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ABSTRACT 

In education it is common to make judgments about the progress or achievement of 

different groups of students; it is also common to compare the mean scores of different groups 

and make predictions about individuals within groups. Thus, it is important to understand how 

underlying measurement differences, if any, affect such predictions and comparisons. Under 

partial measurement invariance, some model parameters are invariant while others are allowed to 

vary across groups. This allows the use of a scale in which there may be some difference in 

measurement between the groups, while still considering the overall comparison to be 

meaningful. The purpose of this study is to investigate the amount of partial measurement 

noninvariance that can be tolerated while still allowing for comparable predictions across groups. 

Specifically, varying degrees of size of factor loadings, model size, sample size, amount of 

partial measurement invariance, factor loading differences across groups, and differing levels of 

predictive influence across groups were examined from the standpoint of their effects on power 

and accuracy in prediction. The results for partial measurement invariance suggest that level of 

noninvariance and factor loading differences affect goodness of fit indices while the size of the  



 

factor loading has more of an effect on parameter estimates and bias. It appears that model size 

affects all of the dependent variables presented here. 
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CHAPTER 1 

INTRODUCTION 
 
 In education it is common to make judgments about the progress or achievement of 

different groups of students; it is also common to compare the mean scores of different groups 

and make predictions about individuals within groups. Implicit in the comparison of any groups’ 

scores is the assumption that the construct under consideration is measured the same way for 

individuals classified differently. Thus, it is important to understand how the underlying 

measurement differences, if any, affect such predictions and comparisons. The testing of 

measurement equivalence/invariance (ME/I) has recently been the focus of increased scholarly 

attention in the form of review articles (Steenkamp & Baumgartner, 1998; Vandenberg, 2002; 

Vandenberg & Lance, 2000) and empirical research (Cheung & Rensvold, 2002; Hutchinson & 

Young, 2003; Meade & Lautenschlager, 2004). The aim of the present study is to examine 

measurement invariance and its effect on prediction. This chapter will summarize relevant ME/I 

literature.  

Measurement Invariance 

 A great deal of research has been conducted on the topic of measurement 

equivalence/invariance (ME/I) over the last 30 years. Broadly speaking, the concept of ME/I is 

concerned with the testing of whether the same items mean the same thing to members of 

different groups. In other words, the key question centers on the extent to which items measure 

the same underlying construct in categorically different populations. There are several levels of 

ME/I, which can be thought of on a continuum from theory to practice. These include conceptual 
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(e.g. Hui & Triandis, 1985), measurement and structural levels. The conceptual level refers to the 

extent to which a construct can be conceptualized in the same way within the groups of interest. 

The measurement level, also called the scale level, refers to the ME/I tests that examine how 

items work together in different groups. Finally, the structural level refers to the ME/I tests that 

examine how the whole structure of interest functions across groups, for example, examining 

latent construct mean differences across groups. 

Conceptual Level 

Within the conceptual level of invariance three subsections have been suggested (Hui & 

Triandis, 1985): conceptual equivalence, operationalization and item level equivalence. 

Conceptual equivalence refers to whether or not the construct under investigation is meaningful 

across groups (Hui & Triandis, 1985). This is particularly salient in cross-cultural research. In 

the operationalization subsection, researchers are interested in the extent to which the construct is 

being measured in the same way across groups. For example, is the construct of interest 

meaningful in the same way across different groups? Once conceptual equivalence and 

operationalization are established, item level equivalence would indicate that the instruments 

being used to measure the construct across groups have the same items and that these have the 

same meaning. If item level equivalence does not hold numerical comparison between groups is 

not possible (Hui & Triandis, 1985; Poortinga, 1989). According to Hui & Triandis (1985), 

“each item should mean the same thing to subjects from Culture A as it does to those from 

Culture B” (p. 134). This notion of equivalence does not allow for the possibility of partial 

measurement invariance. Partial measurement invariance will be given further treatment below.  
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Measurement Level  

The measurement level of invariance examines aspects of the measurement model, 

specifically, the relationships between observed variables and their underlying latent constructs 

(Byrne, 1998; Vandenberg & Lance, 2000). As suggested by Jöreskog (1971), the first test of 

concern is an omnibus test for equality of covariance matrices across groups. If this test is not 

significant, there is no difference in the covariance matrices of the two groups and no need to 

proceed further within a multiple group context. If, however, the omnibus test is significant, it is 

incumbent upon the researcher to determine where the differences in the model occur across 

groups. The next logical step is called a test of configural invariance. When examining 

configural invariance (Vandenberg & Lance, 2000) the concern is with the pattern of fixed and 

free parameters and the equivalence of this pattern across groups. Metric invariance (Horn & 

McArdle, 1992; Vandenberg & Lance, 2000), the next test, checks for factor loading equivalence 

across groups. The fourth test of measurement level invariance is scalar invariance (Meredith, 

1993; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000), which identifies whether 

the item intercepts are equivalent across groups. Error variance refers to the measurement error 

inherent in any measurement, and the final test examines the equivalence of the measurement 

error variances (and typically any measurement error covariances) across groups. The order of 

the preceding tests is not standardized, but researchers tend to follow the Jöreskog tradition of 

nested models (Vandenberg & Lance, 2000). 

Structural Level 

Once the measurement level tests have been performed and the researcher is satisfied that 

measurement invariance holds, it is possible to examine the structural invariance of the construct 

under consideration. Researchers traditionally perform tests of the equivalence of factor 
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variances and covariances as well as tests of latent means. These tests take place at the latent or 

unobserved level. Particularly, the test of factor variances and covariances would be used to 

examine the equivalence of latent factor variance and covariance across groups (Vandenberg & 

Lance, 2000). The test of latent means would be of interest if the researcher wanted to examine 

latent construct mean differences across groups. Traditionally, researchers would go no further in 

the series of invariance tests if a lack of invariance were noted at any level of the hierarchical 

nested model tests noted above. Please see Table 1 for a list of the measurement and structural 

level tests. 

In sum, it is useful to conceptualize ME/I along a continuum from the more conceptual to 

the more applied measurement and structural levels. The covariance modeling methods used to 

detect ME/I are presented below. 

Table 1 

List of Invariance Tests as Presented in Chapter 1 

1. An omnibus test for equality of covariance matrices across groups 
2. A test of the pattern of fixed and free parameters and their equivalence across groups 

(configural invariance) 
3. A test of factor loading equivalence across groups (metric invariance) 
4. A test of item intercept equivalence across groups (scalar invariance) 
5. A test of equivalence of the measurement error variances across groups 
6. A test of equivalence of latent factor variance and covariance across groups 
7. A test of equivalence of latent means 

 
Detecting Measurement Invariance 

 
The key question of ME/I centers on the extent to which items measure the same 

underlying construct in categorically different populations. The likelihood ratio test is the most 

frequently used to test ME/I because it is based on the χ2 and has known distributional properties 

(Vandenberg & Lance, 2000). In the context of invariance testing, the likelihood ratio test is a 
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comparison of two models – one nested within the other – such that a significant likelihood ratio 

would indicate a significant decrement in model fit (Hutchinson, 2002). 

 Cheung and Rensvold (2002) suggested levels of change in other goodness of fit indices 

that might be useful in the detection of measurement invariance. Specifically, they examined the 

properties of 20 change (∆) in goodness-of-fit indices under both an unconstrained model and 

one having measurement invariance constraints. They generated 48 models by varying the 

number of factors, the values of factor variance, the correlations between factors, the number of 

items per factor and the factor loadings. The effects of these variations were examined through 

analysis of variance and invariance tests. Based on the results of this study, they proposed cutoff 

values for ∆CFI, ∆Gamma Hat, and ∆McDonald's NCI. While these results provided a good first 

step, more work is necessary in order to further explicate the usefulness of these goodness of fit 

indices in a noninvariance context. 

Partial Measurement Invariance 

Muthén and Christoffersson (1981) first introduced the concept of partial measurement 

invariance. As noted previously, many researchers recommend terminating invariance testing at 

the first step in which noninvariance is found. That is, if factor loadings are found to be 

noninvariant, tests of intercepts, etc. would not be conducted. Under partial measurement 

invariance, if some model parameters (i.e., factor loadings, factor covariances, error variances) 

are found to be noninvariant while others are invariant these parameters are allowed to vary 

across groups, and testing is continued. This allows the use of a scale in which there may be 

some difference between the groups, while still considering the overall comparison to be 

meaningful. Byrne, Shavelson and Muthén (1989) put this notion into practice using self-concept 

data from high and low academically tracked high school adolescents. These data included 
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responses on the Self Description Questionnaire III, the Affective Perception Inventory, the Self-

Esteem Scale, and the Self-Concept of Ability Scale. Byrne et al. hypothesized a confirmatory 

factor analysis (CFA) model in which self-concept responses could be explained by four factors: 

general self-concept, academic self-concept, English self-concept, and mathematics self-concept. 

However, the hypothesized model did not fit properly and showed invariance across groups 

therefore the researchers resorted to a series of exploratory models, based upon their substantive 

knowledge as well as the statistical analysis. Based on this information, they allowed for two 

parameters in the factor loading matrix and three parameters in the factor variance/covariance 

matrix to vary, but all other parameters were held invariant. 

Despite this initial study, the number of parameters or items that can be allowed to vary 

while still maintaining overall measurement invariance remains unclear. Byrne et al. (1989) 

suggested that parameter estimates for at least one item needed to be completely invariant for 

comparisons across groups to be legitimate, while Reise, Widaman and Pugh (1993) argued that 

at least one-half of the scale items must be invariant for such comparisons to be meaningful. 

However, such decisions may differ depending on such things as the amount of invariance found 

as well as the purpose of the study undertaken. For example, no concrete evidence is available 

that indicates exactly how measurement invariance affects the use of a scale in terms of 

prediction. The next section addresses this issue.  

 Effects of Partial Measurement Invariance on Scale Use 

 The effects of partial ME/I on scale use has been examined in two ways. Either applied 

studies have investigated partial ME/I in terms of establishing the partial measurement 

invariance of an instrument (Byrne et al., 1989) or methodological researchers have investigated 

some of the factors thought to affect partial measurement invariance results (Hutchinson, 2002; 
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Hutchinson & Young, 2003; Kaplan, 1989; Kaplan & George, 1995). Methodological 

researchers have conceptualized the detection of partial measurement invariance in two ways, 

through the examination of the accuracy of selection of persons within groups (Millsap & Kwok, 

2004), and through the power of the likelihood ratio test (Hutchinson, 2002; Hutchinson & 

Young, 2003; Kaplan, 1989; Kaplan & George, 1995). 

