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Abstract

Android is the fastest growing mobile platform. This market growth has attracted malware

authors. For example, in 2011, the number of malware applications targeting Android more

than doubled. However, while the number of malware applications has increased, there

has not been a corresponding growth in the number of tools which can be used to analyze

Android applications.

In this thesis we attempt to fill some of the holes in reverse engineer’s toolkit. To

achieve this goal, we opted to provided a formalized process for extracting and packaging

Android applications, a novel technique which enables engineers to debug applications at the

bytecode-level, and a dynamic taint analysis based approach for correlating inbound with

outbound network packets.
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Chapter 1

Introduction

As of 2011, Android become the largest mobile platform with a market share of 47%[25].

This popularity has attracted malware writers to the platform. The same year, Android

experienced an explosive increase in Android malware software[29]. Malware authors see an

opportunity to steal large quantities of lucrative informational. Attackers will often steal

password, subscriber identity module(SIM) numbers, and phone numbers.

In order to better understand Android malware we have developed a set of tools and

techniques for the purpose of understanding and reverse-engineering Android applications.

These tools and techniques have been organized in a multi-level hierarchy matching that of

the Android platform. Android, as shown in figure 1.1, can be organized into multiple layers:

applications, Dalvik virtual machine, and the Linux kernel. While the default programming

language of Android is Java, Google opted not to use a standard Java virtual machine. Unlike

a standard Java virtual machine, the Dalvik virtual machine(Android’s virtual machine)

is based on a register architecture. Android also include a heavily modified version of the

Linux kernel. This kernel has been patched to include support for Android’s security system,

IPC(Binder), and power management. Instead of relying on the Dalvik VM, Android use

the operating system kernel to enforce its security restrictions [23, 20].
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Figure 1.1: Graph showing a broad overview of the Android layers and the techniques we
developed to understand them.

In the context of this thesis, reverse-engineering refers to the process of understanding

the run-time behavior of a compiled application. Reverse-engineering allows researcher find

better ways to defend against malware.

In this thesis we explore ways to extract useful information from each of the Android lay-

ers. At the application-level we explore a technique for modify compiled applications. At the

bytecode-level, we demonstrate how to enable bytecode-level debugging using existing Java

debuggers. Finally, we show a system-level approach for correlating inbound and outbound

network packets.

1.1 Rationale for a multi-level reversing framework

Reverse-engineering applications is complex and time consuming process. It requires gaining

deep knowledge and understanding of the application’s behavior. This thesis attempts to

expedite this process. To achieve this goal, we show how to extract information from each of
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the Android layers. At the application-level, we focus on acquiring static information about

the application and modifying the application bytecode. In the virtual machine layer, our

bytecode-level debugger shows how the application modifies it internal state at run-time.

Finally, our system-level tracker uses a black box approach to extract the network behavior

of the application.

1.2 Contribution

This thesis presents the following contributions:

• A formalized process for reversing Android applications: In chapter 2, we cre-

ated a general approach for extracting, decoding, and modifying Android applications

without requiring the original source code. This general approach should serve as a

starting point for researchers. While each application is different, the general steps we

outline will apply to all applications.

• A way to enable bytecode-level debugging on Android applications: In chap-

ter 3, we developed a process which allows Java debuggers to operate at the bytecode-

level. Once an applications has been altered with our process, a standard Java debug-

gers is able to set breakpoints on individual bytecode lines and modify the content of

the Dalvik registers.

• NetTaint – a TEMU plug-in for tracking network packets within a system:

In chapter 4, we developed a plug-in that takes a black box approach to extract the

network behavior of an executable. The plug-in uses taint tracking techniques to

understand how the application responds to network stimulus.
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1.3 Outline

Chapter 2 presents and tests a formalizes approach for reversing Android applications.

Chapter 3 covers and tests the steps required to enable bytecode-level debugging on the

Dalvik virtual machine.

Chapter 4 explains the details behind our approach to correlate inbound and outbound

network packets.

Chapter 5 conclude with a summary of the contributions and avenues for future work.
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Chapter 2

Application-level reversing

An important part in the process of analyzing Android applications are the steps required

modify Android application packages(APK). Researchers often need to create a safer version

of malware applications. Some of the ways in which malware can be nullified include altering

the binary’s execution flow in order to bypass attack selections and changing addresses of

remote hosts. Altering the execution flow allows researchers to safely run the application

without jeopardizing other systems. Changing the remote host allows the researchers to

capture the attacks used by the application or pretend to be a command-and-control server.

Ideally, altering an application would be performed using a high-level programming lan-

guage. However, more often than not, it is not possible to access the original source code.

Projects, like dex2jar[5] and ded[27], have attempted to translate Dalvik bytecode back into

Java bytecode. However, while they show some promise, these project often produce fairly

broken code on simple constructs. Figure 2.1 shows one such simple construct and its re-

sulting broken decompiled code. Since the state of tools used to generate Java source code

currently do produce valid code, we devised a Dalvik bytecode based approach. This ensures

that the encoding stage produces a valid program.

In this chapter we present a formalized process for modifying existing applications. The
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(a) Original source code. (b) Decompiled source code.

Figure 2.1: Comparison of the original source code and source code from decompilation.

process is split into five stages, extracting, decoding, encoding, and packaging. After describ-

ing each state, we show how the process can be used to modify a real malware application.

The malware sample was modified to connect to a local server.

2.1 Application alteration pipeline

Our Android application alteration pipeline includes five steps: extraction, decoding, mod-

ifying, encoding, and packing. Figure 2.2 shows a rough overview of the process required

to modify an existing .apk file. The purpose of the extraction and decoding steps is to

transform an .apk file into an easily editable form. The modification step is an application

specific step which involves reading and altering the bytecode. The encoding and packing

steps create a new .apk file from the altered files.

2.1.1 Extraction

The extraction step involves separating an .apk file into multiple files. Since .apk files

are based on the JAR specification, they can be extracted with any Zip-based compression
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#ext ra c t APK in a f o l d e r
unzip program . apk −d program
cd program
#remove o ld s i gna tu r e s
rm −r META−INF
#decoding . dex in to smal i f i l e s
java − j a r baksmali . j a r c l a s s e s . dex
#decode XML
java − j a r AXMLPrinter2 . j a r AndroidManifest . xml > DecodedManifest . xml

Figure 2.3: Shell script that can be used to extract and decode an APK file.

equivalent text representation. This can be achieved using the AXMLPrinter2[3] utility.

