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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1  Introduction 

a. Research context 

 This dissertation research examines historical and future trends of hazardous convective 

weather (i.e., tornadoes, damaging thunderstorm wind gusts, large hail, and flash flooding; 

hereafter HCW) in central and eastern portions of the U.S., by dynamically downscaling Global 

Climate Model (GCM) output.  This analysis will provide an objective estimate of the historical 

occurrence of HCW events, and how their spatio-temporal distribution may change in the future.  

The motivation for this research stems from a growing vulnerability to severe1 weather events 

due to increasing population density, as well as the potential for a greater frequency of these 

events in future climate regimes. 

b. Motivation 

 Severe thunderstorms during April–May 2011 spawned tornadoes responsible for $17.3 

billion in damages and at least 350 fatalities across 20 states.  The increasing trend of losses from 

severe thunderstorms (Changnon 2001) and tornadoes (Brooks and Doswell 2001; Changnon 

2009) can be attributed to societal and economic changes rather than an increase in event 

frequency (Bouwer 2011).  However, recent research has indicated that the potential for severe 

                                                           
1 The current National Weather Service working definition of severe weather is defined as a thunderstorm producing 
hail that is at least 2.5 cm (1 inch) in diameter or larger, and/or wind gusts to 50 kts (58 mph) or greater, and/or a 
tornado (rev. Hales 1988). 
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thunderstorm environments may increase under future climate scenarios (Trapp et al. 2007a; Van 

Klooster and Roebber 2009).  The combination of increasing societal vulnerability (Cutter et al., 

2003) and severe thunderstorm frequency may lead to greater HCW impacts in the future. 

1.2  Literature review 

 There is question surrounding the historical record of HCW in the U.S., which is vital to 

understand if researchers desire to make predictions about future HCW events.  In short, spatio-

temporal trends of HCW have been difficult to determine reliably due to the subjective nature of 

the reporting process (Doswell and Burgess 1988; Grazulis 1993; Brooks and Doswell 2001; 

Brooks and Doswell 2002; Verbout et al. 2006; Doswell 2007).  This has left hazards researchers 

with an observationally biased dataset of reports with unclear trends.  To avoid this reporting 

obstacle, recent research has turned to the environmental ingredients (Doswell et al. 1996) 

necessary for the formation of severe thunderstorms known as supercells, which are most likely 

to produce HCW (Doswell et al. 1993; Doswell 2001).   

 a. HCW environments 

 In order to attain convection in the atmosphere, several ingredients must be juxtaposed.  

These include a moist layer of sufficient depth in the low or mid-troposphere, a steep enough 

lapse rate to allow for substantial convective instability, and sufficient lifting to the level of free 

convection (Doswell 1987; Johns and Doswell 1992).   

 Moisture serves as potential energy for convective processes and can be quantified using 

different techniques.  Some common ways to calculate moisture include dewpoint temperature, 

mixing ratio, and specific humidity.  Abundant amounts of moisture can provide a significant 
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positive energy feedback mechanism to convection as condensation releases latent heat, thus 

increasing the internal temperature of a theoretical parcel.  

 Convective instability is defined as the ability of a parcel of air to accelerate freely due to 

its own positive/negative buoyancy. Buoyancy, B, can be described2 as: 

 

'

'

T
TTgB −

≡  

 

where g is the acceleration due to gravity, T is the temperature of a parcel, and T' is the 

temperature of the surrounding environment.  Thus, if T is greater than T', buoyancy will be 

positive and a parcel will freely accelerate upward due to density differences.  Taking the above 

buoyancy equation and integrating over the distance displaced (typically from the level of free 

convection [LFC] to the equilibrium level [EL]), yields convective available potential energy 

(CAPE; Moncrieff and Miller 1976).  Measured in J·kg-1, CAPE is essentially the amount of 

energy available to a positively buoyant parcel of air which, in theory, is directly related to 

updraft velocity (w).  CAPE can be calculated using a variety of parcel methods (e.g., mixed-

layer, surfaced-based, most-unstable).  Different forecasting scenarios utilize different parcel 

ascent methods. For instance, while thorough boundary layer mixing is occurring in the 

afternoon hours, a forecaster would likely choose to calculate CAPE based on a mixed-layer 

parcel over a surface-based parcel because of its greater resemblance of the true thermodynamic 

condition of the boundary layer.  Although the calculation of CAPE using parcel theory has 

                                                           
2 For a more in-depth discussion on buoyancy, please reference Doswell and Markowski (2004).  
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limitations (Markowski and Richardson 2011), it is currently the most widely accepted technique 

to assess potential instability and updraft intensity.  

 In order for convection to utilize this potential energy in a non-autoconvective 

environment, a lifting mechanism must supply energy to displace the parcel to its LFC. This 

negative buoyancy (found by integrating the buoyancy equation between the lifting condensation 

level [LCL] and LFC) is known as convective inhibition (CIN). Like CAPE, CIN can be 

calculated using a variety of parcel ascent methods. Lifting mechanisms arise from an array of 

sources, including topography, frontal boundaries, density discontinuities, upper-level mass 

divergence, surface mass convergence, etc.  

 Organized convection (Doswell 2001) forms when another ingredient, wind shear, is also 

present.  Although not mutually exclusive, two types of wind shear exist, and are a key factor in 

determining convective mode (Weisman and Klemp 1982; 1984; Dial et al. 2010).  Speed shear 

occurs when wind speeds change with height in the atmosphere.  This is important in the 

sustenance of convective activity as it allows the updraft and downdraft to occur in separate 

regions of the thunderstorm, permitting it to continually ingest less dense, and therefore unstable, 

surface air.   Speed shear also contributes to environmental horizontal vorticity, which can be 

converted into vertical vorticity if an updraft is introduced (Rotunno 1981; Davies-Jones 1984).  

Subsequently, directional and speed shear can be quantified using storm relative helicity (SRH; 

Davies-Jones et al. 1990).  SRH is a measure of streamwise vorticity in the inflow region of a 

convective storm with dimensions m2·s-2.  Often calculated over a vertical layer (typically 0–1 or 

0–3 km) by integrating, SRH is easily visualized by forecasters via a hodograph.  Recently, 

Thompson et al. (2007) have developed effective storm relative helicity (ESRH), and 

documented that ESRH more clearly discriminates between significantly tornadic and non-
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tornadic forms of supercell thunderstorms than the standard 0–1 km and 0–3 km fixed-layer 

versions of SRH.   

b. Organized convection 

 i. Mesoscale convective systems 

 First described by Zipser (1982), mesoscale convective systems (MCSs) evolve over 3–6 

hour (and longer) time periods, contain both convective and stratiform precipitation regions 

during some portion of their lifecycle (Smull and Houze 1985; Knupp and Cotton 1987; 

Biggerstaff and Houze 1991), and have horizontal dimensions of at least 100 km (Houze 2004).  

Initially, MCS stages (i.e., initiation, growth, maturity, and decay) were described by their 

infrared satellite characteristics (e.g., cloud shield radius and cloud top temperature), but recently 

have been categorized by their RADAR attributes (Hilgendorf and Johnson 1998).  Additionally, 

taxonomy was introduced by Parker and Johnson (2000) to classify different types of MCSs 

based upon stratiform precipitation distribution (e.g., trailing (TS), leading (LS), and parallel 

(PS) stratiform precipitation.  The mesoscale convective complex (MCC), a spatially large and 

long-lived MCS, has strict qualifications (Maddox 1983).   

 MCSs tend to favor producing severe weather during early stages of their life cycles, but 

a few may continue producing large swaths of severe weather (typically wind damage) until they 

dissipate. For example, MCSs known as bow echoes (Fujita 1978) are well recognized because 

of their bowing appearance on a two-dimensional planar radar display, and their ability to 

produce long swaths of damaging winds (Doswell 2001).  Occasionally, long-lived windstorms 

known as derechos occur.  Derechos are MCSs that produce severe wind damage over specific 

spatio-temporal criteria (Johns and Hirt 1987).  Ashley and Mote (2005) showed that derechos 
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are a respectable hazard in the U.S. with 153 fatalities and over 2600 injuries occurring over their 

18-year study period as a direct result of derechos.  Although difficult, differentiating between 

derecho and ordinary MCS environments appears to reside in different storm-relative vertical 

wind shear profiles (Evans and Doswell 2001).  

 ii.  Linear organization 

 While it is the most common form of organized convection, linear organization is 

typically not responsible for most extreme severe weather events (Doswell 2001).  Linear 

organization is often the result of the vertical wind shear profile, and the lifting mechanism.  For 

example, linear convection tends to dominate if wind shear profiles are aligned parallel to the 

lifting mechanism.  In this scenario, linear structures form as perturbation flows they generate 

(i.e., updrafts, downdrafts, surface cold pools) interact (Doswell 2001).  Therefore, if lift is 

present in environments characterized by similar thermodynamic properties, linear organization 

will tend to dominate since most fronts, outflow boundaries, and drylines provide sources of lift 

that are linear in nature.  Although no formal definition exists, a classic example of linear 

organization is a squall line.  The term squall line was first described by the Bergen School of 

Meteorology in the early twentieth century because of the disruption in calm weather conditions 

normally present during squall passage (Doswell 2001).  Today, squall lines are defined as a type 

of MCS, and are much longer than they are wide.  Squall lines are efficient at relieving 

convective instabilities on large spatial and temporal scales, as well as providing beneficial 

precipitation to agriculture.   
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 iii.  Supercells 

 The term supercell first appeared in formal literature in 1962 (Browning 1962).  Over the 

years, studies such as Browning (1977) and Weisman and Klemp (1984) strived to develop a 

definition of supercells by using different techniques.  Doswell (1996) explains uncertainties 

regarding the true definition of a supercell, but most scientists agree that a supercell must possess 

a deep, persistent mesocyclone.  The identification of a supercell by means of the Lemon 

technique utilizes three- and four-dimensional RADAR output (Lemon 1977).  Currently, 

supercells are classified along a spectrum in three categories based upon their precipitation 

distribution: high precipitation (HP), low precipitation (LP), and classic (CL) (Rasmussen and 

Straka 1998); however, supercells can evolve across this spectrum during their lifecycle 

(Bluestein and Woodall 1990). Supercells are responsible for a majority of significant severe 

weather (Church et al. 1993; Doswell 2001); therefore, understanding the environments in which 

supercells develop is vital to forecasting where and when significant severe weather events will 

occur.  

c.  HCW forecasting 

 Thunderstorm forecasters use three types of forecasting techniques: pattern recognition, 

climatology, and parameter evaluation (Johns and Doswell 1992).  Synoptic pattern recognition 

of severe weather outbreaks has been documented well (e.g., Miller 1972; Uccellini and Johnson 

1979; Doswell 1980; Johns 1982; Johns 1984).  In Miller’s (1972) study, five synoptic patterns 

(type A–E) were found most favorable for the development of severe weather events.  Miller’s 

patterns are often used as conceptual models for thunderstorm forecasters.  Although the 

specifics of each pattern type differ, the main four ingredients for organized convection are 
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present in each.  As Miller’s patterns show, early spring severe weather outbreaks typically take 

place under southwest 500-hPa flow on the east side of a 500-hPa height trough axis.  As the 

convective season progresses, is it common for severe weather outbreaks to transition from 

southwesterly to northwesterly upper-level 500-hPa flow.  Johns (1982, 1984) established that 

northwest flow severe weather outbreaks occur in environments of abundant low-level moisture, 

with the 500-hPa wind direction over the expected geographical midpoint of the outbreak from 

280º or more.  Johns also noted that that low-level moisture transport impinging upon surface 

boundaries under northwest flow is important in determining areas favorable for severe weather.  

 Severe weather climatology as a forecast tool is not as apparent as pattern recognition.  

Issues arise regarding the quality of severe storm reporting in the United States (Doswell and 

Burgess 1988, Brooks and Doswell 2001), as well as significant events that occur outside of peak 

climatology.  Nevertheless, understanding the climatology of severe weather can assist 

forecasters by developing an understanding of the relative risk of severe weather events in their 

respective regions.  Perhaps one of the best tools3 available for forecasters to understand 

climatologies associated with severe weather events was developed by Brooks et al. (2003a).  

