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ABSTRACT 

 This study examined how two Advanced Placement Calculus teachers used their own 

knowledge of mathematics in their classroom interactions. In particular, this study focused on 

teachers’ responses to unanticipated or unplanned student questions during a normal lesson. Each 

teacher was observed for one unit of instruction of at least ten hours. Field notes and audio 

recordings were taken during the observations. Throughout the unit of instruction, four 

interviews were conducted with each teacher to explore how they used their own knowledge. In 

this study, the teachers tended to use four types of responses: posing counterexamples, 

acknowledging challenging responses, asking simpler or related questions, or following through 

with the student’s comment. Through the four responses, teachers could respond to the students’ 

comments by addressing the comment separately, interweaving a response with the planned 

activity, or coordinating a response with planned activity. Future research could explore 

teachers’ responses and patterns of responses for longer observations or earlier mathematics 

courses.  
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CHAPTER 1 

INTRODUCTION 

Personal Interest 

 This study was motivated by my experience as a teacher of honors and Advanced 

Placement courses. I taught an Algebra II Honors course for 3 years and an Advanced Placement 

Calculus course for 2 years. Reflecting back on my teaching of these two courses, I can see how 

I used my mathematical knowledge—both of school mathematics and undergraduate 

mathematics—to discuss mathematical ideas with the students. Possibly as a result of my recent 

study of university mathematics, I found myself trying to connect what I recently learned as a 

student to what I presented as a teacher. In my reflection on two different experiences—one from 

each of the two courses, Algebra II and Calculus—I found opportunities to examine how I used 

my mathematical knowledge to assist my teaching.  

During an Algebra II Honors class session, I remember discussing the idea of closure in 

matrix multiplication with one particularly bright student. In that discussion, as we began to 

looking at whether or not any two matrices could be multiplied together, some students noticed 

that this was not going to be a true statement. I mentioned that closure was an idea that I 

remembered studying quite extensively in my undergraduate abstract algebra course. Upon 

additional reflection, I understand that this is a topic that I actually could have developed in 

greater detail than I did throughout the high school algebra course. I remember emphasizing the 

notion of closure working with matrices, but I could have shown that the students had discussed 

the topic before and would be discussing the topic again in this course. The students had seen the 
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notion of closure before without calling it closure when discussing division by zero and would be 

seeing closure again by observing how it can be affected under the same operation by changing 

the set, looking at the square root operation under real numbers and then under complex 

numbers.  

In one specific Advanced Placement Calculus class discussion, the class worked 

examples of improper integrals of the same form. Students began to see a pattern developing in 

the solutions they were reaching and wanted to generalize their results. Not knowing if the 

students were correct in making such generalizations, I decided to break with the plan of the 

lesson and explore the students’ conjecture. I made sure to work the problem as if I were a 

student, explaining my thought process aloud as I worked. Starting with an empirical argument 

and working by cases, the class and I convinced ourselves that the generalization was valid. 

Although I did not know where the discussion would end, I knew that the exploration of the 

conjecture would lead to a meaningful mathematical discussion. 

 Upon reflecting after the presentation of the lesson, I asked myself why I would have 

presented each of these mathematical ideas to the students in the accelerated Algebra II and 

Calculus courses. From the experiences I had already had, I knew this was a class of highly 

capable students, in terms of mathematical ability. A question I remember asking myself was 

“Why did I present this information at this time? Was it to suggest the mathematical material that 

lies ahead for the student?”  

 During my teaching career, I had the opportunity to teach the Advanced Placement 

Calculus BC course at my school. My motivation to teach the course had nothing to do with 

wanting to teach a course I studied recently but with the desire to present challenging material to 

capable students. There is a unique challenge presented in teaching an accelerated course like 
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this, and I was aware that teaching such a course would challenge the depth and connections of 

my knowledge of mathematics.  

 Because of my own experiences, I am interested in the role of the teacher in specialized 

courses for students who have demonstrated above-average ability in mathematics. For example, 

I am interested in the moves (Cooney, Davis, & Henderson, 1975) a teacher makes while 

fostering discussion among class members or assisting the students in tasks or assignments. 

Further, I am interested in the teacher’s motivations for the moves that he or she made. In 

particular, I am interested in the extent to which these moves are influenced by what the teacher 

knows about mathematics and the teacher’s awareness of the knowledge used when making 

these decisions.  

Background 
 

Prior research has examined how teachers react to unanticipated student questions. 

Fernandez (1997) examined how teachers at the middle and early secondary levels fielded and 

responded to unplanned questions. Some of the classrooms in Fernandez’s study contained 

students who demonstrated a typical level of mathematical ability, while a small number of 

classrooms contained students with a higher-than-average level of ability. My study takes a 

different approach in two ways because I examined an older group of students (upper secondary) 

and a homogeneous ability group (accelerated students).  

Additionally, much work has been done describing how teachers deploy specialized 

knowledge of teaching mathematics. Some researchers identified this knowledge, in part, 

through a description of situations where a teacher’s knowledge can be observed through various 

levels of schooling (Ball & Bass, 2000; Ball, Lubienski, & Mewborn, 2001; Cuoco, 1998; Davis 

& Simmt, 2006; Even, 1993; Hill & Ball, 2004; Krauss, Baumert, & Blum, 2008; Shulman, 
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1986; Thompson & Thompson, 1996). In these descriptions, commonalities emerged about what 

comprised portions of a specialized knowledge for teaching mathematics: explaining a 

mathematical idea, representing a mathematical topic in a variety of ways, connecting one 

mathematical concept to other concepts, posing a question to facilitate mathematical discussion 

in a classroom, and assessing the validity of students’ mathematical claims. These descriptions 

suggested that teachers have to access their knowledge in a different way compared to other 

consumers of mathematics. The unpacking of mathematical knowledge (Ma, 1999) illustrates a 

difference between the nature of a teacher’s knowledge from other individuals’ mathematical 

knowledge. Unpacking of mathematical knowledge stands in opposition to the construction or 

acquisition of mathematical knowledge in the traditional sense (Ball & Bass, 2000; Thompson & 

Thompson, 1996).  

Instead of describing the application of teachers’ knowledge in classroom situations in 

positive terms, some researchers identified instances where teachers either did not fully apply 

what they knew in classroom activity (Eisenhart et al., 1993; Even, 1993, 1998; Even & Tirosh, 

1995; Hitt, 1998; Schoenfeld, 1994; Stylianides & Ball, 2008; Thompson & Thompson, 1996; 

Tirosh, Even, & Robinson, 1998). Examples of deficiencies and inaccuracies can be found in a 

teacher’s tendency to provide only rule-bound approaches for their students to memorize; lack of 

ability to recognize a simpler, more intuitive answer to a question; and a failure to generate 

multiple representations of a particular topic. By drawing attention to what teachers may not 

know, teacher educators can support pre-service and in-service teachers to identify deficiencies. 

Reflecting on the work of classroom practice could permit others to examine other possible 

approaches teachers might have taken. Creating an inventory of different approaches to use with 

students could support teachers working with a classroom full of students.  
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Classroom activity is where the teacher applies this unique body of mathematical 

knowledge. A teacher uses his or her knowledge of multiple representations, solutions, and 

explanations to prepare for posing questions and tasks for the students. Likewise, when receiving 

a question from a student, the teacher must call on these representations, solutions, and 

explanations to provide an appropriate response. A teacher should be aware of why he or she is 

using that knowledge and how his or her knowledge can be made explicit to assist students in 

developing their understanding of mathematics (Mason & Spence, 1999). If teachers knew when 

to use their knowledge in specific situations, then they could communicate what they were doing 

to their students. Explicitly communicating their mathematical thought processes to students 

allows teachers to use alternate solutions or representations to introduce additional ways of 

thinking to their students. Teachers explicitly stating what they know to solve a problem models 

desirable problem-solving behaviors to students. 

A teacher has to be prepared to receive questions from students during the course of a 

lesson or activity. The questions that students pose to the teacher affect the course of the lesson. 

The students’ posing of questions allows the teacher only a short period of time to respond 

(Leikin & Dinur, 2007; Rowland, Huckstep, & Thwaites, 2005). The way the teacher responds to 

the students’ questions suggests the way the teacher thinks about the students’ development of 

mathematical knowledge (Fernandez, 1997). Fernandez suggested four ways that teachers 

respond to students’ questions: creating counterexamples, following through, using simpler or 

related problems, and incorporating a student’s method.  

Teachers call upon many aspects of their knowledge of their students’ mathematical 

development to answer questions from students, whether that development is called sequencing 

(Rowland et al., 2005; Stylianides & Ball, 2008), ordering (Bromme, 1994), or a trajectory 
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(Simon, 1995). In a sequence or a trajectory, teachers connect past concepts to future topics 

(Cooney, 1999), or connect informal knowledge to formal knowledge (Gravemeijer & Doorman, 

1999). Other studies demonstrated that teachers knew what topics were important to a particular 

class (Shulman, 1986), why a topic was important for a particular class (Kahan, Cooper, & 

Bethea, 2003), or what made a topic easier or harder than another topic (Lampert, 1991).  

Teachers’ knowledge of students comprises another component of a specialized 

knowledge for teaching. For example, studies have shown that some teachers recognize students’ 

solutions as viable contributions to classroom discussion (Franke, Kazemi, & Battey, 2007), and 

treat the student’s solution with the appropriate level of respect (Ball & Wilson, 1996). Although 

the teacher may recognize student solutions, there are opportunities for the teacher to orchestrate 

student solutions. Teachers lead discussions in a variety of formats (Lobato, Clarke, & Ellis, 

2005) to promote the presentation of student solutions. Once a solution has been received, the 

teacher may assess the validity of the student’s claim. To facilitate the assessment, the teacher 

should be aware of common misconceptions of a mathematical concept (Even & Tirosh, 1995; 

Kotsopoulos & Lavigne, 2008; Shulman, 1986; Tirosh et al., 1998) or unique approaches to a 

final answer (Adler & Davis, 2006; Biza, Nardi, & Zachariades, 2007; Fisher, 1988). In 

encouraging student discussion and solution presentation, the teacher needs to know when to 

continue the student discussion or when to change the course of discussion along a particular 

route (Chazan & Ball, 1999).  

Throughout the variety of activities of teaching, various types of knowledge are 

implemented and coordinated. One way to observe such coordination is by examining classroom 

interactions with students. In that environment, teachers are allowed to work as they normally 

do. Within that normal interaction, many opportunities arise to investigate what a teacher knows 
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and how effective that knowledge is in maintaining the pace of classroom discussions or in 

extending what the students already know.   

Rationale 
 

My research examined the knowledge base experienced secondary school mathematics 

teachers have and use within the context of a class working with an accelerated curriculum. The 

literature on students identified as being able to perform mathematical activity beyond that of 

their peers says much about the characteristics of the students. The literature, when discussing 

the role of the teacher in the classroom of students identified as gifted, seems to have a focus 

more on assisting the intellectual development of the student and not as much on the 

characteristics that the teacher brings to the classroom.  

 A classroom in which a teacher accelerates the typical school curriculum provides an 

interesting opportunity to explore how the teacher handles student questions. Because the student 

in such a course is able to understand the material faster than other students and begin to explore 

the more conceptual aspects of the mathematical content earlier, the student is able to ask a more 

challenging question earlier in the presentation of the material. Therefore, the teacher should be 

ready to handle a challenging question in a short period of time. In addition, the teacher should 

be able to present an answer that would satisfy the intellectual curiosity of the student. The 

accelerated classroom provides an opportunity to observe more challenging questions and more 

detailed responses to those questions than heterogeneous or lower level classrooms.  
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Research Questions 

The research questions that guided this study are as follows: 

1. In what ways does a teacher apply a specialized mathematical knowledge for teaching 

when presented with an unanticipated student question? 

2. What are the approaches a teacher uses when responding to a student who has posed an 

unanticipated question? 
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CHAPTER 2 

LITERATURE REVIEW 

 Four different branches of established literature built a basis for this study. The main 

literature bases are the specialized knowledge teachers possess along with the interactions 

teachers engage in with their students. These are the important aspects of the relevant literature, 

as this study focused on how teachers use their own mathematical knowledge in discussing ideas 

with their students. I include two other bases of literature to support the setting of this study: 

characteristics of mathematically gifted students and secondary school calculus. The studies 

selected for this review provide insight into other researchers’ findings with similar types of 

students and a similar type of course as those in this study.  

Specialized Knowledge for Teaching Mathematics 

 Many researchers investigated what knowledge a teacher should possess to assist his or 

her students in developing new mathematical knowledge. Researchers have taken different 

approaches in investigating this unique knowledge of teaching mathematics. Two major avenues 

toward identifying this specialized knowledge have emerged. Some researchers pose models to 

describe a specialized knowledge, based on their studies and research. Others design assessments 

for selected components of this specialized knowledge for teaching. Results from both categories 

are presented below.  

Conceptualizations of a specialized knowledge 

Researchers have used many terms to identify a knowledge base that is unique to the 

practice of teaching. Finding such knowledge can be challenging for researchers, both in terms of 
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content and application of what they know (Cooney, 1999). In response to Cooney’s challenge, 

many researchers captured their conceptualizations of a specialized knowledge succinctly. This 

section contains the researchers’ findings and commonalities and differences that exist across the 

findings.  

 One of the first conceptualizations of a specialized knowledge for teaching came from 

Shulman’s (1986, 1987) proposal of pedagogical content knowledge (PCK). Shulman identified 

PCK as a blend of the knowledge to work with a classroom of students and the content 

knowledge that an individual might receive in a normal course of study. In this 

conceptualization, a teacher cannot simply know a lot of content and several methods to lead a 

class. There is some way to modify the content teachers know to lead meaningful lessons. 

McEwan and Bull (1991) further identified PCK as a combination of alternative representations 

and “pedagogical reasoning” (p. 319). In their findings, PCK included teachers’ ways of 

representing a topic, understanding possible student misconceptions, and identifying concepts 

students might view as easy or difficult. Shulman (1987) categorized PCK in seven ways: 

content knowledge, pedagogical knowledge, knowledge of curriculum, pedagogical content 

knowledge, knowledge of students, knowledge of contexts, and philosophical knowledge. 

Teachers attend to several activities simultaneously (or within one class session). In order to 

handle all of these activities effectively, teachers possess a variety of types of knowledge that 

expand beyond a simple combination of content and pedagogy. Shulman’s description of a 

unique knowledge base for teaching and the components of that knowledge base became the 

basis of other researchers’ work.  

 Bromme’s (1994) description of a philosophical content knowledge extended Shulman’s 

(1987) discussion of a philosophical knowledge. Bromme’s categorization of a subject-specific 
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content knowledge focused on mathematics, whereas Shulman’s description of PCK applied to 

all academic subjects. Bromme defined his conceptualization of a specialized knowledge as a 

topology of teacher’s knowledge; his categories included content knowledge as a discipline, 

knowledge of school mathematics, philosophy of school mathematics, pedagogical knowledge, 

subject-matter-specific pedagogical knowledge, and interdisciplinary knowledge. Bromme’s 

philosophy of school mathematics picked up some of Shulman’s ideas for pedagogical content 

knowledge. For example, the combination of content knowledge as a discipline and knowledge 

of school mathematics would be the content knowledge Shulman (1986) described in 

establishing PCK. Likewise, general pedagogical knowledge is a separate component of a 

specialized knowledge for teaching. The combination of content and pedagogy to create a 

separate, subject-specific pedagogical knowledge is an important distinction made by the 

researchers. Bromme’s philosophy included teachers’ awareness of the central concepts within a 

particular curriculum, much like what Shulman (1986) advocated. Both researchers emphasized 

the identification of what teachers valued as important topics. One could see how teachers 

organize their curriculum by observing what the teachers presented with greater emphasis. The 

topics teachers present as important are likely to be the topics that the teachers think are the most 

important themselves.  

 Mathematical knowledge for teaching (MKT) is the terminology used by many 

researchers. Deborah Ball’s work proposed MKT as one conceptualization of a specialized 

knowledge for teaching mathematics at the elementary school level. Working with Bass, Ball 

(Ball & Bass, 2000) defined MKT as “a kind of mathematical understanding that is 

pedagogically useful and ready, not bundled in advance with other considerations of students or 

learning or pedagogy” (p. 88). In this quotation, Ball and Bass’s conceptualization of MKT is 
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like Shulman (1986, 1987) and Broome’s (1994), the specialized knowledge exists 

independently of a strict content or pedagogical knowledge. Ball, along with Thames and Phelps 

(2008), categorized MKT by separating it into two divisions and six subdivisions. The two 

divisions of MKT are subject-related knowledge and pedagogy-related knowledge. Within the 

subject-related knowledge, Ball and colleagues subdivided that category into common content 

knowledge, horizon content knowledge, and specialized content knowledge. From pedagogy-

related knowledge, Ball and colleagues subdivided pedagogy-related knowledge into knowledge 

of content and students, knowledge of content and teaching, and knowledge of content and 

curriculum. The subdivisions of MKT can be seen in recognizing students’ errors, posing 

questions to extend classroom tasks, proposing hypotheses on students’ views of mathematical 

topics as simple or difficult, and selecting appropriate numerical values in examples to facilitate 

student development of mathematical topics. Like other researchers, Ball and colleagues 

proposed advantages of possessing a specialized knowledge of teaching. The combination of the 

two larger divisions of MKT can be coordinated with Shulman’s (1986) original notion of 

pedagogical content knowledge. Some of Shulman’s (1987) categories matched well with Ball’s 

sub-divisions. Two of Ball and colleagues’ categories of pedagogy-related knowledge are similar 

to two categories of Shulman’s PCK. In both studies, teachers should possess knowledge of the 

students and the curriculum they are teaching. Because teachers present their lesson to a room 

full of students, teachers should possess knowledge of the students they are teaching.  

Thompson and Thompson (1996) identified the MKT in the way one teacher understood 

rates of change. Thompson and Thompson’s study included knowledge of students, as the 

teacher in their study assisted one student in constructing a conceptual understanding of motion. 

Thompson and Thompson elaborated their conceptualization of a specialized knowledge for 
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teaching. In their discussion of describing how the teacher helps the students build new 

knowledge, they proposed MKT as a conceptual orientation to teaching mathematics; the 

orientation is subdivided into four categories: ways of thinking to develop in students, the image 

of ways of thinking, features of materials and activities to develop ways of thinking, and 

dispositions toward ways of thinking.  

Researchers identified a specialized knowledge for teaching by examining the practices 

of elementary school teachers. Results from these studies can support a specialized knowledge 

for teaching at the secondary level. One approach to a specialized knowledge for teaching at the 

elementary level is the Profound Understanding of Fundamental Mathematics (PUFM), proposed 

by Liping Ma (1999). In her book, she examined how teachers of elementary school students in 

China and the United States understand mathematics quite differently. Chinese teachers tended 

to have less formal education regarding mathematics, but held richer understandings of 

elementary mathematics topics. By viewing mathematical knowledge in terms of knowledge 

structures, Ma showed that Chinese teachers held more knowledge and connections among 

topics than their American counterparts. Ma’s analogy to describe the way Chinese teachers use 

their knowledge more effectively is through the unpacking of a knowledge package. Ma’s 

unpacking content knowledge useful in classroom presentations was an idea that many other 

researchers used to describe similar activities.  

What is important from this study (Ma, 1999) is that advanced knowledge of mathematics 

does not imply teachers possess the right knowledge to conduct valuable activities with their 

students. Teachers did not gain a better knowledge for teaching mathematics by taking more 

courses. This is an idea that can be extended to other grade levels of schoolteachers as well; 
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Monk (1994) found secondary school teachers reached a ceiling effect of five university-level 

mathematics courses for possessing an effective knowledge of teaching secondary mathematics.  

 In her study of teachers’ knowledge of functions, Even (1990) proposed a construct she 

called subject matter knowledge. Her subject matter knowledge necessary consisted of seven 

components: essential features, different representations, alternative approaches, strength of 

concept, basic repertoire, knowledge and understanding of a concept, and knowledge of 

mathematics. In a later study, Even (1993) investigated how a lack of subject matter knowledge 

inhibited pedagogical content knowledge. This lack of knowledge bases prohibited teachers from 

making meaningful pedagogical decisions, such as selecting suitable tasks, asking valuable 

questions, or creating useful representations. Missing some of these components implied 

teachers’ inability to move forward with particular aspects of a lesson. Like Monk (1994), Even 

suggested that it is not what a teacher has learned in a university classroom that will develop the 

needed content knowledge for teaching school mathematics. More importantly, teachers should 

apply their knowledge of both university and school mathematics in meaningful ways to support 

student learning. 

 In their study of pre-service teachers, Kahan and colleagues (Kahan, Cooper, & Bethea, 

2003) identified a mathematics content knowledge (MCK) for teachers. This specialized 

knowledge is something that a teacher of mathematics would possess but not a knowledge base 

that a mathematician would necessarily possess. Among Kahan and colleagues’ components of 

MCK are exploring mathematics foundations of a topic and identifying students’ prior 

knowledge of mathematics. Like other researchers, Kahan and colleagues identified the 

importance of teachers knowing their students’ previous content knowledge. Kahan and 

colleagues pointed out benefits of teachers’ strong MCK. Advantages of a strong knowledge 
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base included the ability to incorporate unanticipated student comments, to appropriate the right 

amount of class time to the presentation of a topic, and to connect content knowledge from their 

university mathematics classes to the secondary mathematics lessons. Interestingly, Kahan and 

colleague’s MCK included the affective components to knowledge. Not only do teachers need to 

know how to perform mathematical activity in front of a classroom of students, but teachers 

should feel confident that they know they can lead mathematically.  

 Davis and Simmt (2006) proposed mathematics-for-teaching (MfT), where teachers’ 

knowledge of mathematics is seen in the practice of teaching. In their work, Davis and Simmt 

identified three categories of this specialized knowledge: connections among mathematical ideas, 

anticipation of future concepts, and validations of students’ arguments. Davis and Simmt 

observed this specialized knowledge in teachers’ typical activities—understanding student 

misconceptions, providing multiple representations, and creating valuable learning experiences. 

For the last activity, Davis and Simmt suggested that teachers should know ways to make the 

mathematical meaning of images and metaphors explicit for students. By making that meaning 

explicit, teachers could choose between the representations that would be most beneficial for 

students to learn a new mathematical concept. Knowledge of an historical development of the 

topic could support teachers in working as Davis and Simmt described. 

Kazima, Pillay, and Adler (2008) also referred to their conceptualization of this 

specialized knowledge as mathematics-for-teaching; they defined MfT as “specialized 

mathematical knowledge that teachers (need to) know and know how to use in their teaching” (p. 

284). They noted that teachers need to know more mathematical knowledge than their students 

are expected to know at the end of the course. This knowledge allows teachers to be more than 

answer keys to assignments and assessments. This knowledge supports the need for teachers to 



 

16 

enroll in mathematics courses at the university level beyond what they will teach in the schools. 

This idea coordinates well with Ball, Thames, and Phelps’s (2008) notion of the horizon content 

knowledge: knowing how the current topic supports more advanced mathematical topics. In fact, 

Kazima and colleagues observed that teachers’ work with students poses great demands on 

teachers’ content knowledge. Like Davis and Simmt, Kazima and colleagues grounded their 

conceptualization in the activity of teaching. In their proposal of MfT, Kazima and colleagues 

mentioned that teachers’ knowledge of mathematics content must be unpacked, using Ma’s 

(1999) terminology.  

Rowland and colleagues (Rowland, Huckstep, & Thwaites, 2005; Rowland, Turner, 

Thwaites, & Huckstep, 2009) posed the knowledge quartet (KQ) to categorize this specialized 

knowledge for teaching elementary school mathematics. The four components of their 

conceptualization are foundations, transformation, connection, and contingency. Contingency 

knowledge is the knowledge that must be accessed when faced with a student’s comment or 

question that the teacher cannot plan or anticipate. The more teachers possessed this component 

of knowledge, the more likely teachers are to incorporate students’ unexpected responses into 

classroom discussion, and they are more likely to present a response that would benefit students’ 

construction of content knowledge. Just as important as knowing when and how to incorporate 

unexpected student comments, Rowland and colleagues (Rowland, Huckstep, & Thwaites, 2005) 

observed that this knowledge assists teachers in deciding when not to incorporate a student 

statement, because of the extended, tangential discussion that would have to be pursued to 

address the comment fully.  

Assessing a specialized knowledge 
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One way researchers worked to identify a specialized knowledge for teaching 

mathematics was through the creation of large-scale standardized assessments. Some researchers 

used assessments to identify a knowledge base that teachers have that other individuals may not 

have. Those tests have identified this specialized knowledge as a set of components that can be 

isolated and assessed. Researchers examined the types of applications of knowledge by looking 

at teachers from one state, one country, or several countries. A few results of such studies are 

included here.  

