

SEMANTICALLY-ENRICHED SOFTWARE REQUIREMENTS SPECIFICATION

by

CHENXIAO FAN

(Under the Direction of Krzysztof J. Kochut)

ABSTRACT

 The software requirements specification is one of the major phases in the software

development cycle. This is due to the fact that different stakeholders who are involved in the

development process may lack a common set of goals driving the software development or even

lack a common terminology to express the requirements and goals. Therefore, the requirements

specification statements and associated use-case descriptions must be formulated as clearly and

with as little ambiguity as possible. In this thesis, we propose to take advantage of templates,

consisting of attributes and predefined terms, to control the form of requirements statements. We

also present a requirements specification software tool assisting developers in creating semi-

formal use-case description statements using templates. The tool was developed as a plug-in to

Eclipse, a popular software development environment. The created requirements sentences are

more structurally uniform and due to the used ontology, easier to understand to stakeholders.

INDEX WORDS: Template, Software Engineering, Semantic Web, Ontology,

 Requirements Engineering, Eclipse plug-in

SEMANTICALLY-ENRICHED SOFTWARE REQUIREMENTS SPECIFICATION

By

CHENXIAO FAN

BS, NORTHWEST UNIVERSITY, CHINA, 2011

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2014

© 2014

CHENXIAO FAN

All Rights Reserved

SEMANTICALLY-ENRICHED SOFTWARE REQUIREMENTS SPECIFICATION

by

CHENXIAO FAN

 Major Professor: Krzysztof J. Kochut
 Committee: Khaled M. Rasheed
 Ismailcem Budak Arpinar

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2014

 iv

 DEDICATION

First of all, A special feeling of gratitude to my loving parents, Jun and Enke Fan whose words

of encouragement and push for tenacity ring in my ears. I also dedicate this work to my best

friends, Clay and Yingtao who have supported me throughout the entire process.

 v

ACKNOWLEDGEMENTS

These years in UGA have been the most colorful years of my life. I cannot thank enough to Dr.

Kochut for my work. Thanks for your guidance and encouragement. I am very grateful to my

committee members Dr. Rasheed and Dr. Arpinar for their timely availability and suggestions.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ... 1

1.1 Requirements engineering .. 1

1.2 Ontologies ... 3

1.3 Template ... 6

1.4 Contribution .. 7

2 BACKGROUND ... 9

2.1 Eclipse ... 9

3 RELATED WORK .. 12

3.1 SWORE... 12

3.2 DODT ... 13

3.3 Semantic assistant ... 14

3.4 DOORs .. 15

4 SEMANTICALLY ENRICHED REQUIREMENTS ... 16

4.1 Controlled requirement language .. 16

4.2 Template ... 17

4.3 Template classification ... 19

 vii

4.4 Benefits of using template .. 22

4.5 Use Case descriptions and Functional Requirements ... 23

4.6 Ontology for requirements specification .. 27

5 PROTOYPE IMPLEMENTATION .. 30

5.1 Overviews ... 30

5.2 User stories .. 31

5.3 Plug-in implementation ... 32

6 CASE STUDY AND EVALUATION .. 46

6.1 Methodology ... 46

7 CONCLUSION AND FUTURE WORK .. 56

REFERENCES ... 58

 viii

LIST OF TABLES

Table 6. 1: Use Case - Login .. 49

Table 6.2: Use case - Search Vehicle .. 49

Table 6.3: Use Case - Reserve Vehicle ... 50

Table 6.4: Use case - rent registration .. 51

Table 6.5: Classes in VSO and their definitions. .. 52

Table 6.6: Object properties: ... 52

Table 6.7: Data properties: .. 53

 ix

 LIST OF FIGURES

Figure 1.1: Requirement classification ... 2

Figure 1.2: Data property and object property. ... 5

Figure 1.3: Typical contents of a template .. 6

Figure 1.4: An example of using a template. .. 7

Figure 2.1: The Eclipse architecture 10

Figure 2.2: Eclipse workbench. .. 11

Figure 3.1: Visualization of SWORE. .. 13

Figure 3.2: DODT screenshot .. 14

Figure 3.3: Semantic Assistant architecture . .. 15

Figure 4.1: Attribute structure .. 19

Figure 4.2: Template classification ... 20

Figure 4.3: Main template ... 20

Figure 4.4: Prefix template ... 21

Figure 4.5: Suffix template ... 21

Figure 4.6: Comparison of use cases and declarative statements ... 24

Figure 4.7: Use case diagram of car rental reserve system ... 27

Figure 4.8: Domain facts ... 29

Figure 5.1: Common attributes of ontology resources that are expressed through methods on

OntResource. ... 33

Figure 5.2: Plug-in imports ontology. ... 36

 x

Figure 5.3: Project overview. .. 36

Figure 5.4: Eclipse general architecture ... 38

Figure 5.5: A new toolbar button shown in Eclipse workbench. .. 39

Figure 5.6: User package .. 40

Figure 5.7: Runtime libraries. ... 40

Figure 5.8: Screenshot of the Eclipse plug-in. .. 42

Figure 5.9: The ontology’s guidance to template instantiation. .. 42

Figure 5.10: The viewer of use case description statements. .. 45

Figure 6.1: Use case diagram .. 48

Figure 6.2: Screenshot of use case login. .. 54

Figure 6.3: Screenshot of use case search. .. 54

Figure 6.4: Screenshot of use case reservation ... 55

 1

CHAPTER 1

INTRODUCTION

1.1 Requirements engineering

Requirements engineering is treated as one of the most important parts of the software

development. Many techniques have been developed in this research area. The importance of

requirements process has been identified as the crucial factor of success of a project. This is due

to the fact that different participants involved in the development and they need to build a

common understanding, as well as goals, scenarios and requirements statements expressed using

these techniques [1].

In software engineering, the requirements are detailed descriptions of the needs for a system. In

practice, the requirements are split into two groups. The first group includes functional

requirements, which defines what the system must do. The other one is the non–functional

requirements, which says the quality of system and additional information about system, for

example, its response time or load capacity. The more detailed requirement categorization is

shown in Figure 1.1. The figure shows the connection between each level of requirements. The

business level is the highest level of goals and can be divided into sub-goals as seen by the user.

These user goals can also be divided into product level goals [2].

In general, there are four activities in software requirements engineering: 1) requirements

gathering and expression, 2) requirements specification, 3) requirements validation, and 4)

requirements management [3]. The usual requirements engineering process follows the above

steps to create a requirement document. The first and second activities are known as the

 2

intermediate steps to obtain requirements. The stakeholders show their intention for planned

system and the developers simply build the system according to the requirements. Stakeholders

offer examples to resolve the problems in the first stage, and this makes less conflict because it is

easier to reach agreement at the business level. Detailed examples, which are scenarios, can be

useful for the planned systems in describing user-level requirements. The product level comes as

the last one and it includes difficult considerations because the stakeholders are usually not quite

sure about the system’s functionality at this level. Ambiguities in system’s concepts can lead to

potential disagreements between various developers. Thus, we are seeking ways to reduce

misunderstanding at the beginning of the requirements engineering.

 Figure 1.1: Requirement classification

 3

There are several excellent tools and techniques that can help in the requirements engineering

process. They assist developers in understanding the stakeholders and building high quality

requirement document. One of the most crucial problems in requirements engineering is that

most of these documents are written in natural language and it is difficult to process the

requirements document by a computer program. If we can improve handing of the semantic

aspects of the document, we certainly can obtain an effective tool for requirements’ analysis.

1.2 Ontologies

Ontology technologies are widely used in many subjects nowadays. In the context of computer

and information sciences, an ontology defines a set of representational primitives with which to

model a domain of knowledge or discourse. The representational primitives are typically classes

(or sets), attributes (or properties), and relationships (or relations among class members) [3].

Ontologies are typically specified in languages that allow abstraction away from data structures

and implementation strategies; in practice, the ontology languages are closer in expressive power

to first-order logic than languages used to model databases. For this reason, ontologies are said

to be at the "semantic" level [4]. As mentioned above, the ontology offers meaning of word as

thesaurus and inference rules on it. Each concept in the ontology represents one atomic element

in the domain area and has a specific meaning. That is to say, the thesaurus part of ontology

plays role in subject of the semantic aspect.

