitrosopumilus maritimus” 

strain SCM1 16S (Konneke et al., 2005) rRNA gene sequence (Nmar_R0029) to identify MG1C 

16S rRNA sequences in our data set.  We then queried the top 250 hits against the NCBI nr/nt 

database to obtain information from the annotations of the top hits on the distribution by habitat 

of ribotypes (ecotypes) related to the MG1C in our samples.  We also assembled these reads 

using Nmar_R0029 as a scaffold to obtain a consensus sequence that was compared to sequences 

obtained by cloning and then sequencing PCR amplicons of 16S rRNA genes from the DNA 

sample. 

Assemblies.  The Geneious® (Drummond et al., 2010) software package version 4.8 was 

used to assemble reads into contigs, for sequence manipulations (e.g. alignments) and for 

phylogenetic analyses.  All assemblies were constructed using unedited cDNA sequences.  

Unless otherwise noted, the appropriate genomic reference sequence was used as a scaffold and 

assemblies required ≥25 bp of overlap and ≥75% identity between sequences in the overlapping 

portions.  The gap/extend penalty was set at 18, mismatch score at -9, and match score at 5.  

With these assembly parameters, most of the reads assigned to MG1C ORFs assembled into one 

contig per ORF with good coverage over the entire length of the gene.   
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Consensus sequences for amoA genes were derived from reads assembled against the 

“Ca. N. maritimus” strain SCM1 amoA gene (Nmar_1500) sequence as a scaffold as described 

above.  The consensus sequence for the majority genotype was determined by requiring >75% 

agreement at each position.  Reads representing this majority consensus sequence were removed 

from the data set manually, then remaining reads representing less abundant, minority sequences 

were assembled as before and the consensus sequence was again recorded.  Although inspection 

suggested additional diversity in the reduced data set, we did not attempt to recover additional 

consensus sequences as coverage was too low for reliable assembly and analysis. 

Environmental data.  The Georgia Coastal Ecosystems LTER (GCE-LTER) program 

collects data on a variety of environmental variables from the area surrounding our sampling site.  

These data and their accompanying metadata are available on the GCE-LTER website http://gce-

lter.marsci.uga.edu/.  The closest GCE-LTER water quality monitoring station, GCE6, is located 

in Doboy Sound, ~4.5 km from our sampling site (Supplemental Figure 3.1).   

 

Results and Discussion 

qPCR analysis.  Analysis of the abundance of Bacteria and MG1C 16S rRNA genes and 

of AOA and AOB amoA genes by quantitative PCR indicated elevated abundance of MG1C and 

of ammonia oxidizers, especially AOA, in water samples collected on 6-7 August, 2008 (Figure 

3.1).  MG1C amoA abundance was 35- to 781-fold greater in August than on other sampling 

dates, while MG1C 16S rRNA abundance was 43- to 1,658-fold greater (Figure 3.1A and B).  

MG1C relative abundance in the prokaryotic community averaged 1.8% (range 1.1-2.6%) for the 

August samples versus an average of 0.026 (range 0.0002-0.15%) on other dates (Figure 3.1D).  



59 

Both MG1C amoA and Crenarchaeota 16S rRNA abundance increased during the 2-day 

sampling campaign in August 2008 (Figure 3.1A, inset).   

There was no correlation between the abundance of amoA genes from MG1C and AOB 

in these samples (linear regression, r2=0.14, P>0.1).  AOB amoA gene abundance was only 1.2- 

to 2.8-fold greater in August than on other sampling dates (Figure 3.1C), comparable to the 

increase in Bacteria 16S rRNA gene abundance (Figure 3.1D).  AOB relative abundance was 

0.0024% (range 0.0018-0.0045%) in August versus 0.0044% (range 0.0009-0.013%) on other 

dates and AOB amoA gene abundance did not increase during the 2 day sampling campaign (not 

shown).  The ratio of MG1C to AOB amoA abundance (398:1) in August was more than 20-fold 

greater than on other dates (Figure 3.1C), suggesting selective growth of MG1C over AOB at the 

time of sampling.  With the exception of the August samples, the ratios of AOA to AOB 

abundance are similar to our previous observations in sediment samples from nearby sites 

(Caffrey et al., 2007). 

MG1C 16S rRNA ecotypes.  MG1C 16S rRNA reads retrieved from our libraries were 

most similar (250 sequences, all >96.9% identity with 235> 99% and 162 reads = 100% identity, 

significance values 1*e-159 to 1*e-113) to environmental sequences from coastal waters, coral 

symbionts or sediments (13 different studies) or to the “Ca. N. maritimus” SCM1 16S rRNA 

gene.  These reads assembled into one contig (not shown).  We compared the consensus 

sequence from the contig to nearly full-length sequences obtained by cloning and sequencing 

PCR amplicons from the original sample (Figure 3.2).  We detected 2 sequence variants by 

inspection of the assembly, but only one of these, corresponding to the consensus and with >99% 

identity to the “Ca. N. maritimus” strain SCM1 16S rRNA gene, was captured in the clone 

library. 



60 

Metatranscriptome properties. We retrieved ~2 million cDNA pyrosequencing reads 

from the two samples (chapter 2).  Analysis of this data set (Table 3.1) revealed that 17,386 

sequences (median length 236 bp, range 47-360 bp) could be assigned to coding regions in the 

two MG1C genomes, “Ca. N. maritimus” strain SCM1 and Cenarchaeum symbiosum (Hallam et 

al., 2006a; Hallam et al., 2006b).  For simplicity, we will refer to this subset of reads as the 

"MG1C metatranscriptome."  MG1C thus accounted for 3.1 % of the reads identified as 

transcripts, which is comparable to their contribution to the population of prokaryotes (1.8%, 

Figure 3.1).  In contrast, only 46 reads were assigned to ORFs from Euryarchaeota.  The 

remaining reads were assigned primarily to ORFs from Bacteria or viruses.   

Of the 17,386 reads that were assigned to MG1C ORFs, 16,914 were assigned to “Ca. N. 

maritimus” strain SCM1 while 472 were assigned to C. symbiosum (Table 3.1).  These reads 

were assigned to 786 different “Ca. N. maritimus” strain SCM1 ORFs (Figure 3.3) representing 

44% of the 1,797 coding regions annotated in this genome (http://img.jgi.doe.gov/cgi-

bin/pub/main.cgi) and to 82 ORFs from the C. symbiosum genome (4% of 2,017 annotated 

coding regions).  Since there are currently only 2 MG1C genomes represented in the RefSeq 

database and they share a great deal of homology (Walker et al., 2010), reads assigned to one of 

them as the top hit were usually assigned (with similar significance values) to the other as the 

second hit.  We noted gaps in the recruitment of reads against the “Ca. N. maritimus” strain 

SCM1 genome (Figure 3.3) that appear too long to be random consequences of low coverage, 

suggesting possible sites of indels (e.g., Nmar_124 to Nmar_154, Nmar_1147 to Nmar_1173, 

Nmar_1323 to Nmar_1357). 

We estimate that each MG1C cell contained 168 transcripts (averaged for the two 

libraries, Supplemental Table 3.2).  This is similar to the value seen in chapter 2 obtained for the 
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entire prokaryote metatranscriptome from these samples (190 transcripts/cell).  The differences 

in the number of transcripts per MG1C cell between libraries (321 vs 79 for FN56 vs FN57) may 

reflect differences in the physiological state of MG1C community between samples.  Ratios of 

the abundance of transcripts from specific ORFS between the two libraries were more variable 

than expected by random sampling error, suggesting differences in the physiological state of the 

bacterioplankton in the two samples (see chapter 2 for a detailed analysis).  Our estimate of the 

average number of transcripts in AOB cells was 49,241 transcripts per cell (Supplemental Table 

3.2).  This value is unreasonably high  and suggests either that non-AOB reads were incorrectly 

assigned to AOB ORFs or that our qPCR estimates of AOB abundance are too low, or both.  The 

qPCR estimates of AOB amoA gene abundance upon which this calculation is based are typical 

of what we (Caffrey et al., 2007) and others have reported for coastal waters.  Comparison of the 

distributions of bit scores for hits to ORFs from these two populations (data not shown) suggests 

that read assignments are less reliable for AOB than for MG1C.   

 Most ORFs were represented by singletons or only a few reads (Figure 3.3); however, 34 

MG1C ORFs were represented by 50 or more reads (Table 3.2), together accounting for 13,686 

reads (78.8% of the reads in the MG1C metatranscriptome).  The best-represented ORF 

(Nmar_1547, a hypothetical protein) accounted for 22% of the MG1C metatranscriptome. 

Nmar_1547 homologues.  Thirty-one percent of the reads in the MG1C 

metatranscriptome were assigned to a group of 6 homologous ORFs:  Nmar_1547, Nmar_1201, 

CENSYa_0159, CENSYa_0161, CENSYa_2159 and CENSYa_2160; with most assigned to 

Nmar_1547 and Nmar_1201 (Table 3.2). The sequences of these ORFs are very similar (bit 

scores>1140, E-value=0) and the apparent duplication is noteworthy in genomes that appear to 

have undergone reduction as an adaptive strategy (Hallam et al., 2006a; Walker et al., 2010) and 
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that contain many important genes (e.g. amoABC) as single copies.  Hallam et al. (2006a) first 

noted them in their analysis of the Cenarchaeum symbiosum metagenome and similar sequences 

(represented by ABZ07689) were reported to be abundant in cDNA libraries from 4000 m at 

Station ALOHA by (Shi et al., 2009).  Searches (BLASTn) of the “GOS All ORFS” dataset in 

the CAMERA database (http://camera.calit2.net/) identified 25 sequences, all from coastal 

samples, with significant homology (E-values <e-53) to Nmar_1547.   

Nmar_1547 and Nmar_1201 are large ORFs, >5000 nt in length.  In contrast to most 

other MG1C ORFs (see Figure 3.4 for example), reads assigned to Nmar_1547 and Nmar_1201 

did not assemble into one contig against the respective genome sequence as a scaffold 

(Supplementary Figure 3.6).  Although the assemblies otherwise have very high coverage (up to 

229-fold and up to 1,113-fold for Nmar_1201 and Nmar_1547, respectively), the regions where 

the assemblies break have increased sequence variability (Supplemental Figure 3.6), resulting in 

insufficient homology to the RefSeq sequence to support assembly.  These “ORFs” may not be 

protein coding regions, though analysis of codon usage in a homologous sequence (ABZ07689, 

BLASTp score = 604, E-value=0) by Shi and colleagues (Shi et al., 2009) suggest that they are.  

Annotation and BLASTx searches of the GenBank non-redundant protein database suggest 

functions distantly related to adhesins or hemaglutinin and hemolysin proteins and annotation 

indicates that they have leader sequences and transmembrane domains.  These features suggest 

that they may be cell-surface proteins involved in some interaction with other cells, detrital 

particles, high molecular weight DOM, etc.  By analogy with genes involved in ammonia 

processing (below), their abundance in the transcript pool suggests that their unknown function is 

important to MG1C physiology or ecology. 
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Ammonia uptake and oxidation.  Transcripts from ORFs related to ammonia uptake 

and oxidation were among the most abundant in the MG1C transcript pool (Table 3.2).  A total 

of 6,455 reads (37% of the reads in the MG1C metatranscriptome) were assigned to ORFs 

identified by (Walker et al., 2010) as being related to the ammonia oxidation pathway.  This 

includes 2,657 reads assigned to ammonia monooxygenase subunits: amoA (Nmar_1500, 836); 

amoB (Nmar_1503, 198); and amoC (Nmar_1502, 1,623), giving relative abundances in the 

transcript pool of 4.2:1.0:8.2 for amoA:amoB:amoC, which differs from the stoichiometry of the 

subunits in native ammonia monooxygenase (1:1:1).  Inspection of the assemblies of these reads 

revealed 2 dominant genotypes in the population of amoA reads (Figure 3.4) and at least 2 in the 

amoB and amoC (data not shown) populations.  Phylogenetic analysis of the consensus sequence 

for the dominant amoA genotype (Figure 3.5) placed it in a clade containing the “Ca. N. 

maritimus” strain SCM1 gene and a variety of shallow water column and sediment 

environmental sequences.  It is also >99.5% identical to MG1C amoA gene nucleotide sequences 

retrieved previously from Georgia coastal waters (Hollibaugh, unpublished data) and to 

sequences obtained from the DNA samples collected in this study (Figure 3.5).  The minor 

consensus sequence grouped separately from the dominant consensus sequence and was not 

recovered in the (small) clone library we sequenced.  Half of the amoA gene sequences retrieved 

from the DNA sample were most similar to an environmental sequence from the sediments of an 

eutrophic Mexican estuary (Beman and Francis, 2006).  Reads corresponding to this clade were 

not found in the metatranscriptome, suggesting the presence of an inactive sub-population of 

MG1C in these samples.  

Reads assigned to ORFs annotated as ammonia transporters and permeases were also 

abundant with a total of 1,017 reads assigned to Nmar_1698 (757), Nmar_0588 (94) and 
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CENSYa_1453 (166).  The relatively high abundance of ammonia permeases in the MG1C 

metatranscriptome (6% of the transcripts) seems at odds with the model of ammonia oxidation as 

a cell-surface process proposed in (Walker et al., 2010).  Nmar_1698 and CENSYa_1453 are 

very similar to each other (BLASTx bit score 705, E=0; BLASTn bit score 803, E=0, 71% 

identity) and reads assigned to them assembled into one contig against an Nmar_1698 scaffold 

(not shown).  Nmar_0588 is divergent with no similarity to other MG1C genes and a best 

BLASTx hit to an ammonium transporter from the slime mold Polysphondylium pallidum PN500 

(bit score of 365, E=5*e-99).  Our data thus indicate transcription by the MG1C population of two 

different ammonia transporters, possibly with different kinetic properties.  Inspection of the 

Nmar_1698 and Nmar_0588 assemblies indicates additional diversity in the ammonia transporter 

genes transcribed by the MG1C population, with at least 3 variants of Nmar_1698 and possibly 2 

variants of Nmar_0588.   

 (Walker et al., 2010) propose 2 alternative pathways for ammonia oxidation in “Ca. N. 

maritimus” strain SMC1.  One of the proposed pathways proceeds via hydroxylamine, but 

depends on a Cu-based alternative to the AOB heme-based hydroxylamine oxidoreductase.  The 

second alternative mechanism proposes ammonia oxidation by an ammonia monooxygenase that 

produces a reactive nitroxyl intermediate instead of hydroxylamine.  Both pathways transfer 

electrons to the quinone pool via a quinone reductase.  Nmar_1226, proposed by Walker et al., 

(2010) to serve this function as an analog of the AOB quinone reductase, was well- represented 

in the MG1C metatranscriptome (46 reads).  However, we did not detect any transcripts from the 

genes (Nmar_1354 to Nmar_1357) proposed by Walker et al. (2010) to encode proteins involved 

in the nitroxyl-based alternative ammonia oxidation pathway.  Instead, a total of 1,006 reads was 

assigned to two other ORFs, Nmar_1259 and Nmar_1667, that were similar to sequences 
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retrieved from the Sargasso Sea (EAH96098 and EAI84410; bit scores >498, E=0).  These 

sequences have been identified as crenarchaeote homologues of Cu-containing nitrite reductases 

(nirK) by (Treusch et al., 2005) and (Bartossek et al., 2010).  Their function in vivo is in question 

because, at least under the aerobic growth conditions they reported, “Ca. N. maritimus” strain 

SCM1 stoichiometrically converts ammonia to nitrite in culture (Konneke et al., 2005; Martens-

Habbena et al., 2009).  An experiment performed by (Bartossek et al., 2010) to test the 

relationship between transcription of these genes and the expected activity (nitrous oxide 

production) failed to support a nitrite reductase function and (Bartossek et al., 2010) speculated 

that the proteins encoded by these genes might exhibit "other or additional activities besides 

nitrite reduction."  (Walker et al., 2010) included them in the list of genes devoted to energy 

production from ammonia oxidation without specifying their function.  These homologies and 

their elevated abundance in the transcript pool suggest that they play an important role in the 

primary ammonia oxidation pathway in situ.   