Krauss and colleagues (Kruass, Baumert, & Blum, 2008) assessed a proposed specialized 

knowledge for teaching, which they called PCK, in various teachers and university students 

throughout Germany. Krauss et al. assessed three components of PCK at the secondary level–

generating multiple solutions, creating various representations, and identifying possible student 

misconceptions. To show that the knowledge teachers possess for teaching secondary school 

mathematics could be unique, Krauss and colleagues assessed two types of secondary 

mathematics teachers (teachers of university-bound students and teachers of workforce-bound 

students), secondary science teachers, university mathematics students, and future secondary 

mathematics teachers. Of the three categories, Krauss and colleagues determined the last two 

were more important to the practice of teaching than the first. They believed that PCK would 

result from combining content knowledge, pedagogical knowledge, and application of those two 

bases of knowledge. One interesting result was that a strong background in content knowledge 

helped a teacher of high-ability students to increase in pedagogical content knowledge, even 

though the teacher did not have a long formal preparation to become a teacher. However, 

pedagogical content knowledge could support the development of content knowledge, as science 
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teachers knew more about mathematics than hypothesized, partially because of having to explain 

the mathematics behind scientific concepts.  

 Adler and Davis (2006) assessed their conceptualization of a specialized mathematical 

knowledge for teachers through tasks given to future secondary teachers in South Africa. The 

researchers found certain assessment items emphasized mathematical content over pedagogy, 

some emphasized pedagogy over content, and others placed a dual emphasis on content and 

pedagogy. Adler and Davis identified the extent the assessment ideas required future teachers to 

unpack their own mathematical ideas. They provided comparisons for the terms compression and 

unpacking. Unpacking of mathematical content allowed a teacher to “trace back mathematical 

ideas and their antecedents with their learners” (p. 290). Compression of mathematical thought is 

the desired result of the work of mathematicians; compression was a challenge for mathematics 

teachers because compressed thought contained no “explicit display of understanding” (p. 289). 

A single mathematical symbol contains implicit meaning that is not obvious to an outsider. 

Although those symbols have meaning to those who understand a symbol’s implicit meaning, 

meaning is lost for those who do not have the appropriate understanding of what the symbols 

represent. Teachers find the implicit meaning within symbols and extract that meaning. Once it is 

extracted or unpacked, teachers can present that meaning to their students. Teachers possess a 

specialized knowledge to make that unpacking possible. Adler and Davis recognized teachers’ 

possession of knowledge but acknowledge the difficulty of preparing future teachers in South 

Africa to unpack implicit meanings. Because future teachers in South Africa lack certain aspects 

of content knowledge (Pournara, 2008), they are unable to unpack implicit meanings completely.  

The work of the TED-S project examined ways future middle school teachers around the 

world were prepared to become mathematics teachers (Schmidt et al., 2007; Senk, Peck, Bankov, 
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& Tatto, 2008). This research examined how pre-service teachers received preparation in the 

content they will teach and the methods of instructional delivery. Schmidt and colleagues defined 

a mathematical knowledge for teaching as the combination of content and mathematical 

pedagogical knowledge. In this definition, Schmidt and colleagues emphasized that their 

specialized knowledge for teaching included a subject-specific pedagogical knowledge. This is 

different from Shulman’s (1986) original interpretation of PCK, which was a combination of 

content knowledge and general pedagogical knowledge. Schmidt and colleagues’ approach kept 

specialized knowledge focused only on mathematics instead of including typical teaching 

practices that would be found in any classroom. Schmidt and colleagues isolated three aspects of 

teaching mathematics: pacing and representing mathematical topics, possible student answers 

and misconceptions during the presentation of a topic, and knowing the placement of middle 

school topics within the larger mathematics curriculum. This research showed that both 

preparations in mathematical content and pedagogy typically yielded prepared and 

knowledgeable teachers. Senk and colleagues highlighted the differences between their study and 

the study performed by Krauss and colleagues: “COACTIV [Krauss’s research] uses tasks and 

multiple solutions; misconceptions and difficulties; and explanations and 

representations…whereas MT21 [Schmidt’s and Senk’s research] distinguishes curricular 

knowledge, instructional planning, and student learning” (p. 5). However, like Krauss and 

colleagues, the work of these researchers showed that the desired knowledge for teaching 

mathematics exists in some combination of mathematical knowledge beyond what teachers teach 

and pedagogical knowledge to support what teachers present.  

Hill and colleagues (Hill & Ball, 2004; Hill, Ball, & Schilling, 2008) developed 

instruments to identify MKT at the elementary school level. Hill and colleagues focused only on 
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knowledge of content and students (KCS), a sub-component of Ball, Thames, and Phelps’s 

(2008) conceptualization of MKT. Hill and colleagues defined KCS as the “content knowledge 

intertwined with knowledge of how students think about, know, or learn this particular content” 

(Hill et al., 2008, p. 375). This conceptualization and subdivision recognized that teachers apply 

knowledge of mathematics differently than other consumers of mathematics. Not only do 

teachers possess knowledge of the content that works well for their own understanding, but also 

they should possess knowledge that will work well for other people, namely, those who might 

approach a mathematical topic differently than they would. Hill and colleagues compared their 

conceptualization of KCS to Shulman’s explanation of pedagogical content knowledge (PCK); 

they envisioned that MKT can be subdivided into PCK, which then could be subdivided again 

into KCS and other components. Investigating KCS allowed Hill and colleagues to assess 

possible student errors, also assessed by Krauss et al. (2008). Teachers should recognize both 

valid and invalid responses to a mathematical question from the school curriculum. Recognizing 

invalid approaches also includes ways teachers can instruct students to move away from invalid 

toward valid approaches. Like Krauss and colleagues, Hill, Ball, and Schilling found that general 

content knowledge and a type of subject-specific pedagogical content knowledge support one 

another. 

Teachers’ Interactions with Students 

 The practice of teaching includes many activities. Some of the most frequently mentioned 

activities by researchers included representing a mathematical topic in a variety of ways and 

selecting examples with the right level of difficulty for the particular classroom of students (Ball 

& Bass, 2000; Flowers & Rubenstein, 2006). The main focus of this section is how teachers 
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maintain levels of classroom discussion and encourage students to discuss mathematical ideas. 

How researchers discuss those interactions is included here.  

 Schoenfeld’s (1998) work toward teaching-in-context highlighted how teachers apply 

what they know while teaching a classroom full of students. His goal in creating a theory-in-

context was to achieve the following: “The claim is that with the theory and with enough time to 

model a particular teacher, one can build a description of that person’s teaching that 

characterizes his or her classroom behavior with remarkable precision” (Schoenfeld, 2000, p. 

644). He outlined his theory by investigating three different teachers: a novice high school 

mathematics teacher, an experienced high school physics teacher, and himself as an experienced 

instructor of collegiate mathematics. Schoenfeld found that he and the experienced teacher 

handled students’ unanticipated comments more effectively and provided more meaningful 

examples and explanations to support students’ development of content than did the novice 

teacher. Schoenfeld observed that teachers’ knowledge greatly influences how and why teachers 

decide to pursue certain classroom activity. That knowledge included knowledge of content and 

students, identified by Ball, Thames, and Phelps (2008), and assessed by Hill, Ball, and Schilling 

(2008). Schoenfeld later divided the knowledge used within the context of teaching into two; this 

knowledge contained the list of content teachers possessed and the ways teachers accessed their 

knowledge. Schoenfeld described ways teachers accessed their own knowledge, including 

particular mini-lessons and “mini-lectures” (p. 29) teachers used in response to student 

comments. These ways of accessing knowledge suggested that teachers transformed what they 

knew into meaningful activities. 

 Lobato, Clarke, and Ellis (2005) described various ways teachers provided mathematical 

information to students. Specifically, Lobato, et al. tackled the notion that teachers telling 
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students information was somehow taboo; instead, these researchers identified instances where 

teachers could judiciously provide information that might lead students to larger mathematical 

discoveries. The teacher provided mathematical terminology when necessary while the students 

engaged in classroom activity. Providing mathematical explanations for students’ everyday 

activity is part of the mathematics-for-teaching described by Kazima and colleagues (2008). 

Because the teacher is responsible for providing mathematical terminology or providing small 

hints to lead to bigger mathematical discoveries, Lobato and colleagues emphasized the role of 

teachers’ knowledge in supporting the work of student learning. They observed that the more 

complete teachers’ knowledge was for a particular topic, the better they provided judicious 

information or appropriate terminology. This study provides a key component of observing 

teachers’ knowledge in action—identifying ways teachers orchestrate classroom discussions. 

Whether giving students information or guiding students through an investigation, teachers have 

to possess a certain level of knowledge to maintain the progress of classroom discussions. The 

more of the desired knowledge the teacher has, the better he or she can manage discussion in a 

classroom effectively. Teachers know when the students are working toward an idea successfully 

or when they need a little support. Teachers know when students need more support to move 

forward with the classroom discussion, even if students only need the right name to describe 

mathematical topics. Teachers also know when students need less support to maintain sound 

mathematical activity (Lobato et al., 2005). 

 Chazan’s study, as reported by Chazan and Ball (1999), included his efforts to balance 

several mathematical priorities during classroom discussion. Chazan presented a problem 

involving averages to his students retaking Algebra I. The students in the class reached a 

challenging point in their discussion: whether or not one includes the value of zero in computing 
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an average from a list of numbers. When students forcefully proposed two different solutions, 

Chazan pivoted the discussion away from arguing and toward the mathematical content under 

investigation. In this discussion, the teacher decided whether the students would benefit from 

discussing a potential solution or hearing the right answer. In this study, the teacher did not 

orchestrate the classroom conversation as much as participate in the discussion along with the 

students. The teacher’s goal in classroom discussion was to provide the mathematical 

terminology that would formalize the students’ ideas. However, the role of the teacher is 

remarkably similar to the role of the teacher in Lobato and colleague’s study (Lobato, et al., 

2005). With that role, teachers demonstrated a certain knowledge that supported the discussion 

among students in the classroom. In Chazan’s work, he found that he needed specific aspects of 

mathematical knowledge to keep the student’s discussion focused on mathematics: relevance of 

the comment to classroom activity, connection to future topics in the curriculum, and the 

inclusion of the necessary prerequisite knowledge needed to support current classroom activity.  

Mewborn’s (1999) study also addressed the role of authority in a mathematics classroom. 

Her study focused on the changing role of authority as pre-service teachers developed their own 

teaching practices. Initially in the study, pre-service teachers deferred to an external source of 

authority for validating mathematical content. This notion held particularly true for future 

teachers who believed they held a weaker base of mathematical knowledge, focusing on other 

nonmathematical activity in the classroom instead. As a result, these less-experienced teachers 

did not observe how the students thought mathematically and constructed new mathematical 

knowledge. As the pre-service teachers gained practical experience and developed knowledge for 

teaching mathematics, they transitioned their understanding of authority away from an external 

source and observed how students learned mathematics. Instead of an external source, these 
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teachers encouraged the students to make conjectures and defend claims. By changing emphasis 

in classroom discussion away from a teacher, mathematics becomes less about the teacher’s 

presentation of content and more about a community of learners constructing new, meaningful 

mathematical content. Teachers need to develop different ways of representing mathematical 

knowledge so that the transition from roles of authority can occur. The way that these teachers 

learned mathematical content will not be the same way that they will teach that same content to 

their students (Schifter, 1998).  

 Simon’s work (Simon, 1995; Simon & Tzur, 2004) described another aspect of teachers’ 

work, the proposal of a hypothetical learning trajectory (HLT). The development of a HLT 

captured key components of a teacher’s activity with a classroom of students. In this activity, 

teachers plan what might occur in their classrooms based on three ideas—a learning goal, 

activities to support learning, and the thinking and learning students engaging during activities. 

Simon and Tzur identified the activities to support student learning as the most challenging for a 

teacher to develop. A teacher possesses some understanding of his or her students’ knowledge 

before implementing a HLT. Teachers’ models of students’ knowledge and learning goals might 

not be consistent with the students’ understanding of knowledge and goals. Because of this 

inconsistency, activities might not be presented at the appropriate time for the student to gain a 

conceptual development of a particular mathematical topic. The teacher planned what he or she 

wanted to cover in a lesson or unit; Simon encouraged teachers to coordinate their plans and 

goals with students’ goals for participating in lessons and units. The teacher also designed certain 

activities or demonstrations to build students’ mathematical knowledge. If the teacher did not 

consider the students’ prior knowledge or goals for the activity, then the teacher modified the 

selected activities to support what might work for students in later presentations. Simon posited 
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that learning does not occur in a linear fashion but as points on a web of connected knowledge. 

Accessing webs of connected knowledge supports the construction of a profound understanding 

of fundamental mathematics discussed by Ma (1999). 

Clemens and Sarama (2004) also reported on hypothetical learning trajectories. They 

defined trajectories differently than Simon,  

We conceptualize learning trajectories as descriptions of children’s thinking and learning 

in a specific mathematical domain and related, conjectured rote through a set of 

instructional tasks designed to engender those mental processes or actions hypothesized 

to move children through a developmental progression of levels of thinking. (p. 83) 

Like Simon, Clemens and Sarama subdivided a trajectory into three components: a learning goal 

from teacher to students, “developmental progressions of thinking and learning, and sequence of 

instructional tasks” (p. 84). The distinction between the two definitions exists in the primary 

concern of each trajectory. Simon’s HLT (Simon, 1995; Simon & Tzur, 2004) captures teachers’ 

descriptions of students’ learning. In Clemens and Sarama’s work, an HLT focuses on what a 

student might achieve in a lesson. Simon’s version started with the teacher influencing the 

student whereas Clemens and Sarama started with the student influencing the teacher. 

Schoenfeld (1998) recommended that teachers construct learning trajectories to support their 

understanding of students’ construction of mathematics. He suggested that the more experience 

teachers have with particular students, the more likely teachers are to construct trajectories 

consistent with the ways of thinking of those particular students. Although defined differently, 

the components of Clemens and Sarama’s learning trajectories and Simon’s hypothetical 

learning trajectories are remarkably similar. Both reports account for an attainable learning goal 

for the students, activities that support students’ attainment of the learning goal, and hypotheses 
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about how students use activities to attain the prescribed goal. In these components, teachers 

need a knowledge of mathematics that allows students to construct their own knowledge. 

Teachers should consider the best activities to implement to engage students in learning. 

Teachers need content knowledge that monitors students’ progress through activities to 

coordinate students’ goals for completing activities and teachers’ goals of developing knowledge 

of the subject. Teachers also should possess alternative representations of a topic to support 

different ways of students’ thinking. 

Fernandez’s (1997) study focused on how teachers applied their knowledge of 

mathematics to handle unanticipated student questions. Such situations arose when students 

presented the teacher with a misconception or an alternative solution path. When faced with a 

comment or question from a student that they did not plan, teachers in this study typically relied 

on one of four options to address the student’s statement. These responses included asking the 

students a simpler or related question, posing counterexamples, following through with the 

mathematical implications of the student’s comments, or incorporating the student’s comment 

into the classroom discussion. Teachers used each of the four responses to encourage students to 

make their own discoveries. Teachers accessed their connected knowledge to answer the 

student’s question in each of these four responses. Teachers coordinated a variety of student 

perspectives and interpretations during their planned activity within the classroom. They then 

considered students’ ways of thinking to ensure they developed new mathematical material 

meaningfully. Focusing on an illustrative approach to handling unanticipated questions, 

Fernandez provided opportunities for novice teachers to examine how they made their own 

thoughts explicit to their students. Making thoughts more explicit can help teachers unpack their 

own knowledge to communicate ideas with students more clearly.  
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 Leikin and Dinur (2007) observed how teachers responded to classroom moments that 

moved teachers away from their planned activity. Leikin and Dinur investigated how teachers 

handled unanticipated student comments in terms of changes in the lesson plan. On the other 

hand, Fernandez (1997) investigated the knowledge associated with the unanticipated student 

comment. Leikin and Dinur did not necessarily observe knowledge of content and students. They 

expressed their ideas in terms of flexibility. They considered teachers who were more likely to 

incorporate student comments to implement flexible teaching strategies. On the other hand, 

inflexible strategies were those that forced classroom discussion to return students’ comments 

back to teachers’ planned activity. Leikin and Dinur based their flexibility of teachers on their 

interpretation of Simon’s (1995) hypothetical learning trajectories. Schoenfeld (1998) reported 

that when a teacher leaves the planned activity to respond to a student comment, the teacher has 

decided that the pursuit of a resolution of the student’s comment is just as valuable as—if not 

more valuable than—the original plan.  

Mathematically Able Students 

 Students in the classes observed in this study enrolled in a course within an accelerated 

curriculum. They demonstrated a combination of ability and interest in mathematics. Teachers in 

this type of course approach teaching differently than when teaching students of other ability 

levels because of the potential of their students. Thus, I include a short introduction to the 

literature for both students identified as mathematically gifted and the teachers of students of this 

level of ability.  

Identifying mathematical ability 

One of the most prominent studies of the mathematical ability of young children was 

conducted by Krutetskii (1976). Krutetskii began his book by grounding his work in the studies 
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of earlier scholars. He then outlined the activities that mathematically precocious students can 

perform at a young age based on his own studies. A partial list of those activities included: 

spatial reasoning; memory of mathematical structures; and flexible, curtailed, and reversible 

thought processes. When mathematically able students solve mathematical problems, Krutetskii 

observed certain characteristics. One main discovery Krutetskii found in observing problem 

solving was the ability of these students to remember both problems and solutions at a more 

generalized level; in applying previous knowledge to new problems, mathematically able 

students remembered the type of problem and the sketch of a solution. This recall of information 

is different from that of the students of different abilities as students of lesser mathematical 

ability tended to remember the specific numbers in an earlier problem or details from earlier 

problems that could not be used in later problems. Krutetskii’s work became the basis for 

characterizing students of high mathematical ability (cf. Heid, 1983; Sheffield, 1994).  

 Sheffield’s (1994) study examined mathematically able students’ problem solving 

abilities. Sheffield suggested that it is important for teachers to encourage students to become 

both problem solvers and problem posers. Appropriate problem-posing strategies can be found in 

the work of Brown and Walter (1990). When students pose their own problems, they develop 

richer understandings of mathematics. Mathematically able students should question their 

answers for generalizable results. This cycle of questioning and answering permits a student to 

explore the mathematics curriculum deeper and more meaningfully. As a result, mathematically 

gifted students are given many opportunities to generalize and abstract results they find in 

working problems. 

Sheffield (1994) observed characteristics of mathematically gifted students. She claimed 

that a student’s rapid computational abilities are not indicative of a mathematically capable 



 

29 

student. Sheffield’s observation debunks a popular belief connecting mathematical ability and 

computational rapidity. Additionally, she noted that mathematical ability is not necessarily 

indicated by student’s scores on standardized achievement tests. She stated that mathematical 

ability is not an innate and inert characteristic, rather a dynamic characteristic that develops over 

time. A dynamic nature implies that a student does not get only one opportunity to demonstrate 

mathematical ability for selection to special programs. Students can grow in their abilities, so 

they can gain appropriate access to mathematics curriculum and challenges when they are ready 

for them. As a result, a teacher cannot assume mathematical ability because a student can 

perform well on a particular test or answer questions quickly. True mathematical ability, as some 

students in the participants’ classrooms demonstrated, exists in students’ inquiry into the nature 

of mathematics rather than in the narrow focus on answering questions correctly.  

Teachers of mathematically able students 

A need exists for quality instructors to teach mathematically gifted students (House, 

1987). Some researchers noted that quality teachers for the mathematically able possessed a 

strong content background in mathematics (Bishop, 1968; Mills, 2003). A strong content 

preparation is important for teachers in order to think flexibility while engaged in a mathematical 

discussion with students. Teachers demonstrate their flexible thinking by switching among 

representations, working backward from a solution to a question, and generalizing results 

(Greenes & Mode, 1999; House, 1987).  

Students of the highest levels of mathematical ability enjoy solving mathematical 

problems quickly (Koichu & Berman, 2005). Likewise, teachers of mathematically able students 

seek to find the most elegant solution to a mathematical question (Greenes & Mode, 1999). The 

desire to find the most elegant solution is a result of the content knowledge students and teachers 
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possess: they seek ways to use what they know to answer a problem in the shortest, easiest way 

possible. The search for elegance is consistent with Krutetskii’s (1976) identification of the use 

of curtailed thought processes by mathematically able students. If teachers worked with students 

seeking the shortest possible solution, teachers strove to find the shortest solution themselves. 

Because their students will not be working in one direction, teachers of mathematically able 

students need to know when to switch directions in their attempts at a solution. As a result, 

teachers of mathematically able students should demonstrate a reversibility of thought processes 

in working toward a solution (Heid, 1983; Kahan, Cooper, & Bethea, 2003). Because teachers 

possess similar characteristics to their students, the knowledge of content and students (KCS) 

proposed by Ball and colleagues (Ball et al., 2008; Hill et al., 2004) becomes an important 

component of the knowledge of teachers of mathematically able students.  

Because mathematically gifted students are not always intrinsically motivated in the 

classroom setting (House, 1987), teachers of mathematically gifted students should encourage 

them to explore mathematics beyond the normal school environment. Teachers can encourage 

these students by expressing their excitement and enjoyment of mathematical activity. Students 

notice the excitement and engagement of the teacher and often increase their own interest in 

mathematics in response to the teacher’s enjoyment of the subject. Researchers have identified 

such a characteristic across teachers of the mathematically gifted (Bishop, 1968; 

Csikszentmihalyi, Rathunde, Whalen, & Wong, 1993; Greenes & Mode, 1999; Mills, 2003). In 

an accommodating learning environment, mathematically able students would be able to 

generalize mathematical results and abstract mathematical properties from the presentation of 

only a few examples (Heid, 1983). Teachers should provide the appropriate challenges and 

exploration for discovery to achieve these results, (Saul, 1999; Sheffield, 1994). Students 
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engaged in exploration and generalization expend considerable time and effort. Teachers notice 

the resources students devote to mathematical activities. When discussing students’ fatigue in 

learning mathematics, Krutetskii (1976) reported teachers held divided opinions. Some teachers 

believed that mathematically able students did not become fatigued in working mathematical 

problems. Other teachers disagreed with that assessment. In his report, Krutetskii provided both 

support and refutation to House’s observation.  

Park and Oliver (2009) observed how teachers work with gifted students in science 

classes. They found that teachers exhibited unique activities working with gifted students. One 

unique activity was responding to challenging questions students posed. Park and Oliver defined 

challenging questions as questions going beyond the level of teachers’ content knowledge. They 

found that teachers of these students needed a greater flexibility as described by Leikin and 

Dinur (2007) to respond to these questions. Park and Oliver discovered that teachers either felt 

embarrassment or welcomed challenges when presented with a challenging question. These 

feelings depended on the teachers’ level of interaction with their students and access to available 

knowledge. Park and Oliver found that if teachers developed content-specific teaching strategies 

in handling challenging questions, then they could gain additional flexibility in maintaining 

classroom discussions. One specific strategy they found was teachers returning challenging 

questions back to students. Teachers presented what they already knew about the content to 

create scaffolds for students’ work toward a solution. In these situations, teachers and students 

could work collaboratively toward a possible solution to a challenging question. Because of the 

interactions they had with gifted students, these teachers reported to Park and Oliver that their 

knowledge of the subject matter grew.  
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Secondary School Calculus 

 I observed two Advanced Placement Calculus classes in this study. Literature already 

exists investigating the curriculum and teaching of this course and similar courses. Researchers 

from the fields of pure mathematics and mathematics education identified important aspects of a 

calculus course to support students’ learning of the subject. Some of those researched aspects are 

important for the students’ future mathematical growth. I discuss the results and 

recommendations of a few of those reports.  

 Ferrini-Mundy and Gaudard (1992) reported on how high school calculus prepared 

students for calculus courses at the university level. In Ferrini-Mundy and Gaudard’s study, 

enrollment in a full-year secondary school calculus class led to higher grades in university 

calculus courses. They found that the type of secondary calculus curriculum did not affect grades 

in the first semester of calculus; there were no statistically significant differences between the 

exam scores of students from an Advanced Placement curriculum or from another secondary 

school calculus curriculum. Ferrini-Mundy and Gaudard found secondary mathematics teachers 

should not provide students with an introduction to calculus topics. They recommended to 

teachers growing their students’ understanding of pre-calculus mathematics or encouraging 

enrollment in a full-year calculus course. Students receiving only an introduction of less than one 

semester to calculus in high school did not receive better grades in their collegiate calculus class. 

Although Ferrini-Mundy and Gaudard noted improvement in grades for the first semester of 

collegiate mathematics, the improvement diminished in later semesters of mathematics.  

 Much like Ferrini-Mundy and Gaudard (1991), Burton (1989) advocated that students in 

12th grade should either gain a better understanding of pre-calculus mathematics or take a full-

year calculus course. Unlike Ferrini-Mundy and Gaudard, Burton specifically referenced the 
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Advanced Placement curriculum as acceptable for high school students. Burton suggested that 

students who took a calculus class in high school should not repeat the course in college because 

it creates two problems. The first problem is that high school students are not sufficiently 

challenged in their first collegiate mathematics course. Repeating courses undoes the purpose of 

accelerating students’ curriculum. Students lose the advantage of having services that meet their 

abilities. The second disadvantage is that first-time calculus takers are at a decisive disadvantage 

in learning the content. Students repeating this course skew instructors’ assessments of students’ 

knowledge. By altering the learning trajectories, the instructor presents different goals and 

activities to the class. Those students missing the necessary prerequisite knowledge are at a 

disadvantage to students repeating the course. Students repeating a course are at an advantage 

only because they took the same course earlier.  

