
 

 

 

A STUDY OF ATTACKS ON COLLABORATIVE SPAM FILTER 

by 

XIAOHU FAN 

(Under the Direction of Kang Li) 

ABSTRACT 

Collaborative filtering is a widely used technique to make classifications by using 

distributed feedback from all users. Recently, collaborative filtering has been proposed 

and used to detect spam messages. Compared to individual spam filters, collaborative 

spam filtering has the advantage of potentially accessing large datasets and the effect of 

crowd sourcing. However, the benefit of the collaboration also comes along with 

vulnerabilities of false collaborative information. In this thesis, I studied the effect of 

various possible attacks on a collaborative spam filtering system. We built a platform to 

simulate a collaborative spam filtering system, and use this system to answer questions 

such as what attacks cause the most damage and the cost of launching such attacks. The 

result of this study suggests that collaborative spam filtering is vulnerable to attacks from 

false collaborators and we identified the most damaging strategy that should be addressed 

first by the defense of collaborative spam filtering. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Spam Problem Description 

As more and more people use email as their major communication tool, email spam, i.e. 

unsolicited commercial email, has become a severer problem. A spammer tends to reach 

as many email boxes as they can and filled them with ads or fraud information. Think 

about the unbelievable low cost of sending email, even if only 1 in 100,000 users 

followed the advertisement and purchased a product, the spammer may still make a profit. 

Compared to printed material or ads on TV, the cost of spamming is unbelievable low, 

typically, spammers charge less than a hundredth of a cent per recipient.  It is foreseeable 

that combating against spammers is a long-term problem for security researchers. As 

anti-spam techs evolve, to survive and profit, spammers not only tends to adapt more 

sophisticated measures, but also try to become more familiar about the internal working 

mechanisms of anti-spam systems. In this paper, we are going to record and analyze a 

simulated battle between spammer and the collaborative spam filter. 

1.2 Description of Spam Filter and Collaborative Spam Filter 

Email filtering is the processing of email in a MTA (Mail transfer agent) to classify it 

according to some specified criteria. The filtering of incoming messages is often carried 
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out automatically, but it can also apply to the semi–automatic process--where user gives 

feedback to help the filter’s training. 

 

Figure 1.1 Overview of email filter 

Figure 1.1 shows the work flow of a typical email filter. Incoming email messages 

are received from the mail server, and then handled by the filter at the MTA. The filter 

classifier them into either ham or spam files (quarantine). Only ham emails are presented 

to the user, while spam messages will normally be blocked. Many filters allow users to 

report the misfiled spam to the filter, thus improve the filter’s performance and 

effectiveness.  

Given the assumption that spam/ham classification criteria between different users 

are similar, a Collaborative email filter could not only allow feedback to the filter, and 

enable the sharing of feedback information within the system. 

While correct user feedback has been proven to benefit the filter in boosting its 

accuracy, malicious user’s feedback or an unintended mistake can greatly harm a filter’s 

performance [1]. The situation becomes even worse when similar things happened to a 

collaborative filter — the unique feature of sharing renders a collaborative filter more 

vulnerable to a malicious user/spammer’s attack. i.e., a wrongfully classified email will 

not only affect the filter itself, it will also pollute other filters within the system by 

propagating the information. 
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1.3 Attacking Collaborative Filters 

Collaborative filtering (CF) technology has been proved to be a viable and effective 

solution, thus being widely used. However, for malicious users, or a group who is 

interested in promoting their product, there is an incentive in poisoning the collaborative 

filter to their advantage [2]. Such attacks have been referred to as shilling attacks [3].  

Shilling attacks can be classified into two basic categories[4]:malicious actions that 

which will raise a particular item’s rate higher are called push attacks, while those aimed 

at downgrading the popularity/rate of an item are called nuke attacks. In our research, we 

will address  the effects of both push and nuke attacks on a collaborative system. 

There are certain forces driving behind people who try to manipulate the 

collaborative system. Most are likely because of profit. i.e. since CF are widely deployed 

in commercial systems, the producers/manufacturers may want to promote their products 

in an “fast and efficient way”. The producers/manufacturers  can either do a push up 

attack to raise their own item’s rating, or nuke down a competitor’s item’s rating. 

Another possible intention is to bring down the target CF as a whole; this can be carried 

out either by malicious users who want users to abandon the CF system or by other CF 

system builders who want users to switch to their CF product. 

The real attacks, however, are always carried out by a group of hired people, A.K.A. 

shills. The shils either manually or use agent/bot to provide false options to mislead the 

real users. Shills pose a serious threat to users and the CF system, as we are going to 

demonstrate in our experiment section. 

1.4 Thesis Contributions 
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The existing research [2,3,4] about shilling attacks on collaborative filters  has 

demonstrated that shilling could harm a recommender systems, but  we believe there are 

still several important questions that need to be answered.  

Our first question is: how effective is shilling on CF Systems? The second is how 

does the pre knowledge of the CF system affect the attack effect. The third is how does 

the CF system’s scale  affect the attack effectness 

To answer these questions, first, we proposed and built a scalable, efficient and 

effective platform that simulated various types of attacks against a collaborative system; 

second, we discussed several types of attack strategies that described and categorized a 

wide variety of shill attacks, and performed a series of experiments to study their 

effectiveness. In our experiments we fully evaluated the shilling attack with different sets 

of parameters, i.e.: the number of attackers, the strategy of the attack, etc. Finally, we 

present the results of our experiments and evaluate them against the theoretic prediction. 

