EFFECTS OF ACUTE EXERCISE ON ATTENTION, HYPERACTIVITY, MOTIVATION, AND MOOD IN YOUNG ADULT MEN WITH ELEVATED SYMPTOMS OF ATTENTION DEFICIT HYPERACTIVITY DISORDER

by

KATHRYN MARIE FRITZ

(Under the Direction of Patrick O’Connor)

ABSTRACT

This thesis determined the influence of acute moderate intensity exercise on attention, hyperactivity, motivation, and mood in adult men reporting symptoms of attention deficit hyperactivity disorder (ADHD). This crossover experiment involved 32 men and measured the outcomes before and twice after 20 minutes of exercise or a seated rest control. Condition (Exercise versus Rest) X Time (Baseline, Post-1 and Post2) ANOVAs tested hypothesized interactions that exercise alone would induce improvements in the outcomes. Results revealed exercise alone significantly increased vigor and motivation to complete mental work and decreased fatigue, depression, and confusion. Exercise did not affect attention task performances or leg activity. Leg activity was higher during the more difficult cognitive task. In men reporting elevated symptoms of ADHD 20 minutes of moderate intensity exercise enhanced motivation for cognitive tasks, increased feelings of energy and reduced feelings of fatigue, confusion, and depression but had no effect on attention or hyperactivity.

INDEX WORDS: acute exercise, ADHD, attention, accelerometry, fatigue, motivation, vigor
EFFECTS OF ACUTE EXERCISE ON ATTENTION, HYPERACTIVITY, AND MOOD IN YOUNG ADULT MED WITH ELEVATED SYMPTOMS OF ATTENTION DEFICIT HYPERACTIVITY DISORDER

by

KATHRYN MARIE FRITZ

BS, Iowa State University, 2013

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2015
EFFECTS OF ACUTE EXERCISE ON ATTENTION, HYPERACTIVITY, AND MOOD IN YOUNG ADULT MEN WITH ELEVATED SYMPTOMS OF ATTENTION DEFICIT HYPERACTIVITY DISORDER

by

KATHRYN MARIE FRITZ

Major Professor: Patrick J. O’Connor
Committee: Rodney K. Dishman
Michael D. Schmidt

Electronic Version Approved:

Suzanne Barbour
Interim Dean of the Graduate School
The University of Georgia
August 2015
DEDICATION

To Mom and Dad. I would not be where I am, doing what I do if it was not for you two. Thank you for always encouraging me to learn and keep an open mind. Most importantly, thank you for being willing to listen when I needed it and thank you for putting up with me.
ACKNOWLEDGEMENTS

Thank you, Dr. O’Connor for being a tremendous mentor these past two years. You have helped me learn and grow in many ways. Thank you for being encouraging and patient with me. I look forward to the next 3-4 years, having you again as my mentor. Thank you, Dr. Dishman, for talking up UGA when I was first considering coming to UGA for grad school, it really was the best pick. Thank you also, Dr. Dishman for agreeing to be on my committee. Thank you, Dr. Schmidt, for putting up with me in class and for allowing me to use the accelerometers in my study. Thank you also for agreeing to be on my committee. To all of my committee members, thank you for all you help, feedback, and suggestions.

Thank you to the other members of the Exercise Psych Lab: Bryan, Jake, Christie, and Derek. It was great to get to know you all, and I want to thank you for always being willing to answer any questions I may have had, big or small.

Thank you, mom and dad, for encouraging me throughout my life and always being willing to listen. Thank you also for always taking an interest in what I have chosen to do.

Thank you Dr. Lisa Ryherd for being an amazing friend and someone I can always vent to. Thank you, Emma Aryio, for being a wonderful friend. These past two years have been great, glad we get 3-4 more. Thank you, Dr. Jeremy Lackman for putting up with me, no matter how frustrating I can be at times. Thank you, Jeremy for being extremely encouraging and willing to listen during this process. You are amazing.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTERS</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>References</td>
<td>3</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>3 EFFECTS OF ACUTE EXERCISE ON ATTENTION, HYPERACTIVITY, AND MOOD IN YOUNG ADULT MEN WITH ELEVATED SYMPTOMS OF ATTENTION DEFICIT HYPERACTIVITY DISORDER</td>
<td>16</td>
</tr>
<tr>
<td>Introduction</td>
<td>18</td>
</tr>
<tr>
<td>Methods</td>
<td>20</td>
</tr>
<tr>
<td>Results</td>
<td>28</td>
</tr>
<tr>
<td>Discussion</td>
<td>33</td>
</tr>
<tr>
<td>References</td>
<td>40</td>
</tr>
</tbody>
</table>
4 CONCLUSION..57

References..61

APPENDICES

A Adult ADHD Self-Report Scale-V1.1(ASRS-V1.1) ...63

B Addiction Research Center Inventory ..64
LIST OF TABLES

Table 3.1.: Timing of study procedures ...45
Table 3.2.: Sample descriptive characteristics ..46
Table 3.3.: Data (means and SD) describing Continuous Performance Task (CPT) performance and right leg movements during the CPT ...47
Table 3.4.: Data (means and SD) describing Bakan Vigilance Task and Simple Reaction Time (SRT) performance and right leg movements during the Bakan Vigilance Task48
Table 3.5.: Data (means and standard deviation) describing mood and motivation response to the Exercise condition ..49
Table 3.6.: Data (means and standard deviation) describing mood and motivation response to the Rest condition ...50
LIST OF FIGURES

Figure 3.1.: Motivation to complete mental work (0-100) (mean and SE) for the exercise and rest conditions. Motivation was significantly higher after exercise when compared to the rest condition ...51

Figure 3.2.: Profile of Mood States (POMS) Vigor (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). There was a significant increase in vigor scores after exercise that persisted to the second post-treatment time period ..52

Figure 3.3.: Profile of Mood States (POMS) Confusion (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). There was a significant decrease in confusion scores after exercise at both the first and second post-treatment time periods ..53

Figure 3.4.: Profile of Mood States (POMS) Depression (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). There was a significant decrease in depression scores after exercise at both the first post-treatment time period ..54

Figure 3.5.: Profile of Mood States (POMS) Fatigue (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). The increase in fatigue caused by the cognitive tests was attenuated after exercise at the second post-treatment time period ..55
Figure 3.6.: Addiction Research Center Inventory d-amphetamine (A) subscale (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). There was a significant increase in A scores after exercise at both the first and second post-treatment time periods.
CHAPTER 1

INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) symptoms are common among adults. Results from a survey study of ~20,000 adults found that 6.2% screened positive for adult ADHD [1]. Population prevalence rates of those with an adult ADHD diagnosis have been reported to range from 2.5-5.2% [2-5]. Those with ADHD symptoms have been shown to have poorer performance on cognitive tests [6], have reduced grade point averages [7], and report higher rates of traffic accidents than those reporting no ADHD symptoms [1]. Stimulant medications are commonly prescribed for treatment of ADHD symptoms [8]. For those without an ADHD diagnosis, nonmedical use of stimulant medications has been reported to be 8.9%. The rate is higher among individuals reporting elevated ADHD symptoms [9], possibly indicating attempted symptom management. Prescription stimulant medications are associated with negative side effects such as sleep difficulties, appetite suppression, and irritability [9]. A further limitation of using stimulant medication to alleviate ADHD symptoms is that 35-50% of ADHD patients do not respond favorably to these medications [10, 11]. Providing safe and effective alternative acute and chronic treatments for adults with ADHD or at risk for ADHD would be beneficial.

There is evidence to suggest that acute aerobic exercise may be beneficial for those with ADHD symptoms. In children with ADHD, improvements in attention have been reported after 20 to 30 minutes of moderate intensity exercise [12-16]. Results from one study also showed reductions in an index of hyperactivity after maximal exercise in boys with ADHD [17]. There
appears to only be one study that has investigated the effects of acute exercise on ADHD symptoms in adults with an ADHD diagnosis [18]. Exercise was associated with improved cognitive performance, but due to design limitations, such as the absence of a no-exercise condition and differences in use of medication among the participants, the findings are difficult to interpret.

The purpose of this thesis is to determine the extent to which an acute bout of moderate intensity exercise affects inattention, hyperactivity, motivation to perform cognitive work, and related mood states in adult men reporting elevated ADHD symptoms.

Chapter 2 of this thesis provides a review of ADHD, deficits associated with ADHD, possible causes and current treatments for ADHD. Next, a review of studies involving acute exercise among individuals with ADHD is discussed. Finally, possible biological mechanisms of how an acute bout of exercise may alleviate ADHD are reviewed.

Chapter 3 of this thesis describes an experiment that was conducted to determine the influence of acute exercise on attention, hyperactivity, motivation to complete cognitive work, and mood in men reporting elevated ADHD symptoms. Novel features of the study include the focus on the influence of acute exercise on signs and symptoms of ADHD in adults at risk for ADHD and the use of accelerometers to objectively measure leg hyperactivity.
References

CHAPTER 2
LITERATURE REVIEW

The purpose of this thesis is to investigate the effects of a single bout of moderate intensity cycling exercise on signs and symptoms of Attention Deficit Hyperactivity Disorder (ADHD), as well as related psychological outcomes including mood and motivation in young adult men reporting elevated ADHD symptoms. The purpose of this chapter is to review relevant background information.

Prevalence of Adult Attention Hyperactivity Disorder (ADHD)

Population prevalence rates of adult ADHD range from 2.5%-5.2% [1-4]. The percentage of college students with adult ADHD has been reported to range from 2.9%-6.6% and some evidence suggests a higher rate for students attending public compared to private institutions [5].