 Askey (1997) provided his own suggestions for a meaningful high school calculus 

course. In his observations, he noted that an increasing number of students enroll in Advanced 

Placement Calculus courses. That observation was not only true at the time of publication but is 

still true after the publication of his article. He observed that Advanced Placement exams 

compared favorably to the exams he administered in his collegiate calculus classes. He feared 

changes in the Advanced Placement examination would deemphasize the symbolic manipulation 

and arithmetic computation he valued in his own collegiate calculus courses. This fear 

highlighted some of the concerns about the Advanced Placement program raised by collegiate 

calculus instructors (Bressoud, 2004). Bressoud argued that students should attempt calculus at 

the secondary level only if the course is consistent with the rigor of a collegiate calculus course. 

If the secondary course is not rigorous, students should instead develop a deeper, more 

conceptual understanding of pre-calculus mathematics while still in high school. With a stronger 
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foundation in school mathematics, students would be prepared for the challenges and demands a 

collegiate calculus course provides. However, students who demonstrated ability in mathematics 

should handle a meaningful, challenging calculus course worthy of earning collegiate credit 

suggested by the Advanced Placement program.  

Theoretical Framework 

 Pirie (1997b) suggested that research could suggest codes and methods of analysis for 

subsequent studies. Following Pirie’s suggestion, I implemented work from other studies to 

guide the analysis of data in my study. I used other researchers’ studies to identify how teachers 

handled unexpected mathematical moments in their classroom. I describe those implications 

below. 

 Fernandez (1997) investigated how teachers handled unanticipated student comments and 

questions. She identified unanticipated student comments and questions as perspectives: 

The students’ unanticipated perspectives were all conveyed through student errors, 

difficulties, or alternative student-initiated approaches to problem solving. Student errors 

are mistakes in reasoning, computation, or interpretation. Student difficulties are 

displayed obstacles to problem solving (typically conveyed through a student’s question). 

Alternative student initiated approaches to problem solving are valid (non-erroneous) 

problem solving methods the teacher did not plan to use. (p. 7) 

Teachers sometimes anticipate how students present different solutions or make mistakes in 

learning new material, but some approaches cannot be anticipated in advance. In identifying such 

perspectives in my study, I observed when students made a mistake in presenting a solution or 

offered a statement or question that seemed not to match the teacher’s expectations. Although I 

might deem an episode to be unexpected, I needed confirmation from the teacher. 
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Fernandez (1997) categorized teachers’ responses to unanticipated student perspectives 

into four approaches. The first approach was the teachers’ use of counterexamples. By posing a 

counterexample, teachers “challenge their students and enable the students (versus the teacher) to 

examine their perspective” (p. 8). Rather than telling the student he or she was wrong, teachers 

chose an example to allow the student to examine what was wrong mathematically. Teachers 

maintained mathematical discussion by encouraging students to work through a counterexample 

to find the flaw in the original statement. The second approach was the follow through, where 

“the idea is to explore the implications of the posed mathematical thought by continuing or 

following through with it” (p. 11). Teachers found something interesting or worthwhile in a 

student comment and pursued the student’s comment until reaching a conclusion. As a result of 

this approach, teachers maintained student involvement by valuing and incorporating the new 

comment. The third approach, posing simpler or related question, allowed teachers to “generate 

ideas from the easier case that can be applied to the more difficult one so that the original 

problem can be solved” (p. 13). Teachers made the current question easier to solve for the 

student by asking a question, or a series of questions, to which the student might know the 

answer. Teachers maintained classroom discussion by encouraging students to answer questions 

they knew in order to return back to the original, difficult question.  

Fernandez’s (1997) fourth approach was to incorporate the students’ solutions into the 

planned activity. She stated that through this approach, teachers were “incorporating alternative 

student-initiated methods [to show] there exists more than one correct path” (p. 16, emphasis in 

original). However, as Fernandez admitted, “At some level, this use of knowledge is illustrated 

in all the categories above” (p. 16). Her first three categories explained different approaches 

teachers took in handling the unanticipated student questions or comments. The fourth category 
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did not provide a new or different approach but included the previous three. In order to have 

distinct categories, I used the first three of Fernandez’s categories for my analysis. 

Because the students in this study were enrolled in Advanced Placement courses, I 

wanted to include research from gifted education that identified teachers’ interactions with 

students. Park and Oliver’s (2009) study focused on different teaching techniques science 

teachers used with students identified as gifted. One technique was handling students’ 

challenging questions. Park and Oliver defined challenging questions as “unusual and insightful 

questions. In some cases, those questions were beyond the scope of the content knowledge the 

teachers possessed” (p. 339). In response to challenging questions, Park and Oliver found that 

teachers “tended to use the questions as a learning opportunity for both students and themselves” 

(p. 345). These moments allowed teachers to be students of the subject matter as much as their 

high school students were. Although Park and Oliver observed these questions in science 

classrooms, I believe students pose challenging questions in mathematics classrooms as well.  

Given that students pose challenging questions to teachers, I replaced Fernandez’s (1997) 

fourth category with teachers’ acknowledgement of challenging questions from Park and 

Oliver’s (2009) report. This replacement gave me four strategies that teachers use in responses to 

students’ questions. In three strategies, teachers answered the students’ questions or responded to 

the students’ comments to the students’ satisfaction. I define student satisfaction to be the point 

in classroom discussion when the students did not ask teachers additional questions. The fourth 

strategy illustrates that teachers do not always know the answers to students’ questions. Teachers 

need to feel comfortable in acknowledging the limits of their own knowledge to their students.  

In order to identify patterns in my data across all four strategies suggested by Fernandez 

(1997) and Park and Oliver (2009), I used patterns of teachers’ flexibility in classroom 
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discussions described by Leikin and Dinur (2007). Leikin and Dinur identified teacher flexibility 

in the following way: “We consider a teacher flexible at a particular point of the discussion if 

he/she adjusts the planned learning trajectory according to student replies that differ from those 

he/she had foreseen” (p. 330). They created “patterns of flexibility” (p. 332) to describe ways 

teacher handle unexpected student responses. Leikin and Dinur identified two patterns of 

flexibility where teachers incorporated the student’s comment into a planned lesson successfully. 

They defined “different outcomes” (p. 334) for those moments when a student presented an 

alternative, but valid, solution to a teacher’s planned question. They then defined “different 

scopes” (p. 334) to be those moments when teachers accepted different representations of the 

same solution. When teachers applied one of the four strategies from Fernandez or Park and 

Oliver, they demonstrated flexibility in handling students’ questions or comments.  

In their report, Leikin and Dinur (2007) presented different outcomes and different 

scopes in a visual representation. Diagramming classroom episodes in my study allow me to see 

how teachers handled the unanticipated student comment or question with respect to their 

planned activity. Leikin and Dinur illustrated patterns of flexibility with a task and two available 

options—the planned activity and the student’s unexpected comment or question. For their two 

flexible patterns, Leikin and Dinur diagrammed how teachers maneuvered between the two 

available options. For different outcomes, they showed how teachers moved from responding to 

the student’s comment to attending to the planned activity. The episode ended when the teacher 

was able to return to the planned activity. For different scopes, Leikin and Dinur showed how 

teachers responded to the student’s unplanned comment by asking a question or posing a subtask 

to move the students back to the planned activity. The new question would generate a different 

unexpected response, and teachers would respond by posing another question. This pattern can 



 

38 

repeat as long as students pose unexpected responses. An episode ended either with a return to 

the planned activity or a new, unplanned task to explore.  
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CHAPTER 3 

STUDY DESIGN 

In this chapter, I outline the design of this study. I begin by including information about 

the schools and teachers used in the study. I then outline the methods used to collect data from 

the participants. Next, I describe the methods used to analyze the collected data. I conclude this 

chapter with a subjectivity statement. 

Setting of Study 

 The study took place at two high schools: Pierce High School and Buchanan High 

School, both pseudonyms. Between the two schools, common characteristics emerged. 

Demographically, both schools contained a majority of students as described as White. In 

curricular offerings, both schools offered two sections of Advanced Placement Calculus during 

the school year I made my observations. One school offered one course, and the other school 

offered two courses. The schools had dissimilar characteristics.  

Pierce High School 

 Pierce High School lies on the edge of an area designated as a suburb of a large city. It is 

one of two high schools in its district. For the school year I observed, there were approximately 

1,500 students enrolled at Pierce. It was identified as a Title I school for the year I observed. 

Fifty-three percent of the students at the school qualified for Free or Reduced Lunch. Eleven 

percent of students were identified as receiving services for disabilities. White students 

comprised 62% of the student population, and Asian students comprised 8% of the population, 

African-Americans 15%, and Hispanics 11%.  
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 For the school year I observed, Pierce followed a four-by-four block schedule: A student 

took four courses that met for 85 minutes one semester and took a different set of four courses 

the next semester. Pierce is the high school that offered two calculus courses. All of the students 

in the observed class took calculus for one block each semester. A fuller description of the 

students’ two calculus classes is included later.  

Buchanan High School 

 Buchanan High School was the only high school in its district, in a county outside any 

metropolitan area. During the year I observed, Buchanan had an enrollment of 1,000 students. 

Forty percent of students at Buchanan qualified for Free or Reduced Lunch. Only one percent of 

the students were identified as having Limited English Proficiency. Demographically, White 

students comprised 66% of the student population; African-American students comprised 27% of 

the population and Hispanics 4%. 

 The school was on a modified schedule of classes, mixing a traditional and block 

schedule throughout a 5-day week. Students were enrolled in seven courses each semester. For 

three days of the typical week, the students took all seven courses for 50 minutes per session. 

One day of the week, students took the courses on the odd-numbered class periods for 70 

minutes per session. The other day of the week, students took even-numbered class periods for 

70 minutes per session and had additional time in the school day for academic enrichment. Most 

courses are yearlong courses; students enrolled for their calculus course the entire school year.  

Advanced Placement Calculus 

 The Advanced Placement Calculus AB course has been in existence for over 50 years. 

The idea in offering such a course is to provide mathematically gifted or motivated students the 

opportunity to take the equivalent of college calculus course while still enrolled in high school.  
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The students enroll in a course for a one-year credit; at the end of the school year 

(typically the first week in May for calculus) the students may take a standardized examination, 

administered by the College Board, to earn college credit for the course. Students are not 

required to take the examination if they enroll in the course at their high school nor are they 

required to enroll in a course to take the examination. The college or university where the student 

eventually matriculates awards credit for a collegiate course based on the student’s score on the 

examination.  

 For the calculus course, the College Board provides two offerings. The first offering, 

Advanced Placement AB, is roughly equivalent to a first semester of introductory calculus. 

Students begin an exploration of the derivative and integral, learn basic rules for the computation 

of derivatives and integrals, and find applications of those concepts to other fields of study. The 

second offering, Advanced Placement Calculus BC, is roughly equivalent to the first two 

semesters of introductory calculus. In this class, students first follow the same curriculum as the 

students in the AB course. They then extend their studies to include derivatives and integrals of 

functions in parametric and polar form and investigations of infinite sequences and series.  

A student is typically enrolled in one course or another; a student does not take both 

courses concurrently. Some students can enroll in the first course followed by the second, usually 

on a four-by-four block schedule with the AB course in the fall semester and the BC course in 

the spring. Students at Buchanan took either the AB course or the BC course for the entire school 

year. All but one of the students enrolled in the AB course at Buchanan. Because of the four-by-

four block schedule, students at Pierce could enroll in both courses in the same school year. All 

of the students in the observed class enrolled in the AB course during the fall semester and the 

BC course during the spring semester. Pierce offered the course in the spring semester as an 
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introduction of the topics in the BC curriculum to reinforce and extend topics covered in the AB 

curriculum. Likewise, because most students elected to take the test only for the AB curriculum, 

the focus of the second semester was on enriching the topics from the first semester. 

Participants 

Participant Selection 

 I obtained a list of Advanced Placement Calculus 17 teachers who participated in a local 

learning community for AP Calculus. I contacted teachers from the list to inform them of my 

study and ask permission to enter their classrooms to observe. Once a teacher accepted this first 

invitation, I observed the teacher’s class for one session to gauge the level of interaction between 

the teacher and students in the classroom. Once I determined that there was a sufficient level of 

interaction to allow robust data collection, I extended the invitation to participate in the study. I 

extended individual invitations to three teachers: two teachers accepted the invitation. The 

teachers in this study satisfied Maxwell’s (2005) recommendation to select participants who 

would provide “description, interpretation, and explanation” (p. 71). Because the selected 

teachers satisfied those criteria, I believed they represented what I wanted to investigate in terms 

of the teachers’ knowledge. I have used pseudonyms for both of the participants. 

Barry 

 Barry had been teaching calculus for 8 years at Pierce High School. He came to Pierce 

when the school opened in order to teach Advanced Placement Calculus. He had taught at a 

different school in the same district before coming to Pierce but did not teach AP Calculus while 

at the other school. He had been teaching for a total of 10 years at the time of my study. Barry 

held a master’s degree in mathematics education from a large, research-oriented university. His 

undergraduate degree was not in mathematics or education. 
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Broad categories describe the approach to Barry, the teacher at Pierce High School, to 

teaching AP Calculus: how he saw his experience in mathematics, how he reflected on his 

approach in teaching, and how he saw his understanding of students. In his first interview, Barry 

mentioned that he had been teaching some sort of calculus class at the high school level for 

approximately 10 years. That base of experience benefited him as he approached newer concepts 

in the calculus curriculum and provided ample opportunity to review the earlier topics in newer 

contexts. 

 Barry enjoyed the opportunity to teach high school calculus. He had looked forward to 

teaching calculus as a novice teacher because of his experiences as a student in mathematics 

classes. Barry envisioned calculus as the combination of the previous mathematics classes in 

high school–algebra, geometry, and trigonometry. In preparing for this course, Barry had 

reflected on his experiences in a history of mathematics course he took as part of his teacher 

preparation program and brought in the historical development of many mathematical concepts.  

 Barry considered many ideas when thinking about how he would approach teaching a 

high school calculus course. He planned the course at three levels–the entire year, an individual 

unit, and each individual lesson. Planning across the year provided him an opportunity to make 

broad connections and to reflect on the role of prerequisite knowledge in developing the content.  

Barry modified his unit and lesson plans based on his experience of teaching AP Calculus 

for several years. When planning for a year for the first time, Barry generally relied on the 

textbook’s (Stewart, 2002) presentation for each unit and lesson. Over the course of many years, 

each new class of students provided him a chance to refine and modify each unit and lesson. As 

he made those changes, Barry often incorporated additional resources to support the changed 

lesson.  
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Throughout the year, there were many times when a review of previously learned 

material became its own lesson. During his first interview, Barry described how, near the middle 

of the year, he had the students participate in a derivative scavenger hunt. The students would 

compute the derivatives of several functions and attempt to find a solution to the expression by 

visiting several classrooms throughout the school building. The goal of the activity was what 

Barry called “the joy of learning” (Interview 1); the students were learning not for some prize, 

but for the reinforcement of a topic that they had spent a considerable amount of time 

investigating in class.  

 For each class period, Barry had rough idea of how the events in the period would 

transpire. He began each class period going over the previous day’s homework assignment 

whenever an assignment had been made in an earlier class session. He planned on reviewing 

approximately two or three exercises each period as a type of formative assessment, but there 

were occasions when the questions were either too involved or when a greater number of 

exercises needed review, requiring a full class period to achieve his objective. Generally, 

however, after reviewing a few exercises, Barry moved on to the new lesson for the day. He 

transitioned from homework review to new lesson by posing questions that would show a gap in 

the students’ current knowledge and how the new material would fill in those gaps. After 

presenting the new material, he offered additional examples to the students by using even-

numbered textbook exercises. He chose those exercises because the odd-numbered exercises 

gave the students an additional resource, exercises with solutions in the back of the book, as they 

worked on their homework assignments. Barry also selected these exercises to illustrate 

additional wrinkles to what the textbook presented or what the homework exercises included, 

such as connecting different types of prior knowledge to new material. 
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Missing from Barry’s description of the typical class period was student group work or 

class time for the students to begin a homework assignment. Barry believed that students 

preferred working individually, leading him to use small group work sparingly. Even though a 

class period was nearly an hour and a half in length, Barry did not want to end instruction too 

early; although his students were conscientious, he believed that providing too much time at the 

end to start on homework would not have served his purposes well, as students would not utilize 

the time to begin the assignment.  

 Barry’s typical class period did not depend solely upon his presentation of material; 

although direct instruction was common, it was not the sole activity during the main portion of 

the lesson. Barry did not want the students passively accepting his presentation of material. Thus, 

throughout his presentation, he encouraged students to present work on the dry-erase board and 

frequently asked students questions throughout the class period. By posing questions to students 

and encouraging public work, Barry was ensuring that the students were active participants in the 

class.  

Presentation of new material in Barry’s class often contained connections to previously 

learned material or a historical development of the new topic. Sometimes physical objects were 

included in the presentation of new material as well. From his experience teaching the class 

several times, Barry knew students could not necessarily visualize the mathematical activity they 

were performing; as a result, he brought in objects to facilitate the students’ visualization of 

calculus topics. In the first interview, Barry mentioned that he brought in food to show the 

students how they could connect a tangible object to the calculus concept under investigation, 

which was determining volumes of solids by revolving an area about an axis of symmetry or 

adding areas of polygonal shapes that form cross-sections of the solid. For the historical 
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development, Barry wanted the students to see that new concepts had come about because of a 

need to answer a previously challenging question in mathematics. He wanted the students to see 

that a calculus concept does not exist in isolation: Some individual (or individuals) were largely 

responsible for the creation or development of a particular concept. Those stories helped to 

supplement why he presented a certain topic to his students at a certain time.  

 Barry’s calculus classes were not for the enjoyment of the teacher. Rather, he had a 

classroom of students who were the object of his instruction. Thus, he considered what he knew 

about his students in order to build meaningful activities in lessons. What helped him understand 

the students in his calculus class was that he had taught many—if not all—of them in a 

mathematics class earlier in the students’ high school career.  

In the first interview, Barry described what he believed were the typical characteristics of 

an Advanced Placement Calculus student and how Pierce High School’s students slightly 

contrasted with his own characterization. Although all of the students could perform well on a 

test or quiz—thus earning good grades throughout their school career in a mathematics classes—

some memorized what they needed to do well on an assessment without concern for learning for 

deeper meaning. However, not all students fit that characterization. In the class I observed, Barry 

pointed out that there were several students who possessed a genuine interest in learning this 

complicated material. His goal was to pique their curiosity and acknowledge their valid 

contributions in each lesson. Barry’s lessons included alternate representations and additional 

explanations so that all students could understand the material. His lessons included these extra 

components to develop students’ deeper understandings of mathematics. He was changing his 

students’ meanings of learning mathematics because they had previously considered memorizing 

facts the same activity as learning mathematics, as he mentioned in the first interview. 
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 Barry considered his students when planning a lesson. While planning, he thought about 

the potential questions students could ask and incorporated his answers to those questions into 

his plans. He expected students to remember information from earlier mathematics classes; he 

held the students accountable for the classes they had passed successfully earlier in high school. 

In addition to the connections to previous years, Barry made connections to previous units and 

lessons within the year. In the first interview, he provided an example of connections across 

lessons within a unit. When reviewing integration techniques, he gave an assessment expecting 

the students to provide anti-derivatives to expressions without a reference to a specific technique 

to apply, although the students had learned each technique separately. He expected the students 

to recognize the difference among u-substitution, partial fraction decomposition, and integration 

by parts and applying the proper technique for a given anti-derivative.  

 Before each lesson, Barry expected the students to read the corresponding section in the 

textbook, which was a textbook designed for college calculus courses. In addition to preparing 

students for the day’s lesson, Barry wanted them to gain a familiarity with reading mathematics 

textbooks. In assigning this reading, he wanted the students to struggle with the topics in the 

reading. His presentation of material the next day in class clarified and supported the 

understanding the students obtained from reading in advance. 

Kris 

 Kris described her path to becoming an Advanced Placement Calculus teaching during 

the first interview. When she was a graduate student Kris taught mathematics classes—including 

calculus—to students enrolled in business programs at a nearby university. During the summer 

of those years, Kris worked in a supporting role for grading the end-of-year Advanced Placement 

exams. Years later, she ended up teaching high school mathematics after she had moved to a 
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different state. She originally taught a high school calculus class not aligned with the Advanced 

Placement curriculum. Upon moving to Buchanan High School, she began to teach Advanced 

Placement Calculus. At the time of the observation, Kris was in her eighth year of teaching the 

AB portion of the curriculum and had started in her first year of teaching the BC curriculum to a 

student enrolled in an independent study course in the school.  

 Most of Kris’s class sessions followed the same progression of activities from beginning 

to end. Each session began with reviewing the previous night’s homework assignment. After the 

review, Kris presented the new lesson for the day, leading the discussion. Although she did not 

develop a formal lesson plan for each day, she wrote down a structured set of notes containing 

her main ideas. Rather than leading students through a discovery of the introduction of a concept, 

Kris told the students about a concept and then led a discovery of possible connections to other 

topics. At the end of the class period, Kris assigned a small number—no more than ten 

typically—of odd-numbered exercises from the textbook (Larson, Hostetler, & Edwards, 2001), 

so that the students could check their solutions in the back of the book and ask clarifying 

questions the next day as needed.  

 Kris used the textbook (Larson et al., 2001) to guide the development of the unit and 

lessons for this class. Although she used the text as guide, she never felt forced or constrained to 

follow the text’s treatment and progression of material. In the first interview, Kris mentioned that 

she knew other textbooks isolated other transcendental functions, including logarithmic and 

exponential functions in separate chapters. Without feeling any strong compulsion to do so, Kris 

maintained the textbook’s prescribed treatment of a separate unit on logarithms and exponential 

functions. 
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 Kris had learned about her students through her past experiences teaching them. Many—

if not all—of the students had been enrolled in her pre-calculus class the year before; some 

students had had Kris as their mathematics teacher their entire high school career. In the first 

interview, Kris mentioned what she considered to be the typical student in her Advanced 

Placement classes. She noticed three commonalities among her students–liking her as a teacher, 

succeeding in earlier mathematics classes, and wanting to take mathematics classes in college. 

Because Kris and the students had worked together before, she knew some students in the class 

needed more support and encouragement than others. She also knew when certain topics needed 

to be reviewed to support the students’ understanding of calculus concepts. For example, before 

presenting the calculus of logarithmic expressions, Kris presented a daylong review on the 

application of properties of logarithms. 

 Kris’s knowledge of her students from earlier interactions provided additional benefits. 

As the end-of-year Advanced Placement examination required the use of a graphing calculator, 

Kris knew when to discuss the proper use and interpretation of this technology when learning 

about calculus concepts. In the first interview, she mentioned that students believed that the 

graph of the logarithmic function contained a y-intercept because of the way the technology 

sketched the graph. She spent time in class discussing this misconception. Knowing that her 

students wanted to perform well on the standardized examination, Kris frequently questions they 

raised about the examination. Her involvement in grading the Advanced Placement examination 

spanned 21 years. Kris shared her knowledge of the grading of these questions with her students 

during the presentation of her lessons. She believed her students wanted to hear these 

experiences. Students frequently asked her questions to understand what should be written on the 

examination paper to earn the maximum number of points.  
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Rationale for Data Collection Methods 

 The two data collection techniques for this study, observation and interview, were chosen 

to work together; one technique supported the other. The observation allowed me the opportunity 

to see the teacher work in his or her usual environment, whereas the interview allowed me the 

chance to have the teacher reflect on that work. Some of the interviews allowed the teacher to 

reflect on what had happened, and others permitted the teacher to foreshadow what could occur 

in future lessons, which allowed me to anticipate possible episodes of interest. Maxwell’s (2005) 

description of the combination of these two techniques captures my intention for including both 

in my study: “While interviewing is often an efficient and valid way of understanding someone’s 

perspective, observation can enable you to draw inferences about this perspective that you 

couldn’t obtain by relying exclusively on interview data” (p. 94). 

 The four interviews were similar to the three-interview structure suggested by Seidman 

(2006). Seidman suggested that researchers could make modifications of the three-interview 

structure, so long as the participant still reflected and reconstructed his or her experiences. The 

first interview and final interview in my study adhered to Seidman’s suggestions for the 

corresponding interviews in his structure. The first interview allowed me the opportunity to 

understand a context for the unit of instruction I was to observe; the final interview allowed each 

teacher the opportunity to reflect on the entire experience. My second and third interviews were 

an extension of Seidman’s middle interview. By providing two interviews instead of one, I gave 

each participant an opportunity to reflect on episodes when details were fresher in the 

participant’s memory.  

