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Abstract

The reach of a set S in a metric space, denoted reach(S), is the supremal r such that

any point within distance r of S has a unique nearest point in S. Sets of positive reach (PR

sets) originate in the work of Federer in [9] with a theory of curvature measures on PR sets.

More recently, Fu [10] defined the second fundamental form for PR sets, established Morse

theory on PR sets, and revisited Federer’s curvature measures.

We work exclusively with regular PR sets in Euclidean space. We further develop the

theory of regular PR sets in Euclidean space by establishing regularity of geodesics and by

determining a formula for reach using the second fundamental form. We prove that geodesics

are C

1,1 in regular PR sets. Our formula for reach of regular compact PR sets is based on

the technique in [3] for determining thickness of C

1,1 curves.
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Chapter 1

Introduction: Sets of Positive Reach

1.1 The Basics

Sets of positive reach (PR sets) originate in the work of Federer in [9]. PR sets have many nice

geometric properties that mimic those of smooth manifolds with boundary; we shall discuss

some of these properties in this chapter. We shall consider only PR subsets of Euclidean

space, although many of these notions make sense in more general settings. Let us begin our

discussion of PR sets with some friendly examples.

Examples. The following are examples of PR sets in Euclidean space:

1. Convex sets

2. Smooth compact submanifolds of Euclidean space

3. The pinched first quadrant of the plane (Figure 1.1)

4. A planar crescent moon shape

5. The region in R3 under a curved ridge (Figure 1.2)

5



Figure 1.1: An unbounded planar PR set: the pinched first quadrant

Figure 1.2: An unbounded PR set in R3: an infinite ridge set

6



Figure 1.3: The shaded region S has reach(S) = 0.

The key concept for reach is the unique nearest point map; the unique nearest point

map is only defined for certain points outside of a given set, and the domain of the unique

nearest point map determines the reach of the set. Let S be a set in a metric space, and let

d

S

(x) := inf{d(x, a) : a 2 S}, so that d

S

(x) is the distance from x to S.

Definition 1.1. The set Unp(S) is the set of points having a unique nearest point in S. The

unique nearest point map ⇡

S

: Unp(S) ! S is the map sending a point to its unique

nearest point in S. For x 2 Unp(S), we have that d

S

(x) = d(x, ⇡

S

(x)).

The reach of a set is a measurement of how far from the set one may go and still have a

unique nearest point map:

Definition 1.2. The reach of a set S in a metric space, denoted reach(S), is the supremal r

such that any point within distance r of S has a unique nearest point in S. When reach(S) >

0, we say that S is a PR set.

Remark. A PR set must be closed: suppose S is a set and x

0

2 S, where S is the closure

of S. Then d

S

(x
0

) = 0, so either reach(S) = 0 or x

0

2 S.
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Example. The set S in Figure 1.3 has reach(S) = 0, since points arbitrarily close to the

corner point are in the complement of Unp(S).

Although PR sets are not in general smooth manifolds, the notions of tangency and

normalcy carry through to this setting via the tangent cone and the normal cone. We will

discuss these concepts for PR sets in Euclidean space. As in single-variable calculus, the

tangent directions are limits of secant directions.

Definition 1.3. Let S be a nonempty closed set. The tangent cone of S at a, denoted

Tan(S, a), is the cone over the set of all limits as y approaches a of
y � a

|y � a| . The normal

cone to S at a, denoted Nor(S, a), is the set of all vectors v such that v · w  0 for all

w 2 Tan(S, a). The unit normal cone nor(S, a) is the set of unit vectors in the normal

cone to S at a.

Definition 1.4. Let C ⇢ Rm be a cone. The dual cone to C, denoted dual(C), is

dual(C) := {v 2 Rm : v · w  0 for all w 2 C}. (1.1)

Remark. For a PR set S, the cones Tan(S, a) and Nor(S, a) are closed convex cones satis-

fying dual(Tan(S, a)) = Nor(S, a) and dual(Nor(S, a)) = Tan(S, a). (See Figure 1.4.)

The set Nor(S, a) and maps ⇡
S

and d

S

are related in the following way:

Lemma 1.5 ([9, Theorem 4.8 (2)]). Let S be a nonempty closed set. For a 2 S,

⇡

�1

S

(a) ⇢ {a + v : d

S

(a + v) = |v|} ⇢ {a + v : v 2 Nor(S, a)}, (1.2)

Definition 1.6. The normal bundle Nor(S) is the set {(x, v) : x 2 S and v 2 Nor(S, x)}.
The unit normal bundle nor(S) is the set {(x, v) : x 2 S and v 2 nor(S, x)}.

8



Figure 1.4: The tangent cone and normal cone

Remark. The normal bundle and unit normal bundle are not technically fiber bundles; we

use this terminology because they can be thought of as generalized bundles.

The following is a slight modification of [9, Theorem 4.8 (7)].

Theorem 1.7 (Federer’s Inequality). If v 2 nor(S, a) and a, b 2 S, then

v · (b� a)  |b� a|2
2reach(S)

. (1.3)

Federer’s inequality implies that the boundary of a set of positive reach cannot be too

outwardly curved. (See Figure 1.5.)

In [9], Federer shows that a set S has reach(S) � t if and only if d

Tan(S,a)

(b � a) 
|b� a|2/(2t) for all a, b 2 S. However, a more basic result is true; from the argument in the

proof of [9, Lemma 4.17], it is possible to recover the reach of a set as the supremal t for

which there is a Federer inequality:

9



Figure 1.5: Federer’s inequality states that the dot product of these two vectors cannot be
too large.

Theorem 1.8. A set S has reach(S) � t if and only if v · (b� a)  |b� a|2
2t

for all a, b 2 S

and all v 2 nor(S, a).

Proof. (=)) If reach(S) � t > 0, then the result follows from Theorem 1.7.

((=) Suppose that d

S

(x) = |x � a| = |x � b| and d

S

(x) < t. Assume that a = 0, so that

|x| = |b� x| < t. By Lemma 1.5, we have that x 2 Nor(S, a). Thus

x

|x| · b 
|b|2
2t

. (1.4)

Since

0 = |b� x|2 � |x|2 = |b|2 � 2b · x � |b|2 � |x||b|2
t

= |b|2(1� |x|
t

), (1.5)

we must have that a = b = 0, so that reach(S) � t.
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1.2 The Second Fundamental Form

Definition 1.9 ([10]). Let M ⇢ Rm be an oriented C

1 hypersurface; let n : M ! S

m�1 be

the Gauss map of M . Then we say that M is C

1,1 if n is Lipschitz.

The second fundamental form for PR sets originated in the work of Fu in [10], where

the author defined the second fundamental form first for C

1,1 hypersurfaces and then gen-

eralized to PR sets. The key idea is that, by Rademacher’s theorem, a Lipschitz function is

di↵erentiable almost everywhere. By working with sets on which the Gauss map is Lipschitz,

we have a second fundamental form almost everywhere. Thus we may generalize the second

fundamental form to C

1,1 hypersurfaces.

The following result from [10] associates C

1,1 hypersurfaces to PR sets; the result follows

immediately from [9, Theorem 4.8].

Lemma 1.10. If S ⇢ Rm is a PR set and 0 < ✏ < reach(S), let S

✏

:= d

�1

S

[0, ✏]. Then @S

✏

is

a C

1,1 hypersurface.

Definition 1.11. Let M ⇢ Rm be a C

1,1 hypersurface. Define the set of smooth points of

M , denoted Sm(M), to be the set of points at which the Gauss map is di↵erentiable.

Definition 1.12. For x 2 Sm(M), define the second fundamental form II(x) on Tan(M, x)

by

II(x)(v, w) = �v · dn

x

(w). (1.6)

Note that this definition di↵ers from that in [10] by a sign. As in the smooth case, II

is symmetric ([10, Proposition 3.5]). We shall use the second fundamental form on S

✏

to

define the second fundamental form on S. While in the smooth case (and in the C

1,1 case),

the second fundamental form is defined on the tangent bundle, for sets of positive reach, the

second fundamental form is defined over the tangent bundle of nor(S).
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Let n

✏

denote the Gauss map of S

✏

. Define the maps  
✏

and �
✏

by

 

✏

: nor(S) ! @S

✏

,  

✏

(p, v) := p + ✏v (1.7)

�

✏

: @S
✏

! nor(S), �

✏

(x) = (⇡
S

(x), n
✏

(x)),

and note that �
✏

=  

�1

✏

.

Proposition 1.13 ([10, Proposition 4.2]). Let (p, v) 2 nor(S) and suppose that 0 < ✏ <

reach(S). The following are equivalent:

1. T := Tan(nor(S), (p, v)) is an (m� 1)-dimensional plane in Rm ⇥ Tan(Sm�1

, v).

2. �
✏

is di↵erentiable at  
✏

(p, v)

3. n

✏

is di↵erentiable at  
✏

(p, v).

Thus the Gauss map of @S
✏

is di↵erentiable precisely when the projection map from @S

✏

onto nor(S) is di↵erentiable.

Definition 1.14. A point (p, v) satisfying the above is called a smooth point of nor(S),

and we write (p, v) 2 Sm(nor(S)).

In addition, we have the following relationship between T and the Gauss map of @S
✏

:

Proposition 1.15 ([10, Proposition 4.3]). When the conditions of Proposition 1.13 are

satisfied, if we put x

0

:=  

✏

(p, v), then the following hold:

1. Any ⇠ 2 Tan(@S
✏

, x

0

) has the form ⇠ = ⌧ + ✏� for some (⌧, �) 2 T .

2. If ⇠ has this form, then d(n
✏

)
x0(⇠) = �.

We now have everything in place to define the second fundamental form on a set of

positive reach. Let ⇡
1

denote the projection onto the first component of T . Note that

T ⇢ Tan(S, p)⇥ Tan(Sm�1

, v).
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Definition 1.16 ([10, Definition 4.5]). Suppose that the conditions in Proposition 1.13 are

satisfied. Define the vector subspace T

1

by T

1

:= ⇡

1

(T ). Then the second fundamental

form II(p, v) on T

1

is given by

II(p, v)(⌧, ⌧ 0) = �⌧ · �0, (1.8)

where (⌧, �), (⌧ 0,�0) 2 T .

The second fundamental form is well-defined and symmetric due to the following lemma:

Proposition 1.17 ([10, Proposition 4.4]). Suppose that (p, v) 2 nor(S) and that the con-

ditions in Proposition 1.13 are satisfied. If (⌧, �), (⌧ 0,�0) 2 T , considered with the usual

Euclidean inner product, then ⌧ · �0 = ⌧

0 · �.

Remark. Note that for ⇠ = ⌧ + ✏� and ⇠

0 = ⌧

0 + ✏�

0, the second fundamental form II
✏

on

@S

✏

is given by

II
✏

(x
0

)(⇠, ⇠0) = �⇠ · d(n
✏

)
x0(⇠

0) = �(⌧ + ✏�) · �0. (1.9)

13



Chapter 2

Semiconvex Function Theory

A function f is semiconvex if it can be written as the sum of a C

1-smooth function and

a convex function; any PR set is f

�1(�1, 0] for a semiconvex function f such that 0 is a

weakly regular value of f . For our work, we shall not use weak regularity; however, our

main results assume the stronger condition that S is a regular PR set: S is the sublevel

set f

�1(�1, 0], where f is a semiconvex function and 0 is a regular value of f . Thus we

can learn about PR sets by studying semiconvex functions; to this end, we shall begin by

discussing properties of convex functions, all of which can be found in [11]. Following our

discussion of convex function theory, we describe semiconvex function theory and regularity

for semiconvex functions. We conclude the chapter by returning to regular PR sets S and

describing nor(S) in terms of subgradients of f .

2.1 Convex Function Theory

Recall that a function k : Rm ! R is convex if k(tx + (1 � t)y)  tk(x) + (1 � t)k(y) for

all x, y 2 Rm and all t 2 (0, 1). A convex function is locally Lipschitz and can be written as

the pointwise supremum of a collection of a�ne functions (see [11]). In particular, for each

14



x there exists an a�ne function � such that �(x) = k(x) with �  k. We define the set

of subgradients to k at x by @k(x) := {lin(�) : �(x) = k(x), �  k}, where lin(�) is the

linear part of �.

Remark. There is a bijective correspondence between maps x 7! w · x and vectors w, and

we shall use the vector w and the map x 7! w · x interchangeably. In particular, we shall

think of the subgradient set as the collection of vectors {w} instead of the collection of linear

maps {x 7! w · x}.

Lemma 2.1. @k(x) = {w : w · (y � x) + k(x)  k(y) for all y }.

Now we discuss some properties of the subgradient set @k(x): it is convex, closed, and

bounded.

Lemma 2.2. @k(x) is a convex set.

Proof. Assume v, w 2 @k(x). Let �
v

be an a�ne function whose linear part is v, such that

�

v

(x) = k(x) and �

v

 k. Write �
v

(y) = y · v + c

v

, and define �
w

similarly. Then, for all

t 2 (0, 1), the a�ne function �

tv+(1�t)w

:= t�

v

+ (1 � t)�
w

with linear part tv + (1 � t)w

inherits the desired properties from �

v

and �
w

.

Lemma 2.3. @k(x) is closed.

Proof. Suppose w

i

! w and w

i

2 @k(x) for all i. Each �

i

:= �

wi has the form �

i

(y) =

w

i

· (y � x) + k(x), and each satisfies the inequality w

i

· (y � x) + k(x)  k(y), so that, by

continuity of the dot product, we have w · (y � x)  k(y)� k(x), from which it follows that

w 2 @k(x).

Lemma 2.4. @k(x) is bounded.

Proof. Assume w 2 @k(x). Then w · (y � x)  k(y) � k(x) for all y. Since k is locally

Lipschitz, there exists ↵ > 0 such that w · (y � x)  |k(y) � k(x)|  ↵|y � x| for all y in a

15



neighborhood of x and all w 2 @k(x). Taking y = x + tw for su�ciently small t, we have

that |w|  ↵.

While convex functions need not be di↵erentiable, any convex function has one-sided

derivatives at every point. Later, we shall see that these one-sided derivatives are related

to the subgradient set above. We shall give the relationship by establishing a sequence of

lemmas about the directional derivatives.

Definition 2.5. We define the one-sided directional derivative of k at x with respect

to v in the usual way:

Dk

x

(v) := lim
t#0

k(x + tv)� k(x)

t

. (2.1)

Note that, in the case that k is di↵erentiable, the one-sided directional derivative and

the gradient are related in the usual way: Dk

x

(v) = rk

x

· v.

Lemma 2.6. For any convex function k,
k(x + tv)� k(x)

t

is a nondecreasing function of

t > 0.

Proof. For t > s > 0, note that

k(x + sv) = k(x +
s

t

tv) = k((1� s

t

)x +
s

t

(x + tv))  (1� s

t

)k(x) +
s

t

k(x + tv). (2.2)

Thus the di↵erence quotient satisfies the inequality

k(x + tv)� k(x)

t

� k(x + sv)� k(x)

s

=
sk(x + tv)� sk(x)� tk(x + sv) + tk(x)

ts

(2.3)

� sk(x + tv)� sk(x)� t[(1� s

t

)k(x) + s

t

k(x + tv)] + tk(x)

ts

= 0.

16



Lemma 2.7. The one-sided directional derivative Dk

x

(v) is defined for all x and v.

Proof. Since the di↵erence quotient
k(x + tv)� k(x)

t

decreases as t # 0, it su�ces to show

that the di↵erence quotient is bounded below. Write y = x + tv. Then k(x) = k(y � tv) =

k(t(y � v) + (1� t)y)  tk(y � v) + (1� t)k(y) = tk(x + (t� 1)v) + (1� t)k(x + tv), and

k(x + tv)� k(x)

t

� k(x + tv)� tk(x + (t� 1)v)� (1� t)k(x + tv)

t

(2.4)

= k(x + tv)� k(x + (t� 1)v).

Continuity of k and (2.4) together imply lim
t#0

(k(x + tv)� k(x + (t� 1)v)) = k(x)� k(x� v),

and the di↵erence quotient is bounded below.

We shall use the following result in the proof of Lemma 2.29.

Corollary 2.8. Let k be a convex function. Then

Dk

x

(y � x)  k(y)� k(x). (2.5)

Proof. Using convexity of k and Lemma 2.7, for t < 1 we have

Dk

x

(y � x) = lim
t#0

k(x + t(y � x))� k(x)

t

 lim
t#0

(1� t)k(x) + tk(y)� k(x)

t

(2.6)

= k(y)� k(x).

We now provide the following alternate characterization of the subgradient set; this

characterization establishes the key relationship between the subgradients and directional

derivatives.
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Lemma 2.9. The following are equivalent:

• w 2 @k(x).

• w · v  k(x + tv)� k(x)

t

for all t > 0 and all v.

• w · v  Dk

x

(v) for all v.

Proof. If w is a subgradient of k at x, then w · (y � x) + k(x)  k(y) for all y. Taking

y = x + tv yields w · v  k(x + tv)� k(x)

t

for all t, and then w · v  Dk

x

(v) follows from

letting t # 0.

Now, assume that w · v  k(x + tv)� k(x)

t

for all t > 0 and all v. Then, taking t = 1

and setting v = y�x, we have w · (y�x)+k(x)  k(y) for all y, so that w 2 @k(x). Finally,

assume that w · v  Dk

x

(v). Then w · v  Dk

x

(v)  k(x + tv)� k(x)

t

by Lemma 2.6, so

that w 2 @k(x).

Now we shall establish key properties of the function v 7! Dk

x

(v). While these are

obvious in the case that k is di↵erentiable, they must be proved for the convex case.

Lemma 2.10. Dk

x

(v) is a positively homogeneous convex function in v; in particular Dk

x

(v)

is continuous as a function of v.

Proof. Use the definition of Dk

x

(tv +(1� t)w) and the fact that k is convex to get convexity

(and therefore continuity) of Dk

x

. To see the positive homogeneity, observe that for � > 0,

Dk

x

(�v) = lim
t#0

k(x + t�v)� k(x)

t

= � lim
�t#0

k(x + t�v)� k(x)

�t

= �Dk

x

(v). (2.7)

We are now ready to express the directional derivative in terms of the subgradient set.

Lemma 2.11. Dk

x

(v) = max{v · w : w 2 @k(x)}.
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Proof. Dk

x

is a convex function, so Dk

x

(v) = sup{⇤(v) : ⇤ a�ne, ⇤  Dk

x

}. Assume w is

a subgradient of k at x. Then w · y  Dk

x

(y), so that y 7! w · y is in the family of a�ne

functions above. Consider the a�ne function ⇤(y) = w · y + c, where w is a subgradient and

⇤  Dk

x

; evaluation at y = 0 implies that c  0, so ⇤ is dominated by y 7! w · y.

If w is not a subgradient of k at x, there exists z such that w · z > Dk

x

(z) by Lemma

2.9. If ⇤(y) = w · y + c and ⇤  Dk

x

, then Dk

x

(tz) � ⇤(tz) = w · tz + c for all t > 0.

Using positive homogeneity of Dk

x

, we have t(Dk

x

(z)�w · z) � c; since Dk

x

(z)�w · z < 0,

letting t ! 1 implies that c is less than every real number. Thus no such ⇤ exists, and

{⇤(v) : ⇤ a�ne, ⇤  Dk

x

} = {w · v, w 2 @k(x)}. Since @k(x) is compact, the supremum is

a maximum.

Remark. This characterization of the subgradient set also follows from Clarke’s Di↵erenti-

ation Theorem, which we shall discuss in Chapter 5.

Next, we show that the function (x, v) 7! Dk

x

(v) is upper semicontinous; we shall use

this result when we develop semiconvex function theory in the next section. Recall that a

function h is upper semicontinuous if whenever {x
i

} is a sequence of points converging

to x

0

and lim
i!1

h(x
i

) exists, we have lim
i!1

h(x
i

)  h(x
0

).

Lemma 2.12. The function (x, v) 7! Dk

x

(v) is upper semicontinuous.

Proof. Suppose that (x
i

, v

i

) ! (x
0

, v) and lim
i!1

Dk

xi(vi

) exists. Further suppose that w

i

2
@k(x

i

) satisfies Dk

xi(vi

) = w

i

· v
i

. Then w

i

· (y � x

i

)  k(y) � k(x
i

) for all y. By taking

y = x

i

+
w

i

|w
i

| , we see that |w
i

|  k

✓

x

i

+
w

i

|w
i

|
◆

� k(x
i

). Since k is continuous, |w
i

| is

at most twice the maximum of |k| over a compact set containing x and all x

i

+
w

i

|w
i

| . By

passing to a subsequence the w

i

converge to some w

0

, and we may pass to the limit and

obtain w

0

· (y � x

0

)  k(y)� k(x
0

) for all y. Thus w

0

2 @k(x
0

), so by Lemma 2.11 we have

Dk

x0(v0

) � w

0

· v
0

= lim
i!1

w

i

· v
i

= lim
i!1

Dk

xi(vi

).
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2.2 Semiconvex Function Theory

In this section, we generalize the theory of the previous section to semiconvex functions, de-

fine critical points and regular points for semiconvex functions, and discuss how subgradients

determine the geometry of regular PR sets. Finally, we show that the “subgradient bundle”

over a curve � : [0, L] ! Rm is compact.

