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ABSTRACT

Single-cell analysis has become crucial for uncovering the underlying mechanism for cell

heterogeneity. Different biological questions pose different challenges for single-cell analysis. In

order to answer questions like, whether a single-cell has a biological clock and how the clocks

synchronize among cells to overcome the heterogeneity, continuous long-term measurement

on large numbers of single-cells is required. However traditional measurement techniques

usually involve measurement on millions of cells. My dissertation addresses these challenges by

developing a microfluidic droplet platform capable of measuring the biological clock on >1000

Neurospora crassa single-cells for up to 10 days. The results show that in Neurospora crassa

a single cell has the three major properties of a biological clock: a circadian oscillator, light

entertainment, and temperature compensation and that single-cells synchronize their biological

clock with each other possibly through quorum sensing.

INDEXWORDS: Single-cell analysis, Microfluidic droplets, Neurospora crassa, Circadian

rhythm, Biological clock, Stochastic noise, Synchronization
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committee member Dr. Heinz-Bernd Schüttler for his invaluable advice during this research work.

I also would like to thank Dr. Xianqiao Wang for serving on my advisory committee. I am also

very grateful to my scientific collaborators Sam Arsenault, Cristian Caranica, James Griffith, Dr.

Taotao Zhu, and Dr. Ahmad Al-Omari for their significant input for this thesis work. I extend my

appreciation to my colleagues in the lab, especially to Dr. Taotao Zhu for the training he provided

during the first year of my PhD, and Dr. Rui Cheng and Wujun Zhao for their technical assistance

and suggestions. Last but not least, I would like to express my deepest gratitude to my parents who

are always supportive and my husband for his persistent encouragement and unconditional love.

iv



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES x

1 OVERVIEW 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 3

2 MOTIVATION 5

2.1 Review of methods for measurements on the biological clock at the

single-cell level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Review of technologies for single-cell isolation and long-term measurement 8

3 EXPERIMENTAL METHODS 14

3.1 Strains and Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Microfluidic device design and fabrication . . . . . . . . . . . . . . . . . 14

3.3 Droplets generation and cell encapsulation . . . . . . . . . . . . . . . . . 16

3.4 Time-lapse imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Correction of CCD image imperfections . . . . . . . . . . . . . . . . . . 21

v



3.6 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Control experiments for choosing objective magnification . . . . . . . . . 23

3.8 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 Experimental noise calibration with fluorescence beads . . . . . . . . . . 29

3.10 Temperature stability verification of the measuring setup . . . . . . . . . 32

4 SINGLE-CELL CIRCADIAN OSCILLATORS IN NEUROSPORA CRASSA 38

4.1 Measurements of expression on single cells over 10 days . . . . . . . . . 39

4.2 Stochastic oscillators in single-cells . . . . . . . . . . . . . . . . . . . . 41

4.3 Single-cells circadian oscillators in Neurospora Crassa can be entrained

by light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Temperature compensation is observed in single cells of Neurospora crassa 57

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 SYNCHRONIZATION OF THE BIOLOGICAL CLOCK NEUROSPORA

CRASSA 64

5.1 Synchronization measures of the circadian stochastic oscillators. . . . . . 64

5.2 A deterministic quorum sensing model for the circadian oscillators . . . . 66

5.3 Synchronization of stochastic circadian oscillators . . . . . . . . . . . . . 72

5.4 Light synchronized the circadian oscillators in Neurospora Crassa . . . . 85

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 CONCLUSION 99

vi



List of Figures

Page

Figure 3.1 Schematics of the droplet-generating device. . . . . . . . . . . . . . 15

Figure 3.2 Droplet generation and cell incubation. . . . . . . . . . . . . . . . . 16

Figure 3.3 Percoll stabilizes the cell movement. . . . . . . . . . . . . . . . . . 19

Figure 3.4 Droplets are very stable during time-lapse imaging. . . . . . . . . . 24

Figure 3.5 Cell grouping and tracking. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.6 62 single-cell fluorescence intensity time series under different

magnifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.7 Coefficient of determination, R-square, was calculated by fitting

linear regression on the fluorescence intensity of the cells measured

under the lower magnifications, 5X, 10X, and 20X, against that

measured under 50X. . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.8 No change in Projected Cell Surface Area (PCSA) indicates no

germination, and no change in cell-to-cell distance indicates no cell

fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.9 The beads signal variance varies quadratically with the mean bead

fluorescence signal in the six-experiment bead data set . . . . . . . . 31

Figure 3.10Temperature stability of the thermal stage . . . . . . . . . . . . . . 33

Figure 3.11Rhodamine B (RB) intensity correlates with room temperature . . . 35

vii



Figure 3.12LED light source output correlates with room temperature . . . . . . 35

Figure 3.13Photobleaching decay in the Rhodamine B intensity . . . . . . . . . 36

Figure 3.14Detrended Rhodamine B time series for temperature compensation

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.1 Oscillators of single cells can be measured with the workflow

involving droplet microfluidics devices and fluorescent recorders of

a clock output gene. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.2 The oscillators in single cells of N. crassa are circadian with a period

of 21 h in the dark (D/D), but there is substantial variation in phase

and amplitude captured in a stochastic genetic network fitting the

single cell clock data. . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.3 Relationship between period, amplitude, and phase of the circadian

oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.4 The microlfuidic droplet platform integrated with a LED light to

control the light-dark cycles that the cells experienced. . . . . . . . . 50

Figure 4.5 Entrainability of Single cell N. crassa to a 6 hours artificial day with

3 hours light on and 3 hours light off. . . . . . . . . . . . . . . . . . 51

Figure 4.6 Entrainability of Single cell N. crassa to a 12 hours artificial day with

6 hours light on and 6 hours light off. . . . . . . . . . . . . . . . . . 53

Figure 4.7 Entrainability of Single cell N. crassa to a 36 hours artificial day with

18 hours light on and 18 hours light off. . . . . . . . . . . . . . . . 55

viii



Figure 4.8 Period, amplitude and phase of the entrained oscillators under 3 hours

light on and 3 hours light off. . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.9 Period, amplitude and phase of the entrained oscillators under 6 hours

light on and 6 hours light off. . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.10Period, amplitude and phase of the entrained oscillators under 18

hours light on and 18 hours light off. . . . . . . . . . . . . . . . . . 59

Figure 4.11Single cell temperature compensation. . . . . . . . . . . . . . . . . 62

Figure 5.1 Conidial cells communicate the state of their oscillators to each other

within a droplet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.2 The synchronization as measured by the “order parameter” R or

Hilbert transform phase synchronization. . . . . . . . . . . . . . . . 74

Figure 5.3 The Kuramoto order parameter K displays an alternating structure

with number of cells per droplet and substantial coherence between

oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.4 The synchronization surface for the Kuramoto phase-locking model . 76

Figure 5.5 The synchronization surface(ICC) is a function of genotype. . . . . . 77

Figure 5.6 Randomly picked trajectories . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.7 The synchronization surface for the prd-4 knockout is signi cantly

different from that of the reference strain, ccg-2p:mCherry (MFNC9). 82

Figure 5.8 ICC surface of cells under 3 light entrainment conditions. . . . . . . 98

ix



List of Tables

Page

Table 3.1 Number of cells per droplet distribution with cell suspension flow rate

as a changing parameter . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 3.2 N.crass cell viability after incubated in the media with different

concentrations of Percoll for 6 days . . . . . . . . . . . . . . . . . . 19

Table 3.3 Droplet size distributions when using different concentrations of percoll 20

Table 3.4 LGP for objective lens with different magnifications . . . . . . . . . 26

Table 3.5 R-square under different magnifications . . . . . . . . . . . . . . . 28

Table 4.1 Temperature coefficient Q10 for single cell circadian oscillators . . . 61

Table 5.1 Analysis ofVariance (ANOVA) of fluorescence of the ccg-2 promoter

between and within droplets is used to estimate the intraclass

correlation ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 5.2 The mean period of single cell oscillators within a droplet increases

signicantly with the number of cells per droplet . . . . . . . . . . . 73

Table 5.3 The intraclass correlation surface (ICC) for prd-4∆,ccg-2p:mCherry

is significantly different from that of MFNC9. . . . . . . . . . . . . 80

x



Table 5.4 Global response and mean period of isolated single cells in 3 light

entrainment conditions. . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 5.5 Phase locking value of single cells in 3 light entrainment conditions . 87

Table 5.6 Kuramotor order parameter of single cells in 3 light entrainment

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 5.7 Amplitude and Global Response of N .crassa with different

neighboring cells in a droplet (number of cells per droplet) in the 3

hours light on 3 hours light off condition. . . . . . . . . . . . . . . . 91

Table 5.8 Amplitude and Global Response of N .crassa with different

neighboring cells in a droplet (number of cells per droplet) in the 6

hours light on 6 hours light off condition. . . . . . . . . . . . . . . . 93

Table 5.9 Amplitude and Global Response of N .crassa with different

neighboring cells in a droplet (number of cells per droplet) in the 36

hours light on 36 hours light off condition. . . . . . . . . . . . . . . 94

Table 5.10 Phase synchronization of ofN. crassawith different neighboring cells

in a droplet (number of cells per droplet) in the 3 hours light on 3 hours

light off condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 5.11 Phase synchronization of ofN. crassawith different neighboring cells

in a droplet (number of cells per droplet) in the 6 hours light on 6 hours

light off condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 5.12 Phase synchronization of ofN. crassawith different neighboring cells

in a droplet (number of cells per droplet) in the 18 hours light on 18

hours light off condition. . . . . . . . . . . . . . . . . . . . . . . . 97

xi



CHAPTER 1

OVERVIEW

1.1 Introduction

The biological clock is a timekeepingmachinery that regulates almost every critical

biological process in living organisms with a 24-hour rhythm (circadian rhythm). It

helps plants, animals and humans to adapt to the light-dark cycle of the planet to take

advantage of the optimal environment for living[1, 2]. Awareness has risen in recent

years that the biological clock is fundamental to health. When the clock goes awry

in mammals, it can lead to many diseases, ranging from sleep disorders[3, 4], heart

disease[5, 6], and lung disease[7, 8] to cancer[9, 10] andAlzheimer’s disease[11]. Also the

biological clock influences treatment effects of drugs[12, 13]. For application, construction

and manipulation of the clock may bring beneficial outcomes in biosensor[14–16],

biotechnology[17, 18], and biopharmaceutical industries[19].

