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ABSTRACT 

In this dissertation we have developed and applied the state-specific multireference 

coupled cluster theory suggested by Mukherjee and co-workers (Mk-MRCC).  For model 

systems, Mk-MRCC is found to provide more accurate results than competitor theories at all 

levels of truncation of the cluster operator.  The first production-level code for Mukherjee 

multireference coupled cluster singles and doubles (Mk-MRCCSD) computations has been 

written.  A crucial element for the development of Mk-MRCC into a computational tool was the 

realization that the coupling terms appearing in the equations could be written in a simple closed 

form.  Mk-MRCCSD results are reported for the singlet-triplet splittings in ortho-, meta-, and 

para-benzyne, coming within 1.5 kcal mol−1 of experiment in all cases.  We also report the first 

implementation with correct scaling of the Mk-MRCC method with singles, doubles, and 

approximate iterative triples Mk-MRCCSDT-n, (n = 1a,1b,2,3) as well as full triples 

(Mk-MRCCSDT).  In all model systems the various Mk-MRCCSDT-n approaches recover on 

average between 59% and 73% of the full triples effect. 
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 INTRODUCTION 

 Studying multireference open-shell atomic and molecular systems such as radicals, 

biradicals and excited electronic states is a challenge for both experimentation and theory.  From 

the experimental point of view, these chemical species are highly reactive and short-lived.1  

Despite the enormous progress made by the quantum chemistry community, multireference 

open-shells are still problematic because the wave function is not dominated by a single electron 

configuration. 

 The coupled cluster method in its single-reference formulation (SRCC) is now 

established as the most accurate theoretical level to study the electronic structure of atoms and 

molecules.  For well-behaved systems (i.e., closed-shell and most high-spin open-shell 

molecules), SRCC achieves experimental accuracy for molecular thermochemistry and kinetics.2  

In contrast, the failures of single-reference coupled cluster methods for open-shell molecular 

systems with a multireference wave function are well documented. 

 The purpose of this thesis is the development of multireference coupled cluster theory 

into a robust and versatile tool for the study of diradicals and excited states.  In this introduction I 

will focus on defining the nature of a multireference wave function, giving a brief review of 
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coupled cluster theory, and discussing the problems connect to the generalization of coupled 

cluster theory to the multireference case. 

 

1.2 DEFINING MULTIREFERENCE 

 In this section we seek to define the concept of multireference character of a wave 

function.  To this end, we will expand the exact electronic wave function Ψ  in a one-particle 

spin-orbital basis set  { ( )}p xψ  of dimension M, with x a composite index for spatial (r ) and spin 

( s ) variables, i.e. { , }x s= r .  The electronic Hamiltonian in the Born-Oppenheimer 

approximation may be written using the second quantization creation ( †â ) and annihilation 

operators ( â ) as3 

 † † †1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
4pq p q p q s r

pq pqrs

H h a a pq rs a a a a= +∑ ∑ , (1.1) 

where the labels p, q, r, and s run over the entire spin-orbital basis set, and the one- and 

two-electron integrals are defined as 

 

ˆ( ) ( ) ( ),

1( ) ( ) ( ) ( ),
| |

pq p q

p q r s

h dx x h x x

pq rs dx dx x x x x

ψ ψ

ψ ψ ψ ψ

∗

∗ ∗

=

′ ′ ′=
′−

∫

∫ r r

 (1.2) 

while the antisymmetrized two-electron integral used in Eq. (1.1) are defined 

pq rs pq rs pq sr= − . 

 If Ψ  is normalized, the energy is given by the expectation value of the Hamiltonian 

operator 
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 † † †

ˆ

1ˆ ˆ ˆ ˆ ˆ ˆ
4

1 ,
4

pq p q p q s r
pq pqrs

p pq
pq q rs

pq pqrs

E H

h a a pq rs a a a a

h pq rsγ γ

= Ψ Ψ

= Ψ Ψ + Ψ Ψ

= +

∑ ∑

∑ ∑

 (1.3) 

where the quantities †ˆ ˆp
q p qa aγ = Ψ Ψ  and † †ˆ ˆ ˆ ˆpq

rs p q s ra a a aγ = Ψ Ψ  appearing in the above 

equation are elements of the one- and two-particle reduced density matrices 1γ  and 2γ .  These 

quantities allow us to rewrite the energy expression in a more compact way and are going to be 

used to classify electronic states into open- and closed-shell.  From Eq. (1.3) it is evident that 1γ  

and 2γ  contain all the information necessary to compute the energy of a system of electrons.  

The diagonal elements of 1γ  ( p
pγ ) give the probability of finding an electron in spin-orbital p, 

while 1
2

pq
pqγ  gives the probability of finding an electron pair in spin-orbitals p and q. 

 The contribution of 2γ  to the electronic energy is composed of one- and two-body terms.  

To separate these two effects it is convenient to introduce the two-particle density cumulant 2λ  

defined as pq p q p q pq
rs r s s r rsγ γ γ γ γ λ= − + .  In essence, pq

rsλ  is the non-trivial component of the 

two-particle density matrix, as it is defined as the difference of 2γ  and the two-particle density 

matrix for independent particles obeying Fermi statistics, p q p q
s r r sγ γ γ γ− .  The energy can now be 

written in terms of 1γ  and 2λ   

 1 1( )
2 4

pq
pq pq pq rs

pq pqrs

E h f pq rsγ γ λ= + +∑ ∑ , (1.4) 

where the generalized Fock matrix pqf γ  is given by r
pq pq rs sf h pr sqγ γ= +∑ .  Now all the 

contribution of the Coulomb correlation is contained in the second term of Eq. (1.4) and is 
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separated from the energy contribution of the one-particle density matrix.  For an independent 

particle model (i.e. Hartree−Fock theory), only the first term of Eq. (1.4) contributes to the 

energy and 2λ is zero.  

 Since the energy of the exact wave function is invariant with respect to a unitary rotation 

of the spin-orbitals, we will work in the basis that diagonalizes the one-particle density matrix.  

The corresponding spin-orbitals are then called natural orbitals, and the one-particle density can 

be characterized simply by the eigenvalues, or spin-orbital occupation numbers, of each orbital p, 

†ˆ ˆp p pn a a= Ψ Ψ . 

 To illustrate the importance of 1γ  and 2λ  in our definition of open- and closed-shell 

states, we will consider a simple example: the dissociation of H2 in a minimal basis set.  The 

minimal basis set for H2 consists of two normalized 1s atomic orbitals centered on each H atom, 

( )Aχ r  and ( )Bχ r .  From these two atomic orbital the symmetry adapted molecular orbitals 1ϕ  

(σ bonding) and 2ϕ  (σ* antibonding) can be formed, 

 1 2
( ) ( ) ( ) ( )( ) , ( )
2(1 ) 2(1 )

A B A B

AB ABS S
χ χ χ χϕ ϕ+ −

= =
+ −

r r r rr r , (1.5) 

where the overlap integral ABS  is defined as 

 ( ) ( )AB A BS dχ χ= ∫ r r r . (1.6) 

 Within the minimal basis set, the exact ground state wave function of H2 is a linear 

combination of two electronic configurations 

 1 1 2 2c cΨ = Φ + Φ , (1.7) 
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where † †
1 11ˆ ˆa aΦ = − , † †

2 22ˆ ˆa aΦ = − , and −  is the true vacuum.  In writing these two 

configurations we have used a bar above the orbital indices to indicate an electron in a beta 

spin-orbital.  For this wave function the one-particle density matrix is 

 
2
1

2
2

0
0

p p
q q

c
c

γ γ
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

, (1.8) 

while the non-zero spin blocks of the two-body density cumulant is 

 
2 2
1 1 1 2 1 2

2 2
1 2 1 2 2 2

(1 ) (1 )
(1 ) (1 )

pq
rs

c c c c c c
c c c c c c

λ
⎡ ⎤− −

= ⎢ ⎥− −⎣ ⎦
. (1.9) 

 At the equilibrium geometry, the ground state wave function of H2 is dominated by 1Φ , 

which means that 1 1c ≈  and the second configuration has a small coefficients, that is   

2| | 1c ε< � .  Then 1γ  is 

 21 0
( )

0 0
p p

q q Oγ γ ε
⎡ ⎤

= = +⎢ ⎥
⎣ ⎦

, (1.10) 

which shows that that 1γ  is idempotent, that is 1 1 1=γ γ γ , in other words, the eigenvalues of 1γ  

are either zero or one.   2λ  is given instead by 

 2 2

2

0
( )

0
pq

rs

c
O

c
λ ε

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

, (1.11) 

and its trace is equal to zero, up to linear terms in kc .  This case shows that when the wave 

function is dominated by one configuration the main contribution to the correlation is given by 

the first term of Eq. (1.4), with the contribution of Coulomb correlation to the energy entering at 

order ( )O ε . 
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 For dissociated H2 the two electronic configurations are degenerate and the wave 

functions is characterized by 1/2
1 2 2c c −= − = .  In this case we have 

 
1
2

1
2

0
0

p p
q qγ γ

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
, (1.12) 

so that 1γ  is no longer idempotent, since 1
1 1 12=γ γ γ .  The two-body density cumulant is 

 
31

4 2
3 1

2 4

pq
rsλ

−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, (1.13) 

and the trace of 2λ  is equal to 1
2 .  For this example the Coulomb correlation energy is no longer 

a first-order correction, but instead a zeroth-order contribution. 

 These two examples represent the limiting case of single- and multireference systems and 

suggest that the properties of 1γ  and 2λ  may be used to classify electronic states into open- and 

closed-shell.  Here I will follow the classification introduced by Kutzelnigg.4  Closed-shell states 

are characterized by two properties: (1) they are non-degenerate and transform as a 

one-dimensional irrep of the molecular symmetry group.  Degenerate sets of natural spin orbitals 

have the same occupation number,  (2)  The one-particle density matrix 1γ is near-idempotent  

( 1 1 1≅γ γ γ ) and therefore its eigenvalues are approximately 0 or 1.  The occupation number may 

be used to sort the spin-orbitals in two categories: elements in the first group { }iψ  are 

characterized by occupation 1in ≅  and are called (doubly) occupied while orbitals in the second 

category { }aψ  have zero occupation 0an ≅  and are called virtual.  For closed-shell states a 

zeroth-order approximation to the wave function is given by a Slater determinant built out of all 

the occupied spin-orbitals 
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occ

(0) †ˆi
i

aΨ = Φ = −∏ . (1.14) 

 Open-shell states do not satisfy one or both of these properties.  This leads to three types 

of open-shell states: (1) A non-degenerate state with non-idempotent 1γ .  (2) A degenerate state 

with a near idempotent 1γ .  (3) A degenerate state with a non-idempotent 1γ .  Case (1) is 

distinguished from the closed-shell case by the fact there is a distinct group of orbitals { }xψ  with 

occupation 0 1xn< < .  These systems may be characterized by the trace of the two-particle 

density cumulant 2λ  

 
all act

2Tr( ) (1 ) (1 )p p x x
p x

n n n n= − ≅ −∑ ∑λ . (1.15) 

2Tr( )λ  is a measure of electron correlation and it is zero for a Slater determinant.  For actN  

active electrons, the largest value 2Tr( )λ  can assume is act / 4N .  A correct zeroth-order wave 

functions for this type of open-shell states is the product of the closed-shell determinant built 

from occupied orbitals times all possible combinations of active electrons 

 
occ act

(0) † † †

1

ˆ ˆ ˆ
d

i xy x y
xyi

a C a a cμ μ
μ=

⎡ ⎤
Ψ = − = Φ⎢ ⎥

⎣ ⎦
∑ ∑∏ "
"

" , (1.16) 

where the coefficients xyC "  weight the different combinations of active electrons.  Notice that 

this wave function can be conveniently written as a generic expansion in terms of d Slater 

determinants μΦ  times a coefficient cμ .  Open-shell states of type (2) and (3) are less relevant to 

our work and will not be discussed here. 
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1.3 THE SINGLE-REFERENCE COUPLED CLUSTER APPROACH 

 A basic assumption of most post-Hartree–Fock methods is that the exact electronic wave 

function Ψ  can be expressed as the sum of a reference Slater determinant  Φ  built from a set 

of optimized orbitals (i.e. Hartree–Fock orbitals), plus a correction Ξ  which accounts for 

electron correlation 

 Ψ = Φ + Ξ . (1.17) 

Because a single Slater determinant cannot account for Coulomb correlation [ 2 0=γ ] the 

correction Ξ  is effectively accounting for this missing contribution. 

 In coupled cluster theory the exact wave function is expressed via the exponential ansatz 

 T̂eΨ = Φ , (1.18) 

where Φ  is a reference closed-shell or open-shell Slater determinant, and T̂  is an excitation 

operator truncated at a certain level n 

 
1

ˆ ˆ
n

n
k

T T
=

= ∑ . (1.19) 

Each individual component of the cluster operator is expressed introducing the cluster 

amplitudes ab
ijt "
"  defined as ˆab ab

ij ijt T= Φ Φ" "
" " , so that n̂T  is given by 

 
occ vir

† †
2

-th level excitation

1ˆ ˆ ˆ ˆ ˆ
( !)

ab
n ij b j a i

ij ab
n

T t a a a a
n

= ∑∑ "
"

" "
"
��	�


. (1.20) 

The cluster amplitudes thus defined are antisymmetric with respect to the interchange of upper or 

lower indices.  After expanding the exponential ansatz [Eq. (1.18)] we can now identify the 

correction Ξ  with the terms containing linear and higher powers of T̂  



9 

 21ˆ ˆ
2!

T T

Ξ

Ψ = Φ + Φ + Φ +…
����	���


 (1.21) 

 To determine T̂  and the energy the coupled cluster ansatz in introduced in the 

Schrödinger equation 

 ˆ ˆˆ T THe EeΦ = Φ . (1.22) 

It is convenient to premultiply Eq. (1.22) by ˆexp( )T−  to get the equivalent equation 

 ˆ ˆˆT Te He H E− Φ = Φ = Φ , (1.23) 

where the similarity transformed Hamiltonian ˆ ˆˆT TH e He−=  has been introduced.  This form of 

the coupled cluster equations has the advantage that all terms are connected, therefore showing 

that energy and other physical properties are guaranteed to scale properly with the size of the 

system.  By applying the Baker-Campbell-Hausdorff formula5 we can expand H  in terms of 

commutators of Ĥ  and T̂  

 

ˆ ˆˆ ˆ ˆ ˆ,

1 ˆ ˆ ˆ, ,
2!
1 ˆ ˆ ˆ ˆ, , ,
3!
1 ˆ ˆ ˆ ˆ ˆ, , , , .
4!

T Te He H H T

H T T

H T T T

H T T T T

− ⎡ ⎤= + ⎣ ⎦

⎡ ⎤⎡ ⎤+ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤+ ⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤+ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 (1.24) 

Two conditions contribute to the truncation of H  at four nested commutators: (1) the fact that T̂  

is a pure excitation operator, and (2) the two-particle nature of the Hamiltonian.   Projecting Eq. 

(1.23) on the left with the reference determinant Φ  we get an equation for the energy 

 E H= Φ Φ . (1.25) 
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Sufficiency conditions to determine the cluster amplitudes are derived by projecting Eq. (1.23) 

on the manifold of excited determinants { }ˆ,ab ab
ij ijM T= Φ Φ ∈ Φ" "
" " : 

 0ab
ij HΦ Φ ="
" . (1.26) 

 Truncating the cluster operator to single and double excitations (n = 2) defines the 

coupled cluster method with singles and doubles (CCSD).  When CCSD is augmented by a 

perturbative estimate of the effect of triple excitations we get the CCSD(T) method, the “gold 

standard” of quantum chemistry. 

 

1.4 FAILURE OF SINGLE-REFERENCE COUPLED CLUSTER THEORY FOR MULTIREFERENCE SYSTEMS 

 In the preceding section we saw that the correction accounting for electron correlation 

may be written as 

 21ˆ ˆ
2!

T TΞ = Φ + Φ +…  (1.27) 

This assumption clearly breaks down for a multireference system.  Suppose the zeroth-order 

wave function (0)Ψ  to be an equally weighted sum of a reference determinant Φ  and a 

doubly excited determinant cc
kkΦ  

 ( )(0) 1
2

cc
kkΨ = Φ − Φ . (1.28) 

Then a cluster analysis of the wavefunction would give the double excitation amplitude cc
kkt  a 

value of ca. −1.  When this happens, disconnected quadruples (e.g. deriving from the square of 

the cluster operator) containing excitations from orbital pair k to the virtual orbital c will be 

overestimated, in turn affecting all other cluster amplitudes.  As a consequence, when we apply 
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CCSD and CCSD(T) to a system with multireference character these methods can incur in a 

significant error. 

 

1.5 MULTIREFERENCE COUPLED CLUSTER FORMALISMS 

 The generalization of the single-reference ansatz to the multireference case is neither 

straightforward nor unique.  For a review of the major formalisms the reader should consult the 

introduction to Chapter II.  Here I would like to emphasize the ideas contained in the various 

formalisms advanced in the literature.  The first complication introduced when extending a 

single-reference theory to the multireference case is the partitioning of the orbitals in three 

spaces: core, active and external.  These in turn are used to define a set of Slater determinants or 

configuration state functions μΦ  with μ = 1 … d, called the model space.  Core orbitals are 

doubly occupied in all functions belonging to the model space, while active orbitals are partially 

occupied and external orbitals are unoccupied. 

 Two basic paradigms have been advanced in multireference coupled cluster theory.  Both 

seek to express an exact electronic state αΨ  by the action of a wave operator Ω̂  on a 

zeroth-order wave function (0)
αΨ  

 (0)ˆ
α αΨ = Ω Ψ , (1.29) 

where the zeroth-order wave function is a linear combination of model space determinants 

 (0) ( )

1

d

c α
α μ μ

μ=

Ψ = Φ∑ . (1.30) 
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 In the first paradigm the wave operator is parameterized by a single exponential operator6 

 ˆˆ SeΩ = , (1.31) 

so that the final wave function is internally contracted 

 ˆ ( )

1

d
Se c α

α μ μ
μ=

Ψ = Φ∑ . (1.32) 

In practice this form is problematic because Ŝ  cannot be defined as a pure excitation operator 

and thus leads to a non-terminating expansion of the similarity-transformed Hamiltonian  

ˆ ˆˆS Se He− .  This problems was first addressed in Fock-space multireference coupled cluster 

(FS-MRCC) theory7 by taking the normal ordered part of ˆexp( )S , that is 

 { }ˆFS-MRCC
ˆ SeΩ = . (1.33) 

The ansatz of Eq. (1.33) eliminates contractions among cluster operators themselves, which do 

not arise in the single-reference case. 

 In Fock-space multireference coupled cluster theory, the Fermi vacuum is a N-electron 

state Φ .  Particle non-conserving operators are used to reach ionized or electron attached states 

with multireference character.  The model space then is augmented with all possible occupations 

of the active orbitals and divided into sectors (m,n) according to how many electrons are added 

and removed from Φ .  The wave operator includes operator from different sectors of the Fock 

space, 

 ( , ) ( , )

0
0

ˆ ˆ ˆm n k l

k m
l n

S S T
=
=

= = ∑
…
…

, (1.34) 

where ( , )ˆ k lT  are cluster operators for a the (k,l) sector and include excitations cluster operators 

truncated at level n 
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 ( , ) ( , ) ( , ) ( , )
1 2

ˆ ˆ ˆ ˆk l k l k l k l
nT T T T= + + +… . (1.35) 

Fock space coupled cluster is best suited to compute differential properties like excitation 

energies, electron affinities and ionization potentials.  On the contrary, the computation of 

potential energy surfaces is plagued by the intruder state problem, caused by determinants 

outside the zeroth-order wave function which interact strongly with the model space in certain 

areas of the potential energy surface. 

 Another formalism based on Eq. (1.31) was recently advanced by Mukherjee and 

co-workers.  These developments are based on extended normal ordering with respect to a 

multireference vacuum8,9 which facilitates the evaluation of the expectation values of an operator 

Ô  with respect to vacuum (0)Ψ .  The internally contracted MRCC of Mukherjee8 starts from 

an operator Ŝ  containing redundant set of excitations, which is transformed to a linearly 

independent operator by singular value decomposition.  Although this formalism is promising, so 

far the complexity of extended normal ordering has hindered its development. 

 The second MRCC paradigm is based on the wave operator ansatz of Jeziorski and 

Monkhorst10 

 ˆ
JM

1

ˆ
d

Te
μ

μ μ
μ=

Ω = Φ Φ∑ , (1.36) 

where the cluster operators T̂ μ  are excitation operators that promote electrons from the occupied 

to the virtual orbital space of μΦ  and are typically truncated at a certain excitation level n, 

 1 2
ˆ ˆ ˆ

n̂T T T Tμ μ μ μ= + +…+ . (1.37) 
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The wave function obtained from the JM ansatz is 

 ˆ(0) ( )
JM

1

ˆ
d

Te c
μ α

μ μ
μ=

Ψ = Ω Ψ = Φ∑ , (1.38) 

and is a linear combination of exponential functions obtained from reference determinants μΦ  

spanning a d-dimensional model space.  This form of the wave function is basically an 

uncontracted version of Eq. (1.32).  The energy of the JM wave function is obtained as an 

eigenvalue of the effective Hamiltonian matrix 

 ˆeff ˆ TH He
ν

μν μ ν= Φ Φ , (1.39) 

while the expansion coefficients [ ( )c α
μ ] entering Eq. (1.38) are derived from the corresponding 

eigenvector, 

 eff ( ) ( )

1

d

H c E cα α
μν ν α μ

ν =

=∑ . (1.40) 

 So far we have not specified a set of conditions for the cluster operators T̂ μ .  In 

state-universal MRCC (SU-MRCC) theory the cluster amplitudes are obtained via the Bloch 

equation and lead to the set of equations 

 ˆ ˆ eff

( )
( ) ( ) ( 1, 2, , )ab ab T T

ij ijH e e H d
μ ν

μ μ ν μν
ν μ

μ μ μ−

≠

Φ Φ = Φ Φ =∑" "
" " … , (1.41) 

which are coupled via the terms ˆ ˆ( )ab T T
ij e e

μ ν

νμ −Φ Φ"
" .  Notice that there is no reference to a 

particular state in Eq. (1.41).  This is characteristic of state-universal theories, as they aim at 

determining a manifold of states in one computation.  State-universal coupled cluster suffers 

from the intruder state problem, and because the same set of parameters is used to describe a 

manifold of states, it is inherently less accurate than single-reference CC.11  
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1.6  STATE-SPECIFIC MULTIREFERENCE COUPLED CLUSTER THEORY 

 State-specific theories aim at solving the problems encountered in SU-MRCC by treating 

one state at a time through a JM wave operator.  This simplification introduces the problem of 

sufficiency conditions, because the number of equations that can be derived by introducing a 

state-specific wave operator into the Schrödinger equation is smaller than the number of cluster 

amplitudes contained in the T̂ μ  operators.  In particular, a redundancy exists among the 

amplitudes related to any determinant that can be generated from multiple references within the 

chosen excitation level cutoff.  Since the amplitudes are underdetermined, one must introduce 

supplementary conditions, and as this choice is not unequivocal, various theories have been 

advanced. 

 The Brillouin-Wigner (BW) MRCC method was first derived using the BW form of the 

Bloch equation.12,13  This formalism solves the problem of intruder states but has one major 

deficiency – it is not size extensive.  While size-extensivity corrections form BW-MRCC have 

been advanced, these either reintroduce the problem of intruder states or make the theory 

non-exact.14,15  On the contrary, the state-specific MRCC method of Mukherjee (Mk-MRCC)8,16 

is rigorously size extensive and intruder free.   

 Prior to the beginning of my thesis, Mk-MRCC was never compared against other 

theories or used in conjunction with large basis sets, as there were no production level 

implementations.  Moreover, the coupling terms appearing in the Mk-MRCC equations were 

considered to be intractable, and this argument perhaps discouraged its further development by 

the quantum chemistry community. 
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1.7  PROSPECTUS 

 In chapter 2 we report the first general implementation of SU-MRCC, BW-MRCC, and 

Mk-MRCC within a new arbitrary-order string-based code.  These methods were applied to the 

study of potential energy curves of model systems and benchmarked against single-reference 

coupled cluster and full configuration interaction results.  This work was decisive to prove the 

superiority of the Mk-MRCC over BW-MRCC and SU-MRCC.  Chapter 3 deals with a general 

derivation of the “same vacuum” coupling terms found in Mk-MRCC.  We report the 

implementation of the Mukherjee MRCC method with single and double excitations 

(Mk-MRCCSD) together with benchmark applications to the dissociation of F2 and the harmonic 

vibrational frequencies of ozone.  An initial application of Mk-MRCCSD to the singlet-triplet 

splitting problem in ortho-, meta-, and para-benzyne exemplifies the potential of this method.  

Chapter 4 deals with the introduction of approximate and full triple excitations in Mk-MRCC.  A 

family of approximate methods (Mk-MRCCSDT-n, n = 1a,1b,2,3) is advanced and their 

performance tested against full Mk-MRCCSDT.  This contribution also represented the first 

implementation of full triple-excitations MRCC with proper scaling. 
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2.1  ABSTRACT 

 For the first time high-order excitations (n > 2) have been studied in three multireference 

couple cluster (MRCC) theories built on the wave operator formalism: (1) the state-universal 

(SU) method of Jeziorski and Monkhorst; (2) the state-specific Brillouin-Wigner (BW) coupled 

cluster method; and (3) the state-specific MRCC approach of Mukherjee (Mk). For the H4, P4, 

BeH2, and H8 models, multireference coupled cluster wave functions, with complete excitations 

ranging from doubles to hextuples have been computed with a new arbitrary-order string-based 

code. Comparison is then made to corresponding single-reference (SR) coupled cluster and full 

configuration interaction (FCI) results. For the ground states the BW and Mk methods are found, 

in general, to provide more accurate results than the SU approach at all levels of truncation of the 

cluster operator. The inclusion of connected triple excitations reduces the Non-Parallelism Error 

(NPE) in singles and doubles MRCC energies by a factor of 2 to 10. In the BeH2 and H8 models, 

the inclusion of all quadruple excitations yields absolute energies within 1 kcal mol−1 of the FCI 

limit. While the MRCC methods are very effective in multireference regions of the potential 

energy surfaces, they are outperformed by single-reference CC when one electronic 

configuration dominates. 

 

2.2   INTRODUCTION 

 Multireference coupled cluster (MRCC) theories involve generalizations of the 

exponential ansatz used in the cluster expansion of the electronic wave function (Ψ) from a 

single reference determinant (Φ)1-3 

 Φ=Ψ )T̂exp( , (1) 
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where the cluster operator T̂  promotes electrons from the occupied to the virtual orbital space of 

the reference determinant and is typically truncated at a certain excitation level (n), 

 nT̂T̂T̂T̂ 21 +++= … . (2) 

The solution of the Schrödinger equation using projection techniques and the ansatz of Eq. (1) 

leads to the well known single-reference coupled cluster (SRCC) methods.2-5 The SRCC 

approach is a very successful6,7 ab initio method because it is size extensive, size consistent, and 

recovers an high percentage of the correlation energy, even at the singly and doubly excited 

coupled cluster (SRCCSD) level. Moreover, accuracy can be improved systematically to the full 

configuration interaction (FCI) limit, simply by including higher excitations in Eq. (2) within the 

same formalism. The conventional SRCC approach has only one major drawback: it fails when 

the system contains quasidegenerate electronic configurations, because of the poor description of 

the zeroth-order wave function by the single-determinant reference (Φ). This limitation makes 

conventional SRCC methods inapplicable to a large subset of chemistry, including homolytic 

bond breaking, singlet diradicals, many transition metal compounds, certain types of excited 

electronic states, and various transition states for chemical reactions. 

