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Abstract

Quantum computing with superconducting elements promises scalability and is widely re-

garded as a viable approach to develop a fault-tolerant architecture for a quantum computer.

In this thesis, I address some hardware-related theoretical challenges encountered in realizing

a quantum computer with superconducting devices. I first discuss how to design high-fidelity

two-qubit entangling gates, especially the controlled-σz (CZ) operation, and then explore the

performance of some existing fault-tolerant superconducting architectures under a realistic

multi-parameter error model.

Assuming phase or transmon qubits and using only low frequency qubit-bias control,

our CZ operation exhibits threshold fidelity (intrinsic) with a realistic two-parameter pulse

profile. In addition, we develop an analytic model that estimates the fidelities of CZ gates as

a function of pulse parameters as well as quantifies the error due to any perturbation over an

optimal pulse shape. Our analysis shows that leakage of population to non-computational

states remains the dominant source of intrinsic error for such quantum operations. The ef-

fect of such leakage errors on the fault-tolerance of standard topological codes has remained

largely unknown so far. We therefore explore the signature and consequences of such leakage



errors on ancilla-assisted Pauli operator measurement, which is a central ingredient for any

standard topological error correction scheme. We consider a realistic coupled-qutrit model,

parameterize the non-ideal CZ gate, and simulate the repeated ancilla-assisted measurement

of a single σz operator. We find that there is the possibility of a less typical but danger-

ous type of leakage event in the data qubit, where ancilla becomes paralyzed, rendering it

oblivious to data-qubit errors for many consecutive measurement cycles. The consequences

of such paralysis on the fault-tolerance of standard topological codes are also discussed in

this context.

Next we consider a realistic, multi-parameter error model and investigate the performance

of surface code error correction for some possible superconducting architectures. We map

amplitude and phase damping to the Pauli channel via the Pauli Twirling Approximation,

and obtain the logical error rate as a function of the qubit coherence time, intrinsic state

preparation, and gate and readout errors. A numerical Monte Carlo simulation is performed

to obtain the logical error rates and a leading order analytic model is constructed to estimate

their scaling behavior below threshold. Our results suggest that large-scale fault-tolerant

quantum computation should be possible with existing superconducting devices.

Index words: Superconducting qubits, CZ gate, quantum gate design, ancilla-assisted
qubit measurement, topological error correction, surface code
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Chapter 1

Introduction

Those who are in love with practice without knowledge are like the sailor who

gets into a ship without rudder or compass and who can never be certain where he

is going. Practice must always be founded on sound theory, and to this Perspective

is the guide and the gateway.

– Leonardo Da Vinci

Quantum mechanics, with its exotic outfit and unusual content, survived all possible

practical challenges and gradually became a pivotal component of modern physics. The

profound philosophical debate between Niels Bohr and Albert Einstein continued among

generations of physicists in various forms and was eventually resolved by a series of decisive

experiments. Quantum mechanics thus became a ‘sound theory’ by the end of last century.

The idea of a quantum computer, a computing device powered by the laws of quantum

mechanics and capable of solving a class of problems exponentially faster than a classical

computer, began to emerge in the late 20th century [2]. Realizing a quantum computer

with superconducting elements is one of the most promising schemes proposed so far [3, 4].

The era of superconducting quantum computing began in 2002 with the discovery that a

long-lived quantum state can be prepared, controlled, and measured in a current biased
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Josephson junction [5,6] as well as in a Cooper-pair box [7]. In this thesis, I discuss various

theoretical challenges encountered so far, especially in designing high-fidelity quantum gates

and performing fault-tolerant quantum computation with superconducting devices.

1.1 Quantum computation: A prelude

Figure 1.1: Bloch sphere representation of a single qubit. Each point on the surface of the
sphere denotes a pure state and a rotation of the Bloch sphere about any of the axes represents a
single-qubit Pauli σx, σy or σz operation.

In this section, I briefly describe some key concepts of quantum computation as well as

its current status in the context of superconducting quantum computing. DiVincenzo put

forward a set of necessary criteria for the implementation of a quantum computer [8]. The

requirements include scalability, ability to initialize the qubits, long coherence time, ability

to carry out a universal set of gates, and ability to perform measurements on each qubit.
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Designing high-fidelity quantum gates is, therefore, a crucial part of this implementation

process as well as one of the main goals of my thesis. The universality theorem guaran-

tees that the single qubit rotations along with any two-qubit entangling operation, such as

Controlled-σz (CZ), construct a universal set, such that any arbitrary element of SU(2n)

can be reduced to a finite sequence of these elements [9]. In the so-called ‘Bloch sphere’

representation (see Fig. 1.1), a single qubit rotation means designing a quantum operation

on the single qubit in order to rotate any pure state |ψ〉 (denoted by the radial vector in

Fig. 1.1) to another pure state. Motzoi et al. recently addressed the problem of designing

high-fidelity single qubit operations using an approach called Derivative Removal by Adia-

batic Gate (DRAG) [10], and it has been shown that it is possible to suppress the leakage of

population to the non-computational |2〉 state exponentially, which gives rise to arbitrarily

high-fidelity single qubit gates.

Since the universality theorem requires at least one entangling two-qubit operation, a

natural question to ask at this point is how to design a high-fidelity two-qubit entangling

gate. We investigate this question in Ch. 2, mainly focusing on the CZ gate as our entangling

operation. In the computational basis ({|00〉 , |01〉 , |10〉 and |11〉}), a CZ operation can be

represented by a 4× 4 matrix as,

CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


, (1.1)

which means, it acts like an Identity operation on each basis state except for |11〉 state, which

acquires a minus sign (or equivalently a phase of angle π). Another well-known two-qubit

entangling operation is Controlled-NOT (CNOT), which can also be expressed in a matrix
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form as,

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, (1.2)

in the same computational basis. Note that, unlike CZ, CNOT does not preserve the sym-

metry under the exchange of qubit indices. Therefore, two qubits have different roles to play

for a CNOT gate and one qubit is referred to as control and another one as target qubit. The

action of CNOT on two-qubit basis states is such that when the control qubit is |0〉, it acts

as an Identity on the target, and when the control qubit is |1〉, it performs a σx rotation of

angle π on the target qubit. Notice that, we can convert a CZ gate into a CNOT gate (and

the vice-versa) with some pre and post single qubit operations,

CZ = H2 CNOT H2 and CNOT = H2 CZ H2, (1.3)

where H2 denotes a Hadamard gate (H) on the second (target) qubit. Hadamard is a single

qubit operation, defined as (in {|0〉 , |1〉} basis),

H =
1√
2

 1 1

1 −1

 . (1.4)

If it is possible to transform a two-qubit gate into another one under some pre- and post-local

rotations, they are referred to as equivalent to each other. It is important to note that CZ

and CNOT belong to the same equivalence class.

Measuring a qubit is one of the DiVincenzo criteria and, therefore, essential in realizing a

quantum computer. There exist numerous approaches to measure a superconducting qubit.

In this thesis, I always assume the approach developed recently by Sete et al. [11]. For
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fault-tolerant quantum computation, it is often required to measure a single (data) qubit via

another (ancilla) qubit, commonly referred to as ancilla-assisted measurement. In Ch. 3, I

discuss the ancilla-assisted measurement of a single qubit and explore its consequences for

topological quantum error correction.

1.2 Quantum computing with superconducting devices

Superconducting devices are promising especially due to their long coherence time. In this

section, I give a short review (for details see [12]) of two superconducting devices, a transmon

qubit and a resonator, which are relevant for our purposes here.

A transmon is a modified version of a superconducting charge qubit, designed to operate

in the regime where EJ/EC > 1, EJ and EC being the Josephson energy and charging energy

respectively [13]. Another variant of transmon, sometimes referred to as Xmon, has recently

been developed by Barends et al. [14]. Xmon qubits are scalable having long coherence times

(T1 ∼ 44 µs) as well as suitable for two-dimensional fault-tolerant architectures as required

by surface or toric code. In our work here, we mostly assume frequency-tunable transmon

(or Xmon) as our superconducting qubit, unless otherwise specified.

There exist varieties of superconducting resonators and in our work we mostly assume the

coplanar waveguide (CPW) resonator as our cavity, which has already been demonstrated

with an internal quality factor above 107 [15]. A superconducting transmon qubit can be

coupled to a CPW resonator with a fixed coupling by placing it near the antinode of a specific

mode (called the ‘resonant’ mode) of the resonator. Two transmon qubits can also be coupled

directly in various ways, while for our purpose we assume fixed capacitive coupling [16–18],

as opposed to tunable coupling [19–31].
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1.3 Quantum error correction and fault tolerance

There are two dominant sources of error in a given quantum gate operation: Intrinsic and

decoherence-induced. Intrinsic error characterizes the distance between the ideal target

quantum gate and the practically achievable operation closest to it in the long coherence

limit. In Ch. 2, I discuss the various sources of intrinsic error mechanisms in detail for

the CZ gate. In superconducting quantum computing, the decoherence-induced errors are

mostly generated by the finite T1 (relaxation time) and T2 (dephasing time) of the qubits

and resonators.

If the errors are unavoidable, how is it possible to run a quantum algorithm in a quantum

computer for an arbitrarily long time? There exists a celebrated theorem in quantum com-

puting, called the threshold theorem, which says, provided we somehow bound the error of

each quantum gate below a certain threshold, quantum error-correcting codes can be used to

efficiently perform an arbitrarily long quantum computation [9]. Topological quantum error-

correcting codes (e.g., surface or toric code), where a quantum information is protected by

encoding it in a topological excitation of a fault-tolerant architecture, recently attract sig-

nificant attention primarily due to their high error threshold. In Ch. 4, I consider some

existing fault-tolerant (based on surface code) superconducting architectures and analyze

their performance under a realistic multi-parameter error model.

6



Chapter 2

Quantum Gate Design

Design is so simple, that’s why it is so complicated.

– Paul Rand

Designing high-fidelity quantum gates is one of the key requirements for the realization

of a quantum computer. As mentioned earlier, single qubit rotations along with a two-qubit

entangling gate construct a universal set of quantum gates. I concentrate on two-qubit

entangling gates in this chapter. First, I describe briefly how to design a CNOT gate using

Weyl chamber and spectroscopic approaches and next discuss the anticrossing-based CZ gate

in detail.

2.1 Formulation of the problem

In this section, I elucidate the formulation of quantum gate design problem for a two-qubit

operation from the perspective of quantum control. The Hamiltonian of a coupled-qubit

system,

H(ε1, η1, ε2, η2, g), (2.1)

7



can be represented by a k2×k2 matrix. k denotes the number of energy levels in each qubit,

εi and ηi are the frequency and anharmonicity of the ith qubit respectively, and g denotes

the coupling between two qubits. For an ideal qubit k = 2, but superconducting qubits

usually contain higher energy levels and therefore k > 2 for our qubits. In our work, we

mostly assume fixed coupling between the qubits (i.e., g is time-independent) and ignore any

frequency-dependence of anharmonicities. So, the Hamiltonian is time-dependent only via

qubit frequencies, ε1 and ε2. The unitary time-evolution operator for any time-dependent

Hamiltonian can be expressed as,

U(tgate) = T̂ exp

−i tgate∫
0

H(t)dt

 , (2.2)

where T̂ is the so-called time-ordering operator and H(t) ≡ H(ε1(t), η1, ε2(t), η2, g). For a

gate design problem, we are interested to find a control pulse for the qubit frequencies, ε1(t)

and ε2(t), such that U(tgate) is the given target quantum gate (Utarget), we want to design.

So, quantum gate design problem can be thought of as an inverse of the usual time evolution

problem, where the time-dependent Hamiltonian is known and the propagator is supposed

to be determined using exponential or some more elegant technique.

In practice, the designed unitary gate U is not exactly same as Utarget, and it is required to

define a (normalized) fidelity function F , which quantifies the closeness between U and Utarget.

A natural way to understand this closeness is to take a randomly generated vector |χ〉 (defined

on a Hilbert space), apply the operations U and Utarget on the vector to obtain transformed

vectors U |χ〉 and Utarget |χ〉, and then define the overlap between these transformed states

as an expression for fidelity that depends on the state |χ〉,

Fχ (Utarget, U) = 〈χ|U †targetU |χ〉 〈χ|U †Utarget |χ〉 . (2.3)

8



Finally, we average over randomly generated |χ〉 (chosen from a uniform distribution) to

introduce an average fidelity, according to

F (Utarget, U) =
1

N (|χ〉)
∑
|χ〉

Fχ (Utarget, U) , (2.4)

where N (|χ〉) is the total number of randomly generated |χ〉 states. To obtain a closed form

expression of fidelity we change this sum to an integral,

F (Utarget, U) =

∫
|〈χ|M |χ〉|2 dV, (2.5)

where M ≡ U †targetU and dV is a normalized measure. It has already been proven [32–34]

that, for any linear operator M on an n-dimensional complex Hilbert space,

∫
S2n−1

|〈χ|M |χ〉|2 dV =
Tr(MM †) + |Tr(M)|2

n(n+ 1)
, (2.6)

where the normalized state vectors |χ〉 are defined on the unit sphere S2n−1 in C. Using

Eq.(2.6) for a n-dimensional Hilbert space and assuming Utarget as an unitary operator, we

can rewrite our expression for average normalized fidelity as

F (Utarget, U) =
Tr (U †U) +

∣∣∣Tr (U †targetU)
∣∣∣2

n(n+ 1)
. (2.7)

In what follows, we use (2.7) as our definition of fidelity between any two quantum operations

and express it in percent.
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2.2 Controlled-NOT gate design

In this section, I discuss two approaches to design a CNOT gate, the Weyl chamber approach

and the conditional spectroscopic approach.

2.2.1 Weyl chamber approach 1

Designing two-qubit quantum gates using Weyl chamber approach was proposed by Zhang et

al. [35,36]. Geller et al. used this geometric approach to derive a pulse sequence for a CNOT

gate for a four-dimensional coupled-qubit model with weak but otherwise arbitrary coupling

between the two qubits [37]. In this section, I first describe the coupled-qubit model and

CNOT pulse sequence, and then explore how the resulting fidelity of the CNOT gate depends

on total gate time for various exchange interactions [38].

The Hamiltonian of a coupled-qubit system can be written as

H =
∑
i=1,2

[
−εi

2
σzi + Ωi cos

(
εit

~
+ φi

)
σxi

]
+

∑
µ,ν=x,y,z

Jµν σ
µ
1 ⊗ σν2 , (2.8)

where Jµν is a 3 × 3 coupling matrix which takes different forms for different architectures

under consideration. The parameters εi and Ωi (with Ωi � εi) are qubit frequency and Rabi

frequency of the ith qubit and are assumed to be tunable. Also, weak coupling (|Jµν | � εi)

is assumed for our purpose here. The CNOT gates are implemented according to a pulse

sequence consisting of two entangling operations along with single qubit rotations. The

entangling operations are carried out with tuned qubits (ε1 = ε2) and the local rotations are

performed with detuned qubits. For weakly coupled tuned qubits, the Hamiltonian (2.8) can

1J. Ghosh and M. R. Geller, Physical Review A 81, 052340 (2010) [Copyrighted material reprinted in this
section as per transfer of copyright agreement with the publisher].
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be written in the interaction picture (or rotating frame) as

H ≈
∑
i=1,2

Ωi

2
(cosφi σ

x
i − sinφi σ

y
i ) +H, (2.9)

where

H ≡ J (σx1σ
x
2 + σy1σ

y
2) + Jzzσ

z
1σ

z
2 + J ′ (σx1σ

y
2 − σ

y
1σ

x
2 ) . (2.10)

The parameters J and J ′ in Eq.(2.10) are given by

J ≡ Jxx + Jyy
2

and J ′ ≡ Jxy − Jyx
2

. (2.11)

In order to quantify the strength of an exchange interaction, we decompose the coupling

tensor Jµν according to

Jµν = g × J∗µν , (2.12)

where g > 0 is a measure of the overall strength and J∗µν describes the form of the coupling.

J∗µν is defined to satisfy

|J∗µν | ≤ 1 for all µ, ν. (2.13)

Three important examples of J∗µν are given in Table 2.1.

The pulse sequence derived in Ref. [37], carried out from right to left, is

CNOT = ei
3π
4 Ry

(
−π

2

)
1
Rx

(
−π

2

)
2
Rz (−ϕ)2Rx

(π
2

)
1

×e−iH∆t/~Rx (π)1 e
−iH∆t/~Rz (ϕ)2Ry

(π
2

)
1
,

(2.14)

where Rµ(θ)i ≡ e−
i
2

(θ)σµi (with µ = x, y, z and i=1,2) is a single qubit rotation. Here

ϕ ≡ arg (J + iJ ′) and ∆t ≡ π~
8
√
J2 + J ′2

. (2.15)
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Table 2.1: Parameter values used in the simulation. The tuned qubit frequency is the frequency of
the qubits used during the entangling operations. The ranges of allowed values of Rabi frequencies
and overall coupling strengths are used to constrain the optimization. J∗µν and g are defined in
Eq. (2.12).

parameter value

common tuned qubit frequency ε/h 10 GHz
qubit-qubit detuning 1 GHz

range of allowed Rabi frequencies Ω/h 50-500 MHz
range of allowed coupling strengths g/h 1-500 MHz

range of gate times tgate considered 10-50 ns

J∗µν for Isotropic Heisenberg coupling

1 0 0
0 1 0
0 0 1



J∗µν for Ising coupling

0 0 0
0 0 0
0 0 1



J∗µν for XY coupling

1 0 0
0 1 0
0 0 0



The operator e−iH∆t/~ represents the action of bringing the qubits into resonance for a time

∆t. The CNOT pulse sequence given in Eq.(2.14) involves two rotations about the z axis.

For our exact simulations below, it will be convenient to rewrite (2.14) in terms of x and y

rotations, leading to

CNOT = ei
3π
4

[
Ry

(π
2

)
1
Rx

(
−π

2

)
2

]
Ry (ϕ)2Rx

(π
2

)
2
e−iH∆t/~Rx (π)1 e

−iH∆t/~

×
[
Rx

(π
2

)
1
Rx

(
−π

2

)
2

]
Ry (−ϕ)2Ry

(π
2

)
1
.

(2.16)
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This is the CNOT pulse sequence used in the present analysis. Operations inside square

brackets can be performed simultaneously.

Now, I present the results obtained from numerical simulations. The results show the de-

pendence of fidelity as a function of total gate time for various possible exchange interactions.

It is observed that the fidelity curves are mostly independent on the form of interaction, un-

less the interaction is sufficiently close to that of the Ising model (see Table 2.1 for various

parameter values used in the simulation). To quantify this closeness we define a parameter

[recall (2.11) and (2.12)],

η ≡
√
J2 + J ′2

g
. (2.17)

It can be shown that 0 ≤ η ≤
√

2. For the Ising interaction, η = 0, whereas for the

Heisenberg and XY interactions, η = 1. Given that the fidelity is largely independent of

the form of interaction, as long as η is not too small, it is useful to average over interaction

forms to obtain interaction-independent fidelity curves. This is provided in Fig. 2.1, which

presents interaction-averaged fidelity curves for η = 0.1, 0.5, and 1.0.

While the pulse profile required for a CNOT gate at η → 0 is much simpler [35, 37], the

origin of the poor fidelity of (2.16), when η is small (as shown by Fig. 2.1), can be understood

as follows: In the pulse construction (2.16) of Ref. [37], a Cartan decomposition is used to

decompose the time-evolution operator generated by (2.9) into single-qubit rotations, an

entangling operator, and a global phase factor. The entangler has the form

A(x, y, z) ≡ e−i(xσ
x
1σ

x
2+y σy1σ

y
2+z σz1σ

z
2), (2.18)

where x, y, and z are three coordinates (angles). Following Zhang et al. [35], the entan-

gler coordinates trace out a trajectory in the three-dimensional space of entanglers as time

progresses. In the construction of Ref. [37], the trajectory starts in the plane x = y, and

then a refocusing π pulse is used to reflect the trajectory to the point (π
4
, 0, 0) or (−π

4
, 0, 0)
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Figure 2.1: (Color online) Plot of optimal fidelity versus total gate time, averaged over randomly
generated interactions with fixed values of η, for η = 0.1, 0.5, and 1.0.

on x axis. (The actual point reached depends on the sign of J .) The time it takes to do

this—neglecting the time needed for the π pulse—is 2∆t [see (2.15)], or π~/4gη. Including

all the single-qubit rotations in (2.16) leads to a total gate time of

tgate =
π~
4gη

+
3π + 2ϕ

Ω
. (2.19)

Because the first term in (2.19) is inversely proportional to ηg, for a fixed gate time a

larger value of coupling strength g is required when η is small. But when g increases the

assumption of weak coupling used in [37] is violated and the corrections to the rotating-

wave-approximation get larger. Furthermore, that large coupling leads to considerable errors

during the single-qubit operations because the qubit-qubit interaction is not switched off.
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2.2.2 Conditional spectroscopic approach 1

Spectroscopic CNOT gate has been demonstrated by Plantenberg et al. for a pair of supercon-

ducting flux qubits [39]. Here, I first review the spectroscopic approach for a qubit-resonator

system and then describe how to improve its fidelity so as to be competitive with other

existing approaches.