Figure 2.3 shows a simple shell script that can be used to automate the extraction and de-

coding steps. The example program.apk archive is extracted into a directory called program.

Then, the classes.dex is decoded into multiple .smali files. By default, Baksmali extracts

the source files into a directory called out.

2.1.3 Modification

The modification step, as the name implies, involve making changes to the application. This

is the application and task specific part of the process. It involves altering the application

bytecode, AndroidManifest.xml, application assets, and/or resources. To expedite the

process, a tool like dex2jar, combined with a standard Java decompiler like JD-GUI[10]

or JAD[8], can be used to generate Java source code. While the resulting Java code will

probably not compile, it can still be used to get a general idea of a program’s structure and

algorithms.
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2.1.4 Encoding

The encoding steps is similar to the decoding step. First, all modified .xml files must be

covered back into their binary formats. Then, a new classes.dex needs to be created from

the modified .smali files. This steps is performed using the smali assembler. The smali

assembler assembles a directory with all .smali files into a single .dex file.

2.1.5 Packing

The packing step is based on Android’s standard build process[19]. First, all application

files, such as the assembled .dex files, binary .xml files, and application assets, must be

stored in a Zip archive.

Android requires that all applications be cryptographically signed with an RSA certifi-

cate. Android uses these signatures to verify the integrity and authorship of the archive.

The Android installation process will reject any unsigned .apk files. The process to sign an

.apk file is based on the JAR signing process[7]. The jarsigner utility is used to sign .apk

files with RSA certificates. Self-signed certificates are only valid during development.

The final packing step aligns the contents of the .apk file on a 32-bit boundary. Zip

alignment is performed with the zipalign utility. This restructuring allows Android to

directly memory-map sections of the archive in order to improve performance. While this

step is not required, the official documentation recommend Zip aligning on all .apk files.

Figure 2.4 shows a typical encoding and packing script. The script copies all the appli-

cation resources into a new temporary build directory. A zipping utility is used to creates

a new .apk file from the temporary directory. The archive is then signed with a private

RSA certificate. Finally, the signed .apk is aligned on a 4-byte boundary with the zipalign

utility. The script is also able to optionally create a new RSA certificate.
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#crea t e temporary f o l d e r
mkdir bu i ld
#copy everyth ing
cp −r ∗ bu i ld
rmdir bu i ld / bu i ld
#rebu i l d modi f i ed c l a s s e s . dex
rm bu i ld / c l a s s e s . dex
java − j a r smal i . j a r −o bu i ld / c l a s s e s . dex out
#rebu i l d modi f i ed AndroidManifest . xml
rm bu i ld /AndroidManifest . xml
AXmlEncode DecodedManifest . xml AndroidManifest . xml
#c r ea t e apk
cd bu i ld
z ip −r . . / temp . apk ∗
cd . .
#( op t i ona l ) keytoo l −genkey −keya lg r sa −a l i a s MyCert
j a r s i g n e r temp . apk MyCert
#a l i n g apk on 32−b i t a boundary
z i p a l i g n 4 temp . apk bu i ld . apk

Figure 2.4: Script for extracting and decoding an APK file.

2.2 Evaluation

This section cover the evaluation of our process. We decided to modify a known Android

trojan for the purpose of restricting its reporting features.

For our malware sample, we selected a variant of the DroidDream Android trojan. This

sample was originally released on the Android Marketplace under the name of “Magic Hyp-

notic Spiral”. DroidDream infested application attempt to gain root privileges, open a back

door for more malware, and transmit sensitive information to a remote server.

In order to test our process, we decided to modify DroidDream’s normal reporting be-

havior. Instead of connecting to an unknown remote server, the application will report to a

known local server.

Finally, we tested the modified application by installing it on an emulator. The emulator

state was monitored to validate the success of the application modifications.
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2.2.1 About DroidDream

In 2011, multiple applications infested with the DroidDream trojan were released on the

Google Play store. These applications were repackaged free application with a trojan pay-

load. Google was forced to quickly remove them from the market [11].

When one of these DroidDream infested application is started, it first attempt to gain

root access on the device by using two separate privilege escalation attacks. It should be

noted that these techniques do not work on Android devices running version 2.2.2 or higher.

After attempting to gain root access, the application will gather information about the

device(IMEI/IMSI numbers and the Android version). This information is then sent to a

remote HTTP server. All data is encrypted using a simple XOR-based scheme. Finally,

the application installs a service called com.android.providers.downloadsmanager as a

system application. The purpose of this service is to allow the attacker to install more

software after the original infection. It will periodically check the same HTTP server for

more software[28].

2.2.2 Modifying DroidDream application

As previously stated, the goal of the modifications was to create a safe executable. To achieve

this, we followed our modification procedure and changed the address of the HTTP server.

We extracted, disassembled, patched, and reassembled the application.

Extracting and decoding

The extracting and decoding steps on DroidDream infested applications is slightly different

than on regular applications. DroidDream application contain a nested .apk file in the

assets/ directory(under the name sqlite.db). Therefore, the extracting and decoding

steps must also be performed on the nested .apk file.
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public stat ic void crypt (byte [ ] b u f f e r ) {
int pos = 0 ;
for ( int i = 0 ; i < bu f f e r . l ength ; ++i ) {

bu f f e r [ i ] = (byte ) ( bu f f e r [ i ] ˆ KEYVALUE[ pos ] ) ;
++pos ;
i f ( pos == keylen ) {

pos = 0 ;
}

}
}

Figure 2.5: Encryption function used by DroidDream in the main application.

Modifying the bytecode

As previously stated, our goal was to modify the address of the server used by DroidDream.

To achieve this goal, we had to locate where the program is storing the address of the remote

server. DroidDream applications store the address of the remove server in two locations.

In the main application, it is stored on a public static byte array named com.android.

root.Setting.u. In the downloader service, it also stored in a public static byte array.