 Genuine multireference coupled cluster methods address this problem by including all the 

relevant quasi-degenerate determinants in the zeroth-order wave function. There are at least three 

broad categories of multireference coupled cluster methods: Fock-space or valence-universal 

(VU), Hilbert space or state-universal (SU), and state-specific (SS) theories. 

 Fock-space methods can treat several states with different numbers of electrons in one 

computation and thus are capable of directly providing the electron affinities and ionization 

potentials of a molecular system.8-11 In this approach a certain configuration )0,0(
0Ψ  is chosen to 

define a Fermi vacuum. The molecular orbital (MO) space is then divided into three subsets: 
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core, active, and unoccupied. The zeroth-order wave function is built from the Fermi vacuum by 

removing p electrons from the core orbitals and adding q electrons to the active orbitals. This 

subset of the Fock space is termed the (q,p) sector. In Fock space MRCC the excitation operator 

is separated into a particle non-conserving operator Ŝ  that includes orbital relaxation, and a T̂  

operator that accounts for dynamical correlation. The wave function is based on the exponential 

ansatz 

 ),(
0

),( )}Ŝ{exp()T̂exp( pqpq Ψ=Ψ , (3) 

where ),(
0

pqΨ  is a multireference zeroth-order wave function for the (q,p) sector of the Fock 

space, and )}Ŝ{exp(  is the normal-ordered contribution from the exponential operator )Ŝexp( , 

containing excitations from the core and active orbitals.10 

 Hilbert space, or state-universal (SU), methods simultaneously treat entire sets of 

electronic states (the model space) with the same number of electrons, yielding an excitation 

energy spectrum within a single computation. In essence, these methods are multireference, 

multiroot schemes suitable for mapping a manifold of potential energy surfaces. Hilbert-space 

methods are usually based on the Jeziorski and Monkhorst12 (JM) ansatz for the wave operator, 

because it allows the treatment of all reference determinants on an equal footing. The application 

of Hilbert-space methods has been plagued by intruder state problems,13-15 occurring when a 

determinant outside the model space closely approaches the energy of a state inside this space at 

some point on a potential energy surface. Paldus and Li15-19 have recently revised the original 

SUCC formulation of JM, giving explicit t-amplitude conditions (C-conditions) that preserve 

size extensivity in the case of general model spaces. In this manner one can carefully select the 

reference determinants to avoid intruders. 
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 State-selective (SS) coupled cluster theories treat one state (α) at a time by building a 

state-specific wave operator and selecting one root of an effective Hamiltonian. These 

approaches are less susceptible to the intruder state problem and in some cases are more efficient 

computationally than the VU and SU schemes. Recent developments in SSMRCC theory include 

the work of Mukherjee and co-workers, who proposed a rigorously size-extensive formulation 

denoted here as MkCC.20-25 This approach has been investigated both at the CCSD and CEPA 

(coupled electron pair approximation) levels, and applied to the H4, P4, BeH2 models, as well as 

Li2, F2, and to several other diatomic molecules.25 While the MkCC method has given 

encouraging results in these tests, it has not been used in conjunction with large basis sets, and it 

is currently not implemented into a production level program. 

 The state-specific version of Brillouin-Wigner MRCC theory (BWMRCC, or BWCC) 

advanced by Hubač, Pittner, and collaborators26-31 is another SSMRCC formalism that is 

potentially applicable to a variety of problems. The theory in its original formulation is not 

size-extensive, but a posteriori and iterative corrections to reduce or eliminate size-extensivity 

errors have been developed.28,32 BWCC is still under active investigation, with recent 

developments involving the use of general model spaces33 and the partial inclusion of connected 

triple excitations in the cluster operator.29 

 Various MRCC theories built on a single-reference framework have been advanced, 

including the CASCC34-37 approach, the reduced multireference (RMRCCSD) method,38-46 

active-space CC approaches,47-53 orbital-optimized CC schemes,54-56 higher-order, non-iterative 

corrections derived from the similarity-transformed Hamiltonian,57-61 and a broad class of 

method-of-moments CC (MM-CC)62-67 and renormalized CC methods.68-73 
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 The main idea behind the many MM-CC variants developed by Piecuch and 

co-workers62-79 is to compute non-iterative, state-specific energy corrections after the 

single-reference CC energy is converged, 

 )SRCC(FCI)SRCC( EE −=δ . (4) 

The )SRCC(δ  term is considered as a functional  of both the exact wave function Ψ  and the 

higher moments )SRCC(
jM  of the SRCC equations (left-projections of excited determinants of 

order j on the vector Φ− T̂T̂Hee ), i.e., 

 ],,[ )SRCC()SRCC( njj >ΨΛ=δ M , (5) 

where n is the truncation level chosen for the initial SRCC computation. By replacing Ψ  with 

various approximate wave functions, a hierarchy of increasingly accurate methods is achieved. 

The MM-CC method has been successfully applied to the study several organic reactions and 

excited states.74-79 

 The state-specific formulation of MRCC investigated by Adamowicz and co-workers34,35 

is based on a complete active space (CAS) reference. Although this approach is based 

conceptually on a wave function rather than a wave operator ansatz, it can provide accurate 

descriptions of multireference systems. For the CAS(2,2)CCSD case the wave function takes the 

form 

 0)ĈĈ1)]((T̂)(T̂T̂T̂exp[ 214321SDCAS(2,2)CC +++++=Ψ ABcd
IJkl

Abc
Ijk . (6) 

Here the linear operators 1Ĉ  and 2Ĉ produce the determinants that belong to the CAS space 

while )(T̂3
Abc
Ijk  and )(T̂4

ABcd
IJkl  are higher excitation cluster operators with restrictions on certain 

orbital indices (I,A,…). This SSMRCC approach has been investigated by several authors. 34-37 

Λ
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 Very recently Hanrath80,81 has introduced another wave function ansatz based on the JM 

wave operator and through the reindexing of the amplitudes was able to obtain a state-selective 

theory. The approach is size consistent, and preliminary results indicate that it is a potential 

competitor for other SSMRCC theories. 

 The field of coupled cluster research has benefited from the introduction of computer-

aided manipulation of equations and generation of code, and the solution of the coupled cluster 

equations by means of determinantal algorithms. These advances are exemplified in the early 

work on automatic processing of diagrams by Paldus and Wong,82,83 and the automatic 

generation of CC code by Janssen84 and Li and Paldus,85 as well as the more recent arbitrary 

order CC86 and Tensor Contraction Engine87,88 of Hirata and co-workers, the general CC 

advances of Kállay,37,89,90 the general model space CC of Olsen,36 the general MRCC code of 

Abrams and Sherrill,91 and the code for automated generation of CC diagrams by Lyakh, Ivanov 

and Adamowicz.35 These investigations have considered the SRCC and the SSMRCC methods 

described by Adamowicz,34,35 but have avoided the SU, VU and the SSMRCC wave operator 

formalisms. 

 The aim of this paper is to study the effect of higher excitations in genuine SU and SS 

multireference coupled cluster theories based on the wave operator formalism. In this research 

we have employed string algorithms36,92 with the coupled cluster expansion of wave functions to 

investigate the SUMRCC method of Jeziorski and Monkhorst,12 the SSBWMRCC approach of 

Hubač et al.,26-31 and the SSMRCC method of Mukherjee and co-workers.20-24 First the 

theoretical foundations of these methods will be reviewed. Second, we provide details of our new 

computer code for arbitrary-order MRCC benchmarking. Finally, we report the first high-order 

(n > 2) MRCC results for the four classic models: H4, P4, BeH2 and H8. 
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2.3  WAVE OPERATOR MRCC FORMALISMS 

 In this section a brief summary is provided of the wave operator formalism used to 

construct the SU and SS theories.12,22,93 We limit our considerations to a complete model space 

(CMS) consisting of the set of determinants belonging to a complete active space (CAS), 

{ }d,,2,1: span0 …=μΦ= μM . These d Slater determinants are built from a set of spatial 

orbitals { }Nii ,,2,1: …=ϕ  times a spin function. A projection operator, P̂ , is associated with 

the model space 

 ∑
=μ

μμ ΦΦ=
d

1

P̂ , (7) 

and Q̂  is a projector on the determinants ( qΦ ) in the corresponding orthogonal complement of 

, indicated by the symbol . The projector Q̂  is then 

 ∑
⊥∈

ΦΦ=−=
Mq

qqP̂1 Q̂ . (8) 

 The exact wave function is obtained from the action of a wave operator Ω̂  on P
αΨ , 

namely 

 PP
ααααα ΨΩ=Ψ+Ψ=Ψ+=Ψ ˆQ̂)Q̂P̂( . (9) 

The wave operator satisfies the Schrödinger equation for all d eigenstates (SU theory) or for one 

eigenstate α (SS theories), i.e., 

 PP E ααα ΨΩ=ΨΩ ˆˆĤ . (10) 

The effective Hamiltonian, assuming intermediate normalization, is 

 P̂Ω̂ĤP̂Ĥeff = , (11) 

0M ⊥M
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which provides the exact energy ( αE ) of all states of interest, as well as the expansion 

coefficients for the zeroth-order wave function in terms of the CMS determinants, since it 

satisfies the equation 

 PP
αααα

eff ΨEΨĤP̂ΨĤ == . (12) 

 

2.3.1  STATE-UNIVERSAL MRCC 

 The state-universal approach of Jeziorski and Monkhorst12 (JM) relies on the following 

representation of the wave operator: 

 ∑
μ

μμ ΦΦ=Ω
μT̂ˆ e , (13) 

where the cluster operator μT̂ is constructed from the particle-hole creation operators relative to 

the reference determinant μΦ  and is expanded to excitation level n 

 μ
n

μ
2

μ
1

μ T̂T̂T̂T̂ +++= … . (14) 

In all the MRCC methods based on the wave operator formalism, the t-amplitude conditions are 

obtained by left-projection of the CC equations onto the complement space  corresponding to 

excitation level n. Specifically, 

 { }virocc
...

... ),,( ,),,(  ;,,2,1; )( μ∈μ∈=μ∉μΦ=⊥ ……… bajidab
ijn 0MM , (15) 

where for each reference μ, ),,( …ji  and ),,( …ba  denote all sets of m orbitals ),,2,1( nm …=  

from the occupied and virtual space of μ, respectively. All excited determinants )(...
... μΦ ab

ij  which 

already appear in the model space  are excluded from  to maintain intermediate 

normalization of the correlated wave function. 

⊥
nM

0M ⊥
nM
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 Introducing the JM ansatz for the wave operator into the time-independent Bloch 

equations 

 ΩΩ=Ω ˆĤˆˆĤ , (16) 

followed by projection onto ⊥
nM  yields the equations for the t-amplitudes 

 ),1,2,(H)(H)(
)(

effT̂T̂...
...

...
... deeab

ij
ab
ij …=μΦμΦ=ΦμΦ ∑

μ≠ν
νμν

−
μμ

νμ

 (17) 

where we have introduced the similarity-transformed Hamiltonian with respect to the μT̂  

operator 

 
μμ−

μ = T̂T̂ ĤH ee . (18) 

Note that the SUMRCC μT̂ and νT̂ equations are coupled through the t-amplitudes of all the 

reference determinants, as well as the off-diagonal matrix elements of the effective Hamiltonian. 

 

2.3.2  STATE-SPECIFIC MRCC 

 State-specific theories are recovered when one assumes that the wave operator lifts only 

one specific state from the model space to the exact wave function. Therefore the wave operator 

is indicated with a label, for example αΩ̂ , and is defined as  

 P
ααα ΨΩ=Ψ ˆ . (19) 

The SS simplification introduces the problem of sufficiency conditions, because the number of 

equations that can be derived by introducing the state-specific wave operator into the 

Schrödinger equation is lower than the number of t-amplitudes contained in the μT̂  operators. 

This problem arises only for the redundant amplitudes that generate the same excited 

determinant starting from two different reference determinants. Since the t-amplitudes are 
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underdetermined, one must introduce supplementary conditions. In SSMRCC this choice is not 

univocal, and various theories adopt different sufficiency conditions. 

 State-specific Brillouin-Wigner coupled cluster is obtained by introducing the SSJM 

wave operator in the SSBW form of the Bloch equation 

 ααα Ω+=Ω ˆV̂B̂1ˆ , (20) 

where αB̂  is the BW resolvent 

 
0Ĥ

Q̂B̂
−

=
α

α E
, (21) 

and the Hamiltonian operator is partitioned into two components, V̂ĤĤ 0 += . The equations 

that determine the t-amplitudes are 

 ),1,2,(Ĥ)()( T̂...
...

T̂...
... deeE ab

ij
ab
ij …=μΦμΦ=ΦμΦ μμα

μμ

, (22) 

which are coupled only through the exact energy of the state under consideration – a 

computational advantage emphasized by Hubač and co-workers.26-31 A drawback to the choice of 

sufficiency conditions leading to Eq. (22) is that BWMRCC is not rigorously size extensive. 

 Size-extensivity corrections for BWMRCC are obtained from the generalized Bloch 

equation derived by Pittner28 in terms of a variable parameter λ, 

 P̂Ω̂V̂P̂Ω̂λ)(1P̂Ω̂ĤP̂ĤΩ̂λ)(1P̂Ω̂ ααα0αα −−=−+λ αE . (23) 

The corresponding explicit expression for the generalized t-amplitude equation is then 

 
( ) ( )

μμμ

μ+μμα

ΦμΦλ−+ΦμΦλ=

ΦμΦλ+ΦμΦ=ΦμΦλ
μ

μμμ

H)()1(Ĥ)(

Ĥ)(Ĥ)()(
...

...
T̂...

...

ULDCL
T̂...

...C
T̂...

...
T̂...

...

ab
ij

ab
ij

ab
ij

ab
ij

ab
ij

e

eeeE
. (24) 
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In the above formula the subscript C refers to the connected diagrams, whereas DCL and UL 

refer, respectively, to the disconnected linked diagrams and the unlinked diagrams. If we set 

λ = 1 we recover the BWMRCC method, while for λ = 0 we recover the Rayleigh-Schrödinger 

(RS) Bloch equation CC. In the a posteriori size-extensivity correction (apBWCC), the MRCC 

equations are solved for λ = 1, and following convergence a final iteration is performed with 

λ = 0. The iterative size-extensivity correction (iBWCC) is performed by decreasing 

continuously the parameter λ to zero while converging the cluster amplitudes. In the a posteriori 

correction, size extensivity is achieved only approximately, while in the iterative correction the 

final energy is size extensive and equal to the RS Bloch equation energy. However, the intruder 

problem is thus reintroduced in the iBWCC scheme. We assess the effectiveness of these size-

extensivity corrections in this paper. 

 The derivation of the state-specific multireference coupled cluster formalism of 

Mukherjee and co-workers20,21 starts by inserting the state-specific JM wave operator into the 

expansion for the exact wave function 

 ∑∑
μ

μαμ
μ

αμμααα Φ=ΨΦΦ=ΨΩ=Ψ
μμ

cee PP T̂T̂ˆ . (25) 

From the Schrödinger equation, one thus has 

 0Ĥ
μμ T̂T̂ =⎥⎦

⎤
⎢⎣
⎡ Φ−Φ∑

μ
μαμαμαμ ceEce . (26) 

If we multiply on the left side by the identity 

 , (27) 

we get 

μμ
−−−− +=+=+== ∑ Q̂P̂Q̂ΦΦ)Q̂P̂(1

μμμμμμμμ T̂T̂

ν

T̂
νν

T̂T̂T̂T̂T̂ eeeeeeee
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 0HQ̂H
μμμ T̂T̂

,

effT̂ =Φ−Φ+Φ ∑∑∑
μ

μαμα
μ

μαμμ
νμ

μανμν ceEcece , (28) 

after noting that μμννμ ΦΦ= HHeff . Upon interchanging the dummy indices μ and ν in the 

double summation of Eq. (28) and collecting the individual terms, we obtain 

 0HQ̂H
μμ T̂T̂effT̂ =⎥

⎦

⎤
⎢
⎣

⎡
Φ−Φ+Φ∑ ∑

μ
μαμαμαμμ

ν
ναμνμ

ν

ceEcece . (29) 

Equation (29) can be satisfied by setting the individual terms in the μ summation to zero. This 

sufficiency condition implies, after multiplication by 
μT̂-e  and left projection on the excited 

determinants )(...
... μΦab

ij , that the t-amplitudes satisfy 

 ),,1(0H)(H)(
)(

effT̂T̂...
...

...
...

νμ

dceec ab
ij

ab
ij …=μ=ΦμΦ+ΦμΦ ∑

μ≠ν
ναμνμ

−
μαμμ . (30) 

 It is worth noticing the difference in the sufficiency conditions of BWCC and MkCC. 

First, the BWCC equations obtained through the state-specific BW form of the Bloch equation 

are equivalently derived by assuming a sufficiency condition in which individual μ terms in 

Eq. (26) are identically zero. On the contrary, Mukherjee’s sufficiency conditions are derived by 

first rearranging the CC equations before equating individual μ terms. In BWCC the equations 

naturally decouple (in the amplitudes) for each reference and are explicitly dependent on the 

correlation energy only. Therefore, in BWCC theory the sufficiency conditions on the redundant 

amplitudes for reference μ depend only on the μT̂  amplitudes. In the case of MkCC, the 

redundant amplitudes for reference μ are dependent on the amplitudes of the entire model space 

through the renormalization factor 
νμ T̂T̂ ee− . Last, we recall that BWCC and MkCC have an 

advantage over SUCC because they are devoid of the intruder state problem. 
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2.4    IMPLEMENTATION OF ARBITRARY-ORDER MRCC 

 Here we give a brief description of our string-based coupled cluster code written to study 

model systems and to facilitate further development of MRCC theory. All the methods were 

implemented at the University of Georgia with a new program called DETC++, interfaced to the 

Psi 3.2.394 package. DETC++ is a string-based code. Therefore a generic state vector is expanded 

in terms of Slater determinants times a coefficient 

 ∑ Φ=Ψ
I

IIC , (31) 

where the Slater determinants are expressed in terms of Handy’s alpha and beta strings92 

 βα=Φ III . (32) 

The wave function expansion is limited to only those determinants with the requested symmetry 

and excitation level limitations. DETC++ is capable of manipulating general strings of 

creation-annihilation operators 

 …… jiba aaaa ˆˆˆˆ ++ , (33) 

and to apply a generic operator defined as 

 ……
……

…
… jiba

ijab

ab
ij aaaa ˆˆˆˆ OÔ ++∑= , (34) 

to any state vector through the rules of second quantization 
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where the delta factors and the sign factor ),()1( iμΦΓ− ensure that Fermi-Dirac statistics are 

satisfied. In DETC++ we avoid the recomputation of the effect of the second quantization 

operators by pre-computing single replacement lists of strings. 

 The generic operator expansion includes only the non-vanishing matrix elements limited 

to the desired irreducible representation. Therefore operators like Ĥ  and μT̂ contain only the 

operator strings that belong to the totally symmetric representation. The present program was 

tested (1) against the FCI energies of several first-row atoms, computed with Sherrill’s 

determinantal CI code DETCI95 (contained in the Psi 3.2.394 package) to validate the code 

relative to the Ĥ operator, and (2) with arbitrary-order coupled cluster results of Hirata86 to 

verify the code relative to the 
μT̂e operator. Moreover the SUCC, BWCC and MkCC codes were 

validated at the singles and doubles excitation level with results previously published in the 

literature.22,93,96,97 Finally computations of the Full SUCC, Full BWCC and Full MkCC energies 

were executed to demonstrate complete numerical equivalency to FCI. The detailed benchmarks 

used to validate DETC++ are reported in the Supplementary Material.98 

 The wave operator MRCC methods described in Section 2 are implemented in DETC++ 

by defining an appropriate residual vector μΔ  that vanishes when the respective coupled cluster 

equations are converged. The residual vector for the three methods can be derived from 

Eqs. (17), (22), and (30): 
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The update equations that we have implemented are similar to those used by Hirata and 

Bartlett,86 but shifted by the standard BW term effHμμα −E . Specifically, 

 
)(H
)();sgn(

)old,()new,( eff με+−

ΔμΦ
+μ=μ

μμα

μ

…
…

…
……

…
…
…

……
ab
ij

ab
ijab

ij
ab
ij E

abij
tt , (37) 

where the function );sgn( …… abij  is the sign associated with the action of one cluster operator 

on the vacuum μΦ  

 )();sgn()ˆˆˆˆ( μΦ=Φμ
++ …

………… ab
ijiajb abijaaaa . (38) 

 The standard Raleigh-Schrödinger denominators terms are computed with respect to the 

vacuum μ 

 ………
… −−−−+++=με μμμμμμ

ccbbaakkjjii
abc
ijk ffffff)( , (39) 

as 

 ( ) ( )∑
μΦ∈

μ −+=
k

pppp pkpkkkpphf || , (40) 

where the sum runs over all the occupied orbitals of Slater determinant μ. Eq. (37) resembles the 

ordinary SRCC update equation. The BW term effHμμα −E  helps improve convergence and does 

not vanish even in the case of degenerate orbitals. Since the residual vector is null when 

convergence is reached, we can shift the denominator by an arbitrary value to improve 

convergence of the ground state wave function without affecting the final results. This shift 

technique was necessitated here for some geometries of the BeH2 model system. All 

computations were carried out without convergence acceleration algorithms like the direct 

inversion in the iterative subspace (DIIS)99,100 or the reduced linear equation (RLE)101 method. 
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2.5  MODEL SYSTEM MRCC RESULTS 

 In this section we analyze the results from MRCC computations on the H4, P4, BeH2, and 

H8 model systems. The basis sets used in this work are described in each subsection below and 

are fully specified in the Supplementary Material (see Ref. 98). Most of the plots will report the 

deviation of the total electronic energy from the FCI value at a given molecular geometry R  and 

for a given method X 

 )()()( FCIXX RRR EEE −=Δ . (41) 

We prefer to adopt this quantity, as a measure the accuracy of a certain method, rather than the 

percent of the correlation energy recovered 

 
)()(
)()(100%

Ref.FCI

Ref.X
corr RR

RR
EE
EEE

−
−

⋅= , (42) 

since the former is independent of the definition of the uncorrelated reference wave function 

energy, )(Ref. RE . We also use the non-parallelism error (NPE) as a measure of the relative 

deviation from the FCI potential energy surface (PES). The NPE is defined as 

 , (43) 

and provides an indication of the degree of parallelism of the potential energy surface computed 

with a given method X with respect to the FCI potential energy surface. Tables 1.1-1.4 report the 

NPE values computed for the four models studied here. 

 The effect of different choices of molecular orbitals in SRCC and MRCC (at both the 

valence-universal and state-universal level) were studied by Jankowski et al.102-104 on the H4 

model. For SUCC the orbital choice affected mainly the states dominated by a single 

configuration; in the multireference region the energy was less sensitive to orbital choice. For the 

)]([min)]([maxNPE XX RR
RR

EE Δ−Δ=
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H4 system, complete-active-space self-consistent-field (CASSCF, here abbreviated CAS) 

orbitals performed better than the Hartree-Fock orbitals. 

 The H4, P4, BeH2, and H8 models investigated here all involve only two closed-shell 

reference determinants. All electron correlation methods (including SRCC) were applied with a 

uniform set of CAS(2,2) orbitals, either optimized on the ground state or state-averaged on the 

lowest two states. These orbitals were generated by the DETCAS code of Sherrill, contained in 

the Psi 3.2.3 package.94 As in the SRCC case, the MRCC methods applied here are rigorously 

invariant to all (occ,occ) and (vir,vir) orbital rotations completely outside the active space. In 

contrast, orbital rotations within the active space do change the MRCC energy for all methods 

studied here, as demonstrated numerically by Pittner et al. in the BW case.28,30 Therefore a 

canonicalization scheme must be specified for the active space orbitals in MRCC theory. In all 

computations performed here, the two active-space orbitals have different point-group symmetry, 

a condition that defines them uniquely. 

 

2.5.1  THE H4 MODEL 

 The H4 model consists of four hydrogen atoms arranged in an isosceles trapezoidal 

configuration with all the nearest-neighbor distances (r) fixed to exactly 2 bohr. At this geometry 

the bonds between the hydrogen atoms are considerably stretched when compared to the H2 bond 

length of 1.4 bohr. The trapezoid can be deformed by varying the angle θ in Scheme 2.1 from 

90°  
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Scheme 2.1. The H4 Model. 

 

(square configuration) to 180° (linear configuration). The angle θ, expressed in radians, is related 

to a continuous parameter [ ]2
1,0∈α  by the formula )( 2

1+απ=θ . This model system was first 

introduced by Jankowski and Paldus105 for testing coupled-pair theory for quasi-degenerate 

systems. Subsequently, the H4 model has been studied using the SUCC,13,96,106 BWCC,93 

MkCC22, MRexpT81 and MRPT21 methods.  

 When the parameter α is equal to zero the system possesses D4h symmetry, and the 

zeroth-order wave function is described by a single electronic configuration 22
1 )1()1( ug ea  that 

involves the two degenerate determinants 

 22
12

22
11

)1()1(
)1()1(

ubg

uag

ea
ea

=Φ

=Φ
. (44) 

For trapezoidal configurations (0 < α < 1/2, C2v symmetry) and the linear configuration 

(α = 1/2, D∞h symmetry) the degeneracy is lifted. In C2v symmetry the zeroth-order wave 

function is mapped into the two determinants 

 2
1

2
12

2
2

2
11

)2()1(
)1()1(

aa
ba

=Φ

=Φ
, (45) 

while for the linear geometry (D∞h) 

θ θ 

r = 2 bohr

r r
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 22
2

22
1

)2()1(
)1()1(

++

++

σσ=Φ

σσ=Φ

gg

ug . (46) 

For both the trapezoidal and linear geometries 1Φ  is the dominant configuration. 

 

Figure 2.1. MRCCSD/DZP energy curves for the 11A1 ground state of the H4 model system All computations 

(including single-reference CC) employed CAS(2,2) orbitals optimized for the 11A1 state. The lower panel shows 

the square of the CAS(2,2) CI coefficient of 1Φ  versus the parameter α. 

 

 Fig. 2.1 shows the performance of the SRCC, SUCC, BWCC, apBWCC, and MkCC 

methods at the singles and doubles (SD) level for the ground state of the H4 model using a 

(4s1p/2s1p) DZP107,108 basis set with αp(H) = 0.75 bohr−2 (see Supplementary Material, Ref. 98). 

The molecular orbitals are obtained from a CAS(2,2) computation and are optimized for the 

ground state. 

 The SRCCSD method shows a strong deviation from the FCI curve in the multireference 

region of the potential energy curve, with a deviation of more that 7 mEh for the square 

configuration (α = 0). However, in the single reference region (α > 0.1) SRCCSD provides 

energies within 1 mEh of FCI. The SUCCSD multireference method tends to give energies too 
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negative, with a maximum error of ca. 3 mEh, giving poorest performance in the single reference 

region. BWCCSD shows a deviation from the FCI energy that is less than 1 mEh along the entire 

plot, while apBWCCSD performs worse, with a maximum error of ca. 2 mEh. MkCCSD 

provides energies that are within 0.5 mEh of the FCI curve. NPE values for the ground and 

excited states of the H4 model for the (SR and MR) coupled cluster methods are reported in 

Table 2.1. The BWCCSD and MkCCSD methods provide the best results in terms of NPE 

values: 0.64 and 0.68 mEh, respectively, while for the SUCC and apBWCC methods the NPE is 

greater than 1 mEh. 