This interactive web browser allows users to develop probabilities of unique severe weather 

event occurrence for any U.S. location.  From this work, Concannon et al. (2000) showed that 

the greatest concentrations of significant tornadoes were bounded by an L-shaped region from 

Iowa to Oklahoma to Mississippi.  However, Ashley (2007) has shown that most tornado 

fatalities from 1880–2005 occurred east of the climatological maximum, where a unique 

vulnerability exists due to physical and societal factors.   

                                                           
3 This tool was recently updated and is now available through the Storm Prediction Center’s online database:  
http://www.spc.noaa.gov/new/SVRclimo/climo.php 
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 Parameter evaluation is the most popular and effective technique used in thunderstorm 

forecasting.  Essentially, a forecaster can assess the potential for severe convection by evaluating 

parameters associated with ingredients necessary for such events (Table 1.1).  Diagnostic indices 

such as CAPE, CIN, SRH, 6BWD, LFC, and LCL are all useful in determining the potential for 

supercell thunderstorms (Rasmussen and Blanchard 1998; Rasmussen 2003; and Craven et al. 

2004).  These diagnostic parameters are often analyzed by forecasters in a prognostic sense by 

extrapolation (i.e., short-term forecasts) and numerical weather prediction.  Forecasters typically 

place thresholds of these parameters on a composite chart (Miller 1972; Crisp 1979) to represent 

the greatest threat for severe thunderstorms.  Quantifications of the overlaying of different 

ingredients found on composite charts are expressed using composite indices.  Several composite 

indices have been developed to discriminate between atmospheric environments favorable for 

certain types of severe weather events (Table 1.2).  Previous research has used various 

thunderstorm ingredients to discriminate between significant4 severe and severe weather 

environments (Brooks et al. 2003b), supercell and non-supercell environments (Thompson et al. 

2003, 2007), and tornado vs. significant tornado environments (Thompson et al. 2003, 2007).  

 Since organized thunderstorm activity can occur in a variety of atmospheric 

environments (i.e., from high instability, low shear to low instability, high shear), composite 

indices evaluated at face value by forecasters can become problematic.  For example, if a 

composite indices’ calculation threshold calls for the occurrence of CAPE values greater than 

2000 J·kg-1, an environment with 1999 J·kg-1 of potential energy would be neglected as reaching 

the threshold.  Doswell and Schultz (2006) emphasize that forecasters must exercise caution 

when employing indices and parameters in an operational setting.  They argue that these indices 

                                                           
4 Significant severe weather is defined as hail at least 5 cm (~2 in.) in diameter, and/or a convective wind gusts ≥120 
km h-1 (65 kt), and/or a tornado of at least EF2/F2 damage (Hales 1988). 
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seek to simplify the non-linear atmosphere and should not be treated as a magic solution as to 

where HCW will occur.  Furthermore, it is vital to understand exactly which variables are going 

into in the calculation of such composite indices in order to understand their strengths and 

limitations.  

d.  Using teleconnections to forecast HCW 

 Hemispheric circulations force favorable synoptic-scale regimes that facilitate mesoscale 

processes that, in turn, favor HCW development and sustenance.  Studies such as Higgins and 

Schubert (1996) and Deser (2000) have focused on such circulations and their impact on 

hemispheric jet stream patterns.  Since these hemispheric-scale oscillations feed back to the 

synoptic scale, opportunity arises for forecasters to use these oscillations as possible medium- 

and long-range predictive tools.  Recent attempts to use teleconnection indices such as the 

Madden-Julian Oscillation (MJO;  Madden and Julian 1972) and sea-surface temperature 

anomalies have shown skill in predicting central U.S. tornado activity in the 4–6 week forecast 

period (Barrett and Gensini 2013; Elsner and Widen 2013).  This enhanced understanding of 

mid-range HCW evolution and forecasting is improving rapidly and will continue to flourish in 

the next decade.  

e. Evaluating HCW activity using reanalysis 

 A novel approach by Brooks et al. (2003b) exploited a statistical discriminate relationship 

between HCW reports and the product of CAPE and 6BWD.  They developed spatial distribution 

plots of global HCW environments for the period 1997–1999 using data from the National 

Center for Atmospheric Research / National Center for Environmental Prediction 

(NCAR/NCEP) global reanalysis (Kalnay et al. 1996).  HCW environments were concentrated in 
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equatorial Africa, southern Europe, the central U.S., southern Brazil, Australia, northern 

Argentina, and near the Himalayas, with the highest frequencies found in the central Great Plains 

region of the U.S. (Brooks et al. 2003b) due to its unique geography (Fig. 1.1).  The close 

proximity to a source of surface moisture (Gulf of Mexico) to the south and steep mid-level lapse 

rates provided by a north-south oriented mountain chain (Rocky Mountains) to the west 

comingle to create favorable environments for severe thunderstorms.  Because the central U.S. is 

the home to the highest frequency of HCW on Earth, a higher spatial-resolution analysis of 

thunderstorm environments was conducted by Gensini and Ashley (2011) using data from the 

North American Regional Reanalysis (NARR; Mesinger et al. 2006) for the period 1980–2009.  

This research revealed no significant trend in HCW environmental controls in the U.S. despite a 

significant increase in severe weather reports over the same period.  However, the main caveat 

with such environmental control analysis is that no research to date (due to the small spatial 

scale) has been able to account for a lifting mechanism, which is vital in the initiation and 

sustenance of HCW (Gensini and Ashley 2011; Trapp et al. 2011).  This is due to the limited 

vertical and spatial resolution of most reanalysis datasets, as well as the high spatial variability 

associated with modeled surface divergence fields.   

 While reanalysis datasets are currently a popular data source (3140 peer-reviewed journal 

articles with “reanalysis” in the title or abstract in from 2010–2011), no peer-reviewed research 

has examined how the filtered nature (e.g., limited vertical levels) of reanalysis data may affect 

convectively important variables.  One major problem of reanalysis for convective purposes is 

the overestimation of favorable HCW environments in southern Texas (Gensini and Ashley 

2011).  It is hypothesized here that limited vertical resolution near the reanalysis model surface 

poorly captures convective inhibition (CIN) produced by an elevated mixed layer, described by 
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Lanicci and Warner (1991).  A recent international study revealed similar problems with CIN 

calculations over HCW favored regions of Australia (Allen and Karoly 2013).  

f. Current limitations 

 Similar to the historical approaches presented above, some research has used an 

environmental control approach to simulate potential future changes in HCW using GCM output.  

Studies such as Del Ginio et al. (2007), Trapp et al. (2007a), Trapp et al. (2009), and Van 

Klooster and Roebber (2009) all suggest that environmental controls related to HCW will 

increase in response to elevated greenhouse forcing.  While more HCW environments could 

mean more events in the future, such environments are periods when the atmosphere is favorable 

for organized HCW, not that it will necessarily occur.  A lifting mechanism is essential and was 

not accounted for in any of the published research employing this methodology.  

 Despite evidence for increasing HCW environmental controls such as CAPE, climate 

change assessments have largely avoided any conclusions regarding potential changes of HCW 

in a future climate (e.g., see discussions in Alley et al. [2007] and Karl et al. [2009]).  This is 

primarily due to problems with the historical record and the large spatial scale in which GCMs 

operate relative to HCW.  As an example of this scale difference, the widely used Community 

Climate System Model version 3 (CCSM3; Collins et al. 2006) GCM is a spectral model with 

85-wavenumber triangular truncation (approximately 1.4° resolution at the equator) in the 

horizontal (Collins et al. 2006).  For comparison, this GCM configuration translates roughly to a 

150-km horizontal grid spacing in the central U.S., while explicit resolution of convection should 

be done at a horizontal grid scale of less than or equal to 4 km (Weisman et al. 1997).  Therefore, 

the resolution of typical GCM output lacks the ability to resolve HCW.   
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g.  Applying dynamical downscaling 

 Recent exploratory research has indicated dynamical downscaling of GCM data has 

become possible owing to enhanced model microphysics schemes, faster computer processing, 

and new GCM data availability.  Dynamical downscaling (sometimes referred to as model 

telescoping) is a method for obtaining high-resolution climate information from relatively 

coarse-resolution GCM output.  Using dynamical downscaling, recent research indicates it is 

now practical to downscale GCM scale output to the 4 km grid spacing (Trapp et al. 2007b; 

Trapp et al. 2010; Robinson et al. 2013) required for explicitly resolving convective processes 

(Weisman et al. 1997).  Dynamically downscaled global reanalysis data (similar to the course-

resolution of many GCMs) have accurately represented HCW during the peak of the convective 

season (May–June; Trapp et al. 2010; Robinson et al. 2013).  However, no studies have 

examined historical control runs of GCM output.  This is especially important if researchers wish 

to use a dynamical downscaling technique on future projections from GCM data, as bias 

correction techniques should be incorporated (Christensen et al. 2008).  

1.3  Research questions 

 The first manuscript (Chapter 2) provides context regarding the similarities and 

differences between reanalysis derived datasets and observed radiosonde data for convective 

interests.  Although undocumented, it is hypothesized here that limited vertical resolution near 

the reanalysis model surface poorly captures convective inhibition (CIN) produced by an 

elevated mixed layer, described by Lanicci and Warner (1991).  Quantifying the similarities and 

differences between historical reanalysis datasets and observed upper-air radiosonde data will 
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permit objective correction techniques for those using reanalysis data to examine HCW.  

Accordingly, this manuscript will address the following research questions: 

• Which convectively important observed variables are most closely represented by 

reanalysis? 

• Which variables are poorly reconstructed by reanalysis? 

• Are differences present between observed and derived variables? 

• What changes to the reanalysis structure would benefit convective research? 

  

 The second manuscript (Chapter 3) assesses a dynamically downscaled reconstruction of 

HCW from GCM historical control data for the months March–May, 1980–1989.  Completion of 

this objective will establish an objective climatology of HCW from a control GCM simulation.  

Additionally, results from this section will be used for statistical comparison to fields generated 

in the third manuscript (Chapter 4) of this dissertation.  The following questions will be 

examined in this manuscript: 

 

• How does the reconstructed HCW proxy distribution compare to observed HCW reports? 

• What grid spacing best captures the spatial distribution? 

• How do environmental parameters relate to HCW proxy reports? 

• Are there any differences in the timing of observed and reconstructed HCW reports? 

• How do these reconstructions compare to other studies? 
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 The third manuscript (Chapter 4) assesses a dynamically downscaled reconstruction of 

HCW from GCM future simulations for the period March–May, 2080–2089.  Completion of this 

objective will establish the first modeled objective climatology of HCW from a GCM run using 

the SRES (Special Report on Emissions Scenarios) A2 scenario.  Results from this section will 

be used for statistical comparison to fields generated in the second manuscript (Chapter 3) of this 

dissertation.  The following questions will be examined in this manuscript: 

 

• How does the future HCW proxy distribution compare to the historical reconstruction? 

• Is there a statistically significant change in future HCW occurrence? 

• Can changes in HCW be attributed to changes in the environmental control parameters? 

• Are there any differences in the diurnal timing of future and historical HCW reports? 

• What are the socioeconomic implications for any potential HCW event changes? 

 

1.4  Summary 

 Future changes in HCW event occurrence has been a topic of interest for many 

researchers around the world during the past decade.  Solid conclusions have been difficult to 

formulate, owing to the complex nature of the research question.  Most previous studies have 

narrowed their focus to changes in environmental control parameters that are known to 

contribute to HCW formation.  However, these control parameters only serve to represent a 

favorable (or non-favorable) HCW environment in the future, not necessarily implying that an 

HCW event will indeed occur.  This assumption can lead to large positive biases of environments 

favorable for HCW, especially if CIN is ignored.  Thus, the foremost part of this dissertation will 

provide the first documentation of the strengths and limitations of using reanalysis data to 
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approximate HCW environments.  This is significant if researchers are to use such data for 

climatological studies, or to initialize model simulations.   

 Secondly, a modeled historical climatology of HCW will provide insight into how 

environmental controls used in previous reanalysis studies were able to capture the distribution 

of modeled HCW frequency.  This portion of the dissertation will contribute to a very limited set 

of current knowledge regarding the use of dynamical downscaling for purposes of resolving 

HCW.  Additionally, this historical bias-corrected distribution of HCW will provide a baseline 

with which to compare the future dynamically downscaled simulation.  