Cognitive Performance among Adults with ADHD

Several studies have indicated that adults with ADHD do not perform as well on cognitive tests when compared to healthy controls. Those with adult ADHD have been shown to commit more omission and commission errors [6-8] and have slower and more variable reaction times [6, 7]. Results from meta-analyses show that adults with ADHD are less accurate in performing cognitive tasks when compared to controls with effect sizes ranging from .38-.65 for attention tasks [6, 9], .55 for working memory [10], and .13-.89 for executive function tests [9, 11]. Severity of ADHD symptoms (both inattention and hyperactivity) has also been shown to be positively correlated with commission errors (r=.35-.57) [7, 8] and variability in reaction time (r=.32) [7], and negatively correlated with GPA [12]. It has also been shown that adults with
ADHD have lower college grade point averages [5, 13], and are less likely to have graduated from high school or enrolled in college [14].

Possible Causes of ADHD

The causes of ADHD are currently unknown however both environmental and genetic factors have been shown to be associated with ADHD. Genes that have been shown to be associated with the symptoms and incidence of ADHD include the dopamine transporter gene (DAT1), dopamine D4 and D5 receptor gene (DRD4 and DRD5, respectively), and catechol-O-methyltransferase (COMT). Results from studies have revealed associations between ADHD diagnosis and variations in DAT1, DRD4 and DRD5 genes with odds ratios of 1.12-2.4 for DAT1 [15-18], 1.21-1.66 for DRD4 [18-20], and 1.23-1.34 for DRD5 [18, 19]. Results from other studies have not shown an association with ADHD and DAT1 [19, 21] or DRD4 [22]. Variations in the COMT gene have been associated with symptoms of ADHD [23], but a meta-analysis of 16 studies concerning the COMT gene and ADHD found no association [18]. Gene by environment interactions may explain the inconsistent results [24].

Male sex is a risk factor for ADHD in children [25]. Sex-related differences in adult ADHD prevalence are apparent but depend on age and the gender composition of the samples studied [1, 4, 26]. There is little sex-related difference in ADHD in those above 40-years but among people in their twenties there are more men than women with ADHD. This effect in young adults is smaller and less consistent than those observed with samples of children [4]. Other factors that have been shown to be associated with increased risk for ADHD are prenatal smoking [27-30], increased self-reported prenatal stress [28, 31], and being born prematurely [32]. Gene by environment interactions increasingly are being considered as important in ADHD. One study, for instance, showed increased risk for ADHD when exposed to prenatal
smoke depending on genetic variation in the DAT1 gene and the DRD4 gene with increased odds of 1.84 and 2.04 for DAT1 and DRD4, respectively [27, 29, 33]. Others have not shown support for a relationship between prenatal smoking alone [33, 34] and not all studies have reported significant gene by environment interaction effects for increased risk of ADHD [30].

Current Treatments for ADHD, their effectiveness and limitations

Current treatments for adult ADHD include prescription medication and psychotherapy. Prescription stimulants such as methylphenidate, dexamethasphenidate, and mixed amphetamines are the most commonly used medication to treat ADHD [35]. These drugs primarily act to inhibit re-uptake of neurotransmitters and thereby increase dopamine, norepinephrine and neural activity in the frontal cortex and insular cortex which is thought to increase the efficiency of pyramidal neuron signaling and thereby improve ADHD symptoms [36-40]. These medications have been shown to significantly reduce ADHD symptoms in adults when compared to placebo as well as increase feelings of energy, decrease feelings of fatigue, and increase scores on scales, including the Addiction Research Center Inventory scale, used to identify the abuse potential of amphetamines [35, 41-44]. Stimulants also improve performance on cognitive tests by reducing errors, decreasing reaction time, and decreasing variability of reaction time in adults with ADHD when compared to when they are off their medication [45-47]. Effect sizes for reducing ADHD symptoms after treatment have been shown to range from .38-.86 for stimulants [35, 43, 48-51] and from .39-.59 for non-stimulant medication [35, 50]. Results from studies also support the use of psychotherapy for reducing ADHD symptoms in adults [51-54]. Reported response rates, defined as a 30% reduction in ADHD symptoms, range from 47.4%-66% for stimulants [42, 48, 55] and from 63-66% for psychotherapy [54, 56]. Side effects of stimulant medications include
reduced appetite, jitteriness, nausea, increased heart rate, insomnia, and dry mouth [43, 48, 55, 57].

There are a number of limitations with the current ADHD treatments. The cost of treatment is high. The total excess cost of ADHD treatment (the extra health care costs for ADHD patients compared to controls) in the US was estimated as $31 billion in 2000 [41]. The safety of regular stimulant medication use is not well characterized; neither are the potential effects of the interactions between ADHD medications and other legal and illegal drugs often taken by college students. Moreover, many patients can’t or won’t adhere to treatment. Non-adherence and discontinuation of ADHD medication has ranged between 13% and 64% [58]. There is a need for other ways for adults with ADHD to manage their symptoms; especially useful would be accessible, inexpensive, safe and effective alternatives.

Effects of Acute Exercise on ADHD related signs and symptoms

The majority of research examining the influence of acute exercise on ADHD-related signs and symptoms has been conducted with children. Although some studies with null findings exist [59, 60], most studies have found positive effects of acute exercise on ADHD-related signs and symptoms [61-65]. After acute moderate intensity exercise lasting 20-30 minutes, children with ADHD have improvements in response accuracy [64, 65], response inhibition [64], impulsivity [62], reaction time [62] and motor impersistence [61]. Results from the studies above suggest that acute exercise is beneficial for children with ADHD symptoms. A recent systematic review based on three of these studies that examined cognitive functions [59, 62, 63] concluded that 30 minutes of exercise appears to improve executive functions of children but more studies are needed to confirm these benefits.
It is not well known if adults with ADHD symptoms benefit from an acute bout of exercise. It is plausible, however, based on the available information with children with ADHD as well as the behavioral data with adults without ADHD showing enhanced cognitive performance after moderate intensity exercise lasting 20 minutes or more [66, 67] when cognitive tests are conducted 10 or more minutes after exercise cessation [67]. There appears to be one observational study with adults and one preliminary experimental study using an acute bout of exercise. Results from the observational study showed a negative association between increased self-reported physical activity and impulsivity in male adults with ADHD (r=-.44) [68]. Results from the study investigating the effect of 30 minutes of low to moderate intensity treadmill exercise on ADHD symptoms found that exercise was able to increase Stroop task performance but was unable to increase working memory or task-switching performance [69].

Possible Mechanisms by which Acute Exercise may influence ADHD symptoms

Acute exercise may be able to increase attention and reduce hyperactivity in a manner consistent with what has been hypothesized for stimulant medications. Studies, primarily in rodents, using multiple techniques including microdialysis, have shown that brain (including frontal cortex, insular cortex, striatum, and hippocampus) concentrations of DA, NE, and their metabolites are increased during and after acute exercise [70-73]. Results from one study indicated that a low intensity bout of exercise was unable to increase levels of DA when compared to baseline [70]. Others have shown that DA and NE remain elevated in the striatum and hippocampus ranging from 20 to 120 minutes post exercise [70, 71, 73].

Increases in neural activity could require increased blood flow. Some, but not all [74], studies show that acute exercise increases cerebral blood flow [74, 75]. Increased blood flow has been reported in the parietal cortex, the cerebellum, the premotor cortex, and the basal ganglia.
Whether these effects can be attributed to physical activity per se and not novelty because many studies have been conducted with animals and the extent to which rodent and pig studies generalize to humans is uncertain [76]. In humans, acute exercise can transiently increase cerebral blood flow in the thalamus, insula, and prefrontal cortex during dynamic cycling exercise [77, 78] and a meta-analysis suggests that moderate intensity exercise results in a significant increase in both brain blood flow and cerebral oxygenation [77]. A neuroimaging study conducted in 12 regularly exercising (25-40 year old) men and women reported no difference in synaptic dopamine concentration, inferred from DAD2 receptor binding, after 30 minutes of exercise that appeared to be low-to-moderate intensity (treadmill running at ~11 minute per mile pace at a 3.3% grade for the final 10-15 minutes) [79]. These findings may not generalize to ADHD patients performing higher intensity exercise for 20 minutes. A meta-analysis of the acute effects of exercise on cognition reported that the biggest effects were realized among individuals who performed exercise for 20 min or longer [67].

Conclusions

Increasingly it is recognized that signs and symptoms of ADHD can persistent into young adulthood and limit the ability of those who experience these symptoms to perform optimally at school and work. Adults with signs and symptoms of ADHD are inadequately treated and there is an urgent need for safe, accessible and effective alternatives for managing the disorder. A single bout of exercise can improve signs and symptoms of ADHD in children. The one study conducted with adults had limitations in study design such as the absence of a no-exercise control condition and failure to control for medication use among participants. Evidence in rodents and humans supports that acute exercise can increase blood flow and neurotransmitters
thought to be relevant to attention; therefore, it is biologically plausible that a single bout of exercise could improve ADHD-related signs and symptoms in adult men.
References

CHAPTER 3

EFFECTS OF ACUTE EXERCISE ON ATTENTION, HYPERACTIVITY, MOTIVATION,
AND MOOD IN YOUNG ADULT MEN WITH ELEVATED SYMPTOMS OF ATTENTION

\(^1\)Fritz K.M. & O’Connor P.J. To be submitted to *Medicine and Science in Sports and Exercise.*

16
Abstract

Purpose: Little is known about whether acute exercise affects signs and symptoms of attention deficit hyperactivity disorder (ADHD) in adults. This experiment sought to determine the effects of a single bout of moderate intensity leg cycling exercise on measures of attention, hyperactivity, related mood states, and motivation to complete mental work in adult men reporting elevated ADHD symptoms.

Methods: A repeated measures crossover experiment was conducted with 32 adult men (18-33 years) with symptoms consistent with adult ADHD assessed by the Adult Self-Report Scale V1.1. Measures of attention (CPT, Bakan), motivation to perform the mental work, lower leg physical activity (accelerometry, ActiGraph GTX3) and mood (ARCI, POMS) were measured before and twice after a 20-min seated rest control or exercise condition involving cycling at 65% VO2 peak. Condition (Exercise versus rest) X Time (Baseline, Post-1 and Post2) ANOVAs tested hypothesized exercise-induced improvements in all outcomes.