Over several decades’ work, scientists identified the functional basis of the

biological clock in various model organisms including Synechococcus,Neurospora crassa,

Drosophila, Arabidopsis, and Mouse[20, 21]. Only recently, studying the biological

clock on the single-cell level was believed to be significantly important for understanding

the mechanism underlying the clock[22–26]. Cell-to-cell variation/heterogeneity always

presents in single cell resolution measurement and to determine its functional meaning

has been a challenge for biologists[27]. For the biological clock, implication for this

heterogeneity is cell-to-cell variation in the clock’s parameters such as period, phase,
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and amplitude. The challenges are to understand how the cells synchronize/communicate

their biological clocks with each other so that at a macroscale level they achieve a robust

and deterministic clock output and whether the cell-to-cell heterogeneity in the clock has

a meaningful biological function. The cell-to-cell variation also poses a challenge to

establish accurate model of the biological clock to guide understanding the dynamics of

the clock.

Therefore single-cell analysis on the biological clock is of great importance.

Unfortunately, the biological clock is measured traditionally on a population average of

millions of or tens of millions of cells with the race-tubes[35] or luminescence-based

technique[38, 39]. Recent advances in experimental techniques and high-resolution

imaging have allowed for monitoring circadian rhythms on a single-cell[28, 29]. However,

these measurements were done on cells not spatially separated, meaning they may

communicate with each other and therefore not strictly measuring the biological clock at

the single cell level.

For single-cell analysis on the biological clock, several challenges need to be

overcome in developing technology to measure circadian rhythms at the single cell

level. These challenges include long-term temporal observations of single cell’s circadian

rhythm, measurement on large number of cells (>1000) simultaneously, and identification

of intercellular noise (heterogeneity) and detection/measurement noise. This thesis

describes a high-throughput microfluidic droplet platform that is capable of measuring

the biological clock on isolated single-cells/cell-cluster (more than one cell) up to 10

days. A fluorescence reporter gene was used to observed the transcriptional behavior

of a clock controlled gene (ccg-2)[30]. Over a thousand of single cells of Neurospora
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Crass (N. crassa) can be measured simultaneously. With this platform, the heterogeneity

and synchronization of the biological clock were evaluated, and the light entrainment and

temperature compensation properties were measured at the single-cell level for the first

time for N.crassa.

1.2 Organization of the Dissertation

chapter 2

This chapter reviews methods used to measure the biological clock of different

model systems at the single-cell level and their limitations, microfluidic/micofabricated

technologies for single-cell analysis, specifically focus on single-cell long-term

measurement, and last the justifications for choosing microfluidic dorplets for this

dissertation work.

chapter 3

This chapter describes thematerials, experimental procedures, control experiments,

and data analysis. Also the technical choices behind the development of the microfluidic

droplet platforms presented in this thesis work are explained.

chapter 4

This chapter describes the circadian oscillator of single-cells of N. crassa, light

entrainment in single-cells of N. crassa, and temperature compensation in single-cells of

N. crassa.

chapter 5

This chapter describes the heterogeneity and synchronization of the biological clock

of single-cells of N. crassa .

3



chapter 6

This chapter has the conclusions.
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CHAPTER 2

MOTIVATION

Single-cell analysis aims at studying the biological system at the single cell level,

an approach now possible in genomics, transcriptomics, proteomics, and metabolomics.

The motivation for single-cell analysis arises from the widely observed phenomenon of

cellular heterogeneity. Such cellular heterogeneity may be partially due to the discrete

bursts in gene transcriptions[31, 32]. Other reasons could be cell cycle differences,

uneven partitioning of cellular contents during cell division, and circadian rhythms[33, 34].

Nevertheless, due to cellular heterogeneity, ensemble measurements on a population of

cells do not give much information about the behavior of individual cells. However, it

is believed that the differences among individual cells sometimes can lead to differences

in the outcomes for the average population or to a different biological function. The

challenge is to identify what aspects of the cellular heterogeneity serve a critical

biological function[27]. Over the last decade more and more attention has been arisen

to using single-cell analysis to unveil the biological information/functions that cellular

heterogeneity contains/serves.

2.1 Review of methods for measurements on the biological clock at the single-cell

level

The biological clock is measured traditionally on a population average of millions

or tens of millions of cells with the race-tubes[35], Western Blot/qPCR to measure total
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RNA[36, 37], or luminescence[38, 39] or fluorescence[30] to measure relevant total

protein level. Only in the recent years, measuring the biological clock at the single-level

has become possible with the advances in experimental techniques and high-resolution

imaging.

Luciferase based techniques are mostly used to measure the biological clock at

the single-cell level owing to their non-invasive nature and quantitative performance.

Luciferases are protein enzymes that are naturally generated in some living organism[40].

It can catalyze the light-emitting ATP-dependent monooxidation of luciferin[37]. Usually,

a luciferase reporter is tagged to a gene promoter so that luminescent product of

interest will be expressed under the control of the promoter. Luminescence techniques

do not require excitation applied to the cell sample, which has the advantages over

fluorescence including lower background noise, and the absence of photobleaching and

phototoxicity. Traditionally, luminescence cannot provide sufficient spatial resolution

for obtaining signal at the cellular level[41]. But the advances made in high resolution

imaging in recent years bring the possibility for measuring circadian rhythms at the

single-cell level[41]. The camera for recording luminescence intensity is usually required

to be cooled to very a low temperature, as low as ∼-80 oC, in order to be able to

acquire a very weak signal from a single-cell with a high signal-to-noise ratio[42,

28, 43]. Luminescence techniques have been applied to various model organisms

including bacteria[25], plants[44], and animals[45, 46] to measure circadian rhythms at the

single-cell level. Stable circadian rhythmswas demonstrated in unicellular cyanobacterium

Synechoccocus elongatus through using a bacterial luciferase reporter system consisting

of two neutral site chromosomal insertions: psbAI::luxAB and psbAI::luxCDE[25]. In
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this study, single bacteria were identified on the phase-contrast images. This is because

usual spatial resolution of luminescence imaging is low due to the diffusion of luciferin

as well as the transporter proteins[47, 48]. A particle bombardment was introduced by

Muranaka et.al., using reporter–plasmid-coated gold particles, which enables dispersed

transfection into cells on the surface of a plant, and therefore bioluminescence signals

from individual cells were able to be detected[47, 44]. Heterogeneity of cellular circadian

clocks in a duckweed species, Lemna gibba, was shown by measuring bioluminescence

intensity of individual cells in the intact plants[44]. Synchronized circadian rhythm of

hundreds of neurons in the mammalian suprachiasmatic nucleus (SCN) was shown using

mice carrying the mPer1-promoter driven luciferase reporter gene (mPer1-luc). Using

bioluminescence imaging of Rat-1 fibroblasts, Welsh et.al found that single fibroblasts

can oscillate robustly with diverse circadian periods but no coupling among them when

dissociated from SCN[28].

Although less used, fluorescence based techniques have also been applied to

measurements on the biological clock of cyanobacteria[49], plants[50], and mammalian

tissues[51] at the single-cell level. A fluorescent signal in general is much brighter than

luminescent signal and provides higher spatial resolution[52]. Therefore, fluorescence

based techniques do not require an ultra-cooled CCD camera[52]. A yellow fluorescence

protein (YFP) reporter was used to measure the promoter activity of KaiBC, a clock

component of a cyanobacterial cell, in single-cells[49]. The circadian clocks of

individual cyanobacterial cells exhibited stochastic response to phase resetting by

temperature[49]. YFP-tagged CCA1 in Abrabidopsis plant was monitored for its circadian

rhythm at the single-cell level[50]. Cell-type-specific differences in period and partially
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desynchronization among individual leaf cells were observed in the plant[50]. The

YFP was also used to quantified the single-cell circadian rhythm in a mouse tissue

explants[51]. Photobleaching in fluorescence based techniques can be problematic for

long-term real-time imaging. Fluorescence also requires light to excite the fluorophore

restricting its usage in monitoring circadian clocks that are affected by the excitation light.

Studies mentioned above for single-cell analysis of the biological clock are limited

by either the number of single-cells that were measured (mostly ∼100) or the number of

days (usually only∼3 days) duringwhich the circadian rhythmsweremeasured. Moreover,

most of these measurements were done on cells in tissue. The cells were not spatially

separated, which means they may communicate with each other. A high-throughput

platform is needed for measuring the biological clock at the single-cell level. This

platform should be able to isolate large numbers of single-cells into an individual

microenvironment for long-term incubation. This physical isolation of single-cells

prevents cells communicating with each other and is necessary when investigating whether

a clock related property presents in single-cells or is an emergent phenomenon due to

cell-to-cell communication. Last but not least, this platform should be able to be integrated

with optical measurement for via fluorescence or luminescence in order to measure the

circadian clock of single-cells.

2.2 Review of technologies for single-cell isolation and long-term measurement

For single cell analysis, the isolation of cells is necessary for further analysis

because the target cells need to be identified in order to perform analysis at the single cell

level. There is isolation of cells from multi cell type cultures for down stream analysis
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and isolation of cells into individual microenvironments for further assay/monitoring

depending on the purpose or application. Various current single cell isolation technologies

were developed to meet different application requirements.

For isolating specific cells from a multi-cell type population or tissues, the

techniques can be categorized into two kinds, depending on what mechanism they use.

The first kind relies on physical properties of the cells, such as size, shape, electric change,

density etc.. The second kind of techniques is based on cellular biological/physiological

characteristics, for example, specific surface markers. There are five major techniques

that are extensively used to isolate cells for a single cell study[53], including limiting

dilution, fluorescence active cell sorting (FACS), magnetic activated cell sorting (MACS),

mechanical or laser mciromanipulation, and microfluidics. Each technique has its own

advantages and limitations and one may be more suitable for certain applications than

others. Efficiency, purity, and recovery are the three major parameters to consider for

the performance of a particular single cell isolation technique.

Limiting dilution is probably themost straight forwardmethod to obtain single cells

from a heterogeneous cell population. In this approach, serial dilution of a cell suspension

is performed until only single cells remain in individual small volumes. Further analysis is

usually required to confirm the obtained cells are of interest. This technique is used most

in applications where a cell population is required to be grown from a single-cell. Limiting

dilution is hard to scale to a high-throughput operation, and on average only about one

third of the obtained volumes contain single cells.