 Arguably the most noteworthy portion of this dissertation will attempt to provide 

indications of potential changes in distributions of HCW under a future climate scenario.  The 

results from this dissertation will be first application of dynamical downscaling methodology to 

future output from a GCM.  Knowledge of the historical and potential changes in the spatio-

temporal distribution of future HCW events is essential if decision makers wish to mitigate 

socioeconomic impacts of HCW in the future.  Most importantly, this dissertation will create 

knowledge beneficial to a wide variety of researchers (e.g., hydrologists, ecologists, climate 

modelers, risk analysts) seeking to understand the potential impacts of a shifting climate on 

HCW. 
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Table 1.1  Notable severe weather forecasting parameters 

Index Definition Dimension 

Convective Available 
Potential Energy 

(CAPE) 

Amount of energy available to accelerate a theoretical parcel vertically; 
directly related to updraft velocity J·kg-1 

Convective Inhibition 
(CIN) 

Amount of energy needed to lift the theoretical parcel to its level of free 
convection J·kg-1 

Lifted Index (LI) 
Snapshot measure of stability calculated by subtracting the theoretical 
parcel’s temperature from the environment’s temperature (usually 
calculated at 500 hPa) 

°C 

Lifting Condensation 
Level (LCL) 

Height above ground in which a theoretical parcel becomes saturated 
due to adiabatic ascent m 

Level of Free 
Convection (LFC) 

Height above ground in which a theoretical parcel vertically accelerates 
freely due to density differences between the parcel and the environment m 

Storm Relative 
Helicity (SRH) 

Measure of the potential for cyclonic updraft rotation in right-moving 
supercells.  Proportional to streamwise vorticity and the strength of the 
flow feeding the updraft. Can be calculated over a layer (e.g., 0–1 km) 
or over the effective inflow layer of the updraft (Effective Storm 
Relative Helicity [ESRH]).  

m2·s-2 
or 

J·kg-1 

0–6 km Bulk Wind 
Difference (6BWD) 

The surface to 6 km change in wind speed kts 

Mid- / Low-Level 
Lapse Rates 

A measure of the change in temperature per unit of vertical distance. 
Typically measured in the low-levels (0–3 km) and the mid-levels (700–
500 hPa) 

°C·km-1 

2 m θe 

Temperature that results after all latent heat is released in a 
theoretical lifted parcel and the then descended dry adiabatically to 
the 1000 hPa reference level 

K 
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Table 1.2  Notable severe weather forecasting composite indices 

Composite Index Indices Incorporated Reference(s) 

Supercell Composite (SCP) CAPE, SRH, 6BWD Thompson et al. 
(2003, 2007) 

Significant Tornado (STP) CAPE, SRH, 6BWD, LCL Thompson et al. 
(2003, 2007) 

Energy Helicity Index (EHI) CAPE, SRH Hart and Korotky 
(1991) 

Bulk Richardson Number (BRN) CAPE, 6BWD Weisman and Klemp 
(1982) 

Craven / Brooks Significant 
Severe (C) CAPE, 6BWD Brooks et al. (2003b) 

Non-Supercell Tornado (NST) CAPE, 0–3 km lapse rate, CIN,  6BWD, Vorticity Baumgardt and Cook 
(2006) 
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Fig. 1.1.  Shaded topographic map of the continental United States.  Black polygonal outline 
indicates the location of the Great Plains.    
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CHAPTER 2 

 

SEVERE THUNDERSTORM REANALYSIS ENVIRONMENTS AND COLLOCATED 

RADIOSONDE OBSERVATIONS1 

  

                                                           
1 Gensini, V. A., C. A. Ramseyer, and T. L. Mote, 2014: Future convective environments using NARCCAP. 
International Journal of Climatology, 34, 1699–1705.  Reprinted here with permission.  
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Abstract 

This research compares reanalysis derived proxy soundings from the North American Regional 

Reanalysis (NARR) to collocated observed radiosonde data across the central and eastern United 

States during the period 2000–2011.  Specifically, 23 important parameters used for forecasting 

severe convection are examined.  Kinematic variables such as 0–6 km bulk wind shear are best 

represented by this reanalysis, while thermodynamic variables such as convective available 

potential energy exhibit regional biases and are generally overestimated by reanalysis.  For 

thermodynamic parameters, parcel ascent choice is an important consideration, owing to large 

differences in reanalysis vs. observed low-level moisture fields. 

Results herein provide researchers with potential strengths and limitations of using NARR data 

for the purposes of depicting hazardous convective weather climatologies and initializing model 

simulations.  Similar studies should be considered for other reanalysis datasets.  
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2.1  Introduction 

 Past research using reanalysis data has provided significant insight into the understanding 

of climatological distributions and trends of parameters associated with severe convective storms 

(e.g., Brooks et al. 2003; Brooks et al. 2007; Craven et al. 2004; Gensini and Ashley 2011; Allen 

and Karoly 2013).  Essentially a three-dimensional best-guess snapshot of the atmosphere in 

time, reanalysis aims to provide an objectively modeled baseline dataset that serves to fill data 

void areas in the coarse-density radiosonde network.   The goal of reanalysis is to provide a 

climatological snapshot of conditions closest to reality by assimilating multiple observation 

platforms into a numerical weather prediction model (e.g., surface observations, satellite 

information, radiosonde data).  The final product of atmospheric reanalysis is a large (potentially 

global) dataset that has greater spatio-temporal resolution than observed sounding data.  These 

data are regularly used to conduct historical meteorological analyses, create climatological 

information and graphics, or initialize boundary conditions for historical model simulations.    

 While reanalysis datasets are currently a popular data source for researchers (3140 peer-

reviewed journal articles with “reanalysis” in the title or abstract from 2010–2011), little peer-

reviewed research has examined how the filtered nature (e.g., limited vertical levels) of 

reanalysis data may affect convectively pertinent variables.  For example, a documented problem 

of reanalysis for convective purposes is the overestimation of favorable hazardous convective 

weather (HCW) environments in southern Texas (Gensini and Ashley 2011).  Thus, it is 

hypothesized that limited vertical resolution from the reanalysis model surface to ~3000 m AGL 

poorly captures sharp changes in temperature, affecting the calculation of convective inhibition 

(CIN) produced by an elevated mixed layer (EML) described by Lanicci and Warner (1991).  A 

recent international study revealed similar problems with CIN calculations over HCW favored 
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regions of Australia (Allen and Karoly 2013). Thus, the purpose of this research is to examine 

the modeled reanalysis proxy soundings in conjunction with collocated observed sounding data, 

specifically analyzing key convective variables.   Results from this study provide researchers 

with potential strengths and limitations of using NARR data for purposes of depicting HCW 

climatologies and initializing model simulations. 

2.2  Background 

 Two other studies have examined the relationship between radiosonde data and reanalysis 

for purposes of studying severe convection (Lee 2002; Allen and Karoly 2013).  Lee (2002) 

showed that reanalysis proxy soundings provide a reasonable approximation of the convective 

environment when compared to collocated soundings.  Specifically, kinematic variables were 

found to be best represented by reanalysis, while thermodynamic parameters sometimes 

contained large differences, owing to errors in low-level moisture fields (Lee 2002).  Lee’s 

(2002) research was conducted with coarse-resolution global reanalysis data, whereas this study 

uses a higher spatial-resolution reanalysis, both in the vertical and horizontal, in an attempt to 

best compare the observed and reanalyzed convective environment.  Allen and Karoly (2013) 

examined ERA‐Interim reanalysis data in comparison to observations for ~20 radiosonde 

stations and ~3700 soundings over Australia.  Results from Allen and Karoly (2013) support the 

findings shown in Lee (2002).  

a.  Reanalysis datasets for convective research 

 Coarse-resolution global reanalysis datasets such as the National Center for 

Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) 

global reanalysis (Kalnay et al. 1996) have been utilized (Brooks et al. 2003; Brooks et al. 2007) 
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for global perspectives of severe convective environments over long time periods (available from 

1949–present).  A higher spatio-temporal reanalysis over North America (North American 

Regional Reanalysis, NARR; Mesinger et al. [2006]) was used by Gensini and Ashley (2011) to 

examine severe convective environments over the U.S. in greater detail (available from 1979–

present).  The NARR provides researchers with a temporally consistent climate data suite for 

North America (Mesinger et al. 2006) and is preferred to other global reanalysis data for this 

study due to its superior vertical resolution.  Native NARR gridded binary data has a horizontal 

resolution of 32 km, a vertical resolution of 45 σ layers, and temporal resolution of three hours.  

NARR uses the 2003 operational Eta Model as part of the assimilation cycle (G. Manikin 2010, 

personal communication).  In comparison, the NCEP/NCAR global reanalysis has a 210 km 

horizontal resolution, vertical resolution of 28 σ layers and temporal resolution of six hours.  

While using NARR data for this study provides superior vertical resolution, the corresponding 

horizontal domain is limited to North America. 

2.3  Methodology 

 0000 UTC raw radiosonde data from 2000–2011 was obtained from the University of 

Wyoming’s online data archive (http://weather.uwyo.edu/upperair/sounding.html) for 21 stations 

east of the U.S. continental divide (Fig 2.1), where HCW is climatologically favored (Brooks et 

al. 2003; Gensini and Ashley 2011).  Synoptic off-hour (i.e., 1800 UTC, 2100 UTC, etc.) 

radiosonde launches were omitted from this study due to their limited sample.  Reanalysis proxy 

soundings were obtained by extracting point data from 0000 UTC NARR files using the 

GRBSND program available in the Weather Processor 6 (WXP) software package via Unisys.  

Customized Python routines were used to calculate 23 different convectively important variables 

and composite parameters (Table 2.1), quality control sounding data, and store values in comma-
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separated values (CSV) format.  In an effort to only evaluate surface-based convectively 

favorable environments, only soundings with non-zero surfaced-based CAPE were considered 

for this study. 

 As previously mentioned, low-level thermodynamic errors could be particularly 

problematic for variables that rely on vertical integration (e.g., CAPE; or any composite 

parameter that utilizes CAPE in its calculation).  This study employs different parcel ascent 

methods on all thermodynamic parameters to see if a “best choice” exists for researchers using 

NARR.  Thus, two parcel ascent trajectories were calculated (100 hPa mixed layer [ML]; and 

surface-based [SB]) and applied to all thermodynamic parameters and composite indices.  A 100 

hPa ML parcel averages the thermodynamic values (i.e., T and Td) in the lowest 100 hPa of the 

atmosphere, whereas a SB parcel uses the T and Td at the surface of the atmosphere (or model) 

to calculate various indices.  The distributed NARR dataset has 5 vertical levels that fall in the 

lowest 100 hPa of the model (1000, 975, 950, 925, 900 hPa), while a typical radiosonde launch 

will have ~8 data points in the lowest 100 hPa.  Finally, it should be noted that all parcel routines 

in this study utilize the virtual temperature correction, as they can result in larger and more 

realistic values of CAPE (Doswell and Rasmussen 1994). 

 Values of the square of correlation coefficient (R2) and root-mean-square error (RMSE) 

(along with standard linear regression slope and y-intercept values) were computed between 

grouped observed sounding-derived parameter values and the concurrent pair of reanalysis 

values.  RMSE was calculated with the formula (following Wilks 1995): 

𝑅𝑀𝑆𝐸 = �1
𝑁
�(𝑁𝐴𝑅𝑅𝑛 − 𝑂𝐵𝑛)2 
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where the sum is from n=1 to N, N is the number of values in each group, NARRn is the nth 

reanalysis value, and OBn is the nth observed value.  Thus, RMSE represents a typical error 

(reanalysis minus observed) magnitude for each group of paired observations.  To visualize the 

results, 2-D histograms were plotted for all stations (Fig. 2.1) and all variables (Table 2.1).  All 

2-D histograms were constructed using Python and the Matplotlib extension library (Hunter 

2007).  The 1:1 black line on each plot represents a perfect correlation (i.e., NARR value = 

observed radiosonde value).   

