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ABSTRACT 

Dealing with real world datasets can be difficult given the huge amounts in which they 

are available. Making predictions on such data can be challenging because the available 

ground truth is scarce. Given such a dataset, where available labeled data is far less than 

unlabeled data, we decide to adapt a large-scale semi-supervised learning eigenfunction 

approach to deal with such data.  To serve the purpose of scalability, we simulate this 

approach in a distributed environment such as Apache Spark and provide a transductive 

as well as inductive approach to it. We also present a potential real world use case for this 

implementation. This use case deals with odor percept identification for millions of 

chemical substances composed of variant physicochemical properties that exist in nature. 

The end goal is to achieve a mapping of the chemical odors to their physicochemical 

properties.  
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CHAPTER 1 

INTRODUCTION 

This chapter gives an introduction to the significance of semi-supervised learning and its 

potential applications. It discusses some of the different methods of semi-supervised 

learning.  

1.1 Introduction 

It is difficult to make predictions from real world datasets because of their large size and 

unstructured formats. A good example can be images from surveillance cameras. If 

predictions are to be made to detect objects in images, we need some ground truth to base 

our predictions on. But if these images are available in huge numbers, it is practically 

impossible to prepare ground truth by manually labeling more than a small fraction of the 

images. To make this problem somewhat more feasible, we can attempt to combine the 

small fraction of labeled data simultaneously with the unlabeled data in our model. In 

such a situation, where labeled data is orders of magnitude smaller than unlabeled data, a 

semi-supervised solution would work well.  

Semi-supervised learning has two approaches, transductive and inductive learning. 

In transductive learning, the whole dataset is used to build and train the model and 

predictions are made on all of the training data. 
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Inductive learning does not require the unseen data to be passed through the training 

phase again. Using the already trained model, predictions are made on unobserved data. 

Our work is inspired by “Semi-supervised Learning in Gigantic Image Collections”, a 

2009 paper by Fergus et al. The paper introduces an approach that is memory efficient for 

large scale processing. The approach is dominated by approximations to efficiently build 

a model for predictions. It uses semi-supervised learning approach by estimating a graph 

Laplacian matrix for the given dataset, numerically approximates the eigenfunctions, 

build interpolators and eventually derives the smoothness functions for the graph 

Laplacian. These smoothness functions are responsible for classifying unlabeled data into 

their corresponding classes depending on how smooth the function is with respect to the 

data points if they were depicted on a manifold. 

The above description was the transductive learning approach offered by Semi- 

supervised learning. However, we anticipate the situation where we may wish to make 

predictions on future unobserved data without recomputing the entire semi-supervised 

model. Therefore, we have also implemented the inductive learning aspect of this 

approach. For a new unseen data point we interpolate this point using the interpolators we 

built during transductive learning and predict label for the interpolated values which are 

nothing but the smoothness functions. 
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This generic large scale semi-supervised learning algorithm could be used for other 

problems as well where known aspect of the data is very less as compared to the 

unknown aspect of the data. We also discuss the potential application of this approach on 

chemical olfactory data where we discuss the mapping of chemical substances to the odor 

perceptual space.  

1.2 Major Contribution 

We have implemented a large scale implementation of semi-supervised learning 

algorithm using the Eigenfunction approach as described in Fergus et al 2009. This 

algorithm is made to work in a distributed environment like Apache Spark which is 

capable of processing billions of data points using its parallel computing paradigm. The 

algorithm is a two stage algorithm where the first is the transductive learning part and 

second is the inductive learning part. The transductive learning part is in the form of a 

function called “fit ()”. This function takes into consideration the labeled as well as 

unlabeled data available, builds a model and trains it on this data. Once trained, it first 

predicts the labels for the data used for training, using the labeled data to inform 

decisions on the unlabeled data. We make use of Expectation Maximization algorithm to 

predict labels for this data by clustering its resulting smoothness function values. 

The next part of the algorithm is the inductive step. We have implemented a function 

“predict()” that works with new unobserved data points. It interpolates these points and 

predicts their labels. This part of the algorithm does not require the data points to go 

through the entire training process as explained in fit function. It just makes use of a few 
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parameters that were learned from the fit function and derives smoothness functions for 

the new data. Once we get those smoothness functions, we predict labels for them by 

clustering it using the previously trained expectation maximization model. 

We also discuss the potential application of this algorithm on chemical olfactory data and 

present the computational olfaction as a case study. 

The remainder of this document is structured as follows: CHAPTER 2 discusses the 

concept of semi-supervised learning using label propagation. CHAPTER 3 talks about 

available implementations of semi- supervised learning approaches and some background 

on semi-supervised learning with graph based methods. CHAPTER 4 discusses the 

algorithm in detail with the flowchart. CHAPTER 5 walks through the algorithm 

discussing its nuances with relevant results. 

CHAPTER 6 sums up our approach with a conclusion. CHAPTER 7 discusses the 

potential use of this algorithm implementation in computational olfaction. 
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CHAPTER 2 

SEMI-SUPERVISED LEARNING AND RELATED WORK 

In this chapter, we discuss about Semi-supervised learning in general, work done on it 

and then discuss our approach in depth. 

2.1 Motivation behind using the semi-supervised learning (SSL) approach 

With less ground truth, it is infeasible to train a purely supervised classifier to accurately 

recognize the majority of possible data. Moreover, if we try to use unsupervised approach 

then we lose out on the information that the labeled data provides. Thus, we can say that 

semi-supervised learning works well on problems where there is a very small amount of 

labeled data relative to the amount of unlabeled data. Such algorithms are scalable and 

thus suitable for large datasets. 