However, the array is named com.android.providers.downloadsmanager.a.e.a. Both of

these addresses are encrypted using function shown in figure 2.5. The function XORs the

contents of an array with a static key. As with the addresses, there are two copies of the key.

In the main application, the key is stored under com.android.root.adbRoot.KEYVALUE. In

in service, it is stored under com.android.providers.downloadsmanager.a.a. We noticed

that the main application and the system services are using the same key.

Using the symmetric property of the encryption function, we were able to craft a new

byte array for the application and service. For the main application, we used http://10.0.

2.2/main. For the service, we used http://10.0.2.2/service. We opted to use distinct

URLs in order to differentiate between the traffic from the main application and the service.

The IP address 10.0.2.2 corresponds to address of the Android emulator’s host machine.

Once were able to generate the encrypted addresses, we modified the classes’ initialization

18



1 .method stat ic constructor <c l i n i t >()V
2 # s t a r t o f the c l i n i t
3 const/16 v0 , 0x14 # new array w i l l be 20

bytes long ”http : / / 1 0 . 0 . 2 . 2 / main ” . l ength ( )
4 new−array v0 , v0 , [B # v0 = new byte [ 0 x14 ]
5 const/16 v1 , 0x0 # 0th index
6 const/16 v2 , 0x5e # new value
7 aput−byte v2 , v0 , v1 # v0 [ 0 x0 ] = 0x5e
8 const/16 v1 , 0x1
9 const/16 v2 , 0x2a

10 aput−byte v2 , v0 , v1
11 # . . . r e s t o f the bytes . . .
12 sput−object v0 , Lcom/android / root / Se t t i ng ;−>u : [ B # Set t i ng . u = v0
13 # end o f the c l i n i t method
14 return−void
15 . end method

Figure 2.6: Part of the modified Dalvik bytecode used to populate the address array.

method(<clinit>). Figure 2.6 shows an excerpt from the bytecode we generated to populate

the new address. It creates a new array with the size of our modified address(new-array),

populates it one index at a time(aput-byte), and stores it in the static field(sput-object).

This process was performed on both the main application and the downloader service.

Repackaging modified application

We followed a process similar to figure 2.4 for both the main application and the downloader

service. Since main application contains the service as an asset, we encoded and packed

the sqlite.db APK first. Then, we encoded and packed the main application. We did not

modify the AndroidManifest.xml from either the main application or sqlite.db.

2.2.3 Testing modifications

In order to test our modifications, we installed the application on the Android emulator.

Once the application was installed, we started the application from the application menu.
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POST /main HTTP/1.1

User-Agent: Dalvik/1.1.0 (Linux; U; Android 2.1-update1; sdk Build/ECLAIR)

Host: 10.0.2.2

Accept: *, */*

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 256

<encrypted xml data>

Figure 2.7: Captured HTTP headers from the main DroidDream application.

We then proceeded to capture all incoming connections with our local HTTP server. From

these captures, we were able to identify connections from the main application.

Environment

We tested our modified application on the official emulator included with the Android soft-

ware development kit. We selected a system image for the Android platform version 2.1.

This version was picked due to its age. Older images tend to perform better on the emulator.

This older image is also vulnerable to the privilege escalation exploits included with in the

DroidDream sample.

Instead of the utilizing a full HTTP server, we opted to use a simple shell script and

Netcat[6]. This choice was selected in order simplify the testing environment. Netcat does

not try to understand the data being sent or received. Therefore, it will always accept

connections regardless of their validity.

Captured data

After installing the application using adb, we started it from the Android application menu.

As the application stated, our HTTP server received the contents of figure 2.7.

In addition to the HTTP data, the application was able to successfully gain root access

on the system. Figure 2.8 shows a process list after the application gained root access.
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# ps

USER PID PPID VSIZE RSS WCHAN PC NAME

<other processes>

app_28 239 30 133056 23700 ffffffff afe0da04 S com.magic.spiral

app_28 245 30 128852 19368 ffffffff afe0da04 S com.magic.spiral:remote

app_28 257 245 728 324 c01537e8 afe0c7dc S /system/bin/sh

root 1009 37 728 324 c003d444 afe0d6ac S /system/bin/sh

root 1272 30 128592 19912 ffffffff afe0da04 S com.magic.spiral:remote2

root 1278 1272 728 324 c01537e8 afe0c7dc S /system/bin/sh

root 1289 1009 868 332 00000000 afe0c7dc R ps

Figure 2.8: Partial process list after the DroidDream trojan performed a successful privilege
escalation attach.

com.magic.spiral:remote2 is currently running as root.

21



Chapter 3

Bytecode-level debugging

Debugging at the bytecode-level is an important part of our multi-level reversing framework.

It enables the analysis of the runtime behavior of applications without requiring the original

source code. The goals of our bytecode-level debugger were: support for breakpoints on

individual bytecode instructions, and read/write access to the Dalvik registers.

The Dalvik virtual machine does not naively support bytecode-level debugging. For

example, Dalvik’s Java Debugging Wire Protocol(JDWP) does not provide a way to access

Dalvik registers directly. Since JDWP was designed to the extensible, Dalvik’s debugging

support could be extended to include Dalvik specific methods. However, the engineering

work required would be nontrivial. This effort would entail modifying Dalvik itself as well

as creating a new debugging client. Instead, we opted to create an offline approach that

tricks the Dalvik virtual machine into providing the required information through its regular

Java debugging channels. This approach also has the added benefit of reusing existing Java

debuggers as bytecode-level debuggers.

We propose a novel approach to achieve bytecode-level debugging by leveraging on the

existing Java based debugging frameworks. We achieved bytecode-level debugging by mod-

ifying the Dalvik binary files, inserting information about the Dalvik bytecode as Java de-
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bugging metadata, and tricking existing Java debuggers into using disassembled bytecode

files instead of Java source code.

This chapter starts by demonstrating how bytecode metadata can be used to access

Dalvik registers and synchronizing bytecode opcodes with the lines on smali files. We also

cover some limitations incurred by our approach. Finally, we conclude by demonstrating our

trick achieving bytecode-level debugging on simple application.