2.4  Results 

 2-D histograms were useful in comparing the distributions between NARR and observed 

soundings (Fig. 2.2).  For example, in Fig. 2.2a, one can see that SBCAPE values at KTOP have 

a positive bias (i.e., NARR SBCAPE tends to exceed observed SBCAPE values) with a RMSE 

value of 1637 J·kg-1.  However, in Fig. 2.2b, good correlation (R2=.88) is found between NARR 

and observed 6BWD, exhibiting a RMSE of only 2.7 kts.  R2, RMSE, slope, and y-intercept 

values can be found for all stations and variables in Tables 2.2, 2.3, 2.4, and 2.5 respectively.  

a. Correlation 

 Table 2.2 displays R2 values for all 23 parameters and 21 sounding locations.  Broadly, 

R2 values are found to be higher for kinematic variables such as 6BWD and show less correlation 

for thermodynamic variables such as SBCAPE.  This is an expected result, as R2 values are 

typically lower for derived variables and composite parameters, where compounding error (e.g., 

calculation of a product) reduces correlation values.  Out of the 23 parameters examined, 

FRZGLVL exhibited the highest R2 values, while STP exhibited the lowest values regardless of 

station location.  Seven variables (7/5LR, FRZGL, 850WND, 500WND, 200WND, 6BWD, CB) 
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exhibited good (≥.75) correlation, nine variables (SBCAPE, SBLI, SBLCL, 03SRH, 01SRH, 

SCP, 01EHI, SFCTd, Tc) displayed fair (.25>x>.75) correlation, and seven variables (MLCAPE, 

SBCIN, MLCIN, MLLI, MLLCL, STP, 850Td) presented poor (≤.25) R2 values (Table 2.3).  

 Perhaps most interesting are the relatively low R2 values associated with SFCTd and 

850Td, as these values are not derived.  SFCTd R2 values ranged from .37–.63 while 850Td R2 

values ranged from 0–.43, which would be associated with fair to poor agreement (respectively) 

in this context.  This is important, as small errors in the low-level moisture fields may yield large 

differences in derived quantities such as CAPE.  These differences in low-level moisture proved 

to have an important impact on parcel choice, as all SB parcel parameters exhibited fair 

correlation, whereas all ML parcel parameters correlated poorly.  To visualize this error, consider 

the differences in the NARR and observed Skew-T/Log-P diagrams from Jackson, MS, valid 20 

April 2011 0000 UTC, when an outbreak of severe thunderstorms was observed across portions 

of the Ohio and Tennessee valley (Fig. 2.3).  While SBCAPE calculations were very similar for 

NARR and observed soundings (3254 and 3035 J·kg-1 respectively; Fig. 2.4a, Fig. 2.4c), 

MLCAPE calculations differed by over 1800 J·kg-1(Fig. 2.4b, Fig. 2.4d). 

 Such differences in NARR vs. observed low-level moisture fields also influence other 

variables.  In fact, all sites increased correlation values (by an average of .17) when examining 

SB vs. ML LCL (Fig. 2.5).  Examining all 2-D histograms suggests that NARR variance of 

MLLCL is too small (Fig. 2.5b).  This error is due to correlation observed with 850Td.  While 

SFCTd values exhibited fair correlation, 850Td correlation was an average of .36 points lower.  

Thus, a SB parcel using SFCTd has a higher probability of lifting a parcel with similar surface 

moisture values.  However, averaging the moisture content of the lowest 100 hPa is more likely 

to inadequately represent the observed convective environment (especially at higher elevation 
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locations).  Consequently, the improvements to correlation for ML over SB versions of LCL, 

CAPE, and LI are linked to poor representation of lower-tropospheric moisture, especially in the 

925–850 hPa levels.  The only exception to parcel choice was CIN, where both SB and ML CIN 

exhibited poor R2 values (.12 and .11 respectively).   

b.  Bias / error  

 Tables 2.4 and 2.5 contain the intercept and slope values for each of the station parameter 

linear regression lines.  These values indicate the bias of each group distribution, as they quantify 

the difference between the parameter subset regression and the 1:1 line (which has an intercept 

of zero and a slope of one).  Similar to correlation results, it was found that kinematic parameter 

values agreed better with observations than thermodynamic parameters.  Nearly all kinematic 

variables exhibited a linear regression slope of one and a y-intercept near zero.  In addition, 

parameters related to mid-level environmental conditions performed better than those calculated 

from near-surface data.  Nearly all bias and error can be traced back to errors in the NARR 

lower-tropospheric moisture fields.  For instance, the average RMSE for 850Td at all stations 

was 9 ºC (Table 2.6).  These low-level moisture errors create large RMSE values for variables 

that depend on the near-surface environment (e.g., SB and MLCAPE station averaged RMSE 

values of 1465 and 1378 J·kg-1 respectively).  Such errors are then compounded in composite 

parameters such as SCP and STP that utilize CAPE as a measure of static stability.   

 Large bias and error were also found in CIN fields.  In particular, NARR fields 

commonly underestimated the strength of a temperature inversion associated with the EML.  

Bias is demonstrated by Tc slope values near one, with an average y-intercept near 4 ºC, thus 

indicating that NARR typically underestimates convective temperature by roughly 4 ºC.  
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Subjective examination of several comparison soundings suggests that rapid vertical changes in 

temperature associated with the EML are poorly represented in most NARR soundings.  This 

supports the hypothesis herein that NARR inadequately represents sharp temperature changes 

associated with the EML and results conveyed in previous research (i.e., Brooks et al. 2003b; 

Gensini and Ashley 2011; Allen and Karoly 2013).  This bias may be explained by the 

parameterizations used the NARR model assimilation.  The NARR employs the Betts–Miller–

Janjić (BMJ) convective parameterization (Janjić 1990, 1994).  Given that errors in SFCTd could 

be considered acceptable, this suggests modeled mixing within the boundary layer is not 

adequately replicating the convective transport of near-surface moisture throughout the lower 

troposphere.  

2.5  Summary and conclusions 

 Over 100,000 reanalysis and observed soundings were compared across 21 United States 

upper-air sites during the period 2000–2011.  This analysis was conducted, in part, to examine 

how well the reanalysis environment depicts observed and derived variables, specifically 

focusing on variables related to severe storm forecasting.  In general, kinematic variables are best 

represented by NARR, while thermodynamic variables suffer from errors originating in low-

level moisture fields.  Therefore, when analyzing NARR convective fields, parcel ascent choice 

is an important consideration.  Surface-based parcels performed better than 100-hPa mixed-layer 

parcels, as less RMSE was found in SFCTd fields.  Variables best resolved by NARR include 

7/5LR, FRZGL, 850WND, 500WND, 200WND, 6BWD, and CB.  Large RMSE and low 

correlation values were found with MLCAPE, SBCIN, MLCIN, MLLI, MLLCL, STP, and 

850Td.  Thus, research utilizing NARR low-level fields, and any conclusions drawn from them, 

should be done with caution. 
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 Overall, NARR provides an invaluable tool to convective researchers as soundings can be 

derived at spatio-temporal resolutions much greater than the current radiosonde network.  This is 

especially useful for climatological studies wishing to better understand the distribution of 

environments favorable for severe storms.  With these results, bias correction can now be utilized 

on large-scale climatological studies using similar parameters.  Researchers wishing to use 

NARR fields to initialize model simulations should be aware of potential errors in lower 

tropospheric moisture values and sharp vertical changes in temperature associated with an EML.  

When possible, such initializations should try to correct such errors or supplement NARR fields 

with observed soundings.  Finally, any studies examining reanalysis data for dynamical 

downscaling purposes should be aware of potential errors present in the driving fields.   
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Table 2.1.  Convective variables and composite indices examined in this study. 

Abbreviation Parameter 
SBCAPE Surface-Based Convective Available Potential Energy 
MLCAPE 100-hPa Mixed Layer Convective Available Potential Energy 
SBCIN Surface-Based Convective Inhibition 
MLCIN 100-hPa Mixed Layer Convective Inhibition 
SBLI Surface-Based Lifted Index (calculated at 500-hPa) 
MLLI 100-hPa Mixed Layer Lifted Index (calculated at 500-hPa) 
SBLCL Surface-Based Lifting Condensation Level 
MLLCL 100-hPa Mixed Layer Lifting Condensation Level 
03SRH 0–3-km Storm Relative Helicity 
01SRH 0–1-km Storm Relative Helicity 
7/5LR 700–500-hPa Lapse Rate 
SCP Supercell Composite Parameter  (using a surface-based parcel) 
STP Significant Tornado Parameter  (using a surface-based parcel) 
01EHI 0–1-km Energy Helicity Index (using a surface-based parcel) 
FRZGLVL Freezing Level 
SFCTd Surface Dewpoint 
850Td 850-hPa Dewpoint 
200WND 200-hPa Wind Velocity 
500WND 500-hPa Wind Velocity 
850WND 850-hPa Wind Velocity 
Tc Convective Temperature 
6BWD 0–6-km Bulk Wind Difference  
CB Craven / Brooks Significant Severe Parameter (using a surface-based parcel) 
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Table 2.2.  R2 values for all parameters and stations analyzed in this study. 
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Table 2.3.  Subjective characterization of parameter R2 values. 

  
Good Fair Poor 
7/5LR SBCAPE MLCAPE 

FRZGLVL SBLI SBCIN 
850WND SBLCL MLCIN 
500WND 03SRH MLLI 
200WND 01SRH MLLCL 

6BWD SCP STP 
CB 01EHI 850Td 

  SFCTd 
   Tc 
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Table 2.4.  Same as Table 2.2, except for linear regression slope values. 
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Table 2.5.  Same as Table 2.2, except for linear regression y-intercept values. 
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Table 2.6.  Same as Table 2.2, except for RMSE values. 
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Fig. 2.1.  Locations of 21 radiosonde stations used in this study. 
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Fig. 2.2.  Comparison between NARR and observed a) SBCAPE, b) 6BWD, c) LCL, and d) 
SFCTd for all events 2000–2011 ≥ 100 J·kg-1 SBCAPE at Topeka, KS (KTOP). 
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Fig. 2.3.  Jackson, MS (KJAN) a) observed (red) and b) NARR (blue) soundings valid 0000 
UTC 20 April 2011.  Parameters shown are calculated using a surface-based parcel.  
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Fig. 2.4.  0000 UTC 20 April 2011 Jackson, MS (KJAN) a) SB parcel observed, (b) ML parcel 
observed, (c) SB NARR parcel, and (d) ML NARR parcel. 
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Fig. 2.5.  Comparison of NARR and observed a) SBLCL and b) MLCL for North Platte, NE 
(KLBF) for all events 2000–2011 with ≥ 100 J·kg-1 SBCAPE. 
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CHAPTER 3 

 

EXAMINATION OF HISTORICAL HAZARDOUS CONVECTIVE WEATHER USING 

DYNAMICAL DOWNSCALING1 

  

                                                           
1 Gensini, V.A. and T. L. Mote.  Submitted to Journal of Climate on 12 December 2013.   
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Abstract 

High-resolution (4 km; hourly) regional climate modeling is utilized to resolve March–May 

hazardous convective weather east of the U.S. Continental Divide for a historical climate period 

(1980–1990).  A hazardous convective weather model proxy is used to depict occurrences of 

tornadoes, damaging thunderstorm wind gusts, and large hail at hourly intervals during the 

period of record.  Through dynamical downscaling, the regional climate model does an 

admirable job of replicating the seasonal spatial shifts of hazardous convective weather 

occurrence during the months examined.  Additionally, the interannual variability and diurnal 

progression of observed severe weather reports closely mimic cycles produced by the regional 

model.  While this methodology has been tested in previous research, this is the first study to use 

coarse-resolution Global climate model data to force a high-resolution regional model with 

continuous seasonal integration in the U.S. for purposes of resolving severe convection. Overall, 

it is recommended that dynamical downscaling play an integral role in measuring climatological 

distributions of severe weather, both in historical and future climates.  
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3.1  Introduction 

 Preliminary research suggests that environmental controls related to hazardous 

convective weather (tornadoes, severe wind gusts, and large hail; hereafter HCW) will increase 

in response to elevated greenhouse forcing (Del Ginio et al. 2007; Trapp et al. 2007a; Trapp et al. 

