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There is a need for an automated method that facilitates time-constrained scaling for 
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problems.  In this thesis, we show for the first time a self-generated focal training method that is 

able to accurately achieve time-constrained scaling using a focused regression.  This is 

demonstrated with  six benchmark applications, but can be extended to any application of 

interest for which time-constrained scaling is needed. 

 

INDEX WORDS:  time-constrained scaling, parallel computation, regression 

  



 

 

USING REGRESSION BASED METHODS FOR TIME-CONSTRAINED SCALING OF 

PARALLEL PROCESSOR COMPUTING APPLICATIONS 

 

by 

 

JEONIFER GARREN 

B.S., Emory University, 2002 

MPH, Boston University, 2005 

 
A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment 

of the Requirements for the Degree 

 

MASTER OF SCIENCE 

 

ATHENS, GEORGIA 

2010 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2010 

Jeonifer Garren 

All Rights Reserved   



 

 

USING REGRESSION BASED METHODS FOR TIME-CONSTRAINED SCALING OF  
 

PARALLEL PROCESSOR COMPUTING APPLICATIONS 

 

 

by 

 

 

JEONIFER GARREN 

Approved: 

 

Major Professor: Jaxk Reeves  

 

        Committee: Lynne Seymour  

                                William McCormick 

Electronic Version Approved: 

 

 

Maureen Grasso 

Dean of the Graduate School 

The University of Georgia 

May 2010  

 



 iv

 

 

DEDICATION 

This is for my grandparents, Roy and Betty Garren.  Thanks for always believing and 

accepting me for me.  I would also like to dedicate this thesis to all the people in my life who 

have helped me become who I am today.   

  



 v

 

 

ACKNOWLEDGEMENTS 

I would like to acknowledge the Statistics department at UGA for allowing me into the 

program, with special thanks to my committee.  To my advisor Jaxk Reeves; I couldn’t have 

done this without him.  To the Computer Science departments at UGA and Arizona State 

University, thanks for allowing me to be part of the research team.   

  



 vi

 

 

PREFACE 

This project was supported by a grant from the National Science Foundation (CSR 08-

34356).  The project was a collaboration between researchers from the Statistics and Computer 

Science fields.  From the computer science field, this project was assisted by Professor David 

Lowenthal and Brad Barnes of the University of Arizona and the University of Georgia, 

respectively. 

  



 vii

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS  ............................................................................................................ iv 

PREFACE ........................................................................................................................................v 

LIST OF TABLES ......................................................................................................................... ix 

LIST OF FIGURES .........................................................................................................................x 

CHAPTER 

1 INTRODUCTION .........................................................................................................1 

2 BACKGROUND AND LITERATURE REVIEW .......................................................6 

2.1 BACKGROUND .................................................................................................6 

2.2 APPLICATIONS ...............................................................................................11 

2.3 POSSIBLE APPROACHES TO PREDICTION/FORECASTING ..................17 

3 PROPOSED DATA ANALYSIS METHODS ............................................................21 

3.1 COMPLETE TRAINING SET METHOD .......................................................21 

3.2 FOCAL REGIONS METHOD .........................................................................22 

3.3 SELF-GENERATED FOCAL REGION METHOD ........................................24 

3.4 TYPES OF MODELS USED ............................................................................25 

3.5 ALGORITHM FOR SELF-GENERATED DESIGN POINTS ........................31 

4 ANALYSES .................................................................................................................34 

4.1 RESULTS USING COMPLETE TRAINING SET METHOD ........................34 

4.2 RESULTS USING FOCAL REGIONS METHOD ..........................................37 



 viii

4.3 RESULTS USING SELF-GENERATED FOCAL REGION METHOD ........44 

4.4 SUBDIVISION INTO COMPONENTS ...........................................................49 

5 CONCLUSION ............................................................................................................52 

REFERENCES ..............................................................................................................................55 

  



 ix

 

 

LIST OF TABLES 

Page 

Table 1.1: List of Applications and Characteristics .........................................................................4 

Table 3.2: Six Initial Sample Runs ................................................................................................32 

Table 4.1: MAPE and Distribution of Relative % Error for Complete Training Method by 

Application ......................................................................................................................35 

Table 4.2: Regression Coefficients for Complete Training Method by Application .....................36 

Table 4.6: Conditions Used to Create Focal Regions for Applications and Resultant MAPE’s ...42 

Table 4.7: Regression Coefficients for Focused Regressions by Application and Condition .......43 

Table 4.8: Six Initial Points for BT ................................................................................................45 

Table 4.9: Fifteen Points for BT at P<484 .....................................................................................45 

Table 4.10: Three Forecasting Points for BT at P=1936 ...............................................................46 

Table 4.11: Six Initial Points for CG .............................................................................................47 

Table 4.12: Fifteen Points for CG at P<512 ..................................................................................48 

Table 4.13: Five Forecasting Points for CG at P=2048, NZ=14 ...................................................48 

Table 4.14: Regression Coefficients for Component Focused Regressions ..................................51 

  



 x

 

 

LIST OF FIGURES 

Page 

Figure 2.1: Amdahl’s Law of Speed-up due to Parallelization ........................................................9 

Figure 3.1: SMG focal regions on a processor grid .......................................................................31 

Figure 4.3: LT*LP for BT application with ‘Focal Region’ of 6.2<LT<6.8 .................................38 

Figure 4.4: LT*LP for LU application with ‘Focal Region’ close to LT=6.00 .............................39 

Figure 4.5: LT*LP for SP application with ‘Focal Region’ of 6.45<LT<6.85 ..............................40 



1 
 

 

 
CHAPTER 1 

INTRODUCTION 

 
 Parallel computation has become widely popular in many applied sciences.  Typically, 

parallel computation requires a large number of processors and is carried out in a specialized 

computing center (such as the EITS Research Computing Center (RCC) at UGA) that serves 

many independent researchers.  In order to meet the demands of scientific research for increasing 

computational complexity, these facilities must increase either the number or the efficiency of 

the processors they use.  We are interested specifically in evaluating what happens to an 

application when the number of processors is increased.  That is, we are not proposing methods 

to increase efficiency; rather, we wish to forecast how computing time will change if the number 

of processors were to increase.  Other things being held constant, run time tends to decrease as 

the number of processors increases, but the exact relationship is frequently rather complex.  Of 

even more interest to researchers in the field is how one should adjust (‘scale’) other input 

variables such that the total run time (computation time plus communication time) is 

approximately the same when the application is run with an increased number of processors. 

 The specific task of prediction is not an easy undertaking for many reasons.  Some factors 

are specific to the application running in parallel, while others are specific to the architecture of 

the system.  Despite these difficulties, there have been numerous attempts with multiple methods 

to predict performance and a few attempts at forecasting.  Although most of these methods are 

for prediction, they could easily be extended to forecasting.  In this thesis, we are using the word 

‘predict’ to mean using a statistical model based on the available data to estimate run time given 
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a set of input variables within the range for which the model was developed.  We are using the 

word ‘forecast’ to mean a similar type of time estimation, but for the case where at least one of 

the input variables (usually number of processors) is outside the range for which the model was 

developed.  In statistical parlance, what we are doing when ‘forecasting’ is called “extrapolation 

beyond the range of the data”, and is generally considered risky.  This thesis attempts to explore 

how risky this practice is in the setting of parallel processing run time computations, and to offer 

some guidelines for how to do it effectively.  Methods currently available for forecasting are 

quite crude, with median absolute relative errors for forecasting TIME frequently being well over 

10%.  If simple new methods could be derived which gave median absolute relative errors of 

10% or less, this would be considered quite beneficial to computer scientists. 

We are examining six computing applications (BT, LU, SP, CG, Sweep3D, and SMG) as 

a representative group of computer applications for our research.  We believe that results for 

these six applications can be generalized to many computer applications.  The six applications 

are described in more detail in Section 2.2.  The datasets obtained from these six applications for 

this thesis were collected by Brad Barnes of the Computer Science Department at UGA.  Both 

the “training set” and “forecast set” runs  for all six applications were run on Atlas, a parallel 

system located at the Lawrence Livermore National Laboratory.  

The communication, computation, and TOTAL run times for each application were 

recorded to the nearest hundredth of a second.  While it should be the case that the sum of 

computation and communication times is equal to the TOTAL, this is not always the case.  In 

fact, there is not even a uniformly agreed upon way to measure computation and communication 

times, with some computer scientists preferring to use maximum computation (MAXCOMP) and 

minimum communication (MINCOMM) times, and others preferring to use the critical path 
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computation (CPCOMP) and communication (CPCOMM) times.  For most of our applications, 

we used ‘TOTAL’ as the response variable of interest, but for those for which modeling 

computation and communication components separately was required, we were more careful in 

specifying exactly how these separate times were measured.   

The input variables which are varied in any set of runs of an application depend upon the 

application being evaluated.  The most important input variable, of course, is the number of 

processors (P) involved.  For most of the applications examined, it was convenient to increase 

the processors in multiples of powers of two, so training set runs were frequently executed at 

these seven processor levels: P= 16, 32, 64, 128, 256, 512, and 1024, with forecasts at P=2048.  

For a few of the applications for which processor numbers were required to be even perfect 

squares, runs were at similar values.  For example, for BT, the processor sizes varied as P= 16, 

36, 64, 144, 256, 484, and 1024 in the training set, while P=1936 was used for the forecast set.  

For a given number of processors, other variables were also varied so as to yield a range of run 

times.  For the simpler applications, there was usually only one other input variable of interest, 

frequently measuring the ‘size’ of the problem.  For some of the more complex applications, as 

many as six input variables were varied in some pattern.    
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Table 1.1 – List of Applications and Characteristics 

Application 
Key 

Variables 

Training Set Forecast Set 
#  of 

Processor 
levels 

Processor 
Range 

Processor 
Type 

Unique 
Cases 

Total 
Cases 

Processor 
Level 

Total 
Cases 

BT 1)Processors 
2) Size 7 16-1024 Even Sq 792 792 1936 22

LU 1)Processors 
2) Size 7 16-1024 2n 118 118 2048 31

SP 1)Processors 
2) Size 8 16-1024 Even Sq 352 352 1936 124

CG 

1)Processors 
2) Size 
3) Non-
zeroes 7 16-1024 2n 1890 1890 2048 29

Sweep3D 

1)Processors 
2) Size 
3)2 processor 
dimensions 7 16-1024 2n 224 224 2048 20

SMG 

1)Processors 
2) Size 
3)3 processor 
dimensions 9 4-1024 2n 848 2542 2048 36

 
Table 1.1 – above lists, for all six applications, the key variables, the number of training 

processor levels, the training set processor range, the type of processor levels used (power of 2 or 

even squares), the training set unique cases, the training set total cases, the forecast set processor 

level, and the forecast set total cases.  Many computer scientists do not use replication, since they 

believe it is an expensive waste of resources to achieve essentially the same answer. This fact 

helps explain why the unique cases and total cases are identical for all but the last application 

(SMG), for which two replications (i.e. three total) were run for each combination of input 

variables.  In general, the measurement error when replicating an experiment is relatively small 

compared to the typical variation between experiments, so the computer science approach of no 

replication (what statisticians might call ‘one observation per cell’) is usually justified.  

