

USING REGRESSION BASED METHODS FOR TIME-CONSTRAINED SCALING OF

PARALLEL PROCESSOR COMPUTING APPLICATIONS

by

JEONIFER GARREN

(Under the direction of Jaxk Reeves)

ABSTRACT

There is a need for an automated method that facilitates time-constrained scaling for

applications to encourage the wider use of parallel computation for computationally intense

problems. In this thesis, we show for the first time a self-generated focal training method that is

able to accurately achieve time-constrained scaling using a focused regression. This is

demonstrated with six benchmark applications, but can be extended to any application of

interest for which time-constrained scaling is needed.

INDEX WORDS: time-constrained scaling, parallel computation, regression

USING REGRESSION BASED METHODS FOR TIME-CONSTRAINED SCALING OF

PARALLEL PROCESSOR COMPUTING APPLICATIONS

by

JEONIFER GARREN

B.S., Emory University, 2002

MPH, Boston University, 2005

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2010

©2010

Jeonifer Garren

All Rights Reserved

USING REGRESSION BASED METHODS FOR TIME-CONSTRAINED SCALING OF

PARALLEL PROCESSOR COMPUTING APPLICATIONS

by

JEONIFER GARREN

Approved:

Major Professor: Jaxk Reeves

 Committee: Lynne Seymour

 William McCormick

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2010

 iv

DEDICATION

This is for my grandparents, Roy and Betty Garren. Thanks for always believing and

accepting me for me. I would also like to dedicate this thesis to all the people in my life who

have helped me become who I am today.

 v

ACKNOWLEDGEMENTS

I would like to acknowledge the Statistics department at UGA for allowing me into the

program, with special thanks to my committee. To my advisor Jaxk Reeves; I couldn’t have

done this without him. To the Computer Science departments at UGA and Arizona State

University, thanks for allowing me to be part of the research team.

 vi

PREFACE

This project was supported by a grant from the National Science Foundation (CSR 08-

34356). The project was a collaboration between researchers from the Statistics and Computer

Science fields. From the computer science field, this project was assisted by Professor David

Lowenthal and Brad Barnes of the University of Arizona and the University of Georgia,

respectively.

 vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS .. iv

PREFACE ..v

LIST OF TABLES ... ix

LIST OF FIGURES ...x

CHAPTER

1 INTRODUCTION ...1

2 BACKGROUND AND LITERATURE REVIEW ...6

2.1 BACKGROUND ...6

2.2 APPLICATIONS ...11

2.3 POSSIBLE APPROACHES TO PREDICTION/FORECASTING17

3 PROPOSED DATA ANALYSIS METHODS ..21

3.1 COMPLETE TRAINING SET METHOD ...21

3.2 FOCAL REGIONS METHOD ...22

3.3 SELF-GENERATED FOCAL REGION METHOD ..24

3.4 TYPES OF MODELS USED ..25

3.5 ALGORITHM FOR SELF-GENERATED DESIGN POINTS31

4 ANALYSES ...34

4.1 RESULTS USING COMPLETE TRAINING SET METHOD34

4.2 RESULTS USING FOCAL REGIONS METHOD ..37

 viii

4.3 RESULTS USING SELF-GENERATED FOCAL REGION METHOD44

4.4 SUBDIVISION INTO COMPONENTS ...49

5 CONCLUSION ..52

REFERENCES ..55

 ix

LIST OF TABLES

Page

Table 1.1: List of Applications and Characteristics ...4

Table 3.2: Six Initial Sample Runs ..32

Table 4.1: MAPE and Distribution of Relative % Error for Complete Training Method by

Application ..35

Table 4.2: Regression Coefficients for Complete Training Method by Application36

Table 4.6: Conditions Used to Create Focal Regions for Applications and Resultant MAPE’s ...42

Table 4.7: Regression Coefficients for Focused Regressions by Application and Condition43

Table 4.8: Six Initial Points for BT ..45

Table 4.9: Fifteen Points for BT at P<484 ...45

Table 4.10: Three Forecasting Points for BT at P=1936 ...46

Table 4.11: Six Initial Points for CG ...47

Table 4.12: Fifteen Points for CG at P<512 ..48

Table 4.13: Five Forecasting Points for CG at P=2048, NZ=14 ...48

Table 4.14: Regression Coefficients for Component Focused Regressions51

 x

LIST OF FIGURES

Page

Figure 2.1: Amdahl’s Law of Speed-up due to Parallelization ..9

Figure 3.1: SMG focal regions on a processor grid ...31

Figure 4.3: LT*LP for BT application with ‘Focal Region’ of 6.2<LT<6.838

Figure 4.4: LT*LP for LU application with ‘Focal Region’ close to LT=6.0039

Figure 4.5: LT*LP for SP application with ‘Focal Region’ of 6.45<LT<6.8540

1

CHAPTER 1

INTRODUCTION

 Parallel computation has become widely popular in many applied sciences. Typically,

parallel computation requires a large number of processors and is carried out in a specialized

computing center (such as the EITS Research Computing Center (RCC) at UGA) that serves

many independent researchers. In order to meet the demands of scientific research for increasing

computational complexity, these facilities must increase either the number or the efficiency of

the processors they use. We are interested specifically in evaluating what happens to an

application when the number of processors is increased. That is, we are not proposing methods

to increase efficiency; rather, we wish to forecast how computing time will change if the number

of processors were to increase. Other things being held constant, run time tends to decrease as

the number of processors increases, but the exact relationship is frequently rather complex. Of

even more interest to researchers in the field is how one should adjust (‘scale’) other input

variables such that the total run time (computation time plus communication time) is

approximately the same when the application is run with an increased number of processors.

 The specific task of prediction is not an easy undertaking for many reasons. Some factors

are specific to the application running in parallel, while others are specific to the architecture of

the system. Despite these difficulties, there have been numerous attempts with multiple methods

to predict performance and a few attempts at forecasting. Although most of these methods are

for prediction, they could easily be extended to forecasting. In this thesis, we are using the word

‘predict’ to mean using a statistical model based on the available data to estimate run time given

2

a set of input variables within the range for which the model was developed. We are using the

word ‘forecast’ to mean a similar type of time estimation, but for the case where at least one of

the input variables (usually number of processors) is outside the range for which the model was

developed. In statistical parlance, what we are doing when ‘forecasting’ is called “extrapolation

beyond the range of the data”, and is generally considered risky. This thesis attempts to explore

how risky this practice is in the setting of parallel processing run time computations, and to offer

some guidelines for how to do it effectively. Methods currently available for forecasting are

quite crude, with median absolute relative errors for forecasting TIME frequently being well over

10%. If simple new methods could be derived which gave median absolute relative errors of

10% or less, this would be considered quite beneficial to computer scientists.

We are examining six computing applications (BT, LU, SP, CG, Sweep3D, and SMG) as

a representative group of computer applications for our research. We believe that results for

these six applications can be generalized to many computer applications. The six applications

are described in more detail in Section 2.2. The datasets obtained from these six applications for

this thesis were collected by Brad Barnes of the Computer Science Department at UGA. Both

the “training set” and “forecast set” runs for all six applications were run on Atlas, a parallel

system located at the Lawrence Livermore National Laboratory.

The communication, computation, and TOTAL run times for each application were

recorded to the nearest hundredth of a second. While it should be the case that the sum of

computation and communication times is equal to the TOTAL, this is not always the case. In

fact, there is not even a uniformly agreed upon way to measure computation and communication

times, with some computer scientists preferring to use maximum computation (MAXCOMP) and

minimum communication (MINCOMM) times, and others preferring to use the critical path

3

computation (CPCOMP) and communication (CPCOMM) times. For most of our applications,

we used ‘TOTAL’ as the response variable of interest, but for those for which modeling

computation and communication components separately was required, we were more careful in

specifying exactly how these separate times were measured.

The input variables which are varied in any set of runs of an application depend upon the

application being evaluated. The most important input variable, of course, is the number of

processors (P) involved. For most of the applications examined, it was convenient to increase

the processors in multiples of powers of two, so training set runs were frequently executed at

these seven processor levels: P= 16, 32, 64, 128, 256, 512, and 1024, with forecasts at P=2048.

For a few of the applications for which processor numbers were required to be even perfect

squares, runs were at similar values. For example, for BT, the processor sizes varied as P= 16,

36, 64, 144, 256, 484, and 1024 in the training set, while P=1936 was used for the forecast set.

For a given number of processors, other variables were also varied so as to yield a range of run

times. For the simpler applications, there was usually only one other input variable of interest,

frequently measuring the ‘size’ of the problem. For some of the more complex applications, as

many as six input variables were varied in some pattern.

4

Table 1.1 – List of Applications and Characteristics

Application
Key

Variables

Training Set Forecast Set
of

Processor
levels

Processor
Range

Processor
Type

Unique
Cases

Total
Cases

Processor
Level

Total
Cases

BT 1)Processors
2) Size 7 16-1024 Even Sq 792 792 1936 22

LU 1)Processors
2) Size 7 16-1024 2n 118 118 2048 31

SP 1)Processors
2) Size 8 16-1024 Even Sq 352 352 1936 124

CG

1)Processors
2) Size
3) Non-
zeroes 7 16-1024 2n 1890 1890 2048 29

Sweep3D

1)Processors
2) Size
3)2 processor
dimensions 7 16-1024 2n 224 224 2048 20

SMG

1)Processors
2) Size
3)3 processor
dimensions 9 4-1024 2n 848 2542 2048 36

Table 1.1 – above lists, for all six applications, the key variables, the number of training

processor levels, the training set processor range, the type of processor levels used (power of 2 or

even squares), the training set unique cases, the training set total cases, the forecast set processor

level, and the forecast set total cases. Many computer scientists do not use replication, since they

believe it is an expensive waste of resources to achieve essentially the same answer. This fact

helps explain why the unique cases and total cases are identical for all but the last application

(SMG), for which two replications (i.e. three total) were run for each combination of input

variables. In general, the measurement error when replicating an experiment is relatively small

compared to the typical variation between experiments, so the computer science approach of no

replication (what statisticians might call ‘one observation per cell’) is usually justified.

However, when replications did occur (in SMG and in other datasets examined for this research

but not included in Table 1) we did see occasional extremely large deviations. With only one

5

observation per experimental condition, such aberrant observations would not be detected unless

they were so unusual as to be classified as outlier/influential points and deleted from an analysis.

 There are many approaches which one might take in attempting to use the results from

the ‘training set’ of an application to make projections for the ‘forecast set’. A number of these

are discussed in Section 2.3 of this thesis. Even for a fixed general approach, there are different

methods which one might want to use, depending on the data available. We discuss this in

Chapter 3, first considering a best-case scenario where one has an actual complete training set

available to develop a model, then the more realistic case where one has available a smaller

‘focused’ subset of the training sample space, and, finally, the most realistic case of all, where

one is given output for only one or two points in the ‘training space’ and must decide how to

proceed in making forecasts.