Definition 2.13. Let f be a semiconvex function, and write f = k + g for k convex and g

smooth. Define the subgradient set of f at x, denoted @f(x), by @f(x) := @k(x) +rg

x

.

Lemma 2.14. w 2 @f(x) if and only if w · v  Df

x

(v) for all v.

Proof. We know that u 2 @k(x) if and only if u · v  Dk

x

(v) for all v, if and only if

(u +rg

x

) · v  Dk

x

(v) +rg

x

(v) = Df

x

(v).

Corollary 2.15. @f(x) is nonempty, convex, and compact.

Proof. The set @f(x) inherits these properties from @k(x).

Lemma 2.16. Df

x

(v) = max{v · w : w 2 @f(x)}. The function (x, v) 7! Df

x

(v) is upper

semicontinuous, and the function v 7! Df

x

(v) is convex and positively homogeneous.

Proof. This is immediate, since Df

x

(v) = Dk

x

(v) +rg

x

(v).

We now define the subgradient bundle.

Definition 2.17. Define the subgradient bundle D(f) ⇢ R2m by

D(f) = {(x, v) : v 2 @f(x)}. (2.8)

Remarks.

1. The subgradient bundle is not a fiber bundle, but it can be thought of as a bundle in

a more generalized sense.
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2. The subgradient bundle is the graph of the multifunction x 7! @f(x), and a multifunc-

tion is upper semicontinuous if its graph is closed. Thus @f is upper semicontinuous

as a multifunction if and only if D(f) is closed.

Lemma 2.18. D(f) is closed.

Proof. Suppose {(x
i

, w

i

)}1
i=1

⇢ D(f) and (x
i

, w

i

) ! (x, w). By Lemma 2.14, w

i

·v  Df

xi(v)

for all v. By Lemma 2.16, we have that limDf

xi(v)  Df

x

(v) for all v. Thus w · v  Df

x

(v)

for all v, and w 2 @f(x) by Lemma 2.14.

2.2.1 Subgradients, Regularity, and Sublevel Sets

Definition 2.19. The set of critical points of f , denoted crit(f), is the set

crit(f) = {x : 0 2 @f(x)}. (2.9)

The set of regular points of f , denoted reg(f), is the complement of crit(f). A value of

f is a regular value if all of its preimages are regular points. A value of f is a critical

value if at least one of its preimages is a critical point.

Lemma 2.20. The point p 2 reg(f) if and only if there exists v such that Df

p

(v) < 0.

Proof. ((=) Assume p 62 reg(f). By Lemma 2.16, we have Df

p

(v) = sup{v ·w : w 2 @f(p)},
so Df

p

(v) � v · 0 = 0 for all v.

(=)) Assume p 2 reg(f). Write f = k+g for k convex and g smooth. Then, since 0 62 @f(p)

and @f(p) = @k(p) +rg

p

, we have �rg

p

62 @k(p). By Lemma 2.9 there exists v such that

�rg

p

· v > Dk

p

(v), so that Df

p

(v) = Dk

p

(v) +rg

p

(v) < 0.

We now return to our discussion of PR sets.
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Definition 2.21. Define reach(S, p) = inf{r : B(p, r) ⇢ Unp(S)}, where B(p, r) denotes

the ball of radius r centered at p. We say that S has the unique footpoint property if

reach(S, p) > 0 for all p 2 S.

Note that a PR set has the unique footpoint property. A compact set S is PR if and

only if it has the unique footpoint property.

Definition 2.22. We say that p is a weakly regular point of the semiconvex function

f if p has the following property: if p

i

! p with f(p
i

) > f(p) and w

i

2 @f(p
i

), we have

lim
i!1

w

i

6= 0. A value ↵ is a weakly regular value of f if each p 2 f

�1(↵) is a weakly

regular point.

Theorem 2.23 ([2]). A set S ⇢ Rm has the unique footpoint property if and only if S =

f

�1(�1, 0], where f is a semiconvex function and 0 is a weakly regular value of f .

We shall not use weak regularity; however, we shall frequently require that S = f

�1(�1, 0],

where 0 is a regular value of f . If 0 is a regular value of f , it is automatically a weakly regular

value of f by Lemma 2.18.

Definition 2.24. We say that a PR set S is regular if S = f

�1(�1, 0], where f is a

semiconvex function and 0 is a regular value of f .

Remark. When f is a semiconvex function and 0 is a regular value of f , the sublevel set

A = f

�1(�1, 0] automatically satisfies reach(A, p) > 0 for all p 2 A, but a set A with this

property need not have reach(A) > 0. If A is compact, we can conclude that reach(A) > 0.

However, it is possible to construct a noncompact set A with reach(A, p) > 0 for all p and

reach(A) = 0: see Figure 2.1.

2.2.2 Subgradients and Normal Cones

Before we characterize the normal cone at a point of @S, we confirm that @S = f

�1(0).
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Figure 2.1: Assume the pattern continues. The set A has reach(A) = 0 but reach(A, p) > 0
for all p 2 A.

Lemma 2.25. Suppose S = f

�1(�1, 0] is a regular PR set. Then @S = {x : f(x) = 0}.

Proof. (◆) Suppose f(x) = 0. By Lemma 2.20 there exists v with Df

x

(v) < 0. Since

Df

x

(v) = lim
t#0

f(x + tv)/t, for t su�ciently small we have f(x + tv) < 0 and x + tv 2 S.

Let w 2 @f(x). Then w 6= 0 since S is regular, and Df

x

(w) � |w|2 by Lemma 2.14. Thus

x + tw 62 S for all su�ciently small t, so that x 2 @S.

(✓) Suppose x 2 @S. Then there exists a sequence of points x

i

such that x

i

62 S and x

i

! x.

Thus f(x
i

) > 0 for all i, and f(x) � 0 by continuity of f . However, since S is closed, we

have that x 2 S and f(x)  0.

Let cone(@f(x)) = {↵w : w 2 @f(x) and ↵ � 0}. Note that cone(@f(x)) is convex

because @f(x) is convex. The following theorem relates the normal cone to the subgradient

set. The proof of the theorem follows from the lemmas below.

Theorem 2.26. Let S = f

�1(�1, 0] be a regular PR set. Then cone(@f(x)) = Nor(S, x)

for x 2 @S.

Proof. First, Tan(S, x) = {z : Df

x

(z)  0} follows from the lemmas below. Also, Df

x

(z)  0

i↵ max{w · z : w 2 @f(x)}  0, i↵ w · z  0 for all subgradients w at x, if and only if z 2
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dual(cone(@f(x))). Thus Tan(S, x) = dual(cone(@f(x))). Taking the dual of each side yields

the result.

Lemma 2.27. Let S = f

�1(�1, 0] be a regular PR set. Then

cl{z : Df

x

(z) < 0} = {z : Df

x

(z)  0}, (2.10)

where cl denotes the closure of the set.

Proof. (✓) Suppose z

i

! z and Df

x

(z
i

) < 0 for all i. Then Df

x

(z)  0 by Lemma 2.16.

(◆) Suppose Df

x

(v) = 0. By Lemma 2.20, there exists w with Df

x

(w) < 0. Let ✏ > 0. By

Lemma 2.16, we have Df

x

(v + ✏w)  Df

x

(v) + ✏Df

x

(w) = ✏Df

x

(w). Since v + ✏w ! v and

Df

x

(v + ✏w) < 0, we conclude that v 2 cl{z : Df

x

(z) < 0}.

Lemma 2.28. Let S = f

�1(�1, 0] be a regular PR set. Suppose x 2 @S, and let w 2 @f(x)

satisfy |w| = min{|v| : v 2 @f(x)}. There is an open set U containing x such that, for all y

in U , we have Df

y

(�w) < 0 and Df

y

(w) > 0.

Proof. We have w 6= 0 because S is regular; also, we claim that |w|2  v ·w for all v 2 @f(x).

Let F (�) = |�v + (1 � �)w|2 � |w|2. Then F (�) 2 @f(x) for all � 2 [0, 1], so that F is

nondecreasing in a half neighborhood of 0. Thus F

0(0) = �2|w|2 + 2v · w � 0. By Lemma

2.16, Df

x

(�w) = max{�w · z : z 2 @f(x)} = �min{w · z : z 2 @f(x)} = �|w|2 < 0.

Since Df

y

(�w) is upper semicontinuous as a function of y, there exists a neighborhood U

of x satisfying Df

y

(�w)  �|w|2/2 for all y 2 U . Now, using Lemma 2.16, 0 = Df

y

(w�w) 
Df

y

(w) + Df

y

(�w)  Df

y

(w)� |w|2/2.

Lemma 2.29. Let S = f

�1(�1, 0] be a regular PR set, and suppose x 2 @S. Then

Tan(S, x) = cl{z : Df

x

(z) < 0} = {z : Df

x

(z)  0}. (2.11)
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Proof. We need only establish the equality Tan(S, x) = cl{z : Df

x

(z) < 0}.
(✓) First, note that v 2 Tan(S, x) is a limit of vectors of the form |v|

|y�x|(y � x) for y 2 S.

By 2.20, there exists u such that Df

y

(u) < 0. Thus, by perturbing each y slightly in a

decreasing direction (at y) if necessary, we may assume that f(y) < 0 for all y. By Lemma

2.8,

Df

x

(v)  |v| lim
y!x

f(y)� f(x)

|y � x| . (2.12)

Since f(x) = 0 by assumption, and each f(y) < 0, we have Df

x

(v)  0.

(◆) Suppose Df

x

(z) < 0. Since Df

x

(z) = lim
t#0

f(x + tz)� f(x)

t

, we have that f(x + tz) < 0

for all su�ciently small t > 0. Hence each x + tz 2 Interior(S), and x + tz ! x with
(x + tz)� x

|(x + tz)� x| �
z

|z| = 0, so z 2 Tan(S, x). Since Tan(S, x) is closed, cl{z : Dk

x

(z) < 0} ✓
Tan(S, x).

Thus we have shown that the subgradients determine the normal cones along the bound-

ary. Now we prove some results about PR sets; we shall use these results in Chapter 6.

Lemma 2.30. Let S ⇢ Rm be a regular PR set. Then for any x 2 @S, there exists a

neighborhood U of x such that U \ @S is the graph of a Lipschitz function. In other words,

there is an open set V ⇢ Rm�1 and a Lipschitz function � on V such that U\@S = {(y,�(y)) :

y 2 V }.

Proof. Let x 2 @S, and write S = f

�1(�1, 0]. By Lemma 2.28 there exists a neighborhood

U containing x and a direction v such that, for all y 2 U , we have Df

y

(v) > 0 and Df

y

(�v) <

0. Let z =
v

|v| . By applying a rigid motion, assume that x = 0 and z = e

m

= (0, . . . , 0, 1).

For y 2 (U \ {x
m

= 0}), we may move up or down from y until either we reach a point

y

0 2 @S \ U such that f(y0) = 0 or we leave U . It is obvious that if such a y

0 2 @S \ U

exists, it must be unique, since f is strictly monotone on each vertical segment in U .

We claim that there exists an open ball B in {x
m

= 0} ⇠= Rm�1 such that @S is a graph

over B. Such a neighborhood B exists: if not, there exists a sequence of points y

i

2 P
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converging to 0 such that f is nonzero on the vertical segment in U through each y

i

. By

passing to a subsequence, we may assume f(y
i

) > 0 for all i or f(y
i

) < 0 for all i. Suppose

that f(y) > 0 for all y on the vertical segment through y

i

for all i. Then by continuity of f ,

f(y) � 0 for every y on the vertical line thru 0. This is impossible, since f(0) = 0 and �z

is a decreasing direction. A similar contradiction follows from assuming f(y
i

) < 0 for all i.

For y = (y
1

, . . . , y

m�1

) 2 B ⇢ {x
m

= 0}, suppose that y

0 = (y0
1

, . . . , y

0
m

) 2 @S and y

i

= y

0
i

for all 1  i  m � 1. Let � : B ! R by �(y) = y

0
m

= y

0 · z. Then � is well-defined,

and (y,�(y)) = y

0 2 @S. Further, � is Lipschitz if and only if there exists M such that

|(z · (p� q)|  M |(p� q)� ((p� q) · z)z| for all p, q in the graph of �. Thus � is Lipschitz if

and only if |z ·(p�q)|2  M

2|(p�q)�((p�q)·z)z|2, if and only if |(p�q)·z|2  M

2

M

2 + 1
|p�q|2,

if and only there exists ↵ 2 [0, 1) such that
|(p� q) · z|
|p� q|  ↵.

By replacing B with a smaller open set if necessary, � is Lipschitz. If not, there ex-

ist sequences of points p

j

and q

j

in @S such that p

j

, q

j

! 0 and
p

j

� q

j

|p
j

� q

j

| ! y with
?

?

?

?

(p
j

� q

j

) · z
|p

j

� q

j

|
?

?

?

?

! 1. Then |y · z| = 1 and the Cauchy-Schwarz inequality implies that

y = z or y = �z. Without loss of generality, assume that y = z.

Since Df

x

(�z) < 0 and Df is upper semicontinuous, for su�ciently large j, we have that

q

j

� p

j

is a decreasing direction on a neighborhood of p

j

. Since f is locally Lipschitz, we can

recover f(q
j

)� f(p
j

) by integrating along the segment from p

j

to q

j

:

0 = f(q
j

)� f(p
j

) =

Z

[0,1]

Df

(1�t)pj+tqj(qj

� p

j

)dt. (2.13)

Thus there exists y

j

in between p

j

and q

j

satisfying Df

yj(qj

� p

j

) > 0. By upper semiconti-

nuity of Df ,

Df

x

(�z) � lim
j!1

Df

yj

✓

q

j

� p

j

|q
j

� p

j

|
◆

� 0. (2.14)

This is a contradiction.
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Now we establish that the subgradient bundle restricted to a curve is a compact set. By

Lemma 2.18, we have that D(f) is closed, or equivalently that the multifunction x 7! @f(x)

is upper semicontinuous. The graph of an upper semicontinuous multifunction is compact

whenever its domain is compact and the (range of the) multifunction is locally bounded.

Thus we only need to show that the multifunction @f is locally bounded.

Lemma 2.31. The multifunction x 7! @f(x) is locally bounded.

Proof. For purposes of contradiction, assume @f is unbounded on every neighborhood of

x

0

. Then there exists a sequence (x
i

, v

i

) of points of D(f) satisfying |(x
i

, v

i

)| ! 1 and

x

i

! x

0

. By Lemma 2.16, Df

xi(vi

) � |v
i

|2 and Df

xi

✓

v

i

|v
i

|
◆

� |v
i

|. By passing to a

subsequence, we may assume that the
v

i

|v
i

| ! z

0

; therefore by upper semicontinuity of Df ,

Df

x0(z0

) � lim
i!1

Df

xi

✓

v

i

|v
i

|
◆

= 1. This is a contradiction.

Corollary 2.32. Let � : [0, 1] ! Rm be continuous, and let Y = D(f) \ (� ⇥ Rm). Then Y

is compact.

For x 2 @S, write nor(x) for nor(S, x). It follows from Lemma 2.26 and Lemma 2.31 that

the multifunction x 7! nor(x) is upper semicontinuous on @S.

Corollary 2.33. If S is a regular PR set, then x 7! nor(x) is upper semicontinuous on @S.

Proof. Suppose that (x
i

, v

i

) ! (x, v) and v

i

2 nor(x
i

) for all i. Since @S is closed, we have

x 2 @S as well. By Lemma 2.26 for each i there exists �
i

> 0 such that �
i

v

i

2 @f(x
i

).

By passing to a subsequence, we may assume that the �
i

v

i

converge to some nonzero w 2
@f(x) by Lemma 2.31, Lemma 2.18, and the assumption that S is regular. However, then
w

|w| 2 nor(x), and v = lim
i!1

v

i

= lim
i!1

�

i

v

i

|�
i

v

i

| =
w

|w| . Thus v 2 nor(x), and x 7! nor(x) is upper

semicontinuous.
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Chapter 3

Geodesics

In this chapter, we discuss geodesics in smooth Riemannian manifolds, in smooth Riemannian

manifolds with boundary, and in PR sets.

3.1 Background

Definition 3.1. Let (M, d) be a metric space. A geodesic of M is a curve � : [0, L] ! M

such that there exists � > 0 for which |t
0

� t

1

| < � implies d(�(t
0

), �(t
1

)) = |t
0

� t

1

|. When

this is the case, we shall say that � locally minimizes length.

Examples. The following are examples of geodesics in subsets of Euclidean space.

1. In Euclidean space, a curve is a geodesic if and only if it is a straight line segment.

2. In the unit sphere, a curve is a geodesic if and only if it is a great circle arc.

3. In the open unit ball and other convex subsets of Euclidean space, a curve is a geodesic

if and only if it is a straight line segment.

Recall the well-known fact that any rectifiable curve has a parametrization by arclength.
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Lemma 3.2. Let (M, d) be a metric space. Any rectifiable curve in M has a parametrization

by arclength.

Proof. Assume that � : [a, b] ! M has length L, and define l(t) := length
⇣

�

?

?

[a,t]

⌘

, the

length of the restriction of � to [a, t]. Then l is a continuous and increasing function,

and we may assume it is strictly increasing. For t 2 [a, b], let s = l(t), and define the

reparametrization �̃ of � by �̃(s) = �(t). Then �̃ : [0, L] ! M is well-defined. Write s

1

= l(t
1

)

and s

2

= l(t
2

) for t

1

< t

2

. We then have that length
⇣

�̃

?

?

[s1,s2]

⌘

= length
⇣

�

?

?

[t1,t2]

⌘

=

l(t
2

)� l(t
1

) = s

2

� s

1

, so that �̃ is arclength parametrized.

In [7], geodesics in Riemannian manifolds are defined by the following, which is equivalent

to our definition. (See [7, Proposition 3.6 and Corollary 3.9].)

Lemma 3.3. Let r be the Riemannian connection associated to the Riemannian manifold

(M, g). An arclength parametrized curve � ⇢ M is a geodesic if and only if r
�

0(�0) ⌘ 0.

When M ⇢ Rm has the Riemannian metric induced by the Euclidean metric on Rm,

geodesics are characterized by the following normality condition.

Theorem 3.4. If M ⇢ Rm has the Riemannian metric induced by the Euclidean metric,

then � is a geodesic if and only if its Euclidean acceleration vector is normal to M .

Proof. Write r for the connection on M , and write v

T to denote the tangential part of v 2
Rm; let �00 denote the (Euclidean) acceleration vector of �. Using the fact that r

�

0
�

0 = (�00)T

by [7, Chapter 2], we have that r
�

0(�0) ⌘ 0 exactly when the projection onto the tangent

space is zero, i.e. when the acceleration vector of � is normal to M .

In the setting of smooth Riemannian manifolds without boundary, it is well known that

geodesics are smooth. We shall see that, even in the case of smooth Riemannian manifolds

with boundary, geodesics are not in general smooth. For a proof of smoothness of geodesics

in smooth Riemannian manifolds, see, for example [7, Chapter 3, Corollary 3.9].
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3.2 Geodesics in Manifolds with Boundary

Let (M, g) be a smooth Riemannian manifold with boundary. In [1], the authors prove the

following result about regularity of geodesics in Riemannian manifolds with boundary:

Theorem 3.5. Let (M, g) be a smooth Riemannian manifold with boundary. An arclength

parametrized geodesic � ⇢ M is twice di↵erentiable except at countably many points; at

points where the curve fails to be twice di↵erentiable, the one-sided acceleration exists.

Remark. In this setting, geodesics in general do not have vanishing acceleration. However,

on interior segments, the acceleration exists and is zero, and on boundary segments, the

acceleration exists and is outwardly normal to M . (For a discussion, see [1].)

Consider the following example:

Example. Let M be the complement of the open unit ball centered at the origin in R3. Then

the curve given by

�(t) =

8

>

>

<

>

>

:

(0, t� 1, 1) if 0  t  1

(0, sin(t� 1), cos(t� 1)) if 1 < t  2

(3.1)

is a geodesic in M .

This curve has continuous velocity vector, but its acceleration is undefined at t = 1. Note

that t = 1 is where the geodesic switches from the interior of M to the boundary of M . Also,

note that this geodesic is C

1,1, i.e. its velocity is Lipschitz continuous. It is remarkable, then,

that geodesics in regular PR sets are in fact C

1,1.
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3.3 Geodesics in PR Sets

Let S be a PR set in Euclidean space.