However, when replications did occur (in SMG and in other datasets examined for this research 

but not included in Table 1) we did see occasional extremely large deviations.  With only one 
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observation per experimental condition, such aberrant observations would not be detected unless 

they were so unusual as to be classified as outlier/influential points and deleted from an analysis. 

 There are many approaches which one might take in attempting to use the results from 

the ‘training set’ of an application to make projections for the ‘forecast set’.  A number of these 

are discussed in Section 2.3 of this thesis.  Even for a fixed general approach, there are different 

methods which one might want to use, depending on the data available.  We discuss this in 

Chapter 3, first considering a best-case scenario where one has an actual complete training set 

available to develop a model, then the more realistic case where one has available a smaller 

‘focused’ subset of the training sample space, and, finally, the most realistic case of all, where 

one is given output for only one or two points in the ‘training space’ and must decide how to 

proceed in making forecasts.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 
2.1. BACKGROUND 
 

Parallel computation involves fragmenting a computationally intense application into 

smaller, more manageable calculations.  This is easier said than done.  There are several issues 

that make parallel computation difficult and non-intuitive.   

 
2.1.1. PARALLEL COMPUTATION ISSUES 
 

There are four different types of parallelism: bit-level, instruction-level, data, and task.  

We are concerned only with data parallelism.  Data parallelism refers to how an application’s 

loops distribute the data across the parallel processors [1].  These loops in the application, the 

architecture of the system, and the interaction between the application and the architecture can 

create inefficiencies in the flow of the execution of the calculations.  If there were no 

communication or startup issues, and an application was completely efficient, running an 

application on ‘P’ parallel processors would take 1
P

 of the time required to run the same job on 

one processor.  However, matters are rarely that simple.  Described below are some difficulties 

that can occur.   

 
2.1.1.1.DEPENDENCIES 

 
Many applications are composed of a series of calculations that are dependent on 

previous calculations; this is the serial part of an application and cannot be parallelized.  The 
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longest chain of dependent calculations is known as the critical path.  An application’s execution 

time cannot be shorter than the critical path execution time [1]. 

Dependencies can also occur in the parallel part of an application.  When dependencies of 

one loop iteration on previous iterations occur in loops they are called loop-carried dependencies.  

Loop-carried dependencies prevent the parallelization of loops [1].     

Three types of dependencies can occur with loops: 1) true/flow dependent, 2) anti-

dependent, and 3) output dependent. All of these arise when two statements in an application are 

vying to use the same variable.  True/flow dependency 

correspond[s] to the first statement producing a result used by the second 
statement.  … [Anti-dependency occurs] when the first statement over-writes a 
variable needed by the second [statement.]  … Output dependency occurs when 
two statements write to the same location; the final result must come from the last 
logically executed statement. [1]   

 
For this research, we are not concerned with exactly why these dependencies occur, but we 

attempt to indirectly model how often they occur. 

 
2.1.1.2. RACE CONDITIONS, MUTUAL EXCLUSION, SYNCHRONIZATION, AND 

PARALLEL SLOWDOWN 

 
The shift from sequential to parallel computer applications introduced a new set of 

software problems, thus making parallel computing more difficult.  Race conditions, which are 

one of the most common problems, arise when a variable that is shared between multiple sub-

tasks is updated because of lack of synchronization.  If the order of the updating and outputting 

for each sub-task is performed in the incorrect order, errors or even complete failure in the 

computation can occur.  In order to avoid this situation, the programmer can use a lock to 

provide mutual exclusion [1].  While this makes the application safer, it might slow the 

application considerably. 

http://en.wikipedia.org/w/index.php?title=Anti-dependency&action=edit&redlink=1
http://en.wikipedia.org/wiki/Parallel_slowdown
http://en.wikipedia.org/wiki/Parallel_slowdown
http://en.wikipedia.org/wiki/Lock_(computer_science)
http://en.wikipedia.org/wiki/Mutual_exclusion
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Another common difficulty with parallel computer applications is the need for 

communication and synchronization between the different sub-tasks.  To force parallel 

application sub-tasks to act in synchrony requires the use of a barrier that creates a point in an 

application where all processes must arrive before they can depart [1].  The barrier will “ensure 

that two concurrently-executing processes do not execute specific portions of an application at 

the same time. If one process has begun to execute a serialized portion of the application, any 

other process trying to execute this portion must wait until the first process finishes.” [1] As with 

the ‘lock’, this procedure slows an application. 

As one increases parallelization, one increases the proportion of time needed for the 

processors to communicate with each other.  If this communication time becomes larger than the 

computation time, then the parallelization does not result in a speed-up but a slowdown.  We 

refer to this phenomenon as parallel slowdown [1].    

 
2.1.1.3. SPEED –UP 

 
The rate that a parallel application is faster than a sequential application is known as 

speed-up.  Speed-up is defined as ( ) 1

P

TS P
T

= .  That is, it is the ratio of time required to run the 

application with one processor compared to using P processors.  The optimal speed-up would be 

linear – doubling the number of processing elements should halve the runtime [1].  

Unfortunately, “very few parallel [applications] achieve optimal speed-up.” [1] Two laws which 

bound the theoretical speed-up of an application due to parallelization are Amdahl’s law and 

Gustafson’s law.   

Amdahl's Law (1) calculates the theoretical maximum speed-up that can occur when 

more processors are added to solve an application [2].   It is given by: 

http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Barrier_(computer_science)
http://en.wikipedia.org/wiki/Speedup
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     ( ) 1
1 (

S P
f P

=
− )

    (1) 

 
where S(P) is the speed-up and f(P) is the fraction of the application that is parallelizable when 

there are P processors in use.  The limiting factor for the theoretical maximum speed-up of an 

application using multiple processors in parallel computing is the time needed for the sequential 

fraction of the application to run [2].  Amdahl’s law depicts a “near-linear speed-up for small 

numbers of processing elements, [but then] flattens out into a constant value for large numbers of 

processing elements” (as shown by Figure 2.1) for most applications’ theoretical maximum 

speed-up [1].  Amdahl’s law is not used for scaling because it is based on the notion of a fixed 

problem size, so the sequential part of the application will be the same no matter how many 

processors are added to the parallel system [3].     

 

 

Figure 2.1 – Amdahl’s Law of Speed-up due to Parallelization 

http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg�
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Gustafson's Law predicts how well an application can be parallelized to speed-up the 

overall run time [3].  Equation 2 represents Gustafson’s Law.  

( ) ( )1S P P Pα= − ⋅ −   (2) 
 

where P is the number of processors, S(P) is the speedup, and α is the non-parallelizable portion 

of the process.  Unlike Amdahl’s Law, Gustafson’s Law allows scaling.  Gustafson proposed 

using time-constrained scaling when predicting the effectiveness of parallelization.   

 
2.1.2. TYPES OF SCALING 
 

Scalability can refer to many aspects of a parallel system.  There are two ways to scale 

the hardware, horizontally and vertically, and three ways to scale the application: strong, weak, 

and time-constrained.  In our case, we are using horizontal scaling of the hardware and both 

weak and time-constrained scaling of the application.  We describe below both types of scaling 

that are relevant to our problem.  Furthermore, we will discuss problems due to non-linear effects 

in computation and communication times and unknown relationships between the variables and 

execution time [4].  These make it difficult to determine the application-specific variables for 

proper scaling. 

 
2.1.2.1. HORIZONTAL SCALING 
 
 

Horizontal scaling refers to increasing the number of processors in the system.  This is 

what we wish to model, but, without actually running the application repeatedly at the highest 

level of processors, since that would be expensive.   

 

http://en.wikipedia.org/wiki/Speedup
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2.1.2.2.            WEAK SCALING 
 

Weak scaling involves designating a fixed problem size to each processor, so that when 

the number of processors increases, then, so, too, does the overall problem size [5].  In the case 

of weak scaling, linear scaling is achieved if the run time stays constant while the workload is 

increased in direct proportion to the number of processors [6].   Unfortunately, under linear 

scaling, due to added communication time, most run times do not stay constant [4].   When the 

application is one-dimensional, weak scaling is a relatively trivial problem.  However, most 

applications are not one-dimensional, so weak scaling is difficult in general due to non-linear 

communication time and multi-dimensionality.   

 
2.1.2.3. TIME-CONSTRAINED SCALING 
 

Time-constrained scaling has recently become more popular than weak scaling, 

especially since weak scaling is difficult and often unpredictable.  Time-constrained scaling 

occurs when the number of processors used to execute an application increases, but the input 

variables are adjusted so that the total run time remains the same as it was at a lower processor 

value.  For example, one might be told that for the CG application with P=1024, 

SIZE=1,000,000 and NZ=14, the run time is 85.20 seconds.  Under time-constrained scaling, one 

would like to determine the value of {SIZE, NZ} at NP=2048 which would also take 85.23 

seconds to run.   

 
2.2. APPLICATIONS 
 
 
  This section describes in greater detail the six applications for which training and 

prediction datasets were created by researchers in the Computer Science Department at UGA.  
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These applications were chosen because they are well-known applications which are 

representative of most parallel applications.  Included in the descriptions for each of the six 

applications in subsections 2.2.1-2.2.6 below are the purpose for each application, how it is 

executed, and the relevant input variables.  

 
2.2.1. BT 
 

The Block Tridiagonal (BT) application performs a synthetic computational fluid 

dynamics (CFD) calculation to approximate a solution for the three-dimensional Euler/Navier-

Stokes equations.  This application partitions the three-dimensional space into structured grids 

with a (5x5) block size to solve multiple block tri-diagonal equations.  The application solves the 

block tri-diagonal equations first in the x, then in the y, and finally in the z direction. 

There are two conditions that are inherent in order to run the BT application.  First, BT 

uses a multi-partitioning scheme to create the structured grids of (5x5) block size.  This method 

is more optimal than other possible methods “because it provides good load balance and uses 

coarse grained communication” [7], which are both desirable qualities.   