2009; Van Klooster and Roebber 2009; Gensini et al. 2013; Diffenbaugh et al. 2013).  Despite 

this evidence, climate change assessments have largely avoided any conclusions regarding 

potential changes of HCW in a future climate (see discussions in Alley et al. [2007], Karl et al. 

[2009] and Brooks [2013]).  This is primarily due to problems with the historical record of 

observed HCW reports, the link between HCW reports and associated environmental controls, 

and the large spatial scale in which Global Climate Models (GCMs) operate relative to HCW.   

 The widely used Community Climate System Model version 3 (CCSM3; Collins et al. 

2006) GCM is a spectral model with 85-wavenumber triangular truncation (approximately 1.4° 

resolution at the equator) in the horizontal (Collins et al. 2006).  This GCM configuration 

translates roughly to a 150 km horizontal grid spacing in the central U.S., whereas explicit 

resolution of convection should be done at a horizontal grid scale of less than or equal to 4 km 

(Weisman et al. 1997).  Therefore, the resolution of typical GCM output lacks the ability to 

resolve HCW.  The current understanding of potential changes in future HCW regimes is limited 

to environmental controls.  While more HCW environments could mean more events in the 

future, such environments are periods when the atmosphere is favorable for organized HCW, not 

that it will necessarily occur.   

 Recent exploratory research has indicated dynamical downscaling of GCM data has 

become possible owing to enhanced model microphysics schemes, increases in computer 
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processing speed, and new GCM data availability (e.g., Trapp et al. 2011; Robinson et al. 2013; 

Mahoney et al. 2013).  Thus, the purpose of this research is to utilize dynamical downscaling to 

explicitly resolve proxy HCW events using GCM input data.  Specifically, this manuscript will 

examine a GCM historical period (1980–1990) driven via reanalysis in relation to observed 

HCW reports.  This historical baseline will provide a comparison for future period simulations 

and bias correction estimates.  

3.2  Background 

 Dynamical downscaling is a method for obtaining high-resolution climate information 

from relatively coarse-resolution GCM output.  Using dynamical downscaling, recent research 

indicates it is now practical to downscale GCM scale output to the 4 km grid spacing (Trapp et 

al. 2007b; Trapp et al. 2011; Robinson et al. 2013) required for resolving deep convective 

processes (Weisman et al. 1997).  In fact, a recent study has explored the use of dynamical 

downscaling at a spatial resolution of 1.5 km (Kendon et al. 2012), while several other studies 

have performed seasonal downscaling at or below 3 km (e.g., Hohenegger et al. 2008; Sato et al. 

2009; Langhans et al. 2013; Warrach-Sagi et al. 2013; Prein et al. 2013). Generally, these studies 

all found utility in the increased spatial resolution provided by dynamical downscaling for their 

respective research.  For severe convection, dynamically downscaled global reanalysis data 

(similar to the coarse-resolution of many GCMs [~100 km]) has accurately represented HCW 

during the peak of the convective season (May–June; Trapp et al. 2011; Robinson et al. 2013).  

However, no studies have examined the use of dynamical downscaling on historical GCM output 

for HCW purposes in the U.S.  
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 It is important to note that despite a significant increase in HCW reports over the last 

three decades, research indicates that environmental controls factors (i.e., Convective Available 

Potential Energy [CAPE] and 0–6 km shear; Gensini and Ashley 2011; Robinson et al. 2013)  

and modeled proxy reports (Robinson et al. 2013) have exhibited little to no trend.  This recent 

inflation in HCW reports has been extensively documented (Doswell and Burgess 1988; Grazulis 

1993; Brooks and Doswell 2001; Brooks and Doswell 2002; Verbout et al. 2006; Doswell 2007).  

Thus, the recent increase in losses from severe thunderstorms (Changnon 2001) and tornadoes 

(Brooks and Doswell 2001; Changnon 2009) can be attributed to societal and economic changes 

rather than an increase in event frequency (Bouwer 2011). 

3.3  Methodology 

 Using 1980–1990 historical data from the CCSM3, a HCW proxy is gridded and summed 

to create a spatio-temporal climatology for the months March–May.  The proxy used in this 

research will follow that used in Trapp et al. (2011), using hourly thresholds of updraft helicity 

(UH) and simulated composite radar reflectivity (Z) as described by Kain et al. (2008).  UH and 

Z data are obtained from CCSM3 data by dynamical downscaling, using the non-hydrostatic 

advanced research core of the Weather Research and Forecasting (WRF-ARW) model 

(Skamarock et al. 2008).  Modeled proxy HCW reports are compared to observed HCW reports 

over the same period using report data obtained from the Storm Prediction Center (SPC) as 

compiled for the National Climatic Data Center (NCDC) publication Storm Data.  Though there 

are documented problems with using Storm Data for convective research purposes (Doswell and 

Burgess 1988; Brooks 2004), it is currently the most comprehensive source for HCW 

climatological information.  
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a.  Region 

 The study region for this research encompasses all points in the U.S. east of the 

Continental Divide (Fig. 3.1).  This domain is centered on the central Great Plains region, which 

is characterized by the largest HCW frequency on Earth (Brooks et al. 2003b).  While it would 

be ideal to include the entire U.S. in such a study, one must weigh the computational expense of 

modeling at such a high spatial resolution against the expected benefit of the results.  Given that 

HCW rarely happens west of the Continental Divide (Brooks et al. 2003a; Brooks et al. 2003b; 

Gensini and Ashley 2011), this region has been omitted.   

b.  Model diagnostics 

 i.  Parent GCM characteristics 

 The CCSM3 is a coupled global climate model consisting of atmosphere, land surface, 

sea-ice, and ocean components (Collins et al., 2006).  Available data includes a control run (no 

changes in external climate forcing), a 20th century simulation (containing the observed changes 

of greenhouse gases, sulphate aerosols, volcanic aerosols, and solar irradiance from the 20th 

century), and 21st century scenarios (containing estimated changes in greenhouse gas 

concentration and aerosol concentrations).  For this particular study, 11 years (1980–1990) of a 

simulation initialized in 1870 and run through the 20th century (CCSM3 b30.030e dataset) was 

chosen in an effort to assess CCSM3 bias and error relative to actual HCW reports over the same 

period. 
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ii.  Regional climate model 

 As previously mentioned, the Regional Climate Model (RCM) used for dynamical 

downscaling in this study is the non-hydrostatic advanced research core of the Weather Research 

and Forecasting (WRF-ARW) model (Skamarock et al. 2008).  Initial conditions for WRF are 

provided from CCSM3 at 0000 UTC on March 1st of each year, and integrated over a three-

month period, providing CCSM3 boundary conditions every six hours.  Parameterizations of 

physical processes (Table 3.1) and other aspects of the regional climate model configuration are 

based on WRF-model simulations of HCW in the United States (e.g., Weisman et al. 2008; Kain 

et al. 2006; Trapp et al. 2011; Robinson et al. 2013).  The first six hours and of the simulation are 

discarded, in addition to the first six lateral-edge domain points, to account for model spin-up 

(Skamarock 2004).  Since a cold start is initialized on March 1st of every HCW season, 

interannual soil moisture memory is lost, despite the ability to capture seasonal soil moisture 

feedbacks.   

 Nine pairs of UH/Z values were tested using fractional gross error (FE) and mean bias 

(MB) statistics to determine the most appropriate threshold for HCW proxy occurrence (Fig. 

3.2).  This analysis suggests the optimal proxy for a HCW event occurs when an hourly model 

grid point exceeds Z values ≥ 40 dBZ juxtapositioned with UH values ≥ 60 m2·s-2.  This 

threshold depicts a relative minimum in FE, but does display a slight positive bias, which 

changes through the analyzed months.  This threshold is slightly different than the 50-40 Z/UH 

pair used in previous research (Trapp et al. 2011; Robinson et al. 2013).  This difference is 

subtle, considering the differing WRF initial and boundary conditions (NCEP/NCAR Global 

Reanalysis v. CCSM3) and the examination of an earlier period in the annual convective cycle 

(March–May v. April–June).  The slightly lower Z, but higher UH, values used in our study 
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makes physical sense as earlier months in the annual convective cycle are typically dominated by 

a low-CAPE and high-shear environment (Brooks et al. 2007) that are strongly synoptically 

forced (Galway and Pearson 1981). 

 Although the RCM configuration, study months, and proxy report methodology are 

similar to previous research (Trapp et al. 2011; Robinson et al. 2013), there is an important 

difference to note.  This study employs a longer (continuous) integration time over the entire 

three month period, which is different than the 24-h re-initialization used in Trapp et al. (2011) 

and Robinson et al. (2013).  This longer integration time is desirable in climate modeling as it 

supports a better representation of influences associated with longer-memory processes (e.g., soil 

moisture) on HCW.   

 A 50 km fishnet grid was used to evaluate observed and model-simulated HCW events.  

This grid length is smaller than the ~80 km used in previous severe weather report climatologies 

(e.g., Brooks et al. 2003a), but greater than the ~38 km grid length used in a similar downscaling 

study (Trapp et al. 2011).  This coarsened grid scale helps compensate for errors in the spatial 

location of observed HCW reports, and their interpolation to the nearest 4 km RCM grid point.  

3.4  Results 

 Model simulated HCW reports closely mimic the spatial evolution of observed reports for 

the months analyzed (Fig. 3.3).  That is, the RCM reflects an increase in reports and a gradual 

northward progression of relative maxima consistent with the observed cycle of HCW during 

this period.  These results are consistent with previous downscaling studies that examined April–

June (Trapp et al. 2011).  In terms of magnitude, March shows little bias relative to observations, 

whereas April (May) shows a positive (negative) bias (Fig. 3.2).  Additionally, RCM simulated 
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and observed HCW exhibit similar interannual variability for the months March–May (Fig. 3.4).  

For example, March–May 1987 and 1988 are notable in U.S. HCW climatological record for 

their relatively low report occurrence.  The RCM also depicts relative minimums in simulated 

HCW during these years.  While only eleven years are analyzed in this study, and therefore any 

advanced statistical analysis is inhibited, the historical period run of CCSM3 with the addition of 

a WRF as a RCM is able sufficiently capture observed variability of HCW at the 4 km, hourly 

scale during the months examined.  

 Spatial patterns of bias indicate population density likely plays a role in influencing 

observed reports relative to those simulated by the RCM (Fig. 3.5).  For example, 1980–1990 

observed reports are shown to be higher near larger cities such as Dallas-Fort Worth, Oklahoma 

City, and Shreveport.  Meanwhile, magnitudes of observed reports are lower than modeled 

values on the High-Plains and in portions of Missouri/Arkansas where lack of population (and 

hence reports) is a key factor.  In addition, there is a general underestimation of HCW 

occurrences by the RCM in many portions of the Southeast U.S. (Fig. 3.5).  This underestimation 

regularly occurs in the month of May and may be attributable to convective mode and scale of 

forcing for ascent.  For example, supercell thunderstorms are most common in the Central Plains 

of the U.S., and a grid spacing of 4 km better resolves these mesocyclones versus the storm-scale 

rotation associated with quasi-linear convective severe weather common across the Southeast 

U.S.  Similar biases were found during the months of May and June by Trapp et al. (2011).  

Using these results, future period simulations can be bias-corrected to account for such errors 

(Christensen et al. 2008).  However, it is unknown if these errors originate from the parent GCM, 

manifest in the RCM due to choice of model configuration, or are simply errors associated with 

reporting in Storm Data.  
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 To supplement confidence in these simulated reports, environmental controls (i.e., CAPE 

and 0–6 km shear) known to support HCW were examined (Fig. 3.6).  These environmental 

controls serve as indicators to the climatological locations where one might expect HCW to 

occur.  When restricting analysis of environments to 0000 UTC and resampling RCM output to 3 

km grid length (in order to compare to the North American Regional Reanalysis [NARR; 

Mesinger et al. 2006]), it is shown that the RCM used herein also replicates the interannual 

variability of proxy significant severe weather environments (Fig. 3.7).  Line values shown in 

Fig. 3.7 are RCM domain-averaged 0000 UTC frequencies of the proxy C composite parameter 

following the methodology of Gensini and Ashley (2011).  While the statistical significance is 

limited in this relatively short temporal series, it is encouraging to see a historical period RCM 

run capture the interannual variability of environments favorable for HCW as depicted by the 

NARR.  This strengthens the previous notion that RCMs can adequately capture the interannual 

variability of observed HCW.  