We conclude that the unique vulnerability of collaborative filters should be addressed, 

and our research can not only help improve our system but also help other collaborative 

filtering applications. 
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CHAPTER 2 

 RELATED WORK 

 

2.1 Related Work on Collaborative Filtering System 

Collaborative filtering (CF) is the process of filtering information among different 

systems, data sources, etc. The technique always involves collaboration. Our 

collaborative system is used for spam filtering. However, the collaborative filtering 

method can be applied to many other different kinds of applications, like: educational 

applications [5], communication applications [6], financial data applications [7], musical 

data applications [8], movie data applications [9], web applications [10], etc. 

2.1.1 Memory-based VS Model-based 

Most existing collaborative filtering systems are classified into 2 categories: memory-

based collaborative filtering [ 11 , 12 ,13 , 14 ] , or model-based collaborative filtering 

[15,16,17,18]. The memory-based approaches do the recommendation is by computing 

the similarity between users, i.e. comparing their past ratings on similar items. The 

memory-based CF group users with similar taste and assume they are likely to make 

similar ratings in other items. Thus the CF system can uses user’s existing rating data to 

predicate other group member’s rating on certain items.  

The memory-based approach has achieved great success. Many commercial 

websites like Amazon [19] adopted this technique due to its highly effective and easy-to-



6 

 

implement nature. However, researches show the memory-based approach suffers from 

two fundamental problems[18]: 1) data sparsity, the performance degrades as the user 

data sparse, and 2) scalability: when the users and the large number of products/data 

grows tremendously [14], the executive cost and excessive storage become unbearable.  

Recent researches on the memory-based approach have been focused on how to 

wisely extract a limited number of data to represent the whole dataset, i.e. instance 

reduction techniques. For example: user profile analyzing [11], dynamic Weighting and 

Selection [20], probabilistic selection [14], etc. Although the proposed approaches have 

alleviated the problem, the nature of memory base approach has limited its use. 

On the other hand, model-based approaches use machine-learning or data mining 

techniques to develop a model for the filtering. Researches prove it is less vulnerable to 

data sparsity or scalability problems [15]. The model-based approach use various 

techniques brought from the machine learning realm, like latent semantic models [21], 

bayesian active learning [22], and techniques from data mining realm like association 

rule mining [23], nearest neighbors [24], etc. In [25], the author proposed a combined 

model from latent factor model and neighborhood model. The trained model can reflects 

the pattern of the training dataset. Once the training is over, the trained model is fast in 

making predictions on unseen instances. 

The so-called hybrid approach has also gain growing attentions. Representative 

hybrid approaches involve collaborative filtering techniques and makes use of the 

content-based filtering techniques [26]. The difference between collaborative filtering 

systems and content-based filtering is that the collaborative filtering system recommends 

items by grouping users with similar taste and uses their opinions to make 
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recommendation for other users. The content-based recommender system recommends 

items based on the items’ own information. Both systems suffer from scalability and data 

sparsity problem. Hybrid recommender systems combine individual systems to avoid 

certain aforementioned limitations of the memory-based system and model based systems.  

for example, [27] combines Naive Bayes Classifier and Collaborative Filtering, Content-

Boosted Collaborative Filtering [28].  

2.1.2 Representative Collaborative Systems: 

1) Generating personalized recommendations. 

Commercial websites like Amazon, Youtube use personalized recommendations [29,30] 

very heavily. Collaborative filtering for personalized recommendations generate 

recommendations based on users’ rating on items. 

For example, if we have a list of movies which a group of users prefer to watch, 

a collaborative filtering system for movies tastes can make predictions about which 

movie a user would like[31]. 

2) Collaborative Search Engine 

Collaborative Search Engines [32,33] (CSE)  allow users share information resources 

collaboratively using knowledge tags, and allow search experts help new users search 

what they are looking for. 

2.2 Related Work on Spam Filter 

Machine learning researchers view email filtering as a process of text classification. 

Machine learning techniques, like bayes classifier, have been proofed to be very effective 
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when against spam email. A supervised email filter can achieve extremely high accuracy  

better than 0.9999 [34]. 

Paper [35] suggests using support vector machines (SVM) to distinguish spam 

emails from ham emails. They also compared their SVM approach with other approaches 

like boosting of C4.5 trees, RIPPER etc. They conclude that SVM’s is slightly better in 

distinguishing the two types of misclassification. Paper [ 36 ] presents acceleration 

techniques that speed up bayesian filter based on approximate techniques like hash-based 

lookup and lossy encoding. Paper [ 37 ] presents a spam filter using statistical data 

compression models. The model transforms the spam detection problem into a 

probabilistic text classifying problem based on character-level or binary sequences. 

While statistic based spam filters can achieve impressive accuracy rates, they remain 

prone to false positives. Collaborative spam filters can achieve better filtering through the 

collaboration of users, i.e. when a user classifies an email as spam, the knowledge can be 

shared and added to the collective knowledge base. Paper [38] presents a collaborative 

spam filter which preserves user’s privacy by sharing the fingerprint rather than content. 

Paper [39] focused their research on how to customize a collaborative filter according to 

user’s unique definition of spam. 

2.3 Related Work on Attacking Spam Filter 

While researchers try to upgrade their filter to stop spammer, spammers do not give up 

easily--they also study the filters’ internal mechanism to avoid their spams being blocked.  

To our best knowledge, most existing researches on attacking spam filter focused on 

attacks on single filter. Paper [40] presents an evaluation against several filters from 

TREC [1, 41, 42] on dataset with synthetic noise. The research confirms that noisy 
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feedback can greatly impact a filter’s performance.  Paper [43] describes and evaluates 

the effectiveness of active and passive good word attacks against two types of statistical 

spam filters: the naive bayes filter and the maximum entropy filter. The difference 

between these researches and us is that we focused our research on the impact on 

collaborative filters, and we also considered “bad words attack”. Paper [44] is another 

attacking strategy paper on statistical based filter.  