Considering requirements engineering, the creation of requirements is the demonstration of the

exact meaning to stakeholders. The stakeholders will find requirements documents easier to

analyze and understand if the requirements, which come from stakeholders’ potential needs, are

expressed in a uniform format. It also makes correcting problems and establishing universal

understanding of a project easier. Well-formulated requirements have certain characteristics,

 4

which typically include characteristics are consistency, cohesion, completeness, traceability and

verifiability [4].

In this thesis, a domain ontology is used to guide a software engineer in creating use case

descriptions. With the help of an Eclipse plug-in [7] we implemented, the developers are able to

view and define the meaning of the concepts. What’s more, it also aids an analyst or a domain

expert identifying the newly found concepts that are relevant and should be added to the existing

ontology. These valid concepts are further defined and then added to the domain ontology. The

domain ontology provides a common vocabulary, which can be used to improve communication

between stakeholders. It can also be used to reasoning over a system, checking information for

completeness, consistency and correctness.

Protégé is a free, open source ontology editor and knowledge base framework [5]. Protégé

provides support for consistency checking (“can a class have any instances?”), classification (“is

A subclass of B?”) and instance classification (“which classes do an individual belong to?”).

Web Ontology Language (OWL) ontologies consists of:

• Entities, including:

– Individuals: instances in the domain.

– Classes: sets that contain individuals.

– Properties: binary relations.

• Expressions: represent complex notions, e.g. restrictions.

• Axioms: statements that are asserted to be true in the domain.

Usually, properties are divided into two categories. One includes data properties and the other

object properties. Data properties can have values of many types: String, Int, Float, Boolean and

so on. The restriction types, include, are some (existential), only (universal), min, max and

 5

exactly. For a given property P, a minimum cardinality restriction specifies the number of P

relationships that an individual must participate in. Figure 1.2 shows how data properties and

object properties are represented in an ontology. Object properties specify relationships between

individuals, such as “has_a” or “gets_speed_signal_from”. For example: the “online system” has

object property “accept payment method” whose domain is “payment method”. The data

property is a property related to literals. For example, the concept “online” has data property

“hasID”.

In conclusion, domain ontology is capable of specifying knowledge of a domain area. In this

thesis, the domain is the problem domain where the system is to be used. The ontology has

detailed information about the concepts and relationship of the specified area.

Figure 1.2: Data property and object property.

 6

1.3 Templates

In the industry, requirements are often built using unstructured, free text. Free text offers

complete freedom to create the requirements as needed, but with that, the risk of ambiguity and

inconsistency increases [6]. Templates are used to structure requirements. Basically, people

classify structure expressions into three levels. One is informal structure without any rules

applied. Second are semi-formal expressions—particularly the constrained requirements-

specification language and templates. The last one includes formal expressions such as state

diagrams or other mathematical notations, such as the Z notation [6]. Using template, the

requirements can be written in a semi-formal language.

A quite simple example of a template is “ The <entity> shall be able to <capability>”. This is a

template to describe the potential entity and its capability. Several templates exist, so software

developers can select the most appropriate template for the requirement at hand.

Specific values of attributes, suitable to the domain of the system are filled in. In the previous

example, <capability> could be set to “rent a book”. A template with instantiated attributes

represents the requirement statement. Figure 1.3 shows the basic structure of a template. The

template is a way to be consistent and precise by using same vocabulary across all requirement

statements [2].

Figure 1.3: Typical contents of a template [2]

Attribute Syntax
element Requirement

 7

In a way, templates are similar to user stories. The differences are that user stories are often

written using the following structure: “As a <user> I want to <capability> so that <business

value>”. However, a template takes use of predefined attributes and makes instantiating

attributes value a part of the process to identify the template that fits the most. Figure 1.4

describes a usage of template. Attributes of template are: User, Capability, Quantity, Time Unit,

Operational condition, System function, Action, Entity, State and Effect. To use the example in

Figure 1.4, a system’s capability, called distance monitoring, could perhaps be referred to as

longitude monitoring or a way to measure the distance. Mixing these terms could not only give

widely different results, but could also confuse the developer into believing they refer to three

different entities.

Template The <System function> shall provide <System capability> to achieve
<goal>

Attributes System function: ACC

System capability: Distance monitoring

Goal: A minimum distance to vehicle in front

Requirements The ACC shall provide distance monitoring to achieve a
minimum distance to vehicle in front.

Figure 1.4: An example of using a template.

1.4 Contributions

There are two main contributions of this thesis to the field of requirements engineering. They are

summarized as follow:

1. Using domain ontology as input to guide creation of requirements. The domain ontology

contains definitions of concepts and possible relationship. It helps to reduce the ambiguity and

 8

reach common understanding. As final result, the requirements are described using a uniformed

format within same vocabularies and concepts.

2. Development of an Eclipse plug-in that utilizes templates and ontologies to guide the

creation of requirements statements or use-case descriptions. The major innovation is to help

create formal, easily understandable use case descriptions. The plug-in assists users in creating

their own templates and instantiating templates within the concepts in ontology. It also highlights

the concept from the ontology in the template instance.

 9

CHAPTER 2

BACKGROUND

2.1 Eclipse

Eclipse is a universal development environment (IDE) first introduced by an IBM Canada

project. It contains a base workspace and an extensible plug-in system for customizing the

environment. Most frequently, Eclipse is used for computer system development using a

programming language, such as Java [7]. It can be used to develop Java applications, various

plug-ins and special projects. The Eclipse platform is made up of several components: the

platform kernel, the workbench, the workspace, the team component and the help component.

The Eclipse architecture is shown in Figure 2.1

The platform kernel task is to get everything started and to load the needed plug-ins. While

starting Eclipse, this is the component that runs first. It loads the other plug-ins that people

normally think of as Eclipse itself, such as the workbench.

The Eclipse workbench is shown in Figure 2.2. It is the basic graphical interface for working

with Eclipse. It includes various toolbars and menus for people to use, and its job is to present

those items and the internal windows as shown in Figure 2.2.

The Eclipse workspace

The workspace manages all project resources that includes everything stored on disk or

connected machines. Developers’ code resides within an Eclipse project. Each project is given its

own folder in the workspace directory, which makes it easy to keep track of them. Each project

itself can contain many subfolders.

 10

 Figure 2.1: The Eclipse architecture [7].

The team component is a plug-in that supports version control in Eclipse. In version control, the

program code is checked into or out of a repository as needed so that the changes to that software

can be tracked. This is also done so that team members do not overlap or obliterate changes

made by other team members.

The help component is an extensible documentation system for providing help; plug-ins can

provide HTML documentation with XML-formatted data to indicate how that help

documentation should be navigated.

The eclipse platform kernel

Workspace Workbench

Team Help

JDT Plug-in PDE Plug-in Additional plug-in

 11

Figure 2.2: Eclipse workbench.

An Eclipse plug-in is a component that provides a certain type of services within the context of

the Eclipse workbench. The Eclipse runtime provides an infrastructure to support the activation

and operation of a set of plug-ins working together to provide a seamless environment for

development activities. Within a running Eclipse instance, a plug-in is embodied in an instance

of some plug-in runtime classes, or plug-in classes. In short, the plug-in class provides

configuration and management support for the plug-in instance. A plug-in class in Eclipse must

extend org.eclipse.core.runtime. Plug-in is an abstract class that provides generic facilities for

managing plug-ins.

In this thesis, we implemented an Eclipse plug-in as a prototype implementation of our

requirements specification method. The goal of this implementation is to aid understanding the

requirement using semantic techniques. The detailed information will be presented in Chapter 5.

 12

CHAPTER 3

RELATED WORK

Before discussing our approach of dealing with the software requirements, we will talk about

several mature or ongoing approaches in requirements engineering. We will also talk about what

aspects these approaches can be applied to.

There are several projects dealing with requirements engineering. They mainly concentrate in the

following areas: 1) the process of building software requirements ontology, 2) the analysis of

source code, 3) the common ontology used to minimize the misunderstanding of requirement

concepts, 4) the automatic test case generation from software requirements, 5) software

requirement collaboration and management, and 6) the improvement of software maintenance.

Surely, there exist other aspects covered by requirement-engineering techniques not discussed

here. However, the above six points cover the majority of the requirements’ work.