In the multi-partition algorithm, each processor is responsible for several disjoint 
sub-blocks of points (“cells”) of the grid. The cells are arranged such that for each 
direction of the line solve phase, the cells belonging to a certain processor will be 
evenly distributed along the direction of solution. This allows each processor to 
perform useful work throughout a line solve, instead of being forced to wait for 
the partial solution to a line from another processor before beginning work. 
Additionally, the information from a cell is not sent to the next processor until all 
sections of linear equation systems handled in this cell have been solved. 
Therefore the granularity of communications is kept large and fewer messages are 
sent. [7]    
 
The second condition that the BT application requires is that only a square even integer 

number of processors can be assigned to a job.  Other than the number of processors (P), the only 

input variable for the BT application is SIZE, the total volume of the application.  It does not 
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appear that communication time contributes much to the total time for BT to run, so forecasting 

for BT should be easier than for most other applications examined here. 

 
2.2.2. LU  
 

The Lower-Upper symmetric Gauss-Seidel (LU) application performs a synthetic CFD 

calculation to approximate a solution for the three-dimensional Euler/Navier-Stokes equations.  

This application partitions the three-dimensional space into structured grids that are sparse lower 

and upper (5x5) blocks.   

There are two conditions that are inherent if one wants to run the LU application.  First, 

LU performs  

[a] 2-D partitioning of the grid onto processors by halving the grid repeatedly in 
the first two dimensions, alternately x and then y, until all power-of-two 
processors are assigned, resulting in vertical pencil-like grid partitions on the 
individual processors. The ordering of point based operations constituting the 
SSOR procedure proceeds on diagonals which progressively sweep from one 
corner on a given z plane to the opposite corner of the same z plane, thereupon 
proceeding to the next z plane. [7]  
 
The second condition that the LU application requires is that only a power-of-two 

number of processors can be assigned to a job.  Communication is known to play a larger relative 

role in this application than it does for BT, but in the sample region for which we examined LU, 

it appears that total communication time is small relative to computation time.  For LU, as with 

BT, there is only one variable, SIZE, in addition to P.  Because there is only one other variable 

and the effects of communication time are small, one would expect a linear regression model 

applied to this data set to perform well.    
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2.2.3. SP 
 
 

The Scalar Penta-diagonal (SP) application performs a synthetic computational fluid 

dynamics (CFD) calculation to approximate a solution for the three-dimensional Euler/Navier-

Stokes equations.  This application partitions the three- dimensional space into structured grids to 

solve multiple scalar penta-diagonal equations.  The application solves the scalar penta-diagonal 

equations first in the x, then in the y, and, finally, in the z direction.  

There are two conditions that are inherent in running the SP application.  First, SP uses a 

multi-partitioning scheme to create the structured grids.  This method is more optimal than other 

possible methods “because it provides good load balance and uses coarse grained 

communication” [7], both of which are desirable qualities.  Second, as with BT, SP requires an 

even integer square number of processors and has only one input variable other than P, SIZE.  

[Note: To be consistent with other applications, we have defined SIZE= Dim1*Dim2*Dim3 to 

be the volume of the application.  For BT, LU, and SP, the application is run on a cube with 

Dim1=Dim2=Dim3, so our SIZE=Dim1^3.  This may be confusing to some users of these 

applications who refer to the Dim1 variable as ‘SIZE’.] 

 
2.2.4. CG 
 

The Conjugate Gradient (CG) application solves a system of linear equations.  CG does 

this by computing an approximation to the smallest eigenvalue of a large, sparse, symmetric 

positive definite matrix through an iterative method.  This method will converge rapidly when an 

appropriate pre-conditioner [8] is used.  This application is important because it tests irregular 

long- distance communication [8].   
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CG is easily parallelized.  Most of the parallelization is done by loops inside the iteration 

loop.  The speed-up due to parallelization goes from sub-linear at 1 to 2 processors, to super-

linear at 4 to 8 processors, but with more than 16 processors the speed-up decreases due to 

communication overhead [9].    

One drawback of [CG] … is that it involves the computation of two separate 
inner products of distributed vectors. Moreover, the first inner product must be 
completed before the data are available for computing the second inner product. 
Hence, [CG] … has two separate communication phases for these two inner 
products. [10]   
 

Perhaps modeling these phases separately will yield better fits, as discussed in Section 4.4. 

In addition to the number of processors, P, there are two input variables for CG: the SIZE 

of the problem (Dim1), and the number of non-zeroes, NZ.  Because of the additional variables 

and potential model complexity due to communication, it is expected that modeling the behavior 

of CG will be more difficult than for BT, LU, and SP. 

2.2.5. SWEEP3D 

 
The SWEEP3D application solves a 1-group time-independent discrete ordinates 3D 

Cartesian geometry neutron transport problem.   

[I]t uses a mult-dimensional wavefront algorithm for "discrete ordinates" 
deterministic particle transport simulation.  Sweep3D benefits from multiple 
wavefronts in multiple dimensions, which are partitioned and pipelined on a 
distributed memory system.  The three-dimensional space is decomposed onto a 
two-dimensional orthogonal mesh, where each processor is assigned one 
columnar domain.  Sweep3D exchanges messages between processors as 
wavefronts propagate diagonally across this 3-D space in eight directions. [11]     
 
In addition to P, there are five input variables for Sweep3D: two processor dimensions, 

Px and Py, and three grid dimensions, Nx, Ny, and Nz.  In fact, this reduces to two independent 

variables, since Px *Py=P, and Nx*Ny* Nz=WSS is the relevant SIZE variable. 
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The training set of Sweep3D was perfectly weak scaled.  In order to achieve weak scaling 

of the global grid equally in all three dimensions, each of the grid dimensions (Nx, Ny, and Nz) 

were increased by a factor of 3 2  as the number of processors doubled.  

 
2.2.6. SMG 
 
 

The Semi-coarsening Multi-Grid (SMG2000) application is a parallel solver for the 

Euler/Navier-Stokes equations on logically rectangular grids.  The multi-grid “accelerates the 

convergence of the iterative method by global correction from time to time, accomplished by 

solving a coarse problem.” [12]   

In contrast to other methods, multi-grid methods are general in that they can treat 
arbitrary regions and boundary conditions. They do not depend on the separability 
of the equations or on other special properties of the equation. They are also 
directly applicable to more-complicated non-symmetric and non-linear systems of 
equations [12].   
SMG can be used for 2D or 3D problems, but we are concerned with the application in 

3D.  SMG partitions the three-dimensional space into 27-point grids [13].  The application 

specifies grid dimensions in terms of a per-processor local grid; one can recover the global grid 

by taking the product of each grid dimension with the associated processor dimension.   

In addition to P, there are six input variables for SMG: three processor dimensions, Px, 

Py, and Pz, where the product of these must equal the number of processors (P), along with three 

grid dimensions, Nx, Ny, and Nz, where the product of these equals SIZE.  Thus, in addition to 

P, there are really only three independent input variables: SIZE and two of {Px, Py, Pz}. 

The training set of the SMG application was perfectly weak scaled.  In order to achieve 

weak scaling of the global grid equally in all three dimensions, each of the grid dimensions (Nx, 

Ny, and Nz) were increased by a factor of 3 2  as processor size doubled [4].  In order to achieve 

http://en.wikipedia.org/wiki/Coarse_problem
http://en.wikipedia.org/wiki/Boundary_condition
http://en.wikipedia.org/wiki/Separable_partial_differential_equation
http://en.wikipedia.org/wiki/Separable_partial_differential_equation
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time-constrained scaling in the ‘Focal regions’ method, Px=1 and one of the other processor 

dimensions (Py, Pz) is scaled by a factor of two.  

Modeling SMG is further complicated in that it is not symmetric in all dimensions.  That 

is, unlike the dimension scale, where the assignment of dimensions is irrelevant as long as SIZE= 

Nx*Ny*Nz is constant, it does make a difference how the Px*Py*Pz=P processors are arranged, 

and the naïve assumption that Px=Py=Pz= 3 P  would yield the optimal run time is not at all true 

for the regions which we have examined.  SMG is communication intensive and its run-time is 

known to increase logarithmically with an increase in the problem size. 

 
2.3. POSSIBLE APPROACHES TO PREDICTION/FORECASTING  

 
 
Various approaches have been tried to predict performance on parallel systems.  We will 

discuss in more detail in subsections 2.3.1 - 2.3.4 the following relevant methods: simulation, 

non-linear regression on time, artificial neural networks, and general linear models on log (time).  

Each method has advantages and disadvantages, but we feel that the last will be shown to be the 

best for projection purposes. 

 
2.3.1. SIMULATION OF APPLICATIONS 
 

As stated previously, there is a difference between ideal (theoretical) speed-up and 

observed speed-up.  Various factors, i.e. latency or synchronization, are the cause for the 

observed deviation from ideal.  These factors are referred to collectively as ‘overhead’.  Several 

simulation applications have been developed to run a simulation of a specific application with set 

variables in order to try and quantify the overhead.  These overhead values are then utilized to 

predict the performance of the application when it is scaled.   
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Unfortunately, development of a simulation for an application is not an easy task.  

Complete knowledge of how the application works (i.e. ‘white-box’ knowledge) must be utilized 

in order to conduct an accurate application simulation.  Knowledge of an application at this level 

is not to be expected from a typical scientist interested in scaling an application for research, so 

simulation methods are not examined further in this thesis.   

 
2.3.2. NON-LINEAR RESGRESSION ON TIME   

 
In non-linear modeling, one attempts to model TIME as a non-linear function of 

parameters related to input variables, such as number of processors (P), size of application, etc.  

Of course, one could try linear models of the form 0 1 2* *T P SIZEβ β β ε= + + + , but they will 

yield inadequate fits for two reasons.  First, the actual relationship is not close to linear at all, 

with the model *T SIZE Pα ε= + being a more logical theoretical base from which to build more 

complex models.  Secondly, and more importantly, even if the functional form were 

approximately known, standard methods applied to the above equation all assume that the errors 

at each point are normally distributed with mean zero and constant standard deviation.  However, 

it is well-known to those in the scalability field that errors in predicting run times are 

proportional to the size of the time – this is why everyone in this field refers to ‘relative error’ or 

‘relative % error’ when comparing methods.  In such cases, the good done by attempting to fit a 

non-linear model will be completely worthless unless one also correctly specifies the variation in 

the errors.  While this is possible to do in some cases, it is extremely difficult, in general.  A 

much easier solution, as we shall see below, is not to model TIME directly, but the log of TIME 

(any scale: ln, log2, log10, etc. will work – for convenience we use log2 in this research).  If log-

transformed TIME is used as the response variable, most applicable models become linear in the 
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parameters and have approximately constant variance, rendering them much more statistically 

tractable. This is discussed in more detail in subsection 2.3.4. 