Our research is among the few which focused on the impact of attacks on 

collaborative filter. Paper [45] presents a collaborative spam filter that learns global 

tendencies across all users thus it can absorb the influence of emails labels that are very 

differently from the general public. A similar approach is given in [46]. They assume that 

the feedbacks given by malicious users are always very different from the other users. 

They give a supervised machine learning scenario where labels (feedback) are provided 

by a heterogeneous set of teachers. They implemented a SVM framework to reduce the 

weight of trainer who has too much impact on the result, thus avoided the potential threat 

of malicious users. 
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CHAPTER 3  

BOGOFILTER FILTER AND SPAMMER’S APPROACH 

 

Before describing the possible approaches that spammers could use to poison/penetrate a 

spam filter, we believe it’s necessary to take a close look at how spam filter works, 

especially how Bogofilter works.  

Bogofilter [47] is an open source mail filter written in c that classifies mails as spam 

or ham (non-spam) by a statistical analysis on both the email's header and body. The 

program can learn from users’ feedback.  

Bogofilter implements a very unique tech. The main idea is: it assumes every email 

is a bag of random words, which contains 50% spam and 50% ham words. Then it 

calculates the possibility of how likely it is a spam email based on how many spam words 

are shown in this email. Note the assumption is not build to stand, as we know each real 

email is not a bag of random words. Usually the real ham email contains more ham words 

and a spam email contains more spam words. If Bogofilter has enough  knowledge about 

the ham words and spam words, it can correctly classify the emails. 

3.1 The Workflow 

Figure 3.1 shows the workflow of training bogofilter. At the beginning of the training 

process, the filter accepts a set of emails. The emails will then get parsed into tokens. The 

count of tokens will be added to bogofilter’s database.  
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Figure 3.1 Training process 

For testing, the figure 3.2 shows how the bogofilter evaluates an email: at first the email 

was parsed into tokens, then bogofilter looked up these tokens in it’s database, if a token 

has been seen by bogofilter before, bogofilter will assign a value of how possible this 

token is a spam token. All tokens’ possibilities are then merged into a final value, which 

shows how much does bogofilter think the email is a spam/ham: 

 

Figure 3.2 Classifying process 
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3.2 How Bogofilter Calculate the Spamicity of Emails 

According to [48], the bogofilter calculates the spamicity based on these steps: 

PW: Possibility a document contains the token is a spam 

b (w) = (the number of spam containing the word w) / (the total number of spam). 

g (w) = (the number of ham containing the word w) / (the number of ham). 

p(w) = b(w) / (b(w) + g(w)) 

FW: Take the consideration that a (rare) token can impact the result. 

 

Here s is the strength of how much we want to weigh our background information. 

The default value is 0.0178. x is our assumed probability, based on our general 

background information, that a word we don't have any other experience of will first 

appear in a spam. Default is 0.52. n is the number of e-mails we have received that 

contain word w. 

Combined possibility H as for Ham: C-1 is a inverse Chi Square function, H is linear 

to f (w) and more sensitive when f(w) is close to 0: 

 

At last, we have the combined possibility I for Spamicity: 
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3.3 3 Types of Attack Strategies 

Since spammers know how the filter works, they can  design the attack against the 

specified filter. By poisoning/penetrating a filter, the spammer can influence people to 

purchase a product. Thinking about the unbelievable low cost of sending email, even if 

only 1 in 100,000 users followed the advertisement and purchased a product, the 

spammer can still make a profit. 

We categorized 3 types of possible attack strategies that can be used by a spammer: 

1) All Spam: spammer in the collaborative filter system marks all emails he receives 

as spam emails and propagates the classifications to other clients in the system. 

2) All Ham: spammer in the collaborative filter system marks all emails he receives 

as ham emails and propagates the classifications to other clients in this system. 

3) Flip: spammer in the collaborative filter system marks all ham emails he receives 

as spam emails and all spam emails as ham emails. Then propagate the classifications to 

other clients in this system. 
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CHAPTER 4  

THE DESIGN OF OUR EXPERIMENT PLATFORM 

 

How to simulate the whole scenario effectively and efficiently is a big challenge. In this 

section, we will describe the design and implementation of our experiment platform. The 

first part describes our system structure, followed by another part that explains the python 

script which simulates user’s actions/ interactions. 

 

4.1 System Overview 

The system is designed to provide an experiment platform for testing the vulnerability of 

a collaborative spam filter. It can help improve the spam filtering and other applications 

that use the feedback mechanism. 

What does the system look like? The system is composed of multiple instance of 

bogofilter. Each instance represents a filter at a mail transfer client.  

Sha
rin

g Sharing

 

Figure 4.1 Overview of a collaborative filter 
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As shown in Figure 2, after a filter classified incoming emails, it will propagate this 

info to other filters in the collaborative system. Nowadays most filters support feedback 

and retraining. Bogofilter, can retrain the classified ham/spam based on users’ feedback. 

A straight forward way to build such platform needs several machines, real network 

and email servers. However, there are several drawbacks of this approach: 

1) Extra cost 

It will require multiple machines and extra setup work.  

2) Unnecessary noise.  

The network can be unstable; email servers can fail in sending/receiving emails. 

Though they happen in real world scenarios, they have little to do with the essentials of 

our problem. 