3.1 SWORE

SWORE is an ontology which is used to describe a requirements model with the SoftWiki

methodology. The SoftWiki methodology supports a Wiki-based distributed, end-user centered

requirements engineering for evolutionary of software development. The core of SWORE

includes classes that represent essential concepts of nearly every requirements engineering

project. It supports the core concepts such as Requirement, Source, and Stakeholder. It is

aligned to external vocabularies including DC-Terms [6], SIOC [28], FOAF [29], SKOS [30] or

the tagging ontologies Tags and MUTO [1].

 13

Figure 3.1: Visualization of SWORE [1].

3.2 DODT

DODT is a semi-automatic tool that transforms the natural language requirements into

formalized template requirements. The transformation is based on a domain ontology containing

basic concepts of the problem area and also upon the natural language processing techniques.

The tool reduces the required manual effort for the formalization of requirement statements and

further improves the quality of the requirements [8].

DODT provides a list of suggestions to the requirements engineer while creating formulated

requirement upon the templates. The provided guidance depends on the attributes that the

requirements engineer is currently considering. The idea is to apply an attribute based pre-filter

to avoid overwhelming the user with the complete list of ontology entities.

 14

 Figure 3.2: DODT screenshot [8]

3.3 Semantic assistant

In the Semantic Assistant project, the author investigates how to support users in content

retrieval, analysis, and development, by offering context-sensitive NLP services directly

integrated with common desktop applications (word processors, email clients, Web browsers),

Web information systems (wikis, portals) and mobile applications (based on Android). They are

implemented through an open service-oriented architecture, using Semantic Web ontologies and

W3C Web Services [9].

The author developed an Eclipse plug-in integrated into the Eclipse development environment

and into the Semantic Assistants architecture. It provides a user interface for offering various

Natural Language Processing services to the users. In particular, when using Eclipse as a

software development environment, people can use novel semantic analysis services, such as

named entity detection or quality analysis of the source code comments to software developers.

 15

 Figure 3.3: Semantic Assistant architecture [9].

3.4 DOORs

DOORs is a requirements management tool that makes it easy to capture, trace, analyze, and

manage requirements changes. Control of requirements is key to reducing costs, increasing

efficiency, and improving the quality of your products. DOORs offers the following features

making it easy to manage the requirements. Developers can manage changes to requirements

with either a simple predefined change proposal system or a more thorough, customizable

change control workflow through integration with Rational change management solutions. It is

possible to link requirements to design items, test plans, test cases, and other requirements for

easy and powerful traceability. Business users, marketing, suppliers, systems engineers, and

business analysts can collaborate directly through requirements discussions. Also user can use

the Open Services for Lifecycle Collaboration (OSLC) specifications for requirements

management, change management, and quality management to integrate with systems and

software lifecycle tools [10].

 16

CHAPTER 4

SEMANTICALLY ENRICHED REQUIREMENTS

4.1 Controlled requirement language

A bad requirements description language has been recognized by several studies as one of the

most critical reasons for project failure [2]. The Standish Group [11] places incomplete and

changing requirements second and third on the list of “Project Challenged Factors”. The most

common description language for expressing requirements is to use free natural language text.

This gives people a lot of flexibility and is easy to learn and use. However, this technique offers

almost no support for ensuring the quality of requirements. Thus, both developers and end users

have been looking for a new type of language for describing the requirements. As result, the

researchers have come up with a template based requirements description language. This

language offers the capability to control the variability in formulating requirement statements.

In order to ensure the quality of requirements in development process, some organizations have

started to use Controlled Natural Language, a type of language specially designed to address

their communicative needs. CNL is a subset of NL that uses:

1. A domain-specific vocabulary, to avoid synonymy (i.e., two different terms referring to the

same entity) and ambiguity (i.e., the same term referring to two or more entities in problem

domain);

2. A restricted set of grammar rules, which can be general (e.g., ‘write short and simple

sentences’), or more formal, counting on grammar rules to constrain the accepted syntactic

structure.

 17

Two major groups of CNLs have been identified in application field. They have been designed

for different purposes. The most basic purpose is to define a standard to be followed throughout

an organization. Another group of CNL is on the more formal side. They help to map from a

CNL to a formal representation, which can be understood by machines.

Normally, software requirements can be classified into three categories: formal, semi-formal and

informal. Controlled Natural Language is meant to be the middle between formal and informal.

Formal requirements are easy to understand for machines, but usually, require a lot of training,

and also places several corresponding restrictions on the requirements [12]. UML and the Z

notation are examples of formal languages.

The informal representations do not require many restrictions. And they do not have any

formulation. Consequently, they are least suitable for being understood by machines. However,

informal language is easy to use for stakeholders who do not have any background knowledge in

formal requirements [12]. The free text, also known as natural language, is one type of informal

language.

The Semi-formal representation is intermediate language. It aids the requirement developers in

writing better requirements. The semi-formal language is also regarded as Controlled Natural

Language for requirements. It combines the easy of use of informal requirement with the ability

to automate work processes surrounding the creation and maintenance the requirements [13].

4.2 Templates

The purpose of using templates is that they help “in knowing how to express certain kinds of

requirement in a consistent language” [14]. A template is a free-text based language statement

with prescribed words from a standard set. It does not have any constraints and requires minimal

expertise. Typically, a template has two parts: attributes and the literal text. Both attributes and

 18

sentences are chosen from predefined repository. The reason for providing and maintaining a

standard attribute and a syntax repository is to ensure that the same is given to the same

composition for all the requirements, and sentences are consistent both throughput the project

and between projects within the organization. This is supposed to prevent ambiguities and

misunderstandings that can arise if an entity is given different names, or not named properly.

In the example in Figure 1.3, the system distance monitoring could perhaps be referred to by

another name. Mixing these entities could probably generate different results and confuse the

developer into thinking they are referring to different terms.

We use the attributes whose structure is shown in Figure 4.1. The root node on the top is only

used in itself. The root node is parent node of action, entity and quantity. Action is the possible

verb or activity used by the potential entity. Entity is a big concept. It includes many terms such

as event, goal and many others. The quantity is used for any measure necessary, regardless of

whether it is length, weight, duration or any others. It is also important to specify that this can be

used in cases where the specific value is not yet determined, in which case it can be instantiated

as “TBD”, to be decided. Also, not filling out the quantity can be used in cases where the values

are confidential.

By using pre-defined templates, the requirements are likely to be more uniform, preventing

vague or ambiguous requirements. New templates can be created according to the user’s

demand. As the templates are used over time, the company or organization can gradually achieve

uniformity for its requirements, avoiding vague or misunderstanding requirements that lead to

costly mistakes.

 19

Figure 4.1: Attribute structure [14]

4.3 Template classification

Each template can be classified according to categories listed in Figure 4.2. The words in

parenthesis refer to the goal type for the template, such as minimizing or maximizing properties.

The following is the complete list of templates, as presented in [8]. The templates are classified

into three types; main, prefix, and suffix templates. A main template is able to work as

standalone, whereas prefix and suffix templates must be prepended or appended, respectively.

The two are sometimes referred to collectively as modes.

 Classification of templates

Capability

Capacity (Maximize, Exceed)

Rapidity (Minimize, do not exceed)

Mode (while, if, for …)

Sustainability

 20

Timelines

Operational Constraints

Exception

Figure 4.2: Template classification

Main templates

The main templates are standalone, which means that if the attributes are instantiated they can

constitute a requirement on their own. Figure 4.3 shows a few of main templates. Template 1

can be instantiated as “ <Laptop> may be < restart>” and No.2 as “<Laptop> shall <prompt a

message>”.

Prefix templates

A prefix template needs to be prepended or appended to main template, and can then provide

conditions such as “ if <event>” or “while <state>”. For example, prepending 6 in Figure 4.4 to

1 <System> may be <state>

2 <System> shall <action>

3 <System> shall allow <entity> to be

<state>

4 <System> shall have <quality factor> of

at least <quantity><unit>

5 <System> shall not <action>

Figure 4.3: Main template

 21

5 in Figure 4.3, could create the requirement: “ If < In sleep mode>, <laptop> shall not <resume

session>.”

6 If <Event>

7 If <State>

8 While <State>

9 In order to <Action>

Figure 4.4: Prefix template

Suffix templates

A suffix template is similar to a prefix template. It also needs to be attached to a main template,

such as “ If <In sleep mode>, <laptop> shall not < resume session> within <5> <seconds>.” (10

attached to 6 in Figure 4.4 + 5 in Figure 4.3)

10 With < Quantity><Unit>

11 After <Event>

12 At least <Quantity> times per
<unit>

Figure 4.5: Suffix template

 22

4.4 Benefits of using templates

The general goal of using templates is to standardize the formulation of requirements, with

regards to both structure and vocabulary, so as to create consistency and prevent ambiguities.