 I attempted to ensure the validity of the data by satisfying Eisenhart’s (1988) 

recommendations. She proposed three activities to validate the findings of an ethnographic study. 
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Those activities were a long involvement in the field of observations, acting within the “idiom of 

the participants” (p. 109), and direct involvement within the observed culture. I was present for 

all observations in this study, meaning that I observed the teachers interacting with their students 

directly. I tried to use the teachers’ own wording when discussing mathematical topics. For 

example, Barry insisted on using the phrase “limits at infinity” to describe the expression 

. I made sure to use the same terminology myself so that we could mean the same thing 

when using the same phrase. Likewise, I believe the length of time at each school provided me 

an opportunity to see the participants in typical classroom interactions. By the end of each unit of 

instruction, I felt that I had spent a sufficient period of time in their classroom and observing 

their teaching style to gain an understanding of how they interacted with their students.  

There was an additional step I took toward validating my findings in this study. Like Pirie 

(1997b), I used field notes to support the data in the audio recordings. Reading the field notes 

while listening to the recordings provided me a chance to confirm my conjectures about 

classroom activity. I used the interviews and the transcripts to give me a chance to explore the 

teachers’ interpretations of what I had observed and to check my interpretations against theirs. I 

provided the teachers opportunities to recall thoughts and feelings regarding what I identified as 

key episodes across the observations. The introductory and final interviews helped to provide 

detail and understanding for the observation as a whole.  

Data Collection Methods 

I observed each teacher for one unit of instruction. Upon agreeing to be a participant in my 

study, each teacher informed me of an appropriate time to enter his or her classroom to start the 

observation in order to see the entire unit. I observed the class from that beginning date to the 

conclusion of the teacher’s instruction for that unit. For Barry, the unit lasted 15 class periods 
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over 5 weeks. Each period lasted 85 minutes. Throughout the unit of instruction, Barry took 10 

days off from the new unit of material to have students review first semester topics. I observed 

Kris for 9 class periods over 3 weeks. Because of Buchanan’s unusual schedule, not all class 

periods lasted the same length of time. Of the nine sessions I observed, seven were 50-minute 

sessions, and two were 70-minute sessions.  

 Throughout the unit of observation, I interviewed each teacher four times. The semi-

structured interviews began with an interview guide, and I pursued additional questions as I 

deemed appropriate. (See Appendices A–C for all interview guides.) I began with an 

introductory interview lasting approximately 1 hour and preceding the first day of observation. 

The next two interviews took place in the middle of each participant’s unit of instruction. These 

two interviews lasted between 30 and 45 minutes. The final interview took place after the 

completion of the unit of instruction; this interview lasted approximately 1 hour. The timing of 

the interviews is shown in Table 1.  

 

Table 1. Scheduling of four interviews. 

Teacher Timing of First 

Interview 

Timing of Second 

Interview 

Timing of Third 

Interview 

Timing of Final 

Interview 

Barry Day before unit 

of instruction 

After the third 

day of instruction 

After the eighth 

day of instruction 

Two days after 

unit of instruction 

Kris Day before unit 

of instruction 

After the sixth 

day of instruction 

After the eighth 

day of instruction 

Day after unit of 

instruction 
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For each lesson I observed, I made audio recordings of the discussion between the 

teacher and students. Like Pirie (1997b), I decided to record classroom observations by audio 

devices only, because video recording devices can be intrusive to the normal classroom 

environment. I used two recording devices in the classroom–one placed in the front and once 

placed in the back of the classroom. The front device mainly captured the teacher’s voice, and 

the back device captured questions and comments not covered by the front device. I achieved my 

goal of being minimally intrusive because many students forgot that the recorders were there. At 

times the students reminded each other that what they had just said was being recorded, and it 

would be a good idea to think about what they said. 

  To support the data collected from audio recording devices, I took field notes for each 

lesson. In each lesson, I recorded two types of notes. One type was noting the set of key 

moments that I could consider for retrospective analysis of mathematical knowledge; the second 

type was recording pertinent information that the teacher wrote on the dry-erase board. The field 

notes were kept in spiral-bound notebooks.  

The use of field notes supported information gained from the observations. Collecting 

field notes while observing captures information regarding the participants that cannot be 

gleaned by asking the participant directly in an interview (Emerson, Fretz, & Shaw, 1995). Using 

suggestions from Emerson and colleagues, I used the field notes to identify key moments from 

the observation to revisit, including key details to use in later interviews. 

For this study, field notes were particularly helpful for the second and third interviews. I 

found that my field notes helped me signify noteworthy events that could be the basis of an 

episode to discuss with the participants during these two interviews. Likewise, the field notes 

were useful as I constructed the lesson graphs. (A description of lesson graphs is given in the 
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next section.) I found that the field notes provided supplementary information in the early 

analysis.  

Data Analysis Methods 

Using Eisenhart’s (1988) description of ethnography, I was able to use the analysis of 

data to make “meaningful ‘units’ of the material” (p. 107). Because the goal of an ethnographic 

study is to make sense of others, I implemented a couple of different methods to understand how 

teachers apply what they know mathematically to their classroom conversations. I explain both 

of those methods below.  

I first created lesson graphs. For each classroom observation, I created a table that 

contained three columns. For each row in the table, the first column included the elapsed time in 

the class period, the second column a key quotation or event, and the third column a brief note to 

refer back to in later analyses. I made suggestions in my field notes to tag episodes for future 

study by changing the style of handwriting I used from the recording of actual classroom 

observances. Upon relistening to the classroom discussions and rereading my field notes, I made 

notes in the third column to suggest the most fruitful episodes for investigation. An example of 

such a chart is shown in Appendix D. After creating the lesson graphs, I selected important 

episodes from a class session by using notes from the third column of the table and consulting 

the field notes I had collected during the observation. I transcribed those episodes. Each class 

session contained between one and four episodes, lasting between 2 and 15 minutes.  

I read through the collection of transcriptions to determine if episodes contained 

unanticipated student questions or comments. I determined that a student comment or question 

was unanticipated using one of two criteria: referring to field notes and probing during the 

second and third interviews. Whenever the classroom conversation appeared to be moving away 
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from the teachers’ planned activity, I made a separate note of the apparent change in my field 

notes. I used the separate notes to help identify interesting episodes to probe the participants’ 

understanding. I recorded all of these separate notes in the margins of my original field notes. I 

did not probe all of the tagged episodes with the participants, because a large number of episodes 

existed in each class period. Probing all such episodes would have required an unrealistic time 

commitment on the teacher’s part during the middle interviews. I chose my most interesting 

episodes to probe in order to be respectful of the teacher’s time. If a segment contained an 

unanticipated student comment or question, I coded it using the coding scheme found in 

Fernandez (1997). When the teacher did not know an answer the question to the student’s 

questions, Fernandez used a different code, “U/I”. For each code, I wrote a brief note to provide 

the justification for selecting that code. After all segments were coded, I tabulated the number of 

codes by teacher. 

I made one modification to Fernandez’s scheme. In her report, she used “U/I” to 

represent a situation in which the teacher did not have the appropriate content knowledge to 

respond to understand or incorporate the student’s comment or question. I changed this code to 

challenging questions (CQ), as described by Park and Oliver (2009). I argue that a teacher not 

knowing a particular bit of content knowledge is not necessarily problematic. Instead, such 

episodes permit teachers to recognize that students identified as gifted sometimes ask questions 

at the limits of the teacher’s current knowledge of a subject. 

 Once I had selected illustrative episodes, I charted the progression from the posing of the 

student’s question to the resolution of the question. These charts were similar to the charts found 

in the report of Leikin and Dinur (2007). I made one noticeable modification to their charts. 

Whereas their report included the teacher’s original, planned activity, I decided to focus solely 
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on the deviation from the planned lesson. Deviations from planned activity were common for 

both teachers. Kris did not use organized lesson plans; she had a general plan for each lesson, 

including key questions and examples to present. If the students needed to pursue a topic beyond 

the sketch, Kris could handle that activity and return to her plan. That was an idea she shared 

with me during our first interview. In Barry’s class, deviations from the planned lessons were 

common. During our first interview, he said that diversions were a good management technique 

for teaching high school students in this schedule format. Additionally, he believed that the 

diversions were helpful in scaffolding the students’ knowledge of mathematical concepts.  

 In constructing each chart, I attempted to determine if each moment within an episode 

extended the activity of the diversion or brought the class back to a planned lesson. The direction 

of the arrows suggested one of these two movements. An example of such a chart is shown in 

Appendix E. An arrow pointing to the left signifies activity to support a diversion, an arrow 

pointing downward suggests coordination of planned activity and diversion, and an arrow 

pointing to the right identifies a return to the planned lesson.  

Researcher Bias and Subjectivity Statement 

 Glesne (2000) suggested that the beginning researcher should not shy away from his or 

her subjectivities but should acknowledge them and understand how they bear on the study and 

the results. Thus, I identify and describe those subjectivities. My interest in the group of 

individuals I investigated, teachers of Advanced Placement Calculus, was a result of my own 

experiences as a high school teacher who had taught Advanced Placement Calculus. I greatly 

enjoyed the experience, particularly the challenges it presented to me.  

 Because I had a preference for teaching AP Calculus, I viewed the course and the 

teachers of the course in a positive light. Thus, I was aware that I might be giving the teachers 
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more credit for the knowledge they possessed than was warranted. To avoid that possiblity, I 

relied on field notes and transcripts of audiotapes of the classroom and interviews to provide 

evidence for claims I made about the teachers’ knowledge. Because I examined the knowledge 

that the teachers used in instruction, the results are shaped and limited by the knowledge of the 

subject I bring to the study. Last, because several of the studies that I read on teacher’s 

knowledge of mathematics tended to report knowledge in terms of the deficiencies teachers bring 

to the classroom, I wanted to highlight the knowledge each teacher did possess and use. My goal 

was to identify and report knowledge in the positive (what the teachers knew) rather than in the 

negative (what the teacher did not know). As a result, the next chapter refers to what the teacher 

knows, instead of what each teacher knew.  
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CHAPTER 4 

FINDINGS 

Introduction 

 After observing the two teachers, Barry and Kris, for one unit of instruction, I noted that 

students provided both teachers opportunities to apply their knowledge through unanticipated 

questions. These episodes help answer a question posed by Schoenfeld (1998): “Something has 

happened. What will the teacher do next, and (more importantly) why?” (p. 3, italics in original). 

Each teacher used a variety of approaches to resolve student questions. In my analysis, I counted 

the frequencies of those various approaches they used to deal with unanticipated responses using 

Fernandez’s (1997) four categories. Below I discuss how each teacher used the four approaches 

in his or her classroom activity. Patterns for each approach emerged for addressing unplanned 

activity, and those patterns are detailed at the end of this chapter.  

 The manner in which Barry and Kris handled unanticipated student questions 

corresponded to three of four Fernandez’s (1997) categories: namely, following through with 

students’ comments to a logical conclusion (given the code FT), posing a counterexample to 

students’ comments (given the code C), and asking a simpler or related question to students’ 

original question (given the code S/R). I used a fourth code drawn from the work of Park and 

Oliver (2009) regarding challenging questions posed by students; I gave these episodes the code 

CQ. Table 2 shows the frequency of each code across all of the observations.  
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Table 2. A breakdown of total number of episodes listed by category. 

Teacher FT C S/R CQ 
Barry 14 

(26.9%) 
7 

(13.5%) 
27 

(51.9%) 
4 

(7.7%) 
Kris 7 

(20%) 
8 

(22.8%) 
19 

(54.3%) 
1 

(2.8%) 
 

Across all observations, Barry had more episodes of interest than Kris because of the 

different number of hours of observation for each of the units. But when I compared the number 

of episodes to the length of the observations, the results were reversed and Kris had more 

episodes per hour than Barry.  

 One possible explanation for the different rates in episodes between the two teachers 

deals with how Barry approached the 85-minute class session. Although his students 

demonstrated an interest in mathematics, Barry mentioned in his first interview that they needed 

time to absorb what he presented. For example, Barry told stories regarding the presented topic 

to provide his students time to reflect and absorb. As he mentioned in the first interview, those 

stories sometimes scaffolded how the students learned the material: Students would sometimes 

recall the related story before the concept. This notion of permitting students to reflect on 

mathematical concepts in class has support in the report by Chazan and Ball (1999). They 

suggested that the intellectual pace of a classroom discussion be slowed down on occasion for 

the students to make the connections between the newly presented material and their prior 

knowledge base. A slow down can occur in a couple of ways. The report of Chazan and Ball 

suggested soliciting additional solutions from students; Barry found ways to incorporate 

supplementary ideas to connect mathematical ideas in different ways. Although Chazan’s down 

time occurred in a class of students repeating a high school algebra class, this notion merits 

consideration in the context of this study as well. Students grapple with challenging concepts, 



 

60 

regardless of class. When teachers permit additional time to allow students opportunities to 

reflect on and make connections to the newly presented material, that creates chances for 

students to build stronger connections among topics.  

The rate of episodes classified as Simpler/Related Questions is much higher than the 

other categories for both teachers. One possible reason lies in the timing of the observations. 

With the Advanced Placement examination approaching, the teachers took many opportunities to 

review previous concepts before the organized in-class review. In the interviews, both teachers 

signaled that their in-class review was beginning after the unit of instruction I observed. Thus, it 

seems plausible that the teachers were starting to review for the examination even before the 

primary review began. Additionally, at the end of the school year, the teachers would be able to 

call upon concepts from earlier in the year. At this time of the year, both teachers posed different 

types of review questions. Earlier in the year, they could call upon material from prerequisite 

mathematics classes. Near the end of the year, they called upon material they had developed with 

their students in the current class. 

Another explanation for the high number of simpler/related questions comes from the 

teachers’ prior experiences with these students. Both teachers had taught the students for at least 

one previous class. The teachers called on previously learned material to support newly 

presented material by referring to an idea taught in a prior year or in the current school year. The 

previously learned material allowed the teacher to make a connection from past to present. Kris 

reinforced connections among ideas learned in earlier mathematics classes: “They know that I 

am not happy when they recite back to me a rule without understanding. That if they don’t see a 

bigger picture of what’s going on, then I haven’t accomplished my goal” (Interview 1). Barry 

described his own experience learning calculus as a student: 
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It’s why I like calculus so much. Because when I took calculus in high school, it all made 

sense. This is why we learned trig, this is why we learned algebra, this is why we learned 

geometry, because they all meet right here. And I just thought that was beautiful, so that’s 

what I try to do: connect whatever it is we are doing to something we have done. A lot of 

times it’s really easy to connect it to the last lesson, but to even go back to [earlier 

mathematics classes]. (Interview 1) 

Barry expected his students to remember and call upon the information learned in 

previous mathematics classes. Because the teachers made many connections across mathematics 

subjects, they required students to have quick access to previous knowledge. With that 

knowledge easily accessed, the teacher could pose related questions.  

One additional explanation for Barry’s use of simpler/related questions was his intention 

to bring in the historical development of calculus concepts. Although he typically planned a 

discussion on the history of a particular topic, the historical development might explain some of 

the associated knowledge he possessed. Barry built many connections to a particular concept, 

one of which was its historical development. During the first two interviews, I asked him about 

the historical development for the unit of observation. One example was his telling of the 

development of L’Hospital’s Rule. Barry told students how John Bernoulli, under the patronage 

of Marquis L’Hospital, worked to evaluate limits of rational expressions in indeterminate form. 

The need to evaluate such limits led to the creation of the rule where one computes the derivative 

of the numerator and denominator individually then re-evaluates the limit. Barry reviewed a 

previous concept, computing derivatives, in his presentation of new material, determining a 

sequence’s convergence. His purpose for including the historical development was to show the 

students the utility of the newly presented concept. He wanted to show that these new concepts 
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answered a difficult question from the history of mathematics. His goal in this presentation was 

to show that earlier methods were not helpful in answering challenging questions in 

mathematics, and that historical figures developed this particular mathematical concept to answer 

an otherwise unanswerable question. Rather than presenting some concepts as items to be 

learned, Barry gave a story behind why the concept came to be.  

The historical development of a mathematical topic has support from mathematics 

education researchers. Davis and Simmt (2006) claimed that knowing established mathematics 

also requires the teacher to know the development of those mathematical ideas. An awareness of 

this development allowed Barry to pose simpler/related questions: Knowing the history of the 

concept can provide teachers ways to pose a question that mirrors the development of the topic. 

For Barry’s discussion of the development of L’Hospital’s Rule, the need to determine limits at 

infinity for expressions in indeterminate form could have provide the basis for a set of related 

questions if the students had not given Barry the perfect transition to that story. 

Simpler/Related Questions as Reviewing Pre-Requisite Knowledge 

In Fernandez’s (1997) study, a teacher’s approach to using simpler/related questions 

allowed students to work on an easier question first. A teacher needs to possess a certain level of 

content knowledge to pose a question that would be easier while still addressing the current 

concept. Teachers can make connections from easier to harder or to different branches of 

mathematics. If implemented well, the result of posing simpler/related questions is that the 

students develop generalizations for the planned activity or beyond. By asking these kinds of 

questions, the teacher can return to the students the responsibility for making connections and 

developing generalizations. 



 

63 

The teachers in this study asked simpler/related questions to determine students’ 

prerequisite knowledge. A pattern emerged in the way Kris employed simpler/related questions: 

A student asked a question. The teacher asked a question to review. The class worked on the 

teacher’s review question to answer the original question. In this pattern, Kris identified the 

review question by making a noticeable movement to the side of the dry-erase board in the front 

of the classroom. Upon completion of the review questions, she returned to the original question 

at the other part of the board, using the review question as an assumed fact. I explain this 

approach in the first episode described below. When posing these timely questions, Kris applied 

a special knowledge of the students and mathematics curriculum (Ball et al., 2008). 

Kris, First Episode–Reviewing Anti-derivatives 

For one homework exercise students were expected to find the anti-derivative of a 

rational expression. This expression could not be solved by the students’ typical approach of 

adding one to the value of the exponent and dividing by the new exponent. When the students 

could not use their conventional approach, they sought the teacher’s assistance. Even the teacher 

acknowledged this expression’s anti-derivative was challenging for the students to determine.  

 To move students toward a solution, Kris reviewed the anti-derivatives of expressions in 

the form of a single variable raised to a numerical exponent. She divided the review into two 

parts. The first review question pertained to the anti-derivative of the expression 
    

 

1
x

or     

 

x−1. The 

second review question concerned the rule for finding the anti-derivative of any other expression 

in the form of   

 

xn. Kris posed each of these questions to suggest that both anti-derivatives might 

be useful in finding the final solution to the original homework problem. Additionally, she 

explained the separation of the rules. She led the class through finding the anti-derivative of the 
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original rational expression and getting to a point where the students would need to employ the 

two reviewed anti-derivatives.  

 The choice of the two anti-derivatives allowed the students to work with something they 

already knew. The class progressed through the solution to the original question without 

reviewing prerequisite knowledge. When the students arrived at the point where the review 

question was needed, they used the anti-derivatives to find the answer to the original homework 

exercise. 

 In the final interview, I discussed this kind of anti-derivative review with Kris, and she 

explained in detail why such reviews were common during the unit of instruction. She wanted to 

include these reviews because the students tended to overgeneralize recently learned material. In 

particular, she had observed that when students learn about the anti-derivative of 
    

 

1
x

, they 

incorrectly extend the notion to state that the anti-derivative of 
    

 

1
xn  must also be a natural 

logarithm. Her intention in presenting this review was to prevent such student overgeneralization 

later in the course and possibly during the examination.  

Kris, Second Episode–Reviewing Derivatives of Logarithmic Functions 

On the third day of the observation, Kris presented a mini-lesson on the derivative of 

functions containing natural logarithms. A student asked her during a review of homework 

exercises why the answer in the back of the textbook did not match the answer the student had 

obtained. Kris delayed responding to the student question to review the derivatives of natural 

logarithm expressions. Once she had completed the review, she answered the student’s original 

question.  
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The textbook (Larson et al., 2001) contained an exercise suggesting an application of 

logarithmic differentiation to find the derivative of the quotient of two products, 

    

 

y =
x +1( ) x + 2( )
x −1( ) x − 2( )

. Kris explained to the students why a logarithmic differentiation would be 

useful: “And I don’t want to have to do the quotient rule, and I don’t want to have to do a 

product rule inside a quotient rule” (Kris, Day 3 Observation). As the class worked through the 

derivative of this quotient, Kris halted the progress of the discussion to review the derivatives of 

expressions containing natural logarithms: “The derivative of the natural log of anything. What’s 

that rule? Let’s write [the answer] back over this way [away from the homework exercise].” Kris 

completed that review. The class then completed the homework exercise and discussed the 

manipulations needed to match the class’s work to the solution in the back of the textbook; the 

students needed to find common denominators to match their answer to the one in the textbook.  

Because the direction from the textbook suggested an application of logarithmic 

differentiation, the review of derivatives of logarithmic expressions supported the rest of the 

solution. Following the textbook’s direction permitted the students to evaluate the derivative 

more efficiently than the application of two rules of differentiation for the same expression–

product rule and quotient rule. As Kris pointed out,  

If you can use the logarithmic differentiation, you can use the log properties to separate 

the products and the quotients, and so you can do individual pieces, rather than having to 

do it all together as a big quotient or a big product. And then the kids are like, why didn’t 

you show me this in the first place? Ah, because you weren’t ready. (Interview 4) 

In this episode, Kris reviewed how to compute the derivative of the natural logarithm of an 

expression. As in the anti-derivatives examples above, she reviewed natural logarithms in two 

parts–the natural logarithm of a single dependent variable and the natural logarithm of an 
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expression in one variable. When she wanted to return to the original question, she used the first 

review question. This review question helped the students understand a key step toward the 

solution path, taking the derivative of a single expression.  

The students worked with logarithms easily, including the derivative of the natural 

logarithm, because Kris had reviewed these properties earlier. The students could not apply their 

understanding in a different situation–taking a derivative that was not already a natural 

logarithm. When Kris reminded the students of familiar derivatives, they worked through 

applying the logarithm of an expression and computing the derivatives of the new expression 

quickly. After these steps, the students arrived at the textbook’s form for the final answer with 

little struggle.  

 Based on Even’s (1990) formulation of subject matter knowledge, Kris’s activity 

demonstrates a strong command of the basic repertoire for the calculus of logarithmic 

expressions. The repeating of these derivatives and anti-derivatives captures the “important 

principles [and] properties” (p. 525) that Even outlined. Kris wanted to illustrate the derivative 

and anti-derivative of logarithmic functions to emphasize the two possible answers; she wanted 

to highlight a key difference. In the second interview, Kris mentioned that she decided to review 

these derivatives and anti-derivatives because of a common student misconception: 

And that’s the same thing with the first introduction to the derivative of one over u is the 

natural log of u. Absolute value of u. All of a sudden that turns into—the anti-derivative, 

not the derivative—the anti-derivative of one over u squared is the natural log of the 

absolute value of u squared. One over u cubed, natural log of the absolute value of u 

cubed. They’re—we fall back into this generalization. That’s why I keep writing on the 

board, one over u, will get our natural log.  
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Barry, First Episode–Two Review Questions for One Homework Exercise 

 Barry demonstrated the same pattern as Kris in responding to unanticipated student 

questions with simpler or related questions, making one small but significant change in 

comparison to Kris. Barry included a second set of review questions. Additionally, he reviewed 

concepts specific to students’ questions rather than leading a brief mini-lesson.  

At the beginning of the third day of the observation, a student wanted to review a 

homework exercise related to determining the convergence of a given sequence, 

( ) ( )1ln2ln 22 +− nn . Barry reviewed two topics with the students: properties of natural logarithms 

and limits at infinity of rational expressions. He posed questions requiring short answers from 

the students. He used the short answers to answer the original question of determining the 

convergence of the sequence.  

At the beginning of this episode, Barry suggested to the students that they might have 

struggled with an expression including natural logarithms. The students’ initial approaches 

toward a solution supported the difficulties he hypothesized. One student wanted to compute the 

derivative of the expression. Once the students determined that taking the derivative was not a 

useful approach to find a solution, some students mentioned applying properties of natural 

logarithms. After Barry discussed how to determine the convergence of a sequence, he presented 

a task that involved converting the difference of two natural logarithms to the logarithm of a 

quotient. When the class converted the expression to a single logarithm 
    

 

ln 2n2

n2 +1

 

 
 

 

 
 , the students 

lacked confidence in determining the limits at infinity of a rational expression. One student 

thought he remembered the shortcut in finding this limit by comparing the degrees of the 

numerator and denominator separately. Sensing that the students did not remember the shortcuts 

clearly, Barry reviewed how to determine the limits at infinity for rational expressions. He asked 
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the students to determine the limit for each of the three terms in the original expression divided 

by the degree of the highest term, 
    

 

lim
n→∞

2n2

n2

 

 
 

 

 
 , lim

n→∞

n2

n2

 

 
 

 

 
 , lim

n→∞

1
n2

 

 
 

 

 
 . When the class announced the 

answers to all three limits, they combined these answers to yield the desired answer to the 

homework exercise.  