Fluorescence active cell sorting (FACS) utilizes fluorescence associated with

specific surface markers on cells of interest to select actively the cells from a heterogeneous
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population. FACS is one type of flow cytometry. It starts by flowing a cell suspension

driven by pressure, and the cells are then lined up one by one due to the effect called

hydrodynamic focusing[53]. A laser is then used to excite the fluorescence of the cells

whose emission is then detected downstream. The detected positive signal activates

the sorting apparatus to select the target cells. Right before sorting happens, droplets

encapsulating the cells are usually generated by vibrational activation. The droplets with

target cells are then charged and deflected by electrically charged plates to the collection

reservoir. FACS system can provide high-throughput single cell sorting with a rate > 104

cells/s[53]. Also it can simultaneous analyze multiple characteristics of a cell population

by using different color fluorescence[54].

Magnetic activated cell sorting (MACS) uses magnetic beads to label cells of

interest by conjugating enzymes, antibodies, strpavidins or lectins to the magnetic

beads[55]. When a magnetic field is applied, cells labeled by magnetic beads are collected

while other cells are discarded by washing steps. Compared to FACS, MACS requires

a less complex detection and sorting system. However, the final purity of the isolated

cells usually is compromised due to the non-specific contamination from adsorption of

non-relevant cells to the capturing device or adhesion of them to a large excess of magnetic

particles[55]. Also MACS can only differentiate positive and negative cells and therefore

lacks of the ability to sort multiple type of cells simultaneously.

Mechanical manipulation is a manually operated approach. Micropipettes are

used to pick manually a specific cell with the aid of observation under a microscope by

applying suction. The selected cell is later transferred to a collection tube. The throughput
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of this method is limited, and highly skilled professionals are required to operate this

micromanipulation method.

Laser capture manipulation (LCM) dissociates single cells from solid tissue using

highly focused laser beams. Under a microscope, the film surrounding the cell of interest

aremelted by the laser, and the cell is dissociatedwith the rest of the tissue. Then the cut cell

is extracted via adhesive taps, by simply gravity, or by pressure catapulting[53]. LCM has

the advantage of precisely selecting the cells while maintaining a relatively high speed.

The important spatial information of the extracted single cells can be obtained directly

from the cellular structure of the tissue. LCM also requires no direct contact of the cells

and provides the flexibility to manipulate the cells in an enclosed chambers. However the

LCM operation need to be carefully conducted so that no photodamage is introduced to the

cells. Also the laser energy in LCM may introduce UV damage to DNA and RNA[56].

Microfluidic techniques have been adopted for more and more single cell analyses

in recent years. This may due to the fact that microfluidic devices usually provide precise

flow control, low cost, and low sample/reagent consumption[57]. Mainly four kinds

of working principles are used in microfluidic techniques for cell separation: sorting

cells based on their physical properties (e.g. size, shape, or density), cell sorting based

on cell affinity due to the interaction between antigens and antibodies or ligand and

receptor, cell separation based on dielectric properties of the cells, and cell sorting utilizing

immunomagnetic beads[55].

Besides isolating cells of interest from a multi-cell type population,

compartmentalization of single cells into a physically isolated environment is also

essential for various single cells analyses. Fox example, compartmentalization could
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prevent the target molecule from a cell to diffuse away and therefore allow more specific

and sensitive measurements[58]. And compartmentalization sometimes can provide a

stable environment for single cells with long-term incubation. Microfluidic techniques

and microtechnologies are extremely powerful in terms of providing a very flexible

way to manipulate the microenvironments that the cells are in and the cells too at the

same time. Various microfluidic/micro-scale platforms have been designed to perform

single-cell analyses[59–63]. Most of these platforms/tools can be categorized into four

groups according to the microstructure used to capture single-cells: chambers[64–69],

microwells/microarray[70–78], traps[79–81], and droplets[82–84]. Among these

platform/tools, some were used for short-term (<∼5 hours) or real-time single-cell

analyses, such as PCR-based single-cell analysis[65, 66, 85, 86], observation of cell

migration[67], stem cell differentiation stimulation[64], cellular products detection[78],

gene screening[76], protein–protein interactions[87], etc.; others were used for long-term

(several hours to days) single-cell incubation/studies purposes, for example, stem cell

therapeutic potential[68, 88–90], drug screening[70, 82, 91], bacteria quorum sensing[83],

immune response[73, 75, 76, 92, 93], bacterial antibiotic resistance[74], aging[81], cell

growth[84, 94], etc.. Chamber-based platforms can isolate single-cells and disconnect

their communication by cutting off media exchange between chambers using pneumatic

solenoid valves[64] or hydrodynamic valves[93]. But the main challenge will be in scaling

up these platforms for a large number of single-cells[63]. Large-scale investigation on

olfactory sensory neuron (OSN) (over 20000 single OSN simultaneously) to detect rare

responding OSN was demonstrated by Figueroa et al. using microwells[77]. However,

cells share the same medium in the main channel above the microwells. Droplet
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microfluidics as an emerging tool for single-cell analysis provides a way to isolate

single-cells into an individual environment[63]. Boedicker et al. developed a microfluidic

droplet platform, which can confine as few as one to three cells in a droplet and monitored

initiation of quorum sensing (QS) over time (>40 h) of a hundred single-cells and small

populations of clonal cells[83]. The droplets were formed by introducing an air bubble

over microwells that contained a small volume of bacterial suspension. With this platform,

they demonstrated that single-cells are able to initiate QS and observed high viability in

QS initiation within small populations of cells (one to three cells in a droplet). Pan et

al. demonstrated a simpler droplet platform using a flow-focusing method to generate

droplets that encapsulate individual algal cells for long-term (up to 10 days) tracking of

growth of several hundreds of individual algal cell[94]. Three different species of green

microalgae were cultured in droplets. Detailed analyses of their growth were done on this

platform at the single-cell level by examining the effect of nutrition concentration, pH,

initial cell number per droplet and droplet volume on cell growth. Their study showed

that higher final concentrations of cells were achieved when cells were grown in droplets

rather than in a bulk system and revealed heterogeneity in rates of division of individual

cells. Studying the biological clock usually requires a long term measurement (up to 10

days). A comparison of the advantages and disadvantages of these previous platforms

suggests that droplet microfluidics can be a potential tool for observation of the biological

clock on a large number of isolated single-cells.
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CHAPTER 3

EXPERIMENTAL METHODS

3.1 Strains and Media

N. crassa strain, MFNC9[30] (Fungal Genetics Stock Center 10626), was used

in 3% sorbose, 1 M Sorbitol, 0.0125% glucose, 0.0125% fructose, 0.3 mg/ml sodium

formate, 1X Vogels Media with recommended Biotin and trace element supplements[95],

as modified from Lindgren[96]. The strains prd-4∆,ccg-2p:mCherry and frq∆,

ccg-2p:mCherry were generated by a cross between a deletion construct[97] and MFNC9

on cornmeal crossing medium[95].

3.2 Microfluidic device design and fabrication

Microfluidic droplets are discrete miniature volumes (µl to fl) of one phase in

an immiscible phase. Two major geometries are widely used in microfluidic droplets

generation device design: T-junction and flow-focusing. Flow-focusing strategy is

believed to offer a better control over droplet formation due to it leveraging multiple

parameters that affect the droplet size[98]. These parameters include the channel

geometries, flow rates of the two phases, flow rate ratio of the two phases, and the

viscosities of the two phases[98]. As a result, the flow-focusing geometry was chosen

for the design of the microfluidic device for this thesis work. In a flow-focusing geometry,

a flow that contains the phase to form droplets is introduced to a channel that is intercepted

by two side channels where the other phase is flowing in to cut the center flow to form
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droplets. The generating nozzle is the region that follows the intersection of the two phase

and its dimension is critical for controlling droplet generation[99]. Generating nozzles

with different dimensions were designed, and the optimal working design with a generating

nozzle dimensions of 125 µm × 50 µm (width × depth) is shown in Figure 3.1.

Figure 3.1: Schematics of the droplet-generating device. The generating nozzle has

dimensions 125 µm × 50 µm (width × depth).

Fabrication of this prototype polydimethylsiloxane (PDMS) microfluidic device

for droplets generation followed a standard soft-lithography approach[100]. The device

was then attached to a glass slide. Bonding between the PDMS device and the glass slide

was enhanced by putting the device in the oven under 80 oC for 8 hours. Treatment with
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1H,1H,2H,2H-Perfluorooctyltriethoxysilane (Sigma-Aldrich, St. Louis, MO) is necessary

to render the microchannel surfaces with proper hydrophobicity before use.

3.3 Droplets generation and cell encapsulation

In order to encapsulate cells in droplets, a cell suspension was injected into inlet

1 as illustrated in Figure 3.1 and a carrier oil (a mixture of fluorinated oil FC-40 with 5.0

wt% of Dolomite Surf-2 surfactant) was injected into inlet 2 as show in Figure 3.1. The cell

suspension was broken up into discrete droplets near the nozzle region when the viscous

shear stress overcomes the interfacial tension. As a result, droplets with cells encapsulated

inside were generated as show in Figure 3.2A. The general procedure for droplet generation

in this thesis work is listed as follow.

Figure 3.2: Droplet generation and cell incubation. (A) Generation of droplets. Scale bar

is 200 µm. (B) A bright-field microscopy image and its zoom in image shows droplets

containing N. crassa stored in the incubation chamber. Scale bar is 500 µm and 200 µm
for the zoom-in figure.

1. Take the needed amount of the original cell suspension, growth media and

Percoll(Sigma-Aldrich, St. Louis, MO) with pipette and inject them into a 1.5 mL

conical tube.

2. Mix the three by putting the conical tube in the vortex mixer under a speed level of

3 for 30 seconds.
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3. Insert ∼2 cm of PE tubing into the two inlets of the device. Flush the device with

DI water for the outlet to get rid of the PDMS debris.

4. Load the continuous phase into a 1 mL syringe. The continuous phase is a mixture

of fluorinated oil FC-40 with 5.0 wt% of Dolomite Surf-2 surfactant. The surfactant

is used to prevent droplets from coalescing.

