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 Topic based classification and searches have always been a hefty challenge along the 

corridors of data mining. Reading a large amount of articles and indentifying them of to be the 

same genre or precisely one subject matter is nearly impossible. With the ever popular need for 

refinement and quick results we have cropped up a technique to apply graph clustering and 

probabilistic theory along with known data mining concepts to develop a relationship between 

words that present high instances of existing together across a majority of documents. These 

words or topics as we call them form a “Topic Graph”. A Graph is thus a set of words with a 

high frequent, high probabilistic relationship amongst them. In more technical theory, it is a 

highly connected graph with words as nodes and relationships between these words as edges. We 

can apply these concepts of Topic Graphs to refine and categorize search result along with 

creating new Graphs if the need arises. One of the possible resulting applications should be able 

to provide precise and specific search answers satisfying user’s requests. 
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CHAPTER 1 

INTRODUCTION 

 

The invention of World Wide Web (www) has ushered in the era of search engines and 

information retrieval. Although, the ascension of internet along with its many diversities and 

interests provided a near unlimited area of storage space for information, it’s just too huge to 

search and thus makes its more and more difficult to find information. Popular web search 

engines line Google, Yahoo, AltaVista, Infoseek and MSN do exist to help people find 

information on the web. Most of these systems return a ranked list of web pages in response to a 

user’s search request. Web pages on different topics or different aspects of the same topic are 

mixed together in the returned list. The user has to sift through a long list to locate pages of 

interest [18]. Some believe this to be an annoying issue. 

 

 Most internet search engines of the present perform a phenomenal task of providing a 

linear list of sorted or ranked results for a query. For known-item queries, users often find the 

site they are looking for in the first page of results. However, a list may not suffice for more 

sophisticated exploratory tasks, such as learning about a new topic or surveying the literature of 

an unfamiliar field of research, or when information needs are imprecise or evolving [19][20]. 

Many a times a single word even though a proper noun, may have complete different meanings. 
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For example: ‘S5’ may refer to ‘Samsung Galaxy S5’ or ‘Audi S5’. The former is the newest 

phone offered by the Samsung Galaxy series, while the latter refers to a luxury sedan offered by 

the ever popular German car manufacturer Audi. Queries having ambiguous terms may retrieve 

documents which are not what users are searching for [22]. No search engine can predict what 

the user wants to search for at any given moment of time. Although most search engines provide 

possible related searches or search suggestion, but can never know for sure what the user wants 

to search. 

 

 Another issue is the “why”! The “why” of user search behavior is actually essential to 

satisfying the user’s information need. After all, users don’t sit down at their computer and say to 

themselves, “I think I’ll do some searches.” Searching is merely a means to an end – a way to 

satisfy an underlying goal that the user is trying to achieve. (By “underlying goal,” we mean how 

the user might answer the question “why are you performing that search?”)[21]. That goal may 

range from buying the grocery to the newest video game. Or it may range from finding the latest 

election results to finding what his next door neighbor is up to. Or it even may be to find if some 

famous celebrity said something controversial to voicing his own opinion about a certain 

pertaining issue or a plethora of possibilities. In fact, in some cases the same  query might be 

used to convey different goals - For instance, an user searching for ‘Samsung Galaxy S5’ might 

get results ranging from the technical knowhow, price to possible outlet stores that sell the 

product. He may only want to know about the technical issues of the phone rather than the best 

place to purchase it and if the search results produced somehow tend to be more inclined towards 

‘possible places to purchase’ type, that itself may annoy him enough to produce a negative 

impression about it. 
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Perhaps, no technology of the present or the near future may have the capability to completely 

solve such issues, but techniques like related searches and suggestion may resolve them to some 

extent. This thesis presents a possible solution or at least a way to reduce user’s annoyance with 

search engines called as “Topic Graphs and Topic/Sets” - a system to compartmentalize search 

results based on sets of closely associated words. Here we devise a technique to formulate bands 

of words together, having highly logical relations in the real world. By real world I mean the 

human universe as we know it. The common issue of unnecessary, ambiguous and redundant 

search results can be reduced to some extent. 

 

 What we attempt is to provide search engine, users or any possible searching techniques a 

hierarchy to search for. Instead for directly searching for the user query, a system may use our 

topic sets for searching a query thus returning results associated directly with these sets and 

organized categorically based on these sets. This thesis introduces this concept of topic graphs 

and topic sets, their benefit for searching and a process through which they are forged from any 

available collection of documents. The final result that is produced is a compilation of groups of 

words that can be then used as templates for searching as mentioned before. For example: Our 

previous example of ‘Samsung Galaxy S5’ could be associated with searching for price, outlet 

stores, tech specs or comparison with competitors. For that follows topic sets can be available: 

[Galaxy, S5, Target, At&t], [S5, Verizon, At&t, T-Mobile, ...], [Samsung, S5, Galaxy, PC 

Magazine, Chips, Amoled, …] or [Galaxy, S5, HTC, One, M8, ….] etc. 
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1.1 The Concept 

The core theory of this document is based on the simple fundamental belief that “no word is ever 

alone”. Thus we have personified words and phrases to have relationships with other words. Any 

definition of any topic is a group of words semantically arranged together to make sense. Thus, 

every single term is any sort of search query can be believed to be associated with a set of words 

that define them and rather add character to them. We establish relationships between keywords 

by using a graphical approach. Why Graphs? Because graphs are an efficient data structure to 

represent hierarchical information. This question gets answered more clearly in later chapters. 

 

 Our application is a four stage structure in technical terms but we can introduce it in a 

three step perception to put forth a foundation for this thesis as follows: 

 

1. The Corpus: A plethora of documents exist in every format in the universe. Every 

known information is represented in a written format so that it can reach every corner of 

the world to be distributed. The first step is to take a bunch of such documents at random 

and formulate their base topic based on devising key words from written paragraphs. 

2. The application: The application will establish associations between available keywords 

by calculating a probabilistic weight between those words that frequently appear together 

in a host of documents. The result will be a graph with keywords as vertices and their 

relationships with other words would be the reason for its edges and their weights. The 

weights help to establish a relationship score between these words. 

3. Clusterize: The final step is to group together those words which have the maximum or 

near maximum relationship score between them. So we eliminate weaker edges and form 
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several sub graphs. We then establish a hierarchical tree structures for these sub graphs 

which gives us topic graphs which can be further categorized and organized into topic 

sets. 

 

 The further chapters in the thesis will present in depth the whole process of how an 

assemblage of random documents result in the formation of topic sets. We will describe the core 

system architecture - which essentially is four stages, a working on-paper demonstration, an 

evaluation of our tests that provide an evidence for the theory and possible enhancements to the 

proposed concept. 
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CHAPTER 2 

BACKGROUND AND MOTIVATION 

 

The need to categorize has always been evident in human nature. Categories present a 

systematical approach in any organizational approach. Simple examples are evident in our day to 

day lives starting from our personal bedrooms to kitchens, from our TV guides to restaurant 

menus, from groceries to books. Categorical and systematic organization of information has 

always been and will always be the prime need and expectation of any venture. 

 

 Three general techniques have been used to organize documents into topical contexts. 

