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ABSTRACT 

We present an algorithm for Support Vector Machines that can be parallelized 

effectively. The Algorithm scales up nicely on very large datasets of million training 

points. Instead of analyzing and optimizing the whole training set in to one support vector 

machine, the data is split into subsets and each subset is optimized independently on 

different Support Vector Machine. The result from each Support Vector Machine are then 

combined to get the trained Support Vector Machine. The high performance is due to low 

overhead communication between the different Support Vector Machines. In this paper, 

the runtime performance of the algorithm is tested on a dataset of more than 8 million 

instances with a speed up of about 20 fold. 

 

INDEX WORDS:  Parallel support vector machine, Sequential minimal optimization 

  



 

 

PARALLEL  SUPPORT  VECTOR  MACHINES  USING  SMO 

 

by 

 

NAMAN FATEHPURIA 

 

B.Tech, Punjab Technical University, India, 2010 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

 

MASTER OF SCIENCE 

 

 

ATHENS, GEORGIA 

2014 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

Naman Fatehpuria 

All Rights Reserved 

  



 

 

PARALLEL SUPPORT VECTOR MACHINES USING SMO 

 

by 

 

NAMAN FATEHPURIA 

 

 

 

 

     Major Professor: John A. Miller 

 

     Committee:  Lakshmish Ramaswamy 

        Krzysztof J. Kochut 

         

        

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Julie Coffield 

Interim Dean of the Graduate School 

The University of Georgia 

December 2014 

 



 

 

iv 

 

 

DEDICATION 

 To my friends, family and professors for their endless support, care, belief and 

motivation. 

  



 

 

v 

 

 

ACKNOWLEDGEMENTS 

 Studying in University of Georgia was a great experience for me from past 2 

years. I have grown as a better person on both personal and professional front. The 

knowledge that I gained here is incredible. I learned a lot from my major professor Dr. 

John A. Miller. He is one of the most intellectual person I have ever met. His knowledge 

and support has always been the motivating factor for me in completing my research 

successfully. Also, I would like to extend my gratitude to Dr. Lakshmish Ramaswamy for 

his endless support and advice. Dr. Krzysztof J. Kochut is one of the best professors and I 

really enjoyed his Enterprise Integration class.  



 

 

vi 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS .......................................................................................... v 

LIST OF TABLES ..................................................................................................... viii 

LIST OF FIGURES ..................................................................................................... ix 

1. INTRODUCTION AND LITERATURE SURVEY ................................................ 1 

1.1. Problems: dealing with machine learning .......................................................... 2 

1.2. Parallel and distributed machine learning .......................................................... 2 

1.3. Pros and cons: parallel and distributed machine learning .................................. 3 

1.4. Techniques: parallel processing ......................................................................... 5 

2. PARALLEL  SUPPORT  VECTOR  MACHINES  USING  SMO ......................... 9 

2.1. Introduction ...................................................................................................... 11 

2.2. Background ...................................................................................................... 12 

2.3. Implementation techniques .............................................................................. 14 

2.4. Big data analytics framework .......................................................................... 16 

2.5. Presentation of algorithm ................................................................................. 18 

2.6. Performance evaluation ................................................................................... 21 

2.7. Related work .................................................................................................... 26 

2.8. Conclusions and future work ........................................................................... 26 



 

 

vii 

3. SUMMARY ............................................................................................................ 28 

REFERENCES ........................................................................................................... 29 

 

  



 

 

viii 

 

 

LIST OF TABLES 

Page 

Table 2.1: The effect of data sets on the accuracy of classification. .................................22 

Table 2.2: Data statistics. ...................................................................................................25 

  



 

 

ix 

 

 

LIST OF FIGURES 

Page 

Figure 2.1: Speed up achieved on Parallel SVM in comparison to SVM..........................23 

Figure 2.2: Runtime for 50 Features ..................................................................................24 

Figure 2.3: Runtime for 150 Features ................................................................................24  



 

 

1 

 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE SURVEY 

“Machine learning deals with constructing algorithms and study of system that can 

learn from data, rather than follow only explicitly programmed instructions” [26]. A key 

task performed by machine learning systems is to learn from a function that maps input 

data to the certain outputs. 

Machine learning tasks can be categorized into many types like supervised learning 

and unsupervised learning. In supervised learning, a machine utilizes the training data to 

train itself. Training data is generally expressed in the form (X, y), where X is referred as 

data instance and y is referred as the output of X. The goal of supervised machine 

learning is to predict the value of test data which are expressed in terms of X and the 

predicted value in terms of y. 

Two most common supervised learning tasks are classification and prediction. In 

classification, output categories or classes can only be of finite number but in prediction, 

the output set can be of real numbers which is infinite. 

In unsupervised learning, the most common example is that of data clustering. The 

goal of data clustering is to construct a function that partitions datasets into say k 

different clusters. Data instances that are assigned to the same cluster should have some 

similarity like having a common centroid or are certain distance apart. 

