

PARALLEL SUPPORT VECTOR MACHINES USING SMO

by

NAMAN FATEHPURIA

(Under the Direction of John A. Miller)

ABSTRACT

We present an algorithm for Support Vector Machines that can be parallelized

effectively. The Algorithm scales up nicely on very large datasets of million training

points. Instead of analyzing and optimizing the whole training set in to one support vector

machine, the data is split into subsets and each subset is optimized independently on

different Support Vector Machine. The result from each Support Vector Machine are then

combined to get the trained Support Vector Machine. The high performance is due to low

overhead communication between the different Support Vector Machines. In this paper,

the runtime performance of the algorithm is tested on a dataset of more than 8 million

instances with a speed up of about 20 fold.

INDEX WORDS: Parallel support vector machine, Sequential minimal optimization

PARALLEL SUPPORT VECTOR MACHINES USING SMO

by

NAMAN FATEHPURIA

B.Tech, Punjab Technical University, India, 2010

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2014

© 2014

Naman Fatehpuria

All Rights Reserved

PARALLEL SUPPORT VECTOR MACHINES USING SMO

by

NAMAN FATEHPURIA

 Major Professor: John A. Miller

 Committee: Lakshmish Ramaswamy

 Krzysztof J. Kochut

Electronic Version Approved:

Julie Coffield

Interim Dean of the Graduate School

The University of Georgia

December 2014

iv

DEDICATION

 To my friends, family and professors for their endless support, care, belief and

motivation.

v

ACKNOWLEDGEMENTS

 Studying in University of Georgia was a great experience for me from past 2

years. I have grown as a better person on both personal and professional front. The

knowledge that I gained here is incredible. I learned a lot from my major professor Dr.

John A. Miller. He is one of the most intellectual person I have ever met. His knowledge

and support has always been the motivating factor for me in completing my research

successfully. Also, I would like to extend my gratitude to Dr. Lakshmish Ramaswamy for

his endless support and advice. Dr. Krzysztof J. Kochut is one of the best professors and I

really enjoyed his Enterprise Integration class.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

1. INTRODUCTION AND LITERATURE SURVEY .. 1

1.1. Problems: dealing with machine learning .. 2

1.2. Parallel and distributed machine learning .. 2

1.3. Pros and cons: parallel and distributed machine learning 3

1.4. Techniques: parallel processing ... 5

2. PARALLEL SUPPORT VECTOR MACHINES USING SMO 9

2.1. Introduction .. 11

2.2. Background .. 12

2.3. Implementation techniques .. 14

2.4. Big data analytics framework .. 16

2.5. Presentation of algorithm ... 18

2.6. Performance evaluation ... 21

2.7. Related work .. 26

2.8. Conclusions and future work ... 26

vii

3. SUMMARY .. 28

REFERENCES ... 29

viii

LIST OF TABLES

Page

Table 2.1: The effect of data sets on the accuracy of classification.22

Table 2.2: Data statistics. ...25

ix

LIST OF FIGURES

Page

Figure 2.1: Speed up achieved on Parallel SVM in comparison to SVM..........................23

Figure 2.2: Runtime for 50 Features ..24

Figure 2.3: Runtime for 150 Features ..24

1

CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

“Machine learning deals with constructing algorithms and study of system that can

learn from data, rather than follow only explicitly programmed instructions” [26]. A key

task performed by machine learning systems is to learn from a function that maps input

data to the certain outputs.

Machine learning tasks can be categorized into many types like supervised learning

and unsupervised learning. In supervised learning, a machine utilizes the training data to

train itself. Training data is generally expressed in the form (X, y), where X is referred as

data instance and y is referred as the output of X. The goal of supervised machine

learning is to predict the value of test data which are expressed in terms of X and the

predicted value in terms of y.

Two most common supervised learning tasks are classification and prediction. In

classification, output categories or classes can only be of finite number but in prediction,

the output set can be of real numbers which is infinite.

In unsupervised learning, the most common example is that of data clustering. The

goal of data clustering is to construct a function that partitions datasets into say k

different clusters. Data instances that are assigned to the same cluster should have some

similarity like having a common centroid or are certain distance apart.

2

1.1.Problems: dealing with machine learning

The potential training data for machine learning can be extremely large. The number

of data instances can reach up to million, where each data set can have thousands of non-

zero features. Storage required for this humongous data can be an issue while dealing

with machine learning.

Features dimensionality can also prove to be a problem in machine learning - in some

cases like images and video, input dimensionality can be in million or more.

Computations on these many features may prove to be challenging.

In machine learning, algorithm can be very complex which increases the

computational complexity of the complete model. The learning problem can be too slow

for such complex model. For these kinds of problems, parallel multi-node or multi-core

implementation can be a solution.

Throughput and latency can also be an issue in machine learning. Many machine

learning problem require performing a sequence of interdependent tasks, which is viewed

as a single task, which typically results in very high computational costs due to increased

computational complexity.

1.2. Parallel and distributed machine learning

Performance can be gained in machine learning applications by the concurrent

execution of tasks that may be otherwise performed sequentially. Two major areas in

which concurrency can be obtained are parallel machine learning and distributed machine

learning.

3

1.3.Pros and cons: parallel and distributed machine learning

1.3.1. Advantages: Parallel Machine Learning

Parallel implementation of machine learning uses shared memory as an underline

concept. Algorithms implemented using shared memory can make use of shared global

data during concurrent execution. System threads and program threads can make use of

the shared state which will result in faster execution of the program.