Other metabolic functions.  Sixty-seven reads were assigned to an MG1C ORF 

annotated as superoxide dismutase (SOD, Nmar_0394, Table 3.2), which accounted for 26% of 

all hits to SOD in the complete (MG1C plus Bacteria) metatranscriptome.  The proportion of 

reads assigned to SOD in the MG1C metatranscriptome (67 of 17,386 reads) is significantly 

(Χ2=314, p=0) greater than the proportion (270 of 543,016) of SOD reads in the rest of the 

metatranscriptome.  Assembly of the reads assigned to Nmar_0394 revealed a population with 

low diversity (2 of 67 reads that differ from the consensus and 98.5% overall average pairwise 

identity) that differs slightly from the “Ca. N. maritimus” strain SCM1 gene (93% identity at the 

nucleotide level). Superoxide dismutase catalyzes the decomposition of superoxide radicals to 

yield hydrogen peroxide, which is broken down by catalase in many Bacteria.  The “Ca. N. 
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maritimus” strain SMC1 genome does not contain an ORF annotated as catalase; however, it 

contains 4 ORFs (Nmar_0275, Nmar_0560, Nmar_1438 and Nmar_1496) annotated as thiol-

specific antioxidants (peroxiredoxins) that may serve the same function (Imlay, 2008).  These 

ORFs were represented by a total of 45 hits in the MG1C metatranscriptome, with 34 of these 

hits assigned to one ORF, Nmar_0275.  The complete metatranscriptome (Bacteria plus MG1C) 

contained 889 hits to ORFs annotated as “catalase,” “peroxiredoxin,” or “thiol-specific 

antioxidant.”  Thus, a statistically significantly (Χ2=9.121, p=0.0025) greater portion of reads in 

the MG1C metatranscriptome was assigned to ORFs with functions related to catalase than in the 

Bacteria metatranscriptome.  Finally, 14 MG1C reads were assigned the DNA repair gene radA 

(Nmar_1386), which was not different from the proportion of recA in the Bacteria 

metatranscriptome (X2=0.004, p=0.95). 

The overrepresentation of MG1C superoxide dismutase and hydrogen peroxidase-related 

transcripts suggests that MG1C may be subjected to greater exposure to superoxide or that they 

are more sensitive to it than the Bacteria in these samples.  Increased exposure may be a 

consequence of reactions unique to their metabolism.  In contrast, similar levels of transcripts for 

DNA repair enzymes (radA and recA) suggest that the two populations (MG1C and Bacteria) are 

responding similarly to agents that cause DNA damage, such as UV radiation. 

 MG1C are reported to fix carbon via the 3-hydroxypropionate/4-hydroxybutyrate 

pathway (Berg et al., 2007; Hallam et al., 2006a; Hallam et al., 2006b; Kockelkorn and Fuchs, 

2009; Konneke et al., 2005; Walker et al., 2010).  The MG1C metatranscriptome contained 146 

reads assigned to ORFs from this pathway.  Fifty-nine reads were assigned to MG1C TCA-cycle 

genes.  There is no evidence in the metatranscriptome that heterotrophy played a significant role 

in the nutrition of this MG1C population.  MG1C reads were not assigned to COGS for 
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transporters of organic compounds, in contrast to the high proportion of reads in the Bacteria 

metatranscriptome that were assigned to transporters (~20% of the Bacteria reads assigned to the 

top 50 COGS, Gifford unpublished data) or found previously in a Bacteria-dominated 

metatranscriptome retrieved from a near-by site (Poretsky et al., 2010).  Also, the ratio of MG1C 

amoA genes to MG1C 16S rRNA genes in these samples was 0.51 (Figure 3.1B).  While lower 

than values reported for ammonia oxidizing enrichments (Wuchter et al., 2006) or cultures 

(Konneke et al., 2005) (1:1 to 2.8:1) or the gene dosage in MG1C genomes (1:1) (Hallam et al., 

2006a; Walker et al., 2010), this ratio is much higher than ratios used to infer heterotrophy in 

other populations (Agogue et al., 2008; de Corte et al., 2008; Kalanetra et al., 2009).  

AOB transcripts.  The metatranscriptome also contained 2,651 reads (0.5% of reads 

assigned to ORFs) that were assigned to AOB ORFs (Table 3.1).  Forty-nine percent of the AOB 

reads were assigned to Nitrosococcus ORFs, with the remainder assigned to Nitrosomonas (27%) 

and Nitrosospira (24%) ORFs.  None of the reads attributed to AOB were assigned to ORFs 

known to be involved in ammonia uptake or oxidation and only one AOB read (from 

Nitrosomonas) was assigned to RubisCO, the enzyme responsible for carbon fixation in AOB 

(data not shown).  Based on our PCR data, the abundance of AOB amoA transcripts in the 

metatranscriptome may have been below the limit of detection.  The relative abundance of AOA 

versus AOB amoA genes in these samples as determined by qPCR averages 398:1 (Figure 3.1).  

Given the number of MG1C amoA transcripts in the metatranscriptome (836), if the relative 

abundance of amoA transcripts in the AOB transcript pool was comparable to that seen in the 

MG1C, we would expect to recover only 2.1 (836/398) AOB amoA transcripts from the complete 

metatranscriptome.  In contrast, we would expect to encounter 131 AOB amoA reads if all of the 

transcripts assigned to AOB were actually from AOB and if the relative abundance of amoA 
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transcripts in the AOB transcript pool was comparable to that seen in the MG1C 

metatranscriptome (4.9%).  As discussed above, these calculations and the number of transcripts 

per cell implied by our data (Supplemental Table 3.2) suggests that the majority of the reads 

attributed to AOB were misassigned, likely due to binning of phylogenetically related but non-

AOB sequences to AOB genomes.   

Implications for competition between AOA and AOB.  Combined with the much 

greater abundance of MG1C 16S rRNA and amoA genes in the August sample relative to other 

sampling dates (Figure 3.1), the increasing abundance of Crenarchaeota 16S rRNA and AOA 

amoA genes over the 2 days we sampled (Figure 3.1), and the distribution of reads in the MG1C 

metatranscriptome, our data suggest that the MG1C population was actively growing - blooming 

- when sampled.  Assuming that the MG1C population developed locally rather than being 

advected into the study area, we examined environmental data collected by the Georgia Coastal 

Ecosystem LTER (http://gce-lter.marsci.uga.edu/) for the weeks preceding this sampling for 

potential explanations for the elevated MG1C population.  There are no obvious perturbations in 

the records for weather (wind, rainfall, runoff, tides) or environmental variables (temperature, 

nutrients, chlorophyll, etc.) that might indicate a resuspension event, a pulse of nutrient-rich 

water from runoff or upwelling, a phytoplankton bloom, etc. (data not shown).   

Ammonia concentrations are variable in Georgia coastal waters (Supplemental Figure 

3.7) and a late summer increase in ammonium concentration is a regular feature of this coastal 

environment (Verity, 2002).  The abundance of Bacteria 16S rRNA genes was also greater in the 

August sample than on other sampling dates (Figure 3.1), consistent with an overall increase in 

heterotrophic metabolism, presumably leading to elevated ammonium regeneration at this time 

of the year.  Although ammonium concentrations were elevated during the August 2008 
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sampling campaign (Supplemental Figure 3.7), elevated ammonium concentrations at other times 

of the year did not correspond to elevated MG1C abundance (compare Figure 3.1 with 

Supplemental Figure 3.7) suggesting that ammonium alone is not the driving variable.  AOB 

abundance did not increase during the August sampling series and average August abundance 

was only slightly elevated compared to other sampling dates.  Previous work (Caffrey et al., 

2007) documented a correlation between AOA (but not AOB) amoA gene abundance and 

potential nitrification rates in sediment samples from this site, suggesting that AOB are typically 

not very active at this site, even though they are present.  One explanation for the difference in 

the response of AOA versus AOB is that the threshold ammonia concentration needed to 

stimulate growth of AOB may be higher than for AOA.  Differences in ammonia uptake kinetics 

between MG1C and AOB (Martens-Habbena et al., 2009) suggest that MG1C are better 

competitors at low ammonia concentrations (Martens-Habbena et al., 2009).  Alternatively, 

MG1C and AOB may be differentially limited or inhibited by environmental factors other than 

ammonia availability. 
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Table 3.1.  Distribution of cDNA reads among functional categories of the annotation pipeline 
and among marine group 1 Crenarchaeota and ammonia oxidizing Bacteria taxonomic 
groupings. 
 
 

1) Sum of reads from both libraries. 

 
  

Category Total1 

Total number of pyrosequencing reads 2,181,899 

Total RefSeq hits 560,389 

Number of reads assigned to Marine Group 1 Crenarchaeota 17,386 

Reads assigned to “Candidatus Nitrosopumilus maritimus” strain SCM1 16,914 

Number of different N. maritimus ORFs 786 

Number of N. maritimus ORFs hit >50 times 32 

Reads assigned to C. symbiosum 472 

Number of different C. symbiosum ORFs 84 

Number of C. symbiosum ORFs hit >50 times 2 

Number of reads assigned to Ammonia Oxidizing Bacteria (AOB) 2,651 

Number of different AOB ORFs 1,253 

Reads assigned to Nitrosococcus 439 

Reads assigned to Nitrosomonas 382 

Reads assigned to Nitrosospira 272 

Number of AOB ORFs hit >50 times 3 
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Table 3.2.  Crenarchaeota ORFs represented by 50 or more reads in metatranscriptomes 
retrieved from Georgia coastal waters.  “Locus” refers to the Locus_Tag identifier assigned to 
the gene, “Sample Count” is the number of reads for which that locus was identified as the top 
hit by BLASTx. “Annotation” gives the identity of the gene product.  The median and range of 
the bit scores for all hits to a particular gene are also given.   
 

Locus Total 
Count 

Annotation Bit Scores 

Media
n 

Lo
w 

Hig
h 

Nmar_1547 3812 hypothetical protein 141 40 176 

Nmar_1502 1623 AmoC 149 40 191 

Nmar_1201 1492 hypothetical protein 110 40 178 

Nmar_1500 836 AmoA 149 41 183 

Nmar_1698 757 ammonium transporter 98 40 149 

Nmar_1667 633 hypothetical protein (NirK?) 107 41 169 

Nmar_1650 598 hypothetical protein 144 40 169 

Nmar_1501 588 hypothetical protein 114 41 153 

Nmar_0239 404 4Fe-4S ferredoxin iron-sulfur binding 
domain-containing protein 

154 40 175 

Nmar_1259 373 hypothetical protein (NirK?) 129 40 167 

Nmar_0188 198 hypothetical protein 161 40 185 

Nmar_1503 198 AmoB 127 40 176 

Nmar_0345 166 hypothetical protein 99 45 139 

CENSYa_1453 166 ammonia permease 111 42 135 

Nmar_0182 154 hypothetical protein 124 41 166 

Nmar_1507 142 hypothetical protein 86 42 164 

Nmar_1303 140 iron-sulfur cluster assembly accessory 
protein 

143 48 157 

Nmar_1688 133 H+transporting two-sector ATPase C 
subunit 

68 42 89 

Nmar_0343 119 hypothetical protein 120 42 164 

Nmar_0344 117 hypothetical protein 134 41 161 

Nmar_1537 97 4Fe-4S ferredoxin iron-sulfur binding 
domain-containing protein 

154 50 186 
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Nmar_0588 95 ammonium transporter 109 42 171 

Nmar_1765 94 4Fe-4S ferredoxin iron-sulfur binding 
domain-containing protein 

165 42 188 

Nmar_0700 88 hypothetical protein 142 42 171 

Nmar_0561 82 major intrinsic protein 112 54 174 

Nmar_1102 76 blue (type1) copper domain-containing 
protein 

110 40 164 

Nmar_0238 71 4Fe-4S ferredoxin iron-sulfur binding 
domain-containing protein 

141 40 173 

Nmar_1034 70 elongation factor 1-alpha 145 44 181 

Nmar_0627 69 hypothetical protein 116 42 161 

Nmar_0394 67 superoxide dismutase 159 43 197 

CENSYa_161 66 hypothetical protein 67 44 115 

Nmar_0183 59 cytochrome c oxidase subunit II 131 40 193 

Nmar_0959 54 ketol-acid reductoisomerase 145 52 181 

Nmar_0558 50 hypothetical protein 93 45 166 
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Table 3.S1.  Primers used in this study.  16S rRNA primer names beginning with "Tm" are 
Taqman primers.  Under "Use," Q = qPCR and S = sequencing. Cren. = Crenarchaeota.  
 

Target Gene 
Primer 

or Probe 
Use 

 
Sequence (5' to 3') 

Reference 
Bacteria 

16S rRNA BACT1369F 
Q CGGTGAATACGT

TCYCGG (Suzuki et al., 2000) 

 16S rRNA PROK1492R 
Q GGWTACCTTGTT

ACGACTT (Suzuki et al., 2000) 

 16S rRNA Tm1389F 
Q CTTGTACACACCG

CCCGTC (Suzuki et al., 2000) 

Cren. 16S rRNA ARCHGI334F 

Q AGATGGGTACTG
AGACACGG
AC (Suzuki et al., 2000) 

 16S rRNA ARCHGI554R 

Q CTGTAGGCCCAA
TAATCATCC
T (Suzuki et al., 2000) 

 16S rRNA Tm519AR 
Q TTACCGCGGCGG

CTGGCAC (Suzuki et al., 2000) 

Archaea 16S rRNA 21F 
S TTCCGGTTGATCC

YGCCGGA (DeLong, 1992) 

 16S rRNA 958R 
S YCCGGCGTTGAM

TCCAATT (DeLong, 1992) 

AOB amoA amoA-1F 
Q GGGGTTTCTACTG

GTGGT 
(Rotthauwe et al., 

1997) 

 amoA amoAr NEW 
Q CCCCTCBGSAAAV

CCTTCTTC (Hornek et al., 2006) 

AOA amoA Arch-amoA-for 
Q CTGAYTGGGCYT

GGACATC 
(Wuchter et al., 

2006) 

 amoA Arch-amoA-rev 
Q TTCTTCTTTGTTG

CCCAGTA 
(Wuchter et al., 

2006) 

 amoA Arch-amoAF 
S STAATGGTCTGGC

TTAGACG (Francis et al., 2005) 

 amoA Arch-amoAR 
S GCGGCCATCCAT

CTGTATGT (Francis et al., 2005) 
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Table 3.S2.  Number of MG1C and AOB transcripts/cell in each of the samples calculated from 
metatranscriptomic data as explained in chapter 2.  The total number of MG1C or AOB cells in 
the sample was calculated as described in the text from the volume filtered (5.75 L), total 
prokaryote abundance determined by epifluorescence microscopy (4.2 x 109 cells/L) and relative 
abundance of MG1C and AOB determined by qPCR. 
 