6

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1. BACKGROUND

Parallel computation involves fragmenting a computationally intense application into

smaller, more manageable calculations. This is easier said than done. There are several issues

that make parallel computation difficult and non-intuitive.

2.1.1. PARALLEL COMPUTATION ISSUES

There are four different types of parallelism: bit-level, instruction-level, data, and task.

We are concerned only with data parallelism. Data parallelism refers to how an application’s

loops distribute the data across the parallel processors [1]. These loops in the application, the

architecture of the system, and the interaction between the application and the architecture can

create inefficiencies in the flow of the execution of the calculations. If there were no

communication or startup issues, and an application was completely efficient, running an

application on ‘P’ parallel processors would take 1
P

 of the time required to run the same job on

one processor. However, matters are rarely that simple. Described below are some difficulties

that can occur.

2.1.1.1.DEPENDENCIES

Many applications are composed of a series of calculations that are dependent on

previous calculations; this is the serial part of an application and cannot be parallelized. The

7

longest chain of dependent calculations is known as the critical path. An application’s execution

time cannot be shorter than the critical path execution time [1].

Dependencies can also occur in the parallel part of an application. When dependencies of

one loop iteration on previous iterations occur in loops they are called loop-carried dependencies.

Loop-carried dependencies prevent the parallelization of loops [1].

Three types of dependencies can occur with loops: 1) true/flow dependent, 2) anti-

dependent, and 3) output dependent. All of these arise when two statements in an application are

vying to use the same variable. True/flow dependency

correspond[s] to the first statement producing a result used by the second
statement. … [Anti-dependency occurs] when the first statement over-writes a
variable needed by the second [statement.] … Output dependency occurs when
two statements write to the same location; the final result must come from the last
logically executed statement. [1]

For this research, we are not concerned with exactly why these dependencies occur, but we

attempt to indirectly model how often they occur.

2.1.1.2. RACE CONDITIONS, MUTUAL EXCLUSION, SYNCHRONIZATION, AND

PARALLEL SLOWDOWN

The shift from sequential to parallel computer applications introduced a new set of

software problems, thus making parallel computing more difficult. Race conditions, which are

one of the most common problems, arise when a variable that is shared between multiple sub-

tasks is updated because of lack of synchronization. If the order of the updating and outputting

for each sub-task is performed in the incorrect order, errors or even complete failure in the

computation can occur. In order to avoid this situation, the programmer can use a lock to

provide mutual exclusion [1]. While this makes the application safer, it might slow the

application considerably.

http://en.wikipedia.org/w/index.php?title=Anti-dependency&action=edit&redlink=1
http://en.wikipedia.org/wiki/Parallel_slowdown
http://en.wikipedia.org/wiki/Parallel_slowdown
http://en.wikipedia.org/wiki/Lock_(computer_science)
http://en.wikipedia.org/wiki/Mutual_exclusion

8

Another common difficulty with parallel computer applications is the need for

communication and synchronization between the different sub-tasks. To force parallel

application sub-tasks to act in synchrony requires the use of a barrier that creates a point in an

application where all processes must arrive before they can depart [1]. The barrier will “ensure

that two concurrently-executing processes do not execute specific portions of an application at

the same time. If one process has begun to execute a serialized portion of the application, any

other process trying to execute this portion must wait until the first process finishes.” [1] As with

the ‘lock’, this procedure slows an application.

As one increases parallelization, one increases the proportion of time needed for the

processors to communicate with each other. If this communication time becomes larger than the

computation time, then the parallelization does not result in a speed-up but a slowdown. We

refer to this phenomenon as parallel slowdown [1].

2.1.1.3. SPEED –UP

The rate that a parallel application is faster than a sequential application is known as

speed-up. Speed-up is defined as () 1

P

TS P
T

= . That is, it is the ratio of time required to run the

application with one processor compared to using P processors. The optimal speed-up would be

linear – doubling the number of processing elements should halve the runtime [1].

Unfortunately, “very few parallel [applications] achieve optimal speed-up.” [1] Two laws which

bound the theoretical speed-up of an application due to parallelization are Amdahl’s law and

Gustafson’s law.

Amdahl's Law (1) calculates the theoretical maximum speed-up that can occur when

more processors are added to solve an application [2]. It is given by:

http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Barrier_(computer_science)
http://en.wikipedia.org/wiki/Speedup

9

 () 1
1 (

S P
f P

=
−)

 (1)

where S(P) is the speed-up and f(P) is the fraction of the application that is parallelizable when

there are P processors in use. The limiting factor for the theoretical maximum speed-up of an

application using multiple processors in parallel computing is the time needed for the sequential

fraction of the application to run [2]. Amdahl’s law depicts a “near-linear speed-up for small

numbers of processing elements, [but then] flattens out into a constant value for large numbers of

processing elements” (as shown by Figure 2.1) for most applications’ theoretical maximum

speed-up [1]. Amdahl’s law is not used for scaling because it is based on the notion of a fixed

problem size, so the sequential part of the application will be the same no matter how many

processors are added to the parallel system [3].

Figure 2.1 – Amdahl’s Law of Speed-up due to Parallelization

http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg�

10

Gustafson's Law predicts how well an application can be parallelized to speed-up the

overall run time [3]. Equation 2 represents Gustafson’s Law.

() ()1S P P Pα= − ⋅ − (2)

where P is the number of processors, S(P) is the speedup, and α is the non-parallelizable portion

of the process. Unlike Amdahl’s Law, Gustafson’s Law allows scaling. Gustafson proposed

using time-constrained scaling when predicting the effectiveness of parallelization.

2.1.2. TYPES OF SCALING

Scalability can refer to many aspects of a parallel system. There are two ways to scale

the hardware, horizontally and vertically, and three ways to scale the application: strong, weak,

and time-constrained. In our case, we are using horizontal scaling of the hardware and both

weak and time-constrained scaling of the application. We describe below both types of scaling

that are relevant to our problem. Furthermore, we will discuss problems due to non-linear effects

in computation and communication times and unknown relationships between the variables and

execution time [4]. These make it difficult to determine the application-specific variables for

proper scaling.

2.1.2.1. HORIZONTAL SCALING

Horizontal scaling refers to increasing the number of processors in the system. This is

what we wish to model, but, without actually running the application repeatedly at the highest

level of processors, since that would be expensive.

http://en.wikipedia.org/wiki/Speedup

11

2.1.2.2. WEAK SCALING

Weak scaling involves designating a fixed problem size to each processor, so that when

the number of processors increases, then, so, too, does the overall problem size [5]. In the case

of weak scaling, linear scaling is achieved if the run time stays constant while the workload is

increased in direct proportion to the number of processors [6]. Unfortunately, under linear

scaling, due to added communication time, most run times do not stay constant [4]. When the

application is one-dimensional, weak scaling is a relatively trivial problem. However, most

applications are not one-dimensional, so weak scaling is difficult in general due to non-linear

communication time and multi-dimensionality.

2.1.2.3. TIME-CONSTRAINED SCALING

Time-constrained scaling has recently become more popular than weak scaling,

especially since weak scaling is difficult and often unpredictable. Time-constrained scaling

occurs when the number of processors used to execute an application increases, but the input

variables are adjusted so that the total run time remains the same as it was at a lower processor

value. For example, one might be told that for the CG application with P=1024,

SIZE=1,000,000 and NZ=14, the run time is 85.20 seconds. Under time-constrained scaling, one

would like to determine the value of {SIZE, NZ} at NP=2048 which would also take 85.23

seconds to run.

2.2. APPLICATIONS

 This section describes in greater detail the six applications for which training and

prediction datasets were created by researchers in the Computer Science Department at UGA.

12

These applications were chosen because they are well-known applications which are

representative of most parallel applications. Included in the descriptions for each of the six

applications in subsections 2.2.1-2.2.6 below are the purpose for each application, how it is

executed, and the relevant input variables.

2.2.1. BT

The Block Tridiagonal (BT) application performs a synthetic computational fluid

dynamics (CFD) calculation to approximate a solution for the three-dimensional Euler/Navier-

Stokes equations. This application partitions the three-dimensional space into structured grids

with a (5x5) block size to solve multiple block tri-diagonal equations. The application solves the

block tri-diagonal equations first in the x, then in the y, and finally in the z direction.

There are two conditions that are inherent in order to run the BT application. First, BT

uses a multi-partitioning scheme to create the structured grids of (5x5) block size. This method

is more optimal than other possible methods “because it provides good load balance and uses

coarse grained communication” [7], which are both desirable qualities.

In the multi-partition algorithm, each processor is responsible for several disjoint
sub-blocks of points (“cells”) of the grid. The cells are arranged such that for each
direction of the line solve phase, the cells belonging to a certain processor will be
evenly distributed along the direction of solution. This allows each processor to
perform useful work throughout a line solve, instead of being forced to wait for
the partial solution to a line from another processor before beginning work.
Additionally, the information from a cell is not sent to the next processor until all
sections of linear equation systems handled in this cell have been solved.
Therefore the granularity of communications is kept large and fewer messages are
sent. [7]

The second condition that the BT application requires is that only a square even integer

number of processors can be assigned to a job. Other than the number of processors (P), the only

input variable for the BT application is SIZE, the total volume of the application. It does not

13

appear that communication time contributes much to the total time for BT to run, so forecasting

for BT should be easier than for most other applications examined here.

2.2.2. LU

The Lower-Upper symmetric Gauss-Seidel (LU) application performs a synthetic CFD

calculation to approximate a solution for the three-dimensional Euler/Navier-Stokes equations.

This application partitions the three-dimensional space into structured grids that are sparse lower

and upper (5x5) blocks.

There are two conditions that are inherent if one wants to run the LU application. First,

LU performs

[a] 2-D partitioning of the grid onto processors by halving the grid repeatedly in
the first two dimensions, alternately x and then y, until all power-of-two
processors are assigned, resulting in vertical pencil-like grid partitions on the
individual processors. The ordering of point based operations constituting the
SSOR procedure proceeds on diagonals which progressively sweep from one
corner on a given z plane to the opposite corner of the same z plane, thereupon
proceeding to the next z plane. [7]

The second condition that the LU application requires is that only a power-of-two

number of processors can be assigned to a job. Communication is known to play a larger relative

role in this application than it does for BT, but in the sample region for which we examined LU,

it appears that total communication time is small relative to computation time. For LU, as with

BT, there is only one variable, SIZE, in addition to P. Because there is only one other variable

and the effects of communication time are small, one would expect a linear regression model

applied to this data set to perform well.