The idea behind a spectroscopic CNOT gate is simple and has a wide range of applicabil-

ity: A π pulse is applied to the target qubit with a carefully selected carrier frequency (the

frequency of the microwave drive attached with the qubit). The carrier frequency is close to

the qubit transition frequency given that the attached control resonator is in the “on” or |1〉

state, which in the |qr〉 basis is

ωon ≡
E11 − E01

~
, (2.20)

where Eij is the energy of the eigenstate |ij〉. The Rabi frequency has to be smaller than the

detuning to the “off” transition at

ωoff ≡
E10 − E00

~
. (2.21)

A direct σz⊗σz coupling between the devices would of course generate a difference in ωon and

ωoff , but in the qubit plus resonator system—which has no direct σz ⊗ σz coupling—such

an interaction is generated by level repulsion from the noncomputational |2〉 states. The

difference
∣∣ωon − ωoff

∣∣ characterizes the sensitivity of the conditioning effect and determines

the speed of the resulting gate. When the qubit and resonator are detuned by an amount

larger than the coupling between them, they become weakly coupled. In this limit, the

sensitivity for current devices is limited to a few MHz, which is not sufficient for practical

application. Therefore to amplify the sensitivity we adiabatically bring the target qubit to

1J. Ghosh and M. R. Geller, Quantum Information Processing, Springer, Netherlands, 11, 6, 1349-57
(2012) [Copyrighted material reprinted in this section as per license agreement with the publisher].
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a suitable point near resonance with the control resonator, and drive the qubit while it is

strongly coupled with the resonator. After performing a π pulse the qubit is adiabatically

detuned from the resonator.

Two main sources of intrinsic errors exist in this approach: Although we set the carrier

frequency to a value such that we have a π pulse in the qubit when the resonator is in |1〉,

there is a small probability for the qubit to get rotated even if the resonator is in |0〉. The

second error comes from the fact that, since we are driving the qubit, it is possible to have

leakage to the qubit |2〉 state. The fidelity will reach its maximum value when both of these

errors are minimized simultaneously. We use the DRAG method [10] to suppress the error

due to leakage and adjust all other parameters by optimization.
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Figure 2.2: (Color online) A plot of first six energy levels of a qubit coupled to a resonator at
g/h = 115 MHz.

In the basis of uncoupled qubits, the Hamiltonian of a qubit capacitively coupled to a
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resonator (assuming harmonic eigenfunction of 2-states) is given by (suppressing ~),

H = H0 +Hrf +Hint, (2.22)

where,

H0 =


0 0 0

0 ε 0

0 0 2ε−∆


q

+


0 0 0

0 ω 0

0 0 2ω


r

Hrf = Ω(t) cos(ωrf(t) t+ φ(t))


0 1 0

1 0
√

2

0
√

2 0


q

Hint = g


0 −i 0

i 0 −
√

2i

0
√

2i 0


q

⊗


0 −i 0

i 0 −
√

2i

0
√

2i 0


r

,

(2.23)

where, ε, ω and ∆ are qubit frequency, resonator frequency, and anharmonicity of the qubit,

respectively. Ω, ωrf and φ are Rabi frequency, carrier frequency, and phase of the microwave

pulse. g is the (time-independent) interaction strength between qubit and resonator. The

first six energy levels of the system (obtained numerically) are shown in Fig. 2.2. We use

coupling g/h=115 MHz, resonator frequency ω/h = 6.5 GHz and anharmonicity of the qubit

∆/h = 200 MHz. The simulations discussed below are carried out in a frame rotating with

the instantaneous frequency of the qubit.

Eigenstates of the full Hamiltonian reduce to the eigenstates of the uncoupled Hamilto-

nian far away from the resonance. We denote the first six eigenstates of the full Hamiltonian

by E00, E01, E10, E02, E11, E20 and define a conditional control sensitivity Sc and leakage sen-
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Figure 2.3: (Color online) A plot of control and leakage sensitivity vs. qubit frequency for
g/h = 115 MHz.

sitivity Sl as

Sc ≡ |(E11 − E01)− (E10 − E00)|,

Sl ≡ |(E21 − E11)− (E11 − E01)|.
(2.24)

The conditional control sensitivity is the (magnitude of the) difference between ωon and ωoff .

Leakage sensitivity is the anharmonicity of the target qubit when control resonator is on. In

order to achieve a high fidelity both of these quantities need to be maximized (by varying

the detuning ε − ω). A plot of these sensitivities is shown in Fig. 2.3. Peaks in the control

sensitivity (resulting from expected anticrossings) at detuning equal to zero and ∆ conspire

to give the maximum at 100 MHz detuning shown in the blue curve of Fig. 2.3. Operating

near 100 MHz detuning, however, leads to poor performance because of the large leakage

error there. Better operation points exist near -100 and 200 MHz detuning; we shall make
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use of the latter. Fig. 2.4 shows the behavior of sensitivities vs. coupling at (ε−ω)/h = 215

MHz.
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Figure 2.4: (Color online) A plot of control and leakage sensitivity vs. coupling.

To implement a CNOT gate we begin with a strongly detuned qubit-resonator system.

Then the qubit is adiabatically tuned into resonance with the resonator, driven with a π

pulse, and finally detuned. In the |qr〉 basis this protocol ideally produces

Utarget =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


= SWAP× CNOT× SWAP, (2.25)
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where

SWAP ≡



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


(2.26)

is the swap gate. To obtain this target we also perform z rotations on the qubit before and

after the sequence described above, with angles determined by optimizations.

As far as leakage outside the computational subspace is concerned, we can consider E01,

E11 and E21 to be a single 3-level quantum system where we are interested in local rotations

between the first two levels and therefore, in order to suppress the errors due to leakage

to the third level, local rotations are performed with a DRAG pulse [10], up to 5th order.

In order to do a local rotation of angle θ about the x axis, we set the Rabi pulse of the

Hamiltonian to be

Ω(t) cos(φ(t)) = fθ +
(λ2−4)f3θ

8∆2 − (13λ4−76λ2+112)f5θ
128∆4 ,

Ω(t) sin(φ(t)) = − ḟθ
∆

+
33(λ2−2)f2θ ḟθ

24∆3 ,

ωrf(t) = ωc +
(λ2−4)f2θ

4∆
− (λ4−7λ2+12)f4θ

16∆3 ,

(2.27)

where, λ is the ratio between the coupling strengths in double excitation subspace and single

excitation subspace and assumed to be equal to
√

2 under harmonic eigenfunction approxi-

mation. The first two equations give the amplitudes of cos(ωrft) and sin(ωrft) quadratures.

Here ωc is found via optimization around |E01-E11| and fθ(t) is chosen to be a Gaussian

function (vertically shifted) such that fθ(0) = fθ(tg) = 0 and

tg∫
0

fθ(t)dt = θ, tg being the

time required to perform the local rotation.

Fig. 2.5 shows the fidelity curve obtained from optimization and Table 2.2 shows corre-
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Table 2.2: Optimum values of parameters for CNOT gate.

tgate (ns.) tramp (ns.) g (MHz) ε− ω (MHz) Fidelity[%]

33 7.1 118.5966 235.1804 92.4021
35 7.3 107.5055 218.8692 97.2223
37 7.0 123.8367 237.4236 96.4515
39 7.3 113.2576 217.7214 98.7965
41 7.4 107.7414 218.2388 98.5218
43 7.2 117.6687 218.6669 98.5886
45 7.5 107.3625 199.2662 99.3914
47 7.5 104.0402 204.6788 99.2326
49 7.3 113.8836 208.3964 99.1864
51 7.5 107.6466 202.2407 99.3836

sponding coupling strengths, duration of each ramp and driving points. Our result shows

that the intrinsic fidelity can be pushed to 99% within 45 ns gate time. The remaining error

comes from the adiabaticity of the ramp pulses and leakage outside the computational basis

states, for example between |11〉 and |20〉 (in |qr〉 basis) at driving point where ε ≈ ω + ∆.

As an example, we show the change of qubit frequency (in GHz) over time (in nanosec-

onds) in Fig. 2.6 for the CNOT having total gate time = 45 ns. while the resonator frequency

is always fixed at 6.5 GHz and pre and post σz-rotation angles are found to be ϑpost = −1.0915

and ϑpre = 0.5442 radian for this case. We use linear pulse for ramps and a gaussian envelope

is used for DRAG.

We have computed intrinsic fidelity of a CNOT gate based on conditional spectroscopy

approach and have shown that it is possible to achieve greater than 99% fidelity within an

experimentally practical time scale of 45 ns. However, this design requires a large coupling

strength, so tunable coupling would probably be required in a multi-qubit system. Although

our analysis assumed a qubit and resonator, the design also applies to capacitively cou-
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Figure 2.5: (Color online) A plot of fidelity vs. total gate time in nanoseconds. Red points are
obtained via optimization and the blue line is an interpolation.

pled qubits, where a slightly higher fidelity would be expected because of the additional

anharmonicity.

2.3 Controlled-σz gate for qubit-resonator model 1

In this section, I first review the existing approaches of designing a CZ gate, and then develop

a unified theory of anticrossing-based CZ gate protocol for a qubit-resonator system. The

anticrossing-based CZ gate was first proposed by Strauch et al. in the sudden regime [16],

1J. Ghosh, A. Galiautdinov, Z. Zhou, A. N. Korotkov, J. M. Martinis, and M. R. Geller, Physical Review
A 87, 022309 (2013) [Copyrighted material reprinted in this section as per transfer of copyright agreement
with the publisher].
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Figure 2.6: (Color online) A plot of qubit frequency vs. time for CNOT at total gate time=45 ns.

as well as demonstrated by DiCarlo et al. in the adiabatic regime [40]. While I discuss

the CZ gate for a multi-qubit architecture, for instance the quantum von Neumann (QVN)

architecture [41], in detail in the next section, I sometimes refer to it here especially in the

context of ‘eigenstate basis’, ‘local clocks’, and ‘auxiliary z rotation’. For the convenience

of readers, I show the schematic diagram of 4-qubit QVN (QVN4 in short) in Fig. 2.7 and

give the values of various parameters in Table. 2.3. An n-qubit QVN (denoted by QVNn)

consists of n superconducting qubits, each capacitively coupled to its own memory resonator

(shown by mi in Fig. 2.7) as well as a common bus resonator (denoted by b). A detailed

description of this architecture is given in Sec. 2.4.
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Figure 2.7: Layout of the four-qubit QVN processor. The qi represent superconducting qubits
capacitively coupled to memory resonators mi as well as a resonator bus b.

2.3.1 A review of existing protocols

Here, I review the anticrossing-based CZ gate protocols in both sudden and adiabatic regimes.

To accomplish this we introduce several approximations that allow for an analytic treatment

of the CZ gate dynamics.

First, we consider a truncated model consisting of a single superconducting qubit with

frequency ε and anharmonic detuning η, capacitively coupled to a bus resonator with fre-

quency ωb,

H =


0 0 0

0 ε 0

0 0 2ε− η


q

+


0 0 0

0 ωb 0

0 0 2ωb


b

+ gb Yq ⊗ Yb. (2.28)

In this case Y reduces to

Y =


0 −i 0

i 0 −
√

2i

0
√

2i 0

. (2.29)
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Table 2.3: Device parameters used for QVN4 architecture.

quantity value
empty qubit parking frequency ωpark/2π 10.0 GHz
memory resonator m1 frequency ωm1/2π 8.3 GHz
memory resonator m2 frequency ωm2/2π 8.2 GHz
memory resonator m3 frequency ωm3/2π 8.1 GHz
memory resonator m4 frequency ωm4/2π 8.0 GHz
initial detuned qubit frequency ωoff/2π 7.5 GHz

bus resonator frequency ωb/2π 6.5 GHz
qubit-memory coupling strength gm/2π 100 MHz

qubit-bus coupling strength gb/2π 30− 60 MHz
qubit anharmonicity η/2π 200− 400 MHz

This Hamiltonian is written in the basis of bare eigenstates, which are the system eigen-

functions when the qubit and resonator are uncoupled. We write these bare states as |qb〉,

with q, b ∈ {0, 1, 2}. The energies of the interacting eigenstates, which we write with an

overline as |qb〉, are plotted in Fig. 2.8 as a function of ε/2π for the case of ωb/2π = 6.5 GHz,

η/2π = 300 MHz, and gb/2π = 45 MHz. The interacting eigenstates are labeled such that

|qb〉 is perturbatively connected to |qb〉 when ε� ωb.

Second, we assume a short switching time and ignore the dynamical phases acquired

during the ramps. As we will see below, this approximation is valid when gb � η, so that

the switching can be made sudden with respect to the coupling gb, but still adiabatic with

respect to the anharmonicity η.

The CZ gate of Strauch et al. [16], adapted to the qubit-resonator system, works by

using the anticrossing of the |11〉 channel with the auxiliary state |20〉. In terms of the pulse

parameters, the qubit-resonator state is prepared at a off-resonance qubit frequency ε = ωoff ,

and the frequency is then switched to ε = ωon for a FWHM time duration ton (described
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Figure 2.8: (Color online) Energies of eigenstates |qb〉 of a single qubit q coupled to a resonator
bus b. Here ωb/2π = 6.5 GHz, η/2π = 300 MHz, and gb/2π = 45 MHz. The time dependence of
the qubit frequency during a CZ gate (solid black curve) is indicated at the top of the figure.

below in detail). In the simplified model considered in this section,

ωon = ωb + η, (2.30)

and

ton =
π√
2gb

. (2.31)
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Equation (2.30) gives the qubit frequency for which the bare state |11〉 is degenerate with

|20〉, and is at a frequency η above the usual resonance condition. Equation (2.31) is the

sudden-limit value, derived below. The qubit frequency is then returned to the detuned

value ωoff . The complete pulse profile is also shown in Fig. 2.8 (solid black curve) for the

case of ωon/2π = 6.8 GHz and ωoff/2π = 7.5 GHz.

Let’s follow the evolution resulting from an initial (normalized) qubit-resonator state

a00

∣∣00
〉

+ a01

∣∣01
〉

+ a10

∣∣10
〉

+ a11

∣∣11
〉
. (2.32)

Because the |00〉 channel is very well separated from the others, the |00〉 component will

only acquire a dynamical phase factor

e−iE00tgate , (2.33)

where E00 is the energy of the
∣∣00
〉

eigenstate. Without loss of generality we can shift the

entire spectrum so that E00 = 0 [as in (2.28)] and the phase factor (2.33) becomes unity.

This freedom results from the fact that any unitary gate operation only needs to be defined

up to an overall multiplicative phase factor. With this phase convention the CZ gate acts as

the identity on this component, so we have the map

∣∣00
〉
→
∣∣00
〉
. (2.34)

The |01〉 component will mostly return to |01〉, also with an acquired phase, but a small

component will be left in |10〉 due to the nonadiabatic excitation of that channel, which

is only separated in energy from |01〉 by about η when ε = ωb + η. The |10〉 component

similarly suffers from a small nonadiabatic coupling to |01〉. As we will explain below, these

nonadiabatic errors are exponentially suppressed when the functional form of ε(t) is properly
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designed. Then we have

∣∣01
〉
→ e−iα

√
1− E1

∣∣01
〉

+ e−iα
′√E1

∣∣10
〉

(2.35)

and ∣∣10
〉
→ e−iβ

√
1− E1

∣∣10
〉

+ e−iβ
′√E1

∣∣01
〉
, (2.36)

where E1 is a small nonadiabatic population error (below we refer to E1 as a switching error).

In the E1 → 0 limit, α and β are dynamical phases given by

α =

∫ tgate

0

E01 dt ≈
(
ωb −

g2
b

η

)
ton, (2.37)

β =

∫ tgate

0

E10 dt ≈
(
ωb + η +

g2
b

η

)
ton, (2.38)

where the second approximate quantities neglect phase accumulation during the ramps and

use perturbative expressions for the energies E01 and E10 when ε = ωb + η. The expres-

sions (2.35) and (2.36) neglect an extremely small leakage out of the {|01〉, |10〉} subspace.

Neglecting this leakage, the evolution in the {|01〉, |10〉} subspace is unitary, leading to the

phase condition

ei(α−β
′) + ei(α

′−β) = 0. (2.39)

Using (2.39) to eliminate β′ leads to

∣∣01
〉
→ e−iα

√
1− E1

∣∣01
〉

+ e−i(β+φ)
√

E1

∣∣10
〉
, (2.40)∣∣10

〉
→ e−iβ

√
1− E1

∣∣10
〉
− e−i(α−φ)

√
E1

∣∣01
〉
, (2.41)

where φ ≡ α′ − β. The evolution of the eigentates |01〉 and |10〉 is therefore characterized

by the cross-excitation probability E1 and three phase angles α, β, and φ.
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Now we consider the |11〉 component. The |11〉 channel couples strongly with the |20〉

channel, as well as weakly with |02〉. The simplest way to understand the dynamics of the

|11〉 component is to use two different representations to describe these two effects. We will

describe strong interaction with |20〉 in the bare basis and the weak, nonadiabatic coupling

with |02〉 in the eigenstate basis. Suppose we begin with the qubit strongly detuned from

the bus, so that |11〉 ≈ |11〉 (the detuned interacting eigenstate is well approximated by the

bare |11〉 state). Then we quickly switch ε from ωoff to ωb + η. By “quickly” we mean that

we strongly mix with the |20〉 channel. The interaction with |02〉 is always weak, even in the

sudden limit. This asymmetric excitation is possible because |20〉 is protected (separated in

energy from |11〉) by an energy gap 2
√

2gb, whereas |02〉 is protected by a much larger gap

of η −
√

2gb (this expression accounts for level repulsion from |20〉, and we have assumed

that gb � η). We can informally say that the desired switching is nonadiabatic with respect

to the energy scale gb, but is adiabatic with respect to η [16].

Focusing first on the strong coupling to |20〉, the suddenly switched |11〉 state is no longer

an eigenstate when ε = ωon, as the relevant eigenfunctions at this setting are

|11〉 =
|11〉 − |20〉√

2
and |20〉 =

|11〉+ |20〉√
2

. (2.42)

The nonstationary state

|11〉 =
|11〉+ |20〉√

2
(2.43)

therefore rotates in the {|11〉, |20〉} subspace, and after a time duration t becomes

|ψ〉 = e−iE11t

[
|11〉+ e−i∆Et|20〉√

2

]
(2.44)

= e−iE11t

[ (
1 + e−i∆Et

2

)∣∣11
〉
−
(

1− e−i∆Et

2

)∣∣20
〉]
, (2.45)
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where

∆E ≡ E20 − E11 = 2
√

2gb. (2.46)

Holding ε fixed at ωb + η for a FWHM time (2.31), corresponding to a 2π rotation, (2.45)

becomes

|ψ〉 = e−iE11ton|11〉. (2.47)

When ε = ωb + η, the energy of eigenstate |11〉 is

E11 = 2ωb + η −
√

2gb. (2.48)

After detuning quickly we therefore obtain

∣∣11
〉
→ − exp

[
−i
(
π

2ωb + η√
2gb

)] ∣∣11
〉
, (2.49)

or, using expressions (2.37) and (2.38),

∣∣11
〉
→ −e−i(α+β)

∣∣11
〉
. (2.50)

The two phase angles α and β can be cancelled by the application of independent auxiliary

single-qubit z rotations

Rz(γ) ≡ exp[−i(γ/2)σz] (2.51)

to the qubit and bus. Qubit z rotations are implemented by frequency excursions, whereras

resonator z rotations are implemented in software (they are compiled into future qubit ro-

tations). Following the pulse sequence that leads to (2.34), (2.40), (2.41), and (2.50), with

the operation

Rz(γ1)⊗Rz(γ2), (2.52)
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where

γ1 = −β and γ2 = −α, (2.53)

leads to the map

∣∣00
〉
→

∣∣00
〉
, (2.54)∣∣01

〉
→

√
1− E1

∣∣01
〉

+ e−iφ
√

E1

∣∣10
〉
, (2.55)∣∣10

〉
→

√
1− E1

∣∣10
〉
− eiφ

√
E1

∣∣01
〉
, (2.56)∣∣11

〉
→ −

∣∣11
〉
, (2.57)

apart from a global phase factor. The use of auxiliary z rotations is discussed further

Sec. 2.3.3.

The minus sign in (2.57) is the key to the Strauch CZ gate. However, as mentioned above,

the analysis leading to (2.57) neglected a weak nonadiabatic excitation of the |02〉 channel

caused by the switching of ε. Including this effect in (2.57) leads to the modification

∣∣11
〉
→ −

√
1− E2

∣∣11
〉

+ phase factor×
√

E2

∣∣02
〉
, (2.58)

where E2 is another switching error. Both E1 and E2 vanish exponentially with σ (or tramp),

and for the regimes studied in this work E2 is the dominant source of intrinsic gate fidelity

loss. We note that the analysis leading to (2.58) assumed implementation of the ideal values

[(2.30) and (2.31)] of ωon and ton. Errors in these two control parameters, which we refer to

as pulse shape errors and study in Sec. 2.3.7, lead instead to

∣∣11
〉
→ − eiδ

√
1− E2 − Eθ

∣∣11
〉

+ phase factor×
√

E2

∣∣02
〉

+ phase factor×
√

Eθ
∣∣20
〉
,

(2.59)
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where the controlled-phase error angle δ and rotation error Eθ depend on the errors in ωon

and ton, respectively.

Finally, it is also interesting to consider the fully adiabatic limit of the Strauch CZ gate.