Category Sample 
FN56 

Sample 
FN57 

Sum 

Total RefSeq hits 287,137 273,252 560,389 

Total Marine Group 1 Crenarchaeota hits 
recovered in library 

12,246 5,140 17,386 

pGEM transcripts added 4.70E+10 4.70E+10 9.4E+10 

pGEM hits recovered in library 4,014 6,865 10,879 

Total number of MG1C hits expected in sample 
(from recovery of pGEM transcripts) 

1.4339E+11 3.52E+10 1.5E+11 

Transcripts per MG1C cell 321 79 168 

    

Total Nitrosococcus Hits 629 686 1315 

Total Nitrosomonas Hits 369 341 710 

Total Nitrosospira Hits 311 315 626 

All AOB Hits in Library 1,309 1,342 2,651 

Total number of AOB hits expected in sample 
(from recovery of pGEM transcripts) 

1.5327E+10 9.19E+09 2.29E+10 

Transcripts per AOB cell1 26,356 15,799 19,695 

 
1) AOB abundance calculated from AOB amoA gene abundance (Figure 1) assuming a gene 
dosage of 2.5 copies of amoA per AOB genome (Norton et al. 2002). 
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Figure 3.1. Time series of quantitative, real-time PCR (qPCR) estimates of the abundance of 
amoA and 16S rRNA genes at the sampling site.  Means (wide bars) and standard deviations 
(vertical lines) of 8 samples collected over 2 day periods are shown.  In some cases, the bars are 
smaller than the abcissa.  A.  Archaeal amoA genes.  Inset shows the time series of changes in 
amoA (□) and Crenarchaeota 16S rRNA (X) gene abundance on 6-7 August.  Vertical bars are 
standard deviations of triplicate qPCR determinations for each sample.  B.  Marine Group 1 
Crenarchaeota 16S rRNA gene abundance.  Inset shows Archaeal amoA versus Crenarchaeota 
16S rRNA gene abundance for each sample (regression line slope= 0.51, r2=0.99).  C.  Bacterial 
amoA gene abundance.  Crosses show the ratio of Archaeal amoA to Bacterial amoA for each 
sample.  D.  Bacteria 16S rRNA gene abundance.  Crosses show the relative abundance of 
Crenarchaeota as a percentage of the prokaryotes (Bacteria + Crenarchaeota) in each sample 
assuming a gene dosage of 1 16S rRNA gene per genome for Marine Group 1 Crenarchaeota 
(from genomes annotated in DOE’s IMG database) and 1.8 16S rRNA genes per genome as an 
average for marine bacteria (Biers et al., 2009).   
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Figure 3.2. Phylogenetic analysis of the marine group 1 Crenarchaeota 16S rRNA sequences.  
The consensus sequence was obtained by assembling MG1C 16S rRNA reads contaminating the 
metatranscriptome.  Sequences labeled “Sapelo” are from cloned PCR amplicons produced with 
DNA from the same sample.  Reference sequences are shown in black except “Candidatus 
Nitrosopumilus maritimus” strain SCM1, which is shown in red.  GenBank accession numbers 
are given in parentheses.  This is a neighbor joining tree based on 876 bp sequences.  Bootstrap 
analysis was used to estimate the reliability of phylogenetic reconstructions and support is shown 
if >50% (100 iterations).  
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Figure 3.3. Distribution of pyrosequencing reads among Nitrosopumilus ORFs.  The horizontal 
line is positioned at 50 hits per ORF and indicates the cutoff used to define highly expressed 
ORFS.  Text over the longest bars identifies the annotation for that ORF (left to right): hyp prot – 
hypothetical protein; FeS – 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein; 
amt – ammonium transporter; FeS accessory protein - iron-sulfur cluster assembly accessory 
protein; amoABC – ammonia monooxygenase subunits. 
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Figure 3.S1.  A.  Location of Sapelo Island, Georgia, USA (red star).  B.  Location of the 
sampling station on the Duplin River, Sapelo Island, Georgia (red circle) and of the nearest 
GCE-LTER station where nutrient data are collected (red star).  C.  Set-up of sampling gear on 
the dock shown in B. 
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Figure 3.S2.  Schematic of the mRNA preparation and pyrosequencing strategy used in this 
study.  
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Figure 3.S3.  Comparison of the number of transcripts assigned to the same ORF in 
metatranscriptomes from samples FN56 and FN57.  The figure plots pairs for which at least 3 
reads from each sample were assigned to that ORF (accounting for 89.8% of all reads assigned to 
MG1C, representing transcripts from 160 different ORFs).  Numbers of transcripts per ORF are 
shown as natural logs. The Type 1 linear regression line and 95% confidence limits of data are 
shown.  Deviations from this line indicate that a transcript is more (or less) abundant in one 
sample versus the other. 
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Figure 3.S4.  Frequency distribution of bit scores for BLASTx hits of metatranscriptome 
sequences retrieved from our samples against the RefSeq database.  A.  All sequences in the 
metatranscriptome; B.  All hits assigned to MG1C; C.  All hits assigned to AOB. 
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Figure 3.S5.  Frequency distributions of reads among Nitrosococcus, Nitrosomonas, 
Nitrosospira or “Ca. N. maritimus” ORFs.  The number of reads assigned to each ORF is 
normalized as a percentage of all of the reads assigned to each taxon.  The distributions for hits 
to MG1C and AOB ORFs are statistically significantly different (p<0.05, jack-knife estimate of 
95% CL for Pielou’s Evenness; p<0.0001 for Mann-Whitney U-test) with AOB reads being 
more evenly distributed across ORFS than MG1C reads. 
 
 
  



Nmar_1547
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Figure 3.S6.
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Figure 3.S7.  Time series of ammonium concentration at station GCE6, 3.0 km from the 
sampling location.  HWS – high tide, collected at 0.2 m depth; HWB – high tide, collected 0.5 m 
above the bottom (~6 m depth); LWS low tide, collected at 0.2 m depth; LWB low tide, collected 
0.5 m above the bottom (~4 m depth).  Arrows along the top of the panel indicate when samples 
for qPCR analysis were collected, red arrow indicates metatranscriptome sample. 
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CHAPTER 4 

EXPRESSION PATTERNS REVEAL NICHE DIVERSIFICATION IN A MARINE 

MICROBIAL ASSEMBLAGE1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________ 

1Gifford, S.M., Sharma, S., Booth, M., and Moran, M.A.  To be submitted to International
 Society of Microbial Ecology Journal.
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Abstract 

Resolving the ecological niches of coexisting marine microbial taxa is challenging due to 

the high species richness found in microbial communities and the extensive functional 

redundancy evident in marine bacterial genomes and metagenomes. Metatranscriptomics 

provides information on dynamic gene expression and can be useful for distinguishing 

biogeochemical activities of individual taxa that share the same environment. Here, we examined 

bacterioplankton transcription patterns in a well-mixed coastal ocean to characterize taxon-

specific gene expression. Sequencing with the Illumina platform (producing >11 million protein 

encoding reads) allowed for the simultaneous examination of the activities of thousands of 

microbial groups.  The >200,000 ribosomal protein reads found in the metatranscriptome 

libraries showed distinct patterns in abundance among these taxonomic bins, indicative of 

differences in in situ growth rate. For 16 genome bins chosen for closer inspection, gene 

expression levels related to functional overlap; that is, counts of transcripts increased in 

proportion to how common the gene was in the other genomes (referred to as 'ortholog number'). 

Genes showing atypically high expression within an ortholog number category were used to 

obtain insight into that taxon’s unique functional role in the community. Genes for the transport 

and metabolism of a wide variety of substrates and for physical interactions with the biotic and 

abiotic environment were typical indicator genes for the various groups. Expression analyses 

identified distinct roles of individual microbial taxa within this highly complex community, 

providing insight into how the assemblage is maintained 
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Introduction 

 Relationships between taxonomic composition and ecological function have been 

difficult to establish for marine bacterioplankton communities. Recent genomic and 

metagenomic inventories have unquestionably improved understanding of the potential 

functional roles of marine taxa as reflected in their gene repertoires (Moran et al., 2004; 

Giovannoni et al., 2005; Rusch et al., 2007; Delong et al., 2006). Nonetheless, genome 

comparisons of major marine bacterial groups reveal that many genes of known biogeochemical 

or ecological relevance are broadly distributed taxonomically (Moran, 2008).  

 The competitive exclusion principle, originally developed to conceptualize the 

organization of macroorganism communities (Hardin, 1960), posits that species richness is 

maintained by niche differentiation. While this idea has also been applied to microbial 

communities (Fuhrman  et al., 2006; Mou et al., 2008), microbes have presented difficulties for a 

competitive exclusion framework from its beginning (Hutchinson, 1961). The apparent broad 

overlap in potential ecological roles, which has now been reinforced by genomic and 

metagenomic data, suggests that gene inventories will not be sufficient to assess functional 

niches of microbes. Thus, it remains a challenge to establish clear and unique ecological roles for 

individual bacterial taxa that will lead to better understanding and prediction of marine 

ecosystem processes.  

 One potentially important component of ecological function that has not typically been 

measured for bacteria is heterogeneity in how they sense and respond to the environment. Thus it 

is possible that bacteria from two different taxa that share the same functional gene have 

different regulation strategies for expression. Metatranscriptomics provides information on 

dynamic gene expression of individual microbial taxa sharing the same environment (Poretsky et 
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al., 2005; Frias-lopez et al.,2008) and therefore has the power to address this additional aspect of 

functional niche.  

 Here, we examined bacterioplankton transcription patterns in a well-mixed coastal ocean 

to characterize taxon-specific gene expression. The Illumina GAIIx platform provided deep 

coverage of the community transcriptome, allowing assessment of differential gene transcription 

across representative genome bins. We used the relationship between transcription level and 

ortholog number (a proxy for functional redundancy) to identify genes with atypically high 

transcription levels encoding unique functional capabilities. This analysis reveals new details of 

the functional niches occupied by members of a marine bacterioplankton community and 

provides insights into the diversity of strategies that support this complex microbial assemblage. 

 

Methods 

Sample collection. Samples were collected as part of the Sapelo Island Microbial 

Observatory (SIMO, http://www.simo.marsci.uga.edu), a multiyear time series examining 

expression in microbial communities of the coastal Southeastern U.S. Quarterly sampling 

expeditions, representing the winter, spring, summer, and fall seasons, are conducted at Marsh 

Landing (31°25’4.08N, 81°17’43.26W), Sapelo Island, Georgia, USA. Four samples 

representative of each season were chosen for this analysis: FN96 (7 November 2008), FN116 

(17 February 2009), FN125 (14 May 2009), and FN158 (14 August 2009). All samples were 

collected at night, 4 to 6 h after sunset and 1 h before high tide. Cell collection for RNA 

extraction was conducted as described previously (Poretsky et al., 2009; chapter 2). Briefly, 

water was drawn from approximately 1 m depth using a peristaltic pump and passed through a 3 

µm prefilter (Capsule Pleated 3 mm Versapor Membrane; Pall Life Sciences, Ann Arbor, MI, 
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USA) and 0.22 µm collection filter (Supor polyethersulfone; Pall Life Sciences).  After filtering 

6 to 8 L, the 0.22 µm filter was placed into a WhirlPak© bag and flash frozen in liquid nitrogen. 

Total time from the start of filtration to flash freezing was 11 to 14 min.  

RNA processing and sequencing. RNA processing in preparation for sequencing was 

done as described by Poretsky et al. (2009) and in chapter 2. The 0.22 µm collection filters were 

shattered, placed into 50 ml falcon tubes with 8 ml of RLT buffer (Qiagen, Valencia, CA, USA) 

and 2 ml of PowerSoil beads (MO BIO, Carlsbad, CA, USA) and vortexed for 10 min on a MO 

BIO vortex adapter. RNA was extracted from the 50 ml tubes using an RNeasy kit (Qiagen), and 

any contaminating DNA was digested using TurboDNAse (Applied Biosystems, Austn, TX, 

USA). Ribosomal RNA (rRNA) was reduced using a two step approach. The samples were first 

treated enzymatically with the mRNA only isolation kit (Epicentre, Madison, WI, USA) and then 

by subtractive hybridization using MicrobeExpress and MicrobeEnrich kits (Applied 

Biosystems). The enriched mRNA sample was then linearly amplified using the Message Amp 

II-Bacteria kit (Applied Biosystems), reverse transcribed to cDNA with the Universal Riboclone 

cDNA synthesis system (Promega,Madison, WI, USA), and purified with the QIAQuick PCR 

purificaton kit (Qiagen). The four cDNA samples were sheared to ~300 bp, barcoded, and 

sequenced in one lane of an Illumina GAIIx run.  

Bioinformatics pipeline. A 25,000 read subsample of each library was searched against 

the SILVA database of large and small ribosomal genes sequences (www.arb-silva.de) with 

BLASTn (bitsocre ≥ 50). The 25K subsample BLAST was then repeated, except the search was 

against a small set of select rRNA sequences found in the first analysis to be most similar to the 

samples. The first and second BLAST runs were compared to identify sequences missed using 

the custom rRNA subject database. Sequences for the missing taxa were then added to the 
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custom rRNA sequence database, and the processes repeated until all rRNA hits identified in the 

full SILVA database BLAST were found with the custom rRNA database BLAST. The complete 

metatranscriptome libraries were then searched against the custom database to identify and 

remove rRNA sequences.   

 All remaining, non-rRNA sequences were compared to NCBI’s RefSeq database (version 

43) using BLASTx with a bitscore cutoff  ≥40 to identify protein encoding sequences. A read’s 

taxonomic affiliation was assigned based on the top RefSeq hit. Ribosomal protein encoding 

sequences were identified by a text based query of the read annotations.   

Ortholog identification. For a set of 16 genome bins selected based on their 

representation in the transcriptome and their taxonomic breadth, orthologous genes were 

identified in a two-step process. Each gene in a subject genome was reciprocally blasted against 

the other 15 genomes. Genes with a reciprocal hit with an E value < 10-4 were considered 

orthologs. The process was repeated using each of the 15 genomes as the subject to build a 

complete list of reciprocal best-hit ortholog pairs among the 15 genomes. The results of the 

ortholog search were compiled into a single table. Initially the table consisted of 46,339 rows 

(one for each of the genes in the 15 genomes), with each row containing the subject gene and any 

orthologous genes in the other genomes. The rows of the table were randomly shuffled to reduce 

the potential for biasing ortholog selection towards any one genome. Beginning at the top, rows 

with common orthologs were retrieved and the most inclusive row (that which contained the 

most genes) was retained as the final ortholog group. Any other occurrences of the genes in this 

row were removed from the master table. This procedure was repeated until every row had been 

processed.  
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Statistical analysis. Statistically significant differences between gene sets grouped by 

ortholog count within a genome were identified using the non-parametric Wilcoxon rank-sum 

test (P < 0.05).  Genes that had read counts >1.5 times the interquartile range of their ortholog 

count group were labeled as outliers. Rows in the ortholog master table (described above) that 

contained IDs of outlier genes were then retrieved to make a table of outlier orthologous 

relationships. The percent transcriptome for each outlier gene was calculated as the gene hits 

over the total number of hits to the reference genome. The resulting matrix was then transformed 

by multiplying by a factor of 1000 to separate genome bins that had detectable expression of a 

gene from those that had either no expression or no ortholog.  A non-metric multidimensional 

scaling plot was created from the transformed data matrix using the metaMDS function 

(Oksanen et al., 2011) in R with Wisconsin double standardization and a Bray Curtis 

dissimilarity matrix.  MDS plots were generated with up to 10 dimensions, and a scree plot 

revealed that beyond 6 dimensions the stress did not decrease appreciatively. The first two 

dimensions explained 61% of the total variance and were plotted. To visualize how individual 

ortholog groups map with the genome positions, ortholog group scores are calculated in the 

metaMDS function based on a weighted average of genome NMDS scores multiplied by a gene's 

proportion of the transcriptome, and then expanded so that the variance within the ortholog 

groups scores matched that of the genome scores.  

Indicator gene analysis. The indicator species analysis approach of Dufrene and 

Legendre (1997) was used for indicator gene identification with the genomes considered the 

samples and the genes considered species. A gene’s hit count as a proportion of the total 

reference genome hits was used as the abundance metric. The 16 genomes were divided into 

groups based on their phylogenetic relationships. The indicator value (IV) is as a product of the 
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proportion of expression a group contributed to the total expression of a gene times the 

proportion of genomes in the group expressing the gene, and is calculated as follows: 

 The mean percent transcriptome within a group is calculated as: 

ajk = percent transcriptome of gene j in the genome i of group k 

nk = number of genomes in group k  
 

 
 
The specificity of expression towards one genome group over another is calculated as: 

 
g = number of groups  
 

 
 
The relative frequency, or the degree to which expression of a gene occurs in all of a group’s 

genomes, is calculated as: 

 
bijk = presence or absence (1/0) of expression of gene j in genome i of group k.  
 

 
 

The indicator value is the product of expression specificity and relative frequency, expressed as a 

percentage: 

 

 
 
 Note that when there was only one genome in a group, the second term (relative frequency) is 

equal to 1, and the IV reduced to a measure of the proportion a genome contributed to the total 

global expression of a gene. Indicator genes were identified as those genes having an IV > 50, 
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expect for the ‘All’ group, in which case only genes with an IV > 93 (expressed in at least 15 out 

of 16 genomes) were considered.  

 

Results and Discussion 

Samples and sequencing. Metatranscriptome samples were collected from Marsh 

Landing, Sapelo Island, Georgia, USA as part of the Sapelo Island Microbial Observatory 

program (SIMO; http://www.simo.marsci.uga.edu). The site is characteristic of nearshore coastal 

habitats of the Southeastern United States, with marsh, freshwater, and coastal influences. 

Samples were collected at night an hour before high tide in four months representative of the 

summer, fall, winter, and spring. After RNA processing and conversion to cDNA, Illumina 

Genome Analyzer IIx sequencing yielded 31 million reads. A BLASTn search against an in-

house rRNA database revealed that 62% of the reads were rRNAs. The remaining 11 million 

potential protein encoding reads were compared to NCBI’s RefSeq database via BLASTx. Over 

4.1 million reads had significant hits (bit score > 40).   