3) Not scalable  

To scale the research, if the number goes up, it will be very difficult to carry out the 

experiment. 

Due to these considerations, we designed our platform in a different way. We believe 

the platform we are looking for should have the following properties: 

1) Easy to set up and scale 

2) Only focused on the essential of our problem; 

3) Sending/receiving email should be easy and fast; 

To get a good simulation and performance, we extract the model and implement our 

platform in only 1 machine. We will describe it in later part of this section. Before that, 

we first describe the user representation and email  sending/receiving. 
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4.2 User Representation 

The first task to carry out the simulation is to represent users. We believe the users should 

be represented effectively so that: 

1) Emails can bouncing between users easily;  

2) Sending/receiving emails should be very efficient;  

3) Simulations can be done with only a few machines. 

To simulate users in the real world, we made the following assumptions:1) Users are 

simply classified as good user/malicious user; 2) The good users always provide the 

proper feedback, i.e. they can either follow bogofilter’s suggestion or give the right 

classification of an email, but never twist the result; while the malicious users classify 

emails according to their attacking strategy. 

These assumptions may look strong at the first place. In real world, good user may 

misfile a ham to spam, or fail to detect a wrongly classified spam. However, we assume 

that in this system good user never made mistake. This assumption enables us to conduct 

our experiment, and inspires the design of our experimental platform. On the other hand, 

we assume a malicious user always use a specific approach to attack the filter., and the 

approach doesn’t always have to be giving wrong feedback. For example, if a malicious 

user chooses the all ham strategy and the testing email is compound of half spam and half 

ham, and then half of the malicious user’s feedback is actually correct. 
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4.3 Email receiving and sending 

In our system, we use a Linux file to represent an email.  The file has to follow the 

“mbox” format, i.e. “The beginning of each message is indicated by a line whose first 

five characters consist of "From" followed by a space (the so-called "From_ line" or 

"'From ' line") and the return path e-mail address. A blank line is appended to the end of 

each message.”[49]. Multiple emails which follow the mbox format can appear in one 

Linux text file. Our system can parse it into separated emails. 

The process of delivering an email is simulated by copying an email file from one 

user’s folder to another user’s folder. Each user has his/her own bogofilter instance. Each 

instance has a Berkeley database file to store all ham/spam words count information. Our 

experiment platform can then simulate the whole process by using Linux command to 

copying file around and calling bogofilter to process the emails. One of the benefits of 

this design is that we ignored all issues like network, SMTP protocol, etc. thus the whole 

process is greatly simplified, and can happen in a local machine. On the other hand, our 

test against bogofilter has no difference with running the experiment in a real world 

scenario.  

4.4 Platform Command 

In this section we are going to introduce the commands of this platform, the purpose of 

these commands is to help to organize the simulation so we can run a complex 

experiment much easier. Generally speaking, each command has a sequence of 

parameters. The parameters will later be used to specify a Linux command. 
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For each experiment, we provide a configure file. A typical configure file will 

contain several lines of commands, each with its parameter list. There are mainly 5 type 

of commands: 

1) Distribution 

The distribution command starts with –D, and is always followed by a filename and 

numbers. Its purpose is to simulate the email server sending a email to a user. A 

distribution command execution contains two steps: step1) Extract certain number of 

emails from a big email dataset, and step2) Copy the extracted emails into the user’s 

folder, there could be only 1 receiver, or a list of receivers. The system can use this 

command to distribute new emails and propagate the sharing info between users. We will 

discuss this command later with register command. 

2) Training 

This command will call bogofilter to train one or multiple users’ bogofilter instance 

with the emails they received. This command will generally come after the distribution 

command, as the distribution step will copy the emails to a default folder of a receiver. 

Unless specified with an external path, the training command will train the bogofilter on 

all the email files in the user’s default folder. 

3) Register 

This command is a combination of the distribution command and the training 

command. It is used to propagate the shared information, i.e. after a user has received and 

relabeled some emails,, the register command will distribute these emails to other users 

and request their filter to train on them based on the user’s label. 
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The register command is always followed by some special parameters to indicate a 

user’s strategy, i.e. if the user is a good user, he will always apply the “normal” strategy. 

On the other hand, a malicious user can choose a strategy from All Spam/All 

Ham/Flip/Random. One thing needs to be noticed is that, in our system, when 

propagating user’s feedback, the system doesn’t choose the receivers, i.e. the receiver can 

be a malicious user or a good user.  

4) Test 

The purpose of test command is to evaluate the effect of the malicious attack on a 

bogofilter instance. A typical experiment configuration is like the following: 1) Initialize 

several users. 2) Distribute certain number of training emails to each user. 3) Each user’s 

bogofilter train on these emails. 4) Choose certain percentage users as malicious users; 

the remaining users are good. 5) Distribute some extra emails to the malicious users., The 

malicious users use bogofilter to filter them and twisted the results based on a strategy. 

propagate the twisted results to other users. 6) Since in step 5 the results can be twisted, 

the bogofilter instance which trained on these results is polluted. The test command will 

first use a polluted bogofilter instance to filter a set of pre-classified emails, and then run 

a clean bogofilter instance to filter a same set of emails, after that it generate a file 

containing the results. We can then evaluate the damage. This command always follows 

the register command. 

There are some other utility commands: command “initialization” will create a 

user’s folder structure. Command “clean” will delete all results and temporary files. The 

picture generating command will visualize the result generated by the test command. The 

test result of the bogofilter contains a list of numbers between 0 and 1, which indicates 
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how likely the email is a spam, i.e. when it equals 1, the filter think the possibility is 

100%. To visualize the result, we use python’s gnuplot package to draw the graph from 

the extracted result data. 