14

2.2.3. SP

The Scalar Penta-diagonal (SP) application performs a synthetic computational fluid

dynamics (CFD) calculation to approximate a solution for the three-dimensional Euler/Navier-

Stokes equations. This application partitions the three- dimensional space into structured grids to

solve multiple scalar penta-diagonal equations. The application solves the scalar penta-diagonal

equations first in the x, then in the y, and, finally, in the z direction.

There are two conditions that are inherent in running the SP application. First, SP uses a

multi-partitioning scheme to create the structured grids. This method is more optimal than other

possible methods “because it provides good load balance and uses coarse grained

communication” [7], both of which are desirable qualities. Second, as with BT, SP requires an

even integer square number of processors and has only one input variable other than P, SIZE.

[Note: To be consistent with other applications, we have defined SIZE= Dim1*Dim2*Dim3 to

be the volume of the application. For BT, LU, and SP, the application is run on a cube with

Dim1=Dim2=Dim3, so our SIZE=Dim1^3. This may be confusing to some users of these

applications who refer to the Dim1 variable as ‘SIZE’.]

2.2.4. CG

The Conjugate Gradient (CG) application solves a system of linear equations. CG does

this by computing an approximation to the smallest eigenvalue of a large, sparse, symmetric

positive definite matrix through an iterative method. This method will converge rapidly when an

appropriate pre-conditioner [8] is used. This application is important because it tests irregular

long- distance communication [8].

15

CG is easily parallelized. Most of the parallelization is done by loops inside the iteration

loop. The speed-up due to parallelization goes from sub-linear at 1 to 2 processors, to super-

linear at 4 to 8 processors, but with more than 16 processors the speed-up decreases due to

communication overhead [9].

One drawback of [CG] … is that it involves the computation of two separate
inner products of distributed vectors. Moreover, the first inner product must be
completed before the data are available for computing the second inner product.
Hence, [CG] … has two separate communication phases for these two inner
products. [10]

Perhaps modeling these phases separately will yield better fits, as discussed in Section 4.4.

In addition to the number of processors, P, there are two input variables for CG: the SIZE

of the problem (Dim1), and the number of non-zeroes, NZ. Because of the additional variables

and potential model complexity due to communication, it is expected that modeling the behavior

of CG will be more difficult than for BT, LU, and SP.

2.2.5. SWEEP3D

The SWEEP3D application solves a 1-group time-independent discrete ordinates 3D

Cartesian geometry neutron transport problem.

[I]t uses a mult-dimensional wavefront algorithm for "discrete ordinates"
deterministic particle transport simulation. Sweep3D benefits from multiple
wavefronts in multiple dimensions, which are partitioned and pipelined on a
distributed memory system. The three-dimensional space is decomposed onto a
two-dimensional orthogonal mesh, where each processor is assigned one
columnar domain. Sweep3D exchanges messages between processors as
wavefronts propagate diagonally across this 3-D space in eight directions. [11]

In addition to P, there are five input variables for Sweep3D: two processor dimensions,

Px and Py, and three grid dimensions, Nx, Ny, and Nz. In fact, this reduces to two independent

variables, since Px *Py=P, and Nx*Ny* Nz=WSS is the relevant SIZE variable.

16

The training set of Sweep3D was perfectly weak scaled. In order to achieve weak scaling

of the global grid equally in all three dimensions, each of the grid dimensions (Nx, Ny, and Nz)

were increased by a factor of 3 2 as the number of processors doubled.

2.2.6. SMG

The Semi-coarsening Multi-Grid (SMG2000) application is a parallel solver for the

Euler/Navier-Stokes equations on logically rectangular grids. The multi-grid “accelerates the

convergence of the iterative method by global correction from time to time, accomplished by

solving a coarse problem.” [12]

In contrast to other methods, multi-grid methods are general in that they can treat
arbitrary regions and boundary conditions. They do not depend on the separability
of the equations or on other special properties of the equation. They are also
directly applicable to more-complicated non-symmetric and non-linear systems of
equations [12].
SMG can be used for 2D or 3D problems, but we are concerned with the application in

3D. SMG partitions the three-dimensional space into 27-point grids [13]. The application

specifies grid dimensions in terms of a per-processor local grid; one can recover the global grid

by taking the product of each grid dimension with the associated processor dimension.

In addition to P, there are six input variables for SMG: three processor dimensions, Px,

Py, and Pz, where the product of these must equal the number of processors (P), along with three

grid dimensions, Nx, Ny, and Nz, where the product of these equals SIZE. Thus, in addition to

P, there are really only three independent input variables: SIZE and two of {Px, Py, Pz}.

The training set of the SMG application was perfectly weak scaled. In order to achieve

weak scaling of the global grid equally in all three dimensions, each of the grid dimensions (Nx,

Ny, and Nz) were increased by a factor of 3 2 as processor size doubled [4]. In order to achieve

http://en.wikipedia.org/wiki/Coarse_problem
http://en.wikipedia.org/wiki/Boundary_condition
http://en.wikipedia.org/wiki/Separable_partial_differential_equation
http://en.wikipedia.org/wiki/Separable_partial_differential_equation

17

time-constrained scaling in the ‘Focal regions’ method, Px=1 and one of the other processor

dimensions (Py, Pz) is scaled by a factor of two.

Modeling SMG is further complicated in that it is not symmetric in all dimensions. That

is, unlike the dimension scale, where the assignment of dimensions is irrelevant as long as SIZE=

Nx*Ny*Nz is constant, it does make a difference how the Px*Py*Pz=P processors are arranged,

and the naïve assumption that Px=Py=Pz= 3 P would yield the optimal run time is not at all true

for the regions which we have examined. SMG is communication intensive and its run-time is

known to increase logarithmically with an increase in the problem size.

2.3. POSSIBLE APPROACHES TO PREDICTION/FORECASTING

Various approaches have been tried to predict performance on parallel systems. We will

discuss in more detail in subsections 2.3.1 - 2.3.4 the following relevant methods: simulation,

non-linear regression on time, artificial neural networks, and general linear models on log (time).

Each method has advantages and disadvantages, but we feel that the last will be shown to be the

best for projection purposes.

2.3.1. SIMULATION OF APPLICATIONS

As stated previously, there is a difference between ideal (theoretical) speed-up and

observed speed-up. Various factors, i.e. latency or synchronization, are the cause for the

observed deviation from ideal. These factors are referred to collectively as ‘overhead’. Several

simulation applications have been developed to run a simulation of a specific application with set

variables in order to try and quantify the overhead. These overhead values are then utilized to

predict the performance of the application when it is scaled.

18

Unfortunately, development of a simulation for an application is not an easy task.

Complete knowledge of how the application works (i.e. ‘white-box’ knowledge) must be utilized

in order to conduct an accurate application simulation. Knowledge of an application at this level

is not to be expected from a typical scientist interested in scaling an application for research, so

simulation methods are not examined further in this thesis.

2.3.2. NON-LINEAR RESGRESSION ON TIME

In non-linear modeling, one attempts to model TIME as a non-linear function of

parameters related to input variables, such as number of processors (P), size of application, etc.

Of course, one could try linear models of the form 0 1 2* *T P SIZEβ β β ε= + + + , but they will

yield inadequate fits for two reasons. First, the actual relationship is not close to linear at all,

with the model *T SIZE Pα ε= + being a more logical theoretical base from which to build more

complex models. Secondly, and more importantly, even if the functional form were

approximately known, standard methods applied to the above equation all assume that the errors

at each point are normally distributed with mean zero and constant standard deviation. However,

it is well-known to those in the scalability field that errors in predicting run times are

proportional to the size of the time – this is why everyone in this field refers to ‘relative error’ or

‘relative % error’ when comparing methods. In such cases, the good done by attempting to fit a

non-linear model will be completely worthless unless one also correctly specifies the variation in

the errors. While this is possible to do in some cases, it is extremely difficult, in general. A

much easier solution, as we shall see below, is not to model TIME directly, but the log of TIME

(any scale: ln, log2, log10, etc. will work – for convenience we use log2 in this research). If log-

transformed TIME is used as the response variable, most applicable models become linear in the

19

parameters and have approximately constant variance, rendering them much more statistically

tractable. This is discussed in more detail in subsection 2.3.4.

2.3.3. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are another analytical modeling method for parallel

computation. ANNs

[map input variables to a run time] using a network of neurons, simple processing
elements, connected by weighted edges. As in regression, consider an observed
sample with known predictor and response vectors x and y. For a particular
neuron j in the network, let bj denote its output and a = a1, . . . , ap denote its p
potentially transformed versions of x. If the inputs arrive via edges with weights
vj = vj,1, . . . , vj,p, the neuron computes its output as a weighted sum of inputs in
Equation (3).

 (3) ()

p

j
k 1

 f v ·a f v ajb
=

⎛ ⎞
= = ⎜

⎝ ⎠
∑ j,k k ⎟

An activation function f may transform the weighted sum to increase the set of
mappings the network is able to represent. [14]

For example, Lee et al. used a sigmoid function of the form () ()1/ 1f x e x= + − to deal with

interaction and non-linearity of the input variables in their ANNs [14]. This eliminates the need

for domain specific information, unlike the piecewise polynomial regression and our focused

linear regression models.

Support for ANNs is largely based on the fact that they are considered to be a ‘black box’

method; i.e. a method which will work without requiring any specialized knowledge of the

application. However, how this method creates its predictions is not well understood [14]. If

properly tuned, ANNs will often create similar predictions to linear or non-linear regression

models, for data points in the training region. However, since most ANNs are complex models

that incorporate higher level functions and interaction terms, we believe that forecasting with

20

these models will be extremely unstable when applied to points outside of the training range,

which is our ultimate goal.

2.3.4. GENERAL LINEAR MODELS (GLM) ON LOG (TIME)

As noted above, the errors in predicting run time are proportional to TIME.

Transforming TIME to log (TIME) tends to solve two problems, non-linearity and non-constant

variance, that occur with non-linear regression models. Since the particular log-scale does not

matter, for convenience, all of the models in our methodology utilize general linear models on

log2 (TIME).

Furthermore, a general linear model on log (TIME) will tend to be more simplistic than a

non-linear regression or neural-network, and thus will be more conducive to forecasting. Since

forecasting the run-time when an application progresses to a higher number of processors while

maintaining proper scaling is our main goal, we feel that the GLM on log2(TIME) will be the

best of the four general approaches discussed in this section.

21

CHAPTER 3

PROPOSED DATA ANALYSIS METHODS

 This chapter describes three types of proposed data analysis methods which were used

within the general linear model framework to make predictions and forecasts for the six

applications studied. Which of these methods to use depends upon what assumptions one makes

concerning the data set which one will have available from which to make future projections.