Results. Statistically significant Condition x Time interactions were observed for vigor (F=10.496, df=3.583, 207.787, p<.001, partial $\eta^2 = .153$), ARCI-Amphetamine, $F(3.799, 235.535), p <.001$, $\text{partial } \eta^2 = .108$, motivation (F=3.726, df=2,116, p=.027, partial $\eta^2 = .060$), fatigue (F=2.740, df=3.947, 228.951, $p<.030$, partial $\eta^2 = .045$) and confusion (F=2.580, df=3.516, 203.931, $p<.046$, partial $\eta^2 = .043$). No significant interaction effects were observed for hyperactivity or performance (accuracy, errors or reaction time) on tasks requiring sustained attention. When the conditions were combined, leg movement was significantly higher for the more difficult Bakan task compared to the easier CPT at baseline on Day 1 ($t(27) = -2.051, p =.05$) and at the second post-treatment time on Day 2 ($t(27) = -2.183, p =.038$).
Conclusion. In young men reporting elevated symptoms of ADHD, a 20-minute bout of moderate intensity exercise transiently enhances motivation for cognitive tasks, increases feelings of energy and reduces feelings of fatigue, confusion, and depression but has no effect on the behavioral measures of attention or hyperactivity.

Keywords: accelerometry, ADHD, mood, motivation, vigilance

Introduction

Symptoms of Attention Deficit Hyperactivity Disorder (ADHD) among adults are common. A survey of ~20,000 U.S. adults with no childhood diagnosis of ADHD found that 6.2% reported symptoms of hyperactivity and/or inattention to an extent that they screened positive for ADHD. Those who screened positive for adult ADHD were on average less educated, more likely to be unemployed, and reported more missed work days, traffic citations and accidents compared to those who did not screen positive for adult ADHD [1].

Adults experiencing above average ADHD symptoms at times attempt to self-manage symptoms by taking stimulant medications which increase feelings of energy and clear headedness [2]. Nonmedical use of prescription medication among college students has been reported to be 8.9% [3], and ADHD symptoms are higher among those using non-prescribed stimulant medication compared to stimulant nonusers [3, 4]. Potential negative side effects of stimulant use include sleep difficulties, appetite suppression and irritability [3]. Another limitation of stimulant use is that 35 to 50% of ADHD patients treated do not obtain adequate symptom relief from these medications [5, 6]. Thus, there is ongoing interest in safe and effective alternative techniques for adults to better self-manage ADHD symptoms.

Acute aerobic exercise results in psychological changes that may benefit adults with elevated ADHD symptoms. Behavioral data from healthy adults show that cognitive
performance can be enhanced after 20 or more minutes of moderate intensity aerobic exercise [7]. Twenty to 30 minutes of acute moderate intensity exercise performed by children diagnosed with ADHD has resulted in improvements in attention [8-11] and hyperactivity [12]. Two studies with null findings used short bouts of exercise (~10 mins) which may have been an inadequate exercise stimulus to bring about psychological benefits [13, 14]. One study has been conducted investigating the effects of a single bout of exercise on attention among adults with ADHD [15]. Low-to-moderate intensity treadmill exercise of 35 minutes had no significant effect on working memory or task-switching performance but was associated with better performance on the Stroop test among 10 individuals diagnosed with ADHD. A clear interpretation of these findings is impossible, however, because of several design limitations including the absence of a no-exercise control condition and differences in stimulant medication use among the study participants.

The purpose of the experiment summarized here was to determine if an acute bout of moderate intensity cycling exercise would increase sustained attention, reduce hyperactivity, and improve mood or motivation to complete mental work in young adult men with above average ADHD symptoms. It was hypothesized that after exercise, compared to a no-exercise control condition in which little change was expected, (i) performance on sustained attention tasks would improve, (ii) motivation to complete the tasks would be increased, (iii) lower leg movements (i.e., hyperactivity) during the cognitive tests would be reduced, (iv) related mood states would be improved (e.g., confusion and fatigue would be reduced), and (v) the mood changes would mimic those reported after amphetamine consumption.
Methods

Sample

Participants were recruited using listservs, flyers, and verbal announcements in academic classes. In order to qualify participants had to be male, 18-34 years old, not currently taking central acting medication, without contraindications to exercise, and screen positive for adult ADHD. Smokers were excluded as were those indicating a current mental disorder other than ADHD. An *a priori* statistical power analysis with SPSS version 22 was conducted, and a sample of 32 was sufficient to provide a statistical power of .80 for the hypothesized treatment X time interactions, assuming an alpha error of .05 and a correlation of r=.90 between repeated measures across time [16]. An effect size of $d = .30$ was expected and used in the power analysis based on results from two meta-analyses investigating the acute effects of moderate intensity exercise on cognitive performance in adults [7, 17].

Measures

Screening Questionnaires

A questionnaire was used to obtain demographic and health-related background information and to screen out participants using psychoactive medication. 247 individuals completed the screening questionnaire, with 46 men meeting the study inclusion criteria. The Physical Activity Readiness Questionnaire (PAR-Q) is a 7-item questionnaire that was used to determine if an individual had contraindications to maximal exercise. The Godin Leisure-Time Exercise Questionnaire was used to estimate leisure-time physical activity. Respondents were asked to indicate “how many times on average” they completed more than 15 minutes of strenuous, moderate, or mild exercise during a typical 7 day period. Total weekly leisure activity was calculated in arbitrary units by summing the products of the separate components using the
following formula: Total weekly leisure activity score = (9 X Strenuous) + (5 X Moderate) + (3 X Light) [18].

The Adult ADHD Self-Report Scale V1.1 (ASRS V1.1) was used to identify participants who had elevated symptoms of inattention or hyperactivity consistent with ADHD. The ASRS V1.1 is a six-item questionnaire that asks about the frequency of feelings or conduct over the past 6 months with five response categories: never, rarely, sometimes, often, and very often. Four questions involve attention and two concern hyperactivity, the questions are: (1) How often do you have trouble wrapping up the final details of a project, once the challenging parts have been done?, (2) How often do you have difficulty getting things in order when you have to do a task that requires organization?, (3) How often do you have problems remembering appointments or obligations?, (4) When you have a task that requires a lot of thought, how often do you avoid or delay getting started?, (5) How often do you fidget or squirm with your hands or feet when you have to sit down for a long time?, and (6) How often do you feel overly active and compelled to do things, like you were driven by a motor? For screening purposes, each question is scored as positive (given a 1) or negative (given a 0) for ADHD and the six items are summed. Answers of “never” and “rarely” are always scored as negative while “often” and “very often” are always scored as positive. For the first three questions, “sometimes” is scored as a positive. A total score > 4 was used because it indicates a person’s symptoms may be consistent with Adult ADHD [19]. The sensitivity, specificity, and total classification accuracy of the ASRS total score was found to be 69.7%, 99.5%, and 97.9%, respectively in a study of 154 adults with ADHD [19]. Adult ADHD predicted from the total ARSR score was associated with a 4-5% reduction in work performance and increased sickness absence in a longitudinal study of more than 6,900 manufacturing workers [20]. Inattention and hyperactivity scores also were obtained from
responses on the ASRS, with questions 1-4 contributing to the inattention score and questions 5 and 6 contributing to the hyperactivity score. The scoring for each response was 0-4 with “never” corresponding to “0” and “very often” corresponding to “4.” Please see the Appendix A for ASRS-V1.1.

Cognitive Tests

The Continuous Performance Task (CPT) was one of two tests used to assess sustained attention. During the CPT participants were presented 12 different letters in Times New Roman (font size 60) (A, C, E, H, K, N, P, Q, S, U, X, Z) individually for 200 ms with an interstimulus interval of 800 ms. Participants were required to respond to a target letter (X) only when preceded by a cue (A). The CPT was 16 minutes in duration with a total of 179 correct responses and 930 total stimuli [21].

The more difficult Bakan Vigilance (dual) Task was also used to assess sustained attention. Random individual numbers (1-9) were presented for 1000 ms. Participants were instructed that they had a primary and secondary objective during the task. The primary objective was to identify any series of three consecutive odd numbers that were different (e.g. 5, 1, 9 or 7, 3, 1) by pressing a button with their right thumb. The secondary task was to identify any presentation of the number “6” and respond by pressing a different button. The Bakan Vigilance Task was also 16 minutes in duration, during which there were a total of 960 stimuli with 8 primary targets and 96 secondary targets.

A Simple Reaction Time task was used to assess psychomotor speed. Participants were presented a warning stimulus (fixation cross) followed by the response stimulus (red circle). Participants were instructed to respond as fast as they could to the red circle by pressing a button on the response pad with their preferred hand. There were 3 practice trials, followed by 5 test
trials. The interval separating the warning stimulus and the response stimulus varied and ranged from 500 ms to 1000 ms.

Motivation to Perform the Cognitive Tasks

A 10-cm visual Analog Scale (VAS) was used to assess motivation to perform the cognitive tasks. Participants indicate their level of motivation to complete mental work using a sliding ruler on a line on the computer. The verbal anchors ranged from 0 indicating “No Motivation” to 100 indicating “Highest Motivation Imaginable.”

Hyperactivity/ Lower Leg Activity Counts

The ActiGraph GTX3 accelerometer was used to measure lower leg movements during the cognitive tests as an index of hyperactivity. Accelerometers are becoming a more common method of measuring hyperactivity in individuals with ADHD. Results from these studies have shown higher activity counts for those diagnosed with ADHD when compared to those without ADHD [22-24]. The participants were told that the accelerometers were being used to measure leg movement during the exercise but the true purpose was to measure leg movement during the cognitive tasks. The dimensions and weight of the device were 4.6 cm X 3.3 cm X 1.5 cm and 19 grams, respectively. A sampling rate of 100 Hz was used. Participants wore one accelerometer on each ankle during testing. Data were downloaded in 1-sec epochs. Useable activity count data from all participants were obtained from 880 seconds during the CPT and 947 seconds during the Bakan. Total activity counts from each test were divided by time and expressed as counts/min.