 
2.3.3. ARTIFICIAL NEURAL NETWORKS  

 
Artificial Neural Networks (ANNs) are another analytical modeling method for parallel 

computation.  ANNs  

[map input variables to a run time] using a network of neurons, simple processing 
elements, connected by weighted edges.  As in regression, consider an observed 
sample with known predictor and response vectors x and y.  For a particular 
neuron j in the network, let bj denote its output and a = a1, . . . , ap denote its p 
potentially transformed versions of x.  If the inputs arrive via edges with weights 
vj = vj,1, . . . , vj,p, the neuron computes its output as a weighted sum of inputs in 
Equation (3).   

   
    (3) ( )

p

j
k 1

 f v  ·a   f v ajb
=

⎛ ⎞
= = ⎜

⎝ ⎠
∑ j,k k ⎟

An activation function f may transform the weighted sum to increase the set of 
mappings the network is able to represent. [14]   
 

For example, Lee et al. used a sigmoid function of the form ( ) ( )1/ 1f x e x= + −  to deal with 

interaction and non-linearity of the input variables in their ANNs [14].  This eliminates the need 

for domain specific information, unlike the piecewise polynomial regression and our focused 

linear regression models. 

Support for ANNs is largely based on the fact that they are considered to be a ‘black box’ 

method; i.e. a method which will work without requiring any specialized knowledge of the 

application.  However, how this method creates its predictions is not well understood [14].   If 

properly tuned, ANNs will often create similar predictions to linear or non-linear regression 

models, for data points in the training region.  However, since most ANNs are complex models 

that incorporate higher level functions and interaction terms, we believe that forecasting with 
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these models will be extremely unstable when applied to points outside of the training range, 

which is our ultimate goal.   

 
2.3.4. GENERAL LINEAR MODELS (GLM) ON LOG (TIME)  

 
As noted above, the errors in predicting run time are proportional to TIME.  

Transforming TIME to log (TIME) tends to solve two problems, non-linearity and non-constant 

variance, that occur with non-linear regression models.  Since the particular log-scale does not 

matter, for convenience, all of the models in our methodology utilize general linear models on 

log2 (TIME). 

Furthermore, a general linear model on log (TIME) will tend to be more simplistic than a 

non-linear regression or neural-network, and thus will be more conducive to forecasting.  Since 

forecasting the run-time when an application progresses to a higher number of processors while 

maintaining proper scaling is our main goal, we feel that the GLM on log2(TIME)  will be the 

best of the four general approaches discussed in this section.     
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CHAPTER 3 

PROPOSED DATA ANALYSIS METHODS 

 
 This chapter describes three types of proposed data analysis methods which were used 

within the general linear model framework to make predictions and forecasts for the six 

applications studied.  Which of these methods to use depends upon what assumptions one makes 

concerning the data set which one will have available from which to make future projections.  

 
3.1 COMPLETE TRAINING SET METHOD     

 
Under this method, one assumes that one has available a large number of runs at 

processor level P=2^J, 2^(J-1), 2^(J-2), …, where for each run, different combinations of input 

variables and output (TIME) are recorded.  In this case, the complete training set is used to build 

a linear model (for TIME in log2 scale).  This linear model could be a simple model such as:  

    0 1 2* *LT LP LSZβ β β= + + + ε    (4) 

where LT=log2(TOTAL), LP=log2(P), and LSZ=log2(SIZE) or something much more complex, 

depending upon the application and the fit.  It is often the case, as explained in Section 3.4, that 

there is not one equation, but separate equations for computation and communication times, or 

for other sub-components.  In any case, once the model’s parameters (β0, β1, and β2 in Equation 

(4)) are estimated, this model is used to make projections for points in the forecast data set (all of 

which, by definition, will have P=2^(J+1)), where P0=2^J is the maximum processor size used in 

the training data set.   

The overall fit of a model is typically quantified (by computer scientists) by its median 

absolute percentage error (MAPE) over the points in the forecast data set.  Statisticians would be 
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more likely to use RMSE (in log2 scale).  If the estimation is unbiased and the distribution of 

errors (in log2 scale) is approximately normal with standard deviation estimated by SD=RMSE, 

then MAPE , but neither unbiasedness nor normality seem to be justified for 

the applications we have examined.  It should be noted that one usually estimates the linear 

model’s parameters from the training set so as to minimize sum-of-squared-error in log-time 

scale (which is equivalent to minimizing relative % error under some assumptions), but that the 

typical error (RMSE) estimated from the training set may not be an accurate estimate of the 

typical error found in the forecast data set.  In fact, as we shall see, overly complex models 

which yield smaller RMSEs than simple models for the training data sets often perform much 

worse on the forecast data sets.  

0.675*RMSE=(2 -1)*100

 
3.2 FOCAL REGIONS METHOD 

 
 
For some applications (typically those with only SIZE and P as input variables, and for 

which communication time is small relative to computation time in most regions of the data set), 

the complete data method described in Section 3.1 works fairly well, on average (i.e. the MAPE 

is less than 10%), but may yield much larger % errors in individual cases.  For other applications, 

even the MAPEs are large, so, of course, individual point predictions in the forecast space might 

be much worse.  One obvious way to combat this problem would be to be less ambitious in 

attempting to develop a forecast model.  In Section 3.1, the model which is developed, in theory, 

could be used to make forecasts for any set of input variables, and is evaluated over a range of 

sample points in the forecast data set (i.e. where P=2^(J+1)).  A more  realistic goal might be to 

develop a prediction model only for points in the training set whose run-times are ‘near’ some 



23 
 

focal time of interest, and, then, to evaluate the forecasting ability of the model so derived only 

‘Focal Regions’ method.  

The simplest focal region method is based on TIME alone.  In such a case, a focal time of 

interest, T0, is selected.  Then, instead of using all the cases in the training set to develop the 

predictive model, one would use only those whose run-times fell within a certain region (for 

example, within +/- 20% of T0) to develop the model for the training data.  Then, once the model 

was developed, it would be evaluated in the forecast space only over those data points which also 

met the focal requirements.  For example, for the LU application, from Table 1, we see that if we 

used the complete data method, we would use 118 data points in the training (P≤1024) set and 

would evaluate this model over the 31 data points in the forecast (P=2048) data set.  However, if 

we set T0=40 seconds, and used a +/-50% focal threshold, we would use only 29 of the 118 

points in the training set to develop the model and would evaluate it over only 9 of the 31 points 

in the forecast data set.  

For more complex applications where there are more data points, one might define the 

focal region not to restrict on the basis of run-time, but so that it restricts the range of other input 

variables.  The advantage of the focal region method is that it uses data points which are more 

‘similar’ to the data point of interest when building the predictive models.  The disadvantage, of 

course, is that if the focal region restrictions are too severe, there will be too few points eligible 

from which to effectively estimate the parameters needed.  A compromise between the complete 

data method of 3.1 and the focal region described above would be to use some sort of weighted 

estimator which uses the complete training set data set, but which places higher weights on 

points with times near T0 and lesser weights on those with times far from T0.  Although this 

would be relatively easy to do if T0 were the only variable affecting inclusion in the focal region, 
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we have not implemented it in this thesis because determining the weights for other focal regions 

would be quite difficult. 

 
3.3 SELF-GENERATED FOCAL REGION METHOD 
 

One objection to both the Complete Training Set Method (3.1) and the Focal Region 

Method (3.2) is that they both assume that ‘someone’ has previously run many different 

combinations of the input variables at the processor sizes less than that of interest (P0=2^J).  For 

the purposes of this thesis, that is true – we are using as our training data set the many runs 

generated for each of the six applications by Brad Barnes of the UGA CS Department as part of 

his PhD research.  From Table 1.1 of the introductory chapter, we can observe that we have 

almost 2000 runs available for the CG application, and even the smallest application (LU) has 

118 points available in the training data set.  One might then wonder about the practicality of our 

results in a more realistic case, where one had only a few data points initially available.  In that 

case, one would need to generate one’s own focal region points, build a model from that, and 

then evaluate that model at a few points in the forecast region.  This is a more complex, but more 

realistic, undertaking than the two described above. The first two methods mentioned were 

applied to all six applications, while we attempted to use the self-generated focal training set 

method for only two applications, BT and CG. BT is the easier of the two, since it involves only 

one input variable (SIZE) other than P, while CG depends on two (SIZE & NZER).  More details 

on our implementation of this method for BT and CG are given in Section 3.5. Obviously, the 

self-generated focal region method won’t be as successful as the methods which have access to a 

much larger training base, but the MAPEs observed with this method might be more typical 

representations of what actual users can expect to observe upon implementation of our proposed 

forecasting methods. 
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3.4 TYPES OF MODELS USED 
 
 

After one has decided which of the three general data analysis methods to use, one must 

decide what sort of general linear model to use. This section reviews a number of models which 

were used in the course of this study. All of the statistical models described here have been fit 

using the statistical package, SAS. The general linear model (PROC GLM) procedure of SAS 

was used to estimate parameters for some models , although the final forecast models which 

were developed could all be written (at least at the component level) as linear regressions for 

log2(TIME), so all fit output was generated using PROC REG of SAS.    

 
3.4.1 ORDINARY LINEAR REGRESSION MODEL 
 
 

The most straight-forward models that we developed would be those of the form: 

0 1 2* *LT LP LSZβ β β= + + + ε    (5) 

where LT is the log2 transform of TIME.   We typically use log2 (TOTAL) as the TIME variable 

of interest, but for some sub-component models, we would separately use log2 of computation 

and communication time as the response variables.  LP=log2 (P), where P is the number of 

processors used for the run in question.  LSZ is defined by LSZ=log2 (SIZE), where ‘SIZE’ is a 

generic measure of size for the application in question.  Sometimes the variable is actually called 

‘SIZE’, whereas for others it is given by WSS=DIM1*DIM2*DIM3 or WSS=Dim1^3.  In any 

case, for most of these applications, even if ‘SIZE’ is a 2- or 3-dimensional quantity, the 

individual levels of DIM1, DIM2, and DIM3 do not matter, so their product (or the log thereof) 

is the key explanatory variable.  This, incidentally, is not at all true for the ‘PROC DIM’ variable 

which appears as a 2-dimensional variable in ‘Sweep3D’ and as a 3-dimensional variable in the 

‘SMG’ application.  In those cases, it appears that different loadings of the PROC DIMs, even 
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when their product is constant and other variables are kept constant, have large effects on run 

time.   