3.1 COMPLETE TRAINING SET METHOD

Under this method, one assumes that one has available a large number of runs at

processor level P=2^J, 2^(J-1), 2^(J-2), …, where for each run, different combinations of input

variables and output (TIME) are recorded. In this case, the complete training set is used to build

a linear model (for TIME in log2 scale). This linear model could be a simple model such as:

 0 1 2* *LT LP LSZβ β β= + + + ε (4)

where LT=log2(TOTAL), LP=log2(P), and LSZ=log2(SIZE) or something much more complex,

depending upon the application and the fit. It is often the case, as explained in Section 3.4, that

there is not one equation, but separate equations for computation and communication times, or

for other sub-components. In any case, once the model’s parameters (β0, β1, and β2 in Equation

(4)) are estimated, this model is used to make projections for points in the forecast data set (all of

which, by definition, will have P=2^(J+1)), where P0=2^J is the maximum processor size used in

the training data set.

The overall fit of a model is typically quantified (by computer scientists) by its median

absolute percentage error (MAPE) over the points in the forecast data set. Statisticians would be

22

more likely to use RMSE (in log2 scale). If the estimation is unbiased and the distribution of

errors (in log2 scale) is approximately normal with standard deviation estimated by SD=RMSE,

then MAPE , but neither unbiasedness nor normality seem to be justified for

the applications we have examined. It should be noted that one usually estimates the linear

model’s parameters from the training set so as to minimize sum-of-squared-error in log-time

scale (which is equivalent to minimizing relative % error under some assumptions), but that the

typical error (RMSE) estimated from the training set may not be an accurate estimate of the

typical error found in the forecast data set. In fact, as we shall see, overly complex models

which yield smaller RMSEs than simple models for the training data sets often perform much

worse on the forecast data sets.

0.675*RMSE=(2 -1)*100

3.2 FOCAL REGIONS METHOD

For some applications (typically those with only SIZE and P as input variables, and for

which communication time is small relative to computation time in most regions of the data set),

the complete data method described in Section 3.1 works fairly well, on average (i.e. the MAPE

is less than 10%), but may yield much larger % errors in individual cases. For other applications,

even the MAPEs are large, so, of course, individual point predictions in the forecast space might

be much worse. One obvious way to combat this problem would be to be less ambitious in

attempting to develop a forecast model. In Section 3.1, the model which is developed, in theory,

could be used to make forecasts for any set of input variables, and is evaluated over a range of

sample points in the forecast data set (i.e. where P=2^(J+1)). A more realistic goal might be to

develop a prediction model only for points in the training set whose run-times are ‘near’ some

23

focal time of interest, and, then, to evaluate the forecasting ability of the model so derived only

‘Focal Regions’ method.

The simplest focal region method is based on TIME alone. In such a case, a focal time of

interest, T0, is selected. Then, instead of using all the cases in the training set to develop the

predictive model, one would use only those whose run-times fell within a certain region (for

example, within +/- 20% of T0) to develop the model for the training data. Then, once the model

was developed, it would be evaluated in the forecast space only over those data points which also

met the focal requirements. For example, for the LU application, from Table 1, we see that if we

used the complete data method, we would use 118 data points in the training (P≤1024) set and

would evaluate this model over the 31 data points in the forecast (P=2048) data set. However, if

we set T0=40 seconds, and used a +/-50% focal threshold, we would use only 29 of the 118

points in the training set to develop the model and would evaluate it over only 9 of the 31 points

in the forecast data set.

For more complex applications where there are more data points, one might define the

focal region not to restrict on the basis of run-time, but so that it restricts the range of other input

variables. The advantage of the focal region method is that it uses data points which are more

‘similar’ to the data point of interest when building the predictive models. The disadvantage, of

course, is that if the focal region restrictions are too severe, there will be too few points eligible

from which to effectively estimate the parameters needed. A compromise between the complete

data method of 3.1 and the focal region described above would be to use some sort of weighted

estimator which uses the complete training set data set, but which places higher weights on

points with times near T0 and lesser weights on those with times far from T0. Although this

would be relatively easy to do if T0 were the only variable affecting inclusion in the focal region,

24

we have not implemented it in this thesis because determining the weights for other focal regions

would be quite difficult.

3.3 SELF-GENERATED FOCAL REGION METHOD

One objection to both the Complete Training Set Method (3.1) and the Focal Region

Method (3.2) is that they both assume that ‘someone’ has previously run many different

combinations of the input variables at the processor sizes less than that of interest (P0=2^J). For

the purposes of this thesis, that is true – we are using as our training data set the many runs

generated for each of the six applications by Brad Barnes of the UGA CS Department as part of

his PhD research. From Table 1.1 of the introductory chapter, we can observe that we have

almost 2000 runs available for the CG application, and even the smallest application (LU) has

118 points available in the training data set. One might then wonder about the practicality of our

results in a more realistic case, where one had only a few data points initially available. In that

case, one would need to generate one’s own focal region points, build a model from that, and

then evaluate that model at a few points in the forecast region. This is a more complex, but more

realistic, undertaking than the two described above. The first two methods mentioned were

applied to all six applications, while we attempted to use the self-generated focal training set

method for only two applications, BT and CG. BT is the easier of the two, since it involves only

one input variable (SIZE) other than P, while CG depends on two (SIZE & NZER). More details

on our implementation of this method for BT and CG are given in Section 3.5. Obviously, the

self-generated focal region method won’t be as successful as the methods which have access to a

much larger training base, but the MAPEs observed with this method might be more typical

representations of what actual users can expect to observe upon implementation of our proposed

forecasting methods.

25

3.4 TYPES OF MODELS USED

After one has decided which of the three general data analysis methods to use, one must

decide what sort of general linear model to use. This section reviews a number of models which

were used in the course of this study. All of the statistical models described here have been fit

using the statistical package, SAS. The general linear model (PROC GLM) procedure of SAS

was used to estimate parameters for some models , although the final forecast models which

were developed could all be written (at least at the component level) as linear regressions for

log2(TIME), so all fit output was generated using PROC REG of SAS.

3.4.1 ORDINARY LINEAR REGRESSION MODEL

The most straight-forward models that we developed would be those of the form:

0 1 2* *LT LP LSZβ β β= + + + ε (5)

where LT is the log2 transform of TIME. We typically use log2 (TOTAL) as the TIME variable

of interest, but for some sub-component models, we would separately use log2 of computation

and communication time as the response variables. LP=log2 (P), where P is the number of

processors used for the run in question. LSZ is defined by LSZ=log2 (SIZE), where ‘SIZE’ is a

generic measure of size for the application in question. Sometimes the variable is actually called

‘SIZE’, whereas for others it is given by WSS=DIM1*DIM2*DIM3 or WSS=Dim1^3. In any

case, for most of these applications, even if ‘SIZE’ is a 2- or 3-dimensional quantity, the

individual levels of DIM1, DIM2, and DIM3 do not matter, so their product (or the log thereof)

is the key explanatory variable. This, incidentally, is not at all true for the ‘PROC DIM’ variable

which appears as a 2-dimensional variable in ‘Sweep3D’ and as a 3-dimensional variable in the

‘SMG’ application. In those cases, it appears that different loadings of the PROC DIMs, even

26

when their product is constant and other variables are kept constant, have large effects on run

time.

 Equation 5 above has some theoretical basis under perfect conditions where

communication is negligible. In such cases, one would expect 2β to be near 1 and 1β to be near

-1. If those conditions were exactly true, then it is obvious that one could keep time constant by

both doubling the number of processors and doubling the size. For all applications which we

examined (except for SMG), 2 0β > and 1 0β < , but only rarely was it the case that ()1 2,β β was

extremely close to the values predicted under perfect speed-up conditions. (1,1−)

3.4.2 MODIFICATIONS OF ORDINARY LINEAR REGRESSION MODEL

The ordinary linear regression model given by (5) is a reasonable starting point for

modeling the behavior of time in the applications which we examined, but it was usually too

crude to yield forecast values of the precision which we desire. Various refinements were tried

when needed for various applications. Among these are separate modeling by processor level,

use of polynomials of higher order models, and subcomponent models.

3.4.2.1. SEPARATE MODELING BY PROCESSOR LEVEL

Under this modification, a model of the form:

0 1 *LT LSZβ β ε= + + (6)

is used separately for each level of processor. This model tended to yield exceedingly good fits

(high R2, low RMSE’s) for each processor level, but would not directly solve the forecasting

problem, since there would be no available estimates of (β0, β1) for the desired (P=2^(J+1))

number of processors. What could be done is to fit a regression to the sequences (β0, β1) for

27

P=2^J, 2^(J-1), 2^(J-2), …, and try to project this forward to P=2^(J+1). We tried this method

both unweighted and with geometric weights which put higher weights on data from larger

processors, since those believed to be more relevant to making the forecast at P=2^(J+1) are data

points from larger numbers of processors. Of course, this separate method, since it has about

seven times as many parameters as the simple model of (5), yields much smaller RMSE’s over

the points in the training dataset. It usually (but not always) performed better in the forecasting

dataset than did the original regression method, but not by nearly the margin predicted by the

RMSE’s. A slight geometric weighting so as to put more weight on higher processor

observations seemed to be slightly better than equal weighting, but not consistently enough that

we could uniformly recommend it.

3.4.2.2. POLYNOMIAL OR HIGHER ORDER MODELS

 We examined models for LT where we considered quadratic and/or interaction terms for

LP, LSZ, or similarly we considered polynomial or interaction terms for the ()0 1,β β series

generated in Equation (6). While these models yielded slight improvements in RMSE’s for the

points in the training dataset, they were invariably much worse when applied to the forecasting

dataset. This is not at all unexpected, and is why we are confident that splines or neural network

solutions to this problem will almost surely fail. The polynomial or interaction terms are actually

over-parameterizations for the data available. They appear to make the fit better for the data at

hand (in the training set), but the improvement due to the extra terms is simply helping explain

variability in the training dataset that is not reflected in the forecasting dataset. Both spline and

neural network methods, since they involve many more parameters (even if not explicitly

28

categorizable), will be even more prone to error when applied to the forecast dataset with number

of processors (P) outside the range of the data observed in the prediction dataset.