Relative Accuracy of Selection  

Millsap and Kwok (2004) examined the relative accuracy of selection of persons into 

groups based on scores on an instrument exhibiting partial measurement invariance. They 

examined four different indices of the accuracy of selection: proportion of persons selected per 

group, the success ratio, sensitivity (the proportion of true positives divided by the proportion 

selected) and specificity (the proportion of true negatives divided by the proportion of true 

negatives plus the proportion of false positives).  These authors varied the selection percentage, 

the number of items, degree of invariance of factor loadings, and size of the sum of unique 

variances. They found that fewer people were selected into the focal group in instances of 

noninvariance. Additionally, it appears that greater levels of noninvariance might also be 

associated with smaller success ratios across both groups. The authors suggest that changes of 

less than 0.05 between partially and fully invariant models in sensitivity, success ratios, and 

specificity are probably not meaningful. However, the authors also note that such a 

determination should be based on the use of the scale and the types of error (false positives/false 

negatives) that can be tolerated within the context of selection. 

Power of the Likelihood Ratio Test  

As with measurement invariance, the likelihood ratio test is the most frequently used test 

of partial ME/I because it is based on the χ2 and has known distributional properties. Power is 
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operationally defined as the proportion of true rejections of the likelihood ratio test across the 

number of replications within any given level of the research design. In 1989, Kaplan used a 

small population study to investigate the effect of specification error on the power of the 

likelihood ratio test in a partial measurement invariance context (Kaplan, 1989). He examined a 

six-variable, two-factor model, in which group one had simple structure; that is, each item loaded 

on one factor; and group two had one complex loading. He found that the size of a misspecified 

parameter and its relationship to the other parameters in the model affected the power of the 

likelihood ratio test to detect partial measurement invariance.  

 Building on the earlier work, Kaplan and George (1995) examined the power of the 

likelihood ratio test associated with the test of factor mean differences when the assumption of 

factorial invariance is untenable. In particular, Kaplan and George investigated the size of factor 

mean differences, sample size difference, and degree of noninvariance. They found that the 

power of the likelihood ratio test for detecting factor mean differences is relatively robust to 

partial measurement invariance, but is affected by unequal sample size across groups (Kaplan & 

George, 1995). 

 Hutchinson (2002) conducted a Monte Carlo study using different levels of model size, 

sample size, number of noninvariant items, and size of between-group loading differences to 

investigate power of the likelihood ratio test to detect factorial noninvariance. She reported that 

the likelihood ratio test might not be robust to the location of noninvariant items or the amount of 

noninvariance, which could lead to erroneous decisions about the comparability of constructs 

across groups. As a result of this work, Hutchinson and Young (2003) examined how the 

placement of noninvariant items across factors affected power and found that noninvariant items 

that are dispersed across factors increase the power of the likelihood ratio test. 
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Prediction 

 To date, most of the research studies on ME/I have focused on statistical significance, 

rather than practical significance. For example, measurement scales are often used to predict 

outcomes for individuals in different groups. However, if these scales are not invariant across 

groups, the accuracy of predictions may be affected. Byrne et al. (1989) and Kaplan & George 

(1995) examined factor mean differences across groups, but no studies to date have studied how 

much absolute invariance is necessary for prediction of group performance to remain valid. 

Summary 

 It is common in education to make judgments about the progress or achievement of 

different groups of students; it is also common to make predictions for different groups of 

students. In order for these comparisons to be valid, the different groups must conceptualize the 

scales and items being used in the same way. It is critical that educational researchers test the 

assumption of invariance before making judgments. The concept of invariance may be thought of 

along a continuum from theoretical concerns to the actual testing of measurement and structural 

level model parameters. The tests designed to determine ME/I within model parameters were 

developed by Jöreskog (1971) and are still in use today. The likelihood ratio test is most often 

used to test ME/I because it is based on the χ2 and has known distributional properties. The 

concept of partial ME/I allows some model parameters to be noninvariant while others are 

invariant. The effect of partial ME/I on the predictive validity of measurement scales is still 

unknown. The next chapter will provide further treatment of ME/I and partial ME/I literature and 

a rationale for the proposed study. 
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CHAPTER 2 

REVIEW OF LITERATURE 

A great deal of research has been conducted on the topic of measurement 

equivalence/invariance (ME/I) over the last 30 years. Broadly speaking, the concept of ME/I is 

concerned with testing whether the same items mean the same thing to members of different 

groups. In other words, the key question centers on the extent to which items measure the same 

underlying construct in categorically different populations. The aim of this review is to provide a 

historical perspective on ME/I and partial ME/I. Following the historical perspective; the factors 

thought to affect partial ME/I will be presented with relevant research. Finally, the purpose and 

research questions will be presented. 

A Historical Perspective of Measurement Invariance 

Kaplan (1995) noted that Jöreskog originally developed the methods for conducting 

multiple-group confirmatory factor analysis in his oft-cited work of 1971. In fact, in the 

comprehensive review by Vandenberg and Lance (2000), Jöreskog (1971) is the earliest article 

addressing the practice of evaluating invariance/equivalence in a systematic way. Jöreskog 

(1971) indicated that it would be prudent to proceed through the tests of multi-group equivalence 

in a certain order, as any one test depends on the results of the previous test to move forward. He 

began by testing the hypothesis of equality of covariance matrices. This test compares the 

observed covariance matrices for two or more groups. If this test is not significant, there is no 

difference in the covariance matrices of the two groups and no need to proceed further within the 

multiple group context. This would indicate that the covariance matrices of the groups under 



 

 

11

 

consideration were equal and, essentially, there was no measurement difference between the 

groups. This is not likely to happen and this test of equality of covariance matrices is seen by 

some as a formality (see Byrne, 1998; Byrne, et al. 1989). 

If the initial hypothesis of equivalent covariance matrices is found to be untenable, 

Jöreskog (1971) recommended a set of tests to pinpoint model parameter noninvariance across 

groups. The first hypothesis he suggested is “the hypothesis of number of common factors” 

(Jöreskog, 1971, p. 419). He suggested that this could be done by conducting separate analyses 

on each group using the same number of common factors for each group. If the hypothesis of 

equal numbers of factors for each group is reasonable, the researcher proceeds to a set of 

hierarchically nested tests that are evaluated by computing a change in the χ2 statistic (∆χ2) such 

that each hypothesized model is compared to some less restrictive model. If the ∆χ2 is considered 

significant, the hypothesis that the restrictions hold is affirmed. The first of these is “the 

hypothesis of an invariant factor pattern” (Jöreskog, 1971, p. 420). The test of invariant factor 

patterns is a test that determines whether the pattern of factor loadings is equivalent across 

groups. If this test is not rejected, the equivalence of the factor loadings values is conducted. This 

test is known as the test of metric invariance (Horn & McArdle, 1992). In LISREL notation this 

is referred to as the equivalence of the λ (lambda) matrices across groups. Should the hypothesis 

of equivalent factor loadings be considered reasonable, Jöreskog suggested the next test in the 

sequence should be a test of uniquenesses, or testing that the measurement error variances 

associated with the observed variables are equivalent across groups. Should that hypothesis seem 

reasonable, he suggested the test of equivalent latent factor variances-covariances. As he 

presented these hypotheses for consideration, he indicated that the hypothesis prior to the current 
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one being tested is embedded in the current hypothesis (nested models). In other words, each 

hypothesis builds on what has been tested previously.  

In 1992, Horn and McArdle introduced two new terms to the ME/I lexicon that are still in 

use (Vandenberg, 2002; Vandenberg & Lance, 2000): configural and metric invariance. Horn 

and McArdle (1992) took Jöreskog’s (1971) notion of equal numbers of common factors and 

called this a test of configural invariance; they also called it a weak test of measurement 

invariance. Additionally, they called the test of equivalent factor loadings metric invariance and 

indicated this is a strong test of measurement invariance.  

 Meredith (1993) provided a mathematical treatment of the principles of weak, strong and 

strict measurement invariance. In particular, he showed that if the level of the underlying 

construct was taken into account, item variances across groups should be the same. This he 

called weak measurement invariance. Strong measurement invariance was defined as invariant 

factor loadings and item intercepts. Strict measurement invariance was the same as strong 

measurement invariance with the addition of the equivalence of measurement error variances. 

Strict and strong factorial invariance require analysis of both item intercepts and factor means. 

 Steenkamp and Baumgartner (1998) tried to clarify the terminology of ME/I. They 

acknowledged the different forms of measurement invariance that appear in the literature and 

give very clear definitions of them. Configural invariance is indicated by a common factor model 

across groups. Metric invariance is indicated by common factor loading values across groups. 

They also introduced scalar invariance, which they defined as the test of equality of 

measurement intercepts. If a measure can be considered scalar invariant, the differences in 

observed variable means across groups are due to differences in the means of the underlying 

constructs. They also introduced the concept of partial configural invariance, that is, noninvariant 
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common factor structure between groups. They suggested that if partial metric invariance is 

tenable, further partially invariant parameters could be tested as well. They also proposed that 

one could make meaningful factor mean comparisons as long as at least one item besides the 

marker item is invariant. A marker item is an item factor loading set to one in order to identify 

the covariance model and give the factor a scale. However, they also suggest a majority of factor 

loadings and intercepts should be invariant for the sake of the reliability of the estimated latent 

means. 

Jöreskog (1971) provided a series of nested tests to examine ME/I across various 

structural parameters. Since then several authors have expounded on his ideas and made further 

terminology suggestions. Partial measurement invariance takes Jöreskog’s (1971) ideas further in 

that it allows one to consider measures with some noninvariant model parameters. Below is a 

historical perspective of partial measurement invariance. 

A Historical Perspective of Partial Measurement Invariance 

Within partial measurement invariance some model parameters (i.e., factor loadings, 

factor covariances, error variances) are considered to be noninvariant while others are invariant, 

thereby allowing one to use a scale in which there may be some differences in measurement 

parameters between the groups, while still considering the overall comparison to be meaningful. 

As noted by Byrne et al. (1989) and Steenkamp and Baumgartner (1998), it is possible to 

conceptualize noninvariance in multiple model parameters. This review will focus on literature 

examining partial metric invariance, which is noninvariance in the item factor loadings. 