The first one uses structural information (Meta data) associated with each document. The 

DynaCat system by Pratt [23] used Meta data from the UMLS medical thesaurus to organize 

search results. In the SuperBook project [24], paragraphs of texts were organized into an author-

created hierarchical table of contents. Others have used the link structure of Web pages to 

automatically generate structured views of Web sites. Maarek et al.’s WebCutter system [25] 

displayed a site map tailored to the user’s search query. Manually-created systems are quite 

useful but require a lot of initial effort to create and are difficult to maintain. Automatically 

derived structures often result in heterogeneous criteria for category membership and can be 

difficult to understand [18]. A second way to organize documents is by clustering. Documents 
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are organized into groups based their overall similarity to one another. Zamir et al. [26, 27] 

grouped Web search results using suffix tree clustering. Hearst et al. [28, 29] used the 

scatter/gather technique to organize and browse documents. Clusters are usually labeled by 

common phrases extracted from member documents [18]. A third way to organize documents is 

by classification. In this approach, statistical techniques are used to learn a model based on a 

labeled set of training documents (documents with category labels). The model is then applied to 

new documents (documents without category labels) to determine their categories [18]. 

 

 Our concept uses a bit of each three methods described above. The first method of 

organizing in a hierarchical format based on the structural information of the document is the 

final result of our whole application. The final output is a file containing terms organized as trees 

and we formulate our topic sets based on these trees. The second method is applied to create the 

topic trees. We clusterize one major graph obtained by establishing relationships between all the 

terms and then organize these clusters into a hierarchical tree structure. The whole idea and its 

introduction are based on the third method. We formulate these topic trees and graphs along with 

topic sets and then propose an application to categorize searches based on these topic sets we 

have obtained. 

 
Search Engines like Google, Bing, and Yahoo now-a-days deliver a customized search 

result. This leads to an effect that has been called a filter bubble. Thus, the user has information 

retrieval process based on his past experiences and searches rather than the present ongoing. 

News articles produce new results on a daily basis which can never be found in any user’s search 

history because they are new. Thus it becomes imperative to categorize searches based on inter 
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topic relationships as well. According to Eli Pariser, who coined the term, users get less exposure 

to conflicting viewpoints and are isolated intellectually in their own informational bubble. 

Pariser related an example in which one user searched Google for “BP” and got investment news 

about British Petroleum while another searcher got information about the Deepwater Horizon oil 

spill and that the two search results pages were “strikingly different”[1][2][9]. The bubble effect 

may have negative implications for civic discourse, according to Pariser. Since this problem has 

been identified, competing search engines have emerged that seek to avoid this problem by not 

tracking or “bubbling users [10]. 

 

A filter bubble is a result state in which a website algorithm selectively guesses what 

information a user would like to see based on information about the user (such as location, past 

click behavior and search history) and, as a result, users become separated from information that 

disagrees with their viewpoints, effectively isolating them in their own cultural or ideological 

bubbles. Prime examples are Google’s personalized search results and Face book’s personalized 

news stream [1][2][9]. 

 

We argue although these personalized searches present the user with results that adhere to 

their interests and liking rather than presenting the data which is more complementary to the 

updated happenings on the planet. We thus take this into account and present a more public 

knowledge based categorizations rather to help the user negate this filter bubble. Instead we try 

and filter out those redundant and unnecessary results that prove more of a nuisance. 
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2.1 Why Graphs? 

A month ago a search for ‘Malaysia Airlines’ would have returned the web address of the chief 

website of the airlines company or a schedule depicting the coming and goings of certain flights 

operated by the same airline organization. A search for most now would be expected to return 

results concerning foremost the words “MH370, Flight 370, disappearance, mystery etc.” – all 

concerned with the latest tragedy that occurred over heaven and earth. Such incidents that 

happen over time change the complexion of the world as we believe it. Such changes not only 

affect our mind set but automatically set its tone on the cyber world as well. Among all one thing 

that remains consistent is the ability or the human nature to associate relationships between what 

we call words no matter how much situations change. Times change we roll on with it and learn 

to adapt the fact that words will be associated with each other for an era. 

 

Every search provides with some related search suggestions yet there are some redundant 

results or those that contain the searched query as a mere formality. Every term – or word – has 

some associations – related words – which have a certain high probability of occurring together 

in a host of documents. Such word association can be assumed to have a relation between them 

and can be assigned certain weights - to signify the strength of their bond – which would 

ultimately mean that they appear together in most documents and searching for one along with 

its siblings can return more specifically categorized results. Also classifying documents (books, 

articles, web pages etc) based on these words and association can help users to have more 

content specific searches. 
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So where does the graph theory come in? Consider each term as a node or a vertex of the graph. 

It’s a vast ocean of words out there and the only thing we know about them is that they belong to 

some document. We then establish some relationships between some of these words and create 

edges amongst them. Thus we have a huge graph where words are connected to each other. Next 

we contract this graph. We remove some unneeded edges and with them some isolated vertices. 

Thus we have particularly important words with a certain calculated weights and each of these 

has some associations with other words – strong or weak. After we are done with the 

contractions, we need to have only those word associations that have enough to be together 

forever. Thus we form clusters from the main graph. Each of these clusters is based on the fact 

that the terms in them a certain high probability of appearing together in different document. The 

thing to note here is that not all the words a cluster necessarily appear in the same document. The 

probability that a document would contain all the terms of the cluster in probably pretty low but 

the certain group of terms in the cluster do appear together with a high probability. In more 

technical terms we have highly connected graphs – not complete graphs – which signify the 

close associations between words and gives us more than one topic sets out of a topic graph. 

 

For example: staying with the Malaysia Airlines disaster. Suppose we have over ten 

articles concerned with the latest incident that occurred over the Indian Ocean waters. Each of 

these documents filters out words that occur in them with a certain high frequency. We can have 

the following words – Malaysia, Flight, MH, and 370, Kuala Lumpur, Indian, Ocean, India, 

Australia, Asia, Beijing, Boeing, Thailand, gulf, Malay, accident and some more. Now the actual 

incident happened when “Malaysia Airline Flight MH 370, travelling from Kuala Lumpur 

International airport to Beijing International airport went missing less than an hour after its take 
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off”. All the bold words in the above sentence are the key words discussed or mentioned when 

people speak about the incident. To be more precise, these words appear together with high 

probability in a group of documents related to this incident. Thus these words could be clustered 

together since they have such a strong association. Thus we have a topic graph G (V, E) where V 

= {Malaysia, Airline, Flight, MH 370, Kuala Lumpur, Beijing}. 

 

The above example thus implements the theory of graph clustering to string together 

terms which have a high certainty of appearing together in a corpus of document. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: A graph of related terms based on the example mentioned above. 
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2.2 Graph Representation 

In computer science, a graph is an abstract data type that is meant to implement the graph and 

hyper graph concepts from mathematics. A graph data structure consists of a finite (and possibly 

mutable) set of ordered pairs, called edges or arcs, of certain entities called nodes or vertices. As 

in mathematics, an edge (x, y) is said to point or go from x to y. The nodes may be part of the 

graph structure, or may be external entities represented by integer indices or references. A graph 

data structure may also associate to each edge some edge value, such as a symbolic label or a 

numeric attribute (cost, capacity, length, etc.) [11]. 

 

We thus exploit this of nodes and edges since our prime objective is to establish a 

relationship between words. The terms themselves become the nodes and the edges between 

them become a reason to define the existence of a relationship between them. 

 

Various ways to implement graphs exist in programming terms. The two most basic ways 

are Adjacency Lists and Adjacency Matrix. Operations with a graph represented by an adjacency 

matrix are faster. But if a graph is large we can’t use such big matrix to represent a graph, so we 

should use collection of adjacency lists, which is more compact. Using adjacency lists is 

preferable, when a graph is sparse, i.e. |E| is much less than |V|2, but if |E| is close to |V|2, choose 

adjacency matrix, because in any case we should use O (|V|2) memory [12]. 
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Adjacency matrix and adjacency lists can be used for both directed and undirected graphs [12]. 