3.4.2.3. SUBCOMPONENT MODELS

 For most applications which we examined, the contribution to run time due to

computation is larger than that due to communication at all processor sizes, but the relative sizes

of these components varies as the number of processors increases. In all cases, it is true that the

regression models described earlier work better for describing the behavior of computation time

than they do for describing communication time. In the cases where computation time dwarfs

communication time at all processors levels, there is not much point in splitting the two

components. However, for some applications, splits of the form

0 1 2* *LTCOMP LP LSZβ β β= + + + ε (7)

0 1 2* *LTCOMM LP LSZγ γ γ= + + + ε (8)

were tried. Currently, we split the regressions for computation and communication only if the

percentage of time spent in communication is greater than 50% at P=2^J [4]. We found that with

smaller percentages it is sufficient to regress only on total time [4]. When this was done, we

could frequently obtain exceedingly good fits and forecasts for the computation time, but models

for LTCOMM were not nearly as good, perhaps indicating that the functional form of Equation

(8) is not appropriate. It is clear, of course, that while the 1β of Equation (7) is negative, the 1γ

of Equation (8) is positive – more processors decrease computation time while they increase

communication time. However, for many of the applications which we examined, the

 term was so much larger than the (0 2 * LSZβ β+) ()LSZγ γ+0 2 * term that the increasing or

decreasing effects of the other terms made little difference. For the applications where

29

communication time was a significant component, we discovered that modeling via Equation (8)

was sometimes poor – not necessarily because the model was inadequate but because there were

occasionally large unexplained fluctuations in communication time when replicate runs (with all

input variables held constant) were generated. This almost never occurred with computation

time. There, in log-transformed scale, the standard deviation in response times is almost

constant when one examines replications under different input conditions. The occasional large

fluctuations in LTCOMM are puzzling, but appear to occur more frequently when the number of

processors is large. Possible reasons for this behavior are discussed in Chapter 5, but the short

answer is that we have not been nearly as successful at modeling the communication component

as we have been with modeling the computation component. Other attempts to even further

disaggregate the computation and communication components were attempted for some

applications, but none of these were particularly helpful – the best we can do currently is to

separately model computation and communication. This can usually be done fairly well

(especially in focal regions) for LTCOMP. For LTCOMM, this also works better in the focal

regions, but it still does not work particularly well for most applications. The saving grace of the

entire forecasting method is that the computation time component typically dominates

communication so much that getting the former projection ‘right’ masks errors in the latter. As

is demonstrated later, one of our least successful projections occurs for the SMG application, and

SMG is the application for which communication time grows most quickly as processors

increases.

3.4.3 FOCUSED REGRESSION MODELS

As mentioned in Section 3.2, the models examined can frequently be improved by

restricting the training set to regions of comparable time. This move to narrow our data is

30

counterintuitive because as statisticians we usually believe that more data is better [4]. However,

more data in an irrelevant region simply clutters the analysis. Dataset restriction tends to work

relatively well when there is only one variable (SIZE) in addition to processor number (P)

allowed to vary. If there are other variables involved, determining a useful focal region is more

difficult. For example, for the SMG application we found that processor dimensions were very

important, and we focused on regions with (), , 1, ,x y z y
y

PP P P P P
⎛= ⎜
⎝ ⎠

⎞
⎟ and combined points in the

same region ‘k’ if log2 1y

z

P kP
⎛ ⎞ = ±⎜ ⎟
⎝ ⎠

. This is illustrated in Figure 3.1, with the two highlighted

regions being k=0 and k=4. For example, in the k=0 region, if we desire to make forecasts at the

when P=1024, we should use results from the training set with

and ()

() (, , 1,32,32x y zP P P =

() (), , 1,16,32x y zP P P =

)

(), , 1,32,16x y zP P P = at P=512, () (), , 1,16,16x y zP P P = from P=256,

and ()() (), , 1,8,16x y zP P P = (), , 1,16,8x y zP P P = at P=128, …, etc. For our focal region, we kept

Px=1, but, we can extend our method to handle the general three dimensional case where Px is

allowed to vary, with some extra modifications.

31

Figure 3.1 SMG focal regions on a processor grid.

3.5 ALGORITHM FOR SELF-GENERATED DESIGN POINTS

The procedure described below gives an algorithm for generating design points within the

training region in the simple case where there is only one variable (SIZE) in addition to P. For

our applications, this procedure should work for self-generation of points for BT, LU, and SP,

and we performed the algorithm on BT as reported in Section 4.3. Modifications would be

needed to run this on a more complex application. In Section 4.3, we also describe how we

performed this self-generation for the CG application.

 As mentioned in Section 3.3, this procedure is more realistic than those in 3.1 or 3.2, in

that we do not assume that there is a large training set from which to choose points on which to

build our model. Rather, we assume that the situation is such that a client

[has run] an existing application with input variable [‘SIZE=SZ0’] on a system
with number of [processors P=2^J], [such that] the application takes
[TIME=TOTAL0] seconds to run. The client wishes to know, based on runs that

32

can be performed with [P<=2^J], approximately what value of [SIZE] should be
used if the processor capacity were increased to [P=2^(J+1)] such that the
[TOTAL] time for the application to run would be approximately the same
([TIME=TOTAL0]) as currently. We assume that the client also has available
results of a run with {[SIZE=SZX, P=2^(J-1), TIME=TOTALX]} such that
[TOTALX] is approximately equal to [TOTAL0].[15]

We consider the two client-provided results as central values. To create upper and lower

bounds for those central values we use +/- 10% of the central value SIZE as input values. This

will give us an error bound around our points and also be a sample in the input variable

(LSZ*LP) space. We will run the four new sample runs to obtain the time (TOTAL) needed for

each of the runs. These four runs along with the two client-provided runs will allow us to

generate a regression model to regress backwards, as shown in Table 3.2 below.

Table 3.2 – Six Initial Sample Runs
LSZ LP LT

LSZ0U J TOTAL0U
LSZ0* J* TOTAL0*
LSZ0L J TOTAL0L

LSZXU J-1 TOTALXU
LSZX* J-1* TOTALX*
LSZXL J-1 TOTALXL

* Provided by client

After these six values are generated, a regression equation can be created to predict a

high, medium, and low run-time at lower processor values. For example, in Table 3.2 above, if

J=10, the client gave us points at P=512 and P=1024, and we then generated four additional

points. From these six points, we can create a regression model which would allow us to predict

three more points each at (say) P=16, 32, 64, 128, and 256. Because the initial regression based

on six points will likely be crude, it is quite possible that the fifteen newly generated points may

have times that are not that close to the desired focal time, T0. That should not matter too much,

as we are simply trying to create an approximate focal region training set. Finally, using all

33

twenty-one points, we can generate regression (or adjusted regression models, as discussed

above) to make projections for what would happen with P=2^(J+1) (P=2048 in the example

above). In particular, we can use the model to project what value of SIZE, when P=2^(J+1)

would yield the desired time (T0).

 We used this algorithm with T0=101 seconds and J=10 (P0=1024) on the BT application.

We used a modification of this algorithm with T0=100 seconds, NZ=14, and J=10 (P0=1024) on

the CG application. In both cases, the algorithm yielded twenty-one training points, (three each

at P=16, 32, …, 1024), and we used these to build a model which would allow us to project the

value of SIZE needed at P=2048 so that the total run-time was equal to the desired T0 (101

seconds for BT, 100 seconds for CG). One difficulty encountered here, but not in using the

methods of Sections 3.1 and 3.2, is that in those cases , there were at least a few runs available at

P=2^(J+1) on which we could evaluate our forecasting performance. In the more realistic case of

Section 3.3 for which the above algorithm is specified, there are, of course, no runs at P=2^(J+1)

– that is why the client came to us in the first place! For evaluation purposes in this thesis, we

used our created regression model to predict the values of SIZE which would yield the five

expected times of (0.8*T0, 0.9*T0, T0, 1.1*T0, 1.2*T0), and then ran these five runs at P=2048 to

see how good the fit was. The results for both BT and CG using this algorithm are reported in

Section 4.3.

34

CHAPTER 4

ANALYSES

 This chapter presents and discusses the results for three proposed forecasting methods on

the applications. We desire a median absolute percentage error below 20%, with a MAPE below

10% being our ultimate goal. We expect that the complete training set method should produce

good results for simple applications, but will yield much less satisfactory results for more

complex applications. The focal regions method should improve our results for both simple and

complex applications. We hope that the self-generating focal training set method will produce

acceptable results for our representative simple and complex applications, BT and CG.

4.1. RESULTS USING COMPLETE TRAINING SET METHOD

For the six applications, the complete training set method does not automatically exclude

any points from the analyses, since there is no replication. However, for CG, were replication

occurred, 68 of the 2542 points (2.7%) were excluded from all analyses because they were

obvious outliers. Even though these blatant outliers (in CG) were removed prior to any analyses,

there were still a few other points for all applications’ analyses that would be considered outliers

(observations far away from the rest of the observed data) or influential points (extreme

observations that affect the slope of the regression line) for particular analyses. The points which

were flagged as extreme outliers or as influential points when evaluated over the training set for

a particular application were subsequently deleted from the analysis and not included in

construction of the final prediction model used for making forecasts. However, this exclusion of

35

points was rare; the vast majority of the points are neither outliers nor influential points, so the

impact of the few deleted points should be marginal.

Table 4.1 lists the median absolute % error (MAPE) for each application when the simple

linear regression which best fits the training data set is applied to the forecast data set. In

addition to the MAPE value, the last 5 columns of Table 4.1 display the distribution of the

relative % error over all data points used in evaluating the forecast data set. Note that these

relative % errors (calculated as ((PRED-OBS)/OBS)*100%) may be positive or negative. The

fact that most are positive, especially for the complex applications, indicates that the complete

data method is moderately to seriously biased toward over-estimating the time required for the

application to run at the higher levels of nodes used in the forecasting data sets. We see from

Table 4.1 that the median absolute percent error (MAPEs) for BT, LU, and SP are 9.95%,

12.08%, and 18.25%, respectively. The complete training set method results are excellent for

BT and good for LU and SP because they fall below target thresholds of 10% and 20% relative

error, respectively. Table 4.1 also shows us that the MAPEs for CG, SWEEP3D, and SMG are

all poor, over 65%. This is exactly what we suspected would happen. In order to forecast

complex applications accurately, conditions must be controlled for more carefully than using the

additive regression models shown in Table 4.2. We more adequately control for other conditions

in the complex applications in the ‘Focal Regions’ method explained in Section 4.2.