5. Load the final cell suspension into a 1 mL syringe.

6. Connect the loaded syringes to the inlets of the devices with PE tubing and tygon

tubing.

7. Put the devices onto the stage of the microscope, and secure the syringes to the slot

of the syringe pump. Set the flow rate of the continuous phase to be 13 uL/min and

that of the dispersed phase to be 0.5 uL/min. and then run the syringe pump.

8. Connect the outlet of the device with a 1.5 mL conical tube using a PE tubing to

collect the droplets in the conical tube.

9. After enough droplets are collected in the conical tube, use a syringe to take out the

redundant carrier oil (the fluorinate oil). Then use a capillary tube to retrieve the

droplets for observation by submerging one end of the capillary tube in the droplets

layer in the conical tube.

10. Put the capillary tube onto a clean glass slide, and seal the tube with Epoxy glue.

The flow rates are decided by a series of experiments in order to achieve large amounts of

single-cell encapsulation. That is, decent percentage of the collected droplets encapsulating

one cell (∼30% is the highest fraction of droplets initially encapsulating one cell shown in

[94]). This is for the purpose of monitoring large amounts of single-cell simultaneously.

The flow rates can be adjusted to change the number of cells encapsulated in droplets and
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the percentage of those droplets. Table 3.1 shows the results of these series of experiments

with cell suspension flow rate as a changing parameter (Droplets were collected in capillary

tubing with depth of 50 µm). When the carrier oil flow rate is 13 µL/min, cell suspension

flow rate is 0.5 µL/min and final cell concentration is 1.2×107 cell/mL, over 30% of the

collected droplets encapsulating single-cells can be achieved.

Table 3.1: Number of cells per droplet distribution with cell suspension flow rate as a

changing parameter

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Oil flow rate

(µL/min)
13 13 13 13

Cell suspension flow

rate (µL/min)
1 1.2 1.4 1.6

Cell concentration

(cell/ml)
1.2*107 1.2*107 1.2*107 1.2*107

Total droplet number 907 887 833 506

Single-cell 303(33.41%) 227(25.29%) 211(25.33%) 72(14.23%)

Two cells per droplet 111 (12.24%) 173(19.50%) 192(22.93%) 81(16.01%)

Three cells per

droplet
71 (7.83%) 77(8.68%) 80(9.60%) 42(8.30%)

≥ four cells per

droplet
76 (8.38%) 147(16.57%) 139(1669%) 196(38.74%)

Droplet with cells 561 (61.85%) 624(70.35%) 621(74.55%) 391(77.27%)

Percoll was used as a dispersant to prevent the cells from settling down in the

syringe during cell encapsulation. Percoll is a registered trademark of GE Healthcare.

It is a well-referenced media for density gradient centrifugation of cells, viruses, and

subcellular particles[101]. Percoll is composed of colloidal silica nanoparticles coated with

polyvinylpyrrolidone (PVP). It has low osmolality for extremely high cell viability and

intact morphology. Downstream processes are unaffected by Percoll treatment. Different

percoll concentrations was tested for the viability of N.crassa as shown in Table 3.2.
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Table 3.2: N.crass cell viability after incubated in the media with different concentrations

of Percoll for 6 days

Percoll

concentration

(v/v)

Viability

0% 84%

1% 85%

5% 83.1%

10% 82.5%

15% 85.6%

20% 81.5%

Percoll also has the effect of restricting cell movement and hence facilitates the

tracking of cells later on during image processing. The moving distance of cells between

sampling time points was calculated for experiments used different concentrations of

percoll. Figure 3.3 shows the results of the moving distance of cells between sampling

time points affected by the percoll concentration. The movement of the cells does not

Figure 3.3: Percoll stabilizes the cell movement. (A) Single-cell moving distance between

time frames (a 30 minutes interval) over time. (B) Single-cell moving distance between

time frames average overtime and cells as a function of percoll concentration.

change toomuch overtime. However, as the percoll concentration increases, the movement

of the cells is reduced. When the percoll concentration is 5% (v/v), the moving distance is

reduced to a very low value, 0.887 µm, closed to that when percoll concentration is 20%

(v/v). Meanwhile, percoll could bring an adverse effect on the stabilization of the droplets,
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causing the droplets to coalesce since percoll may affect the surfactant used to prevent

droplets from coalescing. Therefor as less as percoll should be used in order to maintain

the uniformity of the droplet size. In order to choose the optimum concentration of percoll,

the droplet size was calculated for experiments using different concentrations of percoll,

and the results are summarized in Table 3.3. Without percoll added to the droplets, the

standard deviation of the droplet size is the smallest. As percoll concentration increased,

the standard deviation of the droplet size increase very slightly. Based on these results, 5%

(v/v) percoll was chosen for later experiments.

Table 3.3: Droplet size distributions when using different concentrations of percoll

Percoll

concentration

(v/v)

Mean (µm) Std (µm) Min (µm) Max (µm)

0% 77.4336 9.0601 51.816 179.5953

1% 78.0317 14.8222 51.6075 316.0851

5% 74.1416 15.0417 51.6075 348.1067

10% 77.7925 22.2272 51.628 381.4085

15% 81.0532 17.8227 51.6075 316.0918

20% 75.4457 16.9823 51.628 275.6372

3.4 Time-lapse imaging

Before fluorescence time-lapse imaging, the cells encapsulated in droplets were

put under a LED white light source (color temperature 6500K) for 26 hours. This is to

synchronize the clock of the individual cells. Since the excitation and emission wavelength

for mCherry protein is ∼580 nm and ∼610 nm, Carl Zeiss filter Set 43 HE was used. To

reduce photobleaching, a shot exposure time was used for imaging. The procedures for the

long-term time lapse-image recording for this thesis work is as follow:

1. Choose the objective with magnification to be used. See detail in section 3.7
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2. Use the ‘Mark and find’ module in the softwareAxioVision (Carl Zeiss Microscopy,

LLC, Thornwood, NY) to generate the positions list of the field of views of the

capillary tubing.

3. Take white field images of each field of view for automatic cells grouping in the the

image analysis procedure.

4. Turn on the mercury lamp and the shutter controller. The intensity level of the lamp

should be tuned to get a fluorescence image with good quality.

5. Follow the procedures described in the “Correction of CCD Image Imperfections”

in the Image processing section below to take images needed for the correction.

6. Set the exposure time to be fixed in the multidimensional experiment panel for the

time-lapse experiment.

7. Set the interval between taking consecutive images to be 30 minutes.

8. Set the total number of the time-lapse images to be taken.

9. Set the shutter to be opened before each image taking time point and closed after

each image taking a time point.

10. Start the time-lapse experiment.

11. Save all the images into 16bit tiff format.

3.5 Correction of CCD image imperfections

Correcting the obtained fluorescence images for imperfections in the CCD detector

is important for the goal of providing an image that is the closest match to the

specimen[102]. Generally, the procedures are as follows:
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1. Dark current correction: Take a couple of images with the same exposure time as the

time-lapse experiment before each experiment but with the shutter closed. Average

these images to create a dark current image. Subtract each fluorescence image by

the dark current image.

2. Bias correction: Take a couple of imageswith zero exposure time andwith the shutter

closed. Average these images to create a bias image. Subtract each fluorescence

image (corrected for dark current) by the bias image.

3. Flat field correction: Take a couple of images with quite short exposure time

of uniformly illuminated screen/field of view (For example, a commercial green

luminescent liquid in a 35 mm culture dish is suggested in [102]). Average these

images to create a flat field image. Obtain the average pixel value within the

(dark/bias corrected) flat field image (call it α). Then, for each fluorescence image

(dark/bias corrected), multiply all pixels by α and then divide (pixelwise) by the flat

field image. Flat field image should be created each time, changing optical properties

of the illumination and lens system. For example, use different flat field image for

different magnification.

3.6 Image processing

AMatlab routine was developed to sort droplets according to the number of cells in

them and to track the fluorescence intensity of individual cell frame by frame. Locations of

cells are determined by finding a local maximum in fluorescence intensity. The sorting is

based on the difference of distance between cells and droplet and the radius of the droplet.

The tracking is mainly based on theminimum distance between cells in consecutive frames.
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The quality control filter to filter out cells that are not linked properly is based on comparing

values of the extracted fluorescence intensity in consecutive time for one cell and between

cells. The quality control filter marks the cells that are not linked properly as bad cells and

they are not considered later in the analysis.

The fluorescence images are shown in Figure 3.4. Different numbers of cells

were encapsulated in droplets. Figure 3.4A-D are images took at 0 hours, 50 hours, 100

hours, and 150 hours. The droplets are very stable as no movement and merging of the

droplets are seen, which facilitates the tracking of cells. The cells grouping based on how

many neighboring cells they have in their droplets is shown in Figure 3.5. For example,

single-cells are those alone in their droplets in Figure 3.5A. 3 cells per droplet, 6 cells per

droplet, and 12 cells per droplet are shown in Figure 3.5B, C, and D. The lines with a ’+’

end points to the cells they track through the time-lapse. Tracking at 0 hours, 50 hours,

100 hours and 150 hours is shown here. Figure 3.5D shows the 9 cells that are successfully

tracked in a 12 cells droplet since that cells that are not properly tracked are excluded from

later analysis.

3.7 Control experiments for choosing objective magnification

The magnification of the objective is a parameter that should be optimized for the

purpose of improving the accuracy of the results and getting enough data points (large

amount of cells monitored) at the same time. Collection of photons by the objective

lens must be maximized. It is critical to use a lens with high light gathering power

(LGP ), which depends on numerical aperture (NA), magnification (Mag), and the mode
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Figure 3.4: Droplets are very stable during time-lapse imaging. Fluorescence images

showing cells encapsulated in droplets at 0 hours(A), 50 hours(B), 100 hours(C), and 150

hours(D)

of illumination[102] as show in Equation 3.1 or Equation 3.2:

LGP for epifluorescence = (NA2/Mag)2×104 (3.1)

LGP for luminescence = (NA/Mag)2×104 (3.2)

Table 3.4 shows the (LGP ) objective lens installed in the microscope.