2.2 What is Semi-Supervised Learning? 

Semi-supervised learning makes use of labeled as well as unlabeled data, and 

incorporating both into the initial training step of the model. Imagine n data points with d 

dimensions (n <<< d) which are independently and identically distributed. These n data 

points can be divided into 2 parts such that  

𝑋𝑙 ∶= 𝑥1, 𝑥2, … . , 𝑥𝑙 ; 	𝑌𝑙 ∶= 𝑦1, 𝑦2,… . , 𝑦𝑙 … . . 𝑋𝑙, 𝑌𝑙	𝑎𝑟𝑒	𝑙𝑎𝑏𝑒𝑙𝑒𝑑	𝑝𝑜𝑖𝑛𝑡𝑠	
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𝑋𝑢 ∶= 𝑥 𝑙 + 1 ,… . . , 𝑥 𝑙 + 𝑢 ……𝑎𝑟𝑒	𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑	𝑝𝑜𝑖𝑛𝑡𝑠 

The basic idea is, given a mapping of data points X to labels Y	(f:	X	 → 	Y), task is to 

learn a better predictor f by implicitly ordering these predictor functions f	 ∈ 	F	which is 

induced by the unlabeled data. 

Ordinarily this ordering is interpreted as a prior over F	or as a regularizer. But if after 

ordering, the target predictor function is found near the top of the ordering then you need 

less labeled data to learn this predictor function [2]. 

Semi-supervised learning can be interpreted in two forms, transductive learning and 

inductive learning. Given a set of labeled training set and an unlabeled test set, the idea of 

transduction is to perform predictions only for the test points. Whereas, in case of 

inductive learning the goal is to output a prediction function which is defined on the 

entire space X [4], therefore capable of predicting novel, unobserved data without 

rebuilding the entire model. 

Semi-supervised learning was originally derived during estimation of the Fisher linear 

discriminant rule using unlabeled data was considered (Hosmer, 1973; McLachlan, 1977; 

O’Neill, 1978; McLachlan and Ganesalingam, 1982). Semi-supervised learning is 

suitable where each class-conditional density is Gaussian with equal covariance matrix. 

The likelihood of the model is then maximized using the labeled and unlabeled data with 

the help of clustering algorithms like expectation-maximization (EM) algorithm [18]. 

One essential prerequisite for semi-supervised learning is that the distribution of 

examples should be relevant to the classification problem especially with respect to the 
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unlabeled data. Mathematically speaking, the information given by distribution 

𝑝(𝑥)	should prove to be useful in the inference of 𝑝 𝑦 𝑥 .	Otherwise, the semi- 

supervised version would not prove to be more efficient over supervised version[4]. 

For semi-supervised learning to work efficiently, one of the following assumptions 

should hold. 

1. Smoothness Assumption: Points that are close to each other are more

likely to share the same label. “If two points 𝑥1, 𝑥2	in a high-density region are 

close, then so should be the corresponding outputs 𝑦1, 𝑦2.” Thus the goal is to find 

smoothness function that fits the labeled data well. [4] 

2. Cluster Assumption: If data clustering is known beforehand, then the

points in the same cluster are more likely to share a label. Simply put, “if points are 

in the same cluster, they are likely to be of the same class”. Cluster assumption can 

be thought of as a special case of smoothness assumption[4]. 

3. Manifold Assumption: “The high dimensional data lie roughly on a low

dimensional manifold”.  This essentially means dimensionality reduction. The curse 

of dimensionality has been a bottleneck for most learning methods. In generative 

methods where data densities are used for estimation, data can grow exponentially 

with a higher number of dimensions. Also, there are discriminative methods which 

make use of pairwise distances. With high number of dimensions, these pairwise 

distances become less expressive and more correlated. “If the data happen to lie on a 

low-dimensional manifold, however, then the learning algorithm can essentially 
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operate in a space of corresponding dimension, thus avoiding the curse of 

dimensionality.” [4]. 

Our approach is closely based on the Manifold Assumption since we will be dealing with 

data densities and a lot of numerical approximations at lower dimensions. 

2.3 Methods in Semi-Supervised Learning 

There are two main things to be addressed by a semi-supervised learning method: what 

implicit ordering of the functions is induced by the unlabeled data and how to find a 

predictor function at the top of this ordering that fits the labeled data well [2].  In simple 

words, we need to make a predictor that correctly identifies the data which we already 

know and makes well defined predictions on data that is not known. We take a look at 

different variations of semi-supervised learning in this section. 

1. Generative Models: This method works on the assumption of joint probability

distribution given by Bayes’ rule, 𝑝 𝑥 𝑦, 𝜃 	= 	𝑝 𝑦 𝜃 ∗ 𝑝 𝑥 𝑦, 𝜃 ,	where

𝑝 𝑦 𝜃 	is the class prior distribution and 𝑝(𝑥|𝑦, 𝜃)	is class conditional

distribution. θ denotes the parameters of joint probability. Each θ is associated

with a predictor function 𝑓Isuch	𝑓I 𝑥 = 		 argmax
O

	𝑝 𝑦 𝑥, 𝜃   and the chosen 𝑓I is 

the one that fits the labeled as well as unlabeled data well [2]. 