Table 4.1 – MAPE and Distribution of Relative % Error for Complete Training Method by
Application
Application PredictN ForecastN MAPE% Min 25%-ile 50%-ile 75%-ile Max
BT 792 22 9.95 -25.89 0.56 8.38 10.21 12.52
LU 118 31 12.08 -48.72 -20.72 -2.44 9.13 17.10
SP 352 124 18.25 -48.96 4.63 17.53 20.03 31.10
CG 1890 29 145.75 79.30 121.78 145.75 192.00 1385.83
Sweep3D 224 20 69.74 40.60 61.55 69.74 75.31 81.96
SMG 2542 36 65.17 -0.17 55.83 65.17 82.28 110.93

36

Table 4.2 – Regression Coefficients for Complete Training Method by Application
Application TrainN Intercept, 0β LP, 1β LSZ, 2β X, 3β R2 RMSE E(MAPE%)
BT 792 -12.69 -0.92 0.95 n/a 0.997 0.154 7.74
LU 118 -13.37 -0.95 0.97 n/a 0.993 0.260 12.93
SP 352 -12.97 -0.87 0.92 n/a 0.989 0.306 15.39
CG 1890 4.76 -0.68 1.34 0.65 0.936 0.465 24.29
Sweep3D 224 -13.81 -0.76 2.78 0.03 0.829 0.459 23.95
SMG 2542 -11.01 0.22 0.78 0.04 0.702 0.522 27.66

 The estimated regression equation coefficients under the complete data method for the six

applications are listed in Table 4.2. This assumes a generic model of the form:

 0 1 2 3LT = + *LP + *LSZ + *X + β β β β ε (9)

where 'X' is non-existent for the simple applications (BT,LU,SP). For CG, Sweep3D, and SMG,

respectively, the 'X' utilized was log2(NZ), log2(PD1/PD2), and log2(PD2/PD3). Clearly, as seen

from the poor fits in Table 4.1, for those applications, either those were not the appropriate

factors to use as 'X', or there are very strange unaccounted-for interactions. On the other hand,

for the simple models, the Complete Training Method appears to be reasonable, as seen in Table

4.1. From Table 4.2, for these models, we see that the estimated (1 2,β β) are near -1.0 and +1.0.

It should be noted that while (1 2,β β) are near (-1, +1) for the simple applications, they are not

extremely close. That is, even for the simple applications, we cannot keep time constant simply

by both doubling processors and doubling size; we do not observe perfect speed-up conditions

for any of the applications. It should also be noted, by comparing the E(MAPE) of Table 4.2

with the actual MAPE of Table 4.1 that even when the training model fits incredibly well, as it

does for BT, LU, and SP, the observed MAPE’s are larger than the E(MAPE)’s. This is the

inherent danger in attempting to extrapolate beyond the range of the observed data. Of course, if

the training set fit is not extremely good in the first place, it is unlikely that the prediction set

MAPE will be at all good.

37

4.2. RESULTS USING FOCAL REGIONS METHOD

Figure 4.3, Figure 4.4, and Figure 4.5 show plots of LT*LP, with selected focal regions

highlighted, for the BT, LU, and SP applications, respectively. We create a focal region for

simple applications by attempting to find a constant LT value that intersects the LT range

encountered for all the LP values. The range of the LT values chosen is the focal region, and is

used to maintain time-constrained scaling. For BT, we chose LT 6.5 0.3= ± , which is equivalent

to the asymmetric TOTAL interval (73, 101, 111) seconds. For LU, we chose the three points

closest to LT=6, which is equivalent to the three points closest to TOTAL=64 seconds. For SP,

we chose LT= , which is equivalent to the asymmetric TOTAL interval (87, 100, 115)

seconds.

6.65 0.2±

38

Figure 4.3 LT*LP for the BT application with ‘Focal Region’ 6.2<LT<6.8

LT

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

LP

4 5 6 7 8 9 10 11

39

LT

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

LP

4 5 6 7 8 9 10 11

group . 1‘+++’=data ‘ooo’=Focal Region

Figure 4.4 LT*LP for LU application with ‘Focal Region’ close to LT=6.00

40

Figure 4.5 LT*LP for SP application with ‘Focal Region’ of 6.45<LT<6.85

LT

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

LP

4 5 6 7 8 9 10 11

For BT, LU, and SP, the fit of the focal region method model could be negatively

affected by three aspects of the data. First, as seen from Figure 4.4 for the LU application, the

upper and lower bounds of the focal region might not be uniform for all the processor levels and

the focal region might not appear in all processor levels. Second, the few points at each

processor level may not be sufficient to obtain a good regression equation. Finally, there could

be an outlier that falls within the focal region.

 When creating our focal regions for more complex applications, we cannot use a constant

LT that intersects the observed LT range for all processor levels. Thus, we must be more careful

41

about outliers and influential points within the focal region. After a regression model is fit,

points which have a Cook’s D value greater than 2 p
n

 (where p is the number of parameters and n

is the number of observations) are deleted from the analysis, even if they fall within the focal

region. For SMG, because the data are run in replicates, an errant point shows that there are

problems with the parallel system. Since we are not interested in the efficiency of the parallel

system in this thesis, we are ignoring those types of problems and discarding data points that we

believe are a result of those difficulties. Unfortunately, since replicates were run only rarely for

the other five applications, it is likely that a few gross outliers have been accidentally included in

the data sets of these five applications.

The top panel of Table 4.6 shows the results of using the focal regions method on BT,

LU, and SP. The focal time tolerances were set fairly wide so as to get a reasonable number of

points in the focused regression. Using the focal regions method, their median absolute

percentage error (MAPE) rates are 4.64%, 5.31%, and 6.74%, respectively, for BT, LU, and SP.

These values are excellent because they all fall below our target of 10% and all three show an

improvement over the global method. SP also shows us that our assumption of the effects of

influential and outlier points as marginal for simple applications is correct, because there are two

influential points within the focal region of SP but the focal regions method still showed

improvement over the global method. LU does show an improvement when compared with the

global method but there are no points in the LU focal region for P=2048. For some

programming reason, the LU application was unable to be run at a size larger than 1000. When

we calculated the sizes needed for the 2048 processors to retain time-constrained scaling, we

found that the necessary size would be greater than 1000. Thus, we are unable to validate our

results for LU at P=2048 with the correct predicted SIZEs. However, we did use the focal region

42

regression model to forecast results for the three largest LT values available in the LU forecast

dataset, yielding the 5.31% MAPE noted.

The bottom panel of Table 4.6 shows the MAPEs of CG, Sweep, and SMG, using the

focal regions method, to be 29.30%, 3.44%, and 11.77%, respectively. These values are

excellent for both Sweep3D and for SMG. However, CG still does not fit well, even after

controlling for non-zeros (NZ). We controlled NZ in CG because it affects the run times with

increasing NZ increasing TOTAL. However, the exact nature of how NZ behaves is unknown

and could be affecting the run times in a non-linear way. Future work must be done to extend

our attempt at controlling the effects of NZ. Despite the lingering of some error in CG, we see a

marked improvement over the complete training set method, which is encouraging. Controlling

for 2
Procdim1IX=log
Procdim2

⎛
⎜
⎝ ⎠

⎞
⎟ in Sweep3D and for Procdim1 (P1) and 2

Procdim2J=log
Procdim3

⎛
⎜
⎝ ⎠

⎞
⎟ in SMG,

respectively, worked well. These factors affect the run times, but the precise manner of the

effect is unknown. Thus, we decided to keep their levels approximately constant, which

apparently is enough to garner excellent fit. It should be noted that it is sometimes impossible to

keep the condition constant over processor levels. For example, we illustrated in Figure 3.1, the

‘J’ of SMG is either odd or even in alternating processor sizes.

Table 4.6 – Conditions Used to Create Focal Regions for Applications and Resultant MAPE’s
Application Focal T0 or condition Train N Tolerance% Forecast

N
MAPE%

BT LT0=6.50 74 23.11 3 4.64
LU LT0=6.00 21 40.64 3 5.31
SP LT0=6.65 21 14.87 10 6.74
CG ()NZ= 14,16,18,20,22,24 161 or 183 n/a 29 29.30

Sweep3D { }3, 1,1,3IX = − − 12 n/a 20 3.44

SMG () (P1= 1,2,4 *J= -3,-2,-1,0,1,2,3) 51 or 56 n/a 36 7.50

43

Table 4.7 – Regression Coefficients for Focused Regressions by Application and Condition
Application Train N Intercept, 0β LP, 1β LSZ, 2β condition R2 RMSE
BT 74 -13.06 -0.95 0.97 T0+/-23% 0.973 0.031
LU 21 -13.87 -1.00 1.00 T0+/-41% 0.988 0.054
SP 21 3.72 -0.13 0.41 T0+/-15% 0.120 0.105
CG 183 6.28 -0.63 1.30 NZ=14 0.969 0.234

183 6.73 -0.68 1.31 NZ=16 0.969 0.240
183 7.15 -0.72 1.32 NZ=18 0.970 0.247
183 7.55 -0.76 1.34 NZ=20 0.970 0.247
161 8.07 -0.79 1.31 NZ=22 0.970 0.267
161 8.40 -0.82 1.32 NZ=24 0.971 0.267

Sweep3D 12 -14.91 -0.90 2.88 IX=-1 0.999 0.032
12 -13.88 -0.88 2.83 IX=1 0.999 0.035
12 -14.76 -0.96 3.00 IX=-3 0.998 0.046
12 -12.65 -0.81 2.68 IX=3 0.995 0.079

SMG 51 -14.23 0.13 0.94 P1=0, J=-3 0.980 0.131
56 -14.46 0.11 0.96 P1=0, J=-1 0.991 0.086
56 -14.25 0.11 0.95 P1=0, J=1 0.987 0.103
51 -13.59 0.14 0.92 P1=0, J=3 0.964 0.174
51 -12.18 0.12 0.85 P1=1, J=-2 0.982 0.110
56 -12.11 0.11 0.85 P1=1, J=0 0.984 0.107
51 -11.88 0.12 0.84 P1=0, J=2 0.980 0.116
51 -10.61 0.12 0.78 P1=2, J=-1 0.961 0.153
51 -10.62 0.12 0.79 P1=2, J=1 0.968 0.140

 The estimated regression equation coefficients under the focused regression method for

the six applications are listed in Table 4.7. This assumes a generic model of the form:

 0 1 2LT = + *LP + *LSZ + β β β ε (10)

at each condition level, where LSZ=log2(size)for all applications. The condition covariates for

CG, Sweep3D, and SMG are the levels of log2(NZ), IX=log2(PD1/PD2), and (P1 and

J=log2(PD2/PD3)), respectively. Clearly, as seen from the good fits in Table 4.6 for most of

these applications, conditioning on those factors is sufficient to control any undefined interaction

or non-linearity. From Table 4.7, for BT and LU, we see that the estimated (1 2,β β) are

extremely near -1.0 and +1.0, with the reasoning for this being the same as in Section 4.1. The

SP equation appears almost flat due to the effect of 2 extreme outliers among the 21 points in the

44

focal training set. Sweep3D is, in fact, behaving similarly to BT and LU after conditioning on

IX, with the reason the 2β coefficient is nearer to +3.0 than +1.0 related to the way in which

SIZE is measured in Sweep3D. For SMG, the fit is extremely good although the equations are

completely different from other applications. Since 1 0β > for SMG, this means that increasing

processors increases run time. As noted in equations (7) and (8) of Section 3.4.2, this can occur

only when the communication time is larger than computation time. For SMG, this occurs

around P=128, so over the entire focal region from P=16 to P=1024, the estimated 1β coefficient

is positive. Of course, if one had only the data from P=16 to P=64 and attempted to use such

data to predict SMG at P=128, there would be no possible way to predict what would happen –

that is always a potential problem with “extrapolating beyond the range of data” methods such as

those which we are using here. Perhaps something similar occurred for CG, as the separate

regression equations for each NZ have exceptionally good fits as shown in Table 4.7, but the

overall MAPE (Table 4.2.1) is 29.3%.