The Benefits are summarized as follows [18]:

1. Standardized formulation

The template forces requirements to be expressed in a certain uniform way. It makes similar

requirements look alike, which helps the stakeholders (developers, customers, management, etc.)

in understanding the requirements better, and also prevents confusion as to what the

requirements mean.

2. Preventing ambiguity

The rigidness of a template prevents a vague language and encourages specifying the exact

meaning. See example 12, 9, 4 through Figure 4.3 to Figure 4.5.

3. Preventing inconsistency

A clear language and specification of purpose helps developers and others to see the

dependencies between requirements, thus preventing inconsistency. See example 9 in Figure 4.4.

4. Uniformity

In addition to the template, the attributes should be selected from a problem domain or a standard

repository set, which ensure attributes are named the same throughput the requirements, and also

between projects. A common understanding of the requirements reduces the possibility of

ambiguities and inconsistencies.

5. Ease of understanding

The template is type of Controlled Natural Language or Semi-formal language. There are certain

constraints to the vocabulary and the structure of the sentences, but they are less strict than a

 23

formal language such as UML. People have better intuitive understanding of an informal

representation than a formal representation. The templates are instantiated to form natural

language sentences and should therefore be easier to understand than formal expressions, while

still maintaining the benefits of a semi-formal method.

Drawbacks

There have not been much research or experiments preformed yet to measure the performance of

using templates. However, some obvious deficiencies include:

1. Reduced flexibility

The template has less freedom to express the requirements as wanted. We already mentioned

before, the template is a semi-formal language. Therefore, it has predefined attributes, which the

users fill in. On the other hand, it adds constraints to the representations. These constraints may

lead the requirements engineers to take shortcuts that may lead to a loss of detail and

functionality.

2. Stricter language

A template is more formal than free natural language text. Therefore, it may be argued that

templates are more difficult to understand than free text. However, several of the benefits given

in Chapter 1 suggest otherwise [19].

4.5 Use Case descriptions and Functional Requirements

In software engineering, there are basically two ways of capturing functional requirements. One

is the Use Case form and another is declarative statement describing the functional requirements.

Functional requirements statements describe the behavior of the system. This behavior may be

expressed as services, tasks or functions the system is required to perform. In a word, functional

requirements describe what a software system should do. They also define the fundamental terms

 24

related to the potential system and could help track the necessary information required to

development process.

Use Cases are derived from the functional requirements statements. Actually, in most situations a

single Use Case is typically based on several requirements and a single requirement may appear

in several Use Cases. The reason for this is that a use-case does not describe just any activities in

the system but a high-level activity triggered by an external source. On the other hand, functional

requirements usually describe internal or partial activities and yield functional blocks inside Use

Cases.

Figure 4.6: Comparison of use cases and declarative statements [18]

The idea of Use Cases first appeared in the mid-1980s in [20]. A Use Case describes the

proposed functionality of a new system. A Use Case represents a discrete unit of interaction

between a user (human or machine) and the system. A Use Case is a single unit of meaningful

work; for example, logging in to a system, registering with a system, and creating order are all

use cases. Descriptions inside a Use Case define the functionalities, which will be built in to the

 25

proposed system. A Use Case may include the functionality of another Use Case or ‘extend’

another Use Case with its own behavior.

A use case diagram is used to graphically depict a subset of the model to simplify the use case

description. Typically, there are several use-case diagrams associated with a given model, each

of them shows a subset of the model elements relevant for a particular purpose. The same model

elements may be shown on several use case diagrams, but each instance must be consistent. If

tools are used to maintain the use case model, this consistency constraint is automated, and any

changes to the model element (changing the name for example) will be automatically reflected

on every use case diagram that shows that element.

Most of the use case models are textual, with the text captured in the use case specifications that

are associated with each use case model element. These specifications describe the flow of

events of the Use Case. The use case model serves as a unifying thread throughout system

development. It is used as the primary specification of the functional requirements for the

system, as the basis for analysis and design, as an input to iteration planning, as the basis of

defining test cases and as the basis for user documentation basic model elements.

The use case model contains, as a minimum, the following basic elements. Actor: A model

element representing each participant. Properties include the actor’s name and a brief

description.

Use Case: A model element, which represents each use case. Properties include the use case

name and the use case specification. Associations: Associations are used to describe the

relationships between actors and the use cases they participate in. This relationship is commonly

known as a "communicates-association".

 26

A use case description provides textual details. Briefly speaking, there are three level of use case

descriptions. 1) The brief description: it only summarizes the basic information of what system

does in response to users’ action; 2) Intermediate description: this type of description contains

the sequential flow of interaction between user and system and also the constraints to the use

case scenario; 3) Full use case description: it expands the intermediate use case description.

In the context of use case description, ‘Use cases’ are typically related to ‘actors’. An actor is a

human or machine entity that interacts with the system to perform meaningful work. A use case

description generally includes:

1. General comments and notes describing the use case.

2. Requirements, that is what that use case must allow the actor to do, such as <ability to update

order>, <ability to modify order>.

3. Constraints, which are rules about what can and cannot be done. They include 1) pre-

conditions that must be true before the use case runs, e.g. <create order> must precede <modify

order>, 2) post-conditions that must be true once the use case runs, e.g. <order is modifies and

consistent>, and 3) invariants which must always be true, e.g., an order must always have a

customer number.

4. Scenarios: sequential descriptions of the steps taken to carry out the use case. May include

multiple scenarios, to cater for exceptional circumstances and alternate processing paths.

5. Scenarios diagrams: sequence diagrams to depict the workflow.

6. Additional attributes, such as the implementation phase, version number, complexity.

In contrast to use case diagrams, Use Case descriptions capture variation of a use case. Figure

4.7 shows a car rental reservation system use case. In this example, we have three actors who are

staff, manager, and customer. They interact through the system, which offers a few functions. It

 27

allows the staff to login to the system and maintain business function activities with customers.

The customers are able to do all activities involved in car rental business process. The manager is

responsible for manage staff and starts up the whole business.

Figure 4.7: Use case diagram of car rental reserve system

4.6 Ontology for requirements specification

The word ontology comes from the Greek ‘ontos’ (being) and ‘logos’ (word) [4]. It denotes the

science and the descriptions for the organization, designation and categorization of existence.

Carried over to computer science in the field of Artificial Intelligence and Information

Technology, ontology is understood as a representational artifact for specifying the semantics or

meaning about the information or knowledge in a certain domain in a structured form.

 28

More precisely, ontology is an explicit formal specification of how to represent the entities that

exist in a given domain of interest and the relationships that hold among them [16]. In general,

for ontology to be useful, it must represent a shared, agreed upon conceptualization. Ontologies

have been used in many contexts and for many purposes throughout the years due to, principally,

the advent of the Semantic Web. Recently, the use of ontologies in software engineering has

gained popularity for two main reasons: (1) they facilitate the semantic interoperability and (2)

they facilitate machine reasoning. Researchers have so far proposed many different synergies

between software engineering and ontologies. For example, ontologies are used in requirements

engineering, software implementation, and software maintenance. An increasing amount of

research has been devoted to utilizing ontologies in software engineering, and requirements

engineering in particular.

The goal of using techniques in Semantic web towards requirements should be revising the

previous requirements process and establishment of well-defined functionalities. The potential

use of ontology in Requirements engineering would be: (1) imposing and enabling a particular

paradigmatic way of structuring requirements, (2) acquiring structures for domain knowledge,

and (3) adding knowledge of the application domain.

The domain ontology contains facts about the domain that are relevant to requirements

engineering, i.e., facts that can be used to formulate and to analyze requirements. The domain

ontology should be usable to specify requirements for several projects in the same domain. Thus,

adding concepts, which are only relevant to a single product, should be avoided. There are three

elements about the facts stored in the domain ontology. The following list describes them in

Figure 4.8.

 29

In this thesis, ontology is used as a domain expert and guidance in filling in the template

attributes in order to formalize the requirement statements. As a result, ambiguity and

misunderstanding is reduced and it promotes the completeness and consistency. Furthermore, in

this thesis we assume the existence of a suitable domain ontology.

 Fact

Concept: Name and definition of the

concept itself.