2. Low density Separation: Low density area is defined where there are fewer data

points. A classic example of this would be transductive SVM. TSVM labels the

unlabeled data that has maximal margin over all the data. TSVM then selects

function	𝑓∗ 𝑥 = ℎ∗ 𝑥 + 	𝑏   by minimizing the following:
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argmin
S

1
𝑙 max 1 − 𝑦U𝑓 𝑥U , 0 	

W

UXY

+	𝜆Y 𝑓 [ +	𝜆[
1
𝑢	 max	(1 − 𝑓 𝑥 , 0)

W\]

UXW\Y

 

3. Graph-based methods: Graph based methods work on data in the form of a graph

where every data point is a node in the graph. This graph can be constructed using

either similarities between data points or connecting each point with its k nearest

neighbors. The graph energy (Unnormalized Graph Laplacian) depicts how close

or far two points are in the manifold space. This graph energy induces an implicit

ordering of f	 ∈ 	F	in ascending order [2]. The task comes down to finding

functions that fit the labeled data well plus is ranked high in the order. These

functions can be found by minimizing the following object function:

argmin
S

1
𝑙 c 𝑓 𝑥U , 𝑦U 	

W

UXY

+	𝜆Y 𝑓 [ +	𝜆[ 𝑤U` 𝑓 𝑥U − 𝑓 𝑥
[

W\]

U,`XY

It is essentially a convex optimization problem as the first term in the above equation is 

convex loss over labeled data, second is the regularizer term and third is the smoothness 

regularizer [2]. 
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2.4 Semi-Supervised Learning Using Label Propagation 

Label Propagation identifies community structures in the network. Because of this nature, 

it is best suited for a graph setting [17]. All densely connected components in the network 

carry same label. Every labeled node is initialized with a unique label which then 

propagates through the network. The Label Propagation algorithm is similar to labeling 

through k nearest neighbors. The graph based semi-supervised learning approach labels 

the unlabeled points using label propagation; the smoothness regularizer term observed in 

the previous section simulates the principle working of label propagation algorithm. 

Label Propagation is a memory efficient algorithm hence it works well with semi- 

supervised learning. 

2.5 Existing work done on Large Scale Semi-supervised learning 

This section talks about the existing work done on large scale semi-supervised learning 

that find workaround for direct construction of the graph Laplacian. 

1. Prototype Vector Machine for large Scale Semi-Supervised Learning [14]: This

method introduces a novel concept of prototypes vectors for better approximation

on graph-based regularizer and model representation. These vectors essentially

perform low rank approximation of the kernel matrix as well as help construct a

model that can allow minimum information loss compared with the complete

model. This low rank approximation prototypes help avoid the construction of

complete n x n kernel matrix. And the label reconstruction prototypes work only

on labels of k prototypes.
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2. Large Graph Construction for Scalable Semi-Supervised Learning [15]: This

paper introduces a workaround for the construction of the graph Laplacian but

using anchor points that will cover the cloud of all points sufficiently. This paper

tries to construct the Laplacian using the anchor points and adjacency matrix in

combination. This approach constructs large sparse graphs over all the data.
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CHAPTER 3 

SEMI-SUPERVISED LEARNING - EIGENFUNCTION APPROACH (FERGUS, 2009) 

This approach attempts labeling ~80 million images having 4 keywords and 3 labeled 

pairs for each keyword. The main assumption that the paper holds is that the original 

dimensions of the data are as independent as possible. They try to fulfil this assumption 

by rotating the data points using PCA. 

They begin by building an unnormalized graph Laplacian L	 = 	D	 − 	W	of the labeled 

dataset 𝑋W, 𝑌W = 	 𝑥Y𝑦Y , … . , 𝑥W𝑦W  and an unlabeled dataset 𝑋] = 𝑥W\Y, 𝑥d . Where 

W defines the affinities between the nodes and D is a diagonal matrix formed by these 

affinities. Since this is a graph based SSL method, the minimizing equation is given by: 

𝐽 𝑓 = 	𝑓f𝐿𝑓 +	 𝜆 𝑓 𝑖 −	𝑦U [
W

UXY

= 𝑓f𝐿𝑓 + 𝑓 − 𝑦 fΛ(𝑓 − 𝑦) 

Where the smoothness regularizer is given by: 𝑓f𝐿𝑓 = Y
[
	 𝑤U`U,` 𝑓 𝑖 − 𝑓 𝑗 [

And Λ	is a diagonal matrix whose diagonal elements are Λ	UU = 𝜆	if i is a labeled point 

and Λ	UU = 0	for unlabeled points [1]. The paper suggests that using the density 

distribution of the data, they can approximate the graph Laplacian without doing the 

𝑛	𝑥	𝑛	Laplacian computation. They propose that instead of diagonalizing the graph 

matrix to get the eigenvectors, they can calculate approximate eigenvectors by deriving k 

eigenfunctions for k smallest eigenvalues where k << d; d being total dimensions. The 

smoothness of an eigenvector is defined by its eigenvalue, so eigenvectors with small 
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eigenvalues are smooth. Any vector can be written in the form 𝛼U[𝜎UU . Thus the 

smoothness of the vector will be 𝑓 = 	 𝛼U[ΦUU , so smooth vectors are a linear 

combination of eigenvectors with small values [1]. Here ΦU𝜎U are generalized 

eigenvectors and eigenvalues of the graph Laplacian L [1]. The following minimizing 

solution is proposed: Σ + 𝑈fΛ𝑈 𝛼 = 𝑈fΛ𝑦 which is a solution to a 𝑘	𝑥	𝑘	system of 

equations. Here, Σ	is a covariance matrix, U is a k dimensional approximate eigenvector 

array, y is the label array, Λ	are the coefficients for regularization and α is the minimizing 

factor that will eventually contain the meaningful coefficients that will give smooth 

functions which will turn out to be good predictors for the data. Using the linear equation, 

f = Uα, if we substitute the numerical solutions for U and α, we can find the smooth 

functions. Since U is n x k dimensional, α is vector with k coefficients, we will eventually 

get n 1-dimensional smooth functions which will help predict the labels for all n data 

points. Thus this algorithm helps reduce the complexity from O(𝑛[)	to	O(𝑛𝑘). 