Table 2.1. Non-parallelism error (NPE) in microhartrees (μEh) for the 11A1 and 21A1 states of the H4 model system 

computed with the DZP basis set. 

11A1 state 
CAS(2,2) orbitals CC Theory 

Excitation level SR SU BW apBW Mk 

SD 6403 2998 644 1142 677 

SDT 2135 2759 139 553 107 

11A1 state 
SA-CAS(2,2) orbitals CC Theory 

Excitation level SR SU BW apBW Mk 

SD 6585 2356 787 2071 839 

SDT 2105 2398 115 1904 106 

21A1 state 
SA-CAS(2,2) orbitals CC Theory 

Excitation level SU BW apBW Mk 

SD 1643 2157 9008 2016 

SDT 4382 3707 4288 3843 
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Figure 2.2. MRCCSDT/DZP energy curves for the 11A1 ground state of the H4 model system. See Fig. 2.1 caption 

for details. 

 

 The inclusion of triple excitations in SRCC and MRCC yields the results in Fig. 2.2 

SRCCSDT performs poorly only in the multireference region near α = 0, while it exhibits 

minuscule deviations from the FCI curve for α > 0.05. Curiously, the state-universal SUCCSDT 

curve starts in the multireference square configuration (α = 0) with a small error (−0.11 mEh) but 

deviates considerably (−2.87 mEh) at the single-reference linear configuration (α = 1/2). On the 

contrary, the BWCCSDT and MkCCSDT curves are nearly parallel to full CI along the entire 

potential energy curve, with NPE values of 0.14 and 0.11 mEh, respectively. MkCC has an 

absolute error 1/2 as large as BWCC. The apBWCCSDT method provides a potential energy 

curve that lies more than 1 mEh below the FCI curve and that is not accurately parallel to FCI 

(NPE = 0.55 mEh). 
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Figure 2.3. MRCCSD/DZP energy curves for the 11A1 ground state of the H4 model system. All computations 

(including single-reference CC) employed state-averaged CAS(2,2) orbitals and weights: 0.5(11A1) and 0.5(21A1). 

The lower panel shows the square of the CAS(2,2) CI coefficient of 1Φ  versus the parameter α. 

 

 We have also investigated the (11A1, 21A1) states of the H4 model jointly. For this 

purpose molecular orbitals were obtained from state-averaged (SA) CAS(2,2) computations with 

equal weights for the ground and excited states. The deviation from FCI for the ground state, 

computed now with SA-CAS orbitals, is depicted in Figs. 2.3 and 2.4. At both the SD and SDT 

levels these results show that the SUCC, BWCC, and MkCC methods are not substantially 

affected by the choice of the orbitals. The SUCC plots using SA-CAS orbitals exhibit a lower 

NPE (2.40 mEh for SUCCSD, 2.44 mEh for SUCCSDT) compared to the case in which 

ground-state CAS orbitals are used (3.00 mEh for SUCCSD, 2.76 mEh for SUCCSDT). In 

contrast, the quality of the apBWCC potential energy curve degrades, as apparent in the drastic 

increase of the NPE values (Table 2.1). 
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Figure 2.4. MRCCSDT/DZP energy curves for the 11A1 ground state of the H4 model system. See Fig. 2.3 caption 

for details. 

 

 The deviation from FCI for the first excited state (21A1) of the H4 model at the SD and 

SDT levels of theory, obtained by converging on the second root of the effective Hamiltonian, is 

shown in Figs. 2.5 and 2.6. For the SUCC method no extra computation is required since the 

effective Hamiltonian is state universal and built upon the lowest two determinants of A1 

symmetry. At the SD level the SUCC, BWCC, and MkCC methods show a significant deviation 

(3-6 mEh) from the FCI curve and a NPE greater than for the ground state. The apBWCC curve 

shows even larger deviations (5-14 mEh) from FCI, particularly in the single reference region 

(α > 0.1). For the 21A1 state, the inclusion of triple excitations in the cluster operator introduces 

several significant changes (Fig. 2.6). The SUCCSDT, BWCCSDT, and MkCCSDT potential 

energy curves deviate from FCI curve by no more than 0.35 mEh for α < 0.1, but the errors grow 

to about −4 mEh as the linear configuration is approached. The apBWCC curve continues to 

show significant deviation from FCI, but less pronounced than observed in the corresponding SD 

computation. 
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Figure 2.5. MRCCSD/DZP energy curves for the 21A1 excited state of the H4 model system. All computations 

employed state-averaged CAS(2,2) orbitals and weights: 0.5(11A1) and 0.5(21A1). 

 

Figure 2.6. MRCCSDT/DZP energy curves for the 21A1 state of the H4 model system. See Fig. 2.5 caption for 

details. 

 

2.5.2  THE P4 MODEL 

 The P4 model consists of four hydrogen atoms arranged in a rectangular configuration 

with fixed height of 2 bohr and variable length, as measured by the parameter α in bohr. This 

model system was first introduced by Jankowski and Paldus105 and has been tested with 

SUCC13,106 and MkCC theories.22 Varying the parameter α, the P4 model gives three different 
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types of geometrical configurations: (A) compressed, α < 2; (B) square, α = 2; and (C) 

elongated, α > 2. 

 
Scheme 2.2. The P4 Model. 

 

 For the square configuration (D4h) the zeroth-order wave function is described by a linear 

combination of the two degenerate determinants 
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, (47) 

which map into the non-degenerate (D2h) set 
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, (48) 

for both compression or elongation. This feature makes the P4 model a good complement to the 

H4 model, because the P4 zeroth-order wave function becomes multireference in character in the 

middle of the potential energy curve and not just at one extreme. 

 Figs 2.7 and 2.8 show the deviation from FCI for the ground state of the P4 model using 

the DZP basis set already employed for the H4 model and CAS(2,2) molecular orbitals 

optimized for the ground state. The plot of the square of the largest CI coefficient of the zeroth-

order wave function (lower panel of Fig. 2.7 and 2.8) clearly indicates that the multireference 

region of the problem is centered at α = 2 and extends roughly from 1.75 to 2.25 bohr. 

α

2 bohr
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Figure 2.7. MRCCSD/DZP energy curves for the 11A1 ground state of the P4 model system. All computations 

(including single-reference CC) employed CAS(2,2) orbitals optimized for the 11A1 state. The lower panel shows 

the square of the CAS(2,2) CI coefficient of 1Φ  versus the parameter α.  

 

Figure 2.8. MRCCSDT/DZP energy curves for the 11A1 ground state of the P4 model system See Fig. 2.7 caption 

for details. 

 

Single-reference SRCCSD gives a pronounced cusp at the square configuration (α = 2); 

nevertheless, it provides an accurate potential energy curve outside the multireference zone. 

State-universal SUCCSD is capable of describing the system in the multireference zone, but it 

shows increasing deviations of 1-3 mEh from FCI for large values of the parameter α. BWCCSD 
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and MkCCSD provide the best results, with absolute errors always less than 1 mEh and NPEs of 

0.66 and 0.74 mEh, respectively. The a posteriori correction to BWCCSD degrades the results, 

as shown by an NPE of ca. 8.0 mEh, a value even larger than the NPE of SRCC (7.3 mEh). 

 The inclusion of triple excitations reduces the height of the cusp for SRCC and, in 

general, slightly reduces the NPE for all the MRCC methods, except for apBWCC. Among all 

the methods, MkCCSDT is the only one in Figs. 2.7 and 2.8 that does not exhibit a “hump” in 

the curve near α = 2. MkCCSDT also has the smallest NPE, ca. 0.2 mEh. As previously noticed 

for the H4 system, none of the MRCC methods are able to match the accuracy to SRCC in the 

single-reference regions. For example, in P4, when α = 5 bohr, SRCCSDT has an error of less 

than 0.001 mEh, while for BWCCSDT and MkCCSDT the error is, respectively, 0.44 and 

0.28 mEh. 

Table 2.2. Non-parallelism error (NPE) in microhartrees (μEh) for the 11A1 state of the P4 model system in the 

range α ∈ [1.2,5.0], computed with DZP basis set. 

 CC Theory 

Excitation level SR SU BW apBW Mk 

SD 7319 4036 665 8016 739 

SDT 2178 3222 394 8434 259 

 

2.5.3  THE BEH2 MODEL 

 The dissociation of beryllium hydride was studied in the context of single-reference 

coupled cluster theory by Purvis, Shepard, Brown and Bartlett.109 These authors examined BeH2 

at selected points along a C2v path from the linear molecule toward dissociated products Be + H2. 

Later, several authors investigated the performance of multireference methods using the BeH2 
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model.20,22,37,110-118 Here we introduce a revision of this model, with the following motivation: (1) 

increase the number of sample points along the potential energy curve, limited only to nine in the 

original model;109 and (2) include the effects of core-core correlation for the beryllium atom. Our 

model is obtained by constraining the path of each hydrogen atom to a particular line, as defined 

in Scheme 2.3. The beryllium atom is placed at the origin of the axis, while the two hydrogen 

atoms move along the dashed lines described by the equations 

 )46.054.2()( xxy −±= , (49) 

where x lies in the range 0 - 4 bohr. This set of configurations interpolates the path between 

points A-H of the original model.109 

 
Scheme 2.3. The BeH2 Model. 

 

 The basis set employed here for BeH2 (and detailed in the Supplementary Material, 

Ref. 98) is a more loosely contracted variant of the double-ζ basis adopted in previous 

benchmark studies.20,22,37,109-118 In particular, we used a Be(10s3p/3s2p), H(4s/2s)107,108 

contraction with a tight beryllium p primitive function to describe core-core correlation. The 

hydrogen basis is identical to the s manifold of the DZP basis set utilized above for the H4 and 

P4 models. 
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 Molecular BeH2 at its linear (D∞h) equilibrium geometry has the dominant configuration  

 222
1 )1()2()1( ugg σσσ=Φ , (50) 

which correlates to 

 2
2

2
1

2
11 )1()2()1( baa=Φ  (51) 

in C2v symmetry. In contrast, the dissociated Be + H2 system is dominated by 

 2
1

2
1

2
12 )3()2()1( aaa=Φ . (52) 

Therefore, a change of electronic configuration occurs along the dissociation path, with an 

intervening region in which 1Φ  and 2Φ  are quasidegenerate. SRCC methods are thus 

inherently flawed for the BeH2 model. Within a SRCC formalism, 1Φ  can be used as a 

reference in the molecular region, and switching to reference 2Φ  allows description of the 

fragments. But in the vicinity of the transition state there is a discontinuity between the two 

energy curves, neither giving an accurate result. There is an additional pitfall for the BeH2 

model. In the linear configuration, the Hartree-Fock orbital energy of the unoccupied 1π orbital 

is lower than that of the *3 gσ  antibonding orbital. For a proper description of the dissociation 

process, any multireference computation should continuously follow the 2*2 )3()1( gu σ↔σ  

zeroth-order wave function solution.119 We were careful to ensure that this solution was obtained 

for both the CAS(2,2) orbitals and the multireference coupled cluster wave functions at all points 

along the BeH2 dissociation path. 

 Figs. 2.9-2.12 display our results for the BeH2 model for exciatation levels 2-5 (SD 

through SDTQP). SRCC curves are shown using 1Φ  as a Fermi vacuum in the range 
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0 < x < 3.0 and 2Φ  for the range 2.5 < x < 4.0. We have found that the SUCC method presents 

several issues of convergence for low (0 < x < 0.5) and high (3.5 < x < 4) values of x, and 

denominator shifting in Eq. (37) was required to converge most of the points on the potential 

energy curve. BWCC and MkCC converged without need of a denominator shift. 

 As the plots indicate, SRCC is unable to describe accurately the potential energy curve in 

the multireference regime (2.5 < x < 3.0 bohr). The BWCCSD and MkCCSD methods perform 

better than SUCCSD, with maximum errors below 2 mEh. The NPE values for the SSMRCCSD 

methods are lower than for SUMRCCSD. For example, the NPE is 2.2 mEh for MkCCSD but 

5.7 mEh for SUCCSD. The inclusion of triples does not correct the misbehavior of the SRCC 

solutions, while it reduces the absolute error for the BWCC and MkCC methods below 0.5 mEh 

and the corresponding NPEs by an order of magnitude (Table 2.3). At this level of truncation, 

SUCC performs satisfactorily in the multireference region, but it strongly deviates from the FCI 

curve when the zeroth-order wave function has single-reference character (absolute error 

ca. 5 mEh, NPE = 5.4 mEh). 

Table 2.3. Non-parallelism error (NPE) in microhartrees (μEh) for the 11A1 state of the BeH2 model system, 

computed with [Be(3s2p)/H(2s)] basis set. 

 CC Theory 

Excitation level 
SR (Φ1) 
x∈[0,3] 

SR (Φ2) 
x∈[2.5,4] 

SU 
x∈[0.15,3.5] 

BW 
x∈[0,4] 

Mk 
x∈[0,4] 

SD 15768 8082 5727 1922 2238 

SDT 10700 9977 5449 443 198 

SDTQ 14.1 37.4 3.2 0.7 0.6 

SDTQP 0.3 37.2 6.8 0.3 0.0 
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 With the inclusion of quadruples, the SSMRCC methods give absolute errors around 

0.5 μEh, three orders of magnitude better than the CCSDT approximation. The SUCCSDTQ 

method can deviate by more that 1 μEh, while the SRCCSDTQ curves show divergence in the 

multireference regime. All the MRCC methods display oscillatory error curves in the 

multireference regime. However, the MRCC energy curves and their derivatives remain perfectly 

smooth. To illustrate this point we have also included in Fig. 2.11 a smaller plot of the total 

energy of a section of the multireference regime. Further details regarding this point are given in 

the Supplementary Information, where we report numerical gradients computed at the 

MRCCSDTQ level. Finally, at the SDTQP level the CC energies deviate from FCI by less than 1 

μEh for the MkCC and BWCC methods, but the SRCC and SUCC errors can be much larger. 

Indeed, MkCC provides results that are virtually indistinguishable from the FCI curve. MkCC is 

superior to BWCC with a NPE of 0.0 μEh and an absolute error less than 10−8 Eh. 

 

Figure 2.9. MRCCSD/[Be(3s2p)/H(2s)] energy curves for the 11A1 ground state of the BeH2 model system. All 

computations (including single-reference CC) employed CAS(2,2) orbitals optimized for the 11A1 state. The lower 

panel shows the square of the CAS(2,2) CI coefficient of 1Φ  versus the parameter x. The SUCC curve is shown 

only in the range of convergence. 
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Figure 2.10. MRCCSDT/[Be(3s2p)/H(2s)] energy curves for the 11A1 ground state of the BeH2 model system. See 

Fig. 2.9 caption for details. 

 

Figure 2.11. MRCCSDTQ/[Be(3s2p)/H(2s)] energy curves for the 11A1 ground state of the BeH2 model system. See 

Fig. 2.9 caption for details. 
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Figure 2.12. MRCCSDTQP/[Be(3s2p)/H(2s)] energy curves for the 11A1 ground state of the BeH2 model system. 

See Fig. 2.9 caption for details. 
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2.5.4  THE H8 MODEL 

 The H8 model consists of eight hydrogen atoms arranged in an octagonal configuration 

with four bond lengths fixed to exactly 2 bohr. A variable parameter α (measured in bohr) 

determines the deviation from the D8h configuration due to the displacement of a pair of parallel 

H2 molecules. Scheme 2.4 depicts the H8 model and gives the definition of the parameter α. This 

model system was introduced in the 1980s by Jankowski, Meissner and Wasilewski120 and later 

has been studied intensively by several authors with CASCCSD,47,48 SUCC,13,106,121 BWCC,97 

MRCEPA,24 MkCC122, and MRexpT81 theories. As in the P4 model, upon varying the parameter 

α, the H8 model gives three different types of geometrical configurations: (A) compressed, α < 

0; (B) octagonal, α = 0; and (C) elongated, α > 0. 

 
Scheme 2.4. The H8 Model. 

 

 The H8 system is described by a two-dimensional model space defined by the two 

electronic configurations (in D2h symmetry) 
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For the compressed geometry the 1Φ  configuration is the restricted Hartree-Fock ground state, 

while for the elongated geometry, 2Φ  becomes lower in energy than 1Φ . The zeroth-order 

wave function for the D8h geometry is well described by the electronic configuration 

 2
1

4
1

2
1 )1()1()1( ugg eea , (54) 

comprising two degenerate determinants. 

 Single and multireference coupled cluster results for excitation levels 2-6 (SD through 

SDTQPH) are plotted for the H8 model in Figs. 2.13-2.17. The SRCC computations used 

reference 1Φ  as a Fermi vacuum for α < 0 and 2Φ for α > 0. All computations employed 

ground-state CAS(2,2) orbitals and the s manifold of the DZP basis set utilized above for the H4 

and P4 models.107,108 

 

Figure 2.13. MRCCSD/DZ energy curves for the 11A1 ground state of the H8 model system. All computations 

(including single-reference CC) employed CAS(2,2) orbitals optimized for the 11A1 state. The lower panel shows 

the square of the CAS(2,2) CI coefficient of 1Φ  versus the parameter α.  
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Figure 2.14. MRCCSDT/DZ energy curves for the 11A1 ground state of the H8 model system. See Fig. 2.13 caption 

for details. 

Table 2.4. Non-parallelism error (NPE) in microhartrees (μEh) for the 11A1 state of the H8 model system, computed 

with DZ basis set. 

 CC Theory 

Excitation level 
SR (Φ1) 

α∈[−0.4,0] 
SR (Φ2) 

α∈[0,0.4] 
SU 

α∈[−0.4,0.4] 
BW 

α∈[−0.4,0.4] 
Mk 

α∈[−0.4,0.4] 

SD 6102 5995 2768 1906 2019 

SDT 8580 8500 226 716 330 

SDTQ 77.7 77.0 6.3 10.0 6.1 

SDTQP 79.3 79.3 1.0 5.5 2.0 

SDTQPH 0.1 0.1 0.0 0.0 0.0 

 

 The two SRCC curves exhibit discontinuities in the multireference regime and large 

errors, most manifestly at the triples level, where the NPE is ca. 8.6 mEh and 8.4 mEh when 

using, respectively, 1Φ  and 2Φ  as the reference. The MRCCSD methods show NPE values 

smaller than 3 mEh, and the error is further reduced by the inclusion of triple excitations, most 
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significantly in the case of  SUCCSDT (NPE = 0.2 mEh) and MkCCSDT (NPE = 0.3 mEh) 

(Table 2.4). The MRCC methods have the largest absolute errors in the multireference region. 

For example, at α = 0, BWCCSD is more accurate than MkCCSD and SUCCSD, with absolute 

errors of −1, −1.5, and −2.7 mEh, respectively. This ordering is reversed by the inclusion of 

triples. Thus, at α = 0, SUCCSDT is more accurate than MkCCSDT and BWCCSDT, with 

absolute errors of 0.4, 0.5, and 1.0 mEh, respectively. In the single-reference region (|α| > 0.2) 

the MRCC curves are more accurate than SRCC only for the SD level. Once higher-order 

excitations (n > 2) are included, the MRCC methods again fail to match the accuracy of SRCC, 

when the Hartree-Fock reference predominates. For example, for α = 0.4, where the zeroth-order 

wave function is dominated by 2Φ , the energy error of SRCCSDT with respect to FCI is 

−0.1 mEh, while for SUCCSDT, BWCCSDT and MkCCSDT it is 0.2, 0.4, and 0.6 mEh, 

respectively. 

 

Figure 2.15. MRCCSDTQ/DZ energy curves for the 11A1 ground state of the H8 model system. See Fig. 2.13 

caption for details. 
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 Quadruple excitations reduce the NPE below 0.01 mEh for all MRCC methods. For 

SRCCSDTQ the NPE is around 0.08 mEh (Table 2.4). All MRCCSDTQ methods outperform 

SRCCSDTQ in the multireference region. The absolute errors at the octagonal geometry (α = 0) 

for the MRCCSDTQ methods are below 9 μEh, with little difference in performance. In the 

single-reference region (|α| > 0.2) the MRCC curves show maximum deviations from FCI of ca. 

6 μEh, comparable to the deviation observed for SRCC (ca. 10 μEh). In conclusion, at this level 

of excitations the performance of the various MRCC methods is approximately the same. 

 

 

 

Figure 2.16. MRCCSDTQP/DZ energy curves for the 11A1 ground state of the H8 model system. See Fig. 2.13 

caption for details. 
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errors less than 0.02 μEh for all MRCC methods. The SRCCSDTQPH error peaks at about 

0.14 μEh near α = 0 and shows only a small cusp when the reference changes from 1Φ  to 

2 .Φ  

 

 

Figure 2.17. MRCCSDTQPH/DZ energy curves for the 11A1 ground state of the H8 model system. See Fig. 2.13 

caption for details. 

 

2.6  SUMMARY 

 A new, arbitrary-order string-based code has been used to compute multireference 
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coupled cluster theories based on the wave operator formalism: (a) the state universal (SU) 

method of Jeziorski and Monkhorst;12 (b) the state-specific Brillouin-Wigner (BW) approach, 
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methods. 
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 The error curves (with respect to FCI) in Figs. 2.1-2.17 demonstrate that for ground 

electronic states MkCC is clearly superior to SUCC at all levels of truncation of the cluster 

operator. The only exception to this statement for the systems studied here is the H8 model in the 

case of triple and higher excitations. The ground-state error curves show that MkCC is also 

generally better than BWCC, but as measured by the non-parallelism error (NPE) index of 

Tables 2.1-2.4, MkCC and BWCC are quite competitive. For the one excited state examined here 

(21A1 for the H4 model), MkCC and BWCC perform just as well as SUCC. 

 One qualitative measure of the performance of the MRCC methods is the degree to which 

the error curves remain flat throughout the single and multireference regions of the geometric 

configuration space. For the H4, P4, BeH2, and H8 models, none of the MRCC methods 

completely achieves this goal at the single and double excitation level. However, in the 

ground-state computations, MkCCSDT meets this criterion exceedingly well, certainly better 

than BWCCSDT and SUCCSDT in general. A disappointing feature of SUCC is its pronounced 

tendency to deteriorate in accuracy outside the immediate vicinity of quasidegeneracy in the 

electronic structure, thus enhancing the curvature of the SUCC error functions. 

 The NPE indices in Tables 2.1-2.4 provide quantitative information on the degree to 

which the various coupled cluster curves parallel the FCI results. The average ground-state NPE 

values for SUCCSD, BWCCSD, and MkCCSD are 3.9, 1.3, and 1.4 mEh, respectively. The 

inclusion of triple excitations yields significant improvements, the average ground-state NPE 

values for SUCCSDT, BWCSDT, and MkCCSDT being reduced to 2.91, 0.42 and 0.22 mEh, 

respectively. 

 A final measure of the performance is given in Table 2.5, where absolute errors with 

respect to FCI are listed for each coupled cluster method, as computed at the points of maximum 
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multireference character. At these points [H4(α = 0), P4(α = 2), BeH2(x = 2.85), H8(α = 0)] the 

CI coefficients in the CAS(2,2) zeroth-order wave functions are equivalent ( 2/12
2

2
1 == cc ). 

Once again the superiority of the MkCC method is demonstrated. Also note the dramatic 

improvement when quadruple excitations are included. Among the MRCCSDTQ entries, the 

absolute errors are all less than 10 μEh, or 2 cm−1. 

Table 2.5. Errors in microhartrees (μEh) for the 11A1 ground state of the H4, P4, BeH2, and H8 models computed at 

the maximum multireference point using ground-state CAS(2,2) orbitals. 

H4 and P4 CC Theory 

Excitation level SR SU BW apBW Mk 

SD 7372 −661 35 −1826 −162 

SDT −2143 −114 226 −1578 43 

BeH2 CC Theory 

Excitation level SR (Φ1) SR (Φ2) SU BW Mk 

SD 10041 1563 −2032 −762 −1016 

SDT −8253 −442 −214 327 80 

SDTQ −12.7 4.0 −0.6 −0.3 −0.2 

SDTQP 0.1 3.9 −0.001 −0.2 −0.003 

H8 CC Theory 

Excitation level SR (Φ1) SR (Φ2) SU BW Mk 

SD 7272 7272 −2699 −984 −1483 

SDT −8618 −8618 374 1041 530 

SDTQ −70.7 −70.7 7.0 9.0 7.6 

SDTQP 79.3 79.3 −1.3 −6.9 −2.5 

SDTQPH 0.1 0.1 −0.008 −0.017 −0.011 
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 In summary, the MkCC approach is shown to be the method of choice among the MRCC 

formalisms investigated here for the H4, P4, BeH2, and H8 models. Of course, caution is 

warranted in extrapolating this conclusion to more realistic chemical systems. More definitive 

conclusions will become apparent after the development of production-level MkCC codes 

capable of treating larger molecules with extensive basis sets. For the model systems, 

multireference BWCC often provides results of comparable accuracy to MkCC. However, the 

lack of size extensivity of BWCC poses real limitations to its broad application. In our tests of 

the proposed a posteriori (ap) size-extensivity correction to BWCC,28 we found a serious 

degradation of results in all cases. For example, in the P4 system, both apBWCCSD and 

apBWCCSDT have non-parallelism errors more than one order of magnitude greater than their 

BWCC and MkCC counterparts. Our investigation also found that the corresponding iterative 

size-extensivity correction (iBWCC) fails even more severely than apBWCC, so we do not 

report explicit data here. 

 Despite the success of the MkCC method, there are still directions for further 

improvements. First, it is disappointing that all the wave operator MRCC methods investigated 

here were often unable to match the accuracy of SRCC theory in the single-reference regions of 

the H4, P4, BeH2, and H8 models. This deficiency was not observed at the SD excitation level 

but was seen in all cases after triple excitations were included. While this deficiency was only 

0.5 mEh in magnitude or smaller, one nonetheless wonders what subtle flaw might exist in 

MkCCSDT that makes it less accurate than SRCCSDT when the system has little multireference 

character. Second, the inclusion of triple excitations in a perturbative fashion 

[(T) approximations] should be a valuable development for the application of MkCC theory to 

larger systems. Work in this direction has been undertaken recently both by Li and Paldus19 for 
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SUCC and Demel and Pittner123 for BWCC. Finally, the general application of MkCC theory 

must deal with the μ
− ΦμΦ

νμ T̂T̂...
... )( eeab

ij  coupling terms in Eq. (30). However, for the very 

important and widely applicable CCSD, and CCSDT cases, the exact evaluation of these terms 

presents no difficulties. Indeed, we plan to report on a new production-level MkCCSD code for 

CAS(2,2) model spaces in the near future. This achievement will bring numerous chemical 

applications within the reach of genuine, fully size extensive, wave operator MRCC methods for 

the first time. 
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3.1  ABSTRACT 

 Simple closed-form expressions are derived for the “same vacuum” renormalization 

terms that arise in state-specific multireference coupled cluster (MRCC) theories. Explicit 

equations are provided for these coupling terms through the triple excitation level of MRCC 

theory, and a general expression is included for arbitrary-order excitations. The first 

production-level code (PSIMRCC) for state-specific and rigorously size-extensive Mukherjee 

multireference coupled cluster singles and doubles (MkCCSD) computations has been written. 