Byrne et al. (1989) tested for ME/I in factor covariances and mean structures in 

multidimensional self-concept data across low and high academically tracked high school 

students. These data included responses on the Self Description Questionnaire III, the Affective 



 

 

14

 

Perception Inventory, the Self-Esteem Scale, and the Self-Concept of Ability Scale. Byrne et al. 

hypothesized a simple structure confirmatory factor analysis (CFA) model in which self-concept 

responses could be explained by four factors: general self-concept, academic self-concept, 

English self-concept, and mathematics self-concept. She and her colleagues also hypothesized 

that the four self-concept factors were correlated and the measurement error variances were 

uncorrelated. To measure model fit they used the χ2 statistic, the goodness-of fit index, the root 

mean square residual, the normed fit index and the non-normed fit index as well as their 

collective expertise and knowledge of the substantive area. They found that the hypothesized 

model did not fit properly and therefore resorted to a series of exploratory models, based upon 

their substantive knowledge as well as the statistical analysis. Based on this information, they 

identified noninvariance in two parameter estimates in the factor loading matrix and in three 

parameter estimates in the factor variance/covariance matrix. Specifically, they found that the 

low track group required one factor loading and three error variance terms to be free, while the 

high track group required a different factor loading and the same three error variance terms to be 

free. They admitted that the statistical analysis was less than optimal, but they based their 

conclusion on several considerations: 

o All of the initially hypothesized factor loadings, error variances and factor variances 

and covariances were statistically significant across groups; 

o The two free factor loadings were substantial for both groups; 

o Coefficient of determination values were extremely high in both groups relating the 

assessments to the latent self-concept construct; 

o The three free error variances did not appear to adversely affect other model 

parameters and seemed to represent nonrandom method error. 
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Kaplan (1989) studied the power of the likelihood ratio test in partial measurement 

invariance within the context of a population study. In particular, he was interested in the effect a 

specification error would have on the power of the likelihood ratio test. He defined specification 

error as “the incorrect restriction of a parameter (e.g., a cross loading) in one group. That is, it is 

assumed that one group possesses a more complex factor structure which is unknown to the 

investigator” (Kaplan, 1989 p. 580). The model studied was a six-item, two-factor model. In 

group one the model was set to simple structure, while in group two there was one complex 

factor loading. The values for the complex loading were varied by 0.1, 0.2, 0.3 and 0.4. The 

other item factor loadings for group two were 0.5, 0.6 and 0.8. The item factor loadings for group 

one were all set to 0.7. He found that power was highest when the specification error was 0.4 and 

the free loadings were 0.8. He also found that the larger the correlation between the misspecified 

parameter and the remaining free parameters, the higher the power of the likelihood ratio test to 

detect partial measurement invariance.  

 In 1995, Kaplan and George “examined the power associated with the test of factor mean 

differences when the assumption of factorial invariance is violated” (Kaplan & George, 1995; p. 

101) within the context of a population study. The authors wanted to know whether the test of 

latent mean differences was still valid if metric invariance was untenable. They varied model 

size, size of loadings and sample size in both noninvariant and partially noninvariant models. 

The levels of model size were a six-item, two-factor model and a 12-item, two-factor model. The 

size of loadings varied by group. For group one the size of the item factor loadings varied 

between 0.5, 0.6, and 0.7, and for group two all of the item factor loadings were set to 0.7. 

Finally, sample size was varied across groups. The total sample size was set to 1000. In one 

condition sample size was equal across groups while in the remaining two conditions the 
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difference in sample size between groups was 500 and 800. Power to detect latent mean 

differences was assessed by the Wald test. They found that increased levels of noninvariance 

decreased power of the Wald test and also that unequal sample sizes between groups decreased 

the power of the Wald test to detect latent mean differences in multiple group confirmatory 

factor analysis. 

Hutchinson (2002) studied the power of the likelihood ratio test to detect metric 

invariance. She conducted a Monte Carlo study using different levels of model size, sample size, 

level of noninvariance, and magnitude of between-group loading differences. She examined a 

six-item, one-factor model and a 12-item, two-factor model. The groups had sample sizes of 

either 500 or 200 per group. In the complete noninvariance case, group one factor loadings 

ranged between 0.6 and 0.8 while group two factor loadings differed from those of group one by 

0.1 to 0.4. In the partial noninvariance case, group one factor loadings ranged from 0.6 to 0.8 

while in group two one-half of the factor loadings were between 0.1 and 0.4 lower than the 

corresponding group one factor loadings. She found that power to detect complete metric 

noninvariance was very low. Power was higher in the one factor model in the partial 

noninvariance case than the two factor model. She also found that the likelihood ratio test tended 

to “incorrectly suggest noninvariance at subsequent steps in the invariance testing process” 

(Hutchinson, 2002 p. 10). As a result of this she conducted post hoc tests on the two factor model 

to determine whether the pattern of noninvariance was the cause. She found by evenly 

distributing the noninvariant factor loadings across the two factors (as opposed to having all 

noninvariant loadings on one factor) that power did indeed increase. She therefore summarized 

that the likelihood ratio test might not be robust to the location of noninvariant items or the 
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amount of noninvariance, leading to erroneous decisions about the comparability of constructs 

across groups. 

In a follow-up study, Hutchinson and Young (2003) examined power of the likelihood 

ratio test with larger models, varying group sample sizes and different proportions of 

noninvariant items to determine whether dispersing the noninvariance across factors would 

improve power. Again, they found that power was low in the complete noninvariance conditions 

and improved considerably in the partial invariance conditions. They found larger models (3 or 4 

factor models) exhibited higher power than smaller models (one factor model). They also found 

that factor loading differences seemed to have a pronounced effect on power, with power being 

very high as the factor loading difference was larger. They also found that when they dispersed 

noninvariant items across factors power was much higher under most conditions of partial 

noninvariance in larger models. 

Meade and Lautenschlager (2004) examined the sensitivity of invariance tests for 

establishing ME/I when it was known not to exist. They conducted a Monte Carlo study using 

different levels of sample size, model size, and number of items noninvariant. They included 

three levels of sample size, 150, 500 and 1000. The levels of model size were a six-item, one-

factor model and a 12-item, one-factor model. The number of items noninvariant was varied 

between two, four, and in the case of the 12-item model, eight items were invariant. They found 

that “detection rates for both the overall omnibus test and specific tests of factor loading 

differences displayed a ceiling effect that…makes comparisons of the efficacy of different 

conditions for large sample sizes impossible” (Meade & Lautenschlager, 2004, p. 66). As a 

result, they focused their discussion on the conditions with a sample size of 150. They found that 

when more items were simulated to differ across groups the nested model χ2 test was better able 
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to detect a lack of invariance. They also found that a mixed pattern of factor loadings (some 

simulated higher, some simulated to be lower than those in group one) in group two had higher 

detection rates than when factor loadings were uniformly lower for group two than group one. 

Millsap and Kwok (2004) examined another aspect of partial invariance. They were 

interested in the effect partial measurement invariance had on the accuracy of selection. 

Specifically, they wanted to know the consequences of using a measure for selection purposes 

when partial metric invariance was present in that measure. They suggested four quantities that 

would aid the decision-making process, proportion selected into each group, success ratio, 

sensitivity and specificity. These four quantities are made up of the proportion of true positive, 

false negative, true negative and false negative. Proportion selected into each group is the 

proportion of true positives plus the proportion of false positives. Success ratio is defined as the 

proportion of true positives divided by the proportion selected. Sensitivity is defined as the 

proportion of true positives divided by the proportion of true positive plus the proportion of false 

negatives. Finally, specificity is defined as the proportion of true negatives divided by the 

proportion of true negatives plus the proportion of false positives. They manipulated aspects of 

the selection process and the factor structure. They used two selection percentages corresponding 

to the 75th-percentile and the 90th-percentile, four levels of the number of items in the observed 

measure (4, 8, 12 or 16 items), degree of metric invariance as defined by the percentage of 

loadings invariant (100%, 75%, 50%, 25% or 0%), and high versus low communality levels. 

They found that the higher communality level led to higher proportions of individuals selected in 

the reference group, higher success ratios, sensitivity, and specificity for both groups. They also 

found noninvariance led to fewer focal group members being selected which leads to lower 

sensitivity and a corresponding increase in sensitivity in the reference group. They suggest that 
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across levels of noninvariance, changes in success ratios, sensitivity and specificity less than 0.05 

were unlikely to be meaningful. However, the authors also note that such a determination should 

be based on the use of the scale and the types of error (false postives/false negatives) that can be 

tolerated within the context of selection. 

This section has presented an overview of the history of research on partial measurement 

invariance, the notion that some model parameters can be considered noninvariant while others 

are invariant. Byrne et al. (1989) are credited with the initial implementation of the concept of 

partial measurement invariance. Kaplan and other researchers translated this initial work into 

empirical research within the confirmatory factor analytic context. Finally, recent advances in the 

field have also examined the extent to which partial ME/I affects group selection into referent or 

focal groups. In sum, the factors that emerge as most important in the partial measurement 

invariance literature are sample size, model size, and level of noninvariance. The next section 

will examine these factors in more detail. 

Factors that Affect Measurement Invariance 

Sample Size 

 It is widely known that one must have adequate sample size in order to make stable 

judgments about model fit in confirmatory factor analysis. Sample size has been an independent 

variable in several studies of ME/I (Hutchinson & Young, 2003; Hutchinson, 2002; Kaplan & 

George, 1995; Meade & Lautenschlager, 2004). Meade and Lautenschlager (2004) used sample 

sizes ranging from 150 to 1000. They noted a ceiling effect (nearly perfect detection rate) in 

detecting differences of group item factor loadings with sample sizes of 500 and 1000. 

Hutchinson (2003) used sample sizes of 200 and 500 per group. She found an increase in power 

in the larger sample sizes, as one might expect. This suggests that in order to examine practical 
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differences in various study conditions it is necessary to use sample sizes of less than 1000 in 

order to avoid a potential ceiling effect where differences are always detected. 

 Kaplan and George (1995) examined unequal sample sizes across the two groups. They 

found power to be much lower when the samples sizes were extremely unequal (e.g., n1=100, 

n2=900). The use of unequal sample sizes across groups is interesting because in many practical 

cases the focal group is smaller than the reference group. For example, there is typically a great 

group size discrepancy in the case of comparisons of persons with and without learning 

disabilities. 

Model Size/Complexity 

 ME/I simulation studies to date have included models of similar size. Meade and 

Lautenschlager (2004) used two models, each of which had one factor with six and twelve items, 

respectively. Hutchinson and Young (2003) used two models, one of which had one factor and 

six items, the other of which had two factors and twelve items. Kaplan and George (1995) also 

used two models, which had two factors with six and twelve items, respectively. However, 

nearly all of the results presented by these researchers centered on independent variables other 

than model size and complexity, though Hutchinson and Young (2003) did recommend future 

research on models of various sizes. 

Number of Loadings Variant/Invariant 

 Researchers have systematically varied the amount of noninvariance in studies of ME/I in 

two ways; by examining the magnitude of the factor loading differences (Hutchinson & Young, 

2003; Kaplan, 1989; Kaplan & George, 1995) and by varying the number of factor loadings 

invariant (Hutchinson & Young, 2003; Kaplan & George, 1995; Meade & Lautenschlager, 

2004). Researchers have investigated both partial and complete noninvariance scenarios with 
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mixed results (Hutchinson & Young, 2003; Kaplan & George, 1995; Meade & Lautenschlager, 

2004).  Meade and Lautenschlager (2004) found higher power for situations in which more 

loadings differed between groups.  Hutchinson and Young (2003) found low power for the 

complete noninvariance case regardless of level of factor loading difference across groups. These 

researchers found somewhat higher power in the partial measurement invariance case, 

particularly with a larger magnitude of factor loading differences. Kaplan and George (1995) 

found that power differences had more to do with the inequality of the group mean differences 

than the level of noninvariance. 