 Parallel implementation can be less resource intensive because we can process multiple

client requests concurrently.

 Parallel implementation has the ability for an application to remain responsive to

input because in case of single threaded application, if the main execution thread blocks

for a very long task, the entire application can be blocked.

 High levels of parallelism can be achieved by utilizing multi-core systems. Each

core may have two system threads, so more the number of cores in the system, more will

the number of system threads in the system. We can split the data into much smaller

chucks because of the increased system threads and run them in parallel, which will result

in a faster execution time.

 Parallel implementations can be cost effective, have better system utilization,

have low network communication overhead and generally be easy to code.

1.3.2. Disadvantages: Parallel Machine Learning

 The primary disadvantage of parallel implementations is the lack of scalability

both in terms of memory and number of cores in the system. For a very large dataset say

in the billion, it is very hard to keep all the data and process the data on the one machine

4

because the memory required for this is huge. Adding more cores can increase the traffic

between the shared memory and CPU path.

 Another major disadvantage of parallel processing is the program ending up in

race conditions or deadlock conditions. Since threads share the same address space,

the program needs to handle the race conditions. In order for data to be correctly

manipulated, threads need to process the data in the correct order. To maintain the order,

threads needs to use some kind of locking mechanism in order to prevent common data

from simultaneously being modified or read while in the process of modification.

1.3.3. Advantages: Distributed Machine Learning

 A distributed system is a collection of many independent computer systems, each

having its on local memory and processor. We can divide the large dataset on to these

different machines and can process them; this will eliminate the memory and processing

problem faced in parallel implementation.

 Distributed systems are scalable, with the increase in data or processing needs, we

can add more computers to the system.

 Distributed systems are reliable, as data is replicated on different machines, so

even in case of machine failure, data can be reconstructed and processing can be resumed

without making the complete system at halt.

 A distributed system offers a better price and performance then single system

because it is cheaper to get many computers with fewer cores than a single computer with

many cores.

http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Race_condition#Computing

5

1.3.4. Disadvantages: Distributed Machine Learning

 In distributed systems, troubleshooting and diagnosing problem can become more

difficult, because the analysis of the system may require connecting to remote nodes or

inspecting communication between nodes.

Distributed systems performance depends highly on bandwidth consumed and

latency. If these are too significant then the benefits of distributed computing may be

negated and the performance may be worse than a non-distributed environment. Security

can also be an issue with distributed system.

1.4. Techniques: parallel processing

1.4.1. Data Splitting

1.4.1.1. Instance Shards

When we split the data for the machine learning technique in terms of the instances

then each set of instances is known as instance shards.

Data instances for each shard can be selected either randomly or sequentially, or can

be selected in terms of certain values in the instances. Once the shards of different data

instances are created, each shard is assigned to a thread, so that each shard can be run in

parallel.

After running each shard on different thread, we still need a way to combine the result

back from each thread to build a model for the machine learning algorithm.

6

1.4.1.2. Feature Shards

In feature shard, we split the data for learning algorithm in terms of number of

features. Each shard contains different features for each data instance. Each thread will

run each shard independently and each shard will have all the data instances but only few

features for each data instance. A result for each data instance is calculated by combining

the results from each shard for that particular instance. Results can be combined by

simple addition or by treating the result from each shard as a new feature and then

running the newly created model again.

1.4.2. Feature Selection

Features in a machine learning algorithm play very important role in creating a

well build model. Adding extra features with unnecessary information can make the

model very complex which can increase the model learning time and without any

increase in the accuracy level of the model. While on the other hand, removing useful

features can make the mode useless because the model might not reflect the exact state of

the given problem. The purpose of feature selection is to select only those features from

the model which clearly express the state of the model and make it simpler.

1.4.2.1. Forward Feature Selection

A forward feature selection technique reduces the number of feature combinations

that are evaluated to figure out the best model with least number of important features. In

forward feature selection method, we start with an empty model and on each iteration we

select a feature from the number of features available in the model. We evaluate the

7

current model with all the features in the model and evaluate the feature with gives the

best result and then finally apply this feature to this model. We will continue doing this

till no feature gives the best model that the currently obtained model. In all, the overall

number of model that we evaluate will be quadratic in number.

Parallelizing the forward feature selection is very straight forward. In forward

feature selection, each iteration we determine the best feature that needs to be added to

the current model. We can parallelize this step by dividing all the features between the

numbers of threads and determine the result for each feature in parallel based on the

current model and then compare the result of all features with current model and add the

best feature to the model.

1.4.2.2. Single Feature Optimization (SFO)

Single feature optimization works by storing the coefficients of the current model

and then selects any feature from the number of features available. For the selected

feature, SFO optimizes the values of its coefficient and keeping the coefficients of other

feature constant, it reruns the complete model. Now this newly created model will have a

selected feature in it. We then, begin with this model for next feature selection and

optimization. As we are only running the model ones for each feature, SMO will build

only liner number of models in comparison to the quadratic number of models builds by

forward feature selection method. The drawback of this approach is that the model

obtained is approximate.

8

1.4.3. Hardware Accelerators

CPUs are general purpose processors which are designed to perform a wide variety of

calculations easily. CPUs circuit and low level code are designed to be adaptable to call

kinds of calculation because of which they are not that efficient. Special hardware is

available to perform specific types of computation like GPU is a specialized chip that can

perform graphics operations several times faster than a CPU.