This code is also capable of evaluating analogous Brillouin-Wigner multireference energies 

(BWCCSD), including a posteriori size-extensivity corrections. Using correlation-consistent 

basis sets (cc-pVXZ, X = D, T, Q), MkCCSD and BWCCSD were tested and compared on two 

classic multireference problems: (1) the dissociation potential curve of molecular fluorine (F2), 

and (2) the structure and vibrational frequencies of ozone. Comparison with experimental data 

shows that the Mukherjee method is generally superior to Brillouin-Wigner theory in predicting 

energies, structures, and vibrational frequencies. Particularly accurate results for F2 are obtained 

by applying the MkCCSD method with localized molecular orbitals. Although MkCCSD theory 

greatly improves upon single-reference CCSD for the geometric parameters and a1 vibrational 

frequencies of ozone, the antisymmetric stretching frequency ω3(b2) remains pathological and 

cannot be properly treated without the inclusion of connected triple excitations. Finally, we 

report preliminary multireference MkCCSD results for the singlet-triplet splittings in ortho-, 

meta-, and para-benzyne, coming within 1.5 kcal mol−1 of experiment in all cases. 

For the first time high-order 
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3.2  INTRODUCTION 

 State-universal1 (SU) and state-specific2,3 (SS) multireference coupled cluster theories 

(MRCC), in the Hilbert space formulation, are perhaps the most sound methods for computing 

accurate energies of quasi-degenerate molecular systems that require a multiconfigurational 

zeroth-order wave function. However, the technical difficulties of true MRCC formalisms have 

led to a number of alternative theories built on a single-reference framework, including the 

CASCC4-7 approach, the reduced multireference (RM-RCCSD) method,8-16 active-space CC 

approaches,17-23 orbital-optimized CC schemes,24-26 spin-flip methods,27-34 higher-order, 

noniterative corrections derived from the similarity-transformed Hamiltonian,35-39 and a broad 

class of method-of-moments CC (MM-CC)40-45 and renormalized CC methods.46-51 

Notwithstanding these advances, renewed research on genuine multireference coupled cluster 

methods has given promising results,3,52-62 and our interest in this paper is the development of 

rigorous, robust, SS-MRCC methods for practical chemical problems.  

 The state-universal MRCC approach was developed by Jeziorski and Monkhorst1 (JM) 

and relies on a wave operator formalism. The wave operator ( ) ansatz is 

 , (1) 

where μΦ  belongs to the reference space (or model space) of d Slater determinants used to 

describe the zeroth-order wave function, and T̂ μ  incorporates dynamical correlation by exciting 

electrons from the occupied orbitals (i, j, …) to the virtual orbitals (a, b, …) of reference μ. A 

complete model space (CMS) is generally assumed, containing all possible distributions of m 

electrons in n orbitals [CAS(m, n)], but  SUCC theory can also be formulated for an incomplete 

Ω̂

ˆ

1

ˆ
d

Te
μ

μ μ
μ=

Ω = Φ Φ∑



72 

model space.52 Within this partition of the space of determinants, a projection operator onto the 

model space is defined as 

 
1

ˆ
d

P μ μ
μ=

= Φ Φ∑  (2) 

as well as its orthogonal complement, ˆ ˆ1Q P= − . The JM wave operator is used to “lift” an 

approximate zeroth-order wave function for state α, written as a linear combination of reference 

determinants weighted by coefficients ( )c α
μ , 

 ( )P c α
α μ μ

μ

Ψ = Φ∑ , (3) 

to the corresponding exact wave function αΨ , which has the final form 

 ˆ ( )ˆ P Te c
μ α

α α μ μ
μ

Ψ = Ω Ψ = Φ∑ . (4) 

An effective Hamiltonian matrix 

 ˆeff ˆ TH He
ν

μν μ ν= Φ Φ , (5) 

is diagonalized to obtain the energies ( )E α  and weighting coefficients ( )c α
μ  from the 

eigenequation 

 eff ( ) ( ) ( )

1
( 1, 2, , )

d

H c E c dα α α
μν ν μ

ν=

= μ =∑ … . (6) 

 The Bloch equation1 for the wave operator gives the SUCC t-amplitude equations 

 ˆ ˆ eff

( )
( ) ( ) ( 1, 2, , )ab ab T T

ij ijH e e H d
μ ν−

μ μ ν νμ
ν ≠μ

Φ μ Φ = Φ μ Φ μ =∑" "
" " … , (7) 
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where  is the usual similarity-transformed Hamiltonian, and the determinants 

( )ab
ijΦ μ"
"  span all excitations contained in T̂ μ . The matrix elements of Hμ  are already present in 

single reference CC theory (SRCC), and thus may be easily coded using well know formulas 

reported more than ten years ago.63-65 Jeziorski and Monkhorst proved that Eq. (7) leads to a 

size-extensive theory, by showing that all terms therein are connected quantities. In particular, 

the effective Hamiltonian matrix is a connected quantity for a CMS, because in this case 

 , (8) 

and the similarity-transformed Hamiltonian contains only connected terms. 

 Perturbation theory was used by JM to prove the connected nature of the coupling terms  

ˆ ˆ( )ab T T
ij e e

μ ν−
νΦ μ Φ…

… , also called “renormalization” terms.1 The derivation of closed-form 

expressions for these terms is rather involved, and was a hindrance to the development of the 

SUCC method. The coupling terms take on numerous expressions, since they depend explicitly 

on the two references μ and ν, on the excitation level of the determinant used to left-project the 

SUCC equations, and the truncation scheme adopted for the cluster operator. Thus, the earlier 

derivations of the SUCC coupling terms were exclusively limited to model spaces formed by two 

closed-shell determinants and single and double (SD) excitation levels.66-69 The most recent 

derivations are those by Li and Paldus52 based on the algebraic approach, and by Paldus, Li, and 

Petraco70 using diagrammatic procedures. These papers extended the coupling term treatment to 

the case of two generic determinants μΦ  and νΦ , while still assuming a cluster operator 

truncated at the SD level. Although the work of Paldus and co-workers,52,70 in principle, solves 

the problem of finding closed expressions for the SUCC coupling terms, the final formulas are 

very generic and still require explicit simplification for all the possible cases. 

ˆ ˆˆT TH e He
μ μ−

μ =

ˆeff ˆ TH He H
μ

νμ ν μ ν μ μ= Φ Φ = Φ Φ
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 A major difficulty with SUCC theory is the intruder state problem, which significantly 

limits its applicability. Intruder problems arise when an excited electronic state outside the model 

space drops into the energy regime of the chosen zeroth-order manifold in some region of the 

potential energy surface.52,71,72 Li and Paldus52-55,73 have recently revised the original SUCC 

formulation of JM, giving explicit “C-conditions” on the t-amplitudes that preserve size 

extensivity in the case of general model spaces. In this manner one can carefully select the 

reference determinants in the zeroth-order wave function to help avoid the intruder problem. 

 State-specific (SS) theories aim at treating one state at a time through a wave operator 

that lifts only one state 

 ˆ P
α α αΨ = Ω Ψ . (9) 

By focusing on only one state, SS theories achieve two major improvements with respect to 

SUCC. First, they naturally avoid the intruder state problem, and second, they maximize 

accuracy for the state of interest.  

 The SS simplification introduces the problem of sufficiency conditions, because the 

number of equations that can be derived by introducing a state-specific wave operator into the 

Schrödinger equation is less than the number of t-amplitudes contained in the μT̂  operators. In 

particular, a redundancy exists among the t-amplitudes related to any determinant that can be 

generated from multiple references within the chosen excitation level cutoff. Since the 

t-amplitudes are underdetermined, one must introduce supplementary conditions. In SSMRCC 

this choice is not unequivocal, and various theories adopt different sufficiency conditions. 

Brillouin-Wigner2,58,74-79 (BW) multireference coupled cluster and the MRCC approach of 

Mukherjee and co-workers3,59-61,80-88 (here abbreviated as MkCC) are genuine state-specific 
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multireference CC theories based on the JM wave operator ansatz. These SS theories impose 

different sufficiency conditions on the t-amplitudes, with far-reaching consequences. 

 The BWCC method was first derived using the Brillouin-Wigner form of the Bloch 

equation.2,58,74-79 A simpler derivation starts by inserting the JM expansion for the exact wave 

function [Eq. (4)] into the Schrödinger equation, yielding 

 ˆ ˆ( ) ( ) ( )ˆ 0T THe c E e c
μ μα α α

μ μ μ μ
μ

⎡ ⎤Φ − Φ =⎣ ⎦∑ . (10) 

The BWCC sufficiency conditions for the t-amplitudes consist in merely setting individual μ 

terms in Eq. (10) to be identically zero, leading to 

 ˆ ˆ( )ˆ( ) ( ) ( 1,2, , )ab T ab T
ij ijHe E e d

μ μα
μ μΦ μ Φ = Φ μ Φ μ =… …

… … … . (11) 

Note that the amplitude equations for the various references are coupled only by the energy of 

the target state, a distinct computational advantage. BWCC solves the problem of intruder states 

but has one major deficiency – it is not size extensive. This is easily seen by expanding the first 

term in Eq. (11) as a sum of connected (C) diagrams, and disconnected linked (DCL) and 

unlinked (UL) diagrams 

 ( ) ( )ˆ ˆ ˆ

C DCL UL
ˆ ˆ ˆT T THe He He

μ μ μ

+
= + . (12) 

The nonvanishing contribution of the DLC and UL diagrams leads to lack of size extensivity for 

the state-specific BWMRCC. In contrast, in the single reference74,75 and Fock-Space 

multireference formulations of BWCC,89,90 the disconnected contributions cancel at 

convergence, and therefore these methods are size extensive. 

 The solution of the size-extensivity problem in BWCC has been attempted by applying 

energy corrections after convergence of the BWCC t-amplitude equations. Both a posteriori 
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(apBWCC)76 and the iterative (iBWCC)77 correction schemes have been applied, as obtained 

from a generalized Bloch equation77 for the state-specific wave operator 

 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1 ) (1 )E P H P H P PV Pα α α α α αλ Ω + −λ Ω = Ω − −λ Ω Ω , (13) 

where 0Ĥ  and V̂  derive from a well defined partition of the Hamiltonian, 0
ˆ ˆ ˆH H V= + . Setting 

the parameter λ = 1 in Eq. (13) recovers the BWCC method, while λ = 0 yields the 

Rayleigh-Schrödinger (RS) Bloch equation CC. In the a posteriori size-extensivity correction, 

the MRCC equations are solved for λ = 1, and after convergence a final iteration is performed 

with λ = 0. The iterative size-extensivity correction (iBWCC) is performed by continuously 

decreasing the parameter λ to zero while converging the cluster amplitudes. In the a posteriori 

correction, size extensivity is achieved only approximately, while in the iterative correction the 

final energy is size extensive and equal to the RS Bloch equation energy. However, the intruder 

problem is thus reintroduced in the iBWCC scheme.  

 The state specific MRCC method of Mukherjee (MkCC)3,59-61,80-88  is obtained assuming 

the JM ansatz for the wave operator and using a well defined set of sufficiency conditions. If we 

multiply Eq. (10) by the identity 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ1 ( )T T T T T T T Te e e P Q e e e e Qe P Q
μ μ μ μ μ μ μ μ− − − −

ν ν μ μ
ν

= = + = Φ Φ + = +∑ , (14) 

we get 

 ˆ ˆ ˆeff ( ) ( ) ( ) ( )

,

ˆ 0T T Te H c e QH c E e c
μ μ μα α α α

ν νμ μ μ μ μ μ μ
μ ν μ μ

Φ + Φ − Φ =∑ ∑ ∑ . (15) 

Upon interchanging the dummy indices μ and ν in the double summation of Eq. (15) and 

collecting the individual terms, we obtain  
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 ˆ ˆ ˆeff ( ) ( ) ( ) ( )ˆ 0T T Te H c e QH c E e c
ν μ μα α α α

μ μν ν μ μ μ μ μ
μ ν

⎡ ⎤
Φ + Φ − Φ =⎢ ⎥

⎣ ⎦
∑ ∑ . (16) 

The MkCC sufficiency conditions are chosen such that Eq. (16) is satisfied by setting the 

individual terms in the μ summation to zero. After multiplication by 
μT̂-e  and left projection on 

the excited determinants ...
... ( )ab

ijΦ μ , the final t-amplitude equations become 

 ˆ ˆ( ) eff ( )

( )
( ) ( ) 0 ( 1, 2, , )ab ab T T

ij ijH c e e H c d
μ να − α

μ μ μ μ μν ν
ν ≠μ

Φ μ Φ + Φ μ Φ = μ =∑" "
" " … . (17) 

Mukherjee and co-workers3 proved the connected nature of the coupling terms 

ˆ ˆ( )ab T T
ij e e

μ ν−
μΦ μ Φ…

…  and thus showed that MkCC is rigorously size extensive. These coupling 

terms resemble those present in SUCC theory, but with the key difference that both the bra and 

ket refer to the same reference μ. Expressions for these coupling terms were not reported by 

Mukherjee and co-workers. The idea that such terms would somehow be difficult to express has 

been stated in the literature,77 and probably the apparently slight difference between the SUCC 

and MkCC coupling terms was not considered relevant. 

 The Mukherjee multireference approach has been investigated both at the CCSD and 

CEPA (coupled electron pair approximation) levels, and applied to the H4, P4, and BeH2 model 

systems, as well as Li2, F2,87 and several other diatomic molecules.61 A perturbative scheme 

(MkPT) has also been developed.83,84 While the MkCC method has given encouraging results in 

these tests, it has not been used in conjunction with large basis sets, and it is not currently 

implemented into a production-level code. 

 In our earlier paper62 we investigated the effect of high order excitations (trough hextuple 

level) in SUCC, BWCC, apBWCC, and MkCC. The results obtained from the H4, P4, BeH2, and 

H8 model systems indicated that MkCC and BWCC are competitive theories and provide more 
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accurate potential energy curves than SUCC and apBWCC. Moreover, when we analyzed the 

effect of the truncation of the excitation level, we found that MkCC shows a faster convergence 

to the FCI limit than BWCC. We thus concluded that even at the singles and doubles level, 

MkCC may provide accurate potential energy curves and that the inclusion of full triples 

promises to deliver energetics accurate to better than 1 kcal mol−1. 

 In the present paper we derive explicit formulas for the MkCC coupling terms and then 

describe our new production-level implementation. Two derivations of the coupling terms are 

presented. The first involves the use of the resolution of the identity52 and is worked out in the 

body of this article for the CCSD approximation. Appendix I reports a more general derivation 

using the properties of the “common amplitudes”. Appendix II provides the explicit expressions 

for the coupling terms in the MkCCSDT approximation.  Computations of the potential energy 

curve of F2, vibrational frequencies of ozone, and preliminary results on the singlet-triplet 

splittings for the three isomers of benzyne are then presented as representative applications of 

our production-level MRCC code. 

 

3.3  DERIVATION OF THE COUPLING TERMS 

 It is convenient, when dealing with state specific MRCC theories, to partition the space of 

spin orbitals into five subsets: 1) frozen core (FC), doubly occupied in all the determinants; 

2) doubly occupied (DO), specifically doubly occupied in all the reference determinants; 

3) active (A), partially occupied in the reference space; orbitals A contain K active electrons; 

4) external (E), unoccupied in all the reference determinants, and 5) frozen external (FE), 

unoccupied in all determinants. For a generic determinant, μΦ , we define the active occupied 
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orbitals (occupied orbitals in the DO + A space) )(occ μ , and the active virtual orbitals 

(unoccupied orbitals in the A + E space) )(vir μ . 

 In the case of single and double excitations the cluster operators are the sum of two 

contributions 

 1 2
ˆ ˆ ˆT T Tμ μ μ= + , (18) 

with the individual components expressed as 

 
occ( ) vir( )

1̂ ˆ ˆ( )a
i a i

i a

T t a a
μ μ

μ += μ∑ ∑ , (19) 

and 

 
occ( ) vir( )

2
, ,

1ˆ ˆ ˆ ˆ ˆ( )
4

ab
ij b j a i

i j a b
T t a a a a

μ μ
μ + += μ∑ ∑ . (20) 

Here, we have been careful to note that the t-amplitudes in Eqs. (19) and (20) belong to reference 

μ by adding the symbol in parentheses (μ). Assuming the model space used to build the 

zeroth-order wave function to be a complete active space (CAS), we can require the wave 

operator to satisfy intermediate normalization 

 ˆ ˆ ˆ ˆP P PΩ = . (21) 

This condition implies that the so called internal amplitudes corresponding to excitations that 

transform a reference determinant μΦ  into another reference determinant νΦ  are set to zero:1,77 

 † †ˆ ˆ ˆ ˆ       ( ) 0ab
b j a i ija a a a tμ νΦ = ± Φ ⇒ μ ="

"" . (22) 
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 In the MkCCSD approximation, the set of determinants used to project the MRCC 

equation is limited to the singly and doubly excited determinants obtained from the Fermi 

vacuum μΦ  

 { }( ) , ( )a ab
i ijΦ μ Φ μ . (23) 

To derive the coupling coefficients, we use the resolution of the identity written with respect to 

the vacuum μ as 

 
occ( ) vir( ) occ( ) vir( )

Î ( ) ( ) ( ) ( ) ...e e ef ef
m m mn mn

m e m n e f

μ μ μ μ

μ μ
< <

= Φ Φ + Φ μ Φ μ + Φ μ Φ μ +∑ ∑ ∑ ∑  (24) 

where we have explicitly separated contributions from the single, double, and higher excitations 

with respect to reference μΦ . 

 

3.3.1  SINGLE EXCITATIONS 

 Introducing the resolution of the identity in the coupling term 

 ˆ ˆ( )a T T
i e e

μ ν−
μΦ μ Φ  (25) 

we obtain only two non-zero terms. The first term arises from the projection onto μΦ  and is 

 ˆ ˆ( ) ( )a T T a
i ie e t

μ ν−
μ μ μΦ μ Φ Φ Φ = − μ . (26) 

The second term arises from the singly excited determinants ( )e
mΦ μ  and is 

 
occ( ) vir( )

ˆ ˆ ˆ( ) ( ) ( ) ( )a T e e T a T
i m m i

m e

e e e
μ ν ν

μ μ
−

μ μΦ μ Φ μ Φ μ Φ = Φ μ Φ∑ ∑ . (27) 
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Noticing that the exponential can contribute only with terms linear in 1̂T ν  we find that the 

coupling terms may be expressed as 

 ˆ ˆ
1̂( ) ( ) ( )a T T a a

i i ie e T t
μ ν− ν

μ μΦ μ Φ = Φ μ Φ − μ . (28) 

 Of the t-amplitudes ( )e
mt ν  belonging to 1̂T ν , those that contribute to the first term of 

Eq. (28) need to satisfy occ( )m∈ μ  and vir( )e∈ μ ; otherwise the sequence of operators ˆ ˆe ma a+  

would annihilate μΦ . Therefore if we introduce the “common” amplitudes of operator T̂ ν  with 

respect to T̂ μ  

 
if , , occ( )

( )
( / ) and , , vir( )

0 else

ab
ijab

ij

i j
t

t a b
∈ μ⎧

ν⎪ν μ = ∈ μ⎨
⎪
⎩

…
……

…

…
… , (29) 

we can write the coupling term for singly excited determinants as 

 ˆ ˆ( ) ( / ) ( )a T T a a
i i ie e t t

μ ν−
μΦ μ Φ = ν μ − μ . (30) 

In the case ν = μ , the common amplitudes ( / )a
it ν μ  correspond to ( )a

it μ , and the coupling terms 

are equal to zero. 

 As mentioned above, the terms arising from the projection onto doubly and higher 

excited determinants, like ˆ( ) ( )a T ef
i mne

μ−Φ μ Φ μ"
" , are null. This can be seen easily by realizing 

that the quantity ˆ ( )T ef
mne

μ− Φ μ"
"  does not have contributions from singly excited determinants. 
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3.3.2  DOUBLE EXCITATIONS 

 After introducing the resolution of the identity in the double excitations coupling element 

 ˆ ˆ( )ab T T
ij e e

μ ν−
μΦ μ Φ , (31) 

we get three terms deriving from the reference and the singly and doubly excited determinants. 

The first term contains contributions only from reference μΦ  

 ˆ ˆ( ) ( ) ( ) ( ) ( )ab T T ab a b
ij ij i je e t P ij t t

μ ν−
μ μ μΦ μ Φ Φ Φ = − μ + μ μ , (32) 

where we have introduced the permutation operator )(ijP  defined as 

),(),(),()( ijfjifjifijP −= . 

 The second term derives from singly excited determinants 

 

occ( ) vir( )
ˆ ˆ

occ( ) vir( )

1 1

( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ,

ab T e e T
ij m m

m e

ab e e
ij m m

m e

e e

T T

μ ν
μ μ

−
μ

μ μ
μ ν

μ

Φ μ Φ μ Φ μ Φ

= − Φ μ Φ μ Φ μ Φ

∑ ∑

∑ ∑
 (33) 

and, after some algebra, it may be simplified to 

 ( ) ( ) ( ) ( / )a b
i jP ij P ab t t− μ ν μ . (34) 

 The third term arises from doubly excited determinants and may be compactly written  as 

 ( )
occ( ) vir( ) 2ˆ ˆ

2 1
1ˆ ˆ( ) ( ) ( ) ( )
2

ab T ef ef T ab
ij mn mn ij

m n e f

e e T T
μ ν

μ μ
− ν ν

μ μ
< <

Φ μ Φ μ Φ μ Φ = Φ μ + Φ∑ ∑ . (35) 

Using the “common” amplitudes as introduced above, Eq. (35) may be cast in closed form. The 

final expression for the double excitation coupling terms is then 
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ˆ ˆ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( / )

( / ) ( ) ( / ) ( / )

( , ) ( ).

ab T T ab a b
ij ij i j

a b
i j

ab a b
ij i j

ab ab
ij ij

e e t P ij t t

P ij P ab t t

t P ij t t

C t

μ ν−
μΦ μ Φ = − μ + μ μ

− μ ν μ

+ ν μ + ν μ ν μ

= μ ν − μ

 (36) 

To compact the equations in the next section, we have introduced the ),( νμab
ijC  tensors 

composed of all terms on the right side of Eq. (36) except ( )ab
ijt− μ . In the actual computational 

scheme, the ),( νμab
ijC  are not required to be formed or stored at all. 

 

3.3.3  AMPLITUDE EQUATIONS 

 Using the coupling terms derived in the previous two sections, it is possible to write the 

MkCCSD t-amplitude equations [Eq. (17)] in a more suitable form for implementation in a 

computer program. The single excitation t-amplitudes then satisfy 

 ( ) eff ( )

( )
( ) ( ) ( / ) ( ) 0 ( 1,2, , )a a a a

i i i iH c t t H c dα α
μ μ μ μν ν

ν ≠μ

⎡ ⎤Δ μ = Φ μ Φ + ν μ − μ = μ =⎣ ⎦∑ … , (37) 

while the double excitations equation can be written using the  tensors introduced 

above as 

 ( ) eff ( )

( )
( ) ( ) ( , ) ( ) 0 ( 1,2, , )ab ab ab ab

ij ij ij ijH c C t H c dα α
μ μ μ μν ν

ν ≠μ

⎡ ⎤Δ μ = Φ μ Φ + μ ν − μ = μ =⎣ ⎦∑ … . (38) 

The t-amplitude residuals  and  introduced in Eqs. (37) and (38) vanish only at 

convergence. The quantities ( ) H ( )a
i μΦ μ Φ μ  and  are projections of the 

similarity-transformed Hamiltonian for the CCSD case and are already available from SRCCSD 

theory (see Supplementary Material).91 Eqs. (37) and (38) can be used in an iterative procedure 

to obtain the converged t-amplitudes, using the formulas 

),( νμab
ijC

( )a
iΔ μ ( )ab

ijΔ μ

( ) H ( )ab
ij μΦ μ Φ μ
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 ( ) eff

( )( , new) ( ,old)
( ) ( )

a
a a i
i i

ii aa

t t
f f E Hα

μμ

Δ μ
μ = μ +

μ − μ + −
, (39) 

and 

 ( ) eff

( )
( , new) ( ,old)

( ) ( ) ( ) ( )

ab
ijab ab

ij ij
ii jj aa bb

t t
f f f f E Hα

μμ

Δ μ
μ = μ +

μ + μ − μ − μ + −
. (40) 

In these expressions the Fock matrix elements [ ( )pqf μ ] are computed with respect to vacuum 

μΦ  as 

 [ ]
occ( )

( ) ( | ) ( | )pq pq
k

f h pq kk pk qk
μ

μ = + −∑  (41) 

from the one electron integrals pqh  and the standard two electron integrals ( | )pq rs . 

 We have observed very robust convergence, although at times slow, using Eqs. (39) and 

(40). In cases where the coefficients ( )c α
μ  do not approach zero, convergence is often accelerated 

by making the substitutions ( )a
iΔ μ  → ( )( ) /a

i c α
μΔ μ  and ( )ab

ijΔ μ  → ( )( ) /ab
ij c α

μΔ μ  in Eqs. (39) and 

(40). Moreover, since the residuals vanish at convergence, the denominators in these update 

equations may be arbitrarily shifted to damp large variations in the t-amplitudes, especially in the 

first few iterations. Denominator shifting was not required in any of our examples, however it 

was previously found to be necessary to converge calculations on model systems.62  
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3.4  IMPLEMENTATION 

 We have implemented the multireference MkCC equations within a new coupled cluster 

program PSIMRCC developed at the University of Georgia and interfaced to the package 

Psi 3.2.3.92 Molecular orbitals were generated using the code DETCAS by Sherrill,93 and the 

integral transformation was performed by the routine TRANSQT, by Crawford, Sherrill, and 

Fermann.92 The similarity-transformed Hamiltonian matrix elements were coded from spin-

factored CCSD equations for an unrestricted reference. These matrix elements were derived from 

the corresponding spin-orbital equations,64 as given in the Supplementary Material.91 The 

coupling terms for the Mukherjee equations were coded according to Eqs. (30) and (36). 

 One of the advantages of using an unrestricted formulation is that it allows open-shell 

configurations to be treated. Thus, the present implementation is not restricted to the simplified 

case of a zeroth-order wave function composed of two closed-shell determinants. Currently, we 

can treat wave functions with references of the type CAS(1, m) and CAS(2, m) (m = 2, 3, …), 

where the first integer represents the number of electrons, while the second indicates the number 

of active orbitals. 

 The treatment of CAS(n, m) zeroth-order wave functions with n > 2 requires the 

computation of matrix elements of the effective Hamiltonian 

 1 2
ˆ ˆeff ˆ T TH He
μ μ+

νμ ν μ= Φ Φ , (42) 

that for certain references μ and ν requires projections of the SRCCSD equations on excitations 

higher than double. For a generic number of electrons in a CAS space, the connected nature of 

effHνμ  dictates that sextuple excitations are the highest projection of the SRCCSD equations 

required to construct effHνμ .94 The coding of these higher terms (T, Q, P, and H) is very involved, 
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and the automatic derivation and implementation would represent a better solution.95 Perhaps the 

use of an incomplete model space in conjunction with the C-conditions of Li and Paldus,52-55,73 or 

the formulation of MkCC for incomplete model spaces by Pahari et al.86 would be acceptable 

compromises. In any case the solution of this problem is beyond the scope of this research. 

 The computational scaling of Eqs. (37) and (38) has a leading term identical to the case 

of SRCCSD ( 2 4O V ) multiplied by the number of reference determinants d. The computation of 

the coupling terms does not alter the scaling since these require only ( )2 2( 1) 9d d OV O V− +  

operations approximately. Our program does take advantage of symmetry, although only through 

restrictions on the loops. 

 Our implementation of MkCCSD, BWCCSD, and apBWCCSD was benchmarked 

against our earlier reported arbitrary-order program DETC++,62 based on a string expansion of the 

wave function. DETC++ is a pilot code limited to computations on systems containing few 

electrons and small basis sets. However, DETC++ proved to be a powerful tool for understanding 

of the effect of higher-excitations in multireference theories,62 and also for debugging purposes. 