  In addition to seasonal spatio-temporal analysis, diurnal convective cycles were also 

examined (Fig. 3.8).  This analysis suggests that high-resolution RCMs can adequately capture 

the diurnal cycle of HCW.  Hourly modeled proxy reports explain 96% of the variability 

associated with observed reports.  In fact, only one hour (0800 UTC) showed no overlap in the 

10% error range of hourly observed and simulated HCW.  The HCW peak in the RCM occurred 

at 0000 UTC (2890 reports), whereas observations peaked slightly earlier at 2300 UTC (3157 

reports).  This is similar to the WRF delayed maximum in rainfall intensity observed by Clark et 

al. (2007).  It should be noted that agreement herein is likely improved due to stronger HCW 

forcing mechanisms (e.g., fronts) during the months March–May (Galway and Pearson 1981).  It 
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is probable that this similarity would diminish as the HCW season progresses into June–August 

when subtler forcing for ascent is present (Liu et al. 2006).   

3.5  Summary and conclusions 

 We have utilized high-resolution (4 km; hourly) regional climate modeling to simulate a 

proxy for the variability of tornadoes, damaging thunderstorm wind gusts, and large hail across 

the eastern two-thirds of the U.S. for the months March–May during the period 1980–1990.  This 

process used GCM output from CCSM3 to drive WRF (the RCM).  A proxy for HCW was 

developed utilizing methodology from Trapp et al. (2011) and Robinson et al. (2013).  However, 

continuous integration over the three-month period was employed in this study to best replicate 

long-memory processes, a suggestion from previous research.   

 Overall, proxy HCW events simulated by the WRF as a RCM depict skill in the spatio-

temporal distributions of hazardous thunderstorms during the months examined.  Proxy report 

analysis is strengthened using an environmental control parameter that exhibits strong 

interannual correlation between RCM generated and reanalyzed environments.  Spatial biases are 

present, indicating that evaluating HCW occurrence at small spatial scales should be done with 

caution.  Instead, evaluations HCW occurrence from RCM output may be best done at GCM 

resolution. Along with studies such as Trapp et al. (2011) and Robinson et al. (2013), this 

research further indicates that dynamical downscaling of data with relatively coarse grid length 

to the resolution needed to explicitly resolve HCW is a productive endeavor. 

 To date, the main limitation of performing dynamical downscaling analysis for purposes 

of resolving HCW continues to be the lack of temporal length (i.e., we use an eleven-year 

period), owing to the computationally expensive nature of performing dynamical downscaling.  
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This will be mitigated in the future as additional years and months are simulated, along with 

additional parent/child GCMs/RCMs, creating an ensemble estimation of both historical and 

future HCW occurrence.  These GCM-driven dynamically downscaled scenarios must play a 

vital role in our understanding of potential changes in future HCW distributions and will serve as 

a comparison to environmental methods (Del Ginio et al. 2007; Trapp et al. 2007a; Trapp et al. 

2009; Van Klooster and Roebber 2009; Gensini et al. 2013; Diffenbaugh et al. 2013) used to 

estimate such changes in previous research. 
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Table 3.1.  Relevant regional model configuration information. 

Parameterization  
Microphysics WSM6     (Hong and Lim 2006) 
Shortwave Radiation Dudhia    (Dudhia 1989) 
Longwave Radiation RRTM     (Mlawer et al. 1997; Iacono et al. 2000) 
Land Surface Model Noah        (Chen and Dudhia 2001) 
Planetary Boundary Layer MYJ        (Mellor and Yamada 1982) 

Model Parameters  
Time Step 24 s 
Vertical Levels 35 
Horizonal Grid Point Spacing 4 km 

Initial/Boundary Conditions  
Temperature, specific humidity,  
geopotential height, u-v wind,  
surface pressure 

Surface,  27 isobaric levels; 6-h intervals 

Soil Temperature, Soil Moisture 0–10, 10–40, 40–100, 100–200 cm; 6-h intervals 
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Fig. 3.1.  Study region denoted by the dashed blue box. 
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Fig. 3.2.  Fractional gross error (grey bars; axis right) and mean bias (colored lines; axis left) by 
month for nine Z/UH pairs examined in this study.  
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Fig. 3.3.  1980–1990 RCM simulated (top row) and observed (bottom row) severe weather 
reports. 
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Fig. 3.4.  Interannual variability of March–May HCW as depicted by a RCM and observations. 
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Fig. 3.5.  Spatial difference between RCM proxy and observed severe weather reports for the 
period 1980–1990. Yellow “*” indicate the locations of Oklahoma City, OK, Dallas-Fort Worth, 
TX, and Shreveport, LA. 
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Fig. 3.6.  1980–1990 frequency of March–May (MAM) significant severe weather environments 
as simulated by a RCM.  
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 Fig. 3.7.  0000 UTC domain-averaged proxy C-composite values (following Gensini and Ashley 
2011) from the North American Regional Reanalysis and the RCM used in this study. 
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Fig. 3.8.  Diurnal frequency comparison of RCM simulated and observed severe weather reports. 
Error bars the standard error.  
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CHAPTER 4 

 

DYNAMICAL DOWNSCALING ANALYSIS OF FUTURE HAZARDOUS CONVECTIVE 

WEATHER1 

  

                                                           
1 Gensini, V.A. and T. L. Mote. To be submitted to Climatic Change. 
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Abstract 

High-resolution dynamical downscaling is used to explore 2080–2090 peak-season hazardous 

convective weather as simulated from the Community Climate System Model version 3. 

Downscaling to 4 km grid spacing is performed using the Weather Research and Forecasting 

model.  Tornadoes, damaging wind gusts, and large hail are simulated using a model proxy at 

hourly intervals for locations east of the U.S. Continental Divide.  Future period results are 

placed into context using 1980–1990 output.  While a limited sample size exists, a statistically 

significant increase in synthetic severe weather activity is noted in March, whereas event 

frequency is shown to slightly increase in April, and stay the same in May.  These increases are 

primarily found in the Mississippi, Tennessee, and Ohio River valleys.  Diurnally, most of the 

increase in HCW activity is shown to be in the hours surrounding local sunset.  Peak-season 

severe weather is also shown to be more variable in the future with a skewed potential toward 

larger counts.  Finally, modeled proxy events are compared to environmental parameters known 

to generate HCW activity.  These environmental conditions explain over 80% of the variance 

associated with modeled reports during March–May and show an increasing future tendency.  

Finally, challenges associated with dynamical downscaling for purposes of resolving severe local 

storms are discussed.   
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4.1  Introduction 

 A major point of discussion in severe weather climatology surrounds the future of deep, 

moist convection in an anthropogenically altered climate.  Historically, the record of U.S. 

hazardous convective weather (HCW; i.e., tornadoes, wind gusts, and large hail) has been driven 

largely by reporting.  Problems associated with the reporting process and population biases have 

made it difficult to determine trends from reports (see discussions in Doswell and Burgess 1988; 

Grazulis 1993; Brooks and Doswell 2001; Brooks and Doswell 2002; Verbout et al. 2006; and 

Doswell 2007).   

 Due to the uncertainty associated with reports, recent research has instead examined the 

variability of environmental conditions necessary for the formation of HCW.  These studies 

suggest that environmental conditions related to hazardous convective weather will increase in 

response to elevated greenhouse forcing (Del Genio et al. 2007; Trapp et al. 2007a; Trapp et al. 

2009; Van Klooster and Roebber 2009; Brooks 2013; Gensini et al. 2013; Diffenbaugh et al. 

2013).  Despite the mounting environmental evidence, recent climate change assessments have 

largely avoided any conclusions regarding potential changes of HCW in a future climate (see 

discussions in Alley et al. [2007] and Karl et al. [2009]).  The latest Intergovernmental Panel on 

Climate Change (IPCC AR5) report lacks any definitive conclusions regarding extreme 

convective weather.  This lack of confidence is primarily due to the opaque historical record of 

HCW reports and the inability to directly link environmental control parameters to events 

(Alexander and Coauthors 2013).  

 While Global Climate Model (GCM) output can simulate future environmental 

conditions favorable for the formation of HCW, the grid spacing (typically on the order of 100-
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km) lacks the ability to resolve processes associated with HCW.  However, new research 

indicates that synthetic reports produced by high-resolution (4 km; hourly) regional climate 

models can accurately capture the spatio-temporal variability of observed reports when forced 

with coarse resolution GCM-scale conditions (Trapp et al. 2011; Robinson et al. 2013; Gensini 

and Mote 2014).  Dynamical downscaling for purposes of resolving HCW events has yet to be 

performed on GCM-scale future projections.  Thus, this is the first study to compare historical 

and future synthetic severe weather reports from the same GCM.   

4.2  Background 

 Dynamically downscaled global reanalysis data (similar to the coarse-resolution of many 

GCMs) has accurately represented HCW during the peak of the convective season (May–June; 

Trapp et al. 2011; Robinson et al. 2013).  The Community Climate System Model version 3 

(CCSM3) control run was also found to accurately portray spatial and temporal variability during 

March–May while correctly timing the diurnal hourly frequency of HCW (Gensini and Mote 

2014).  While dynamical downscaling GCM output for purposes of resolving HCW is in its 

infancy, these studies indicate a promising future of research. 

 Downscaling for HCW must be done at a grid spacing ≤ 4 km, as severe convective 

storms can be explicitly resolved at this scale (Weisman et al. 1997).  The main challenge 

associated with dynamical downscaling continues to be its computationally expensive nature, 

though, there is little doubt this challenge will become increasingly less important in the future.  

Dynamical downscaling for HCW will become unnecessary when GCM grid spacing is reduced 

to 4 km.  However, grid spacing from the latest suite of GCM models used for the IPCC AR5 
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report were simulated with latitude-longitude spacing that ranged from 4° by 5° to about 1° by 

1°, indicating that dynamical downscaling will likely be pertinent for years to come.   

 As previously discussed, one must recognize several potential pitfalls when drawing 

conclusions from the recorded history of HCW.  Studies using objective methods to determine 

the history of HCW activity indicate that environmental conditions (Gensini and Ashley 2011; 

Robinson et al. 2013)  and modeled proxy reports (Robinson et al. 2013) have exhibited little to 

no trend, despite a significant increase in HCW reports over the past 30 years.  Inflation in HCW 

reporting is well documented in the literature (e.g., Doswell and Burgess 1988; Grazulis 1993; 

Brooks and Doswell 2001; Brooks and Doswell 2002; Verbout et al. 2006; and Doswell 2007), 

and hence, recent increases in economic losses from severe thunderstorms (Changnon 2001) and 

tornadoes (Brooks and Doswell 2001; Changnon 2009) have been attributed to changes in the 

societal landscape (e.g., population, property value) rather than an increase in the frequency of 

HCW events (Bouwer 2011). 

 While no trends in HCW synthetic reports or environments exist over the past 30 years, 

Several GCMs project a bullish increase in the ingredients supportive of HCW by the late 21st 

Century (Del Genio et al. 2007; Trapp et al. 2007a; Trapp et al. 2009; Van Klooster and Roebber 

2009; Diffenbaugh et al. 2013).  Using dynamically downscaled data from the North American 

Regional Climate Change Assessment Program (NARCCAP; Mearns et al. 2009, 2012) project, 

similar increases in HCW environments were found across a large portion of the U.S. (Gensini et 

al. 2013).  These studies agree that projected increases in HCW activity is largely a function of 

increases in convective available potential energy (CAPE), associated with augmentation in 

future period near-surface specific humidity values.   



72 
 

 While an environmental approach has been commonly used to this point, results herein 

give researchers first glances into storm-scale responses to anthropogenically altered synoptic 

convective environments. High resolution dynamical downscaling for purposes of resolving 

HCW has yet to be performed for future period GCM scenarios, prior to the work presented here.  

Building from a previous historical scenario used in Gensini and Mote (2014), this study presents 

the first results of potential future changes in U.S. severe weather activity using synthetic reports 

derived from high-resolution dynamical downscaling.   