4.3. RESULTS USING SELF-GENERATED FOCAL REGION METHOD

 For the BT application, we generated the six initial points in Table 4.8 by altering SIZE

by +/- 10% (for SIZE=1060 at P=1024 and 106± 85± for SIZE=850 at P=484). In this case, our

two starting points are T0=101 seconds (at P=1024, SIZE=1060) and T=101.98 seconds (at

P=484, SIZE=850). We used these SIZE/P combinations to find the points’ run times, as shown

in Table 4.8.

45

Table 4.8 – Six Initial Points for BT
SIZE P TIME
1166 1024 116.00
1060 1024 101.10
954 1024 69.34
935 484 124.34
850 484 101.98
765 484 69.16

We then used the six points in Table 4.8 to find the coefficients of a regression equation of the

form:

 0 1 2LT= + *LP+ *LSZ+β β β ε (11)

Next, we inverted equation (11) to find the ‘SIZE’ necessary to yield T=101 for all processor

levels less than P=484. For BT, the coefficients ()0 1 2, ,β β β to equation (11) are (-12.71, -0.85,

2.76). If we set TOTAL=101, then the SIZE corresponding to P for each P<484 are listed as the

middle line in Table 4.9. The other two rows for each P in Table 4.9 have altered SIZE by +/-

10%. The TIME values shown are those observed when we ran these SIZE/P combinations.

Table 4.9 – Fifteen Points for BT at P<484

SIZE P TIME
334 16 169.47
304 16 125.29
273 16 90.05
428 36 155.57
389 36 117.12
350 36 84.30
511 64 148.58
464 64 110.09
418 64 82.49
586 100 145.86
533 100 108.77
479 100 78.81
782 256 134.39
711 256 100.26
639 256 74.86

46

Table 4.9 shows the fifteen SIZE/P combinations that are run and the points’ run time. We then

use the twenty-one points from Tables 4.8 and 4.9 in equation (11). The coefficients for

(0 1 2, ,)β β β to equation (11) using all twenty-one points are (-13.36, -0.95, 2.92). Finally, we

invert equation (11) to find the estimated ‘SIZE’ necessary to yield T0=101 for P=1936. For the

BT application, the three points in Table 4.10 we found by 138± to SIZE=1380 for P=1936.

Table 4.10 – Three Forecasting Points for BT at P=1936

SIZE P Pred_Time Actual_Time
1518 1936 132.37 149.59
1380 1936 100.21 115.97
1242 1936 73.67 85.56

When we compare the OBS and PRED times in Table 4.10 we obtain a MAPE=13.59%. This is

a good result but not as good as the focal region method.

The self-generating focal method for the BT application has three complications that have

the potential to cause lack of fit. First,

[t]he points at lower [processors] (obtained from the initial regression of 6 data
points at LP=J and LP=J-1) [are not] centered at the right places. [The points tend
to have a larger LT time then the LT0]. [Second,] the three points at each
[processor] level may not be sufficient to obtain a good regression equation. (In
fact, the fits for P=256 and P=1024 are much worse than at the other 5 processors.
… [Third] the initial 'known' point (P=1024, SIZE=1060, TOTAL=101.10)
appears to be an outlier. That is, the true value for time for BT when P=1024 and
SIZE=1060 is probably closer to 96-97 than 101. [15]

Surprisingly, these complications are marginal and we would get a similar MAPE for the self-

generated method as with the focal region method if we did not see an extreme jump in the

communication times for the P=1936 self-generated focal method runs. This suggests that for

simple applications the self-generated focal method may perform almost as well as it would if

there were a large training set from which to select the focal region points.

47

 For the CG application, the six initial points in Table 4.11 are generated in the same way

as for the BT application, but rather than conditioning on time alone, we are also conditioning on

the fact that NZ=14 at our focal points of interest. (These two points are {P=512, NZ=14,

SIZE=1810K, TIME=99.23} and {P=1024, NZ=14, SIZE=2050K, TIME=99.21}). We run the

SIZE/P combinations shown in Table 4.11 to find the other four points’ run times.

Table 4.11 – Six Initial Points for CG

SIZE P TIME
1570K 512 88.57
1810K 512 99.23
1930K 512 112.47
1870K 1024 88.90
2050K 1024 99.21
2230K 1024 112.66

We next used the six points in Table 4.11 to estimate the coefficients of equation (11). Then, we

inverted equation (11) to find the ‘SIZE’ necessary for all processor levels less than P=512. For

CG, the coefficients ()0 1 2, ,β β β to equation (11) are (2.87, -0.25, 1.20). If we set TOTAL=100

+/-10% then the estimated SIZE and P for P<512 are listed in the first two columns of Table

4.12, with last column displaying the TIME actually observed when theses runs were executed

(all with NZ=14).

48

Table 4.12 – Fifteen Points for CG at P<512
SIZE P TIME
790K 16 893.75
850K 16 978.63
910K 16 1061.35
850K 32 377.75
910K 32 426.86
970K 32 477.80
940K 64 261.49
970K 64 275.17

1000K 64 288.74
850K 128 94.81
910K 128 105.44
970K 128 113.35

1330K 256 135.29
1390K 256 139.16
1450K 256 150.91

The twenty-one SIZE/P combinations in Tables 4.11 and 4.12 combined were used in a

regression of the form given in (11). This yielded an equation with RSQR=0.971 and

RMSE=0.219 with coefficients (0 1 2, ,)β β β of (4.41, -1.06, 2.45). If we project this equation

forward to P=2048 and solve for the SIZEs needed to yield T={80, 90, 100, 110,120} seconds,

the forecast points are as shown in Table 4.13.

Table 4.13 – Five Forecasting Points for CG at P=2048, NZ=14

SIZE P Pred_Time Actual_Time
2770K 2048 81.44 24.91
2890K 2048 90.16 25.78
3010K 2048 99.47 26.29
3190K 2048 114.41 27.76
3250K 2048 119.67 28.16

When we compare the OBS and PRED times in Table 4.13 we obtain a MAPE=278.30 %. The

self-generated method MAPE is much worse than the focal region method and this is extremely

disappointing. We believe that the poor results are a reflection of the lower processors not being

49

centered in the right place. As can be seen in Table 4.12, the times for the fifteen points are not

anywhere near the T={ 90, 100, 110} seconds we want, except for P=128. If we had the time,

we would have re-centered our fifteen points rather than continued the process using these

points.

 So, based on these two examples, it appears that the self-generated focal method might

yield results similar to those which could be obtained from selecting a focal region from a larger

training set. How good those results are, however, seems to depend on the application.

4.4 SUBDIVISION INTO COMPONENTS

 We can separate the TOTAL run time into the two subcomponents, MAXCOMP and

MINCOMM (or CPCOMP and CPCOMM). As mentioned in Chapter 1, computer scientists

disagree on which subdivision is best. In addition, unless one is extremely careful in

synchronizing timers, it is usually the case that the sum of the two components, whether one uses

the Max/Min or the critical path measures, is less than TOTAL time which we have used

heretofore. The difference is usually about 1%-2%, but can be as high as 10% or more. If one

subdivides time into components, one must be careful in resolving this discrepancy. We believe

that subdivision into computation and communication components may be beneficial to in

improving the forecast errors for applications which did not achieve the 10% relative error

threshold when using TOTAL as the time variable. The two subcomponents behave in very

different ways. We know that MAXCOMP behaves in a linear fashion (in log-TIME scale)

while MINCOMM behaves in a non-linear fashion. We also know that MAXCOMP decreases

as P increases (with other variables held constant), while MINCOMM increases as P increases.

Separation of the two subcomponents will allow the regression equations to better fit the

50

respective behaviors of MAXCOMP and MINCOMM. Despite the extra steps involved in

splitting and recombining the two subcomponents to make forecasts, we suggest that all linear

regression models should split the TOTAL into MAXCOMP and MINCOMM when

communication time is a significant amount of the TOTAL. Of the applications which we

examined, splitting would appear to be most beneficial in the case of SMG.

 The estimated regression equation coefficients under the focused regression method for

the two components for SMG are shown in Table 4.14. This assumes a generic model of the

form:

 0 1 2LT = + *LP + *LSZ + β β β ε (12)

at each condition level, where LSZ= log2 (Dim1*Dim2*Dim3). The condition covariates for

SMG are the levels of P1 and J=log2 (PD2/PD3. Clearly, as seen from the exceedingly good fits

in Table 4.4.1 for the computational component of this application, subdivision into components

improves the computational time fit. However, the subcomponent model’s MAPE=8.07% is not

better than the focal regions method MAPE=7.50%. This is unexpected, but could be due to the

fact that MAXCOMP and MINCOMM do not actually equal TOTAL. Or, it could be due the

fact that the generic model in (12) is satisfactory for log-computation time, but not for log-

communication time.

51

Table 4.14 – Regression Coefficients for Component Focused Regressions
Application TIME Train N Intercept,

0β
LP,

1β
LSZ,

2β
condition R2 RMSE

SMG LTCOMP 51 -16.12 0.06 1.04 P1=0, J=-3 0.992 0.086
LTCOMM 51 -12.95 0.44 0.67 P1=0, J=-3 0.992 0.360
LTCOMP 56 -16.27 0.04 1.05 P1=0, J=-1 0.996 0.060

LTCOMM 56 -12.36 0.42 0.64 P1=0, J=-1 0.969 0.226
LTCOMP 56 -16.13 0.04 1.04 P1=0, J=1 0.995 0.065

LTCOMM 56 -12.12 0.38 0.65 P1=0, J=1 0.951 0.270
LTCOMP 51 -15.70 0.06 1.02 P1=0, J=3 0.989 0.098

LTCOMM 51 -12.27 0.38 0.69 P1=0, J=3 0.897 0.378
LTCOMP 51 -15.55 0.03 1.02 P1=1, J=-2 0.996 0.060

LTCOMM 51 -8.79 0.39 0.49 P1=1, J=-2 0.973 0.176
LTCOMP 56 -15.60 0.03 1.02 P1=1, J=0 0.997 0.053

LTCOMM 56 -8.58 0.37 0.49 P1=1, J=0 0.972 0.186
LTCOMP 51 -15.29 0.04 1.01 P1=0, J=2 0.994 0.069

LTCOMM 51 -9.10 0.36 0.53 P1=0, J=2 0.950 0.231
LTCOMP 51 -14.99 0.01 1.00 P1=2, J=-1 0.997 0.054

LTCOMM 51 -7.28 0.37 0.44 P1=2, J=-1 0.960 0.207
LTCOMP 51 -14.90 0.02 1.00 P1=2, J=1 0.996 0.056

LTCOMM 51 -7.83 0.36 0.48 P1=2, J=1 0.963 0.195

 We conducted further research during which we subdivided the MAXCOMP and

MINCOMM subcomponents into eight phases. However, some preliminary work with these

eight phases of computation and communication for the CG application showed erratic behavior

at higher processor levels. We believe these errant points were caused by a hardware issue. To

date, the hardware issue has not been resolved, so we have ceased our efforts in this direction for

now. Nevertheless, if these hardware/timing issues can be resolved, we believe that subdivision

of MAXCOMP and MINCOMM into phases could be beneficial to predictions and, thus, to

forecasting.