 

 



 

 

2 

1.1.Problems: dealing with machine learning 

The potential training data for machine learning can be extremely large. The number 

of data instances can reach up to million, where each data set can have thousands of non-

zero features. Storage required for this humongous data can be an issue while dealing 

with machine learning. 

Features dimensionality can also prove to be a problem in machine learning - in some 

cases like images and video, input dimensionality can be in million or more. 

Computations on these many features may prove to be challenging. 

In machine learning, algorithm can be very complex which increases the 

computational complexity of the complete model. The learning problem can be too slow 

for such complex model. For these kinds of problems, parallel multi-node or multi-core 

implementation can be a solution. 

Throughput and latency can also be an issue in machine learning. Many machine 

learning problem require performing a sequence of interdependent tasks, which is viewed 

as a single task, which typically results in very high computational costs due to increased 

computational complexity. 

 

1.2. Parallel and distributed machine learning 

Performance can be gained in machine learning applications by the concurrent 

execution of tasks that may be otherwise performed sequentially. Two major areas in 

which concurrency can be obtained are parallel machine learning and distributed machine 

learning. 
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1.3.Pros and cons: parallel and distributed machine learning 

1.3.1. Advantages: Parallel Machine Learning 

Parallel implementation of machine learning uses shared memory as an underline 

concept. Algorithms implemented using shared memory can make use of shared global 

data during concurrent execution. System threads and program threads can make use of 

the shared state which will result in faster execution of the program. 

 Parallel implementation can be less resource intensive because we can process multiple 

client requests concurrently.  

  Parallel implementation has the ability for an application to remain responsive to 

input because in case of single threaded application, if the main execution thread blocks 

for a very long task, the entire application can be blocked. 

  High levels of parallelism can be achieved by utilizing multi-core systems. Each 

core may have two system threads, so more the number of cores in the system, more will 

the number of system threads in the system. We can split the data into much smaller 

chucks because of the increased system threads and run them in parallel, which will result 

in a faster execution time. 

  Parallel implementations can be cost effective, have better system utilization, 

have low network communication overhead and generally be easy to code. 

 

1.3.2. Disadvantages: Parallel Machine Learning 

  The primary disadvantage of parallel implementations is the lack of scalability 

both in terms of memory and number of cores in the system. For a very large dataset say 

in the billion, it is very hard to keep all the data and process the data on the one machine 
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because the memory required for this is huge. Adding more cores can increase the traffic 

between the shared memory and CPU path. 

  Another major disadvantage of parallel processing is the program ending up in 

race conditions or deadlock conditions. Since threads share the same address space, 

the program needs to handle the race conditions. In order for data to be correctly 

manipulated, threads need to process the data in the correct order. To maintain the order, 

threads needs to use some kind of locking mechanism in order to prevent common data 

from simultaneously being modified or read while in the process of modification. 

 

1.3.3. Advantages: Distributed Machine Learning 

  A distributed system is a collection of many independent computer systems, each 

having its on local memory and processor. We can divide the large dataset on to these 

different machines and can process them; this will eliminate the memory and processing 

problem faced in parallel implementation. 

  Distributed systems are scalable, with the increase in data or processing needs, we 

can add more computers to the system.  

  Distributed systems are reliable, as data is replicated on different machines, so 

even in case of machine failure, data can be reconstructed and processing can be resumed 

without making the complete system at halt. 

  A distributed system offers a better price and performance then single system 

because it is cheaper to get many computers with fewer cores than a single computer with 

many cores. 

 

http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Race_condition#Computing
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1.3.4. Disadvantages: Distributed Machine Learning 

  In distributed systems, troubleshooting and diagnosing problem can become more 

difficult, because the analysis of the system may require connecting to remote nodes or 

inspecting communication between nodes. 

Distributed systems performance depends highly on bandwidth consumed and 

latency. If these are too significant then the benefits of distributed computing may be 

negated and the performance may be worse than a non-distributed environment. Security 

can also be an issue with distributed system. 

 

1.4. Techniques: parallel processing 

1.4.1. Data Splitting 

1.4.1.1. Instance Shards   

When we split the data for the machine learning technique in terms of the instances 

then each set of instances is known as instance shards. 

Data instances for each shard can be selected either randomly or sequentially, or can 

be selected in terms of certain values in the instances. Once the shards of different data 

instances are created, each shard is assigned to a thread, so that each shard can be run in 

parallel.    

After running each shard on different thread, we still need a way to combine the result 

back from each thread to build a model for the machine learning algorithm.  
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1.4.1.2. Feature Shards   

In feature shard, we split the data for learning algorithm in terms of number of 

features. Each shard contains different features for each data instance. Each thread will 

run each shard independently and each shard will have all the data instances but only few 

features for each data instance. A result for each data instance is calculated by combining 

the results from each shard for that particular instance. Results can be combined by 

simple addition or by treating the result from each shard as a new feature and then 

running the newly created model again. 