Students reached another disagreement when taking the limit at infinity of the rational 

expression. The students clarified that they were not canceling terms from the fraction nor 

changing the value of the fraction by multiplying one part by a single constant. Partially 

incorporating a student suggestion, Barry asked the students how to divide individual terms by 

another monomial. A student suggested dividing all of the terms by the highest-degree term in 

the fraction; the entire class, both teachers and students, worked together to compute all of the 

divisions in the fraction. Once the students had completed the division, Barry then asked about 

the limits at infinity of a constant and a rational expression in the form of
     

 

1
xn . Answering the 

teacher’s questions term by term led the students to the answer to the homework exercise. When 

the students found this numerical value, they determined the convergence of the original 

sequence. 

Barry posed succinct questions in this episode. The concepts he reviewed did not directly 

address the homework exercise. Instead, he asked questions to address prerequisite knowledge 

connected to the original question. The homework exercise asked the students to determine the 

convergence of a particular sequence. However, students needed to review two concepts before 

making the determination on the convergence. To help the students, Barry reviewed the two 

concepts when they needed them. When the students struggled with natural logarithms, he asked 

questions about logarithm properties; when the students struggled with simplifying the new 
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expression, he reviewed division of monomials. Especially in the second case, Barry posed very 

quick, short questions: “So two n squared divided by n squared? ... One divided by n squared? ... 

n squared divided by n squared? ... One divided by n squared?” (Day 3 observation). 

Barry, Second Episode–Two Review Questions Supported by Two Related Questions 

 During the ninth day of the observation, Barry asked the class to determine the 

convergence of the alternating series 
    

 

−
1
2

 

 
 

 

 
 

n

n=1

∞

∑ . He reviewed two topics first, convergence of a 

sequence and rules of exponents. For each topic, Barry created an example that placed each 

review topic in a different context.  

From the beginning of the discussion of this exercise, two groups of students suggested 

both possible answers—convergent or divergent. In order to settle this disagreement, Barry asked 

the students to compute the value of the first few terms of the series, not the associated partial 

sums. He explained to the class that the goal in determining the value of the first few terms was 

not to identify the convergence of the series immediately, but to develop a numerical pattern to 

determine the convergence of the corresponding sequence. He then asked the students about the 

convergence of the corresponding sequence. The students expressed their answer with hesitation: 

One student said that the sequence converged, but other students questioned how the 

convergence of a sequence determined the convergence of an alternating series. Barry’s next step 

was to represent the terms of the series as giving and receiving slices of pizza:  

We bought this twenty-one-slice Big Daddy pizza from [a pizza parlor] the other day. 

So, we cut it in half and I give you half. But then you give me a fourth of the pizza. But 

then I give you an eighth. You give me a sixteenth of the pizza. I give you a thirty-

second of it. …You give me a sixty-fourth of it. We keep going back and forth like this. 

Is that going to go to infinity? Like, is it just going to keep getting bigger and bigger and 
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bigger, or smaller and smaller and smaller, or are you going to end up with a particular 

amount of pizza? (Day 9 observation) 

The students recognized that slices would be too small to observe. Barry wanted them to connect 

the pizza slices to the corresponding sequence; he asked the students if that corresponding 

sequence converged. He hoped that the students would see that the slices would be getting 

smaller—implying that the consecutive terms are always decreasing—and that there would not 

be a recognizable slice of pizza should the cutting continue—implying the limit at infinity of the 

absolute values of the corresponding terms equaled zero—satisfying both conditions of the 

convergence of an infinite series by the Alternating Series Test. 

 The students knew that the corresponding sequence converged but could not explain why. 

They struggled with explaining the role of the variable as an exponent to the convergence of the 

sequence. To alleviate the students’ struggle, Barry posed two questions to review exponents: 

“Okay, so what does one half to the n plus one mean? ...Okay, what does one half to the n 

mean?” (Day 9 observation). When those two questions did not work, Barry posed a question 

about half of a number in terms of points on a test:  

If I took ten points off of your test, and I put minus ten on your test. Gave you a ninety. 

And I said, you know, I was in a bad mood, I knew what you meant, so I am going to 

take half off. All the minuses I put on there, I am going take half off. I am only taking 

minus five points off, right? Is that good or bad? (Day 9 observation) 

The idea in posing such a question was to show  

If we have a negative number, when we cut it in half, we are actually cutting in half, 

[makes the value] actually bigger. But, one half to the n times one half is going to be 
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smaller that one half to the n, because our domain … is all positive. So, this is true, for 

our domain. (Day 9 observation) 

 In this episode, Barry posed related questions to assist the students in finding a right 

answer. He posed questions at two different opportunities. The first question occurred after the 

students could not determine the convergence of the alternating series. If the students could have 

answered the question and provided a justification, the episode might have ended. However, as 

the class worked through an explanation, he realized that the students could not justify their 

claim; therefore, he posed a second set of related questions. The students expressed an intuition 

that the alternating series converged but could not fully explain their intuition. The lack of 

explanation across the episode motivated Barry to pose both sets of questions.  

 In the interviews with Barry, I discussed where he posed simpler and related questions to 

handle unanticipated student comments. In looking back at the entire unit, he reflected on 

reviewing limits at infinity:  

Limits at infinity, every year are difficult. And they, they shouldn’t be that difficult, but 

students always have trouble with them. And so to be able to pull them out of a context, I 

feel like almost every student in the class could do so many of those limits at infinity in 

their head now. … And I feel that overall they are more comfortable with limits [at 

infinity], because we tackled so many different limits. (Barry, Interview 4) 

There were multiple contexts for limits at infinity during this unit of instruction: determining the 

convergence of an infinite series and applying the Integral, Limit Comparison, or Ratio Tests to 

determine the convergence of an infinite series. Because these limits had been reviewed and 

studied in a new context, the students gained a familiarity and comfort with a concept they had 

learned earlier in the year.  
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Reviewing old concepts in new contexts was a familiar theme in Barry’s presentation of 

the unit: “So for us to be able to pull derivatives and integrals out almost every single day and 

make them think about the context was…what I wanted to get out of this” (Interview 4). To 

fulfill this idea, Barry implemented many simpler/related questions throughout the unit. In the 

second interview, he pointed out that simpler/related questions assisted in the development of the 

current lesson. In order to move forward with a lesson, he moved backward. By establishing the 

prerequisite knowledge, Barry rested new material on recently reviewed material. In the final 

interview, Barry pointed out that he liked to review material in order to keep fresh the previous 

material to help students prepare for the upcoming Advanced Placement examination. Progress 

on the new lesson depended partially on successful reinforcement of older, possibly forgotten, 

material. Because he felt the desire to review earlier concepts, Barry might have been inclined to 

include such questions when handling unanticipated student comments.  

Comparing the Two Teachers 

 For the episodes described, the teachers used an approach that seemed to fit the students’ 

needs. In each of the episodes, the teacher presented two different approaches to responding to 

the students’ unanticipated comment or question. The approaches did not vary in nature as much 

as they did in format. One comparison is that Kris would ask sets of review questions, whereas 

Barry offered one question at a time. When Kris asked one set of questions, she took the 

opportunity to introduce a mini-lesson, reinforcing a reviewed concept in many cases. Kris 

reviewed not only what the students asked for but also additional concepts associated with the 

student’s comment or question. The mini-lesson covered additional information that possibly 

helped the students with the original question or comment. In contrast, Barry reviewed only the 

concept that was necessary to answer the student’s immediate question. His focus appeared to be 
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on reaching resolution as soon as possible. Once he had addressed the question or comment, the 

class returned to the original situation. These observations are not to suggest the value of one 

approach over the other but to highlight two ways to answer a student’s unanticipated question 

with a simpler/related question.  

 The teachers’ use of simpler/related questions allowed them to examine their own vertical 

content knowledge. Shulman (1986) identified the vertical component of content knowledge in 

opposition to lateral content knowledge, where a teacher examines how an idea is discussed 

across other subjects simultaneously. In this case—the use of simpler/related questions—the 

teachers reflected on what had happened earlier in the students’ academic careers and used that 

information to assist them in the current episodes. The teachers were calling upon mathematical 

knowledge that they assumed students had learned earlier in the year or in previous years.  

Shulman (1986) also mentioned teachers’ explanation of why topics are central or 

peripheral within a particular curriculum as a component of teacher’s content knowledge. He 

stated that such decisions “will be important in subsequent pedagogical judgments regarding 

relative curricular emphasis” (p. 9). When the teachers addressed topics within a simpler or 

related question it showed me which topics they considered central. In the same report, Shulman 

suggested that teachers recognize which topics are easy or difficult for students. When the 

teachers in this study reviewed a particular topic they demonstrated their awareness of topics that 

could be difficult for students. By reviewing earlier concepts, they showed students that easier 

topics are the basis for more challenging topics. In Kris’s class, the students already knew the 

derivatives and anti-derivatives for monomials, so she could then present the other derivatives—

such as the ones they were studying in this unit—as being different from what they had learned 

earlier in the course.  
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In Park and Oliver’s (2008) study, challenging questions allowed teachers opportunities 

to create simpler or related questions. In their study, when one teacher learned of a student 

misconception during a lab activity, she created an analogy to explain the challenging concept to 

her students. Much like a teacher in the Park and Oliver study, Kris used students’ 

misconceptions to create appropriate review questions. In describing teachers’ subject matter 

knowledge for functions, Even (1990) noted that a teacher needed to recognize subtopics and 

subconcepts connected to a particular topic. By creating simpler or related questions, the teachers 

in this study demonstrated their knowledge of the supporting topics that underpinned the central 

topic of discussion.  

 Schoenfeld (1998) described teachers’ use of simpler or related questions in reporting his 

case studies of teachers as well. In the study of a novice algebra teacher, he described a teacher’s 

approach to assisting students with simplifying exponents in rational expressions. The students in 

Schoenfeld’s case study had no difficulties simplifying expressions when the value of the 

exponent in the numerator was greater than the value of the exponent in the denominator (for 

example, 
    

 

x 7

x 4 = x3). Difficulties arose when the teacher asked the students to simplify an 

expression where the exponents were equal in both the numerator and denominator (for example,
 

    

 

x5

x5 ). Because the students’ answer—zero—surprised the novice teacher, he tried a numerical 

approach to correct the students’ misconceptions, asking the student to simplify a fraction with 

the same value in the numerator and denominator. However, the students did not make the 

connection between that example and the algebraic task at hand. Teachers should not only 

choose appropriate review questions but also justify connections between review questions and 
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new material. Without a teacher explaining the connection from simpler question to new material 

to students, a teacher’s purpose in posing a simpler question to students is lost.  

In the present study, the students in Kris’s and Barry’s classes generally were able to 

connect the simpler question to the question in the lesson. Schoenfeld’s teacher had been was a 

novice; both teachers in this study were experienced teachers. Because experience can help 

teachers build classroom strategies—including posing valuable questions—the teachers in the 

present study may have been better at asking questions that allowed students to see connections 

between past and present ideas.  

Another possible explanation for the difference in student responses in Schoenfeld’s 

study and this study is that the novice teacher in Schoenfeld’s study did not make his intentions 

for posing the review question explicit to his students. Because he did not make those intentions 

explicit (simplifying a fraction was the same as simplifying a rational expression), the students 

did not see the connection between the review question and the original question; instead, the 

students were just answering another one of the teacher’s questions. In Kris’s class, when she 

posed simpler or related questions, she referred back to earlier work; her students knew she had 

reasons for posing simpler questions.  

Challenging Questions as Expanding Teacher’s Own Content Knowledge 

As in Park and Oliver’s (2009) study, the teachers in this study were posed student 

questions beyond the teacher’s immediate understanding. Both of the teachers in the study 

effectively determined approaches for handling challenging questions. Studies show that teachers 

of highly motivated or capable students desire to learn more about the subject they teach 

(Bishop, 1968; Mills, 2003). Like a teacher in Park and Oliver’s study, Barry took the 

opportunity to research the student’s question outside of the school day. When attempting to 
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understand why the harmonic series diverges, one student wanted to see a more compelling proof 

than the one provided in the textbook (Stewart, 2001). The next day, Barry returned and 

presented the class with a Web site showing 20 different proofs of the divergence of the 

harmonic series (Kifowit & Stamps, 2006). During the third interview, Barry indicated that he 

wanted to find a good proof for this student to satisfy the student’s inquisitiveness. 

Barry, First Episodes–Differentiating Permutations and Combinations 

 Within this unit of instruction, there were many references to the factorial operation. 

Students vaguely remembered the concept at the beginning of the unit and many times expressed 

their frustration with working with the concept. To motivate the students’ interest in the concept 

of factorials, Barry referred to permutations and combinations. In those references, he 

acknowledged he could not connect the terms to their corresponding definitions, even though he 

knew how to explain the computation of the number of possible combinations of numbers in a 

lottery or the number of possible arrangements of officers in an organization. During the second 

interview, Barry stated 

I do like to look ahead a little bit, but not get too deep into it so that I’m getting off the 

topic. The topic is sequences, and I don’t want to delve too far into probability, but just 

give them a little taste of it, so that I can explain what the factorial is, what it is for, and 

then come back to, okay, how does that define sequences, or how are we going to use this 

function to figure out what the terms in this sequence [are]? 

Because his intention was only to make a connection from factorials to examples outside the 

mathematics classroom, Barry did not delve too deeply into the explanation of the computation 

of possibilities in the two illustrations (lottery combinations and selection of officers). Although 

he could have explained the difference between the terms combinations and permutations with 
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additional preparation time and research, he did not recall the difference in this particular 

episode, nor did he pursue a discussion in later class sessions. 

 On the first day of the unit, Barry began to discuss the convergence of the sequence 

whose terms are in the form n!. A student said that the punctuation mark did not carry 

mathematical meaning. Barry anticipated that this question might arise, based on his experience 

with an earlier section on the same day. To remind the students of the factorial, he computed the 

factorial of a small number. Much like his approach for simpler/related questions, he 

immediately followed the first review question with a second, related application question. The 

class answered the latter application question, the number of ways a group of club members can 

elect officers, with a little assistance from Barry. As he kept pursuing other aspects of the 

factorial, he mentioned a connection between factorials and playing the lottery. To explain how 

to compute the probability of winning the grand prize, Barry gave the impression to the class that 

he had not recognized the difference between the terms permutations and combinations, even 

though he knew how he wanted to use the unordered arrangements of objects. Barry probably 

could not genuinely recall which term he wanted to use but did know how he wanted to count the 

number of unordered arrangements of winning lottery numbers. 

 Another episode with factorials occurred on the 12th day. It began with the class wanting 

to review a homework exercise. In working through this exercise, students debated the value of 

zero factorial—some students claimed the answer was zero, whereas others said one. Barry 

wanted to clear up any confusion, especially for the second group of students, so he posed an 

application question regarding the number of ways to select officers from a group of club 

members. He wanted to use this example to illustrate zero factorial in a context outside the 

mathematics classroom. As on the first observation day, Barry admitted to the students that he 
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could not connect the terms permutation and combination to their corresponding operations. 

When a student kept pressing for another explanation for zero factorial equaling one, Barry 

admitted to not knowing a more mathematical proof. He ended up doing Internet research to find 

a paper that provided additional proofs for this concept; he presented these proofs later.  

 In the second interview, Barry wanted to point out how the idea of the factorial can be 

seen in mathematics beyond what the students were experiencing at the time of the observation. 

His goal was to provide an introduction to the topic of factorials, not an entire lesson on 

permutations and combinations. He did not need an extensive knowledge of this particular topic, 

but just enough to lead the students to start the journey. Once he made the introduction and 

connection to another branch of mathematics, Barry returned the discussion back to the primary 

topic of calculus. Although this pursuit highlighted the limits of the teacher’s content knowledge, 

it did not detract from his ability to teach the calculus class effectively. These episodes also 

illustrated the role of teacher as student; when presented with a challenging question, Barry 

researched a plausible answer. In later sessions, he returned to his class to share his discoveries. 

 Interestingly, Barry’s rationale for pursuing the factorial concept was the students’ lack 

of comfort in working with the factorial operation. Knowing that the factorial would challenge 

the student as much as any of the new calculus concepts, Barry delayed a presentation of 

factorials until the operation was needed again, when working with power series and the Ratio 

Test. In looking ahead to upcoming lessons, he suggested  

They don’t really know factorials very well. So, to be able to present factorial and the 

algebra involved in that—. When we have to start simplifying and reducing and 

comparing an with an+1 and how factorial works in that. … And, how factorial is really 
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not that much different, let’s just write some things out, and so to go from that direction 

(Interview 3) 

In an attempt to make factorials more relevant and connected to previous knowledge, 

Barry illustrated the different ways students could see a concept in various branches of 

mathematics. Providing these illustrations led him to the limits of his own knowledge. The 

students could follow Barry to those limits, as they were enrolled in an accelerated mathematics 

class. The end result of the challenging question and the additional research was the students 

finally feeling more comfortable with a previously seen, but seldom used, concept from previous 

mathematics courses.  

Barry, Second Episode–Necessary Steps for the Alternating Series Test 

 Barry’s planned activity on the eleventh day of the observation was to illustrate 

conditional convergence using the alternating harmonic series. The students actually got ahead of 

the his plan by pointing out that the harmonic series diverged, showing the conditional 

component of convergence; Barry had wanted to save that discussion for the end of the 

exploration, partially because of the confusion that jumping ahead created. In the confusion, one 

student mentioned that the original harmonic series diverged. Barry decided to mention that the 

absolute value of all of the terms, the harmonic series, diverged. Once he had finished discussing 

this comment, he returned the discussion to the original series; when the discussion moved back 

to the alternating series, he wanted to apply the Alternating Series Test. When working through 

two steps of this test, a student asked why they had to perform both parts: 

Why do we even need the first condition, if like the second—wouldn’t the second one be 

good enough for like the limit as n approaches infinity of a…sub n—equals zero? 
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Because like we’ll know that, since we are adding or subtracting, like zero all the time, 

it’s going to be convergent. Isn’t that good enough? Why do we need the first one? 

Barry waited to respond to the student’s question and appeared to be thinking of an answer. With 

only a short amount of available time, he acknowledged that he did not know the answer to the 

student’s question. Furthermore, he praised the student for posing such a challenging and 

thought-provoking question: “That’s a good question. Off the top of my head, I can’t think of a 

counterexample to what you are saying.” Needing more time to answer the student’s question 

and planning on discussing other topics for the day, Barry left this student’s question 

unanswered.  

Kris–Representing Pi 

 On the second day of the observation, Kris posed a question to connect properties of 

exponents to properties of logarithms. After making that connection, a student asked Kris about 

the two types of logarithms found on their graphing calculators–the common logarithm and the 

natural logarithm. The class, both teacher and students, discussed natural logarithms as a result, 

leading to another student question. This question was another potential diversion–explaining the 

meaning of the number e. Kris answered the question by mentioning the financial connections of 

e, such as continuously compounded interest. When she finished this explanation, the student 

elaborated the posing of the meaning of e question by connecting this question to finding a 

meaning of the value of π. In providing additional explanation for the concept of π, Kris 

mentioned a calculus connection to the development of the concept. She remembered that 

connection involved an infinite series and the tangent function. However, she admitted to not 

knowing the connection strongly enough to provide a full explanation; she was only able to show 

the infinite series.  
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 In this episode, Kris permitted the discussion to extend beyond the stated curriculum for 

this course. Although the representation of π as an infinite series of the arctangent function is 

part of the curriculum for the BC section of AP Calculus, no expectation exists for the AB 

section. Kris did not provide an infinite series representation of the number e, which would have 

served to tie this challenging question back to the first unanticipated question on the meaning of 

e. However, the exploration showed that she could answer the student’s question using more 

advanced mathematical ideas. Kris knew these advanced ideas but not in a manner that could be 

conveyed meaningfully to her students. As a result, she described as much as she could to her 

students and acknowledged that she could not progress any more. This acknowledgement 

marked the end of the episode; there was no further exploration by Kris or the student. 

Patterns across Challenging Questions 

 These teachers were aware that their students asked questions that could challenge the 

limits of the teacher’s content knowledge. Barry, in his first interview, acknowledged that 

students in an Advanced Placement class tended to ask questions that begin with “why,” 

signifying a desire to learn at more than a superficial level of understanding. This 

acknowledgement of students wanting to know why matches a response from one of the teachers 

in Park and Oliver’s (2009) report. Barry elaborated on students wanting to know why when he 

explained how he tried to pique student curiosity: 

And sometimes, they’re not even sure what they’re asking, … so I have to figure out 

what they’re asking, and then how to answer it. I try very, very hard to answer every 

question they ask … And so I don’t mind saying, “I will have to look that up.” But I want 

to be able to answer their question and even to suggest to them that’s the journey we will 

have to take together. (Barry, Interview 1) 
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In this quotation, Barry provided an additional insight into the content knowledge needed to 

handle a challenging question. The student asked a question so challenging that the student did 

not even realize how challenging the question was. Barry’s first step was to identify what the 

student’s actual intentions were. Once determined, Barry focused on whether the student’s 

knowledge could assist in answering the question. These two teachers were not afraid to admit 

that they did not immediately know the answer to a student’s question. Thus, they permitted 

themselves to leave the question unanswered and return later to answer it as needed. With the 

additional time after class, they could use resources to answer the student’s challenging question, 

as with Barry’s additional proofs of the divergence of the harmonic series.  

 Likewise, Kris easily admitted when a student’s question went above and beyond her 

own mathematical knowledge. In the first interview, she said:  

There [are] some situations like that, where, where I just don’t know. And I’m, I’m not 

afraid to say, you know, when the kid says, “Well, what is that? Where did it come 

from?” “I just don’t know. I really don’t. It came from hundreds of years of 

mathematicians playing with, you know, different scenarios and coming up with different 

theories.”  

She felt comfortable telling a student that she did not know. In order to answer the student’s 

challenging question, Kris wanted to find the answer and communicate it and a sensible 

explanation to the class. Instead of providing the answer, she found related examples that 

approximated the difficulty of the original challenging question.  

These teachers’ pursuit of answers to students’ challenging questions made a noteworthy 

comparison to a case study by Kahan and colleagues (Kahan, Cooper, & Bethea, 2003). Because 

of his extensive teaching experience and his content knowledge, Barry led his students through a 
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discussion of applications of combinations—arrangements of people at a table, winning 

configurations for a lottery—even when stating that he did not connect permutations and 

combinations to their proper definitions. Likewise with Kris, even though she did not make a 

presentation of an infinite series representation of π, she did make many connections across 

number and variables, showing that many important irrational numbers are best represented as a 

single letter or symbol. With general content knowledge and an application of broader 

applications, both teachers’ work with challenging questions partially refuted Kahan and 

colleagues’ claim that a lack of content knowledge inhibits teachers’ possible explorations with 

students. This episode demonstrated that the full combination of factual knowledge, conceptual 

framework, and applications is not needed for a teacher to pursue a topic beyond the teacher’s 

knowledge. Rather, applications and general mathematical knowledge are sufficient conditions 

for taking a challenge in this classroom setting.  

Likewise, Rowland and colleagues (Rowland, Turner, Thwaites, & Huckstep, 2009) 

suggested that a teacher’s desire to incorporate a student response into classroom discussion is 

based in part on the teacher’s possession of a higher level of specialized knowledge for teaching 

mathematics. Although both teachers did have a large knowledge base to call upon for teaching 

mathematics, they did not possess a large content knowledge base for these particular topics for 

answering these challenging questions. However, the teachers picked up the student’s questions 

and explored the concept as much as they could with the knowledge they possessed at the time. 

They led their students to what they know about the particular concept and identified their own 

boundaries of knowledge. Sometimes, the teachers returned with the results of additional 

research; at other times the investigations ended in an open question.  
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 Teachers can benefit from the challenging questions as well because they provide an 

opportunity for the teachers to grown in their knowledge. Although the new knowledge may not 

help a current class of students, teachers may use the new knowledge in later classes, either later 

sections of the same course on the same day or future presentations in upcoming days, semesters, 

or years (Park & Oliver, 2008). In some instances, a teacher might present the results of his or 

her growth back to the students, as when Barry presented the Web site with 20 different proofs of 

the divergence of the harmonic series.   

 There is an additional benefit for a teacher to acknowledge when he or she does not know 

the answer to a student’s challenging question. As Mason (2000) mentioned, it is important for 

students not to see the teacher as an all-knowing possessor of knowledge of mathematics because 

this belief can be a very powerful one for students and could have a long-lasting impact. The 

teacher’s ability to defer authority instills independence on the part of the student. This 

independence allows students to explore more mathematics by themselves. Acknowledging 

students’ challenging questions can debunk this faulty assumption.  

Counterexamples to Assist Student Learning 

 In Fernandez’s (1997), study teachers used counterexamples “to challenge their students 

and enable the students (versus the teacher) to examine their perspective” (p. 8). When a student 

made a conjecture about the current activity in the classroom and the teacher pursued the 

conjecture by using a counterexample, the teacher’s goal was to show in a non-threatening way 

that the student’s misconception was invalid.  