Lemma 3.6. If � : [0, L] ! S is a locally shortest path, then � has finite length.

Proof. It su�ces to show that � has finite length on a neighborhood of each t 2 [a, b], since

then the domain can be covered by finitely many such neighborhoods by compactness. Fix

t. If �(t) 2 Interior(S), there exists ✏ > 0 such that �(t� ✏, t + ✏) is contained in the interior

of S, so � parametrizes a Euclidean line segment on (t� ✏, t + ✏); otherwise � would not be

locally shortest.

If �(t) 2 @S, let U be a neighborhood of �(t) satisfying U ⇢ Unp(S). For any two points

p, q 2 U , the Euclidean line segment �(s) = (1 � s)p + sq satisfies � ⇢ U . By [9, Thoerem

4.8 (8)], we have that ⇡
S

is Lipschitz, so that by the chain rule ⇡
S

� � is a finite length path

in S joining p and q.

Lemma 3.7. Assume that � ⇢ S is a rectifiable curve. Then � has a reparametrization �̃

by arclength, and |�̃0| = 1 almost everywhere.

Proof. By Lemma 3.2, the reparametrization �̃ : [0, L] ! M by arclength exists, and it has

Lipschitz constant 1. By Rademacher’s theorem, we have that �̃0 exists almost everywhere,

and |�̃0(s)|  1. Since �̃ is absolutely continuous, length(�̃) =

Z

|�̃0| = L. Therefore |�̃0| = 1

almost everywhere.

From now on, we shall assume that the geodesic � is parametrized by arclength. We shall

use the following properties of geodesics to prove the first theorem.

Lemma 3.8. Suppose � is an arclength-parametrized geodesic in S. Then � is locally injec-

tive and Lipschitz continuous with Lipschitz constant 1. On any subsegment of the image of

� on which it is defined, ��1 is Lipschitz with Lipschitz constant 1.
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Proof. The curve � is Lipschitz continuous with Lipschitz constant 1 by Lemma 3.2. Since

|�(t
1

)� �(t
2

)| = |t
1

� t

2

|, the inverse function �

�1 is also Lipschitz with Lipschitz constant

1 on any subsegment of � on which it is defined. It is therefore su�cient to show that � is

locally injective. Fix t, and let ✏ > 0 be small enough that � is a curve of minimum length

joining pairs of points in �([t� ✏, t + ✏]). Then � is injective on [t� ✏, t + ✏], since if we had

�(t
0

) = �(t
1

) for t

1

, t

2

2 [t� ✏, t + ✏], one could shorten �

?

?

[t�✏,t+✏]

by removing the portion

of � from �(t
0

) to �(t
1

). Thus �
?

?

(t�✏,t+✏)

is a bijection onto its image.

Remark. From now on, we shall consider only geodesics � with � \ @S 6= ;. Later we shall

prove that such geodesics have Lipschitz continuous velocity. Any geodesic with � \ @S = ;
is a geodesic in Euclidean space, so it is C

1-smooth. Thus, by considering only the case

� \ @S 6= ;, we focus on the geodesics whose regularity is not yet known.
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Chapter 4

Generalized Kuhn-Tucker Theorem

In this chapter we discuss the generalized Kuhn-Tucker Theorem of [4, Theorem 5.4]. It can

be thought of as a generalization of the theory of Lagrange multipliers from calculus; in the

generalized Kuhn-Tucker Theorem, however, we seek an integral over function values (which

can be thought of as an infinite linear combination over some gradients) in place of a linear

combination of gradients. We shall use the generalized Kuhn-Tucker Theorem in Chapter 6.

In this chapter and the next, we shall make frequent use of the Riesz Representation

Theorem.

Definition 4.1. Let Y be a locally compact space, and let ⌦ denote the smallest �-algebra

of Y containing the open subsets of Y . Let µ be a signed measure on Y , and let µ = µ

+�µ

�

denote the Hahn-Jordan decomposition of µ. Write |µ| = µ

+ + µ

�. We say that µ is a

regular Borel measure if

1. |µ|(K) < 1 for every compact K ⇢ Y,

2. for any E 2 ⌦, we have |µ|(E) = sup{|µ|(K) : K ⇢ E and K is compact}, and

3. for any E 2 ⌦, we have |µ|(E) = inf{|µ(U)| : U � E and U is open}.
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Theorem 4.2 (Riesz Representation Theorem [6, Theorem C.18]). Let Y be a locally com-

pact space, and let M(Y ) denote the set of real-valued regular Borel measures on Y . Define

the norm mass(µ) by mass(µ) = µ

+(Y ) + µ

�(Y ). Let C(Y ) denote the set of continuous

functions on Y endowed with the sup norm k · k1. Let C

⇤(Y ) denote the space of contin-

uous linear functionals on C(Y ), endowed with the operator norm. For µ 2 M(Y ), define

F

µ

: C(Y ) ! R by

F

µ

(f) =

Z

fdµ. (4.1)

Then F

µ

2 C

⇤(Y ) and the map µ 7! F

µ

is an isometric isomorphism of M(Y ) onto C

⇤(Y ).

4.1 Statement of the Theorem and an Example

For a continuous function g, let g

+ and g

� denote the positive and negative parts of g, so

that g = g

+ � g

�. The following is the generalized Kuhn-Tucker theorem of [4, Theorem

5.4].

Theorem 4.3. Let X be any vector space and Y be a compact Hausdor↵ space. For any

linear functional � on X and any linear map L : X ! C(Y ), the following are equivalent:

1. There exists ✏ > 0 such that k(L⇠)�k1 � ✏ for all ⇠ 2 X with �(⇠) = �1.

2. There exists a nonnegative regular Borel measure µ 2 M(Y ) such that �(⇠) = µ(L⇠)

for all ⇠ 2 X.

To gain some insight into the theorem and the proof, consider the special case of X = R

and Y = {p} = a single point ⇢ R. Here we consider linear functionals � on R; any such �

has the form �(x) = c

�

x. Further, in this case the linear map L has the form L(x) = c

L

x.

Theorem 4.4. For any linear functional � on R and any linear map L : R ! C(Y ) ⇠= R,

the following are equivalent:
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1. There exists ✏ > 0 such that (L⇠)  �✏ for all ⇠ 2 R with �(⇠) = �1.

2. There exists a nonnegative number µ such that �(⇠) = µ · (L⇠) for all ⇠ 2 R.

Proof. If � = 0, the theorem is trivially true. Assume � 6= 0. The first condition says

that if c

�

⇠ = �1, then c

L

⇠  �✏. However, if c

�

⇠ = �1, we know that ⇠ =
�1

c

�

and then

�c

L

/c

�

 �✏, and c

L

and c

�

have the same sign. In particular c

L

6= 0, so that c

�

= (c
�

/c

L

)c
L

and � = (c
�

/c

L

)L.

Assuming the second condition, since c

�

= µc

L

, we know that if �(x) = �1, c

�

x = �1,

so that c

L

x = (c
�

/µ)x, and then c

L

x = �1/µ, and in particular, Lx  �1/µ.

4.2 Proof of the Generalized Kuhn-Tucker Theorem

Our proof is a slight elaboration of the one in [4].

Proof. (2 =) 1) Suppose there exists a nonnegative regular Borel measure µ such that

mass(µ) < 1 and, for all ⇠ 2 X, �(⇠) =
R

Y

L⇠dµ. Decomposing L⇠ into positive and

negative parts, �(⇠) =
R

Y

((L⇠)+ � (L⇠)�) dµ. Thus if �(⇠) = �1,

�1 =

Z

Y

(L⇠)+

dµ�
Z

Y

(L⇠)�dµ. (4.2)

Since µ is nonnegative, the first term on the right-hand side of (6.10) is nonnegative, so that

�
Z

Y

(L⇠)�dµ  �1. (4.3)

Since mass(µ) < 1 and (L⇠)� is nonnegative, we have the estimate

1 
Z

Y

(L⇠)�dµ  µ(Y )k(L⇠)�k1, (4.4)
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and k(L⇠)�k1 � 1

µ(Y )
.

(1 =) 2) Define a metric on R ⇥ C(Y ) by k(a, g)k =
p

a

2 + kgk2

1. Let I = Image(�, L),

and let O = (�1,�1]⇥P , where P ⇢ C(Y ) is the set of nonnegative continuous functions.

By hypothesis, I \O = ;.

Claim. dist(I,O) > 0

Take sequences of points (t
i

, z

i

) and (�⇠
i

, L⇠

i

) in O and I, respectively, such that the

di↵erence v

i

:= (t
i

� �⇠

i

, z

i

� L⇠

i

) satisfies kv
i

k ! dist(I,O). Without loss of generality

we may assume that v

i

2 R0

⇥ P , by taking t

i

= min{�⇠
i

,�1} and z

i

= (L⇠
i

)+. If

�⇠

i

 �1, then the nearest element of (�1,�1] to �⇠

i

is �⇠
i

. If �⇠
i

> �1, then �1

is the nearest element of (�1,�1] to �⇠

i

. In either case, we have that lim |t
i

� �⇠

i

| =

lim |min{�⇠
i

,�1}� �⇠

i

| = lim |min{0,�1� �⇠

i

}|. Since (L⇠
i

)+ is the nearest element of P

to L⇠

i

, we have lim kz
i

� L⇠

i

k1 = lim k(L⇠
i

)+ � L⇠

i

k1, and we may take z

i

= (L⇠
i

)+.

Thus, following these simplifications, we have that v

i

= (min{�1 � �⇠

i

, 0}, (L⇠
i

)�). To

finish the proof of the claim, we shall show that the first coordinate of v

i

is uniformly negative:

Claim. The t

i

��⇠
i

are uniformly negative, i.e. there exists � > 0 such that t

i

��⇠
i

 �� < 0

for all su�ciently large i.

When t

i

� �⇠

i

= 0, we know that �⇠
i

 �1, and otherwise we have t

i

� �⇠

i

= �1 � �⇠

i

with �⇠
i

> �1. If the t

i

��⇠
i

are not uniformly negative, then t

i

��⇠
i

! 0, and then we must

have lim�⇠

i

 �1 and in particular �⇠
i

< 0 for all su�ciently large i. Then, by rescaling the

⇠

i

, there exists a sequence of ⇠
i

satisfying �⇠
i

= �1 for all i and (�1, L⇠
i

) 2 I. Note that by

rescaling the ⇠
i

in this way we have not increased lim k(L⇠
i

)�k1, so that lim kv
i

k = dist(I,O)

still holds.

Define d

i

:= dist((�1, L⇠
i

),O) = dist(L⇠
i

, P ) = k(L⇠
i

)�k1. By hypothesis, k(L⇠
i

)�k1 �
✏, so d

i

� ✏. Assume without loss of generality that ✏ < 1. Consider the distance from

(1� ✏

2)(�1, L⇠
i

) = (�1 + ✏

2

, (1� ✏

2)L⇠
i

) 2 I to O: the distance from �1 + ✏

2 to (�1,�1]
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is ✏2, and the distance from (1� ✏2)L⇠
i

to P is (1� ✏2)k(L⇠
i

)�k1. Since d

i

� ✏, the distance

from (1� ✏

2)(�1, L⇠
i

) to O satisfies

dist((1� ✏

2)(�1, L⇠
i

),O) =
p

✏

4 + (1� ✏

2)2k(L⇠
i

)�k2

1

=
q

✏

4 + (1� ✏

2)2

d

2

i

= d

i

q

✏

4

/d

2

i

+ (1� ✏

2)2 (4.5)

 d

i

p
✏

2 + 1� 2✏2 + ✏

4

= d

i

p

1� ✏

2(1� ✏

2).

Thus dist(I,O)  lim
i!1

dist((1 � ✏

2)(�1, L⇠
i

),O) < lim
i!1

d

i

= dist(I,O). This is a contradic-

tion, so the t

i

� �⇠

i

are uniformly negative.

Let � > 0 satisfy t

i

� �⇠

i

< �� < 0 for all i. Then, in particular, we have t

i

� �⇠

i

=

�1� �⇠

i

and t

i

= �1 for all i. By the Hahn-Banach Theorem [6, Theorem 6.8] there exists

(c
i

, ⌫

i

) 2 R⇥ C

⇤(Y ) such that

(c
i

, ⌫

i

)(v
i

) = 1,

(c
i

, ⌫

i

)|
I

= 0, and (4.6)

k(c
i

, ⌫

i

)k =
1

dist(v
i

+ I, (0, 0))
=

1

dist(v
i

, I)
.

Since (c
i

, ⌫

i

)(t, f) = c

i

· t + ⌫

i

(f), we have

1

dist(v
i

+ I, (0, 0))
= k(c

i

, ⌫

i

)k

= sup
k(t,f)k=1

|c
i

t + (⌫
i

(f))| (4.7)

=
p

c

2 + (mass(⌫
i

))2

� mass(⌫
i

).
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Claim. There exists �0 > 0 such that c

i

 ��0 < 0 for all i.

Since

1 = (c
i

, ⌫

i

)(v
i

) = c

i

(�1� �(⇠
i

)) + ⌫

i

((L⇠
i

)�),

� < 1 + �⇠

i

, and (4.8)

k(L⇠
i

)�k1 =
p

kv
i

k2 � (1 + �⇠

i

)2

,

by (4.7) we have

c

i

=

✓

1

1 + �(⇠
i

)

◆

�

⌫

i

((L⇠
i

)�)� 1
�

 1

�

�

mass(⌫
i

)k(L⇠
i

)�k1 � 1
�

(4.9)

 1

�

 

pkv
i

k2 � (1 + �⇠

i

)2

dist(v
i

+ I, (0, 0))
� 1

!

.

Using the facts that v

i

= (�1� �⇠

i

, (L⇠
i

)�), and (�1, (L⇠
i

)+) 2 O,

dist(v
i

+ I, (0, 0)) = inf{kv
i

+ uk : u 2 I}

= inf{k(�1� �⇠

i

, (L⇠
i

)�) + uk : u 2 I}

= inf{k(�1� �⇠

i

, (L⇠
i

)�) + (u + (�⇠
i

, L⇠

i

))k : u 2 I} (4.10)

= inf{k(�1, (L⇠
i

)+) + uk : u 2 I}

� dist(I,O).

Also, since (0, 0) 2 I,

dist(v
i

+ I, (0, 0)) = inf{k(�1� �⇠

i

, (L⇠
i

)�) + uk : u 2 I}  kv
i

k. (4.11)
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Since kv
i

k ! dist(I,O), from (4.9) and (4.10) we conclude that

dist(v
i

+ I, (0, 0)) ! dist(I,O). (4.12)

Passing to the limit in (4.9) and using (4.12) and the fact that 1 + �⇠

i

� �, we obtain

lim
i!1

c

i

 1

�

0

@

q

dist2(I,O)� �

2

dist(I,O)
� 1

1

A

< 0. (4.13)

Thus there exists �

0
> 0 such that c

i

 ��0 < 0. By (4.10), we have k(c
i

, ⌫

i

)k =
1

dist(v
i

+ I, (0, 0))
 1

dist(I,O)
; by Alaoglu’s Theorem [13, Theorem 3.17], by passing to

a subsequence there exists (c, ⌫) such that

(c
i

, ⌫

i

)(t, z) ! (c, ⌫)(t, z),

⌫

+

i

(z) ! ⌫

+(z), (4.14)

⌫

�
i

(z) ! ⌫

�(z), and

c

i

! c

for all (t, z) 2 R⇥ C(Y ). Note that (4.6) and (4.7) imply that mass(⌫) < 1, c < ��0 < 0,

and (c, ⌫)
I

= 0.

Define µ =
1

|c|⌫; then µ is a regular Borel measure by Theorem 4.2. For any ⇠ 2 X,

0 = (�1, µ)(�⇠, L⇠) = ��⇠ + µ(L⇠), (4.15)

or equivalently �⇠ = µ(L⇠). Thus we only need to show that the measure ⌫ is nonnegative.

Decompose ⌫ into positive and negative parts: ⌫ = ⌫

+ � ⌫

�. Since (L⇠
i

)� is nonnegative,
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by applying the Cauchy-Schwarz inequality at (4.16) we obtain

1 = (c
i

, ⌫

i

)(v
i

)

= c

i

(�1� �⇠

i

) +

Z

Y

(L⇠
i

)�d⌫

+

i

�
Z

Y

(L⇠
i

)�d⌫

�
i

 c

i

(�1� �⇠

i

) +

Z

Y

(L⇠
i

)�d⌫

+

i

 |c
i

||(�1� �⇠

i

)|+ ⌫

+

i

(Y )k(L⇠
i

)�k1
= (|� 1� �⇠

i

|, k(L⇠
i

)�k1) · (|c
i

|, ⌫+

i

(Y )) (4.16)

 kv
i

k
q

|c
i

|2 + (⌫+

i

(Y ))2

 kv
i

k
p

|c
i

|2 + (mass(⌫
i

))2

= kv
i

kk(c
i

, ⌫

i

)k

Since kv
i

kk(c
i

, ⌫

i

)k ! 1, mass(⌫
i

) ! mass(⌫), and ⌫

+

i

(Y ) ! ⌫

+(Y ), we conclude that

lim
i!1

kv
i

k
q

|c
i

|2 + (⌫+

i

(Y ))2 = lim
i!1

kv
i

k
p

|c
i

|2 + (mass(⌫
i

))2 = 1, and ⌫+(Y ) = ⌫(Y ).
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Chapter 5

Clarke Di↵erentiation Theorem

5.1 Statement of the Theorem and an Example

The Clarke Di↵erentiation Theorem of [5] allows one to compute the one-sided derivative of

a function which is itself defined as a maximum (or minimum) over a family of functions.

First we discuss a motivating example; then we state the theorem and discuss an application

to the theory of PR sets, which we shall apply in the proof of the first theorem.

Example. Consider the function f(x) = |x| = max{�x, x}.

The one-sided directional derivative of a function f at x with respect to v is given by

Df

x

(v) = lim
t#0

f(x + tv)� f(x)

t

. Because this function is defined on R, denote by f

0
+

(x) the

right-hand derivative Df

x

(1). If we want to calculate the right-hand derivative at any value

other than 0, we simply take the derivative of x when x > 0, and we take the derivative of �x

when x < 0. Thus we are taking the derivative of the function which attains the maximum.

Suppose now that we want to calculate f

0
+

(0), the right-hand derivative of f at 0. Using the

definition of the one-sided directional derivative, f

0
+

(0) = 1, which is the derivative of x.

Definition 5.1. Define the Clarke generalized gradient @

C

f(x) to be the convex hull

of the set
n

lim
i!1

rf

x+hi : rf

x+hi exists and h

i

! 0 as i !1
o

. In the special case that f =
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g + k, for k convex and g smooth, from [5, Proposition 1.2] we have the formula @
C

f(x) =

@k(x) +rg

x

, where @k(x) is the usual subgradient set, so that @
C

f(x) = @f(x).

Definition 5.2. Define the generalized directional derivative f

�(x; v) by

f

�(x; v) = lim
h!0

sup
�#0

f(x + h + �v)� f(x + h)

�

. (5.1)

By [5, Propositions 1.2 and 1.4], in the case of a smooth function, f

�(x; v) = rf

x

· v, and

in the case of a convex function, f

�(x; v) = max{⇣ · v : v 2 @
C

f(x) = @f(x)}.
Suppose that G : Rm ⇥ U ! R, and let @

C

G(x, u) denote the Clarke subgradient set

of the function x 7! G(x, u) at the point (x, u). Let DG

(x,u)

(v) denote the one-sided direc-

tional derivative of x 7! G(x, u) at (x, u) in the v direction, and let G

�((x, u), v) denote the

generalized directional derivative in the v direction of the function x 7! G(x, u).

Theorem 5.3. (Clarke Di↵erentiation Theorem [5, Theorem 2.1]) Let U be a sequentially

compact space, and let G : Rm ⇥ U ! R have the following properties:

(a) G(x, u) is upper semicontinuous in (x, u).

(b) G is locally Lipschitz in x, uniformly for u in U ; in other words, for every compact

K ⇢ Rm there exists L such that for all y

1

, y

2

2 K and all u 2 U , we have |G(y
1

, u) �
G(y

2

, u)|  L|y
1

� y

2

|.

(c) Fixing u, DG

(x,u)

(v) = G

�((x, u); v)

(d) @

C

G(x, u) is upper semicontinuous in (x, u).

Then, if we let f(x) = max{G(x, u) : u 2 U},

(1) f

0(x; v) = max{⇣ · v : ⇣ 2 @

C

G(x, u), u 2 M(x)}, where M(x) = {u 2 U : G(x, u) =

f(x)}.
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(2) @

C

f(x) is the convex hull of {@
C

G(x, u) : u 2 M(x)}.