3.1 Methodology

In order to enable bytecode-level debugging support, we opted to implement a method that

modifies bytecode metadata. Our method addresses three challenges:

• Synchronizing debuggers with smali source code.

• Accessing Dalvik registers from a stack based debuggers.

• Maintaining compatibility with existing Java debugging tools.

The metadata we will be modifying is normally used to synchronize the current bytecode

with the Java source code, and to gain access to the local variables. However, we will be

using it to provide the required information for bytecode level debugging.

Figure 3.1 shows the Java source code which was utilizing to generate the Dalvik bytecode

that will be used in this section. This file, named Hello.java, was selected due to its

simplicity and familiarity to most programmers. A fully JVM and Dalvik disassembled

versions can be found on appendix C.1.

3.1.1 Synchronizing debuggers with smali source

Debuggers rely on two pieces of metadata to synchronize bytecode instructions with source

files. In the smali format(detail described in appendix B), they are represented by the
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1 class Hel lo {
2 public stat ic void main ( St r ing [ ] a rgs ) {
3 System . out . p r i n t l n ( ”Hel lo , world ! ” ) ;
4 }
5 }

Figure 3.1: Java source from which all the example bytecode for section 3.1.

directives .source and .line.

The .source directive is used to tell the debugger which file is associated with the current

class. Therefore, we can just replace the original directive with one that points at a .smali

file. This will force the Java debugger to load .smali files instead of trying to find the

original Java source.

The .line directive tells the debugger that the following bytecode instructions corre-

spond to a specific line in the Java source. Since the .source directive no longer points at

the original source, we first strip all the existing .line directives. Once all the old .line

directives have been removed, we add a new .line directive for all coding bytecode in-

struction. These new .line directives correspond with the line numbers in the unmodified

.smali file.

Figure 3.2 shows an example of the process being applied on a file.

Figure 3.2: Diagram showing the line renumbering process.
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3.1.2 Gaining access to the Dalvik registers

Dalvik uses registers instead of an execution stack. Since the Java Debug Wire Protocol was

not designed with a register machine in mind, there is no way to directly access the register.

However, we can expose them to the debugger using the local variable directives. Local

variable directives are normally used to inform the debugger about the variables available

in the current scope. The .local directive is used to indicate which registers correspond

to which local variables. The .end local directive is used to indicate that the register no

longer represents a variable. Utilizing these directives, we are able to expose registers as

local variables of the same name. When data is stored in a given register, we create a new

local variable with the same name as the register. If the variable already exists, and it is of

a different type, we use .end local to remove it before creating the new one. Figure 3.3

shows a processed method.

Figure 3.3: Bytecode after the introduction of the .local directives.

3.2 Implementation

To expedite the development, we opted to modify the smali assembler. We added a command-

line option that tells smali to alter .source directives, strip the old .line directives, add
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new .line directives based on the .smali file, and create local variables for the Dalvik

registers. All of these steps are performed in the assembler’s tree walker class. The purpose

of the tree walker is to generate a .dex file from the parser’s output.

3.3 Limitations

While a metadata based approached allowed us to perform bytecode-level debugging, it does

have some important limitations. These limitations include:

• Dynamically loaded bytecode: This limitations stems from the static nature of our

approach. Since we preprocess every class before sending it to the device, we will not

be able to step into any code that was missed during the preprocessing phase. The

Android framework allows developers to load extra code(both native and bytecode) at

runtime. This extra code could conceivably come from external(such as an internet

server) sources or obfuscated(packed or encrypted) assets inside the .apk file.

One solution is to intercept new bytecode before it is loaded. Then, we could modify

the new bytecode and inject the needed metadata. This can be achieved by modify

the framework’s Classloaders classes. This method should allow us to still maintain

compatibility with existing debuggers. However, this approach also has its problems.

For example, the process of transferring the newly processed bytecode from the VM

instance to the debugger could cause issues. While the JDWP has an instruction for

retrieving bytecode, it was designed to transfer Java bytecode. Therefore, it it not

implemented by the Dalvik VM[16].

Another solution is to extend Dalvik’s JDWP implementation with full bytecode sup-

port. In the same way that Google extended JDWP with the Dalvik Debug Monitor,

an extension which would allow bytecode debugging could be developed. In addition
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to being able to step into runtime loaded code, this technique would allow us to debug

code without needing to preprocess it. However, this technique breaks compatibility

with existing debuggers.

Both of the solutions still requires modifying code on the device itself. As many device

manufactures lock their device, this could potentially limit which devices could be

utilized to debug code.

• Native code: While native code debugging was not stated as one of the design goals,

it is an important limitation. The Android framework allows developers to include

custom native libraries with their applications. Invoking native code is performed

through the Java Native Interface(JNI) API. Our metadata only approach is unable

to step into the native calls.

The developers of the Sequoyah project[13] have developed a solution based on the

GNU Debugger(gdb). It combines the standard Dalvik debugging facilities for the

bytecode and an instance of gdbserver for the native code.

3.4 Debugger evaluation

In this section we demonstrate the capabilities that our process enables on existing Java

debuggers.

3.4.1 Testing environment

We tested our debugging processes on a simple custom built application. This application

is a standard hello world styled application. It contains a single button. When the button

is pressed, a small message with the words “Hello World!” appears. Figure 3.4 shows the

default behavior of the test application after the button has been pressed. We ran our custom
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Figure 3.4: Screenshot of the test application running without any modifications.

application on the Android emulator. The emulator was running an Android 4.0.4 system

image. We tested the modified application with jdb, a command-line debugger included

with the Java Development Kit.

3.4.2 Evaluation procedure

We extracted the .apk file for our test application. Then, we disassembled the classes.dex

file with baksmali. A new classes.dex was created using our modified version of smali.

The application was repackaged into a new .apk file. The new .apk was installed on the

emulator using adb. The application was started from the Android application menu. We

connected the Dalvik Debug Monitor Server(DDMS) to the emulator. DDMS is used to

forward all debugging ports in an Android system to the local machine. We connected

jdb to the port matching our test application. We also had to point jdb’s source path to
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Figure 3.5: Screenshot of the test application running after the debugger changed the con-
tents of the register.

the directory containing our disassembled classes.dex. We added a breakpoint on the

line invoke-virtual {v0}, Landroid/widget/Toast;->show()V. We clicked the button

on the Android emulator. When the application hits the breakpoint, we modified the alert

text from “Hello World!” to “Debugger!” using the method Toast.setText. After the

modification was confirmed successful, we resumed execution.