This paper introduces the novel concept of Eigenfunctions, or numerical approximations 

of analytical eigenvectors. To approximate the eigenvectors, the authors work on density 

distribution of the data points. They use smoothness operators derived from these 

densities which gives eigenfunctions of increasing smoothness. This smoothness operator 

is defined by:  

𝐿s 𝐹 =
1
2 𝐹 𝑥Y −	 𝑥[

[𝑊(𝑥Y𝑥[)𝑝(𝑥Y)𝑝(𝑥[) 𝑑𝑥Y𝑥[ 

where W defines the affinities and p(x) defines the probability densities of data points. 

The product form of these densities depends on the assumption that the features are 
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independent; hence, a rotation of the data is required to maximize pairwise independence 

of dimensions. We can obtain the eigenfunctions by minimizing the loss over this 

smoothness operator. 

The paper defines a clear mapping between these approximated eigenfunctions and the 

generalized eigenvectors that we would get by building the actual graph Laplacian. As 

the number of data points n tends to infinity, the smoothness operator for the true graph 

Laplacian will approach the approximated smoothness operator Lp(F) defined by the data 

densities. The minimization problems for eigenvector approach will also approach 

towards the minimization problem for eigenfunction approach. Hence as number of 

samples goes to infinity, eigenfunctions converge in the limit to the true eigenvectors [1]. 

The paper defines an approximate eigensolver that derives  eigenfunctions from a k x k 

covariance matrix, thereby eliminating the costly diagonalization of the n x n Laplacian 

matrix. For practical purposes, these eigenfunctions can be estimated numerically by 

discretizing the densities in low dimensions using the following solver:  

𝐷 − 𝑃𝑊𝑃 𝑔 = 	𝜎𝑃𝐷𝑔 

where 𝑊	is the affinity between the discrete points, P is a diagonal matrix whose 

diagonal elements give the density at the discrete points, and 𝐷	is a diagonal matrix 

whose diagonal elements are the sum of the columns of 𝑃𝑊𝑃	, and 𝐷	is a diagonal matrix 

whose diagonal elements are the sum of the columns of P [1]. 
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Figure 1: Far left:  Original 2D toy data. Next three (left to right ) are the first 3 

eigenvectors, their values overlaid on the data. Next is the corresponding density plots of 

the data. Finally, the three rightmost panels are the numerical eigenfunctions of the data, 

which approximate the original eigenvectors [1]. 

Given the assumption that the components of the data are independent, the probability 

densities of the data can be expressed in a product form. Due to this, we need only k 

densities to get the approximate eigenfunctions. Below mentioned is the algorithm, 

reproduced from Fergus et al 2009: 

a. Rotate data points to make them as independent as possible.

b. For each component, discretize data by building 1D histograms and add a

smoothing constant to it.

c. Given these densities, solve numerically to get approximate eigenfunctions

and solve generalized eigenvalue problem to get coefficients.

d. Order these eigenfunctions and select first k.
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Figure 2: Eigenfunction algorithm flow at a high level 

Using linear interpolation in 1D, we interpolate each eigenfunction at labeled points.  For 

data rotation, PCA is permitted because the change in the distance between the data 

points is not desired. Only the rotation is desired and this can be achieved with something 

like PCA. 

So even if there are n data points, we just have to solve a k x k linear system of equations 

to get the eigenfunctions which will help get the approximate eigenvectors eventually. 
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Figure 3: Comparison of Eigenfunction approach and Nystrom Method. Nystrom fails at 

low density areas. Eigenfunction approach fails when density is far from product form 

(Fergus, 2009, hence the need for an initial rotation step to make the dimensions 

independent). 

For data above, the eigenfunction approach assumes the input data is linearly separable 

over the dimensions. Cases where this assumption fails, the eigenfunction approach does 

not work efficiently as shown in the above Fig. 5. 

They tested their approach on CIFAR tiny image dataset of 79,302,017 images. They 

precomputed k=64 eigenfunctions on the whole dataset and then reduced data dimensions 

to 32D. Overall they had 4 classes with 3 pairs of labeled data for each class. In all 12 

labeled data. 
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Figure 4: Comparison of Eigenfunction approach on the tiny images dataset [1]. 
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CHAPTER 4 

SYSTEM ARCHITECTURE AND OVERVIEW 

This chapter discusses the architecture for the implemented fit and predict functions. It is 

a common practice to implement data science pipelines in this format where model is 

trained with a fit function and labels for unseen samples are predicted using a predict 

function. The predict function used the trained model parameters from the fit function to 

perform prediction. Our implemented pipeline is compatible with the distributed 

computing environment Apache Spark. Apache Spark provides a fault-tolerant, 

distributed computing environment which can handle huge amount of data because of its 

parallelism. It follows a master slave architecture where the execution begins from the 

driver machine (Master) and parallel jobs are distributed to worker machines (slaves). 

The fit function implements the transductive learning aspect of semi-supervised learning 

while the predict function simulates the inductive learning aspect of it. Later we also 

discuss the challenges faced during the implementation of the architecture. 
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4.1 Fit Function 

The implementation of this approach is programmed with respect to a distributed 

paradigm like Apache Spark. The fit function works as per the concept of transductive 

learning. It reads in the dataset with labeled as well as unlabeled data points and the 

corresponding labels. For unlabeled data points there has to be some dummy label which 

will not be counted as a relevant label. The function takes k and number of bins for 

discretization as input arguments, where parameter k is the number of dimensions to 

work on and number of bins is used to discretize the dimensions of the data points into 

histograms. 