Active community members. Based on the highest scoring hit from the RefSeq BLAST, 

the reads binned to ~4,000 taxa (Table 4.1). The distribution of hits within these bins was log 

normal, with the top 200 bins accounting for 75% of all the hits, followed by a long tail of bins 

with very few hits.  The Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, and 

Bacteroidetes were the dominant transcript-producing groups (Table 4.1). The recently 

sequenced genome of "Candidatus Puniceispirillum marinum”, the only SAR116 representative, 

recruited the most reads of any taxon. Small, streamlined genomes, such as those from 

“Candidatus Pelagibacter ubique”, Betaproteobacterium KB13, Flavobacteria bacterium MS024-

2A and MS024-3C, and Nitrosopumilus maritimus, were highly represented. Reference bins of 
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medium to large genomes, likely representative of ecological generalists, were also abundant, 

particularly those from the roseobacter clade and the ‘oligotrophic marine gamma’ (OMG) 

group.  Hits to the Betaproteobacteria were predominantly to genomes of methylotrophic taxa.  

Archaea had few transcript hits in general, with the exception of N. maritimus, which was the 5th 

highest transcript-recruiting bin. Members of the Verrucomicrobiales, a recently described 

phylum identified in both terrestrial and aquatic habitats, were surprisingly well represented. 

Overall, the reference bins are indicative of a complex and highly diverse active coastal 

bacterioplankton community.  

 The average percent amino acid identity, which served as an index of how well 

transcripts matched the reference genomes to which they were assigned, ranged from 65 to 93% 

for the top 5 taxa in each taxonomic group (Table 4.1). The metatranscriptomic reads with the 

greatest similarity to their reference genomes were photosynthetic taxa belonging to both 

Bacteria and Eukaryota. The Archaea and Verrucomicrobia had the lowest transcript identities, 

though Verrucomicrobia identities were uniformly low throughout while the Archaea showed a 

greater variance.   

Ribosomal protein expression as a growth rate indicator. Ribosomal proteins (RPs) 

are an essential translation component in all cells and typically account for 50-60 genes in a 

bacterial genome. Their well-conserved sequences make them good phylogenetic markers. Over 

218,000 reads were annotated as RPs in the metatranscriptomes (Table 4.1) and these fell into 

1,903 different taxonomic bins. The proportion of RP genes with at least one hit in a genome bin 

was correlated with overall transcript abundance (Fig. 4.S1), and the majority of RP genes were 

represented at least once in bins with >1,000 total transcripts.  
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We confirmed that the reference genomes were good taxonomic matches for the 

microbial groups present in the coastal samples by comparing the number of RP hits in a 

reference genome bin to the total hits to that bin. The distribution of RPs among the 1,563 bins 

with ≥ 100 reads had a significant positive relationship with bin size (linear regression of log 

transformed data; R2 = 53, P < 10-16; Fig. 4.1). One possible source of the residual variability 

seen in this relationship is sampling error for reference bins with low transcript coverage. Indeed, 

many of the bins with atypical percentages of RP hits had less than 1,000 total reads, suggesting 

this error source was confined to the low abundance bins. Only one high-recruiting genome bin 

(SAR11 HTCC1002) was an obvious outlier, with over 88,000 total hits but only 300 RP hits 

(Fig. 4.1). This may be related to cross-hits between HTCC1002 and HTCC1062, two very 

closely related SAR11 strains. Regardless, most well-covered reference genome bins had a % RP 

transcript value within one standard deviation of the mean value (5.3% ±3.9), suggesting they 

represent taxonomically coherent groups. 

The relative abundance of ribosomal protein transcripts (% RP) was next used to estimate 

the activity level of populations represented by a reference bin, since levels of ribosomal protein 

transcripts are well correlated with growth rate in yeast (Eisen et al.,1998) and bacteria (Wei et 

al., 2001). The % RP hits among the top 200 reference bins ranged from 0.05 (Candidatus 

Pelagibacter ubique HTCC1002) to 20.5% (Chryseobacterium gleum) and showed distinct 

phylogenetic patterns (Fig 4.2A). Gammaproteobacteria were clearly enriched in ribosomal 

proteins (mean 8.8%) and represented many of the highest % RP genome bins including 

Teredinibacter turnerae T7901 (16.2%), Saccharophagus degradans 2-40 (14.3%), 

Marinomonas sp. MWYL1 (13.9%), and Cellvibrio japonicus Ueda107 (12.9%). Bacteroidetes 

had a more dispersed distribution, with % RP transcripts ranging from 2.6 to 20.5%, and they 
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included the two bins with the highest % RPs, Chryseobacterium gleum ATCC 35910 (20.5%) 

and Capnocytophaga gingivalis ATCC 33624 (18.8%). The reference bins for Flavobacteria 

bacterium MS024-2A and MS024-3C, two streamlined Bacteriodetes genomes with relatively 

high total transcripts, fell in the lower distribution of % RP for this phylum (4.6%). The SAR116 

Candidatus Puniceispirillum marinum IMCC1322, which  recruited the most transcripts, was in 

the mid % RP range (6.9%).  Reference genomes for the Roseobacters were dispersed 

throughout, ranging from 1.8 (Roseobacter litoralis Och 149) to 9.2% (Citreicella sp. SE45), 

though their mean (4.2%) was in the lower range. Finally, despite their dominance in total 

transcript abundance, members of the SAR11 clade had the lowest % RP of all the groups 

examined, ranging from 0.05 to 1.7 %RP.  

Supporting evidence that these variations in % RP transcripts reflect different in situ 

growth rates was seen in the seasonal shifts in % RP within taxa (Fig 4.2B and C), with most 

having maximum % RP in the summer (56% of taxa), followed by spring, winter, and fall (20, 

18, and 7% of taxa, respectively). Bacterial secondary production rates estimated from 3H-

leucine uptake rates made concurrently with RNA sample collection likewise mirrored the 

seasonal trends in % RP transcripts (summer: 2.8 X 10-6 g C L-1 hr-1; spring: 1.8 X 10-6 g C L-1 

hr-1; fall: 0.4 X 10-6 g C L-1 hr-1; and winter: 0.3 X 10-6 10-6 g C L-1 hr-1).  

Transcriptome characteristics. To more fully characterize differences in expression 

patterns among phylogenentically distinct taxa that shared the same coastal habitat, we focused 

on 16 reference genome bins that had ample coverage in the metatranscriptomes (four seasonal 

samples combined) and spanned the range of % RP (Table 4.2).  

More than 84% of the genes in the Candidatus Puniceispirillum marinum IMCC1322 

reference genome had at least one homolog in the metatranscriptome (Fig 4.3). The most highly 
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represented genes were for a Na+/solute symporter, sugar ABC transporter, TRAP dicarboxylate 

transporter, and a V-type H(+)-translocating pyrophosphatase (Rinta-Kanto et al. 2011), along 

with energy transduction (Cytochrome c  oxidase) and transcription/translation machinery 

(elongation factors G and Tu, and RNA polymerase).  Several regions of the genome had low 

expression and low functional redundancy (i.e., with no or very few orthologs in the other 15 

genomes) and were flanked by phage integrases (Fig 4.3). These areas are indicative of genome 

islands, regions highly specific to the reference genome and likely missing from the sampled 

populations. Nisea sp. BAL199, a marine Rhodospirallales and the closest relative to IMCC1322, 

has a much larger genome and many more unique genes (i.e., those with no orthologs in the other 

15 reference genomes) (Table 4.2). However, several of the most highly expressed genes were 

similar to those for IMC1322, including a Na+/solute symporter, ABC-type branched-chain 

amino acid transporter, and a TRAP dicarboxylate transporter. 

 The two representatives of the Roseobacter clade, Roseobacter sp. AzwK-3b and 

Citreicella sp. SE45, have large genomes and many likely genomic islands (Fig. 4.4). The most 

highly expressed genes for Azwk-3B were hypothetical proteins or those involved in Aerobic 

Anoxygenic Photosynthesis (AAnP)-related processes, including light harvesting proteins, 

antenna complexes, and photosynthetic reaction centers. Citreicella sp. SE45, which does not 

contain AAnP genes, had high transcript recruitment to two subunits of formate dehydrogenase, 

as well as to genes for transcription and translation (RNA polymerase, chaperonin GroL, 

translation elongation factor G  and Tu), and energy transduction (ATP synthase).  

 The small and streamlined SAR11 genomes (bins HTCC1002, HTCC1062, HTCC7211, 

and HIMB114) had high transcript coverage (>90% in HTCC7211, and >60% in the others; Fig. 

4.4, Table 4.2). The number of potential genome islands was relatively small, though two 
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possible islands were identified in  HTCC7211 (Fig. 4.4). Given their streamlined genome and 

dense coverage, it is surprising that these genomes had the lowest transcriptome evenness, with 

37 to 64% of all hits to just ten genes. Hits to the Na+/solute symporter alone accounted for 13 to 

25% of all transcripts binning to SAR11 genomes. Proteorhodopsin, TRAP and ABC 

transporters, and ammonia transporter genes were also highly expressed by the SAR11 

populations. Betaproteobacterium KB13 is similar to the SAR11s in genome size, but this 

transcript bin reflected the highly specialized metabolism of a methylotroph. It also had low 

transcriptome evenness, due largely to methanol dehydrogenase (39% of all transcripts) and 

other methylotrophy-related processes. Xanthorhodopsin, a glucose/sorbosone dehydrogenase, 

citrate lyase, and V-type H(+)-translocating pyrophosphatases were also highly expressed in the 

KB13-like population.  

 Gammaproteobacteria representatives HTCC2080 (Fig. 4.4), NOR-51, and HTCC2207 

have mid-size genomes (Table 4.2), with potential genomic islands seen throughout. The 

Gammaproteobacteria genome bins had more even transcript distribution, with the top 10 genes 

making up only 10 to 26% of hits. All three bins were highly enriched in genes for TonB 

dependant transport and for phototrophy (AAnP for HTCC2080 and NOR-51; proteorhodopsin 

for HTCC2207). Similar to patterns noticed in other genomes (Roseobacter Citreicella sp. SE45, 

in particular), the transcriptome of NOR51 populations was enriched in genes for transcription 

and translation (RNA polymerase, ribosomal proteins, translation elongation factor Tu), and 

cytochromes.  This was not the case for the other two Gammaproteobacteria, in line with the % 

RP data suggesting NOR51 populations are growing faster than those binning to the other two 

Gammaproteobacteria genomes. 
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Bacteroidetes representative Flavobacteria MS024-2A has a small genome (Table 4.2; 

Fig. 4.4) and few detectable genome islands, and is phylogenetically distant from the other 15 

reference genomes. The most highly expressed genes were bacteriorhodopsin, TonB-dependent 

receptors, and a V-type H(+)-translocating pyrophosphatase. Verrucomicrobia member 

Pedosphaera parvula Ellin514 has the largest genome (Table 4.2), with the lowest percentage of 

orthologs and transcript coverage. The most highly expressed Ellin514 genes were for 

transcription and translation (RNA polymerase, elongation factors G and Tu, chaperonin 

GroEL), as well as a pyruvate phosphate dikinase, methionine aminopeptidase, and a type II/III 

secretion system protein (pulD). For the Archaea Nitrosopumilus maritimus SCM1, the top 10 

genes (45% of the transcriptome) were for ammonia uptake and oxidation, including two 

ammonia transporters and all three subunits of ammonia monooxygenease. For the 

cyanobacterium Synechococcus sp. WH8109 bin, genes for carbon fixation (ribulose 

bisphosphate carboxylase; RuBisCO), photosynthesis core proteins, and transcription (RNA 

polymerase) dominated.  

Relationship between expression level and ortholog number. We found a statistically 

significant positive relationship between gene expression level (number of reads recruited to a 

gene in a reference bin) and functional redundancy (number of genomes with orthologs to that 

gene) (Wilcoxon rank-sum test, P < 0.05; Fig 4.5, 4.S2). Thus most highly expressed genes were 

shared by multiple taxa, although SAR11s HTCC1002, HTCC1062, and HIMB114, as well as 

MS024-2A and N. maritimus SCM1 did not have as strong a pattern as the other genomes (Fig. 

4.S2). Previous observations from marine metatranscriptomic data (Hewson 2009, Stewart 2011) 

support this conclusion, and lead to the conclusion that an analysis restricted to only the more 

highly expressed genes is likely to miss unique functional capabilities that distinguish taxa. In 
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order to address niche-defining features, we instead focused on those genes whose expression 

was higher than expected based on their ortholog count group; these expression outliers had a 

transcript abundance 1.5 times greater than the interquartile range of the ortholog count group to 

which they belonged (Fig. 4.5). Thus this approach identified informative genes by considering 

both expression level and functional redundancy.  

Expression patterns distinguish genome bins. The ~46,000 genes represented in the 16 

reference genomes were reduced to 22,000 ortholog groups based on a modified reciprocal best-

hit approach (see methods). Ortholog groups that contained genes identified as expression 

outliers were used in a Non-metric Multidimensional Scaling (NMDS) analysis, with a gene’s 

transcript count as a proportion of the total reference bin counts used as the abundance metric 

and excluding the N. maritimus SCM1 bin to get better separation among the 15 bacterial bins 

(Fig. 4.6A). There was clustering of taxonomically-related strains, suggesting a phylogenetic 

signal to the expression outlier genes. Genome bins representing the SAR11 group formed a 

cluster that was distinct from a Gammaproteobacteria bin cluster and the rest of the 

Alphaproteobacteria bins. Genome bins with no close relatives tended to have a distinct location 

on the NMDS plot, although Verrucomicrobium Ellin514 and Cyanobacterium Synechococcus 

sp. WH8109 were closely oriented to one another.  An NMDS analysis based on all ortholog 

groups using just presence/absence of a gene rather than expression level (Fig. 4.S3) showed 

different groupings of the 15 bacterial genomes, indicating that information on gene expression 

in response to shared environmental conditions, not just presence/absence of the genes, provides 

an additional ecological dimension for analysis of bacterioplankton niches. To visualize how 

individual outlier ortholog groups influenced genome placement on the NMDS plot, the 

weighted scores for each ortholog group was calculated (see Methods) (Fig. 4.6B). Outlier 
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groups with few orthologs dominated the periphery while those with many orthologs clustered in 

the center.  

Indicator genes. We adopted the Indicator Species Analysis approach of Dufrene and 

Legendre (1997) to identify indicator genes, defined here as those whose expression best 

distinguished the activities of a bacterioplankton taxon. An indicator value (IV) for each gene in 

the outlier ortholog groups was calculated based on the contribution of a reference bin to the total 

expression (see Methods). 

The indicator genes for SAR116 populations suggested a motile taxon that was using a 

variety of substrates (Fig. 4.6C). Expression of a gene for methanesulfonate (MS) oxidation 

(methanesulfonate monooxygenase subunit; SAR116_2109), a potentially abundant compound 

in the marine environment generated from the oxidation of DMSO (Kelly, 1999), distinguished 

this genome bin. A second indicator gene in the SAR116 bin was a nitrate/sulfonate/bicarbonate 

permease (SAR116_2101), which neighbors the SAR116 MSO genes and is homologous to the 

MS transporter found in Methylosulfonomonas methylovora (Jamshed et al., 2006). Indeed, the 

entire SAR116 genome region (SAR116_2098-2109) shares high homology and synteny with 

the M. methylovora MS operon. Indicator gene ketopantoate hydroxymethyltransferase 

(SAR116_2112) was located adjacent to a formate tetrahydrofolate ligase in the neighborhood of 

the MSO genes, and may process the methyl groups derived from MS.  

Populations of both SAR116 and its relative Nisaea sp. BAL199 expressed genes for the 

degradation of aromatic compounds. Three SAR116 indicator genes fell in an operon encoding 

enzymes of the protocatechuate pathway (SAR116_0936, 0937, 0940), an intermediate important 

in the degradation of lignin derivatives from coastal marshes (Buchan et al., 2000) and aromatic 

compounds synthesized by phytoplankton (Vernet and Whitehead, 1996). BAL199 had indicator 
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genes for chlorobenzene degradation (carboxymethylenebutenolidase, BAL199_05144) and a 

TRAP transporter for chloroaromatic compounds, but their annotations carried lower confidence. 

Other indicator genes in the BAL199 population bin included 3 subunits of an Fe(III) transporter 

and genes for taurine uptake and metabolism.  