To further validate our production-level PSIMRCC code, we tested it against independent 

numerical results available in the literature.57,75,87,96 

 

3.5  ORBITAL ROTATION ISSUES 

 Orbital rotation issues add intricacies to multireference coupled cluster computations. In 

the simple case of an active space involving two electrons in two orbitals, three reference 

configurations must be carefully considered, 
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( )

2 2
1

2 2
2

2 2
3

(core) (valence)

(core) (valence)

1 (core) (valence) ,
2

xx

y y

x y x y

Φ =

Φ =

Φ = −

 (43) 

where 2(core)  and 2(valence)  denote the doubly occupied core and valence orbitals, 

respectively, while (x, y) is the (HOMO, LUMO) orbital pair involved in the CAS(2,2) 

computations. A normalized zeroth-order wave function 

 0 1 1 2 2 3 3c c c′ ′ ′Ψ = Φ + Φ + Φ , (44) 

can always be cast in the mathematically equivalent form 

 2 2 2 2
0 1 2(core) (valence) (core) (valence)c uu c vvΨ = + , (45) 

by the orbital rotation 

 
cos sin
sin cos

u x
v y

θ θ⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟θ − θ⎝ ⎠ ⎝ ⎠⎝ ⎠

, (46) 

where 

 3

1 2

2tan 2 c
c c

′
θ =

′ ′−
, (47) 

without changing the zeroth-order energy.97,98 In other words, the open-shell singlet 

configuration 3Φ  can be removed from 0Ψ  by an orbital rotation that leaves the zeroth-order 

energy invariant. The CI coefficients of the two forms of 0Ψ  are related by 

 
( ) ( )1 22 2

1 1,    and   ,
2 1 2 1

S Sc c
S S

+ −
= =

+ +
 (48) 
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where 
( )

1 2
2 2

1 2 32

c cS
c c c

′ ′+
= ±

′ ′ ′− +
. (49) 

 While MRCC wave functions of the JM form of Eq. (4) are invariant to orbital rotations 

within the FC, DO, and E spaces, the active-space rotations (A) given by Eq. (46) do change the 

MRCC wave function and energy. Thus, the open-shell singlet configuration 3Φ  cannot 

generally be neglected as a reference in MRCC computations of dynamical electron correlation. 

If (x, y) are of different symmetry, then 3Φ  has a coefficient ( )
3 0c α =  in Eq. (4); accordingly, 

all determinants generated by 
3ˆ

3
Te Φ  do not contribute to the MRCC wave function. However, 

this situation does not persist if orbitals x and y take the same symmetry, either by means of a 

geometric distortion to a lower point group or by an orbital rotation which localizes the active 

space orbitals. Under such circumstances even if the orbitals are rotated so that 3Φ  does not 

contribute to the CASSCF wave function from which the orbitals are derived, the solutions of the 

MRCC equations will generally have a nonzero coefficient ( )
3c α  in the final wave function, as 

well as contributions from excited determinants generated by 
3ˆ

3
Te Φ . Therefore, the most 

consistent MRCC treatment for general canonicalizations of the CASSCF orbitals or for the 

computation of vibrational frequencies for symmetry-lowering normal modes would include all 

three configurations (four determinants) of Eq. (43) in the model space. 

 Two common approaches for uniquely defining the active-space orbitals, and hence the 

MRCC wave function, are (1) diagonalizing the CASSCF one-particle density matrix to obtain 

natural orbitals and (2) diagonalizing the average Fock matrix 

 [ ]
occ

2( | ) ( | )ij ij k
k

h f ij kk ik jk′ε = + −∑ , (50) 
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within the active space.99,100 In Eq. (50) kf  is the fractional occupation of each molecular orbital 

k, i.e., 1kf =  in the FC and DO spaces, whereas 2
1kf c=  or 2

2c  for active orbitals u and v in Eq. 

(45). The other quantities in Eq. (50) are standard one-electron ( ijh ) and two-electron repulsion 

[ ]( | ),  ( | )ij kk ik jk  integrals. In the case of a two-electron / two-orbital active space, the use of 

CASSCF natural orbitals always eliminates the open-shell singlet configuration in 0Ψ  and 

casts the reference wave function into the form of Eq. (45). This choice of orbitals (u, v) provides 

a convenient starting point for specifying more general choices of active-space orbitals (x, y) by 

means of a single rotation angle θ, according to Eq. (46). In the F2 and O3 applications to follow, 

we investigate the important question of the dependence of MRCC total energies and molecular 

properties on the orbital rotation angle θ. 

 

3.6  APPLICATIONS 

3.6.1  F2 

 The computation of the entire potential energy curve of ground-state molecular fluorine 

represents a very challenging problem for ab initio theories. The multireference character of the 

system at large distances and the presence of low-lying intruder states are known to be the major 

causes of incorrect or inaccurate theoretical predictions.96 Numerous many-body theories have 

been applied to F2. A nice tabulation of spectroscopic constants of F2 obtained from a plethora of 

earlier ab initio studies appears in a 2001 paper by Pittner and co-workers.57 Focusing here only 

on multireference methods, the most recent investigations have employed BWCC,57,77,96 various 

CC-corrections to MRCI,101 MkPT,82 MkCC,3 CAS(2,2)CCSD102 and SS-MRCEPA.103 
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 Both the F2 molecule at its equilibrium geometry (re = 1.412 Å)104 and the open-shell 

fluorine atom are single-reference problems. However, when F2 is stretched, the highest 

occupied molecular orbital (HOMO) 3 gσ  and the lowest unoccupied molecular orbital (LUMO) 

3 uσ  become quasidegenerate. Therefore, a correct description at intermediate geometries 

(re < r < ∞) requires a zeroth-order wave function that is a linear combination of two closed-shell 

determinants, 

 2 2 4 4 2
1 (core)2 2 1 1 3g u u g gΦ = σ σ π π σ , (51) 

and 

 2 2 4 4 2
2 (core)2 2 1 1 3 .g u u g uΦ = σ σ π π σ  (52) 

 Table 3.1 shows the ground-state properties of F2 computed at the SRCCSD, SRCCSDT, 

MkCCSD, BWCCSD, and apBWCCSD levels using the series of correlation-consistent basis 

sets of Dunning105 (cc-pVXZ, X = D, T, Q) together with values extrapolated to the complete 

basis set limit. For the extrapolation, the total electronic energy was partitioned into two terms. 

The first one corresponds to the total SCF or CASSCF energy and was fitted to the functional 

form106 

 / ( ) CX
SCF CASSCFE X A Be−= + , (53) 

where X is the cardinal number corresponding to the maximum angular momentum of the basis 

set. The correlation energy was extrapolated using the formulas107 

 3( ) ( )SRCC SCFE X E X A BX −− = + , (54) 

and 

 3( ) ( )MRCC CASSCFE X E X A BX −− = + . (55) 



91 

Table 3.1. Single- and multireference coupled cluster results for the electronic ground state of F2.a 

Theory Basis Set re (Å) De (kcal mol−1)b,c ωe (cm−1) 
Single Reference cc-pVDZ 1.4320 22.2 [52.8] 885 

CCSD cc-pVTZ 1.3946 28.2 [68.4] 1012 
 cc-pVQZ 1.3906 29.7 [72.6] 1016 
 ∞ 1.3868 30.7 [75.0] 1026 
     

Single Reference cc-pVDZ 1.4577 27.3 [27.8] 787 
CCSDT cc-pVTZ 1.4154 34.6 [35.9] 923 

 cc-pVQZ 1.4124 36.5 [38.1] 925 
 ∞ 1.4089 37.7 [38.5] 935 
     

Mukherjee cc-pVDZ 1.4548 31.7 (28.2) 793 
CCSD cc-pVTZ 1.4127 39.4 (35.1) 925 

 cc-pVQZ 1.4093 41.2 (37.1) 926 
 ∞ 1.4057 42.6 (38.5) 934 
     

Brillouin-Wigner cc-pVDZ 1.4469 37.6 (18.9) 821 
CCSD cc-pVTZ 1.4060 46.8 (22.3) 953 

 cc-pVQZ 1.4024 49.0 (23.4) 955 
 ∞ 1.3988 50.8 (24.1) 963 
     

A Posteriori BW cc-pVDZ 1.4681 25.0 (38.4) 749 
CCSD cc-pVTZ 1.4236 30.2 (49.4) 880 

 cc-pVQZ 1.4206 31.2 (52.7) 881 
 ∞ 1.4172 31.8 (55.0) 888 
     

Experiment  1.41193d 38.3e 917d 

 
a Single-reference coupled cluster results computed with canonical (D∞h) Hartree-Fock orbitals; multireference 
coupled cluster results computed with CAS(2,2) orbitals. Core orbitals frozen in all computations.  
b Single-reference coupled cluster dissociation energies used twice the energy of an individual F atom as the 
endpoint. Supermolecule results obtained by continuous elongation of the internuclear distance in F2 are listed in 
brackets. In the supermolecule approach an internuclear separation of only (25 bohr, 8 bohr) was used for 
(SRCCSD, SRCCSDT) to avert convergence difficulties, but these distances are sufficient to recover the 
dissociation limit to within 0.1 kcal mol−c. 
c For the multireference methods, the dissociation energy computations employed a supermolecule with an 
internuclear separation of 100 bohr as the endpoint. Values obtained from (D∞h, delocalized) CAS(2,2) natural 
orbitals at the listed optimum bond distances are listed first, whereas values in parentheses were determined from 
single-point computations with (C∞v, localized) CAS(2,2) orbitals and with inclusion of the third, open-shell singlet 
reference. 
d Reference 104. 
e Derived from Reference 110. See text for details. 
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 The primary SRCCSD and SRCCSDT dissociation energies reported in Table 3.1 were 

computed with respect to the fragments as 

 22 (F) (F )eD E E= − , (56) 

using the ACES2 program suite.108,109 The experimental value of De was determined from the 

spectroscopic constants tabulated by Herzberg104 and the D0 measured by Yang et. al.110 The 

zero-point vibrational energy (ZPVE) was computed as 

 0ZPVE
2 4

e e exG ω ω
= + − , (57) 

 where the G0 term104,111 is given by 

 
2 2

0 34 12 12 4
e e e e e e e

e e

B xG
B B

α ω α ω ω
= + + − . (58) 

 The largest basis set (cc-pVQZ) and the complete basis set extrapolated values show that 

SRCCSD, SRCCSDT, MkCCSD and BWCCSD intrinsically underestimate the F-F bond length 

while apBWCCSD overestimates it. Among the MRCC methods, the MkCCSD prediction for 

the bond length is the closest to the experimental value, with an error of −0.0062 Å. By 

comparison, BWCCSD predicts a bond length with an error of −0.0131 Å. The SRCCSDT 

results indicate that triple excitations are essential for accurate prediction of the molecular 

geometry.  

 In the complete basis set (CBS) limit, SRCCSD overestimates the harmonic frequency by 

more than 100 cm−1. BWCCSD and apBWCCSD respectively overestimate and underestimate 

the frequency by 46 cm−1 and 29 cm−1, while MkCCSD is within 17 cm−1 of the experimental 

value. Triple excitations correct the problem in SRCCSD and in the CBS limit deliver a 
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SRCCSDT result within 20 cm−1 of experiment, and virtually identical to MkCCSD. The 

vibrational frequencies show similar behavior to the dissociation energy. 

 The dissociation potential curves of F2 computed with SRCCSD, MkCCSD, BWCCSD, 

and apBWCCSD using the triple-zeta correlation-consistent basis set (cc-pVTZ) of Dunning,105 

delocalized (D∞h) CAS(2,2) natural orbitals, and freezing the fluorine core are depicted in Fig. 

3.1. The SRCCSD curve was computed using 1Φ  as the reference, while for all the MRCC 

methods  

 
Figure 3.1. Dissociation curve of F2 computed with the SRCCSD, MkCCSD, BWCCSD, and 
apBWCCSD methods using the cc-pVTZ basis set and delocalized (D∞h) CAS(2,2) natural 
orbitals. Twice the corresponding ROHF-SRCCSD energy of the F atom is shown as a dotted 
line at −199.233339 Eh. 

 

the zeroth-order wave function contains 1Φ  and 2Φ . None of the curves shows any 

divergence or singularities, but the quantitative results are considerably different. For example, 

SRCCSD overestimates the dissociation energy of F2 almost by a factor of two. For the MRCC 
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methods, there are no unphysical barriers in the dissociation curves such as that encountered with 

CASPT2 theory near r(F-F) = 3 Å.96 However, MkCCSD is the only multireference theory to 

predict an accurate dissociation energy with the cc-pVTZ basis set (39.4 kcal mol−1) as compared 

to experiment (38.3 kcal mol−1). The cc-pVTZ BWCCSD and apBWCCSD results are more than 

8 kcal mol−1 too large and small, respectively. The failure of BWCCSD to represent the 

dissociation curve as accurately as MkCCSD is likely due to the lack of size extensivity in 

BWCC. In this regard, apBWCCSD apparently overestimates the size-extensivity correction to 

BWCCSD. 

 We performed a more detailed examination of the dissociation energy of F2, obtaining the 

collection of De entries in Table 3.1. Single-reference CCSD is seen to have an enormous 

size-consistency (not size-extensivity) error.112-114 Focusing on the complete basis set CCSD 

extrapolations, continuous elongation of the F-F distance yields De = 75.0 kcal mol−1 as the 

supermolecule limit, as compared to 30.7 kcal mol−1 from twice the energy of an individual F 

atom. Full inclusion of triple excitations reduces the size-consistency error to only 0.8 

kcal mol−1, and CBS single-reference CCSDT theory gives a dissociation energy within 1 

kcal mol−1 of experiment. Of the multireference methods of concern in Table 3.1, only MkCCSD 

is rigorously size extensive. However, MkCCSD only becomes size consistent if the orbitals are 

localized on the fragments in the separated atom limit, in which case the MkCCSD energy 

obtained from localized CAS(2,2) orbitals is twice the single-reference CCSD energy of the F 

atom using ROHF orbitals. To investigate the effect of orbital localization and size-consistency 

errors on the predicted dissociation energies, all MkCCSD, BWCCSD, and apBWCCSD values 

were computed both with delocalized (D∞h) CAS(2,2) natural orbitals (u, v) and with 

corresponding fragment-localized (C∞v) orbitals (x, y) obtained by a θ = 45° rotation in Eq. (46). 
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Because the localization removes the inversion symmetry of the active-space orbitals (but not of 

the overall wave function), all computations with θ = 45° canonicalization were executed in C2v 

symmetry with the inclusion of the open-shell singlet reference 3Φ  in Eq. (43). Since all of our 

MRCC methods are invariant to orbital rotations within the FC, DO, and E spaces, it is not 

necessary to explicitly localize the orbitals outside the active space. 

 The importance of using large basis sets and extrapolations to the CBS limit to assess the 

accuracy of the MRCC dissociation energies is abundantly clear in Table 3.1. For example, the 

BWCCSD De value (with D∞h orbitals) of 37.6 kcal mol−1 with the cc-pVDZ basis set is within 1 

kcal mol−1 of experiment, but the corresponding CBS limit of De = 50.8 kcal mol−1 is over 12 

kcal mol−1 too large. An appealing characteristic of MkCCSD theory is that De changes only 

about 4 kcal mol−1 with orbital localization. With delocalized orbitals, CBS MkCCSD gives 

De = 42.6 kcal mol−1, which is 4.3 kcal mol−1 above experiment. However, if the size consistency 

error is removed by localizing the active-space orbitals, then CBS MkCCSD yields a dissociation 

energy remarkably close (within 0.2 kcal mol−1) of experiment. To demonstrate that this high 

accuracy is not a fluke, we re-computed re and ωe at the CBS MkCCSD level with localized 

orbitals and obtained 1.4134 Å and 915 cm−1, respectively, again in almost perfect agreement 

with the experimental values of 1.41193 Å and 917 cm−1. In contrast to MkCCSD, the CBS 

(BWCCSD, apBWCCSD) dissociation energies are (decreased, increased) by more than 

20 kcal mol−1 if the size consistency errors are removed by localizing the active-space orbitals.115 

Moreover, neither of the Brillouin-Wigner methods yields a satisfactory dissociation energy in 

the CBS limit, regardless of whether the active-space orbitals are localized or not. The best 

performance of these methods is delivered by CBS apBWCCSD with delocalized orbitals 

(31.8 kcal mol−1 vs. 38.3 kcal mol−1 from expt.). The only way to achieve good agreement with 
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experiment for the BW methods would be to artificially vary the orbital rotation angle θ as a 

function of bond distance. 

 In summary, MkCCSD provides excellent results for re, De, and ωe of F2 and is superior 

to the other multireference coupled cluster methods tested here. In particular, our complete basis 

set results show that MkCCSD is the only theory among the MRCC methods to deliver accurate 

energetics for the dissociation of F2. If localized orbitals are employed to remove 

size-consistency errors, CBS MkCCSD predicts an extremely accurate dissociation energy. 

While this success does not appear to be fortuitous, more studies are required to determine if 

such agreement is a general occurrence.  

 

3.6.2  OZONE 

 Over the years, ozone has become a graveyard for electronic structure theories, in large 

part because it requires a multireference zeroth-order wave function and rigorous accounting of 

dynamical electron correlation for the accurate prediction of molecular properties. A recent paper 

by Hino and co-workers116 provides an excellent summary of the long saga12,76,99,117-143 of 

ab initio methods applied to the ozone problem. Notably, the ordering of the fundamental 

vibrational frequencies for the two stretching modes is incorrectly predicted by many theoretical 

methods. Unrestricted Hartree-Fock (UHF),129 two-configuration self-consistent-field 

(TCSCF),123 CASSCF,120,126 second- and third-order restricted Møller-Plesset perturbation 

theory,129 configuration interaction with single and double excitations (CISD), and 

multireference CISD (MRCISD),99 all incorrectly predict the antisymmetric stretch (ω3, 

expt. 1089 cm−1) to be higher in frequency than the symmetric stretch (ω1, expt. 1135 cm−1).122   
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 Single-reference coupled cluster methods yield accurate predictions of the molecular 

geometry and vibrational frequencies of ozone only when iterative or perturbative triple 

excitations are included.128,131,134 It is also maintained that the inclusion of quadruple excitations 

is essential for quantitative agreement with experiment. When quadruples are accounted for via 

the approximate CCSDT(Qf) method, ω1 and ω3 are reduced by ca. 30 cm−1 and 5 cm−1, 

respectively, relative to the CCSDT results, bringing all the frequencies within 22 cm−1 of the 

experimental values.135 Other approaches applied to ozone and based on the coupled cluster 

ansatz include the Bruckner-orbital B-CCD and B-CCD(T) approximations,136-138 equation-of-

motion coupled cluster (EOM-CC),141,142 reduced MRCC methods,12 and tailored coupled 

cluster.116  

 Ozone was also the subject of a previous apBWCCSD study by Hubač, Pittner, and 

Čársky.76 These authors computed the structure and vibrational frequencies at the 

apBWCCSD/cc-pVTZ level of theory using RHF orbitals. Quite satisfactory results were 

obtained for the O-O distance (1.280 Å), the O-O-O angle (116.3°), ω1 (1095 cm−1), and ω2 

(703 cm−1), all of which we were able to confirm with our independent computer codes. 

However, Hubač et al.76 also reported an anomalously large antisymmetric stretching frequency 

of ω3 = 1505 cm−1 at the same level of theory. The vibrational frequencies were computed 

numerically, and for the Cs displacements the open-shell configuration 3Φ  of Eq. (43) was not 

included in the zeroth-order wave function. This omission has a large effect on the predicted 

value of ω3. In particular when we execute an apBWCCSD/cc-pVTZ computation of ω3 using 

RHF orbitals and including 3Φ  as a reference, we find ω3 = 386 i cm−1.  

 In one of the most recent theoretical papers on ozone,116 the tailored CCSD method 

(TCCSD) of Bartlett and co-workers144 was used to compute the molecular structure and 
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harmonic vibrational frequencies of this troublesome species.  The TCCSD scheme employs a 

single-reference framework but explicitly divides the cluster operator ( T̂ ) into a dynamic (

= +ext ext ext
1 2

ˆ ˆ ˆT T T ) and a nondynamic part ( CAST̂ ). The smallest CAST̂  giving a correct description 

of the electronic ground state employed a CAS(12,9) space involving the 2p orbitals of each 

oxygen atom.  Using this CAS(12,9) space for both orbital optimization and for fixing CAST̂ , the 

TCCSD method gave the stretching frequencies (ω1, ω3) = (1089, 1030) cm–1 and (1137, 1098) 

cm–1 with the cc-pVDZ and cc-pVTZ basis sets, respectively.  The latter results are removed 

from experiment by only (+2, +9) cm–1; however, this excellent agreement would diminish 

somewhat if a larger basis set were used. 

 The problematic ozone system provides a valuable benchmark for the performance of the 

MRCC methods we have implemented. The zeroth-order wave function we have used in our 

MRCC computations to describe the ground state of ozone in C2v symmetry is composed of the 

two closed-shell determinants 

 
2 2 2 2 2 2 2 2 2 2

1 1 2 1 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2
2 1 2 1 1 2 1 2 1 1

(core) 3 2 4 5 3 1 4 6 1

(core) 3 2 4 5 3 1 4 6 2 ,

a b a a b b b a a

a b a a b b b a b

Φ =

Φ =
 (59) 

which contribute to the wave function ca. 90% ( 1Φ ) and 10% ( 2Φ ), respectively, at the 

equilibrium geometry. In Table 3.2 we report the geometry and harmonic vibrational frequencies 

of the ground state of ozone computed with SRCCSD, SRCCSD(T), SRCCSDT, MkCCSD, 

BWCCSD, and apBWCCSD using the cc-pVXZ (X = D, T, Q) basis sets and freezing the oxygen 

1s orbitals. With the largest basis (cc-pVQZ), single-reference coupled cluster with singles and 

doubles underestimates the O-O bond length by 0.034 Å. This result is improved by inclusion of 

perturbative and iterative triples, reducing the error to −0.009 Å for the case of CCSD(T). The 



99 

cc-pVQZ MkCCSD method predicts the O-O distance with an error of −0.019 Å, while for 

BWCCSD the error is larger, −0.024 Å. The a posteriori BWCCSD correction causes the O-O 

bond to elongate, giving an error of −0.012 Å. For the bond angle of ozone, the cc-pVQZ 

CCSD(T), CCSDT, MkCCSD, and BWCCSD values are all within 0.3° of experiment. The 

corresponding CCSD and apBWCCSD angles are 0.8° and 0.9° too large and small, respectively. 

 The vibrational frequency data in Table 3.2 show again the necessity of using large basis 

sets in assessing intrinsic errors for theoretical methods. For all coupled cluster methods, the ω1 

values increase significantly in going from the cc-pVDZ to the cc-pVQZ basis set, revealing 

larger inherent errors with respect to the experimental harmonic frequencies. For example, the 

cc-pVDZ MkCCSD ω1 prediction is only 11 cm−1 larger than experiment, but the corresponding 

cc-pVQZ frequency is 63 cm−1 too large. For the symmetric O-O stretch and O-O-O bend, all 

multireference methods substantially improve upon the CCSD predictions. Specifically, with the 

cc-pVQZ basis set, the CCSD (ω1, ω2) errors of (14.0%, 7.7%) are reduced to (8.9%, 5.7%) with 

BWCCSD, to (5.6%, 4.5%) with MkCCSD, and finally to (1.3%, 3.2%) with apBWCCSD. In 

this comparison MkCCSD is superior to BWCCSD, but apBWCCSD is the best of the three 

MRCC methods, approaching SRCCSD(T) in accuracy. 

 In C2v symmetry, the HOMO (1a2) and LUMO (2b1) belong to different irreducible 

representations (irreps), and the open-shell singlet configuration 3Φ  of Eq. (43) does not 

contribute to the electronic wave function. However, displacements along the antisymmetric 

stretching mode lower the point group to Cs, and the irrep of both the HOMO and LUMO 

becomes a″. In order to compute ω3 properly, 3Φ  must be added as a reference, and orbital 

canonicalization becomes an issue, as discussed in Section IV. 
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Figure 3.2. Ozone harmonic vibrational frequency (ω3) and diagonal force constant (F33) for the 
antisymmetric stretching coordinate [ ( )1

3 OO OO2
S r r′= − ] computed using the cc-pVDZ basis set 

and with CAS(2,2) natural orbitals rotated according to Eq. (46). 

 

 We investigated the sensitivity of the antisymmetric stretching frequency of ozone to 

orbital canonicalization by computing MkCCSD, BWCCSD, and apBWCCSD values for ω3 and 

F33 [the quadratic force constant for internal coordinate ( )1
3 OO OO2

S r r′= − ] as a function of the 

orbital rotation angle θ in Eq. (46). All three references in Eq. (43) were employed for all MRCC 

methods uniformly as a function of S3. To clarify the θ dependence, the orbital rotation angle was 

fixed, independent of the value of S3, and all computations were thus executed in Cs symmetry. 

The plots in Fig. 3.2 reveal a surprisingly strong dependence of ω3 and F33 on θ, one that is most 
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pronounced in the BWCCSD and apBWCCSD cases but is still substantial with the MkCCSD 

method. It is striking that the experimental ω3 = 1089 cm−1 value can be reproduced with cc-

pVDZ (BWCCSD, apBWCCSD, MkCCSD) computations merely by selecting θ = (1.0°, −1.0°, 

1.6°) in the orbital canonicalization. More disturbing is the onset of imaginary ω3 values at θ = 

(3.9°, −3.6°, 7.6°) for the cc-pVDZ (BWCCSD, apBWCCSD, MkCCSD) methods. 

 

 
 

Figure 3.3. Effect of orbital rotation on the total MRCC energies of equilibrium and 
antisymmetrically displaced [ ( )1

3 OO OO2
0.01ÅS r r′= − = ] ozone computed using the cc-pVDZ 

basis set and with CAS(2,2) natural orbitals rotated according to Eq. (46).   
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 In Fig. 3.3 the effect of θ on the total MRCC energies is shown for both the equilibrium 

structure and the geometry with S3 displaced by 0.01 Å. All methods are approximately 

stationary with respect to orbital rotations near θ = 0. Stationary values for the energy (

/ 0dE dθ = ) at the (equilibrium, displaced) geometries are found for MkCCSD when θ = (0°, 

−0.2°), θ = (0°, 0.6°) for BWCCSD, and θ = (0°, 0.2°) for apBWCCSD. However, small 

deviations of θ from zero substantially (raise, lower, lower) the total energies at the cc-pVDZ 

(BWCCSD, apBWCCSD, MkCCSD) levels. The sensitivity of the MRCC predictions to 

active-space orbital rotations is rather unsatisfactory and makes the computed values of ω3 

somewhat arbitrary. The inclusion of triple excitations in these MRCC wave functions is 

apparently necessary to stabilize the curvature of the potential energy surface along the 

antisymmetric stretching mode of ozone. 

 In Table 3.2, MRCC values of ω3 are given from computations with 3Φ  included as a 

reference configuration and with CASSCF natural orbitals. The properties of natural orbitals 

dictate that 3 0c′ =  in Eq. (44) for all displacements into Cs symmetry.145 Thus, the use of 

CASSCF natural orbitals is equivalent to a θ = 0° canonicalization in Eq. (46). We confirmed 

that the C2v solutions for each MRCC wave function could be continuously followed upon finite, 

antisymmetric displacements of the O-O bonds. The cc-pVQZ entries for ω3 in Table 3.2 exhibit 

errors of 20.3%, 24.0%, and 21.9% respectively, for MkCCSD, BWCCSD, and apBWCCSD. 