In the example above, we can take U = {1,�1}, and let G(x, u) = x ·u. Then G is upper

semicontinuous, Lipschitz in u and x, and

DG

(x,u)

(v) = lim
h#0

G(x + hv, u)�G(x, u)

h

= v · u (5.2)

Further, since G(x, u) is smooth, @
C

G(x, u) agrees with the usual subgradient, so that

@

C

G(x, u) = {u}, and G

�((x, u); v) = v · u. Thus the conditions (a)-(d) are satisfied, and

Theorem 5.3 states that f

0(x; v) = max{⇣ · v : ⇣ 2 @

C

G(x, u), u 2 M(x)}. For x < 0,

M(x) = {�1}, so that f

0(x; v) = �1 · v. Similarly, for x > 0, M(x) = {1}, so that

f

0(x; v) = v. We also have M(0) = {�1, 1}, so that f

0(0; v) = max{v,�v} = |v| and, in

particular, f

0
+

(0) = 1.

5.2 An Application

Suppose that S is a PR set, so that S = f

�1(�1, 0] for a (weakly regular) semiconvex

function f . Let � : [0, L] ! Rm be a geodesic in S, and let ⇠ : [0, L] ! Rm be a Lipschitz

continuous vector field.

Definition 5.4. We say that a vector v points out of S at p 2 S if v 62 Tan(S, p).

Remark. Note that v can only point out of S at p 2 @S since the complement of Tan(S, p)

is empty at interior points p 2 S.

Let �
⇠

max(f) :=
d

dt

?

?

?

?

t=0

✓

max
s2[0,L]

f(�(s) + t⇠(s))

◆

denote the first variation of the max-

imum of f with respect to ⇠ along �. We shall use Theorem 5.3 to show that �
⇠

max(f)

exists; moreover, for S a regular PR set, if ⇠ points out of S then �
⇠

max(f) > 0.
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Write f = k + g, where k is convex and g is smooth. Let A denote the set of all a�ne

functions A satisfying A  k and A(p
0

) = k(p
0

) for at least one point p

0

2 Image(�). We

identify A(p) = w · p + r with the pair (w, r).

Lemma 5.5. The pair (w, r) 2 A if and only if there exists p

0

2 Image(�) such that

w 2 @k(p
0

) and r = k(p
0

)� w · p
0

.

Proof. Suppose first that w 2 @k(p
0

) for p

0

2 Image(�). Then, by definition of @k(p
0

),

w · p + (k(p
0

)�w · p
0

)  k(p) for all p, so that the proposed (w, r) 2 A. Now, suppose that

(w, r) 2 A. Then there exists p

0

such that w · p
0

+ r = k(p
0

), so that r = k(p
0

) � w · p
0

.

Thus , by definition of A, w · p + (k(p
0

)� w · p
0

)  k(p) for all p, so that w 2 @k(p
0

).

By construction, f(p) = k(p) + g(p) = max{A(p) + g(p) : A 2 A}. Let U = {(A, s) : A 2
A, s 2 [0, L]}. Define G : R⇥ U ! R by G(t, (A, s)) = A(�(s) + t⇠(s)) + g(�(s) + t⇠(s)).

Lemma 5.6. The function G above satisfies the hypotheses of Clarke’s di↵erentiation theo-

rem.

Proof. U is sequentially compact: the topology on A is given by the association of A(p) =

w · p + r with the point (w, r) 2 Rm+1. Note that A 2 A if and only if w is a subgradient of

k at some p

0

2 Image(�) and r = k(p
0

)� w · p
0

. Thus A is compact since D(k) \ (� ⇥ Rm)

is compact, and A is the image of D(k) \ (� ⇥ Rm) under the continuous map (p, w) 7!
(w, k(p)� w · p), so that U = A⇥ [0, L] is a compact subset of a metric space and hence is

sequentially compact.

G(t, (A, s)) is upper semicontinuous in (t, (A, s)): if A = (w, r), then by definition of G,

G(t, (A, s)) = w · (�(s) + t⇠(s)) + r + g(�(s) + t⇠(s)), (5.3)
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so that, by continuity of the functions on the right-hand side in (5.3),

lim
(t,(A,s))!(t0,(A0,s0))

G(t, (A, s)) = w

0

· (�(s
0

) + t

0

⇠(s
0

)) + r

0

+ g(�(s
0

) + t

0

⇠(s
0

)). (5.4)

Thus G is continuous as a function of (t, (A, s)).

G(t, u) is locally Lipschitz in t:

|G(t, u)�G(t0, u)|

= | (w · (�(s) + t⇠(s)) + r + g(�(s) + t⇠(s)))� (w · (�(s) + t

0
⇠(s)) + r + g(�(s) + t

0
⇠(s))) |

= |(t� t

0)(w · ⇠(s)) + (g(�(s) + t⇠(s))� g(�(s) + t

0
⇠(s)))|

 |t� t

0||w · ⇠(s)|+ M

g

|t� t

0||⇠(s)| (5.5)

where M

g

is a Lipschitz constant for g; since g is only locally Lipschitz on {�(s)+ t⇠(s) : s 2
[0, L], t 2 R}, this inequality is understood to hold only locally.

G(t, u) is locally uniformly Lipschitz for u 2 U : suppose K ⇢ R is compact. Then g has

Lipschitz constant M

g

on {�(s) + t⇠(s) : s 2 [0, L], t 2 K}, so the result follows from (5.5).

Also, G

�((t, u); v) = DG

(x,u)

(v): by definition, DG

(x,u)

(v) is the one-sided directional

derivative, with respect to t, in the direction v, i.e.

DG

(x,u)

(v) = lim
�#0

G(t + �v, u)�G(t, u)

�

= lim
�#0

A(�(s) + (t + �v)⇠(s)) + g(�(s) + (t + �v)⇠(s))� A(�(s) + t⇠(s))� g(�(s) + t⇠(s))

�

= lim
�#0

w · �v⇠(s)
�

+ lim
�#0

g(�(s) + (t + �v)⇠(s))� g(�(s) + t⇠(s))

�

(5.6)

= v(w · ⇠(s)) +rg

�(s)+t⇠(s)

· (v⇠(s))

= v

�

(w +rg

�(s)+t⇠(s)

) · ⇠(s)�
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By definition,

G

�((t, u); v) = lim sup
h!0;�#0

G(t + h + �v, u)�G(t + h, u)

�

; (5.7)

by [5, Proposition 1.2 and 1.4], since A is convex and g is smooth,

G

�((t, u); v) = max{⇣ · v : ⇣ 2 @
C

G(t, u)} = v((w +rg

�(s)+t⇠(s)

) · ⇠(s)), (5.8)

where @
C

G(t, u) is the usual subgradient set for the function t 7! G(t, u), since G is smooth

in t.

To apply Theorem 5.3, we must also show that @
C

G(t, u) is upper semicontinuous in (t, u):

since G is smooth in t, @
C

G(t, u) = {(w +rg

�(s)+t⇠(s)

) · ⇠(s)}. To see upper semicontinuity,

suppose that (t
i

, (A
i

, s

i

)) ! (t
0

, (A
0

, s

0

)), which means also that A

i

=: (w
i

, r

i

) ! (w
0

, r

0

) :=

A

0

. We know that w

i

2 @k(p
i

) for some p

i

2 Image(�). By passing to a subsequence,

we can assume that the p

i

converge to p

0

. Note that w

0

2 @k(p
0

) by Lemma 2.32. Also,

r

0

= �w

0

· p
0

+ k(p
0

) implies that (w
0

, r

0

) 2 A and ((w
0

, r

0

), s
0

) 2 U . Then by continuity of

rg, �, and ⇠,

lim
i!1

(w
i

+rg

�(si)+ti⇠(si)) · ⇠(si

) = (w
0

+rg

�(s0)+t0⇠(s0)

) · ⇠(s
0

). (5.9)

Since lim
i!1

�

(w
i

+rg

�(si)+ti⇠(si)) · ⇠(si

)
� 2 @

C

G(t
0

, u

0

), the multifunction @

C

G(t, u) is upper

semicontinous.

Thus we may apply Theorem 5.3 to G.

Lemma 5.7. Let S = f

�1(�1, 0] be a PR set, and let ⇠ be a Lipschitz vector field on [0, L].

If � \ @S 6= ;, then

�

⇠

max(f) = max{Df

�(s)

(⇠(s)) : �(s) 2 @S}. (5.10)
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Proof. Let h(t) = max
u

{G(t, u)} = max
A,s

{A(�(s) + t⇠(s)) + g(�(s) + t⇠(s))} = max
s

{f(�(s) +

t⇠(s))}. Then by Theorem 5.3, the one-sided derivative of h at 0 is

h

0
+

(0) = max{⇣ : ⇣ 2 @
C

G(0, u), u 2 M(0)}. (5.11)

Since � \ @S 6= ; implies h(0) = 0, the set M(0) is the set of u for which G(0, u) = 0, i.e.

the set of u = (A, s) for which A(�(s)) + g(�(s)) = f(�(s)) = 0. This happens precisely

when A(�(s)) = k(�(s)), in which case A  k implies that w 2 @k(�(s)), and A(�(s)) =

w · (p� �(s)) + k(�(s)). Thus

�

⇠

max(f) = max{(w +rg

�(s)

) · ⇠(s) : �(s) 2 @S, w 2 @k(�(s))}

= max{Dk

�(s)

(⇠(s)) +rg

�(s)

(⇠(s)) : �(s) 2 @S} (5.12)

= max{Df

�(s)

(⇠(s)) : �(s) 2 @S}.

Lemma 5.8. Let S = f

�1(�1, 0] be a regular PR set, and let ⇠ be a Lipschitz vector field

on [0, L]. If ⇠ points out of S at some point in � \ @S, then �

⇠

max(f) > 0.

Proof. If ⇠ points out of S at �(s) 2 @S, then Df

�(s)

(⇠(s)) > 0 by Lemma 2.29. Thus by

Lemma 5.7, we also have that �
⇠

max(f) > 0.

Remarks.

1. The result of Lemma 2.16 is an immediate consequence of Theorem 5.3: let A and g

be as above, and let G : Rm ⇥A! Rm by G(p, A) = A(p) + g(p).

2. If regularity of S is not assumed, we still have the weaker result that �
⇠

max(f) > 0

whenever ⇠(s) 2 @f(�(s)) for some s with ⇠(s) 6= 0. This is a consequence of Lemma

2.16.
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Chapter 6

Regularity of Geodesics in Regular

PR Sets

In this chapter, we show that geodesics in regular PR sets are C

1,1; in other words, they have

Lipschitz continuous first derivatives. The two main tools in our argument are the Clarke

Di↵erentiation Theorem and the generalized Kuhn-Tucker Theorem. In the last chapter we

showed that �
⇠

max(f) > 0 whenever ⇠ points out of S at some point of � \ @S. We use this

fact to show that the first condition of the generalized Kuhn-Tucker Theorem holds in the

setting of Lipschitz vector fields along � with linear functional �
⇠

length(�) and a linear map

related to the integrand in the first variation for arclength. Throughout, assume that S is

regular, the arclength-parametrized geodesic � : [0, L] ! S is a bijection onto its image, and

� is a curve of minimum length joining any two points in its image.

48



6.1 Kuhn-Tucker and Geodesics

6.1.1 The Setup

Let S = f

�1(�1, 0] ⇢ Rm be a regular PR set, and let � : [0, L] ! S be a geodesic. Let

�

⇠

length(�) :=
d

dt

?

?

?

?

t=0

length(� + t⇠) denote the first variation of arclength of � along ⇠. We

apply the generalized Kuhn-Tucker Theorem to the following:

X = {Lipschitz vector fields on [0, L] vanishing at the endpoints of �}

�⇠ = �

⇠

length(�) =

Z

h�0, ⇠0i (6.1)

Y = D(f) \ (� ⇥ Rm)

L : X ! C(Y ) by L⇠(�(s), v) = �h⇠(s), vi = � ⌦

⇠(��1(�(s))), v
↵

.

Remark. The map L satisfies L : X ! C(Y ): by definition of L, L⇠(p, v) = �h⇠(��1(p)), vi.
Continuity of L⇠ follows from continuity of ��1, ⇠, and the dot product.

In the next subsection, we show that the first variation of arclength of � with respect to

⇠ is well-defined.

6.1.2 The First Variation of Arclength

Let � : [0, L] ! S be a geodesic. Let ⇠ be a Lipschitz vector field on [0, L]. Vary � along ⇠

by taking �
t

(s) = �(s) + t⇠(s). Then the length of �
t

is given by

length(�
t

) =

Z

[0,L]

|�0
t

(s)| ds. (6.2)

Lemma 6.1. The first variation of arclength of � with respect to ⇠ is well-defined.
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Proof. To show that the first variation of arclength is well-defined, we only need to apply

the dominated convergence theorem to pull the derivative inside of the length integral

�

⇠

length(�) :=
d

dt

?

?

?

?

t=0

Z

[0,L]

|�0
t

(s)|ds =

Z

[0,L]

h�0(s), ⇠0(s)i ds, (6.3)

and justify the second equality.

Since � and ⇠ are Lipschitz, they are di↵erentiable at almost every s by Rademacher’s

Theorem. Thus for any t � 0 and almost every s,

d

dt

|�0
t

(s)| =
d

dt

h�0(s) + t⇠

0(s), �0(s) + t⇠

0(s)i1/2 (6.4)

=
1

|�0(s) + t⇠

0(s)| h�
0(s) + t⇠

0(s), ⇠0(s)i .

Therefore, using (6.4) and the fact that |�0(s)| = 1, for almost every s we have

d

dt

?

?

?

?

t=0

|�0
t

(s)| = lim
h#0

|�0
h

(s)|� |�0
0

(s)|
h

= h�0(s), ⇠0(s)i . (6.5)

Further,
?

?

?

?

|�0
h

(s)|� |�0
0

(s)|
h

?

?

?

?

 |�0
h

(s)� �

0
0

(s)|
|h| = |⇠0(s)|. (6.6)

Since ⇠ is Lipschitz, ⇠0 is measurable (as a pointwise almost everywhere limit of measurable

functions) and bounded, so that |⇠0(s)| is integrable as a function of s. Thus, by the dom-

inated convergence theorem, we may di↵erentiate the integrand, and the first variation of

arclength is well-defined.
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6.1.3 Clarke’s Theorem Implies Condition (1) of Kuhn-Tucker

By Lemma 5.8, we know that �
⇠

max(f) > 0 whenever the Lipschitz continuous vector field ⇠

points out of S at some point in �\@S. We now use this fact to show that the first condition

of the Kuhn-Tucker theorem is satisfied. In our proof, we shall use the following lemma.

Lemma 6.2. There exists a Lipschitz vector field ⌘ on [0, L] satisfying �
⌘

max(f) < 0.

Remark. The vector field ⌘ need not vanish at 0 and L. Specifically, in the case that

�(s) 2 @S for s = 0 or L, then �
⌘

max(f) < 0 implies ⌘(s) 6= 0.

Proof. Suppose that �(t) 2 @S. Then by Lemma 2.28 there exists a direction w and an open

set U containing �(t) such that Df

y

(w) < 0 for all y 2 U . There exists an open interval

(a, b) containing t such that �
?

?

[a,b]

⇢ U . Take ⇠(s) = �(s)w, where � is a piecewise a�ne

continuous function that is 0 outside of (a, b), 1 at
a + b

2
, and a�ne in between. Cover

�

�1(@S) by finitely many such open intervals (a, b). Now, let ⌘ be the sum over all such ⇠.

Then ⌘ is Lipschitz continuous, and ⌘(s) is a decreasing direction at �(s) 2 @S by Lemma

2.16. Thus �
⌘

max(f) < 0 by Lemma 5.7.

Remark. For all c > 0, we have sup |c⌘| = c sup |⌘| and �

c⌘

length(�) = c�

⌘

length(�), so by

rescaling we can assume that sup |⌘| < ↵ and �
⌘

length(�) < ↵ for any ↵ > 0.

Lemma 6.3. There exists ✏ > 0 with the following property: if ⇠ 2 X and �
⇠

length(�) = �1,

then there exist s 2 (0, L) and v 2 @f(�(s)) such that �(s) 2 @S and h⇠(s), vi > ✏.

Proof. We claim that it su�ces to show that there exists ✏ > 0 such that whenever �
⇠

length(�) =

�1, we have �
⇠

max(f) > ✏. By Lemma 5.7, if �
⇠

max(f) > ✏, there exist s 2 (0, L) and

v 2 @f(�(s)) such that hv, ⇠(s)i > ✏, as desired.

If no such ✏ exists, then there is a sequence {⇠
i

} ⇢ X such that �
⇠i length(�) = �1 but

�

⇠imax(f) ! 0. By Lemma 6.2, there exists a Lipschitz vector field ⌘ on [0, L] satisfying
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�

⌘

max(f) < 0, sup |⌘| < 1/4, and �
⌘

length(�) < 1/4. Since

�

⇠i+⌘

length(�) = �

⇠i length(�) + �

⌘

length(�) = �1 + �

⌘

length(�) < �3/4, (6.7)

if we take �
i

:= ⇠

i

+ ⌘, by Lemma 5.7 and sub-additivity of Df

�(s)

(v) as a function of v,

�

�imax(f)  �

⇠imax(f) + �

⌘

max(f). (6.8)

Since lim(�
�imax(f))  �

⌘

max(f) < 0 by hypothesis, we must have �

�imax(f) < 0 for

su�ciently large i. For i fixed and all su�ciently small h > 0, length(�+h�

i

)� length(�) <

�(1/2)h by (6.7). Fix h. Consider the curve �̃ formed by concatenating � and the Euclidean

segments [�(0), �(0)+h�

i

(0)] and [�(L)+h�

i

(L), �(L)]. Provided h is su�ciently small, the

curve �̃ is contained in S. Using the fact that ⇠
i

2 X, the length of �̃ is

length(�̃) = h|⌘(0)|+ length(� + h�

i

) + h|⌘(L)| < (1/2)h + length(�)� (1/2)h. (6.9)

This contradicts the assumption that � is a curve of minimum possible length joining �(0)

and �(L).

Corollary 6.4. The given L, �, X, and Y satisfy the first condition of the generalized

Kuhn-Tucker theorem.

Proof. By Lemma 6.3, there exists ✏ > 0 such that whenever �
⇠

length(�) = �1, there

exist s 2 [0, L] and v 2 @f(�(s)) such that �(s) 2 @S and h⇠(s), vi > ✏. In other words,

L⇠(�(s), v) < �✏, so that �L⇠(�(s), v)� < �✏, and k(L⇠)�k1 > ✏.
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6.2 Consequences of Kuhn-Tucker

By Theorem 4.3, there exists a nonnegative regular Borel measure µ on Y such that mass(µ) <

1 and �(⇠) = � R

Y

h⇠ � ��1

, vi dµ(y). Using the definition of �, then, for all ⇠ 2 X and

y = (p, v) 2 Y ,
Z

h�0(s), ⇠0(s)i ds = �
Z

Y

⌦

⇠ � ��1(p), v
↵

dµ(y), (6.10)

and we have the estimate

?

?

?

?

Z

h�0(s), ⇠0(s)i ds

?

?

?

?

 µ(Y ) sup
s2[0,L]

|⇠| sup
(p,v)2Y

|v|, (6.11)

where the right-hand expression is finite because ⇠ is continuous on [0, L], and Y is compact.

Let e

i

denote the ith standard basis vector. Using (6.10), the second distributional

derivative of �
i

:= h�, e
i

i satisfies

�

00
i

(h) := �
Z

�

0
i

(s)h0(s)ds = �
Z

h�0(s), (h · e
i

)0(s)ids =

Z

Y

⌦

(h · e
i

) � ��1

p

, v

↵

dµ(p, v),

and thus is an element of C

⇤([0, L]). By Theorem 4.2 applied to �00
i

, there exists a finite-mass

signed, regular Borel measure ⌘
i

on [0, L] such that �00
i

(f) =
R

[0,L]

fd⌘

i

for all continuous

functions f on [0, L]. Define the vector-valued measure ⌘ by ⌘ := (⌘
1

, . . . , ⌘

m

).

Lemma 6.5. For all Borel � ⇢ [0, L], we have

⌘(�) =

Z

Y \(�(�)⇥Rm
)

vdµ(p, v), (6.12)

where 1
�

denotes the characteristic function of �.

In the proof and in the next section, we shall use the concept of total variation.
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Definition 6.6. Define the variation of f over the partition P = {t
0

, . . . , t

j

} by Var(f,P) =
j

X

i=1

|f(t
i

)� f(t
i�1

)|. Define the total variation of f by Var(f) := sup{Var(f,P)}.

Proof. Suppose first that � ⇢ [0, L] is an open interval (a, b). Note that Y \(�(�)⇥Rm) is µ-

measurable because µ is a regular Borel measure. Let 1
�

denote the characteristic function

of �. Approximate 1
�

by nonnegative continuous piecewise a�ne functions �
j

such that

�

j

?

?