In support vector machine, complexity per iteration for calculating kernel operation is

in order of number of data instances times features. For a large number of features,

complexity of kernel operations can be very high and time consuming. If we can use

hardware accelerator which can perform hundreds of multiply accumulate operations at a

given time, kernel computation will be very fast.

We can attach the hardware accelerator to the computer and when we run the

computationally intensive algorithm like the Support Vector Machine, the computer will

send the kernel evaluation part to the hardware accelerator for faster processing and

hardware accelerator will return back the computed result to the computer.

9

CHAPTER 2

PARALLEL SUPPORT VECTOR MACHINES USING SMO
1

1
 Naman Fatehpuria, Mustafa Veysi Nural, John A. Miller, to be submitted to IEEE Big

Data Services 2015.

10

ABSTRACT

We present an algorithm for Support Vector Machines that can be parallelized

effectively. The Algorithm scales up nicely on very large datasets of million training

points. Instead of analyzing and optimizing the whole training set in to one support vector

machine, the data is split into subsets and each subset is optimized independently on

different Support Vector Machine. The result from each Support Vector Machine are then

combined to get the trained Support Vector Machine. The high performance is due to low

overhead communication between the different Support Vector Machines. In this paper,

the runtime performance of the algorithm is tested on a dataset of more than 8 million

instances with a speed up of about 20 fold.

11

2.1. Introduction

Recently, there has been a surge of interest in Support Vector Machines (SVMs) [1]-

[3]. SVMs have empirically been shown to give good performance on a wide variety of

problems such as handwritten character recognition, face detection, pedestrian detection,

and text categorization. Training of a support vector machine for a large dataset for the

purpose of classification is computationally very intensive. Many methods have been

proposed to reduce the training time, such as Vapnik chunking approach [1], smaller

quadratic sub problem method by Osuna [5], Joachims’SVM light [6] which introduces

shrinking and caching of kernel techniques, Platt’s Sequential Minimal Optimization

(SMO) algorithm [7], Modification of Sequential Minimal Optimization [8], Pegasos

[28], TRON, SVMperf, and primal coordinate descent implementation [25]. Despite the

extensive research that has been done to accelerate SVM training, it is still very

significant for large training sets.

In this paper we discuss a parallel approach for implementing support vector

machine. The parallel algorithm presented is based on the Modified Sequential Minimal

Optimization (SMO) technique [8]. The performance gain of our algorithm is largely due

to the way parallelism is handled on a large dataset. It completely eliminates the

dependency on common memory data structures for individual threads, so each thread

executes independently without blocking the execution of other threads. This approach

drastically reduces the training time for large datasets which is linearly proportional to

the number of cores on the running machine. In addition, our parallel support vector

machine implementation has an increased accuracy of 8% compared to the sequential

implementation. We evaluated the performance of our parallel support vector machine

12

algorithm with extensive experiments on a dataset containing up to 8 million instances

and 150 features. For our experiments, we have compared the runtime of our algorithm

with the sequential Modified SMO reduction in training time. We discuss the major

factors that influence the runtime of the algorithm.

Additionally, we discuss a framework which provides necessary means to integrate

our SVM implementation in a large scale analytics pipeline.

Section 2.2 presents background information on support vector machine and

Sequential Minimal Optimization. It also explain the terminology and equations that will

be used in the rest of the paper. Section 2.3 discusses the implementation details of

sequential implementation technique that is based on the Modified SMO and parallel

implementation technique to speed up support vector machine. Framework is explained

in sector 2.4. Section 2.5, we discuss the related work. Section 2.6, we present the

algorithm for both sequential and parallel implementation. We present experiment results

and performance evaluation in section 2.7, and we conclude with a summary of results

presented and a discussion of future research opportunities in section 2.8.

2.2. Background

2.2.1. Support vector machine

In this section, we will briefly explain standard support vector machines. For linear

support vector machines, suppose we have a training data of size N.

{ (𝒙𝟏, 𝑦1), (𝒙𝟐, 𝑦2), … . . , (𝒙𝒏, 𝑦𝑛) }

13

Where 𝒙𝒊 ∈ 𝑅𝑑 and 𝑦𝑖 ∈ {±1}. We need to find a linear separating hyperplane

which has the maximum separating margin. The Support Vector Machine training

problem can be formulated as follows:

𝑚𝑖𝑛𝑤,𝑏
1

2
 𝒘 ∙ 𝒘

Subjected to 𝑦𝑖 (𝒘 ∙ 𝒙𝒊 − 𝑏) ≥ 1

where 𝒘 is perpendicular to the hyperplane. For the above constrained optimization

problem we use Lagrange multipliers. From the Karush-Kuhn-Tucker (KKT) conditions,

a Lagrange multiplier 𝛼𝑖 will be introduced for every data point. The resulting problem

for support vector machines is the following:

𝑚𝑖𝑛𝛼

1

2
 ∑ 𝛼𝑖 𝑦𝑖 𝒙𝒊

𝑛

𝑖=1
∑ 𝛼𝑖 𝑦𝑖 𝒙𝒊

𝑛

𝑖=1
 − ∑ 𝛼𝑖

𝑛

𝑖=1

Subject to ∑ 𝛼𝑖 𝑦𝑖 = 0 𝑛
𝑖=1 and 𝛼𝑖 ≥ 0

and the equation of hyperplane is given by

𝒘 ∙ 𝒙 − 𝑏 = 0

2.2.2. Sequential minimal optimization (smo)

Sequential Minimal Optimization was first proposed by Platt [7], which introduced the

concept of limiting the working set to size 2 only so the equality constraint can be used to

eliminate one of the two Lagrange multipliers. Therefore, the optimization problem at

each step can be reduced to a quadratic minimization in only one variable.