Not only are these discrepancies disappointingly large, but they also exceed the SRCCSD error 

of 17.7%, not to mention the SRCCSD(T) result which is accurate to better than 1%. Using 

orbitals canonicalized by the averaged Fock matrix [Eq. (50)] only changes the MkCCSD ω3 

prediction by +5 cm−1, with the cc-pVDZ basis. In addition, with Hartree-Fock orbitals cc-pVDZ 
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MkCCSD gives ω3 = 1259 cm−1, 20 cm−1 above the corresponding result with CASSCF natural 

orbitals. 

 In summary, the MRCCSD methods substantially improve upon SRCCSD for the 

geometric parameters and a1 frequencies of ozone. However, for the ω3(b2) antisymmetric 

stretching frequency, there is some deterioration in accuracy when the MRCCSD schemes are 

used rather than SRCCSD, as well as a disturbing sensitivity to orbital canonicalization. The high 

accuracy of SRCCSD(T) is matched by MRCCSD results for none of the properties of ozone 

investigated here. 
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Table 3.2. Single- and multireference coupled cluster equilibrium geometries (re) and harmonic vibrational 

frequencies (ωi) for ozone.a 

Theory Basis Set rOO (Å) θOOO (deg) ω1(a1) 
(cm−1) 

ω2(a1) 
(cm−1) 

ω3(b2) 
(cm−1)

       
Single Reference cc-pVDZ 1.2590 117.3 1251 753 1237 

CCSD cc-pVTZ 1.2500 117.6 1278 763 1266 
 cc-pVQZ 1.2438 117.7 1294 771 1282 
       

Single Reference cc-pVDZb 1.284 116.6 1118 704 977 
CCSD(T) cc-pVTZb 1.275 116.9 1153 716 1054 

 cc-pVQZb 1.269 117.1 1169 725 1081 
       

Single Reference cc-pVDZ 1.2834 116.5 1127 706 1065 
CCSDT cc-pVTZb 1.274 116.8 1163 717 1117 

       
Mukherjee cc-pVDZ 1.2764 115.9 1146 728 1239 

Multireference 
CCSD cc-pVTZ 1.2663 116.3 1180 739 1289 

 cc-pVQZ 1.2594 116.5 1198 748 1310 
       

Brillouin-Wigner cc-pVDZ 1.2703 116.2 1186 738 1284 
Multireference 

CCSD cc-pVTZ 1.2604 116.6 1218 748 1331 

 cc-pVQZ 1.2537 116.8 1236 757 1350 
       

A Posteriori BW cc-pVDZ 1.2829 115.4 1098 720 1261 
Multireference 

CCSD cc-pVTZ 1.2726 115.8 1133 730 1313 

 cc-pVQZ 1.2655 116.0 1150 739 1327 
       

Experimentc  1.278 116.8 1135 716 1089 
       

a Single-reference coupled cluster computations used canonical Hartree-Fock orbitals; multireference coupled cluster 

computations used CAS(2,2) natural orbitals. Core orbitals frozen in all computations. 
b Reference 134. 
c Reference 121 for re structure. The ωi values are from Ref. 122 and were derived from a fit of harmonic 

frequencies, χij anharmonicity constants, and a Darling-Dennison coupling parameter to 33 observed vibrational 

band origins of 16O3 and 18O3. 
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3.6.3  BENZYNES 

 Ortho, meta, and para-benzyne (Scheme 1) represent a well known class of compounds 

that show various degrees of diradical character.146 

ortho meta para
 

Scheme 3.1. Ortho-, meta- and para-benzyne 

 

For all three of these isomers the ground state is a singlet. Theoretical studies147-149 on these 

compounds have revealed that the degree of diradical character for the benzynes follows the 

ordering 

ortho < meta < para. 

The singlet-triplet energy splittings ( ) for ortho-, meta-, and para-benzyne were first 

measured in photoelectron spectroscopy experiments by Leopold, Miller, and Lineberger150 and 

Wenthold, Squires, and Lineberger.151 These authors found the following ordering for : 

ortho (37.5 kcal mol−1) > meta (21.0 kcal mol−1) > para (3.8 kcal mol−1). 

Wenthold, et al.151 also reported an alternative value for STEΔ  for para-benzyne, 2.1 kcal mol−1. 

Theoretical STEΔ  predictions have been reported by several authors including Cramer, Nash, and 

Squires,147 Lindh, Bernhardsson, and Schütz,148 as well as de Visser, Filatov, and Shaik.149 These 

findings support the ordering of diradical character of the benzynes given above.  

STEΔ

STEΔ
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 Table 3.3 shows the singlet-triplet energy splittings predicted for o-, m-, and p-benzyne at 

the MkCCSD level using the cc-pVDZ basis set105 ( MkCCSD
STEΔ ), ROHF molecular orbitals, and 

freezing the carbon 1s orbitals. The singlet zeroth-order wave function for the benzynes was 

chosen of the form 

 S 1 1,S 2 2,S
P c cΨ = Φ + Φ , (60) 

with 

 
2 2 2

1,S

2 2 2
2,S

(core) (valence) (HOMO)

(core) (valence) (LUMO) .

Φ =

Φ =
 (61) 

The triplet wave function was computed within the same formalism by converging on the MS = 0 

solution. Tests of this procedure indicated remarkable agreement (within 0.2 kcal mol−1) with 

full configuration interaction (FCI) singlet-triplet splittings.152 Therefore, the zeroth-order triplet 

wave function was taken as 

 ( )T 1,T 2,T
1
2

PΨ = Φ + Φ , (62) 

with 

 
2 2 1 1

1,T

2 2 1 1
2,T

(core) (valence) (HOMO ) (LUMO )

(core) (valence) (HOMO ) (LUMO ) .

α β

β α

Φ =

Φ =
 (63) 

The (HOMO, LUMO) orbitals for o-, m-, and p-benzyne in C2v, C2v, and D2h symmetry are 

( a1, b2), ( a1, b1), and ( b2u, ag), respectively. 

 The molecular geometries of singlet ortho- and meta-benzyne were optimized at the 

cc-pVDZ/RHF-CCSD(T) level of theory. For triplet ortho- and meta-benzyne, UHF-CCSD(T) 

wave functions were used. Singlet and triplet para-benzyne were optimized using spatial 
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symmetry-broken orbitals and cc-pVDZ/UHF-CCSD(T) wave functions. For singlet and triplet 

para-benzyne, the molecular orbitals break D2h symmetry, but the final geometric structures 

retain D2h symmetry. The geometrical parameters for the optimized structures of the singlet and 

triplet benzyne isomers are reported in the Supplementary Material.91 Our procedures for 

obtaining geometric structures were chosen because previous studies have showed that 

perturbative triples are essential to avoid artifacts like a bicyclic structure for meta-benzyne, and 

a broken-symmetry UHF reference is needed for singlet para-benzyne to prevent the occurrence 

of imaginary vibrational frequencies for the D2h structure.153,154 

 Table 3.3 also includes estimates for the complete basis set limit of the singlet-triplet 

splittings, as well as zero-point vibrational energy (ZPVE) corrections. The CBS correction (

BasisSet
STEΔ ) was estimated as 

 . (64) 

The  term was computed as the difference between the extrapolated singlet and 

triplet energies using RHF-CCSD and ROHF-CCSD. The extrapolation was performed 

according to Eqs. (53) and (54). ZPVE corrections ( ZPVE
STEΔ ) were computed without scaling 

using the same levels of theory adopted for the geometry optimizations. The vibrational 

frequencies were all real, and are reported in the Supplementary Material.91 

 As shown in Table 3.3, the final MkCCSD singlet-triplet splittings for o-, m-, and 

p-benzyne are 38.5, 19.5 and 2.4 kcal mol−1, respectively. The agreement with experimental data 

and previous theoretical investigations is quite good despite the fact that contributions from triple 

excitations are missing. Our final MkCCSD values are all within 1.5 kcal mol−1 of experiment.151 

Our value of STEΔ  for para-benzyne, 2.4 kcal mol−1, is in closer agreement with the alternative 

BasisSet CCSD CCSD(CBS) (cc-pVDZ)ST ST STE E EΔ = Δ − Δ

CCSD (CBS)STEΔ
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value of STEΔ  reported in Ref. 151 (2.1 kcal mol−1) rather than the accepted one (3.8 kcal mol−1). 

However, this result should not be considered definitive. From Table 3.3 one may observe that in 

the case of meta-benzyne the experimental STEΔ  is underestimated by 1.5 kcal mol−1. If we shift 

our prediction for by this same amount, we end up with STEΔ  = 3.9 kcal mol−1, very close to the 

conventional STEΔ  given by Wenthold and co-workers.151 The inclusion of triple excitations in 

the MkCC wave function would be able to provide a more definitive STEΔ  for para-benzyne, 

and hence aid in the assignment of the experimental value.155 

 Table 3.3. Singlet-Triplet Splittings (in kcal mol−1) for the Three Isomers of Benzyne. 

Energetic 
Contribution 

o-Benzyne m-Benzyne p-Benzyne 

    
MkCCSD
STEΔ  35.1 18.7 4.5 

BasisSet
STEΔ  3.6 0.1 −2.3 

ZPVE
STEΔ  −0.3 0.7 0.3 

Total 38.5 19.5 2.4 
    

CASPT2/aANOa 32.6 19.0 5.8 
CCSD(T)/pVTZa 35.3 20.7 2.3 

CASRS3/CBL(4 : 3,4)b 36.5 18.6 2.2 
REKS/6-31G(d)c 36.5 21.6 4.1 

    
Experimentd 37.7 ± 0.7   
Experimente 37.5 ± 0.3 21.0 ± 0.3 3.8 ± 0.3 
Experimentf   2.1 ± 0.4 

a Reference 147. 
b Reference 148. 
c Reference 149. 
d Reference 150. 
e Reference 151. 
f Reference 151, alternative value. 
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3.7  SUMMARY 

 The matrix elements of the “same vacuum” multireference coupled cluster 

renormalization terms have been derived, and explicit formulas are given here for the 

state-specific MRCCSD and MRCCSDT cases. The MRCCSD couplings have been 

implemented in a new production-level code (PSIMRCC), capable of computing Mukherjee and 

Brillouin-Wigner state-specific multireference coupled cluster energies. Three rigorous and 

representative applications of our MRCC code are reported here: (1) the dissociation curve and 

spectroscopic constants of F2, (2) the structure and vibrational frequencies of the ozone 

molecule, and (3) the singlet-triplet splittings in ortho-, meta-, and para-benzyne. 

 The results in Tables 3.1 and 3.2 support the accuracy and reliability of MkCCSD when 

compared to single-reference CCSD and Brillouin-Wigner multireference CCSD. The 

dissociation of F2 clearly demonstrates that the lack of size extensivity in BWCCSD, even if 

approximately corrected by apBWCCSD, can cause large errors when these MRCC methods are 

applied to molecular fragmentation processes. In contrast, the rigorously size-extensive 

MkCCSD method with delocalized CAS(2,2) natural orbitals provides a dissociation energy in 

the CBS limit of De = 42.6 kcal mol−1, as compared to 38.3 kcal mol−1 from experiment. 

Remarkably, if localized CAS(2,2) orbitals are utilized to eliminate size-consistency errors, CBS 

MkCCSD gives De within 0.2 kcal mol−1 of experiment. 

 Ozone is the most severe test for the MRCC theories investigated here. With the 

cc-pVQZ basis set, the [SRCCSD, BWCCSD, MkCCSD, SRCCSD(T)] methods underestimate 

the O-O bond length by (0.034, 0.024, 0.019, 0.009) Å, in order. Simultaneously, the same series 

of methods overestimates ω1(a1) by (159, 101, 63, 34) cm−1 and ω2(a1) by (55, 41, 32, 9) cm−1. 

These trends demonstrate clear merit in the MkCCSD approach, although the pathological nature 
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of the O3 system engenders larger errors than normal. However, the antisymmetric stretching 

frequency of ozone, ω3(b2), remains a problem, as none of the MRCCSD methods, when applied 

with CASSCF natural orbitals, is able to improve upon SRCCSD or place this frequency below 

ω1(a1), as observed experimentally. Significantly, we find that the value of ω3 predicted by the 

MRCCSD methods is quite sensitive to orbital canonicalization, and rotations within the 

(HOMO, LUMO) active space of less than 2° can yield a fortuitous, exact reproduction of the 

empirical ω3 = 1089 cm−1. 

 Finally, we tested MkCCSD on the singlet-triplet energy splittings ( STEΔ ) of the three 

isomers of benzyne. The triplet wave function was computed, within the same MRCC formalism, 

by converging on the two-determinant MS = 0 solution. Our STEΔ  results are in very good 

agreement (within 1.5 kcal mol−1) with the experimental values, even without the inclusion of 

connected triple excitations.  

 As the ozone example demonstrates, a desirable improvement would be the inclusion of a 

perturbative treatment of triple excitations in MkCCSD. But a rather tedious problem hinders 

further progress. In SRCCSD(T) the use of a restricted reference or the canonicalization of the 

molecular orbitals may be used to form a diagonal Fock matrix. This in turn permits the 

evaluation of the (T) correction on-the-fly, without the need of storing the T3 amplitudes. In the 

case of MRCC, it is generally impossible (except for some special cases) to find a set of orbitals 

that gives diagonal Fock matrices [ ( )pqf μ ] for all the references μ. Off-diagonal terms of the 

Fock matrix make the evaluation of the (T) correction an iterative process for which all the T3 

amplitudes must be stored. The implementation of an approximate (T) correction has been 

pursued by Li and Paldus for SUCC,55 as well as Demel and Pittner for BWCC.79 Research on a 

viable MkCCSD(T) method is clearly warranted. 
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 Our work shows that MkCC theory, in the single and double excitation approximation, is 

a widely applicable tool for the study of real chemical problems with multireference character. 

The formulas that we have derived allow for a systematic improvement of this model by 

including higher excitations. Our earlier benchmark study62 on the H4, P4, BeH2, and H8 model 

systems revealed that MkCCSDT is a particularly robust theory, giving potential energy curves 

nearly coincident with and parallel to the FCI limit throughout the single and multireference 

regions of geometric configuration space. Therefore, MkCCSDT theory − a multireference 

coupled cluster method that is size extensive, intruder free and that can potentially achieve 

chemical accuracy − is a prominent target for future development. 
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APPENDIX A. GENERAL EXPRESSION FOR THE MKCC COUPLING TERMS 

 Here we provide a derivation of a general-order expression for the MkCC coupling terms. 

Let us first notice that by definition the action of the operator T̂ ν  on reference μΦ  produces 

only contributions from the “common” amplitudes ( / )ab
ijt ν μ"
"  (see Section II.A for the 

definition). Thus we may define a cluster operator /T̂ ν μ  containing only the amplitudes that are 

common to operator T̂ ν  with respect to reference μΦ . This allows us to write 

 /ˆ ˆT Tν ν μ
μ μΦ = Φ . (65) 

After noticing that /T̂ ν μ  and T̂ μ  commute we can simplify the coupling terms 

 
/ /ˆ ˆ ˆ ˆ ˆ ˆT T T T T Te e e e e

μ ν μ ν μ μ ν μ− − − +
μ μ μΦ = Φ = Φ  (66) 

and introduce a new operator 

 

occ( ) vir( )
( / , )

1 , , , , tuple excitation

occ( ) vir( )

1 , , , , tuple excitation

1ˆ ˆ ˆ ˆ ˆ( / ) ( )
!

1 ˆ ˆ ˆ ˆ( / , )
!

n
ab ab
ij ij b j a i

k i j a b n

n
ab
ij b j a i

k i j a b n

T t t a a a a
k

t a a a a
k

μ μ
ν μ μ + +

=
−

μ μ
+ +

=
−

⎡ ⎤Δ = ν μ − μ⎣ ⎦

= Δ ν μ μ

∑ ∑ ∑

∑ ∑ ∑

" "
" "

… …

"
"

… …

…
��������

…
��������

( / , )

1

ˆ
n

k
k

T ν μ μ

=

= Δ∑

 (67) 

that allows us to rewrite the coupling terms as 

 
( / , )ˆ ˆ ˆ( ) ( )ab T T ab T

ij ije e e
μ ν ν μ μ− Δ

μ μΦ μ Φ = Φ μ Φ… …
… … . (68) 

 We have thus expressed the MkCC coupling terms in terms of a standard coupled cluster 

expression that may be evaluated using algebraic or diagrammatic techniques. 
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APPENDIX B. COUPLING TERMS FOR MKCCSDT THEORY 

 Starting from Eq. (68) we can easily derive the coupling terms needed for MkCCSDT. 

The single and double excitations are identical to the MkCCSD case 

 
ˆ ˆ ( / , )

1̂( ) ( )

( / ) ( ),

a T T a
i i

a a
i i

e e T

t t

μ ν− ν μ μ
μ μΦ μ Φ = Φ μ Δ Φ

= ν μ − μ
 (69) 

 

( )2ˆ ˆ ( / , ) ( / , )
2 1

1ˆ ˆ( ) ( ) ( )
2

1( / , ) ( ) ( ) ( / , ) ( / , )
2

( / ) ( )

( ) ( / ) ( / )

( ) ( ) ( )

( ) ( ) ( / ) ( )

ab T T ab ab
ij ij ij

ab a b
ij i j

ab ab
ij ij

a b
i j

a b
i j

a b
i j

e e T T

t P ij P ab t t

t t

P ij t t

P ij t t

P ij P ab t t

μ ν− ν μ μ ν μ μ
μ μ μΦ μ Φ = Φ μ Δ Φ + Φ μ Δ Φ

= Δ ν μ μ + Δ ν μ μ Δ ν μ μ

= ν μ − μ

+ ν μ ν μ

+ μ μ

− ν μ μ

 (70) 

The coupling terms for the T3-amplitudes are 

 

( )

ˆ ˆ ( / , ) ( / , ) ( / , )
3 1 2

3( / , )
1

ˆ ˆ ˆ( ) ( ) ( )

1 ˆ( )
6
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( / ) ( / ) ( / , ) ( / , )

1 ( ) ( ) ( / , ) ( / , )
6

abc T T abc abc
ijk ijk ijk

abc
ijk

abc
ijk

a bc
i jk

a b
i j

e e T T T

T

t

P i jk P a bc t t

P ijk P abc t t

μ ν− ν μ μ ν μ μ ν μ μ
μ μ μ

ν μ μ
μ

Φ μ Φ = Φ μ Δ Φ + Φ μ Δ Δ Φ

+ Φ μ Δ Φ

= Δ ν μ μ

+ Δ ν μ μ Δ ν μ μ

+ Δ ν μ μ Δ ν μ μ Δ ( / , )c
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 (71) 

and may be expanded to give 
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 (72) 

where we have introduced the permutation operators 

 
( ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )
P abc f a b c f a b c f b c a f c a b

f b a c f a c b f c b a
= + +
− − −

 (73) 

 ( / ) ( , , ) ( , , ) ( , , ) ( , , )P a bc f a b c f a b c f b a c f c b a= − −  (74) 

 
( / , ) ( , , , , , ) ( , , , , , ) ( , , , , , )

( , , , , , )
P ia jb kc f i a j b k c f i a j b k c f j b i a k c

f k c j b i a
+ = +

+
 (75) 
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4.1  ABSTRACT 

 We report the first implementation with correct scaling of the Mukherjee multireference 

coupled cluster method with singles, doubles, and approximate iterative triples 

(Mk-MRCCSDT-n, n = 1a, 1b, 2, 3) as well as full triples (Mk-MRCCSDT). These methods 

were applied to the classic H4, P4, BeH2 and H8 model systems to assess the ability of the 

Mk-MRCCSDT-n schemes to accurately account for triple excitations. In all model systems the 

inclusion of triples via the various Mk-MRCCSDT-n approaches greatly reduces the 

nonparallelism error (NPE) and the mean nonparallelism derivative (MNPD) diagnostics for the 

potential energy curves, recovering between 59% and 73% of the full triples effect on average. 

The most complete triples approximation, Mk-MRCCSDT-3, exhibits the best average 

performance, reducing the mean NPE to below 0.6 mEh, compared to 1.4 mEh for 

Mk-MRCCSD. Both linear and quadratic truncations of the Mk-MRCC triples coupling terms 

are viable simplifications producing no significant errors. If the off-diagonal parts of the 

occupied-occupied and virtual-virtual blocks of the Fock matrices are ignored, the storage of the 

triples amplitudes is no longer required for the Mk-MRCCSDT-n methods introduced here. This 

proves to be an effective approximation that gives results almost indistinguishable from those 

derived from full consideration of the Fock matrices. 

 

4.2  INTRODUCTION 

Despite the remarkable success of the single reference (SR) coupled cluster (CC) approach1-4 

there is one major drawback: low-order truncated CC schemes fail for systems containing 

quasidegenerate electronic configurations.5,6 Therefore, potential energy curves closely 

approximating full configuration interaction (FCI) may be obtained only by the inclusion of 
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high-order excitations, and even in this case the convergence to the exact answer may be very 

slow. This limitation makes conventional SRCC methods inapplicable to important areas of 

chemistry, including homolytic bond breaking, singlet diradicals, many transition metal 

compounds, certain types of excited electronic states, and various transition states for chemical 

reactions. 

 The problem of quasidegenerate electronic configurations has stimulated several new 

ideas in CC theory.  Several approaches have been advanced that remain within the 

single-reference coupled cluster framework, including: (1) variational CC,7 extended CC,8 and 

quadratic CC9 schemes; (2) modifications such as the active-space CC approaches,10-14 the 

reduced multireference (RM-RCCSD) method,15,16
 orbital-optimized CC schemes,17,18 and 

tailored coupled cluster (TCC);19,20 (3) equation-of-motion (EOM) approaches, in particular 

double ionization21 and spin-flip methods;22 and (4) a broad class of method-of-moments CC 

(MM-CC) and renormalized CC methods.23-26 All of these theories are distinct from genuine 

multireference coupled cluster (MRCC) methods that are specifically designed for 

multiconfigurational zeroth-order wave functions.  In the MRCC family there are multiroot 

approaches such as the Fock-space (FS)27-29 and state-universal (SU) coupled-cluster 

methods,30-34 as well as state-specific (single-root) multireference theories.35-44 

Among the genuine MRCC methods, we have recently focused on the state-specific formulation 

of Mahapatra, Datta, and Mukherjee,38,39 referred to hereafter as Mk-MRCC. Mk-MRCC theory 

is derived from the state-specific form of the Jeziorksi and Monkhorst (JM) ansatz30 for state α 

 ˆ ( )

1

d
Te c

μ α
α μ μ

μ =

Ψ = Φ∑ , (1) 

in which the wave function is a linear combination of exponential functions obtained from 

reference determinants μΦ  spanning a d-dimensional model space. The T̂ μ  are excitation 
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operators that promote electrons from the occupied to the virtual orbital space of μΦ  and are 

typically truncated at a certain excitation level n, 

 1 2
ˆ ˆ ˆ

n̂T T T Tμ μ μ μ= + +…+ . (2) 

In Mk-MRCC theory the energy ( Eα ) is obtained as an eigenvalue of the effective Hamiltonian 

matrix 

 ˆeff ˆ TH He
ν

μν μ ν= Φ Φ , (3) 

while the expansion coefficients [ ( )c α
μ ] of the JM wave function [Eq. (1)] are derived from the 

corresponding eigenvector, 

 eff ( ) ( )

1

d

H c E cα α
μν ν α μ

ν =

=∑ . (4) 

When the model space is complete, including all determinants generated by distributing a 

specified number of electrons in a chosen set of orbitals, then only the connected part of Eq. (3) 

contributes to the effective Hamiltonian. The conditions for the cluster amplitudes are given in 

Section II below. 

Mk-MRCC shows a number of appealing features:38,39  (1) It is a genuine MRCC method that 

treats all references in the model space on an equal footing. (2) It is rigorously size extensive and 

leads to size-consistent energies when localized orbitals are used. (3) The theory is free from 

intruder states. (4) The resulting equations can be written in terms of the usual 

similarity-transformed Hamiltonian matrix elements plus off-diagonal coupling terms. The 

coupling terms refer to the “same vacuum” and thus are not difficult to implement.45 (5) Finally, 

a number of applications to atoms, small molecules, and medium-size molecules using 

Mk-MRCC truncated to singles and doubles (Mk-MRCCSD) have validated the accuracy of the 

theory vis-à-vis experiment and other theoretical methods.39,45,46 
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The goal of the present work is to extend the Mk-MRCCSD method and increase its accuracy by 

including excitations higher than doubles in the cluster operators. In single-reference coupled 

cluster theory, Paldus, Čížek, and Shavitt47 were the first to introduce the 3̂T  component 

approximately, by adding linear 1̂T  and 3̂T  terms to the SR coupled cluster doubles (SRCCD) 

model. More recent schemes that include connected triple excitations may be classified as 

perturbative (non-iterative) and iterative methods.1,2 These methods have computational scaling 

with a leading term O3V4 when the triples are treated only approximately and O3V5 for coupled 

cluster with the full inclusion of single, double and triple excitations (CCSDT),48-51 where O and 

V are the number of occupied and virtual orbitals for a given basis set. Therefore, these methods 

are about O and OV times more expensive than regular SRCCSD, respectively. 

Non-iterative methods are widely used because of their low computational cost (only one O3V4 

step after a CCSD calculation) and high accuracy. The CCSD[T] model of Urban et al. [also 

denoted CCSD + T(CCSD)], contains fourth-order corrections to the energy computed using 

converged CCSD amplitudes.52,53 The “gold standard” of quantum chemistry, CCSD(T), was 

introduced later,54 improving upon CCSD[T] by including fifth-order terms that balance the 

overestimated effect of triples by CCSD[T]. More sophisticated variants are based either on the 

use of the Λ-amplitudes55,56 or the use of the full similarity-transformed Hamiltonian in the 

perturbative treatment.57,58 

The CCSDT-n family of iterative triples methods was advanced first by Urban, Noga, Cole, and 

Bartlett,52,53,59 and constitutes a hierarchy of approximations to CCSDT. These include the 

CCSDT-1a, CCSDT-1b, CCSDT-2, and CCSDT-3 schemes. The CCSDT-n methods were 

recently analyzed by Cremer et al.60 in terms of orders of perturbation. It was found that 

CCSDT-1a contains 75% of the terms that contribute to CCSDT, while CCSDT-1b offers little 
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further improvement. In the examples analyzed in Ref. 60, the contributions of CCSDT-2 and 

CCSDT-3 to the total energy showed opposite signs, providing some cancellation of terms 

beyond CCSDT-1. The CC3 method, another approximation to CCSDT, was introduced in the 

context of excited states and molecular properties by Koch et al.61 The CCSDT-n methods have 

found use in applications,62-67 but they have been largely supplanted by the more cost-effective 

CCSD(T) method for dealing with triples in single-reference systems. 

 In this paper we investigate the effect of approximate triple excitations in Mk-MRCC 

theory. Our pilot-code computations68 on H4, BeH2 and H8 revealed that the inclusion of full 

connected triples reduces the error in the total energy with respect to FCI to less than 0.15 kcal 

mol−1 (0.24 mEh) across the potential energy curves. These encouraging results provide 

motivation for investigating the inclusion of triples excitations in Mk-MRCC in more detail. 

Three goals have to be achieved in this respect: (1) the capability of computing Mk-MRCCSDT 

energies for the purpose of benchmarking and obtaining high accuracy results on small 

molecules; (2) the formulation of iterative triples approximations for more economical 

treatments; and (3) the development of a perturbative triples correction analogous to 

SRCCSD(T) for general large-scale applications. From a theoretical point of view, the first goal 

is straightforward and univocal, while the others present some challenges concerning the 

underlying theoretical formulations. 