Table 3.4 shows that 50X magnification has a high LGP , and it is the largest

magnification that will provide high resolution. However, with 50X magnification, the

number of cells can be observed in one field of view will be only a few. That is, there is

a trade off between high resolution and number of cells that can be monitored. Therefore,
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Figure 3.5: Cell grouping and tracking. Cells were grouped based on how many

neighboring cells they have in the corresponding droplets. Single-cells are those with 0

neighboring cells and only 1 cell in each droplet(A), 3 cells per droplet with each cell has

2 neighboring cells(B), 6 cells per droplet (C), and 12 cells per droplet(D). The lines with a

’+’ end points to the cells they track through the time-lapse. Tracking at 0 hours, 50 hours,

100 hours and 150 hours is shown here.
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Table 3.4: LGP for objective lens with different magnifications

NA MAG LGP

0.16 5 0.262144

0.25 10 0.390625

0.22 20 0.058564

0.55 50 0.366025

a control experiment was done to choose a reasonable lower magnification so that large

numbers of cells can be observed at the same time without compromising the accuracy.

This control experiment was conducted by measuring the same 62 single-cells in droplets

under different magnification: 5X, 10X, 20X, and 50X for 4 days. At each time point, the

objective magnification was changed manually and the fluorescence images were taken

under the four different objective magnifications for the same 62 cells. The fluorescence

intensity time series for the 62 cells measured under different objective magnifications are

shown in Figure 3.6. Considering 50X magnification as the standard, the coefficient of

determination, R-square, was calculated by fitting a linear regression on the fluorescence

intensity of the cells measured under 50X, as the dependent variable, against that measured

under the lower magnifications, 5X, 10X, and 20X, as the independent variable. The

histograms of the R-square for the 62 cells under 5X, 10X, and 20X are shown in Figure 3.7.

The R-square values are also summarized in Table 3.5. The average of the R-square

values of all the cells for all the magnifications are over 0.8, which means over 80% of

the variation measured under 50X magnification is predictable from the data measured

under the lower magnifications. This means measuring under 5X, 10X, or 20X will give

us as good accuracy as measuring under 50X. Therefore, 5X magnification was chosen

for all the experiments (unless stated otherwise) for this dissertation for the purpose of

monitoring as many cells as possible.
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Figure 3.6: 62 single-cell fluorescence intensity time series under different magnifications.

(A)5X. (B)10X. (C)20X. (D)50X.

Figure 3.7: Coefficient of determination, R-square, was calculated by fitting linear

regression on the fluorescence intensity of the cells measured under the lower

magnifications, 5X, 10X, and 20X, against that measured under 50X. (A)5X. (B)10X.

(C)20X.
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Table 3.5: R-square under different magnifications

Magnification

Average

R-square for

62 cells

Number of

cells with

R-square

over 0.8

5X 0.8643 52

10X 0.8814 58

20X 0.8552 51

3.8 Data analysis

All of the cell fluorescence intensity time series are divided by a Rhodamine B

intensity time series measured concurrently with the cell. This Rhodamine B normalization

step is for the purpose of correcting for fluctuations in the microscope’s excitation intensity.

The first 30 hours of data are excluded from the timeseries for later analysis due to the

biological clock needing a certain amount of time to run into a stable limit cycle after the

cells are transferred to the dark from light. A 24-hour moving average detrending method

was applied to remove any nonstationarities on large time scales (e.g. photobleaching of

the fluorescence protein)[103].

Additional controls were done to examine a set of time lapse images for detecting

germination, fusion of cells, and cell division. ∼200 single-cells were monitored for their

surface area over time for germination and cell division ( 10 are shown in Figure 3.8A ). In

addition,∼200 random pairs of cells were tracked over time to see if there was any change

in distance between them thatmight be evidence of cell fusion ( 10 are shown in Figure 3.8B

). No obvious surface area and cell to cell distance changes were seen, suggesting that there

is no germination, cell fusion and cell division happening.

28



Figure 3.8: No change in Projected Cell Surface Area (PCSA) indicates no germination,

and no change in cell-to-cell distance indicates no cell fusion. (A) For 10 randomly chosen

cells PCSA is followed over 285 h. (B) For 10 randomly chosen cells cell-to-cell distance

is tracked over 285 h. Each of these 10 cells and 10 cell pairs were drawn randomly from

a larger random sample of 200 cells or cell pairs that were examined.

3.9 Experimental noise calibration with fluorescence beads

It is necessary to quantify the noise from the experimental detection process

as compared to the stochastic intracellular noise. There are six sources of detection

randomness in single cell measurements that are associated with the fluorescent signal

generation and detection from a cell, as follows:

1. the quantum randomness of fluorescent photon generation in the cell;

2. the cell’s random focal plane excursions;

3. the quantum randomness of photo-electron generation in the CCD camera;

4. CCD random pixel-to-pixel variations in each pixel’s photon-to- electron conversion

yield;

5. CCD image pixel summation;

6. CCD bias and dark current subtraction.

The detection noise variance is dependent on the input signal to the CCD camera

and it is estimated by a simple quadratic relation with the CCD output signal, S̃k(tj),
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measured from the cells at time tj:

(σξ,j)
2 =

1

1 +B
[C + A〈S̃k(tj)〉e,c +B〈(S̃2

k(tj))
2〉e,c] (3.3)

and 〈S̃k(tj)〉e,c, 〈(S̃
2
k(tj))

2〉e,c is calculated by sample average of all the cells’ fluorescence

intensity at each time point tj as follow:

〈S̃k(tj)〉e,c ∼=
1

K

K∑
k=1

S̃k(tj) (3.4)

〈(S̃2
k(tj))

2〉e,c ∼=
1

K

K∑
k=1

(S̃k(tj))
2 (3.5)

The parameters, A, B, and C in Equation 3.3 can be estimated by fitting a quadratic

function as shown in Equation 3.6 to the fluorescent beads data measured in six bead

experiments and by Equation 3.7.

(σ
(b)
η,j)

2 = C(b) + A(b)S(b)(t
(b)
j ) +B(b)(S(b)(t

(b)
j ))2 (3.6)

A = A(b), C = C(b), B =
B(b) − σ2

B

1 + σ2
B

(3.7)

In Equation 3.6, (σ
(b)
η,j)

2 is estimated from the variance of the beads fluorescence intensity

at time tj , S(b)(t
(b)
j ) is estimated from the sample mean of the beads fluorescence

intensity at time tj . σ2
B is the relative variance of the emitted fluorescent photon count

per bead, due to bead size variability only, in the absence of any detection noise and

can be estimated by reasonable constraints[104]. Six bead experiments were done

by replacing droplet-encapsulated cells with a nearly mono-dispersed sample of small,

droplet-encapsulated, fluorescent beads. The beads were polymer microspheres internally

doped with fluorescent dye, (Bangs Laboratories, Inc., Cat. Code: FS06F, Envy Green,
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Excitation/Emission:525 nm/565 nm), with mean diameter 9.94 µm and diameter standard

deviation 0.76 µm, as provided by the manufacturer. The exposure times of the CCD

camera for each of the six bead experiments was different so that the mean fluorescence

intensity of the beads read out by the CCD spanned over a range that covered that of the

cells. Figure 3.9 shows a plot of (σ
(b)
η,j)

2 vs. S(b)(t
(b)
j ) for the six bead experiments and

its quadratic fit. The detection noise variance estimated from Equation 3.3 can then

Figure 3.9: The bead signal variance (σ
(b)
η,j)

2 varies quadratically with the mean bead

fluorescence signal, S(b)(t
(b)
j ) in the six-experiment bead data set. The fitted red curve

is the best fit to the data, subject to the positive constraints A(b)≥0, B(b)≥0, and C(b)≥0.

be used to calculate the contribution from the detection noise to the variance of average

of the periodogram of cells (calculated from Rhodamine B-normalized and detrended

cell fluorescence time series) at frequency fl as in Equation 3.8[104], the propagation of

detection noise to the periodogram of single-cell measurement:

(σe
l )

2 =
2σ2

ε

KL
[〈Q̃(fl)〉e,cγQ(l)+Re(〈R̃(fl)〉e,cβQ(l))

∗]− σ4
ε

KL2
[| γQ(l) |2+| βQ(l) |2] (3.8)
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Where K and L are number of cells and number of time points in the fluorescence

time series. 〈Q̃(fl)〉e,c and 〈R̃(fl)〉e,c, are, respectively, the population means of average

periodogram and average squared Fourier transform of the Rhodamine B-normalized and

detrended cell fluorescence time series. γQ(l) and βQ(l) are determined by functions of

weights used in the 24-hours moving average detrending process[105] and the detection

noise variance. σ2
ε is the variance of the Rhodamine B-normalized fluorescence time series

due to detection noise averaged over all cells and time points as shown in Equation 3.9.

σ2
ε =

1

L

L∑
j=1

σ2
ε,j, σ

2
ε,j =

σ2
ξ,j

(Z(tj))2
(3.9)

Where Z(tj) is fluorescence intensity of Rhodamine B at time point tj . σ
2
ξ,j is the detection

nosie variance in Equation 3.3.

The total variance in the Rhodamine B-normalized and detrended series, (σl)
2,

was estimated by bootstrapping 5000 times, the K = 1591 cell trajectories, from the

replicate experiment in Figure 5.5A. The stochastic intracellular variance, (σc
l )

2, was

obtained by subtraction, using(σc
l )

2 = (σl)
2 − (σe

l )
2. The proportion of variation in a

cell oscillator fluorescent signal attributable to detector noise (i.e., experimental error) was

then: (σe
l )

2/(σl)
2 < 6% for all frequencies fl[104].

The detection noise variance also introduce a bias into the average periodogram of

the cells. The bias is obtained as:

Qbias(fl) =
σ2
ε

L
γQ(l) (3.10)

3.10 Temperature stability verification of the measuring setup

A thermal stage was used to maintain the temperature of the cells experienced

in temperature compensation experiments. The capillary tubing encapsulated with cells

32



(in droplets) was put directly onto the thermal stage. The temperature stability of the

thermal stage was first verified to confirm that the temperature was maintained at the

set temperature during each temperature compensation experiment. A thermal coupling

was used to measure the temperature within the capillary tubing where the cell sample

or the Rhodamine B solution is held. Figure 3.10A shows the temperature within the

capillary tubing (red curve, Ts) and Room temperature (blue curve, TR) where the thermal

stage was exposed to. Although the Room temperature (blue curve, TR) fluctuated about

4 oC, the temperature inside the capillary tubing (red curve, Ts) was very stable with a

fluctuation less than 0.2 oC around the set temperature. This is confirmed also by the

weak linear relationship between ∆Ts and TSN − TR with a slope of 0.014 as shown in

Figure 3.10B.∆Ts is the temperature difference between the set temperature of the stage

(TSN = 25oC) and the actual temperature in the capillary tubing (Ts).