We however use a combination of these two basic representations. We use Hash Maps and 

Linked List. Both these Data structure are used for different phases of the system architecture 

which has been described in the further chapters. 

 

We use Hash Maps to define the term graph (graphical representation of all key words 

and their relationships with other key words in the corpus). The key is the term as the node of the 

graph and the value is a List of terms that and its connections. 

 

Linked list are utilized during the Topic Graph creation phase where we arrange all terms 

in a hierarchical tree formulate topic sets later. Each node of the tree/graph is linked to its child 

in the structure thus having a kind of a unidirectional traversal – our graphs are not directed. 

 

 Hash Map 

Memory complexity (optimal – O(|E|) O(|E|) 

Add new term (optimal – O(1)) O(1) 

Remove term (optimal – O(1)) O(1) 

Search for a term (optimal – O(1)) O(1) 

Enumeration of vertices (term) adjacent to ‘t (term in 

question)’ (optimal – O(|K|)) 

O(|K|) 

 

Table 2.1: Memories and complexities for a HashMap. We consider each term to a vertex in 

terms of a graph. Thus K is the number of adjacent terms to a term t [12]. 
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CHAPTER 3 

THE SYSTEM ARCHITECTURE 

In this chapter we describe the multi stage architecture of our topic-set maker and provide a 

detail insight into each component of the system. We have discussed in the prior chapters the 

challenges that we encounter in creating these graphs and categorized topic sets. Having a multi 

stage system is essential to prevent redundancy along with preserving the precision that does not 

yield false results. 

The journey from a group of documents to creating a graph and a more precise topic 

graphs to topic sets, is a fourfold. Each stage outputs a distinct set of files with more precise and 

simplified information than its predecessor stage. Our input files start as text files. Each input file 

is an article or paragraphed sentence as defined in legible English language. By legible English 

we do not mean, they are random words just typed for the sake of typing or a computer language 

program – which though English do not meet the legible criteria – that is they can be 

successfully parsed by an English language parser. The end result is one single file though called 

as ‘.tt’ file – tt stands for topic template, which has essentially topic graphs and topic sets 

associated with each graph. The end result also contains two more files: 1) Set of edges and their 

weights. 2) A hash map file where the key is a term and value is a list of all its true connection. 

We will explain further what true connections are. 
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Figure 3.1: TGS System Architecture 

 

Figure 3.1 signifies the system architecture of a simple topic sets creator. The system 

architecture is divided into two parts – The Processing Engine and the Repository. 

 

The Processing Engine as the name specifies does all the work starting from filtering files 

and driving the topic sets from the input corpus. The processing engine holds the four stage 

architecture which gives the final output. Both input and the output are used from and stored in 

the file repository of the system. 
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All files – input documents, .frq, .ift, Graph, Edge, Hash Map and .tt – are stored in the 

repository. The repository or the File Repository could be any kind of a storage space like a 

database, online files repository – GitHub, SVN, Bit Bucket etc, or just a folder on the local host 

or some common server. Use of some kind of a personal digital library could be encouraged as it 

presents multiple advantages – no physical library, round the clock availability, multiple access 

and uses, information retrieval, finer preservation and conservation, possibly infinite space (for a 

considerably low cost)[13]. 

 

3.1 Stage 1: File Filtering 

Stage 1 of the architecture involves the base input corpus. The corpus is a group of documents 

that could be any of the following: 

1. Newspaper and/or magazine Articles 

2. Wikipedia blogs 

3. Online blogs 

Apart from the above (which we used for testing) the corpus could include any legible 

English language articles popularly talking about some base topic and its constituents but with 

proper sentence construction. Documents written in modern urban slang or popular short hand 

abbreviations are discouraged so as not to get unnatural results. 

 

The output of the file filtering stage is the ‘.frq’ files. These assign an identity – some 

integer id – to every file and contain a list of keywords and their term frequencies. 

Term Frequency: Tf(t, d) is the raw frequency of a term in its document, i.e. the number of 

times the term appears in the document[15]. 



 

17 

File Processor: The file processor stems down the available text to words. During the stemming 

process we cut down plurals, verb forms etc to their base forms and we get rid of high frequency 

stop words like articles, prepositions [14]. 

 

Frequency Filter: We calculate the ‘Tf’ for every keyword and using a certain threshold we 

filter out those terms that pass a certain threshold frequency. For example the average frequency 

of a term in a document is 15; we remove all those key words that have ‘Tf’ less than 15. 

 

3.2 Stage 2: Term Weight Processing 

Stage 2 gives a certain popularity score to every word based on the following quantities. The 

output of the term weight processing engine are ‘.ift’ files. The .ift files have a table with each 

term its Tf, Idf, term weight and the Df. Term Weight Calculator is the only component of 

stage 2 that achieves this target. 

 

Inverse Document Frequency: The inverse document frequency is a measure of 

whether the term is common or rare across all documents. It is obtained by dividing the total 

number of documents by the number of documents containing the term, and then taking the 

logarithm of that quotient [15]. 

(ܦ,ݐ)	݂݀ܫ = log
ܰ

ܦ	߳	݀}| ∶ |{݀	߳	ݐ 																(3.1) 

N: The total number of documents in the corpus. 

 

Documents Frequency: It is the number of documents where the term ݐ appears. In equation 

ܦ	߳	݀}| (1.) ∶  .is the Document Frequency or Df |{݀	߳	ݐ
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TfIdf: The term weight of the TfIdf is calculated as the product of Tf and Idf(Tf(t, d) ∗

Idf(t, D)). A high weight in Tf * Idf is reached by a high term frequency (in the given document) 

and a low document frequency of the term in the whole collection of documents; the weights 

hence tend to filter out common terms. Since the ratio inside the Idf’s log function is always 

greater than or equal to 1, the value of Idf (and TfIdf) is greater than or equal to 0. As a term 

appears in more documents; the ratio inside the logarithm approaches 1, bringing the Idf and 

TfIdf closer to 0 [15]. 

 

3.3 Stage 3: Term Graphs Arrangement 

Stage 3 assembles the term graph – important key words based on certain Tf and Term Weight 

thresholds – and formulates edges between them considering that each term is a node for these 

edges. Creating edge at this stage is just based on the fact that two words of an edge occur 

together in multiple documents. Based on the number of occurrences we calculate (ܧ) that is 

the probability of the edge which is essentially a ratio - O/U – the ratio of the occurrences over 

the union of sets that contain the terms that bind the said edge E.  

 

Stage 3 produces three files: 

1. Graph: A file containing terms and all its connection. 

2. Edge: A file that keeps track of all edges and its probabilistic weights. 

3. Hash Map: A file that keeps track of all terms and the documents it appears. 
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Graph Processing Unit: Not to be confused with a GPU (Graphical Processing Unit), a graph 

processing unit in this particular system gives the term graph. It assembles edges together 

between vertices and assigns weights to these edges. 

 

Probability Engine: The probability engine calculates the p(E) for every edge, filters out those 

below a certain threshold and creates “TRUE EDGES” out of all those available edges. Thus a 

true edge is and Edge between two terms in a term graph, whose probabilistic weight surpasses a 

certain threshold set by the creator. 

 

3.4 Stage 4: Topic Graphs, Trees and Sets 

The fourth and the ultimate stage of the system give us a file with comprehensive topic graphs 

and topic sets. The output is ‘.tt – topic templates’ files as mentioned before. The files presents a 

hierarchical tree structures of topics arranged together establishing a more systematic parent 

child relationship between terms. We analyze these relationships further to give topic sets. 