Mood Questionnaires

The Profile of Mood States-Brief Form (POMS-BF) is a well-validated 30-item questionnaire which was used to assess the intensity of six different moods: tension, anger, depression, confusion, vigor, and fatigue. Responses range from 0 (indicating not at all) to 4
(indicating extremely) [25]. Participants were asked to indicate how they felt “right now, at this moment.”

The Addiction Research Center Inventory is a 49-item questionnaire. Responses to each item on this questionnaire are “True” or “False,” [26]. The amphetamine subscale was developed based on statistical analysis of items selected based on sentence completion statements made by opiate addicts under a no-drug condition and after the consumption of the stimulant d-amphetamine (A-scale) [27]. Experimental administration of amphetamines increases scores on the A-scale [2]. In this study the d-amphetamine sensitive subscale was used. See the Appendix B for ARCI-49 items and scoring of the amphetamine scale.

Procedures

The experiment was a within participants, crossover design with one 20 minute treatment (cycle ergometry at 65% VO₂ peak) and one 20 minute non-exercise comparison (seated rest control). Testing sessions were at the same time of day for most participants, but due to logistical reasons three participants were tested at a different times of day. Cognitive tests and mood questionnaires were administered at three times points for each experimental day (pre-treatment baseline, post-treatment trial 1, and post-treatment trial 2). Order of treatment was blocked randomized in blocks of two. All testing was approved by the University of Georgia Institutional Review Board.

Male students were recruited via student listservs, in-class presentations, and flyers. Potential participants were directed to complete an online screening questionnaire administered via Qualmetrics. The screening questionnaire included an informed consent for screening, a demographic and health-related questionnaire, the PAR-Q, the Godin Leisure-Time Exercise
Questionnaire, and the ASRS. Those completing the screening questionnaire were informed of their eligibility, and if eligible, were invited for baseline testing.

Baseline Day (Day 1)

Upon arrival to the laboratory for the initial visit, participants read the informed consent. If a participant agreed to participate, he then provided written informed consent. After signing the informed consent, the participant then performed practice trials of the cognitive tests (SRT, CPT, and Bakan vigilance task) after first being provided with instructions on how to complete the tasks. Performance on the practice trials was checked to determine if participants understood the instructions. If performance was below a criterion based on a previous study [28], the participant completed another round of practice to insure the instructions were understood.

After completion of the practice trials participants then performed a graded maximal exercise test on a cycle ergometer. Participants were fitted with a Polar heart rate monitor and a face mask to measure expired gasses. Using open circuit spirometry, expired air was collected and analyzed by a Parvo Medics TrueOne 2400 Metabolic Measurement System (Parvo Medics, Inc., Sandy, UT) to determine rates of oxygen uptake and associated cardiorespiratory and metabolic variables. Standard gases of known composition were used to calibrate the oxygen and carbon dioxide analyzers, and a 3-L syringe was used to calibrate the pneumotachometer prior to each testing session. Participants were instructed to maintain a cadence between 60 and 80 revolutions per minute (RPM) during the maximal exercise test and warmed up for three minutes at 50 watts. After the warmup, resistance was increased by 25 watts every 2 minutes until the participant was no longer able to continue. A cool-down at 50 watts began immediately after the participant indicated he was no longer able to continue with the maximal exercise test.
At the end of each stage, overall ratings of perceived exertion (6-20), quadriceps muscle pain intensity (0-10), VO₂, CO₂, Ve, RER and heart rate were recorded.

Experimental Days (Days 2 and 3)

After participants arrived at the laboratory, they confirmed no caffeine within 6 hours of testing, no exercise the day of the visit, and a normal prior night’s sleep (plus or minus one hour of typical sleep duration). Accelerometers were placed on each ankle. Participants then completed the first trial of mood questionnaires (POMS-BF, ARCI, and VAS of motivation) followed by the first trial of cognitive tests. After completing the cognitive tests, participants then completed another set of the mood questionnaires. Participants were then allocated to one of two 20 minute conditions (quiet rest or cycling at 65%VO₂ peak). For the exercise condition, participants warmed up at 50 watts for 2 minutes, after which resistance was increased. The level of resistance was designed to elicit 65% of a participant’s VO₂ peak and was determined using the American College of Sport Medicine’s leg cycling equation [29]. For the no-exercise condition, participants sat quietly on the cycle ergometer for 20 minutes. Immediately following the 20 minute condition, participants then repeated the testing outcome procedures twice (post-treatment 1 and post-treatment 2). A summary of the timing of the study procedures is provided in Table 3.1.

Statistical Analysis

Preliminary Analysis

IBM SPSS Statistics (Version 22.0) was used for all data analyses. For the cognitive data, each data file was scored using Cedrus Data Viewer 2.0 (Cedrus Corp., 2007) and then imported into SPSS. Mood, ARCI, and motivation data were scored using excel and then entered into SPSS. Due to technological issues there was a loss of left leg activity data (~16%). All data were
examined for normality (assessed from Kolmogorov-Smirnov tests <.05), homoscedasticity and outliers. For some variables outliers were removed (>2 standard deviations from the mean), for others non-normal data (skewness> 2.00) were transformed using log transformation. Preliminary repeated measures ANOVAs were conducted using all cases and then repeated with outliers removed. Results from these preliminary analyses did not reveal a difference in statistical significance between the approaches for any of the outcome variables. Therefore, the primary analyses used all cases with non-normal variables log transformed.

Primary Analysis

Condition (2: Exercise vs. Rest control) X Time (3: Baseline, Post 1, Post 2) repeated measures ANOVAs and ANCOVAs were used to test the hypotheses which predicted significant Condition X Time interactions for the cognitive performance, hyperactivity, motivation, and mood measures. VO$_{2\text{peak}}$, ventilatory threshold, and self-reported physical activity were used individually as covariates. Using these covariates did not significantly influence the results, consequently only the ANOVA results are presented. A responder analysis was conducted with participants who responded favorably on variables at both post-treatment time points for the exercise condition. RMANOVAs were then conducted for those participants with those variables, comparing responses in the exercise and rest conditions. Adjustments for sphericity, when needed, were made using Huynh-Feldt epsilon. Simple effects analysis was used to decompose significant interactions, using the Bonferroni correction to adjust the degrees of freedom.
Post-hoc Analysis.

Dependent t-tests examined whether leg movement was significantly higher for the more difficult Bakan task compared to the easier CPT on testing days 1 or 2 for the conditions combined.

Results

Participants

Participant characteristics (M, SD) are presented in Table 3.2. The participants in this study had lower than average levels of self-reported physical activity compared to prior studies of college men [30] and lower fitness levels on average when compared to large studies of men of the same age category performing cycle ergometry. [31] Two participants in the sample reported having been diagnosed with ADHD.

Outcomes

Descriptive statistics (M, SD) for leg activity counts during the cognitive tests, performance on the cognitive tests, mood, and motivation to complete mental work are provided in Tables 3.3-3.5.

Hyperactivity

The condition-by-time interactions for right leg hyperactivity (p = .324, partial eta² = .029) and left leg hyperactivity (p = .474, partial eta² = .046) during the CPT were not statistically significant. The condition-by-time interactions for right leg hyperactivity (p = .638, partial eta² = .004) and left leg hyperactivity (p = .937, partial eta² = .016) during the Bakan Vigilance Task were not statistically significant. The activity counts for the right and left legs were combined and summed for those participants with complete data (n = 23). The condition-
by-time interaction for summed activity during the CPT was not significant, \(p = .094, \text{partial } \eta^2 = .052 \). The condition-by-time interaction for summed activity during the Bakan Vigilance task was also not statistically significant, \(p = .844, \text{partial } \eta^2 = .004 \). Paired \(t \)-tests were conducted for each condition to test for differences in activity counts during the CPT and Bakan Vigilance tasks. Results from these analyses revealed that activity counts during the Bakan Vigilance task were significantly higher at baseline, \(t(27) = -2.351, p = .026 \), and at post-treatment 1, \(t(27) = -2.394, p = .024 \). There were no significant differences in activity counts during the two vigilance tasks on the rest day \((p > .05) \). Paired \(t \)-tests were also conducted to test for differences in activity counts during the two vigilance tasks for the first and second visits. Results from these analyses revealed that on the first visit, activity counts during the Bakan Vigilance task were significantly higher than activity counts during the CPT at baseline (i.e., before the experimental condition), \(t(27) = -2.051, p = .05 \). For the second visit, activity counts were significantly higher during the Bakan Vigilance task than during the CPT at post-treatment 2, \(t(27) = -2.183, p = .038 \).

Motivation to complete mental work

As illustrated in Figure 3.1, there was a significant time-by-condition interaction for motivation to complete mental work, \(F(2, 116) = 3.726, p = .027, \text{partial } \eta^2 = .060 \). Results from simple effects analysis for the main effect of time revealed that for the exercise condition, motivation to complete mental work was significantly higher at post-treatment 1 than at post-treatment 2 \((p = .024) \). Results from simple effects analysis looking at the main effect of time for the rest condition revealed that motivation to complete mental work did not significantly change overtime. Results from the simple effects analysis comparing the two conditions revealed that
motivation to complete mental work was significantly higher for the exercise condition than the rest condition at post-treatment 1 ($p = .001$) and post-treatment 2 ($p = .044$).

Simple Reaction Time (SRT)

There was no significant time-by-condition interaction for performance on the simple reaction time test ($p = .153$, $\text{partial } \eta^2 = .029$).

Continuous Performance Test (CPT)

There were no significant condition-by-time interactions for the CPT outcome variables: percentage correct ($p = .880$, $\text{partial } \eta^2 = .002$), false alarm errors ($p = .374$, $\text{partial } \eta^2 = .018$), reaction time ($p = .974$, $\text{partial } \eta^2 < .001$), or omission errors ($p = .788$, $\text{partial } \eta^2 = .001$).