Figure 3.10: Temperature stability of the thermal stage. (A) Temperature within the

capillary tubing (red curve, Ts) and Room temperature (blue curve, TR) where the thermal

stage was exposed to. (B) The difference (∆Ts) between the set temperature of the stage

(TSN = 25oC) and the actual temperature in the capillary tubing (Ts) as a function of

the difference between the set temperature of the stage (TSN = 25oC) and the Room

temperature (TR). Blue dots are the data and red straight line is the linear regression.
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After confirming that the temperature inside the capillary tubing is stable, a large

fluctuation (∼10%) in the Rhodamine B (RB) was still observed, and the fluctuation

correlates with the Room temperature measured concurrently as show in Figure 3.11.

As mentioned in chapter 3 section section 3.8, the Rhodamine B intensity was used as

a standard to eliminate the variations in the illumination from the light source. The

Rhodamine B intensity has been known for having high temperature sensitivity[106–108].

Since the thermal stage temperature fluctuates only 0.2 oC, according to the literature

[106–108] that reported the Rhodamine B intensity temperature coefficient, the Rhodmine

B intensity change due to this thermal stage temperature fluctuation will only be 0.1%.

On the other hand, the output intensity of the LED light source used to illuminate the

fluorescence protein in the cells is also temperature sensitive[109, 110]. Since the Room

temperature fluctuated about 4 oC (Figure 3.11A), which could cause the output of the

LED light source to fluctuate accordingly hence the Rhodamine B intensity measured also

would fluctuates with high correlation to the Room temperature(Figure 3.11B). Therefore,

a control experiment was done by only measuring the output of the LED light source to

see whether it correlates to the change in the Room temperature and whether the amount

of change matches that in Figure 3.11A, that is 1.84% per 1 oC(Figure 3.12A). The LED

light source output was measured by imaging an empty capillary tubing under the same

experimental set up for measuring the cells and Rhodamine B. The result is shown in

Figure 3.12B with the orange curve in the right y axis showing the LED output intensity

(normalized by themaximum intensity in the time series) and the blue curve in the left y axis

showing the Room temperature measured concurrently. The fluctuation of the LED output

intensity is 1.11% per 1 oC which matches the change amount seen in the Rhodamine B
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Figure 3.11: Rhodamine B intensity correlates with room temperature. (A) Time series of

Room temperature (blue curve, left y axis) and Rhodamine B intensity (orange curve, right

y axis) measured when the thermal stage was set at 25 oC. (B) Linear regression between

Rhodamine B intensity (RB(Ts)) and the difference between stage set temperature (TSN )

and Room temperature (TR)

intensity in Figure 3.12A. The conclusion is that the correlation between the Rhodamine B

intensity and the Room temperature is due to the fact that the output intensity of the LED

Figure 3.12: LED light source output correlates with room temperature. (A) Time series

of Room temperature (blue curve, left y axis) and Rhodamine B intensity (orange curve,

right y axis) measured when the thermal stage was set at 25 oC. Rhodamine B intensity

is normalized by the maximum intensity in the time series. (B) Time series of Room

temperature (blue curve, left y axis) and LED light source output (orange curve, right

y axis) measured when the thermal stage was set at 25 oC. LED light source output is

normalized by the maximum intensity in the time series.

light source is affected by the Room temperature. Therefore the Rhodamine B intensity can

be used as a standard to eliminate any variations come from the LED light source including
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that due to the Room temperature fluctuation and that due to any other reasons that may

cause instability in the LED light source intensity output.

Figure 3.13: Photobleaching decay in the Rhodamine B intensity. (A) Time series of Room

temperature (blue curve, left y axis) and Rhodamine B intensity (orange curve, right y axis)

measured when the thermal stage was set at 30 oC. (B) Exponential fit of the Rhodamine

B data from (A) in the Room temperature stable range. Blue curve is the experimental

Rhodamine B data and the red dashed line is the exponential fit of blue curve.

However we are also concerned that the photobleaching decay (Figure 3.13A) in

the Rhodamine B intensity will affect the results if it is used directly to normalize the cell

data. Figure 3.13A shows the Rhodamine B fluorescence intensity measured when the

thermal stage is set at 30 oC and the Room temperature measured concurrently is relatively

stable. Here an obvious exponential decay trend due to photobleaching is shown in the

Rhodamine B intensity time series. An exponential function is used to fit the Rhodamine

B intensity data in Figure 3.13B and the resulting function, Equation 3.11, is used to

detrend the Rhodamine B data to eliminate the effect introduced by photobleaching of the

Rhodamine B dye. To detrend the Rhodamine B data, each data point in the Rhodamine

B intensity time series is divided by the value calculated by Equation 3.11 at the same

time point. The detrended Rhodamine B time series are shown in Figure 3.14A-E orange

curves for different temperature compensation experiments and the exponential trend due
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to photobleaching is diminished after detrending. The detrended Rhodamine B intensity

time series were then used to normalize cell fluorescence intensity data.

y = A ∗ exp(K ∗ t) + C = 88.89 ∗ exp(−0.01 ∗ t) + 2282.82 (3.11)

Figure 3.14: Detrended Rhodamine B time series for temperature compensation

experiments. (A), (B), (C), (D), and (E) are Non-detrended Rhodamine B intensity (red

curve, right y axis), detrended Rhodamine B intensity (orange curve, right y axis), and

Room temperature (blue curve, left y axis) for the temperature compensation experiment

at 30 oC, 27 oC, 25 oC, 22 oC, 20 oC. Rhodamine B intensity time series are normalized by

the maximum intensity in each time series.
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CHAPTER 4

SINGLE-CELL CIRCADIAN OSCILLATORS IN NEUROSPORA CRASSA

While the biological clock is a universal mechanism used by a variety of

organisms(e.g., animals, plants, fungi and bacteria) to tell time in constant or a changing

environment (in terms of changing of light or temperature)[21], whether a single-cell has a

biological clock to do so has yet to be investigated. An even more fundamental question is

whether a single-cell has a circadian oscillator is the first step for finding out the answer for

whether or not a single-cell has a biological clock. This answer will facilitate answering

more challenging questions like, does the biological clock of individual cell communicate

with each other; what mechanism they use to communicate if so; and how the biological

clock in single cells synchronize with each other to achieve a deterministic clock ticking

precisely as seen in organisms. On the technology aspect, measurement of the biological

clock at the single-cell level and control of the micro-environment that the cells are in could

bring new possibilities to investigate these above topics. While single cell measurements

have been made on the clocks of cyanobacterial cells[23] and on synthetic oscillators in

E. coli by microfluidics[111], such measurements have been rare on a eukaryotic clock,

but when performed, have uncovered new phenomena about the clock[112, 113]. Some

initial synchronization studies have been conducted in tissue culture of neuronal cells from

the suprachiasmatic nucleus (SCN) constituting the master clock of mammalian cells[114],

and candidate signaling molecules for synchronization have been identified[115, 116], but
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the mechanism of synchronization is missing. The number of single-cell trajectories in

such studies is typically 100 or less, precluding a test of a synchronization mechanism.

Single cell measurements have yet to be made on one of the most fully explored

biological clocks in the model fungal system, N. crassa. Specifically, little is known about

how the oscillators of N. crassa behave at the single cell level, whether the oscillators are

stochastic in nature, and whether or not the oscillators of different cells communicate to

overcome their stochastic asynchrony. The microfluidic droplet platform described in this

thesis work is capable of measuring the biological clock ofN. crassa at the single-cell level

by isolating single-cells in individual droplets and keeping them very stable for long-term

periods of observation (up to 10 days). This platform can measure the circadian rhythm

of a large number (>1000) of single-cells, demonstrating a great potential to help our

understanding of some of the fundamental aspects about the biological clock of N. crassa.

4.1 Measurements of expression on single cells over 10 days

A summary of the workflow of the microfluidic droplet system developed here is

show in Figure 4.1. In step 1 a flow-focusing microfluidic device is used to encapsulate

cells in droplets. A stream of theN. crassa cell suspensionmeets two streams of fluorinated

oil at the intersection as shown in the zoom-in figure entitled ‘Cell encapsulation’. As

a result the stream of cell suspension is divided into dispersed droplets with various

numbers of cells. Afterwards, the droplets are collected into a capillary tube in step 2.

The two ends of the capillary tube are then sealed, and the capillary tube is put onto a

motorized microscope stage. A CCD camera is used to record the fluorescence images

of the encapsulated cells in step 3. A single layer of droplets is formed in the capillary

39



tube, and the droplets are very stable over ten days, which makes it possible to track the

fluorescent intensity of individual cells over time. Figure 4.1B andC show the photos of the

microfluidic device and the sealed capillary tube, respectively. The ability of the droplet

Figure 4.1: Oscillators of single cells can be measured with the workflow involving

droplet microfluidics devices and fluorescent recorders of a clock output gene. (A) There

are 3 steps for capturing cells in droplets so that fluorescence data can be measured on

each cell. In Step 1 cells are encapsulated in droplets by a microfluidics device with

flow-focusing geometry. In Step 2: droplets are collected from step 1 into capillary

tubing. In Step 3: encapsulated cells are viewed by time-lapse fluorescence imaging, and

single cell fluorescence data are extracted. (B) Photo of the microfluidics device for cell

encapsulation. The channel is dyed green. (C) Photo of capillary tubing. The capillary

tubing is dyed red.

microfluidics platform to measure expression of the clock controled gene (ccg-2) on each

of 868 single cells over 10 days is shown in Figure 4.2. A fluorescence recoder (mCherry)

driven by ccg-2 promoter in MFNC9[30] strain was used to visualize the expression of the
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ccg-2. A total of 868 single cells fluorescence intensity time series can be tracked over

10 days. Droplet stability was dependent on the surfactant used to coat the droplets[94],

and the stability of cell location was in part due to the microfluidics device as well as

media derived previously[96]. A recently developed automated cell counting technique

was used to verify that 80%+/- 2% of the cells were still viable at the end of the ten day

experiment[117].