Indicator genes for C1 carbon metabolism were found for Bal199 as well as the two 

Roseobacter genomes, Citreicella sp. SE45 and Roseobacter sp. AzwK-3b, dominated by strong 

formate dehydrogenase expression (8, 11, and 3% of the Bal199, SE45, and Azwk-3B 

transcriptomes, respectively). The Bal199 bin also had four indicator genes for glyoxylate 

degradation and cycling through formate (BAL199_21019,21024,26437,27586), suggesting this 

may be the source of the C1 compounds being processed by Bal199-like populations. Expression 

for all three of these genome bins was highly enriched in TRAP dicarboxylate transporters, 

consistent with the transport of glyoxylate or other small organic acids. The two roseobacters 

also shared indicator genes for ureases, branched chain amino acid transporters, taurine 

metabolism genes, and sulfur oxidation through sox pathway genes.  

Indicator transcripts in the SAR11 coastal isolate HTCC1062 genome bin pointed to the 

importance of sugar metabolism. Five genes from two putative sugar transporters were among 

the indicator genes; transporter SAR11_0769-0772 was hypothesized previously to target 

glucose (Schwalbach et al., 2010). For SAR11_0269-0271, a neighboring indicator gene in the 

metatranscriptome with homology to sorbitol dehydrogenase (SAR11_0272), the close proximity 

of a highly expressed TRAP mannitol transporter genes (although they did not meet the indicator 

gene cut-off), and an indicator gene for fructose-bisphosphate aldolase (SAR11_0584) together 

suggest the uptake and metabolism of C6 sugars. This appears to be a distinguishing ecological 

function for HTCC1062-like populations.  
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The SAR11 open ocean isolate HTC7211 bin was characterized by the uptake of 

compatible solutes. HTCC7211 had two indicator genes for uptake of ectoine or hydroxyectoine 

(PB7211_776,1327), which serve as compatible solutes during osmotic stress (Mulligan et al., 

2011) and as bacterial carbon and nitrogen sources (Lecher et al., 2009). The HTCC7211 bin 

also contained indicator genes for glycine betaine metabolism, including two ABC transporter 

genes (PB7211_147,194), a putative sarcosine oxidase (PB7211_683), and a glycine cleavage 

system T protein (PB7211_1405). Tripp et al. (2008, 2009) reported that SAR11 growth was 

significantly improved by addition of glycine betaine to the medium, stressing the importance of 

glycine to SAR11 metabolism.  

SAR11 clade members HTCC1002 and HIMB114 had indicator genes for taurine 

transport (PU1002_02371) and metabolism (HIMB114_0332), respectively. HIMB114’s 

indicator genes also included four separate genes for putative tricarboxylic transport membrane 

proteins from a recently described system (HIMB114_0326,0339,0341, and1737) (Antoine 

2005). It is possible that the tricarboxylic acid tartrate is the substrate of one of these 

transporters, based on the presence of another HIMB114 indicator gene for tartrate 

dehydrogenase (HIMB114_0953). While little is currently known about tartrate sources in the 

marine environment, it can be secreted by marine algae (Marsh et al., 1992). Finally, a high-

affinity Fe permease was found among the HIMB114 indicator genes (HIMB114_0552). 

The identification of two subunits of adenylyl-sulfate reductase (APS reductase) among 

the HTCC7211 indicator genes (7211_563, 1116) raised the possibility that sulfur oxidation is a 

shared characteristic of the SAR11 bins. While these genes are typically associated with 

dissimilatory sulfate reduction in anaerobic bacteria, they have been proposed to operate in the 

opposite direction to oxidize reduced sulfur (Meyer 2008). The APS reductase genes in 
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HTCC7211 have close homologs in HTCC1002 and HTCC1062 (which were also well 

expressed), as well as in known sulfur- and iron-oxidixing bacteria (Meyer 2008). SAR11 

members are unable to reduce inorganic sulfur from the surrounding environment (Tripp et al., 

2008), suggesting the source of reduced sulfur for APS reductase is likely originating from 

intracellular metabolic pools such as methionine and dimethylsulfoniopropionate (DMSP) 

degradation products.  

 The three Gammaproteobacteria indicator genes were highly enriched in TonB dependant 

transporters, which have traditionally been associated with iron and vitamin uptake, though 

recent studies indicate they likely have a much wider substrate range, including carbohydrates 

(Schauer et al., 2008). Transcripts for fatty acid metabolism were also enriched in all three 

Gammaproteobacteria bins. Both HTCC2080 and NOR51-B were expressing lipase 4, which 

releases fatty-acids from triglycerides. HTCC2080 had nine additional indicator genes for fatty 

acid metabolism, including four acyl-CoA dehydrogenases and a 3-ketoacyl-CoA thiolase 

involved in fatty acid β-oxidation. These findings are in line with McCarren et al. (2010), who 

found that Gammaproteobacteria related to Idiomarina and Alteromonas spp. responded to 

marine dissolved organic matter with a proportional increase in fatty acid metabolism gene 

transcription.  

Gammaproteobacterium HTCC2207 indicator genes revealed a motile population binding 

to and degrading complex carbohydrates (Fig. 4.6C). There were 24 indicator genes for flagellar 

assembly and chemotaxis. There were four indicator genes (GB2207_00005, 00010, 06108, 

06128) with cadherin domains that are potentially involved in the metabolism of complex 

carbohydrates by increasing cell aggregation and allowing direct binding to cellulose, xylan, and 

related compounds (Fraiberg et al. 2010, 2011). There were six indicator genes for breaking 
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glycosydic bonds, including four annotated as general glycosyl hydrolases, possibly targeting the 

β1-4 linkages found in cellulose, and two genes annotated as β1-3 glucanase (GB2207_09841) 

and laminarninase (GB2207_10126), possibly targeting the β1-3 linkages of laminarin (a storage 

glucan found in brown algae) or chrysolaminarin (a storage glucan of diatoms).  Ostreococcus, a 

small photosynthetic picoeukaryote active in these coastal waters (Table 4.1), synthesizes B1-3 

glucans such as a callose (Monnier et al., 2010) and may be another source of complex 

carbohydrates.   

Indicator genes for populations binning to Flavobacteria MS024-2A were similar to 

HTCC2207, included genes for attachment (cadherins) and the breakdown (2 glycosyl 

hydrolases) and synthesis (a glycogen synthase; Flav2ADRAFT_0634) of complex 

carbohydrates. MS024-2A was also motile, with indicator genes for gliding motility proteins 

gldJMO, likely involved in translocation across a solid surface. Three subunits of Na+-

transporting NADH:ubiquinone oxidoreductase were also indicator genes 

(Flav2ADRAFT_1288, 1290, 1291), depicting cells invested in maintaining a sodium membrane 

potential that may be coupled with Na+/solute symporters.  

 Betaproteobacterium KB13 and Thaumarchaeote Nitrosopumilus maritimus SCM1 

indicator genes reflected high degrees of specialization (Fig. 4.6C). For KB13, indicator genes 

for methanol dehydrogenase indicated ongoing methylotrophy. This genome bin also contained 

bacterioferritan as an indicator gene (KB13_1091), suggesting the ability to store Fe. For N. 

maritimus, dominant indicator genes included the ammonia monoxygenase genes, and two nirK-

like genes (though the exact function of the later is uncertain, see Chapter 3).  Four blue (type 1) 

copper domain proteins were identified as indicator genes; while the function of these proteins is 
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not yet known, the use of copper in metalloenzymes may decrease competition between N. 

maritimus and bacteria for iron (Urakawa et al., 2011).  

The Verrucomicrobium Pedosphaera parvula Ellin514 indicator genes had a strong 

signal for biofilm formation (Fig. 4.6C), including the Type IV pili and the Type II secretion 

systems, twitching motility genes, polysaccharide synthesis, and capsular exopolysaccharide 

synthesis. There was also a set of indicator genes for sugar metabolism, particularly those related 

to xylose, a potential exopolysaccharide component (Gilbert et al., 2007). Three genes for ABC-

Type II transporters (Cflav_PD3611, 3988, 3989), which transport polysaccharides to the outside 

of the cell, were also indicator genes. While there have been few phenotypic studies of 

Verrucomicrobia, particularly in aquatic environments, characterization of Lentisphaera 

araneosa from the sister phylum Lentisphaerae showed it too was an abundant producer of 

exopolysaccharides (Cho et al., 2004, Thrash et al., 2010). Together, the P. parvula indicator 

genes are suggestive of biofilm formation, possibly for a pathogenic or symbiotic lifestyle. This 

is supported by indicator genes for degrading cell wall polymers and homologs to myrosinases, a 

group of genes that cleave glucose from glucosinolates, which are secondary metabolites of 

plants. 

The only photosynthetic organism in the 15 genomes was Synechococcus sp. WH 8109, 

and as expected, the indicator genes had a strong signal for photosynthesis-related processes 

(Fig. 4.6C). An indicator gene for peroxiredoxin may provide protection against the abundant 

reactive oxygen species produced during light harvesting (SH8109_1863). Three separate 

indicator genes were annotated as the cell division protein ftsH (SH8109_0218, 1424, 1960), 

which acts to maintain membrane protein quality (Ito and Akiyama 2005) and may have a role in 

maintaining membranes, including cell membranes during division and thylakoid membranes. 



114 

Several Synechococcus indicator genes are involved in sulfur assimilation, including a sulfate 

permease (SH8109_1514) and sulfite reductase (SH8109_1751). Furthermore, Synechococcus 

populations expressed the indicator gene UDP-sulfoquinovose synthase (sqdB; SH8109_0458), 

the diagnostic gene for sulfolipid synthesis. Open ocean Cyanobacteria have sulfolipid-enriched 

membranes hypothesized to decrease their need for phospholipids in a low phosphorus 

environment (<0.010 µM) (Van Mooy et al., 2006, 2009). However phosphorus concentrations 

were high in the coastal site sampled here (>1.0 µM at all four sample dates), suggesting that 

sulfolipid synthesis may be a universal strategy for niche diversification in Synechococcus.  

 
Conclusions 

 Hutchinson's paradox of the plankton (Hutchinson, 1961) presupposes three axioms: 1) 

the presence of many functionally overlapping taxa within a community, 2) an environment with 

limited niches, and 3) competitive exclusion as the mechanism that constrains the taxa:niche 

ratio to one. While Hutchinson was originally interested in how this paradox applied to the 

coexistence of tens of different phytoplankton species, contemporary 16S rRNA gene studies 

suggest bacterioplankton assemblages contain orders of magnitude more coexisting taxa. Indeed, 

the mRNA sequences examined here indicates the coexistence of literally thousands of active 

taxa with hundreds of overlapping functions in this coastal microbial community 

One resolution to the apparent paradox is that more niches exist than we have the 

technical ability to observe (Hutchinson, 1961). The availability of 11 million microbial 

transcript sequences in this study allowed the evaluation of this possibility, since they provided 

information on co-occurring microbial processes at an unprecedented level of resolution. The 

majority of transcriptional effort by the microbial community was devoted to core metabolic 

processes that are shared among many taxa (e.g., elongation factors, ribosomal proteins, 
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ATPases), consistent with the positive correlation between expression level and functional 

redundancy of a gene (Fig. 4.5). This has an important effect of concentrating comparative 

analyses on the most highly conserved bacterial genes (Hewson et al.,2009), making it difficult 

to identify unique taxon-specific functions. Thus we focused instead on identifying taxonomic 

indicator genes based on expression outliers: genes for which expression level was atypically 

high based on their conservation status across genomes (i.e., ortholog number). The resulting 

indicator genes included a number that mediated utilization of substrates not previously 

considered important to marine bacteria, such as tartrate metabolism by SAR11 HIMB114, 

taurine metabolism by several Alphaproteobacteria, methanesulfonate by SAR116, and ectoine 

transport and metabolism by SAR11 HTCC7211. Gammaproteobacteria HTCC2207 and 

Bacteroidetes MS024-2A were distinguished by utilization of complex carbohydrates, a signal 

largely missing from the Alphaproteobacteria. Another major category of indicator genes 

involved mechanisms for energy acquisition, including sulfur oxidation for both Roseobacter 

bins using the sox system, sulfur oxidation for SAR11 HTCC7211 using the APS reductase 

system, and bacteriochlorophyll-based proton pumping for two Gammaproteobacteria and one 

Roseobacter genome. Finally, a number of indicator genes were related to physical interactions 

with cells or non-living surfaces in the environment, including gliding motility in Bacteroidetes 

MS024-2A, twitching motility in Verrucomicrobium Pedosphaera parvula Ellin514, a strong 

chemotaxis signal in Gammaproteobacterium HTCC2207, and surface adhesion genes in 

HTCC2207 and MS024-2A. The metatranscriptomic data therefore suggests that the diverse 

assemblage of coastal bacterioplankton is maintained, at least in part, by the presence of 

previously unrecognized niche dimensions.  
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Another resolution to the apparent paradox would be if functional activities of 

bacterioplankton taxa can indeed stably overlap (Hutchinson 1961), characterized by situations 

in which competitive exclusion is not the major ecological force driving community 

composition. For example, competitive exclusion may be less important if the time scale of 

substrate availability is short compared to the growth rate of the competing cells; or if top-down 

controls by viral or protist predators increase mortality rates among the best competitors (the 

"kill the winner hypothesis"; Suttle, 2007). We suspected that release from competitive exclusion 

would most likely occur in the case of fast-growing ‘opportunitrophs’ if they grow primarily at 

the expense of short-term fluxes of labile substrates (Moran et al., 2004). Using the % RP proxy 

for in situ growth rate to identify oligotrophic (slow-growing) versus opportunitrophic (fast-

growing) taxa, we observed a higher degree of transcriptome specialization in slow-growing 

taxa, consistent with a narrower niche. In contrast, rapidly growing taxa exhibited higher 

transcriptome evenness and more diverse substrate uptake and metabolism, consistent with a 

generalist strategy in which many taxa are able to exist on the same resources given that the time 

frame for complete competitive exclusion is greater than that for substrate availability.  

While genome sequences of cultured bacteria and metagenomes of bacterioplankton 

communities can address niche differentiation based on gene content (Rocap et al., 2003), 

metatranscriptomics adds the additional ecological dimension of gene expression patterns under 

shared environmental conditions. For example, a gene upregulated in one genome under existing 

environmental conditions but not in another may represent a key niche dimension that would not 

be evident from gene inventories alone. Our examination of in situ gene expression patterns is 

based on four combined seasonal samples from southeastern coastal waters, providing a robust, 

time-averaged view of microbial activities that is not biased by any particular environmental 
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condition. Future work will extend the insights gained here to examine temporal variability in 

gene expression and seasonal dynamics of niche defining biogeochemical activities.  
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Table 4.1. Taxonomic binning of coastal metatranscriptomic reads based on the highest scoring 
pair from the BLASTx search against RefSeq. Results are for all four seasonal datasets 
combined. Taxa bins= number of different taxa the hits binned to for a given group.  Rank= 
Rank abundance of a bin based on the total number of reads recruited. AA%ID = Mean percent 
amino acid identity of reads to genes in the reference genome. Ribosomal proteins = Total 
number of reads annotated as ribosomal proteins in a given bin.  
 