 

We define the two subjects of our final output as follows: 

 

Topic Graphs: Topic graph or topic trees are inter-related term derived from our base 

corpus, arranged in a hierarchical fashion much similar to a family tree thus establishing a 

parent child relationship between words that appear in a term graph. 

 

The thing to remember about topic trees is that, direct siblings and parent – child 

definitely appear together with high probability in documents together in the corpus. A parent 
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and its direct child will be present together across certain high number of documents, but parent 

its grandchildren may or may not. Similarly two siblings of the same parent will appear together 

in significant number of documents but cousins may not. 

 

Topic Sets: Topic sets are a set of terms such that, each term in the set has a high 

probabilistic relationship with more than two terms in the set. 

 

Thus Topic Set, 

ܵ = ݔ∀|ݔ} ∈ ܵ, ݔ ∈ ݕ∃	݀݊ܽ	ܩܶ >  {ℎ݁݉ݐ	݊݁݁ݓݐܾ݁	݁݃݀݁	݁ݑݎݐ	ܽ	݁ݒℎܽ	ݕ	݀݊ܽ	ݔ:2

  

  

  

  

  

  

  

Figure 3.2: Topic Tree 

 

Figure 4.2 is a one such topic graph. It is not essentially a tree because even we do not depict it; 

an edge definitely exists between two siblings of a parent. A tree structure just helps in a 

hierarchical arrangement. A topic set thus will have parents, its children and grandchildren. 

Cousins won’t be a part of the same topic template thus giving categorical divisions when it 

comes to every term. 

Parent Term 

Child1 Child2 Child3 

Tc2 Tc2 Tc3 Tc2 Tc2 Tc3 Tc2 Tc2 Tc3 
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Tree Spanner: The tree spanner clusters the term graph into topic graphs and further divides the 

topic graph into topic sets. 

 

TGS Repository: The TGS repository is a child repository of the File repository that finally 

stores all the topic graphs and topic sets that we would get from a base corpus. 
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CHAPTER 4 

TOPIC GRAPHS 

 

In this chapter we elaborate what Topics graphs are; how topic sets are formulated from a topic 

graphs aided by a basic logical example – in this sense logical adheres more to obvious than 

sensible. We start with no more than two documents. Explain how and why we do what we do at 

every process and at the end present a pseudo code algorithm to implement our theory. To make 

the application more apparent in layman terms, we will try to establish the similarity between 

that family tree structure and our topic graph formulations as we mentioned in our introduction 

chapter. 

 

4.1 The Corpus 

For the sake our non computerized human implementation of the system that we propose, we 

have chosen four paragraphs rather than entire documents to make the working of the system 

apparent and simple to a layman. These for paragraphs – called as documents henceforth – are 

summarized descriptions of the last four Harry Potter books. They are follows: 
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Doc 1: Harry Potter and the Goblet of Fire. 

Book four of the Harry Potter tests Harry in the most unusual way not 

only his abilities to cope with life threatening challenges but also his friendship 

with Ron Weasely and Hermoine Granger. Hogwarts and the ministry of magic 

after a hiatus of almost a century organize the tri wizard tournament between 

three best known magical schools – Drumstrangs and Beauxbatons. Albus 

Dumbledore who has sensed the signs of the eminent return of Lord Voldemort, 

has employed ex-auror Alastor Madeye Moody as the new defense against the 

dark arts teacher with a view to protect harry. New characters and plots are 

introduced in the fourth with most awaited of the main villain of the series in this 

book. Things will change for Harry and his friends. 

 

Doc 2: Harry Potter and the Order of the Phoenix. 

Lord Voldemort has returned and though the ministry of magic is 

arrogant enough to ignore it, Dumbledore has summoned Sirius Black and the 

Order of the Phoenix to organize a resistance against the dark arts. Harry, Ron 

and Hermoine return to Hogwarts where the ministry’s motivation to curb 

Dumbledore’s so called lies has taken an unexpected stand. Dolores Umbridge 

has been appointed the new Defense against the Dark arts teacher and the High 

Inquisitor to inculcate some discipline among the failing standards of the school. 

If that’s not enough Harry is constantly facing nightmares which actually is a 

direct connection to Voldemort’s mind. Tough times await Harry as the 

Hogwarts he knows will never be the same. 
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Doc 3: Harry Potter and the Half Blood Prince 

The death of Sirius Black and the revelation of Lord Voldemort’s return 

have sparked the same panic and unrest in the magical world as it was fifteen 

years ago. Dumbledore and Harry embark on a mission to discover the life and 

lies of Tom Riddle a.k.a Lord Voldemort. Their journey leads them into the world 

of Horcruxes – Dark objects that store a wizard’s/witch’s soul making him 

undefeatable. Life in Hogwarts is back to its usual self though with the imminent 

danger of the death eaters apart from the fact the Severus Snape as the new 

Defense against the dark arts teacher. Harry thus struggles to come with terms 

Snape’s latest victory. New challenges await Harry, Ron and Hermoine, some 

not associated with the dangers of the real world as they come of edge. This book 

will indeed prove to a cliff hanger. 

 

Doc 4: Harry Potter and the Deathly Hallows 

The last battle, the final war. Snape’s betrayal which led to the death of 

Albus Dumbledore has sparked fall of ministry and Hogwarts into the hands of 

the death eaters. Harry, Ron and Hermoine embark on the mission set by 

Dumbledore to find and destroy Lord Voldemort’s Horcruxes which will lead to 

his defeat. On their journeys they discover the existence of the deathly hallows 

which are believed to be objects that would make the owner a master of death. A 

race issues between the good and the bad over the possession of these deathly 

hallows which lead to the biggest war Hogwarts has ever seen. 
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4.2 File Filtering 

We filter these four documents in stage 1. We remove all the high frequency stop words, and 

create a table with each document and its keywords and their term frequencies. 

 

For the sake of easing our non computerized calculations we have only considered proper 

nouns that appear in the documents mentioned above. Our system does not classify between 

nouns, adjectives, pronouns etc. since we do not want to enter into the realms of Natural 

Language Processing. So we remove all stop words and unnecessary words. We keep the 

obvious key words in the documents. Then we assign the term frequencies to each term. We can 

set a certain frequency threshold o filter out low frequency words from the document. In this 

case we set it to 2. 

 

 (ࢊ,࢚)	࢙࢚ࢋ࢛ࢉࢊ	࢘ࢋ࢚ࡲ

,ݐ)݂ݐ)	݂݅  ݀) < 2) 

 ݀	݉ݎ݂	ݐ	݁ݒ݉݁ݎ  

 ࢊࢋ

Algorithm 4.1: Filter Documents 
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Document 1 - 01 Document 2 - 02 Document 3 - 03 Document 4 – 04 

Harry 5 Harry 4 Harry 4 Harry 2 

Potter 2 Order 2 Voldemort 2 Deathly 3 

 Phoenix 2 Dark 2 Hallows 3 

 Voldemort 2 Snape 2 Hogwarts 2 

 Ministry 2  Dumbledore 2 

 Dumbledore 2   

 Hogwarts 2   

 Dark 2   

    

Table 4.1: contents of a .frq file: Terms and frequency 

 

Table 5.1 is a typical ‘.frq’ file which contains all the term that qualify a certain set 

frequency threshold and their frequencies. Thing to note is that each column of the table is a 

separate file each accompanied by the document id. 