The function also takes data points and any known labels as input. As per the method, the 

data points are rotated doing a full Principal Component Analysis. After performing the 

PCA step, we retain all the dimensions, there by fulfilling the assumption that the data 

dimensions are independent and orthogonal with respect to each other. At a later point in 

the process, we will be required to work on one dimension of the data at a time. Hence 

the data which was in the form of a Resilient Distributed Dataset was converted to a more 

structured format such as a DataFrame, providing additional tools for inspecting and 

analyzing each dimension of the data in parallel. The number of dimensions, d,  will 

always be far less than the total number of samples. Keeping this assumption in mind, it 

is feasible to make use of a structured format like a DataFrame. 
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Figure 5: Flow Process of the fit function 
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Below is the pseudo code: 

Figure 6: Pseudo code for the fit function 

This structured DataFrame will be primarily used to get the k smallest eigenfunctions and 

eigenvalues using the generalized eigensolver. Also, this DataFrame will be later required 

to interpolate each data point using the 1D interpolators.  

For each dimension of data, we take all data points for that dimension, discretize them by 

binning them into a histogram. Here we make use of the number of 
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bins parameter that was given as input to the function. Using the generalized eigensolver 

equation in Eigenfunction Approach [1], we obtain the eigenvectors and eigenvalues for 

that particular dimension using 𝐷 − 𝑃𝑊𝑃 𝑔 = 	𝜎𝑃𝐷𝑔). For each dimension, there will 

be a corresponding, most significant, eigenvector and eigenvalue. So for d dimensions, 

there will be a (d x bins) vector of eigenvectors and corresponding vector of eigenvalues. 

After sorting the d eigenvalues in an ascending order, we select the top k eigenvalues and 

their corresponding eigenfunctions. 

The next task is to obtain approximate eigenvectors from these k eigenfunctions. Since 

we do not build an actual n x n graph Laplacian, we are required to get approximate 

eigenvectors. For this purpose, we build 1D straightforward interpolators, one for each 

dimension of the data. These interpolators define a density area bounded by the k 

eigenfunctions. So once we get these k interpolators, we pass every data point through 

these interpolators, interpolate them and get values which are the numerically 

approximated eigenvectors. These approximated eigenvectors can be compared to the 

actual eigenvectors that we would get using the graph Laplacian. So we are getting the 

eigenvectors without having to do a complete n x n computation. 

Next in the process we need coefficients that will help regularize the smoothness of the 

function such that the data points will fill well into the functions on the manifold. These 

coefficients can be obtained by solving the linear equation Σ + 𝑈fΛ𝑈 𝛼 = 𝑈fΛ𝑦 given 

in the Fergus et al paper that makes use of these approximated eigenvectors. We denote 

these coefficients with α (Alpha). 
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Eventually this alpha is going to be a 1D vector (k x 1). Using a linear combination of alpha 

and the approximate eigenvectors, we can get n 1D smoothness functions f which are the 

predictor functions. If we try to visualize these predictor functions,  we can see a 

clustering pattern in the data. 

Figure 7: Clustering suggested by smoothness functions for 1000 data points with binomial 

clustering. 

We then apply Gaussian Mixture Model (GMM) clustering that simulates expectation 

Maximization and clusters these predictor functions assigning hard label to them. Thus we 

present a transductive implementation where we end up labeling the same data that we used 

for training purpose. 
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For the purpose of reuse of parameters and a few variables, Apache Spark provides a 

broadcasting facility which enables sharing of variables among the workers. Parameters 

like alpha, k, bin edges which could be required on multiple workers are broadcasted for 

sharing purpose. 

4.2 Predict Function 

Predict function implements the inductive learning approach of this algorithm. It takes 

new, unobserved data samples as input, uses the trained model parameters, and outputs 

labels predicted for the new data. This prediction is performed without using the original 

training data, and without rebuilding the model. Data given as input is in the form of 

Resilient Distributed Dataset. 
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This data is first rotated using a full PCA (Principal Component Analysis). The rotated 

Data is transformed into a structured DataFrame. Then using the interpolators built 

during training phase, we interpolate each data point and get the approximate 

eigenvectors. It is to be noted here that we eliminate the phase of building interpolators 

and getting k 

eigenfunctions. Since we reuse these interpolators and k eigenfunctions in the predict 

function to predict labels, we call these the learned parameters of the model. 

Figure 8: Flow process for predict function 



27 

Below is the pseudo code: 

Figure 9: Pseudocode for Predict function 

Again, using the alpha calculated in fit function, we take a linear combination of alpha 

and these approximate eigenvectors to calculate the smooth predictor functions. Here, 

alpha too can be named as a learned model parameter. We cluster these predictor 

functions to predict labels for all these unseen samples. This justifies the inductive 

learning approach as we predict label using the learned parameters of the model. 

Again, we emphasize the inductive nature of the predict function: we make use of already 

trained models for PCA and GMM. Using these learned models from the fit function, we 

just transform test data in the predict function and predict labels for unseen data using 

GMM model. This is a typical data-science pipeline for using Machine-Learning 
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Algorithms. Using Python, these functions are made available as a module by the name 

“LabelPropagationDistributed”. 

4.3 Challenges 

This algorithm has been implemented as a combination of functional as well as object 

oriented programming paradigms. Apache Spark uses functional programming to 

minimize network overhead, whereas well-known machine learning packages such as 

Scikit-learn use object-oriented programming to store learned model parameters. But to 

provide an implementation in the form of a package, the implementation had to be 

modularized. It was challenging to merge both programmatic into a single, standalone 

module.  