4.5 System Structure 

Python is a highly modularized language. Every module written in python can contain 

several functions. Our system contains the following 6 modules: 1) Main Module; 2) 

User Module; 3) Email Module; 4) Bogofilter Module; 5) Gnuplot Module; 6) Configure 

Module.  

 

Figure 4.2 System structure 

The function of each module is quite self-explained, the main module will first take 

several parameters from the user, then feed the parameters to the configure module. 

The purpose of the configure module is to handle very complex experiment design, 

for example, if we want to run experiments on different sets of parameters like the total 

users number, the percentage of the malicious users, or a different workflow etc. Using  

hard coded configure file is time-consuming and error-prone. Instead, we can feed the 
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range of every changeable parameters into the configure module. The configure module 

contains several predefined templates. It takes the parameters and generates a configure 

file. It then feed the configure file back to the main module. 

The main process of the main module is a switch statement. The process parses the 

command lines and then calls corresponding functions in different module. To provide 

more flexibility, we introduced another level of abstraction--the test script. Every 

experiment has its own unique test script. The test script will initialize the configure file 

for us and some special preparation works like extracting partial emails for training 

dataset. We will discuss the experiment workflow in chapter 5.  

4.6 3 Types of Attack Approaches 

Since spammers know how the filter works, they can design attack specified against the 

filter. We categorized 3 types of possible attack approaches that can be used by a 

spammer: 

1) All Spam: where a spammer in the collaborative filter system marks all email he 

received as spam and propagate this classification to other filters. 

2) All Ham: where a spammer marks all emails he received as ham and propagates 

this classification to other filters. 

3) Flip: where a spammer in the collaborative filter system marks all ham he 

receives as spam and all spam as ham. Then propagate this classification to other filters in 

this system. 
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CHAPTER 5  

EXPERIMENT RESULTS 

 

This chapter describes the datasets used in this study and our experiment result. Our 

findings indicate that, in a collaborative spam filter system, not only malicious users can 

cause damages, good users, in this case, could also unintentionally help the malicious 

user to spread the false information. The first section describes the dataset followed by 

the section describing the obtained results. Finally we explain the results in detail.  

5.1 Dataset and Metrics 

In order to study the effect of malicious attacks on the collaborative spam filter system, 

we believe we should use real world datasets. Most recent studies on spam filter use the 

Enron dataset [50]. This dataset corpus contains about 0.5M messages, which bounced 

between about 150 users, mostly of whom are senior management of Enron. All their 

emails are organized into folders.  

The explanations of results obtained by conducting experiments on the mentioned 

dataset are in subsequent sections. In case we mention t emails, we always mean t/2 ham, 

t/2 spam unless explicitly noted. To compare the effects of malicious attacks, for good 

users, we name their strategy as normal. The normal strategy gives feedback of the 

bogofilter’s classification of a email. We also introduced a strategy called random, which 

means a spammer randomly classify a email he receives, and propagate this classification 

to other filters in this system. 
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 In our experiments, we mainly use spamicity as the metric to evaluate the impact of 

different malicious strategies. In experiment 3, we also use the CDF graph of spamicity to 

help us evaluate the damage. 

5.2 Experiment 1 Comparison of Different Malicious Strategies 

To analyze the possible damage caused by a “bad guy”, we must first think and act like a 

“bad guy”. Our first experiment is thus designed to find out which strategy does the most 

damage to a collaborative filter system. 

5.2.1 Experiment Set 1 Workflow 

In chapter 4, we have briefly introduced the 3 malicious strategies that could be used on a 

collaborative spam filter system.  We’ve designed the following experiment: 

 

Figure 5.1 Workflow of experiment 1 

The workflow of experiment 1 is: we first create n users using the initialization 

command, where n is the number of total users. Then in phase 1, we do an initial training 

for all users’ filter on the same pre-classified dataset of size t1. This step will initialize 

every bogofilter instance with same initial knowledge. After that, in phase2, we choose n1 
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users as malicious users, and all remaining users as good users. Both good users and 

malicious users will receive different t2 pre-classified emails. The difference of phase2 

with phase1 is that the filters will not only train on these emails, but also propagate their 

training results to every other filter in the system. Here is when the malicious user can 

apply their malicious strategy to poison the collaborative filter. For example, if a 

malicious user adapts the all spam strategy, he will mark all emails he received as spam 

and ask other users to training on these emails as spam. In the last step, every user will 

test their bogofilter on an email set of size t3.  

In this experiment, the total number of users is n = 100. We choose the number of 

malicious user n1 from the following numbers: {1, 6, 12, 25, 50, 75, 100}. Obviously 

when n1 = 100, we are saying all users in the system are malicious users. The training 

size t1 is chosen from the following numbers: {5000 (2500ham/2500spam), 4000 

(2000ham/2000spam), 3000 (1500 ham/1500spam), 2000 (1000ham/1000spam), 

1000(500ham/500spam), 2(1ham/1spam)}. The number of emails used in phase 2 t2  

varies from {50(25 ham/25spam), 40(20 ham/20 spam), 30 (15 ham/15 spam), 20(10 

ham/10 spam), 10(5 ham/5 spam)}, the number of emails we use for testing t3 is always 

10000(5000ham/5000spam). 
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5.2.2 Experiment 1.1 