 

4.3 Term Weight Processing 

We get four ‘.frq’ files from the first stage with terms and their frequencies. We apply and 

calculate the Document Frequency (Df), Inverse Documents Frequency (Idf), Tf*Idf of each 

term from ‘.frq’ files. Thus we have a popularity quotient for which term which signifies how 

important the term is in its document. 
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 Tf Df Idf Tf * Idf Doc Id 

Harry 5 4 0 0 1 

Potter 2 1 0.602 1.204 1 

Table 4.2.1: ‘.ift’ file for Doc 1 

 

 Tf Df Idf Tf * Idf Doc Id 

Harry 4 4 0 0 2 

Order 2 1 0.602 1.204 2 

Phoenix 2 1 0.602 1.204 2 

Voldemort 2 2 0.301 0.602 2 

Ministry 2 1 0.602 1.204 2 

Dumbledore 2 2 0.301 0.602 2 

Hogwarts 2 2 0.301 0.602 2 

Dark 2 2 0.301 0.602 2 

Table 4.2.2: ‘.ift’ file for Doc 2 

 

 Tf Df Idf Tf * Idf Doc Id 

Harry 4 4 0 0 3 

Voldemort 2 2 0.301 0.602 3 

Dark 2 2 0.301 0.602 3 

Snape 2 1 0.602 1.204 3 

Table 4.2.3: ‘.ift’ file for Doc 3 
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 Tf Df Idf Tf * Idf Doc Id 

Harry 4 4 0 0 4 

Deathly 3 1 0.602 1.806 4 

Hallows 3 1 0.602 1.806 4 

Hogwarts 2 2 0.301 0.602 4 

Dumbledore 2 2 0.301 0.602 4 

Table 4.2.4: ‘.ift’ file for Doc 4 

 

4.4 Term Graphs Arrangement 

We process all of the ‘.ift’ files from stage 2 and prepare term graph. Term graphs are formulated 

using three files – The Edge file, the hash map and the Graph. The edge file contains all the 

edges with their associated probabilistic weights. The Hash map has all the terms and a list of all 

documents it is contained in. And the Graph contains all the vertices and its adjacency lists. 

 

The first file created is the Hash Map which contains all the term and each term is 

associated with a Document Set – Ds. Ds of term t contain the Ids of all the documents the term t 

belongs to. We formulate the edges as follows: 

 

E (u, v) is an Edge if u and v are terms from processed ‘.ift’ files and the size of the 

intersection of the Document Sets of u and v is greater than a certain predefined threshold which 

is mandatorily more than or equal to 2. We calculate the probability weight of each edge as 

,ݑ)ܧ൫ݐݓܲ ൯(ݒ = 	 (ݑ)݂ܦ| ∩ 	|(ݒ)݂ܦ (ݑ)݂ܦ|	 ∪ ⁄|(ݒ)݂ܦ 																																																																(4.1) 

The contents of the three files of this stage for our corpus are as follows: 
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Hash Map: 

 Harry: [1, 2, 3, 4] 

 Voldemort: [2, 3] 

 Dumbledore: [2, 4] 

 Hogwarts: [2, 4] 

 Dark: [2, 3] 

 

Edge: 

ݐݓ:ݐݎ݈ܸ݉݁݀,ݕݎݎܽܪ  = ݐݓܲ,2 = 0.5 

ݐݓ:݁ݎ݈ܾ݀݁݉ݑܦ,ݕݎݎܽܪ  = ݐݓܲ,2 = 0.5 

ݐݓ:ݏݐݎܽݓ݃ܪ,ݕݎݎܽܪ  = ݐݓܲ,2 = 0.5 

ݐݓ:݇ݎܽܦ,ݕݎݎܽܪ  = ݐݓ,2 = 0.5 

ݐݓ	:݇ݎܽܦ,ݐݎ݈ܸ݉݁݀  = ݐݓ,2 = 1 

ݐݓ:ݎ݈ܾ݀݁݉ݑܦ,ݏݐݎܽݓ݃ܪ  = ݐݓܲ,2 = 1 

 

Graph: 

ݕݎݎܽܪ  →  ݇ݎܽܦ,ݏݐݎܽݓ݃ܪ,݁ݎ݈ܾ݀݁݉ݑܦ,ݐݎ݈ܸ݉݁݀

ݐݎ݈ܸ݉݁݀  →  ݇ݎܽܦ

݁ݎ݈ܾ݀݁݉ݑܦ  →  ݏݐݎܽݓ݃ܪ

 

 

 

 



 

30 

4.5 Topic Graphs, Trees and Sets 

The last stage produces the Topic Graph/Tree and the Topic sets. We start by traversing every 

vertex in the graph and looking at every edge in the term graph. For every vertex in the graph we 

see if those present in its adjacency list belong to the lists of each other. Those thus that have 

connections between them become the children of the first vertex we started from. Next we 

check the ‘Pwt’ of each edge that we have chosen. If the Pwt (Child1, Child2) is more than that 

of Pwt (Parent, Child2) then Child2 becomes the child of Child 2 in the tree. 

 

 (G, t, ti, tj) ࢋࢋ࢘ࢀࢋ࢚ࢇࢋ࢘

ݐ	ݕݎ݁ݒ݁	࢘ࡲ  ∈  ℎܽݎ݃	݉ݎ݁ݐ

ݐ	ݕݎ݁ݒ݁	࢘ࡲ   ∈  (ݐ)	ݐݏ݈݅	ݕ݆ܿ݊݁ܿܽ݀ܣ

ݐ	ࢌ    ∈  ݐ

ݐ	݀݀ܣ     ,  ݐ	݂	ݐݏ݈݅	ℎ݈݅݀ܿ	ݐ	ݐ

ݐ൫ݐݓܲ)	ࢌ    , ൯ݐ > ,ݐ)ݐݓܲ	  (ݐ

ݐ	݀݀ܣ      ݐ	݂	ݐݏ݈݅	ℎ݈݅݀ܿ	ݐ	

 ࢊࢋ  

 ࢊࢋ 

Algorithm 4.2: Create Tree algorithm 

 

For every tree that we get from the term graph every LHS and RHS of the parent is a topic set. 

To limit the number of words in a topic set, our tree are limited to no more than four generations. 

The ‘.tt’ files of our corpus yield the following results: 
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 ݕݎݎܽܪ

 

 ݐݎ݈ܸ݉݁݀																															݁ݎ݈ܾ݀݁݉ݑܦ

 

 ݇ݎܽܦ																																																																										ݏݐݎܽݓ݃ܪ

Figure 4.1: Topic tree in the corpus from 5.1 

 

We get two topic sets from the above tree. Our main parent ‘Harry’ has two children and 

two grand children. Each pair of child – grandchild along with the parent is a topic set as 

follows: 

 [ݏݐݎܽݓ݃ܪ,݁ݎ݈ܾ݀݁݉ݑܦ,ݕݎݎܽܪ] .1

 [݇ݎܽܦ,ݐݎ݈ܸ݉݁݀,ݕݎݎܽܪ] .2

 

Now we can arrange any document related to harry potter based on these two topic sets. 

Each set will return a specific set of documents related to the subjects in the sets. For example 

Document 3 will not be a search result for set 1 and Document 4 will not be returned when the 

search is concentrated towards set 2. On a more fantasy note, students at Hogwarts school of 

Witchcraft and Wizardry can have a more categorized search in the Hogwarts Library based 

whether their interest lies in Albus Dumbledore and Hogwarts or Lord Voldemort and the Dark 

arts. 
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CHAPTER 5 

EXPERIMENTAL EVALUATIONS 

 

The evidence to prove the success of our enterprise, we designed and implemented a thorough 

application adhering to our System Architecture. The application was programmed using the 

objected oriented concepts where each of the important units of the system like Graph, Edges, 

vertices, terms and words were systematically organized as classes. Java was the OOTP language 

used for the purpose of demonstration with Eclipse Kepler being the programming tool.  