Bakan Vigilance Task

There were no significant time-by-condition interactions for the Primary Bakan Vigilance task: percentage correct ($p = .370$, $\text{partial } \eta^2 = .004$), false alarm errors ($p = .882$, $\text{partial } \eta^2 < .001$), reaction time ($p = .282$, $\text{partial } \eta^2 = .028$), or omission errors ($p = .827$, $\text{partial } \eta^2 = .004$). There were no significant time-by-condition interactions for the Secondary Bakan Vigilance task: percentage correct ($p = .381$, $\text{partial } \eta^2 = .002$), false alarm errors ($p = .762$, $\text{partial } \eta^2 = .005$), reaction time ($p = .874$, $\text{partial } \eta^2 = .001$), and omission errors ($p = .640$, $\text{partial } \eta^2 = .004$).

Profile of Mood States (POMS)

The condition-by-time interactions for tension ($p = .183$, $\text{partial } \eta^2 = .018$) and anger ($p = .217$, $\text{partial } \eta^2 = .020$) were not statistically significant.

As illustrated in Figure 3.2, the condition-by-time interaction for vigor was statistically significant, $F(3.224, 199.900) = 12.630$, $p < .001$, $\text{partial } \eta^2 = .169$. For the main effect of time
during the exercise condition, results from simple effects analyses revealed that vigor was significantly higher at Post-1 than all other time points besides Baseline 1 \((p < .001)\). However, vigor scores returned to pre-treatment levels (Baseline 2) by Post 2 \((p = .092)\). Results from the simple effects analysis looking at the main effect of time for the rest condition revealed that vigor scores were significantly reduced after the first administration of vigilance tests (CT-1) \((p < .001)\) and remained significantly lower than Baseline 1 \((p < .001)\). When comparing the rest and exercise conditions, results from the simple effects analysis showed that vigor at post-treatment time points 1 and 2 was significantly higher for the exercise condition \((p < .05)\).

As shown in Figure 3.3, the condition-by-time interaction for confusion was statistically significant, \(F(3.420, 212.014) = 3.396, p = .046, \text{partial } \eta^2 = .052\). Results from simple effects analysis looking at the main effect of time revealed that confusion scores at all three post-treatment time points were not significantly different from confusion scores at Baseline 1 in the exercise condition \((p > .05)\). For the rest condition confusion was significantly increased after the first administration of the vigilance tests (CT-1) \((p = .005)\) and remained significantly elevated \((p < .05)\). When comparing the exercise and rest conditions, results from simple effects analysis showed that confusion was significantly lower for the exercise condition at post-treatment time points 1 and 2 \((p < .05)\).

As illustrated in Figure 3.4, the condition-by-time interaction for depression was statistically significant, \(F(2.646, 164.052) = 3.299, p = .027, \text{partial } \eta^2 = .051\). Results from simple effects analysis revealed that for the exercise condition, depression scores at post-1 were significantly lower when compared to baseline depression scores \((p = .001)\) and depression scores returned to baseline values by post-2. Depression scores in the rest condition did not significantly change over time \((p > .05)\). When comparing the exercise and rest conditions, results from simple
effects analysis revealed that depression scores were significantly lower for the exercise condition at post-1 ($p = .005$).

As illustrated in figure 3.5, the condition-by-time interaction for fatigue was statistically significant, $F(4, 248) = 2.616, p = .036$, $\text{partial } \eta^2 = .040$. Results from simple effects analysis looking at the main effect of time revealed that fatigue scores for the exercise condition at post-treatment 1 and post-treatment 2 were not significantly different from Baseline 1 fatigue scores ($p > .05$), but fatigue was significantly higher at post-treatment 3 than Baseline 1 ($p < .001$). For the rest condition, fatigue scores were significantly higher at post-treatment 2 and 3 than at Baseline 1 ($p < .001$). When comparing the exercise and rest conditions, results from the simple effects analysis revealed that fatigue was significantly lower for the exercise condition at the post-treatment time point 2 ($p = .035$).

Addiction Research Center Inventory

As illustrated in figure 3.6, the condition-by-time interaction for the ARCI A subscale was statistically significant, $F(3.799, 235.535) = 7.525, p < .001$, $\text{partial } \eta^2 = .108$. Results from simple effects analysis revealed that looking at the main effect of time for the exercise condition, ARCI A subscale scores were significantly higher at post-1 compared to all other time points ($p < .001$) with scores returning to baseline values by post 2. For the rest condition, ARCI A subscale scores were highest as the baseline 1 compared to all other time points ($p < .006$) besides post-1 ($p = .843$). Results from the simple effects analysis showed that scores on the ARCI A subscale were significantly higher for the exercise condition at post-treatment 1 ($p < .001$) and post-treatment 2 ($p = .003$) when compared to the rest condition.
Responder Analysis

Results from the responder analysis indicated that 11 participants responded favorably after exercise for accuracy on the Bakan Vigilance Secondary Task. The condition-by-time interaction was statistically significant, $F(2, 36), p = .023$, partial $\eta^2 = .189$. Results from simple effects analysis revealed that for the exercise condition, accuracy significantly increased from baseline to post-treatment 1 ($p < .001$) and to post-treatment 2 ($p = .01$). There were no differences in performance over time for the rest condition, nor were there differences in performance between the exercise and rest conditions.

Discussion

The purpose of the current study was to determine the effects of a single bout of moderate intensity exercise on attention, hyperactivity, mood, and motivation for mental work in men reporting above average ADHD symptoms. The primary finding was that when compared to a no-exercise control condition, 20 minutes of moderate intensity cycling exercise enhanced motivation for mental work, increased feelings of energy and reduced feelings of fatigue, confusion, and depression, but had no effect on cognitive performance or hyperactivity. To our knowledge, this is the first study to measure changes in mood in adult men reporting elevated ADHD symptoms.

Acute exercise had the largest effect on increasing feelings of vigor. The finding is consistent with results from other studies with fatigued or normal adults showing increases in feelings of vigor after an acute bout of exercise [32, 33]. While it is plausible that exercise-induced feeling of energy might provoke hyperactivity among those at increased risk for ADHD, increased vigor scores after the exercise condition were not accompanied by significantly higher leg hyperactivity levels compared to the rest condition. Responses for vigor were similar to
responses on the ARCI A subscale (see Figures 3.2 and 3.6). Increased scores in the ARCI A subscale after administration of a prescription stimulant (Ritalin) have been shown to be related to feelings of energy and level of stimulation [34]. The increase in vigor scores reported after exercise could possibly be due to a similar mechanism to that of prescription stimulants. Brain imaging studies have revealed increases in dopamine (DA) after acute administration of a prescription stimulants [35]. Increases in DA have also been reported after acute exercise in animals [36, 37] but not in humans [38].

Immediately after exercise the increased feelings of fatigue induced by the attention tasks was attenuated. This resulted in significantly lower fatigue scores when compared to the rest condition. This finding is potentially interesting as it suggests that 20 minutes of moderate intensity exercise may delay the fatiguing effects of cognitive tests requiring sustained attention in adults reporting ADHD symptoms. One previous study investigated the effects of 60 minutes of moderate intensity exercise on mental fatigue and cognitive performance in healthy college students [39]. Results from this study did not show an attenuating effect of exercise on increased feelings of mental fatigue induced by 40 minutes of cognitive testing. Adults at increased risk for ADHD may respond to exercise and cognitive testing with a pattern that differs from adults who are not at risk for ADHD.

Motivation to complete mental work was significantly higher after the exercise condition when compared to seated rest. This finding is unique because motivation to complete mental work has rarely been measured in studies examining the cognitive effects of acute exercise. Twenty minutes of moderate intensity exercise resulted in significant increases in motivation to complete the cognitive tasks. Previous studies have shown that individuals with ADHD have reduced DA receptor availability in the nucleus accumbens (NAcc), an area thought to be
involved with motivation [40, 41]. DA receptor availability in the NAcc has also been shown to be positively related to scores for trait motivation [40]. The finding in the present study suggests that moderate intensity exercise could be beneficial for those with signs and symptoms of ADHD who may have a more difficult time staying motivated to complete mental work. One plausible mechanism for how acute exercise might increase motivation for mental work could be an increase in DA in the areas involved with motivation such as the NAcc. Results from animal studies have shown increases in DA after acute exercise [36, 37]. Whether or not increases in DA after acute exercise are related to changes in motivation to complete mental work needs to be further investigated.

The significant improvements in mood after the exercise condition were not accompanied by significantly better performance on the attention tasks compared to the rest condition. One reason for the null findings in regards to the attention tasks may be the exercise stimulus used. The exercise duration and intensity used in this study was based on previous research in healthy adults [7, 17] and in children with ADHD [9, 11, 42]. Adults with ADHD or those with elevated ADHD symptoms may require a different “dose” of exercise than the one used in the current study to be able to experience improvements in attention. Another reason the acute exercise bout did not have an effect on cognitive performance may be due to the cognitive tests used in this study. The CPT and Bakan Vigilance Task require sustained attention to perform well. It may have been useful to have administered an inhibitory control test (e.g., Stroop test, switch-test, or Go/No-Go task) in lieu of one of the sustained attention tasks to assess other dimensions of the deficits associated with ADHD symptoms. It may be noteworthy that a sub-set of participants did respond to exercise by improving the accuracy of their performance on the secondary task of the
Bakan. The finding implies that acute exercise could improve certain aspects of attention in some individuals.

To our knowledge, only one previous study has examined the effects of acute exercise on an index of hyperactivity [12]. The results revealed that motor impersistence (i.e., the measure of hyperactivity used) was improved after maximal exercise but not after submaximal (65-75% VO$_{2\text{peak}}$) or seated rest. Thus, the absence of significant differences in hyperactivity after exercise in the present study may have been due to inadequate exercise intensity.