  



taxa 
bins  hits    rank 

mean 
AA%ID

ribosomal 
proteins

Total 3,902 4,151,833       218,198

Alphaproteobacteria 249 1,745,196       70,882         
Roseobacter 38 536,207            24,429           

Roseobacter sp. AzwK-3b 37,682              13 77 870                
Rhodobacterales bacterium HTCC2083 30,145              19 78 1,046             

Silicibacter lacuscaerulensis ITI-1157 28,146              23 80 2,523             
Roseobacter litoralis Och 149 26,533              24 78 472                

Citreicella sp. SE45 26,233              25 78 2,424             x
SAR11 3 383,928            8,500             

Candidatus Pelagibacter sp. HTCC7211 253,217            2 84 7,414             
Candidatus Pelagibacter ubique HTCC1002 88,822              3 80 300                
Candidatus Pelagibacter ubique HTCC1062 41,889              11 80 786                

Misc.Alphas 208 825,061            37,953           
Candidatus Puniceispirillum marinum IMCC1322 259,512            1 76 18,059           

alpha proteobacterium BAL199 57,261              7 71 1,680             
alpha proteobacterium HIMB114 50,735              9 80 698                

Labrenzia alexandrii DFL-11 15,151              41 73 160                
Hoeflea phototrophica DFL-43 13,699              46 75 233                

Gammaproteobacteria 592 855,576          68,776         
marine gamma proteobacterium HTCC2080 80,293              4 74 4,716             

gamma proteobacterium NOR51-B 51,404              8 74 6,161             
marine gamma proteobacterium HTCC2207 41,755              12 77 2,065             
marine gamma proteobacterium HTCC2143 35,745              15 71 1,376             
marine gamma proteobacterium HTCC2148 33,634              17 72 2,460             

Betaproteobacteria 173 247,164          11,282         
beta proteobacterium KB13 36,854              14 85 1,395             

Methylophilales bacterium HTCC2181 29,347              20 75 987                
Methylotenera sp. 301 6,031                135 74 325                

Methylovorus sp. SIP3-4 5,467                147 73 407                
Methylibium petroleiphilum PM1 5,039                155 72 71                  

Bacteriodetes* 131 375,382          24,681         
Flavobacteria bacterium MS024-2A 43,539              10 76 2,004             
Flavobacteria bacterium MS024-3C 23,785              27 84 1,113             

Zunongwangia profunda SM-A87 12,861              53 73 1,419             
Robiginitalea biformata HTCC2501 12,220              54 73 895                

Kordia algicida OT-1 11,293              62 73 1,098             

Verrucomicrobia 9 110,647          8,638           
Coraliomargarita akajimensis DSM 45221 29,145              21 69 3,718             

Pedosphaera parvula Ellin514 25,411              26 68 1,765             
Verrucomicrobiae bacterium DG1235 18,498              33 69 1,002             

Opitutus terrae PB90-1 9,551                85 68 615                
Chthoniobacter flavus Ellin428 8,589                96 68 346                

Cyanobacteria 60 71,618            2,643           
Synechococcus sp. WH 8109 11,218              64 93 563                
Synechococcus sp. CC9605 4,139                183 90 171                

Cyanobium sp. PCC 7001 4,067                186 82 245                
Synechococcus sp. RS9916 3,813                202 86 172                

Synechococcus sp. RCC307 3,795                206 89 181                

Archaea 103 91,028            4,028           
Nitrosopumilus maritimus SCM1 67,890              5 86 2,162             

Cenarchaeum symbiosum A 3,485                224 77 27                  
Sulfolobus tokodaii str. 7 2,956                246 65 8                    

Aciduliprofundum boonei T469 964                    566 65 253                
Pyrococcus furiosus DSM 3638 687                    695 67 10                  

Eukaryota 150 147,364          4,402           
Micromonas sp. RCC299 33,680              16 83 1,021             

Ostreococcus lucimarinus CCE9901 13,569              47 77 704                
Floydiella terrestris 11,055              67 86 6                    
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Table 4.2. Summary statistics for transcripts binning to select 16 genomes. 

taxonomic affiliation1 genome2 bin size3 

orth
olog 
(%)4  

genes 
hit (%)5   

mean 
hits per 

gene6 RP%7
top 
%8

Alpha, SAR116 Candidatus Puniceispirillum marinum IMCC1322 2,543       34 (84) 121 7.0 17
Alpha alpha proteobacterium BAL199 6,128       14 (41) 23 2.9 34
Alpha, Roseobacter Roseobacter AzwK-3b 4,145       21 (45) 20 2.3 42
Alpha, Roseobacter Citreicella sp. SE45 5,427       15 (34) 14 9.2 24
Alpha, Rickettsiales, SAR11 Candidatus Pelagibacter sp. HTCC7211 1,447       53 (91) 193 2.9 38
Alpha, Rickettsiales, SAR11 Candidatus Pelagibacter ubique HTCC1002 1,393       56 (61) 106 0.3 64
Alpha, Rickettsiales, SAR11 Candidatus Pelagibacter ubique HTCC1062 1,354       57 (66) 47 1.9 43
Alpha, Rickettsiales, SAR11 alpha proteobacterium HIMB114 1,425       54 (75) 48 1.4 55
Gamma marine gamma proteobacterium HTCC2080 3,185       25 (84) 30 5.9 10
Gamma gamma proteobacterium NOR51-B 2,930       28 (67) 26 12.0 12
Gamma marine gamma proteobacterium HTCC2207 2,388       33 (81) 22 4.9 26
Beta Betaproteobacterium KB13 1,318       53 (84) 33 3.8 58
Bacteriodetes Flavobacteria MS024-2A 1,772       33 (87) 28 4.6 24
Verrucomicrobia Pedosphaera parvula  Ellin514 6,510       10 (28) 14 6.9 16
Cyanobacteria Synechococcus WH 8109 2,577       24 (61) 7 5.0 10
Crenarchaeota Nitrosopumilus maritimus SCM1 1,797       19 (73) 52 3.1 45

7top%: The percentage the top 10 transcript recruiting genes made up of all hits to the 
reference genome. 

6RP%: The proportion of reads binning to a reference genome that were annotated as 
ribosomal proteins. 

5Mean hits: Average number of hits per gene. 

4Genes hit: The number of genes hit in the reference genome. The percentage of these 
genes in the genome is in brackets. 

3Ortholog Conc.: Percentage of genes in the reference genome with 8 or more orthologs in 
the other 15 genomes. 

2Bin size: Total number of genes in reference genome

1Taxonomic affiliation: Phylogenetic lineage of reference genome. Alpha = 
Alphaproteobacteria; Gamma = Gammaproteobacteria; 
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Figure 4.1. Ribosomal protein hits versus non-ribosomal protein hits for the 1,500 bacterial taxa 
with ≥100 hits. Reference bins with ribosomal proteins composing >20% of all hits are marked 
in green, and bins with <1% are marked in red. The blue line is the linear regression modeled 
from the log transformed values.  
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Figure 4.2. Relative abundance of ribosomal protein reads in the top 200 reference genomes 
(eukaryotic hits are not included). A) Distribution of reference genomes in rank order by the 
average percent ribosomal protein reads composed of all hits to a reference genome in the four 
seasonal datasets combined. B) Same as in A, except the four seasonal samples are plotted 
separately. C) Temporal trends in the proportion of ribosomal proteins for the four seasonal 
samples arranged by phylogenetic groupings. Fa = Fall, Wi = Winter,Sp = Spring, Su = Summer; 
Gamma. = Gammaproteobacteria, Bacterio. = Bacteriodetes, Beta. = Betaproteobacteria, Roseo. 
= Roseobacter, Vero. = Verrucomicrobia, Misc. = Miscellaneous. 
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Figure 4.3. Transcriptome of SAR116 clade member Candidatus Puniceispirillum marinum 
IMCC1322. The outer colored ring shows all 2,543 genes found in the IMCC1322 genome, with 
each   gene’s color corresponding to the total number of RefSeq hits binned to it in the combined 
metatranscriptome.  The inner colored rings denote the presence of orthologs to an IMC1322 
gene in the other 15 genomes.   
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Figure 4.4. Transcriptomes of Roseobacter Azwk-3B, SAR11 clade member Candidatus Pelagibacter sp. 
HTCC7211, Gammaproteobacterium sp. HTCC2080, and Flavobacter MS024-2A. The transcriptomes are 
colored as in Figure 4.3.  
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Figure 4.5. Gene expression as a function of orthologous relationships. The distribution of read 
counts for all genes in a reference genome is plotted against the number of orthologs a gene had 
in the other 15 genomes. The y-axis is read count, the magnitude of which varies by genome, and 
is not shown for simplicity. Notches in the bars indicate the median, the length of the bar is the 
interquartile range (IQR), and the dashed lines represent 1.5 times the IQR or the max or min 
value.  
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Figure 4.6 Genome differentiation based on expression patterns of functional genes. A) Non-
metric Multidimension Scaling (NMDS) plot of the 15 bacterial genomes (N. maritimus SCM1 
not included) based on expression within ortholog groups. The NMDS was run with six 
dimensions. Only dimensions 1 and 2, which combined explained 61% of the variance, are 
shown here. Axis units are arbitrary and not shown for simplicity. B) The same NDMS plot 
shown in A, except the weighted averages of the ortholog groups are plotted instead of the 
genome scores. The size of the circle is relative to the number of genomes in the group. Ortholog 
groups that contained an indicator gene identified in the ISA analysis are colored corresponding 
to the genome that the gene was indicative of. C) Functional categories whose expression was 
indicative of a taxon.  
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Figure 4.S1 Relationship between total hit count and the number of ribosomal genes covered in 
reference genomes. The number of ribosomal proteins in a genome varies, but averages around 
54. Alpha proteobacterium HTCC2255 and  Psychroflexus torquis ATCC 700755 had hits to 90 
and 81 RP genes, respectively, which is due to the presence of contaminating sequences in these 
genomes.  
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Figure 4.S2 P-values for Wilcoxon rank sum test of the differences in read counts between genes 
with 15 orthologs and genes with 0-14 orthologs. The red line marks a p-value of 0.05, below 
which any points are considered statistically significant. The Bonferroni corrected p value for 
multiple hypothesis testing is marked as the green line. 
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Figure 4.S3 Non-metric Multidimension Scaling (NMDS) plot of select 15 genomes (N. 
maritimus SCM1 not included) based on the presence or absence of genomes in ortholog groups. 
Six dimensions were included in the NDMS; A) shows dimensions one and two, while B) shows 
dimensions 2 and 3.  
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CHAPTER 5 

SUMMARY 

 

 In the thirty plus years since the publication of Pomeroy’s seminal work (1974) 

indicating the importance of bacteria to marine ecosystems, marine ecologists have strived to 

understand how bacterial processes alter the environment, and in turn, how the environment 

structures bacterioplankton composition and function. As we move into a ‘post-genomics’ era 

and extend our insights beyond cataloging taxa and gene data, the ability to identify expressed 

functional capabilities and their regulation under differing environmental conditions is 

increasingly important. Building upon the foundational studies of Poretskey et al. (2005, 2009, 

2010), this dissertation used metatranscriptomic analyses to obtain insights into the ecology and 

biogeochemistry of coastal ecosystems by identifying active microbes and their realized 

functional capabilities.  

 Cross comparisons of samples collected at different times or locations, or under different 

experimental conditions, is an important process for generating and testing hypotheses. 

Metatranscriptomics has the potential to be a powerful tool to make such comparisons in 

microbial systems, but has been hampered by a poor understanding of how deeply samples are 

sequenced and the inability to directly compare absolute numbers of transcripts; that is, analyses 

typically have been limited to comparisons of proportions between samples. Furthermore, the 

biogeochemical value of expression data is greatly reduced if it is measured in units that do not 

allow for direct comparisons with other environmental parameters (rates, concentrations, etc.). 
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The addition of an internal standard to samples collected from coastal waters of the southeastern 

U.S. allowed us to make metatranscriptomics more quantitative by converting read counts into 

transcripts per L. The standard accounts for differences in the mRNA pool size between samples, 

as well as any processing and sequencing losses, allowing for direct comparisons between 

samples. Using an internal standard we estimated there were 1012 microbial transcripts L-1 of 

coastal seawater, which agreed well with theoretical estimates based on cell abundance and RNA 

mass. By determining the size of the transcript pool, we were able to estimate how deeply it was 

sampled during sequencing. Although this was a large library relative to most previous 

metatranscriptome studies (~1 million protein encoding reads), it contained only ~0.00001% of 

the mRNAs in each sample. Even given this low coverage, we gained insights into the active 

microbial populations in this system and their expressed functional capabilities. Transcript 

abundances for 82 genes diagnostic of the marine N, P and S cycles ranged from 106 (the 

detection limit in our study) to 109 L-1. The majority of genes had transcript abundances of <1.5 

x 107  L-1, the level at which our analysis of statistical power revealed they would need a twofold 

difference in abundance between samples to be statistically different.  

  The most abundant transcripts in the samples (>109 transcripts L-1) were for genes 

encoding the transport and oxidation of ammonia, the vast majority of which originated from an 

organism with high similarity to the Thaumarchaeota Nitrosopumulis maritimus SCM1. Indeed, 

a survey of the metatranscriptome revealed over 16,000 SCM1 hits (>3% of annotated reads) that 

covered 44% of its genome. This analysis demonstrated the utility of metatranscriptomics to 

detect unexpected microbial populations and determine their biogeochemical influence. Based on 

this information, we quantified archaeal 16S rRNA and ammonia oxidation genes over a one 

year period in our coastal marine study site, and found the increase in abundance to be a unique 
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seasonal feature of the summer samples. In addition to ammonia related genes, we were able to 

examine the abundance and sequence diversity of SCM1 transcripts for carbon fixation proteins, 

reactive oxygen species stress proteins, and many iron-sulfur and copper containing proteins. 

The high expression of several hypothetical proteins indicates they are ideal targets for future 

studies targeting SCM1 genes of environmental importance. In contrast to SCM1, transcripts for 

ammonia oxidizing bacteria were in relatively low abundance (<0.4% of annotated reads), with 

no transcripts detected for ammonia oxidation or carbon fixation. Overall, the results provided 

insights into the temporal variation of ammonia oxidizing microbes and their activities.  

  The N. maritimus study demonstrated that members of the same functional guild can have 

different responses in the same environment, providing insights into how the niche space is 

divided between microbial groups. We next examined how such niche diversification occurs 

within the broader community, a particularly important question since genome and metagenome 

studies have begun to indicate extensive overlap in functional potential between even very 

distantly related microbial taxa. One way that taxa with similar functional capabilities may differ 

is in the amount of transcriptional effort devoted to growth. Using the more than 200,000 

ribosomal proteins sequenced in the metatranscriptomes as a proxy for relative growth rate, we 

detected clear differences in activity, with members of the Gammaproteobacteria and 

Bacteroidetes highly active and members of SAR11 clade the least active. In contrast, an 

examination of the most highly expressed functional genes among these populations showed 

them to have extensive overlap, even among distantly related taxa. This was reflected in a strong 

positive relationship between expression level and functional redundancy (as measured by the 

number of orthologs a gene had in the other 15 genomes). By examining genes that were outliers 

for expression level within an ortholog group, we were able to identify genes indicative of niche 
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specialization. This included genes for the uptake and metabolism of a variety of substrates, 

strategies for energy generation, and capabilities for physical interactions with other organisms 

or particles in the environment. These results shed light on the different genetic and regulatory 

tactics that allows for the active coexistence of so many microbial taxa in the marine plankton. 
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1Gifford, S.M., Satinsky, B., and Moran, M.A.  Submitted to Methods in Molecular Biology: 
Environmental Microbiology (2nd Ed.).  
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Abstract 

 The direct retrieval and sequencing of environmental RNA is emerging as a powerful 

technique to elucidate the in situ activities of microbial communities. Here we provide a 

metatranscriptomic protocol describing environmental sample collection, rRNA depletion, 

mRNA amplification, cDNA synthesis, and bioinformatic analysis.  In addition, the preparation 

of internal RNA standards and their addition to the sample is described, providing a method by 

which transcript numbers can be expressed as absolute abundances in the environment and more 

readily compared to other biogeochemical and ecological measurements.  

 
Introduction 

 Advances in molecular techniques have revolutionized the field of microbial ecology, 

particularly in revealing the extraordinary phylogenetic and functional diversity contained within 

microbial communities. A major contemporary challenge is identifying which components of 

this complex functional gene pool are actively being expressed and how that expression varies 

over time and space. The direct collection and sequencing of RNA from the environment (termed 

metatranscriptomics) fulfills this need by providing a measure of a community’s instantaneous 

transcriptional response to its surrounding environment. The development of this method in 

parallel with advances in next generation sequencing technologies have made 

metatranscriptomics a powerful approach for analyzing in situ microbial expression in a wide 

variety of habitats. 

 The metatranscriptomics approach was first described by Porestky et al. (2005), and 

while there have been several modifications since then, it consists largely of the same modules. 

Cellular biomass is rapidly collected from the environment in a manner that disturbs ambient 

conditions as little as possible. RNA is extracted from the samples and treated with DNase to 



140 

remove any residual DNA (Fig. A.1). As ribosomal RNA (rRNA) makes up the majority of total 

cellular RNA, steps are taken to decrease rRNA abundance in order to increase the yield of 

protein-encoding sequences in the resulting libraries.  Partially due to rRNA reduction, there is a 

significant decrease in total RNA mass and the sample is linearly amplified to produce sufficient 

material for sequencing. Finally, the amplified RNA (aRNA) is converted to double stranded 

cDNA, which can be sequenced through a variety of methods (Sanger, 454 pyrosequencing, 

Illumina, etc.). Using this approach, Poretsky et al. (2005, 2009, 2010) and others (Frias-Lopez 

et al., 2008; Gilbert et al., 2008; Urich et al., 2008; Shi et al., 2009; Hewson et al., 2009) were 

able to successfully characterize metatranscriptomes from a variety of environments.  