Possible relation between Concepts.

Subclass of Concept

Equivalent class of Concept

Figure 4.8: Domain facts

 30

CHAPTER 5

PROTOYPE IMPLEMENTATION

5.1 Overviews

Most of researches have been conducted in the area of requirements engineering aimed at

improving this process. It is helpful to annotate the requirements, to implement collaboration

requirements management, and even to generate test cases automatically. The topics of this type

of research are varied. It is useful to take a look at these projects and how they achieve the goal

of improving requirements process.

The DODT is a tool, which is developed to formalize the requirement statements using

templates. But there are still some existing questions: 1) developers have difficulty in getting

common understanding of one term in requirement statements, 2) DODT cannot detect the

relationships between these concepts, and 3) the standard vocabulary is not updated.

Another tool is called Semantic Assistant, which is an Eclipse plug-in. It uses Natural Language

processing techniques to help understanding the JavaDoc [27] inside the source code. It helps

people to annotate the meaning of code that is usually hard to read and to make things easy for

future work. However, Natural Language processing has some uncertainty and stakeholders who

are not programming experts want techniques to aid them in the early stages of the requirements

process.

Therefore, we decided to develop a tool with the following capabilities: 1) it should help people

understand the requirements in early stages, 2) it should help to formalize the Use Case, 3) it

 31

should work with popular development environment Eclipse as a plug-in, and 4) it should use the

Semantic Web techniques.

We will focus on the following aspects in this thesis: domain ontologies, templates, and the

implementation of the Eclipse plug-in.

5.2 User stories

The requirements are the first concern of this project. We have implemented a tool, which can

help collecting, generating the requirements statements and also explaining the meaning of a

concept in the requirements statements. Within templates, the requirements are written using the

following format: As a <user> I want to <capability or action> so that <benefit or purpose>. This

is a user story consisting of whom, what and why. The generic term “user” will be used if the

user type is common for customers, developers, and so forth. The sequence of steps is as follow:

S1: Import ontology

The user wants to import existing domain ontology so that it can be used as guidance in filling

the attributes and also present the meaning and relationship of concepts.

S2: Generate requirements

The user wants to generate or collect requirements so that already written requirements can be

formalized.

S3: Domain concept information

Developers want to be able to see information about a domain concept used in a feature so that

he or she can understand what the feature really means.

S4: Update the ontology

Developers should be able to update the domain ontology.

S5: View

 32

Developers should be able to have an overview of requirements.

S6: Concepts in ontology

Developers should be able to know which concept in requirements is not come from ontology.

S7: Quality of requirement

Customers should be able to measure the quality of requirement statements generated by the tool.

S8: Template

Developers should be able to create various style templates. The tool should help them to store

their history of using templates.

S9: Workspace

Developers should be able to build a workspace for the requirements that for different purpose or

different projects.

These user stories reflect the basic needs for a tool-assisted requirements statement generator.

Furthermore, IEEE Recommended Practice for Software Requirements Specifications states the

content and qualities of a good use case description. Therefore we are trying to implement an

eclipse based, semantically enriched use case generator according to the practical needs and

IEEE recommended practice.

5.3 Plug-in implementation

5.3.1 Ontology Import

Jena is an open source Semantic Web framework for Java [23]. It provides an API to interact

with ontology in OWL or RDF. An ontology allows a programmer to specify the concepts and

relationships that collectively characterize some domain of interest. In our project, it would be

the concepts of potential system’s domain. This possible ontology is certainly useful for a

requirement process. Since Jena is fundamentally an RDF platform, Jena's ontology support is

 33

limited to ontology formalisms built on top of RDF. Specifically this means RDFS, the varieties

of OWL.

In order to import an ontology, Jena helps to work with modular ontologies by automatically

handling the imports statements in ontology models. We load an ontology document into an

ontology model using the OntModel’s read method. Each imported ontology document is held in

a separate graph structure. Besides, each ontology model has an associated document manager

which assists in processing and handling of an ontology document and related concerns. For

convenience, there is a global document manager, which is used by ontology models. All of the

classes in the ontology API that represent ontology values have OntResource as a common

super-class. This makes OntResource is able to store shared functionality for all such classes, and

makes a handy common return value for general methods. Some of the common attributes of

ontology resources that are expressed through methods on OntResource are shown in Figure 5.

Figure 5.1: Common attributes of ontology resources that are expressed through methods on

OntResource.

For properties in ontology, Jena has a set of Java classes that allow you to conveniently

manipulate the properties represented in an ontology model. A property in an ontology model is

an extension of the core Jena API class property and allows access to the additional information

that can be asserted about properties in an ontology language. The common API super-class for

 34

representing ontology properties in Java is OntProperty. Again, using the pattern of add, set, get,

list, has, and remove methods, we can access the following attributes of an OntProperty:

Attribute and a sub property of this property. In detail, OWL refines the basic property type from

RDF into two sub-types: object properties and data type properties. The difference between them

is that an object property can have only individuals in its range, while a data type property has

concrete data literals (only) in its range.

In summary, the Jena API offers complete method to interact with ontology. The following code

shows how plug-in imports an ontology file.

public static void importExtOntology(String externalFilePath){

 SOURCE = path.toString()+"/Ontology/"+Activator.ontology_name;

 folder = path.toString()+"/Ontology";

 NS = "http://www.owl-ontologies.com/2009/DOMCONCEPT#";

 mgr = OntDocumentManager.getInstance();

 base_s = new OntModelSpec(OntModelSpec.OWL_MEM);

 base_s.setDocumentManager(mgr);

 base = ModelFactory.createOntologyModel(base_s);

 String SOURCE_TEMP = externalFilePath;

 base.read("file:"+SOURCE_TEMP);

 try {

 Writer output = null;

 File outOntologyDir = new File(folder);

 File outOntologyFile = new File(SOURCE);

 if(!outOntologyFile.canWrite()){

 try {

 outOntologyDir.mkdirs();

 outOntologyFile.createNewFile();

 } catch (IOException e) {

 e.printStackTrace();

 35

 }

 }

 output = new BufferedWriter(new FileWriter(outOntologyFile));

 base.write(output,"RDF/XML-ABBREV");

 output.close();

The following code shows how to load concepts from a domain ontology.

public static String [] loadConcepts(){

 String concepts[] = null;

 ArrayList<String> cons = new ArrayList<String>();

 // create the reasoning model using the base

 OntModel infobase = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_DL_MEM_RULE_INF, base);

 ExtendedIterator<OntClass> classes = infobase.listClasses();

 while(classes.hasNext()){

 OntClass c = classes.next();

 String cn = c.getLocalName();

 cons.add(cn);

 }

 concepts = new String [cons.size()];

 int i = 0;

 for(String s:cons){

 concepts[i] = s;

 i = i+1;

 }

 return concepts;

 }

 36

 Figure 5.2: Plug-in imports ontology.

5.3.2 Eclipse setup and Installation

Regardless of the operating system, the user needs to install a Java virtual machine (JVM), either

a Java Runtime Environment (JRE) or a Java Development Kit (JDK), depending on what is

needed with Eclipse. If you intend to use Eclipse for Java development, then a JDK should be

installed. In this project, we installed the JDK and its version is 1.6.0_65.

Eclipse can be downloaded from the Eclipse Downloads Page [7]. Eclipse 4.3 is the latest

released version. Figure 5.3 shows the properties of our project.

 Figure 5.3: Project overview.

 37

Before we can start writing the code, we need to determine how we are going to integrate our

project with Eclipse. That is because all extensions to Eclipse are done through plug-ins, Figure

5.4 shows the Eclipse architecture. Plug-ins integrate with each other through extensions on

extension points. Eclipse plug-ins typically provide extensions to the platform that support some

additional capability or semantics. What is needed is a way for plug-ins to allow other plug-ins to

change their behavior in a controlled manner. Eclipse provides an extensibility mechanism that is

scalable, avoiding name collisions and does not require compilation of the whole product as a

unit, and supports multiple versions of the same component at the same time. Eclipse does this

by introducing the notion of a plug-in, which encapsulates functional extensions to the Eclipse

platform. Each plug-in has a name, id, provider name, version, a list of other required plug-ins,

and a specification for its runtime. A plug-in can also have any number of extension points that

provide a portal into which other plug-ins can add their functionality. This is how Eclipse

enables other plug-ins to handle the variability supported by your plug-in. In our project, we use

several extension points to build our project.