Summary 

Sample size, model size and levels of invariance are factors that affect measurement 

invariance. As mentioned earlier, there have been researchers who have suggested various 

acceptable levels of noninvariance, but most of the research studies on partial ME/I have focused 

on statistical significance, rather than practical significance. If measurement scales are not 

invariant across groups, the accuracy of group predictions may be affected. Byrne et al. (1989) 

and Kaplan and George (1995) examined factor mean differences across groups, but it is still 

unclear how much absolute invariance is necessary for prediction of group performance to 

remain valid. 

Purpose 

In most partial ME/I studies the interest has been in establishing the power of the 

likelihood ratio test to detect partial measurement invariance. The effects of partial measurement 

invariance on an instrument used for prediction and/or group comparisons is inconclusive and 

currently the ME/I literature offers little guidance in this area. The purpose of this study is 

therefore to investigate the amount of partial measurement noninvariance that can be tolerated 
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while still allowing for comparable predictions across groups. Specifically, varying degrees of 

size of factor loadings, model size, sample size, amount of partial measurement invariance, 

factor loading differences across groups, and differing levels of predicative influence across 

groups will be examined from the standpoint of their effects on power, accuracy in prediction, 

and parameter estimate bias. 

 Examining the effect of partial measurement noninvariance on predictive influence will 

contribute to a better understanding of the practical consequences of measurement differences 

across groups. Once the consequences are better understood, measurement professionals will be 

more prepared to determine tolerable levels of partial noninvariance for different situations.  

Research Questions 

A Monte Carlo simulation will be designed to answer the following research questions: 

1. How will group sample size in partial metric invariance influence accuracy of 

predictive influence, power and model fit? 

2. How will model size in partial metric invariance influence accuracy of predictive 

influence, power and model fit? 

3. How will factor loading size in partial metric invariance influence accuracy of 

predictive influence, power and model fit? 

4. How will the number of invariant factor loadings influence accuracy of predictive 

influence, power and model fit? 

5. How will the magnitude of loading differences across groups influence accuracy of 

predictive influence, power and model fit? 



 

 

23

 

6. How will equal versus unequal levels of predictive influence across groups in partial 

measurement invariance influence accuracy of predictive influence, power and model 

fit? 

Predictive influence is operationally defined as the regression coefficient (path) between 

a latent exogenous variable and an observed endogenous variable. To date, the effect of partial 

measurement invariance on prediction has not been examined. 

Sample size is a frequently studied factor of interest in partial measurement invariance. It 

is widely known that researchers must have adequate sample size in order to make accurate 

judgments about model fit in confirmatory factor analysis, however what is adequate will depend 

on factors such as model complexity and potentially the amount of partial measurement 

invariance encountered in a scale. The work of Meade and Lautenschlager (2004) suggests that 

methodological researchers also need to be careful of having too large a sample size. It is 

possible that having too large a sample size while trying to ‘detect’ partial measurement 

invariance in a simulation study might lead to perfect power and detection rates thereby masking 

the effects of other independent variables. In addition, unequal group sample sizes (Kaplan & 

George, 1995) will likely reduce the power to detect partial measurement invariance. Therefore, 

it is expected that larger but equivalent group sample sizes will provide more accurate estimates 

of prediction than unequal group sample sizes.  

ME/I simulation studies to date have included models of similar size. Nearly all of the 

results presented by previous researchers have centered on independent variables other than 

model size and complexity.  

Based in part on the findings of Kaplan (1989) it is expected that larger factor loadings 

will be provide more accurate estimates of prediction than smaller factor loadings. However, 
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Meade and Lautenschlager (2004) found that a mixed pattern of factor loadings (some simulated 

higher, some simulated to be lower than those in group one) in group two resulted in higher 

detection rates than when factor loadings were uniformly lower for group two than group one.  

Kaplan and George (1995) found that increased levels of loading noninvariance 

decreased power of the Wald test to detect differences in latent means. However, Meade and 

Lautenschlager (2004) found that when more items were simulated to differ across groups the 

nested model χ2 test was better able to detect a lack of invariance in factor loadings. Hutchinson 

and Young (2003) found that power to detect complete metric noninvariance was very low, 

which tends to agree with the findings of Kaplan and George (1995). However, it is expected that 

more noninvariance will lead to greater bias in the estimate of predictive influence.
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CHAPTER 3 

METHODS AND PROCEDURES 
 

The purpose of this study was to investigate the amount of partial measurement 

noninvariance that can be tolerated while still allowing for comparable predictions across groups. 

Specifically, a Monte Carlo simulation study varying size of factor loadings, model size, sample 

size, amount of partial measurement invariance, factor loading differences across groups, and 

differing levels of predictive influence across groups was conducted to examine the effects of 

these variables on power and accuracy in prediction. Predictive influence was operationally 

defined as the magnitude of the regression coefficient (path) between a latent exogenous variable 

to an observed endogenous variable. A structural equation model with a single latent exogenous 

factor with a varying number of indicators with a path to an observed endogenous variable was 

the basic model under investigation (Figure 1). 

Independent Variables 

The six independent variables are: size of the factor loadings (3 levels); model size  

(3 levels); number of items non-invariant (3 levels); sample size (3 levels); size of factor loading 

difference across groups (3 levels) and different levels of prediction across groups (2 levels) for a 

total of 486 cells of interest. Each cell represents the intersection of the six independent 

variables, for a completely crossed design. There were 250 replications per cell and all data were 

generated as multivariate normal. In order to make comparisons between invariant models and 

noninvariant models, 54 additional baseline cells were created to correspond to the independent 

variables that did not create the partial metric invariance. These independent variables were: size 
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of factor loading, model size and differing levels of prediction. For these cells all items were 

simulated to be noninvariant across groups. 
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Figure 1. Example of Model Used in Study (MS2). 
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  The three levels of size of factor loading are defined as SFL1, SFL2, and SFL3. SFL1 

included loadings for both groups that were between 0.3 and 0.7. SFL2 included loadings for 

both groups that were between 0.5 and 0.9. SFL3 included a mixture of loadings between 0.3 and 

0.9 across both groups. These factor loadings are somewhat similar to those used by Hutchinson 

and Young (2003), Kaplan and George (1995), and Kaplan (1989). 

 The three levels of model size are defined as MS1, MS2, and MS3. In MS1 there was one 

six-item exogenous factor, MS2 had one twelve-item exogenous factor and MS3 had one 18-item 

exogenous factor. MS1 has been used in a previous study (Hutchinson & Young, 2003) without 

the regression path. MS2 and MS3 are included to further examine the problematic nature of 

larger models (Cheung & Rensvold, 2002). As noted above, each model had a concomitant 

outcome regression path. 

 The three levels of invariance are defined as II1, II2, and II3. II1 had one item per model 

set to be non-invariant, II2 had one-third of the items set to be non-invariant, and II3 had two-

thirds of the items non-invariant. For example, in the cells that examined MS2 and II2, there were 

four noninvariant items as four is one-third of twelve, the number of items in that particular 

model. 

 The three levels of sample size are defined as SS1, SS2, and SS3. SS1 had 200 per group, 

SS2 had 450 per group, and SS3 had 600 in the referent group and 300 in the focal group. These 

levels are in keeping with previous research (Cheung & Rensvold, 2002; Hutchinson & Young, 

2003) and should provide stable parameter estimates, while maintaining practicality. 

 The three levels of factor loading difference are defined as FLD1, FLD2, and FLD3. FLD1 

had 0.2 factor loading differences between noninvariant items across the groups, FLD2 had 0.3 
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factor loading differences, and FLD3 had 0.4 factor loading differences across groups on 

noninvariant items. 

 The two levels of predictive influence across groups are defined as GAM1 and GAM2. In 

GAM1, the level of predictive influence across groups was equivalent, that is, the regression path 

was equal in the population across groups (0.5 for both groups). In the GAM2 level, the level of 

predictive influence across groups was not equivalent; the regression path was different by 0.2 in 

the population across groups, such that the gamma population value for group one was 0.5 and 

the gamma population value for group two was 0.3. 

Dependent Variables 

Values of goodness of fit indices, power of the likelihood ratio test and bias in the 

estimates of the regression path of interest were examined as dependent variables. The likelihood 

ratio test was calculated as the difference between two likelihood ratio values in two nested 

models; one in which parameters are constrained, one in which those same parameters are 

allowed to be freely estimated. Power was operationally defined as the proportion of true 

rejections of the likelihood ratio test across the number of replications within any given level of 

the research design. Bias was operationally defined as the average deviation of a sample value 

from the concomitant population value divided by the population value (Bandalos, in press). 

Data Generation 
 
 The data for the study was generated within LISREL 8.72 and PRELIS 2.72 (Jöreskog & 

Sörbom, 1996a; 1996b; 1996c). LISREL was used to generate population covariance matrices 

for the groups, from which the sample covariance matrices were generated by PRELIS. The data 

were analyzed using LISREL within a multiple-group CFA framework. The goodness of fit 
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indices and parameter estimates for each cell from each invariance analysis were stored for 

further analyses in SPSS 11.5. 

 In LISREL the invariance tests were performed in the following order: 

1. The tenability of equality of the factor structure of the generated samples.  

2. The tenability of invariant factor loadings across groups. 

3. The tenability of invariant latent factor variance. 

4. The tenability of invariant measurement error variances across groups. 

5. The tenability of the invariance of the path value between the latent exogenous 

variable and the latent endogenous variable. 

Data Analysis 

 A completely crossed 3x3x3x3x3x2 design was utilized in this study. Power of the 

likelihood ratio test and bias were first examined with descriptive statistics. Goodness of fit 

indices, and bias were also analyzed using separate analyses of variance. To date, partial 

measurement invariance has been analyzed descriptively with the examination of power of the 

likelihood ratio test. As a result, the variables that affect partial measurement invariance are 

relatively well known so the next step is to examine these variables using inferential statistics. 

The use of analysis of variance indicates a certain level of theoretical development in the factors 

(Keppel, 1991) that affect partial measurement invariance as evidenced also by the research 

presented in Chapter 2. 
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CHAPTER 4 

RESULTS 

The purpose of this study was to investigate the amount of partial measurement 

noninvariance that can be tolerated while still allowing for equally accurate predictions across 

groups. In particular, the research questions were: (1) how will group sample size in partial 

metric invariance influence accuracy of predictive influence, power and model fit, (2) how will 

model size in partial metric invariance influence accuracy of predictive influence, power and 

model fit, (3) how will factor loading size in partial metric invariance influence accuracy of 

predictive influence, power and model fit, (4) how will the number of invariant factor loadings 

influence accuracy of predictive influence, power and model fit, (5) how will the magnitude of 

loading differences across groups influence accuracy of predictive influence, power and model 

fit, (6) how will equal versus unequal levels of predictive influence across groups in partial 

measurement invariance influence accuracy of predictive influence, power and model fit. 