By this we mean that the switching is adiabatic with respect to both gb and η. For the gate

time to be competitive with the nonadiabatic gate, a larger coupling gb is required, which

might lead to significant higher-order and cross-coupling errors in a multi-qubit device, but

in the fully adiabatic limit only one pulse control parameter—either ωon or ton—needs to be

optimized (two z rotations are still required). This is because adiabaticity now assures that

the |11〉 population is preserved (apart from exponentially small switching errors), taking

over the role previously played by ton, and a single pulse shape parameter is sufficient to

specify the controlled phase. A highly adiabatic CZ gate was demonstrated in Ref. [40].

There are a few important differences between the Strauch CZ gate applied to a pair of

directly coupled qubits (as in Ref. [16]) and to the qubit-bus system considered here. These

differences result from the harmonic spectrum of the resonator in the latter case and are

discussed below in Sec. 2.3.8.

2.3.2 Gate design in eigenstate basis

The Hamiltonian (2.28) is written in the usual bare basis of uncoupled system eigenstates,

but information processing itself is best performed in the basis of interacting eigenfunctions of

Hidle, where Hidle is given by (2.28) with the qubits in a dispersive idling configuration [42].

This choice of computational basis assures that idling qubits suffer no population change

in the decoherence-free limit, and evolve in phase in a way that can be almost exactly

compensated for by an appropriate choice of rotating frames or local clocks, one for each

qubit [42]. Here I briefly review this important concept.

In principal, any complete orthonormal basis of the physical Hilbert space that can be

appropriately prepared, unitarily transformed, and measured—essentially, any basis where
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one can implement the DiVincenzo criteria [8]—is a valid basis on which to run a quantum

computation. Defining the computational states to be interacting system eigenfunctions

gives them the simplifying property that the time evolution can be decomposed into a se-

quence of gates, between which (almost) no evolution occurs. In other words, idling between

gates generates the identity operation. This property, which is implicitly assumed in the

standard circuit model of quantum computation, could be realized in an architecture where

the Hamiltonian H can be completely switched off between gates. However, it is not possi-

ble to set H = 0 in a QVN architecture; nor can H itself be made negligibly small between

gates. Therefore, nonstationary states such as uncoupled-qubit eigenstates accumulate er-

rors (including population oscillations) between gates unless a correction protocol such as

dynamical decoupling [43] is used. By defining computational states in terms of interact-

ing system eigenfunctions {|ψ〉} at some predefined dispersive idling configuration (qubit

frequencies), the only evolution occuring during an idle from time t1 to t2 is a pure phase

evolution,

|ψ(t1)〉 → |ψ(t2)〉 = e−iE (t2−t1)|ψ(t1)〉, (2.60)

where E is the exact energy eigenvalue (and we neglect decoherence). Furthermore, it is

possible to compensate for—or effectively remove—the pure phase evolution in (2.60) by

applying phase shifts (after the idle period) to each eigenfunction to cancel the e−iE(t2−t1)

phase factors; doing so would result in the ideal between-gate evolution

|ψ(t1)〉 → |ψ(t2)〉 = |ψ(t1)〉. (2.61)

The idling dynamics (2.61) is evidently equivalent to setting H = 0 between gates. We will

discuss below how the compensating phase shifts are actually implemented in practice.

This use of interacting system eigenfunctions and compensating phase shifts as described

above provides a computational basis that evolves ideally between gates, but such an ap-
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proach is not scalable; for example, there are 22n+1 such computational states in QVNn. In

Ref. [42] an approximate but scalable implementation of this approach was introduced. The

idea is that the exact energy E of a computational state in QVNn is, to an extremely good

approximation, the sum of uncoupled qubit and resonator frequencies, i.e., essentially nonin-

teracting. This is not simply a consequence of the dispersive regime energies (eigenvalues of

Hidle), which have non-negligible interaction corrections, but because only a special subset of

the eigenfunctions are used for information processing: In the QVNn system we only make

use of Hidle eigenfunctions in which there are no more than n excitations present, and such

that two directly coupled elements—qubits or resonators—are not simultaneously occupied

(except during the CZ gate). For example, when the data is stored in memory, the residual

memory-memory coupling is fourth order in the qubit-resonator coupling g. This leads to

an eighth-order conditional frequency shift (order g16 idling error) [42]. Next, suppose an

excitation is transferred from memory to a qubit via a MOVE gate. Now the dominant fre-

quency shift is sixth order. And when an excitation is in the bus the largest shift is fourth

order [42]. The largest idling error (associated with the phase compensation) is therefore

eighth order in g and can be made negligible with proper system design.

The compensating phase shifts could be implemented through additional local z rotations,

one for each qubit and resonator. However, these phase shifts evolve in time with very

high (> 1 GHz) frequency, and it is therefore experimentally more practical to introduce a

local clock/rotating frame for each qubit and resonator. This is achieved by introducing

a fixed-frequency microwave line for each qubit and resonator, and measuring each qubit

and resonator phase relative to the phase of its reference. By choosing the frequency of

the qubit (resonator) reference microwave equal to the idle frequency (resonator frequency),

the component frequencies [and therefore the quantity E in (2.60)] are effectively zeroed,

and no more than 2n + 1 different reference frequencies or local clocks are required. This

procedure corresponds to implementing the experiment in a multi-qubit rotating frame. And,
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in a further simplification, the local clocks/rotating frames for the resonators are replaced

by additional qubit z rotations that are handled in software (i.e., combined with future

rotations). Therefore, in practice only n local clocks/rotating frames are needed, one for

each qubit. Because the CZ gate simulations reported in this work are already supplemented

with local z rotations, these local clocks/rotating frames do not need to be included in those

simulations; we simulate the lab frame. However, they are included in the pulse-shape error

simulations reported in Sec. 2.3.7.

Having motivated the use of interacting system eigenfunctions for computational ba-

sis states, it is still necessary to establish that such states can actually be prepared and

measured. Because we can assume the processor to initially start in its interacting ground

state—a computational basis state—preparation of the other computational states can be

viewed as a series of π pulses and MOVE gates. We expect that such operations on the inter-

acting eigenfunctions can be performed at least as accurately as when applied to bare states.

Eigenfunction readout is a more subtle (and model-dependent) question, but the analysis of

Ref. [42] suggests that interacting-eigenfunction readout is actually better than bare-state

readout (in the model considered there). We also note that the idling configuration and

associated eigenstate basis generally changes between consecutive gates and, therefore, our

entangling gate design is constrained by the requirement that we start and end in eigenstates

of this particular Hidle.

The discussion above motivating the use of interacting eigenstates is based on their

nearly ideal idling dynamics. It is still interesting, then, to consider whether the CZ gate

can be generated equally well in either (bare or interacting eigenfunction) basis. We find

that for the parameter regimes considered here, it is not possble to achieve better than

about 99% fidelity in the bare basis with the same two-parameter pulse profile (it should be

possible using more complex pulse shapes). The remaining error is consistent with the size

of the perturbative corrections to the bare states in the idling configuration. This exercise

35



emphasizes the importance of performing quantum logic with the system eigenfunctions,

which have the built-in protection of adiabiticity against unwanted transitions.

One might object to the use of interacting eigenfunctions as a design tool, the exact

calculation of which is not scalable. However, approximate dispersive-regime eigenfunctions

are efficiently computable. A particularly simple way to do this is to calculate the generator

S of the diagonalizing transformation V = e−iS by a power series in gb and gm. At the

99.99% fidelity level, it is sufficient to calculate S to first order. Writing Hidle = H0 + δH

leads to the condition i[S,H0] + δH = 0, which is immediately solvable in the bare basis

|q1q2 · · ·m1m2 · · · b〉. Here qi,mi, b ∈ {0, 1, 2, . . . }. Other efficient eigenfunction approxima-

tion schemes are also possible.

In this work, for QVNn architecture we denote the exact or approximate Hidle eigenfunc-

tion perturbatively connected to the bare state |q1q2 · · · qnm1m2 · · ·mnb〉 by

|q1q2 · · · qnm1m2 · · ·mnb〉, (2.62)

following the overline notation introduced above. Note that (2.62) is not a tensor product

of single-qubit/resonator eigenstates as is usually the case.

2.3.3 Auxiliary z rotations and equivalence class

The standard CZ gate in the bare two-qubit basis {|00〉, |01〉, |10〉, |11〉} is

CZ ≡



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (2.63)
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However in the QVN processor, local z rotations can be performed quickly and accurately,

typically by brief qubit frequency excursions. Thus, we will consider the limit where SU(2)

operations of the form exp[−i(θ/2)σz] can be done on the qubits and bus with negligible

error and in a negligible amount of time (fidelity loss resulting from errors in these rotations

are discussed in Sec. 2.3.7). We therefore want to define our entangling gate modulo these z

rotations. We will do this by constructing a local-z equivalence class for an arbitrary element

(gate) in SU(4), and then specialize to the CZ gate.

We define two elements U and U ′ of SU(4) to be equivalent, and write U ′ $ U , if

U ′ = upost U upre, (2.64)

where

u(γ1, γ2) ≡ Rz(γ1)⊗Rz(γ2) = ei(γ1+γ2)/2



1 0 0 0

0 e−iγ2 0 0

0 0 e−iγ1 0

0 0 0 e−i(γ1+γ2)


, (2.65)

for some rotation angles γk. The local-z equivalence class {U} corresponding to U is the set

of elements upost U upre for all upre, upost. For a given gate U , {U} typically occupies a four-

dimensional manifold, depending on four rotation angles. But because (2.63) is diagonal,

{CZ} instead forms a two-dimensional sheet,

{CZ} = phase factor×



1 0 0 0

0 e−iγ2 0 0

0 0 e−iγ1 0

0 0 0 −e−i(γ1+γ2)


. (2.66)
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The CZ gate (2.63) can be obtained by reaching any point in the {CZ} plane and then

performing auxiliary z rotations. And it is straightforward to confirm that [40]



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


$



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


$



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


$



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (2.67)

We note that bus rotations, which cannot be directly implemented with microwave pulses

or frequency excursions, are compiled into future qubit rotations.

The discussion above assumed a pair of qubits or a qubit and resonator, but it applies

to a QVN processor in the interacting eigenfunction basis (2.62) after a minor modification.

In the bare basis, the CZ gate is typically defined through its action (2.63) on a pair of

qubits (or a qubit and resonator). Then, action on a bare computational basis state such

as |q1q2 · · · qnm1m2 · · ·mnb〉 follows from the tensor-product form of that bare state. In the

eigenstate basis the CZ gate must be defined through its action on

|q1q2 · · · qnm1m2 · · ·mnb〉, (2.68)

such as to reproduce the ideal action on the bare states to which they are perturbatively

connected. For example, the CZ gate on qubit q1 and the bus acts ideally as

CZ
∣∣0q2q3q4m1m2m3m40

〉
=

∣∣0q2q3q4m1m2m3m40
〉

CZ
∣∣0q2q3q4m1m2m3m41

〉
=

∣∣0q2q3q4m1m2m3m41
〉

CZ
∣∣1q2q3q4m1m2m3m40

〉
=

∣∣1q2q3q4m1m2m3m40
〉

CZ
∣∣1q2q3q4m1m2m3m41

〉
= −

∣∣1q2q3q4m1m2m3m41
〉
,
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where qi,mi ∈ {0, 1, 2, . . . }.

2.3.4 Pulse shape
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Figure 2.9: Two-parameter CZ pulse profile (2.69) for the case of ωon/2π = 6.8 GHz, ωoff/2π =
7.5 GHz, tramp = 7 ns, σ = 1.24 ns, and ton = 10 ns. The total gate time excluding auxiliary z
rotations is tgate = 17 ns. The example shown is representative of a 99.9% fidelity gate for a qubit
with 300 MHz anharmonicity.

The two-parameter low frequency pulse profile we use throughout this work is

ε(t) = ωoff +
ωon − ωoff

2

[
Erf

(
t− 1

2
tramp√
2σ

)
− Erf

(
t− tgate + 1

2
tramp√

2σ

)]
, (2.69)

an example of which is shown in Fig. 2.9. Here ε is the qubit frequency, ωoff and ωon are the

frequencies off and near resonance (with the bus), and the pulse switching time is determined

by σ, the standard deviation of the Gaussians inside (2.69). The value of tramp determines
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how the pulse is truncated at t = 0 and tgate. Throughout this work we assume that

tramp = 4
√

2σ. (2.70)

The relation (2.70) allows the switching time to be alternatively characterized by tramp,

which, as Fig. 2.9 illustrates, is a measure of the width of the ramps. The variable tgate is

the total execution time of the gate excluding z rotations. The two control parameters ωon

and

ton ≡ tgate − tramp (2.71)

are determined by the numerical optimization procedure described in Sec. 2.3.5. From (2.71)

we infer that ton is the time interval between the midpoints of the ramps, or the full-width at

half-maximum (FWHM) of the pulse. We note that the optimal values of ton are somewhat

longer than the value

tsudden
on ≡ π√

2gb

(2.72)

that applies in the sudden, σ → 0 limit. In addition to ωon and ton, two auxiliary local z

rotations—on the qubit and resonator—are used to implement the CZ gate. As we explain

below, adjusting the two control parameters ωon and ton zeros the population left in the

non-computational qubit |2〉 state after the gate and (along with the auxiliary z rotations)

sets the controlled phase equal to −1. The pulse shape (2.69) describes a rectangular current

or voltage pulse sent to the qubit frequency bias through a Gaussian filter of width σ, and

is believed to be an accurate (although not exact) representation of the actual profile seen

by the qubits in Ref. [41].

In the qubit-resonator Hamiltonian (2.28), the qubit frequency ε is the only available

experimental control. [There is also a single-qubit term for the microwave pulse that is not

shown in (2.28) and not used in this work.] During a CZ gate between a given qubit and the
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resonator, the frequency of that qubit is varied according to (2.69), where

Erf(t) ≡ 2√
π

∫ t

0

e−x
2

dx. (2.73)

Two quantities related to the pulse switching—σ and tramp—appear in the pulse profile

function (2.69). We do this to emphasize that, in principal, two independent quantities could

be used to quantify the shape of the switching profile. The first is the time duration (or width)

of the switching, characterized by the standard deviation σ. The second is the trunction

time of the pulse, measured from the center (half maximum) of the frequency switch, which

is equal to tramp/2. However in this work we always use the (somewhat arbitrary) relation

(2.70), which amounts to cutting off the pulse at 2
√

2 standard deviations from the switching

midpoints.

If the pulse shape function (2.69) is used only when 0 ≤ t ≤ tgate, and ε is set to ωoff

otherwise, there will be small pulse discontinuities at t = 0 and tgate, the size of which is

determined by the condition (2.70). Assuming tramp � tgate, we have

ε(0) = ε(tgate) ≈ ωoff +
ωon − ωoff

2

[
1− Erf

(
2
)]
, (2.74)

which differs from the asymptotic value ωoff by an amount

ωon − ωoff

2

[
1− Erf

(
2
)]
, (2.75)

where 1 − Erf(2) ≈ 0.5%. However, in an experiment these discontinuities are usually

smoothed over by additional pulse shaping. Moreover, our simulations begin t= 0 and end

at t = tgate, so the truncation only slightly affects the pulse shape: The initial and final

detuned qubit frequency is actually a few MHz smaller than ωoff . Having fixed the relation

(2.70), there are then two measures of the pulse switching time, σ and tramp, with tramp
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providing a convenient measure of the time duration of the ramps. This property can be

seen in the pulse shape example of Fig. 2.9.

2.3.5 Gate optimization

We numerically optimize the two pulse-shape control parameters ωon and ton, as well as the

two auxiliary z rotation angles, γ1 and γ2, to maximize the average gate fidelity (2.7). All

other pulse parameters (ωoff , σ, tramp) are fixed. The procedure to determine the values of

ωoff and tramp for QVN is described later, and σ is obtained through relation (2.70). The

roles played by the control parameters ωon and ton are discussed above in Sec. 2.3.1.

The fidelity optimization procedure is carried out in two stages: In the first stage we take

ωon to be equal to its approximate value [see (2.30)]

ωb + η, (2.76)

and optimize ton to get close to the two-dimensional equivalence class {CZ} defined in (2.66).

We do this by minimizing a sum of two positive errors, one measuring the deviation of the

absolute values of the matrix elements of the evolution operator U from that of the four-

dimensional identity matrix, the other measuring the deviation from the ideal relationship

between the phases of the diagonal elements indicated in (2.66). This first stage yields an

approximate value of ton, as well as approximate rotation angles

γ1 ≈ arg 〈10|U |10〉 − arg 〈00|U |00〉, (2.77)

γ2 ≈ arg 〈01|U |01〉 − arg 〈00|U |00〉. (2.78)

In the second stage of optimization, we use the approximate values of ωon, ton, γ1, and γ2,

obtained from the first stage, as seeds for a full four-dimensional (ωon, ton, γ1, γ2) nonlinear
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maximization of the average fidelity (2.7) between

u(γ1, γ2)× U (2.79)

and the standard CZ gate (2.63). Here U is the projected evolution operator and u ∈

SU(2)⊗ SU(2) is defined in (2.65).

2.3.6 Switching error and fidelity estimate

Here we calculate the transition probability caused by a change of the qubit frequency during

a CZ pulse, MOVE gate, or any other operation in a superconducting architecture. The

problem will be treated quite generally and then applied to the Strauch CZ gate, resulting

in a simple fidelity estimator for that gate.

Imagine that we have prepared an initial interacting system eigenfunction |a〉 prior to

performing a CZ operation or other gate that involves changing the frequency of one or more

qubits. We assume that the ideal (target) behavior during the frequency switch or ramp

itself is the identity map (times a phase factor), and that the |a〉 channel does not cross any

others in the system. The population loss during the ramp will therefore be exponentially

suppressed if the switching time is long enough.

In a multi-qubit system there is typically a large number of nonresonant channels coupled

to |a〉 that can be excited by the frequency switch. However, when the ramp fidelity is high

and the probabilities of the undesired transitions

|a〉 → |b〉, |b′〉, |b′′〉, · · · (2.80)

are small, they can be individually estimated perturbatively (neglecting interference), thereby
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reducing the problem to a sum of independent two-channel problems

|a〉 −→ |b〉

|a〉 −→ |b′〉

|a〉 −→ |b′′〉
...

(2.81)

each characterized by a time-dependent detuning ∆ and a coupling G. Without loss of

generality we can shift the energy of a given two-channel problem so that the bare final

state has zero energy. Each nonadiabatic transition can therefore be described by a general

two-channel model of the form

H =

∆(t) G

G 0

 , (2.82)

in the bare basis spanned by {|a〉, |b〉}. The undesired final state |b〉 has a fixed energy 0 and

the energy of |a〉 varies in time with detuning ∆. The coupling G is assumed to be a real,

positive constant.

The instantaneous eigenstates of (2.82) are

|a〉 = cos
χ

2
|a〉+ sin

χ

2
|b〉, (2.83)

|b〉 = cos
χ

2
|b〉 − sin

χ

2
|a〉, (2.84)

where

χ ≡ arctan

(
2G

∆

)
. (2.85)

The instantaneous energies are

Ea =
∆

2
+

√(
∆

2

)2

+G2 (2.86)
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and

Eb =
∆

2
−

√(
∆

2

)2

+G2. (2.87)

The |b〉 channel is initially unoccupied at time t=0, and we are interested in the probability

psw that the system, prepared in |a〉, is found in |b〉 after changing the detuning ∆ from one

value to another. We refer to this probability as the nonadiabatic switching error, which

we calculate by expanding the wave function in the basis of instantaneous eigenstates (2.83)

and (2.84), as ∣∣ψ〉 =
∑
m=a,b

ψm e
−i

∫ t
0 Em dτ

∣∣m〉. (2.88)

This leads to

dψb
dt

= −e−i
∫ t
0 (Ea−Eb) dτ

〈
b
∣∣ ∂
∂∆

∣∣a〉 d∆

dt
ψa, (2.89)

where 〈
b
∣∣ ∂
∂∆

∣∣a〉 = − G

∆2
× 1

1 +
(

2G
∆

)2 . (2.90)

The nonadiabatic matrix element (2.90) has been written so that the second term approaches

unity in the G� ∆ perturbative limit.

At time t=0, ψa = 1. An approximate expression for

psw ≡ |ψb(tfinal)|2 (2.91)

can be obtained from (2.89) by assuming that |ψb| � 1 throughout the evolution, so that

ψa ≈ 1 for all t. Then

psw =

∣∣∣∣∫ G∆̇ e−i
∫ t
0 Ω dτ

Ω2
dt

∣∣∣∣2= 1

4

∣∣∣∣∫ χ̇ e−i
∫ t
0 Ω dτdt

∣∣∣∣2, (2.92)

where

Ω ≡ Ea − Eb =
√

∆2 + 4G2 (2.93)
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is the instantaneous splitting. We can simplify (2.92) further by assuming G � ∆, which

will be the case for the applications considered below. In this perturbative limit we therefore

obtain

psw =

∣∣∣∣ ∫ G∆̇

∆2
e−i

∫ t
0 ∆dτ dt

∣∣∣∣2. (2.94)

We emphasize that the form (2.94) assumes that ∆ does not pass through zero, which would

cause Landau-Zener tunneling and invalidate the perturbative analysis.

Δon

t

Δoff

0 tramp

Δ

Figure 2.10: Detuning pulse profile (2.95) for a single frequency switch.