3.4.3 Results

In order to test if metadata changes were successful, we re-disassembled the modified ap-

plication. We concluded that our process was able to successfully modified the application.

Figure 3.6 shows a capture of the steps we took to create a breakpoint and modify the

alert text. Figure 3.5 show the result on the Android emulator. With these results we were

able to conclude that our process successfully enabled bytecode-level debugging on Android
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1 $ jdb −connect com . sun . j d i . SocketAttach : hostname =127 .0 . 0 . 1 ,
port=8700 −sourcepath out

2 Set uncaught java . lang . Throwable
3 Set d e f e r r ed uncaught java . lang . Throwable
4 I n i t i a l i z i n g jdb . . .
5 > stop at edu . uga . DebugTest . DebugTestActivity : 37
6 Set breakpo int edu . uga . DebugTest . DebugTestActivity : 37
7 >

8 Breakpoint h i t : ” thread=<1> main ” , edu . uga . DebugTest .
DebugTestActivity . buttonCl ick ( ) , l i n e=37 bc i=11

9 37 invoke−v i r t u a l {v0 } , Landroid/widget /Toast;−>show ( )V
10

11 <1> main [ 1 ] p r i n t v0 . setText (”Debugger ! ” )
12 v0 . setText (”Debugger ! ” ) = <void value>
13 <1> main [ 1 ] cont

Figure 3.6: Captured command used to modify the alert text.

applications.

3.5 Related work

Some community developed tools have attempted to achieve bytecode-level debugging. The

most prominent of these tools is called apktool[1]. Apktool wraps existing tools(like the

smali assembler and baksmali diassembler) into one executable. However, while it claims

to allow step by step debugging, its debugging support has been broken for some time [14].

Another community developed debugging tools goes by the name of AndBug[15]. AndBug

was designed as a scriptable debugger for Android. It also support debugging without the

original source code. However, AndBug does not support instruction level stepping. It only

support breaking on function calls.
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Chapter 4

System-level monitoring

As part of our multi-level reversing framework, we developed a method for tracking how the

systems responds to network stimulus. This monitoring solution utilizes a dynamic taint

analysis framework to track how network packets flow through the system.

This type of system-level tracking is important because it allows researchers to understand

how an application responds to network packets. There are multiple circumstance when a

researcher would like to know which packets were generated as a result of an incoming packet.

One such circumstance is when trying to understand command-and-control protocols. Our

solution provides enough byte-level propagation information to aid in this task. We named

our system NetTaint.

In order to test our solution, we designed a test based on the tools included on the

Android system image. We used BusyBox to download an HTML file from an Internet

server. Our test was able to show that our solution is able to track and graph the flow of

network data through the system.
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4.1 Related works

In the field of Android application analysis, other projects have attempted to use dynamic

taint analysis techniques. One such project is TaintDroid[26]. TaintDroid was created to de-

tect if applications were leaking sensitive information(contacts, phone number, IMSI number,

etc.) to the Internet. It utilizes a modified version of the Dalvik virtual machine. Modi-

fying Android’s virtual machine has the benefit of higher execution speed. However, if the

application uses JNI calls, TaintDroid may not be able to track the flow of taint.

4.2 Overview of dynamic taint analysis

Dynamic taint analysis is a technique designed to track the flow of data through a system.

It consists of the following parts:

• One or more taint sources: A taint source marks a particular type of incoming

data as tainted. The system keeps a record of all tainted data in a shadow memory

outside of the main system memory. Common taint sources include: command-line

arguments, network data(like in NetTaint), and keyboard input.

• A taint propagator: The job of the taint propagator is to dictate how taint is copied

from one memory location to another. As the system runs, the taint propagator gets

invoked when a CPU instruction attempts to operate on tainted data.

• One or more taint sinks: Sinks are the destinations for the tainted data. They are

used to signal that the tainted data has reached a particular location. In the case of

NetTaint, a taint sink is triggered when a packet is about to be sent by the system.
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4.3 Approach

System-level monitoring requires precise instrumentation and analysis. To achieve this, our

monitoring solution was split into three separate parts. The first part is a system-level taint

tracker. Its job is to correlated incoming network packets with outbound packets. The

second part groups these packets into TCP half-flows for the purpose of graphing. Finally,

we developed a system to generate different kinds of graphs depending on the complexity of

the trace being analyzes.

4.3.1 System-level tracking

Leveraging on the work already done by Song et at. on the BitBlaze project [31][21], we were

able to develop a simple plug-in(NetTaint) for TEMU. TEMU, a component of the BitBlaze

project, is a whole-system emulator built on top of QEMU[30]. It has been designed for

dynamic taint analysis. Using TEMU’s extendable API, we developed a plug-in that analyzes

all data being send and received by a virtual network interface.

As packets arrive from the wire, NetTaint taints the payload of TCP, UDP, and ICMP

packets. In order to minimize the noise, while still maintaining a useful set of the information,

we decided to only taint the packet payload. All tainted packets are written to an inbound

.pcap file on the host machine. Each byte on the packet’s payload is tainted with an inbound

packet number, and its byte offset.

As packets are about to be sent by the guest OS, NetTaint checks the outbound packets

for taint information. Unlike the inbound tainter, we do not limit the checking to TCP,

UDP, and ICMP packet. In addition to checking any type of packet, we also check the

entire packet, not just the payload. This behavior was selected to increase the amount of

correlation between packets. In certain situations, a payload might only taint the header

of an outgoing packet. One such example are DNS responses. A DNS response would only
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taint the IP header of an outgoing packet. Once a packet is determined to contain tainted

information, it is written to an outbound .pcap file on the host machine. In addition to

the outbound and inbound .pcap files, a separate file containing the relationships between

inbound and outbound bytes is written on the host machine. For each tainted byte, we record

the outbound packet number, the byte offset of the outbound tainted byte, the inbound

packet number, and the byte offset of the inbound byte that tainted the outbound byte.