A Monte Carlo simulation examined varying degrees of size of factor loadings, model 

size, sample size, amount of partial measurement invariance, factor loading differences across 

groups, and differing levels of predictive influence across groups from the standpoint of their 

effects on power and accuracy in prediction (Table 2). Predictive influence was operationally 

defined as the regression coefficient (path) between a latent exogenous variable to an observed 

endogenous variable. There were 250 replications per cell and all data were generated as 

multivariate normal. 
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The results section will be divided into two parts: baseline condition and partial metric 

invariance. The baseline condition section provides descriptive statistics on additional cells 

created to provide information on the values of the dependent variables under invariant 

conditions across groups. These tables are based on 250 replications of the test of metric 

invariance. 

Table 2 
 
Design of Study 
 
 Independent Variables 
Level SFL MS II SS FLD GAM 

0   No difference  No 
difference 

 

1 

Between 
0.7 and 0.3 

mean 
SFL1=0.55 

1 factor 
– 6 item 

1 item 
noninvariant 200/group 0.2 

difference 

Equal gamma in 
population (0.5 in 
both groups)  
 

2 

Between 
0.9 and 0.5 

mean 
SFL2=0.76 

1 factor 
– 12 
item 

1/3 items 
noninvariant 450/group 0.3 

difference 

Unequal gamma 
in population (0.5 
in group1, 0.3 in 
group 2 

3 

Between 
0.9 and 0.3 

mean 
SFL3=0.65 

1 factor 
– 18 
items 

2/3 items 
noninvariant 

600/g1 
300/g2 

0.4 
difference 

 

 

The partial metric invariance section will provide the results relevant to the research 

questions. Further, to save space in the main document, tables of descriptive statistics for the 

dependent variables are provided in Appendix A. These tables are also based on 250 replications 

of the test of metric invariance. 

Baseline Condition 

The baseline condition examined the dependent variables under completely invariant 

conditions. Basic descriptive statistics collapsed across all invariant independent variables are 
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presented for the tests of factor structure (configural invariance) and factor loadings (metric 

invariance) on the following dependent variables: bias in the group 1 gamma parameter estimate, 

bias in the group 2 gamma parameter estimate, root mean square error of approximation 

(RMSEA), normed fit index (NFI), non-normed fit index (NNFI), comparative fit index (CFI), 

minimum fit function χ2 statistic (χ2), the likelihood ratio (∆χ2) between equality of factor 

structure and equality of factor loading, and the difference between CFI (∆CFI) in configural 

invariance and metric invariance (Table 3a and 3b). Basic descriptive statistics for each 

independent variable are also included (Tables 4-7). 

As can be seen in Tables 3a and 3b, there is not a great deal of difference between values 

of the parameter estimates and fit indices from the tests of factor structure and of factor loadings 

in the baseline condition. Power estimates of the likelihood ratio test show between two and 

eight percent of cell replications reject the null hypothesis of no significant difference in the χ2 

across nested models, indicating the relative Type I error rate one might expect in noninvariant 

models. 

Across size of factor loading, model size, sample size and differing levels of prediction 

(Tables 4-7), the bias estimate for the gamma parameter estimates for group one and group two 

indicate either no bias or a slight underestimation of this parameter. RMSEA, NFI, NNFI, CFI 

and ∆CFI all appear to be stable across levels of size of factor loading, model size, sample size 

and differing levels of predictive influence for the baseline condition. As would be expected, the 

values of the likelihood ratio (∆χ2) test presented in Table 5 increase as model size increases. In 

sum, when conditions are such that invariance holds, bias and fit indices give favorable results. 



 

 

34

 

Table 3a 

Test of Equality of Factor Structure Descriptive Statistics Collapsed Across All Factors for 

Baseline Cells (ncells=54) 

Factor Structure Statistics 
Dependent variables* Mean Median SD 
biasg1g -0.01 -0.01 0.09 
biasg2g -0.01 -0.01 0.12 
RMSEA 0.01 0.00 0.01 
NFI 0.99 0.99 0.01 
NNFI 1.00 1.00 0.00 
CFI 1.00 1.00 0.00 
χ2 157.53 131.70 118.44 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, RMSEA = root 
mean square error of approximation, NFI = normed fit index, NNFI = non-normed fit index, CFI = comparative fit 
index, χ2 degrees of freedom were 28, 130, 304 depending on model size. 

 
 

 

Table 3b 

Test of Equality of Factor Loadings Descriptive Statistics Collapsed Across All Factors for 

Baseline Cells (ncells=54) 

Factor Loading Statistics 
Dependent variables* Mean Median SD 
biasg1g -0.01 -0.01 0.09 
biasg2g -0.01 -0.01 0.11 
RMSEA 0.01 0.00 0.01 
NFI 0.99 0.99 0.01 
NNFI 1.00 1.00 0.00 
CFI 1.00 1.00 0.00 
χ2 168.68 142.81 123.53 
∆χ2 11.15 10.00 8.62 
∆CFI 0.00 0.00 0.00 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, RMSEA = root 
mean square error of approximation, NFI = normed fit index, NNFI = non-normed fit index, CFI = comparative fit 
index, ∆χ2 = likelihood ratio χ2 between equality of factor structure and equality of factor loading, χ2 degrees of 
freedom were 33, 141, or 321 depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on 
model size, ∆CFI= difference between equality of factor structure and equality of factor loading cfi values. 
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Table 4 
 
Descriptive Statistics by Levels of Factor Loading Size for Baseline Cells (ncells=54) 
 

 SFL Level                          
 Low High Mixed 
Dependent 
variables* Mean Median SD Mean Median SD Mean Median SD 

biasg1g -0.05 -0.04 0.10 0.00 0.00 0.10 0.00 0.00 0.07 
biasg2g -0.05 -0.04 0.13 0.00 0.00 0.10 0.00 0.00 0.10 
RMSEA 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 
NFI 0.99 0.99 0.01 0.99 0.99 0.00 0.99 0.99 0.00 
NNFI 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
CFI 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
χ2 168.38 143.19 123.34 168.76 142.83 123.65 168.91 142.16 123.63 
∆χ2 11.04 10.02 6.85 11.16 10.11 6.97 11.26 9.86 11.28 
∆CFI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, RMSEA = root 
mean square error of approximation, NFI = normed fit index, NNFI = non-normed fit index, CFI = comparative fit 
index, ∆χ2 = likelihood ratio χ2 between equality of factor structure and equality of factor loading, χ2 degrees of 
freedom were 33, 141, or 321 depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on 
model size, ∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 
 
 

 

Table 5 

Descriptive Statistics by Levels of Model Size for Baseline Cells (ncells=54) 

 MS Level 
 6 items 12 items 18 items 
Dependent 
variables* Mean Median SD Mean Median SD Mean Median SD 

biasg1g 0.00 0.00 0.08 -0.05 -0.04 0.10 0.00 0.00 0.07 
biasg2g 0.00 0.00 0.11 -0.05 -0.04 0.12 0.00 0.00 0.11 
RMSEA 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 
NFI 0.99 0.99 0.00 0.99 0.99 0.01 0.99 0.99 0.01 
NNFI 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
CFI 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
χ2(df) 33.27 

(33) 32.51 8.27 143.54 
(141) 142.81 16.99 329.24 

(321) 328.04 25.87 

∆χ2(df) 4.95 
(5) 4.29 3.16 11.07 

(11) 10.46 4.70 17.44 
(17) 16.61 10.61 

∆CFI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, RMSEA = root 
mean square error of approximation, NFI = normed fit index, NNFI = non-normed fit index, CFI = comparative fit 
index, df = degrees of freedom, ∆χ2 = likelihood ratio χ2 between equality of factor structure and equality of factor 
loading, ∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 
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Table 6 
 
Descriptive Statistics by Levels of Sample Size for Baseline Cells (ncells=54) 

 SS Level 
 n1=n2=200 n1=n2=450 n1=600; n2=300 
Dependent 
variables* Mean Median SD Mean Median SD Mean Median SD 

biasg1g -0.01 -0.01 0.11 -0.01 -0.01 0.08 -0.02 -0.01 0.07 
biasg2g -0.01 -0.01 0.13 -0.01 -0.01 0.10 -0.01 -0.01 0.11 
RMSEA 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 
NFI 0.98 0.99 0.00 0.99 0.99 0.00 0.99 0.99 0.00 
NNFI 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
CFI 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
χ2 170.51 144.15 125.37 167.47 141.74 122.53 168.06 142.68 122.68 
∆χ2 11.07 10.00 6.88 11.03 10.15 6.81 11.36 9.83 11.35 
∆CFI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, RMSEA = root 
mean square error of approximation, NFI = normed fit index, NNFI = non-normed fit index, CFI = comparative fit 
index, ∆χ2 = likelihood ratio χ2 between equality of factor structure and equality of factor loading, χ2 degrees of 
freedom were 33, 141, or 321 depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on 
model size, ∆CFI= difference between equality of factor structure and equality of factor loading cfi values. 
 
 

Table 7 

Descriptive Statistics by Levels of GAM for Baseline Cells (ncells=54) 

 GAM Level 
 G1=G2=0.5 G1=0.5; G2=0.3 
Dependent 
variables* Mean Median SD Mean Median SD 

biasg1g -0.01 -0.01 0.09 -0.02 -0.01 0.09 
biasg2g -0.01 -0.01 0.09 -0.01 -0.01 0.13 
RMSEA 0.01 0.00 0.01 0.01 0.00 0.01 
NFI 0.99 0.99 0.01 0.99 0.99 0.01 
NNFI 1.00 1.00 0.00 1.00 1.00 0.00 
CFI 1.00 1.00 0.00 1.00 1.00 0.00 
χ2 168.90 142.87 123.79 168.46 142.62 123.28 
∆χ2 11.23 9.83 10.10 11.07 10.13 6.81 
∆CFI 0.00 0.00 0.00 0.00 0.00 0.00 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, RMSEA = root 
mean square error of approximation, NFI = normed fit index, NNFI = non-normed fit index, CFI = comparative fit 
index, ∆χ2 = likelihood ratio χ2 between equality of factor structure and equality of factor loading, χ2 degrees of 
freedom were 33, 141, or 321 depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on 
model size, ∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 
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Partial Metric Invariance 

Goodness of fit indices, power of the likelihood ratio test and bias between the sample 

estimate and population values of the regression path of interest and parameter estimates were 

examined as dependent variables. The likelihood ratio test was calculated as the difference 

between the χ2 values of the test of configural invariance and test of metric invariance. Power 

was operationally defined as the proportion of true rejections of the likelihood ratio test across 

the number of replications within any given level of the research design. Bias was operationally 

defined as the average deviation of a sample value from the concomitant population value 

divided by the population value (Bandalos, in press). Power of the likelihood ratio test was 

examined with descriptive statistics and presented by independent variable and significant 

interactions of the goodness of fit indices (Tables 14-17). Tables of descriptive statistics for the 

dependent variables are provided in Appendix A. 

 Separate six-way analyses of variance were run on the goodness of fit indices RMSEA, 

NFI, NNFI, CFI, ∆CFI, χ2, and bias estimates for group 1 gamma (biasg1g) and group 2 gamma 

(biasg2g). The independent variables in the model were size of factor loading (SFL), model size 

(MS), proportion of items noninvariant (II), sample size (SS) factor loading difference (FLD) 

and differing levels of predictive influence in the population (GAM). 