�

= 1 and Var(�
j

)  2. Then, applying the dominated convergence theorem twice,

Z

1
�

d⌘

i

=

Z

lim
j!1

�

j

d⌘

i

= lim
j!1

Z

�

j

d⌘

i

= lim
j!1

Z

Y

⌦

(�
j

e

i

) � ��1

, v

↵

dµ

= lim
j!1

Z

Y

�

j

� ��1

⌦

e

i

� ��1

, v

↵

dµ (6.13)

=

Z

Y

(1
�

� ��1) he
i

, vi dµ

=

Z

Y \(�(�)⇥Rm
)

he
i

, vi dµ

=

⌧

e

i

,

Z

Y \(�(�)⇥Rm
)

vdµ

�

.

Thus, he
i

, ⌘(�)i =
R

1
�

d⌘

i

=
D

e

i

,

R

Y \(�(�)⇥Rm
)

vdµ

E

, as was to be shown. Thus, the statement

is also true for open sets and then all Borel sets (using regularity of the measure ⌘).

6.2.1 Continuity of �0

Definition 6.7. We say that a function f on [0, L] is essentially BV (f 2 eBV) if the

variation Var(f,P) is uniformly bounded for all partitions P of [0, L] by Lebesgue points.

A function f on [0, L] has bounded variation (f 2 BV) if the variation Var(f,P) is

uniformly bounded for all partitions P of [0, L].
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The necessary facts about eBV and BV functions are in the Appendix.

Corollary 6.8. �0 2 eBV.

Proof. Apply the criterion for real-valued eBV functions in the Appendix to the components

of �0. The result follows from applying (6.11) to test functions h:

?

?

?

?

Z

[0,L]

�

0
i

h

0
ds

?

?

?

?

=

?

?

?

?

Z

[0,L]

h�0(s), h0 · e
i

i ds

?

?

?

?

=

?

?

?

?

Z

Y

⌦

(h · e
i

) � ��1

p

, v

↵

dµ(p, v)

?

?

?

?

(6.14)

 µ(Y )khk1 sup |v|,

since Var(�0
i

) = sup{R �0
i

�

0 : � 2 C

1

0

[0, L], k�k1  1}

Theorem 6.9. � has continuous first derivative.

Proof. We first show that �0 has bounded variation. Let E denote the set of Lebesgue points

of �0. Since �0 is eBV, �0 has left and right essential limits everywhere: the limit

lim
x#a,

x2E

�

0(x) = M (6.15)

exists for every a 2 [0, L]. Also, � has left and right derivatives everywhere:

Let ✏ > 0. Then there exists � > 0 such that 0 < t � a < � and t 2 E implies that

|�0(t)�M | < ✏. Since � is absolutely continuous, for 0 < x� a < �,

�(x)� �(a) =

Z

x

a

�

0(t)dt, (6.16)

so that, since almost every point is a Lebesgue point,

?

?

?

?

M � �(x)� �(a)

x� a

?

?

?

?

=

?

?

?

?

M � 1

x� a

Z

x

a

�

0(t)dt

?

?

?

?

 1

x� a

Z

x

a

|M � �

0(t)|dt  ✏. (6.17)
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Thus � has a right derivative at a, and that right derivative agrees with the essential right-

hand limit at a. Similarly, � has a left derivative at a agreeing with the essential left-hand

limit at a. Denote by �0
+

and �0� the right and left derivatives of �.

Since �0 2 eBV, there exists a function g 2 BV such that �0 = g on the set E of Lebesgue

points of �0. Now, by the above, for all a

g

+

(a) = lim
x#a

g(x) = lim
x#a,

x2E

�

0(x) = �

0
+

(a). (6.18)

Thus �0
+

(a) agrees with g

+

everywhere, and similarly for �0�(a). In particular, at points

where g is continuous, �0(a) exists and agrees with g. There are at most countably many

points, therefore, where �0(a) fails to exist, and these points are jump discontinuities of g.

Since we already had that the essential left- and right- limits of �0 exist everywhere, now we

know that these must in fact be (honest) left- and right-hand limits. Thus �0 2 BV, and �

0

can only have jump discontinuities.

The left-hand and right-hand limits of �0 must agree: fix a 2 [0, L], and let �
�

be

a sequence of nonnegative piecewise a�ne functions approximating 1{a} such that the �
�

converge to 1{a} pointwise, �
�

(a) = 1, each �
�

has compact support contained in (a��, a+�),

and each �
�

has total variation Var(�
�

) = 2. By definition of the distribution �00
i

,

�

00
i

(�
�

) =

Z

�

�

�

00
i

:= �
Z

�

0
i

�

0
�

. (6.19)
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Let ✏ > 0. Then there exists � > 0 such that |�0(t)��0�(a)| < ✏/2 whenever 0 < a� t < �

and |�0(t)� �

0
+

(a)| < ✏/2 whenever 0 < t� a < �. Thus

?

?

?

?

✓

Z

(a��,a)

�

0
i

�

0
�

◆

� (�
i

)0�(a)

?

?

?

?

=

?

?

?

?

Z

(a��,a)

�

0
i

�

0
�

� (�
i

)0�(a)

Z

(a��,a)

�

0
�

?

?

?

?

 (✏/2)

Z

(a��,a)

|�0
�

| (6.20)

 ✏.

Using a similar argument for �
+

, we obtain

lim
�#0

Z

�

�

(�00
i

) = � lim
�#0

Z

�

0
i

�

0
�

= (�
i

)0
+

(a)� (�
i

)0�(a). (6.21)

However, �00
i

(�
�

) =
R

�

�

d⌘

i

as well, and using the bounded convergence theorem,

lim
�#0

Z

�

�

d⌘

i

=

Z

lim
�#0

�

�

d⌘

i

=

Z

1{a}d⌘i

= ⌘

i

({a}) (6.22)

=

⌧

e

i

,

Z

Y \(�(a)⇥Rm
)

vdµ(p, v)

�

=

Z

�(a)⇥@f(�(a))

he
i

, vi dµ(p, v)

Combining (6.21) and (6.22), we have that

(�)0
+

(a)� (�)0�(a) =

Z

�(a)⇥@f(�(a))

vdµ(p, v). (6.23)

However, (�)0
+

(a) � (�)0�(a) 2 Tan(S, �(a)) and
R

�(a)⇥@f(�(a))

vdµ(p, v) 2 Nor(S, �(a)). See

the lemma below for a proof of (�)0
+

(a) � (�)0�(a) 2 Tan(S, �(a)). The right-hand side is
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in the normal cone because cone(@f(�(a))) = Nor(S, �(a)) and
R

�(a)⇥@f(�(a))

vdµ(p, v) is an

average of elements over the closed convex set Cone(Nor(�(a))), and thus in the convex set.

Thus each side must necessarily be the zero vector, and

(�)0
+

(a) = (�)0�(a), (6.24)

so that � is C

1.

Lemma 6.10. (�)0
+

(a)� (�)0�(a) 2 Tan(S, �(a)).

Proof. Since the limit �0
+

(a) = lim
�#0

�(a + �)� �(a)

�

exists, if �0
+

(a) is nonzero,

�

0
+

(a)

|�0
+

(a)| = lim
�#0

�(a + �)� �(a)

|�(a + �)� �(a)| 2 Tan(S, �(a)). (6.25)

Thus �0
+

(a) 2 Tan(S, �(a)) as well. Further, ��0�(a) = lim
�"0

�(a + �)� �(a)

�� exists. If �0�(a)

is nonzero, the limit

��0�(a)

|� �

0
+

(a)| = lim
�"0

�(a + �)� �(a)

|�(a + �)� �(a)| 2 Tan(S, �(a)), (6.26)

so ��0�(a) is also in the tangent cone at �(a). Since S is a PR set, the tangent cone is a

closed, convex cone, so that (�)0
+

(a)� (�)0�(a) 2 Tan(S, �(a)).

6.3 The Measure 

So far, we applied Theorem 4.3 to obtain a measure µ on Y , and then we used Theorem 4.2

to obtain the measure ⌘ satisfying

⌘(�) =

Z

Y \(�(�)⇥Rm
)

vdµ. (6.27)
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Now we shall use the measure µ to obtain the curvature measure  on [0, L], which we will

think of as the “curvature” of �.

Write the Hahn decomposition of the measure ⌘ as ⌘ = (⌘
1

, . . . , ⌘

m

) = (⌘+

1

�⌘�
1

, . . . , ⌘

+

m

�
⌘

�
m

). Write ↵ =
P

(⌘+

i

+ ⌘

�
i

). Then ⌘

i

is absolutely continuous with respect to ↵, since

↵(A) = 0 implies ⌘
i

(A) = 0. By the Radon-Nikodym Theorem [8, Theorem 2 of Section 1.6],

⌘(�) =

Z

�

D

↵

⌘d↵, (6.28)

where

D

↵

⌘(p) = lim
✏#0

⌘(p� ✏, p + ✏)

↵(p� ✏, p + ✏)
. (6.29)

This limit converges ↵-a.e. Define V (p) = D

↵

⌘(p) and N(p) =
V (p)

|V (p)| for V (p) 6= 0. When

V (p) = 0, define N(p) = 0. Define  by d(p) = |V (p)|d↵(p), so that

Z

Y \(�(�)⇥Rm
)

vdµ(p, v) = ⌘(�) =

Z

�

V (p)d↵ =

Z

�

N(p)d. (6.30)

Lemma 6.11. The vector field N satisfies N(p) 2 nor(S, �(p)) whenever N(p) 6= 0.

Proof. By definition,

⌘(p� ✏, p + ✏)

↵(p� ✏, p + ✏)
2 Y

✏

:= conv

0

@

[

s2(p�✏,p+✏)

Nor(S, �(s))

1

A

, (6.31)

where conv denotes the convex hull. Since Y

✏

0 ⇢ Y

✏

whenever ✏0 < ✏, we have that N(p) 2
T

✏>0

Y

✏

. Thus it su�ces to show that
T

✏>0

Y

✏

⇢ Nor(S, p).

Suppose that v 2 \
✏>0

Y

✏

and |v| = 1. By Caratheodory’s Theorem [11, Theorem 17.1],

for each j > 0 and 1  i  m there exist vectors v

i,j

2 Nor(S, x

i,j

) such that x

i,j

2
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�

⇣

p� 1

j

, p + 1

j

⌘

and

v =
m

X

i=1

v

i,j

. (6.32)

If there exists M satisfying |v
i,j

|  M for all i, j, then by passing to a subsequence we may

assume that v

i,j

! v

i,0

as j !1 for i = 1, . . . ,m. Thus v =
m

X

i=1

v

i,0

, and at least one v

i,0

is

nonzero. For each nonzero v

i,0

, we have
v

i,0

|v
i,0

| 2 nor(S, �(p)) by Lemma 2.33. Thus we may

write

v =
X

vi,0 6=0

v

i,0

|v
i,0

| |vi,0

|, (6.33)

so that v 2 Nor(S, �(p)), and since |v| = 1, v 2 nor(S, �(p)).

If |v
i,j

| ! 1 as j ! 1 for some i, relabel the indices i so that |v
1,j

| = max
i

|v
i,j

| for

all j. Define w

i,j

:=
v

i,j

|v
1,j

| . By passing to a subsequence, we may assume that the limit

w

i,0

= lim
j!1

w

i,j

exists. Then
v

|v
1,j

| ! 0, and w

1,j

:=
v

1,j

|v
1,j

| satisfies w

1,j

! w

1,0

as j !1 and

|w
1,j

| = 1 for all j. Thus we have

0 =
X

{i:wi,0 6=0}

w

i,0

. (6.34)

By Lemma 2.33,
w

i,0

|w
i,0

| 2 nor(S, p) for each i in the sum (6.34). By solving (6.34) for �w

1,0

we see that �w

1,0

2 Nor(S, p). By Lemma 2.26, we have that 0 2 @f(p). This contradicts

our assumption that S is regular.

Since nor(S, p) = ; whenever p 62 @S, the following is an immediate consequence of

Lemma 6.11.

Corollary 6.12. Whenever N(p) 6= 0, we have that p 2 @S .

Let T (p) denote the unit tangent vector to the curve � at �(p). Then ⌘ is analogous to

the derivative of T in the following sense:
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Lemma 6.13. T (p)� T (q) =
R

(q,p)

Nd.

Proof. We shall show that the equality holds on each component. Let �
j

be the continuous

piecewise a�ne function that is zero outside of (q � 1/j, p + 1/j), one on (q + 1/j, p� 1/j),

and a�ne on (q � 1/j, q + 1/j) and (p � 1/j, p + 1/j). Then, by applying the dominated

convergence theorem, since | h�
j

e

i

, vi |  sup
Y

|v|, by (6.30) we have

lim
j!1

Z

Y

h�
j

e

i

, vi dµ =

Z

Y \(�(q,p)⇥Rm
)

he
i

, vi dµ =

⌧

e

i

,

Z

(q,p)

Nd

�

. (6.35)

Also, using Theorem 4.3,

Z

Y

h�
j

e

i

, vi dµ = �
Z

(q�1/j,p+1/j)

⌦

�

0(s),�0
j

(s)e
i

↵

ds = �
Z

(q�1/j,p+1/j)

�

0
i

(s)�0
j

(s)ds, (6.36)

and since

�

0
j

(s) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

j/2 if s 2 (q � 1/j, q + 1/j)

�j/2 if s 2 (p� 1/j, p + 1/j)

0 otherwise,

(6.37)

we can simplify the integral above by evaluating �0
j

:

Z

Y

h�
j

e

i

, vi dµ = �
✓

j

2

Z

(q�1/j,q+1/j)

�

0
i

(s)ds

◆

+

✓

j

2

Z

(p�1/j,p+1/j)

�

0
i

(s)ds

◆

(6.38)

Using continuity of �0, by the Lebesgue di↵erentiation theorem, this limit converges to �0
i

(p)�
�

0
i

(q), so that �0
i

(p)� �

0
i

(q) =
D

e

i

,

R

(q,p)

Nd

E

.
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6.4 Geodesics are C

1,1

In the remainder of this chapter, we shall frequently use the concept of absolute continuity

of Radon measures.

Definition 6.14. We say that a measure µ on Rm is Radon if it is a regular Borel measure

and µ(K) < 1 for all compact subsets K ⇢ Rm.

Definition 6.15. ([8, Section 1.6.2]) Let µ and ⌫ be Radon measures on Rm. Then µ is

absolutely continuous with respect to ⌫, written µ << ⌫, if µ(A) = 0 implies ⌫(A) = 0

for all A ⇢ Rm. We say that µ and ⌫ are mutually singular, written µ ? ⌫, if there exists

a Borel subset B ⇢ Rm such that µ(Rm �B) = ⌫(B) = 0.

We shall also use the Lebesgue decomposition theorem, which allows us to break up

a Radon measure into parts which are absolutely continuous and mutually singular with

respect to another given measure.

Lemma 6.16. ([8, Section 1.6.2, Theorem 3]) Let µ, ⌫ be Radon measures on Rm. Then

⌫ = ⌫

ac

+ ⌫

s

, where ⌫
ac

and ⌫
s

are Radon measures on Rm satisfying ⌫
ac

<< µ and ⌫
s

? µ.

Also, the Lebesgue di↵erentiation theorem holds for N integrated against the measure .

See [8, Theorem 1 in Section 1.7.1] for a proof.

Lemma 6.17. For -a.e. p,

lim
r#0

1

(B(p, r))

Z

B(p,r)

|N �N(p)|d = 0. (6.39)

In particular, for -a.e. p,

lim
r#0

1

(B(p, r))

Z

B(p,r)

Nd = N(p). (6.40)
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The following lemma provides the necessary control over Nd using geometric properties

of S.

Lemma 6.18. Suppose that N(p) 6= 0 and the limits lim
✏!0

+/�

T (p + ✏) ·N(p)

✏

exist in R [
{±1}. Then

lim
✏!0

+/�

T (p + ✏) ·N(p)

✏

 1

reach(S)
. (6.41)

Proof. Assume that lim
✏!0

+

T (p + ✏) ·N(p)

✏

> C. Then there exists �(C) > 0 such that T (p +

✏)·N(p) > C✏ whenever 0 < ✏ < �(C). Suppose that 0 < ✏ < �(C). Then T (p+s)·N(p) > sC

whenever 0 < s < ✏, and

(�(p + ✏)� �(p)) ·N(p) =

Z

(0,✏)

T (p + s) ·N(p)ds

>

Z

(0,✏)

sCds (6.42)

=
C

2
✏

2

. (6.43)

By Lemma 1.7, we have

(�(p + ✏)� �(p)) ·N(p)  ✏

2

2 reach(S)
, (6.44)

so that C <

1

reach(S)
. A similar argument shows that lim

✏!0

�

T (p + ✏) ·N(p)

✏

 1

reach(S)

We now prove that  is absolutely continuous with respect to m.

Theorem 6.19.  is absolutely continuous with respect to Lebesgue measure m.

Proof. Assume that  is not absolutely continuous with respect to m. Decompose  as

 = 

ac

+ 

s

, where 
ac

is absolutely continuous with respect to m and 
s

is singular.

Claim. There exists a set E with (E) > 0 such that D

+m

(
ac

+ m)(p) = 0 for p 2 E.
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Proof. Otherwise, D

+m

(
ac

+ m)(p) > 0 for -a.e. p. But by the Radon-Nikodym theorem

[8, Section 1.6.2, Theorem 2], for all Borel sets U ,

(
ac

+ m)(U) =

Z

U

D

+m

(
ac

+ m)(p)d(+ m), (6.45)

but then if (
ac

+ m)(U) = 0, we clearly also have ( + m)(U) = 0, which implies that 

is absolutely continuous with respect to 
ac

. But then by transitivity, since 
ac

is absolutely

continuous with respect to m,  is absolutely continuous with respect to m, which contradicts

the assumption that  is not absolutely continuous with respect to m.

Further, for p 2 E, by [8, Section 1.6.1], D

+m

(
ac

+m)(p) = lim
✏#0

(
ac

+ m)(B(p, ✏))

(+ m)(B(p, ✏))
= 0,

so for p 2 E,

lim
✏#0

(+ m)(B(p, ✏))

(
ac

+ m)(B(p, ✏))
!1, (6.46)

and we also have

lim
✏#0

(B(p, ✏))

m(B(p, ✏))
!1 (6.47)

and

(
ac

+ m)(E) =

Z

E

D

+m

(
ac

+ m)(p)d(+ m) = 0, (6.48)

so we must have 
ac

(E) = m(E) = 0 and 
s

(E) > 0.

Assume that p 2 E satisfies (6.40). Then by Lemma 6.18,

(B(p, ✏))

m(B(p, ✏))
· 1

(B(p, ✏))

Z

B(p,✏)

N(p) ·Nd = N(p) · 1

2✏

Z

B(p,✏)

Nd

= N(p) · T (p + ✏)� T (p� ✏)

2✏
(6.49)

 2

reach(S)
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for all su�ciently small ✏ > 0. By letting ✏! 0, we conclude that

lim
✏!0

(B(p, ✏))

m(B(p, ✏))
 2

reach(S)
, (6.50)

which is a contradiction. Thus  is absolutely continuous with respect to m.

Theorem 6.20. � is C

1,1.

Proof. Let

U = {p : D

m

(p) < 1} \
⇢

p : lim
✏#0

1

2✏

Z

B(p,✏)

ND

m

 dm = N(p)D
m

(p)

�

. (6.51)

Recall that, by definition, N(p) =
D

↵

⌘(p)

|D
↵

⌘(p)| and by [8, Section 1.6.1, Theorem 1] N is

↵-measurable, and therefore -measurable. N is -integrable because it is also bounded;

by the Radon-Nikodym theorem, ND

m

 is m-integrable. By the Lebesgue di↵erentiation

theorem [8, Theorem 1 of Section 1.7.1], since ND

m

 is Lebesgue integrable, we have

lim
✏#0

1

2✏

Z

B(p,✏)

ND

m

 dm = N(p)D
m

(p) for m-almost every p. Also, D

m

(p) is finite m-

almost everywhere by [8, Section 1.6.1, Theorem 1]. Thus U has full m-measure in [0, L].

By the Radon-Nikodym Theorem [8, Theorem 2 of Section 1.6.2], since D

m

 � 0,

|�0(p)� �

0(q)| =

�

�

�

�

Z

(q,p)

Nd

�

�

�

�

=

�

�

�

�

Z

(q,p)

ND

m

dm

�

�

�

�

(6.52)

 |p� q| · essential sup{D
m

}.
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It therefore su�ces to show that D

m

 is m-essentially bounded; we show that for p 2 U ,

D

m

  2

reach(S)
. (6.53)

For p in U ,

N(p) · T (p + ✏)� T (p� ✏)

2✏
= N(p) · 1

2✏

Z

B(p,✏)

Nd! D

m

(p). (6.54)

However, by Lemma 6.18,

lim
✏#0

N(p) · T (p + ✏)� T (p� ✏)

2✏
= lim

✏#0

✓

N(p) · T (p + ✏)

2✏
+ N(p) · T (p� ✏)

�2✏

◆

 2

reach(S)
. (6.55)

Corollary 6.21. We have T (p) ·N(p) = 0 for m-almost every p.