The optimality condition can be tracked through the following vector which is

constructed as the algorithm progresses.

𝐹𝑖 = ∑ 𝛼𝑖 𝑦𝑖 𝒙𝒊

𝑛

𝑖 = 1
− 𝑦𝑖

14

We can partition the training data points into five sets, which can be represented as

following:

 𝐼0 ≡ { 𝑖 ∶ 0 < 𝛼𝑖 < 𝐶}

𝐼1 ≡ { 𝑖 ∶ 𝑦𝑖 = +1, 𝛼𝑖 = 0 }

𝐼2 ≡ { 𝑖 ∶ 𝑦𝑖 = −1, 𝛼𝑖 = 𝐶 }

𝐼3 ≡ { 𝑖 ∶ 𝑦𝑖 = +1, 𝛼𝑖 = 𝐶 }

𝐼4 ≡ { 𝑖 ∶ 𝑦𝑖 = −1, 𝛼𝑖 = 0 }

Based on the data point set and optimality condition, the following condition implied.

𝑖 ∈ 𝐼0 ∪ 𝐼1 ∪ 𝐼2 ⟹ 𝐹𝑖 ≥ 𝑏

𝑖 ∈ 𝐼0 ∪ 𝐼3 ∪ 𝐼4 ⟹ 𝐹𝑖 ≤ 𝑏

To check if condition holds, we define

𝑏𝑢𝑝 = min { 𝐹𝑖 ∶ 𝑖 ∈ 𝐼0 ∪ 𝐼1 ∪ 𝐼2}

𝑏𝑙𝑜𝑤 = max { 𝐹𝑖 ∶ 𝑖 ∈ 𝐼0 ∪ 𝐼3 ∪ 𝐼4}

𝐼𝑢𝑝 = arg 𝑚𝑖𝑛 𝑖 ∈ 𝐼0 ∪ 𝐼1 ∪ 𝐼2 𝐹𝑖

𝐼𝑙𝑜𝑤 = arg 𝑚𝑎𝑥 𝑖 ∈ 𝐼0 ∪ 𝐼3 ∪ 𝐼4 𝐹𝑖

The KKT condition implies 𝑏𝑢𝑝 ≥ 𝑏𝑙𝑜𝑤. Given the first 𝛼𝑖 , these comparisons will

automatically find the second 𝛼𝑖 for joint optimization in SMO [7].

2.3. Implementation techniques

2.3.1. Sequential implementation

Sequential implementation of support vector machine is based on the Modified

Sequential Optimal Minimization approach introduced by Keerti [8]. The idea of the

15

modified SMO is to optimize two 𝛼𝑖 associated with the 𝑏𝑢𝑝 and 𝑏𝑙𝑜𝑤 at each step as

shown in the below equations.

𝛼1
𝑛𝑒𝑤 = 𝛼1

𝑜𝑙𝑑 + 𝑦𝐼𝑙𝑜𝑤

(𝑏𝑢𝑝 − 𝑏𝑙𝑜𝑤)

𝜂

𝛼2
𝑛𝑒𝑤 = 𝛼2

𝑜𝑙𝑑 + 𝑠 (𝛼1
𝑜𝑙𝑑 − 𝛼1

𝑛𝑒𝑤)

𝜂 = 2 𝜅(𝒙𝟏, 𝒙𝟐) − 𝜅(𝒙𝟏, 𝒙𝟏) − 𝜅(𝒙𝟐, 𝒙𝟐)

𝑠 = 𝑦1 𝑦2

𝛼1
𝑛𝑒𝑤 And 𝛼2

𝑛𝑒𝑤 must be clipped to a valid range

0 ≤ 𝑎𝑖 ≤ 𝐶

After updating the values of 𝛼𝑖, we need to update the optimality condition vector

𝐹𝑖 for all data points. This can be done as follows.

𝐹𝑖
𝑛𝑒𝑤 = 𝐹𝑖

𝑜𝑙𝑑 + (𝛼1
𝑛𝑒𝑤 − 𝛼1

𝑜𝑙𝑑) 𝑦1 𝜅(𝒙𝟏, 𝒙𝒊) +

 (𝛼2
𝑛𝑒𝑤 − 𝛼2

𝑜𝑙𝑑) 𝑦2 𝜅(𝒙𝟐, 𝒙𝒊)

Based on the updated values of 𝐹𝑖 ,𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and the associated index 𝐼𝑢𝑝 and

𝐼𝑙𝑜𝑤 are updated again. The updated values are then used to choose another two new

𝛼𝑖 to optimize the next step.

2.3.2. Parallel implementation

We developed the parallel implementation of Support Vector Machine, based on the

modified SMO algorithm. SMO spends most of its computation time in updating 𝐹𝑖 and

this update is performed for every instance of a dataset.

In our parallel approach, we are dividing the entire training data into equally

partitioned subsets based on the number of cores in the system. Each smaller training

16

subset is then handed over to a separate Support Vector Machine. If we are dividing our

training data into 𝑛 subsets, then we will initialize 𝑛 Support Vector Machines and

provide each machine with its own training data subset. By using this approach, 𝑛 subsets

will be trained in parallel by its individual Support Vector Machines.