4.3.2 Rebuilding TCP communication

While dynamic taint analysis is able to match which outbound packets were generated as a

result of a give inbound packet, this information is not enough to generate a complete flow

graph. Therefore, in order to generate a more complete graph, we devised an algorithm for

matching inbound TCP response with outbound TCP request.

When trying to match inbound to outbound packets, we first grouped all inbound packets

into TCP half-flows. We defined a TCP half-flow as all the packets that were transmitted

from one IP address and port pair to another IP address and port pair. Then, for each

outbound packet, we find the corresponding inbound TCP half-flow. Once we have found

a matching inbound TCP half-flows, we search for an inbound packet that has arrived at

a future time with a TCP acknowledgment number that is greater than or equal to the

sequence number of the outbound packet.

4.3.3 Creating a flow graph

Utilizing the files generated by the TEMU plug-in, and some of the information on the TCP

headers, we developed three different types of graphs to visualize the flow of network data.

We named these graphs: taint tables, packet-level half-flows graph, and half-flows graph.

Figure 4.1 contains the key for the packet-level half-flows and half-flows graphs.
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Figure 4.1: Key for packet-level half-flows and half-flows graphs.

Taint tables

Taint tables are a way to directly represent the correlation between all incoming and outgoing

tainted network data. Due to the amount of information that these tables need to visualize,

we have split the data into two separate graphs. The first graph shows the packet level

correlation between all incoming packets and all the tainted packets. The amount of tainted

bytes within each packet intersection determines the color used by the graph. A dark shade

of blue is used when there is a high correlation between the tainted bytes. Therefore, a given

inbound packet heavily influenced the outbound packet. Inversely, lighter shades of blue

represent lightly influenced outbound packets. The second graph type shows the byte-level

correlation for a given packet pair. Rather than attempting to graph the entire trace, which

would provide too much information to be useful, we select a single inbound and outbound

packet pair. In this graph, the color represents the location of the bytes inside the outbound

packet. Dark red represents bytes in the IP, ICMP, TCP, or UDP headers. Blue represents

bytes outside of the headers.

Packet-level half-flows graph

The packet-level half-flows graph shows packet dependencies between half-flows. Depen-

dencies between inbound and outbound packets(solid lines) are generated using the tainted
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bytes relationships. However, the dependencies between the outbound and inbound pack-

ets(dashed lines) are generated from the rebuilt TCP communications. TCP packets are also

grouped together into half-flows. Inbound packets are represented by boxes and outbound

packets are represented by rounded boxes.

Half-flows graph

The half-flows graph represents the same information as the packet-level half-flows graph.

However, it has been simplified to show only half-flow dependencies. Single UDP and ICMP

packets are drawn with double borders.

4.4 Limitations

The systems described in this chapter suffer from the following limitations:

• Only x86 system emulation is supposed: TEMU only supports x86 based systems.

While QEMU supports more architectures than x86, the TEMU team decided to only

focus on x86. A non-trivial amount of work would be required to port TEMU to other

architectures.

• UDP and ICMP do not get grouped into half-flows: As discuss on Section 4.3.2,

the current implementation of the visualizer is only able to find network-level depen-

dencies between TCP packets. Therefore, it misses any UDP and ICMP dependencies.

This limitation causes gaps on both the packet-level half-flows and half-flows graphs.

While the current approach being utilizing for TCP would be unfeasible for UDP and

ICMP packets, other methods could be attempted. Some ICMP packets, such as ping,

could be matched. Deep packet inspection for certain UDP packets, such as DNS,

could also be attempted.
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• Graph complexity for non-trivial traces: While the graphing techniques described

in Section 4.3.3 are able to present relatively useful information, their usefulness dras-

tically decreases as the size of the trace increase.

4.5 Evaluation

In order to test the taint propagation system, we download a file from a remote HTTP server

using the wget module provide by BusyBox[4]. The test was designed to see if NetTaint was

able to trace the flow of tainted bytes across the system. Wget was selected because it has

a known dependency profile.

4.5.1 Environment

We ran our experiment on an Android image from the Android-x86 project[2]. The Android

version 3.2 was selected since it was the most stable image we could find. We utilized version

1.16.2androidfull of BusyBox which is included with the Android image.

4.5.2 Experiment

For the experiment, we told BusyBox’s wget to download http://cs.uga.edu/~galli. This

caused BusyBox to send three different types of requests to the network, a DNS request for

the IP address of cs.uga.edu, an HTTP GET request for the file /~galli, and a redirected

HTTP GET request for the object /~galli/. In order to minimize the amount of traffic,

the contents of the final HTML page were forced to be empty. We selected this URL because

it allowed us to see how outgoing packets were tainted by both UDP and TCP traffic.
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4.5.3 Results

Table 4.1 shows which packets were received and which tainted packets where sent by the

system. There were 11 inbound packets(grouped into 3 half-flows). These inbound packets

tainted 11 outbound packets(grouped into 2 half-flows).

Figure 4.2a shows the dependencies between output(y axis) and input(x axis) packets.

Specifically, all the outbound packets depended on the 0th input packet, which is a DNS

response for cs.uga.edu. This is because all outbound packets are targeting the same

destination IP address. Similarly, outgoing packets 5 to 10 were tainted by the 3rd inbound

packet, which contains the URL of the HTTP redirect. Outbound packets 5 to 10 are the

HTTP packets for the redirected request.

We can also use the collected data to extract the byte-level correlation in the inbound

and outbound traffic. For example, if we examine the byte-level correlation between the 3rd

inbound packet(HTTP 301 Moved Permanently) and 7th outbound packet(HTTP GET to

the redirected object), figure 4.2b, we see a more detailed view of the influence. The result

shows that inbound bytes for cs.uga.edu and ~galli/ tainted a large percentage of the

outbound data and the TCP checksum. The exact byte correlation in this example depends

on the internal code of BusyBox’s wget implementation.

Figure 4.2c and 4.2d show how NetTaint can be be used to find the dependencies between

network half-flows. Figure 4.2d presents the dependencies between the related half-flows. As

seen in the packet-level taint table, the DNS responses(In 0) clearly influenced all outbound

half-flows. Similarly, the redirected HTTP request(Out 1) depends on the response(In 1) of

the first HTTP request(Out 0).