In this work we are specifically interested in psw for a single switch of the detuning from

∆on to ∆off (or the reverse) according to the smooth, error-function based profile

∆(t) =
∆off + ∆on

2
+

∆off −∆on

2
Erf

(
t− 1

2
tramp√
2σ

)
, (2.95)

shown in Fig. 2.10. The standard deviation σ characterizes the switching time of the pulse

and tramp [related to σ through (2.70)] specifies its truncation, as discussed in Sec. 2.3.4. We
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use this switching profile for both CZ and MOVE gates. The switching error for the single

switch profile defined in (2.95) (and shown in Fig. 2.10) can be expressed as

psw =

(
G

∆on

)2 ∣∣A∣∣2, (2.96)

where

A
(
∆on,∆off , σ

)
≡ ∆on

∫ tramp

0

∆̇

∆2
e−i

∫ t
0 ∆ dτ dt. (2.97)

The dimensionless quantity |A|2 is plotted in Fig. 2.11 for five instances of ∆on and

∆off relevant to this work. We note that psw evidently decreases as an exponential function

of σ, as expected for a nonadiabatic process. However, the dependence of |A|2 on σ for

large σ is somewhat intricate, a consequence of the error-function ramp shape. For very

large values of σ—not shown in Fig. 2.11—the decay of |A|2 becomes slower (the location

of the crossover depends on the details of the pulse truncation). Although an approximate

analytic expression for |A|2 can be derived for this large-σ limit expanding it iteratively with

integration-by-parts, the formula is not useful for the regimes of interest here.

We now turn to the application of the switching error formula (2.96) to the CZ gate. We

observe that the dominant intrinsic error is contributed by the leakage |11〉 → |02〉. It is

possible to understand this dominant |11〉 → |02〉 leakage error in a further simplified two-

channel model that only includes the channels |11〉 and |02〉. Given the strong interaction

of the bare |11〉 state with |20〉, it is not at all obvious that such a simplification is possible.

However, during most of the switching, the detuning between |11〉 and |20〉 is much larger

than their interaction strength
√

2gb, so they are effectively decoupled. (And while the qubit

sits at the ωon frequency, the Hamiltonian is time-independent.) Therefore a two-channel

description should be possible, although it will slightly overestimate the excitation of |02〉.

Numerical investigation confirms that the |20〉 channel can indeed be disregarded except for

the level repulsion it produces on the |11〉 state (see below), which is crucial for obtaining
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Figure 2.11: (Color online) |A|2 versus switching time σ for indicated values of ∆on and ∆off .

an accurate fidelity estimate.

In the bare {|11〉, |02〉} basis, (2.28) reduces to

H =

 ε
√

2gb

√
2gb ωb

+ const. (2.98)

At the beginning of the CZ pulse, the qubit frequency is 1.0 GHz above the bus. ε then

decreases to ωon ≈ ωb +η and returns to the detuned configuration in the manner of Fig. 2.9.

The total leakage to |02〉 can be estimated as twice—because there are two switching events,

which we assume to contribute incoherently—the value of psw. Therefore the error E2 intro-

duced in (2.58) is given by

E2 = 2psw. (2.99)
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To evaluate the switching error in this case, we use (2.96) with the parameter values

G =
√

2gb, (2.100)

∆on = η −
√

2gb, (2.101)

∆off = ωoff − ωb. (2.102)

The value of ∆on accounts for the level repulsion caused by the neglected |20〉 state, which

causes the |11〉 channel to shift downwards towards |02〉; this large effect is evident in Fig. 2.8.

[We ignore here a smaller repulsion by |02〉, which would lead to the addition of a small

positive correction to (2.101).] ∆off/2π is always 1.0 GHz for the gates and the required |A|2

values are obtained from Fig. 2.11.

The minimum fidelity estimate is, therefore,

F
(est)
|11〉 ≡ 1− E2 = 1− 2 psw. (2.103)

We find that (2.103) is a reliable predictor of the worst-case fidelity F|11〉 in QVN4 system

(discussed in the next section), confirming that the nonadiabatic switching error is the dom-

inant fidelity loss mechanism here. Although this error will always be present, it can be

exponentially suppressed by increasing the switching time.

Finally, we briefly comment on the nonadiabatic switching errors between the |01〉 and

|10〉 eigenstates, which we have argued to be subdominant to the excitation of |02〉, but

which naively are of the same order. There are two reasons why the |01〉 and |10〉 switching

errors are considerably smaller: First, the matrix element coupling |01〉 and |10〉 is a factor of
√

2 smaller than that between |11〉 and |02〉, and this factor gets squared in (2.96). And the

second—but quantativitely more important—reason is that while level repulsion considerably

enhances the |02〉 excitation [recall (2.101)], it (slightly) suppresses transitions between |01〉
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and |10〉.

We can estimate the switching errors between the |01〉 and |10〉 channels during a CZ

gate by using (2.96) with parameters

G = gb, (2.104)

∆on = η +
2g2

b

η
, (2.105)

and with ∆off/2π = 1 GHz as before. The expression (2.105) for ∆on accounts for the level

repulsion between |01〉 and |10〉, which suppresses the switching error, in contrast with the

strong enhancement indicated in (2.101).

2.3.7 Pulse shape errors

In Sec. 2.3.6 we discussed the intrinsic error of the qubit-resonator CZ gate—assuming an

optimal pulse shape—and identified its dominant source as a nonadiabatic switching error

E2. In this section we discuss and quantify the fidelity loss caused by pulse shape and

auxiliary z rotation errors. By a pulse shape error we mean that the correct functional

form (2.69) is seen by the qubit, but with values of the parameters ton and ωon that deviate

from the optimal values. It is possible to develop simple analytic models for these error

mechanisms (supported by numerical simulation) by noting that when the fidelity is very

close to unity, the different error mechanisms present contribute independently and can be

calculated separately. We then use these results to estimate the experimental pulse-control

precision required during the implementation of a given 99.9% or 99.99% CZ gate to keep

any accompanying pulse shape error less than the base 10−3 or 10−4 gate error.

The simplest situation to consider is that where the correct values of ton and ωon are used,

but where the local z rotation angles γk (k = 1, 2) applied experimentally deviate from their

optimal values by amounts ϕk � 1. We estimate the resulting fidelity loss by imagining that
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we have achieved a perfect CZ-class gate

U =



1 0 0 0

0 eiΘ2 0 0

0 0 eiΘ1 0

0 0 0 −ei(Θ1+Θ2)


, (2.106)

for some phase angles Θk, but then apply z rotation angles

γk = Θk + ϕk (2.107)

that have errors ϕk. From (2.7) we find that this leads to a leading order error E ≡ 1−Fave

given by

E =
ϕ2

1 + ϕ2
2

5
. (2.108)

Next we consider ton and ωon errors. An error in either ton or ωon has two consequences,

the first is to modify the accumulated phases Θk in (2.106), and the second is to cause

population and phase errors on the |11〉 channel. Therefore we consider two types of pulse

shape errors, the first where ton or ωon is changed with no compensating changes in the

auxiliary z rotation angles, and the second where the γk are reoptimized.

In the first case, in which the error is clearly the largest, the resulting error is dominated

by the z rotation angle error itself, which can be estimated from (2.108). Changing ton by an

amount δton, or ωon by an amount δωon, changes the accumulated phase of the qubit (recall

discussion of the qubit reference frame in Sec. 2.3.2) by

ϕ1 = (ωon − ωoff) δton + δωon ton, (2.109)
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and that of the resonator by

ϕ2 = 0. (2.110)

We note that δton and δωon can be positive or negative here, and that the total gate time

tgate is also (slightly) changed by δton. The additional accumulated phase (2.109) can be

regarded as a rotation angle error because, by assumption, it is not compensated by the

applied z rotations (hence the notation). The error angle ϕ2 is zero because of our choice

of the local clock/reference frame for a resonator. Therefore, an error in either ton or ωon

with no compensating adjustment of the auxiliary z rotation angles leads to a leading-order

fidelity loss of

E =
(ωoff − ωon)2

5
δt2on +

t2on

5
δω2

on. (2.111)

For an order-of-magnitude estimate it is sufficient to approximate ωon here by ωb and ton by

tsudden
on [see (2.72)], leading to the simpler estimate

E′ =
(ωoff − ωb)2

5
δt2on +

(tsudden
on )2

5
δω2

on. (2.112)

Next we consider the case where there is an error in ton or ωon, but the auxiliary z rotation

angles are optimal. Here the analysis closely follows that of Sec. 2.3.1, which is based on the

qubit-resonator model (2.28). In this situation the fidelity loss is dominated by deviations

from the ideal evolution

CZ |11〉 = −|11〉 (2.113)

of the |11〉 channel. Pulse shape errors will lead to both population and phase errors on the
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right-hand-side of (2.113). We therefore parameterize the nonideal CZ gate by

U = phase factor×



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −eiδ cos θ
2


. (2.114)

In (2.114) we have assumed perfect auxiliary z rotations and have neglected the subdominant

errors in the |00〉, |01〉, and |10〉 channels. The population error has been written in terms of

a rotation angle error θ, which will be interpreted (see below) as the deviation from 2π of the

rotation angle in the two-dimensional subspace spanned by |11〉 and |20〉. The expression

(2.114) does not include switching errors because we are evaluating the effect of pulse-shape

errors on an otherwise perfect, large-σ CZ gate. The average fidelity loss E ≡ 1 − Fave

associated with (2.114) is, to leading order,

E =
3

20
δ2 +

1

16
θ2. (2.115)

What remains is to express the controlled phase error δ and rotation error angle θ in terms

of δton and δωon. This involves only the two channels |11〉 and |20〉 of the qubit-resonator

model (2.28), and we will use the same small-σ approximation used in Sec. 2.3.1 for our

analysis of the |11〉 channel dynamics. In the {|11〉, |20〉} basis, (2.28) can be written as

H =

ε+ ωb

√
2gb

√
2gb 2ε− η

 . (2.116)
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The eigenstates of (2.116) are

|11〉 = cos
ζ

2
|11〉 − sin

ζ

2
|20〉, (2.117)

|20〉 = cos
ζ

2
|20〉+ sin

ζ

2
|11〉, (2.118)

where

ζ ≡ arctan

(
2
√

2gb

ε− ωon

)
, (2.119)

and the energies are

E11 = ε+ ωb +
ε− ωon

2
−

√(
ε− ωon

2

)2

+
(√

2gb

)2
, (2.120)

E20 = ε+ ωb +
ε− ωon

2
+

√(
ε− ωon

2

)2

+
(√

2gb

)2
. (2.121)

Here we have used the expression (2.30) for ωon, which is appropriate for the model (2.116).

The analysis below follows that of the |11〉 channel evolution given Sec. 2.3.1, except here

we introduce a timing error δton and a tuning error δωon. Starting in the strongly detuned

configuration with ε − ωon � gb in the eigenstate |11〉 ≈ |11〉, and quickly switching to

ε = ωon + δωon, leaves the system in the state

|11〉 = cos
ζon

2
|11〉+ sin

ζon

2
|20〉. (2.122)

Here ζon ≡ arctan(2
√

2gb/δωon), and the eigenstates in (2.122) are for ε = ωon + δωon. Note

that (2.122) reduces to (2.43) in the δωon → 0 limit. Evolution with ε fixed at ωon + δωon for

a time

2π

E20 − E11

=
π√(

δωon/2
)2

+
(√

2gb

)2
(2.123)

would implement a 2π rotation in the {|11〉, |20〉} subspace, returning to |11〉 with a phase
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shift that depends on δωon. We intentionally introduce a ton pulse shape error and instead

evolve for a time

t =
π√(

δωon/2
)2

+
(√

2gb

)2
+ δton, (2.124)

after which we detune and find the final state

− eiδ cos
θ

2

∣∣11
〉

+ phase factor×
√

Eθ
∣∣20
〉
≈ −eiδ cos

θ

2

∣∣11
〉

+ phase factor×
√

Eθ
∣∣20
〉
,

(2.125)

where

δ = −π δωon

2
√

2gb

(2.126)

and

Eθ ≡ sin2 θ

2
= 2g2

b δt
2
on. (2.127)

These expressions are valid to leading order in δωon or δton, neglecting cross terms. Here

Eθ is the probability of leakage to |20〉 resulting from a ton error, which, as discussed above,

causes a rotation error of angle θ. An alternative estimate for θ (and hence Eθ) is

θ ≈ δton

ton

× 2π, (2.128)

which also gives (2.127) [after using the sudden limit result (2.72) for ton]. Note that the

leakage error Eθ is independent of δωon (to this order), enabling the phase δ to be intentionally

adjusted by varying ωon only. Doing this generates (approximately) gates of the form



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei(π+δ)


, (2.129)
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for small δ, with alternative controlled phases [44]. Gates (approximately) of the form (2.129)

with arbitrary—not necessarily small—values of δ can be implemented by varying both ωon

and ton away from their optimal values.

Finally, it is interesting to use the above estimates to bound the magnitude of the allow-

able ton and ωon errors, such that the resulting pulse shape errors (2.115) are subdominant

to the 10−3 or 10−4 base gate error. This is done in Table 2.4. For example, a 99.9% CZ

gate with a ton error of 160 ps will have an additional intrinsic error of 10−3 (and a total

error of about 2× 10−3). Current experimental limitations on the control of ton and ωon are

considerably better than that required to suppress pulse shape errors below the 10−4 level.

Table 2.4: CZ pulse shape precision requirements. The bounds listed in the ton column assume
that this is the only type of pulse parameter inaccuracy present, with an (estimated) error given
in the first column, and that the auxiliary z rotation angles are reoptimized and implemented
perfectly. The ωon bounds are defined analogously. The error E is defined in (2.115).

E ton precision ωon precision
10−3 160 ps 4 MHz
10−4 50 ps 1 MHz

2.3.8 Controlled-σz gate between directly coupled qubits: A com-

parison

So far, the main focus of this thesis has been the CZ gate between a directly coupled qubit and

resonator. However many of our results—especially the error analysis—will also be relevant

for hardware designs incorporating pairs of directly coupled superconducting qubits, the

system originally considered by Strauch et al. [16]. We shall discuss the CZ gate between

directly coupled qubits later in Sec. 3.2.1 in the context of ancilla-assisted qubit measurement

and show the energy level diagram. Here we summarize the principal differences between the

qubit-bus CZ gate of Sec. 2.3.1 and the directly coupled qubit-qubit gate. For the latter case
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we assume qubits with anharmonic detunings η1 and η2 and a purely transverse (off-diagonal)

capacitive coupling with interaction strength g.

The first difference concerns a frequency asymmetry of the qubit-bus gate. Recall from

Sec. 2.3.1 that the CZ gate is implemented by decreasing the qubit frequency ε from a value

far above ωb to (approximately)

ε = ωb + η, (2.130)

where η > 0 is the qubit anharmonicity. By contrast, the qubit-qubit CZ gate can be

implemented either by decreasing the frequency ε1 of qubit 1 from a value far above that of

a second qubit with a (fixed) frequency ε2, until

ε1 = ε2 + η1, (2.131)

which is directly analogous to (2.130), or from below by increasing to

ε1 = ε2 − η2. (2.132)

The conditions (2.131) and (2.132) specify the crossings of the bare |11〉 state with |20〉 and

|02〉, respectively (in the basis |q1q2〉). The frequency asymmetry of the qubit-bus gate is

a consequence of the harmonic spectrum of the bus and can be understood from Fig. 2.8,

which shows that when |11〉 reaches the |02〉 crossing from below, |01〉 and |10〉 also become

degenerate [as expected from (2.132) when η2 → 0]. This would result in unwanted phase

shifts of the |01〉 and |10〉 channels, as well as large switching errors between them.

The second major difference between the qubit-bus and qubit-qubit gates is that the

additional anharmonicity in the latter case further suppresses the nonadiabatic switching

errors and leads to better gate performance. This can be understood from the analysis of

Sec. 2.3.6, noting that in the qubit-qubit case, adiabaticity of the |11〉 channel is protected
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by an energy gap of size η1 +η2−
√

2g, where g is the qubit-qubit interaction strength. Let’s

estimate the |11〉 → |02〉 switching error E2 for a qubit-qubit CZ gate at the upper frequency

(2.131), with η1 = η2 = 2π×300 MHz, g = 45 MHz, and tramp = 7 ns. In this application we

use formula (2.96) with parameter values

G =
√

2g, (2.133)

∆on = η1 + η2 −
√

2g, (2.134)

∆off = 2π × 1 GHz. (2.135)

We note from (2.134) that the anharmonicity suppressing the |11〉 → |02〉 switching error

is effectively doubled in the qubit-qubit system. With these parameters we obtain |A|2 =

5.8×10−6 and psw = 8.2×10−8.

Although the |11〉 → |02〉 switching error is greatly reduced in the qubit-qubit CZ gate,

the actual gate fidelity does not fully benefit from this reduction. This is because the

dominant intrinsic error in the qubit-qubit gate is the switching error E1 between |01〉 and

|10〉, or the reverse, which is subdominant in the qubit-bus case (see Sec. 2.3.6). In fact, the

|01〉 ↔ |10〉 switching error estimate also applies to the qubit-qubit system (with η1 = η2 =

2π×300 MHz, g = 45 MHz, and tramp = 7 ns), resulting in an estimated minumim fidelity of

F
(est)
min ≡ 1− E1 = 1− 2 psw = 99.991%. (2.136)
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2.4 Controlled-σz gate in QVN architecture 1

In this section, I describe QVN architecture in detail that has already been introduced briefly

in Sec. 2.3, and then discuss CZ gates between various elements of QVN. In this architecture,

superconducting qubits are capacitively coupled both to individual memory resonators as

well as a common bus, as illustrated in Fig. 2.7. The key feature of this architecture is that

information (data) is stored in memory resonators that are isolated by two detuned coupling

steps from the bus. Qubits are used to transfer information to and from the bus or entangle

with it, and to implement single-qubit operations, but are otherwise kept in their ground

states. No more than one qubit (attached to the same bus) is to be occupied at any time.

Such an approach significantly improves the effective on/off ratio without introducing the

added complexity of nonlinear tunable coupling circuitry. The spectral crowding problem of

the usual qubit-bus architecture is greatly reduced because the four-step coupling between

memory resonators is negligible. And an added benefit of the QVN approach is that the

longer coherence times of the memory elements reduce the overall decoherence rate of the

device. (In Ref. [42], the architecture we consider is referred to as the resonator-zero-qubit

architecture, but here we will follow the QVN terminology of [41].)

We, however, emphasize that the QVN architecture of Mariantoni et al. [41] is not, by

itself, capable of large-scale, fault-tolerant quantum computation, nor is it known how mul-

tiple QVN devices might be integrated into a scalable design. The problem of designing

scalable, fault-tolerant architectures for superconducting qubits is of great interest and im-

portance [1, 45], but is still in its infancy. We chose QVN as an example of multi-qubit

architecture in order to demonstrate the robustness of our CZ gate beyond a two-qubit or a

qubit-resonator device. We also expect the gate design approach discussed here to be appli-

1J. Ghosh, A. Galiautdinov, Z. Zhou, A. N. Korotkov, J. M. Martinis, and M. R. Geller, Physical Review
A 87, 022309 (2013) [Copyrighted material reprinted in this section as per transfer of copyright agreement
with the publisher].
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cable to future architecture designs incorporating qubits coupled to resonators, and perhaps

beyond.

Along with high-fidelity single-qubit rotations [10,46], quantum computing with the QVN

processor requires two additional types of operations. The first is state transfer between the

different physical components, which has to be performed frequently during a computation.

The simplest case of state transfer is between a qubit and its associated memory (or the

reverse). This case is investigated in Ref. [42], where two important observations are made:

First, in contrast with the usual SWAP or iSWAP operation, which must be able to simulta-

neously transfer quantum information in two directions, only unidirectional state transfers

are required in the QVN system. This is because adjacent qubits and resonators are—by

agreement—never simultaneously populated. Second, the phase of a transferred |1〉 state is

immaterial, as it can always be adjusted by future qubit z rotations [47,48]. These two sim-

plifications allow the resulting state transfer operation, called a MOVE gate, to be carried out

with extremely high intrinsic fidelity—perfectly for a truncated model—with a simple four-

parameter pulse profile. By intrinsic fidelity we mean the process fidelity (defined earlier)

in the absence of noise or decoherence. The need for four control parameters immediately

follows from the requirement that after a MOVE gate, the probability amplitudes must van-

ish on two device components, the component (q or m) the state is leaving, and the bus b.

Each zero imposes two real parameters, and no other probability amplitudes acquire weight

(in the truncated model). Fixing the phase of the MOVE gate, if desired, requires one ad-

ditional control parameter in the form of a local z rotational angle. State transfer between

a qubit and the bus (or the reverse) can be analyzed in the same way, although in this

case more pulse-shape parameters are required. In an n-qubit QVN processor (consisting of

n qubits, n memory resonators, and the bus), zero-amplitude conditions must be enforced

on the additional n − 1 qubits, leading to a total of 2(n + 1) pulse parameters, plus one z

rotation angle. This makes quasi-exact state transfer to and from the bus a considerably
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more challenging operation. Simpler three-parameter approximate transfers, however, can

still be implemented with very high fidelity, even when the coupling is strong.

2.4.1 QVN architecture

The QVNn processor consists of n superconducting qubits capacitively coupled to n memory

resonators and to a common bus resonator. Here we assume parameters appropriate either

for phase qubits [49] or transmon qubits [13, 50] with tunable transition frequencies. We

write the qubit angular frequencies as εi, with i = 1, · · · , n. These are the only controllable

parameters in the QVN Hamiltonian, as far as two-qubit operations are concerned. The

memory frequencies are written as ωmi, and the bus frequency is ωb. The (bare) frequencies

of all resonators are assumed here to be fixed.