A plug-in is described in an XML file called the plug-in manifest file. This file is always called

plug-in.xml, and is always contained in the plug-in sub-directory. The Eclipse Platform reads

these manifest files and uses the information to populate and/or update a registry of information

that is used to configure the whole platform.

 38

 Figure 5.4: Eclipse general architecture [15]

In our Eclipse plug-in, we need a button on the Workbench toolbar. By clicking the button,

Eclipse will prompt a separate workbench. New window allows the user to edit the use case

description statements, view and edit ontology. The new window also allows the user to create

use case description projects. In order to achieve above description, we will need the following

extension points: “org.eclipse.ui.actionSets”, “org.eclipse.ui.editors” and “org.eclipse.ui.views”.

An action set is a strategy for the addition and removal of menu and toolbar items. A viewer

allows plug-ins to add views to the workbench. This strategy is executed if the user explicitly

adds the action set to the workbench. An Editor is used by plug-ins to add editors to the

workbench.

The action set is declared and given a label. The label (defined in the plug-in.xml) is used to

define the extension properties such as icon, id, contribute classes, class path. The extension

points are illustrated as below:

<extension point="org.eclipse.ui.actionSets">

 <actionSet
 label="sre Action Set"
 visible="true"
 id="sere.actionSet">
 <action
 class="sere.rsl.gnl.views.actions.ReqDashboardToolbarAction"

 39

 icon="icons/direction.png"
 id="sere.rsl.gnl.views.actions.ReqDashboardToolbarAction"
 label="SRE action"
 toolbarPath="SREgroup"
 tooltip="new use case description">
 </action>
 </actionSet>
 </extension>

The above definition will create a new toolbar in the Eclipse workbench with selected icon. It

also locates the contribute class which implements the behaviors of toolbar. The Figure 5.5

shows the result.

 Figure 5.5: A new toolbar button shown in Eclipse workbench.

Other extension points are defined in the same way. Now, we already had fundamental file for

the Eclipse plug-in. We declared a plug-in, which is the root element of a plug-in manifest file.

The properties of the plug-in defines the plug-in’s name, id, version, and provider name.

The plug-in runtime element is how you tell the platform where to find the classes in your plug-

in. Essentially, the required libraries and the runtime elements go together to specify the needed

"class" for the plug-in in the definition of extension points. This approach allows each plug-in to

have its own class independent from any other plug-ins. For the above extension points and other

graphic user interface elements, we are using following packages as shown in Figure 5.6.

Package:

org.eclipse.ui

org.eclipse.core.runtime

org.eclipse.jface.text

 40

org.eclipse.ui.editor

org.eclipse.ui.views

org.eclipse.ui.ide

org.eclipse.swt

 Figure 5.6: User package

In the user package, we can see that we require plug-in org.eclipse.ui. This allows the platform

to find classes while running. In our project, we also refer some outside libraries such as

Standford NLP library and Jena. This type of information is defined in the runtime package.

Figure 5.7 shows the runtime package.

Runtime package

lib/jena-2.6.2.jar,

lib/stanford-parser.jar,

 Figure 5.7: Runtime libraries.

The Activator class provides methods for accessing static resources within the plug-in, and for

accessing and initializing plug-in-specific preferences and other state information. It is specified

in the plug-in manifest, the activator is the first class notified after the plug-in loads and the last

class notified when the plug-in is about to shut down. Thus, we can say the Activator class

controls the plug-in’s life cycle. The following code shows the Activator class in our project.

package sere.rsl.gnl;
public class Activator extends AbstractUIPlugin {
 public static final String PLUGIN_ID = "sere.rsl.gnl";

 private static Activator;

 public static String [] CONCEPTS = null;

 41

 public static String [] CONCEPTSextended = null;

 public static String[] TAGS = null;

 private static RSLDashboard dashboard;

 private static RSLTemplateeditor; template;

 private static RSLListManager rslListManager;

 private static RSLSaveManager rslSaveManager;

 private static RSL activeRSL;

 public static String plausibleRSLName = "SYSTEM-REQ#";

 public static String plausibleRSLDescription = "#";

The extension points’ functionality is defined in the contribute class whose path is defined in

the.xml. This path tells the platform where to find the contribute class while running. Except for

the contribute classes and their associated extension points. The creation and editing of templates

is the main focus of our Eclipse plug-in. The class named template model implements these

activities according to the template’s definition. The Template model defines five lists for

template’s elements such as preamble, attributes, recursion, model and concrete syntax. The

extension point org.eclipse.ui.editor implements the editor interface in the Eclipse workbench.

The editor allows people to create a template and instantiate a selected template. It is possible to

fill the attributes’ value only while instantiating a template. Before starting to edit a template, the

user has to import an ontology. Our plug-in loads the selected ontology and its concepts. All

concepts are saved in a temporary list. The implementation is described in session 5.3.1. The

ontology guides the template instantiation by suggesting the value. If value is similar to a

concept in the list, editor will display this concept as a suggestion. Figure 5.8 shows the editors

composition in workbench. Figure 5.9 shows the ontology guidance.

 42

 Figure 5.8: Screenshot of the Eclipse plug-in.

 Figure 5.9: The ontology’s guidance to template instantiation.

We use SWT (Standard Widget Toolkit) for implementing graphic user interface. We have

already registered our workbench and other user interfaces by declaring them in extension points.

Each extension point carries the actual contribute class. The following listing shows the code

defining an SWT toolbar with the text “new use case”.

package sere.rsl.gnl.views.actions;

import org.eclipse.jface.action.IAction;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.jface.viewers.ISelection;

import org.eclipse.ui.IWorkbenchWindow;

import org.eclipse.ui.IWorkbenchWindowActionDelegate;

import sere.rsl.gnl.editors.forms.RSLDashboard;

 43

public class ReqDashboardToolbarAction implements IWorkbenchWindowActionDelegate {

 private IWorkbenchWindow window;

 public ReqDashboardToolbarAction() {

 }

 public void run(IAction action) {

 new SREDashboard().run();

 }

 public void selectionChanged(IAction action, ISelection selection) {

 }

 public void dispose() {

 }

 public void init(IWorkbenchWindow window) {

 this.window = window;}}

The following code is the contribute class of above toolbar button. It defines the behavior, which

is creating a new window, through clicking the button.

public class ReqDashboardAction extends Action{

 public static final String ID = "rsl.rsllist.actions.create.rsl";

 public final REQView view;

 public static NewReqInputDialog newReqInputDialog;

 public ReqDashboardAction() {

 this(null);

 }

 public ReqDashboardAction(REQView view) {

 this.view = view;

 setText("use case dashboard");

 setToolTipText("specification and analysis of requirements");

 setId(ID);

 setImageDescriptor(ResourceManager.getPluginImageDescriptor(Activator.getDefault()

 , "icons/application-monitor.png"));

 44

 setDisabledImageDescriptor(ResourceManager.getPluginImageDescriptor(Activator.getD

efault(), "icons/application-monitor.png"));

 setEnabled(true);

 }

 public void run() {

 new RSLDashboard().run();

 }

}

Similarly, there are several graphical user-interface elements used in our project, such as

Toolbar, Tablefolder, Progressbar, Button, and Label. The Eclipse plug-in is informed about

the selection by its linked listener. This feature is most implemented using the selection service

of Eclipse. The following code shows the listener for updating the main window.

public void insertReqActionsToolbar(Composite template_composite){

 req_operations_bar = new ToolBar(template_composite,
 SWT.HORIZONTAL|SWT.SHADOW_OUT| SWT.WRAP | SWT.RIGHT);

 ToolItem review_item = new ToolItem(req_operations_bar, SWT.PUSH);
 review_item.setToolTipText("analyse requirements");
 review_item.setText("analysis");
 Image enable_review_image =
 ResourceManager.getPluginImageDescriptor(Activator.getDefault(),
 "icons/wrench--plus.png").createImage();
 review_item.setImage(enable_review_image);
 review_item.addSelectionListener(new SelectionListener(){
 public void widgetDefaultSelected(SelectionEvent e) {
 }
 public void widgetSelected(SelectionEvent e) {
 SpecReview.updateViewDashboard();
 }
 });

One of the goals of this project is to create a formalized use case description. We have already

talked about how to create a template and how to instantiate a template. The instantiated

templates are maintained in the list named “use case statements”. This list is associated with

another list named “rsl”, which records the ongoing use case description projects. When a use

case description project selected from rsl list, the Eclipse plug-in loads this project’s properties

 45

such as name, ID, description, pre-condition and post-condition. All the information is shown

briefly in the workbench. The Eclipse plug-in viewer implements the session of displaying the

use case description statements. Figure 5.10 shows the Eclipse plug-in viewer.