This approach will determine a subset of 𝐹𝑖 for each Support Vector Machines

independently in parallel, therefore significantly reducing the computational cost of

calculating 𝐹𝑖, which in turn reduces the training time of the complete model.

Each Support Vector Machine will not only calculate 𝐹𝑖 for the subset but will also

calculate 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and 𝒘. As a result, each Support Vector Machines will provide a

complete model for the provided subset of training data.

The value of 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and 𝒘 obtained from each support vector machine are not the

final values of the model for the whole dataset but are the values from sub models that we

have trained in parallel each covering a subset of data. To compute the values of the

complete model, we take the mean of all the 𝑏𝑢𝑝,𝑏𝑙𝑜𝑤 and 𝒘 of all the sub models and

this averaged value will give the final model that covers the whole dataset.

 2.4. Big data analytics framework

Our SVM is implemented as a part of the ScalaTion [27] framework which supports

multi-paradigm modeling.

ScalaTion provides many analytics techniques for optimization, clustering,

predicting, etc., which could be easily integrated in a large scale data analysis pipeline.

Additionally, ScalaTion supports discrete and continuous event simulation.

17

ScalaTion is organized in three major packages. The analytics package includes

implementations of major analytics algorithms which could be categorized under four

types: predictors, classifiers, clusterers and reducers. Additionally, the graphalytics

package provides implementations for graph based analytics. Optimization packages

(minima and maxima) provide algorithms for optimization and implement major

optimization paradigms such as Integer Programming and Simplex method.

Finally, the simulation packages provide simulation engines for a variety of different

modeling paradigms. Currently, ScalaTion has implementations for tableu, event,

process, activity and state oriented models in addition to system dynamics. ScalaTion

also has 2D visualization support.

ScalaTion, coded in the JVM based Scala language, makes use of Scala’s native

parallelism support via .par methods in addition to distributed architectures such as

Akka. In Scala, the following code snippet performs a sequential sum operation of every

element in a list with a constant number.

 list.map(_ + 42)

To run the same operation in parallel one simply runs the following code to execute

the same operation in parallel.

list.par.map(_ + 42)

ScalaTion extends the same paradigm and provides transparent parallel

implementations of analytics algorithms such as SVM discussed in this paper. Using

ScalaTion, one could easily switch between sequential and parallel implementations of an

algorithm by simply adding .par to the import statement of the class or package.

18

There are also other modeling environments such as Weka [26] sharing similar

functionality with ScalaTion. Weka is a popular data analytics and machine learning

platform written in Java. Weka provides a very intuitive user interface that allows pre-

processing of data in addition to visualization. Weka also provides a Java API for

programmatic access to the algorithms. In contrast to ScalaTion, Weka does not include

tools for optimization or simulation. By providing an integrated approach, ScalaTion

reduces the cost of development time for a multi-paradigm modeling task.

2.5. Presentation of algorithm

2.5.1. Smo algorithm

1. Initialize 𝛼𝑖 = 0 , 𝐹𝑖 = 𝑦𝑖, 𝑏𝑢𝑝 = −1.0, 𝑏𝑙𝑜𝑤 = 1.0, 𝐼𝑢𝑝 = Any Index of Class

+1, 𝐼𝑙𝑜𝑤= Any Index of class -1, fill 𝐼1 𝑎𝑛𝑑 𝐼4 with training data indexes for

𝑖 = 0 𝑡𝑜 𝑛

2. Select two indexes 𝑖1 and 𝑖2 from the training data to do the joint optimization.

3. Train these two indexes 𝑖1 and 𝑖2 and calculate new value of 𝛼1 𝑎𝑛𝑑 𝛼2.

4. Update 𝑤 weight vector based on the value of two indexes 𝑖1 and 𝑖2 and

difference between the new and old value of 𝛼1 𝑎𝑛𝑑 𝛼2.

5. Update 𝐹𝑖 for 𝑖 in 𝐼0 using new Lagrange multiplier 𝛼1 𝑎𝑛𝑑 𝛼2. Also, update 𝐹

values for 𝑖1 and 𝑖2.

6. Update 𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4 for both 𝑖1 and 𝑖2.

7. Repeat steps 2 to 6 until 𝑏𝑢𝑝 ≥ 𝑏𝑙𝑜𝑤.

19

In the SMO implementation, we will start by initializing the 𝛼𝑖, 𝐹𝑖, 𝒘𝒊, 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤, 𝐼𝑢𝑝,

𝐼𝑙𝑜𝑤. This algorithm solves the optimization problem for the weight vector 𝑤 and the

threshold 𝑏 for the model 𝒘 ∙ 𝒙 − 𝑏. Initially, we will fill the set 𝐼1 𝑎𝑛𝑑 𝐼4 as 𝛼𝑖 = 0.

We will start by iterating through all the training data points, using each data point

𝑖1 we will update 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤, 𝐼𝑢𝑝, 𝐼𝑙𝑜𝑤. Then we will check for optimality using the

current 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and if violates the condition 𝑏𝑢𝑝 < 𝑏𝑙𝑜𝑤, we will find another data

point 𝑖2 to do the joint optimization with 𝑖1.