 The large number of cells and of replications per cell required the examination of 

practical significance in the form of partial η2 rather than significance tests. Effects greater than 

0.14 (Cohen, 1988) were further analyzed. Results are presented by dependent variable (Table 

8). The largest effect was the proportion of noninvariant items on RMSEA, the smallest effect of 

practical significance was the interaction of factor loading size and proportion of noninvariant 

items on bias of the group 2 gamma parameter. 
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Table 8 
 
Partial η2 Values by Dependent Variable 
 

Dependent Variables Effect Partial η2 
RMSEA II 0.51 
 FLD 0.36 
NFI MSxII 0.17 
 FLD 0.23 
NNFI MSxIIxFLD 0.24 
CFI MSxIIxFLD 0.21 
χ2 MS 0.46 
 II 0.19 
∆CFI MSxIIxFLD 0.23 
bias of group 1 gamma -- -- 
bias of group 2 gamma SFLxII 0.15 

 
Goodness of Fit Indices 

 RMSEA appears to be most affected by proportion of items noninvariant and factor 

loading difference, but not by the interaction of these two independent variables. The RMSEA 

estimated marginal means and their 95% confidence intervals are located in Table 9. According 

to Byrne (1998) RMSEA should be less than 0.05 for the model to be considered optimal, while 

Hu and Bentler (1999) suggest a cut off value of 0.06. In this study, when the proportion of 

noninvariant items was largest (2/3 items noninvariant) and when the factor loading difference 

was largest (0.4 difference) the value of RMSEA rose to above 0.08; however, even with 1/3 of 

items noninvariant, values of RMSEA still suggest reasonable model fit in metric invariance. 

The analysis of NFI produced a MS x II interaction as well as a FLD main effect. Values 

of NFI greater than 0.95 would indicate acceptable model fit (Hu & Bentler, 1998, 1999). As can 

be seen in Figure 2, the graph of NFI estimated marginal means by MS and II shows that when 

the model is small and the proportion of noninvariance is high, NFI is much lower than when the 

proportion of noninvariance is less or the model is larger. In the case of a small model with a 

large proportion of noninvariant items, NFI falls below the recommended 0.95. In all other cases 
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across model size and proportion of noninvariant items, NFI suggests acceptable model fit in 

metric invariance. The NFI estimated marginal means for FLD suggest the larger the factor 

loading difference, the lower NFI (Table 10), but NFI still remains above 0.95. 

 

Figure 2. NFI Estimated Marginal Means by MS and II  
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Table 9  
 
RMSEA Estimated Marginal Means for Proportion of Noninvariant Items and Factor Loading 

Difference 

Independent Variable Estimated Marginal Mean 95% Confidence Interval 
II0 0.008 0.008-0.009 
II1 0.033 0.033-0.033 
II2 0.061 0.061-0.062 
II3 0.091 0.091-0.091 
   
FLD0 0.008 0.008-0.009 
FLD1 0.040 0.040-0.040 
FLD2 0.062 0.062-0.062 
FLD3 0.084 0.083-0.084 

 
 
Table 10 
 
NFI Estimated Marginal Means for Factor Loading Difference 
 
Independent Variable Estimated Marginal Mean 95% Confidence Interval 
FLD0 0.990 0.990-0.991 
FLD1 0.985 0.985-0.985 
FLD2 0.978 0.977-0.978 
FLD3 0.967 0.967-0.967 

 

Both NNFI and CFI have skewed distributions overall, so the following results need to be 

examined with caution. In both cases there was a MS x II x FLD interaction. The magnitudes of 

the estimated means for NNFI and CFI are similar; therefore only CFI estimated marginal means 

will be reported (Table 11). Acceptable values for CFI are those greater than 0.95 (Hu & Bentler 

1998, 1999). In this study, CFI values were worst when the model size was small, two-thirds of 

the items were noninvariant and the factor loading difference between groups was 0.4. The trend 

of the interaction seems to be such that in small models, the proportion of noninvariant items and 

factor loading differences has a greater effect than in larger models. 
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Table 11 

CFI Estimated Marginal Means for Model Size, Proportion of Noninvariant Items and Factor 

Loading Difference 

Dependent Variables Estimated Marginal 
Mean 

95% Confidence 
Interval 

Model Size Proportion Items 
Noninvariant 

Factor Loading 
Difference 

  

6 items No difference No difference 0.999 0.999-0.999 
 1 item 0.2 difference 0.996 0.996-0.996 
  0.3 difference 0.991 0.991-0.991 
  0.4 difference 0.983 0.983-0.983 
 1/3 items 0.2 difference 0.994 0.994-0.994 
  0.3 difference 0.985 0.985-0.985 
  0.4 difference 0.972 0.972-0.972 
 2/3 items 0.2 difference 0.982 0.982-0.982 
  0.3 difference 0.959 0.958-0.959 
  0.4 difference 0.924 0.924-0.924 
12 items No difference No difference 0.999 0.999-1.000 
 1 item 0.2 difference 0.999 0.998-0.999 
  0.3 difference 0.997 0.997-0.997 
  0.4 difference 0.995 0.995-0.995 
 1/3 items 0.2 difference 0.995 0.995-0.995 
  0.3 difference 0.988 0.988-0.989 
  0.4 difference 0.979 0.979-0.980 
 2/3 items 0.2 difference 0.992 0.992-0.992 
  0.3 difference 0.983 0.983-0.983 
  0.4 difference 0.970 0.970-0.970 
18 items No difference No difference 1.000 0.999-1.000 
 1 item 0.2 difference 0.999 0.999-0.999 
  0.3 difference 0.998 0.998-0.999 
  0.4 difference 0.997 0.997-0.998 
 1/3 items 0.2 difference 0.997 0.996-0.997 
  0.3 difference 0.993 0.993-0.993 
  0.4 difference 0.988 0.987-0.988 
 2/3 items 0.2 difference 0.995 0.995-0.995 
  0.3 difference 0.989 0.988-0.989 
  0.4 difference 0.980 0.980-0.980 

 

Though by definition χ2 does not have a normal distribution, when sampled within a cell 

it does exhibit normal distribution properties. Allowing for this fact, χ2 appears to be most 

affected by model size and proportion of noninvariance as main effects. It is not surprising that 

χ2 should be affected by model size as the degrees of freedom in the equation increase with more 

parameters to estimate (see Table 12 for estimated marginal means). 
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Table 12 
 
χ2 Estimated Marginal Means for Model Size and Proportion Noninvariant Items 
 
Independent variable Estimated marginal mean 95% confidence interval 
MS1 118.51 116.61-120.41 
MS2 310.14 308.24-312.04 
MS3 578.77 576.86-580.67 
   
II0 168.68 164.44-172.92 
II1 213.69 211.24-216.13 
II2 356.14 353.70-358.59 
II3 493.30 490.85-495.75 

 
Note: MS1 df=33, MS2 df=141, MS3 df=321. 
 
 The difference between values of CFI (∆CFI) in the tests of configural invariance and 

metric invariance was also examined following the work of Cheung and Rensvold (2002). They 

examined 20 change in goodness of fit indices and suggest a cut off value for ∆CFI of –0.01, 

below which “the null hypothesis of invariance should not be rejected” (Cheung & Rensvold, 

2002, p. 251 As with CFI, ∆CFI values also exhibited a MS x II x FLD interaction (Table 13). In 

this study, the ∆CFI is largest when the factor loading difference is 0.4, across all model sizes 

and particularly when two-thirds of the items were noninvariant. 

Power of the Likelihood Ratio Test 
 

 Power of the likelihood ratio test to detect metric noninvariance was high. Following the 

practically significant results of the goodness of fit indices, power estimates of the likelihood 

ratio test are provided (Tables 14-17). In this study, the power of the likelihood ratio test to 

detect metric noninvariance increased as the amount of noninvariance increased. Noninvariance 

was less likely to be detected when the amount of noninvariance was small. 
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Table 13. 

∆CFI Estimated Marginal Means for Model Size, Proportion of Items Noninvariant and Factor 

Loading Difference 

Dependent Variables Estimated Marginal 
Mean 

95% Confidence 
Interval 

Model Size Proportion Items 
Noninvariant 

Factor Loading 
Difference 

  

6 items No difference No difference 0.000 0.000-0.000 
 1 item 0.2 difference -0.003 -0.003-(-0.003) 
  0.3 difference -0.008 -0.008-(-0.008) 
  0.4 difference -0.016 -0.016-(-0.015) 
 1/3 items 0.2 difference -0.005 -0.006-(-0.005) 
  0.3 difference -0.014 -0.014-(-0.014) 
  0.4 difference -0.027 -0.027-(-0.027) 
 2/3 items 0.2 difference -0.017 -0.017-(-0.017) 
  0.3 difference -0.041 -0.041-(-0.040) 
  0.4 difference -0.075 -0.075-(-0.075) 
12 items No difference No difference 0.000 0.000-0.000 
 1 item 0.2 difference -0.001 -0.001-(-0.001) 
  0.3 difference -0.002 -0.002-(-0.002) 
  0.4 difference -0.004 -0.005-(-0.004) 
 1/3 items 0.2 difference -0.005 -0.005-(-0.004) 
  0.3 difference -0.011 -0.011-(-0.011) 
  0.4 difference -0.020 -0.020-(-0.020) 
 2/3 items 0.2 difference -0.007 -0.007-(-0.007) 
  0.3 difference -0.017 -0.017-(-0.016) 
  0.4 difference -0.030 -0.030-(-0.030) 
18 items No difference No difference 0.000 0.000-0.000 
 1 item 0.2 difference 0.000 -0.001-0.000 
  0.3 difference -0.001 -0.001-(-0.001) 
  0.4 difference -0.002 -0.002-(-0.002) 
 1/3 items 0.2 difference -0.003 -0.003-(-0.003) 
  0.3 difference -0.007 -0.007-(-0.007) 
  0.4 difference -0.012 -0.012-(-0.012) 
 2/3 items 0.2 difference -0.005 -0.005-(-0.005) 
  0.3 difference -0.011 -0.011-(-0.011) 
  0.4 difference -0.019 -0.019-(-0.019) 

 

Table 14  
 
Power Estimates of the Likelihood Ratio Test by Independent Variable 
 
 Independent Variable 
Level SFL MS II SS FLD GAM 
1 0.97 0.98 0.93 0.94 0.93 0.98 
2 0.98 0.98 0.99 1.00 0.99 0.98 
3 0.97 0.97 1.00 0.99 1.00  
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Table 15 
 
Power Estimates of the Likelihood Ratio Test across Size of Factor Loading and Proportion of 

Items Noninvariant 

 Proportion of Items Noninvariant 
Size of 
Factor 
Loading 

1 item 1/3 items 2/3 items 

Small 0.93 0.99 1.00 
Large 0.94 1.00 1.00 
Mixture 0.93 0.99 1.00 

 
 
 
Table 16 
 
Power Estimates of the Likelihood Ratio Test across Model Size and Proportion of Items 

Noninvariant 

 Proportion of Items Noninvariant 
Model Size 1 item 1/3 items 2/3 items 
6 items 0.95 0.98 1.00 
12 items 0.93 1.00 1.00 
18 items 0.92 1.00 1.00 

 
 
 
 
 
Table 17 
 
Power Estimates of the Likelihood Ratio Test across Model Size, Proportion of Items 

Noninvariant and Magnitude of Factor Loading Differences 

 Proportion of Items Noninvariant 
 1 item 1/3 items 2/3 items 
 Factor Loading Difference 
Model Size 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 
6 items 0.86 0.99 1.00 0.95 0.99 1.00 1.00 1.00 1.00 
12 items 0.80 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
18 items 0.77 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 
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Parameter Estimates and Bias 
 

There were no results of practical significance (partial η2>0.14) in bias for the group one 

parameter estimate. The only practically significant result in group two gamma bias was a 

SFLxII interaction effect (Table 18). Bias (in the form of proportion of a gamma parameter 

estimate) was greater for smaller factor loadings, and roughly similar for large factor loadings 

and a mixture of factor loadings.  