 

1.4.2. Feature Selection 

Features in a machine learning algorithm play very important role in creating a 

well build model. Adding extra features with unnecessary information can make the 

model very complex which can increase the model learning time and without any 

increase in the accuracy level of the model. While on the other hand, removing useful 

features can make the mode useless because the model might not reflect the exact state of 

the given problem. The purpose of feature selection is to select only those features from 

the model which clearly express the state of the model and make it simpler. 

 

1.4.2.1. Forward Feature Selection 

A forward feature selection technique reduces the number of feature combinations 

that are evaluated to figure out the best model with least number of important features. In 

forward feature selection method, we start with an empty model and on each iteration we 

select a feature from the number of features available in the model. We evaluate the 
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current model with all the features in the model and evaluate the feature with gives the 

best result and then finally apply this feature to this model. We will continue doing this 

till no feature gives the best model that the currently obtained model. In all, the overall 

number of model that we evaluate will be quadratic in number. 

Parallelizing the forward feature selection is very straight forward. In forward 

feature selection, each iteration we determine the best feature that needs to be added to 

the current model. We can parallelize this step by dividing all the features between the 

numbers of threads and determine the result for each feature in parallel based on the 

current model and then compare the result of all features with current model and add the 

best feature to the model. 

 

1.4.2.2. Single Feature Optimization (SFO) 

Single feature optimization works by storing the coefficients of the current model 

and then selects any feature from the number of features available. For the selected 

feature, SFO optimizes the values of its coefficient and keeping the coefficients of other 

feature constant, it reruns the complete model. Now this newly created model will have a 

selected feature in it. We then, begin with this model for next feature selection and 

optimization. As we are only running the model ones for each feature, SMO will build 

only liner number of models in comparison to the quadratic number of models builds by 

forward feature selection method. The drawback of this approach is that the model 

obtained is approximate. 
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1.4.3. Hardware Accelerators 

CPUs are general purpose processors which are designed to perform a wide variety of 

calculations easily. CPUs circuit and low level code are designed to be adaptable to call 

kinds of calculation because of which they are not that efficient. Special hardware is 

available to perform specific types of computation like GPU is a specialized chip that can 

perform graphics operations several times faster than a CPU. 

In support vector machine, complexity per iteration for calculating kernel operation is 

in order of number of data instances times features. For a large number of features, 

complexity of kernel operations can be very high and time consuming. If we can use 

hardware accelerator which can perform hundreds of multiply accumulate operations at a 

given time, kernel computation will be very fast.  

We can attach the hardware accelerator to the computer and when we run the 

computationally intensive algorithm like the Support Vector Machine, the computer will 

send the kernel evaluation part to the hardware accelerator for faster processing and 

hardware accelerator will return back the computed result to the computer.   



 

 

9 

 

 

CHAPTER 2 

PARALLEL  SUPPORT  VECTOR  MACHINES  USING  SMO
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ABSTRACT 

We present an algorithm for Support Vector Machines that can be parallelized 

effectively. The Algorithm scales up nicely on very large datasets of million training 

points. Instead of analyzing and optimizing the whole training set in to one support vector 

machine, the data is split into subsets and each subset is optimized independently on 

different Support Vector Machine. The result from each Support Vector Machine are then 

combined to get the trained Support Vector Machine. The high performance is due to low 

overhead communication between the different Support Vector Machines. In this paper, 

the runtime performance of the algorithm is tested on a dataset of more than 8 million 

instances with a speed up of about 20 fold. 
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2.1. Introduction 

Recently, there has been a surge of interest in Support Vector Machines (SVMs) [1]-

[3]. SVMs have empirically been shown to give good performance on a wide variety of 

problems such as handwritten character recognition, face detection, pedestrian detection, 

and text categorization. Training of a support vector machine for a large dataset for the 

purpose of classification is computationally very intensive. Many methods have been 

proposed to reduce the training time, such as Vapnik chunking approach [1], smaller 

quadratic sub problem method by Osuna [5], Joachims’SVM light [6] which introduces 

shrinking and caching of kernel techniques, Platt’s Sequential Minimal Optimization 

(SMO) algorithm [7], Modification of Sequential Minimal Optimization [8], Pegasos 

[28], TRON, SVMperf, and primal coordinate descent implementation [25]. Despite the 

extensive research that has been done to accelerate SVM training, it is still very 

significant for large training sets. 