In step 2, we will optimize by replacing old values of Lagrange multipliers with new

values of Lagrange multipliers. While doing the optimization, we will update the 𝒘

weight vector to reflect changes in the Lagrange multipliers and update the error cache 𝐹𝑖

for 𝑖 in 𝐼0 using new Lagrange multipliers. We will also update 𝐹 values for 𝑖1 and 𝑖2.We

will repeat this process until 𝑏𝑢𝑝 < 𝑏𝑙𝑜𝑤.

2.5.2. Parallel smo algorithm

The Parallel SMO is based on the sequential SMO algorithm.

1. Divide the training data into subsets say p based on the number of cores in the

system, to get the optimal speedup.

2. Initialize p support vector machines and pass each of the p support vector

machine a sub set of the training data.

3. Run each support vector machine in parallel and train each of them

independently.

20

4. Initialize 𝑎𝑖 = 0 , 𝐹𝑖 = 𝑦𝑖, 𝑏𝑢𝑝 = −1.0, 𝑏𝑙𝑜𝑤 = 1.0 𝐼𝑢𝑝 = 𝐴𝑛𝑦 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 +

1, 𝐼𝑙𝑜𝑤 = 𝐴𝑛𝑦 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 − 1, fill 𝐼1 𝑎𝑛𝑑 𝐼4 with training data indexes for

𝑖 = 0 𝑡𝑜 𝑛 for each support vector machine.

5. Select two indexes 𝑖1 and 𝑖2 from the training data to do the joint optimization for

each support vector machine.

6. Train these two indexes 𝑖1 and 𝑖2 and calculate new value of 𝛼1 𝑎𝑛𝑑 𝛼2 for each

support vector machine.

7. Update 𝑤 weight vector based on the value of two indexes 𝑖1 and 𝑖2 and

difference between the new and old value of 𝛼1 𝑎𝑛𝑑 𝛼2 for each support vector

machine.

8. Update 𝐹𝑖 for 𝑖 in 𝐼0 using new Lagrange multiplier 𝛼1 𝑎𝑛𝑑 𝛼2. Also, update 𝐹

values for 𝑖1 and 𝑖2 for each support vector machine.

9. Update 𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4 for both 𝑖1 and 𝑖2 for each support vector machine.

10. Repeat set 5 to 9 until 𝑏𝑢𝑝 ≥ 𝑏𝑙𝑜𝑤 for each support vector machine.

11. Each support vector machine will provide update value of 𝐹𝑖, 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and 𝒘 for

each trained sub set of training data.

12. Average value of 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and 𝒘 form all the subset will provide the complete

trained model.

In the parallel implementation of Support Vector Machines, we will start by dividing

the training data set into smaller subsets and will initialize p Support Vector Machines

and each Support Vector Machine will get a subset of the training dataset. Each Support

Vector Machine will run on a different thread, so that each Support Vector Machine will

run independently of each other and therefore reduces the overall training time of the

21

complete model. Each Support Vector Machine will provide a complete trained model for

the corresponding subset. We will average the results obtained from each Support Vector

Machine to obtain the trained model for the complete dataset.

As each subset of training data is trained in parallel on independent threads,

significant time can be saved during the training due to having no overhead between

parallel SVM executions.

2.6. Performance evaluation

In this section, we evaluate the runtime performance and accuracy of our sequential

and parallel implementations of our SMO algorithms, and compare the results with

existing implementations of Support Vector Machine.

We have created a synthetic dataset with various numbers of instances and numbers

of features for testing. The datasets are created as follows: We created two spheres with

forty percent overlap between the spheres. The First sphere contains positive data

instances and the second sphere contains negative data instances. Instances are uniformly

distributed throughout both spheres. In this way, we get a nice overlap of both types of

data points. Additionally, we have compared our results with the standard datasets that

are used previously to test the Support Vector Machines. These data sets include a9a,

real_sim and rcv1 are from [29]. All experiments were run on a Linux server with 12

core, 24 hardware threads Intel Xeon E5-2620 dual CPU running @ 2GHz and 128G of

DDR3 RAM. The sequential and parallel algorithms were written in Scala version 2.10 as

part of the ScalaTion framework.

22

To measure the running time and accuracy of our sequential and parallel algorithms,

we have used 5-fold cross validation technique [24] on all the datasets against we which

we have compared our results. In 5-fold cross validation, dataset is randomly partitioned

into five equal size datasets. Out of five subsets, a single subset is retained as validation

dataset for testing the model and the remaining four subsets are used as training datasets.

The cross validation process is then repeated five times, with each of the five subsets

used exactly once as validation data. The five results from the each run is then averaged

to get the final result. By following this approach, we make sure that all instances are

used for both training and validation.

The results comparing the accuracy of our sequential and parallel implementations

and the Cascade SVM approach [12] are presented in Table 2.1. We have used our own

implementation of cascade approach described in [12] and tested the results with our real

datasets with 5-fold cross validation. Results clearly indicate that the accuracy of our

parallel SVM implementation is significantly higher than both the sequential and cascade

implementations.

Table 2.1: The effect of data sets on the accuracy of classification. Accuracy is

measured in percentage.

Dataset Name Sequential Parallel

a9a 76.3 76.3

real_sim 98.0 73.7

rcv1 47.5 52.1

23

Experiments are performed to measure the speed up achieved on the parallel

implementation compared to the sequential implementation. The Speed up ratio is shown

in Figure I. The ratio will increase with respect to the number of data instances resulting

in a linear speed up. As shown in the Figure I, we can get up to 20 fold speed up with a

data set of size 8 million instances and 50 features.