4.3  Methodology 

a.  Model information 

 i.  Global climate model 

 The CCSM3 is a coupled global climate spectral model consisting of atmosphere, land 

surface, sea-ice, and ocean components.  CCSM3 uses an 85-wavenumber triangular truncation 

grid spacing (approximately 1.4° resolution at the equator) in the horizontal, and has 26 levels in 

the vertical (Collins et al. 2006).  Available output includes a control run (no changes in external 

climate forcing), a 20th Century simulation (containing the observed changes of greenhouse 

gases, sulphate aerosols, volcanic aerosols, and solar irradiance from the 20th Century), and 21st 

Century scenarios (containing estimated changes in greenhouse gas and aerosol concentrations).   

 For the study presented here, two 11-year epochs were compared to evaluate potential 

changes in future HCW activity.  The historical (1980–1990) and future (2080–2090) 

downscaled periods use data based on a simulation initialized in 1870 and simulated through the 

end of the 21st Century.  This simulation utilizes data based on the special report for emissions 

scenario (SRES) A2 scenario, characterized by, “a very heterogeneous world with continuously 
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increasing global population and regionally oriented economic growth that is more fragmented 

and slower than in other storylines” (Nakicenovic et al. 2000).  This aggressive, but not worse 

case, scenario is chosen in an effort to assess potential changes in HCW to atmospheric 

responses associated with increasing anthropogenic carbon emissions. 

 ii.  Regional climate model 

 Regional Climate Model (RCM) configurations were chosen following previous research 

downscaling CCSM3 historical fields (Gensini and Mote 2014).  Thus, we again use the non-

hydrostatic advanced research core of the Weather Research and Forecasting (WRF-ARW) 

model (Skamarock et al. 2008).  Output fields from the CCSM3 at 0000 UTC on 1 March of 

each year are used to initialize the RCM.  Integrations are then performed over a three-month 

period, providing CCSM3 boundary conditions to the RCM every six hours, while the first six 

hours of the simulation are discarded to account for model spin-up (Skamarock 2004).   This 

longer integration time is desirable as it supports better representation of influences associated 

with longer-memory processes, such as soil moisture, known to influence surface fluxes in the 

climate system (Gensini and Mote 2014).  RCM diagnostics, and parameterization schemes 

(Table 3.1) are based on previous WRF-model simulations of HCW in the United States (e.g., 

Weisman et al. 2008; Kain et al. 2006; Trapp et al. 2011; Robinson et al. 2013; Gensini and Mote 

2014).   

 The model-based proxy used in this research follows that used in Trapp et al. (2011) and 

Gensini and Mote (2014), using hourly thresholds of updraft helicity (UH) and simulated 

composite radar reflectivity (Z) as described by Kain et al. (2008).  Specifically, a synthetic 

HCW event occurs when an hourly RCM grid point contains UH values ≥ 60 m2·s-2 juxtaposed 
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with Z values ≥ 40 dBZ (Fig. 4.1).  This threshold UH/Z pair has been shown to best 

approximate HCW activity in the U.S. during a 1980–1990 historical simulation using CCSM3 

(Gensini and Mote 2014).  An animation of modeled composite reflectivity and HCW reports 

helps visualize this process (Fig. 4.2). 

 Synthetic HCW reports are spatially aggregated to a 50 km grid and summed to create 

two epoch (1980–1990; 2080–2090) climatologies for the months March–May.  Based on 

observed HCW reports during the historical period, bias correction is applied to both historical 

and future periods.  This is a desirable procedure when applying a downscaling framework to 

GCM data (Christensen et al. 2008).  Finally, statistical significance was tested using the Mann-

Whitney U test for the medians at the 95% confidence level. 

b.  Downscaling domain 

 Dynamical downscaling is applied to the same study region used in Gensini and Mote 

(2014), and contains all points in the U.S. east of the Continental Divide.  This domain contains 

490,000 grid points in a Lambert Conformal Conic projection, equating to between 4–4.25 km 

grid spacing depending on latitude.  Given the central Great Plains has the highest annual 

frequency of HCW (Brooks et al. 2003b), it is hypothesized that potential changes in HCW 

activity will be most prominent in this high frequency region.  Changes in HCW distributions 

may occur outside of this region due to a changing climate, but this study is not able to address 

such scenarios. 

4.4  Results 

 We begin with modeled proxy reports of HCW.  Raw counts of synthetic HCW reveal a 

27% increase in future period events.  Stratifying by month, most of this increase is found in 
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March (increases approaching 70%), whereas April shows a slight increase (15%) and May 

remains virtually unchanged (Fig. 4.3).  This does not necessarily imply a shift in the temporal 

climax of HCW; rather, a greater probability of such events earlier in the annual cycle, and thus 

an increase in the overall frequency is depicted.  Examinations of seasonal HCW changes 

suggest a future increase in the variability of peak-season events, indicated by a “fanning” of the 

cumulative frequency through the months examined (Fig. 4.4).  This is further shown by nearly a 

doubling in standard deviation (778 to 1433 synthetic reports) from the historical to future epoch 

and an increase in the coefficient of variation from .29 to .43 respectively.  From an 

environmental ingredients perspective, this variability is primarily a function of the polar jet 

stream location juxtapositioning with CAPE. Consequently, increases in peak-seasonal HCW 

variability suggest that synoptic scale controls, such as jet-stream location, are likely to be 

different in a future climate.  This variability is broadly consistent with recent research relating 

arctic amplification with mid-latitude weather extremes (Francis and Vavrus 2012; Petoukhov et 

al. 2013; Screen and Simmonds 2013) due to a decline in Arctic sea-ice cover (Francis et al. 

2009). 

 Similar to Gensini and Mote (2014), severe weather reports from the Storm Prediction 

Center’s severe weather database (Schaefer and Edwards 1999) were used to provide a simple 

bias correction factor to historical and future period proxy reports (Fig. 4.3), a necessary 

procedure when downscaling GCM data (Christensen et al. 2008).  These corrections do not 

necessarily alter the change across epochs; they instead adjust the magnitudes of change into a 

context consistent with historical observed HCW reports.  It should be noted that observed HCW 

reports, in particular, are a challenge to bias correct due to the nature of the reporting process.  
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 Spatially, the largest increases in future period HCW are depicted across the Middle 

Mississippi, Lower Mississippi, Ohio, and Tennessee River valleys (Fig. 4.5).  In these regions, 

results indicate increases of 2–8+ HCW reports per season on average.  Some isolated points in 

and close to these regions depicted a statistically significant decrease.  For example, a relative 

cluster of notable decrease in HCW activity is shown across Florida in this simulation.  

However, these statistically significant decreases (23 grid cells) are largely outweighed by 

roughly 6.5 times more grid cells that illustrated a statistically significant increase across the 

domain.  Diurnally, the largest HCW frequency increases were found from 2100–0500 UTC 

(Fig. 4.6), which coincides with the typical maximum in HCW across the U.S. (Kelly et al. 

1978).  

 Next, we focus on modeled composite reflectivity.  While not a hazard itself, it can be 

used as a surrogate to gauge updraft and storm intensity.  This is not a new process as 

meteorologists routinely use RADAR reflectivity to operationally imply storm intensity (Lemon 

1977), objectively track thunderstorm echoes (Dixon and Wiener 1993; Johnson et al. 1998; Han 

et al. 2009) and classify potential hail size (Witt et al. 1998).  The composite reflectivity value of 

50 dBZ was chosen due its documented ability to discriminate for severe hail events when used 

with melting layer height (Donavon and Jungbluth 2007) and was again aggregated to a 50 km 

grid for comparison.   

 Significant increases in future period 50 dBZ values were found during the months of 

March and April, while May showed no significant change (Fig. 4.7).  Most of the increases in 

March are identified in the southeast Great Plains through the southern and southeastern U.S., 

northward through the Mississippi and Ohio River valleys (Fig. 4.8).  By April, a majority of the 

increase has shifted northward into the Ohio River valley, consistent with the northward 
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climatological shift of severe weather as the season progresses (Brooks et al. 2003a; Gensini and 

Ashley 2011).  Results herein suggest that late-century, early-season thunderstorms will be of 

greater intensity/frequency, likely a function of robust increases in CAPE and near-surface 

specific humidity depicted by several GCMs and RCMs (Del Genio et al. 2007; Trapp et al. 

2007a; Trapp et al. 2009; Van Klooster and Roebber 2009; Diffenbaugh et al. 2013; Gensini et 

al. 2013). 

 We conclude with a discussion of environmental control parameters known to favor deep 

convection, specifically CAPE and 0–6-km bulk wind difference (BWD).  An average increase 

of 236% is shown across all months of future period average frequencies of grid points with 

CAPE exceeding 2000 J kg-1 (Fig. 4.9).  This robust increase in CAPE is consistent with recent 

studies examining ensembles of GCM output for convective purposes (Del Genio et al. 2007; 

Trapp et al. 2007a; Trapp et al. 2009; Diffenbaugh et al. 2013) during March–May.  In addition, 

the product of CAPE and 0–6 km BWD has been widely used to discriminate potential 

significant severe weather environments for climatological purposes due to its ease of calculation 

(Brooks et al. 2003b).  The calculation used herein follows the proximity Craven-Brooks 

composite methodology of Gensini and Ashley (2011), restricting events to CAPE values 

exceeding 100 J kg-1. Similar to the synthetic HCW report distribution, the number of grid points 

with a product of CAPE and 0–6 km BWD exceeding 20,000 show a significant increase in 

March and April, with no meaningful change in May (Fig. 4.10).  There are only a few 

distinguishable spatial shifts in the distribution of CAPE (Fig. 4.11a, Fig 4.11b) and significant 

severe weather environments (Fig. 4.11c, 4.11d) over the epochs examined.  Rather, an overall 

general increase is noted from the historical to the future period.   
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 These results are corroborated by the agreement between large-scale instability/shear 

parameters and modeled HCW reports.  The product of CAPE and 0–6 km BWD exceeding 

20,000 explains 81% of the variability associated with HCW reports over the historical and 

future periods examined (Fig. 4.12).  This supports recent research depicting the ability of high-

resolution dynamical downscaling to replicate large-scale conditions forcing interannual and sub-

seasonal variability in HCW activity (Gensini and Mote 2014).  This result is significant, as one 

of the main weaknesses in environmental analysis is the inability to discuss changes on the 

storm-scale.  It appears, however, that environmental analysis is an efficient predictor of HCW 

occurrence across the domain and study periods analyzed. 

4.5  Summary and conclusions 

 This study is the first to use dynamical downscaling for purposes of examining potential 

changes in hazardous convective weather under a business-as-usual emissions scenario.  Using 

data from the Community Climate System Model version 3 downscaled by the Weather 

Research and Forecasting model, an artificial report proxy consisting of downscaled 2–5 km 

updraft helicity and composite reflectivity was used to simulate occurrences of tornadoes, 

damaging wind gusts, and large hail at hourly intervals over the eastern two-thirds of the U.S. 

during a historical (1980–1990) and future (2080–2090) period.  Using observed severe weather 

reports to bias correct, a significant future increase in hazardous convective weather frequency 

and variability is revealed, especially during the afternoon hours during the months of March and 

April.  The largest increase in future severe weather events is found across the Middle 

Mississippi, Lower Mississippi, Ohio, and Tennessee River valleys, with an overall frequency 

increase of 27%.  Thus, this region would be poised to receive an additional 2–8+ severe weather 

reports per 50 km grid box during March–May.  In addition, modeled composite reflectivity, a 
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surrogate for storm intensity, is shown to significantly increase across a large portion of the 

analyzed domain, again specifically during the months of March and April.   

These results, along with a quickly growing body of literature, suggest that late-century 

thunderstorms will be of greater intensity/frequency, likely a function of robust increases in 

CAPE and near-surface specific humidity depicted by several GCMs and RCMs (Del Genio et 

al. 2007; Trapp et al. 2007a; Trapp et al. 2009; Van Klooster and Roebber 2009; Diffenbaugh et 

al. 2013; Gensini et al. 2013).  These previous studies are solidified by results presented herein, 

as large-scale environmental controls such as CAPE and deep-layer wind shear are shown to 

explain over 80% of the variability in modeled severe weather reports. 