Experiment 1 is designed to tell us which strategy is the most effective one, which, at the 

same time, is more likely to be used by a malicious user. In this experiment we mainly 

focused on the impact of the different strategies. We expect that the all spam strategy 

should have the most impact on the collaborative filter since it tries to put all words in 

phase 2 into the spam list. The result confirmed our guess. Here we have n = 100, n1 = 50, 

t1 =5000(2500ham/2500spam), t2 = 50(25ham/25spam), t3=10000(5000spam/5000ham) 

 

Figure 5.2 Result on ham test  

Figure 5.2 shows the impact of different strategies on ham email filtering, the right 

most line is the normal strategy, which mean for the 5000 ham test email, most of them 

can pass bogofilter, i.e. the filter has a very low false negative. The left most line is the all 

spam strategy, which shows after the malicious user poisoned the filter, about 10% ham 

emails are now wrongly classified as spam, also about 85% ham emails have increased 

spamicity. Only 5% ham emails’ spamicity remain unaffected. The line on the second left 
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most is the flip strategy and the one on the middle is the random strategy. The all ham 

strategy, in this case, has impacted the fewest on the ham testing set. 

 

Figure 5.3 Test result on spam test 

Figure 5.3 shows the same filter test on spam dataset. The left most line represents 

the all ham strategy, this makes sense because more tokens are added to the ham list, so 

the whole dataset has lower spamicity. The line in the middle is the normal strategy, 

which shows in normal case, about 80% of the spam emails can be correctly detected, 

while about 20% are unsure. The right most line is the all ham strategy. It has the most 

impact on the spam test. About 20% spam emails can pass the filter because of the attack. 

5.2.3 Why Allspam Strategy Can Outperform Flip Strategy.  

One interesting thing is in our experiment allspam strategy outperformed flip strategy. 

This can be validated with equations presented in chapter 3. An important equation is: 

p(w) = b(w) / (b(w) + g(w)) 

where p(w) is the possibility a document contains the token is a spam, and  
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b (w) = (the number of spam containing the word w) / (the total number of spam). 

g (w) = (the number of ham containing the word w) / (the number of ham). 

Since the bigger p(w) value is, the bigger the spamicity of an email is, we will just 

discuss how allspam strategy and flip strategy can influence the p(w) value. Suppose we 

have 2 spam emails: S1,S2 and 2 ham emails:H1,H2, To simplify the discussion we 

assume each email only contains a single word, “ws1”,”ws2”,”wh1”,”wh2” respectively. 

If we train the filter correctly, the wordlist should look like the following: 

 Table 5.1 Word count in bogofilter, after training 

 ws1 ws2 wh1 wh2 
Numble of Spam Email 
Contain this word 

1 1 0 0 

Numble of Ham email 
contain this word 

0 0 1 1 

 

Now suppose if we adopted flip strategy and use the same emails to attack the filter, the 

bogofilter will now looks like: 

Table 5.2 Word count in bogofilter, after flip attack 

 ws1 ws2 wh1 wh2 
Number of Spam Email 
Contain this word 

1 1 1 1 

Number of Ham email 
contain this word 

1 1 1 1 

 

We can then calculate the p(w) value of each word as: p(ws1) = (1/4)/(1/4+1/4) = 1/2, 

and p(ws2) = 1/2, p(wh1) = 1/2, p(wh2) = 1/2 

If we adapted the allspam strategy, we have the wordlist looks like: 
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Table 5.3 Word Count in bogofilter, after allspam attack 

 ws1 ws2 wh1 wh2 
Number of Spam Email 
Contain this word 

2 2 1 1 

Number of Ham email 
contain this word 

0 0 1 1 

 

And now p (ws1) = (2/6)/ (2/6+0) = 1, p (ws2) = 1, p (wh1) = (1/6)/(1/6+1/2) = 1/4, 

p(wh2) = 1/4. Now we see under flip attack, the sum of all pw values is 0.5 + 0.5 + 0.5 

+0.5 = 2, and under all spam attack, the sum of all pw values is 1 + 1 + 0.25 + 0.25 = 2.5 

We see the all spam attack add more pw value to this settings. It’s reasonable that all 

spam strategy can outperform flip strategy in our experiment.  

5.2.3 Experiment 1.2 

Now we know the allspam strategy is effective in poisoning ham email filtering and 

allham strategy is effective in poisoning spam filtering. The next question is how 

parameters like percentage of malicious users will affect the experiment result. We 

compare the different results when the number malicious users varies from {1, 6, 12, 25, 

50, 100}. It seems that the more malicious users there are, the more impact they could 

create. We verified our intuition by the following experiment.  

The experiment results are shown below. First we have a group of test results on a 

pre- classified ham email set.  
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1 malicious user, ham 

 
6 malicious user, ham  
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12 malicious users, ham test 

 

 
25 malicious users, ham test 
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50 malicious user, ham 

 
100 malicious users, ham test, 

Figure 5.4 Attack effects of different malicious users test on ham email  

From the above pictures we have the following observations: For all malicious 

strategies, the more poisoned emails get propagated, the more effects they cause to the 

collaborative filter. This follows our intuition. For example, when malicious users are 
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below 10 %( i.e. when the amount of poisoned emails is less than 10 %, the attack has 

very little effect on the collaborative filter.  

Overall, the all spam strategy caused more ham emails wrongly classified as spam 

emails (we consider an email is a spam when its spamicity value is above 0.5), however, 

when the poisoned emails’ number is around 25%, the flip strategy significantly 

outperformed all spam strategy. 

 
1 malicious user, spam test 
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6 malicious users, spam test 

 
12 malicious users, spam test 
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25 malicious users, spam test 

 
50 malicious users, spam test. 
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100 malicious users, spam test.  

Figure 5.5 Attack effects of different malicious users test on spam email 

Figure 5.5 shows the same experiment results on pre-classified spam test dataset. 