 

We took assistance of certain predefined ‘JARS’ for the purpose of information and data 

handling. ‘Lucene’ [17] being the key framework for deriving quantities like Tf, Idf for terms. 

We also used existing classes of java to arrange and organize information that suited best to 

needs. The use of Hash Map, Array List, Hash Sets, stacks and queues is the best example for 

this. 

 

Our experimental corpus consisted of primarily news articles in ‘.txt’ format. The corpus 

was a host of documents ranging from 100 words to 2000 words. Our results constitute the 

findings of topics sets that exists for 10, 20, 50 and 100 articles. For part one of the testing 

process we manually categorized the documents based on their subject matter. We tested our 
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finding across each category. Part two of the process included processing all the documents 

randomly together. 

To observe the changes in the number of topic sets produced we set different threshold values for 

the following quantities: Tf, Tf * Idf, Cardinality of intersection of adjacency lists and the Pwt of 

edges. Some thresholds like corpus size and term frequency were effective for the entire 

application. Others like Tf*Idf were only stage specific. For setting and resetting every threshold 

value we found different sets of topic graphs. 

 

5.1 Test 1: N=10, Term Frequency (Tf) > 1, Intersection Size > 1 

We tested five sets of 10 documents. Each of these sets of documents was randomly chosen out 

of the base corpus of 200 that we currently collected. These documents are NEWS articles 

collected from different news providing websites. They range for different topics like politics, 

movies, celebrity, sports etc. We got the following results. 

 

1. Files 1 to 10 in main Corpus 
 
Dortmund 
 Children: Real Madrid 
Real  
 Children: Dortmund Maria Borussia Di League Champions 
Madrid  
 Children: We Klopp BVB 
 
[Dortmund Real Madrid ] 
[Real Maria Borussia Di ] 
[Real Borussia Di ] 
[Real League Champions ] 
[Madrid We BVB ] 
Number of trees = 3 
Number of Sets = 4 
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2. Files 11 to 20 in main Corpus 

Dortmund  
 Children: Real Madrid 
Real  
 Children: Dortmund 
Ibrahimovic  
 Children: Chelsea PSG League Paris Champions 
Chelsea  
 Children: Hazard Oscar Luiz Eden Mourinho French Ibrahimovic 
 
[Dortmund Real Madrid ] 
[Ibrahimovic Chelsea PSG League Paris ] 
[Ibrahimovic PSG League Paris ] 
[Ibrahimovic League Paris Champions ] 
[Chelsea Hazard Oscar Luiz Eden ] 
[Chelsea Oscar Luiz Eden ] 
[Chelsea Luiz Eden ] 
 
Number of trees = 4 
Number of Sets = 7 
 
 

3. Files 51 to 60 in main Corpus 
 

Brooke  
 Children: Mueller Charlie Sheen Rossi Brett Bob Radar Sheen's 
Mueller  
 Children: Brooke 
Charlie  
 Children: Richards Charlie’s Denise Sam Sheen’s 
 
[Brooke Mueller Charlie Sheen Rossi Brett Bob Radar Sheen's ] 
[Brooke Charlie Sheen Rossi Brett Bob Radar Sheen's ] 
[Brooke Sheen Rossi Brett Bob Radar Sheen's ] 
[Brooke Rossi Brett Bob Radar ] 
[Brooke Brett Bob Radar Sheen's ] 
[Charlie Richards Denise Sam ] 
[Charlie Charlie’s Denise Sam Sheen’s ] 
[Charlie Denise Sam Sheen’s ] 
[Charlie Sam Sheen’s] 
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Number of trees = 3 
Number of Sets = 9 
 
 

4. Files 79 to 88 in the main Corpus 

Mahatma  
 Children: AAP Arvind Kejriwal Delhi 
AAP  
 Children: Mahatma Gandhi Congress Fakhruddin BJP Party Aadmi Aam 
Gandhi  
 Children: Rae Bareli Sonia Justice Archana 
Soldier  
 Children: America Marvel Captain Winter 
America  
 Children: Soldier 
 
 
[Mahatma AAP Arvind Kejriwal Delhi ] 
[Mahatma Arvind Kejriwal Delhi ] 
[Mahatma Kejriwal Delhi ] 
[AAP Gandhi Congress Fakhruddin ] 
[AAP Congress BJP ] 
[AAP BJP Party Aadmi Aam ] 
[AAP Party Aadmi Aam ] 
[AAP Aadmi Aam ] 
[Gandhi Rae Bareli Sonia Justice Archana ] 
[Gandhi Bareli Sonia Justice Archana ] 
[Gandhi Sonia Justice Archana ] 
[Gandhi Justice Archana ] 
[Soldier America Marvel Captain Winter ] 
[Soldier Marvel Captain Winter ] 
[Soldier Captain Winter ] 
 
Number of trees: 5 
Number of sets: 15 
 

 
 
 
 



 

36 

5. Files 103 to 112 in the Main Corpus 
 

Samsungs  
 Children: S5 Galaxy Samsung 
S5  
 Children: Samsungs 
Singh  
 Children: Yuvrajs Yuvraj Sri Yuvi Cup World T20 India Indian 
Yuvrajs  
 Children: Singh Twenty20 Indias Sunday 
Yuvraj  
 Children: Dhoni Raina Kohli 
 
 
[Samsungs S5 Galaxy Samsung ] 
[Samsungs Galaxy Samsung ] 
[Singh Yuvrajs Yuvraj Sri Yuvi Cup World T20 India ] 
[Singh Yuvraj Sri Yuvi Cup World T20 India Indian ] 
[Singh Sri Cup World T20 India ] 
[Singh Yuvi Cup World T20 India Indian ] 
[Singh Cup World T20 India Indian ] 
[Singh World T20 India Indian ] 
[Singh T20 India ] 
[Singh India Indian ] 
[Yuvrajs Twenty20 Sunday ] 
[Yuvraj Dhoni Raina Kohli ] 
[Yuvraj Raina Kohli ] 
 
Number of trees: 5 
Number of sets: 13 

 

The first five test subjects presented the following observations: 

1. Each set of 10 documents had more than one topic tree and the number of topic sets 

obtained from these was more than the number of trees in the documents. 

2. Corpus sets 1 and 3 contained documents that were related to same base subject and 

presented topic sets strictly related to that base subject. For example: Set 1 which had 
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articles about the recently concluded soccer match between Real Madrid and Borussia 

Dortmund created trees and topic sets that didn’t stray away from these base subjects. 

3. Corpus 2 on the other hand though again about soccer, had articles about two different 

events that occurred. Of the seven topic sets were created for this particular corpus, one 

was for the first event and the rest were for the second event. Observing these topic sets, 

it was clear that they were event separated i.e. no topic set of a particular event had any 

term related to the other event. 

4. Corpuses 4 and 5 on the other hand have documents related to entirely different subjects. 

4 contain articles about politics and movies while 5 contain articles about technology and 

sports. Again the topic sets and tree recovered from these sets are separated based on the 

base subjects. 