Several authors have already investigated possible extensions of MRCC methods including triple 

excitations. Balková and Bartlett69 proposed a perturbative triples correction to SU-MRCCSD 

analogous to the single-reference case. Li and Paldus70,71 formulated a somewhat less elaborated 

SU-MRCCSD(T) scheme, which involves only symmetric corrections to the diagonal part of the 

effective Hamiltonian. Demel and Pittner have investigated perturbative72 triples in the context 
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of Brillouin-Wigner MRCC. Nonetheless, these approaches are not entirely satisfactory, as their 

theoretical formulation involves some drastic assumptions; moreover, none of these schemes 

have been extensively tested and applied. Further work from both the theoretical as well as 

computational side is needed to improve previous approaches and to find a unifying and rigorous 

formulation. Thusfar, no (T) correction has been formulated in the context of Mk-MRCC. 

Concerning iterative triples approaches, Pittner and Demel introduced in the context of 

Brillouin-Wigner multireference coupled cluster (BW-MRCC) the so-called T-α73 

approximation, which is based on the generalized Bloch equation37 for the triples amplitudes 

 
1 2 3 1 2 3

1 2 3

ˆ ˆ ˆ ˆ ˆ ˆeff
C

ˆ ˆ ˆ

DC,L

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) .

T T T T T Tabc abc
ijk ijk N

T T Tabc
ijk N

E H e H e

H e

μ μ μ μ μ μ

μ μ μ

α μμ μ μ

μ

λ μ μ μ

λ μ μ

+ + + +

+ +

− Φ Φ = Φ Φ

+ Φ Φ
 (5) 

In Eq. (5), ˆ ( )NH μ  is the normal-ordered part of the Hamiltonian operator with respect to the 

vacuum μΦ , ˆeff ˆ TH He
μ

μμ μ μ= Φ Φ  is the diagonal part of the effective Hamiltonian, and 

( )abc
ijk μΦ  denotes triply excited determinants vis-à-vis μΦ . The subscript C denotes connected 

diagrams, whereas DCL and UL refer, respectively, to disconnected linked diagrams and 

unlinked diagrams. Setting λ =1 recovers the BW-MRCC method, while λ =0 yields the 

Rayleigh-Schrödinger (RS) Bloch equation CC. The BW-MRCCSDT-α approximation neglects 

the λ-scaled terms on both sides of Eq. (5). This excludes the disconnected linked and the 

unlinked contributions to the 3̂T  amplitudes.  Pittner and Demel73 at the same time investigated 

the effect of approximating the similarity-transformed Hamiltonian 

 ˆ ˆˆT TH e He
μ μ

μ
−= , (6) 

following the CCSDT-n approach.52,53,59 Results from a preliminary implementation on O2 and 

NF showed an improvement over BW-MRCCSD results. 
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 In the following sections we describe our approach to the iterative triples approximation 

within Mk-MRCC theory. We outline the underlying theory and present first results for standard 

model systems used in MRCC theory, H4, P4, BeH2, and H8. In addition, we discuss the 

prospects for an efficient implementation of the suggested Mk-MRCCSDT-n schemes suitable 

for large-scale applications. This contribution lays groundwork for future research on a (T) 

correction in Mk-MRCC theory. 

 

4.3  THEORY 

In the  following discussion we use indices i, j, k, and m for occupied (occ) orbitals, while a, b, 

c, and e denote virtual (vir) orbitals, the orbital classes being defined in all cases with respect to 

some indicated reference determinant. The state specific MRCC method of Mukherjee is 

obtained assuming the state-specific JM ansatz for the wave function and using a well defined set 

of sufficiency conditions. Inserting Eq. (1) into the Schrödinger equation gives 

 ˆ ˆ( ) ( ) ( )

1

ˆ 0
d

T THe c E e c
μ μα α α

μ μ μ μ
μ =

⎡ ⎤Φ − Φ =⎣ ⎦∑ . (7) 

It is convenient to introduce a projection operator unto the model space P̂  defined as 

 
1

ˆ
d

P μ μ
μ =

= Φ Φ∑ , (8) 

as well as its orthogonal complement ˆ ˆ1Q P= − . If Eq. (7) is multiplied by the identity 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1

ˆ ˆ ˆˆ ˆ1 ( )
d

T T T T T T T Te e e P Q e e e e Qe P Q
μ μ μ μ μ μ μ μ

ν ν μ μ
ν

− − − −

=

= = + = Φ Φ + = +∑ , (9) 

we obtain 

 ˆ ˆ ˆeff ( ) ( ) ( ) ( )

,

ˆ 0T T Te H c e QH c E e c
μ μ μα α α α

ν νμ μ μ μ μ μ μ
μ ν μ μ

Φ + Φ − Φ =∑ ∑ ∑ . (10) 
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Upon interchanging the indices μ and ν in the double summation of Eq. (10) and collecting the 

individual terms, we arrive at 

 ˆ ˆ ˆeff ( ) ( ) ( ) ( )ˆ 0T T Te H c e QH c E e c
ν μ μα α α α

μ μν ν μ μ μ μ μ
μ ν

⎡ ⎤Φ + Φ − Φ =⎢ ⎥⎣ ⎦
∑ ∑ . (11) 

The Mk-MRCC sufficiency conditions are chosen such that Eq. (11) is satisfied by setting the 

individual terms in the summation over μ to zero. After multiplication by T̂e
μ−  and left 

projection on the excited determinants ...
... ( )ab

ij μΦ , the final amplitude equations become 

 ˆ ˆ( ) eff ( )

( )

( ) ( ) 0 ( 1,2, , )ab ab T T
ij ijH c e e H c d

μ να α
μ μ μ μ μν ν

ν μ

μ μ μ−

≠

Φ Φ + Φ Φ = =∑" "
" " …  (12) 

Mukherjee and co-workers38,39 proved the connected nature of the coupling terms and thus 

showed that Mk-MRCC is rigorously size extensive. These coupling terms resemble those 

present in SU-MRCC theory, but with the important difference that both the bra and ket refer to 

the same reference μΦ . 

 The Mk-MRCCSDT method is defined by Eq. (12) with the projection over all singly

( )a
i μΦ , doubly ( )ab

ij μΦ , and triply ( )abc
ijk μΦ  excited determinants. The cluster operator is  

 1 2 3
ˆ ˆ ˆ ˆT T T Tμ μ μ μ= + + , (13) 

with the individual components expressed as 

 
occ( ) vir( )

1̂ ˆ ˆ( )a
i a i

i a
T t a a

μ μ
μ += μ∑ ∑ , (14) 

 
occ( ) vir( )

2
1ˆ ˆ ˆ ˆ ˆ( )
4

ab
ij b j a i

ij ab
T t a a a a

μ μ
μ + += μ∑ ∑ , (15) 

and 

 
occ( ) vir( )

3
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )

36
abc
ijk c k b j a i

ijk abc
T t a a a a a a

μ μ
μ + + += μ∑ ∑ . (16) 
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Table 4.1. Approximation of the similarity-transformed Hamiltonian in the SRCCSDT-n models. Only the 

connected part of each term is included. 

Projection a
iΦ  ab

ijΦ  abc
ijkΦ  

CCSDT-1a ( )1 2 3
ˆ ˆ ˆ ˆexpH T T T+ + ( )1 2 3

ˆ ˆ ˆ ˆ ˆexpH T T HT+ + 2 3
ˆ ˆ ˆ ˆHT FT+  

CCSDT-1b ( )1 2 3
ˆ ˆ ˆ ˆexpH T T T+ + ( )1 2 3

ˆ ˆ ˆ ˆexpH T T T+ +  2 3
ˆ ˆ ˆ ˆHT FT+  

CCSDT-2 ( )1 2 3
ˆ ˆ ˆ ˆexpH T T T+ + ( )1 2 3

ˆ ˆ ˆ ˆexpH T T T+ +  ( )2 3
ˆ ˆ ˆ ˆexpH T FT+  

CCSDT-3 ( )1 2 3
ˆ ˆ ˆ ˆexpH T T T+ + ( )1 2 3

ˆ ˆ ˆ ˆexpH T T T+ +  ( )1 2 3
ˆ ˆ ˆ ˆ ˆexpH T T FT+ +

 

Here, we have been careful to note that the amplitudes in Eqs. (14)-(16) belong to reference μΦ  

by adding the symbol μ in parentheses. Assuming the model space used to build the zeroth-order 

wave function is a complete active space (CAS), we can require the wave operator to satisfy 

intermediate normalization 

 ˆ 0 ( )Te
μ

ν μΦ Φ = ν ≠ μ . (17) 

This condition implies that the so-called internal amplitudes corresponding to excitations that 

transform a reference determinant μΦ  into another reference determinant νΦ  are set to zero:30  

 † †ˆ ˆ ˆ ˆ       ( ) 0ab
b j a i ija a a a tμ νΦ = ± Φ ⇒ μ ="

"" . (18) 

The computational scaling of the Mk-MRCCSDT method has a leading contribution determined 

by the evaluation of the similarity-transformed Hamiltonian for each reference, requiring d×O3V5 

operations. 

 Our Mk-MRCCSDT-n theories introduce simplifications of the 

( ) ( )ab ab
ij ijH Hμ μμ μ= Φ Φ" "
" "  matrix elements following the analogous SRCCSDT-n methods. 

The similarity-transformed Hamiltonians employed in our CCSDT-n schemes are summarized in 

Table 4.1, where we show explicitly which contributions are included. 
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We also consider two approximations to our Mk-MRCCSDT-n methods. The first approximation 

involves the triples coupling terms ˆ ˆ( )abc T T
ijk e e

μ ν

μμ −Φ Φ . The full expression for the coupling 

terms is45 

 

( )

ˆ ˆ ( / , ) ( / , ) ( / , )
3 1 2

3( / , )
1

ˆ ˆ ˆ( ) ( ) ( )

1 ˆ( )
6

( / , )

( / ) ( / ) ( / , ) ( / , )

( ) ( / , ) ( / , ) ( / ,

abc T T abc abc
ijk ijk ijk

abc
ijk

abc
ijk

a bc
i jk

a b c
i j k

e e T T T

T

t

P i jk P a bc t t

P abc t t t

μ ν ν μ μ ν μ μ ν μ μ
μ μ μ

ν μ μ
μ

μ μ μ

μ

ν μ μ

ν μ μ ν μ μ

ν μ μ ν μ μ ν μ

−Φ Φ = Φ Δ Φ + Φ Δ Δ Φ

+ Φ Δ Φ

= Δ

+ Δ Δ

+ Δ Δ Δ ),μ

 (19) 

where the permutation operators are defined as 

 ( / ) ( , , ) ( , , ) ( , , ) ( , , )P a bc f a b c f a b c f b a c f c b a= − − , (20) 

and 

 
( ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ).
P abc f a b c f a b c f b c a f c a b

f b a c f a c b f c b a
= + +
− − −

 (21) 

The ( / , )
k̂T ν μ νΔ  operators and the ( / , )ab

ijt ν μ μΔ "
"  amplitudes are 

 

occ( ) vir( )
( / , )

2
1

occ( ) vir( )

2
1

( / , )

1

1ˆ ˆ ˆ ˆ ˆ( / ) ( )
( !)

1 ˆ ˆ ˆ ˆ( / , )
( !)

ˆ ,

n
ab ab
ij ij b j a i

k ij ab

n
ab
ij b j a i

k ij ab

n

k
k

T t t a a a a
k

t a a a a
k

T

μ μ
ν μ μ

μ μ

ν μ μ

ν μ μ

ν μ μ

+ +

=

+ +

=

=

⎡ ⎤Δ = −⎣ ⎦

= Δ

= Δ

∑ ∑ ∑

∑ ∑ ∑

∑

" "
" "

" "

"
"

" "

…

…  (22) 

with the “common” amplitudes of operator T̂ ν  with respect to T̂ μ defined as 

 
if , , occ( )

( )
( / ) and , , vir( )

0 else.

ab
ijab

ij

i j
t

t a b
∈ μ⎧

ν⎪ν μ = ∈ μ⎨
⎪
⎩

…
……

…

…
…  (23) 

The three contributions to the coupling matrix elements in Eq. (19) are the linear ( / , )abc
ijkt ν μ μΔ , 

the quadratic ( / ) ( / ) ( / , ) ( / , )a bc
i jkP i jk P a bc t tν μ μ ν μ μΔ Δ , and the cubic 
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( ) ( / , ) ( / , ) ( / , )a b c
i j kP abc t t tν μ μ ν μ μ ν μ μΔ Δ Δ  terms.  Assuming the singles and doubles 

amplitudes are first-order quantities, while the triples are second-order quantities, then the 

coupling terms may be classified as second-order (linear and quadratic terms) and third order 

(cubic term). 

Our second approximation to the Mk-MRCCSDT-n approaches entails the neglect of 

off-diagonal Fock matrix elements to enhance computational efficiency. One of the design 

features of the SRCCSDT-n methods is that they do not require storage of the 3̂T  amplitudes, as 

all terms which couple different 3̂T  operators are omitted.52,53,59  However, storage can be only 

avoided when these schemes are used together with canonical Hartree-Fock (HF) orbitals. In a 

more general formulation, which applies also to the present multireference case, the CCSDT-n 

methods still involve the following contribution 

 
occ( ) vir ( )

( ) ( / ) ( ) ( ) ( / ) ( ) ( )abc abc abe
ijk ijm mk ijk ec

m e
H P ij k t f P ab c t f

μ μ

μ μ μ μ μ← − +∑ ∑ , (24) 

which couples different 3̂T  amplitudes via the off-diagonal elements [ ( )mkf μ and ( )ecf μ ] of the 

Fock matrix for reference μΦ . In SRCCSDT-n methods based on restricted open-shell HF 

(ROHF) or localized HF orbitals,74-77 this problem, which in principal would require storage of 

3̂T , is resolved either (in the ROHF case) by transforming the orbitals to a semicanonical 

representation78 with diagonal occupied-occupied and virtual-virtual blocks of the Fock matrix, 

or (in the case of localized orbitals) by (partially) neglecting the troublesome off-diagonal 

elements of F̂ . Similar ideas have been also pursued in order to avoid the storage of 3̂T  

amplitudes in perturbative treatments of triple excitations based either on ROHF or localized HF 

orbitals75,79 or when using the full similarity-transformed Hamiltonian.57,58  
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Unfortunately, in the multireference case, a solution to the 3̂T  coupling problem via orbital 

transformations seems not to be viable, because it is not possible to diagonalize simultaneously 

the Fock matrices for all d references. In a rigorous formulation, the MRCCSDT-n schemes thus 

require storage of the 3̂T  amplitudes. The necessity to store 3̂T  is solely due to the similarity-

transformed Hamiltonian, as the Mk coupling terms just require the simultaneous availability of 

the same 3̂T  amplitudes (i.e., those with the same orbital indices) for the different references. 

It is therefore natural to pursue our second approximation, specifically, modified MRCCSDT-n 

schemes in which the off-diagonal elements of F̂  are neglected to eliminate the problematic 

3
ˆ ˆFT  couplings. Such modified schemes can be implemented without storage of 3̂T ; the resulting 

equations are then coupled only with respect to amplitudes belonging to the different references 

but with the same orbital labels. Thus, the 3̂T  equations may be solved by simultaneously 

computing the 3̂T  amplitudes for all references within a loop over all orbital indices. While such 

modified MRCCSDT-n methods are less rigorous and clearly not orbital invariant, they may 

prove to be both computationally feasible and acceptably accurate in practical chemical 

applications, warranting their investigation here. Furthermore, this issue, i.e., the effect of the 

off-diagonal part of the Fock operator, is of vital importance for the development of a (T) 

correction for any MRCC scheme based on the JM ansatz. 

 

4.4  COMPUTATIONAL DETAILS 

 The similarity-transformed Hamiltonian matrix elements for the CCSDT-n (n = 1a, 1b, 2, 

3) and CCSDT models were coded in the LOOPMRCC program, developed at the University of 

Georgia and the Universität Mainz, using intermediates given by Gauss and Stanton earlier for 
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the single-reference case.80,81 The coupling terms and update equations were implemented in 

LOOPMRCC according to the equations given in our earlier work.45 Our implementation of the 

Mk-MRCCSDT-n and Mk-MRCCSDT methods has the proper scaling, which is the scaling of 

the corresponding single-reference CC methods times the number of references d. 

LOOPMRCC was benchmarked on single-reference closed- and open-shell systems against CCSD, 

CCSDT-1a, CCSDT-1b, CCSDT-2, CCSDT-3, and CCSDT energies generated with ACESII.82 

These tests confirmed the correctness of the similarity-transformed Hamiltonian matrix elements. 

The implementation of the triples coupling terms in Eq. (19) was benchmarked against our 

arbitrary-order Mk-MRCC code DETC++.68 

All computations were carried with the Psi 3.3 package.83 The orbitals were generated with either 

the CSCF or DETCAS modules, and the atomic integrals were transformed to the MO basis using 

the TRANSQT module. 

 

4.5  MK-MRCCSDT-N RESULTS FOR MODEL SYSTEMS 

 In this section Mk-MRCCSDT-n results are presented for the classic H4, P4, BeH2, and 

H8 model systems, constituting the first applications of these new multireference CCSDT-n 

methods.  The basis sets employed for each system are described in the subsections below and 

are fully specified in Supplementary Material.84 For each level of theory (X), plots are displayed 

for the difference between the total electronic energy and the FCI value at a given molecular 

geometry R, 

 X X FCI( ) ( ) ( )E E EΔ = −R R R . (25) 

The ΔEX diagnostic is preferable to the percent of the correlation energy recovered, since the 

former is independent of the choice for the reference wave function. Another measure employed 
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here for the quality of the potential energy curves is the nonparallelism error (NPE) with respect 

to FCI over a range (R) of geometries (R), defined as 

 X Xmax minNPE [ ( )] [ ( )].E E
R R

= Δ − Δ
∈ ∈

R R
R R

 (26) 

A final, more sensitive diagnostic quantifying nonparallelism of EX(R) from the FCI standard is 

the mean nonparallelism derivative (MNPD), 

 
[ ]

[ ]

1/22
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2
FCI

( ) ( )
MNPD .

( )
R

R

E E d

E d

⎧ ⎫′ ′−⎪ ⎪= ⎨ ⎬
′⎪ ⎪⎩ ⎭

∫
∫

R R R

R R
 (27) 

Tables 4.2-4.5 report the NPE and MNPD values for the model systems investigated in this 

study. 

 The H4, P4, BeH2, and H8 models all involve only two closed-shell reference 

determinants. The Mk-MRCC methods were applied with CAS(2,2) orbitals, optimized for the 

target state. The Mk-MRCC methods applied here are rigorously invariant to all (occupied, 

occupied) and (virtual, virtual) orbital rotations completely outside the active space, provided 

that no off-diagonal Fock matrix elements are neglected; however, orbital rotations within the 

active space do change the MRCC energy, as we have discussed previously.45 We canonicalized 

the orbitals as CAS(2,2) natural orbitals. As long as the model systems are not distorted into a 

lower point-group symmetry, the active space orbitals belong to different irreducible 

representations (irreps) and automatically come out of the CAS(2,2) computations as natural 

orbitals. 

 

4.5.1  H4 

 In the H4 model, four hydrogen atoms are arranged as an isosceles trapezoid with all the 

nearest-neighbor distances (r) fixed to exactly 2 bohr, considerably longer than the H2 
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equilibrium bond length of around 1.4 bohr. Varying the angle θ in Scheme 1 deforms the 

trapezoid from a square configuration (90°) to a linear chain (180°). 

 
 

Scheme 4.1. The H4 Model. 

 

The geometry of the H4 model can be parametrized by a continuous parameter [ ]1
20,α ∈  that 

specifies 1
2( )θ π α= + . This model system, first introduced by Jankowski and Paldus,85 has been 

studied using the SU-MRCC,33,86,87 BW-MRCC,35 and Mk-MRCC39 methods, the multireference 

coupled cluster theory of Hanrath (MRexpT),41 and the state-specific perturbation theory based 

on Mk-MRCC (SS-MRPT).88  

 At the square planar geometry (α = 0, D4h symmetry), the H4 system has the electronic 

configuration 2 2
1(1 ) (1 )g ua e , and the zeroth-order wave function is an equal mixture of the two 

degenerate determinants 

 2 2 2 2
1 1 2 1(1 ) (1 ) ,  (1 ) (1 )g ua g uba e a eΦ = Φ = . (28) 

For trapezoidal geometries (0 < α < 1/2, C2v symmetry) and the linear structure 

(α = 1/2, D∞h symmetry), the degeneracy is lifted. The two determinants of the zeroth-order 

wave function map into 

 2 2 2 2
1 1 2 2 1 1(1 ) (1 ) ,   (1 ) (2 )a b a aΦ = Φ = , (29) 

in C2v symmetry and 

θ θ 

r = 2 bohr

r r
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 2 2 2 2
1 2(1 ) (1 ) ,  (1 ) (2 )g u g gσ σ σ σ+ + + +Φ = Φ = , (30) 

for the linear geometry (D∞h).  For both the trapezoidal and linear geometries 1Φ  is the 

dominant configuration. 

 The H4 model was studied using a (4s1p/2s1p) double-ζ plus polarization (DZP)89,90 

basis set with αp(H) = 0.75 bohr−2 (see Supplementary Material).84 The 1Φ  and 2Φ  

determinants comprised the reference space, and the molecular orbitals were obtained from the 

corresponding CAS(2,2) computation. In Fig. 4.1, ΔEX(α) curves are presented for the various 

Mk-MRCCSDT-n methods and compared to our previous Mk-MRCCSD and Mk-MRCCSDT 

results.  The range of the plot is –0.2 to 0.5 mEh, indicating that even the lowest level of theory 

(Mk-MRCCSD) is not far removed from FCI. Most importantly, all of the Mk-MRCCSDT-n 

methods recover most of the triples effect on the energy.  As shown in Table 4.2, full inclusion 

of triples lowers the nonparallelism error (NPE) from 0.677 (Mk-MRCCSD) to 0.107 mEh
 

(Mk-MRCCSDT), and more than 73% of this reduction is achieved by each of the 

Mk-MRCCSDT-n methods, if no contributions are omitted from the coupling terms and Fock 

matrix elements (top row of table).   This extent of error reduction is quite uniform in Fig. 4.1, 

where the Mk-MRCCSDT-n curves (B-E) lie between the Mk-MRCCSD and Mk-MRCCSDT 

boundaries and are much closer to the full triples result at essentially all geometries.  The 

Mk-MRCCSDT-1a curve (B) happens to be noticeably closer to Mk-MRCCSDT than those of 

the more complete triples methods, whose performance is hardly distinguishable on the plot.   
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Figure 4.1. Mk-MRCC/DZP energy curves for the 1A1 ground state of the H4 model system using CAS(2,2) 

orbitals. The full triples coupling term and off-diagonal Fock matrix elements are included. The lower panel shows 

the square of the CAS(2,2) CI coefficient of 1Φ  vs. the parameter α. 

 
 

According to the MNPD diagnostic, Mk-MRCCSDT mirrors the FCI curve better than 

Mk-MRCCSD by a factor of 14. Over 77% of the full triples MNPD reduction is provided by the 

Mk-MRCCSDT-n methods, with the 1a approximation yielding the best results as before. It is 

gratifying that all of the Mk-MRCC methods that incorporate connected triples are substantially 

more accurate in the multireference region of the H4 model (α < 0.05) than in the single-

reference limit. 

Table 4.2. Nonparallelism Error (NPE) in mEh and Mean Nonparallelism Derivative (MNPD) for the Mk-MRCC 

/DZP energy curves of the 1A1 ground state of the H4 model system using CAS(2,2) orbitals. Data from calculations 

including only the diagonal part of the Fock matrices are indicated with ( diagF̂ ). 
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 Mk-MRCC method 

Triples Coupling SD SDT-1a SDT-1b SDT-2 SDT-3 SDT 

NPE 

Complete 0.677 0.181 0.217 0.259 0.245 0.107 

Quadratic  0.181 0.217 0.259 0.245  

Linear  0.202 0.234 0.276 0.263  

Complete ( diagF̂ )  0.206 0.243 0.285 0.272  

Quadratic ( diagF̂ )  0.206 0.243 0.285 0.272  

Linear ( diagF̂ )  0.227 0.259 0.301 0.289  

   MNPD (×103)    

Complete 8.36 1.34 1.78 2.35 2.31 0.59 

Quadratic  1.34 1.78 2.35 2.31  

Linear  1.48 1.88 2.45 2.40  

Complete ( diagF̂ )  1.47 1.96 2.54 2.49  

Quadratic ( diagF̂ )  1.47 1.96 2.54 2.49  

Linear ( diagF̂ )  1.70 2.07 2.65 2.60  

 

4.5.2   P4 

 In the P4 model85 (Scheme 2) four hydrogen atoms form a rectangle with a fixed height 

of 2 bohr and variable length α (in bohr).  The three geometrical regions of the P4 model are (A) 

compressed, α < 2; (B) square, α = 2; and (C) elongated, α > 2. 

 
 

Scheme 4.2. The P4 Model. 

α

2 bohr
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For the square configuration (D4h) the zeroth-order wave function is an equal mixture of the two 

degenerate determinants 

 2 2 2 2
1 1 2 1(1 ) (1 ) ,  (1 ) (1 )g ua g uba e a eΦ = Φ = , (31) 

which transform into D2h symmetry as 

 2 2 2 2
1 1 3 2 1 2(1 ) (1 ) ,  (1 ) (1 )u ua b a bΦ = Φ = , (32) 

for both compression and elongation. Thus, the P4 system is multireference in character in the 

middle of the potential energy curve, whereas the compressed and elongated regions are 

dominated by 1Φ  and 2Φ , respectively.  This feature makes the P4 model a good complement 

to the H4 model.  Previously, the P4 model has been a test case for SU-MRCC33,86 and 

Mk-MRCC theories.39  

 Our computations on the P4 model were executed with the same DZP basis set used for 

the H4 model and with molecular orbitals optimized over the CAS(2,2) space of 1Φ  and 2Φ . 

The performance of the Mk-MRCCSDT-n methods on the P4 model can be judged from the 

ΔEX(α) curves in Fig. 4.2. The lower panel of this figure plots the square of the largest CI 

coefficient of the CAS(2,2) wave function, indicating that the multireference region of this 

system is centered at α = 2 and extends roughly from 1.75 to 2.25 bohr. 

Figure 4.2. Mk-MRCC/DZP energy curves for the 1A1 ground state of the P4 model system using CAS(2,2) orbitals. 

The full triples coupling term and off-diagonal Fock matrix elements are included. The lower panel shows the 

square of the CAS(2,2) CI coefficient of 1Φ  vs. the parameter α. 
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Once again, all of the Mk-MRCCSDT-n methods recover most of the triples effect on the 

energy. The top row of Table 4.3 shows that more than 80% of the full triples reduction in the 

nonparallelism error is recovered by each of the Mk-MRCCSDT-n methods.   This NPE 

characterization is also borne out in Fig. 4.2, where most of the difference between the Mk-

MRCCSD and Mk-MRCCSDT curves is uniformly damped out by the Mk-MRCCSDT-n 

schemes over the entire range of α. Unlike the H4 case, there is very little distinction in the 

performance of the four approximate triples methods. Among all the methods, Mk-MRCCSDT is 

the only one in Fig. 4.2 that does not exhibit a pronounced sink in the curve near α = 2, the point 

of maximum multireference character. Thus, while all the Mk-MRCCSDT-n energies lie within 

0.1 mEh of FCI in this region, the full inclusion of triples is necessary to smoothly follow the FCI 

energy curve near the square-planar configuration of the P4 system.  The depth of the sink in the 

( )XEΔ α  curves is smaller for the T-1a,1b methods than for T-2,3, as indicated by the MNPD 

diagnostic. In going from Mk-MRCCSD to Mk-MRCCSDT, the MNPD is cut down by a factor 
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of 14. The T-1a,1b triples approximations give 89% of this reduction, whereas the T-2,3 schemes 

recover more than 82% of the triples effect. 