Proof. The second derivative �00 = T

0 exists almost everywhere by Rademacher’s Theorem;

we claim that T · N = 0 at points of U where T

0 exists. Using the fact that p 2 U , since
T (p + ✏)� T (p� ✏)

2✏
=

1

2✏

Z

B(p,✏)

ND

m

dm, we have that

D

m

(p) · hN(p), T (p)i =

⌧

lim
✏!0

1

2✏

Z

B(p,✏)

ND

m

dm, T (p)

�

= lim
✏!0

⌧

T (p + ✏)� T (p� ✏)

2✏
, T (p)

�

(6.56)

= hT 0(p), T (p)i

= 0.
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Chapter 7

The Reach Formula for Compact

Regular PR Sets

7.1 The Setup

The reach of a compact PR set S ⇢ Rm can be expressed in the following way as in [3]:

Lemma 7.1. The reach of a compact PR set S is the infimal r such that there exist points

x, p, and y such that x 6= y 2 S, and p� x 2 Nor(S, x) with |p� x| = r = |p� y|.

Proof. As before, let ⇡
S

denote the unique nearest point map and let Unp(S) denote the

set of points having a unique nearest point in S. We first show that reach(S)  inf r. For

x 2 S having such p, y, and r, we may write p = x+ rv where v is a unit normal vector to S

at x. By [9, Theorem 4.8(6)], reach(S)  ⌧ := sup {t � 0 : ⇡
S

(x + tv) = x}. Here we know

that ⌧  r since x cannot be the unique nearest point of S to p, so that reach(S)  r, and

reach(S)  inf r.

Let B(S, ✏) denote the set of points at distance less than ✏ from S. By definition,

reach(S) = sup
n

✏ > 0 : B(S, ✏) ⇢ Unp(S)
o

. Thus, for any R > reach(S), there exist

p 62 Unp(S) and distinct points x and y in S such that d

S

(p) = |x � p| = |y � p|  R.

67



Figure 7.1: The outward curvature along the boundary determines the reach.

Then by Lemma 1.5, p � x 2 Nor(S, x) (and also p � y 2 Nor(S, y)). Thus R � inf r, so

since reach(S) = inf R, reach(S) � inf r.

Now we shall obtain a formula for the reach of S that takes into consideration two

di↵erent kinds of behavior: outward curvature at a point in @S and global obstructions to

the projection ⇡
S

. (See Figures 7.1 and 7.2, respectively.) We first describe the reach as an

infimum over a family of circle radii.

Remark. The term “plane” will always refer to a plane of dimension 2.

Definition 7.2. Suppose S is a PR set. For distinct points x, y 2 @S and v 2 nor(S, x), we

say that y is admissible at (x, v) 2 nor(S) if hv, y � xi > 0. If y is admissible at (x, v),

define the radius function r(x, y; v) to be the radius of the planar circle through x and y

with center on the ray {x + �v : � > 0}.
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Figure 7.2: A global obstruction to ⇡
S

: the nearest point of S to y is not unique

Figure 7.3: Determining the formula for r(x, y; v).
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Definition 7.3. Suppose that y is admissible at (x, v) 2 nor(S). Define  (x, y; v) 2 [0, ⇡/2)

to be the measure of the angle between y � x and v.

Lemma 7.4. The radius function r(x, y; v) is given by

r(x, y; v) =
|y � x|

2 cos (x, y; v)
=

|y � x|
2

⌧

v,

y � x

|y � x|
�

. (7.1)

Proof. Consider the planar circle through x and y with center p = x + r(x, y; v)v (see

Figure 7.3); we may compute the cosine of the base angle  (x, y; v) by cos( (x, y; v)) =
|y � x|

2r(x, y; v)
. Further, since cos( (x, y; v)) is the length of the projection of v onto y � x, we

have

⌧

v,

y � x

|y � x|
�

=
|y � x|

2r(x, y; v)
.

Remark. In the case that S is a C

1,1

m-dimensional submanifold with boundary, the radius

r(x, y; n(x)) is also the radius of the sphere tangent to S at x and passing through y. In this

case, we shall write r(x, y) and  (x, y) in place of r(x, y; n(x)) and  (x, y; n(x)). Similarly,

we shall say that y is admissible at x because nor(S, x) = {n(x)}.

Lemma 7.5. Let S be a PR set with reach(S) < 1. Then

reach(S) = inf
x 6=y

y admissible at (x,v)2nor(S)

r(x, y; v). (7.2)

Proof. Suppose that r(x, y; v) is the radius of the planar circle through x and y with center

p = x+r(x, y; v)v. The center p is a point satisfying |p�x| = |p�y| = r(x, y; v) and p�x 2
Nor(S, x). Moreover, given p and y satisfying x 6= y 2 @S and p�x 2 Nor(S, x) with |p�x| =

|p � y|, the planar circle through x and y which is normal to v :=
p� x

|p� x| at x has radius

r(x, y; v) = |p� x|. By Lemma 7.1, we have reach(S) = inf
x6=y

y admissible at (x,v)2nor(S)

r(x, y; v).

Remark. In the case that S ⇢ Rm is a C

1,1

m-dimensional submanifold with boundary, the

function r is a quotient of Lipschitz functions, so it is locally Lipschitz.
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Definition 7.6. Let S ⇢ Rm be a C

1,1

m-dimensional submanifold with boundary. Let

x 2 @S, and let P be a plane satisfying P 6⇢ Tan(S, x). We say that ~ is the curvature

vector of the curve P \ @S at x if ~ is the curvature vector at x of a parametrization of

P \ @S by arclength near x.

In the setting of C

1,1 submanifolds with boundary, the radii can be thought of as prelim-

inary data for osculating circles:

Lemma 7.7. Let S ⇢ Rm be a C

1,1

m-dimensional submanifold with boundary. Let P be a

plane through x 2 @S such that x + n(x) 2 P . Suppose that the curve P \ @S has curvature

vector ~ at x and that y is admissible at x for all y 2 P \ @S su�ciently near x. Then

lim
y!x

r(x, y) =
1

|~| . (7.3)

Proof. See [3, Lemma 3.5].

Lemma 7.8. Let S ⇢ Rm be a C

1,1

m-dimensional submanifold with boundary. Let P be

a plane through x 2 @S such that x + n(x) 2 P . Suppose that the curve P \ @S has unit

tangent vector T and curvature vector ~ at x. Then the second fundamental form II(x)(T, T )

satisfies

|II(x)(T, T )| = |~|. (7.4)

In particular, when h~, n(x)i > 0, we have

II(x)(T, T ) = |~|. (7.5)

Remark. We generalize this result in Lemma 7.11.

Proof. Let � = �(t) be an arclength parametrization of P \ @S near x such that �(0) = x.

Then, since �0(0) = T and �

00(0) = ~ = ±|~|n(x), we may di↵erentiate both sides of the
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equation 0 = hn � �(t), �0(t)i at time zero and obtain

0 = hdn

x

(T ), T i+ hn(x),~i = �II(x)(T, T )± |~|. (7.6)

In the case that h, n(x)i > 0, we have ~ = |~|n(x), so that II(x)(T, T ) = |~|.

Denote the the directional derivative of a function F with respect to the unit tangent

vector T = T (x) by
d

dT

(F )(x) := dF

x

(T ).

Lemma 7.9 ([3, Lemma 3.6]). Let S be a C

1,1

m-dimensional submanifold with boundary,

and suppose x 2 Sm(S). Let P be a plane through x containing x + n(x), and suppose that

the curve P \@S has curvature vector ~ at x. Further suppose that y 2 P \ @S is admissible

at x with
y � x

|y � x| 6= n(x). Orient P \ @S so that the unit tangent vector T at x satisfies

hT, y � xi > 0. Then the directional derivative
@r

@T

(x, y) exists and is given by

@r

@T

(x, y) = (r(x, y)|~|� 1) tan( (x, y)). (7.7)

Proof. Suppose that � parametrizes P \ @S by arclength near x. Write cos (x, y) =
⌧

n(x),
y � x

|y � x|
�

and take
d

dT

of both sides; since
y � x

|y � x| is in the T, n(x)-plane and

hdn

x

(T ), n(x)i = 0, (7.8)
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we have

� sin( (x, y))
d 

dT

=

⌧

dn

x

T,

y � x

|y � x|
�

+

⌧

n(x),
1

|y � x|
✓⌧

T,

y � x

|y � x|
�

y � x

|y � x| � T

◆�

=

⌧

dn

x

T,

y � x

|y � x|
�

� 1

|y � x| hn(x), T i+
1

|y � x|
⌧

T,

y � x

|y � x|
�⌧

n(x),
y � x

|y � x|
�

=

⌧

dn

x

T,

y � x

|y � x|
�

+
1

|y � x|
⌧

T,

y � x

|y � x|
�⌧

n(x),
y � x

|y � x|
�

= hdn

x

T, n(x)i
⌧

n(x),
y � x

|y � x|
�

+ hdn

x

T, T i
⌧

T,

y � x

|y � x|
�

+
sin( (x, y)) cos( (x, y))

|y � x|
= hdn

x

T, T i
⌧

T,

y � x

|y � x|
�

+
sin( (x, y)) cos( (x, y))

|y � x|
= �|~| sin( (x, y)) +

sin( (x, y)) cos( (x, y))

|y � x| , (7.9)

so that
d 

dT

= |~|� 1

2r(x, y)
. (7.10)

Also, by taking the derivative of 2r cos( (x, y)) = hy � x, y � xi1/2, we obtain

�2r(x, y) sin( (x, y))
d 

dT

+ 2 cos( (x, y))
dr

dT

= �
⌧

y � x

|y � x| , T
�

. (7.11)

Since

⌧

y � x

|y � x| , T
�

= sin( (x, y)), by combining (7.11) and (7.10), we obtain the formula

dr

dT

= tan( (x, y))(r(x, y)|~|� 1). (7.12)
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7.2 The Reach Formula in the C

1,1 Case

Throughout this section, assume that S ⇢ Rm is an m-dimensional C

1,1 submanifold with

boundary.

7.2.1 Meusnier’s Theorem

In this subsection, we shall further describe the relationship between the second fundamental

form II and the curvatures of plane sections of @S. We shall use these results in the next

section when we refine our formula for reach(S).

Lemma 7.10. Let x 2 @S, and let P be a plane containing x such that P 6⇢ Tan(S, x).

Then @S \ P is a C

1 curve near x.

Proof. A standard codimension argument shows that @S \ P is a curve. It is continuously

di↵erentiable because the transverse intersection of two C

1 submanifolds is C

1.

Lemma 7.11 (Meusnier’s Theorem). Suppose that x 2 Sm(S). If P is a plane through x

satisfying P 6⇢ Tan(S, x), then P \ @S has a curvature vector ~ at x. If T is a unit tangent

vector to P \ @S at x, then

II(x)(T, T ) = hn(x),~i. (7.13)

Proof. Suppose that the arclength-parametrized curve � parametrizes P \ @S on a neigh-

borhood of x, and suppose that �(0) = x. Project n � � onto P and then normalize. The

resulting unit vector field ñ along � is normal to �. This vector field is di↵erentiable at

t = 0 because n � � is di↵erentiable at t = 0, and its projection onto P is non-vanishing

in a neighborhood of x. Using R2 coordinates, write ñ(t) = (cos(✓(t)), sin(✓(t))), so that

ñ

0(t) = ✓

0(t)(� sin(✓(t)), cos(✓(t))). Up to a sign, �0(t) = (� sin(✓(t)), cos(✓(t))); since ñ

0(0)

exists, so does �00(0) = ✓

0(0)(� cos(✓(0)),� sin(✓(0))). Now, using the fact that 0 = hn��, �0i

74



and taking the derivative of both sides with respect to t at t = 0, we obtain

0 = hdn

x

(T ), T i+ hn(x),~i = �II(x)(T, T ) + hn(x),~i. (7.14)

Remark. It follows from Lemma 7.11 that we can compute II(x)(T, T ) at x 2 Sm(S) using

any planar curve P \ @S containing x, so long as P 6⇢ Tan(S, x).

7.2.2 Existence of Nearby Almost-smooth Curves

In this section we show that, on a su�ciently small open set in @S, any planar curve has

a su�ciently close curve F

w

such that F

w

(t) 2 Sm(S) for almost every t. We shall use the

following lemma as the foundation for our approximations:

Lemma 7.12. The oriented C

1 hypersurface A ⇢ Rm is a C

1,1 hypersurface if and only

if, given any p 2 A, there is a neighborhood U ⇢ Rm of p such that under some system of

isometric coordinates on U the set A\U appears as the graph of a C

1 function with Lipschitz

gradient.

Proof. First, A is locally a graph. Suppose that ↵ : U ! A is a coordinate map on A near

p 2 A, and let n : A ! S

m�1 denote the Gauss map. Assume without loss of generality that

n(p) = e

m

= (0, . . . , 0, 1). Let ⇧ : A ! {x
m

= 0} by ⇧(x) = x�hx, e

m

ie
m

. We claim that ⇧

is injective on a su�ciently small neighborhood of p. If not, there exist sequences of points y

i

and x

i

satisfying x

i

! p, y

i

! p, and
y

i

� x

i

|y
i

� x

i

| = e

m

. Write y

0
i

= ↵

�1(y
i

) and x

0
i

= ↵

�1(x
i

).

By passing to a subsequence, we may assume that
y

0
i

� x

0
i

|y0
i

� x

0
i

| ! v. Then, since ↵ is C

1, using
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the fundamental theorem of calculus and the dominated convergence theorem, we have

d↵

p

(v) =

Z

[0,1]

lim
i!1

d↵

(1�t)x

0
i+ty

0
i

✓

y

0
i

� x

0
i

|y0
i

� x

0
i

|
◆

dt

= lim
i!1

Z

[0,1]

d↵

(1�t)x

0
i+ty

0
i

✓

y

0
i

� x

0
i

|y0
i

� x

0
i

|
◆

dt

= lim
i!1

↵(y0
i

)� ↵(x0
i

)

|y0
i

� x

0
i

| (7.15)

= lim
i!1

|y
i

� x

i

|
|y0

i

� x

0
i

|
y

i

� x

i

|y
i

� x

i

|
= lim

i!1

|y
i

� x

i

|
|y0

i

� x

0
i

|em

.

This is a contradiction. Since ⇧ is locally injective, we may define a function � by (x,�(x)) =

⇧�1(x). Up to a sign, n(x) =
1

p

1 + |r�
x

|2 (�r�
x

, 1). Thus r� is Lipschitz if and only if n

is Lipschitz.

Lemma 7.13. Let p 2 @S. There exists an open set U containing p with the following

property: for any pair of points q

1

and q

2

in U \ @S, there exists a closed ball B ⇢ Rm�1 of

positive radius and a C

1,1 map F : [0, 1]⇥B ! @S of @S such that

1. F : (0, 1)⇥B ! @S parametrizes an open subset of @S.

2. The curve F

w

(t) := F (t, w) is a C

1,1 planar curve, and one of the curves F

w

joins q

1

and q

2

.

3. length(F
w

)  C

0|q
1

�q

2

|, where C

0 is independent of the vector w and points q

1

and q

2

.

4. For almost every w, the curve F

w

satisfies F

w

(t) 2 Sm(S) for almost every t, and the

Lipschitz constant for the unit tangent to F

w

is independent of the vector w and points

q

1

and q

2

.

5. Suppose x = F

w

(t) 2 Sm(S). Let T and ~ denote the unit tangent vector and curvature

vector of the curve F

w

at x. Suppose that h~, n(x)i > 0. Then there exists a constant
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Figure 7.4: The curves F

w

of Lemma 7.13.

C, independent of q

1

, q

2

, t, and w, such that

|II(x)(T, T )� |~||  C|p� x|. (7.16)

Proof. Assume without loss of generality that n(p) = e

m

, the m-th standard basis vector of

Rm (see Figure 7.4). Using Lemma 7.12, let U be a neighborhood of p such that U \ @S =

{(x,�(x)) : x 2 V ⇢ {x
m

= 0}}.

Sub-lemma 7.14. Suppose that |u| = 1 and that u and e

m

are linearly independent. There

exists a neighborhood U

0 ⇢ @S of p on which the normalized projection of n onto the plane

spanned by u and e

m

is Lipschitz, and the Lipschitz constant is independent of u for all u

with |hu, n(p)i| < �.
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Proof. Let C be a Lipschitz constant for n. Write n(x, u) := hu, n(x)iu + he
m

, n(x)ie
m

. The

normalized projection has the form

ñ(x, u) :=
n(x, u)

|n(x, u)| . (7.17)

Since n(p, u) = 1 for all u 2 Tan(S, p), there exists � > 0 for which |n(x, u)| > 1/2 whenever

|hu, n(p)i| < � and |x�p| < �. Thus ñ is Lipschitz on |x�p| < �, and the Lipschitz constant

depends only on C.

Now, assume without loss of generality that U \ @S ⇢ U

0 and V is convex. Let  :

U \ @S ! V by  (x
1

, . . . , x

m

) = (x
1

, . . . , x

m�1

, 0). For q

1

, q

2

2 U \ @S, assume without loss

of generality that  (q
1

) = 0 and  (q
2

) = ce

1

, so that q

1

= (0,�(0)) and q

2

= (ce
1

,�(ce
1

)).

Note that  (q
2

) �  (q
1

) = ce

1

. Let � : [0, 1] ! {x
m

= 0} be the straight-line path joining

 (q
1

) = 0 and  (q
2

) = ce

1

, parametrized by �(t) = cte

1

for t 2 [0, 1]. Let W = {w : w · e
m

=

0 and w · e
1

= 0}, and let ✏0 be su�ciently small that �(t) + w 2 V for all t 2 [0, 1] and all

w 2 W with |w|  ✏

0. Let B = {w 2 W : |w|  ✏

0}.
Consider the variation F : [0, 1]⇥B ! @S given by

F (t, w) = (�(t) + w,�(�(t) + w)) = (cte
1

+ w,�(cte
1

+ w)). (7.18)

Let F

w

(t) = F (t, w), and note that F

0

joins q

1

and q

2

.

Sub-lemma 7.15. F : (0, 1)⇥B ! @S parametrizes an open set in @S.
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Proof. This follows from smoothness of  and the fact that r� is Lipschitz along with the

calculations

@

@t

F (t, w) = (ce
1

,r�
�(t)+w

(ce
1

)) (7.19)

@

@w

F (t, w) = (w,r�
�(t)+w

(w)).

The partial derivatives span the tangent space at F (t, w) since the vectors {e
1

}[{w : w 2 B}
span Rm�1.

Sub-lemma 7.16. Each curve F

w

is a C

1,1 curve in the plane through (w, 0) spanned by e

1

and e

m

, and the Lipschitz constant C is independent of w and q

1

, q

2

.

Proof. It is clear that F

w

satisfies the planarity condition. To see that the curve is C

1,1, note

that the normal to the curve F

w

at the point F

w

(t) = F (t, w) is given by ñ (F (t, w), e
1

), up

to a sign. Thus, since e

1

· n(p) = 0,

|ñ (F (t
1

, w), e
1

)� ñ (F (t
2

, w), e
1

)|  C|F (t
1

, w)� F (t
2

, w)|, (7.20)

where C is a constant independent of w, q

1

, and q

2

by Sub-lemma 7.14. Since ñ is Lipschitz

with constant C, so is the unit tangent vector field T = T (F (t, w)).

Sub-lemma 7.17. length(F
w

)  C

0|q
1

� q

2

|, where C

0 is independent of the vector w and

points q

1

and q

2
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Proof. Using the definition of F ,

length(F
w

) =

Z

[0,1]

|(ce
1

,r�
�(t)+w

(ce
1

))|dt

= c

Z

[0,1]

q

1 + |r�
�(t)+w

(e
1

)|2dt (7.21)

 c

p

1 + sup |r�
x

|2

= C

0|q
1

� q

2

|,

where the supremum above is taken over all x in a compact set containing Ū .

Sub-lemma 7.18. For almost every w, the curve F

w

has the property that F

w

(t) 2 Sm(S)

for almost every t.

Proof. Let Y = {(t, w) 2 [0, 1] ⇥ B : II is undefined at F (t, w)}. Then F (Y ) ⇢ S has

measure zero by hypothesis, and

0 =

Z

F (Y )

dvol(@S) =

Z

Y

|Jac(F )|dvol({e
m

= 0}), (7.22)

where Jac(F ) denotes the determinant of the map dF . Since the determinant |Jac(F )| is

non-vanishing by (7.19), we conclude that Y ⇢ [0, 1] ⇥ B has measure zero. Moreover, by

Fubini’s theorem,

Z

Y

|Jac(F )|dvol({e
m

= 0}) =

Z

[0,1]

Z

B

�

Y

|Jac(F )|, (7.23)

where �
Y

denotes the characteristic function of Y . Thus we must have (t, w) 62 Y for almost

every w and t, so that almost every curve F

w

satisfies F

w

(t) 2 Sm(S) for almost every t.