Another challenge was related to the Eigenfunction approach as it was proposed by 

Fergus et al 2009. This approach does not discuss the inductive learning aspect of the 

algorithm. We were required to interpret and implement the inductive approach. There 

were issues for using class functions on the workers. If a function is specific to a class, 

sending it to worker sends the class object as well. This is not allowed as Spark cannot 

serialize - deserialize it. Solution was to declare them global. 

This algorithm requires tweaking of three important parameters namely, k; the 

dimensions to work on, bins; the number of bins to build histograms and g; gamma to 

calculate affinities using the RBF kernel. We had to experiment to get the right 

combination of all three that gave us good results. 
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CHAPTER 5 

EIGENFUNCTION APPROACH ANALYSIS 

5.1 Data Densities 

6 Figure 10: Toy data blobs and the plot of their 2D densities using 2D histograms. 
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Above is the plot of the first two dimensions of a toy dataset and its corresponding data 

densities. The dataset consisted of 10000 data points with a suggested 2 class clustering 

and 100 dimensions. These densities are the 2D histograms of the data points. This plot is 

just to give an idea as to how the interpolators would look like. The interpolators would 

be in 1D but this plot is in 2D for visualization purpose. The colors in the density plot 

change according to the density of points in that region. 

5.2 Data points against Approximate Eigenvectors 

Below is the plot of original data points against their approximate eigenvector values. 

This eigenvector is the second eigenvector and not the first. Because of minimal 

smoothness, the first eigenvector will always be flat. 
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Figure 11: Toy dataset (above) and below is its plot against first Eigenvector for the 

data. Zeroth eigenvector will always be flat 
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5.3 Data points against smoothness functions 

Below it is the plot of 2D densities of data against the final smoothness operator 

functions f. This plot depicts the interpolated area. Any new point can be interpolated into 

this density space and its corresponding label can be predicted depending on which 

labeled density it is nearer to.  

Figure 12: 2D densities of the corresponding toy dataset in the figure above versus its 

corresponding smoothness function values 
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CHAPTER 6 

RESULTS 

6.1 Results on Small dataset 

Below are the results of the algorithm on a toy dataset. The dataset was in all of 100 

points with 70 for training and 30 for testing. The dataset of 70 was used to train using 

the Fit function whereas the dataset with 30 points was used to test the predict function. 

This was a 2 dimensional data with number of bins as 50, k as 2 and gamma as 0.2. The 

classes were 2 as we can see below. The points marked in red are the labeled data points, 

that is, the ground truth which we already had. 

Figure 13: Transductive Learning. Train data ground truth 
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Figure 14: Inductive learning. Test data ground truth 

Figure 15: Transductive learning. Train data predicted labels 
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Figure 16: Inductive learning. Test data predicted labels. 

Given the 2 labeled data points out of 70, it can be seen that the algorithm could label all 

70 points correctly and the predict function could also label all the unseen 30 points with 

the same accuracy. 

6.2 Results on Bigger Dataset 

We then tried to use a dataset closer to a real-world scenario. The dataset size was 60000 

with 10 classes and 100 dimensions. This dataset was a potential simulation to the olfactory 

dataset with 10 classes and 100 dimensions. (Though we will be dealing with 146 

dimensions). Looking at the data distribution we decided to use a k of 20, number of bins 

as 2000 and a gamma for RBF kernel as 0.01.  This algorithm is very sensitive to gamma, 

then bins and then k. Gamma decides the extent to which the label should be propagated. 

Out of the 60000 data, 54000 was training data and 6000 was for testing. 
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Below are the results for the same. The fit function resulted with an accuracy of 58.75% 

where 58.75% of the data points were correctly labeled when compared with the ground 

truth labels. 

Figure 17: Training dataset with original clustering for first two dimensions. 

Figure 18: Labels propagated across the entire dataset with just 10 originally labeled 

points available. One label available for each class.  
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Figure 19: Test data set original clustering for first two dimensions. 

Figure 20: Label propagation after 1D interpolation of data using the learned model 

parameters during the training phase. This depicts the Inductive Learning.  
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6.3 Standalone Performance Vs Large-Scale Performance 
 
PRECISION 
 
We compared the accuracy of the algorithm implementation for the same size of dataset 

on the standalone implementation versus the large-scale implementation. We tried to test 

the algorithm on increasing datasets against their accuracy. Accuracy is measured in the 

form of F1-Measure, precision and recall. F1-Measure is the harmonic mean of precision 

and recall. We have presented the results in all three forms. It can be seen that the 

accuracies are almost the same for any given dataset when executed using both the 

algorithm implementations. 

Table 1: Standalone Performance Vs Large-Scale Performance for Precision 
 

Size Standalone Large-Scale 
1000 1 1 
2000 0.9641025641 0.9685863874 
10000 0.983014862 0.9809926082 
15000 0.9993284083 0.9993284083 
20000 1 1 
25000 1 1 

 

 
Figure 21: Precision comparison for standalone and largescale 
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RECALL 
Table 2: Standalone Performance Vs Large-Scale Performance for recall 

Size Standalone Large-Scale 
1000 1 1 
2000 0.9261083744 0.9113300493 
10000 0.9159248269 0.918892186 
15000 1 1 
20000 1 1 
25000 1 1 

Figure 22: Recall comparison for standalone and largescale 

F1-MEASURE 

Table 3: Standalone Performance Vs Large-Scale Performance for F1-Measure 

Size Standalone Large-Scale 
1000 1 1 
2000 0.9447236181 0.9390862944 
10000 0.9482846902 0.948927477 
15000 0.9996640914 0.9996640914 
20000 1 1 
25000 1 1 
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Figure 23: F1-Measure comparison for standalone and largescale 