It is interesting that hyperactivity was significantly higher during the Bakan Vigilance task when compared to the CPT. The Bakan Vigilance task is a dual task that is more cognitively demanding than the CPT and may have used more attentional resources. This finding runs counter to traditional thinking that attention and hyperactivity are negatively related. The present finding is consistent with one study which showed that in adults with ADHD, hyperactivity assessed by accelerometry was significantly higher during two working memory tasks when compared to a control condition [43]. Previous studies that did not use accelerometry have investigated hyperactivity relationships with cognitive performance and found mixed results. One study with healthy, non-ADHD adults found worse performance with increased hyperactivity [44] and one study of children with ADHD found improved performance with increased hyperactivity [45].

The primary findings of the current study were that after 20 minutes of moderate intensity exercise, men characterized by elevated ADHD symptoms reported improvements in mood and increased motivation to complete mental work. The improvements in mood were transient, lasting approximately 45 minutes. The effects of immediate release stimulants have been found to last about 3 hours, and individuals taking these drugs require repeated administration across
the day to manage their ADHD symptoms [46]. One previous study investigated the effects of administration of d-amphetamine on changes in mood in low and high sensation seekers using similar measures to those in the current study. Results from that study showed increases in feelings of vigor and scores on the ARCI d-amphetamine scale that were similar to those in the current study, but these effects did not occur until 50-110 minutes after drug administration [47]. The effects of acute moderate exercise may not last as long as the effects of stimulant medications based on findings from the current study, but the effects of acute exercise could be more immediate, meaning these individuals could possibly benefit sooner when compared to stimulant medications. It is also worth noting that the high sensation seeking individuals in the Kelly et al. 2009 study had higher ADHD symptomology when compared to the low sensation seekers. The high sensation seekers also started with similar vigor and ARCI d-amphetamine scores to those in the current study. The increases on these measures after administration of d-amphetamine were not large as those seen in the current study. It would be interesting to directly compare the effects of acute exercise and short-acting stimulant medications with regards to changes in vigor and ARCI d-amphetamine scores.

Even though the significant mood findings were not accompanied by significant improvements in cognitive performance or hyperactivity, they do provide evidence for a beneficial effect of acute moderate intensity exercise for those experiencing ADHD symptoms. Results from this study could indicate that after exercise, these individuals may persist longer in tasks requiring sustained mental effort. The one study conducted with adults diagnosed with ADHD found significant post-exercise improvements in performance on the Stroop task in the color-word condition though a non-exercise control condition was not employed [15]. Tasks that emphasize inhibitory functions may be more sensitive to an exercise stimulus than tasks that lack
such emphasis. This could explain why in the current study, exercise did not have an effect on cognitive performance and why results from another study found a significant effect of exercise on cognitive performance [15]. A possible reason for the null results found in the present study could be that different brain regions and circuits are used in cognitive versus motivational processes. Previous studies have indicated that the dorsolateral prefrontal cortex (DLPFC) and the inferior frontal cortex (IFC) appear to be more involved with cognitive processes, including attention and inhibitory control, whereas the orbitofrontal cortex (OFC) appears to be more important in regulating motivational and emotional processing [29, 30]. Although speculative, there is a possibility that the exercise stimulus used here affected the above mentioned brain areas differently.

It is also noteworthy that the participants on the average had lower fitness levels compared to men of a similar age who completed a peak exercise test on a cycle ergometer [31]. This did not appear to be primarily because of an inadequate test. All but one participant were characterized by perceived exertion, heart rate and respiratory quotient responses that supported peak exercise test performance. The finding is consistent with the observation that compared to healthy adults, patients with mental disorders are more often characterized by low cardiorespiratory fitness and fail to meet criteria supportive of a maximal effort [48].

The current study is not without limitations. One limitation is the generalizability of results to adults diagnosed with ADHD. Participants included in the current study screened positive for ADHD based upon responses to the ASRS-V1.1., and were not required to have an ADHD diagnosis. The cognitive tests used in this study assessed the ability to sustain attention, but may have been insensitive to change with exercise in the group studied. More difficult or engaging tasks or those emphasizing other psychological outcomes may have yielded different
results. There is the possibility that moderate intensity exercise could have a positive effect on cognitive performance, but the tests used in the current study did not emphasize those processes that may have been most influenced (e.g., inhibitory control). Others have suggested that using multiple assessments (i.e., cognitive batteries) could assist in obtaining a better overall perspective of the effects of acute exercise on cognitive performance [49]. Another limitation of the current study was measuring hyperactivity only in the lower limbs as there may be individual differences in fidgeting based on which body location is assessed (e.g., legs vs. arms). With the devices used in the current study (i.e., Actigraph GTX3 accelerometer) it would have been difficult to measure head or upper limb movements without participants being more consciously aware of the devices and which might have increased the chance of participants guessing the hypotheses of the study.

In conclusion, results from the current study suggest that men reporting above average ADHD symptoms may benefit from an acute bout of moderate intensity exercise by experiencing increases in mood and motivation to complete mental work. Future studies with adults at increased risk for, and diagnosed with, ADHD should investigate if acute exercise affects cognitive performance on different types of tasks than the ones used in the current study. It would also be beneficial to determine if various duration and intensities of exercise are able to more greatly affect hyperactivity [12].
References

Figure Captions

Figure 3.1.: Motivation to complete mental work (0-100) (mean and SE) for the exercise and rest conditions. Motivation was significantly higher after exercise when compared to the rest condition.

Figure 3.2.: Profile of Mood States (POMS) Vigor (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). There was a significant increase in vigor scores after exercise that persisted to the second post-treatment time period.

Figure 3.3.: Profile of Mood States (POMS) Depression (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). There was a significant decrease in depression scores after exercise at the first post-treatment time period.

Figure 3.4.: Profile of Mood States (POMS) Fatigue (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). The increase in fatigue caused by the cognitive tests was attenuated after exercise at the first post-treatment time period.

Figure 3.5.: Profile of Mood States (POMS) Confusion (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1) and twice after the treatments (CT-2, CT-3). There was a significant decrease in confusion scores after exercise at both the first and second post-treatment time periods.

Figure 3.6.: Addiction Research Center Inventory d-amphetamine (A) subscale (mean and SE) scores in the exercise and rest conditions. Cognitive tests were performed before (CT-1)
and twice after the treatments (CT-2, CT-3). There was a significant increase in scores on the A subscale after exercise at both the first and second post-treatment time periods.
Table 3.1. Timing of study procedures

<table>
<thead>
<tr>
<th>Time</th>
<th>Task</th>
<th>Test Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0:00-0:02</td>
<td>Greet participant</td>
<td>Practice</td>
</tr>
<tr>
<td>0:02-0:10</td>
<td>Participant completes informed consent</td>
<td>Practice</td>
</tr>
<tr>
<td>0:10-0:15</td>
<td>Put Accelerometers on participant</td>
<td>Practice</td>
</tr>
<tr>
<td>0:15-0:18</td>
<td>Explain and Practice Simple Reaction Time test</td>
<td>Practice</td>
</tr>
<tr>
<td>0:18-0:28</td>
<td>Explain and Practice Bakan Vigilance Task</td>
<td>Practice</td>
</tr>
<tr>
<td>0:28-0:38</td>
<td>Explain and Practice Continuous Performance Test</td>
<td>Practice</td>
</tr>
<tr>
<td>0:38-0:43</td>
<td>Check Performance and repeat practice trials if need be</td>
<td>Practice</td>
</tr>
<tr>
<td>0:43-1:03</td>
<td>Perform Maximal Exercise test</td>
<td>Practice</td>
</tr>
<tr>
<td>1:03-1:05</td>
<td>Remove Accelerometers</td>
<td>Practice</td>
</tr>
<tr>
<td>1:05-1:06</td>
<td>Schedule next visit</td>
<td>Practice</td>
</tr>
</tbody>
</table>

Days 2 & 3		
0:00-0:02	Greet participant	Baseline
0:02-0:05	Confirm compliance to requested pre-test procedures	Baseline
0:05-0:10	Put Accelerometers on participant	Baseline
0:10-0:13	POMS & ARCI questionnaires	Baseline 1
0:13-0:14	Motivation to complete mental work (VAS)	Baseline
0:14-0:15	Simple Reaction Time task (SRT-1)	Baseline
0:15-0:31	Continuous Performance Task (CPT-1)	Baseline
0:31-0:47	Bakan Vigilance Task (BVT-1)	Baseline
0:47-0:50	POMS & ARCI questionnaires	Baseline 2
0:50-1:10	Experimental Condition (20 min quiet seated rest or 20 min cycling at 65% VO2 peak)	Treatment