 

Table 4.3. Nonparallelism Error (NPE) in mEh and Mean Nonparallelism Derivative (MNPD) for the 

Mk-MRCC/DZP energy curves of the 1A1 ground state of the P4 model system using CAS(2,2) orbitals. Data from 

calculations including only the diagonal part of the Fock matrices are indicated with ( diagF̂ ). 

 Mk-MRCC method 

Triples Coupling SD SDT-1a SDT-1b SDT-2 SDT-3 SDT 

NPE 

Complete 0.739 0.290 0.300 0.348 0.328 0.259 

Quadratic  0.290 0.300 0.348 0.328  

Linear  0.320 0.322 0.370 0.351  

Complete ( diagF̂ )  0.313 0.324 0.372 0.352  

Quadratic ( diagF̂ )  0.313 0.324 0.372 0.352  

Linear ( diagF̂ )  0.344 0.346 0.395 0.376  

   MNPD (×103)    

Complete 11.26 1.98 2.00 2.73 2.66 0.82 

Quadratic  1.98 2.00 2.73 2.66  

Linear  2.05 2.06 2.80 2.72  

Complete ( diagF̂ )  2.18 2.20 2.95 2.88  

Quadratic ( diagF̂ )  2.18 2.20 2.95 2.88  

Linear ( diagF̂ )  2.26 2.27 3.02 2.94  
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4.5.3  BEH2 

The BeH2 model involves the insertion of the beryllium atom into the center of the bond in 

diatomic H2 to form the linear beryllium hydride molecule.  This process was studied at selected 

points along a C2v path using single-reference coupled cluster theory in 1983.91 Later, several 

authors applied various multireference methods to the BeH2 system.13,39,92-102 Our revision of the 

original model91 introduces a continuous path between the reactant and product regions. The 

beryllium atom is placed at the origin of the axis system, while the two hydrogen atoms move 

along the lines (Scheme 3) 

 ( ) (2.54 0.46 )y x x= ± − , (33) 

where x varies from 0 to 4 bohr. This path interpolates points A-H of the original model.91 

  

 
 

Scheme 4.3. The BeH2 Model. 

 
 Molecular BeH2 at its linear (D∞h) equilibrium geometry has the primary configuration 

 2 2 2
1 (1 ) (2 ) (1 )g g uσ σ σΦ = , (34) 

which correlates to 

 2 2 2
1 1 1 2(1 ) (2 ) (1 )a a bΦ = , (35) 

in C2v symmetry. For dissociated Be + H2 the wave function is predominantly 

x 

Be 

H 

H 

y 
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 2 2 2
2 1 1 1(1 ) (2 ) (3 )a a aΦ = , (36) 

which transforms to 

 2 2 2
2 (1 ) (2 ) (3 )g g gσ σ σΦ =  (37) 

in D∞h symmetry. Therefore, the electronic wave function switches from 1Φ  to 2Φ  along the 

dissociation path, and in the intervening transition state region these determinants are 

quasidegenerate.103 

Figure 4.3. Mk-MRCC/[Be(3s2p) /H(2s)] energy curves for the 1A1 ground state of the BeH2 model system using 

CAS(2,2) orbitals. The full triples coupling term and off-diagonal Fock matrix elements are included. The lower 

panel shows the square of the CAS(2,2) CI coefficient of 1Φ  vs. the parameter x. 

 
 

 The basis set utilized here for BeH2 (and detailed in the Supplementary Material)84 is a 

Be(10s3p/3s2p), H(4s/2s)89,90 contraction with a tight beryllium p primitive function to describe 
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benchmark studies.13,39,91-101 The hydrogen basis is identical to the H(4s/2s) manifold employed 

above for the H4 and P4 models. 

The ( )XE xΔ  curves for the BeH2 model are displayed in Fig. 4.3. Unlike the H4 and P4 cases, 

the performance of the Mk-MRCC methods steadily improves as the level of theory is increased. 

Indeed, both the NPE and MNPD values in Table 4.4 lie in the order Mk-MRCCSD > 

Mk-MRCCSDT-1a > Mk-MRCCSDT-1b > Mk-MRCCSDT-2 > Mk-MRCCSDT-3 > 

Mk-MRCCSDT.  Although this sequence is encouraging, large sinks appear in the 

multireference region in all of the error curves for the approximate triples schemes. Moreover, 

none of the Mk-MRCCSDT-n methods recovers more than 70% of the full triples effect, as 

measured by either the NPE or the MNPD diagnostic. Accordingly, the maximum error with 

respect to FCI along the BeH2 dissociation path is not reduced below 0.5 mEh until 

Mk-MRCCSDT is applied. 

The C2v transition state for the insertion of Be into H2 provides a genuine chemical test of 

multireference theories. In Table 4.6 properties of this transition state predicted by our 

Mk-MRCC methods are compared to the corresponding FCI benchmarks. The Mk-MRCCSD 

and Mk-MRCCSDT results for the activation barrier differ by only −0.27 and +0.02 kcal mol−1, 

respectively, from the FCI value of 100.24 kcal mol−1. This excellent agreement is also achieved 

by all the approximate triples methods, which yield barriers between 0.01 and 0.06 kcal mol−1 

below the FCI limit. The H-H and the Be-H distances in the transition state are both 

underestimated by about 0.026 Å with Mk-MRCCSD, but Mk-MRCCSDT reproduces the FCI 

geometric parameters within 0.0003 Å! The Mk-MRCCSDT-n methods recover between 54% 

and 66% of the full triples elongation of the distances in the transition state.  The harmonic 

vibrational frequencies of the transition state provide the most stringent test. The Mk-MRCCSD 
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frequencies are too large, particularly in the ω2 case, where the overestimation is almost 20%. 

However, Mk-MRCCSDT once again proves to be a remarkably accurate theory, giving 

frequencies within 2 cm−1 of the FCI values of ω1 = 3769i cm−1 and ω2 = 796 cm−1. The 

approximate triples methods provide 60%-80% of the full triples effect on ω2, but only 

30%-75% for the imaginary frequency ω1. The Mk-MRCCSDT-2 scheme performs best for the 

vibrational frequencies, whereas the T-1a and T-3 approaches are rather disappointing in this 

instance in that they account for less than 50% of the triples shift on ω1. 

Figure 4.4. Mk-MRCC/[Be(3s2p) /H(2s)] singlet-triplet splittings ( ST
XEΔ ) of the BeH2 model system using 

CAS(2,2) orbitals for the 1A1 state and ROHF orbitals for the 3B2 state. The full triples coupling term and 

off-diagonal Fock matrix elements are included. Curves A-F are referenced to the FCI results and are quantified on 

the left vertical axis. The absolute FCI splitting is plotted as a dotted line on the scale of the right vertical axis. The 

lower panel shows the square of the CAS(2,2) CI coefficient of 1Φ  vs. the parameter x for the 1A1 state. 

 
 
 

 0.0
 0.5

 1.0

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

 

c 1
2

x

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

-25

 0

 25

 50

 75

 100

 125

 150A = Mk-MRCCSD
B = Mk-MRCCSDT-1a
C = Mk-MRCCSDT-1b
D = Mk-MRCCSDT-2
E = Mk-MRCCSDT-3
F = Mk-MRCCSDT

A

F

E

BC

D

Δ
E

X
 - 
Δ

E
F

C
I (

kc
al

 m
ol

-1
)

S
T

S
T

Δ
E

F
C

I (
kc

al
 m

ol
-1

)
S

T

ΔEFCI
ST



151 
 

Our final test of methods for the BeH2 model is summarized in Fig. 4.4, where deviations from 

FCI singlet-triplet splittings are plotted along the BeH2 insertion path. In these computations the 

3B2 state of BeH2 was treated consistently within the Mk-MRCC formalisms by converging on 

the MS = 0 component of the triplet manifold. The error in the Mk-MRCCSD singlet-triplet 

splitting reaches a maximum of 2.26 kcal mol−1 near the point of greatest multireference 

character (x = 2.85). Mk-MRCCSDT almost completely eliminates this error. There is a uniform 

reduction of the peak in the error curve in progressing from the T-1a to the T-3 approximate 

triples methods, but the maximum error along the insertion path remains above 1.0 kcal mol−1 in 

all cases. 
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Table 4.4. Nonparallelism Error (NPE) in mEh and Mean Nonparallelism Derivative (MNPD) for the 

Mk-MRCC/[Be(3s2p) /H(2s)]  energy curves of the 1A1 ground state of the BeH2 model system using CAS(2,2) 

orbitals. Data from calculations including only the diagonal part of the Fock matrices are indicated with ( diagF̂ ). 

 Mk-MRCC method 

Triples Coupling SD SDT-1a SDT-1b SDT-2 SDT-3 SDT 

NPE 

Complete 2.238 1.445 1.206 1.104 0.844 0.198 

Quadratic  1.498 1.287 1.183 0.906  

Linear  1.481 1.225 1.128 0.863  

Complete ( diagF̂ )  1.432 1.181 1.079 0.819  

Quadratic ( diagF̂ )  1.489 1.221 1.123 0.857  

Linear ( diagF̂ )  1.486 1.264 1.158 0.882  

   MNPD (×103)    

Complete 27.62 22.69 19.03 15.78 10.90 1.13 

Quadratic  23.70 20.09 17.28 11.27  

Linear  22.09 17.75 12.16 11.17  

Complete ( diagF̂ )  22.55 18.00 11.32 10.43  

Quadratic ( diagF̂ )  23.57 19.90 17.12 10.90  

Linear ( diagF̂ )  22.05 17.48 11.53 10.71  
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4.5.4   H8 

 The H8 model consists of eight hydrogen atoms arranged in an octagonal configuration 

with four bond lengths fixed to exactly 2 bohr. A variable distance parameter α (in bohr) 

determines the deviation from the D8h configuration due to the displacement of a pair of parallel 

H2 molecules. Scheme 4 depicts the H8 model and gives the definition of the parameter α. 

 
 

Scheme 4.4. The H8 Model. 

 
This model system was introduced in the 1980s by Jankowski, Meissner and Wasilewski104 and 

was later studied intensely by several authors with CASCCSD,105,106 SU-MRCCSD,33,86,107 

BW-MRCCSD,108 multireference coupled electron pair approximation (MRCEPA),109 

Mk-MRCCSD38, and MRexpT41 theories. As in the P4 model, upon varying the parameter α, the 

H8 model gives three different types of geometrical configurations: (A) compressed, α < 0; (B) 

octagonal, α = 0; and (C) elongated, α > 0. 

 The H8 system is described by a two-dimensional model space with the electronic 

configurations (in D2h symmetry) 

 2 2 2 2
1 3 2 1

2 2 2 2
2 3 2

(1 ) (1 ) (1 ) (1 )
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For the compressed geometry the 1Φ  configuration is the restricted Hartree-Fock ground state, 

while for the elongated geometry, 2Φ  becomes lower in energy than 1Φ . Thus, 1Φ  

dominates for α < 0 and 2Φ  for α > 0. The zeroth-order wave function for the D8h geometry 

has the electronic configuration 

 2 4 2
1 1 1(1 ) (1 ) (1 )g g ua e e  (39) 

comprising two degenerate determinants. 

Figure 4.5. Mk-MRCC/DZ energy curves for the 1A1 ground state of the H8 model system using CAS(2,2) orbitals 

optimized for the 1 1A1 state. The full triples coupling term and off-diagonal Fock matrix elements are included. The 

lower panel shows the square of the CAS(2,2) CI coefficient of 1Φ  vs. the parameter α. 
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values in Table 4.5 for the approximate triples methods lie in a narrow range of 0.765-0.825 

mEh, as compared to 2.019 mEh for Mk-MRCCSD and 0.330 mEh for Mk-MRCCSDT. The 

distribution of the MNPD diagnostics is qualitatively the same. By both the NPE and MNPD 

measures, all of the Mk-MRCCSDT-n approaches recover between 69% and 74% of the full 

triples effect. It is noteworthy in Fig. 4.5 that the curves for the approximate triples methods are 

generally closer to FCI than full Mk-MRCCSDT; however, the performance of the latter must be 

considered superior because ( )XEΔ α  does not change signs in the multireference region. 
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Table 4.5. Nonparallelism Error (NPE) in mEh and Mean Nonparallelism Derivative (MNPD) for the 

Mk-MRCC/DZ energy curves of the 1A1 ground state of the H8 model system using CAS(2,2) orbitals. Data from 

calculations including only the diagonal part of the Fock matrices are indicated with ( diagF̂ ). 

 Mk-MRCC method 

Triples Coupling SD SDT-1a SDT-1b SDT-2 SDT-3 SDT 

NPE 

Complete 2.019 0.825 0.765 0.771 0.790 0.330 

Quadratic  0.825 0.765 0.771 0.790  

Linear  0.819 0.759 0.765 0.785  

Complete ( diagF̂ )  0.823 0.763 0.768 0.788  

Quadratic ( diagF̂ )  0.824 0.763 0.768 0.788  

Linear ( diagF̂ )  0.818 0.758 0.763 0.783  

   MNPD (×103)    

Complete 58.67 23.05 21.19 21.53 22.32 7.31 

Quadratic  23.05 21.19 21.53 22.32  

Linear  22.58 20.71 21.05 21.85  

Complete ( diagF̂ )  22.70 20.83 21.14 21.95  

Quadratic ( diagF̂ )  22.70 20.83 21.14 21.95  

Linear ( diagF̂ )  22.48 20.61 20.92 21.73  
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Table 4.6. Properties of the transition state for the C2v insertion of Be into H2 on the 1A1 ground state surface of 

BeH2, as given by Mk-MRCC theory using CAS(2,2) orbitals. Complete coupling terms are employed. The bond 

distances r(Be-H) and r(H-H) are in Å. ΔER and ΔETS are the reaction energy and activation barrier (in kcal mol−1) 

for the C2v insertion. 

 Mk-MRCC method  

 SD SDT-1a SDT-1b SDT-2 SDT-3 SDT FCI 

BeH2 product 

r(Be-H) 1.3803 1.3804 1.3804 1.3804 1.3804 1.3805 1.3808 

ΔER -10.19 -10.27 -10.26 -10.26 -10.26 -10.31 -10.44 

(Be ··· H2)† transition state 

r(Be-H) 1.6474 1.6626 1.6648 1.6653 1.6635 1.6744 1.6741 

r(H-H) 1.3968 1.4105 1.4126 1.4132 1.4114 1.4222 1.4224 

ω1(a1) 3834i 3815i 3798i 3787i 3806i 3770i 3769i 

ω2(a1)  952 842 828 831 857 794 796 

ΔETS  99.97 100.21 100.23 100.20 100.18 100.26 100.24 

 
 

  



158 
 

4.6  THE EFFECT OF TRIPLES COUPLING TERMS AND OFF-DIAGONAL FOCK MATRIX ELEMENTS 

 Tables 4.2-4.5 contain our data for assessing the two approximations to 

Mk-MRCCSDT-n theory outlined in Section II: (1) truncation of the triples coupling term in Eq. 

(19), and (2) neglect of off-diagonal elements of the Fock matrices of the various references to 

avert the storage of triples amplitudes. The results are best characterized in two sets, the H4, P4, 

and H8 models collectively and BeH2 separately.  

 For H4, P4, and H8, truncating to quadratic triples coupling yields results 

indistinguishable from the complete inclusion of terms. The NPE values for H4, P4, and H8 are 

affected by less than 1 μEh in all cases, and the MNPD diagnostics change less than 0.01%. If 

only linear coupling terms are retained, the accuracy of the Mk-MRCCSDT-n schemes 

deteriorates only slightly. For the NPE measure, the T-n methods with linear coupling recover an 

average of 77.4% of the full triples effect, compared to 80.0% with complete coupling. Likewise, 

for the MNPD diagnostic, the average recovery of the full triples effect is 79.4% and 79.8% for 

linear and complete coupling, respectively. Neglecting off-diagonal elements of the Fock 

matrices in the Mk-MRCCSDT-n methods does not change the accuracy of the quadratic and 

linear coupling approximations in the H4, P4, and H8 models. 

 The BeH2 results are somewhat more sensitive to the treatment of the Mk-MRCC 

coupling terms than for the other model systems. In Table 4.4, the largest NPE change arising 

from truncation of triples coupling is 0.08 mEh. Owing to an advantageous cancellation of errors, 

the linear coupling approximation actually performs better than quadratic coupling, particularly 

for the NPE values. Mk-MRCCSDT-2 is the only method for which truncating the triples 

coupling term substantially alters the percent recovery of the full triples effect on the NPE and 
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MNPD diagnostics. For the other T-n schemes, the accounting of the full triples effect does not 

change more than 5% regardless of the treatment of the coupling matrix element in Eq. (19). 

 In the H4, P4, and H8 model systems, the errors in neglecting off-diagonal Fock matrix 

elements (the diagF̂  approximation) are comparable to those engendered by the truncation to 

linear coupling. For NPE, diagF̂ with complete coupling in the Mk-MRCCSDT-n schemes 

recovers on average 76.9% of the full triples effect, which amounts to only a 3.1% reduction in 

performance compared to incorporation of all off-diagonal Fock matrix elements. For MNPD the 

average recovery with diagF̂  is 78.6%, within 1% of the corresponding measure without this 

approximation. For the H4 and P4 systems, the diagF̂ and triples coupling errors are cumulative, 

but for H8 the combined linear-coupling/ diagF̂  NPE and MNPD values in Table 4.5 are the 

closest to the Mk-MRCCSDT benchmarks of all the entries, indicating another favorable 

cancellation of errors. 

 For BeH2, the diagF̂  approximation performs even better than for the H4, P4, and H8 

model systems. With complete coupling, diagF̂ actually improves the mean percent recovery of 

the full triples effect by about 1% for NPE and 2% for MNPD (excepting the T-2 case where 

diagF̂ improves MNPD dramatically). 

 Our findings on the diagF̂  approximation may be related to a previous investigation by 

Crawford and Schaefer110 on the effect of neglecting the off-diagonal part of the Fock matrix in 

perturbative triples computations using single reference coupled cluster theory with a restricted 

open-shell reference. It was found that the accuracy for equilibrium bond lengths, dissociation 

energies, and harmonic vibrational frequencies of 11 test molecules is basically the same for both 
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the theory containing the full Fock matrix and the variant that neglects the off-diagonal terms. 

Further work is required to more fully assess the accuracy of the diagF̂  approximation in both 

perturbative and iterative MRCC methods; however, our initial results show that even in cases as 

difficult as the model systems studied here, this approach is valid. 

 

4.7  SUMMARY AND DISCUSSION 

 In this investigation, several schemes that include triple excitations within the rigorously 

size-extensive Mukherjee multireference coupled cluster formalism have been implemented for 

the first time.  These consist of a family of approximate triples methods based on CCSDT-n 

similarity-transformed Hamiltonians52,53,59 (Mk-MRCCSDT-n) as well as the full Mukherjee 

multireference coupled cluster method with single, double, and triple excitations  

(Mk-MRCCSDT). Our implementation of Mk-MRCCSDT-n and Mk-MRCCSDT is not based 

on a determinantal expansion of the operators, but instead uses intermediates, and therefore has 

the proper scaling, d × O3V4 (N7) for the Mk-MRCCSDT-n schemes and d × O3V5 (N8) for the 

Mk-MRCCSDT method. 

The performance of these Mk-MRCC methods was tested on four classic model systems for 

which FCI results are available: H4, P4, BeH2, and H8. The potential energy curves in Figs. 

4.1-4.5 clearly demonstrate that the Mk-MRCCSDT-n schemes substantially improve upon the 

Mk-MRCCSD approach, recovering most of the effects of triples from Mk-MRCCSDT. Two 

diagnostics were introduced to quantify the performance of the methods – the nonparallelism 

error (NPE) and the mean nonparallelism derivative (MNPD). The NPE measures the range of 

deviation from the FCI energy potential curve, while the MNPD is a more precise diagnostic that 

measures the smoothness of the error with respect to the FCI curve.  The average NPE error for 



161 
 

the model systems is reduced from 1.418 mEh (Mk-MRCCSD) to (0.685, 0.622, 0.620, 0.552) 

mEh for (Mk-MRCCSDT-1a, Mk-MRCCSDT-1b, Mk-MRCCSDT-2, Mk-MRCCSDT-3), 

respectively. Thus, the approximate (Mk-MRCCSDT-1a, Mk-MRCCSDT-1b, 

Mk-MRCCSDT-2, Mk-MRCCSDT-3) triples methods recover on average (61, 67, 67, 73) % of 

the triples effect, respectively. The average MNPD value for Mk-MRCCSD is 26.48×10−3, which 

decreases to (12.26, 11.00, 10.60, 9.55)×10−3 for (Mk-MRCCSDT-1a, Mk-MRCCSDT-1b, 

Mk-MRCCSDT-2, Mk-MRCCSDT-3), in order; in comparison it is 2.46 ×10−3 for 

Mk-MRCCSDT. According to the MNPD diagnostic, the approximate triples schemes 

(Mk-MRCCSDT-1a, Mk-MRCCSDT-1b, Mk-MRCCSDT-2, Mk-MRCCSDT-3) recover on 

average (59, 64, 66, 71) % of the triples effects, respectively. The combined NPE and MNPD 

results indicate that these CC methods form a hierarchy of increasing accuracy following the 

general order: Mk-MRCCSD < Mk-MRCCSDT-1a < Mk-MRCCSDT-1b < Mk-MRCCSDT-2 < 

Mk-MRCCSDT-3 < Mk-MRCCSDT. Of course, this order is not always maintained in 

individual cases. 

We further scrutinized BeH2 to probe the performance of the various Mk-MRCC theories in a 

more representative chemical application. The transition state for the C2v insertion path of Be + 

H2 is a severe multireference case, whereas the linear BeH2 molecule is single-reference in 

character and hence is an ideal complement. For the BeH2 stationary points, we optimized the 

geometries and computed harmonic vibrational frequencies and reaction energies. Our 

Mk-MRCCSDT-n methods achieve very good agreement (within 0.1 kcal mol−1) with the FCI 

activation barrier and reaction energy, performing comparably to Mk-MRCCSDT. The 

vibrational frequencies at the transition state represent a much sterner test for the theory, as is 

evident from Table 4.6.  In this case the Mk-MRCCSDT method gives errors less than 2 cm-1 
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with respect to FCI.  Of the approximate triple excitations models, CCSDT-2 is the most 

accurate, matching ω1 and ω2 within 18i and 35 cm−1, respectively.     

 Finally, two excellent approximations in Mk-MRCCSDT-n treatments have been 

substantiated.   First, we find that the triples coupling matrix elements in Eq. (19) can be 

truncated at either the quadratic or linear level without significant loss of accuracy. In our model 

systems, the NPE value always changed less than 0.1 mEh regardless of the level of truncation. 

Second, neglecting the off-diagonal part of the Fock matrices in evaluating matrix elements of 

the similarity-transformed Hamiltonian introduces negligible errors, and in some cases actually 

yields more accurate results than if the full Fock matrices are employed. For example, the diagF̂  

approximation increases the average NPE for our model systems by only (1.3, 0.9, 0.9, 1.1) % 

for (Mk-MRCCSDT-1a, Mk-MRCCSDT-1b, Mk-MRCCSDT-2, Mk-MRCCSDT-3), 

respectively.  The consequences of these findings are far reaching, particularly for constructing a 

viable perturbative triples correction [(T)] to Mk-MRCCSD.  Not only may the (T) scheme be 

formulated by including only the linear triples coupling terms, but a non-iterative algorithm can 

be devised analogous to the single-reference case, whereby the storage of 3̂T  amplitudes is 

avoided.  Given the remarkable accuracy we have documented for the full Mk-MRCCSDT 

theory, the development of an efficient and robust Mk-MRCCSD(T) theory promises many 

rewards in the study of multireference systems. 
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points along the BeH2 dissociation path.  
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CHAPTER 5 

 

CONCLUSION 

 

 

 We have developed and implemented a state-specific multireference coupled cluster 

(MRCC) theory first suggested by Mukherjee and co-workers (Mk-MRCC).  Mk-MRCC is a 

fully size extensive and intruder-free approach aimed at computing accurate thermodynamic, 

kinetic, and spectroscopic data for multireference open-shell states of atoms and molecules. 

 In the initial stage of our research, in order to avoid the mathematical difficulties 

encountered in MRCC theory, we solved the corresponding equations using a new 

arbitrary-order string-based code capable of computing energies.  This advancement allowed us, 

for the first time, to compare the accuracy of various MRCC approaches and benchmark the 

results against full configuration interaction.  For ground electronic states we found that 

Mk-MRCC is clearly superior to the state-universal MRCC (SU-MRCC) method at all levels of 

truncation of the cluster operator.  Our results on model systems also indicate that Mk-MRCC is 

in general more accurate than Brillouin-Wigner MRCC (BW-MRCC) theory. 

 We then proceeded to solve the mathematical difficulties found in Mk-MRCC theory and 

derived closed expressions for the “same vacuum” coupling terms.  This allowed us to develop 

the first production-level code capable of performing Mk-MRCC with singles and doubles 

computations (Mk-MRCCSD) on molecular systems.  Mk-MRCCSD benchmark calculations of 

the potential energy curve of F2 and the harmonic vibrational frequencies of ozone support the 
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accuracy and reliability of Mk-MRCC when compared to single-reference coupled cluster and 

BW-MRCC.  While the dissociation energy and harmonic vibrational frequency of F2 computed 

with Mk-MRCC using localized orbitals are within 0.2 kcal mol−1 and 2 cm−1 from experimental 

values, respectively, the harmonic vibrational frequencies for ozone were found to be 

problematic.  For example, the antisymmetric stretching frequency of ozone, ω3(b2), remains a 

problem for all the MRCC methods investigated, moreover, ω3 is extremely sensitive to the 

choice of orbital canonicalization.  Mk-MRCCSD was also tested on the singlet-triplet energy 

splitting of ortho-, meta-, and para-benzyne.  In all cases our results are in close agreement 

(within 1.5 kcal mol−1) with the experimental values. 

 In the last part of our dissertation we advanced the Mk-MRCCSDT-n (n = 1a,1b,2,3) 

models.  These are new approximate methods based on the full Mk-MRCCSDT approach which 

includes triple excitations aimed at improving the accuracy of Mk-MRCCSD.  The 

Mk-MRCCSDT-n methods have a computational cost which scales as N7 (N being the number of 

electrons) and thus are less expensive than the full Mk-MRCCSDT model which scales as N8.  

Our computations on model systems show that the Mk-MRCCSDT-n methods recover on 

average 60-70% of the effect of full triples excitations. 

 This dissertation establishes Mk-MRCC as the method of choice for accurate description 

of multireference open-shell states of atoms and molecules.  However, further work is required to 

extend the range of problems that can be treated with Mk-MRCC.  For example, to study 

polyradicals, multiple bond dissociation processes, and transition metal compounds, a 

generalization of Mk-MRCC to arbitrary active spaces is required.  Furthermore, other desirable 

advances would include the formulation of an internally contracted approximation to reduce the 

computational cost and the formulation of a perturbative triples approach akin to the “gold 
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standard” of single-reference methods, CCSD(T).  From the formal point of view, the most 

important limitation of Mk-MRCC is the sensitivity with respect to orbital canonicalization.  

This problem seems to be intimately connected to the form of the Jeziorski-Monkhorst ansatz, 

and therefore its solution might require the formulation of a completely new MRCC ansatz. 