 Equation 5 above has some theoretical basis under perfect conditions where 

communication is negligible.  In such cases, one would expect 2β to be near 1 and 1β to be near   

-1.  If those conditions were exactly true, then it is obvious that one could keep time constant by 

both doubling the number of processors and doubling the size.  For all applications which we 

examined (except for SMG), 2 0β >  and 1 0β < , but only rarely was it the case that ( )1 2,β β was 

extremely close to the  values predicted under perfect speed-up conditions. ( 1,1− )

 
3.4.2 MODIFICATIONS OF ORDINARY LINEAR REGRESSION MODEL 
 
 

The ordinary linear regression model given by (5) is a reasonable starting point for 

modeling the behavior of time in the applications which we examined, but it was usually too 

crude to yield forecast values of the precision which we desire.  Various refinements were tried 

when needed for various applications.  Among these are separate modeling by processor level, 

use of polynomials of higher order models, and subcomponent models. 

 
3.4.2.1. SEPARATE MODELING BY PROCESSOR LEVEL 

 
Under this modification, a model of the form: 

0 1 *LT LSZβ β ε= + +    (6) 

is used separately for each level of processor.  This model tended to yield exceedingly good fits 

(high R2, low RMSE’s) for each processor level, but would not directly solve the forecasting 

problem, since there would be no available estimates of (β0, β1) for the desired (P=2^(J+1)) 

number of processors.  What could be done is to fit a regression to the sequences (β0, β1) for 
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P=2^J, 2^(J-1), 2^(J-2), …, and try to project this forward to P=2^(J+1).  We tried this method 

both unweighted and with geometric weights which put higher weights on data from larger 

processors, since those believed to be more relevant to making the forecast at P=2^(J+1) are data 

points from larger numbers of processors.  Of course, this separate method, since it has about 

seven times as many parameters as the simple model of (5), yields much smaller RMSE’s over 

the points in the training dataset.  It usually (but not always) performed better in the forecasting 

dataset than did the original regression method, but not by nearly the margin predicted by the 

RMSE’s.  A slight geometric weighting so as to put more weight on higher processor 

observations seemed to be slightly better than equal weighting, but not consistently enough that 

we could uniformly recommend it.   

 
3.4.2.2.  POLYNOMIAL OR HIGHER ORDER MODELS 
 

 We examined models for LT where we considered quadratic and/or interaction terms for 

LP, LSZ, or similarly we considered polynomial or interaction terms for the ( )0 1,β β series 

generated in Equation (6).  While these models yielded slight improvements in RMSE’s for the 

points in the training dataset, they were invariably much worse when applied to the forecasting 

dataset.  This is not at all unexpected, and is why we are confident that splines or neural network 

solutions to this problem will almost surely fail.  The polynomial or interaction terms are actually 

over-parameterizations for the data available.  They appear to make the fit better for the data at 

hand (in the training set), but the improvement due to the extra terms is simply helping explain 

variability in the training dataset that is not reflected in the forecasting dataset.  Both spline and 

neural network methods, since they involve many more parameters (even if not explicitly 
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categorizable), will be even more prone to error when applied to the forecast dataset with number 

of processors (P) outside the range of the data observed in the prediction dataset. 

 
3.4.2.3. SUBCOMPONENT MODELS 

 
 For most applications which we examined, the contribution to run time due to 

computation is larger than that due to communication at all processor sizes, but the relative sizes 

of these components varies as the number of processors increases.  In all cases, it is true that the 

regression models described earlier work better for describing the behavior of computation time 

than they do for describing communication time.  In the cases where computation time dwarfs 

communication time at all processors levels, there is not much point in splitting the two 

components.  However, for some applications, splits of the form  

0 1 2* *LTCOMP LP LSZβ β β= + + + ε    (7) 

0 1 2* *LTCOMM LP LSZγ γ γ= + + + ε    (8) 

were tried.  Currently, we split the regressions for computation and communication only if the 

percentage of time spent in communication is greater than 50% at P=2^J [4].  We found that with 

smaller percentages it is sufficient to regress only on total time [4].  When this was done, we 

could frequently obtain exceedingly good fits and forecasts for the computation time, but models 

for LTCOMM were not nearly as good, perhaps indicating that the functional form of Equation 

(8) is not appropriate.  It is clear, of course, that while the 1β  of Equation (7) is negative, the 1γ  

of Equation (8) is positive – more processors decrease computation time while they increase 

communication time.  However, for many of the applications which we examined, the 

 term was so much larger than the ( 0 2 * LSZβ β+ ) ( )LSZγ γ+0 2 *  term that the increasing or 

decreasing effects of the other terms made little difference.  For the applications where 
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communication time was a significant component, we discovered that modeling via Equation (8) 

was sometimes poor – not necessarily because the model was inadequate but because there were 

occasionally large unexplained fluctuations in communication time when replicate runs (with all 

input variables held constant) were generated.  This almost never occurred with computation 

time.  There, in log-transformed scale, the standard deviation in response times is almost 

constant when one examines replications under different input conditions.  The occasional large 

fluctuations in LTCOMM are puzzling, but appear to occur more frequently when the number of 

processors is large.  Possible reasons for this behavior are discussed in Chapter 5, but the short 

answer is that we have not been nearly as successful at modeling the communication component 

as we have been with modeling the computation component.  Other attempts to even further 

disaggregate the computation and communication components were attempted for some 

applications, but none of these were particularly helpful – the best we can do currently is to 

separately model computation and communication.  This can usually be done fairly well 

(especially in focal regions) for LTCOMP.  For LTCOMM, this also works better in the focal 

regions, but it still does not work particularly well for most applications.  The saving grace of the 

entire forecasting method is that the computation time component typically dominates 

communication so much that getting the former projection ‘right’ masks errors in the latter.  As 

is demonstrated later, one of our least successful projections occurs for the SMG application, and 

SMG is the application for which communication time grows most quickly as processors 

increases.  

3.4.3 FOCUSED REGRESSION MODELS 
 
 

As mentioned in Section 3.2, the models examined can frequently be improved by 

restricting the training set to regions of comparable time.  This move to narrow our data is 
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counterintuitive because as statisticians we usually believe that more data is better [4].  However, 

more data in an irrelevant region simply clutters the analysis.  Dataset restriction tends to work 

relatively well when there is only one variable (SIZE) in addition to processor number (P) 

allowed to vary.  If there are other variables involved, determining a useful focal region is more 

difficult.  For example, for the SMG application we found that processor dimensions were very 

important, and we focused on regions with ( ), , 1, ,x y z y
y

PP P P P P
⎛= ⎜
⎝ ⎠

⎞
⎟ and combined points in the 

same region ‘k’ if log2 1y

z

P kP
⎛ ⎞ = ±⎜ ⎟
⎝ ⎠

.  This is illustrated in Figure 3.1, with the two highlighted 

regions being k=0 and k=4.  For example, in the k=0 region, if we desire to make forecasts at the 

when P=1024, we should use results from the training set with 

and ( )

( ) (, , 1,32,32x y zP P P =

( ) ( ), , 1,16,32x y zP P P =

)

( ), , 1,32,16x y zP P P = at P=512, ( ) ( ), , 1,16,16x y zP P P = from P=256, 

and ( )( ) ( ), , 1,8,16x y zP P P = ( ), , 1,16,8x y zP P P = at P=128, …, etc.  For our focal region, we kept 

Px=1, but, we can extend our method to handle the general three dimensional case where Px is 

allowed to vary, with some extra modifications. 

 



31 
 

 

Figure 3.1 SMG focal regions on a processor grid. 
 
 
3.5 ALGORITHM FOR SELF-GENERATED DESIGN POINTS 
 

The procedure described below gives an algorithm for generating design points within the 

training region in the simple case where there is only one variable (SIZE) in addition to P.  For 

our applications, this procedure should work for self-generation of points for BT, LU, and SP, 

and we performed the algorithm on BT as reported in Section 4.3.  Modifications would be 

needed to run this on a more complex application.  In Section 4.3, we also describe how we 

performed this self-generation for the CG application. 

 As mentioned in Section 3.3, this procedure is more realistic than those in 3.1 or 3.2, in 

that we do not assume that there is a large training set from which to choose points on which to 

build our model.  Rather, we assume that the situation is such that a client  

[has run] an existing application with input variable [‘SIZE=SZ0’] on a system 
with number of [processors P=2^J], [such that] the application takes 
[TIME=TOTAL0] seconds to run. The client wishes to know, based on runs that 
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can be performed with [P<=2^J], approximately what value of [SIZE] should be 
used if the processor capacity were increased to [P=2^(J+1)] such that the 
[TOTAL] time for the application to run would be approximately the same 
([TIME=TOTAL0]) as currently. We assume that the client also has available 
results of a run with {[SIZE=SZX, P=2^(J-1), TIME=TOTALX]} such that 
[TOTALX] is approximately equal to [TOTAL0].[15]   
 
We consider the two client-provided results as central values.  To create upper and lower 

bounds for those central values we use +/- 10% of the central value SIZE as input values.  This 

will give us an error bound around our points and also be a sample in the input variable 

(LSZ*LP) space.  We will run the four new sample runs to obtain the time (TOTAL) needed for 

each of the runs.  These four runs along with the two client-provided runs will allow us to 

generate a regression model to regress backwards, as shown in Table 3.2 below. 

Table 3.2 – Six Initial Sample Runs 
LSZ LP LT 

LSZ0U J TOTAL0U 
LSZ0* J* TOTAL0* 
LSZ0L J TOTAL0L 

LSZXU J-1 TOTALXU
LSZX* J-1* TOTALX* 
LSZXL J-1 TOTALXL 

* Provided by client 
 

After these six values are generated, a regression equation can be created to predict a 

high, medium, and low run-time at lower processor values.  For example, in Table 3.2 above, if 

J=10, the client gave us points at P=512 and P=1024, and we then generated four additional 

points.  From these six points, we can create a regression model which would allow us to predict 

three more points each at (say) P=16, 32, 64, 128, and 256.  Because the initial regression based 

on six points will likely be crude, it is quite possible that the fifteen newly generated points may 

have times that are not that close to the desired focal time, T0.  That should not matter too much, 

as we are simply trying to create an approximate focal region training set.  Finally, using all 



33 
 

twenty-one points, we can generate regression (or adjusted regression models, as discussed 

above) to make projections for what would happen with P=2^(J+1) (P=2048 in the example 

above).  In particular, we can use the model to project what value of SIZE, when P=2^(J+1) 

would yield the desired time (T0).   

 We used this algorithm with T0=101 seconds and J=10 (P0=1024) on the BT application.  