<p>| | | |
| | | |
| 1:10-1:13 | POMS & ARCI questionnaires | Post-Treatment 1 |
| 1:13-1:14 | Motivation to complete mental work (VAS) | Post-Treatment 1 |
| 1:14-1:15 | Simple Reaction Time Task (SRT-2) | Post-Treatment 1 |
| 1:15-1:31 | Continuous Performance Task (CPT-2) | Post-Treatment 1 |
| 1:31-1:47 | Bakan Vigilance Task (BVT-2) | Post-Treatment 1 |
| 1:47-1:50 | POMS & ARCI questionnaires | Post-Treatment 2 |
| 1:50-1:51 | Motivation to complete mental work (VAS) | Post-Treatment 2 |
| 1:51-1:52 | Simple Reaction Time task (SRT-3) | Post-Treatment 2 |
| 1:52-2:08 | Continuous Performance Task (CPT-3) | Post-Treatment 2 |
| 2:08-2:24 | Bakan Vigilance Task (BVT-3) | Post-Treatment 2 |
| 2:24-2:27 | POMS & ARCI questionnaires | Post-Treatment 2 |
| 2:27-2:29 | Remove Accelerometers | |</p>
<table>
<thead>
<tr>
<th>Measure</th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21</td>
<td>2.9</td>
<td>18-33</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>177.9</td>
<td>7.0</td>
<td>163-191</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>75.9</td>
<td>12.2</td>
<td>52.7-113.2</td>
</tr>
<tr>
<td>BMI</td>
<td>23.9</td>
<td>3.0</td>
<td>16.6-32.4</td>
</tr>
<tr>
<td>VO\text{\textsubscript{2peak}}:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO\text{\textsubscript{2peak}}(ml/kg/min)</td>
<td>38.2</td>
<td>7.2</td>
<td>25.2-55.4</td>
</tr>
<tr>
<td>Power\text{\textsubscript{peak}}(watts)</td>
<td>225.8</td>
<td>40.4</td>
<td>150-325</td>
</tr>
<tr>
<td>RER\text{\textsubscript{peak}}(VCO\text{\textsubscript{2}}/VO\text{\textsubscript{2}})</td>
<td>1.2</td>
<td>.1</td>
<td>.99-1.5</td>
</tr>
<tr>
<td>RPE\text{\textsubscript{peak}}(6-20)</td>
<td>18.1</td>
<td>1.7</td>
<td>13-20</td>
</tr>
<tr>
<td>HR\text{\textsubscript{Max}}(bpm)</td>
<td>188.7</td>
<td>8.2</td>
<td>169-202</td>
</tr>
<tr>
<td>Leg pain\text{\textsubscript{peak}}(0-10)</td>
<td>7.6</td>
<td>1.8</td>
<td>3-10</td>
</tr>
<tr>
<td>Power output at 65% VO\text{\textsubscript{2peak}}</td>
<td>127.9</td>
<td>25.9</td>
<td>69-191</td>
</tr>
<tr>
<td>Godin leisure-time physical activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strenuous</td>
<td>26.7</td>
<td>13.1</td>
<td>0-63</td>
</tr>
<tr>
<td>Moderate</td>
<td>15.9</td>
<td>9.6</td>
<td>0-35</td>
</tr>
<tr>
<td>Mild</td>
<td>14.4</td>
<td>7.4</td>
<td>3-30</td>
</tr>
<tr>
<td>Total Score</td>
<td>57.0</td>
<td>23.2</td>
<td>9-103</td>
</tr>
<tr>
<td>ADHD symptoms (ASRS V1.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inattention (0-16)</td>
<td>9.9</td>
<td>1.9</td>
<td>7-14</td>
</tr>
<tr>
<td>Hyperactivity (0-8)</td>
<td>5.4</td>
<td>1.1</td>
<td>4-8</td>
</tr>
<tr>
<td>Total Score (0-6)</td>
<td>4.6</td>
<td>0.8</td>
<td>4-6</td>
</tr>
</tbody>
</table>
Table 3.3
Means and Standard Deviations for CPT Performance and raw leg movements during the CPT

<table>
<thead>
<tr>
<th>Measure</th>
<th>Exercise</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Post-Treatment 1</td>
</tr>
<tr>
<td>CPT Accuracy (%)</td>
<td>94.1 (4.4)</td>
<td>90.7 (7.9)</td>
</tr>
<tr>
<td>False Alarms Errors (%)</td>
<td>1.5 (0.9)</td>
<td>2.1 (1.1)</td>
</tr>
<tr>
<td>Reaction Time (ms)</td>
<td>325.4 (43.6)</td>
<td>310.9 (56.0)</td>
</tr>
<tr>
<td>Omission Errors (%)</td>
<td>5.9 (4.4)</td>
<td>9.3 (7.9)</td>
</tr>
<tr>
<td>Right leg movements (counts/min)</td>
<td>164.5 (220.8)</td>
<td>139.6 (130.3)</td>
</tr>
<tr>
<td>Left leg movements (counts/min)</td>
<td>128.0 (132.9)</td>
<td>177.2 (239.5)</td>
</tr>
</tbody>
</table>
Table 3.4
Means and Standard Deviations for Simple Reaction Time and Bakan Vigilance Task performance and raw leg movements during the Bakan.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Exercise</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Post-1</td>
</tr>
<tr>
<td>Bakan Vigilance Primary Task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>79.0(26.7)</td>
<td>70.6 (28.6)</td>
</tr>
<tr>
<td>False Alarm Errors (%)</td>
<td>0.8 (4.5)</td>
<td>2.8 (6.2)</td>
</tr>
<tr>
<td>Reaction Time (ms)</td>
<td>611.1 (90.2)</td>
<td>594.7 (134.6)</td>
</tr>
<tr>
<td>Omission Errors (%)</td>
<td>20.2 (24.9)</td>
<td>26.6 (26.0)</td>
</tr>
<tr>
<td>Bakan Vigilance Secondary Task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy (%)</td>
<td>91.1 (8.7)</td>
<td>90.2 (17.8)</td>
</tr>
<tr>
<td>False Alarm Errors (%)</td>
<td>0.7 (1.3)</td>
<td>0.6 (0.8)</td>
</tr>
<tr>
<td>Reaction Time (ms)</td>
<td>650.7 (56.8)</td>
<td>644.3 (75.1)</td>
</tr>
<tr>
<td>Omission Errors (%)</td>
<td>8.3 (8.4)</td>
<td>9.2 (17.8)</td>
</tr>
<tr>
<td>Simple Reaction Time test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction Time (ms)</td>
<td>254.3 (30.3)</td>
<td>243.9 (20.0)</td>
</tr>
<tr>
<td>Right leg movements (counts/min)</td>
<td>276.0 (274.9)</td>
<td>297.8 (337.3)</td>
</tr>
<tr>
<td>Left leg movements (counts/min)</td>
<td>257.9 (228.3)</td>
<td>205.7 (200.9)</td>
</tr>
</tbody>
</table>
Table 3.5
Means and Standard Deviations for Mood and Motivation scores in the Exercise Condition.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Baseline-1</th>
<th>Baseline-2</th>
<th>Post-1</th>
<th>Post-2</th>
<th>Post-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
<td>2.0 (2.6)</td>
<td>1.7 (2.0)</td>
<td>1.1 (1.6)</td>
<td>1.1 (1.6)</td>
<td>1.2 (1.4)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.4 (2.2)</td>
<td>1.5 (2.2)</td>
<td>0.1 (0.246)</td>
<td>0.3 (0.9)</td>
<td>0.7 (1.4)</td>
</tr>
<tr>
<td>Anger</td>
<td>1.0 (1.4)</td>
<td>2.0 (2.868)</td>
<td>0.2 (0.5)</td>
<td>1.4 (1.7)</td>
<td>2.6 (3.3)</td>
</tr>
<tr>
<td>Vigor</td>
<td>6.8 (4.3)</td>
<td>3.3 (4.3)</td>
<td>8.8 (4.6)</td>
<td>4.5 (4.0)</td>
<td>3.4 (3.7)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3.6 (3.0)</td>
<td>5.9 (4.2)</td>
<td>3.7 (3.3)</td>
<td>4.0 (3.2)</td>
<td>6.6 (2.8)</td>
</tr>
<tr>
<td>Confusion</td>
<td>3.1 (1.5)</td>
<td>4.0 (2.0)</td>
<td>2.7 (1.5)</td>
<td>3.4 (1.8)</td>
<td>3.6 (1.5)</td>
</tr>
<tr>
<td>Motivation to complete mental work</td>
<td>60.3 (19.6)</td>
<td>69.7 (14.3)</td>
<td></td>
<td></td>
<td>47.5 (21.2)</td>
</tr>
<tr>
<td>ARCI A subscale</td>
<td>3.4 (2.1)</td>
<td>2.2 (1.8)</td>
<td>5.5 (2.2)</td>
<td>3.2 (2.6)</td>
<td>2.6 (2.2)</td>
</tr>
</tbody>
</table>
Table 3.6
Means and Standard Deviations for Mood and Motivation scores in the Rest Condition.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Baseline-1</th>
<th>Baseline-2</th>
<th>Post-1</th>
<th>Post-2</th>
<th>Post-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
<td>1.7 (2.0)</td>
<td>1.5 (2.0)</td>
<td>0.9 (1.4)</td>
<td>1.4 (1.9)</td>
<td>1.5 (1.9)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.0 (2.0)</td>
<td>1.2 (1.9)</td>
<td>0.8 (1.3)</td>
<td>1.0 (1.9)</td>
<td>1.2 (2.1)</td>
</tr>
<tr>
<td>Anger</td>
<td>1.0 (1.2)</td>
<td>1.7 (2.0)</td>
<td>0.9 (1.0)</td>
<td>2.1 (2.4)</td>
<td>2.3 (3.3)</td>
</tr>
<tr>
<td>Vigor</td>
<td>5.9 (4.0)</td>
<td>2.6 (3.1)</td>
<td>3.0 (3.8)</td>
<td>1.8 (2.8)</td>
<td>2.1 (2.8)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3.7 (3.1)</td>
<td>6.4 (4.2)</td>
<td>4.1 (3.0)</td>
<td>5.9 (3.8)</td>
<td>6.2 (4.2)</td>
</tr>
<tr>
<td>Confusion</td>
<td>3.1 (1.5)</td>
<td>4.2 (1.8)</td>
<td>4.0 (1.6)</td>
<td>4.3 (1.9)</td>
<td>4.3 (1.8)</td>
</tr>
<tr>
<td>Motivation to complete mental work</td>
<td>59.3 (22.9)</td>
<td>52.4 (23.2)</td>
<td></td>
<td></td>
<td>37.7 (21.6)</td>
</tr>
<tr>
<td>ARCI A subscale</td>
<td>3.4 (1.9)</td>
<td>1.9 (1.4)</td>
<td>2.5 (2.1)</td>
<td>1.6 (1.2)</td>
<td>1.8 (1.6)</td>
</tr>
</tbody>
</table>
Significant difference between the exercise and seated rest condition: *(p<.05).*
Figure 3.2

Significant difference between the exercise and seated rest condition: *(p<.05).*
Significant difference between the exercise and seated rest condition: *(p<.05).*
Significant difference between the exercise and seated rest condition: *(p<.05).*
Figure 3.5.