Because we are interested in very high fidelities, a realistic model is required. However,

we have shown (in unpublished work) that the CZ performance is extremely robust with

respect to the model details, so we only report results for a simplified Hamiltonian; the

approximations used are discussed below. For the qubit-bus CZ simulations, the Hilbert

space is truncated to allow for up to three excitations. The CZ gate naively involves no more

than two excitations, so to properly account for leakage we include up to three. Therefore,

four-level qubits and resonators (which include the |3〉 states) are required in the model. The
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QVN Hamiltonian we use is

H =
n∑
i=1




0 0 0 0

0 εi 0 0

0 0 2εi − η 0

0 0 0 3εi − η′


qi

+


0 0 0 0

0 ωmi 0 0

0 0 2ωmi 0

0 0 0 3ωmi


mi

+gm Yqi ⊗ Ymi + gb Yqi ⊗ Yb



+


0 0 0 0

0 ωb 0 0

0 0 2ωb 0

0 0 0 3ωb


b

, (2.137)

excluding single-qubit terms for microwave pulses that are not used in this work. Here η

and η′ are qubit anharmonic detuning frequencies, gm and gb are the qubit-memory and

qubit-bus interation strengths, and

Y ≡



0 −i 0 0

i 0 −
√

2i 0

0
√

2i 0 −
√

3i

0 0
√

3i 0


. (2.138)

The matrices in (2.137) act nontrivially in the spaces indicated by their subscripts, and as

the identity otherwise. The matrix Y results from a harmonic oscillator approximation for

the qubit eigenfunctions. Factors of ~ are suppressed throughout.

The main approximations leading to (2.137) are the neglect of the ε-dependence of the

interaction strengths gm and gb, and the neglect of a small direct coupling between the

memories and bus [51]. We have verified that including these does not change the main

conclusions of this work. The ε-dependence of the anharmonicities η and η′, and small

anharmonic corrections to the interaction terms in (2.137), are also neglected.
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The parameter values we use in our simulations are provided in Table 2.3. We assume

η′ = 3η, which is appropriate for qubic anharmonicity. The value of the bus coupling gb is

chosen to give the shortest CZ gate time for a range of fidelities (discussed later in detail).

We simulate n = 4 qubits. The fidelities quoted in here are numerically exact for the model

(2.137); the rotating-wave approximation is not used.

Although the CZ and MOVE gates considered here do not involve microwave pulses, the

single-qubit gates are assumed to be implemented with microwaves in the usual manner at

the qubit frequency ωoff . This frequency is also used to define an experimental “rotating”

reference frame or local clock for each qubit: All qubit frequencies are defined relative to

ωoff [41], as discussed in Sec. 2.3.2.

2.4.2 System optimization for Controlled-σz gate

In this section we discuss an approach for choosing optimal QVNn device parameters. This

is a complex global optimization problem that we will solve in a simple but approximate way,

emphasizing the main ideas of the procedure instead of its most precise implementation.

First we consider resonator frequencies. The QVNn processor includes n memory res-

onators, with frequencies ωm1, ωm2, · · · . These need to be mutually detuned (to lift degen-

eracies), and for simplicity we space them by 100 MHz (a smaller value could be used). The

band of memory frequencies itself needs to be well detuned from the bus to keep the idle

error (to be discussed below) in check.

Because the qubit frequency during a qubit-bus CZ gate must approach the bus frequency

from above (Sec. 2.3.8), the bus frequency must be below the memory band. The choice

of bus frequency therefore determines the lowest transition frequency that needs to be ac-

cessible by a qubit. Specifically, the qubits will need to tune 500 MHz or so below the bus.

However, the minimum transition frequency may be constrained by qubit design (in addition

to other considerations). In the tunable-EJ transmon, for example, this minimum frequency
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depends on the qubit anharmonicity η. Here we will choose a minimum qubit frequency

and corresponding bus frequency appropriate for a transmon with 300 MHz anharmonicity.

This leads to our choice of 6.5 GHz for the bus frequency. Optimal resonator frequencies

for smaller η are unchanged, whereas for larger η they need to be rigidly shifted upward in

frequency. In particular, system frequencies for a 400 MHz transmon will be shifted upward

in frequency by about 2 GHz. Apart from this large but simple change, we expect the system

optimization results, such as gb values, to be valid for the 400 MHz case as well.

The frequency ωoff can be viewed as defining a boundary between MOVE and CZ gates, or

between consecutive MOVE gates. It is also natural to perform single-qubit operations with

microwave pulses at the qubit frequency ωoff . If ωoff is too low, the error of the (approximate

two-parameter) MOVE to/from memory gate becomes significant (this is determined by the

qubit-bus detuning because the dominant error is nonadiabatic leakage to the bus), whereas

if ωoff is too high the fidelity of the qubit-bus CZ degrades (because dε/dt increases). We find

that 7.5 GHz works well. At least 500 MHz is required between ωoff/2π and the memory band

to keep the MOVE errors (to/from the bus) under control. Thus we arrive at the memory

frequencies given in Table 2.3.

Having obtained prospective resonator frequencies, we turn to couplings. The most

frequently used gate is expected to be the MOVE to/from memory, which must be as fast as

possible. The gate time for this operation is approximately

π

2gm

+ tramp + 1 ns. (2.139)

The first term is the π rotation time, and the second and third are switching times (the

detuning ramp can be fast because the qubit is unoccupied). Choosing gm/2π = 100 MHz

makes the first term 2.5 ns. It might be possible to increase gm further, but suppresssing

the resulting idling error (see below) would require an even higher empty-qubit parking fre-
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quency. The value of tramp is determined by the desired MOVE gate fidelity. Because the

dominant error is nonadiabatic excitation of the bus, we can estimate it using our expression

(2.96) for the switching error psw, with G = gb, ∆on/2π = 1.0 GHz, and ∆off/2π = 1.8 GHz

(corresponding tom4, the worst case). These values depend on our initial resonator frequency

assignments. From Fig. 2.11 we obtain |A|2 = 0.03 (9.8×10−4) for a 1 ns (2 ns) ramp. Consid-

ering the largest (worst case) value for gb/2π of 60 MHz gives psw = 1.1×10−4 (3.5×10−6) for

a 1 ns (2 ns) ramp. Thus we conclude that the MOVE to/from memory can be done in about

5 ns if gm/2π = 100 MHz. (Here we assumed the simplest 2+1-parameter MOVE to/from

memory gate, having two pulse-shape parameters and one auxiliary z rotation angle. It is

also possible to implement this gate with even higher fidelity with 4+1 parameters [42].)

The bus coupling is found by the following “g-optimization” procedure: Consider the set

of discretized gb/2π values, varying from 10 to 100 MHz in steps of 1 MHz. For each value of

gb, calculate the minimum value of tramp and the associated tgate required to achieve a target

fidelity, say 99.9%. We do this by stepping through tramp values, estimating the fidelity using

(2.96) and (2.103) from Sec. 2.3.6, which is very efficient, then confirming through a full

optimization on QVN1. We then obtain, for each gb, the gate time of a 99.9% CZ gate, or

equivalently, the function

t
(99.9%)
gate

(
gb

)
. (2.140)

The function (2.140) gives the time required for a CZ gate with a given target fidelity as a

function of gb. Strict g-optimization requires choosing gb to minimize tgate, and this procedure

leads to the best performance in any given situation.

Having obtained prospective resonator frequencies and couplings, we choose the empty

qubit parking frequency ωpark to control the idle error

E =
(
ΩZZt

)2
n2, (2.141)
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where ΩZZ is the effective σz ⊗ σz coupling frequency between a memory resonator and the

bus, induced by their shared qubit [42]. The n-dependence in (2.141) assumes the worst

case. Assuming ωpark/2π = 10 GHz, gb/2π = 60 MHz (the worst case), and η/2π = 400 MHz

(also the worst case) leads to

ΩZZ

2π
= −0.881 kHz. (2.142)

It will be necessary to keep (2.141) less than the fault-tolerant threshold during a (potentially)

long error correction cycle. If we assume t = 1µs, the idle error in QVN4 is 4.9×10−4, which

is acceptable. Reducing the parked qubit frequency to 9.5 GHz (9.0 GHz) increases the idle

error to 3.8×10−3 (7.3×10−2).

We are now able to calculate the gate time of the MOVE to/from bus operation. The

gate time is approximately

π

2gb

+ tramp + 1 ns, (2.143)

where the first term is between 4 and 8 ns for the bus couplings considered in this work. As

before, tramp is determined by the desired gate fidelity. The dominant error is nonadiabatic

transition to memory, which we estimate using (2.96) with G = gm, ∆on/2π = 0.5 GHz (the

worst case), and ∆off/2π = 1.5 GHz. Note that this error is enhanced by the large value

of gm. From Fig. 2.11 we obtain |A|2 = 5.9×10−2 (1.6×10−2) for a 2 ns (3 ns) ramp. Then

psw = 2.4×10−4 (6.4×10−4) for a 2 ns (3 ns) ramp. Thus we conclude that the MOVE to/from

bus takes between 7 and 12 ns, depending on the actual value of gb and on the desired fidelity.

Finally, we confirm that the assumed qubit parameters are compatible with transmons.

In the large EJ/EC transmon regime, the qubit frequency ε and anharmonicity η are given

by [13]

ε =
√

8EJEC − EC (2.144)

and

η = EC. (2.145)
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We assume a split-junction flux-biased Cooper-pair box so that EJ is tunable [40]. (Note

that the tunable-EJ transmon is sensitive to flux noise, which will degrade T2.) Combining

(2.144) and (2.145) leads to the relation ε = η(
√

8EJ/EC−1) plotted in Fig. 2.12 for 300 and

400 MHz anharmonicity. Because EJ/EC needs to be above about 50 to effectively suppress

charge noise, we see that the 300 MHz transmon can have a transition frequency as small as

5.5 GHz, whereas the 400 MHz transmon has a minimum frequency of about 7.5 GHz. Our

choice of bus frequency is indeed consistent with the 300 MHz transmon, whereas ωb/2π and

the entire spectrum of device frequencies would have to be increased by about 2 GHz for the

400 MHz transmon.
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Figure 2.12: (Color online) Transition frequency for transmon with 300 and 400 MHz anhar-
monicity.

2.4.3 Controlled-σz between a qubit and bus

Here I discuss the performance of our CZ gate between a qubit and the bus resonator of QVN

architecture. We find that very high intrinsic fidelites—in the range of 99.9% to 99.99% and

with corresponding total gate times in the range of 17 to 23 ns—can indeed be obtained with
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a four-parameter gate. Two control parameters are pulse-shape parameters and two are

auxiliary local z rotation angles. We emphasize that only low-frequency pulses are required,

and that the number of control parameters does not depend on the number of qubits in the

QVN device. The results quoted above assume four phase or transmon qubits with 300 MHz

anharmonicity; other values of anharmonicity are considered below. The CZ gate referred to

here is between qubit q1 and the bus (see Fig. 2.7), not between a pair of qubits as is usually

considered.

Table 2.5: Optimal state-averaged process fidelity Fave for the Strauch CZ gate between qubit
q1 and the bus, in the QVN4 processor of Fig. 2.7. No decoherence or noise is included here.
Specifications for 99.9% and 99.99% gates are provided for three values of qubit anharmonicity η.
The parameters tramp and σ characterize the pulse switching time, and tgate is the total gate time
excluding auxiliary z rotations. F|11〉 is the minimum fidelity, which is also the fidelity of the |11〉
state if it is occupied initially. Data after double vertical lines give the nonadiabatic switching error
and minimum fidelity estimates; these quantities are defined and discussed in Sec. 2.3.6.

η/2π gb/2π gm/2π tsuddenon tramp σ ton tgate Fave[%] F|11〉[%] |A|2 psw F
(est)
|11〉 [%]

200 MHz 30 MHz 100 MHz 11.8 ns 11 ns 1.94 ns 15.8 ns 26.8 ns 99.901 99.613 2.1×10−2 1.5×10−3 99.692
16 ns 2.83 ns 18.3 ns 34.3 ns 99.992 99.975 2.8×10−3 2.0×10−4 99.960

300 MHz 45 MHz 100 MHz 7.9 ns 7 ns 1.24 ns 9.9 ns 16.9 ns 99.928 99.714 1.7×10−2 1.2×10−3 99.761
11 ns 1.94 ns 11.8 ns 22.8 ns 99.995 99.979 9.9×10−4 7.2×10−5 99.986

400 MHz 60 MHz 100 MHz 5.9 ns 5 ns 0.88 ns 7.0 ns 12.0 ns 99.950 99.804 1.4×10−2 1.0×10−3 99.799
7 ns 1.24 ns 7.8 ns 14.8 ns 99.991 99.966 2.1×10−3 1.5×10−4 99.970

The frequency diagram of the CZ gate between the qubit and bus is given in Fig. 2.13 and

our main results are given in Table 2.5. Here η is the qubit anharmonicity. The 200 MHz

results apply to the phase qubits of Ref. [41], while the larger anharmonicities might be

relevant for future implementations with transmons. The bus couplings gb are determined

by the “g optimization” procedure described in Sec. 2.4.2, which leads to the simple formula

gb

η
= 0.15, (2.146)

for the (approximately) optimal bus coupling. QVNn refers to a quantum von Neumann

processor with n qubits coupled to n memory resonators and a bus; the Hamiltonian for
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Figure 2.13: (Color online) Frequency diagram for the CZ gate between q1 and bus. This diagram
describes the gate of Table 2.5. The lines 1– 4 correspond to 4 memory resonators and horizontal
axis corresponds time.

such a device is discussed in Sec. 2.4.1. As indicated in Table 2.5, the memory resonators

are always strongly coupled to allow for fast (less than 5 ns) MOVE operations in and out of

memory. CZ fidelities well above 99.99% are also obtainable (see below). Table 2.5 shows that

the time required for a qubit-bus CZ gate with fixed intrinsic fidelity is inversely proportional

to the qubit anharmonicity, namely

t
(99.9%)
gate ≈ 5.2

η/2π
and t

(99.99%)
gate ≈ 6.7

η/2π
. (2.147)
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These expressions indicate that CZ gates with very high intrinsic fidelity can be implemented

in about 20 ns with existing superconducting qubits, a conclusion which applies not only to

QVNn but also to a wide range of similar resonator-based architectures. The intrinsic gate

(or process) fidelity Fave is the squared overlap of ideal and realized final states, averaged

over initial states (see Sec. 2.1). By intrinsic we mean that noise and decoherence are not

included in the gate simulation. The fidelity estimate is developed in Sec. 2.3.6. The results

given in Table 2.5 apply specifically to the n=4 processor, but similar results are expected

for other (not too large) values of n. Two strategies are critical for obtaining this high

performance: Separating two control parameters in the form of auxiliary local z rotations,

and defining the computational states in terms of interacting system eigenfunctions. These

strategies were used in Ref. [42] and are discussed in more detail below. The gate fidelities

achievable with a transmon-based QVN device are in line with that required for fault-tolerant

quantum computation with topological stabilizer codes [52, 53]. Qubit anharmonicity is an

important resource that will help us achieve that goal.

My main focus in this thesis has been the CZ gate between qubit q1 and the bus in the

QVN4 processor. Results for the other qubits are very similar, with the worst case being

q4, because the detuning to memory during the gate is slightly smaller. We find that the

intrinsic fidelity of the 99.9% CZ gate for the 300 MHz qubit given in Table 2.5 changes from

99.928% to 99.925% if qubit q4 is used instead of q1.

Higher fidelities are also possible with the pulse shape (2.69) if we increase the adiabatic-

ity. An example is provided in Table 2.6 for the 300 MHz qubit. For this design we did not

perform a separate gb optimization for this higher fidelity, but instead used the value from

Table 2.5 optimized for the lower fidelities.
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Table 2.6: Optimal QVN4 gate fidelity for a Strauch CZ gate between qubit q1 and the bus.

η/2π gb/2π gm/2π tramp σ tgate Fave

300 MHz 45 MHz 100 MHz 13 ns 2.30 ns 25.7 ns 99.999%

2.4.4 Controlled-σz between two qubits

In this section I explain how to perform a CZ gate between two qubits—or more precisely,

between two memories—in the QVN architecture. Such an operation is not elementary, as it

can be composed of the qubit-bus CZ combined with MOVE gates. (There are also proposals

for the direct implementation of a qubit-qubit CZ gate in a QVN device [54, 55].) Figure

2.14 shows the experimental protocol for implementing the gate CZ23 between qubits q2 and

q3, suppressing auxiliary z rotations, and with all data starting and ending in memory. This

mode diagram shows the time-dependence of all 9 device frequencies. The color indicates

whether the qubit or resonator would be in the ground state (blue) or possibly excited state

(red) in the weakly coupled limit. Modes are colored red if there is a finite occupation of the

|1〉 state (in the weakly coupled limit), for some choice of initial conditions. All qubits are

initially parked at the strongly detuned frequency of 10 GHz. Horizontal lines 1-4 represent

memories, and b is the bus. No red or red and blue lines with first-order or second-order

couplings cross (to avoid Landau-Zener transitions), and no more than one qubit is occupied

at any time (to avoid second-order qubit-qubit interactions mediated by the bus).

Beginning with the four memory registers in an arbitrary (possibly entangled) state, the

bus is loaded by a 5 ns MOVE gate from m3 → q3 followed by a 10 ns MOVE to the bus.

These are approximate gate times (time estimates for these gates are given in Sec. 2.4.2 and

a concrete example is provided below). Qubit q2 is then loaded and tuned to the frequency

ωon determined by optimization. This central portion of the gate is close but not exactly the
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Figure 2.14: (Color online) QVN4 mode diagram for the CZ23 gate. Gaussian filtering of the
pulse is not shown.

same as the qubit-bus CZ gate of Table 2.5 (See Fig. 2.13 for comparison).

We simulated the gate CZ23 shown in Fig. 2.14, using the 99.99% CZ of Table 2.5 for a

300 MHz qubit, and starting with the memory register in the GHZ state

|0000〉+ |1111〉√
2

. (2.148)

The MOVE gates also have fidelities around 99.99%. Note that Hidle and the associated
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computational basis states (interacting eigenfunctions of Hidle) are different at the beginning

and end of each MOVE gate. The total CZ23 gate time is

tgate = 55 ns, (2.149)

and the final state fidelity (overlap squared) is

F = 99.94%. (2.150)

In addition to the 23 ns qubit-bus CZ gate, there are four MOVE to/from memory operations,

each taking about 3.5 ns, and two MOVE to/from bus gates, each taking about 9 ns. There

are also local z rotations (not shown) between each gate.

A few remarks about the encouraging result (2.150) are in order: The seven elementary

gates making up the CZ23 operation are optimized individually to an error of about 10−4,

and then combined without any additional optimization of the composite pulse sequence

or control parameters, respecting the modularity required by scalable, gate-based quantum

computation. And the total intrinsic error E ≡ 1 − F = 6×10−4 implied by (2.150) is

consistent with a linear (incoherent) accumulation of errors with number of elementary steps

Einc
∼= 7× 10−4, but is not consistent with a quadratic (coherent) accumulation Ecoh

∼=

72×10−4.
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Chapter 3

Ancilla-assisted Qubit Measurement

Observations not only disturb what is to be measured, they produce it.

– Pascual Jordan

In this chapter, I explore the signature and consequences of leakage errors on ancilla-

assisted Pauli operator measurement in superconducting devices. We consider a realistic

coupled-qutrit model and simulate the repeated measurement of a single σz operator. Such

a measurement process consists of a single CZ and two pre and post Hadamard gates, and

in this work we parameterize the CZ gate discussed in the previous chapter. Typically, a

data-qubit leakage event manifests itself by producing a “noisy” ancilla qubit that randomly

reads |0〉 or |1〉 from cycle to cycle. Although the measurement operation is compromised,

the presence of the leakage event is apparent and detectable. However, there is also the pos-

sibility of a less typical but more dangerous type of leakage event, where the ancilla becomes

paralyzed, rendering it oblivious to data-qubit errors for many consecutive measurement cy-

cles and compromising the fault-tolerance. Certain dynamical phases associated with the

entangling gate determine which type of leakage event will occur in practice. Leakage er-

rors occur in most qubit realizations and our model and results are especially relevant for

stabilizer-based topological error-correcting codes.
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Topological quantum error-correcting codes (discussed in the next chapter), such as sur-

face and toric codes, are attracting attention because of their high error thresholds and

realistic designs that only require nearest-neighbor interactions [52, 53, 56–58]. While the

robustness of standard fault-tolerant topological codes to discrete Pauli errors is a subject

of active research [45, 59–61], the effect of leakage to non-computational states still remains

an open question and is relevant for most quantum computing architectures. Understanding

the effect of such leakage errors is important for superconducting qubits not only because

higher energy states |2〉 , |3〉 , . . . are present, as is the case with most other qubit realiza-

tions, but also because they can be utilized to implement two-qubit entangling operations

such as the Strauch CZ gate [16, 62]. One way to suppress the effects of leakage is to adopt

the topological cluster-state approach [52,58,63], where each qubit is repeatedly initialized,

operated on by gates, and measured: This approach systematically removes leakage errors

from all qubits in the array, at the cost of some additional operations. Another approach

might be to use a stabilizer-based topological error-correcting code for qudits, and theoretical

progress has been made in this direction [64–70].