Counterexamples came in many varieties in the participants’ classrooms. There were 

times when the teacher provided a short counterexample to handle quickly an unanticipated 

student comment. For example, on the sixth day of Barry’s unit of instruction, a student asked if 
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the divergence of a series implied monotonicity. The comment, while an intriguing conjecture, 

generated a very short counterexample with explanation from Barry:  

I am just trying to think of one off the top of my head, like if I said one plus negative two 

plus positive three plus negative four plus positive five. You know it’s not monotonic, it’s 

going up and down, but it’s also not [converging] either.  

The entire episode, from posing of comment to completion of counterexample, happened very 

quickly. However, Barry valued the student’s comment, which led to him taking the time to 

address it, if only briefly. This need to provide the counterexample came from Barry’s desire to 

support students making connections across concepts: 

And I was glad to see that [the student] could say a sentence like … if it is monotonic, 

then it is divergent. Because, that’s showing that he has at least an idea about 

monotonicity … and an idea about what divergence is, and that he is making a 

conclusion. And now … we need to address that conclusion (Barry, Interview 3) 

The episodes presented below involved longer discussions between teacher and students from the 

posing of the comment or question to the resolution of that comment or question.  

Barry, First Episode–Creating A Counterexample to Settle a Dispute 

 On the final day of the observation, Barry discussed the previous quiz and prepared for 

the next day’s unit test. As the students asked multiple questions, he responded by providing 

practice exercises. Barry posed two nearly identical counterexamples in the same class period. 

He showed the students that they had developed an incorrect expression for the general term of 

an infinite series by evaluating their proposed expression for specific terms. 

The class attempted to create an expression for the general term for a particular 

Maclaurin series. The students knew that their expression for the general term needed to contain 
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a factorial and a power of negative one. The students did not struggle with determining the 

expression containing the factorial; after a few examples, they established a pattern for the terms 

in the series, using a factorial expression. However, the students debated how they wanted to 

create an expression for the general term of this series containing negative one to a certain 

power. At one point in this discussion, students suggested three possible answers for the 

expression containing negative one.  

In order to provide clarity to the student’s conjectures, Barry selected a few terms to 

evaluate the students’ conjectures. While determining this part of this expression, he wanted to 

question the students about the powers of negative one for the expression they created. Initially, 

he wanted the students to look at the terms in two groups–odd-numbered terms and even-

numbered terms. Barry asked the students if the expression matched the signs of the appropriate 

terms of the series. Different groups of students told the teacher simultaneously that the 

expression was correct and that it was incorrect. Realizing that the question might have been too 

complicated, Barry posed a question for a specific term: “I am not there yet. So the twelfth 

derivative, should [the value of this derivative] be positive or negative?” (Barry, Day 15 

observation). Once a student answered that question, Barry asked a second question: “So, if I put 

twelve in here for n, is this going to make positive or negative?” When the students compared the 

answer to this question to the sign of the corresponding term of the desired series, they realized 

the inclusion of plus one in the exponent was incorrect. This discovery allowed Barry to modify 

the expression based on the students’ choice of notation and starting value. 

Later in the class, Barry used a similar strategy to answer another student’s question. The 

class wanted to create the expression for the general term of a particular series. Because the 

terms alternated signs, the students wanted to include an exponent of negative one in their final 
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answer. One student attempted to find the proper exponent of negative one. Instead of picking a 

later term in the series, Barry posed his counterexample using a very early term in the series: 

“Okay, so we said this [value] was zero. I want the first term to be what? ... Positive. So does 

negative one to the zero power give me a positive? Yeah. So I don’t need the plus one” (Day 15 

Observation). At the end of Barry’s statement, the student changed the expression from     

 

−1( )n+1
 to 

    

 

−1( )n
.  

Barry, Second Episode–Fixing His Own Mistake by Counterexamples 

Although both teachers present counterexamples for students’ errors and conjectures, 

Barry also began with an error he made. The error was completely accidental and unplanned. 

However, he used the error to discuss another topic with his students. He encouraged his students 

to find his error, using his mistake as the counterexample to his original statement. 

On the ninth day of the observation, Barry made the error when copying an expression 

from notes to the dry-erase board, which provided an unplanned but illustrative episode. Barry 

wanted the class to determine the convergence of a series in which the expression for the general 

term contained a natural logarithm in the denominator. As he began to write the series, he started 

with the zeroth term. He caught his mistake and asked the students what was wrong with what he 

had written. Rather than erasing the series and starting over, Barry left the series on the board 

and discussed the convergence of this new, unplanned series. Interestingly, one student 

suggested including an additional variable in the numerator, perhaps getting the expression in a 

form where the class could make a u-substitution using natural logarithms.  

Throughout this episode, Barry had many opportunities to explain how correcting this 

mistake connected to exploring other mathematical ideas. At first, he asked the students why he 

could not start the series with one: “I can’t start this at one, right? What’s the natural log of one?” 
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(Barry, Day 9 observation). This question was in response to a student who commented on one 

being an improper starting value for this series, as it would create an undefined term. Building 

off of the student’s comment, Barry proposed an initial value of 1.1, followed by a proposed 

starting value of 1.00001. Some students started to believe that the progression of values 1.1, 2.2, 

and 3.3 would be valid for the terms of this series. Some students argued that because the 

teacher’s selected values were in the domain of the natural logarithm expression, these values 

could be used for the value of the terms of the series. As they began to work with this series, 

Barry repeatedly asked if the use of 1.1 was valid for term numbers: “So, 1.1 is in the domain of 

    

 

1
ln n

. So, it’s okay if I start at one point one?” (Day 9 observation). Later, a student provided a 

curious explanation in support of the 1.1 progression:  

But I thought that n marks a progression. Like if you’re going to infinity, and you’re 

starting at one, you’re going from one and then two and then three and then four. 

Wouldn’t you have to add one point one to that [starting value of 1.1]? 

However, Barry pointed out that the students liked only working with natural numbers and not 

rational numbers, suggesting that the students work with two, three, four, or five, rather than the 

decimal values for each term number. He explained the domain and range of the sequence to the 

students:  

I don’t mind that the y values aren’t integers. In fact, the y values have hardly ever been 

integers. Or the terms in the series have hardly ever been integers. But, what have the n 

values been? [students’ responses]. Integers. Almost all the time I start at one, because it 

just seems like a natural place to start.  

Barry needed the counterexamples to illustrate a point regarding the domain of the 

general expression for the term of the series. In trying to illustrate this point, he ended up having 
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to address a different misconception. The students in the class began to accept the 

counterexample as true. Only after Barry commented on the students’ preference for natural 

numbers did the class move away from using the decimal values Barry had presented at the 

beginning of this episode. One rationale a student gave for accepting the decimal values was that 

the values of the terms were not integers. In other words, because the output from the general 

expression was not an integer, it was permissible that the input for the expression not be an 

integer as well.  

The use of the teacher’s notes still provided an unplanned moment for Barry. Although a 

student did not suggest the discussion on the domain of the terms, the written expression 

provided an opportunity for him to show how he could apply his content knowledge quickly. 

Barry paused to make a comment about the mistake he had made. He had already diagnosed the 

error and hoped that the students would be as quick in catching the mistake. The students hoped 

the teacher incorrectly copied the expression for the general term, wanting Barry to remove the 

natural logarithm expression from the denominator. Barry ended that thought quickly by 

focusing on the index of summation, trying to get the students to focus on the inputs instead.  

Although Barry’s episode from the ninth day started a little differently, generated from 

his own possible miscopying of information, the episode is quite illustrative. He ventured into 

unplanned activity when he realized his mistake. Throughout the discussion, Barry got to show 

multiple ideas in the same exercise. By starting at zero, he showed the domain restrictions for the 

natural logarithm. Starting the series at one allowed him to start a discussion of the domain of 

rational functions. By increasing the steps by 1.1, Barry could discuss using only natural 

numbers for the term numbers. Pursuing this mistake allowed him to explore additional ideas 

beyond the original plan. 
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Kris, First Episodes–Counterexamples in Slope Fields 

On the eighth and ninth days of the observation, Kris developed two similar types of 

counterexamples to respond to unanticipated student comments. Both opportunities involved 

identifying slopes of line segments on a slope field.  

 The episode began with an unanticipated student comment regarding the ability of an 

individual to judge steepness of line segments. The student was attempting to connect ideas from 

another course to this class’s discussion about the relativity of certain intellectual constructs. The 

student commented that a test taker could argue for earning more points on a free-response 

question on the standardized final examination, based on the test taker’s intention of drawing 

segments with particular slopes. To create the appropriate counterexample, Kris drew three line 

segments on the board, each with different steepness. She asked the student to rank the three 

segments in order of steepness. She pointed out that the student could associate a larger 

magnitude with a steeper segment, and the student relented on her assertion. 

 Kris’s goal in presenting this counterexample was to illustrate that the end-of-the-year 

examination would be assessing steepness in relative terms, not exact terms. As Kris said to the 

class:  

One [segment] is clearly steeper than [a second segment] … If I put a ruler up to this one, 

a straightedge, and then this one right here, and I bring this one down, I can see it goes up 

faster than this one if I compared them … I am not comparing [the slope] to a negative 

one. I am comparing that, the negative one that you drew was steeper than the negative 

one-fourth. I am not looking that your negative one is exact. (Day 8 observation) 

Kris elaborated on this idea more during the third interview: 
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The understanding of what somebody would say is fast [in terms of speed] versus slow 

would be very different … Well, for me, [my conception of] fast is a lot slower than [the 

conception of fast of] some of these other kids who run track … It’s not something that 

everybody has the same understanding about. So when I talk about steepness, with the 

slope field, there’s, there’s not going to be a one that I could, I could put a specific 

measurement on to say that if you don’t write your slope—you know, draw your little 

segment with that particular slope, and it’s got to be exactly like this, then it’s wrong. 

That’s what [the student] was saying, you know, we, people understand steepness very 

differently. But it’s not about the understanding of steepness. It’s about the relation 

between the two different slopes. 

 Kris returned to this kind of counterexample the following day. She asked the students, as 

a class, what numerical value would have a slope easiest to recognize by visual inspection: 

“What does everybody in here, when I say this particular slope, we all know exactly what it is, 

and we draw the same thing?” (Day 9 observation). Some students suggested that a line segment 

with a slope of 1 would be the easiest to recognize. She wanted the entire class to model slopes 

of 1 using their arms: “Would everybody draw the—if I said put your arm up right now as a 

slope of one, would everybody point exactly parallel?” Kris had the students look around the 

classroom to determine if all the students had created line segments with the same slope with 

their arms. The students saw that they did not have the same steepness, showing that the value of 

1 was difficult to model. Kris repeated the same activity with a slope of 0, using a second 

student’s suggestion. After this exercise, the students come to the conclusion that a line segment 

with a zero slope is easier to recognize, which was helpful for the students to match a differential 

equation to its corresponding slope field. 
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Kris, Second Episode–Counterexamples by Changing a Right Answer 

 On the sixth day of the observation, Kris took a unique approach to creating or posing a 

counterexample. Counterexamples can illustrate student errors. In this episode, Kris used a 

counterexample to show why a second of two choices was wrong. Kris used this moment to 

emphasize the validity of a student’s original choice.  

She requested students’ input on homework exercises to review. They suggested an 

exercise that involved finding the anti-derivative of the quotient of two differences of 

exponential expressions, 
  

 

ex + e−x

ex − e−x . Near the beginning of this episode, Kris asked the students 

which part of the rational expression would be better to use in a particular substitution. One 

student suggested the denominator. Immediately after that suggestion, Kris decided to pursue 

substituting something else instead:  

Okay. Let’s not do what [the student] said and use the top, and I want to show you 

something. Let’s say I would say, well, they’re kind of the same. One’s a plus, one’s a 

minus. Let’s use the top and see what happens. 

The class, teacher and students together, worked on Kris’s second, incorrect approach initially. 

The work continued until Kris pointed out that the incorrect format of the integrand would not 

help in computing the anti-derivative. She provided an interesting analogy to the students to 

demonstrate the contradiction: 

This is not dx over e to the x minus e … to the negative x. It’s dx times—on the same 

line, this e x—it’s on top of the fraction. I don’t have it on top of the fraction. So, don’t be 

fooled into thinking that’s a good substitution. And, oh, there it is on the bottom, so I am 

going to take it from the bottom. It’s like, let’s—I go tell somebody that I need twice as 

much money, and I go to them, and I only take half. Well, that doesn’t make sense.  
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The goal in presenting this analogy was to show that Kris’s selected expression yielded 

the reciprocal of the desired result; rather than having an expression in the form of
   

 

du
u∫ , where 

the students could easily compute the anti-derivative, the class was left with
 ∫ du

u , a form for 

which they could not compute the anti-derivative. After that recognition, the class returned to the 

original student-proposed solution to answer the homework exercise that started this episode.  

 In the third interview, Kris discussed counterexamples in changing student’s perspectives 

on a particular concept. A student stated that the derivative of x(ln 2) equaled zero. Unlike the 

previous episode, Kris wanted to show the error in a student’s thinking. The student had arrived 

at that solution by an incorrect application of the product rule: here, the derivative of the product 

equaled the product of the two factors’ derivatives. In the interview, Kris diagnosed two 

additional errors in the student’s thinking:  

One is I don’t understand what the natural log of two is: I don’t see it as a constant … So 

it doesn’t come into my mind as “Oh, it’s just a number.” The second is, it’s after the x. 

Whereas five x, derivative is five. It’s the number in front.  

To help the student see this misconception, Kris posed a couple of quick, short questions to serve 

as counterexamples, finding the derivatives of 5x and 3x. Once the student saw the pattern 

emerging, he changed his answer for the derivative of (ln 2)x to the desired solution. By 

presenting the two quick counterexamples, Kris wanted the student to recognize (ln 2)x as being 

in the form constant times a variable. Following the pattern allowed the student to compute the 

derivative quickly, with the intention to show that ln 2 was a constant like 5 and 3 had been in 

the counterexamples. During the observation, the student and the teacher did clear up the 
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student’s incorrect use of the product rule to provide an alternate representation of the same 

solution.  

 A good counterexample to use for the class is one student’s incorrect response to a 

teacher’s question. Because students in the observed classes answered many of Barry’s and 

Kris’s questions quickly and correctly, both teachers incorporated the few incorrect answers 

students presented into the classroom discussion. When discussing the error in the student’s 

solution, both teachers used counterexamples to illustrate the mistake. In the first interview, 

Barry said: 

I do sometimes flat out ignore an answer. Like if I ask a question and several kids say—

several kids are talking out [a variety of possible answers, so] I will jump on the wrong 

answers on purpose. Because I want us to pursue all directions before we figure out what 

the right direction is. I always try really hard to say, “Okay, Susie said this [one solution], 

and that [another solution] was the right answer.” And then we will go in that direction.  

Especially in a class like the observed classes, students can quickly generate a correct answer to 

a teacher’s question. By choosing an incorrect answer to explore, the teacher could illustrate a 

concept by emphasizing what it is not, which might lead to a key counterexample. Teachers not 

only have to be able to verify the validity of a correct answer but also to choose a valuable 

incorrect answer and how that incorrect approach can support a correct answer. Well-chosen 

counterexamples show a teacher’s knowledge of content. This approach matches the notion from 

Ball and colleagues (Ball, Thames, & Phelps, 2008) that a specialized knowledge for teaching 

mathematics includes knowledge of the best examples (e.g., good numerical values to use in an 

expression) to emphasize particular aspects of a concept. In Kris’s counterexamples for the 

situation involving the derivative of x(ln 2), she used derivatives of the form of a natural number 
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times the variable to show the student the correct value of the derivative of the original function. 

Because the student quickly and correctly answered Kris’s two questions, her questions 

highlighted the student’s original error.  

Comparing Counterexamples to Previous Studies  

The purposes of the teachers’ presentations of counterexamples can be compared to the 

way that counterexamples were used by Lakatos (1963a, 1963b, 1963c, 1964). With a 

counterexample, the teacher is able to discuss how the counterexample illustrates the discussed 

property. Presenting a counterexample can stand as an alternate representation. A 

counterexample has the possibility of quickly ending a claim from another class member. The 

counterexample can provide class members help by defining what the concept is not. Discussing 

the counterexample and debating its problems requires knowledge of the valid concept. In the 

opening illustration, the teacher had to present an example of a series that was divergent but not 

monotonic. He presented an example quickly between two concepts that were surprisingly 

connected by the student. The quickly created example ended the student’s claim before other 

students could accept that student’s claim as valid. 

 The counterexamples presented in this study satisfy Zaslavsky’s (2005) definition of 

competing claims where a learner possesses two incompatible notions of the same topic 

simultaneously. Teachers in such situations need to provide students with an opportunity to 

notice that they are holding two contradictory ideas at the same time. In Kris’s classroom, the 

student in the second episode recognized that the derivative of the expression 

  

 

constant( )× variable( ) equaled the constant; however, the same student also believed that the 

derivative of x(ln 2) equaled zero, not the value of the constant. Because the student did not 

recognize the same form in a different order, this student held competing claims on the 
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computation of this derivative. Kris’s counterexample of x(ln 2) resolved those competing 

claims. However, in the creation of useful examples, teachers must consider the students’ level 

of understanding. If teachers provide counterexamples that are too difficult or complicated for 

students, then they might not recognize they hold competing claims. Kris chose her 

counterexample well, as the example cleared up the confusion the student demonstrated.  

In addition, a counterexample has the added effect of determining how one particular 

example “‘breaks’ the rules” (Shulman, 1986, p. 10). In Kris’s work with the three segments of 

different rates of steepness, the student learned that one could estimate the slope of three 

segments given three numerical values. Slope was now for the student not something that had to 

be computed, but rather could be judged. This example broke the rule the student learned from a 

different class regarding the relativity of concepts. The posing of counterexamples combines two 

of the three major components of a specialized knowledge for teaching secondary mathematics 

as assessed by Krauss and colleagues (Krauss, Baumert, & Blum, 2008)—identifying student 

misconceptions and generating multiple representations. When a teacher poses a counterexample 

to a student, the teacher illustrates a flaw in the student’s thinking. In her discussion of steepness 

of slopes, Kris showed her student that it is possible to match segments of different steepness to 

different numerical values of slopes. Additionally, the counterexamples allow teachers an 

opportunity to address the misconception in a variety of ways. In the two-day discussion of 

slopes of segments in a slope field, Kris used two different representations of slopes of segments. 

The first time Kris drew three segments on the board; the second time she had the students model 

two segments’ slopes with their arms.  
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Follow Through to Examine Student Thinking 

In Fernandez’s (1997) study, the teachers engaged in a follow through when the wanted 

to pursue additional implications of a student comment. The follow through provided a 

springboard to explore students’ thoughts that might not have occurred in the planned lesson. 

Additionally, the follow through approaches also allowed the teachers to explore students’ 

misconceptions without the students feeling judged. In the exploration, other students could 

critique the unplanned student comment either to reach resolution or extend discussion. 

For Barry, the follow-through approaches took on multiple purposes throughout the 

observed unit of instruction. As he incorporated students’ input, he followed through until 

arriving at a contradiction or until reaching the end of the class period. The instances where he 

used the follow through to its conclusion involved shorter examples. For example, on the eighth 

day of the observation, one student wanted to determine the convergence of
     

 

n2

n3 +1n=1

∞

∑ . The 

student decided to work with 
    

 

1
nn=1

∞

∑  as a comparison for the Direct Comparison Test. The student 

recognized 
    

 

1
nn=1

∞

∑  as the divergent series but then realized that the values of corresponding terms 

in the chosen series were less than the terms in the original series, meaning the student chose an 

invalid series to compare to the original series. Barry picked up the student’s chosen series and 

explored the possibility that the chosen series could determine the convergence of the original 

series. As both Barry and his students worked through the student’s suggestion, he realized a 

noticeable flaw in the student’s chosen series. Although the student’s chosen series was 

divergent, it could not be used as a comparison to the original series because the original series 

contained terms that were not as large as those in the original series. In this instance, the 
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student’s chosen series as a comparison could not determine the convergence of the original 

series. In a short period of time, the problem had been presented, a solution had been proposed, 

the follow through had been implemented, and a contradiction had been reached.  

Barry, First Episode–Determining the Convergence of an Infinite Sequence 

 In this episode, Barry incorporated a student’s solution regarding the solution to a 

particular question. Barry restated the student’s solution and explanation of that solution. He then 

used the solution path as a model to determine the correct solution to the original question.  

During the second day of the observation, Barry spent considerable time in class 

discussing the previous night’s homework exercise—determining the convergence of the infinite 

sequence 
    

 

an = 1+
2
n

 

 
 

 

 
 

n

. One student suggested that the sequence converges to 1. Although this 

solution was not correct, Barry decided to pick up that explanation and work toward a solution, 

starting with restating the student’s explanation: 

So, [student] has made a very good argument that as n gets bigger, this number is going 

to get smaller, one plus a really small number is pretty close to one. And it doesn’t matter 

what power I raise to, it’s still going to be pretty close to one. So, it seems like this is 

going to converge. So, now let’s figure it out. Let’s make sure that it is going to 

converge. What do we do? 

 Barry restated the student’s explanation about why the sequence converges to 1. After he 

made this statement, he wanted the class to prove that the student’s solution could possibly be 

correct.  

The class began to create a whole-class proof. One student suggested starting with the 

removal of the n from the exponent. A couple of students suggested invalid approaches to handle 

this removal, applying the chain rule for derivatives or taking the nth root of the expression. 
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Barry asked the students to find a different way to manipulate the exponent. Another student 

suggested applying a logarithm to the expression. This student’s response allowed the class to 

handle the exponent in a more meaningful way, rather using than a student’s original suggestion 

of “And it doesn’t matter what power I raise [values close to one] to, it’s still going to be pretty 

close to one” (Day 2 observation). 

When the class began to evaluate the logarithm of this expression, they started by setting 

the expression equal to a dummy variable. They took the logarithm of the new equation. During 

this logarithm work, the class quickly resolved an issue on the possible need to include the 

absolute value of the expression. The class began to determine the limit at infinity for the 

product. To facilitate the computation, the class attempted to convert to the original expression 

using exponentiation. Barry introduced the students to L’Hospital’s Rule once he realized the 

expression was in indeterminate form. The students evaluated the limit for the transformed 

expression after Barry introduced L’Hospital’s Rule. The students eventually determined the 

original sequence converged to e2 instead of the original student suggestion of 1. 

 By revoicing the student’s suggestion that the sequence converged to one, Barry engaged 

in a type of follow through. He explored the potential implications of the student’s suggestion. 

The suggestion appears to be plausible by looking at the student’s suggestion as individual 

components. However, taking the valid approach would yield a different response. In an attempt 

to prove the student’s conjecture valid, the teacher worked through the actual evaluation of the 

limit. The difference between the two approaches—the students’ and teacher’s—was in the order 

of operations.  

The implication of following through with the student’s suggestion was the need to 

introduce a new lesson. The progression of the homework review led the teacher to one part of 
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his lesson–evaluating limits by L’Hospital’s Rule. The class’s work on the homework exercise 

led to an expression in an indeterminate form, motivating the upcoming lesson on L’Hospital’s 

Rule. The L’Hospital lesson began with Barry’s presentation of the historical development of the 

concept, telling of the work by Bernoulli and L’Hospital. In the second interview, Barry 

mentioned that he 

wanted to just come up with [a way for] us [to] need that tool … and that kinda helps 

motivate the lesson, and brings some relevance of … we do. Why have this? Well, here’s 

why we have this, so we can get around a situation like this.  

By following through with a student’s incorrect response to a homework exercise, Barry 

provided a valuable transition to a planned activity.  

Barry, Second Episode–Choosing A Comparison Test  

Barry often allowed the students to determine the convergence of an infinite series using 

a test of convergence the students felt the most comfortable using. In this episode, he encouraged 

the students to use their preferred test of convergence. He incorporated that announced test of 

convergence into his discussion and worked the test until the class reached one of two outcomes, 

a resolution was reached on the convergence or the test result was inconclusive.  

This episode on the tenth day of the observation started much like the previous episode, 

with Barry requesting that the students determine the convergence of a particular series,
 

    

 

n
n + 2n=1

∞

∑ . Many students suggested that the series could be convergent but could not provide an 

explanation for the series’ convergence. Barry mentioned many of the tests of convergence the 

students learned earlier in the unit to provide assistance. Progress appeared to be made toward an 

explanation when a student proposed using the Limit Comparison Test to determine the 

convergence of the series. In order to get a solution, however, the student wanted to change the 
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value of the expression for the general term by removing the n from the numerator. The student’s 

second approach was to convert the fraction into a complex fraction,

     

 

1
n + 2

1
n

. The student might 

have been making this change in order to get at least a zero in the denominator when determining 

the limit at infinity for the new expression.  