 The most significant methodological challenge for metatranscriptomics has been efficient 

removal of rRNA. Poretsky et al. (2005, 2009, 2010) used a dual removal approach based on two 

commercially available kits.  In the first round, rRNA is enzymatically digested by an 

exonuclease that targets the 5’ monophosphates found on rRNA, leaving mRNAs, which have a 

5’ triphosphate, intact. In the second round, biotinylated probes are hybridized to the rRNA and 

are bound to streptavidin coated magnetic beads, allowing for physical separation via a magnetic 

stand. Typically, this dual approach removes ~50% of contaminating rRNA (see chapter 2 and 

Poretsky et al., 2009), although concern has been raised that the first round may cause bias in the 

resulting transcript library (He et al., 2010). More recently, Stewart et al. (2010) improved rRNA 

removal efficiency by using only the second (hybridization based) approach but creating custom 

hybridization probes to target the rRNAs in each individual sample. This method has been shown 

to decrease the proportion of rRNA reads to 10 to 30% of total sequences (Stewart et al., 2010; 

A. Rivers and B. Satinsky, unpublished data). 
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  A second challenge has been the interpretation of transcript abundances, which have 

traditionally been measured only as relative proportions within a sample (see chapter 2). The 

ability to make quantitative interpretations, including cross sample comparisons, is limited when 

only proportional data is available. For example, a change in the abundance of one transcript 

category in a metatranscriptome causes the other categories’ proportional representations to 

change also, even if the absolute abundance of those other types remains constant. This 

limitation can be overcome by the addition of a standard (an artificial mRNA) just prior to 

starting the sample extraction (chapter 2). Since both the amount of standard added and the 

amount of standard recovered is known, one can calculate the depth of sequencing and absolute 

copy number of a transcript category in a more ecologically relevant unit, such as copies volume 

-1 or copies mass-1. 

 Here we present an updated version of the Poretsky et al. (2005) protocol, using the 

custom subtractive hybridization protocol developed by Stewart et al. (2010) for rRNA removal 

and the addition of internal standards to obtain absolute copy numbers in the environment from 

chapter 2. The method takes advantage of several commercial kits, and the reader should 

thoroughly familiarize him/herself with each kit’s manual. A number of steps use spin cartridges 

for purification, which efficiently capture mRNA sized fragments (>200 nt), but small RNAs, 

including many regulatory RNAs, are likely not retained. Quantification is carried out 

spectrophotometrically (e.g., Nanodrop spectrophotometer) or with a fluorescence assay (e.g., 

PicoGreen for DNA and RiboGreen for RNA). Nucleic acid size distributions are visualized with 

an Agilent Bioanalyzer or Experion automated gel electrophoresis system. 

 RNAs have short half lives and are quickly degraded by ubiquitous RNAses. Wearing 

gloves, working in a clean lab space such as a PCR hood with a UV lamp, and being sure to 
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clean all pipettes and surfaces with an RNase degrading solution (ex: RNaseZap, Ambion) 

improve success rates.  When not actively working with the RNA sample, it should be kept either 

on ice or frozen at -80°C. Only plastic wear that has been certified as nuclease free should be 

used. ART barrier tips are recommend for pipetting.  

 
1. Environmental Collection 
 
 While a variety of methods can be used to collect biomass for RNA extraction, important 

points to consider are that the sample is collected as quickly as possible to prevent turnover of 

the mRNA pool and to keep the sampling conditions as close to ambient as possible to reduce 

transcriptional response to changes during collection. The sample should be preserved 

immediately after collection, either by snap freezing in liquid N2 or by addition of an appropriate 

preservative. For optimal downstream processing, attempt to collect enough biomass to yield 5-

20 µg of total RNA. Here we describe a collection method for aquatic environments.   

 
Materials: 

Peristaltic or vacuum pump  
Tubing (preferably acid washed)  
Pre-filter (if desired, for example a 3 µm pore-size) and collection filter (typically 0.22 
µm pore size; we recommend Supor (Pall, Port Washington, NY))  
Filter housings  
Liquid nitrogen or RNALater (Applied Biosystems, Austin, TX)  
Graduated 10 or 20 L carboy  
Sterile forceps  
Whirl-Pak® bags (Nasco, Fort Atkinson, WI)  

 
1.1 Setup the filtration system consisting of tubing, pre-filter (optional), 0.22 µm filter, and a 

graduated carboy (Fig. A.2).   

1.2 Place one end of the tubing in the water and draw water through the filter system, 

measuring the volume filtered by its accumulation in the collection carboy. The 

appropriate volume to filter will depend on the environmental cell concentration. For 
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coastal or limnological samples, 5-10 L is often sufficient. Oligotrophic samples may 

require higher volumes.  Total collection times should be kept as short as possible, 

optimally finishing the collection in 5 to 10 min, and no longer than 30 min. 

1.3 After the desired volume has been filtered, allow any water remaining in the line to pass 

through the filters. For optimal RNA yield, the surface of the filter should be nearly dry.  

1.4 Fold the 0.22 µm filter and place into a Whirl-Pak® bag. Remove any air from the Whirl-

Pak® by squeezing it out with your gloved fingers. Place the Whirl-Pak® into a liquid 

N2 dewar. Alternatively, preserve the filter by submerging it in a tube containing 10 ml 

RNAlater. 

1.5 Repeat the process to collect an additional filter to be used for the DNA extraction; this is 

needed for the custom probe rRNA reduction protocol (Stewart et al., 2010). 

 
2. Internal Standard Synthesis 
 
 Construction of the internal RNA standards is done by in vitro transcription of DNA 

templates; these can be either commercially available plasmids (such as is commonly used for 

cloning) or synthesized DNA that is inserted into a plasmid. The use of a template that is already 

part of commercially available plasmids is attractive for its ease of use and low cost (see chapter 

2). However, these plasmids make size customization difficult and often contain regions of 

homology to functional proteins. An alternative approach is to create a custom sequence, which 

is then synthesized and inserted into a plasmid, providing optimal control over sequence length 

and composition. For either approach, the final plasmid should contain the following components 

(in order): an RNA polymerase promoter sequence, the internal standard sequence, and a 

restriction site (targeting a unique site in the vector and preferably producing a blunt end). 

Candidate internal standard sequences should be compared to relevant databases to identify any 
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regions of homology that could interfere with unambiguous identification of the added standard 

in the sequence library.  Multiple standards of different length and sequence composition should 

be designed. The addition of multiple standards to the sample helps to control for pipetting errors 

and size selection biases that may decrease the accuracy of the final quantification estimate. The 

appropriate amount of internal standard added to a sample would ideally be based on the 

expected total RNA mass yield. An addition of 0.5% proportion of internal standard mass to 

expected sample mass of RNA is appropriate for next generation sequencing. Here we provide a 

general outline of a protocol starting with a custom designed standard. For standard construction 

using commercially available plasmids see chapter 2.  

 
Materials: 

Plasmid containing internal standard sequence 
RNA polymerase and buffers 
100% Ethanol 
Cloning system 
Restriction enzyme and buffers  
miniPrep plasmid extraction kit 

 
In vitro transcription of standard containing plasmid 
 

2.1 Amplify the plasmid containing the internal standard sequence by cloning it into 

Escherichia coli or other appropriate vector.  

2.2 Purify the amplified plasmid with a miniPrep kit.  

2.3 Linearize the plasmid with the restriction enzyme targeting the restriction site at the end 

of the template sequence. If sticky ends were generated remove with mung bean nuclease.  

2.4 Purify the linearized plasmid with a phenol:chloroformisoamyl alcohol extraction.  

2.5 In vitro transcribe the plasmid with an RNA polymerase matching the template promoter.  

2.6 Degrade the plasmid DNA using DNase. 

2.7 Purify the RNA standard with a phenol:chloroformisoamyl alcohol extraction.  
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2.8 Quantify the RNA standard fluorometrically with Ribogreen, and confirm the standard is 

a single fragment of expected size using an Experion or Agilent electrophoresis system.   

 
3. RNA extraction  
 
 Many different methods are available for RNA extraction depending upon the 

environment of interest (aquatic, terrestrial, tissue, etc.) Here, we describe a modified approach 

based on Qiagen’s RNeasy kit.  

Materials: 
Vortex station with 50 ml tube adapter (MO BIO Laboratories, Carlsbad, CA) 
Rubber mallet and scissors  
50 and 15 ml Falcon tubes 
RNeasy RNA extraction kit (Qiagen, Valencia, CA) 
Extra RLT buffer (Qiagen, Valencia, CA) 
β-mercaptoethanol 
30 ml syringe and 18-21 gauge needles 
Centrifuge for both large (50 and 15 ml) and small (1.5 ml) tubes  
100% molecular grade ethanol  
Vacuum manifold  
0.2 mm low-binding zirconium beads (OPS Diagnostics, Lebanon, NJ). Sterilized by 
heating at 500 °C overnight in a combustion oven.  

 

3.1   Prepare a 50 ml Falcon tube with 8 ml RLT buffer (β-mercaptoethanol added) and 2 ml 

beads. 

3.2   Add the internal RNA standards to each Falcon tube. Each standard should be added 

independently (i.e. not as a pooled master mix) so that pipetting errors will be included 

in variance estimates.  

3.1 Remove the filter from liquid nitrogen or -80 °C storage, break up to expose the most 

filter surface, and add to the Falcon tube. Many filters are brittle when frozen and can be 

easily shattered with a mallet. Alternatively, the filters can be cut up with sterilized 

scissors. After adding the filter to the Falcon tube, cap tightly and seal with parafilm. If 
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the samples were preserved using RNALater, the filters should be removed from the 

RNALater solution and any excess RNALater allowed to drip off the filter by gently 

squeezing with sterile forceps. The filter should then placed into a Whirl-Pak bag, snap 

frozen in liquid nitrogen, and processed as described above.  

3.3 Place the Flacon tubes on a vortex adapter and vortex at maximum speed for 10 min.  

3.4 Centrifuge at 5000 rpm for 1 min.  

3.5 Using a 1000 µl pipette, transfer the liquid to a clean 15 ml Falcon tube. Ideally, 80-90% 

of the original volume should be recovered.  

3.6 Centrifuge at 5000 rpm for 5 min.  

3.7 Gently pour the supernatant into a clean 50 ml Falcon tube, being careful not to disturb 

the pellet. At this point, the supernatant should be free of all beads and filter material.  

3.8 Add 1X volume of 100% ethanol.  

3.9 Shear the sample by drawing the ethanol-lysis mixture up into the 30 ml syringe with an 

18 to 21 gauge needle and then expel.  Repeat three times, then draw up the solution and 

keep it in the 30 ml syringe.  

3.10  Place an RNeasy spin cartridge on the vacuum manifold. Turn on the vacuum and 

slowly expel the lysis mixture from the syringe into the cartridge. Depending on how 

much biomass was on the original filter, it may take several minutes to pass all of the 

lysate through the column. (If a vacuum manifold is unavailable, the lysate can be 

passed through the spin column using multiple centrifugations). After all the lysate has 

been filtered, remove the column from the manifold, placing it back in the collection 

tube, and centrifuge at 11,000 rpm for 1 min to remove any residual lysate solution.  
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3.11 Continue by following the standard RNeasy protocol as described in the kit manual. 

Briefly, wash once with 700 µl RW1, and twice with 500 µl RPE. Conduct a final 

centrifugation to remove any residual solutions. Place in a new collection tube and elute 

with two separate aliquots of 50 µl RNase free water. Place on ice.  

3.12 Quantify the RNA yield with either a Nanodrop spectrophotometer or RiboGreen-based 

fluorometric technique.  

 

This is a potential stopping point. The eluted RNA can be frozen at -80°C. However, it is a good 

idea to keep the number of freeze/thaws to a minimum to reduce RNA degradation, so if possible 

continue on with the DNA removal step.  

 

4. Removal of Residual DNA 

 A double treatment with TurboDNase is highly effective in digesting contaminant DNA 

in the RNA preparation. Note, for this and all other air incubations, place the tube(s) in a rack 

that allows ample air movement around the tube. For many of the reactions, it is important that 

temperature is uniform around the tube.  

Materials: 
Turbo DNA-free (Applied Biosystems, Austin, TX)  
Centrifuge  
Incubator  

 

4.1 The sample should be in 90 µl of nuclease-free water. 

4.2 Add 10 µl DNase buffer and 3 µl TurboDNase. 

4.3 Incubate at 37°C for 20 min in an incubator.  

4.4 Remove the mixture from the incubator and add an additional 3 µl of TurboDNase. 
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4.5 Return to the incubator for another 20 min.  

4.6 Add 20 µl inactivation reagent and incubate at room temperature for 2 min, vortexing 

every 20 or 30 seconds.  

4.7 Centrifuge at max rpm (typically 14,000 rpm) for 1 min.  

4.8 Being careful not to disturb the inactivation reagent at the bottom of the tube, transfer the 

supernatant (~90 to 100 µl) to a new tube and place on ice.  

This is a potential stopping point. Store the sample at -80°C 

 

5.  Ribosomal RNA Reduction  

 Here we provide a brief overview of the custom rRNA depletion protocol and direct the 

reader to the original description by Stewart et al. (2010) for specific details. This method uses 

universal primers to PCR amplify rRNA genes from a DNA sample collected in parallel with the 

RNA samples (the DNA filter must be extracted prior to starting the rRNA subtraction protocol). 

Several independent amplifications are carried out, depending on the rRNA targeted for removal 

(i.e. 16S/23S Bacteria, 16S/23S Archaea, 18S/28S Eukaryotes). The universal primers are 

modified to incorporate a T7 promoter into the PCR products. The PCR amplified rDNA 

templates are then transcribed in vitro to make anti-sense rRNA probes containing biotinylated 

nucleotides. The probes are hybridized to the sample rRNA, bound to streptavidin magnetic 

beads, and physically separated from the rest of the sample via a magnetic stand.  

 

Materials: 
T7 modified PCR primers (see Stewart et al. 2010 for primer design) 
Herculase II Fusion Polymerase (Agilent Technologies, Santa Clara, CA)  
QIAquick PCR purification kit (Qiagen, Valencia, CA) 
MEGAscript Transcription Kit (Applied Biosystems, Austin, TX) 
MEGAclear Kit (Applied Biosystems, Austin, TX) 
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Biotin-11-CTP (10mM) (Roche Applied Science, Indianapolis, IN) 
Biotin-16-UTP (10mM) (Roche Applied Science, Indianapolis, IN) 
SUPERase•In RNase Inhibitor (Applied Biosystems, Austin, TX) 
RNeasy MinElute Cleanup Kit (Qiagen, Valencia, CA) 
Streptavidin-coated Magnetic Beads (New England Biolabs, Ipswich, MA) 
20X Sodium Chloride-Citrate (SSC) Buffer (RNase-free) (Applied Biosystems, Austin, 
TX) 
DynaMag Spin Magnet (Invitrogen, Carlsbad, CA) 
Formamide (100%) 
0.1M NaOH (nuclease-free) 

 

5.1 PCR Amplification of rRNA Genes 

5.1.1    For each rRNA gene amplification (16S Bacterial, 23S Bacterial, 16S Archaeal, 23S 

Archaeal, 18S Eukaryotic, and 28S Eukaryotic), prepare 4-5 individual 50 µL PCR 

reactions in 0.2 mL tubes on ice. For each reaction combine 5 to 100 ng template 

DNA, 10 µL Herculase 5X Buffer, 0.5 µL dNTP (100 mM), 1.25 µL forward primer 

(10 µM), 1.25 µL reverse primer (10 µM), 1 µL Herculase II Fusion Polymerase, and 

nuclease-free water to 50 µL reaction volume. Mix samples and briefly centrifuge. 

5.1.2 Place the reactions in a thermal cycler and run with one of the two following 

protocols. For all targets other than Bacterial 23S, denature at 92°C for 2 min, run 35 

to 40 cycles 95°C for 20 s, 55°C for 20 s, 72°C for 2 min, and end with a final 

extension at 72°C for 3 min. For  Bacterial 23S targets, denature at 92°C for 2 min, 

run 35 to 40 cycles of 95°C for 20 s, 39°C for 20 s, 72°C for 90 s, and end with a 

final extension at 72°C for 3 min. 