52

CHAPTER 5

CONCLUSION

 We conclude this thesis with a chapter that condenses our results, discusses important

issues that can affect our results, and summarizes the effect of our efforts to solve the important

computer science problem of accurate time-constrained scaling with a linear regression model.

 We see that the results for simple applications are good for the complete training set

method. This occurs because the applications BT, LU, and SP, “have a high computation-to-

communication ratio and have a single input parameter.”[4] When the application run time is

dominated by the computation time, a simple linear regression will forecast and predict well

because the log-computation time is an approximately linear function of the log-problem size.

However, the complete training set method is not so good for complex applications.

 We see that the results for the focal region method are good for all applications except

CG. The results of the complex applications are much better under this method than they are

under the complete training set method, and even the simple applications, except LU, show an

improvement versus the complete training set method.

 Based on the sample results for BT and CG, we believe that our self-generating focal

region method will work nearly as well the focal region method. For BT, this should be the case

because BT is a simple application and the self-generated points fall within the focal region. For

CG, the focal region method results are a combination of those for NZ=(14, 16, 18, 20, 22, 24),

but for the self-generating focal training set method, we examined only the NZ=14. When

looking at the focal region method at NZ=14, the MAPE=124.61%. This is much worse than

53

overall CG application MAPE of 29.30%, so perhaps NZ=14 was not the best condition to use in

creating the CG example.

 One fundamental question that permeates all methods described in Chapter 3 is the

accuracy of forecasting. Forecasting, especially when one is extrapolating beyond the data range

to make predictions of future observations, is inherently unreliable. Nonetheless, we believe that

extrapolating to the P=2^(J+1) processor level will be relatively accurate because points that fall

into our narrow focus region and obtain time-constrained scaling should behave fairly similarly

to such points with more processors. .

 Furthermore, we found that forecasting of interaction and higher order polynomial

models were unstable when forecasted. All forecasts for these models had relative error much

worse than the simple linear regression forecasts. This we believe is due to the interaction and

higher order polynomial models over-fitting the data. Even if we had carried these models

further in our methodology, we would still expect the models to display the unstable behavior

exhibited in the global model forecasts.

 One problem that is specific to our self-generating focal training set method described in

Section 3.5 is double dipping. Double dipping, using the data for selection and analysis, can

create bias in our results. However, we believe that the effect of double dipping will be minor

because an independent dataset of points that falls into our narrow focus region and obtains time-

constrained scaling will be relatively similar or exactly the same as the points that we used to

create the model.

 A preliminary look at the self-generated focal method with BT suggests that the method

should work adequately for simple applications. When we extended the method to more

complex applications, for example CG, the success of the self-generated focal method was poor.

54

The self-generated focal method seems to perform similar to the focal region method, in some

cases for better or worse.

 The difficulties exhibited in the preliminary analysis of BT could pose a greater problem

for more complex applications. Overall, failure to choose points centered at the right places,

having few points at each processor level, and/or having the initial 'known' point as an outlier are

all problems that would affect the controlled setting that we are attempting to create. In spite of

these problems, the BT application was unaffected. Thus, we might logically believe that more

complex applications may be affected, but might not be affected drastically. Thus, we believe

the self-generated focal region method should yield results close to the focused linear regression

method results.

 For more complex applications, the self-generating focal method might be difficult to

implement. First, there are more factors that must be controlled or imputed in the model.

Second, although we control some factors in our self-generating focal method, it might not be

feasible or make sense for the user running the application to also hold those same factors

constant.

 Despite the limitations discussed above, we feel that our methods work and that they

represent a step forward in the quest for a method to perform accurate time-constrained scaling

of parallel-processing computer applications. We believe that our estimation procedures may

help encourage the wider use of parallel computation for computationally intense problems. We

feel that these methods and our future work will bring us closer to a ‘black box’ method for time

estimation. This work is ongoing and will continue to produce valuable information along this

path.

55

REFERENCES

[1] Parallel computing. (2002, November 8). Retrieved January 20, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Parallel_computing

[2] Amdahl's Law. (2002, February 25). Retrieved January 25, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Amdahl%27s_law

[3] Gustafson's Law. (2006, March 1). Retrieved January 25, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Gustafson%27s_Law

 [4] Barnes et al. (2010). Using Focused Regression for Accurate Time-Constrained Scaling of

Scientific. 23rd IEEE/ACM International Parallel and Distributed Processing Symposium
(IPDPS). Atlanta.

[5] Scalability. (2003, February 20). Retrieved January 23, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Scalability

[6] Measuring Parallel Scaling Performance. (2010, February 11). Retrieved February 24, 2010,

from Sharcnet:
https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performance

[7] Bailey et.al. (1995). NAS Parallel Benchmark 2.0. NAS.

[8] Davd H. Bailey, E. B. (1993). NAS Parallel Benchmark Results. IEEE Concurrecy , 43-51.

[9] H. Jin, M. F. The OpenMP Implementation of NAS Parallel Benchmarks and Its

Performance. NAS.

[10] E.F. D'Azevedo, C. R. (1992). Reducing communication costs in the conjugate gradient

algorithm on distributed memory multiprocessors. Oak Ridge: Oak Ridge Natiional Lab.

[11] J. Vetter, A. Y. (2002). An Empirical Performance Evaluation of Scalable Scientific

Applications. . IEEE .

[12] Multigrid method. (1995, April 16). Retrieved February 26, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Multigrid_method

[13] The SMG2000 General README File. (2001, September 19). Retrieved February 26, 2010,

from Lawrence Livermore National Labatories:
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/smg2000_readme.
html

http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Gustafson%27s_Law
http://en.wikipedia.org/wiki/Multigrid_method

56

[14] Lee et. al.. (2007). Methods of inference and learning for performance modeling of parrallel
applications. Proceedings of the 12th Symposium on Principles and Practice of Parallel
Programming. San Jose: ACM: Association for Computing Machinery .

[15] Reeves, J. (2009, December 28). Algorithm. Athens, GA, USA.

[16] Reeves, J. (2009, December 3). Focal Regions for CG. Athens, GA, USA.

	jgarrenmsfront0
	jgarrenmsfront1
	jgarrenms041910
	2.1. BACKGROUND
	2.1.1. PARALLEL COMPUTATION ISSUES
	2.1.1.1. DEPENDENCIES
	Many applications are composed of a series of calculations that are dependent on previous calculations; this is the serial part of an application and cannot be parallelized. The longest chain of dependent calculations is known as the critical path. An application’s execution time cannot be shorter than the critical path execution time [1].
	Dependencies can also occur in the parallel part of an application. When dependencies of one loop iteration on previous iterations occur in loops they are called loop-carried dependencies. Loop-carried dependencies prevent the parallelization of loops [1].
	Three types of dependencies can occur with loops: 1) true/flow dependent, 2) anti-dependent, and 3) output dependent. All of these arise when two statements in an application are vying to use the same variable. True/flow dependency
	correspond[s] to the first statement producing a result used by the second statement. … [Anti-dependency occurs] when the first statement over-writes a variable needed by the second [statement.] … Output dependency occurs when two statements write to the same location; the final result must come from the last logically executed statement. [1]
	For this research, we are not concerned with exactly why these dependencies occur, but we attempt to indirectly model how often they occur.
	2.1.1.2. RACE CONDITIONS, MUTUAL EXCLUSION, SYNCHRONIZATION, AND PARALLEL SLOWDOWN
	2.1.1.3. SPEED –UP

	2.1.2. TYPES OF SCALING
	2.1.2.1. HORIZONTAL SCALING
	2.1.2.2. WEAK SCALING
	2.1.2.3. TIME-CONSTRAINED SCALING

	Time-constrained scaling has recently become more popular than weak scaling, especially since weak scaling is difficult and often unpredictable. Time-constrained scaling occurs when the number of processors used to execute an application increases, but the input variables are adjusted so that the total run time remains the same as it was at a lower processor value. For example, one might be told that for the CG application with P=1024, SIZE=1,000,000 and NZ=14, the run time is 85.20 seconds. Under time-constrained scaling, one would like to determine the value of {SIZE, NZ} at NP=2048 which would also take 85.23 seconds to run.

	2.2. APPLICATIONS
	2.2.1. BT
	2.2.2. LU
	2.2.3. SP
	2.2.4. CG
	2.2.6. SMG
	2.3. POSSIBLE APPROACHES TO PREDICTION/FORECASTING
	2.3.1. SIMULATION OF APPLICATIONS
	As stated previously, there is a difference between ideal (theoretical) speed-up and observed speed-up. Various factors, i.e. latency or synchronization, are the cause for the observed deviation from ideal. These factors are referred to collectively as ‘overhead’. Several simulation applications have been developed to run a simulation of a specific application with set variables in order to try and quantify the overhead. These overhead values are then utilized to predict the performance of the application when it is scaled.
	Unfortunately, development of a simulation for an application is not an easy task. Complete knowledge of how the application works (i.e. ‘white-box’ knowledge) must be utilized in order to conduct an accurate application simulation. Knowledge of an application at this level is not to be expected from a typical scientist interested in scaling an application for research, so simulation methods are not examined further in this thesis.
	2.3.2. NON-LINEAR RESGRESSION ON TIME
	2.3.3. ARTIFICIAL NEURAL NETWORKS
	2.3.4. GENERAL LINEAR MODELS (GLM) ON LOG (TIME)

	CHAPTER 3
	PROPOSED DATA ANALYSIS METHODS
	 This chapter describes three types of proposed data analysis methods which were used within the general linear model framework to make predictions and forecasts for the six applications studied. Which of these methods to use depends upon what assumptions one makes concerning the data set which one will have available from which to make future projections.
	3.3 SELF-GENERATED FOCAL REGION METHOD
	3.4 TYPES OF MODELS USED
	3.4.1 ORDINARY LINEAR REGRESSION MODEL
	3.4.2 MODIFICATIONS OF ORDINARY LINEAR REGRESSION MODEL
	3.4.3 FOCUSED REGRESSION MODELS
	3.5 ALGORITHM FOR SELF-GENERATED DESIGN POINTS