We used a modification of this algorithm with T0=100 seconds, NZ=14, and J=10 (P0=1024) on 

the CG application.  In both cases, the algorithm yielded twenty-one training points, (three each 

at P=16, 32, …, 1024), and we used these to build a model which would allow us to project the 

value of SIZE needed at P=2048 so that the total run-time was equal to the desired T0 (101 

seconds for BT, 100 seconds for CG).  One difficulty encountered here, but not in using the 

methods of Sections 3.1 and 3.2, is that in those cases , there were at least a few runs available at 

P=2^(J+1) on which we could evaluate our forecasting performance. In the more realistic case of 

Section 3.3 for which the above algorithm is specified, there are, of course, no runs at P=2^(J+1) 

– that is why the client came to us in the first place!  For evaluation purposes in this thesis, we 

used our created regression model to predict the values of SIZE which would yield the five 

expected times of (0.8*T0, 0.9*T0, T0, 1.1*T0, 1.2*T0), and then ran these five runs at P=2048 to 

see how good the fit was. The results for both BT and CG using this algorithm are reported in 

Section 4.3. 
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CHAPTER 4 

ANALYSES 

 
 This chapter presents and discusses the results for three proposed forecasting methods on 

the applications.  We desire a median absolute percentage error below 20%, with a MAPE below 

10% being our ultimate goal.  We expect that the complete training set method should produce 

good results for simple applications, but will yield much less satisfactory results for more 

complex applications.  The focal regions method should improve our results for both simple and 

complex applications.  We hope that the self-generating focal training set method will produce 

acceptable results for our representative simple and complex applications, BT and CG. 

 
4.1. RESULTS USING COMPLETE TRAINING SET METHOD 

 
For the six applications, the complete training set method does not automatically exclude 

any points from the analyses, since there is no replication.  However, for CG, were replication 

occurred, 68 of the 2542 points (2.7%) were excluded from all analyses because they were 

obvious outliers.  Even though these blatant outliers (in CG) were removed prior to any analyses, 

there were still a few other points for all applications’ analyses that would be considered outliers 

(observations far away from the rest of the observed data) or influential points (extreme 

observations that affect the slope of the regression line) for particular analyses.  The points which 

were flagged as extreme outliers or as influential points when evaluated over the training set for 

a particular application were subsequently deleted from the analysis and not included in 

construction of the final prediction model used for making forecasts. However, this exclusion of 
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points was rare; the vast majority of the points are neither outliers nor influential points, so the 

impact of the few deleted points should be marginal.   

Table 4.1 lists the median absolute % error (MAPE) for each application when the simple 

linear regression which best fits the training data set is applied to the forecast data set.  In 

addition to the MAPE value, the last 5 columns of Table 4.1 display the distribution of the 

relative % error over all data points used in evaluating the forecast data set.  Note that these 

relative % errors (calculated as ((PRED-OBS)/OBS)*100%) may be positive or negative.  The 

fact that most are positive, especially for the complex applications, indicates that the complete 

data method is moderately to seriously biased toward over-estimating the time required for the 

application to run at the higher levels of nodes used in the forecasting data sets.  We see from 

Table 4.1 that the median absolute percent error (MAPEs) for BT, LU, and SP are 9.95%, 

12.08%, and 18.25%, respectively.  The complete training set method results are excellent for 

BT and good for LU and SP because they fall below target thresholds of 10% and 20% relative 

error, respectively.  Table 4.1 also shows us that the MAPEs for CG, SWEEP3D, and SMG are 

all poor, over 65%.  This is exactly what we suspected would happen.  In order to forecast 

complex applications accurately, conditions must be controlled for more carefully than using the 

additive regression models shown in Table 4.2.  We more adequately control for other conditions 

in the complex applications in the ‘Focal Regions’ method explained in Section 4.2. 

 
Table 4.1 – MAPE and Distribution of Relative % Error for Complete Training Method by 
Application 
Application PredictN ForecastN MAPE% Min 25%-ile 50%-ile 75%-ile Max 
BT 792 22 9.95 -25.89 0.56 8.38 10.21 12.52
LU 118 31 12.08 -48.72 -20.72 -2.44 9.13 17.10
SP 352 124 18.25 -48.96 4.63 17.53 20.03 31.10
CG 1890 29 145.75 79.30 121.78 145.75 192.00 1385.83
Sweep3D 224 20 69.74 40.60 61.55 69.74 75.31 81.96
SMG 2542 36 65.17 -0.17 55.83 65.17 82.28 110.93
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Table 4.2 – Regression Coefficients for Complete Training Method by Application 
Application TrainN Intercept, 0β LP, 1β LSZ, 2β X, 3β R2 RMSE E(MAPE%)
BT 792 -12.69 -0.92 0.95 n/a 0.997 0.154 7.74
LU 118 -13.37 -0.95 0.97 n/a 0.993 0.260 12.93
SP 352 -12.97 -0.87 0.92 n/a 0.989 0.306 15.39
CG 1890 4.76 -0.68 1.34 0.65 0.936 0.465 24.29
Sweep3D 224 -13.81 -0.76 2.78 0.03 0.829 0.459 23.95
SMG 2542 -11.01 0.22 0.78 0.04 0.702 0.522 27.66

 

 

 The estimated regression equation coefficients under the complete data method for the six 

applications are listed in Table 4.2.  This assumes a generic model of the form:  

   0 1 2 3LT =  + *LP + *LSZ + *X + β β β β ε    (9) 

where 'X' is non-existent for the simple applications (BT,LU,SP).  For CG, Sweep3D, and SMG, 

respectively, the 'X' utilized was log2(NZ), log2(PD1/PD2), and log2(PD2/PD3).  Clearly, as seen 

from the poor fits in Table 4.1, for those applications, either those were not the appropriate 

factors to use as 'X', or there are very strange unaccounted-for interactions.  On the other hand, 

for the simple models, the Complete Training Method appears to be reasonable, as seen in Table 

4.1.  From Table 4.2, for these models, we see that the estimated ( 1 2,β β ) are near -1.0 and +1.0.  

It should be noted that while ( 1 2,β β ) are near (-1, +1) for the simple applications, they are not 

extremely close.  That is, even for the simple applications, we cannot keep time constant simply 

by both doubling processors and doubling size; we do not observe perfect speed-up conditions 

for any of the applications.  It should also be noted, by comparing the E(MAPE) of Table 4.2 

with the actual MAPE of Table 4.1 that even when the training model fits incredibly well, as it 

does for BT, LU, and SP, the observed MAPE’s are larger than the E(MAPE)’s. This is the 

inherent danger in attempting to extrapolate beyond the range of the observed data. Of course, if 

the training set fit is not extremely good in the first place, it is unlikely that the prediction set 

MAPE will be at all good.   
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4.2. RESULTS USING FOCAL REGIONS METHOD 

 
Figure 4.3, Figure 4.4, and Figure 4.5 show plots of LT*LP, with selected focal regions 

highlighted, for the BT, LU, and SP applications, respectively.  We create a focal region for 

simple applications by attempting to find a constant LT value that intersects the LT range 

encountered for all the LP values.  The range of the LT values chosen is the focal region, and is 

used to maintain time-constrained scaling.  For BT, we chose LT 6.5 0.3= ± , which is equivalent 

to the asymmetric TOTAL interval (73, 101, 111) seconds.  For LU, we chose the three points 

closest to LT=6, which is equivalent to the three points closest to TOTAL=64 seconds.  For SP, 

we chose LT= , which is equivalent to the asymmetric TOTAL interval (87, 100, 115) 

seconds.   

6.65 0.2±
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Figure 4.3 LT*LP for the BT application with ‘Focal Region’ 6.2<LT<6.8 
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Figure 4.4 LT*LP for LU application with ‘Focal Region’ close to LT=6.00 
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Figure 4.5 LT*LP for SP application with ‘Focal Region’ of 6.45<LT<6.85 
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For BT, LU, and SP, the fit of the focal region method model could be negatively 

affected by three aspects of the data.  First, as seen from Figure 4.4 for the LU application, the 

upper and lower bounds of the focal region might not be uniform for all the processor levels and 

the focal region might not appear in all processor levels.  Second, the few points at each 

processor level may not be sufficient to obtain a good regression equation.  Finally, there could 

be an outlier that falls within the focal region.   

 When creating our focal regions for more complex applications, we cannot use a constant 

LT that intersects the observed LT range for all processor levels.  Thus, we must be more careful 
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about outliers and influential points within the focal region.  After a regression model is fit, 

points which have a Cook’s D value greater than 2 p
n

 (where p is the number of parameters and n 

is the number of observations) are deleted from the analysis, even if they fall within the focal 

region. For SMG, because the data are run in replicates, an errant point shows that there are 

problems with the parallel system.  Since we are not interested in the efficiency of the parallel 

system in this thesis, we are ignoring those types of problems and discarding data points that we 

believe are a result of those difficulties.  Unfortunately, since replicates were run only rarely for 

the other five applications, it is likely that a few gross outliers have been accidentally included in 

the data sets of these five applications. 

The top panel of Table 4.6 shows the results of using the focal regions method on BT, 

LU, and SP.  The focal time tolerances were set fairly wide so as to get a reasonable number of 

points in the focused regression.  Using the focal regions method, their median absolute 

percentage error (MAPE) rates are 4.64%, 5.31%, and 6.74%, respectively, for BT, LU, and SP.  

These values are excellent because they all fall below our target of 10% and all three show an 

improvement over the global method.  SP also shows us that our assumption of the effects of 

influential and outlier points as marginal for simple applications is correct, because there are two 

influential points within the focal region of SP but the focal regions method still showed 

improvement over the global method.  LU does show an improvement when compared with the 

global method but there are no points in the LU focal region for P=2048.  For some 

programming reason, the LU application was unable to be run at a size larger than 1000.  When 

we calculated the sizes needed for the 2048 processors to retain time-constrained scaling, we 

found that the necessary size would be greater than 1000.  Thus, we are unable to validate our 

results for LU at P=2048 with the correct predicted SIZEs.  However, we did use the focal region 
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regression model to forecast results for the three largest LT values available in the LU forecast 

dataset, yielding the 5.31% MAPE noted.   