 

 

Figure 5.1: Number of Topic Trees and Topic Sets for five different corpuses. N=10 
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5.2 Test 2: N=20, Tf >= Average Frequency, Intersection Set Size > 3 

Again we tested five sets but this time, each set had 20 documents, randomly chosen out of the 

base corpus of 200 that we currently collected. Only this time, our thresholds were stingier. We 

set the Term frequency threshold to the average Tf of all the terms inside the documents and in 

Stage 3, the set intersection between the document lists of two had the minimum size of 3 i.e. 

two terms were set to have an edge in the term graph only if they appeared in at least four 

documents or more. We got the following results. 

 

1. Files 1 to 10 in main Corpus 

Chelsea  
 Children: PSG Ibrahimovic 
PSG  
 Children: Chelsea 
Dortmund  
 Children: Real Madrid 
Real  
 Children: Dortmund 
Madrid  
 Children: League Champions 
 
 
[Chelsea PSG Ibrahimovic ] 
[Dortmund Real Madrid ] 
[Madrid League Champions ] 
 
Number of trees: 5 
Number of sets: 3 
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2. Files 25 to 44 in main Corpus 

Prix  
 Children: Bahrain Grand 
Bahrain  
 Children: Prix Williams Ferrari Alonso 
 
 
[Prix Bahrain Grand ] 
[Bahrain Williams Ferrari Alonso ] 
[Bahrain Ferrari Alonso ] 
 
Number of trees: 2 
Number of sets: 3 

 
 

3. Files 47 to 66 in the main Corpus 

Mueller  
 Children: Charlie Sheen Brett 
Charlie  
 Children: Mueller 
 
 
[Mueller Charlie Sheen Brett ] 
[Mueller Sheen Brett ] 
 
Number of trees: 2 
Number of sets: 2 

 
 

4. Files 71 to 90 in the main Corpus 
 

Man  
 Children: America Soldier Marvel Captain Iron Winter 
America  
 Children: Man Agents Avengers SHIELD 
AAP  
 Children: Kejriwal Delhi BJP 
Kejriwal  
 Children: AAP 
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[Man America Soldier Marvel Captain Iron Winter ] 
[Man Soldier Marvel Captain Iron Winter ] 
[Man Marvel Captain Iron Winter ] 
[Man Captain Iron Winter ] 
[Man Iron Winter ] 
[AAP Kejriwal Delhi ] 
[AAP Delhi BJP ] 
 
Number of trees: 4 
Number of sets: 7 

 

5. Files 96 to 115 in the main Corpus 

Samsungs  
 Children: S4 S5 Galaxy Samsung 
S4  
 Children: Samsungs 
S5  
 Children: S 
Singh  
 Children: Yuvrajs Yuvraj Sri World India Cup 
Yuvrajs  
 Children: Singh T20 
Yuvraj  
 Children: Indian Dhoni Yuvi 
 
 
[Samsungs S4 S5 Galaxy Samsung ] 
[Samsungs S5 Galaxy Samsung ] 
[Samsungs Galaxy Samsung ] 
[Singh Yuvrajs Yuvraj Sri World India ] 
[Singh Yuvraj Sri World India Cup ] 
[Singh Sri World India ] 
[Singh World India Cup ] 
 
Number of trees: 6 
Number of sets: 7 
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This set of test subjects presented the following observations: 

1. The ‘number of Topic Trees’ to “number of Topic Sets’ ration for each set of 20 

documents varied. The fact that we set certain lower limits on the Term Frequencies and 

the document lists intersection made that the term graphs obtained in stage 3 were smaller 

for this testing phase than those observed in the first testing phase. 

2. The size of the topic trees obtained was proportional to the number of topic sets obtained 

for that particular set of topic trees. By size of Topic Tree, we mean that no parent in the 

trees of a particular corpus had minimal number of children. For instance, no tree in 

corpus 1 had more than two children and thus even though we had five trees, we had only 

three sets. This pattern of Maximum number of children to number of sets proportion was 

observed throughout this test case. 

3. But the fact that topic sets of trees corresponding to different base subjects did not mingle 

with each other – which was evident in the first test case – was observed in this test case 

as well. 

4. Thus not maintaining direct proportionality for increase in size of corpuses, Term 

frequency and Intersection set size had non proportional results as far as sets and trees 

were concerned. 
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Figure 5.2: Number of Topic Trees and Topic Sets for five different corpuses. N=20 

 

5.3 Test 3: N=50, Tf >= Average Frequency, Intersection Set Size > 3 

Next up, we keep the thresholds as they were before but the number of documents in each corpus 

is 50. We have three sets of corpuses, but the number of documents has drastically increased. 

Although the thresholds can remain the same, because the number of articles for each base 

subject like soccer, politics etc varies between 10 and 30 and we don’t have the exact number for 

every subject since have been randomly chosen. 
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Bahrain  
 Children: Prix Grand Williams Raikkonen Mercedes 
Prix  
 Children: Championship World 
League  
 Children: Madrid Champions 
Madrid  
 Children: League 
Chelsea  
 Children: PSG Ibrahimovic 
PSG  
 Children: Chelsea 
 
 
[Mueller Charlie Sheen Brett ] 
[Mueller Sheen Brett ] 
[Williams Bahrain Ferrari Nico Alonso ] 
[Williams Ferrari Alonso ] 
[Williams Nico Alonso ] 
[Bahrain Prix Grand ] 
[Prix Championship World ] 
[League Madrid Champions ] 
[Chelsea PSG Ibrahimovic ] 
 
Number of trees: 9 
Number of sets: 9 

 
 

2. Files 61 to 110 in the main Corpus 

AAP  
 Children: Kejriwal Delhi BJP 
Kejriwal  
 Children: AAP 
Marvel  
 Children: Man America Soldier Captain Avengers Iron Winter SHIELD 
Man  
 Children: Marvel 
America  
 Children: Agents World 
World  
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 Children: Yuvrajs Yuvraj Cup T20 
S  
 Children: S4 S5 Samsungs Galaxy Samsung 
S4  
 Children: S HTC 
S5  
 Children: Android 
 

 
[AAP Kejriwal Delhi ] 
[AAP Delhi BJP ] 
[Marvel Man America Soldier Captain Avengers Iron Winter ] 
[Marvel America Soldier Captain Avengers Iron Winter SHIELD ] 
[Marvel Soldier Captain Avengers Iron Winter SHIELD ] 
[Marvel Captain Avengers Iron Winter SHIELD ] 
[Marvel Avengers Winter SHIELD ] 
[Marvel Iron Winter ] 
[Marvel Winter SHIELD ] 
[World Yuvrajs Yuvraj ] 
[World Yuvraj Cup T20 ] 
[S S4 S5 Samsungs Galaxy Samsung ] 
[S S5 Samsungs Galaxy Samsung ] 
[S Samsungs Galaxy Samsung ] 
[S Galaxy Samsung ] 
 
Number of trees: 9 
Number of sets: 15 

 
 

3. Files 37 to 86 in the main Corpus 

 
Charlie  
 Children: Mueller Sheen Brett 
Mueller  
 Children: Charlie 
Marvel  
 Children: Man America Soldier Captain Avengers Iron Winter SHIELD 
Man  
 Children: Marvel 
America  
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 Children: Agents World 
AAP  
 Children: Kejriwal Delhi 
Kejriwal  
 Children: AAP 
Bahrain  
 Children: Ferrari Alonso 
Ferrari  
 Children: Bahrain 
 
 
[Charlie Mueller Sheen Brett ] 
[Charlie Sheen Brett ] 
[Marvel Man America Soldier Captain Avengers Iron Winter ] 
[Marvel America Soldier Captain Avengers Iron Winter SHIELD ] 
[Marvel Soldier Captain Avengers Iron Winter SHIELD ] 
[Marvel Captain Avengers Iron Winter SHIELD ] 
[Marvel Avengers Winter SHIELD ] 
[Marvel Iron Winter ] 
[Marvel Winter SHIELD ] 
[AAP Kejriwal Delhi ] 
[Bahrain Ferrari Alonso ] 
 
Number of trees: 9 
Number of sets: 11 

 

The particular test case presented the following observations: 

1. Since the documents were randomly divided amongst three or four different base 

subjects, there were quite a few numbers of topic trees and sets for every corpus of 50 

documents. Here we observed that the number of topic sets formed were more than or 

equal to the number of topics trees created. 