 

Table 18 
 
Group 2 Bias Estimated Marginal Means for Size of Factor Loading and Proportion of 

Noninvariant Items 

Dependent Variable Effect 95% Confidence 
Interval 

SFL1 II0 -0.046 -0.050-(-0.042) 
 II1 -0.016 -0.019-(-0.014) 
 II2 0.048 0.046-0.051 
 II3 0.254 0.252-0.257 
 Mean 0.06  
SFL2 II0 0.000 -0.004-0.004 
 II1 0.022 0.019-0.024 
 II2 0.029 0.027-0.031 
 II3 0.014 0.011-0.016 
 Mean 0.02  
SFL3 II0 0.004 0.000-0.008 
 II1 0.030 0.028-0.033 
 II2 0.062 0.060-0.064 
 II3 0.017 0.015-0.020 
 Mean 0.03  

 
Summary 

 The descriptive statistics for the baseline condition provide informative results. There is a 

Type 1 error rate of between 0.02 and 0.08 in the invariant conditions. There was a slight 
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underestimation of bias in the invariant conditions, but generally bias and fit indices gave 

favorable results. 

 The results for partial measurement invariance suggest that model size, level of 

noninvariance and factor loading differences affect goodness of fit indices while the size of the 

factor loading has a slight affect on bias.
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CHAPTER 5 

DISCUSSION 
 
 The purpose of this study was to investigate the amount of partial metric invariance that 

can be tolerated while still allowing for equally accurate predictions across groups. By varying 

size of factor loadings, model size, sample size, amount of partial measurement invariance, 

factor loading differences and differing predictive influence across groups the following research 

questions could be answered: how will group sample size influence prediction, how will model 

size influence prediction, how will factor loading size influence prediction, how will the number 

of invariant factor loadings and level of factor loading differences influence prediction, and how 

will differing amounts of predictive influence be affected by partial measurement invariance. 

 There was a steady increase in the RMSEA value (and therefore decline in fit) the larger 

the amount of noninvariance and factor loading difference. Under the conditions studied, 

RMSEA was optimal when the proportion of items noninvariant was no larger than 1/3 and the 

factor loading difference across groups was no larger than 0.3 across the noninvariant items. In 

the conditions studied, the values of NFI indicate acceptable fit even in the worst case of a large 

proportion of noninvariance coupled with a small model or the greatest amount of factor loading 

difference. The MS by II interaction shows that when the model is small and the proportion of 

noninvariance is high, NFI is much lower than when the proportion of noninvariance is less or 

the model is larger. A similar result was found in CFI in that the smaller model with a high 

proportion of noninvariance and larger factor loading difference yielded a lower CFI than other 

model sizes/proportions of noninvariance/factor loading size. The analysis of ∆CFI produced 
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similar results to those of CFI. Cheung and Rensvold (2002) in their examination of goodness of 

fit indices under the null hypothesis of invariance found average ∆CFI (metric invariance – 

configural invariance) values of -0.0001, (first percentile value= -0.0085), while the values in 

this study were much larger, indicating noninvariance. Independent of model size, the χ2 fit 

statistic increases with increasing amounts of noninvariance, indicating robustness for 

differentiating poor fit not seen in NFI, NNFI or CFI.  

 Bias in the group two gamma parameter estimate was large (0.254) and tended to 

overestimate the group two gamma parameter estimate in conditions where the factor loading 

size was small and the proportion of noninvariance was large. Bias for the group two gamma 

parameter estimate was roughly similar for large factor loadings and a mixture of factor loadings 

across levels of noninvariance. 

 As noted previously, sample size is a frequently studied factor in partial measurement 

invariance. Meade and Lautenschlager (2004) found 1000 per group to yield excessive power as 

their rates of detection were near 100 percent. Kaplan and George (1995) found that unequal 

sample size was likely to reduce power to detect partial measurement invariance. In the current 

study, it was expected that larger but equivalent group sample seizes would provide more stable 

estimates of prediction than unequal sample sizes. This does not appear to be the case, as sample 

size did not prove to be a factor of practical significance in any of the six-way ANOVAs. That is, 

the sample sizes chosen did not provide sufficiently different results as to be meaningful. 

 ME/I simulation studies to date have used models of similar size, but nearly all of the 

results presented focus on other aspects of the research design. It was expected that smaller 

models would provide more accurate estimates of prediction than larger models. Model size 

seemed to play an important role in the goodness of fit indices – while interacting with number 
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of items invariant (NFI) and factor loading differences (NNFI, CFI and ∆CFI), the smallest 

model seemed to incur the worst fit. Power was somewhat diminished when there were larger 

models with only one item noninvariant. Therefore, model size appears to be an important 

consideration in partial measurement invariance. 

 As was expected, the levels of factor loading size that included larger factor loadings 

resulted in more accurate estimates of gamma than the level with only smaller factor loadings. 

These results are similar to those of Kaplan (1989) and Meade and Lautenschlager (2004). 

 It was expected that smaller proportions of noninvariance would provide more accurate 

estimates of prediction than larger proportions of noninvariance. Both the proportion of items 

noninvariant and the factor loading differences across groups seem to act in concert with model 

size. The larger the proportion of items noninvariant and the larger the factor loading difference 

across groups, the worse the fit as measured by all goodness of fit indices examined. As well, 

bias of the gamma parameter estimate was somewhat affected by smaller factor loadings and 

larger proportions of noninvariance in that these conditions yielded larger bias estimates. Power 

was slightly diminished when factor loadings were smaller and the proportion of noninvariant 

items was small. 

Limitations 

 The results of this study provide further information about how partial metric invariance 

affects the decisions one might make regarding comparisons across groups in simulated 

conditions. However, as a simulation study these results may not reflect real data conditions and 

may not be generalizable to all model sizes/complexities, other sizes of factor loadings, or other 

levels of predictive influence.  
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Suggestions for Future Research 

There are an infinite number of combinations of factor loading size that might be utilized 

and it is important to look more fully at how a mixture (both larger and smaller loadings across 

groups) of factor loadings might affect accuracy of prediction across models with more than one 

latent factor. Further comparisons of noninvariance and predictive influence in one and two (or 

more) factor models are necessary to understand more fully these effects. Sample size did not 

have the expected effect on prediction, estimated parameter estimates, or bias. It is possible that 

the sample sizes were not sufficiently different from each other that such a difference in the 

dependent variables could be noted. Larger unequal sample sizes have been studied by others but 

the focus was on power of the likelihood ratio test (Hutchinson & Young, 2003, Kaplan & 

George, 1995). Therefore, in further research examining accuracy of prediction, the unequal 

sample size level should have a greater difference between the two groups. 

Further analysis also needs to be done to examine the change in goodness of fit indices 

put forward by Cheung and Rensvold (2002) in other contexts. These authors examined 20 

goodness of fit indices under the null hypothesis of invariance and recommended reporting ∆CFI 

in results of invariance tests because they found it was not significantly correlated with CFI in 

configural invariance, and it was not affected by model complexity. However, the correlations 

between CFI and ∆CFI in this study were somewhat larger than those found by Cheung & 

Rensvold, therefore, further analysis is needed to examine these different results. 

Finally, future research should be focused on mean and covariance structure analysis 

(MACS). MACS is an extension of the traditional multiple group covariance analysis in that the 

comparison of intercepts and latent means across groups is an integral part of the methodological 

process. Equality of item intercepts indicates that those with equal amounts of the factor have 



 

 

51

 

equivalent scores on the indicators. If this is not the case, comparisons of latent means are 

specious because they may reflect differential response patterns on the indicators rather than true 

differences in mean factor levels. Therefore, before one can interpret latent mean differences 

across groups one must examine whether item intercepts are equivalent.  Whether item intercepts 

and/or latent means are allowed to be freely estimated or are constrained to be equal across 

groups is dependent upon whether or not latent mean differences are theoretically meaningful. 

When using MACS a researcher can examine latent mean differences across groups, if 

appropriate, then instead of moving back to an observed variable analysis like analysis of 

variance, carry out latent pairwise comparisons across different groups, and analyze repeated 

measures over time and across groups (Ployhart and Oswald, 2004).  This is advantageous for 

various reasons including the fact that measurement error is accounted for throughout the 

analysis of interest, that MACS can be used to specifically model various violations in the 

assumptions found in analysis of variance (e.g. homogeneity of variance) and has estimation 

methods that are robust to violations of normality (Yuan, Bentler, and Zhang, 2005). 