In this chapter, however, we consider the standard stabilizer-based approach for qubits—

but applied to three-level qutrits—and regard any population transfer to the |2〉 state of the

ancilla or data qutrit as a potential error. We investigate the origin and signature of such

leakage errors for an ancilla-assisted measurement of the data qutrit, identify a potentially

dangerous regime where data errors are invisible to the ancilla, and discuss its consequences

for topological error correction. We describe the ideal measurement protocol in Sec. 3.1. In

Sec. 3.2 we describe our physical model and consider ancilla-assisted measurement in the

presence of decoherence. The non-ideal CZ gate is discussed in Sec. 3.3.1. Leakage errors

and ancilla paralysis are discussed in Sec. 3.3.2. We discuss the implications of our results

for the design of error-corrected superconducting quantum computers in Sec. 3.4.
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3.1 Measurement protocol

In this section, I describe the measurement circuit first and then discuss how an ancilla-

assisted measurement works ideally in absence of any error.

3.1.1 Measurement circuit

A |0 H H |0 H H |0 H H

D

. . .

Figure 3.1: Protocol for ancilla-assisted σz measurement.

Figure 3.1 shows the circuit for our protocol. Here “A” is the ancilla qubit and “D”

the data qubit. Each cycle (shown by dashed box) consists of a reset of the ancilla to the

|0〉 state, a Hadamard gate H on the ancilla, a CZ gate, and another Hadamard followed

by ancilla readout in the diagonal basis. The readout result is recorded and the cycle is

repeated indefinitely. The data qubit never gets measured or reset.

3.1.2 Ideal case

Let’s now review how this circuit 3.1 works in the ideal limit: Initially, the data qutrit D is

assumed to be in some pure qubit (not qutrit) state

|ψD〉 = a |0〉+ b |1〉 , (3.1)

while the ancilla A is initialized to |0〉. We perform the gate operations shown, record the

measurement outcome, reset the ancilla to |0〉, and repeat this cycle many times. Throughout

this work, the Hadamard gate (H) is assumed to be ideal and to act as the identity on the
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third level of the qutrit,

H ≡


1√
2

1√
2

0

1√
2
− 1√

2
0

0 0 1

 . (3.2)

The Hadamards and CZ combine to produce a CNOT gate that copies the data qubit to

the ancilla, but here we implement this CNOT with the gates shown in Fig. 3.1 because we

believe that the CZ gate can be implemented in superconducting architectures with very

high fidelity, as discussed in the last chapter [62]. For an initial D state (3.1), the state of

the system after the second H gate is, in the |AD〉 basis,

a |00〉+ b |11〉 . (3.3)

Thus, in the absence of any errors, the readout projects the data qubit into the observed

eigenstate of the ancilla. And once the data qubit is projected to a computational basis

state, it remains there forever.

3.2 Coupled qutrit model

In this section we describe our model, and for a warm-up, show how the ancilla-assisted

measurement protocol works with ideal gates, but in the presence of decoherence.
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Figure 3.2: (Color online) Energies of various levels, in the |AD〉 basis, as a function of ε1/2π.
Here ε2/2π = 6 GHz, the coupling strength is g/2π = 25 MHz, and η1/2π = η2/2π = 200 MHz.

3.2.1 Hamiltonian

The Hamiltonian for a pair of capacitively coupled transmon or phase qutrits is given by

H(t) =


0 0 0

0 ε1 0

0 0 2ε1 − η1


q1

+


0 0 0

0 ε2 0

0 0 2ε2 − η2


q2

+ g Y ⊗ Y, (3.4)
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where

Y ≡


0 −i 0

i 0 −i
√

2

0 i
√

2 0

 . (3.5)

Qutrit 1 is the ancilla qutrit and qutrit 2 is the data qutrit. In (3.5) we have assumed

harmonic qutrit eigenfunctions. The time-dependence of the Hamiltonian (3.4) is embedded

in the qubit frequencies ε1 and ε2; the Hadamard gates are implemented with microwaves

via terms not shown in (3.4). For the CZ gate protocol, we assume the frequency of the

data qubit to be fixed at 6 GHz, while the ancilla’s frequency is varied. The anharmonicities

ηi/2π are assumed to be equal, frequency-independent, and fixed at 200 MHz. Figure 3.2

shows the energies of several relevant eigenstates as a function of ε1, with ε2/2π = 6 GHz

and coupling strength g/2π = 25 MHz. Note that the only anticrossing at ε1 = ε2 + η1

(ε1/2π = 6.2 GHz in Fig. 3.2) is between the |11〉 and |20〉 channels; we use this anticrossing

for our CZ gate [16,62].

3.2.2 Parameterizing ideal Controlled-σz gate

The CZ gate, both ideal and non-ideal, is parameterized in this work via its generator. A

generator of any unitary matrix U is defined as a Hermitian matrix S such that U = eiS.

For a two-qutrit system, the generator of the ideal CZ gate is a Hermitian matrix S, whose

matrix representation in the basis

|AD〉 =
{
|00〉 , |01〉 , |02〉 , |10〉 , |11〉 , |12〉 , |20〉 , |21〉 , |22〉

}
(3.6)
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is

S =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 ξ1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 π 0 0 0 0

0 0 0 0 0 ξ2 0 0 0

0 0 0 0 0 0 π 0 0

0 0 0 0 0 0 0 ξ3 0

0 0 0 0 0 0 0 0 ξ4



. (3.7)

Note that within the computational subspace, eiS acts as a standard CZ gate, while non-

computational basis states acquire phases eiξi . We emphasize that any extension of an ideal

CZ gate to qutrits is dependent on the assumed model and gate protocol. For the Strauch

CZ gate, auxiliary σz rotations on the ancilla and data qubits nullify the phases acquired

by the |01〉 and |10〉 channels. Since we use the anticrossing between |11〉 and |20〉, they

acquire a phase of angle π. We assume that the gate is in the adiabatic regime, and that the

parameters ξi are dynamical phases, which can then be expressed as

ξ1 ≈ −
tgate∫
0

E02 dt = −
tgate∫
0

(2ε2 − η2) dt,

ξ2 ≈ −
tgate∫
0

E12 dt = −
tgate∫
0

(2ε2 − η2) dt−
tgate∫
0

ε1 dt,

ξ3 ≈ −
tgate∫
0

E21 dt = −
tgate∫
0

ε2 dt−
tgate∫
0

(2ε1 − η1) dt,

ξ4 ≈ −
tgate∫
0

E22 dt = −
tgate∫
0

(2ε2 − η2) dt−
tgate∫
0

(2ε1 − η1) dt.

(3.8)
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Here tgate is the operation time for the CZ gate (including auxiliary z rotations), and Eij

is the energy of eigenstate |ij〉, shown in Fig. 3.2. To keep our analysis general we do not

assume specific values for the ξi. They depend on the details of the CZ gate implementation

but remain fixed throughout a given experiment or simulation (unless one changes tgate or

the pulse shape). As we will explain below, the difference

θ ≡ ξ2 − ξ1 = −
∫ tgate

0

ε1 dt (3.9)

determines if the ancilla becomes paralyzed during a leakage event. Note that θ can be

varied during an experiment by changing the gate time.

3.2.3 Ancilla-assisted measurement with decoherence

As shown in Fig. 3.1, each measurement cycle consists of ancilla initialization, three gate

operations, and ancilla readout. Assuming ideal gates, the data qutrit after the first cycle is

projected to a computational |0〉 or |1〉 state depending on the observed state of the ancilla

[recall (3.3)]. In the absence of any errors, the measurement outcome of the ancilla remains

unaltered thereafter. However, the situation is different in the presence of decoherence.

In order to model the effects of decoherence on the measurement outcomes of the ancilla,

we assume that the readout and reset operations are instantaneous, while the Hadamard

and CZ gates take 10 and 25 ns respectively. We also assume that amplitude damping is the

only source of decoherence, in which case the single-qutrit Kraus matrices can be written as

E1 =


1 0 0

0
√

1− λ1 0

0 0
√

1− λ2

 , E2 =


0
√
λ1 0

0 0 0

0 0 0

 , E3 =


0 0

√
λ2

0 0 0

0 0 0

 . (3.10)
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For an operation of time duration ∆t,

λm = 1− e−m∆t/T1 . (3.11)

These Kraus operators [9] describe the time-evolution of a single-qutrit density matrix ρ as,

ρ→
3∑

k=1

EkρE
†
k. (3.12)
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Figure 3.3: (Color online) Simulated repeated readout of the ancilla qutrit in the presence of
amplitude damping. Single peaks, upward or downward, indicate errors on the ancilla. Data errors
result in steps; an example is shown near cycle 1000. In this simulation we assume T1 = 40µs,
T2 = 2T1, and tcycle = 45 ns.

We simulate the ancilla-assisted measurement protocol for an ideal CZ gate but in the

presence of decoherence, for 40,000 consecutive cycles, and Fig. 3.3 shows a typical outcome.

The duration tcycle of each complete measurement cycle is 45 ns (one CZ gate plus two

Hadamards). Initially, the data qutrit is in state |1〉, and a single downward peak denotes an

error on the ancilla. Near the 1000th cycle the data qutrit relaxes to |0〉 due to decoherence,

and once in the ground state it stays there forever. The remaining upward peaks are caused

by decoherence on the ancilla qutrit. Since the ancilla gets reset at the end of every cycle,
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such errors are manifested as single peaks. Note that if the initial state of the two-qutrit

system is inside the computational subspace, it does not leak to non-computational states

and therefore Fig. 3.3 is insensitive to the values of the ξi.

3.3 Non-ideal Controlled-σz gate

In this section, I first discuss how a non-ideal CZ gate is parameterized and then investigate

its action on the ancilla-assisted qubit measurement.

3.3.1 Parameterization of non-ideal Controlled-σz gate

Let us first give a brief review of the dominant intrinsic error mechanisms that are relevant

for the Strauch CZ gate [62]; the Hadamards are always assumed to be ideal [see (3.2)].

The CZ gate of Strauch et al. [16] is performed by using the anticrossing between the |11〉

and |20〉 states at ε1 = ε2 + η1. Although the other states are detuned from each other at

this anticrossing point, a small amount of nonadiabatic population transfer is unavoidable,

and these nonadiabatic excitations dominate the intrinsic gate errors. These errors can be

thought of as producing a second unitary matrix whose generator S ′ can be parameterized,
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in the basis (3.6), as

S ′ =



0 0 0 0 0 0 0 0 0

0 ζ1 0 iχ1e
iφ1 0 0 0 0 0

0 0 0 0 iχ2e
iφ2 0 0 0 0

0 −iχ1e
−iφ1 0 ζ2 0 0 0 0 0

0 0 −iχ2e
−iφ2 0 ζ3 0 iχ3e

iφ3 0 0

0 0 0 0 0 0 0 iχ4e
iφ4 0

0 0 0 0 −iχ3e
−iφ3 0 ζ4 0 0

0 0 0 0 0 −iχ4e
−iφ4 0 0 0

0 0 0 0 0 0 0 0 0



.

(3.13)

The complete non-ideal CZ gate is

UCZ = ei(S+S′), (3.14)

where S is the generator (3.7) of the ideal CZ gate. The parameters χi and ζi in (3.13) are

small, while the angles φi take arbitrary values between 0 and 2π. ζ1 and ζ2 parameterize

the errors occurring during pre and post σz rotations, and ζ3 and ζ4 denote the controlled-

phase error for the |11〉 and |20〉 channels. In our simulations we assume χi = ζi = 10−2

for all i = 1, . . . , 4. Because population transfer probability scales with |χi|2, our choice of

parameters bounds the intrinsic gate errors to about 10−4.

3.3.2 Signature of data qubit leakage and ancilla paralysis

The CZ gate (3.14) produces, on any |11〉 input component, a small amplitude of |02〉 (the

amount determined by χ2) and |20〉 (determined by χ3). A |20〉 component either results

in the possibility of an ancilla readout of |2〉—if the readout protocol distinguishes |1〉 and
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|2〉—or the possiblity of an isolated ancilla error if it does not. Neither case compromises

fault-tolerance. The parameter χ2 is responsible for data qubit leakage events. By a leakage

event we mean a near-unity population of the data |2〉 state.

The principal mechanism producing a leakage event is the abrupt, nonlinear transforma-

tion on the data qutrit induced by the ancilla measurement. We denote these transformations

by T0, T1, and T2, where the subscript corresponds to the ancilla readout result. Repeatedly

measuring the ancilla applies a random sequence of the T maps to the data qutrit.

For the model, gate implementation, and parameter values considered in this work, the

map T0 is primarily responsible for the observed leakage events. Although the general form

of T0 is quite complex, it is possible to construct a simple special case of it that exhibits the

essential features. To do this we choose simplified parameter values

ξ1 = π,

φi = 0,

ζi = 0,

χ3 = 0,

χ4 = 0, (3.15)

and calculate the action of the non-ideal measurement circuit on an arbitrary data qutrit

state

|ψD〉 = a|0〉+ b|1〉+ c|2〉. (3.16)
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We find (in the |AD〉 basis) that

a|00〉+ b|01〉+ c|02〉 → |0〉 ⊗
[(

a

2
+
a

2
cosχ1 +

b

2
sinχ1

)
|0〉

+

(
b

2
cosχ1 −

a

2
sinχ1 −

b

2
cosχ2 −

c

2
sinχ2

)
|1〉+

(
c

2
+
b

2
sinχ2

− c

2
cosχ2

)
|2〉
]

+ |1〉 ⊗
[(

a

2
− a

2
cosχ1 −

b

2
sinχ1

)
|0〉+

(
b

2
cosχ1

− a

2
sinχ1 +

b

2
cosχ2 +

c

2
sinχ2

)
|1〉 −

(
c

2
− b

2
sinχ2 +

c

2
cosχ2

)
|2〉
]
. (3.17)

An ancilla readout result of |0〉 then induces the map T0 given by

a→ a′ =
a+ a cosχ1 + b sinχ1√

N
,

b→ b′ =
b cosχ1 − a sinχ1 − b cosχ2 − c sinχ2√

N
,

c→ c′ =
c+ b sinχ2 − c cosχ2√

N
, (3.18)

where

N ≡
∣∣a+ a cosχ1 + b sinχ1

∣∣2 +
∣∣b cosχ1 − a sinχ1 − b cosχ2 − c sinχ2

∣∣2
+

∣∣c+ b sinχ2 − c cosχ2

∣∣2. (3.19)

Using (3.18) we find that in the limit χ1 = 0 and χ2 → 0 the data qutrit prepared in the |1〉

state transforms as

T0 |1〉 = |2〉. (3.20)

Our simulations confirm that the dominant mechanism for producing a leakage event is the

process (3.20).

Once leaked, the data qutrit remains in the |2〉 state (for many cycles) until it either

undergoes a nonadiabatic “reverse-leakage” transition or it relaxes back to the computational
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subspace. The behaviour of the ancilla during a leakage event depends on the values of ξ1

and ξ2 in (3.7). While the data qubit is in the |2〉 state, the two-qutrit system is restricted

to the subspace spanned by {
|02〉 , |12〉

}
, (3.21)

because the |22〉 state is decoupled and remains unoccupied. In this subspace, the CZ gate

(3.14) acts as

exp

[
i

 ξ1 0

0 ξ2

], (3.22)

and therefore performs a z rotation on the ancilla by an angle (3.9). The Hadamards in

Fig. 3.1 convert this to an x rotation [see (3.9)]

e−i(θ/2)σx (3.23)

acting on the initial ancilla state |0〉. Therefore, during a leakage event, while the data qubit

is locked in the |2〉 state, the state of the ancilla after every cycle is

cos θ
2
|0〉+ sin θ

2
|1〉, (3.24)

and upon measurement the ancilla qubit reads |0〉 with probability cos2(θ/2).

For example, if

θ mod π =
π

2
, (3.25)

we will observe random ancilla outcomes with equal probabilities for observing |0〉 and |1〉.

This type of leakage event is simple to detect (and possibly correct). However, if

θ mod π = 0, (3.26)
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then the ancilla will always read |0〉, cycle after cycle, giving no indication of the data error

and thereby compromising fault-tolerance. We refer to this dangerous phenomena as ancilla

paralysis.

Figure 3.4 shows the readout values generated from the sequential measurements of the

ancilla qubit for different choices of θ, including all error process contained in the non-ideal

CZ gate (3.14). While we observe random oscillations for larger values of θ, no such signature

is present for θ = 0. In order to quantify the paralysis of the ancilla we define a metric W ,

which is the average spacing—number of cycles—between consecutive readouts of |1〉. In the

absence of decoherence, we can estimate it [see (3.24)] as

W = csc2(θ/2), (3.27)

which agrees well with the numerical simulations.

The detectability of a leakage event depends on whether W is small enough to be observed

in the presence of a background value W ∗ resulting from decoherence (and possibly other

errors). For example, in the simulations of Fig. 3.4, which have T1 = 40 µs and T2 = 2T1,

the average spacing between ancilla |1〉 peaks away from the leakage events is 2381 cycles,

which is not too far from the crude theoretical estimate

W ∗ ≈ 2T1

tcycle

= 1778, (3.28)

using tcycle = 45 ns. The estimate in (3.28) can be derived from the Pauli twirling approx-

imation for qubit decoherence [45], which predicts σx and σy errors on the ancilla with

probability pX = pY = tcycle/4T1, leading to a total bit-flip probability pX + pY of tcycle/2T1.

We can use (3.27) to estimate the critical value of θ separating the region of dangerous ancilla
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Figure 3.4: (Color online) Simulated sequential measurements of the ancilla qubit. The readout
values |0〉 or |1〉 are shown as a function of measurement cycle number. Red rectangles signify
leakage events, where the data |2〉 state probability is close to unity. Random ancilla oscillations
during the leakage events are observed except when θ ≈ 0. Two values of W are given for each trace:
the theoretical value from (3.27) and a value, shown in parentheses, numerically computed from
the simulation. The simulations assume T1 = 40µs, T2 = 2T1, χi = ζi = 10−2 for all i = 1, . . . , 4,
and random values of phase angle parameters consistent with the indicated values of θ.

paralysis and that of ordinary leakage, namely

θ∗ = 2 csc−1
√
W ∗ ≈ 2 csc−1

(√
2T1

tcycle

)
, (3.29)

which is θ∗ = 0.04 in the simulations reported here. CZ gates with θ mod π < θ∗ are

susceptible to undetectable leakage events.
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3.4 Consequences for fault-tolerant quantum compu-

tation

We have studied the basic ancilla-assisted measurement circuit in the presence of leakage

errors, and identified a rare but potentially dangerous ancilla paralysis effect that could

compromise the error-detecting ability of a stabilizer measurement operation. Whether or

not undetectable paralysis will occur depends on the difference (3.9) of phase angles produced

by the CZ gate. Although fault-tolerance is compromised with either type of leakage event,

the ability to detect such an event might allow one to reset the affected qubit to recover from

it. We note that the value of θ∗ is likely to be larger in a multi-qubit Pauli measurement

because the cycle time is longer (the background value W ∗ is larger). Our results suggest

that leakage be addressed either at the hardware level, by periodically removing any |2〉

state probability, or by using an architecture such as the 2D topological cluster code, where

every qubit gets measured during the error-correction cycle. In addition, it is of course

advantageous to adjust θ mod π to a safe value near π/2.
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Chapter 4

Analysis of Fault-tolerant

Architectures 1

In all science, error precedes the truth, and it is better it should go first than

last.

– Hugh Walpole

In this chapter, I consider realistic, multi-parameter error models and investigate the

performance of the surface code for three possible fault-tolerant superconducting quantum

computer architectures. The amplitude and phase damping are mapped to a diagonal Pauli

“depolarization” channel via the Pauli Twirling Approximation, and the logical error rate

is obtained as a function of the qubit T1,2 and state preparation, gate, and readout errors.

A numerical Monte Carlo simulation is performed to obtain the logical error rates, and a

leading-order analytic formula is derived to estimate their behavior below threshold. Al-

though our approach is valid for large qubit arrays, we especially focus on first-generation

implementations with code distances (for surface code ‘distance’ is equivalent to the max-

1J. Ghosh, A. G. Fowler, and M. R. Geller, Physical Review A 86, 062318 (2012) [Copyrighted material
reprinted in this chapter as per transfer of copyright agreement with the publisher].
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imum number of data qubits along a horizontal line) d = 3 and d = 5, and show that

an experimental demonstration of a small-d topological quantum memory should be pos-

sible with existing superconducting devices; the d = 5 case already exhibits a pronounced

quantum memory enhancement with current transmon T1 values. Our results suggest that

scalable fault-tolerant quantum computation should be possible with existing superconduct-

ing devices.

We analyze these different architectures by fixing the intrinsic errors and gate times to

estimated realistic values and calculating the logical error rate as a function of the qubit

coherence time T1. For tunable transmon qubits, the T2 time is assumed to be equal to

T1, while for fixed-frequency transmons we assume that T2 = 2T1. The logical error rate is

calculated by mapping amplitude and phase damping to the asymmetric “depolarization”

channel (ADC), a single-qubit error channel that is diagonal in the Pauli basis. This is

explained in Sec. 4.1. The depolarization channel error model is widely used in the quantum

error correction literature, and the symmetric case allows simple comparison (especially of

fault-tolerant error-threshold values) between different error-correcting codes. The action of

the depolarization channel on stabilizer states can be efficiently simulated with a classical

computer, enabling the direct calculation of logical error rates for large distance codes, and

it accurately captures pure dephasing (but only approximately describes the decoherence

found in real superconducting qubits). In Sec. 4.2 we derive a leading-order analytic ex-

pression for the logical error rate that estimates the below-threshold scaling behavior (for

small code distances). Section 4.3 gives the approximate performance of the three fault-

tolerant architectures discussed above, using both the leading-order analytic formula and

classical Monte Carlo simulation. There are many ways to implement a surface code with

superconducting qubits, and the design details of any given fault-tolerant architecture will

surely be improved and optimized over time; in this sense the architectures considered here

mainly serve as examples of our approach and indicate that large-scale quantum computers
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should be possible with existing superconducting devices (assuming the simple error models

considered here).