Figure 2.1: Speed up achieved on Parallel SVM in comparison to SVM.

Many experiments are performed to compare the running time on sequential, parallel

and cascade algorithms on different number of data instances with different number of

features. As shown in Figure 2.1, in which number of features are kept constant to fifty.

We can see that sequential implementation takes more than 800,000 millisecond but on

the other hand parallel SVM takes only about 40,000 millisecond, which about twenty

24

folds faster as mentioned above. Cascade approach is much better than our sequential

SVM but parallel SVM is out performs cascade approach.

Similar experiment to measure the runtime differences are performed on same

synthetic data set but with more number of features to make sure speedup is still

maintained as with the increase in the number of features. Results for the runtime with

150 features are shown in Figure 2.3, which clearly indicates that runtime is much better

for parallel SVM than sequential and cascade approach.

Figure 2.2: Runtime for 50 Features. The effect of number of data instances on the

runtime.

25

Figure 2.3: Runtime for 150 Features. The effect of number of data instances on the

runtime.

Results for parallel SVM are not only compared to the sequential SVM and the

cascade approach, but we also performed the experiments on the standard data sets that

are used to verify the accuracy of support vector machine. We have compared the results

of parallel SVM with the already implemented techniques and results that are explained

in [25]. Table 2.2 provides us with the data statistics for the data sets against which we

have compare our results.

Table 2.2: Data statistics. Data sets that are used to compare the results.

Data set Instances Features # Non Zeros

a9a 32,561 123 451,592

real-sim 72,309 20,958 3,709,083

rcv1 677,399 47,236 49,556,258

26

2.7. Related work

The problem of making support vector machines parallel have been studied for decades

and yet, it is still an active research area. In [12], parallel approach for support vector

machine based on SMO is presented. Author, in this paper has suggested a technique in

which instead of analyzing the whole training set in one optimization set, the data are

split into subsets and optimized separately with multiple SVMs. The partial results are

combined and filtered again in a cascade of SVMs, until the global optimum is reached.

In this, set of support vectors from two SVMs are combined and then optimized again on

a new SVM, this combining and optimization is continued until only one set of vectors is

left but to reach global optimum the result of the last layer is fed back into the first layer.

Even though, this approach is fast as it divides the data and get rid of most of non-support

vectors but it still spends lot of time combining the results from different SVMs and re-

optimization them many number of times till the global optimum is reached and this

slows down the total training time of the support vector machine.

2.8. Conclusions and future work

In this paper, we have presented a novel algorithm for parallel support vector machine

that is superior to or at least competitive to the state of the art algorithm on very large

data set adhering to big data research. In our parallel approach, we have equally

partitioned our large data in to smaller subsets and we have trained each subsets

independently. As training of subsets are not dependents on the result of other subsets,

which resulted in the significant reduction in the training time of parallel

implementation. We have also found the increase in the overall accuracy of the results

27

in parallel SVM. We have demonstrated our results with extensive experiments on both

synthetic and real standard data sets available for support vector machine. Scala code

support vector machine implementation can be found in analytics package of ScalaTion.

For more details, please refer to the supplement.

Future work includes extending the parallel support vector machine to distributed

support vector machine which will help in gaining further speed up in the training time

of large data instances with many number of features. Adapting the algorithm to work

on data sets stored on disk or in a distributed environment would allow to handle ever

larger training data sets.

28

CHAPTER 3

SUMMARY

In summary, we have presented a novel algorithm for parallel support vector machine

that is superior to or at least competitive to the state of the art algorithm on very large

data set adhering to big data research. In our parallel approach, we have equally

partitioned our large data in to smaller subsets and we have trained each subsets

independently. As training of subsets are not dependents on the result of other subsets,

which resulted in the significant reduction in the training time of parallel implementation.

We have also found the increase in the overall accuracy of the results in parallel SVM.

We have demonstrated our results with extensive experiments on both synthetic and real

standard data sets available for support vector machine. Scala code support vector

machine implementation can be found in analytics package of ScalaTion. For more

details, please refer to the supplement.

Future work includes extending the parallel support vector machine to distributed

support vector machine which will help in gaining further speed up in the training time of

large data instances with many number of features. Adapting the algorithm to work on

data sets stored on disk or in a distributed environment would allow to handle ever larger

training data sets.

29

REFERENCES

[1] Vapnik, V. N., “Estimation of dependences based on empirical data” (Vol. 40).

New York: Springer-Verlag. (1982).

[2] Vapnik, V. N., “The Nature of Statistical Learning Theory”, Springer-Verlag,

(1995).

 [3] Burges, C. J. C., "A Tutorial on Support Vector Machines for Pattern

Recognition," submitted to Data Mining and Knowledge Discovery (1998).

[4] Bryan Catanzaro, Fast Support Vector Machine Training and Classification on

Graphics Processors

[5] Osuna, E., Freund, R., Girosi, F., "Improved Training Algorithm for Support

Vector Machines," Proc. IEEE NNSP ’97, (1997)

[6] SVMlight Support Vector Machine, Author: Thorsten Joachims

[7] Platt, J., "Sequential minimal optimization: A fast algorithm for training support

vector machines". In Technical Report MST-TR-98-14. Microsoft Research,

(1998)

[8] Keerthi, S. S. et al., "Improvements to Platt's SMO algorithm for SVM classifier

design." Neural Computation 13.3 (2001): 637-649.