In this paper we discuss a parallel approach for implementing support vector 

machine. The parallel algorithm presented is based on the Modified Sequential Minimal 

Optimization (SMO) technique [8]. The performance gain of our algorithm is largely due 

to the way parallelism is handled on a large dataset. It completely eliminates the 

dependency on common memory data structures for individual threads, so each thread 

executes independently without blocking the execution of other threads. This approach 

drastically reduces the training time for large datasets which is linearly proportional to 

the number of cores on the running machine. In addition, our parallel support vector 

machine implementation has an increased accuracy of 8% compared to the sequential 

implementation. We evaluated the performance of our parallel support vector machine 
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algorithm with extensive experiments on a dataset containing up to 8 million instances 

and 150 features. For our experiments, we have compared the runtime of our algorithm 

with the sequential Modified SMO reduction in training time. We discuss the major 

factors that influence the runtime of the algorithm. 

Additionally, we discuss a framework which provides necessary means to integrate 

our SVM implementation in a large scale analytics pipeline. 

Section 2.2 presents background information on support vector machine and 

Sequential Minimal Optimization. It also explain the terminology and equations that will 

be used in the rest of the paper. Section 2.3 discusses the implementation details of 

sequential implementation technique that is based on the Modified SMO and parallel 

implementation technique to speed up support vector machine. Framework is explained 

in sector 2.4. Section 2.5, we discuss the related work. Section 2.6, we present the 

algorithm for both sequential and parallel implementation. We present experiment results 

and performance evaluation in section 2.7, and we conclude with a summary of results 

presented and a discussion of future research opportunities in section 2.8. 

 

2.2. Background 

2.2.1. Support vector machine 

In this section, we will briefly explain standard support vector machines.  For linear 

support vector machines, suppose we have a training data of size N. 

{ (𝒙𝟏, 𝑦1), (𝒙𝟐, 𝑦2), … . . , (𝒙𝒏, 𝑦𝑛) } 
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Where 𝒙𝒊  ∈  𝑅𝑑  and  𝑦𝑖 ∈ {±1}. We need to find a linear separating hyperplane 

which has the maximum separating margin. The Support Vector Machine training 

problem can be formulated as follows: 

𝑚𝑖𝑛𝑤,𝑏   
1

2
  𝒘 ∙ 𝒘 

Subjected to     𝑦𝑖  (𝒘 ∙ 𝒙𝒊   −   𝑏)   ≥   1 

where 𝒘 is perpendicular to the hyperplane. For the above constrained optimization 

problem we use Lagrange multipliers. From the Karush-Kuhn-Tucker (KKT) conditions, 

a Lagrange multiplier 𝛼𝑖 will be introduced for every data point. The resulting problem 

for support vector machines is the following: 

𝑚𝑖𝑛𝛼

1

2
 ∑ 𝛼𝑖 𝑦𝑖  𝒙𝒊   

𝑛

𝑖=1
∑ 𝛼𝑖 𝑦𝑖 𝒙𝒊

𝑛

𝑖=1
 −   ∑ 𝛼𝑖  

𝑛

𝑖=1
 

Subject to ∑ 𝛼𝑖 𝑦𝑖 = 0  𝑛
𝑖=1  and  𝛼𝑖  ≥   0 

and the equation of hyperplane is given by  

𝒘 ∙ 𝒙 − 𝑏 = 0 

 

2.2.2. Sequential minimal optimization (smo) 

Sequential Minimal Optimization was first proposed by Platt [7], which introduced the 

concept of limiting the working set to size 2 only so the equality constraint can be used to 

eliminate one of the two Lagrange multipliers. Therefore, the optimization problem at 

each step can be reduced to a quadratic minimization in only one variable. 

The optimality condition can be tracked through the following vector which is 

constructed as the algorithm progresses. 

𝐹𝑖  =   ∑ 𝛼𝑖 𝑦𝑖  𝒙𝒊

𝑛

𝑖 = 1
−  𝑦𝑖 
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We can partition the training data points into five sets, which can be represented as 

following: 

                                                      𝐼0   ≡   { 𝑖 ∶ 0 <  𝛼𝑖  < 𝐶} 

𝐼1   ≡   { 𝑖 ∶ 𝑦𝑖 =  +1, 𝛼𝑖 = 0 } 

𝐼2   ≡   { 𝑖 ∶ 𝑦𝑖 =  −1, 𝛼𝑖 = 𝐶 } 

𝐼3   ≡   { 𝑖 ∶ 𝑦𝑖 =  +1, 𝛼𝑖 = 𝐶 } 

𝐼4   ≡   { 𝑖 ∶ 𝑦𝑖 =  −1, 𝛼𝑖 = 0 } 

Based on the data point set and optimality condition, the following condition implied. 