Sub-lemma 7.19. Suppose x = F

w

(t) 2 Sm(S). Let T and ~ denote the unit tangent vector

and curvature vector of the curve F

w

at x. Suppose that h~, n(x)i > 0. Then there exists a
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constant C, independent of q

1

, q

2

, t, and w, such that

|II(x)(T, T )� |~||  C|p� x|. (7.24)

Proof. From Lemma 7.11, we have

II(x)(T, T ) = hn(x),~i

= hn(x)� ~

|~| ,~i+ h ~|~| ,~i (7.25)

= hn(x)� ~

|~| ,~i+ |~|

so that, by the Cauchy-Schwarz inequality, we have

|II(x)(T, T )� |~||  |~|
�

�

�

�

n(x)� ~

|~|
�

�

�

�

. (7.26)

By Equation (7.20), we have |~|  C, where C is independent of q

1

and q

2

as well as t and w.

Further,
~

|~| is the normalized projection of n(x) = n(F (t, w)) onto the plane spanned by e

1

and e

m

, so that
~

|~| = ñ (F (t, w), e
1

). This projection is Lipschitz continuous with constant

C by Sub-lemma 7.14, so that, since ñ (p, e
1

) = n(p),

�

�

�

�

~

|~| � n(x)

�

�

�

�


�

�

�

�

~

|~| � n(p)

�

�

�

�

+ |n(p)� n(x)|

= |ñ (F (t, w), e
1

)� ñ (p, e
1

)|+ |n(p)� n(x)| (7.27)

 C|F (t, w)� p|+ M

n

|p� x|

= (C + M

n

)|x� p|,

where M

n

is a Lipschitz constant for n.

This concludes the proof of Lemma 7.13.
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7.2.3 The Penalized Distance and ⇢

In this subsection, we adapt the techniques of [3] to the setting of C

1,1 submanifolds with

boundary in Euclidean space in order to obtain a formula for the reach of such sets. We

follow the same general techniques of proof as in [3], although we shall have to make some

modifications.

Suppose S ⇢ Rm is an m-dimensional C

1,1 submanifold with boundary.

Lemma 7.20. Suppose y 2 Sm(S) and v 2 Tan(S, y), and let P be the plane through y

containing y + n(y) and y + v. Suppose that � parametrizes P \ @S by arclength on a

neighborhood of y = �(0). Then II(y)(v, v) > 0 only if �(t) is admissible at y whenever |t| is

su�ciently small.

Proof. Suppose that II(y)(v, v) > 0. By definition of II, we have hn(y), �00(0)i > 0. Thus,

since hn(y), �0(0)i = 0, there exists � > 0 such that hn(y),
�

0(t)

t

i > 0 whenever |t| < �. Since

� is C

1,1, by the Fundamental Theorem of Calculus, we have

h�(✏)� �(0), n(y)i =

Z

[0,✏]

h�0(t), n(y)idt > 0 (7.28)

for all ✏ with 0 < ✏ < �. The result follows for �(�✏) by an analogous argument.

Definition 7.21. For y 2 Sm(S), let k(y) := max

⇢

0, max
|v|=1

II(y)(v, v)

�

, and for x in S, let

⇢(x) :=

0

@lim sup
y2Sm(S)

y!x

k(y)

1

A

�1

. (7.29)

Recall that a function g is lower semicontinuous if g(x
0

)  lim
i!1

g(x
i

) whenever x

i

! x

0

and lim
i!1

g(x
i

) exists.

Lemma 7.22. ⇢ is lower semicontinuous.
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Proof. If x

i

! x

0

and ⇢(x
i

) converges, by definition ⇢(x
i

) =

0

@lim sup
y2Sm(S)

y!xi

k(y)

1

A

�1

, so we can

take y

i

2 Sm(S) such that |y
i

� x

i

| < 1/i and

�

�

�

�

⇢(x
i

)� 1

k(y
i

)

�

�

�

�

< 1/i. Thus y

i

! x

0

, and

⇢(x
0

) = lim inf
y!x0

1

k(y)
 lim

i!1

1

k(y
i

)
= lim

i!1
⇢(x

i

).

Remark. A lower semicontinuous function g : X ⇢ Rm ! R attains its infimum whenever

X is closed.

Lemma 7.23. inf
y2Sm(S), |v|=1

II(y)(v,v)>0

1

II(y)(v, v)
= inf

y2Sm(S)

1

k(y)
= min

x2@S

⇢(x) � reach(S)

Proof. By Lemma 7.11, at a point y 2 Sm(S), we have |~| = II(y)(v, v) for v a unit tangent

vector to @S whenever ~ points in the direction of n(y). Thus k(y) = max {0, max |~|} for

y 2 Sm(S), where the maximum is over all ~ pointing in the direction of n(y). Further, if

~(y) points out for some P \ @S containing y,

1

k(y)
= min

1

|~| = min
|v|=1

II(y)(v,v)>0

1

II(y)(v, v)
, (7.30)

where the minimum of
1

|~| is the minimum over all outward curvature vectors ~ at y.

By definition of ⇢, we have ⇢(x) = lim inf
1

k(y)
, so that

min
x

⇢(x) = inf
y2Sm(S), |v|=1

II(y)(v,v)>0

1

II(y)(v, v)
. (7.31)

Moreover, every outward curvature vector ~ at y 2 Sm(S) satisfies
1

|~| = lim
i!1

r(y, z

i

) for

some sequence of (admissible) z

i

! y by Lemma 7.7 and Lemma 7.20, so that k(y) does as

well, and

min
y2Sm(S)

1

k(y)
� inf r(x, z) = reach(S). (7.32)
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Definition 7.24. We define the penalized distance between distinct points x, y 2 @S with

y admissible at x by pd(x, y) :=
|y � x|

cos2( (x, y))
=

2r(x, y)

cos( (x, y))
. We define pd(x, y) = 1 if

x = y or if y is not admissible at x.

Definition 7.25. We say that (x, y) 2 S ⇥ S is a critical pair if x and y are distinct and

x� y 2 Nor(S, y) and y � x 2 Nor(S, x).

Lemma 7.26. If reach(S) < 1, pd(x, y) � 2reach(S), with equality only if (x, y) is a

critical pair.

Proof. It is clear that pd(x, y) � 2reach(S), since pd(x, y) � 2r(x, y) � 2reach(S). Also, if

equality holds, we have 2r(x, y)  pd(x, y) = 2reach(S)  2r(x, y), so that we must have

 (x, y) = 0 and y � x 2 Nor(S, x). If x� y 62 Nor(S, y), there is a tangential direction T in

Tan(@S, y) such that hx� y, T i > 0. Thus if we parametrize a planar section of @S at y by

�(t), with �(0) = y and �0(0) = T , we have that
d

dt

?

?

?

?

t=0

|�(t)� x| =

⌧

T,

y � x

|y � x|
�

< 0, and

d

dt

?

?

?

?

t=0

pd(x, �(t)) =

⌧

T,

y � x

|y � x|
�

< 0, (7.33)

so that there exists y

0 with pd(x, y

0) < pd(x, y) = 2reach(S), which is a contradiction.

Summarizing our work above, we have shown that the reach of an m-dimensional C

1,1

submanifold with boundary satisfies the following inequality:
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Corollary 7.27. If S ⇢ Rm is an m-dimensional compact C

1,1 submanifold with boundary

with reach(S) < 1, then

reach(S)  min

⇢

min
x,y2S

pd(x, y)

2
, min

@S

⇢(x)

�

(7.34)

= min

8

<

:

min
x,y2@S

pd(x, y)

2
, inf

x2Sm(S)

II(x)(v,v)>0, |v|=1

1

II(x)(v, v)

9

=

;

. (7.35)

We shall later show that equality holds in the theorem above. We already know that the

reach of S is the infimum over all r(x, y). To express the reach in terms of pd(x, y) and ⇢(x),

we shall use the following lemma:

Lemma 7.28. If r(x, y) = reach(S) and y � x 62 Nor(S, x), then ⇢(x) = reach(S).

Proof. If not, since ⇢(x) � reach(S), we have ⇢(x) > reach(S). Also, recall that ⇢ is lower

semicontinuous by Lemma 7.22. Keeping y fixed, by continuity of r where it is finite and

lower semicontinuity of ⇢, there is a neighborhood of x such that y is an admissible direction

at x

0 and r(x0, y) < ⇢(x0) for all x

0. But then, noting that Sm(S) has full measure, at every

point x

0 of Sm(S) for which r(x0, y) < ⇢(x0), we have r(x0, y) <

1

|~| , where ~ is the curvature

vector at x

0 of the plane section through x

0 and y and containing n(x0). Thus by Lemma 7.9,

we have that
dr

dT

(x0, y) < 0. However, this contradicts the assumption that r is minimized

(over the admissible set) at (x, y): by assumption S is C

1,1, so that r(·, y) is locally Lipschitz

and we can recover r locally by integrating its derivative.

Now, when determining the reach of a set, one encounters points where the boundary

has large outward curvature, and one also encounters critical pairs; it turns out that these

two behaviors completely determine the reach of a set. Our pd function identifies critical

pairs, and the function ⇢ identifies the points with great curvature. To prove that our reach

formula holds, we shall use the following inequality to relate curvature to r(x, y).
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Figure 7.5: The circles C and C̃ in the proof of Lemma 7.29

Lemma 7.29. Let � : [0, L] ! @S be an arclength parametrized curve such that � ⇢ P \@S,

where P is a plane. Suppose that �(0) = x and that �(L) = y, and suppose that C ⇢ P is a

circle of radius R tangent to � at x and passing through y. Let N(s) denote the unit normal

to �(s) at x, chosen so that hN(0), n(�(0))i > 0. If length(�) < R, we have

sup
�

hN(s), �00(s)i � 1

R

. (7.36)

Proof. Assume without loss of generality that � is locally a graph over the x-axis and that

C is centered at the origin. Either there exists a sub-curve � from x to z which is disjoint

from the interior of C, or there is a sequence z

j

! 0 with �(z
j

) in the interior of C for all j.

In the first case, let f(a, b) = b�pR

2 � a

2, and consider the composition f ��. The level

sets of f are circles of radius R, and f

�1(0) = C. The composition is well-defined because

� is a graph over the x-axis, and x and y lie on C. Moreover, the minimum of f on � is

attained at an interior point of �, since its endpoints lie on f(a, b) = 0 and the rest of � lies
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outside f

�1[0,1). Suppose that f � � has a minimum at t

0

. Then �(t
0

) lies on a circle C̃ of

radius R, and all su�ciently close points of � lie inside the circle. (See Figure 7.5.)

Translate C̃ to the origin, and consider the function g(t) = |�(t)|2. Then g has a maximum

at t

0

, and we have

0 = g

0(t
0

) = 2h�(t
0

), �0(t
0

)i.

Since g

0 is Lipschitz, by the Fundamental Theorem of Calculus, we have

g

0(t)� g

0(t
0

) =

Z

[t0,t]

g

00(u)du = 2

Z

[t0,t]

(h�(u), �00(u)i+ 1)du (7.37)

and for all su�ciently small s near t

0

, using the fact that g

0(t
0

) = 0, we have

0 > |�(s)|2 �R

2

= g(s)� g(t
0

)

=

Z

[t0,s]

g

0(v)dv (7.38)

=

Z

[t0,s]

Z

[t0,v]

g

00(u)dudv

= 2

Z

[t0,s]

Z

[t0,v]

(h�(u), �00(u)i+ 1)dudv.

Thus there exists a sequence u

j

! t

0

such that �00(u
j

) exists and h�(u
j

), �00(u
j

)i < �1. Since

�(t
0

) = �RN(t
0

), we have

lim
j!1

h�RN(u
j

), �00(u
j

)i = lim
j!1

h�(u
j

), �00(u
j

)i  �1, . (7.39)

so that

sup
s

hN(s), �00(s)i � 1/R. (7.40)
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In the second case, again consider the function g(t) = |�(t)|2. Since � is tangent to C

at �(0) = x, we have 0 = g

0(0) = 2h�(0), �0(0)i. Using (7.38), since g(z
j

) � g(0) < 0, there

exists v

j

2 [0, z
j

] with g

0(v
j

) < 0. Thus, using (7.37) and the fact that g

0(0) = 0, there exists

u

j

2 [0, v
j

] such that g is twice di↵erentiable at u

j

and g

00(u
j

) < 0. Since � is parametrized

by arclength, we have 0 > g

00(u
j

) = 2(h�(u
j

), �00(u
j

)i + 1). Further, since �(0) = �RN(0),

we have

lim
j!1

h�RN(u
j

), �00(u
j

)i = lim
j!1

h�(u
j

), �00(u
j

)i  �1. (7.41)

Thus sup
s

hN(s), �00(s)i � 1/R.

7.2.4 The Reach Formula in the C

1,1 Case

Now we are ready to establish the formula for reach of a compact C

1,1

m-dimensional sub-

manifold with boundary of Rm. The overall approach is the same as that of [3]. However,

since we are working in the setting of manifolds with boundary, we have to be more careful

in one of the cases in the proof. For that, we apply the results of Subsection 7.2.2

Theorem 7.30. Let S ⇢ Rm be a compact m-dimensional C

1,1 submanifold with boundary

satisfying reach(S) < 1. Then

reach(S) = min

⇢

1

2
min
x,y2S

pd(x, y), min
S

⇢

�

(7.42)

= min

8

<

:

1

2
min
x,y2S

pd(x, y), inf
x2Sm(S)

II(x)(v,v)>0, |v|=1

1

II(x)(v, v)

9

=

;

.
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Proof. We have already shown that

reach(S)  min

⇢

1

2
min
x,y2S

pd(x, y), min
S

⇢

�

(7.43)

= min

8

<

:

1

2
min
x,y2S

pd(x, y), inf
x2Sm(S)

II(x)(v,v)>0, |v|=1

1

II(x)(v, v)

9

=

;

.

Also, we know that reach(S) is the infimum over all r(x, y) for y admissible at x. Suppose

that r(x
i

, y

i

) ! reach(S). By passing to a subsequence, we can assume that x

i

! x

0

and

y

i

! y

0

. Then one of the following is true:

• x

0

6= y

0

and y

0

2 Nor(S, x

0

)

• x

0

6= y

0

and y

0

62 Nor(S, x

0

)

• x

0

= y

0

.

In the first case, by continuity of r where r is finite, we know that r(x
0

, y

0

) = reach(S);

also, since  (x
0

, y

0

) = 0, we have that pd(x
0

, y

0

) = 2r(x
0

, y

0

) = 2reach(S). In the second

case, we also have
y

i

� x

i

|y
i

� x

i

| !
y

0

� x

0

|y
0

� x

0

| . Since reach(S) is finite by assumption, we also

have r(x
i

, y

i

) ! r(x
0

, y

0

), so that r(x
0

, y

0

) = reach(S). Lemma 7.28 implies that ⇢(x
0

) =

reach(S).

In the third case, we have x

i

! x

0

and y

i

! x

0

. Apply Lemma 7.13 at p = x

0

. Using

the fact that r is locally Lipschitz where it is finite, we may replace x

i

and y

i

with x

0
i

and y

0
i

such that

|x
i

� x

0
i

|! 0,

|y
i

� y

0
i

|! 0, (7.44)

|r(x
i

, y

i

)� r(x0
i

, y

0
i

)|! 0,
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and there exists an arclength parametrized C

1,1 planar curve �
i

: [0, L] ! @S satisfying

• �

i

joins x

0
i

to y

0
i

• II is defined almost everywhere along �
i

, and

• length(�
i

) ! 0.

Suppose that the plane P

i

contains �
i

, and let C

i

be the circle of radius R

i

in P

i

tangent to �

at x

0
i

and passing through y

0
i

. By construction of �
i

as in Lemma 7.13, the plane P

i

contains

x

0
i

+ n(x
0

). By definition of r(x0
i

, y

0
i

), there is a ball B

i

of radius r(x0
i

, y

0
i

) tangent to @S at x

0
i

and passing through y

0
i

. We have C

i

⇢ @B

i

; since n(x0
i

) ! n(x
0

), we have R

i

� r(x0
i

, y

0
i

) ! 0.

Let N

i

(t) be the projection of n(�
i

(t)) onto P

i

. By construction, we have hN
i

(0), n(x0
i

)i >

0. By Lemma 7.29, for all su�ciently large i, we have sup
s

hN
i

(s), �00
i

(s)i � 1/R
i

. In particular,

note that hN
i

(s), �00
i

(s)i > 0 implies that hn(�(s)), �00
i

(s)i > 0, since N

i

is the projection of n

onto P

i

. Applying Lemma 7.13, we thus have

lim
i!1

 

sup
�(s)2Sm(S)

II(�
i

(s))(�0
i

(s), �0
i

(s))

!

= lim
i!1

✓

sup
�i

hN
i

(s), �00
i

(s)i
◆

� 1

reach(S)
, (7.45)

so that

reach(S) � inf
y2Sm(S), |v|=1

II(y)(v,v)>0

1

II(y)(v, v)
. (7.46)

7.3 The Reach Formula for Regular Compact PR Sets

Let S be a regular compact PR set. In this section we establish a formula for reach(S)

analogous to the one in Lemma 7.30. For this we shall use the second fundamental form for

PR sets from Section 1.2.
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Recall that we say that y is admissible at (x, v) 2 nor(S) if

⌧

v,

y � x

|y � x|
�

> 0. We

define the penalized distance for PR sets in the same way as for C

1,1

m-submanifolds with

boundary:

Definition 7.31. We define the penalized distance between distinct points x, y 2 @S with

y admissible at (x, v) by pd(x, y; v) :=
|y � x|

⌧

v,

y � x

|y � x|
�

2

. Otherwise, set pd(x, y; v) = 1.

It turns out that the reach formula for compact regular PR sets is nearly the same as the

one for C

1,1

m-submanifolds with boundary:

Theorem 7.32. The reach of a compact regular PR set S ⇢ Rm whose reach is finite satisfies

reach(S) = min

8

<

:

1

2
min

(x,y)2S⇥S

(x,v)2nor(S)

pd(x, y; v), inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)

9

=

;

.

Proof. Recall that S

✏

= {x : d

S

(x)  ✏}, and note that reach(S
✏

) = reach(S) � ✏. Let pd
✏

denote the penalized distance on S

✏

, and let II
✏

denote the second fundamental form on S

✏

.

We prove the theorem by showing that reach(S) is at most the right-hand quantity and at

least the right-hand quantity.

Claim. We have the inequality

reach(S)  min

8

<

:

1

2
min

(x,y)2S⇥S

(x,v)2nor(S)

pd(x, y; v), inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)

9

=

;

. (7.47)

Sub-claim 1:

reach(S)  inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)
. (7.48)
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There is a sequence of points (⌧
j

,�

j

) 2 Tan(nor(S), (p, v)) such that

lim
j!1

1

�⌧
j

· �
j

= inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)
. (7.49)

By Lemma 1.15, for all j, we have that ⌧
j

+ ✏�

j

2 Tan(S
✏

, x

0

), where x

0

= p + ✏v. For fixed

j, we have
1

�(⌧
j

+ ✏�

j

) · �
j

� inf
y2Sm(S✏), |v|=1

II✏(y)(v,v)>0

1

II
✏

(y)(v, v)
� reach(S

✏

) (7.50)

for all su�ciently small ✏ > 0. Letting ✏! 0, we have

reach(S)  1

�⌧
j

· �
j

. (7.51)

Letting j !1, we have

reach(S)  inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)
. (7.52)

Sub-claim 2:

reach(S)  min
1

2
min

(x,y)2S⇥S

(x,v)2nor(S)

pd(x, y; v). (7.53)

Suppose that reach(S) >

1

2
pd(x, y; v) for some triple (x, y; v). Then there exists ↵ > 0

such that reach(S)� ↵ >

1

2
pd(x, y; v). Consider x(✏) := x + ✏v, y(✏) := y + ✏v

0 2 S

✏

, where

v

0 2 nor(S, y) is fixed and ✏ <

↵

2
. Since v 2 nor(S

✏

, x(✏)) (in fact v = n(x(✏))),

1

2
pd

✏

(x(✏), y(✏)) =
1

2

|x(✏)� y(✏)|
⌧

v,

y(✏)� x(✏)

|y(✏)� x(✏)|
�

2

! 1

2
pd(x, y; v) < reach(S)� ↵, (7.54)
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so that for su�ciently small ✏,
1

2
pd

✏

(x(✏), y(✏)) < reach(S) � ↵

2
. Thus, for all su�ciently

small ✏, we have

reach(S
✏

) = reach(S)� ✏ > reach(S)� ↵

2
>

1

2
pd

✏

(x(✏), y(✏)). (7.55)

This contradicts the reach formula for S

✏

.