The bottom panel of Table 4.6 shows the MAPEs of CG, Sweep, and SMG, using the 

focal regions method, to be 29.30%, 3.44%, and 11.77%, respectively.  These values are 

excellent for both Sweep3D and for SMG.  However, CG still does not fit well, even after 

controlling for non-zeros (NZ).  We controlled NZ in CG because it affects the run times with 

increasing NZ increasing TOTAL.  However, the exact nature of how NZ behaves is unknown 

and could be affecting the run times in a non-linear way.  Future work must be done to extend 

our attempt at controlling the effects of NZ.  Despite the lingering of some error in CG, we see a 

marked improvement over the complete training set method, which is encouraging.  Controlling 

for 2
Procdim1IX=log
Procdim2

⎛
⎜
⎝ ⎠

⎞
⎟  in Sweep3D and for Procdim1 (P1) and 2

Procdim2J=log
Procdim3

⎛
⎜
⎝ ⎠

⎞
⎟  in SMG, 

respectively, worked well.  These factors affect the run times, but the precise manner of the 

effect is unknown.  Thus, we decided to keep their levels approximately constant, which 

apparently is enough to garner excellent fit.  It should be noted that it is sometimes impossible to 

keep the condition constant over processor levels.  For example, we illustrated in Figure 3.1, the 

‘J’ of SMG is either odd or even in alternating processor sizes.  

Table 4.6 – Conditions Used to Create Focal Regions for Applications and Resultant MAPE’s 
Application Focal T0 or condition Train N Tolerance% Forecast 

N 
MAPE%

BT LT0=6.50 74 23.11 3 4.64
LU LT0=6.00 21 40.64 3 5.31
SP LT0=6.65 21 14.87 10 6.74
CG ( )NZ= 14,16,18,20,22,24 161 or 183 n/a 29 29.30

Sweep3D { }3, 1,1,3IX = − − 12 n/a 20 3.44

SMG ( ) (P1= 1,2,4 *J= -3,-2,-1,0,1,2,3) 51 or 56 n/a 36 7.50
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Table 4.7 – Regression Coefficients for Focused Regressions by Application and Condition 
Application Train N Intercept, 0β LP, 1β LSZ, 2β condition R2 RMSE
BT 74 -13.06 -0.95 0.97 T0+/-23% 0.973 0.031
LU 21 -13.87 -1.00 1.00 T0+/-41% 0.988 0.054
SP 21 3.72 -0.13 0.41 T0+/-15% 0.120 0.105
CG 183 6.28 -0.63 1.30 NZ=14 0.969 0.234

183  6.73 -0.68 1.31 NZ=16 0.969 0.240
183  7.15 -0.72 1.32 NZ=18 0.970 0.247
183  7.55 -0.76 1.34 NZ=20 0.970 0.247
161 8.07 -0.79 1.31 NZ=22 0.970 0.267
161 8.40 -0.82 1.32 NZ=24 0.971 0.267

Sweep3D 12 -14.91 -0.90 2.88 IX=-1 0.999 0.032
12  -13.88 -0.88 2.83 IX=1 0.999 0.035
12  -14.76 -0.96 3.00 IX=-3 0.998 0.046
12  -12.65 -0.81 2.68 IX=3 0.995 0.079

SMG 51 -14.23 0.13 0.94 P1=0, J=-3 0.980 0.131
56 -14.46 0.11 0.96 P1=0, J=-1 0.991 0.086
56 -14.25 0.11 0.95 P1=0, J=1 0.987 0.103
51 -13.59 0.14 0.92 P1=0, J=3 0.964 0.174
51 -12.18 0.12 0.85 P1=1, J=-2 0.982 0.110
56 -12.11 0.11 0.85 P1=1, J=0 0.984 0.107
51 -11.88 0.12 0.84 P1=0, J=2 0.980 0.116
51 -10.61 0.12 0.78 P1=2, J=-1 0.961 0.153
51 -10.62 0.12 0.79 P1=2, J=1 0.968 0.140

 
 
 The estimated regression equation coefficients under the focused regression method for 

the six applications are listed in Table 4.7.  This assumes a generic model of the form:  

   0 1 2LT =  + *LP + *LSZ  + β β β ε    (10) 

at each condition level, where LSZ=log2(size)for all applications.  The condition covariates for 

CG, Sweep3D, and SMG are the levels of log2(NZ), IX=log2(PD1/PD2), and (P1 and 

J=log2(PD2/PD3)), respectively.  Clearly, as seen from the good fits in Table 4.6 for most of 

these applications, conditioning on those factors is sufficient to control any undefined interaction 

or non-linearity.  From Table 4.7, for BT and LU, we see that the estimated ( 1 2,β β ) are 

extremely near -1.0 and +1.0, with the reasoning for this being the same as in Section 4.1.   The 

SP equation appears almost flat due to the effect of 2 extreme outliers among the 21 points in the 
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focal training set. Sweep3D is, in fact, behaving similarly to BT and LU after conditioning on 

IX, with the reason the 2β coefficient is nearer to +3.0 than +1.0 related to the way in which 

SIZE is measured in Sweep3D.  For SMG, the fit is extremely good although the equations are 

completely different from other applications.  Since 1 0β > for SMG, this means that increasing 

processors increases run time.  As noted in equations (7) and (8) of Section 3.4.2, this can occur 

only when the communication time is larger than computation time.  For SMG, this occurs 

around P=128, so over the entire focal region from P=16 to P=1024, the estimated 1β coefficient 

is positive.  Of course, if one had only the data from P=16 to P=64 and attempted to use such 

data to predict SMG at P=128, there would be no possible way to predict what would happen – 

that is always a potential problem with “extrapolating beyond the range of data” methods such as 

those which we are using here.  Perhaps something similar occurred for CG, as the separate 

regression equations for each NZ have exceptionally good fits as shown in Table 4.7, but the 

overall MAPE (Table 4.2.1) is 29.3%. 

 
4.3. RESULTS USING SELF-GENERATED FOCAL REGION METHOD 

 
 For the BT application, we generated the six initial points in Table 4.8 by altering SIZE 

by +/- 10% (  for SIZE=1060 at P=1024 and 106± 85±  for SIZE=850 at P=484).  In this case, our 

two starting points are T0=101 seconds (at P=1024, SIZE=1060) and T=101.98 seconds (at 

P=484, SIZE=850). We used these SIZE/P combinations to find the points’ run times, as shown 

in Table 4.8.   
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Table  4.8 – Six Initial Points for BT 
SIZE P TIME 
1166 1024 116.00
1060 1024 101.10
954 1024 69.34
935 484 124.34
850 484 101.98
765 484 69.16

 

We then used the six points in Table 4.8 to find the coefficients of a regression equation of the 

form: 

         0 1 2LT= + *LP+ *LSZ+β β β ε    (11) 
 

Next, we inverted equation (11) to find the ‘SIZE’ necessary to yield T=101 for all processor 

levels less than P=484.  For BT, the coefficients ( )0 1 2, ,β β β to equation (11) are (-12.71, -0.85, 

2.76).  If we set TOTAL=101, then the SIZE corresponding to P for each P<484 are listed as the 

middle line in Table 4.9.  The other two rows for each P in Table 4.9 have altered SIZE by +/- 

10%. The TIME values shown are those observed when we ran these SIZE/P combinations. 

 
Table 4.9 – Fifteen Points for BT at P<484 

SIZE P TIME
334 16 169.47
304 16 125.29
273 16 90.05
428 36 155.57
389 36 117.12
350 36 84.30
511 64 148.58
464 64 110.09
418 64 82.49
586 100 145.86
533 100 108.77
479 100 78.81
782 256 134.39
711 256 100.26
639 256 74.86
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Table 4.9 shows the fifteen SIZE/P combinations that are run and the points’ run time.  We then 

use the twenty-one points from Tables 4.8 and 4.9 in equation (11).  The coefficients for 

( 0 1 2, , )β β β to equation (11) using all twenty-one points are (-13.36, -0.95, 2.92).  Finally, we 

invert equation (11) to find the estimated ‘SIZE’ necessary to yield T0=101 for P=1936.  For the 

BT application, the three points in Table 4.10 we found by 138±  to SIZE=1380 for P=1936. 

 
Table 4.10 – Three Forecasting Points for BT at P=1936 

SIZE P Pred_Time Actual_Time
1518 1936 132.37 149.59
1380 1936 100.21 115.97
1242 1936 73.67 85.56

 
 

When we compare the OBS and PRED times in Table 4.10 we obtain a MAPE=13.59%.  This is 

a good result but not as good as the focal region method. 

The self-generating focal method for the BT application has three complications that have 

the potential to cause lack of fit.  First, 

[t]he points at lower [processors] (obtained from the initial regression of 6 data 
points at LP=J and LP=J-1) [are not] centered at the right places.  [The points tend 
to have a larger LT time then the LT0].  [Second,] the three points at each 
[processor] level may not be sufficient to obtain a good regression equation.  (In 
fact, the fits for P=256 and P=1024 are much worse than at the other 5 processors.  
… [Third] the initial 'known' point (P=1024, SIZE=1060, TOTAL=101.10) 
appears to be an outlier.  That is, the true value for time for BT when P=1024 and 
SIZE=1060 is probably closer to 96-97 than 101. [15] 
 

Surprisingly, these complications are marginal and we would get a similar MAPE for the self-

generated method as with the focal region method if we did not see an extreme jump in the 

communication times for the P=1936 self-generated focal method runs.  This suggests that for 

simple applications the self-generated focal method may perform almost as well as it would if 

there were a large training set from which to select the focal region points. 
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 For the CG application, the six initial points in Table 4.11 are generated in the same way 

as for the BT application, but rather than conditioning on time alone, we are also conditioning on 

the fact that NZ=14 at our focal points of interest.  (These two points are {P=512, NZ=14, 

SIZE=1810K, TIME=99.23} and {P=1024, NZ=14, SIZE=2050K, TIME=99.21}).  We run the 

SIZE/P combinations shown in Table 4.11 to find the other four points’ run times.   

 
Table  4.11 – Six Initial Points for CG 

SIZE P TIME 
1570K 512 88.57
1810K 512 99.23
1930K 512 112.47
1870K 1024 88.90
2050K 1024 99.21
2230K 1024 112.66

 

We next used the six points in Table 4.11 to estimate the coefficients of equation (11).  Then, we 

inverted equation (11) to find the ‘SIZE’ necessary for all processor levels less than P=512.  For 

CG, the coefficients ( )0 1 2, ,β β β to equation (11) are (2.87, -0.25, 1.20).  If we set TOTAL=100 

+/-10% then the estimated SIZE and P for P<512 are listed in the first two columns of Table 

4.12, with last column displaying the TIME actually observed when theses runs were executed 

(all with NZ=14).   