4.2 Stochastic oscillators in single-cells

Some sample fluorescence intensity trajectories of single cells are shown in

Figure 4.2A. They all show a rhythm with a period ∼21 hours. There is some variation

in amplitude and phase among them. Single cells here are those for which only one cell

(singletons) is isolated in a droplet. This excludes the complication of synchronization of

multiple cells within droplets. All cells were transferred to the dark (for ten days) to allow

circadian rhythms to develop, interrupted only briefly during imaging of cells (every 30

min). It is evident that there is substantial variation in the trajectories of ccg-2 expression

in different isolated cells in Figure 4.2B. A summary of the periods of all trajectories is

captured in the periodogram of each cell in a heat map (Figure 4.2C). The principal period

is 21 hours with limited variation about this mean as expected[30].

In each trajectory there are two components of variation in fluorescence intensity,

stochastic variation in ccg-2 gene expression and variation due to experimental detection

noise; the stochastic variation can be further decomposed into intrinsic variation in ccg-2

expression and extrinsic variation due to other cellular components[119]. Both sources

of variation, stochastic and that due to experimental detection noise, can be quantified
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Figure 4.2: The oscillators in single cells of N. crassa are circadian with a period of 21

h in the dark (D/D), but there is substantial variation in phase and amplitude captured in

a stochastic genetic network fitting the single cell clock data. The scales in A (bottom

panel of temporal traces) do vary so that it is easier to examine the variation in periods

of the three trajectories. Trajectories were normalized and detrended as described in

chapter 3 experimental method. (A) Circadian oscillation of fluorescence data on ccg-2

gene expression recorder is shown from individual N. crassa conidia with substantial

variation in amplitude and phase. Scale bar, 20 µm. (B) Stochastic variation in 868 cells
in one microscope view is shown with only a slight photobleaching effect for the mCherry

recorder used. The curve in red is an average of all 868 trajectories (in blue). (C) A heat

map of 868 cells is shown representing the periodogram of each of 868 cells on the Y-axis

and the period, on the X-axis. Yellow is indicative of higher power at a particular period.

The period varies about 20-21 h in the heat map. The sum of the periodogram values is

used to normalize the power output of each period so that the power can be interpreted

as the fraction of oscillators of a particular frequency. (D) The average periodogram of

a stochastic clock network (in blue) derived from a working ensemble of deterministic

models[118] fits the average periodogram of 868 cells (in red) derived from the individual

periodograms in panel C.

with a control experiment in which cells are replaced with fluorescent beads of diameter,

comparable to the mean size of macroconidial cells. The latter was measured with
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automated cell counting of 636 cells to be 8 µm. The stochastic trajectories do display

a slight negative trend due to the photobleaching of the mCherry recorder gene. To control

the photobleaching, the time between measurements was limited to 30 minutes. The result

was 480,000 fluorescent measurements of ccg-2 expression on the circadian oscillators of

1,000 cells.

It would be desirable to know the sources of variation in the rhythms of individual

cells. First, a number of steps were taken to reduce the variation due to experimental

error in trajectories. For example, the depth of the observation chamber in Figure 4.1 was

50 µm in size to prevent cells from drifting in or out of focus (chapter 3). Rhodamine B

was introduced as an internal standard so that the measured fluorescence of cells was made

relative to the Rhodamine B standard to reduce experimental error. The media was selected

to inhibit cell division, and direct observation was used to confirm that no cell division

occurred during the 10 day experiment. An image processing routine including a quality

control filter was applied to ensure that particle (cell) tracking from frame to frame was

carried out correctly. Using an automated cellometer (Nexcelom, Inc., Lawrence, MA),

the mean cell size was estimated to be ∼8 µm, and so a 10 day control experiment with

9.94 µm fluorescent beads replacing cells was conducted in the same way, allowing us to

estimate separately the variation due to experimental error from the stochastic variation

between genetically identical cells.

Westermark et al.[29] recognized the importance of an error model for single cell

measurements. A noise detection model was developed to get an understanding of how the

stochastic variation from the cells’ clock and experimental detection noise were propagated

to the periodogram[104]. An error model was identified with six bead experiments. The

43



stochastic noise from the cell’s clock and the experimental detection noise were then

estimated separately. A sizeable > 94%of the variationwas stochastic variation (as opposed

to experimental detection noise) in expression between cells.

Having separated the stochastic variation measured in cells over ten days

(Figure 4.2B) from the experimental error measured in control bead experiments (using

fluorescent 9.94 µmbeads), we wished to know if the oscillators were circadian. A separate

periodogram was calculated for each cell in Figure 4.2C, and the average periodogram has

a peak at 21 hours in Figure 4.2D (red curve) as expected[30] from both race tubes and

fluorometry at the macroscopic level. The oscillators of individual cells were circadian,

but they are clearly not in phase from Figure 4.2B. As an example of this, the periodicity

of the average trajectory (Figure 4.2B in red) is very weak, if visible at all, but the

periodograms of individual cells display a strong peak in the periodogram near 21 hours

in Figure 4.2C. As with the suprachiasmatic nuclei (SCN) of mammalian cells, N. crassa

cells have cell-autonomous oscillators

As the detection noise is only less than 6%, an ensemble of stochastic models

derived from an working deterministic model[120] was developed based on fitting the

average of the experimental single-cell periodograms in Figure 4.2D (red curve). The

modeled CCG-2 trajectories are generated by the Gillespie Algorithm[121]. The average

of the periodograms of simulated single-cells trajectories (blue curve in Figure 4.2D) fits

the experimental periodogram quiet well. The oscillators of single cells of N. crassa are

demonstrated here to be stochastic circadian oscillators. The origin of the stochasticity

maybe in part due to the transcriptional bursting of the core clock genes themselves[32].

The random activation of the core clock genes (white-collar-1 (wc-1) and frequency (frq) )
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are likely to be responsible for generating phase and amplitude variation in the single cell

circadian oscillators.

Some have hypothesized that the period of each circadian single cell oscillator

should be independent of its amplitude[51]. We hypothesize that the amplitude and period

of each single cell should be positively correlated because they are simply related features

of the periodogram of each single cell oscillator (Figure 4.2C). We also predict that there

should be an inverse relation between phase (i.e., the number of cycles completed in a

fixed time period by a single cell oscillator) and the period of the oscillator. Since phase

and period are expected to have a negative relation and period is expected to have a

positive relation to amplitude, we also predict that phase should have a negative relation to

amplitude. Plots of the phase, amplitude, and period of each single cell oscillator support

our hypotheses (Figure 4.3). Period and amplitude are significantly positively correlated as

expected (Figure 4.3A), and amplitude and phase are significantly negatively correlated as

expected (Figure 4.3C). The ability of the droplet platform to detect a correlation between

period and amplitude (Figure 4.3A) is probably due to observing 3.4 times as many single

cell oscillators as the earlier experiment[51]. The histogram of the phase of the 868 single

cells is shown in Figure 4.3D (blue curve) which is in good agreement with the modeled

trajectories (red curve). The only difference is that the mean (+/−two standard errors) of

the oscillator phases observed (17 +/− 0.16 cycles/85 hours) is slightly higher than that

predicted by the stochastic model (13 +/− 0.16 cycles/85 hours). A Kolmogorov-Smirnov

2-sample test[122] comparing the two phase distribution after subtracting means barely

reaches significance (P = 0.02)
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Figure 4.3: Relationship between period, amplitude, and phase of the circadian oscillator.

(A) Plot of amplitude vs. period for 868 single cell oscillators in Figure 4.2B. The

amplitude is the square root of the maximum power in the periodogram. The period is

1/2πfl, i.e., the inverse of the frequency fl at which the periodogram is maximum in

power. The correlation (r) of amplitude and period is r = 0.1095 (Fishers z = 0.1099,

P < 0.001)[123]. The Spearman rank correlation (rs) is rs = 0.1101 (P < 0.01)[122].

The straight line regression of amplitude on period (in red) is also shown. (B) Plot of

phase vs. period for 868 single cell oscillators in Figure 4.2B. The discrete Hilbert phase

fH(t) at time t is calculated from the Hilbert transform of each cell’s trajectory after

subtracting its mean over time[124]. The phase of an oscillator plotted here is defined

as MC = [fC(t1) − fC(t0)]/2π in units of cycles, where fC(t) is the continuous Hilbert
phase at time t. The phase can be thought of as the number of cycles, which a single

cell oscillator completes in the time interval t1–t0 = 230 – 60 in units of half hours. The

continuous Hilbert Phase fC(t) is defined recursively by fC(t + 1) = fC(t) +mC(t)2π
wheremC(t) is the argumentm that minimizesDfm =| fH(t+1)− fC(t) + 2πm |. The
correlation (r) of phase and period is r = -0.1986 (Fishers z = -0.2013, P < 0.001)[123].

The Spearman rank correlation (rs) is rs = -0.1376 (P < 0.001)[122]. The straight line

regression of phase on period (in red) is also shown. (C) Plot of amplitude vs. phase for

868 single cell oscillators in Figure 4.2B. The correlation (r) of amplitude and phase is
r = -0.1226 (Fisher’s z = -0.1232, P < 0.001). The Spearman rank correlation (rs) is rs
= -0.0880 (P < 0.02)[122]. The straight line regression of amplitude on phase is shown

(in red). (D) Histogram of the phase of 868 single cell oscillators in Figure 4.2B and

868 Gillespie simulated trajectories of the stochastic model. The phase is functionally

independent of the periodogram. Trajectories in both model and data are detrended.
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4.3 Single-cells circadian oscillators in Neurospora Crassa can be entrained by light

In the last section, we have shown that N. crassa single-cells have an circadian

oscillator by measuring the clock control gene (ccg-2) expression over 1000 single-cells

up to 10 days with the develop microfluidics droplet platform. While these oscillators

in single-cells of N. crassa have been demonstrated to generate circadian rhythms in

Figure 4.2, these oscillators have not be shown to be light entrained. Circadian rhythm,

light entrainment, and temperature compensation are the three major properties that define

a biological clock[20]. In fact, the presence of a clock in a single cell has not been

demonstrated.