The more malicious users there are, the further the line keeps away from the normal 

strategy, which means the strategy has caused more impact on the filter. This observation 

is identical to our intuition. Also we noticed that all ham strategy has the most impact on 

the filter.  

5.2.4 Experiment 1.3 

The last experiment in set 1 tell us how parameter like the number of emails used to in 

phase 2 affects the experiment result. We believe the more emails the malicious users can 

use in phase 2, the more damage they can cause to the filter. 
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10 emails in parse 2, spam test 

 
20 emails in parse 2, spam test 
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30 emails in parse 2, spam test 

 
40 emails in parse 2, spam test 
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50 emails in parse 2, spam test 

Figure 5.6 Attack effects of different number phase2 training emails, spam test 

 
10 training emails in phase 2, ham test 
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20 training emails in phase 2, ham test 

 
30 training emails in phase 2, ham test 
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40 training emails in phase 2, ham test 

 
50 training emails in phase 2, ham test 

Figure 5.7 Attack effects of different number of phase 2 training emails, ham test 

Figure 5.6 and Figure 5.7 confirm our intuitions. Compare the cases when t2 = 1 to t2 

= 25, lines representing the malicious attack strategies are tends to vary away from the 

line representing the normal strategy.  
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5.3 Experiment 2 the Different Percentage of Attacker’s Knowledge 

From experiment 1 we’ve learnt how to attack a collaborative spam filter and what’s the 

most effective measure. In this section we will launch an attack. The scenario is like the 

following: a malicious user is trying to poison the collaborative filter so that emails of 

certain topic would get blocked. The finding are quite interesting, as we will demonstrate 

how easily malicious users can break down a collaborative filter system. 

5.3.1 Experiment 2 Workflow 

The workflow of experiment 2 has 3 phases. There is only 1 user in this system. In phase 

1 we train the user’s filter with pre-classified dataset t1 = 5000 (2500ham/ 2500spam). 

Then in phase 2, we randomly pick an email from the ham training set in phase 1 and call 

it the target email. We then assume a malicious user has per percentage content of this 

target email, and the malicious user is now trying whatever he can to get this email 

blocked. Since in experiment set 1 we conclude that all spam strategy has overall the 

most effect on poisoning the filter, we then assume the malicious user will use this 

strategy. So in phase 2, the malicious user will repeatedly register the per percentage 

email content he has as spam. At last in phase 3 we evaluate the damage by testing on the 

target email. 



42 

 

Effect
Evaluate

Collaborative
Training

Initialization

Phase1:
Initial Training

Phase2:
Attacking

Phase3:
Testing

1) Only 1 user in this experiment

1) User training on certain size of  dataset
2) Target email is a ham used in the training 
dataset

1) Attacker know percentage of the content
2) Attacker attack the filter by repeatedly register 
the target email as  spam

 

Figure 5.8 Work flow of experiment 2 

Figure 5.8 shows the work flow of experiment 2, it is similar with experiment set 1, 

except instead of propagating feedbacks on phase 2, now the malicious user knows partial 

content of the target ham email. The way he attacks is to repeatedly register this partial 

email as a spam and propagate this classification. In next section we are going to 

introduce the setting of this experiment. 

5.3.2 Experiment Setting 

This experiment has the following parameters: t1: the number of emails used in phase 1, t1 

∈{1, 500, 1000, 1500, 2000, 2500}; per: the percentage of content that is known to the 

malicious user, per ∈ {0.125, 0.25, 0.5, 1}; rpt: the number of malicious user register the 

target email as spam, rpt ∈{0, 1, 2, 4, 8, 16, 32}. We believe that the more known content, 

the more likely the target email will get blocked. 

 

 



43 

 

5.3.3 Experiment Results 

 
per = 0.125 

 
per = 0.5 
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per = 0.25 

 
per = 1.0 

Figure 5.9 Malicious attacks with per percentage known content 

The above figures show the results of malicious attacks with different amount of 

known contents of the target email. In each graph, we also compare the effect against 

different initial knowledge t1 which is represented by different types of lines. The y axis 

stands for spamicity and the x axis is repeat time of the attack. We have the following 
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observations: 1) the more the malicious user knows, the more likely he can successfully 

block the target email. This can be seen by comparing spamicity(y value) with the same x 

value in different graph; 2) identical with our experiment set 1, the more initial 

knowledge, the less effect the malicious attack is. As we can see the line representing 

500(500ham/500spam) phase 1 training, has increased most rapidly when the attack 

number increase and when the malicious user knows more the target email. 3) Similar to 

our conclusion from experiment 1, the more emails the malicious user used in the attack, 

the more impact it can cause to the filter, as we can see the spamicity grows as the 

number of attacks increase.  

5.4 Experiment 3 Compare the Impact of Bogofilter Database Size  

It is from the previous experiment that we have an intuition that the big the training set is, 

the more robust a collaborative system will be. A question follows this intuition is will an 

increased size of bogofilter help us defend/mitigate the malicious user’s attack? In this 

experiment we are trying to see how the total size of the bogofilter’s database could 

affect the different malicious strategies’ effect. This experiment is inspired by the 

conclusion we draw from experiment 2. In experiment 2, we observed that the attack will 

be less effective as the initial training increase. Our question is that will increasing the 

database size of the bogofilter a valid way to defend malicious attacks? Are there going 

to be any side effects? 

 

 

5.4.1 Workflow of Experiment Set 3 
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The workflow of experiment 3 is very similar to experiment 2. First we initialize a user. 