5.1.3 Pool the replicate 50 µL reactions into a single microcentrifuge tube.  

5.1.4 Clean up the reactions using a QIAquick PCR purification kit, eluting in 30 to 50 µL 

of elution buffer (EB). 
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5.1.5 Quantify the PCR products with Nanodrop spectrophotometer or PicoGreen-based 

fluorometric method. It is critical to obtain 250 to 500 ng µL-1 of pooled PCR 

products before proceeding to the in vitro transcription. The PCR  products should 

also be run on a gel to confirm the correct product amplification 

5.2 Biotin-labeled Anti-sense RNA Probe Creation  

Anti-sense rRNA probes are synthesized via in vitro transcription with T7 RNA polymerase 

using the MEGAscript High Yield Transcription kit. Prepare separate 20 µl reactions for 

each rRNA probe type (16S, 18S, etc.). In vitro transcription reaction volumes can be 

doubled to increase yield if necessary.  

5.2.1 For each rRNA gene product (16S, 18S, etc.), combine the following in order in a 0.2 

mL PCR tube:  1 µL PCR amplicons (250-500 ng) from previous amplification, 2 µL 

ATP (75mM), 2 µL GTP (75 mM), 1.5 µL CTP (75 mM), 1.5 µL UTP (75 mM), 3.75 

µL Biotin-11-CTP (10 mM), 3.75 µL Biotin-16-UTP (10 mM), 2 µL 10X buffer, 0.5 

µL RNase Inhibitor (Ambion), 2 µL T7 polymerase. 

5.2.2 Incubate in a thermal cycler at 37°C overnight (heated lid set to 105°C).  

5.2.3 Add 1 µL DNase I to each reaction and incubate for 30 min at 37°C in a thermal 

cycler. 

5.2.4 Clean up the reaction with a MEGAclear kit, eluting in 50 µL of elution buffer. 

5.2.5 Quantify probe concentration using either a Nanodrop spectrophotometer or 

RiboGreen-based fluorescence method. A good transcription will result in >50 to 75 

fold increase over the input DNA mass. 
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5.3 Subtractive Hybridization  

5.3.1 Determine the input quantities of sample RNA template and biotinylated-rRNA 

probes. Ideally, 250 to 500 ng of sample RNA (i.e. the original RNA pool containing 

mRNA and rRNA) will be used in the rRNA reduction processes. However, 

subtraction can be successfully conducted using lower template quantities if 

necessary. Each individual probe should be added at a probe:template ratio of 2:1. For 

example, if 500 ng of sample RNA is added to the reaction, then 1000 ng of each 

unique probe should be added to the same reaction. The final total RNA (sample + 

rRNA probes) in the depletion reaction is calculated as:  

(sample RNA mass)  +  [ (number unique rRNA probes) X (2 X sample RNA mass) ]  

5.3.2 Calculate the volume of streptavidin bead suspension required and prepare by 

washing.  A volume of 100 µL of streptavidin beads can be used with up to 2,000 ng 

total RNA (rRNA probes  + RNA sample). Based on the total RNA calculated in 

5.3.1, add the appropriate volume of streptavidin beads needed into a 1.5 ml tube. 

Place the tube in a magnetic stand and let sit for 3 min. Discard the supernatant. 

Remove the tube from the stand and resuspend the beads in an equal volume of 0.1M 

NaOH. Place back on the stand, bind the beads, and discard the supernatant. Remove 

from the stand and add an equal volume of 1X SSC buffer to the beads, mixing 

thoroughly to resuspend.  Again separate the beads and discard the supernatant.  

Repeat the 1X SSC wash twice and on the third wash leave the beads in the SSC 

buffer and place on ice.  
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5.3.3 In a 0.5 mL tube combine: RNA sample and each rRNA probe (volumes determined 

in 5.3.1), 1 µL RNase inhibitor, 2.5 µL 20X SSC buffer, and 10 µL 100% 

Formamide. Bring the volume up to 50 µL with water.  

5.3.4 Incubate in a thermal cycler for 5 minutes at 70°C followed by ramping down to 25°C 

using 5°C increments for 1 min each.  

5.3.5 Remove from the thermal cycler and incubate for 5 min at room temperature. During 

this period it is useful to continue on with the bead dry-down step below (5.3.6).  

5.3.6 Place the washed streptavidin beads (5.3.2) on the magnetic stand and allow the beads 

to separate for 3 min. Discard the supernatant.  

5.3.7 To the hybridization reaction tube add 1X SSC-20% Formamide solution so that the 

end volume of the hybridization reaction is equal to the initial aliquoted bead volume 

(5.3.2). For example, if the initial volume of beads aliquoted to deplete an individual 

reaction was equal to 200 µL, then add 150 µL of 1X SSC-20% Formamide solution 

to the 50µL hybridization reaction.  

5.3.8 Add the hybridization reaction mix from 5.3.7 to the tube containing the dried beads 

(5.3.6). Incubate at room temperature for 10 minutes, occasionally flicking to mix. 

5.3.9 Place the tube in a magnetic stand and allow the beads to separate for 3 min.  

5.3.10 Transfer the supernatant (containing the purified RNA sample) into a clean 1.5 mL 

collection tube.  

5.3.11 Resuspend the beads with 1X SSC, matching the original volume of the bead 

suspension (5.3.2). Return the beads to the stand and incubate for 3 min. Transfer the 

supernatant to the tube containing the first aliquot of supernatant (5.3.9).   

5.3.12 Clean up and concentrate the depleted RNA using an RNeasy MinElute kit (Qiagen). 
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5.3.13 Quantify the enriched mRNA and confirm rRNA reduction with a Bioanalyzer or 

Experion system. This is potential stopping point. Store at -80 C.  

 

6. Amplification  

 To obtain enough material for sequencing, the enriched mRNA sample is linearly 

amplified using the MessageAmp™ Amplification Kit, consisting of four main steps: 

polyadenylation, reverse transcription to single stranded cDNA, second strand cDNA synthesis, 

and in vitro transcription to anti-sense aRNA. The user should closely read and follow the 

protocol described in the kit manual. Here we only provide a brief overview. 

Materials: 
MessageAmp™ II-Bacteria aRNA Amplification Kit (Applied Biosystems, Austin, TX)  
Thermal cycler  
Incubator  
Tabletop centrifuge (all centrifugations are conducted at ~10,000 RPM)  
100% ethanol 

 

6.1 Polyadenylation  

6.1.1 Add 10-200 ng of mRNA in a total volume of 5 µl of water to a 0.5 ml tube.  

6.1.2 Denature sample in a thermal cycler for 10 min at 70°C. 

6.1.3 Assemble polyadenylation master mix using the online calculator. Gently vortex and 

centrifuge.   

6.1.4 Add 5 µl polyadenylation master mix to each sample.  

6.1.5 Incubate at 37°C for 15 min. During this incubation, you may want to prepare the first 

strand synthesis master mix (see 6.2 below)  

6.1.6 Remove the samples from the incubator, place on ice, and proceed immediately to the 

next step. 
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6.2 First Strand Synthesis  

6.2.1 Prepare the first strand master mix using the online calculator. Gently vortex and 

centrifuge.  

6.2.2 Add 10 µl of the master mix to each sample.  Gently vortex and centrifuge.  

6.2.3 Incubate for 2 hr at 42°C. Then place on ice and proceed immediately to the second 

strand cDNA synthesis.   

6.3 Second Strand Synthesis  

6.3.1 On ice, assemble the second strand master mix using the online calculator. Gently 

vortex and centrifuge.  

6.3.2 Add 80 µl of the master mix to each sample. Gently vortex and centrifuge. 

6.3.3 Incubate in a thermal cycler pre-cooled to 16°C for 2 hrs (the lid temperature should 

either match or be turned off). During this incubation, bring the bottle of nuclease-

free water to 50°C. 

6.3.4 When the incubation is finished, place the samples on ice and proceed to the cDNA 

clean up.  

6.4 cDNA clean up 

6.4.1 Add 250 µl cDNA binding buffer and transfer to a cDNA clean up spin cartridge.   

6.4.2 Centrifuge for 1 min. Discard the flow through. 

6.4.3 Pipette 500 µl wash buffer onto the cartridge. Centrifuge for 1 min. Discard flow 

through. 

6.4.4 Centrifuge for an additional minute to remove any trace amounts of ethanol. 

6.4.5 Transfer the cartridge to a clean cDNA elution tube. 
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6.4.6 Elute by adding 18 µl preheated 50°C nuclease-free water to the cartridge. Incubate at 

room temperature for 2 min. Centrifuge for 1 min.  

6.4.7 Discard the cartridge and place the samples on ice.  

6.5 In vitro transcription 

6.5.1      Prepare the in vitro transcription master mix using the online calculator. Gently 

vortex and centrifuge.  

6.5.2 Add 24 µl of the master mix to each sample. Gently vortex and centrifuge. 

6.5.3 Incubate at 37°C. A 14 h incubation time is recommended to maximize aRNA yield.  

6.5.4 Add 60 µl nuclease-free water to bring the final volume up to 100 µl and place on ice.  

6.6 aRNA purification 

6.6.1 At least 30 min before starting the purification incubate the nuclease-free water at 

55°C.  

6.6.2 Add 350 µl aRNA binding buffer to each sample.  

6.6.3 Add 250 µl 100% ethanol. Mix by pipetting up and down.  

6.6.4 Transfer the mixture to an aRNA filter column. Centrifuge for 1 min. Discard flow 

through.  

6.6.5 Apply 650 µl wash buffer to the column. Centrifuge for 1 min. Discard flow through.  

6.6.6 Centrifuge for an additional 2 min to remove any trace amounts of ethanol.  

6.6.7 Transfer the cartridge to a clean collection tube. 

6.6.8 Add 200 µl of the preheated 55°C water to the center of the column. Place the column 

in incubator set at 55°C for 10 min. 

6.6.9 Centrifuge for 1.5 min. Discard the flow through. There should now be ~200 µl of 

purified aRNA.  
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6.6.10 Quantify using either a Nanodrop spectrophotometer or RiboGreen-based 

fluorescence detection. This is a potential stopping point. Store at -80°C.  

 

7. cDNA synthesis.  

 Single stranded RNA is converted to cDNA via the Universal RiboClone cDNA 

Synthesis System using random primers. We typically use 10 µg of RNA in the cDNA synthesis 

to obtain a final mass of ~5-8 µg cDNA. The amount of aRNA used can be varied depending on 

the particular requirements for sequencing. In the protocol below the steps are described without 

reagent volumes, as they depend on the amount of input RNA used. For example, a 10 µg 

amount requires scaling the reagents in each step up by 5X. The appropriate volumes can be 

found in the kit manual. Pay close attention to the kit reagent concentrations as they are apt to 

change between lots. We have found it easiest to conduct the second strand synthesis in a 

refrigerated incubator (cooled to 14°C at least an hour before using), as it does not require 

splitting up a single sample into multiple 0.5 ml tubes. However, if a reliable refrigerated 

incubator cannot be found, a thermal cycler can be used. During the cleanup, the cDNA can be 

eluted in either nuclease free water or TE depending on the downstream requirements of 

sequencing. 

 
Materials: 

Universal RiboClone cDNA Synthesis System (Promega, Madison, WI) 
Incubator or hybridization oven 
Refrigerated incubator or thermal cycler 
0.1 mM nuclease-free EDTA (Applied Biosystems, Austin, TX)  
QiaQuick PCR cleanup kit (Qiagen, Valencia, CA) 
Vacuum manifold 
Centrifuge 
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Method: 

7.1 First strand synthesis 

7.1.1 Aliquot out the volume of sample needed for 10 µg aRNA. If the volume is < 65 µl, 

bring up to 65 µl with nuclease-free water. If the aRNA concentration is > 65 µl, 

concentrate either via speed vacuum or ethanol precipitation. 

7.1.2 Add random primers to the aRNA. Gently mix and centrifuge. 

7.1.3 In a preheated thermal cycler, denature the RNA-primer mixture at 70°C for 10 min. 

Immediately after, place the tubes on ice for 5 min.  

7.1.4 Transfer the mixture to a 1.5 ml tube. This size is necessary to account for the 

increase in volume in the coming steps.  

7.1.5 Add first strand 5X buffer and RNasin ribonuclease inhibitor. Gently mix the reaction 

and briefly centrifuge.  

7.1.6 Incubate mixture in an incubator at 37°C for 5 min.  

7.1.7 Add sodium pyrophosphate, AMV reverse transcriptase, and nuclease-free water. 

Gently mix and centrifuge.   

7.1.8 Incubate mixture in incubator at 37°C for 1 h. Afterward, place on ice and proceed 

directly to second strand synthesis.  

7.2 Second strand synthesis  

7.2.1    On ice, add the following components to the first strand reaction: second strand 5X 

buffer, BSA, DNA polymerase, RNase H, and nuclease-free water. Gently mix and 

centrifuge.  

7.2.1 Incubate at 14°C for 2 h.  
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7.2.2 Remove the second strand reaction from the incubator or thermal cycler and add T4 

DNA polymerase.  

7.2.3 Return to the incubator or thermal cycler set at 14°C and incubate for another 10 min. 

The temperature in this step deviates from the kit protocol.  

7.2.4 Add 10 µl of 0.1 mM EDTA per µg input RNA to stop the reaction and place the 

mixture on ice.  

7.3 QiaQuick Clean up  

                  The volumes below are based on a cDNA synthesis of 10 µg, for which the final 

volume in 7.2.4 is 550 µl. 

7.3.1    To increase elution efficiency and reduce guanidinium thiocyanate carry over, warm 

the PE buffer to 37°C at least 2 h before using.  

7.3.2 Divide the sample into two 275 µl aliquots placed in 2 ml tubes.  

7.3.3 Add 688 µl PB buffer and mix thoroughly by vortexing. The mixture should be 

yellow. If orange or violet, the pH is not correct and will need to be adjusted (see kit 

manual).  

7.3.4 Place a mini column on the vacuum manifold and start the vacuum. Pipette the 

mixture from both tubes onto the column until the entire volume has passed through. 

Remove suction.  

7.3.5 Remove the PE buffer from the 37°C incubator and add 750 µl PE to the column. 

Restore the vacuum until the buffer has passed through. Repeat the wash with another 

750 µl PE.  
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7.3.6 Remove the cartridge from the manifold and place in a collection tube. Centrifuge at 

10,000 rpm for 2 min to remove any residual wash solution. Transfer to a clean 1.5 

ml tube.  

7.3.7 Add 50 µl of nuclease-free water or TE buffer (see note above) and let stand at room 

temperature for 1 min. Centrifuge at 10,000 rpm for 2 min. Discard the cartridge. The 

cDNA is now ready for sequencing.  

 

8. Bioinformatics analysis 

 Processing of the resulting sequence reads involves quality trimming, internal standard 

quantification, residual rRNA identification and removal, and finally functional annotation of the 

protein encoding reads.  Several of these processing steps can be carried out using platforms 

freely available through CAMERA (http://camera.calit2.net) or MG-RAST 

(http://metagenomics.anl.gov).  

Next generation reads can produce both systematic and random sequencing errors 

specific to the platform used. A quality metric (such as Phred) should be used to identify and 

remove low quality regions or entire sequences. The number of internal standards recovered by 

the sequencing should be quantified by a BLASTn homology search and removed from further 

processing. Inevitably, some rRNAs will escape the rRNA reduction process and need to be 

removed to prevent misleading functional annotations of these sequences.  A  BLASTn 

homology search against the SILVA large and small rRNA subunit database (www.arb-silva.de) 

can be used to identify bacterial, archaeal, and eukaryotic rRNA sequences. Once identified, 

these sequences should be removed from further processing. Finally, potential protein-encoding 

reads can be annotated based on homology to databases that span a wide range of functional 
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resolution from broad functions (COGs) to strain specific proteins (RefSeq). The calculations for 

total transcript pool size and individual transcript abundance are calculated as follows:  

         
 
Pa = total transcripts in the sample 

Ps = potential protein encoding sequences (total number of sequences  – rRNA sequences – Ss)  

Sa = molecules of internal standard added to the sample 

Ss = internal standard sequences 

Ta = molecules of any particular transcript category in the sample. This can then be divided by 

the mass or volume of sample collected to calculate the transcript abundance on a per 

environmental unit basis.  
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Figure A.1. Size distributions of sample RNA at different stages of processing visualized with 
the Experion automated gel electrophoresis system.  Fragment length and abundance are 
proportional to run time and fluorescence, respectively. The gel marker is labeled ‘M”. The 
distinct rRNA peaks dominant the total RNA pool in the extracted and TurboDNase treated 
samples, but are greatly diminished after subtractive hybridization. 
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Figure A.2.  Filtration setup for direct cell collection from an aquatic environment.  
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