2. Also there was no inter-mixing of any topic trees or sets. Thus based on the first three 

tests we could say that, the intersection of topic sets achieved from topic trees formed out 
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of document sets belonging to two different genres, subjects or fields is found to be 

empty. Out topic sets thus can be said to very subject specific but categorized. 

3. The third observation that we could figure out was that for the same set of thresholds (Tf 

> average, Document List Intersection set size > 3) as followed in test case 2, the increase 

in number of documents led to increase in the ‘Number of sets’ to ‘Number of trees’ ratio 

which also was constantly more than or equal to 1. The fact that the number of 

documents belonging to each field or base subject was unknown didn’t make much of a 

difference. 

 

5.4 Test 4: N=100, Tf >=ࢋࢍࢇ࢘ࢋ࢜	࢟ࢉࢋ࢛ࢋ࢘ࡲାࡹ


, Intersection Set Size > 4 

This test case considered two corpuses of 100 documents each. We consider a new threshold for 

Term Frequency, that was midway between the average and the minimum frequency observed in 

particular document. Also the intersection set size was at least 5 in this case. The corpuses that 

were used were as follows: 

 

1. Files 1 to 100 in the main Corpus 

2. Files 21 to 120 in the main Corpus 

3. Files 11 to 60 and 71 to 120 in the main Corpus 

4. Files 5 to 54 and 61 to 110 in the main Corpus 

5. Files 1 to 25, 31 to 55, 61 to 85 and 91 to 115 in the main Corpus 
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Figure 6.3 presents the results for these test cases in a graph format. Since the number of sets and 

trees observed were of a large quantity, it would have been really tedious to present the contents 

of every set. 

 

 

Figure 5.3: Number of Topic Trees and Topic Sets for five different corpuses. N=100 

 

This particular test case presented with the following observations: 

1. The number of sets to number of trees ratio was significantly higher than what was 

observed in the previous case. The thing to note here is that the main contributing factor 

towards this was decreasing the Tf threshold and not the number of documents. 
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Based on the four test cases we performed over a variety of documents spanning over different 

fields and prospects of the real world, we formulated various topic sets and topic trees. We 

observed that in most cases and for most trees, the number of sets was significantly more than 

trees. We can thus infer that a single topic tree can create at least one topic sets.  
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CHAPTER 6 

RELATED WORK AND FUTURE PROSPECTS 

 

Haphazardly arranged information is not information but just data of no importance. Information 

retrieval is an abundantly improving commodity today especially over the web. With the rise of 

social networking people expect more from the internet more than ever before. Ranking is 

another evolving aspect to organize information over the web. A set various standards exists to 

rank and index information. These theories are not limited to the internet but our aspects of our 

materialistic lives as well. Our introduction of topic graphs and topic sets can be used as 

complementary to both ranking and indexing techniques. Ranking and indexing documents by 

categorizing them on the basis of the topic sets that we would provide would enhance the 

information retrieval process. The same can be done to improvise the ranking and the indexing of 

social micro-blogging web-services like twitter and facebook. Visual information retrieval can be 

applied the same theory as well. Images, videos and other multimedia searches can divided based 

on the same concept of topic graphs. Any information that has some subject based classification 

associated with it can be ranked, indexed, categorized and classified basis of some sets of topic 

graphs.  
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Topic Maps: Topic Maps is a standard for the representation and interchange of knowledge, 

with an emphasis on the find ability of information. Topic maps were originally developed in the 

late 1990s as a way to represent back-of-the-book index structures so that multiple indexes from 

different sources could be merged. However, the developers quickly realized that with a little 

additional generalization, they could create a meta-model with potentially far wider application 

[16]. 

A topic map represents information using 

 Topics, representing any concept, from people, countries, and organizations to software 

modules, individual files, and events, 

 Associations, representing hyper graph relationships between topics, and 

 Occurrences representing information resources relevant to a particular topic. 

Topic Maps are similar to concept maps and mind maps in many respects, though only Topic 

Maps are ISO standards. 

 

Ontology: In computer science and information science, an ontology formally represents 

knowledge as a hierarchy of concepts within a domain, using a shared vocabulary to denote the 

types, properties and interrelationships of those concepts [7][8]. 

 

Ontologies are the structural frameworks that are used in information organization. Their  

utilization ranges from various fields artificial intelligence, the Semantic Web, systems 

engineering, software engineering to biomedical informatics, library science, enterprise 

bookmarking, and information architecture. Ontologies can be used for knowledge representation 
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about a host of topics or just a part of them. The creation of domain ontologies is also 

fundamental to the definition and use of an enterprise architecture framework [7] [8]. 

 

Substantial work has been performed on the translation of natural language questions to formal 

queries using ontology or a database [5] [3] [4] [6]. While these approaches have been shown to 

yield remarkable results, it is not clear if users always want to specify a full natural language 

question. In fact, the success of commercial search engines shows that users are quite 

comfortable with using keywords. Thus, it seems important to also develop approaches which 

are able to interpret keywords 

 

Future aspects of Topic graphs can include an assortment of uses ranging from basic 

everyday uses to the realms of the World Wide Web. We wish to pursue the use of topic sets to 

develop a new indexing scheme for any web based search. Based on the parent child relationship 

of the words, we can present a ranking scheme for topic graphs. We can use our topic sets to 

urge a crawler to find more documents that subject to a particular topic sets. These in turn can be 

ranked and index with the terms of the graphs to provide a more categorically based ranking and 

help in better information retrieval. 
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CHAPTER 7 

CONCLUSION 

 

We present “Topic Graphs” and “Topic Sets”, a probabilistic relationship based association 

words to cluster and categorize topics together into a hierarchical tree based format. This tree 

format can be further used to create topic sets which present templates of words that have high 

associations with each other. These sets contain words that have a high probability of appearing 

together across a number of documents in the world. These words thus are strongly related to 

each other. 

 

To prove the existence of these topic sets we began by processing a certain corpus of 

documents. We filtered out unnecessary and unwanted words out to keeps the more common but 

popular and important words in each document. We then used graph theory to formulate 

relationships between these more popular terms. We treated every term as a vertex and the 

weighted edges between them defined the strength of their relationships. Based on this 

relationship we created topic graphs which essentially are topic trees. The parent child 

relationship between these topic graphs helped us to formulate the required topic sets. 
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We used a well defined and categorized corpus to test our theory. We created a through 

application in Java for every stage of the system to test our theory. The application yielded 

comprehensive topic graphs and topic sets. To prove the logical existence of the theory we also 

presented an on paper example for a small corpus of four documents each with an average of 120 

words. We extracted results that provided the evidence for the nature of the thesis. 

 

Towards the end we presented various applications along with related and future 

aspirations for our theory to grow further in the web and non technical world. We believe that 

such kind of categorizing will help precise and efficient searching of information. 
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