 

 

 

 

 

 

 



48 
 

Table 4.12 – Fifteen Points for CG at P<512 
SIZE P TIME
790K 16 893.75
850K 16 978.63
910K 16 1061.35
850K 32 377.75
910K 32 426.86
970K 32 477.80
940K 64 261.49
970K 64 275.17

1000K 64 288.74
850K 128 94.81
910K 128 105.44
970K 128 113.35

1330K 256 135.29
1390K 256 139.16
1450K 256 150.91

 
 
The twenty-one SIZE/P combinations in Tables 4.11 and 4.12 combined were used in a 

regression of the form given in (11).  This yielded an equation with RSQR=0.971 and 

RMSE=0.219 with coefficients ( 0 1 2, , )β β β  of (4.41, -1.06, 2.45).  If we project this equation 

forward to P=2048 and solve for the SIZEs needed to yield T={80, 90, 100, 110,120} seconds, 

the forecast points are as shown in Table 4.13.   

 
Table 4.13 – Five Forecasting Points for CG at P=2048, NZ=14 

SIZE P Pred_Time Actual_Time
2770K 2048 81.44 24.91
2890K 2048 90.16 25.78
3010K 2048 99.47 26.29
3190K 2048 114.41 27.76
3250K 2048 119.67 28.16

 

When we compare the OBS and PRED times in Table 4.13 we obtain a MAPE=278.30 %.  The 

self-generated method MAPE is much worse than the focal region method and this is extremely 

disappointing.  We believe that the poor results are a reflection of the lower processors not being 
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centered in the right place.  As can be seen in Table 4.12, the times for the fifteen points are not 

anywhere near the T={ 90, 100, 110} seconds we want, except for P=128.  If we had the time, 

we would have re-centered our fifteen points rather than continued the process using these 

points. 

 So, based on these two examples, it appears that the self-generated focal method might 

yield results similar to those which could be obtained from selecting a focal region from a larger 

training set.  How good those results are, however, seems to depend on the application. 

 
4.4 SUBDIVISION INTO COMPONENTS 

 
 We can separate the TOTAL run time into the two subcomponents, MAXCOMP and 

MINCOMM (or CPCOMP and CPCOMM).  As mentioned in Chapter 1, computer scientists 

disagree on which subdivision is best. In addition, unless one is extremely careful in 

synchronizing timers, it is usually the case that the sum of the two components, whether one uses 

the Max/Min or the critical path measures, is less than TOTAL time which we have used 

heretofore. The difference is usually about 1%-2%, but can be as high as 10% or more. If one 

subdivides time into components, one must be careful in resolving this discrepancy. We believe 

that subdivision into computation and communication components may be beneficial to in 

improving the forecast errors for applications which did not achieve the 10% relative error 

threshold when using TOTAL as the time variable.  The two subcomponents behave in very 

different ways.  We know that MAXCOMP behaves in a linear fashion (in log-TIME scale) 

while MINCOMM behaves in a non-linear fashion.  We also know that MAXCOMP decreases 

as P increases (with other variables held constant), while MINCOMM increases as P increases.  

Separation of the two subcomponents will allow the regression equations to better fit the 
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respective behaviors of MAXCOMP and MINCOMM.  Despite the extra steps involved in 

splitting and recombining the two subcomponents to make forecasts, we suggest that all linear 

regression models should split the TOTAL into MAXCOMP and MINCOMM when 

communication time is a significant amount of the TOTAL.  Of the applications which we 

examined, splitting would appear to be most beneficial in the case of SMG.   

 The estimated regression equation coefficients under the focused regression method for 

the two components for SMG are shown in Table 4.14.  This assumes a generic model of the 

form:  

   0 1 2LT =  + *LP + *LSZ  + β β β ε    (12) 

at each condition level, where LSZ= log2 (Dim1*Dim2*Dim3).  The condition covariates for 

SMG are the levels of P1 and J=log2 (PD2/PD3.  Clearly, as seen from the exceedingly good fits 

in Table 4.4.1 for the computational component of this application, subdivision into components 

improves the computational time fit.  However, the subcomponent model’s MAPE=8.07% is not 

better than the focal regions method MAPE=7.50%.  This is unexpected, but could be due to the 

fact that MAXCOMP and MINCOMM do not actually equal TOTAL.  Or, it could be due the 

fact that the generic model in (12) is satisfactory for log-computation time, but not for log-

communication time.  
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Table 4.14 – Regression Coefficients for Component Focused Regressions  
Application  TIME Train N Intercept,

0β  
LP, 

1β  
LSZ, 

2β  
condition R2 RMSE 

SMG LTCOMP 51 -16.12 0.06 1.04 P1=0, J=-3 0.992 0.086
LTCOMM 51 -12.95 0.44 0.67 P1=0, J=-3 0.992 0.360
LTCOMP 56 -16.27 0.04 1.05 P1=0, J=-1 0.996 0.060

LTCOMM 56 -12.36 0.42 0.64 P1=0, J=-1 0.969 0.226
LTCOMP 56 -16.13 0.04 1.04 P1=0, J=1 0.995 0.065

LTCOMM 56 -12.12 0.38 0.65 P1=0, J=1 0.951 0.270
LTCOMP 51 -15.70 0.06 1.02 P1=0, J=3 0.989 0.098

LTCOMM 51 -12.27 0.38 0.69 P1=0, J=3 0.897 0.378
LTCOMP 51 -15.55 0.03 1.02 P1=1, J=-2 0.996 0.060

LTCOMM 51 -8.79 0.39 0.49 P1=1, J=-2 0.973 0.176
LTCOMP 56 -15.60 0.03 1.02 P1=1, J=0 0.997 0.053

LTCOMM 56 -8.58 0.37 0.49 P1=1, J=0 0.972 0.186
LTCOMP 51 -15.29 0.04 1.01 P1=0, J=2 0.994 0.069

LTCOMM 51 -9.10 0.36 0.53 P1=0, J=2 0.950 0.231
LTCOMP 51 -14.99 0.01 1.00 P1=2, J=-1 0.997 0.054

LTCOMM 51 -7.28 0.37 0.44 P1=2, J=-1 0.960 0.207
LTCOMP 51 -14.90 0.02 1.00 P1=2, J=1 0.996 0.056

LTCOMM 51 -7.83 0.36 0.48 P1=2, J=1 0.963 0.195
 
 
 We conducted further research during which we subdivided the MAXCOMP and 

MINCOMM subcomponents into eight phases.  However, some preliminary work with these 

eight phases of computation and communication for the CG application showed erratic behavior 

at higher processor levels.  We believe these errant points were caused by a hardware issue.  To 

date, the hardware issue has not been resolved, so we have ceased our efforts in this direction for 

now.  Nevertheless, if these hardware/timing issues can be resolved, we believe that subdivision 

of MAXCOMP and MINCOMM into phases could be beneficial to predictions and, thus, to 

forecasting.  
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CHAPTER 5 

CONCLUSION 

 
 We conclude this thesis with a chapter that condenses our results, discusses important 

issues that can affect our results, and summarizes the effect of our efforts to solve the important 

computer science problem of accurate time-constrained scaling with a linear regression model.  

 We see that the results for simple applications are good for the complete training set 

method.  This occurs because the applications BT, LU, and SP, “have a high computation-to-

communication ratio and have a single input parameter.”[4] When the application run time is 

dominated by the computation time, a simple linear regression will forecast and predict well 

because the log-computation time is an approximately linear function of the log-problem size.  

However, the complete training set method is not so good for complex applications. 

 We see that the results for the focal region method are good for all applications except 

CG.  The results of the complex applications are much better under this method than they are 

under the complete training set method, and even the simple applications, except LU, show an 

improvement versus the complete training set method.   

 Based on the sample results for BT and CG, we believe that our self-generating focal 

region method will work nearly as well the focal region method.  For BT, this should be the case 

because BT is a simple application and the self-generated points fall within the focal region.  For 

CG, the focal region method results are a combination of those for NZ=(14, 16, 18, 20, 22, 24), 

but for the self-generating focal training set method, we examined only the NZ=14.  When 

looking at the focal region method at NZ=14, the MAPE=124.61%.  This is much worse than 
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overall CG application MAPE of 29.30%, so perhaps NZ=14 was not the best condition to use in 

creating the CG example.   

 One fundamental question that permeates all methods described in Chapter 3 is the 

accuracy of forecasting.  Forecasting, especially when one is extrapolating beyond the data range 

to make predictions of future observations, is inherently unreliable.  Nonetheless, we believe that 

extrapolating to the P=2^(J+1)  processor level will be relatively accurate because points that fall 

into our narrow focus region and obtain time-constrained scaling should behave fairly similarly 

to such points with more processors.  . 

 Furthermore, we found that forecasting of interaction and higher order polynomial 

models were unstable when forecasted.  All forecasts for these models had relative error much 

worse than the simple linear regression forecasts.  This we believe is due to the interaction and 

higher order polynomial models over-fitting the data.  Even if we had carried these models 

further in our methodology, we would still expect the models to display the unstable behavior 

exhibited in the global model forecasts.   

 One problem that is specific to our self-generating focal training set method described in 

Section 3.5 is double dipping.  Double dipping, using the data for selection and analysis, can 

create bias in our results.  However, we believe that the effect of double dipping will be minor 

because an independent dataset of points that falls into our narrow focus region and obtains time-

constrained scaling will be relatively similar or exactly the same as the points that we used to 

create the model.   

 A preliminary look at the self-generated focal method with BT suggests that the method 

should work adequately for simple applications.  When we extended the method to more 

complex applications, for example CG, the success of the self-generated focal method was poor.  
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The self-generated focal method seems to perform similar to the focal region method, in some 

cases for better or worse.   

 The difficulties exhibited in the preliminary analysis of BT could pose a greater problem 

for more complex applications.  Overall, failure to choose points centered at the right places, 

having few points at each processor level, and/or having the initial 'known' point as an outlier are 

all problems that would affect the controlled setting that we are attempting to create.  In spite of 

these problems, the BT application was unaffected.  Thus, we might logically believe that more 

complex applications may be affected, but might not be affected drastically.  Thus, we believe 

the self-generated focal region method should yield results close to the focused linear regression 

method results. 

 For more complex applications, the self-generating focal method might be difficult to 

implement.  First, there are more factors that must be controlled or imputed in the model.  

Second, although we control some factors in our self-generating focal method, it might not be 

feasible or make sense for the user running the application to also hold those same factors 

constant.   

 Despite the limitations discussed above, we feel that our methods work and that they 

represent a step forward in the quest for a method to perform accurate time-constrained scaling 

of parallel-processing computer applications.  We believe that our estimation procedures may 

help encourage the wider use of parallel computation for computationally intense problems.  We 

feel that these methods and our future work will bring us closer to a ‘black box’ method for time 

estimation.  This work is ongoing and will continue to produce valuable information along this 

path.   
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