When Barry asked the student what test of converge he was using, Limit Comparison 

Test or Direct Comparison Test, the student answered with a Comparison Test. In this class, 

Barry reserved the term Comparison Test for the Direct Comparison Test. By asking this 

question, Barry might have hoped that the student had switched from using the Direct 

Comparison Test to the Limit Comparison Test. If the student had made this change, the student 

might have determined the convergence of the original series more efficiently by comparing the 

original series to a series whose terms were all the same constant. The student did not catch onto 

this suggestion and worked toward an inconclusive result.  

Rather than leading the student away from an inconclusive result, Barry worked with the 

class on students’ suggestion. If the student wanted to apply a particular test of convergence to 

an infinite series, Barry picked up the suggestion and attempted to work with the test along with 

the students. After determining that one test yielded an inconclusive result, another student made 

a different suggestion on determining the convergence of the original series. The class worked 

with a different test of convergence. In this observation, the students wanted to use one of the 

two comparison tests until they realized they did not know a useful series to compare. The 

students could not apply the Limit Comparison Test for this sequence because the result of the 

limit of the expression the students created equaled zero. An expression equaling zero yields an 

inconclusive result for this particular test of convergence. However, a long exchange between the 
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teacher and the students ensued about the meaning of a limit equaling zero in the Limit 

Comparison Test, whether or not the value of zero implied convergence or divergence of the 

original series or no determination of the convergence of the original series. Once the students 

had consulted the textbook, they abandoned this use of a test of convergence, knowing that a 

result of zero is inconclusive for the Limit Comparison Test.  

 In these selected episodes mentioned above, the follow through ended because the 

approach ended with a stumbling block for the students. These approaches were highly 

illustrative of finding the right answer later, especially in the second episode mentioned here. In 

working toward a solution for determining the convergence of an infinite series, showing that a 

test yielded an inconclusive result can help students learn convergences of infinite series as well 

as seeing the ideal solutions immediately. Barry echoed this idea during his interviews. In the 

third interview, I asked him about similar episodes regarding the determination of convergence 

of selected series. His responses suggested that the follow throughs allow the students to see a 

more detailed exploration to a one-word answer. Additional benefits to these follow throughs are 

the connections and description needed to answer Advanced Placement questions sufficiently. 

 Barry’s primary motivation for providing these follow throughs was to illustrate a 

student’s way of thinking in proposing a particular solution path. In these episodes, he picked up 

a student’s proposed solution and discussed the solution with the student and the class. Barry 

wanted to identify the particular students who proposed a solution path by name to signify that a 

student, not the teacher, suggested a certain approach to finding the right answer: 

I try to mention [her] name. Well, [she] chose this because she saw that—and try to 

explain their—what her thinking was. Maybe not as well as she might explain her own 

thinking, but try to, try to pin that there, and then try to help [her] as she was saying, well, 
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how would I decide this or that and, and here’s, here’s the decision process that goes. 

You know, here’s the list of, of options we have and how am I going to choose it, and 

then here’s how I am making my decisions.  

Although one student did participate in starting the discussion, the student did not work with 

verifying a solution alone. By working with a student, Barry supplemented the description of the 

student’s solution. His follow though did not replace the student’s justification of using a 

particular test of convergence but rather gave other students an opportunity to explore why one 

particular test could work better than others for a given series. Barry acknowledged in the third 

interview that many valid approaches existed for these types of exercises. The conclusive and 

inconclusive results provided him a chance to demonstrate the challenges of working through 

certain tests of convergence. He stated that his students were too comfortable with short, simple 

answers to any mathematical question. In these exercises, using a particular test, interpreting the 

result, and explaining the motivation to use that test allowed him to require a richer solution from 

a student. 

 Because Barry was very interested in preparing the students for the upcoming Advanced 

Placement examination, these follow throughs gave him additional opportunities to present a 

more detailed answer. Barry believed that students, even at this level, expect a single number or 

expression to be sufficient for a final answer to a question in this class. He wanted the students to 

be familiar with providing an explanation for the final answer. By following through in this unit 

of instruction, Barry discussed why a particular test of convergence was used and what the test 

meant for answering the original question. He could use a similar pattern to prepare the students 

for the examination. The teacher is then modeling the desired behavior by engaging in this 
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particular approach. After reading the question, a student should think about what concepts he or 

she would use to answer and why they were using that particular concept. 

Kris–Using Two u-Substitutions 

Kris had the opportunity to follow through with a student’s idea that was novel to the rest 

of the class. Although the student might have struggled using correct terminology, the idea the 

student proposed was very fruitful in determining the right answer to the original question. Kris 

worked with the student to show the rest of the class the seemingly new procedure and the 

correct answer.  

On the sixth day, the class worked through a particular integral as part of their review of 

the previous day’s homework assignment— ( )∫ −− dxee xx tan (Day 6, Observation Field Notes). 

As the class worked toward a solution, one student asked Kris about repeating the u-substitution 

procedure. Kris had the student clarify the question to clear up terminology and explain the 

choice: “Can you do another u-substitution? How is that going to help?” (Day 6 Observation). 

The students had already implemented the u-substitution procedure to transform the original 

homework exercise to 
    

 

−1 tan u du∫ (Day 6, Observation Field Notes). Kris implemented the 

student’s suggestion, after a suggestion that the tangent expression be rewritten as
     

 

sin u
cosu

: “Let’s 

see if that’s even going to make sense. Alright, let’s see if we got the pieces here.” The class, 

with Kris asking questions and the students answering as soon as the questions were posed, 

worked through the procedures, giving them a manageable result. 

A second substitution has allowed us to get to something that we are very happy about. 

And that we can undo it … So we got the natural log of the absolute value of t. And t is 

cosine of u. And u is the e to the negative x. 
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Kris followed through with the student’s suggestion, while keeping the suggestion 

mathematically accurate. By the end of her questioning, not only had the class resolved the 

student’s original comment, but they had computed the anti-derivative of the original expression. 

Through the work on this homework exercise, Kris permitted the students to see that the u-

substitution procedure can be used multiple times for one integrand. The implications of the 

student suggestion, using the same procedure twice in one computation, could allow the students 

to determine more complicated anti-derivatives than before the student’s comment.  

 During the second interview, Kris mentioned a similar situation to this episode. The class 

was reviewing a homework exercise where she wanted to refer to the textbook for a simple 

solution. The back of the textbook contained a table of anti-derivatives for given forms of 

integrands. When not all of the textbooks had the same integral charts, the class worked through 

computing the anti-derivative. As the students worked through their solutions they realized that 

multiple u-substitutions were permissible and even helpful. Making this realization was a 

surprise discovery for the students that Kris had not originally planned but that she could discuss 

with her students easily.  

Kris, Second Episode–Resolving “Perplexing Pencils” 

Kris used the follow through strategy even when the students did not know the answer to 

the final question. Kris posed her own questions along the way to help the students work toward 

an answer to the original question. Each time a student answered Kris’s question, she used that 

answer to work toward answering the original question. When Kris finished asking all of her 

questions, the students answered the original question.  

Kris used another follow through during the next class session. She had the students work 

on finding the particular solution to a differential equation individually. After a few minutes of 
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individual seat work, she brought the class back together because the students appeared to 

struggle to find the desired solution. Kris’s comment to return the class back to a whole-group 

discussion was a little humorous: “I am seeing lots of perplexed pencils. I am seeing what I am 

going to term as separation anxiety” (Day 7 Observation). She then asked the entire class how to 

get the solution started: “What’s the easiest way to get rid of fractions, when you’ve got fraction 

equals fraction?” Once a student suggested cross-multiplying the two fractions, Kris performed 

the multiplication. As on the previous day, as Kris worked through the solution she asked the 

class many questions to check for their understanding. She followed through with the student’s 

suggestion but wanted to maintain mathematical accuracy during the implementation. Again like 

the previous day, once Kris’s work and questioning were over, the student’s suggestion had been 

followed through, and the exercise had been completed. 

 For both selected episodes, Kris followed a nearly similar pattern. Once there had been a 

bit of hesitation from some students on finding the right answer to a question, she teacher found 

some solution path from one student to pursue. While pursuing that solution path, she asked 

students several questions about the current proposed solution. The questions seemed to address 

the students’ unplanned comments and move the class toward an answer for the original planned 

exercise. Kris appeared to handle the unplanned activity and the planned lesson simultaneously. 

As a result, the follow through is a different approach than posing a simpler or related question to 

handle an unanticipated student comment. In the latter case, the teacher posed and pursued a 

question and worked toward a solution initially. Once the student’s question had been resolved 

the teacher resolved the question in the original exercise. For the follow through, the teacher 

responded to the student’s comment and original exercise simultaneously. In this approach, the 

teacher could work on a planned activity while attending to a student’s unplanned suggestion. 
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 For the second episode, the teacher might have provided the motivation for a follow 

through. The questions that Kris posed might be leading questions, where the questions might 

have sounded like an open-ended question, but might have only had one preferred answer: 

“What’s the easiest way to get rid of fractions, when you’ve got fraction equals fraction?....So 

I’ve got my dy’s and my dx’s where I need to be? What’s our problem?” (Day 7 Observation). 

The teacher implemented the students’ suggestions exactly as stated in the class. Because this 

episode occurred near the end of the class period, the teacher might have accelerated a possible 

follow through by asking certain questions to the students.  

 During the third interview, I discussed second selected episode with Kris. In this 

discussion, Kris received confirmation on her formative assessment of how the students will 

struggle through the particular exercise: “The manipulation of variables is a tough concept. For 

anybody, I mean, that’s, that’s the, that’s why people don’t make it in algebra … I knew they’d 

have trouble, and I knew as I walked around that it confirmed that.” Kris believed that the format 

of the exercise provided the greatest challenge to those students who could not find the right 

answer. 

Because every anti-differentiation problem, every integral written in the [text]book, 

except for maybe two, is we got a piece with a variable in it, and then it’s followed by dx. 

And, they, so what they see is something that they have to anti-differentiate. And then 

they see that notation at the end. And, they are like, okay, I am going to ignore that 

notation, and I am going to work with this thing that’s right in front of it. But, when, all 

of a sudden, that dx gets kind of mixed in with the function, then it causes a problem. 

She made two connections to other types of student struggles in the interview in thinking about 

how the students perceive this challenge. One such connection occurred earlier in the semester 
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when students could comfortably determine the anti-derivative of a constant; the trouble 

occurred when the teacher or the text asked the student to evaluate
   

 

dx∫ .  

 In this episode, the students struggled with dx as an expression in the numerator. 

Typically, the students had evaluated integrals where the dx was appended to an expression, 

particularly rational expressions. As before, changing the format meant creating an additional 

challenge. To eliminate some of the unnecessary challenge during whole-class discussion, Kris 

seized an opportunity and followed through with a student’s approach. In the selected episode, 

by performing the necessary divisions, the rational expressions in the equation were transformed 

to a more familiar format. Finding that familiar format allowed all of the students to complete the 

planned exercise instead of a selected few. Knowing some students prefer a certain format to 

their expressions was a key bit of knowledge for the teacher to possess to assist student learning. 

Across the Follow Throughs 

 The level of the student in the class could dictate the length and depth of the class’s 

follow through. Chazan’s (Chazan & Ball, 1999) class of remedial students had a protracted 

debate regarding the computation of an average of a list of numbers. Because the students ended 

up running out of content knowledge to employ for this discussion, the debate devolved into a 

disagreement between two groups of students. In the observed classes, the follow through could 

be sustained by the students because they were able to call upon more knowledge quickly. 

Although the teacher may possess the right knowledge to start the class discussion, the students 

could inhibit the progress of a discussion to its conclusion. Additionally, there are other concerns 

that could inhibit the conclusion of a follow through. As in the case of what happened with 

Barry, outside issues could influence the conclusion of a classroom discussion. In particular, 
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Barry’s follow through could be stopped by the end of the class period, as Chazan noted in his 

report.  

 A follow through allows a teacher to think about a new perspective while the student is 

presenting his or her solution or comment. Shulman (1987) pointed out that a teacher should 

think about content knowledge through many perspectives. With an unanticipated student 

comment, the possibility exists that the student’s perspective is not familiar to the teacher. By 

following through with the student’s response, the teacher has the opportunity to explore the new 

perspective while determining if the solution is valid or not. In some of the episodes listed above, 

some of the student’s conjectures were not valid, but the follow through provided the teacher an 

opportunity to work on the student’s claim and determine the final result simultaneously. At the 

end of the follow through, the teacher had added a new perspective to the presented concept 

because of the unplanned comment and the follow through that came after picking up that 

comment.   

Following through with a student’s comment corresponds to a suggestion made by the 

National Council of Teachers of Mathematics (NCTM, 2007): “Teachers, through the ways in 

which they orchestrate discourse, convey messages about whose knowledge and whose ways of 

thinking and knowing are valued, who is considered able to contribute, and who has status in the 

group” (p. 16). By incorporating a student’s suggestion into the classroom discussion, the teacher 

placed a high value on the student’s comment. By following through to a conclusion, both 

teacher and student examined mathematical implications of the student’s comment. In Barry’s 

class, he emphasized pursuing students’ comments by referring to a student by name. While 

Barry could see the comment through to its conclusion, he could reserve presenting that 
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conclusion to the students until after the class discussed the implications of the comment in its 

entirety.  

As Ball and Bass (2000) reported,  

Being able to see and hear from someone else’s perspective, to make sense of a student’s 

apparent error or appreciate a student’s unconventionally expressed insight requires this 

special capacity to unpack one’s own highly compressed understanding that are the 

hallmark of expert knowledge. (p. 98) 

In following through, teachers demonstrate a special aspect to their mathematical knowledge. 

Teachers are simultaneously determining the student’s approach while figuring out the 

implication of the student’s statement. In order to achieve both, the teacher has to determine 

where a solution might go wrong, as Kris did with choosing the wrong answer first, or value a 

student’s contribution to classroom discussion, as Barry did with identify students’ conjectures 

by name.  

 In the episodes selected for both teachers, the full effect of the follow through could have 

been diminished because of the time constraints of the class period. For both of these teachers, 

the episode occurred near the end of the period. The students in both classes were making 

progress toward a desired solution, but the teacher took control of the classroom and walked the 

students through to the final solution. The motivation for taking control was simply running out 

of time. Had there been more time, the teacher could have explored more of the implications of 

the student’s work.  

Exploring Patterns in Teachers’ Approaches 

 From the four approaches described above, trends emerged in the pattern the teachers 

used to respond to the students’ unanticipated comments. The basis of those trends is with 
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respect to the teacher’s planned activity at the time the student made his or her comment. After 

the teacher decided to pick up the student comment and discuss with the class, the teacher’s 

activity can be mapped in terms of responding to the student’s comment or continuing with the 

planned lesson. As Leikin and Dinur (2007) suggested in their report:  

When a student’s response is unexpected or inconvenient for the teacher’s agenda…the 

teacher finds herself in a problematic situation: On one hand she needs to change the 

planned trajectory and on the other hand she tends to complete what was planned. (p. 

330) 

I attempted to understand how a teacher in this study handled divergences from his or her 

intended activities. I assumed that a teacher follows a predictable path. Each time a teacher 

addressed an unanticipated student comment, I gave an indication how the teacher left the 

planned activity. Across the episodes described in previous sections, three patterns emerged—

fully addressing one comment in its entirety and working back to the planned activity, addressing 

comments as they arose and working back to the planned activity, or coordinating comment and 

activity simultaneously. An explanation of these patterns is included below. 

The V Formation 

 One approach to handling unanticipated student questions or comments is in a V 

formation, as seen in Figure 1. Such an approach resembles Leikin and Dinur’s (2007) “different 

strategies” pattern (p. 342). The activity away from the planned progression and the resolution of 

the student comment toward the return of the progression is why I chose to call this a V 

formation. In their report, Leikin and Dinur suggested that different strategies “create 

opportunities for a solution based on a strategy/explanation different from that planned by the 

teacher. The different strategies/explanations lead to identical results.” (p. 342). This is also true 
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for the teachers in this study—they ended up at the same destination with their planned activity 

while addressing an unanticipated student comment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Typical Approach for V Formation. 

The posing of the unanticipated student comment or question created a deviation from the 

teacher’s planned progression. I found this approach when Kris reviewed homework exercises 

using simpler/related episodes. The teacher pursued the comment by posing a question to review 

a necessary pre-requisite concept. Although the teacher plans to review homework exercises, she 

Student asked a question not 
part of the progression. 

Teacher asked a simpler or related 
question in response to the 

student’s question. 

Students answered the 
teacher’s newer question.  

The teacher continued with the 
plan for the lesson. 

Teacher planned a progression 
for the lesson. 
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does not plan to focus on a specific exercise. The student offered a solution to the homework 

exercise—whether valid or invalid—and in the resulting discussion, the students sought 

clarification of a concept discussed before, either in this or a previous mathematics class. Kris 

received the questions from the student and made the unanticipated student question the new 

priority in the class’s discussion.  

In both of Kris’s simpler/related questions episodes, she not only responded to the 

student’s comment, but created a mini-lesson as well. She reviewed the pre-requisite concept in a 

more general sense, not just answering the student’s original question. For example, she 

reviewed derivatives anti-derivatives of expressions containing natural logarithms or expressions 

in the form xn, for natural numbers n, instead of reviewing that the anti-derivative of 
    

 

1
x

 was the 

natural logarithm of x. Once the teacher completed the mini-lesson and the students answered the 

her review questions, she returned to the student’s original comment. After answering the 

original comment, the class moved back to the planned activity. When employing a 

simpler/related question in this formation, the teacher’s goal is to answer the student’s question 

in its entirety. The answered question marked the return to the planned class activity. If this 

approach succeeded, the teacher moved forward with a completed activity and a surprise 

question answered at the end of the episode. 

Kris’s approach mirrored the observation made by Colestock (2009) in his study of 

Advanced Placement calculus teachers. He saw that one of the ways that teachers handled an 

unexpected student comment was to provide a short lesson to review a pre-requisite concept. As 

Colestock stated, the teacher in his study chose to create “an improvised teaching episode to help 

students voice the required insight” (p. 1463). The diversion was not necessarily well planned. 

Instead, the improvisation allowed the teacher to illustrate what pre-requisite knowledge students 
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needed to move forward with a solution. Once the improvisation was complete, Kris allowed the 

students to complete their own solution. 

The W Formation 

 I have called this approach of handling two questions in the same episode the W 

formation, as seen in Figure 2. This is similar to the “different scopes” pattern in Leikin and 

Dinur’s (2007) report (p. 342). A major difference between their pattern and this approach is that 

the teacher repeated the diversion and returned to the planned lesson only once. In Leikin and 

Dinur’s report, the teacher left and returned to the planned lesson multiple times. This approach 

is very much like Barry’s approach when implementing simpler/related questions. The two 

deviations from the planned lesson separated this formation from the V formation. As the teacher 

progressed away from the unanticipated question toward the planned activity, another situation 

arose where the students sought additional clarification. The implemented review ventured away 

from the planned activity again, but the teacher addressed the students’ need to refresh their 

knowledge. Once the second topic had been sufficiently reviewed, the class moved onward to 

completing the planned activity.   

These two separate deviations provided the teacher opportunities to review multiple 

concepts within one episode. Instead of addressing one question, reaching a resolution, and 

moving onward, the teacher posed two sets of questions to students, repeating the previously 

described activity for each set. In responding to either of the two questions, Barry did not provide 

the mini-lesson, like Kris did with simpler/related questions. Here, the teacher posed a question 

and offered review of the pre-requisite concept as it was needed. When the students arrived at 

another moment where they needed additional review, Barry had another round of 

simpler/related questions for the students. Once the students answered those questions, they 
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reviewed all of the necessary concepts needed to make a final answer for the planned activity. 

Barry kept his questions focused on the application of the reviewed concept needed to respond to 

the student’s question.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Typical Approach for W Formation. 

The W formation was the preferred approach when both teachers handled challenging 

questions. The challenging questions occurred after both teachers had answered a previous 

Student poses first question. 

Teacher responds to student’s question, 
addressing concept as it pertains to 
current situation. 

In returning to the planned activity, 
another student question arises. 

Teacher responds and attempts to 
answer second question.  

Either the second question is answered completely or 
the teacher acknowledges a challenging question. 

Next planned activity. 

Classroom activity, as planned by teacher. 
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unanticipated question completely. In returning discussion back to the planned activity, a student 

posed a second unanticipated question. The teachers decided to entertain the second question and 

pursue a solution until reaching the limit of the teacher’s own content knowledge. When the 

teacher acknowledged that limit, the episode ended. This acknowledgement caused the teacher, 

and thus the entire class, to proceed to the next planned activity.  

 Kris’s challenging question episode described earlier epitomized the classroom activity 

during a W formation. The teacher attended to one student question regarding the number e. The 

teacher decided to pursue the student’s question and respond with connections to bank accounts 

with continuously compounded interest. Once the connection had been explored, the class 

worked back to the activity the teacher wanted to do at the end of the class. Later in this episode, 

the teacher decided to pursue other instances where letters and symbols can be reserved for 

constants. With the activity moving away from planned activity, the teacher pursued an 

unanticipated question a second time. The additional pursuit provided Kris the challenge: as she 

provided additional letters and discussed the numerical values associated with those symbols, the 

challenge became how to represent π as an infinite series. When the classroom discussion 

progressed to this point, representing π as an infinite series, the pursuit ended. Kris could not 

present the series but provided a connection between the unfamiliar series and inverse 

trigonometric functions. The classroom discussion returned to the planned activity, because no 

additional contributions could be made to this discussion. The amount of knowledge needed to 

keep the discussion moving forward was beyond the scope of knowledge of the teacher or any 

class member. As a result, the discussion made a sudden change away from the pursuit.  

 There are two different ways of seeing a W formation in handling these unanticipated 

moments in the classroom. For both teachers, the initial departure took place when reviewing an 
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earlier concept. Both teachers answered the questions sufficiently. The second departure marked 

a difference in the two ways the teacher responded. For Barry’s simpler/related questions, the 

second venture away from planned activity allowed him to pose a second set of review questions. 

The students answered the teacher’s review questions sufficiently, making a smooth transition 

from answering review questions to completing the planned activity. However, when handling 

challenging questions, the second unanticipated comment and the teacher’s acknowledgement of 

the limit of his or her own content knowledge caused both a quick end to the discussion and a 

sudden transition from the acknowledgement to the next activity.  

The U Formation 

 In selected episodes, the teacher handled the unanticipated student comment in a U 

formation, as illustrated in Figure 3.  This approach varies from Leikin and Dinur’s (2007), for 

they do not consider the teacher’s approach a coordination of planned activity and unexpected 

comment. I give this name to an episode where a teacher addressed the unplanned student 

comment and the lesson plan simultaneously. When implementing this response pattern, the 

teacher seemed to have the opportunity to adhere to the planned lesson more clearly. The teacher 

had an additional way to present the same topic by emphasizing an alternate approach. For 

example, instead of posing the planned activity, the counterexample strategy can illustrate what 

the concept is not. 

The use of counterexamples by both teachers illustrated a U formation. Looking at 

Barry’s use of counterexamples in the episode where he miscopied the expression, he was able to 

handle an unanticipated moment, even if he created it, and proceed with the planned lesson, 

identifying the value of the first few terms and the series’ convergence. Once off of the original 

plan, the teacher discussed an additional concept regarding series—appropriate values for the 
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domain of the sequence. The use of natural numbers for the domain of the sequence was almost 

overlooked, as Barry suggested to his students: “Almost all the time I start at one, because it 

seems like a natural place to start … so really, we are doing natural numbers” (Day 9 

observation). Once the students determined the appropriate values, they evaluated the first few 

terms of this series. Later in the class period, the teacher compared this series to the series 
    

 

1
nn=2

∞

∑  

to show that the original series diverged.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Typical Approach for U Formation. 

Teacher’s planned activity 

Unanticipated comment 
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The U formation provides a different explanation of how the teacher interacted with his 

or her students. In the V formation, especially when Kris provided the mini-lesson, the teacher 

picked up the student comment and worked through to a conclusion. The focus shifted from 

planned activity to new comment and then returned back to the originally planned activity. In 

this U formation, the teacher balanced both original plan and new comment. The teacher found a 

way to incorporate the new idea into the planned presentation. When the teacher reached a 

resolution on the student comment, the teacher also finished this portion of the planned activity. 

Likewise, this formation is different than the W formation in that the teacher only considered one 

or one set of comments within one episode. In the U formation, the teacher attempted to answer 

two unplanned ideas.  

Summary–Patterns among Formations 

 Across the episodes, the teachers handled the unexpected episodes in three primary ways. 

The variations occurred in how the teacher handled the question in comparison to the planned 

activity—whether or not the teacher coordinated with the answer to the unanticipated question or 

comment with the planned lesson. In Table 3, all described episodes can be classified into three 

categories. 

Table 3. Classifying episodes by formation.  