Significant difference between the exercise and seated rest condition: *\((p<.05)\).
Figure 3.6.

**Significant difference between the exercise and seated rest condition: *(p<.05).*
CHAPTER 4

CONCLUSION

The purpose of this thesis was to investigate the effects of a single bout of moderate intensity exercise on signs and symptoms of Attention Deficit Hyperactivity Disorder (ADHD) in young adult men reporting elevated ADHD symptoms.

ADHD symptoms are common among US adults and have been reported to range up to 6.2% [1]. Adults experiencing ADHD symptoms may attempt to self-medicate with stimulants which are associated with negative side effects [2], and in 35-50% of individuals, do not always reduce ADHD symptoms in a clinically meaningful way [3, 4]. Previous studies have indicated acute exercise may alleviate ADHD signs and symptoms as indicated with cognitive performance [5-8] and measures of hyperactivity [9]. To our knowledge, one previous study has been conducted with adults diagnosed with ADHD [7]. Results revealed increased performance on the Stroop test after moderate intensity exercise for those with ADHD, but interpretation of the findings is difficult due to limitations in study design such as the absence of a no-exercise control condition and differences in medication use among study participants.

The purpose of the experiment included in this thesis was to determine the effects of acute moderate intensity cycling exercise on attention, lower limb hyperactivity, mood, and motivation to complete mental work. The primary findings of the investigation were that after 20 minutes of moderate intensity exercise, men reporting elevated ADHD symptoms had increased motivation to complete mental work and vigor and reported reduced feelings of fatigue, depression and confusion when compared to a no-exercise control condition. There were no
differences in cognitive performance or hyperactivity between the exercise and rest conditions. To our knowledge this is the first study to attempt to measure the effects of acute exercise on attention, hyperactivity, mood, and motivation for cognitive tasks in men screening positive for ADHD.

After the exercise condition, participants reported significantly higher levels of vigor which previous studies have also shown [10]. After the exercise condition there was also an attenuation in feelings of fatigue induced by ~32 minutes of cognitive testing. Results from one previous study using a 60 minute bout of moderate intensity cycling exercise did not reveal an attenuating effect of exercise on feelings of mental fatigue after 40 minutes of cognitive testing [11]. This could indicate differences between samples with and without increased risk for ADHD or that when exercising at a moderate intensity, short bouts versus longer bouts, could be more beneficial when trying to reduce the fatiguing effects of mental work lasting ~30 minutes or more. Future studies should try to determine how different intensities and durations of exercise affect feelings of fatigue associated with cognitive tests.

Results from this study indicate that individuals with signs and symptoms of ADHD may experience mood improvements after 20 minutes of moderate intensity exercise. An interesting finding of the study was participants reported significantly higher motivation to complete mental work after exercise when compared to the no-exercise condition. This increased motivation to complete mental work, however, was not associated with increased cognitive performance. It could be that the cognitive tests used in this study were limited because they focused primarily on one cognitive process (vigilance) and an effect may have been seen if a different type of cognitive task had been used such as one that focused on inhibitory control. Future studies should include cognitive tasks that assess different cognitive processes as it is possible that
exercise affects these processes differently. It has also been suggested by others that including multiple cognitive tests assessing different aspects of cognition may help to better assess participants’ cognitive performance [12]. Results from this study should also encourage other researchers investigating the effects of exercise on cognitive performance to measure motivation to complete mental work. The increase in motivation could indicate individuals at increased risk for ADHD would be more likely to persist during longer, naturally occurring mental work such as studying for exams.

Lastly, results from the study did not reveal an effect of exercise on hyperactivity. To our knowledge, only one previous study has measured hyperactivity in children with ADHD and found improvements in hyperactivity only after maximal exercise [9]. For adults with ADHD symptoms, this could indicate that more intense exercise is needed to see an improvement in hyperactivity. It would be interesting to investigate the effects of a more intense exercise bout, such as a high intensity interval training session, on hyperactivity in those with ADHD symptoms.

In conclusion, 20 minutes of moderate intensity exercise may benefit men reporting elevated ADHD symptoms. These benefits include increased motivation to complete mental work and feelings of vigor, an attenuation of feelings of fatigue associated with sustained vigilance testing, and a reduction in confusion and depression. The exercise stimulus used in the experiment was unable to affect cognitive performance and hyperactivity. Acute exercise has been shown to improve cognitive performance in healthy adults, and the exercise stimulus used in this study was based on results from two meta-analyses [13, 14]. It is possible that adults with ADHD and with elevated ADHD symptoms require a more intense and or longer bout of exercise in order to improve attention. Future studies should aim to determine the influence of
various exercise types, intensities, and durations on signs and symptoms of ADHD in adults with ADHD or at risk for ADHD.
References

Appendices
Adult ADHD Self-Report Scale-V1.1 (ASRS-V1.1)

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>Very Often</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>How often do you have trouble wrapping up the final details of a project, once the challenging parts have been done?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>How often do you have difficulty getting things in order when you have to do a task that required organization?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>How often do you have problems remembering appointments or obligations?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>When you have a task that requires a lot of thought, how often do you avoid or delay getting started?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>How often do you fidget or squirm with your hands or feet when you have to sit down for a long time?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>How often do you feel overly active and compelled to do things, like you were driven by a motor?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Participants had to have at least 4 checked boxes in the shaded areas to be included in the study. For inattention and hyperactivity scores, items 1-4 were used for inattention and items 5 and 6 for hyperactivity.
Addiction Research Center Inventory

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. My speech is slurred.</td>
<td>T F</td>
<td>26. My thoughts come more easily than usual.</td>
<td>T F</td>
</tr>
<tr>
<td>2. I am not as active as usual.</td>
<td>T F</td>
<td>27. I feel less discouraged than usual.</td>
<td>T F</td>
</tr>
<tr>
<td>3. I have a feeling of dragging along rather than coasting.</td>
<td>T F</td>
<td>28. I am in the mood to talk about the feeling I have.</td>
<td>T F</td>
</tr>
<tr>
<td>4. I feel sluggish.</td>
<td>T F</td>
<td>29. I feel more excited than dreamy.</td>
<td>T F</td>
</tr>
<tr>
<td>5. My head feels heavy.</td>
<td>T F</td>
<td>30. Answering these questions was very easy today.</td>
<td>T F</td>
</tr>
<tr>
<td>6. I feel like avoiding people although I usually do not feel this way.</td>
<td>T F</td>
<td>31. My memory seems sharper to me than usual.</td>
<td>T F</td>
</tr>
<tr>
<td>7. I feel dizzy.</td>
<td>T F</td>
<td>32. I feel as if I could write for hours.</td>
<td>T F</td>
</tr>
<tr>
<td>8. It seems harder than usual to move around.</td>
<td>T F</td>
<td>33. I feel very patient.</td>
<td>T F</td>
</tr>
<tr>
<td>9. I am moody.</td>
<td>T F</td>
<td>34. Some parts of my body are tingling.</td>
<td>T F</td>
</tr>
<tr>
<td>10. People might say that I am a little dull today.</td>
<td>T F</td>
<td>35. I have a weird feeling.</td>
<td>T F</td>
</tr>
<tr>
<td>11. I feel drowsy.</td>
<td>T F</td>
<td>36. My movements seem faster than usual.</td>
<td>T F</td>
</tr>
<tr>
<td>12. I am full of energy.</td>
<td>T F</td>
<td>37. I have better control over myself than usual.</td>
<td>T F</td>
</tr>
<tr>
<td>13. Today I say things in the easiest possible way.</td>
<td>T F</td>
<td>38. My movements seem slower than usual.</td>
<td>T F</td>
</tr>
<tr>
<td>14. Things around me seem more pleasing than usual.</td>
<td>T F</td>
<td>39. I find it hard to keep my mind on a task or job.</td>
<td>T F</td>
</tr>
<tr>
<td>15. I have a pleasant feeling in my stomach.</td>
<td>T F</td>
<td>40. I don't feel like reading anything right now.</td>
<td>T F</td>
</tr>
<tr>
<td>16. I fear I will lose the contentment that I have now.</td>
<td>T F</td>
<td>41. It seems I'm spending longer than I should on each of these questions.</td>
<td>T F</td>
</tr>
<tr>
<td>17. I feel in complete harmony with the world and those about me.</td>
<td>T F</td>
<td>42. My hands feel clumsy.</td>
<td>T F</td>
</tr>
<tr>
<td>18. I can completely appreciate what others are saying when I am in this mood.</td>
<td>T F</td>
<td>43. I notice my hand shakes when I try to write.</td>
<td>T F</td>
</tr>
<tr>
<td>19. I would be happy all the time if I felt as I feel now.</td>
<td>T F</td>
<td>44. I have a disturbance in my stomach.</td>
<td>T F</td>
</tr>
<tr>
<td>20. I feel so good that I know other people can tell it.</td>
<td>T F</td>
<td>45. I feel an increasing awareness of bodily sensations.</td>
<td>T F</td>
</tr>
<tr>
<td>21. I feel as if something pleasant had just happened to me.</td>
<td>T F</td>
<td>46. I feel anxious and upset.</td>
<td>T F</td>
</tr>
<tr>
<td>22. I would be happy all the time if I felt as I do now.</td>
<td>T F</td>
<td>47. I have unusual weakness of my muscles.</td>
<td>T F</td>
</tr>
<tr>
<td>23. I feel more clear headed than dreamy.</td>
<td>T F</td>
<td>48. A thrill has gone through me one or more times since I started this test.</td>
<td>T F</td>
</tr>
<tr>
<td>24. I feel as if I would be more popular with people today.</td>
<td>T F</td>
<td>49. My movements are free, relaxed, and pleasurable.</td>
<td>T F</td>
</tr>
<tr>
<td>25. I feel a very pleasant emptiness.</td>
<td>T F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Items 24-27, 29-35 contributed to the d-amphetamine sensitive (A) subscale.

64