 Figure 5.10: The viewer of use case description statements.

 46

CHAPTER 6

 CASE STUDY AND EVALUATION

In this chapter, we will demonstrate how our Eclipse plug-in helps to create requirements

descriptions. The background is about to writing a use case description in online car rental

industry. This car rent and online reservation system is developed to provide the following

services.1) Customer can reserve a vehicle online form anywhere in the world. 2) Every work

process activity is done by electronic means, with no need of hardcopies.

6.1 Methodology

6.1.1 Natural language statements

We begin with regular method to build the use case description. User requirements are

statements, in a natural language plus diagrams, of what services the system is expected to

provide to system users and the constraints under which it operate. This language describes

user’s goals or tasks that the users must be able to perform with the system. User’s requirements

therefore describe what the actor will be able to do with the system.

Functional requirements are statements of services the system should provide, how the system

should react to particular inputs, and how the system should behave in particular situations. It

specifies the software functionality that the developers must build into the product to enable

users to accomplish their tasks. There are total 4 sub-systems of this online car rental system. We

will talk about each sub-system and demonstrate how use case descriptions are created.

Functional requirements:

1. The system must allow the customer to register for reservation.

 47

2. The system shall allow the customer to view detail description of particular vehicle.

3. The system must notify on selection of unavailable vehicles while reservation.

4. The system shall present an option for advanced search to limit the vehicle search to specific

categories of vehicles search.

5. The system must allow the customers to select specific vehicle using different search category

while reservation.

6. The system must view list of available vehicles during reservation.

7. The system shall allow the customers to cancel reservation using reservation confirmation

number.

8. The system shall allow the employee to update reservation information.

9. The system shall allow the employee to view reservations made by customers.

10. The system shall presents information on protection products and their daily costs, and

requests the customer to accept or decline regulation terms during reservation.

11. The system must be able to provide a unique reservation conformation number for all

successfully committed reservations.

12. The system must be able to display reservation summary for successfully committed

reservation.

13. The system shall allow customer to select vehicles in the list.

14. The system shall allow customer staff to Search vehicles by specific record.

15. The system shall allow staff to display all lists of vehicle.

16. The system shall allow staff to display all available Vehicles.

17. The system shall allow staff to display all customers rent record

18. The system must provide printable summary for successful committed rent.

 48

Use Case diagram for above functional requirements shown in Figure 6.1.

Figure 6.1: Use case diagram

After creating use case diagram, developers need to present an overview of the steps inside the

use case you are dealing with use case specification. The use case description will be based on

the use diagram. The main purpose of the use case description is to specify any constraints that

 49

must be met in order to start the use case, to specify any business rules related to the use case

steps, and to show the event flow of the use case steps.

Table 6. 1: Use Case - Login

Use-case
Number

UC-01

Use-Case Name Log in
Priority High
Actor Staff
Description This use case describes how Staffs to login into the car rental System.
Precondition None
Post-condition If the use case was successful, the actor is now logged into the car rental

system. If not, the system state is unchanged.
Basic course of
Action

User Action System Response
1. The staff is on the home page to

login to the system.
3. The staff enters username and

password, clicks on Login
Button.

2. The system prompts the staff to
enter Username, Password.

4. The system verifies that all the
fields have been filled out and are
valid.

5. The staff successfully logged in the
system.

6. Use case Exits
Alternate course
of Action

6.1 If all fields are not filled out and not matched to the username and
password the system notifies the actor a message Verify Username or
Password and then goes back or returns to step 4 of basic course of Action
to enter again.

Table 6.2: Use case – Search Vehicle

Use-Case Number UC-05
Use-Case Name Search Vehicle
Priority Medium
Actor Staff and customer
Description This use case permits staff and customer to search vehicle from the vehicle

list in order to display.
Precondition UC-3, UC-2
Post-condition Display
Basic course of User Action System Response

 50

Action 1. The staff or customers click on
search vehicle link.
3. The staffs or customers select one
of the following lists from the
combo Box, Vehicle Brand. Vehicle
Type. Vehicle Model or default is
All.
5. Users Click on search button.

2. The system displays combo box to
select search for a vehicle.
4. The system displays all
information about the vehicle based
on selected list.

6. Use case Exists.

Alternate course
of Action

4.1 If any lists are not selected from the combo box system goes back or
returns to step 3 of basic course of Action to select from the combo box.

Table 6.3: Use Case - Reserve Vehicle

Use-case Number UC-02
Use-Case Name Reserve vehicle
Priority High
Actor Customer
Description This use case permits customers to reserve and make schedule for renting

vehicle, based on the availability of the vehicle.
Precondition Customer wants to reserve a vehicle and reservation details about customer

have to be entered.

Customers reserve successfully

Basic course of
Action

User Action System Response
1. The customer clicks reservation

page.

3. The customer enters the

following information customer
(full name, ID/Passport No,
Country, Mobile number and
selects vehicle plate number,
Pickup date & return date)

5. The customer clicks reserve
button to reserve.

2.The system notifies staff and then
prompts the customer to fill a
reservation form.
4. The system checks all required

information had been filled and
the date entered dates are valid

6. The system organizes the
information and sends it to staff.
7. The system shows the customer
that the reservation has been
completed, and presents the
customer a reservation confirmation
number.
8. Use case ends.

Alternate course
of Action

5.1 If the customer enters invalid date and time, the system goes back to
step 4 to enter the valid date and time.
5.1 If the customer fills invalid information, the system goes back to step 4
to enter the invalid field again.
6.1 If the customer declines the agreement, the system displays a message
that reservation canceled.

 51

Table 6.4: Use case – rent registration

Use-case Number UC-03
Use-Case Name Rent Registration
Priority High
Actor Staff
Description This use case permits to register rental information of the customers and

the vehicle that the customer rents.
Precondition UC-1
Post-condition Customer rent information
Basic course of
Action

User Action System Response
1. The customer wants to take the
reserved vehicle.
2. The staff open rent page.
4.The staff enters Full name,
Nationality, Country, City,
Identification Number, Phone, Plate No,
Down Payment, Daily Price, Rent Date,
Return Date, Total Rent Day, Total
Payment, Refund

3. The system displays a form to
be filled out for renting the
vehicle.
5. The system displays
successful rent summary

Alternate course of
Action

None

All things above are the regular routine for building use case model for potential development.

The use case descriptions are written in free text and all various concepts that may refer to the

same thing exist in the description document.

6.1.2 Ontology guided use case descriptions

We are going to handle the same scenario shown in functional requirements. As mentioned

before, the first step is importing ontology. We use the Vehicle ontology for this purpose. This

ontology describes all vehicles for e-commerce. The ontology is designed to use in combination

with GoodRelations, a standard vocabulary for the commercial aspects of offers for sale, rental,

repair, or disposal. There are a total of 11 classes, 49 object properties and data properties in the

ontology. The details of this ontology are shown below:

 52

Table 6.5: Classes in VSO and their definitions.

Brand A specification of Vehicle
Business entity The instances involved in the car rental business. It might be organization or

person.
Business
function

The specification of business services.

Day of week Use to specify which day the opening hour refers to.
Delivery method The standard procedure to transfer the service to its final destination based

on customer’s request
Location The address of available services
Offering It bundles to the business function which refers to the detailed service

information
Opening hour The service available time
Payment method It specifies how customers pay for the services.
Price The tag price for services.
Product The detailed information for services.