𝑖  ∈   𝐼0   ∪   𝐼1   ∪   𝐼2   ⟹   𝐹𝑖  ≥ 𝑏 

𝑖  ∈   𝐼0   ∪   𝐼3   ∪   𝐼4   ⟹   𝐹𝑖  ≤ 𝑏 

To check if condition holds, we define 

𝑏𝑢𝑝  = min  { 𝐹𝑖 ∶   𝑖  ∈   𝐼0   ∪   𝐼1   ∪   𝐼2} 

𝑏𝑙𝑜𝑤 = max { 𝐹𝑖 ∶   𝑖  ∈   𝐼0   ∪   𝐼3   ∪   𝐼4} 

𝐼𝑢𝑝 = arg 𝑚𝑖𝑛 𝑖 ∈ 𝐼0  ∪  𝐼1  ∪  𝐼2 𝐹𝑖  

𝐼𝑙𝑜𝑤 = arg 𝑚𝑎𝑥 𝑖 ∈ 𝐼0  ∪  𝐼3  ∪  𝐼4 𝐹𝑖  

The KKT condition implies   𝑏𝑢𝑝 ≥  𝑏𝑙𝑜𝑤. Given the first 𝛼𝑖 , these comparisons will 

automatically find the second 𝛼𝑖  for joint optimization in SMO [7]. 

 

2.3. Implementation techniques 

2.3.1. Sequential implementation 

Sequential implementation of support vector machine is based on the Modified 

Sequential Optimal Minimization approach introduced by Keerti [8]. The idea of the 
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modified SMO is to optimize two 𝛼𝑖 associated with the 𝑏𝑢𝑝  and  𝑏𝑙𝑜𝑤  at each step as 

shown in the below equations. 

𝛼1
𝑛𝑒𝑤  =   𝛼1

𝑜𝑙𝑑  +  𝑦𝐼𝑙𝑜𝑤

(𝑏𝑢𝑝 −  𝑏𝑙𝑜𝑤)

𝜂
 

𝛼2
𝑛𝑒𝑤  =   𝛼2

𝑜𝑙𝑑  + 𝑠 ( 𝛼1
𝑜𝑙𝑑  −   𝛼1

𝑛𝑒𝑤 ) 

𝜂 = 2 𝜅(𝒙𝟏, 𝒙𝟐) −  𝜅(𝒙𝟏, 𝒙𝟏) −  𝜅(𝒙𝟐, 𝒙𝟐) 

𝑠 =  𝑦1 𝑦2 

𝛼1
𝑛𝑒𝑤  And  𝛼2

𝑛𝑒𝑤 must be clipped to a valid range  

0  ≤  𝑎𝑖  ≤  𝐶 

After updating the values of 𝛼𝑖, we need to update the optimality condition vector  

𝐹𝑖  for all data points. This can be done as follows. 

𝐹𝑖
𝑛𝑒𝑤 =  𝐹𝑖

𝑜𝑙𝑑 + ( 𝛼1
𝑛𝑒𝑤 −  𝛼1

𝑜𝑙𝑑 ) 𝑦1 𝜅(𝒙𝟏, 𝒙𝒊) +

 ( 𝛼2
𝑛𝑒𝑤 −   𝛼2

𝑜𝑙𝑑  ) 𝑦2 𝜅(𝒙𝟐, 𝒙𝒊)  

Based on the updated values of  𝐹𝑖 ,𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and the associated index  𝐼𝑢𝑝 and  

𝐼𝑙𝑜𝑤 are updated again. The updated values are then used to choose another two new 

𝛼𝑖  to optimize the next step. 

  

2.3.2. Parallel implementation  

We developed the parallel implementation of Support Vector Machine, based on the 

modified SMO algorithm. SMO spends most of its computation time in updating 𝐹𝑖 and 

this update is performed for every instance of a dataset.  

In our parallel approach, we are dividing the entire training data into equally 

partitioned subsets based on the number of cores in the system. Each smaller training 
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subset is then handed over to a separate Support Vector Machine. If we are dividing our 

training data into 𝑛 subsets, then we will initialize 𝑛 Support Vector Machines and 

provide each machine with its own training data subset. By using this approach, 𝑛 subsets 

will be trained in parallel by its individual Support Vector Machines. 

This approach will determine a subset of  𝐹𝑖 for each Support Vector Machines 

independently in parallel, therefore significantly reducing the computational cost of 

calculating 𝐹𝑖, which in turn reduces the training time of the complete model. 

Each Support Vector Machine will not only calculate 𝐹𝑖 for the subset but will also 

calculate 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and 𝒘. As a result, each Support Vector Machines will provide a 

complete model for the provided subset of training data. 

The value of 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and 𝒘 obtained from each support vector machine are not the 

final values of the model for the whole dataset but are the values from sub models that we 

have trained in parallel each covering a subset of data. To compute the values of the 

complete model, we take the mean of all the 𝑏𝑢𝑝,𝑏𝑙𝑜𝑤 and 𝒘 of all the sub models and 

this averaged value will give the final model that covers the whole dataset. 

 

 2.4. Big data analytics framework 

Our SVM is implemented as a part of the ScalaTion [27] framework which supports 

multi-paradigm modeling. 

ScalaTion provides many analytics techniques for optimization, clustering, 

predicting, etc., which could be easily integrated in a large scale data analysis pipeline. 