4.1 Mapping decoherence to a diagonal Pauli channel

In this section we discuss the use of Pauli twirling [71–75] to approximately model qubit deco-

herence by an asymmetric depolarization channel, which—by the Gottesman-Knill theorem—

makes efficient classical Monte Carlo simulation possible.

4.1.1 Amplitude and phase damping

Quantum systems coupled to an environment undergo spontaneous dissipation of energy,

which is usually modeled by the amplitude damping (AD) channel. For a single qubit this

has the form

ρ→ EAD (ρ) = EAD
1 ρEAD†

1 + EAD
2 ρEAD†

2 , (4.1)

where

EAD
1 =

1 0

0
√

1− pAD

 and EAD
2 =

0
√
pAD

0 0

 . (4.2)

The EAD
m are Kraus matrices for the amplitude damping channel, and pAD can be interpreted

as the probability of a single photon emission from the qubit.

Phase damping (PD) or pure dephasing is a decoherence process generated by random

phase kicks on a single qubit. Assuming the phase kick angle is a Gaussian-distributed

random variable, the Kraus matrices for this process are

EPD
1 =

1 0

0
√

1− pPD

 and EPD
2 =

0 0

0
√
pPD

 . (4.3)
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The combined channel of amplitude and phase damping can also be described by a set

of three Kraus matrices,

ED
1 =

1 0

0
√

1− γ − λ

 =
1 +
√

1− γ − λ
2

I +
1−
√

1− γ − λ
2

σz,

ED
2 =

0
√
γ

0 0

 =

√
γ

2
σx +

i
√
γ

2
σy,

ED
3 =

0 0

0
√
λ

 =

√
λ

2
I−
√
λ

2
σz, (4.4)

where, γ ≡ pAD and λ ≡ (1 − pAD)pPD. Next we represent the parameters pAD and pPD in

terms of the single-qubit relaxation time T1 and dephasing time T2,

1− pAD = e−t/T1 , (4.5)√
(1− pAD) (1− pPD) = e−t/T2 . (4.6)

The combination of amplitude and phase damping on a single qubit transforms the density

matrix as,

ρ→ ED (ρ) =

1− ρ11e
−t/T1 ρ01 e

−t/T2

ρ∗01 e
−t/T2 ρ11e

−t/T1

 . (4.7)

4.1.2 Asymmetric depolarization channel

Classical simulation of Eq. (4.7) is inefficient for a multi-qubit system. For example, the

textbook architecture requires 25 physical qubits for d = 3 and 81 physical qubits for d=5.

The dimension of the Hilbert space is more than 33 million for d=3 and more than 1024 for

d= 5. This motivates one to construct a simplified error model which is tractable via some

efficient classical simulation.
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The Asymmetric Depolarization Channel (ADC) is such a model, where a decoherent

qubit is assumed to suffer from discrete Pauli X (bit-flip) errors, Z (phase flip) errors, or Y

(both):

EADC (ρ) = (1− pΣ)ρ+ pXXρX + pY Y ρY + pZZρZ, (4.8)

where pΣ ≡ pX + pY + pZ . A special case of (4.8) is the symmetric depolarization channel,

where pX = pY = pZ . The ADC is not sufficient to exactly capture the combined effects of

amplitude and phase damping, as no choice of pX , pY , and pZ lead to EADC (ρ) = ED (ρ).

However, the advantage of the ADC is that it can be efficiently simulated with a classical

computer. Therefore we construct an ADC that approximates (4.7).

4.1.3 Pauli twirling approximation

We approximate the combined amplitude damping and dephasing with an ADC via twirling

[71–75]. Twirling is used in quantum information to study the average effect of arbitrarily

general noise models via their mapping to more symmetric ones. Alternative approximate

approaches have also been recently proposed [76,77].

Using the Kraus matrices (4.4), we can rewrite (4.7) in terms of Pauli matrices as [74],

ED (ρ) =
2− γ + 2

√
1− γ − λ

4
IρI +

γ

4
XρX +

γ

4
Y ρY +

2− γ − 2
√

1− γ − λ
4

ZρZ

+
γ

4
IρZ +

γ

4
ZρI +

γ

4i
XρY − γ

4i
Y ρX. (4.9)

Twirling over the Pauli group removes the off-diagonal terms [72] from (4.9), leading to the

ADC (4.8) with error probabilities [74]

pX = pY =
1− e−t/T1

4
and pZ =

1− e−t/T2
2

− 1− e−t/T1
4

. (4.10)

If T2 = T1, the ADC reduces to the symmetric depolarization channel.
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We refer to the approximate reduction of any quantum channel to the ADC in this manner

as the Pauli twirling approximation (PTA). The PTA corresponds to expanding the Kraus

matrices in terms of Pauli matrices (and the identity), performing the Kraus summation,

and keeping only terms that are diagonal in the Pauli basis. Equivalently, only the diagonal

elements of the χ matrix in the Pauli basis are retained. Because of its simplicity and wide

applicability, we expect the PTA to be a good starting point for refinements that might

(approximately) account for the neglected non-diagonal terms.

4.2 Physical and logical errors

In this section, I discuss the assumptions of our error model and the logical error rate in

the surface code. I also describe the error correction cycle and review the concept of a

distance-dependent error threshold.

4.2.1 Error model

While superconducting qubits promise scalability, they suffer from various error mechanisms

caused by gate errors and decoherence [10, 42, 62, 78]. In order to model quantum noise

for various surface code architectures we assume that the errors are Markovian (noise affects

each individual gate operation independently) and uncorrelated (noise affects each individual

qubit separately).

With these assumptions we now describe the dominant error mechanisms relevant for our

purpose. We classify these mechanisms as follows:

1. Decoherence. We consider amplitude damping and dephasing as the dominant sources

of decoherence, characterized by the relaxation time T1 and dephasing time T2 of the

qubits. Decoherence is introduced here via the PTA as described above, which allows

us to express the single qubit X, Y , and Z error probabilities as (4.10), where t is the
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operation time. Similarly, with the assumption of uncorrelated errors, one can quantify

the error probabilities for various two qubit Pauli channels as

pIX = pIY = pXI = pY I = pX(1− pX − pY − pZ),

pXX = pXY = pY X = pY Y = pXpY ,

pXZ = pZX = pY Z = pZY = pXpZ ,

pIZ = pZI = pZ(1− pX − pY − pZ),

pZZ = pZpZ .

(4.11)

Also notice that our assumptions guarantee that any error (X, Y , or Z) in one of the

qubits for a two qubit operation can be retrieved when errors on another qubit are

traced out; for example pX = pXI + pXX + pXY + pXZ .

2. Unitary rotation error. Incorrect unitary operations give rise to a type of intrinsic

error. By intrinsic we mean an error not resulting from noise or decoherence. For

single qubit operations, such errors can always be diagonalized in Pauli X, Y or Z

basis. An estimate suggests that with the use of DRAG pulse shapes [10], these errors

are ignorable with respect to the intrinsic two-qubit gate errors . Two-qubit gate errors

depend on the architecture, and gate protocol.

3. Leakage. Leakage is an intrinsic error that populates a quantum state outside of the

computational subspace. As far as the single qubit operations are concerned it is

possible to suppress leakage below the level of any considerable effect (in comparison

to other dominant errors) using quantum control techniques. More quantitatively, it’s

possible to show that higher-order DRAG pulse is capable to suppress single qubit

leakage error below 10−8 (theoretically) in 5 ns for superconducting qubits [10].

In the present analysis, however, our primary focus is to investigate the effect of deco-

herence on logical error rates and therefore, we do not consider leakage or unitary errors
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rigorously. Instead, we compute the average intrinsic error of two-qubit gates for the three

architectures and distribute it equally to all possible Pauli channels, while decoherence is

treated via the PTA.

4.2.2 Logical error rate in the surface code

Figure 4.1: (Color online) A schematic diagram of distance-3 surface code is shown. Two possible
error chains, XL (purple and horizontal) and ZL (magenta and vertical), are displayed and various
terminologies used in here are illustrated. Syndrome Z operators are shown in green (labelled by
Z) and syndrome Xoperators are in yellow (labelled by X). An error chain starting and ending at
the same boundary is referred to as a ‘clasp’ and is shown in gray color.

In this section we discuss the use of the surface code as a single-logical-qubit quantum

memory and describe the error correction cycle. A distance 3 quantum memory is shown
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in Fig. 4.1. The open circles are data qubits and filled circles are ancillary qubits used for

syndrome measurements. A bit-flip on any data qubit results in an eigenvalue change of

adjacent Z stabilizers and a phase-flip does the same on neighboring X stabilizers. There-

fore, Pauli X(bit-flip), Y (bit and phase-flip) and Z (phase-flip) errors are detectable (and

therefore correctable) by sequential measurements of the stabilizer group generators, unless

a misidentification in error-detection leads to the formation of a chain starting from one

boundary and ending at another. Such error chains commute with all stabilizers but cannot

be written as a product of them and therefore remain undetected. The larger the array (or

higher the code distance) the lower the probability of formation of these error chains.

Figure 4.2: (Color online) A schematic diagram of a surface code error correction cycle is shown.
The red region (dark gray leftmost region) contains state preparation, the blue region (medium
gray middle part) contains four consecutive CNOT operations and the green region (light gray)
highlights the measurements of syndrome Z and X qubits.

Fig. 4.2 shows the steps that a single surface code error correction cycle is comprised

of. The first step is the initial state preparation for the syndrome qubits (state |0〉 for

syndrome Z and |+〉 for syndrome X). While there exists multiple approaches for a qubit

99



state preparation, we here assume that this is done via an ideal projective measurement

and a subsequent local rotation (σx or Hadamard), if necessary. The state preparation is

followed by four CNOT operations with four adjacent data qubits. The order of these CNOT

operations is important and in fact from the reference of a syndrome qubit the clockwise

and anti-clockwise orders do not work as they lead to unwanted entanglement among the

syndrome qubits [57]. We here adopt north-west-east-south protocol without any loss of

generality. Notice that while for syndrome Z measurements data qubits act as control qubits,

for syndrome X measurements data qubits are the targets. These four CNOT operations

are followed by measurements for the syndrome Z case and requires a Hadamard operation

before syndrome X qubits get measured. Such an error correction cycle can be shown to

be equivalent to measuring the four-qubit operators XXXX and ZZZZ, and are repeated

successively.

The data collected via the measurements of syndrome Z and X qubits at the end of

every cycle are stored in a classical computer. A classical minimum-weight perfect matching

algorithm is used to match (up to a homology) syndrome events to identify various error

chains [56,57]. The most likely logical errors occur when a misidentification by the classical

software leads to the formation of an error chain starting from one boundary and ending at

another of the same type. Such error chains are referred to as homologically nontrivial error

chains and are responsible for logical X or Z operations on the encoded logical qubit. The

logical error rate contributed by these error chains can be determined via classical Monte

Carlo simulations.

An analytical leading order estimate of the logical X or Z error rates for an asymmetric

depolarization channel error model in a surface code is also derived in Appendix A, and

its performance is compared against the numerical Monte Carlo simulation (as obtained in

Ref. [57]) in Fig. 4.3 . As observed in Refs. [79,80], there exists an additional mechanism for

logical errors originating from error propagation via CNOT operations—the diagonal error

100



10
−4

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

physical qubit error prob per timestep

lo
g

ic
a

l 
X

 e
rr

o
r 

p
ro

b
 p

e
r 

c
y
c
le

 

 

d=3 (simulation)

d=5 (simulation)

d=3 (analytical)

d=5 (analytical)

Figure 4.3: (Color online) Plot of analytic estimate of logical X error probability per cycle
vs. single physical qubit error probability per timestep. Solid lines denote numerical estimates
via Monte-Carlo simulation while dashed lines are obtained from our analytical formula given by
Eq. (A.6).

chains. We neglect such diagonal error chains in the derivation of our analytic formula and

therefore it underpredicts the logical error rates. However, a close correspondence between

our analytic estimate and numerical simulation is observed for small distance and below

threshold, as shown in Fig. 4.3, since the contributions from the diagonal error chains are

negligible in that regime. Thus the approximate analytic formula is sufficient for the regimes

of interest in this work. The convergence of the curves indicate that below the cross-over

point, surface code error correction helps as we go from d = 3 to d = 5 and above it hurts.

We define that transition point as the distance-dependent error threshold.
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4.3 Architecture performance

In this section we perform an analysis of the logical error rate with numerical Monte Carlo

simulation (using AUTOTUNE [63]), and also compare the result to our analytical esti-

mate for the three superconducting architectures. We emphasize that while the numerical

Monte-carlo simulation captures all possible error mechanisms, our analytical approach ne-

glects the diagonal error chains as described in Ref. [79, 80]; it therefore underpredicts the

numerical result. However, the analytic formula enables a simple and immediate extension

to alternative candidate architectures, error models, and parameter values. Table 4.1 shows

the parameters used to estimate the logical error rate for the three architectures. We assume

tunable transmons for the textbook and Helmer architectures and use two-qubit gate de-

signs that use this tunability. CNOT gates are performed via cross-resonance protocol in the

DiVincenzo architecture, which uses transmons operating at the flux sweet spot. Tunable

transmons have an additional source of dephasing and therefore we assume T2 = T1 for the

textbook and Helmer architectures. State preparation of syndrome qubits is assumed to

be done via projective measurement followed by a conditional local rotation (as shown in

Fig. 4.2) and therefore tQSP = tmeas + tloc in Table 4.1.

Table 4.1: Parameters assumed for the three fault-tolerant architectures.

architectures
quantity description textbook Helmer DiVincenzo

T1 qubit relaxation time 1-10 µs 1-10 µs 1-40 µs
T2 qubit dephasing time T1 T1 2T1

tQSP state preparation time 40 ns 40 ns 40 ns
tloc local rotation time 5 ns 5 ns 5 ns
tmeas measurement time 35 ns 35 ns 35 ns
tCNOT CNOT gate time 21 ns 20 ns 20 ns
tcycle time duration of a single cycle 164 ns 160 ns 400 ns
pintr leakage probability for CNOT 10−4 10−3 10−3

pmeas measurement error probability 10−2 10−2 10−2

pQSP state preparation error probability 10−2 10−2 10−2
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4.3.1 Approximate logical error rate

Here we construct an approximate analytic formula to estimate the logical error rates below

threshold. We use the assumptions of our error model and add the individual error proba-

bilities on data and syndrome qubits for each step to obtain the bit-flip and phase-flip error

probabilities per cycle as

pbf = pX(tcycle) + pY (tcycle) + 4
8pintr

15
,

qbf = pQSP + pX(tmiddle) + pY (tmiddle) + pmeas + 4
8pintr

15
,

ppf = pZ(tcycle) + pY (tcycle) + 4
8pintr

15
,

qpf = pQSP + pZ(2tloc + tmiddle) + pY (2tloc + tmiddle) + pmeas + 4
8pintr

15
,

(4.12)

where tmiddle ≡ tcycle−(tQSP +tloc +tmeas), pbf and qbf (ppf and qpf) are the bit-flip (phase-flip)

error rates per cycle in the data qubits and syndrome qubits, respectively. The functions p(t)

in (4.12) refer to the expressions (4.10) evaluated with operation time t. Furthermore, tQSP

is the time required to complete the initial state preparation for syndrome qubits, and pQSP

is the error probability that a wrong state is prepared. pintr is the intrinsic error of a CNOT

gate averaged over the Hilbert space of all input states, and pmeas is the error probability

that a wrong eigenvalue is reported in the readout process. Note that the intrinsic gate error

(described by pintr) is assumed to be equally distributed over all 15 two-qubit Pauli errors

and therefore the probability of a bit flip (occurs with X or Y errors) or phase flip (occurs

with Z or Y errors) of any qubit during CNOT due to the intrinsic error is 8pintr/15. When

we add each probability we are ignoring all higher-order contributions and also the coherence

of these error mechanisms (although our numerical simulation takes the higher-order effects

into account). We use these bit and phase flip probabilities in Eq. (A.6) and Eq. (A.7) of
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Appendix A to obtain analytical estimates of logical X and Z error rates.

4.3.2 Textbook architecture

Figure 4.4: (Color online) Layout of the distance-3 surface code considered here. Open circles
denote data qubits, and light green (dark blue) filled circles denote X-type (Z-type) syndrome
qubits. The dashed lines denote tunable qubit-qubit coupling. We refer to this hardware design as
the textbook architecture.

The textbook architecture consists of a two-dimensional square lattice (as shown in

Fig. 4.4) of superconducting qubits—tunable transmons—with nearest-neighbor tunable cou-

plings having infinite on-off ratio. The CNOT operations in this architecture are performed

using the protocol discussed in Ref. [62]. We assume that the idle data qubit frequencies

are 6 GHz and syndrome qubit frequencies are 8 GHz. The optimal parameters for a CNOT

operation, shown in Table B.1, are determined in Appendix B by modeling amplitude and

phase damping. As mentioned earlier, T1 = T2 is assumed for tunable transmons, as they

have an additional source of dephasing that degrades their T2.
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Figure 4.5: (Color online) Logical X and Z error rate per cycle is shown as a function of coherence
time T1 for the textbook architecture. Plots for d = 3 are shown in blue and those for d = 5 are
shown in red.

We use Eq. (4.12) along with Eq. (A.6) and Eq. (A.7) to compute the logical X and

Z error rates (PXL and PZL) for the textbook architecture. For the numerical Monte Carlo

simulation, we use AUTOTUNE [63] to simulate the circuit shown in Fig. 4.2 for every

syndrome qubit.

In Fig. 4.5 we show the graphs (both analytical and numerical) of the logical X and Z

error probabilities per cycle with d = 3 and d = 5 codes, versus the relaxation time T1. Note

that for d = 3 our analytic formula closely reproduces the numerical simulation, while for

d = 5 it underpredicts as we expect. From the numerical plots we observe that the threshold

is at ≈ 2.6 µs, where all other parameters are kept fixed as listed in Table 4.1. This result

signifies that if we construct this architecture with qubits having T1 (or T2) more than ≈ 2.6

µs, then surface code error correction helps as we increase the distance from d = 3 to d = 5;

otherwise it hurts.
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4.3.3 Helmer architecture

Figure 4.6: (Color online) Schematic diagram of the distance-3 Helmer architecture. The circles
represent superconducting qubits, with “idle” frequencies indicated by their colors. The horizontal
and vertical magenta (gray) rectangles are resonators. All horizontal (vertical) resonators have the
same frequency.

In this section we discuss the architecture proposed by Helmer et al. [81], where su-

perconducting qubits are arranged in a two-dimensional square lattice and each qubit is

coupled to one horizontal and one vertical cavity as shown in Fig. 4.6. The rectangular

blocks (horizontal and vertical) are cavities, circles represent qubits and the colors denote

their idle (between gate) frequencies. As pointed out in Ref. [81], the minimum frequency

range required to allocate the frequencies of all qubits in this architecture is proportional to

square root of the number of qubits. While this architecture is not scalable, it is suitable for

implementing the distance 3 and 5 surface code, which is a main focus here.

The CNOT gates are performed between a pair of adjacent qubits by tuning them into

mutual resonance and waiting for a while somewhere near cavity frequency and thereby
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utilizing the effective flip-flop interaction between qubits. The waiting time for this gate is

inversely proportional to the magnitude of the effective flip-flop interaction strength and for

parameters used in Ref. [81] we estimate tCNOT ≈ 20 ns for this protocol. The dominant

source of intrinsic errors for such a CNOT emerges from the higher-order Landau-Zener

transitions during tuning and detuning and are estimated to be in the order of 10−3 [81]. As

specified earlier, the parallel CNOT operations involving the same resonator also cost fidelity

due to the higher-order couplings in this architecture. However, in the low distance limit

we assume that the total intrinsic error is bound by the fixed (distance-independent) value

mentioned above. These parameters are shown in Table 4.1 and used to estimate the logical

error probability per cycle for this architecture.

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

T
1
 (µs)

lo
g

ic
a

l 
X

 e
rr

o
r 

ra
te

 p
e

r 
c
y
c
le

 P
X

L

 

 

d=3 (simulation)

d=5 (simulation)

d=3 (analytical)

d=5 (analytical)

(a)

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

T
1
 (µs)

lo
g

ic
a

l 
Z

 e
rr

o
r 

ra
te

 p
e

r 
c
y
c
le

 P
Z

L

 

 

d=3 (simulation)

d=5 (simulation)

d=3 (analytical)

d=5 (analytical)

(b)

Figure 4.7: (Color online) Logical X and Z error rate per cycle is shown as a function of coherence
time T1 for the Helmer architecture. Plots for d = 3 are shown in blue and those for d = 5 are
shown in red.

The bit-flip and phase-flip error probabilities per cycle for data and syndrome qubits in

this architecture are given by (4.12) with tcycle = 160 ns and tmiddle = (4 × 20) ns = 80 ns.