In phase 1 we train the bogofilter instance on some pre-classified email dataset. The 

difference with experiment 2 is in phase 2 we train some unrelated emails to boost the 

size of the bogofilter’s database, by saying unrelated, here we are saying an artificial 

email which only contains words that are not in the target email. At last we test the filter 

on 5000 test emails (2500ham/2500spam).  

 

Figure 5.10 Experiment 3 work flow 

The purpose of our experiment is to see how the size of bogofilter can affect its 

performance. We will discuss the setting in next section. 

5.4.2 Experiment Setting 

 To simplify the setting, we fix t1= 2500, rpt = 32, per = 100%, as we have thoroughly 

discussed their impact on experiment 2. To generate an unrelated email, we simply create 

an mbox email with a random string that is not contained by the Enron dataset. Training 

this email will, on the one hand, increase the size of a bogofilter’s database; on the other 
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hand, have no direct effect on the words counting when testing the target email. We have 

this parameter named nonsense and nonsense ∈{0, 500, 1500, 2000, 2500, 5000}. 

Intuitively, we believe that the larger the initial knowledge base is, the less the attacker’s 

effect is. A similar scenario is if we image the malicious attack as salt, the knowledge 

base as a container of steamed water. To “poison” the water using the same amount of 

salt, the bigger the container is (i.e. the more water there is), the less salty of the water 

will be.  

5.4.3 Experiment Results 

To effectively evaluate the experiment result, we generated a CDF (cumulative 

distribution function) graph to reflect the impact of different bogofilter database sizes. A 

CDF is the probability that the variant’s value is less than or equal to x: 

  

By drawing the CDF graph we can observe the trend of the overall spamicity with 

different parameters. 
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Figure 5.11 Bogofilter with unrelated message training, ham test 

One benefit with increased database size is that it will increase its ability to filter 

ham email. This can be observed from figure 5.11. If we draw a vertical line at spamicity 

= 0.1, then the line with nonsense = 5000 will have the highest percentage value, i.e. it 

will classify ham emails with lower spamicity overall. 

 

Figure 5.12 Bogofilter with unrelated message training, spam test 

However, when testing on the spam dataset, the boosting database size seems 

causing more trouble than good. From figure 5.12 we can see that, the bogofilter instance 

behaves less robust when facing malicious attacks on spam test. For example, if we draw 

a vertical line with spamicity = 0.6, the line represents training with 5000 (2500 

ham/2500spam) unrelated messages has the biggest percentage value, i.e. if we view 

emails with spamicity value bigger than 0.5 as spam, then a bogofilter instance with 5000 

extra trainings will capture least number of spam on the spam test dataset. On the other 

hand, bogofilter instance with no extra training has the highest ability to capture the spam 

emails. 
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CHAPTER 6  

CONCLUSIONS 

   

Although collaborative filtering systems have many forms, the general workflow of 

collaborative system is very similar to each other [51], a typical collaborative filter 

system works like the following: 

1)  Looking for users who share a similar taste with the active user; 

2) Gathering information from each similar group; 

3)    Use information obtained from Step 2 to calculate prediction/recommendations 

for the active user 

From the workflow, we can see that the shilling attack that we discussed in chapter 5 

can be used to against any collaborative system, i.e. malicious users can spread 

false/wrong information in step2 thus poison the whole system.  Our research has been 

focused on this general mode of collaborative filtering. The conclusion can thus benefit 

the general collaborative filtering systems. 

From the 3 questions we posed earlier in chapter 1, we have the following findings. 

First question is how effective shilling is on CF Systems. As shown in Experiment set 1, 

by constantly providing false feedbacks, the collaborative spam filter will be affected 

when the false feedback takes about 1/4 of the total feedbacks. The filter performs poorly 

when 1/2 of the total feedbacks are false (figure 5.4/figure 5.5). Thinking about the 
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possibility of using bot to create false accounts, it’s very easy for shills to achieve this 

goal. Thus we believe shilling is very effective against the CF system. 

The second is how the pre knowledge of the CF system affects the attack effect. In 

experiment set 2 we demonstrate that if attackers know part of the target email, it takes 

much less effort to block it. Similarly, we believe in general CF systems, knowledge like 

the items, users, ratings, and algorithms will generally make the attack more effective. 

The third question is how the scale of the CF system affects the attack effect. As we 

have shown in experiment set 3, it will take shills more effort to bring down a CF system 

with a bigger knowledge base. However, we also observed that simply increasing the 

filter’s database size is not a good option for defending the shilling attack. It will decrease 

spamicity for both ham test and spam test; 

Although the collaborative filter provides an efficient way for knowledge sharing 

between different users, based our experiments, we found it also brings vulnerability. 

Without proper detection/protection mechanisms, the CF system is extremely vulnerable 

to the shilling attack.  
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CHAPTER 7  

FUTURE WORK 

One possible solution to defend the collaborative filter against malicious attacks is to 

build a user’s classification system, where users with similar taste will be grouped into 

the same group. Thus collaborative operation will only happen within group members. 

This will require a partition and clustering algorithm to group users. 

Another possible solution is to build a user credit system, where every feedback will 

be assigned a credit score. This approach assumes: 1) the majority users in the system are 

good users. 2) Good users share a similar opinion on distinguishing spam and ham. Given 

this system, if a user’s feedbacks are significant different from the other users’ feedbacks. 

We’ll lower the credit score of this feedback. The credit score can be used to determine 

the possibility a feedback will be accepted by others. The higher the credit score, the 

more persuasive the feedback is going to be. This approach will need an algorithm to 

determine the similarity between emails. 
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