Additionally, ScalaTion supports discrete and continuous event simulation. 
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ScalaTion is organized in three major packages. The analytics package includes 

implementations of major analytics algorithms which could be categorized under four 

types: predictors, classifiers, clusterers and reducers. Additionally, the graphalytics 

package provides implementations for graph based analytics. Optimization packages 

(minima and maxima) provide algorithms for optimization and implement major 

optimization paradigms such as Integer Programming and Simplex method. 

Finally, the simulation packages provide simulation engines for a variety of different 

modeling paradigms. Currently, ScalaTion has implementations for tableu, event, 

process, activity and state oriented models in addition to system dynamics. ScalaTion 

also has 2D visualization support. 

ScalaTion, coded in the JVM based Scala language, makes use of Scala’s native 

parallelism support via .par methods in addition to distributed architectures such as 

Akka.  In Scala, the following code snippet performs a sequential sum operation of every 

element in a list with a constant number.  

     list.map(_ + 42) 

To run the same operation in parallel one simply runs the following code to execute 

the same operation in parallel. 

list.par.map(_ + 42) 

ScalaTion extends the same paradigm and provides transparent parallel 

implementations of analytics algorithms such as SVM discussed in this paper. Using 

ScalaTion, one could easily switch between sequential and parallel implementations of an 

algorithm by simply adding .par to the import statement of the class or package.  
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There are also other modeling environments such as Weka [26] sharing similar 

functionality with ScalaTion. Weka is a popular data analytics and machine learning 

platform written in Java. Weka provides a very intuitive user interface that allows pre-

processing of data in addition to visualization. Weka also provides a Java API for 

programmatic access to the algorithms. In contrast to ScalaTion, Weka does not include 

tools for optimization or simulation. By providing an integrated approach, ScalaTion 

reduces the cost of development time for a multi-paradigm modeling task. 

 

2.5. Presentation of algorithm 

2.5.1. Smo algorithm 

1. Initialize  𝛼𝑖 = 0 ,  𝐹𝑖 = 𝑦𝑖, 𝑏𝑢𝑝 = −1.0, 𝑏𝑙𝑜𝑤 = 1.0, 𝐼𝑢𝑝  = Any Index of Class 

+1,    𝐼𝑙𝑜𝑤= Any Index of class -1, fill 𝐼1 𝑎𝑛𝑑 𝐼4  with training data indexes for 

𝑖 = 0 𝑡𝑜 𝑛 

2. Select two indexes 𝑖1 and 𝑖2 from the training data to do the joint optimization. 

3. Train these two indexes 𝑖1 and 𝑖2  and calculate new value of  𝛼1 𝑎𝑛𝑑 𝛼2. 

4. Update 𝑤 weight vector based on the value of two indexes 𝑖1 and 𝑖2 and 

difference between the new and old value of  𝛼1 𝑎𝑛𝑑 𝛼2. 

5. Update  𝐹𝑖  for 𝑖 in 𝐼0 using new Lagrange multiplier  𝛼1 𝑎𝑛𝑑 𝛼2. Also, update 𝐹 

values for 𝑖1 and  𝑖2. 

6. Update 𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4 for both 𝑖1 and  𝑖2. 

7. Repeat steps 2 to 6 until 𝑏𝑢𝑝 ≥  𝑏𝑙𝑜𝑤. 
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In the SMO implementation, we will start by initializing the 𝛼𝑖, 𝐹𝑖, 𝒘𝒊, 𝑏𝑢𝑝,  𝑏𝑙𝑜𝑤, 𝐼𝑢𝑝,  

𝐼𝑙𝑜𝑤. This algorithm solves the optimization problem for the weight vector 𝑤 and the 

threshold 𝑏 for the model 𝒘 ∙  𝒙 − 𝑏. Initially, we will fill the set 𝐼1 𝑎𝑛𝑑 𝐼4  as 𝛼𝑖 = 0.  

We will start by iterating through all the training data points, using each data point 

𝑖1 we will update 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤, 𝐼𝑢𝑝,  𝐼𝑙𝑜𝑤. Then we will check for optimality using the 

current 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and if violates the condition 𝑏𝑢𝑝 <  𝑏𝑙𝑜𝑤, we will find another data 

point 𝑖2 to do the joint optimization with 𝑖1. 

In step 2, we will optimize by replacing old values of Lagrange multipliers with new 

values of Lagrange multipliers. While doing the optimization, we will update the 𝒘 

weight vector to reflect changes in the Lagrange multipliers and update the error cache  𝐹𝑖 

for 𝑖 in 𝐼0 using new Lagrange multipliers. We will also update 𝐹 values for 𝑖1 and  𝑖2.We 

will repeat this process until 𝑏𝑢𝑝 <  𝑏𝑙𝑜𝑤. 

 

2.5.2. Parallel smo algorithm 

The Parallel SMO is based on the sequential SMO algorithm.  

1. Divide the training data into subsets say p based on the number of cores in the 

system, to get the optimal speedup. 