Figure 4.2c shows the same flow dependency graph but at the packets-level. Packet-level

half-flows graphs can show a more detailed picture of the traffic. For example, the redirected

HTTP half-flow(Out 1) depended only on the 3rd packet of the first HTTP response(In 1).

When inspecting the 3rd packet, we find that it contains the target URL for the redirection.
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Examples like the one above show the importance of the packet-level half-flow graph when

attempting to pinpoint the exact content that defined the correlation between half-flows.

Packet Half-flow Description
0 In 0 DNS response
1 In 1 TCP [SYN, ACK]
2 In 1 TCP [ACK]
3 In 1 HTTP/1.1 301
4 In 1 TCP [FIN, ACK]
5 In 1 TCP [ACK]
6 In 2 TCP [SYN, ACK]
7 In 2 TCP [ACK]
8 In 2 HTTP/1.1 200
9 In 2 TCP [FIN, ACK]
10 In 2 TCP [ACK]

(a) List of inbound packets.

Packet Half-flow Description
0 Out 0 TCP [SYN]
1 Out 0 TCP [ACK]
2 Out 0 GET /˜galli HTTP/1.1
3 Out 0 TCP [ACK]
4 Out 0 TCP [FIN, ACK]
5 Out 1 TCP [SYN]
6 Out 1 TCP [ACK]
7 Out 1 GET /˜galli/ HTTP/1.1
8 Out 1 TCP [ACK]
9 Out 1 TCP [ACK]
10 Out 1 TCP [FIN, ACK]

(b) List of tainted outbound packets.

Table 4.1: List of all inbound and tainted outbound packets used in the graphs.
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Chapter 5

Conclusion

This thesis provides multiple debugging and reversing techniques that target the levels of

the Android platform. These techniques allow researchers to extract, modify, debug at the

bytecode-level, and analyze the network behavior of Android applications.

5.1 Summary of thesis

In chapter 2 we covered our formalized approach for extracting, modifying, and packaging

Android applications. This approach expedites the process of revering application by giving

researchers a known starting position. Once we described the steps required to extract

application, we tested it on a sample of malware. We were able to successfully change the

address of its reporting server.

In chapter 3 we outlined the steps required to trick Java debuggers into providing

bytecode-level support. This trick allows researchers to understand and modify the run-

time behavior of applications. We also tested the our trick on a simple application.

In chapter 4 we showed how, utilizing dynamic taint analysis, we were able to determine

how inbound packets influenced outbound packets. We then proceeded to test our approach
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by tracing the behavior of a known executable.

5.2 Future work

In this thesis we presented techniques for analyzing and debugging Android applications.

However, due to time constraints, we were unable to explore certain sections. The following

are some ideas for future work:

• Integration of level: Currently our framework is comprised of multiple separate tools.

In the future we hope to provide a unified solution. This should further expedite the

process of reversing Android applications.

• IDE integration: In the future, we hope to develop an Eclipse plug-in in the spirit

of the Android Development Tools(Google’s Android development plug-in for Eclipse)

but targeting bytecode rather than Java source. The purpose of this plug-in would be

to bring automation to the extraction process. Currently, many of the steps require

that we manually run command-line tools after each modification. In addition to

automation, the plug-in would bring better debugger integration, syntax highlighting,

and refactoring support to smali files.

• Dynamically loaded bytecode: As explained in section 3.3, we currently can not

step into dynamically loaded bytecode. As it is very likely that malware authors will

attempt to use this technique to combat analysis, it is in our best interest to explore

ways to achieve debugging on run-time loaded bytecode. Of the solutions that we

presented, we believe that modifying Dalvik to support Dalvik specific JDWP verbs

is the most promising solution. This solution has the added benefits of removing the

preprocessing stage. However, due to the intrusive nature of this approach, it will limit

the devices which we could use for testing.
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• Upgrade TEMU: TEMU, the framework for dynamic taint analysis we used in chap-

ter 4, is currently based on an old version of QEMU. This version of QEMU utilizes

a slower and less compatible recompiler. Upgrading TEMU to a new version should

increase our NetTaint’s performance as well as its compatibility.
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Appendix A

Application package file

Application package files, or APK files, are Android’s way of storing and distributing appli-

cations. The Android Market currently requires that all APKs be under 50MB. However, as

for March 2012, applications may provide expansion files for up to 4GB of additional data

[18]. The APK format itself is based upon Java’s JAR(or Java ARchive) format. Figure A.1

shows some of the more common files and directories inside APKs.

META-INF/ APK files, like JARs, are just regular Zip archives with a special META-INF/

directory. The purpose of this directory is to ensure the integrity of the archive. To achieve

this goal, there is a .SF file that contains SHA-1 digests for all resources. In addition to

these cryptographically secure hashes, the META-INF/ directory has a .RSA certificate for the

application. The purpose of the certificate is to ensure the authorship of the archive. All

APKs archives must be signed. Otherwise, the system installer will reject the ARK during

the install process.

res/ In addition to the META-INF/ directory, APKs also contain a res directory. This

directory contains the application’s resources. Each resource types is split into separate

directories. For example, UI layouts are stored under res/layout/. All these resources are

44



Figure A.1: Common directory structure of APK files.

indexed in the resources.arsc file.

assets/ The idea behind assets and resources is similar. They are both non-code resources

used by the application. However, assets are less restrictive on the type and size. Also,

unlike resources, assets are operated upon using the standard InputStream class.

lib/ The lib/ directory was added as part of the Android NDK(or native development

kit). Architecture specific native code is compiled and stored under separate subdirectories

on lib/. For example, ARM specific libraries will be stored under lib/armeabi/. These

libraries will be later loaded by the Dalvik VM and invoked through JNI.

classes.dex The classes.dex contains the Dalvik bytecode for the application [24].

AndroidManifest.xml The purpose of the AndroidManifest.xml file to describe the

application to the Android operating system and system installer. Some of the information
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it contains includes[17]:

• The Java package name that uniquely identifies the application.

• Description of all the components in the application(i.e. their names and how they

interact with the system, other applications, and each other).