[9] Cao, L. J. et al, "Parallel sequential minimal optimization for the training of

support vector machines." Neural Networks, IEEE Transactions on 17.4 (2006):

1039-1049.

30

[10] Peng, P., Ma, Q. L., & Hong, L. M. ,“The Research of the Parallel

SMOalgorithm for solving SVM”, In Machine Learning and Cybernetics, 2009

International Conference on (Vol. 3, pp. 1271-1274).

[11] Catanzaro, B., Sundaram, N., & Keutzer, K., “Fast support vector machine

training and classification on graphics processors”, In Proceedings of the 25th

international conference on Machine learning (pp. 104-111). ACM.

[12] Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I., & Vapnik, V., “Parallel

support vector machines: The cascade svm”, In Advances in neural information

processing systems (pp. 521-528). (2004)

[13] Guest editorial, “vapnik-chervonenkis (vc) learning theory and its applications”,

Neural Networks, IEEE Transactions on, vol.10, no.5, pp.985, 987, Sept. 1999

[14] Chen, P. H., Fan, R. E., & Lin, C. J, “A study on SMO-type decomposition

methods for support vector machines”, Neural Networks, IEEE Transactions on,

17(4), 893-908. (2006).

[15] Cao, L. J. et al, "Parallel sequential minimal optimization for the training of

support vector machines." Neural Networks, IEEE Transactions on 17.4 (2006):

1039-1049.

[16] Dong, J. X., Krzyżak, A., & Suen, C. Y.,“A fast svm training algorithm”, In

Pattern Recognition with Support Vector Machines (pp. 53-67). Springer Berlin

Heidelberg. (2002).

[17] Pacheco, P.S., Parallel Programming with MPI, San Francisco, Calif.: Morgan

Kaufmann Publishers, 1997

31

[18] Guang, B.H., et al., “Fast Modular Network Implementation for Support Vector

Machines”, IEEE Transactions on Neural Networks, Vol. 16, No. 6, Nov. 2005,

1651-1663

[19] Zanghirati, G., Zanni, L., “A parallel solver for large quadratic programs in

training support vector machines,” Parallel Computing, Vol. 29, No. 4, pp. 535-

551, 2003

[20] Dong, J. X., Krzyżak, A., & Suen, C., “A fast parallel optimization for training

support vector machine”. In Machine Learning and Data Mining in Pattern

Recognition, (pp. 96-105), Springer Berlin Heidelberg. (2003)

[21] Collobert, R., Bengio, S. and Bengio, Y., “A parallel mixture of SVMs for very

large scale problems,” Neural Computation, Vol. 14, No. 5, pp. 1105 – 1114,

2002

[22] Chang, C. C., & Lin, C. J., “LIBSVM: a library for support vector machines”.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

(2011)

[23] Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K.,

“Improvements to the SMO algorithm for SVM regression”. Neural Networks,

IEEE Transactions on, 11(5), 1188-1193. (2000).

[24] Cross-validation, http://en.wikipedia.org/wiki/Cross-validation_(statistics)

[25] Hsieh, C. J., Chang, K. W., Lin, C. J., Keerthi, S. S., & Sundararajan, S., “A dual

coordinate descent method for large-scale linear SVM”. In Proceedings of the

25th international conference on Machine learning (pp. 408-415). ACM. (2008)

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

32

[26] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H.,

“The WEKA data mining software: an update”, ACM SIGKDD explorations

newsletter, 11(1), 10-18. (2009)

[27] Miller, J. A., Han, J., & Hybinette, M., “Using domain specific language for

modeling and simulation: Scalation as a case study”, In Proceedings of the 2010

Winter Simulation Conference (WSC), (pp. 741-752). IEEE. (2010).

[28] Shalev-Shwartz, Shai, et al. "Pegasos: Primal estimated sub-gradient solver for

svm." Mathematical programming 127.1 (2011): 3-30

[29] LIBSVM Data: Classification,

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION AND LITERATURE SURVEY
	1.1. Problems: dealing with machine learning
	1.2. Parallel and distributed machine learning
	1.3. Pros and cons: parallel and distributed machine learning
	1.3.1. Advantages: Parallel Machine Learning
	1.3.2. Disadvantages: Parallel Machine Learning
	1.3.3. Advantages: Distributed Machine Learning
	1.3.4. Disadvantages: Distributed Machine Learning

	1.4. Techniques: parallel processing
	1.4.1. Data Splitting
	1.4.1.1. Instance Shards
	1.4.1.2. Feature Shards

	1.4.2. Feature Selection
	1.4.2.1. Forward Feature Selection
	1.4.2.2. Single Feature Optimization (SFO)

	1.4.3. Hardware Accelerators

	PARALLEL SUPPORT VECTOR MACHINES USING SMO1
	2.1. Introduction
	2.2. Background
	2.2.1. Support vector machine
	2.2.2. Sequential minimal optimization (smo)

	2.3. Implementation techniques
	2.3.1. Sequential implementation
	2.3.2. Parallel implementation

	2.4. Big data analytics framework
	2.5. Presentation of algorithm
	2.5.1. Smo algorithm
	2.5.2. Parallel smo algorithm

	2.6. Performance evaluation
	2.7. Related work
	2.8. Conclusions and future work

	SUMMARY
	REFERENCES