6.4 Parameters vs. Accuracy 

Here we try to tweak parameters like gamma, k and number of bins and compare the 

results with the accuracy.  These parameters are very sensitive to the accuracy that we 

get. Starting with gamma, gamma is the RBF kernel affinity coefficient. The gamma 

decides the extent of label propagation towards its neighbors. The more scattered the 

intra-cluster points, the smaller gamma should be. Gamma corresponds to negative 

inverse of sigma in the RBF kernel. Parameter k decides how many dimensions to 

actually work on. The k dimensions are selected looking at the ordered eigenvalues. If the 

selected k is very large then a lot of noise gets introduced. If the k is very small the 

meaningful dimensions are not selected giving a bad clustering.  Number of Bins depends 

on the data size to be dealt with. For each dimension we build histograms. So depending 

on the total data points, we can select number of bins for discretization. Few bins may not 

give a detailing of the densities. A larger number for bins may cause some bins to be 

empty thus again, not having a fair distribution.  This algorithm needs a lot of tweaking 
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of these 3 parameters to get the right combination which will give good accuracy in 

propagation. Below are some graphs depicting drop and rise in accuracy based on these 3 

parameters. 

Bins = 100 Bins = 200 

Bins = 400 Bins = 600 

Figure 24: Effect of k and gamma values on Accuracy for different values of number of 
histogram bins. Accuracy is measured with F1-Measure. As number of bins increase, 
accuracy improves. The yellow region depicts the parameter combinations (k, bins, and 
gamma) where the accuracy is high. 
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It can be observed that as the number of bins increases, there seems to be more surface 

area (combination of gamma and k) that gives perfect accuracy. There is likely some 

threshold to this. But if the number of bins is increased beyond the threshold, the 

performance degrades.  

6.5 Nodes Vs Time 

Being a large-scale algorithm, we tested it on a cluster setup. In a distributed 

environment, the parallelism occurs depending on how my resources are allocated for the 

parallel execution. Keeping the dataset consistent, we tested the algorithm on variant 

nodes. As we increase the number of slave resources, the execution time reduces linearly. 

We tested with 1, 2 and 3 workers. Below are the statistics and graphs for these. All the 

times are Wall-times in seconds. 

Table 4: Avg. performance gain for variant number of executors for fit function. (Time in 

seconds) 

Table 5: Avg. performance gain for variant number of executors for predict function. 
(Time in seconds) 

size	 1	worker	 2	worker	 3	worker	
1000	 82.64575286	 60.66605968	 40.80560379	
10000	 84.99851303	 61.17617471	 42.10171177	
50000	 93.39005802	 61.2380533	 45.61087728	

100000	 112.725675	 72.51812732	 54.20031161	
500000	 263.9568171	 173.30298	 123.6939093	

size	 1	worker	 2	workers	 3	workers	
1000	 57.13766427	 42.47342901	 29.39921117	
10000	 80.71090465	 56.49859133	 38.41511018	
50000	 248.343311	 170.8283744	 119.0265084	
100000	 441.5165808	 297.620228	 196.867217	
500000	 2025.041952	 1242.804394	 822.3148522	
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Figure 25: Scalability in seconds for variant data sizes against variant executors 

Figure 26: Scalability in seconds for variant data sizes against variant executors 
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CHAPTER 7 

POTENTIAL USE CASE: COMPUTATIONAL OLFACTION 

This chapter talks about the work done in olfaction so far. It talks about 3 different 

research work that will establish a ground truth for our work. 

7.1 Introduction 

 The common dictionary definition of Olfaction is “sense of smell”. There can be 

disagreements in the descriptions of smells given by people. The perception of an odor 

for every person could be different as odors highly rely on hundreds of receptors in the 

brain. This concept is defined by the term Structure-Odor Relationship. It is difficult to 

map the physicochemical properties of Odors to perceptual representations[16]. The 

physicochemical properties are quantifiable, objective chemical properties of the 

molecule in question; e.g., color, texture, odor, number of atoms, melting point, boiling 

point and so on. Deriving a quantifiable mapping between these physicochemical 

properties and their resulting odor percepts is the driving question behind computational 

olfaction, and an ideal candidate for machine learning. 

To achieve this, we choose the approach of applying Machine Learning techniques to 

map the physicochemical properties of chemical substances to the odor perceptual space. 

Machine Learning provides a statistically sound predictive analysis for the data which 
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can be fairly trusted. Machine Learning has even proved its significance in numerous 

Healthcare prediction problems. 

Our approach follows the semi-supervised learning pattern to do the desired mapping: it 

is expensive to acquire ground-truth perceptual odor descriptors for molecules, and 

impossible to do on a large scale. On the other hand, it is comparatively easy to derive 

physicochemical properties of small molecules. Thus, we are left in a situation with a 

large amount of unlabeled data and a small amount of labeled data, and need to learn a 

model: an ideal situation for semi-supervised learning.  

There are data patterns that indicate the type of machine learning approach that can be 

undertaken to solve the issue at hand. In regards to that, looking at the data pattern that 

we are dealing with, semi-supervised learning approach may seem to work a lot better 

than either supervised or unsupervised learning approach alone. Another good reason to 

use ML approach is the availability of data characteristics. Data characteristics can be 

named as “features” in terms of Machine Learning language. The physicochemical 

properties are the features for our olfaction data. 