With a similar analysis we obtain Fig. 4.7, which shows the plots of logical Xand Z error
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probabilities per cycle for d = 3 and 5 error correction with respect to T1, and we observe

that the threshold is at ≈ 2.8 µs.

4.3.4 DiVincenzo architecture

Figure 4.8: (Color online) Schematic diagram of the architecture discussed by DiVincenzo [1] for
code distance d= 3. The filled circles with boundaries represent qubits, squares with boundaries
represent resonators, and colors of both denote their fixed frequencies. The unbounded circles
are for the eye and indicate whether a given block is for data (dark gray), X-type syndrome (light
green), or Z-type syndrome (blue). A possible frequency allocation for all the components is shown.

Here we analyze the architecture (shown in Fig. 4.8) proposed by DiVincenzo [1], in

which each qubit is dispersively coupled to two resonators, while each resonator couples four

such qubits. In this architecture every data or syndrome qubit consists of four physical

qubits where one of them is primary and the remaining three act as ancillary qubits. The

CNOT operations in this architecture are performed via the virtual cross resonance protocol

where qubits always remain dispersively coupled to the resonators while microwaves drive
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Table 4.2: Time duration for each step in the error-correction cycle for DiVincenzo architecture.

operation time duration
state preparation 40 ns

first CNOT (north) 100 ns
second CNOT (west) 60 ns
third CNOT (east) 60 ns

fourth CNOT (south) 100 ns
local rotation plus readout 40 ns

the population transition between two qubits [27, 29, 31]. Notice that this architecture is

fully scalable and the frequency allocation does not depend on the number of qubits.

We first estimate the time required to complete a single surface code cycle in this archi-

tecture. As mentioned earlier, for each block one out of four qubits acts as a principal qubit

and without loss of generality we assume the eastern qubit to be the principal one for every

block. Table 4.2 shows the time required for each individual step in this architecture. The

state preparation and read out takes 40 and 35 ns, respectively, as for previous architectures.

The first CNOT is performed between a syndrome block and its north data qubit block and

this is performed by doing a CNOT between the eastern qubit of the syndrome block and the

western qubit of the data block. This CNOT must be accompanied by pre- and post-SWAP

operations in the data block where the quantum state of the eastern qubit is transferred to

the western one. As discussed, the CNOT operations are performed via the cross-resonance

protocol and we assume the gate time for such a CNOT to be ≈ 20 ns [27]. SWAP operations

between two qubits coupled via resonator is also assumed to be performed in 20 ns. The

intrinsic error pintr for such CNOT gates is estimated to be in the order of 10−3 [31]. These

results give us the time durations required for each step in the error correction cycle, shown

in Table 4.2. These estimate the duration of a single cycle in this architecture to be 400 ns

long.
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Following the same argument as in the textbook architecture and using (4.12) for the bit-

flip and phase-flip error probabilities with tcycle = 400 ns and tmiddle = (100 + 60 + 60 + 100)

ns = 320 ns, we compute logical X and Z error rates. Fig. 4.9 shows the total logical X

and Z error probabilities per cycle for d = 3 and 5. Note that the condition, T2 = 2T1, leads

to pX + pY ≈ 2(pZ + pY ) (assuming T1,2 � tcycle), which means that the bit-flip error rate

is almost twice as large as the phase-flip error rate. Since, the logical X error rate mostly

depends on bit-flip probability and logical Z on phase-flip, we expect PX > PZ for this

case. This asymmetry between logical X and Z error rates imply a larger error threshold for

logical X error in comparison to logical Z. We observe from our numerical simulation that

logical Z errors can be suppressed if T1 > 5 µs, while in order to suppress logical X errors

we need T1 > 10 µs, which is consistent with the above argument.
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Figure 4.9: (Color online) Logical X and Z error rate per cycle is shown as a function of coherence
time T1 for the DiVincenzo architecture. Plots for d = 3 are shown in blue and those for d = 5 are
shown in red.
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4.3.5 Other possible architectures

We also discuss some other possible architectures based on fixed coupling elements, as shown

in Fig. 4.10. As per our convention, the squares denote resonators, circles denote qubits, and

solid lines denote fixed couplings. For gate protocols (CNOT or SWAP) that require tuning

and detuning qubits in and out of resonance, the greatest challenge is the frequency allocation

such that first-order Landau-Zener transitions can be avoided. We observe that with DC

control-based gate protocols [16,62], none of these architectures can avoid first order Landau-

Zener transitions. This fact is an inherent property of the topology of these architectures.

However, we note that with microwave-control-based gate protocols (for example, cross-

resonance), these unwanted transitions can be avoided.

The crucial role of the Landau-Zener transition on the error mechanisms for these archi-

tectures motivates us to estimate this error: For any two level system Landau-Zener formula

predicts the diabatic transition probability as

PLZ = exp

(
−2π

g2

~|ε̇(t∗)|

)
, (4.13)

where g is the coupling between the levels, ε(t) is the time-dependent energy level separation

and t∗ is the time when the levels are in resonance. Assuming parameters relevant for

superconducting architectures (g ≈ 45 MHz and ε̇(t∗) ≈ 2 GHz/ns), we obtain a Landau-

Zener transition error 1 − PLZ of about 4%. This error is unacceptably large. We do

not attempt here to perform a more quantitative analysis of logical error rate for these

architectures. However, we emphasize that while microwave control-based gate protocols

may prove to be useful for these cases, such gate operations have not yet been analyzed in

the context of these designs.
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(a) (b)

(c) (d)

Figure 4.10: (Color online) Various possible fixed coupling-based architectures are shown for d=3
surface code. The circles denote qubits, squares denote resonators and various colors (grayscales)
denote a possible frequency allocation. (a) An architecture where superconducting qubits are
arranged in a two-dimensional square lattice each coupled to its nearest neighbor with fixed couplers.
(b) An architecture where superconducting qubits are used for data qubits and resonators for
syndrome qubits coupled via fixed couplers. Each resonator is also coupled to another qubit required
for read out. (c) Same as architecture (b) except for the fact that each qubit is also coupled to
another resonator used as its memory. (d) In this architecture each qubit in a two-dimensional
square lattice is coupled to its nearest neighbor via a resonator.

4.4 Summary

Table 4.3 summarizes our main results of this analysis. It should be emphasized in this

context that the T1 of the current state-of-the-art Xmon qubit is ∼ 44 µs [14]. So, our

results suggest that the coherence times of the recent superconducting qubits are in fact

good enough for the fault-tolerant quantum computing within the error model considered
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Table 4.3: Fault-tolerant T1 thresholds for the three architectures studied in this work.

T1 threshold
architecture logical X error logical Z error

textbook 2.6 µs 2.6 µs
Helmer 2.8 µs 2.8 µs

DiVincenzo 10 µs 5 µs

in this work. The operation time requirements for qubit state preparation and readout are,

however, yet to be achieved experimentally to the accuracy assumed in this chapter.
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Chapter 5

Conclusion

Education never ends, Watson. It is a series of lessons, with the greatest for

the last.

– Sir Arthur Conan Doyle

The main focus of this thesis is the design of a high-fidelity two-qubit CZ gate and an

analysis of some existing superconducting fault-tolerant architectures of a quantum com-

puter.

We have investigated the problem of CZ gate design for a qubit-resonator model as well

as for the superconducting QVN architecture based on a realistic, two-parameter filtered

rectangular pulse. We observe that the use of interacting eigenfunctions as computational

basis states, and the use of auxiliary z rotations on the qubits and bus are critical to obtaining

this high performance. We also find that our pulse shape correctly captures the relevant pulse

degrees-of-freedom for fidelities up to about 99.99%. One can also consider more complex

pulse shapes with many control parameters, which can achieve nearly perfect intrinsic fidelity

in a time tgate (depending on gb) significantly shorter than obtained with pulse shape (2.69).

Egger et al. [55] have recently investigated this optimal control approach (using the gradient

pulse shape engineering method of Khaneja et al. [82]), and have obtained about a factor of
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two speedup for a qubit-qubit CZ gate similar to that of Sec. 2.4.4. This approach clearly

warrants further investigation and experimental implementation. We did not include the

effects of decoherence (or flux noise) in this work. However, an order-of-magnitude estimate

of the T1 decay error E ≈ tgate/T1 suggests that it should be possible to demonstrate a

99.9% CZ gate with existing transmon qubits, which would be an important step towards

the development of fault-tolerant quantum computation.

We have also investigated the fault-tolerance of three superconducting surface code im-

plementations. While the coherence time has been improving over the past few years for

superconducting qubits, we discuss here the minimum coherence time required to achieve

error correction. The logical error rate for d = 3 and 5 is computed as a function of qubit

coherence time and the threshold is found to be dependent on the architecture, error model,

and assumed gate protocol. These error thresholds are within reach of current state-of-

the-art superconducting circuit designs. The operation time requirements for qubit state

preparation and readout are, however, yet to be achieved experimentally to the accuracy

assumed in this work. Our analysis can be extended to the future surface code architectures.

As mentioned earlier, the effect of decoherence on the logical error rate is a primary focus in

this work, and our error models neglect various higher-order and unintended stray couplings

between qubits. Exploring the effect of these factors is a possible direction of future research.
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Appendix A

Derivation of Approximate Logical

Error Rate 1

In this section we derive the logical error per qubit per cycle as a function of the single

qubit error rates, to leading order. Our derivation here does not include the “diagonal” error

propagation via CNOT gates [79, 80] and therefore underestimates the logical error rates.

Logical error rates for X and Z errors per cycle (PXL and PZL respectively) are defined as

the probability of formation of an X or Z error chain in the surface at the end of a single

cycle. We consider the logical X error first, and the expression for the logical Z error follows

from a similar combinatorial argument. Suppose pbf and qbf are bit-flip error probabilities

(per cycle) in the data and syndrome qubits, respectively. The dominant error mechanism

emerges from the fact that (d+ 1)/2 errors either get misidentified as (d− 1)/2 errors (with

100% probability) or as a different arrangement of (d + 1)/2 errors (with 50% probability),

thereby producing an error chain after attempting error correction. Such a process can

happen in three ways.

Case 1. The most natural error chain happens when there are (d+1)/2 data-qubit bit-flip

1J. Ghosh, A. G. Fowler, and M. R. Geller, Physical Review A 86, 062318 (2012) [Copyrighted material
reprinted in this chapter as per transfer of copyright agreement with the publisher].
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errors in a single row of a distance-d surface. These (d+ 1)/2 error locations can be chosen

out of d locations in
(
d
d+1
2

)
ways, and such an error chain may occur in any one of the d rows,

leading to

P
(1)
XL = d

(
d
d+1

2

)
p
d+1
2

bf . (A.1)

Note that the chance of misidentification of these (d + 1)/2 errors is 100% for this case

because the classical error detection software is based on minimal-weight perfect matching.

This expression was previously derived in Ref. [57].

Case 2. In this case (d+ 1)/2 errors occur in two consecutive rows, as shown in Fig. 4.1.

We refer to such an error chain as a ‘broken’ error chain and call the point where the chain

changes its row as the ‘breaking point’ (shown in Fig. 4.1). In order to estimate this case

correctly one needs additional care with error-chains starting from one boundary and ending

at the same boundary in a different row. We refer to such an error chain as a ‘clasp’ (shown in

Fig. 4.1). Notice that clasps are homologically trivial and therefore should not be considered

as a source of logical error. In order not to count these clasps, we classify this case into

two mutually exclusive and exhaustive (to leading order) subcases: i〉 when errors occur

in horizontal links of a surface code lattice and ii〉 when there are no errors on horizontal

links. Also, observe that chains with errors in more than one horizontal links contribute to a

higher-order process and are therefore excluded from our leading order analysis. If we think

that the horizontal link with error divides a row into shorter and longer arms (also shown in

Fig. 4.1), then for subcase i, the number of ways an error chain is formed (W1) is constrained

by the condition that all sites of the shorter side cannot be filled with errors for any error

chain since in that subcase one would be constructing a clasp. Satisfying this condition, for
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a given orientation and a specific pair of adjacent rows, we obtain,

W1 = (d− 1)

(
d
d−1

2

)
︸ ︷︷ ︸
all possible chains

− 2

d−1
2∑

r=1

(
d− r
d−1

2
− r

)
︸ ︷︷ ︸

clasps

=
d2 − 1

d+ 3

(
d
d−1

2

)
. (A.2)

For subcase ii all the single physical qubit errors are distributed among vertical links in two

adjacent rows. In this subcase, for a given distribution of single qubit errors, in order not to

overcount the homotopic error chains one needs to adopt a convention to place the breaking

point. Without loss of any generality, we adopt the convention that the breaking point for

this subcase is always placed right next to the rightmost error on the lower arm. Such a

convention prevents overcounting of homotopic error chains. The remaining condition one

needs to satisfy for this subcase is not to place all single qubit errors on the longer arm

of the error chain. This condition prevents us from overcounting case 1. Satisfying these

conditions, we find the number of ways an error chain is formed (W2) for subcase ii as,

W2 = (d− 1)

(
d− 1
d−1

2

)
︸ ︷︷ ︸

all possible chains

−
d+1
2∑

r=2

(
d− r
d−1

2

)
︸ ︷︷ ︸
Case-1 chains

=
d− 1

2

(
d
d−1

2

)
. (A.3)

Combining these results we obtain the logical X error probability per cycle for case 2 as

P
(2)
XL =

1

2
2(d− 1)

[
W1 +W2

]
p
d+1
2

bf = (d− 1)
(3d+ 5)(d− 1)

2(d+ 3)

(
d
d−1

2

)
p
d+1
2

bf . (A.4)

In the first term, the factor of 2 comes from the orientation (bottom-left to top-right or top-

left to bottom-right) of the error chain, the factor of 1/2 denotes the fact that the classical

error detection software misidentifies such an error chain with a 50% probability, and d− 1

corresponds to the number of adjacent pair of rows in a distance-d code.

Case 3. The third process that contributes to the same order involves error chains weaving
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Figure A.1: (Color online) Data qubits (red filled circles) of a single row in a distance-5 surface
code is shown in two subsequent time slices. The blue filled circles denote measurement locations.
An error in any measurement location generates two adjacent timelike syndrome events.

through surfaces in different time slices. In Fig. A.1 we show a single row of a distance-5

surface in two subsequent time slices. Note that the geometry of locations of data qubits and

measurement events for this case exactly correspond to the geometry of broken error chains

discussed in case 2, except for the fact that the breaking point is along timelike direction

instead of spacelike one. In analogy with case 2 we argue that such a situation happens for

two subcases: i〉 when there is one measurement error with a probability qbf on one time slice

along with (d − 1)/2 bit-flip errors on data qubits in two subsequent time slices in a single

row, and ii〉 when there are only (d + 1)/2 bit-flip errors on data qubits in two subsequent

time slices in a single row. Bit-flip error probability on a syndrome or data qubit in one of

the two subsequent time slices is in fact pbf(1− pbf) or qbf(1− qbf) and keeping only leading

order terms we approximate those as pbf or qbf . Note that the two subcases of case-3 can be

mapped exactly with the two subcases of case-2 as far as their combinatorics are concerned

and following a similar argument as in case 2 we obtain

P
(3)
XL = d

[
d2 − 1

d+ 3

qbf

pbf

+
d− 1

2

](
d
d−1

2

)
p
d+1
2

bf , (A.5)
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where the difference in the prefactor comes from the fact that the single row for this case can

be chosen in d ways. Assuming qbf is of the same order of magnitude as pbf , we observe that

case 3 in fact contributes to the same order like previous cases. Also assuming pbf = qbf and

replacing the prefactor d with d−1 in (A.5), we can retrieve the right hand side of (A.4). We

claim that—except for these three cases—all other processes contribute higher-order terms

as they involve multiple breaking points. Combining all the contributions we obtain

PXL =

[
d+ (d− 1)

(3d+ 5)(d− 1)

2(d+ 3)
+ d

(
d2 − 1

d+ 3

qbf

pbf

+
d− 1

2

)](
d
d−1

2

)
p
d+1
2

bf . (A.6)

As far as the topology of the logical error chains are concerned, there is no difference between

logical X and Z errors which enables us to use the same combinatorics to show that the

logical Z error probability,

PZL =

[
d+ (d− 1)

(3d+ 5)(d− 1)

2(d+ 3)
+ d

(
d2 − 1

d+ 3

qpf

ppf

+
d− 1

2

)](
d
d−1

2

)
p
d+1
2

pf , (A.7)

where ppf and qpf are phase-flip error probabilities (per cycle) in data and syndrome qubits

respectively.

At this point, we emphasize that our derivation never invokes any particular assumption

about internal steps of a surface code cycle and therefore is also valid in a situation where

the capability of directly measuring three or four qubit Pauli operators is implicitly assumed.

As pointed out in Ref. [79, 80], for a surface code cycle where measurement of multi-qubit

operators are replaced by a sequence of CNOT operations, additional error chains having

pure diagonal links emerge. While these error chains also contribute to the leading order,

the number of such error chains is negligible for low distances. To verify the performance of

our analytic expression, we assume a symmetric depolarization channel error model for an

8-step surface code cycle (as described in Ref. [57]) and plot logical X error rate per cycle as

a function of single physical qubit error rate per timestep (pstep), which is (approximately)
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related to pbf via

pstep =
3

2

(pbf

8

)
. (A.8)

Fig. 4.3 shows a comparison (for logical X error) of our analytical estimate and a numer-

ical Monte-Carlo simulation as obtained in Ref. [57]; it is evident that for low distances

the analytic estimate correctly captures the dominant behavior of these error chains below

threshold.
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Appendix B

Coupled Qubit Model under

Decoherence 1

In this section we compute the fidelity loss during a CZ gate for a coupled qubit model under

amplitude and phase damping. Such a model is important for the estimation of total CNOT

gate time as well as intrinsic errors for textbook architecture. Since we assume the couplers

having infinite on-off ratio for this architecture, each pair of qubits gets decoupled from all

other pairs for each intermediate step of error correction cycle and therefore each pair of

coupled qubits can be treated separately. Both the qubits are assumed to have three levels

and the Hamiltonian is given by,

H(t) =


0 0 0

0 ω1(t) 0

0 0 2ω1(t)− η


q1

+


0 0 0

0 ω2 0

0 0 2ω2 − η


q2

+g


0 −i 0

i 0 −i
√

2

0 i
√

2 0


q1

⊗


0 −i 0

i 0 −i
√

2

0 i
√

2 0


q2

,

(B.1)

where the suffix denotes qubit index, g represents the coupling between the qubits and η

is the anharmonicity of the qubit. For a CZ operation we control the frequency of the first

1J. Ghosh, A. G. Fowler, and M. R. Geller, Physical Review A 86, 062318 (2012) [Copyrighted material
reprinted in this chapter as per transfer of copyright agreement with the publisher].
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qubit (ω1(t)) with an error function pulse as described in Ref. [62] while the frequency of

the second qubit is kept constant. The Kraus matrices for the amplitude damping channel

of any three level quantum system are given by,

EAD
1 =


1 0 0

0
√

1− λ1 0

0 0
√

1− λ2

 , EAD
2 =


0
√
λ1 0

0 0 0

0 0 0

 , EAD
3 =


0 0

√
λ2

0 0 0

0 0 0

 (B.2)

and Kraus matrices for phase damping are given by,

EPD
1 =


1 0 0

0
√

1− λ3 0

0 0
√

1− λ4

 , EPD
2 =


0 0 0

0
√
λ3 0

0 0
√
λ4

 , (B.3)

where λk for k = 1, 2, 3, 4 being parameters of our decoherence model. We assume the

same amplitude and phase damping probability for |1〉 and |2〉 states (λ ≡ λ1 = λ2 and

λ′ ≡ λ3 = λ4) and represent λ and λ′ as functions of time duration (∆t) and T1, T2 of the

quantum system as,

λ(∆t, T1) = 1− e−∆t/T1 , λ′(∆t, T1, T2) = 1− e−∆t
[

2
T2
− 1
T1

]
. (B.4)

Table B.1: Optimal parameters and results obtained for CNOT gate in this coupled qubit model.
We use these results for the estimation of logical error rate in textbook architecture.

ω1(t = 0) ω2 η g tCNOT pintr

8 GHz 6 GHz 300 MHz 55 MHz 21 ns 1.23 ×10−4

The assumption that decoherence affects each qubit independently enables us to construct

the full Kraus matrices for the qubit-qubit model by performing all possible tensor products

between individual single qubit Kraus matrices. We first simulate the Hamiltonian given by
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(B.1) for parameters given in Table. 4.1 without decoherence to obtain an optimal pulse shape

that maximizes the average fidelity of the CZ gate for a given coupling and gate time. Next

we apply our decoherence model described by Eqs. (B.2) and (B.3) on those optimal pulses.

Fig. B.1 shows plots of leakage error from |11〉 for such decoherence model (for T1 = 10 µs)

applied on optimal pulses with respect to various total gate time and for various values of

coupling strengths. Fig. B.1 also shows that there exists an optimal point corresponding to

total gate time ∼ 11 ns at g = 55 MHz for which the leakage from |11〉 state is the minimum

under decoherence. We use this point for the CZ part of the CNOT operation in textbook

architecture and assuming that local rotations can be performed almost exactly in 5 ns, a

CNOT requires 21 ns time duration as it involves two Hadamard operations along with a CZ.

Table B.1 shows the optimal parameters and results obtained from this analysis.
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Figure B.1: (Color online) Plot of leakage probability from |11〉 state under decoherence for
various g during a CZ operation vs total CZ operation time.
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