V Formation 

(4 episodes) 

W Formation 

(5 episodes) 

U Formation 

(6 episodes) 

Kris’s Simpler/Related 

Questions (2 episodes) 

Barry’s Simpler/Related 

Questions (2 episodes) 

Barry’s Follows Through (2 

episodes) 

Barry’s Follows Through (2 

episodes) 

Both teachers’ Challenging 

Questions (3 episodes) 

Both teachers’ 

Counterexamples (4 episodes) 
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Two responses led to the same formation for both teachers—challenging questions and 

counterexamples. For challenging questions, the challenge occurred when having to answer an 

additional question. The type of observed student, one participating in accelerated mathematics 

curriculum, could provide an explanation: in the desire to learn a concept deeply, he or she may 

pose a question at or beyond the limits of the teacher’s content knowledge. Having to admit a 

lack of a complete answer, the teacher moved to the next activity. For counterexamples, the 

teacher coordinated both unplanned question and planned activity. He or she presented why the 

student’s comment or conjecture is incorrect while maintaining the current investigation. Both 

teachers exhibited such coordination in multiple episodes, demonstrating knowledge of not only 

the characteristics that define a concept, but powerful examples of the characteristics that do not 

define a concept. 

For the other two categories—simpler/related questions and follows through—the 

teachers took different approaches. For each formation, the teacher’s handling suggested 

different perspectives to approach the same response. In a simpler/related question, the 

difference occurred in the depth of the responses the teacher provided. If the teacher provided a 

broader response, the teacher could respond fully to the comment, with a possible extension or 

enrichment of the topic, before addressing fully the planned activity. However, if the teacher’s 

primary goal was to answer the unanticipated comment immediately, then the teacher could 

answer that question quickly and return to the planned activity. With a classroom of students 

who could pose challenging questions, the teacher could face additional questions after briefly 

answer the first. The teacher did not repeat any content covered before, but repeated the same 

process for the second question to address a new perspective on the concept. Although more 
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questions could arise from the students, leading to a more involved formation, no such moments 

took place during the observation. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

Summary 

In this study I investigated how teachers of students in an accelerated mathematics 

course—Advanced Placement Calculus—applied their knowledge of teaching mathematics in 

unexpected moments during classroom discussions. The accelerated mathematics course 

provided a setting where teachers’ knowledge of mathematics could be observed clearly. 

Students enrolled in an accelerated mathematics course quickly pose difficult questions to their 

teachers. I wanted to know the mathematical knowledge involved in handling complex questions 

while leading a lesson. This study connects two fields of research within mathematics education: 

the specialized knowledge an individual possesses for teaching mathematics and the strategies 

used by teachers of accelerated mathematics students.  

 The data collection included both interviews and observations used in a reciprocal 

manner: the interviews provided additional insight into what occurred during the observations, 

and the observations guided the selection of episodes to use during interviews. I observed the 

participants for one unit of instruction. I observed one teacher 9 times for a total of 10 hours as 

she taught a unit on the calculus of logarithmic and exponential functions; I observed another 

teacher 15 times for a total of 22 hours as he taught a unit on infinite sequences and series. 

During the classroom observations I used two recording devices: one device focused on the 

teacher and one to capture additional student discussions in another part of the classroom. In 

addition to the observations, I interviewed both teachers four times: once before the unit of 
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observation, twice during the unit, and once after the unit. The four interviews totaled 

approximately three hours per teacher.  

I identified four ways these teachers handled unanticipated student questions or 

comments. I used three of Fernandez’s (1997) categorizations: posing simpler/related questions, 

providing counterexamples, and following through with a student’s thought. Fernandez’s fourth 

category, understanding/incorporating a student’s comment, incorporated the other three 

categories, so I did not include that category in this study. My fourth category, acknowledging 

challenging questions, reflected gifted students’ abilities to ask teachers complex questions 

quickly (Park & Oliver, 2009). I analyzed 15 classroom episodes to describe these four ways in 

greater detail. Both teachers in this study used simpler/related questions the most throughout the 

two units because an in-class preparation for the Advanced Placement examination followed the 

observed unit. Both teachers used counterexamples and followed through at about the same rate 

in their instruction. I classified a small number of episodes as acknowledging challenging 

questions for each teacher. The teachers’ content knowledge built from prior experience 

explained the infrequent occurrences of these episodes.  

I described three approaches that the teachers in this study used when unanticipated 

student questions or comments arose. I based those approaches on whether the teachers diverted 

from or coordinated with the planned lesson. Both teachers coordinated a response to an 

unanticipated student question with the planned activity when providing a counterexample but 

took different approaches for the other two categories. One teacher created one mini-lesson on 

the spot when she posed simpler/related questions to her students. The other teacher posed 

multiple simpler/related questions when responding to a student’s unanticipated question. One 
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teacher departed from the planned lesson while the other teacher coordinated the student’s 

comment with the planned lesson when following through with a student’s idea.  

Conclusions 

Teachers in this study answered unanticipated student questions and responded to 

unanticipated student comments effectively. They did not evade students’ questions, but 

responded to students’ questions to clarify student thinking or correct student misconceptions. In 

responding to new questions, teachers reflected on pre-requisite knowledge, connections made 

among mathematical concepts, and extensions of the current material to later content. If teachers 

inferred students missed a supporting concept to a lesson, they reviewed pre-requisite knowledge 

to develop the current topic in a meaningful manner. Likewise, if a student held an incorrect 

conception of a topic, the teacher presented information to challenge the student’s 

misconception. Even when these teachers did not know the answer to the question, they 

answered the question to the best of their abilities.  

As suggested in the work of Rowland and colleagues (Rowland, Turner, Thwaites, & 

Huckstep, 2009), teachers have three options to answer a student’s question that arises during 

classroom discussion—ignore the comment, acknowledge the comment but not include in 

conversation, or acknowledge and include the comment in conversation. Unlike the student 

teachers Rowland and colleagues investigated, the teachers in this study were more willing to 

answer students’ questions. They also developed responses that could be delivered quickly to 

address what the student needs while still moving forward with the planned activity. Thus, the 

teachers in this study knew when they could answer a particular student question and how much 

time to devote to a response before having to continue with the material they wanted to cover for 

that particular lesson.  
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Teachers in this study tended to respond to unanticipated students’ question in two ways. 

The first way was to pause the planned activity of the lesson and respond to the student’s 

question. These teachers emphasized the importance of the concept by drawing attention to the 

question. By addressing questions in isolation, teachers valued seeking clarification for the 

student’s difficulty. By addressing the comment to the entire class, the teachers assisted other 

students in the class who might be struggling with the same concept. These teachers could then 

assume students’ familiarity with the topic when they finished the review. Once these teachers 

received clarification from the students, they continued onward with the planned activity, 

referring to the answer from the student’s question when needed. Teachers in this study also 

responded to students’ questions by coordinating a response to the question with the planned 

activity. The teachers in this study could handle unanticipated questions without significantly 

deviating from their plan. At the end of their response to the student’s question, teachers found 

themselves at the same place in their planned lesson than had the student not asked the teacher 

that particular question.  

Teachers in this study demonstrated a flexibility of handling student questions similar to 

the progression suggested by Leikin and Dinur (2007). When a student asked a question during a 

lesson, the teacher faced one of two choices–move away from the planned lesson or continue 

onward with the planned lesson. In their study, Leikin and Dinur found that teachers addressed 

the student’s question or comment separately from the planned activity. This study adds an 

additional component to ways teachers responded to students’ questions during classroom 

discussions, to coordinate both planned activity and unplanned comment.  

Teachers in this study expanded their own content knowledge through practice because 

students possessed the ability to ask questions beyond teachers’ levels of mathematical 



 

126 

knowledge. Additionally, students provided different connections between mathematical topics 

than teachers saw. When handling students’ questions or comments, teachers in this study 

responded quickly. Sometimes, these teachers could not answer the students’ questions fully. 

These questions allowed teachers to research the topic in more detail. After researching, teachers 

presented a more complete answer to the original student question. These questions are unique to 

practice; students proposed questions in ways that cannot be planned in advance. Students have 

developed their own knowledge of mathematics and ask questions or make statements to support 

that knowledge. The teachers in this study anticipated some potential questions students might 

ask, but they could not create an exhaustive list of questions for a lesson. Likewise, teacher 

preparation or professional development experiences cannot provide an exhaustive list of 

questions to teachers. 

The teachers in this study handled tough questions similar to the way the teachers in Park 

and Oliver’s (2009) study handled challenging questions. Teachers in Park and Oliver’s study 

knew students would ask difficult questions, sometimes beyond the scope of teachers’ 

knowledge. When teachers fielded a question beyond their own knowledge, they researched the 

topic on their own time. Later, they presented the results of their research to their students. Like 

teachers in Park and Oliver’s study, the teachers in this study approached challenging questions 

with a sense of excitement. Teachers in both studies enjoyed the opportunity to grow in their 

knowledge of the content they were teaching.  

Additionally, challenging questions supported the notion that teachers are not the sole 

source of authority for determining the validity of mathematical statements. The teachers in this 

study were not the sole sources of authority in their classrooms; students could create statements 

and debate the validity of those new statements. This deferral of authority supports Lampert’s 
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(1990) research in her classroom. If there is not a sole authority in the classroom, students are 

comfortable presenting new conjectures for classroom discussion. Once presented, anyone can 

critique or support the new conjecture, rather than everyone waiting for confirmation from one 

person. Discussions become an exchange of ideas, rather than a set of statements awaiting 

validation.  

The teachers in this study accessed a connected web of content knowledge in responding 

to unanticipated student questions. These connections were themselves a component of 

specialized knowledge for teaching. Meaningful connections are built upon a deep knowledge of 

many topics. Teachers with a highly connected knowledge of mathematics do not present 

material strictly from one particular strand; rather any bit of knowledge becomes useful in 

teachers’ classroom activity (Ma, 1999). The teachers in this study presented meaningful content 

from strong connections across mathematical topics; they could use connections to address 

alternative solutions or demonstrate ideas using various representations.  

This result matches the findings from Ma (1999). In her study, Ma found that 

knowledgeable teachers accessed a vast, connected base of knowledge extending beyond the 

presented topic. Presenting a lesson is not solely about the topic at hand. Effective teachers 

understand one topic in mathematics requires a coordinated understanding of many concepts at 

once. Knowledgeable teachers possessed expansive and deep connections throughout 

mathematical content. Teachers can prepare answers to students’ questions in a timely manner by 

quickly accessing multiple connections.  
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Implications  

Teacher Preparation Implications 

When teachers pose simpler or related problems, they are making connections across 

various representations or pre-requisite knowledge (Fernandez, 1997). Thus, future teachers 

should increase the variety of connections they make across concepts. Knowing how concepts 

are connected can lead to the development of new ways of thinking about a particular concept. 

As Wilson, Cooney, and Stinson (2005) reported,  

Teachers believed that if they made connections, students would understand the 

mathematics or, at least, they would be more motivated to try to understand the 

mathematics. The responsibility for making the connections belonged to the teacher; the 

student’s responsibility was to understand. (p. 94) 

In order to develop those connections, future teachers should have opportunities to determine 

what they know about a particular concept, how it relates to other concepts both earlier and later 

in the curriculum, and various representations of the concept (e.g., algebraic, numerical, 

pictorial). When facing an unexpected student comment, teachers need to able to access a 

different representation of a concept in order to alleviate student confusion. Likewise, teachers 

need to work on identifying questions to ask students that make explicit the connection between 

current material and prior knowledge.  

Future teachers could benefit from a broad perspective on how mathematical strategies 

can be organized. One such example would be Habits of Mind (Cuoco, Goldenberg, & Mark, 

1996). As Cuoco and colleagues advocate, “We are after mental habits that allow students to 

develop a repertoire of general heuristics and approaches that can be applied in many different 

situations” (p. 378). If students are to develop these habits of mind, their teachers need to 
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develop them as well. Each of the four strategies is an approach that could be applied in a variety 

of situations, like a heuristic. Future teachers could identify the pre-requisite knowledge to create 

simpler or related questions in the presentation of a lesson. These teachers could determine the 

powerful and illustrative counterexamples to address students’ misconceptions. They could 

explore implications of following through with a solution path that a student could propose. 

Preservice teachers could recognize limits of their own content knowledge for a particular topic 

and reflect on responses to a question beyond the limit of their knowledge of the topic.  

Professional Development Implications 

In the professional development setting, professional developers should help teachers 

develop a greater awareness of how they (teachers) call upon their knowledge while in the act of 

teaching. Professional development experiences could emphasize that what teachers know 

mathematically supports what they do in their classrooms. Additionally, what teachers 

experience in their classroom is a unique blend of the content they already know and applications 

they may not have learned through earlier experiences. By focusing on classroom activity, 

teachers can find utility to professional development experiences addressing content knowledge. 

The classroom provides a unique environment, where “knowledge is inseparable from the 

physical and social contexts in which it develops and is used” (Borko et al., 2000, p. 197). As 

Hiebert and colleagues (Hiebert, Gallimore, & Stigler, 2002) described for their formulation of 

practitioner knowledge,  

Teachers must know the content that will be developed, the students’ knowledge as they 

enter the lesson and how their thinking will change over the course of the lesson, how 

these changes fit within the broader curriculum, what instructional moves might best 

facilitate the desired changes, and so on. (p. 10)  
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Garet and colleagues (Garet, Porter, Desimone, Birman, & Yoon, 2001) also mentioned that 

Professional development that focuses on academic subject matter (content), gives 

teachers opportunities for “hands-on” work (active learning), and is integrated into the 

daily life of the school (coherence), is more likely to produce enhanced knowledge and 

skills. (p. 935) 

Examining how teachers implement particular strategies for handling unexpected comments and 

how they coordinate new contributions with planned activities can help other teachers grow in 

their specialized knowledge of teaching. Such strategies call on the teacher’s content knowledge 

and ways to apply that knowledge to help their students develop mathematical concepts. 

Teachers can identify the knowledge they possess of a particular topic based on reflections on 

their own classroom activity. They can identify meaningful simpler/related questions that can be 

posed to correct student errors based on teacher’s understanding of his or her students’ prior 

knowledge. Teachers can practice generating counterexamples powerful enough to illustrate 

competing claims students have. These reflections should be undertaken in the context of 

specific mathematics content.  

Suggestions for Future Research 

One possibility for future research would be to examination teachers’ classroom practice 

for a longer period of time or at a different time of the school year to see how the use of various 

strategies for dealing with unexpected contributions changes. The teachers in the present study 

predominantly used simpler/related questions in response to unexpected student comments and 

questions. I hypothesized that the high frequency of simpler/related question was a result of my 

observations taking place during the last unit of instruction prior to review for a standardized 

test. Thus, it would be interesting to see if teachers earlier in the year use this strategy less when 
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there is less material on which to draw. Teachers might refer more to the content of previous 

mathematics classes than to the content addressed in the current class.   

The next two suggestions for future research involve the selection of participants for 

study. Both teachers in my study had several years of experience with the course that I observed, 

and both teachers taught many of the same students in previous years. It is likely that the 

teachers’ knowledge of the content and their students influenced their responses to unanticipated 

student questions. In addition, my participants were teaching a course for which there was a 

high-stakes standardized exam at the end, which also likely influenced their handling of student 

questions. 

One possibility for participant selection is to study teachers of advanced or accelerated 

mathematics that do not have a high stakes test at the end. One of the motivations in my 

teacher’s responses to student questions was an adherence to the Advanced Placement 

curriculum. Examining teachers in a course without such a strong curriculum influence on 

teacher’s decision-making process might yield different results.  

Both teachers in this study spoke of calculus as connecting topics from across multiple 

content strands, such as algebra and geometry. It would be informative to study teachers in 

courses containing only one strand, such algebra or geometry, to see whether and how they made 

connections to other strands. Studying such teachers might yield a difference in the distribution 

of response types as well.  

Once a teacher presented a lesson and experienced unanticipated questions, an additional 

study could examine how that teacher implemented what they learned from a previous lesson 

into future lessons. This could happen in two different settings. The first setting involves 

experienced teachers leading multiple sections of the same class. This study could examine the 
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differences in the quantity and distribution of the types of responses from the earlier class session 

to the later session. The second setting would be a longitudinal approach to ways teachers 

incorporated what they learned from responding to an unanticipated student comment or 

question. As teachers lead the same lesson in the future, an additional study could examine what 

changes occur in the frequency and nature of responses to unanticipated student questions from 

the previous class.  

Observing experienced teachers who have not taught the group of students in the past 

might also yield different results. Both teachers in this study not only taught a pre-requisite 

course but also previously taught many of the students enrolled in the course I observed. Thus, it 

is safe to presume that these teachers had a specialized knowledge of both content and students 

based on their prior experiences. If a teacher knows the strengths and weaknesses of students’ 

mathematical understanding, s/he would be inclined to use that knowledge to pose questions that 

address those strengths and weaknesses. A study of a teacher who does not have a strong of 

knowledge of his or her current students would shed light on the ways in which knowledge of 

specific students comes into play in responding to unanticipated student comments.  

After spending a brief, but valuable, amount of time in specialized mathematics classes—

an accelerated curriculum where students learn university-level mathematics while enrolled in 

high school—one does not have to be report knowledge possessed by experienced mathematics 

teachers in terms of deficiencies. Teachers not only possess a content knowledge to support 

students’ development of challenging mathematics. They can apply that knowledge to make 

learning meaningful for their students. Determining the scope and application of this knowledge, 

both in terms of content and pedagogy, can be challenging. This study provides insight into how 

teachers think in the act of teaching, the profession’s most unpredictable situation
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APPENDIX A 

INTRODUCTION INTERVIEW GUIDE 

1. How did you get your start teaching Advanced Placement (AP) Calculus? What are some 

of your memorable experiences in teaching this course?  

 

2. Tell me about a typical day in your AP Calculus class. What are the kinds of activities 

you might do in a class period? What kinds of questions might you ask on a normal day? 

 

3. How would you describe the typical student who takes Advanced Placement Calculus? 

How do you think this student is different that from another student in a high school 

mathematics classroom? 

 

4. In what ways do you use your own knowledge of mathematics when teaching AP 

Calculus?  

 

5. What are the ways that you use your own knowledge of mathematics to help you plan the 

lessons you teach in AP Calculus? 

 

6. What are some of the mathematical ideas that come to mind as you are leading a lesson in 

this class [AP Calculus]? 

 



 

145 

7. What would be some of the questions you would ask the students in the classroom that 

you expect them to answer? What are some of the questions students ask that you expect 

other students in the class to answer?  

 

8. When a student in this class [AP Calculus] asks you a question or asks a question to 

everybody in a large-group discussion, what are some of the mathematical ideas that 

come to mind?  

 

9. Are there times when you use your own knowledge of mathematics either not to answer a 

question or to postpone answering a question? What are some of the reasons that you do 

this? 

 

10. As a lesson concludes, what are some of the mathematical ideas that come to mind as you 

reflect on the lesson that just ended? 

 

11. In conclusion, are there are other ideas regarding the connection between your own 

knowledge of mathematics and teaching an Advanced Placement Calculus course that 

you have not had a chance to mention so far? If so, what are those? 
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APPENDIX B 

INTERVIEW GUIDE FOR SECOND AND THIRD INTERVIEWS 

1. What are some of the topics you covered in the past few days in the AP Calculus course? 

 

2. As you were planning for the lessons from the past few days, what were some of the big 

ideas you wanted to cover in terms of mathematics? Why were those ideas you wanted to 

emphasize? Did you expect that the students would struggle in learning these concepts or 

succeed in learning? 

 

3. Looking back on the past few days, were there moments that you remember you had to 

use your own knowledge of mathematics? If so, what were those moments and how did 

you use what you know about mathematics to help you with the situation? 

 

4. During the past few days, where there statements made or questions raised by the 

students that made you reflect on your own knowledge? If so, what were those moments 

and how did you use your own knowledge in those situations? 

 

5. During the course of the observation, there were a couple of interesting moments that 

caught my attention. I can either provide you an audio recording or a transcript of the 

recording. Looking back on this moment, what were some ideas that come to mind? If the 
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same situation happened again, would you handle the moment the same way or 

differently? Why? 

 

6. As you look ahead to upcoming classes, what are some of the mathematical ideas you 

would present to the students? What are some of the ways you will present that 

information to the students? How you will use your own knowledge of mathematics to 

help you in moving forward? 

 

7. Is there anything else you would like to discuss that I have not covered so far? If so, 

please do let me know. 
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APPENDIX C 

FINAL INTERVIEW GUIDE 

1. What are some of the topics you covered in the past few days in the AP Calculus course? 

 

2. Looking back on the past few weeks, what are some of the bigger ideas that you covered 

as you were teaching?  

 

3. During the course of the observation, there were a couple of interesting moments that 

caught my attention. I can either provide you an audio recording or a transcript of the 

recording. Looking back on this moment, what were some ideas that come to mind? If the 

same situation happened again, would you handle the moment the same way or 

differently? Why? 

 

4. Looking back on the past few weeks, what were some of the more challenging questions 

students asked? What were some of the things you were thinking about as you answered 

the students’ questions? 

 

5. As you move forward, what are some of the topics you will be teaching next? How do 

you see what you have currently taught helping with teaching the next unit? 
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6. What are some of the mathematical ideas that you will use as you prepare your students 

for the next unit of material? 

 

7. Is there any additional information that I have not covered that you would like to include? 
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APPENDIX D 

SAMPLE LESSON GRAPH 

1:03:58 Barry uses eating pizza as an example to show the possible 

convergence of an alternating series. 

The series in question is: 1 – 1/2 + 1/4 – 1/8 + …. 

Students don’t like the example when getting past the 

first few terms. 

1:05:12 B: “How do you know for sure?” 

S: “And that the limit of a sub n is zero.” 

B: “Well, we’re not there yet.” 

 

1:05:27 B: “How do I know it’s always true?” In response to a student choosing specific values. 

1:06:14 B: “We are talking about exponents in my accelerated 

class…” 

 
  

This is a connection back to previous material to assist 

students now. Might be a moment to transcribe. 

1:06:59 Barry using grading a test as an example to explain taking 

half of a negative number. 

Still connecting back to the alternating series. A 

connection to increasing/decreasing is attempting to be 

made. 

1:08:27 B: “We could consider the whole domain?” Re-stating a student comment. This helps the students 

get towards a final answer. 

 

Table 2. A selection from a lesson graph from one classroom observation.  
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APPENDIX E 

SAMPLE ANALYSIS CHART

Teacher drawing 
of slopes for a 
slope field 

Student comment 
on judging 
steepness 

Teacher draws three 
examples on board, 
asks student to match 
slopes to segments 

Teacher verifying 
answers to posed 
questions 

Student’s 
eventual 
agreement with 

  

Continuation of 
slope fields 
discussion 

Planned progression of the lesson. 


	(Under the Direction of Denise A. Spangler)
	ABSTRACT
	INDEX WORDS: Teacher knowledge, Pedagogical decisions, Secondary education, Gifted education
	RYAN DAVID FOX
	DOCTOR OF PHILOSOPHY
	ATHENS, GEORGIA
	RYAN DAVID FOX
	Major Professor:  Denise A. Spangler
	Maureen Grasso
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	Page
	LIST OF TABLES
	Page
	LIST OF FIGURES
	Page
	CHAPTER 1
	Rationale
	chapter 2
	Specialized Knowledge for Teaching Mathematics
	Conceptualizations of a specialized knowledge
	Assessing a specialized knowledge
	Teachers’ Interactions with Students
	Mathematically Able Students
	Identifying mathematical ability
	Teachers of mathematically able students
	Secondary School Calculus
	chapter 3
	Setting of Study
	Pierce High School
	Buchanan High School
	Advanced Placement Calculus
	Participants
	Participant Selection
	Barry
	Kris
	Rationale for Data Collection Methods
	Data Collection Methods
	Data Analysis Methods
	CHAPTER 4
	Kris, First Episode–Reviewing Anti-derivatives
	Kris, Second Episode–Reviewing Derivatives of Logarithmic Functions
	Barry, First Episode–Two Review Questions for One Homework Exercise
	Barry, Second Episode–Two Review Questions Supported by Two Related Questions
	The idea in posing such a question was to show
	Comparing the Two Teachers
	Challenging Questions as Expanding Teacher’s Own Content Knowledge
	Barry, First Episodes–Differentiating Permutations and Combinations
	Barry, Second Episode–Necessary Steps for the Alternating Series Test
	Kris–Representing Pi
	Patterns across Challenging Questions
	Barry, First Episode–Creating A Counterexample to Settle a Dispute
	Barry, Second Episode–Fixing His Own Mistake by Counterexamples
	Kris, First Episodes–Counterexamples in Slope Fields
	Kris, Second Episode–Counterexamples by Changing a Right Answer
	Comparing Counterexamples to Previous Studies
	Follow Through to Examine Student Thinking
	Barry, First Episode–Determining the Convergence of an Infinite Sequence
	Barry, Second Episode–Choosing A Comparison Test
	Kris–Using Two u-Substitutions
	Kris, Second Episode–Resolving “Perplexing Pencils”
	Across the Follow Throughs
	Exploring Patterns in Teachers’ Approaches
	Summary–Patterns among Formations
	CHAPTER 5
	Teacher Preparation Implications
	Professional Development Implications
	Suggestions for Future Research
	References