Recommendations for Applied Researchers 

 The interaction between model size, proportion of items noninvariant and factor loading 

differences plays a large role in partial measurement invariance. Byrne et al. (1989) suggested 

that only one item needed to be invariant and Reise et al. (1993) suggested that at least half of the 

items needed to be invariant for group comparisons to be meaningful. Contrary to these 

recommendations it appears from the results of this study that the proportion of noninvarniant 

items should be no more than one-third with a sufficiently large model. The applied researcher 

should exercise care when interpreting invariance results in small models with small factor 
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loadings coupled with large factor loading differences across groups as any comparison across 

groups may be inaccurate. 
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APPENDIX A 

DESCRIPTIVE STATISTIC FOR ALL INDEPENDENT VARIABLES 
 

IN THE NONINVARIANCE PART OF THE STUDY 
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The following tables (Tables A1.1-A7) include descriptive statistics for all of the 

independent variables in the noninvariance part of the study. These tables are based on the test of 

factor loadings (metric invariance).  
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Table A1.1 

Descriptive Statistics for Test of Equality of Factor Structure for Partial Measurement 

Invariance Cells (ncells=486) 

Factor Structure Statistics 
Dependent variables* Mean Median SD 
biasg1g 0.00 0.00 0.08 
biasg2g 0.00 0.00 0.12 
RMSEA 0.01 0.00 0.01 
NFI 0.99 0.99 0.00 
NNFI 1.00 1.00 0.00 
CFI 1.00 1.00 0.00 
χ2 157.67 131.76 118.60 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma 
parameter, RMSEA = root mean square error of approximation, NFI = normed fit index, NNFI = 
non-normed fit index, CFI = comparative fit indexχ2 degrees of freedom were 28, 130, or 304 
depending on model size. 
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Table A1.2 

Descriptive Statistics for Test of Equality of Factor Loadings for Partial Measurement 

Invariance Cells (ncells=486) 

Factor Loading Statistics 
Dependent variables* Mean Median SD 
biasg1g -0.03 -0.02 0.08 
biasg2g 0.05 0.03 0.16 
RMSEA 0.06 0.06 0.04 
NFI 0.98 0.98 0.02 
NNFI 0.98 0.99 0.02 
CFI 0.99 0.99 0.02 
χ2 354.38 294.40 285.52 
∆χ2 196.71 111.17 222.03 
∆CFI -0.01 -0.01 0.02 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma 
parameter, RMSEA = root mean square error of approximation, NFI = normed fit index, NNFI = 
non-normed fit index, CFI = comparative fit index, ∆χ2= likelihood ratio χ2 between equality of 
factor structure and equality of factor loading, χ2 degrees of freedom were 33, 141, or 321 
depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on model size, 
∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 
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Table A2 

Descriptive Statistics by Level of Size of Factor Loading for Partial Measurement Invariance 

Cells (ncells=486) 

 SFL Level 
 1 (0.7-0.3) 2 (0.9-0.5) 3 (0.9-0.3) 
Dependent 
variables* Mean Median SD Mean Median SD Mean Median SD 

biasg1g -0.05 -0.05 0.09 -0.01 -0.01 0.07 -0.02 -0.02 0.07 
biasg2g 0.10 0.05 0.21 0.02 0.02 0.11 0.04 0.03 0.12 
RMSEA 0.06 0.05 0.03 0.07 0.06 0.04 0.06 0.06 0.04 
NFI 0.97 0.98 0.02 0.98 0.99 0.01 0.98 0.98 0.02 
NNFI 0.98 0.99 0.02 0.99 0.99 0.02 0.98 0.99 0.02 
CFI 0.99 0.99 0.02 0.99 0.99 0.01 0.98 0.99 0.02 
χ2 306.16 261.78 207.52 381.35 318.89 315.77 375.61 316.00 313.51 
∆χ2 148.36 101.42 134.37 223.68 119.95 252.76 218.08 114.61 249.85 
∆CFI -0.01 -0.01 0.02 -0.01 -0.01 0.04 -0.01 -0.01 0.02 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma 
parameter, RMSEA = root mean square error of approximation, NFI = normed fit index, NNFI = 
non-normed fit index, CFI = comparative fit index, ∆χ2 = likelihood ratio χ2 between equality of 
factor structure and equality of factor loading, χ2 degrees of freedom were 33, 141, or 321 
depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on model size, 
∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 
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Table A3 

Descriptive Statistics by Level of Model Size for Partial Measurement Invariance Cells 

(ncells=486) 

 MS Level 
 1 (6 items) 2 (12 items) 3 (18 items) 
Dependent 
variables* Mean Median SD Mean Median SD Mean Median SD 

biasg1g -0.03 -0.03 0.08 -0.03 -0.03 0.09 -0.02 -0.02 0.08 
biasg2g 0.06 0.05 0.14 0.04 0.02 0.17 0.05 0.03 0.16 
RMSEA 0.08 0.08 0.04 0.06 0.05 0.03 0.05 0.04 0.03 
NFI 0.97 0.98 0.02 0.98 0.98 0.01 0.98 0.99 0.01 
NNFI 0.97 0.98 0.03 0.99 0.99 0.01 0.99 0.99 0.01 
CFI 0.98 0.98 0.02 0.99 0.99 0.01 0.99 0.99 0.01 
χ2(df) 127.98 

(33) 98.83 91.98 328.65 
(141) 259.94 186.82 606.49 

(321) 499.27 292.79 

∆χ2(df) 99.59 
(5) 70.27 91.61 196.19 

(11) 124.36 186.52 294.35 
(17) 183.00 292.82 

∆CFI -0.02 -0.02 0.02 -0.01 -0.01 0.01 -0.01 0.00 0.01 
 
Note: biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, 
RMSEA = root mean square error of approximation, NFI = normed fit index, NNFI = non-
normed fit index, CFI = comparative fit index, df=degrees of freedom, ∆χ2 = likelihood ratio χ2 
between equality of factor structure and equality of factor loading, ∆CFI = difference between 
equality of factor structure and equality of factor loading cfi values. 
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Table A4 

Descriptive Statistics by Level of Items Invariant for Partial Measurement Invariance Cells 

(ncells=486) 

 II Level 
 1 (1 item) 2 (1/3 items) 3 (2/3 items) 
Dependent 
variables* Mean Median SD Mean Median SD Mean Median SD 

biasg1g -0.03 -0.03 0.09 -0.02 -0.02 0.08 -0.02 -0.02 0.08 
biasg2g 0.01 0.01 0.12 0.05 0.04 0.13 0.10 0.05 0.21 
RMSEA 0.03 0.03 0.02 0.06 0.06 0.02 0.09 0.08 0.04 
NFI 0.99 0.99 0.01 0.98 0.98 0.01 0.97 0.97 0.02 
NNFI 0.99 1.00 0.01 0.99 0.99 0.01 0.97 0.98 0.03 
CFI 1.00 1.00 0.01 0.99 0.99 0.01 0.97 0.98 0.02 
χ2 213.69 184.52 129.87 356.14 316.33 252.71 493.30 399.28 353.18 
∆χ2 56.02 48.96 31.95 198.37 146.48 163.90 335.73 241.86 284.39 
∆CFI 0.00 0.00 0.01 -0.01 -0.01 0.01 -0.02 -0.02 0.02 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma 
parameter, RMSEA = root mean square error of approximation, NFI = normed fit index, NNFI = 
non-normed fit index, CFI = comparative fit index, ∆χ2 = likelihood ratio χ2 between equality of 
factor structure and equality of factor loading, χ2 degrees of freedom were 33, 141, or 321 
depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on model size, 
∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 
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Table A5 

Descriptive Statistics by Level of Sample Size for Partial Measurement Invariance Cells 

(ncells=486) 

 SS Level 
 1 (n1=n2=200) 2 (n1=n2=450) 3 (n1=600, n2=300) 
Dependent 
variables* Mean Median SD Mean Median SD Mean Median SD 

biasg1g -0.03 -0.03 0.10 -0.03 -0.02 0.07 -0.02 -0.02 0.06 
biasg2g 0.04 0.02 0.17 0.04 0.02 0.14 0.07 0.05 0.17 
RMSEA 0.06 0.06 0.04 0.06 0.06 0.04 0.06 0.05 0.04 
NFI 0.97 0.97 0.02 0.98 0.98 0.02 0.98 0.99 0.01 
NNFI 0.98 0.99 0.02 0.98 0.99 0.02 0.99 0.99 0.02 
CFI 0.98 0.99 0.02 0.99 0.99 0.02 0.99 0.99 0.01 
χ2 278.04 225.74 201.00 410.39 346.57 330.12 374.70 322.37 292.93 
∆χ2 118.21 71.52 120.52 253.93 143.27 267.78 217.99 124.39 227.52 
∆CFI -0.01 -0.01 0.02 -0.01 -0.01 0.02 -0.01 -0.01 0.01 

 
Note: * biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma 
parameter, RMSEA = root mean square error of approximation, NFI = normed fit index, NNFI = 
non-normed fit index, CFI = comparative fit index, ∆χ2 = likelihood ratio χ2 between equality of 
factor structure and equality of factor loading, χ2 degrees of freedom were 33, 141, or 321 
depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on model size, 
∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 

 



 

 

65

 

Table A6 

Descriptive Statistics by Level of Factor Loading Difference for Partial Measurement Invariance 

Cells (ncells=486) 

 FLD Level 
 1 (0.2 difference) 2 (0.3 difference) 3 (0.4 difference) 
Dependent 
variables* Mean Median SD Mean Median SD Mean Median SD 

biasg1g -0.02 -0.02 0.08 -0.03 -0.02 0.08 -0.03 -0.03 0.08 
biasg2g 0.02 0.02 0.12 0.05 0.03 0.15 0.08 0.04 0.19 
RMSEA 0.04 0.04 0.02 0.06 0.06 0.03 0.08 0.08 0.04 
NFI 0.99 0.99 0.01 0.98 0.98 0.01 0.97 0.97 0.02 
NNFI 0.99 0.99 0.01 0.98 0.99 0.02 0.97 0.98 0.03 
CFI 0.99 1.00 0.01 0.99 0.99 0.01 0.98 0.98 0.02 
χ2 249.58 211.46 172.04 345.14 299.61 249.01 468.41 387.01 359.01 
∆χ2 91.95 60.82 82.92 187.41 116.83 175.06 310.77 190.72 293.77 
∆CFI -0.01 0.00 0.01 -0.01 -0.01 0.01 -0.02 -0.02 0.02 

 
Note: biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, 
RMSEA = root mean square error of approximation, NFI = normed fit index, NNFI = non-
normed fit index, CFI = comparative fit index, ∆χ2 = likelihood ratio χ2 between equality of 
factor structure and equality of factor loading, χ2 degrees of freedom were 33, 141, or 321 
depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on model size, 
∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 
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Table A7 

Descriptive Statistics by Level of GAM for Partial Measurement Invariance Cells (ncells=486) 

 GAM Level 
 1 (G1=G2=0.5) 2 (G1=0.5, G2=0.3) 
Dependent 
variables* Mean Median SD Mean Median SD 

biasg1g -0.03 -0.02 0.08 -0.03 -0.02 0.08 
biasg2g 0.05 0.03 0.14 0.05 0.03 0.18 
RMSEA 0.06 0.06 0.04 0.06 0.06 0.04 
NFI 0.98 0.98 0.02 0.98 0.98 0.02 
NNFI 0.98 0.99 0.02 0.98 0.99 0.02 
CFI 0.99 0.99 0.02 0.99 0.99 0.02 
χ2 354.60 294.19 285.67 354.15 294.86 285.36 
∆χ2 196.88 111.30 222.29 196.54 111.03 221.76 
∆CFI -0.01 -0.01 0.02 -0.01 -0.01 0.02 

 
Note: biasg1g = bias of group 1 gamma parameter, biasg2g = bias for group 2 gamma parameter, 
RMSEA = root mean square error of approximation, NFI = normed fit index, NNFI = non-
normed fit index, CFI = comparative fit index, ∆χ2 = likelihood ratio χ2 between equality of 
factor structure and equality of factor loading, χ2 degrees of freedom were 33, 141, or 321 
depending on model size, ∆χ2 degrees of freedom were 5, 11 or 17 depending on model size, 
∆CFI = difference between equality of factor structure and equality of factor loading cfi values. 