2. Initialize p support vector machines and pass each of the p support vector 

machine a sub set of the training data. 

3. Run each support vector machine in parallel and train each of them 

independently. 
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4. Initialize 𝑎𝑖 = 0 , 𝐹𝑖 = 𝑦𝑖, 𝑏𝑢𝑝 = −1.0, 𝑏𝑙𝑜𝑤 = 1.0 𝐼𝑢𝑝 =  𝐴𝑛𝑦 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 +

1,  𝐼𝑙𝑜𝑤 =  𝐴𝑛𝑦 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 − 1, fill 𝐼1 𝑎𝑛𝑑 𝐼4  with training data indexes for 

𝑖 = 0 𝑡𝑜 𝑛 for each support vector machine. 

5. Select two indexes 𝑖1 and 𝑖2 from the training data to do the joint optimization for 

each support vector machine. 

6. Train these two indexes 𝑖1 and 𝑖2  and calculate new value of  𝛼1 𝑎𝑛𝑑 𝛼2 for each 

support vector machine. 

7. Update 𝑤 weight vector based on the value of two indexes 𝑖1 and 𝑖2 and 

difference between the new and old value of  𝛼1 𝑎𝑛𝑑 𝛼2 for each support vector 

machine.  

8. Update  𝐹𝑖  for 𝑖 in 𝐼0 using new Lagrange multiplier  𝛼1 𝑎𝑛𝑑 𝛼2. Also, update 𝐹 

values for 𝑖1 and  𝑖2 for each support vector machine. 

9. Update 𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4 for both 𝑖1 and  𝑖2 for each support vector machine. 

10. Repeat set 5 to 9 until 𝑏𝑢𝑝 ≥  𝑏𝑙𝑜𝑤 for each support vector machine. 

11. Each support vector machine will provide update value of 𝐹𝑖, 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and 𝒘 for 

each trained sub set of training data. 

12. Average value of 𝑏𝑢𝑝, 𝑏𝑙𝑜𝑤 and 𝒘 form all the subset will provide the complete 

trained model. 

In the parallel implementation of Support Vector Machines, we will start by dividing 

the training data set into smaller subsets and will initialize p Support Vector Machines 

and each Support Vector Machine will get a subset of the training dataset. Each Support 

Vector Machine will run on a different thread, so that each Support Vector Machine will 

run independently of each other and therefore reduces the overall training time of the 
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complete model. Each Support Vector Machine will provide a complete trained model for 

the corresponding subset. We will average the results obtained from each Support Vector 

Machine to obtain the trained model for the complete dataset. 

As each subset of training data is trained in parallel on independent threads, 

significant time can be saved during the training due to having no overhead between 

parallel SVM executions. 

 

2.6. Performance evaluation 

In this section, we evaluate the runtime performance and accuracy of our sequential 

and parallel implementations of our SMO algorithms, and compare the results with 

existing implementations of Support Vector Machine.  

We have created a synthetic dataset with various numbers of instances and numbers 

of features for testing. The datasets are created as follows: We created two spheres with 

forty percent overlap between the spheres. The First sphere contains positive data 

instances and the second sphere contains negative data instances. Instances are uniformly 

distributed throughout both spheres. In this way, we get a nice overlap of both types of 

data points. Additionally, we have compared our results with the standard datasets that 

are used previously to test the Support Vector Machines. These data sets include a9a, 

real_sim and rcv1 are from [29]. All experiments were run on a Linux server with 12 

core, 24 hardware threads Intel Xeon E5-2620 dual CPU running @ 2GHz and 128G of 

DDR3 RAM. The sequential and parallel algorithms were written in Scala version 2.10 as 

part of the ScalaTion framework. 
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To measure the running time and accuracy of our sequential and parallel algorithms, 

we have used 5-fold cross validation technique [24] on all the datasets against we which 

we have compared our results. In 5-fold cross validation, dataset is randomly partitioned 

into five equal size datasets. Out of five subsets, a single subset is retained as validation 

dataset for testing the model and the remaining four subsets are used as training datasets. 

The cross validation process is then repeated five times, with each of the five subsets 

used exactly once as validation data. The five results from the each run is then averaged 

to get the final result. By following this approach, we make sure that all instances are 

used for both training and validation.     

The results comparing the accuracy of our sequential and parallel implementations 

and the Cascade SVM approach [12] are presented in Table 2.1. We have used our own 

implementation of cascade approach described in [12] and tested the results with our real 

datasets with 5-fold cross validation. Results clearly indicate that the accuracy of our 

parallel SVM implementation is significantly higher than both the sequential and cascade 

implementations. 

 

Table 2.1: The effect of data sets on the accuracy of classification. Accuracy is 

measured in percentage. 