The focus of this topic is on scaling the approach for huge amount of data. Given a set of 

Billions of chemical substances each with hundreds of physicochemical properties our 

large scale semi supervised approach can handle such huge amount of dataset. Being a 

generic algorithm, it is compatible with any real time dataset. 
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7.2 Computational Olfaction – Background 

7.2.1 “Odor quality: semantically generated multidimensional profiles are stable” 

[5] 

This paper talks about characterization of odors of 10 known compounds by 150 subjects 

using a list of 146 descriptors. There are two methods for identification of odor, reference 

odorant method and semantic method. As the name suggests, reference odorant method 

finds a reference to a similar odor whereas semantic method is to define or describe odor 

in terms of words. Around 150 subjects were asked to provide with a combination of 

descriptors for the 10 odorants. This combination was chosen out of the 146 descriptors 

given to them. A few of these 146 descriptors are Fruity, citrus, Lemon, Grapefruit, 

Orange, Fruity, non-citrus, Pineapple, Grape juice. The subjects were asked to provide 

scores for descriptors which they felt would be an appropriate combination for each of 

the 10 odorants. The score of every descriptor and the frequency of every descriptor were 

the deciding factors for the characterization of the odorants.  The list of the 10 odorants is 

as follows: Acetophenone, Anethole, I-Butanol, I-Carvone, p-Cresylmethylether, 

Cyclohexanol, I-Heptanol, I-Hexanol, Phenylethanol, Pyridine. 

 
 
7.2.2 “In search of the structure of human olfactory space” [6]  

This paper investigates the structure of olfactory space defined by the responses of 150 

human observers. They make use of responses for 144 odorants and represent it in a set 

of 146D vectors. These 146 dimensions are the descriptors that were established in the 

paper by Dravnieks(AOCP, 1985). Here they apply a PCA (Principal Component 

Analysis) on these odorants thereby reducing the dimensionality to a 2D curved surface 
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which accommodates the 144 odorants. For 2D approximation, they relate the 2 

parameters to the physicochemical parameters of odorant molecules. They also show that 

one of these parameters is related to the eigenvalues of molecules connectivity matrix, 

while the other is correlated with measures of molecules polarity[6]. The paper also 

established a mapping for the odour perceptual space and the physicochemical properties. 

They compared the resulting two co-ordinates to various physicochemical properties of 

odorants. They eventually worked with 126 physicochemical properties and established 

the correlation of these properties with the 2 perceptual dimensions. 

7.2.3 “Categorical Dimensions of Human Odor Descriptor Space Revealed by 

Non- Negative Matrix Factorization” [7] 

This paper talks about reducing the dimensions of odorants using a Non-Negative Matrix 

factorization to uncover the structure in a panel of odor profiles. Each odor is defined as a 

combination of these 146 descriptors. The paper also corroborates the theory that odor 

dimensions apply categorically; that the odor space is defined in a discrete and 

intrinsically clustered manner. They choose the NMF approach for dimensionality 

reduction based on the observation that all the descriptor values are non-negative. They 

reduce the 146 dimensional space to a 10 dimensional perceptual space. They worked on 

144 monomolecular odors each represented as a 146 dimensional (descriptor) vector. 
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Figure 27: 10 largest-valued descriptors for each of the 10 basis vectors obtained from 

non-negative matrix factorization [7] 
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Figure 28: 2D embedding of the odor perceptual space [7] 



50 

7.3 Challenges 

1. Due to difficulty in interpretation of odors for chemical components, the known

mappings for physicochemical features to components are very few. There is not enough 

established data available. 

2. Moreover, it is impractical to manually identify odors of compounds for several

reasons one of which being that it may be hazardous to do so. This strongly explains need 

for computational olfaction identification. 

3. The semi-supervised approach given by Fergus et al makes a strong assumption that

the data dimensions are as independent as possible. This won’t be the case when dealing 

with olfaction dataset. The olfaction data is supposed to be a very high dimensional data. 

It is unlikely that the dimensions will be independent.  

If we are able to find a numerical workaround to achieve independent dimensionality, we 

can apply eigenfunction approach to olfaction data.  
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CHAPTER 8 

 CONCLUSION 

We have provided a large scale implementation of the eigenfunction approach using 

semi-supervised learning on a distributed framework like Apache Spark. We have 

discussed the transductive and inductive learning approaches provided by this approach. 

The approach implementation that we provide simulates the transductive as well as 

inductive parts of it. We have analyzed the eigenfunction approach and presented this 

analysis with the help of density plots. We have also discussed the background of 

computational olfaction and how this approach would be compatible with the olfaction 

data. We have presented this algorithm results on toy datasets and also analyzed the 

process. The main idea is to be able to apply this algorithm on large datasets. The 

motivation for this work was computational olfaction. The next step would be applying 

this algorithm on the olfaction data. The olfaction data is a data with 10 odor classes and 

is high-dimensional. If the dataset is dimensionally independent and proportionally 

labeled, an algorithm like eigenfunction can be aptly applied to such high dimensional 

data. Moreover, since this algorithm is linear with respect to the number of data points, 

the time required will be definitely lesser than that required by methods that construct a 

full n x n graph Laplacian. Given any such high-dimensional, dimensionally independent 

dataset with an appropriate proportion of labeled and unlabeled data, this algorithm can 
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be used to predict labels for the unlabeled points by its transductive method and can also 

label any new unseen point by its inductive method. 

The Eigenfunction approach is efficient in terms of computation time required but it lacks 

robustness since it is very sensitive to the three parameters k, bins, and gamma. A lot of 

tweaking is required if the data distribution and data pattern is unknown.  But if we can 

study the data distribution, the clustering depicted by the ground truth, then it will be 

easier tweaking the parameters. 
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