• Which of the protected APIs, such as telephony and location services, the application

will be using(permissions).

• Permissions that other applications must have in order to interact with this application.

• During development and testing, it can include a list of Instrumentation classes that

provide profiling information.

• Minimum API level that the device must support in order to run the application.

• Libraries that the application must be linked against. This does not include the li-

braries under lib/.
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Appendix B

Smali reference

This appendix contains a partial reference for the smali language.

Smali format

Smali files are the human readable representation of the Dalvik bytecode instructions and the

DEX format. These files are utilizes by the smali assembler and the baksmali diassembler

[12]. The smali syntax is loosely based on Jasmin’s syntax[9]. Jasmin is an assembler for

Java bytecode. Due to the proximity of Dalvik and Java bytecode, a Jasmin inspired syntax

solved multiple problems. Each line in a smali file can be classified into one of the following

types:

• Comments: As with comments in other programming languages, these constructs

allow programmers to embed notes into the source code. Smali only supports single-

line comments. They start with a # sign, and end on a newline.

• Directives: These define metadata about the class and its instructions. Directives are

used to declare fields, methods and the class itself. Appendix B.2 contains a skeleton
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smali file. In addition to defining the structure of classes, directives also declare Java

annotation and debugging information.

• Instruction: These are the bytecode opcodes. They express the program logic itself.

A mostly complete reference of the opcodes can be found under <Android source>

/dalvik/docs/dalvik-bytecode.html.

B.1 Date types

This sections contains a list of all the allowed data types.

Mnemonic Type
V Void
Z Boolean
B Byte
S Short
C Char
I Int
J Long(64 bits)
F Float
D Double(64 bits)
Lpackage/path/ClassName; Object(type name delimited by L and ;)
[<type> Arrays(add [’s for each dimension)

Table B.1: List of allowed types and their bytecode mnemonics.

B.2 Class skeleton

Smali class skeleton.

1 . class LSke l e tonCla s s ;
2 . super Lpath/ to /BaseClass ;
3 . source ” Ske le ton . java ”
4
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5 # s t a t i c f i e l d s
6 # Declare i n s t anc e f i e l d s with the . f i e l d d i r e c t i v e
7 # For example , . f i e l d p r i va t e s t a t i c f i n a l CONSTNUM: I = 0x7b
8

9 # ins tanc e f i e l d s
10 # Declare i n s t anc e f i e l d s with the . f i e l d d i r e c t i v e
11 # For example , . f i e l d p r i va t e num: I
12

13 # d i r e c t methods
14 .method constructor < i n i t >()V
15 . registers 1 ; at l e a s t 1 r e g i s t e r f o r p0 ( which ho lds t h i s )
16 . prologue
17 invoke−direct {p0 } , Lpath/ to /BaseClass ;−><i n i t >()V
18

19 ; i n i t i a l i z e f i e l d s
20

21 return−void
22 . end method

23

24 .method public stat ic main ( [ Ljava / lang / St r ing ; )V
25 . registers 1 ; at l e a s t 1 r e g i s t e r f o r p0 ( which hold the f i r s t argument )
26 .parameter

27 . prologue
28

29 return−void
30 . end method

31

32

33 # v i r t u a l methods
34 # Example method
35 .method public t oS t r i ng ( )Ljava / lang / St r i ng ;
36 . registers 1 at l e a s t 1 r e g i s t e r f o r p0 ( which ho lds t h i s )
37 . prologue
38 ; custom toS t r i ng ( ) code
39 . end method

Dalvik bytecode

While Dalvik bytecode still retains some similarities to Java bytecode, the designing deci-

sion to utilize a register-based system(Dalvik) rather than a stack-based system(Java) has

influenced the bytecode. Rather than using an operand stack, Dalvik holds all temporary

values in up to 256 registers. It should be noted that some opcode can only operate on the

first 16 registers. The total amount of registers that a given method can use must set at

creation time. Each register holds a 32-bit value. For 64-bit values, such as long and double,
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adjacent registers must be used [22].
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Appendix C

Disassembled sample source

This appendix contains the entire disassembled bytecode from the example code. Since

disassembled files can be quite long, the entire files were omitted from the main text. We

also included the disassembled Java bytecode as a reference.

C.1 Hello.java

This section contains bytecode for the example used in section 3.1.

Disassembled Hello.java file(Dalvik bytecode).

1 . class LHel lo ;
2 . super Ljava / lang /Object ;
3 . source ”He l lo . java ”
4

5 .method constructor < i n i t >()V
6 . registers 1
7 . prologue
8 . l ine 1
9 invoke−direct {p0 } , Ljava / lang /Object ;−><i n i t >()V

10 return−void
11 . end method

12

13 .method public stat ic main ( [ Ljava / lang / St r ing ; )V
14 . registers 3
15 .parameter

16 . prologue
17 . l ine 3
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18 sget−object v0 , Ljava / lang /System ;−>out :Ljava / i o /PrintStream ;
19 const−string v1 , ”Hel lo , world ! ”
20 invoke−virtual {v0 , v1 } , Ljava / i o /PrintStream ;−>p r i n t l n (Ljava / lang / St r ing ;

)V
21 . l ine 4
22 return−void
23 . end method

Disassembled Hello.java file(Java bytecode).

1 ; He l l o . j
2

3 . bytecode 50 .0
4 . source Hel lo . java
5 . class Hel lo
6 . super java / lang /Object
7

8 .method < i n i t >()V
9 . l imit stack 1

10 . l imit locals 1
11 . l ine 1
12 0 : aload 0

13 1 : invokespecial java / lang /Object/< i n i t >()V
14 4 : return

15 . end method

16

17 .method pub l i c s t a t i c main ( [ Ljava / lang / St r ing ; )V
18 . l imit stack 2
19 . l imit locals 1
20 . l ine 3
21 0 : getstatic java / lang /System/out Ljava / i o /PrintStream ;
22 3 : ldc ”Hel lo , world ! ”
23 5 : invokevirtual java / i o /PrintStream/ p r i n t l n (Ljava / lang / St r ing ; )V
24 . l ine 4
25 8 : return

26 . end method
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