The main obstacle for this particular study is dataset length.  Due to the computationally 

expensive nature of dynamical downscaling, it was only feasible to examine two ten-year 

periods.  Ultimately, a multi-model ensemble approach over a period of 30 years would be most 

desirable for this type of study, and accordingly, we are limited with our ability to make 

definitive conclusions regarding severe weather in the late 21st Century.  However, this study 

expands and existing body of literature indicating the potential for future increases in severe 

convective weather (Del Genio et al. 2007; Trapp et al. 2007a; Trapp et al. 2009; Van Klooster 

and Roebber 2009; Diffenbaugh et al. 2013; Gensini et al. 2013).  Overall, dynamical 

downscaling for purposes of resolving mesoscale phenomenon, such as severe local storms, 

continues to emerge as an admirable methodological technique for climate change assessments.  
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Fig. 4.1.  Progression of composite reflectivity (dBZ; fill) and 10-m wind (knots) from 2100 
UTC 2 May 2090 to 0200 UTC 3 May 2090.  Purple ovals highlight areas of proxy-based severe 
convective weather reports. 
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Fig. 4.2.  Animation of modeled composite reflectivity (dBZ) for the period 0000 UTC 1 May 
1990–0500 UTC 3 May 2090. Purple ‘+’ symbols indicate locations of accumulating HCW 
reports. (Click image to play animation on electronic device)   
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Fig. 4.3.  Average monthly comparisons of raw and bias corrected synthetic severe weather 
reports.  Error bars indicate the standard error.  
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Fig. 4.4.  Cumulative frequency of historical (black) and future (red) period synthetic hazardous 
convective weather reports.  Thick black and red lines indicate averages for their respective 
period. 
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Fig. 4.5.  Average difference between 2080–2090 and 1980–1990 modeled severe weather 
reports.  Red (blue) grid cells indicate a positive (negative) change in the average number of 
modeled reports per season. Triangles indicate statistical significance at the 95% confidence 
level. 
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Fig. 4.6.  Diurnal frequency comparison of historical (blue) and future (red) severe weather 
reports. Error bars indicate the standard error. 
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 Fig. 4.7.  Average monthly comparisons of historical and future period grid cell counts with 
modeled composite reflectivity (Z) ≥ 50 dBZ.  Error bars indicate the standard error.  
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Fig. 4.8.  Average difference between 2080–2090 and 1980–1990 modeled composite 
reflectivity values ≥ 50 dBZ for March (a), April (b), May (c), and March–May (d).  Red (blue) 
grid cells indicate a positive (negative) change in the average number of modeled reports per 
season. Triangles indicate statistical significance at the 95% confidence level. 
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Fig. 4.9.  As in Fig. 4.6, but for grid cell counts with CAPE ≥ 2,000 J kg-1.  
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Fig. 4.10.  As in Fig. 4.6, but for grid cell counts with CAPE × 0–6-km BWD ≥ 20,000 with 
CAPE ≥ 100 J kg-1.  

0

300000

600000

900000

1200000

1500000

1800000

2100000

March April May

1980-1990

2080-2090



93 
 

 
Fig. 4.11.  Average frequency of March–May historical (a) CAPE ≥ 2,000 J kg-1 and (b) the 
product of CAPE and 0–6-km BWD exceeding 20,000. Panels (c) and (d) represent the future 
period respectively.  In the case of CAPE × 0–6-km BWD, CAPE is constrained to only evaluate 
events with ≥100 J kg-1.  
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Fig. 4.12.  Bias-corrected linear correlation between average grid point frequency with CAPE × 
0–6-km BWD ≥ 20,000 and average synthetic report frequency by month.  Blue triangles 
correspond to the period 1980–1990, while red triangles correspond to the period 2080–2090. 
The least-squares regression equation and coefficient of determination are displayed in the gray 
box. 
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CHAPTER 5 

 
SUMMARY AND CONCLUSIONS 

 

5.1  Overview 

 Thunderstorm wind gusts, large hail, and tornadoes (otherwise known as hazardous 

convective weather [HCW]) cause billions of dollars of economic loss and several fatalities 

across the U.S. each year.  Despite their socio-economic impact, climate change summaries (e.g., 

reports from Intergovernmental Panel on Climate Change [IPCC] and the United States Climate 

Change Science Program [CCSP]) have avoided definitive conclusions regarding potential 

changes to their frequency and intensity in a future, anthropogenically altered, climate (Brooks 

2013).  Such climate assessments have expressed great uncertainty in late 21st Century HCW 

activity, owing to the poor observational record of severe weather events and inadequacies in 

grid spacing resolution of current Global/Regional Climate Models (RCMs/GCMs).  

Interestingly, despite these conclusions (or lack thereof), much speculation regarding future 

HCW (especially tornadoes) has percolated into the popular press. 

 To date, most of the scientific effort to understand future distributions of HCW has been 

limited to utilizing GCM or RCM output to analyze the large-scale convective environment that 

is known to favor severe convection.  These studies indicate that an increase in HCW activity is 

likely in the future, due in large part to increases in convective available potential energy (CAPE; 

Del Genio et al. 2007; Trapp et al. 2007a; Trapp et al. 2009; Van Klooster and Roebber 2009; 
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Brooks 2013; Diffenbaugh et al. 2013; Gensini et al. 2013).  However, novel research by Trapp 

et al. (2011) explored the use of high-resolution dynamical downscaling to advance 

methodological techniques for examining storm-scale processes from coarse-resolution initial 

and boundary conditions.  Trapp et al. (2011) were successful in simulating accurate 

representations of HCW distribution, and further research confirmed its potential utility 

(Robinson et al. 2013; Gensini and Mote 2014).   

 The overall goals of this dissertation were to: 1) illustrate the relative utility of a 

reanalysis dataset to approximate convective environments (Chapter 2), 2) establish a historical 

baseline climatology of modeled HCW activity using dynamical downscaling (Chapter 3), and 3) 

investigate potential changes surrounding severe weather activity in a future climate altered by 

anthropogenic greenhouse warming (Chapter 4).  These topics are timely and important, as no 

study has yet performed dynamical downscaling analysis on current or future period GCM 

output.  Additionally, several devastating severe weather events occurred over the past year, 

including an EF-5 tornado that struck the town of Moore, OK on 20 May 2013.  This event 

caused 24 fatalities, 377 injuries, and an estimated $2 billion in damages, causing some media 

responses speculating climate change was to blame.  As noted in Brooks (2013), a singular 

severe thunderstorm event cannot be used as evidence of a trend.  However, this dissertation 

helps extend a promising methodological approach to understanding late 21st Century severe 

weather projections in a business-as-usual carbon emissions scenario.  The following is a 

summary of the major findings in this dissertation.  
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5.2 Summary 

a. Reanalysis and the observed convective environment 

Chapter 2 of this dissertation compared North American Regional Reanalysis (NARR; 

Mesinger et al. 2006) proxy soundings to observed radiosonde data for various stations across 

the U.S. during the period 2000–2011.  This study was motivated by the need to quantify how 

well a reanalysis dataset approximates the observed convective environment, as reanalysis 

variables are typically sources of data for HCW climatological analysis.  Most importantly, it is 

demonstrated that variables representing kinematic calculations are best approximated by 

NARR, while scalar thermal variables suffer from errors originating in boundary-layer moisture 

variables.  These errors originate from the lack of vertical resolution in NARR and the 

convective parameterization scheme employed.  This leads to errors in evaluation of the elevated 

mixed-layer and near-surface moisture content (both important features when forecasting for 

severe thunderstorms), and researchers wishing to use NARR fields to initialize model 

simulations should be aware of such potential errors.  These results should prove useful for 

future climatological studies using NARR that use physical or derived variables relating to 

severe convection.  

b.  Downscaling estimates of historical severe weather 

 High-resolution dynamical downscaling was used to simulate the variability of HCW 

across the eastern two-thirds of the U.S. for the months March–May during the period 1980–

1990 in Chapter 3 of this dissertation.  Initialized by data from the Community Climate System 

Model version 3 (CCSM3), hourly synthetic severe weather reports were generated from the 
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Weather Research and Forecasting (WRF; Skamarock et al. 2008) model using values of 

modeled composite reflectivity and updraft helicity at 4-km grid spacing. 

Similar to previous research, severe weather reports simulated by dynamical downscaling 

in this study depict accurate distributions of HCW during the months examined (Trapp et al. 

2011; Robinson et al. 2013).  These results are enhanced by evaluating an environmental 

parameter composed of convective available potential energy and deep-layer wind shear that 

exhibits strong interannual correlation between modeled reports and re-analyzed environments.  

Furthermore, hourly comparisons between modeled and observed HCW exhibit strong 

correlation, indicating that dynamical downscaling can replicate the diurnal cycle of severe 

convection.    

Overall, this chapter indicates that dynamical downscaling of data with relatively coarse 

grid spacing (~100 km) to the resolution needed to explicitly resolve severe thunderstorms (~4 

km) is a beneficial methodology. Such research will be fundamental to our understanding of 

potential changes in late 21st Century severe weather frequency/variability, and will serve as an 

augmentation to the previous estimated changes via environmental methods from GCMs and 

RCMs.  This downscaling technique could also be useful to obtain high-resolution information 

from existing reanalysis datasets (e.g., those discussed in Chapter 2), or applied to other 

mesoscale atmospheric phenomena.   

c. Future estimates of severe weather 

 Chapter 4 of this dissertation explored the use of dynamical downscaling for purposes of 

examining potential future changes in severe thunderstorms influenced by a business-as-usual 

anthropogenic carbon emissions scenario.  Again using data from the CCSM3, historical (1980–
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1990) data from Chapter 3 of this dissertation was compared to a future (2080–2090) period 

simulation.  In general, a future increase in hazardous convective weather frequency and 

variability is revealed, especially during the months of March and April.  The largest increase in 

future severe weather events is revealed across the same regions identified as most vulnerable to 

tornado fatalities by Ashley (2007).  This is a significant result, suggesting that vulnerability to 

severe convective weather may increase due to alterations in physical risk, especially in 

geographic regions that are already considered to be exceedingly vulnerable.  

A new result of Chapter 4 indicates that an increase in the interannual variability of HCW 

events is also possible in the future, potentially owing to variability in the position of the polar jet 

stream.  This is suggested by nearly a doubling in the standard deviation of future period reports 

during March–May.  During these months, it is the deep-tropospheric shear that governs the 

severity of events such as large hail and tornadoes (Brooks 2013).  Finally, when added to an 

ever-growing body of literature, results in this chapter suggest that on average late 21st Century 

thunderstorms will be of greater frequency, especially during afternoon hours, likely a function 

of robust increases in CAPE and near-surface specific humidity depicted by several GCMs and 

RCMs (Del Genio et al. 2007; Trapp et al. 2007a; Trapp et al. 2009; Van Klooster and Roebber 

2009; Diffenbaugh et al. 2013; Gensini et al. 2013).  This study is the first to identify such an 

increase at the storm-scale and is a small, but significant step toward understanding potential 

changes in future severe thunderstorms.  

5.3 Conclusions 

 Recent research has significantly increased our understanding of the potential changes 

associated with severe thunderstorms in a changing climate.  Results from this dissertation 
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extend our understanding of such potential modifications, especially in regards to storm-scale 

changes and linkages to the larger scale convective environment.  It is shown that HCW is likely 

to be more frequent and variable in the late 21st Century.  Confidence is instilled in previous 

research results conducted with environmental analysis, as over 80% of the variability associated 

with modeled severe convective weather is explained by the product of convective available 

potential energy and deep-layer (0–6 km) wind shear.   

 As computer processing continues to be less of an obstacle to this methodology, 

dynamical downscaling for purposes of examining extreme weather (convective or otherwise) 

will become feasible for more researchers.  This will undoubtedly continue to paint a clearer 

picture of discussions surrounding severe thunderstorms and climate change, especially once 

such analysis is feasible in a multi-model ensemble setting.  Ultimately, this research is a small, 

yet significant, step in such discussion.  Climate change assessments should address results 

presented in the studies herein (and other recent research) relative to their discussions regarding 

severe thunderstorms in a future climate.  Finally, these results could be utilized in a physical 

risk context for decision makers, to begin addressing changes in vulnerability associated with an 

increase in late 21st Century HCW frequency and variability.  
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