Table 6.6: Object properties:

Accept payment method “business entity” and “payment method”
Booking requirements “business entity” and “business function”
Apply delivery method “business entity” and “delivery method”
Available at “business entity” and “location”
Has brand “business entity” and “brand”
Has opening hours day of
week

“business entity” and “day of week”

Has opening hours “business entity” and “opening hour”
Offers “business entity” and “offering”
Add on “business entity” and “business function”
Has business function “ business entity” and “business function”
Has price specification “ brand” and “price”
Has available quantity “business entity” and “ brand”

 53

Table 6.7: Data properties:

Customer ID “Business entity” has an unique identifier
Brand ID Each vehicle “brand” has an unique identifier
Opening duration The number of opening hours of “ business entity”
Has maximum
value

“business entity” has maximum number of vehicle

Condition “ brand” condition measurement
Eligible location “location “ identifier
Product ID “ product” identifier

Based on the above ontology, our tool generates the use case description under the template and

ontology. To instantiate the template, people first need to create a suitable template for the

corresponding use case description statement. The tool will automatically save the created

template to a history list. After composing the template, there are several attributes without

values. The ontology will guide the user to fill the value of attributes in the template. Except for

attributes guided by the ontology, people are able to instantiate the attributes with reasonable

values. Furthermore, each description has some features. You have to select the value for these

features from the list.

To start the plug-in, if there is an existing project that needs use case description, the user can

create a new use case project by right clicking on project explore. On the other hand, it is

possible to start it with just clicking on the tool bar.

For use case descriptions we already showed from the Table 6. 1 to Table 6.4, the following

shows the results. The number in front each statement is the unique identifier. Its order describes

the event flow order.

 54

Use case login:

 Figure 6.2: Screenshot of use case login.

Use case search:

 Figure 6.3: Screenshot of use case search.

 55

Use case reserve:

 Figure 6.4: Screenshot of use case reservation

For each of the use case statement, the term from ontology will be labeled in blue color. For

example: the Employee shall be able to login to online system. The concepts: employee and

online system come from the ontology. Besides the detailed statements, the other information

such as use case description and pre- or post- conditions will be shown briefly in the window and

can be viewed completely by clicking UC properties.

 56

CHAPTER 7

CONCLUSION AND FUTURE WORK

The objective of this thesis was to take advantage of using templates and a domain ontology to

generate use case descriptions. The created tool should assist the user in generating use case

descriptions directly. This project used part of the DODT project, which helps in importing

ontology and creating template session. The advantage of the tool-assisted approach is that it

provides a range of possibilities, as the ontology can be used in different ways to help the

requirements engineer. When the user writes a use case description, the ontology can be used to

give universal understanding of the concept, and the template can be used to formalize the use

case description. The ontology is also used to give suggestions for writing use case descriptions.

The main disadvantage of the approach is the lack of automation. The users have to compose

their templates manually and also create the template instances manually. In conclusion, we have

developed an Eclipse plug-in that combines templates and ontology. The approaches identified

involved different degrees of semantics. The domain concepts and relationships are easily

accessible and provide a common vocabulary for the requirement domain.

Recommendations for further work will be divided into whether the continued work would be

performed in an academic or industrial setting. In an academic setting, the major point of interest

is allowing people to use a universal ontology such as DBpedia (constructed of Wikipedia) or

Freebase [26]. This is the task of suggesting the most universal meaning based on what is already

written. A similar task is to find a way to determine when the states are specified “sufficiently”,

meaning that each step in the created descriptions is valid and contains enough information so

 57

that it actually makes sense from a domain perspective. Also, we could increase the amount of

automation to reduce the manual work of users on template composition. In an industrial setting,

a company should pursue a more direct approach. The implementation could be tailored to

whatever enterprise-wiki the company uses, with the goal of using the domain ontology as a

natural tool in the development process. The wiki can make the use of the ontology more

accessible to everyone, and domain information can be stored here. It will also support

collaboration between different users.

The Eclipse plug-in project has been a proof of concept. We demonstrated its usefulness through

the case study. However, a comprehensive user study is needed to assess the advantages of this

plug-in over regular natural language requirements descriptions. Therefore, we hope to conduct a

comprehensive human based evaluation to the created plug-in.

 58

REFERENCES

[1] Riechert, T. L. (2007). Towards semantic based requirements engineering. Proceedings

of the 7th International Conference on Knowledge Management. Graz.

[2] Undheim, O. (2011). Semi-automatic Test case generation. Norway: Norwegian

university of science and technology.

[3] Farfeleder, S. M. (2011). Ontology-driven guidance for requirements elicitation. The

Semanic Web: Research and Applications , 212-226.

[4] Gruber, T. (n.d.). Ontology. Retrieved February 11, 2014, from ontology defination:

http://tomgruber.org/writing/ontology-definition-2007.htm

[5] University, standford. Protege. http://protege.stanford.edu/ (accessed March 20, 2014).

[6] Bande, Roshan, and K. N. Hande. "Analysis of requirement using ontology: Survey."

International Journal of Engineering, 2012: 10.

[7] Fundation, eclipse. eclipse. https://www.eclipse.org/ (accessed March 22, 2014).

[8] Farfeleder, S., Moser, T., Krall, A., Stalhane, T., Zojer, H., & Panis, C. "DODT:

Increasing requirements formalism using domain ontologies for improved embedded

 59

systems development." Design and Diagnostics of Electronic Circuits & Systems . IEEE,

2011. 271-274.

[9] Semantic Software Lab. Semantic Assistant. http://www.semanticsoftware.info/ (accessed

February 10, 2014).

[10] IBM. "Getting start with rational DOORs."

http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/topic/com.ibm.help.download.doo

rs.doc/pdf92/doors_getting_started.pdf (accessed April 20, 2014).

[11] The Standish Group International, Inc. THE CHAOS REPORT. The Standish

Group International, Inc., The Standish Group International, Inc., 2009.

[12] Castañeda, Verónica, Luciana C. Ballejos, and Maria Laura Caliusco. "Improving

the Quality of Software Requirements Specifications with Semantic Web Technologies."

WER. santa fe: WER, 2012.

[13] ASD. ASD-STE100 Simplified Technical English. brussels: ASD, 2013.

[14] Elizabeth Hull, Ken Jackson and Jeremy Dick. Requirements Engineering.

Springer, 2005.

 60

[15] Maryland, University of. "Introduction to Eclipse."

http://www.csee.umbc.edu/courses/undergraduate/341/fall08/Lectures/Eclipse/intro-to-

eclipse.pdf (accessed March 25, 2014).

[16] Siegemund, Katja, Edward J. Thomas, Yuting Zhao, Jeff Pan, and Uwe Assmann.

"Towards ontology-driven requirement engieering." Workshop Semantic Web Enabled

Software Engineering at 10th International Semantic Web Conference . BONN: ISWC,

2011.

[17] Zoer. Norway: NATU, 2011.

[18] Johannessen, Vegard. CESAR - text vs. boilerplates . Thesis, NATU, 2012.

[19] Carew, D., Exton, C., and Buckley, J. "An empirical investigation of the

comprehensibility of requirements specifications." International Symposium on

Empirical Software Engineering (ISESE)., 2005.

[20] Jacobson, Ivar. Use Case 2.0. The guide to use case succeed. Ivar jacobson

international, 2011.

[21] W, lee . and zhao. "Domain Requirements Elicitation and Analysis – An

Ontology-Based Approach ." Proceedings of the First International Multi-Symposiums

on Computer and Computational Science , 2006: 805-813.

 61

[22] Shibaoka, M., Kaiya, H. & Saeki, M. "GOORE: Goal-Oriented and Ontology

Driven Requirements Elicitation Method." ER workshops. 2007. 225-234.

[23] W3g. OWL, web ontology language. www.w3g.org (accessed March 20, 2014).

[24] Omoronyia, I., Sindre, G., Stålhane, T., Biffl, S., Moser, T., & Sunindyo, W. In

Requirements Engineering: Foundation for Software Quality. Springer Berlin

Heidelberg, 2010.

[25] Delia Rusu, Lorand Dali, Blaž Fortuna, Marko Grobelnik, Dunja Mladenić.

"TRIPLET EXTRACTION FROM SENTENCES." In Proceedings of the 10th

International Multiconference. Information Society-IS , 2007. 8-12

[26] Wikipedia, The Free Encyclopedia. Retrieved November 18, 2007, from
www.wikipedia.org.

[27] Oracle. Javadoc tool. Retrieved April 28, 2014, from Javadoc documentation:
http://www.oracle.com/technetwork/java/javase/documentation/index-
137483.html#usingHead

[28] SIOC. SIOC project. Retrieved April 28, 2014, from http://sioc-project.org/

[29] W3C. Friend of Friend project. Retrieved April 28, 2014, from http://www.foaf-
project.org/

[30] Simple knowledge organization. Simple knowledge organization. Retrieved April
28, 2014, from http://www.w3.org/2004/02/skos/