Dataset Name Sequential Parallel  

a9a 76.3 76.3 

real_sim 98.0 73.7 

rcv1 47.5 52.1 
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Experiments are performed to measure the speed up achieved on the parallel 

implementation compared to the sequential implementation. The Speed up ratio is shown 

in Figure I. The ratio will increase with respect to the number of data instances resulting 

in a linear speed up. As shown in the Figure I, we can get up to 20 fold speed up with a 

data set of size 8 million instances and 50 features. 

 

 

Figure 2.1: Speed up achieved on Parallel SVM in comparison to SVM. 

 

Many experiments are performed to compare the running time on sequential, parallel 

and cascade algorithms on different number of data instances with different number of 

features. As shown in Figure 2.1, in which number of features are kept constant to fifty. 

We can see that sequential implementation takes more than 800,000 millisecond but on 

the other hand parallel SVM takes only about 40,000 millisecond, which about twenty 
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folds faster as mentioned above. Cascade approach is much better than our sequential 

SVM but parallel SVM is out performs cascade approach. 

Similar experiment to measure the runtime differences are performed on same 

synthetic data set but with more number of features to make sure speedup is still 

maintained as with the increase in the number of features. Results for the runtime with 

150 features are shown in Figure 2.3, which clearly indicates that runtime is much better 

for parallel SVM than sequential and cascade approach. 

 

 

 

Figure 2.2: Runtime for 50 Features. The effect of number of data instances on the 

runtime. 
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Figure 2.3: Runtime for 150 Features. The effect of number of data instances on the 

runtime.  

 

Results for parallel SVM are not only compared to the sequential SVM and the 

cascade approach, but we also performed the experiments on the standard data sets that 

are used to verify the accuracy of support vector machine. We have compared the results 

of parallel SVM with the already implemented techniques and results that are explained 

in [25].  Table 2.2 provides us with the data statistics for the data sets against which we 

have compare our results.  

 

Table 2.2:  Data statistics. Data sets that are used to compare the results. 

 

 

 

 

Data set Instances Features # Non Zeros 

a9a 32,561 123 451,592 

real-sim 72,309 20,958 3,709,083 

rcv1 677,399 47,236 49,556,258 
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2.7. Related work 

The problem of making support vector machines parallel have been studied for decades 

and yet, it is still an active research area. In [12], parallel approach for support vector 

machine based on SMO is presented. Author, in this paper has suggested a technique in 

which instead of analyzing the whole training set in one optimization set, the data are 

split into subsets and optimized separately with multiple SVMs. The partial results are 

combined and filtered again in a cascade of SVMs, until the global optimum is reached. 

In this, set of support vectors from two SVMs are combined and then optimized again on 

a new SVM, this combining and optimization is continued until only one set of vectors is 

left but to reach global optimum the result of the last layer is fed back into the first layer. 

Even though, this approach is fast as it divides the data and get rid of most of non-support 

vectors but it still spends lot of time combining the results from different SVMs and re-

optimization them many number of times till the global optimum is reached and this 

slows down the total training time of the support vector machine. 

  

2.8. Conclusions and future work 

In this paper, we have presented a novel algorithm for parallel support vector machine 

that is superior to or at least competitive to the state of the art algorithm on very large 

data set adhering to big data research. In our parallel approach, we have equally 

partitioned our large data in to smaller subsets and we have trained each subsets 

independently. As training of subsets are not dependents on the result of other subsets, 

which resulted in the significant reduction in the training time of parallel 

implementation. We have also found the increase in the overall accuracy of the results 
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in parallel SVM. We have demonstrated our results with extensive experiments on both 

synthetic and real standard data sets available for support vector machine. Scala code 

support vector machine implementation can be found in analytics package of ScalaTion. 

For more details, please refer to the supplement. 

Future work includes extending the parallel support vector machine to distributed 

support vector machine which will help in gaining further speed up in the training time 

of large data instances with many number of features. Adapting the algorithm to work 

on data sets stored on disk or in a distributed environment would allow to handle ever 

larger training data sets.  
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CHAPTER 3 

SUMMARY 

In summary, we have presented a novel algorithm for parallel support vector machine 

that is superior to or at least competitive to the state of the art algorithm on very large 

data set adhering to big data research. In our parallel approach, we have equally 

partitioned our large data in to smaller subsets and we have trained each subsets 

independently. As training of subsets are not dependents on the result of other subsets, 

which resulted in the significant reduction in the training time of parallel implementation. 

We have also found the increase in the overall accuracy of the results in parallel SVM. 

We have demonstrated our results with extensive experiments on both synthetic and real 

standard data sets available for support vector machine. Scala code support vector 

machine implementation can be found in analytics package of ScalaTion. For more 

details, please refer to the supplement. 

Future work includes extending the parallel support vector machine to distributed 

support vector machine which will help in gaining further speed up in the training time of 

large data instances with many number of features. Adapting the algorithm to work on 

data sets stored on disk or in a distributed environment would allow to handle ever larger 

training data sets. 
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