Thus

reach(S)  min

8

<

:

1

2
min

(x,y)2S⇥S

(x,v)2nor(S)

pd(x, y; v), inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)

9

=

;

. (7.56)

Using the formula for reach(S
✏

),

reach(S) = lim
✏!0

8

<

:

min

8

<

:

1

2
min
x,y2S

pd
✏

(x, y), inf
x2Sm(S✏)

II✏(x)(v,v)>0, |v|=1

1

II
✏

(x)(v, v)

9

=

;

9

=

;

. (7.57)

Let {✏
i

} be a sequence with ✏

i

> 0 for all i, and write S

i

:= S

✏i , II
i

:= II
✏i , and pd

i

:= pd
✏i
.

There exists a sequence {✏
i

} such that ✏
i

! 0 and either reach(S
i

) =
1

2
pd

i

(x
i

, y

i

) for all i,

or reach(S
i

) = inf
x2Sm(Si)

IIi(x)(v,v)>0, |v|=1

1

II
i

(x)(v, v)
for all i.

In the first case, since reach(S
i

) =
1

2
pd

i

(x
i

, y

i

), the pair (x
i

, y

i

) is a critical pair for S

i

, and

1

2
pd

i

(x
i

, y

i

) =
r(x

i

, y

i

)
⌧

n(x
i

),
y

i

� x

i

|y
i

� x

i

|
� = r(x

i

, y

i

) = |x
i

�y

i

|. By passing to a subsequence, we can

assume, using compactness of some fixed S

i

, that x

i

! x

0

and y

i

! y

0

, where x

0

, y

0

2 S.

Since S is a PR set and |x
i

� y

i

| ! reach(S), we have |x
0

� y

0

| = reach(S) 6= 0. Thus
y

i

� x

i

|y
i

� x

i

| !
y

0

� x

0

|y
0

� x

0

| as well. Now, n(x
i

) 2 nor(S, x

i

� ✏
i

n(x
i

)), and x

i

� ✏
i

n(x
i

) ! x

0

, so by

upper semicontinuity of the multifunction nor, we may pass to a subsequence so that the n(x
i

)

converge, and then n(x
i

) ! v 2 nor(S, x

0

), and

⌧

v,

y

0

� x

0

|y
0

� x

0

|
�

= lim
i!1

⌧

n(x
i

),
y

i

� x

i

|y
i

� x

i

|
�

=

0. Thus pd(x
0

, y

0

; v) = |x
0

� y

0

| = reach(S).
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In the second case, reach(S
i

) = inf
x2Sm(Si)

IIi(x)(v,v)>0, |v|=1

1

II
i

(x)(v, v)
, so that by Lemma 1.15 there

exist ⌧
i

and �
i

satisfying (⌧
i

,�

i

) 2 Tan(nor(S), (p
i

, v

i

)) and

reach(S
i

) <

1

�(⌧
i

+ ✏

i

�

i

) · �
i

< reach(S
i

) + ✏

i

. (7.58)

Since reach(S
i

) > 0, we have �(⌧
i

+ ✏

i

�

i

) · �
i

> 0 and

�⌧
i

· �
i

� �⌧
i

· �
i

� ✏

i

|�
i

|2 (7.59)

= �(⌧
i

+ ✏

i

�

i

) · �
i

> 0.

Thus

inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)
 1

�⌧
i

· �
i

(7.60)

<

1

�(⌧
i

+ ✏

i

�

i

) · �
i

(7.61)

< reach(S
i

) + ✏

i

. (7.62)

Letting i !1, we have

inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)
 reach(S), (7.63)

and since the reverse inequality also holds, we conclude that

inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)
= reach(S). (7.64)
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Thus

reach(S) = min

8

<

:

1

2
min

(x,y)2S⇥S

(x,v)2nor(S)

pd(x, y; v)), inf
(x,v)2Sm(nor(S))

II(x,v)(w,w)>0, |w|=1

1

II(x, v)(w, w)

9

=

;

. (7.65)

Definition 7.33. We say that (x, y) 2 S ⇥ S is a critical pair if x and y are distinct and

x� y 2 Nor(S, y) and y � x 2 Nor(S, x).

As in the C

1,1 case, pd can only attain the reach at critical pairs.

Corollary 7.34. If reach(S) < 1, then pd(x, y; v) � 2reach(S), with equality only if (x, y)

is a critical pair and v =
y � x

|y � x| .

Proof. The first assertion is clear from Theorem 7.32. If equality holds, then we have that

2r(x, y; v)  pd(x, y; v) = 2reach(S)  2r(x, y; v). Then we must have equality throughout,

so that

⌧

v,

y � x

|y � x|
�

= 1 and v =
y � x

|y � x| 2 nor(S, x). If x� y 62 nor(S, y), then there exists

a tangential direction T to S at y such that hx� y, T i > 0.

Using Lemma 2.30, let P be a plane through y such that y + T 2 P and P \ @S is a

curve near y. There exists a sequence of points y

j

2 @S such that y

j

! y and
y

j

� y

|y
j

� y| ! T .

Moreover,

lim
j!1

|y
j

� x|� |y � x|
|y

j

� y| =

⌧

T,

y � x

|y � x|
�

(7.66)

and, using the fact that v =
y � x

|y � x| ,

lim
j!1

pd(x, y

j

; v)� pd(x, y; v)

|y
j

� y| =

⌧

T,

y � x

|y � x|
�

< 0. (7.67)

Thus there is y

0 such that pd(x, y

0; v) < pd(x, y; v) = 2reach(S), which is a contradiction.

95



Bibliography

[1] Stephanie B. Alexander, I. David Berg, and Richard L. Bishop, The Riemannian obsta-

cle problem, Illinois J. Math. 31 (1987), no. 1, 167–184. MR 869484 (88a:53038)

[2] Victor Bangert, Sets with positive reach, Arch. Math. (Basel) 38 (1982), no. 1, 54–57.

MR 646321 (83k:53058)

[3] Jason Cantarella, Joseph H. G. Fu, Rob Kusner, and John M. Sullivan, Ropelength

criticality, http://arxiv.org/pdf/1102.3234v2.

[4] Jason Cantarella, Joseph H. G. Fu, Rob Kusner, John M. Sullivan, and Nancy C.

Wrinkle, Criticality for the Gehring link problem, Geom. Topol. 10 (2006), 2055–2116

(electronic). MR 2284052 (2008e:58016)

[5] Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205

(1975), 247–262. MR 0367131 (51 #3373)

[6] John B. Conway, A course in functional analysis, second ed., Graduate Texts in Math-

ematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713 (91e:46001)

[7] Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Appli-
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Appendix A

Functions of Essentially Bounded

Variation

In this section, we cover the foundations of the theory of functions of essentially bounded

variation that we used in the proof Theorem 6.20. Throughout, assume that f : [0, L] ! Rm.

Definition A.1. Let P = {t
0

 . . .  t

j

} be a partition of [0, L]. We define the variation

of f on the partition P by Var(f,P) =
j

X

i=1

|f(t
i

)� f(t
i�1

)|. We define the total varia-

tion of f on [0, L], Var(f), as the supremum, over all partitions P, of Var(f,P). We say

that a function f has bounded variation (f 2 BV) if Var(f) is finite.

Definition A.2. An integrable function f is of essentially bounded variation (f 2 eBV)

if there exists a constant C such that Var(f,P) < C whenever P is a partition of [0, L] by

Lebesgue points of f .

In the case that f 2 eBV, we shall write

eVar(f) := sup{Var(f,P) : P is a partition of [0, L] by Lebesgue points.} (A.1)
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The following is a well-known result about the total variation of smooth functions. We

shall prove an analogous result for eBV functions.

Lemma A.3. For a smooth function f : [0, L] ! R,

Var(f) =

Z

|f 0| = sup

⇢

Z

f�

0 : � 2 C

1

0

([0, L]), k�k1  1

�

. (A.2)

Definition A.4. Let m denote Lebesgue measure. A point x

0

is a Lebesgue point of the

function f if

f(x
0

) = lim
✏#0

1

m(B(x
0

, ✏))

Z

B(x0,✏)

f(x)dm. (A.3)

When f is integrable, almost every point is a Lebesgue point. An integrable function

f 2 eBV is almost BV, in the following sense:

Lemma A.5. If f 2 eBV is integrable, then there exists a function f̃ 2 BV such that f = f̃

on the set E of Lebesgue points of f . Further, f |
E

has right and left limits everywhere (in

E).

Proof. First, consider the restriction of f to the set E of Lebesgue points. If 0 62 E, modify

f at 0 as follows: set f(0) = lim inf
x2E

f(x). Let r

�

= inf
0<|x|<�

f(x), so that f(0) = lim
�!0

r

�

. Then

for any ✏ > 0 there exists �
0

> 0 such that 0 < � < �

0

implies that |r
�

� f(0)| <

✏

2
. By

definition of r

�

there exists x

�

such that x

�

2 E and |x
�

| < � with f(x
�

) < r

�

+
✏

2
. Thus

|f(x
�

)� f(0)|  ✏.

With f modified as above, extend f to equal f(0) on [�1, 0), so that f is defined on

[�1, 0][E, and every point in [�1, 0) is a Lebesgue point. Temporarily denote this extension

by F . Let ✏ > 0, and fix a partition P = t

0

< t

1

< . . . < t

k

by Lebesgue points. Suppose

that t

i

< 0 and t

i+1

> 0, and suppose that t

i

 t

�

< t

i+1

with |f(0)� f(t
�

)| < ✏. Then, since
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t

�

is a Lebesgue point and F (t
i

) = f(0), we have

eVar(F,P) =
k

X

j=1

|F (t
j

)� F (t
j�1

)|

=
k

X

j=i+1

|f(t
j

)� f(t
j�1

)|


 

k

X

j=i+2

|f(t
j

)� f(t
j�1

)|
!

+ |f(t
i+1

)� f(t
�

)|+ |f(t
�

)� f(t
i

)| (A.4)

=

 

k

X

j=i+2

|f(t
j

)� f(t
j�1

)|
!

+ |f(t
i+1

)� f(t
�

)|+ |f(t
�

)� f(0)|

 eVar(f) + ✏

Thus F 2 eBV on[�1, L]. From now on, replace E and f with [�1, 0) [ E and F .

The function f

?

?

E

is bounded variation (on E) by construction of E. Given a set t

0

, . . . , t

k

of points of E with t

i

< t

i+1

for all i, set

p =
k

X

i=1

[f(t
i

)� f(t
i�1

)]+ (A.5)

n =
k

X

i=1

[f(t
i

)� f(t
i�1

)]� (A.6)

t =
k

X

i=1

|f(t
i

)� f(t
i�1

)| , (A.7)

where r

+ = max{r, 0} and r

� = max{�r, 0}. Then we have

p� n = f(t
k

)� f(t
0

). (A.8)
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Also, set P

b

a

:= sup p, N

b

a

:= sup n, and T

b

a

:= sup t = eVar(f
[a,b]

), where each sup is

understood to be over all partitions of [a, b] by Lebesgue points E.

Claim. If f 2 BV on E, and a, b in E satisfy a  b, then

f(b)� f(a) = P

b

a

�N

b

a

. (A.9)

Proof. Note that if a partition does not include a and b, including a and b does not decrease

p, n, or t over the partition, so we may as well define P

b

a

, N

b

a

, and T

b

a

to be suprema over

all partitions including a and b. For any collection a = t

0

< . . . < t

k

= b of points of E, by

(A.8) we have

p = n + f(b)� f(a)  N

b

a

+ f(b)� f(a) (A.10)

so that

P

b

a

 N

b

a

+ f(b)� f(a). (A.11)

Similarly,

n = p + f(a)� f(b)  P

b

a

+ f(a)� f(b) (A.12)

so that N

b

a

 P

b

a

+ f(a)� f(b), and combining these inequalities,

P

b

a

�N

b

a

= f(b)� f(a). (A.13)

Fix a in [�1, 0); for any x 2 E with x > a, we have

f(x) = P

x

a

� (Nx

a

� f(a)). (A.14)
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Claim. For x 2 E, let g(x) := P

x

a

and h(x) := N

x

a

. Then g and h are increasing and

bounded.

Proof. By construction, 0  P

x

a

 T

x

a

 eVar(f) and 0  N

x

a

 T

x

a

 eVar(f) so that g and

h are bounded.

Also, g is increasing: suppose a  x

1

 x

2

and x

1

, x

2

2 E. Then

P

x1
a

+ P

x2
x1

= P

x2
a

. (A.15)

Since P

x2
x1
� 0, we conclude that P

x1
a

 P

x2
a

, so that g(x
1

)  g(x
2

). An analogous argument

shows that h is increasing on E.

Claim. We may extend g and h to increasing functions on [a, L].

Proof of Claim. For y 62 E, define

g(y) := sup
x2E, xy

g(x)

and (A.16)

h(y) := sup
x2E, xy

h(x).

Then g is increasing: suppose x

1

 x

2

.

• If x

1

, x

2

2 E, then the assertion is clear.

• If x

1

2 E and x

2

62 E, then by definition of g(x
2

), we have g(x
1

)  g(x
2

).

• If x

1

62 E and x

2

2 E, then g(x
1

) = sup
x2E,xx1

g(x), and g(x) is increasing on E, so

g(x
1

)  g(x
2

).
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• If x

1

62 E and x

2

62 E, we have

sup{g(x) : x 2 E, x  x

1

}  sup{g(x) : x 2 E, x  x

2

}, (A.17)

so that g(x
1

)  g(x
2

).

The same argument shows that h is increasing.

Now, define f̃ on [0, L] by

f̃(x) = g(x)� (h(x)� f(a)). (A.18)

By (A.14), we have that f̃ = f on E. Since f̃ is a di↵erence of bounded increasing functions,

by [12, Section 2 of Chapter 5], we also have f̃ 2 BV. Moreover, as a di↵erence of bounded

increasing functions, f̃ has left and right limits everywhere; thus f has left and right limits

at points of E.

Definition A.6. Let C

1

0

[0, L] denote the set of all continuously di↵erentiable functions � :

[0, L] ! Rm with support(f) ⇢ [a, b] ⇢ (0, L).

Lemma A.7. An integrable function f 2 eBV if and only if there exists C such that for all

� 2 C

1

0

([0, L]),

Z

f�

0  Ck�k1. Moreover,

eVar(f) = sup
�2C

1
0 ([0,L]),k�k11

⇢

Z

f�

0
�

. (A.19)

Proof. (=)) Assume f 2 eBV. Suppose f̃ 2 BV satisfies f = f̃ at Lebesgue points of f .

Let {P
j

} be a sequence of partitions such that

1. P
j

converges to a dense subset of [0, L], and

2. Var(f̃) = lim
j!1

Var(f̃ ,P
j

).
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Let f̃

j

be the piecewise a�ne function with f̃

j

?

?

Pj
= f̃ such that f̃

j

is a�ne on each [t
i�1

, t

i

].

Then

Var(f̃
j

) =
X

i

Var(f̃
j

, [t
i�1

, t

i

]) =
X

i

Z

[ti�1,ti]

|f̃ 0
j

| =
X

i

|f̃
j

(t
i

)� f̃

j

(t
i�1

)| = Var(f̃ ,P
j

).

Claim. f̃

j

! f̃ pointwise except at jump discontinuities of f̃ .

Proof. Since f̃ 2 BV, the function f̃ has left and right limits everywhere, and those limits

agree except at the countably many jump discontinuities of f̃ . Suppose x is a point at which

the left and right limits of f̃ agree. Then there exist sequences {s
j

} and {t
j

} such that

s

j

, t

j

2 P
j

, s

j

 x  t

j

and (s
j

, t

j

) \ P
j

= ;.
By choice of x, we have f̃

j

(s
j

) = f̃(s
j

) ! f̃(x) and f̃

j

(t
j

) = f̃(t
j

) ! f̃(x). Thus we also

have

lim
j!1

⇣

max{f̃
j

(s
j

), f̃
j

(t
j

)}
⌘

= f̃(x) and lim
j!1

⇣

min{f̃
j

(s
j

), f̃
j

(t
j

)}
⌘

= f̃(x). (A.20)

Since min{f̃
j

(s
j

), f̃
j

(t
j

)}  f̃

j

(x)  max{f̃
j

(s
j

), f̃
j

(t
j

)}, we have that f̃

j

(x) ! f̃(x).

Claim. f̃

j

! f̃ in L

1.

Proof of Claim. Since f̃ 2 BV, it is bounded. Also, |f̃
j

(x)| < kf̃k1, so by the dominated

convergence theorem, f̃

j

! f̃ in L

1.

Thus
Z

f̃�

0 = lim
j!1

Z

f̃

j

�

0 (A.21)
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for all � 2 C

1

0

[0, L]. Suppose � 2 C

1

0

[0, L] with k�k1  1. Write P
j

= {t
i

: t

0

< . . . < t

k

}.
Then, using integration by parts and the definition of f̃

j

, we have

Z

f

j

�

0 =
X

i

Z

[ti�1,ti]

f̃

j

�

0

=
X

i

✓

�
Z

f̃

0
j

�+ (f̃
j

�)
?

?

ti

ti�1

◆

= (f̃
j

�)
?

?

tk

t0
�
X

i

Z

f̃

0
j

�

= (f̃
j

�)
?

?

tk

t0
�
X

i

Z

 

f̃

j

(t
i

)� f̃

j

(t
i�1

)

t

i

� t

i�1

!

� (A.22)

 (f̃
j

�)
?

?

tk

t0
+
X

i

?

?

?

?

?

f̃

j

(t
i

)� f̃

j

(t
i�1

)

t

i

� t

i�1

?

?

?

?

?

· |t
i

� t

i�1

|k�k1

= (f̃
j

�)
?

?

tk

t0
+ k�k1Var(f̃

j

,P
j

)

= (f̃
j

�)
?

?

tk

t0
+ k�k1Var(f̃ ,P

j

).

Letting j !1, from (A.21) and (A.22), we have

Z

f̃�

0  k�k1Var(f̃). (A.23)

Since f = f̃ almost everywhere, we have

Z

f�

0 =

Z

f̃�

0  k�k1Var(f̃). (A.24)

((=) Suppose that there exists a constant C such that for any � 2 C

1

0

([0, L]), we have
R

f�

0  Ck�k1. Let  be a symmetric bump function with compact support contained in

[�1, 1]. Let  
j

(t) = j (tj), and let f

j

= f ⇤  
j

=
R

R f(t) 
j

(x� t)dt denote the convolution

of f and  

j

. Let ↵ > 0, and fix a partition P = t

0

< . . . < t

k

of [0, L] by Lebesgue points.

Since f

j

! f pointwise at Lebesgue points, there exists N such that j > N implies that
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|f
j

(t
i

)� f(t
i

)|  ↵

2k
for all i. Then

Var(f,P) =
X

i

|f(t
i

)� f(t
i�1

)|


X

i

|f(t
i

)� f

j

(t
i

)|+
X

i

|f
j

(t
i

)� f

j

(t
i�1

)|+
X

i

|f
j

(t
i�1

)� f(t
i�1

)| (A.25)

 ↵+ Var(f
j

)

Also, Var(f
j

) = sup
�R

f

j

�

0 : � 2 C

1

0

([0, L]), k�k1  1
 

, and (f ⇤  
j

)0 = f ⇤  0
j

. If

� 2 C

1

0

([0, L]) with k�k1  1, by integration by parts and Fubini’s theorem we have

Z

f

j

�

0 = �
Z

(f ⇤  
j

)0�

=

Z

[0,L]

�(x)

Z

R
f(t) 0

j

(x� t)dtdx

=

Z

R
f(t)

Z

[0,L]

�(x) 0
j

(x� t)dxdt (A.26)

=

Z

[0,L]

f(t)

Z

[0,L]

�(x) 0
j

(t� x)dxdt

=

Z

[0,L]

f(t)(� ⇤  
j

)0(t)dt

provided j is large enough that (� ⇤ 
j

)0(t) is compactly supported in [0, L]. By assumption,

Z

[0,L]

f(t)(� ⇤  
j

)0(t)dt  Ck� ⇤  
j

k1  Ck�k1 = C. (A.27)

Thus

Var(f,P)  ↵+ C. (A.28)

Since this is true for all partitions P of [0, L] by Lebesgue points, we have eVar(f)  ↵+ C.

Since ↵ is arbitrary, f 2 eBV and eVar(f)  C. Further, since f 2 eBV, there exists a
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function f̃ agreeing with f at Lebesgue points, so we can take C = Var(f̃). In fact, the

optimal C is Var(f̃), since we can approximate f̃ by � 2 C

1

0

([0, L]).
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