The presence of such a clock inN. crassawould help to establish how synchronized

circadian behavior originates at the macroscopic level of 107 cells in eukaryotic systems,

where most measurements on the clock are performed[125]. Because of the substantial

stochastic intracellular variation within single cells, it is not clear how ensembles of

cells overcome stochastic intracellular variation in circadian rhythms to display highly

synchronized behavior at the macroscopic level. There could be a variety of mechanisms.

For example, single cells with a functioning clock could function as “pacemakers”

to synchronize the behavior of surrounding cells in fungi, animals, and plants and

provide an explanation for how circadian rhythms are coordinated at the multiellular

level[126]. Alternatively there could be no leaders but chemical signals that synchronize

the oscillators[127]. There also may be a positive role for stochastic intracellular noise

in synchronizing single cell oscillators[128, 46]. The light conditions are considered

to be very useful experimental setting for observing the biological system’s endogenous

dynamics[129].
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Synchronization of organisms with their environment is aided by their biological

clock[130]. The biological clock of higher organisms can be entrained very efficiently

to the 24-light dark cycle[131]. Light entrainment is a primary capability a biological

clock has to help synchronize the organism to the surrounding environment. With light

entrainment, the rhythms that generated/controlled by the biological clock are in phase

with the light signal and have the same period as the light signal, which the biological clock

receives. It would be very interesting to learn whether on the single cell level, the circadian

oscillator possesses light entrainment properties, or is it the emerging phenomena from

coupled cells like those in the macroscopic level[120]. Only single cell measurement on

the biological clock under light entrainment conditions could help answer this question and

may provide some insights about whether the coupling would affect the light entrainment

of the biological clock.

While light entrainment studies have been done on the uncoupled mammalian

suprachiasmatic nuclei (SCN) cells[132], light entrainment of the biological clock of single

N. crassa cell has never been demonstrated. Under cell-to-cell coupling condition, imaging

of single cells of Zebrafish tissues[133] and plants[44] have shown that cells shift their

phases to a common phase while responding to the light signal.

Using the microfluidic droplet platform developed in this thesis, we measured the

oscillators of > 1000 single N. crassa cells under different light entrainment conditions

and begin to test some of the hypotheses about the origin of the biological clock. For

example, one hypothesis is that clock is a property of single cells. Each cell has its own

clock. Alternative hypotheses are that clock-like properties, such as circadian rhythms,
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light entrainment, and temperature compensation are orchestrated by a few pacemaker cells

or are emergent properties of cell-to-cell synchronization.

We investigated whether the single cells of N. crassa can be entrained by light

by exposing them under three different light entrainment conditions and measuring the

fluorescence intensities of single cells at the same time. A LED light was used to control

the light/dark (LD) cycles the cells experienced during measurement as show in Figure 4.4.

At the macroscopic level, millions ofN.crassa cells can be entrained to light-dark cycles of

different period length[120, 134]. Here we used a quasi-square-wave light intensity profile

with different light/dark (LD) cycles, 3 hours light on/ 3 hours light off, 6 hours light on/

6 hours light off, 18 hours light on/ 18 hours light off. The light intensity is 5300 lux and

has a spectrum of sunlight (6500K)

It has been demonstrated elsewhere in the literature that N. crassa can form

conidiation bands under very short day cycles[120, 135]. The auto-feedback loops for

WCC activating wc-1 and wc-2 were predicted and confirmed to be a mechanism that

enables N. crassa to entrain to an artificial day as short as 6 hours[120]. The effect of

bluelight photoreceptorVVD induced by light-activatedWCC inhibiting the function of the

WCC itself is believed to in part be responsible for entrainability of the clock N. crassa to

LD cycles with short photoperiod[129, 136]. With the possibility to measure the response

of single cells of N. crassa to different LD cycles we are able to look at whether single cells

of N. crassa has the same entrainability as cells forming banding in racetubes when there

are large amounts of them[120]. A total of 1330 single cellN. crassa fluorescence intensity

time series are shown in Figure 4.5A (blue curves). They are obtained by measuring the

fluorescence intensities of single cells that are exposed to a 3 hours light on and 3 hours light
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Figure 4.4: The microlfuidic droplet platform integrated with a LED light to control the

light-dark cycles that the cells experienced. Step 1: A droplet generation device for cell

encapsulation. Step 2: Droplets are collected into capillary tubing. Step 3: Time-lapse

fluorescence imaging by a CCD camera through a microscope under light entrainment and

fluorescence data extraction.

dark cycles. The average of all the single cell fluorescence intensity time series is the red

curve in Figure 4.5 which shows oscillations along the LD cycles. The yellow background

indicates when the light was on and the grey background indicates when the light was

off. Figure 4.5B shows 10 sample fluorescence intensity trajectories (color curves) from

Figure 4.5A after normalization by Rhodamin B intensity and detrended by a 24-hours

moving average[105]. The thicker black curve in Figure 4.5 is the average of the 10
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Figure 4.5: Entrainability of Single cell N. crassa to a 6 hours artificial day with 3 hours

light on and 3 hours light off. (A) 1330 single cell fluorescent intensities (blue curves,

right y axis) and the average of all the single cell fluorescent intensities (red curve, left y

axis). Yellow background indicates light on, and grey background indicates light off. (B)

Sample of 10 single-cell fluorescence intensity time series from (A) after normalization

and detrend (color curves) and their average (black curve). (C) A heat map showing the

periodogram of each of the 1330 single cells fluorescence trajectories from (A). On the

Y-axis is the cell number of the 1330 single cells and on the X-axis is the period. Yellow

is indicative of higher power at a particular period. (D) Average of the periodograms of

all the single cells fluorescent time series in (A). The periodgoram is normalized so t For

each periodogram, the sum of periodogram values is used to normalize the power output of

each period so that the power can be interpreted as the fraction of oscillators of a particular

frequency.
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sample trajectories. There is still some heterogeneity among these 1330 single cells in

their amplitudes and phase even when they were subjected to the same LD cycles. It is

obvious that the light entrainment of single cells is able to limit occurrences of stochastic

noise induced phase drifting of individual cells. As a result, the average output of the

clock oscillates regularly along the 3 hours light on and 3 hours light dark cycles. We

calculated the periodograms of all the 1330 single cell fluorescence intensity time series

and summarized it in Figure 4.5C. Each periodogram of a single cells is a row in the heat

map of Figure 4.5C. A very narrow band around the period value of 6 hours is shown in

Figure 4.5C, indicating that most of the isolated cells has a period of 6 hours corresponding

to the period of the LD cycles used to entrain them. The average of all the single cells’

periodogram is also shown here in Figure 4.5D. The highest averaged periodogram power

comes from the period∼ 6 hours. These results demonstrate that singleN. crassa circadian

oscillator can be entrained to the 3 hours light on and 3 hours light off cycles.

Single cells were also exposed to a 6 hours light on and 6 hours light dark cycles.

Fluorescence intensity time series of 1626 single cells are shown in Figure 4.6A blue

curves. The average of all the single cells fluorescence intensity traces is the red curve

in Figure 4.6 which shows oscillations consistent with the alternation of light on and light

off. Again 10 sample fluorescence intensity trajectories after normalization and detrending

are presented in Figure 4.6B color curves with their average shown as the black curve.

There is also phase and amplitude variation among individual cells. A periodogram heat

map, Figure 4.6C, shows a bright band around 12 hours, demonstrating that most of the

single-cells are entrained to a 12 hour period. A peak at ∼ 12 hours is also shown in the
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Figure 4.6: Entrainability of Single cell N. crassa to a 12 hours artificial day with 6 hours

light on and 6 hours light off. (A) 1626 single cell fluorescent intensities (blue curves,

right y axis) and the average of all the single cell fluorescent intensities (red curve, left y

axis). Yellow background indicates light on, and grey background indicates light off. (B)

Sample of 10 single-cell fluorescence intensity time series from (A) after normalization

and detrended (color curves) and their average (black curve). (C) A heat map showing the

periodogram of each of the 1626 single cells fluorescence trajectories from (A). On the

Y-axis is the cell number of the 1626 single cells and on the X-axis is the period. Yellow

is indicative of higher power at a particular period. (D) Average of the periodograms of

all the single cells fluorescent time series in (A). The periodgoram is normalized so t For

each periodogram, the sum of periodogram values is used to normalize the power output of

each period so that the power can be interpreted as the fraction of oscillators of a particular

frequency.
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average periodogram of all the single cells, Figure 4.6D. Thus, single N. crassa cells can

be entrained to the 12 hour artificial day with 6 hours light on and 6 hours light off.

We also examined the entrainability of single cells of N.crassa to a long LD cycles

with period much larger than its intrinsic period[104]. Therefore the cells were subjected

to a 18 hours light on and 18 hours light off. Again 1969 single cell fluorescence intensity

traces are plotted as blue curves in Figure 4.7A. The red curve in Figure 4.7B is the

mean of the blue curves. The normalized and detrended trajectories of 10 sample cells

in Figure 4.7B shows more fluctuation as compared to the trajectories in Figure 4.5B and

Figure 4.6B. These may due to the single cells being in longer constant conditions (18

hours) , and the intrinsic stochastic noise of single cells may introduce more amplitude

variation and phase shifting during long constant conditions. The average of the 10 sample

traces is also noisier in Figure 4.7B. Shown in the periodogram heat map Figure 4.7C, most

of the cells have a fundamental period around 36 hours corresponding to the entrainment

period. The average periodogram of all the single cells in Figure 4.7D has a peak at 36.57

hours with a broader spectrum as compared to that in Figure 4.5D and Figure 4.6D. These

results indicate that single N. crassa cell can be entrained to the 36 hours artificial day with

18 hours light on and 18 hours light off.

We also looked at the amplitude, phase and period relationships of the single cell

oscillators in the 3 light entrainment experiments. For single cell in DD condition, we saw

that amplitude and period is positively correlated. We argue that the amplitude and the

period of single cells is still correlated under light entrainment conditions. For the 6 hour

artificial day data, however, the amplitude and period show a slight negative correlation

(Figure 4.8A), which is different than that under DD condition. This may due to the LD
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Figure 4.7: Entrainability of Single cell N. crassa to a 36 hours artificial day with 18 hours

light on and 18 hours light off. (A) 1969 single cell fluorescent intensities (blue curves,

right y axis) and the average of all the single cell fluorescent intensities (red curve, left y

axis). Yellow background indicates light on, and grey background indicates light off. (B)

Sample of 10 single-cell fluorescence intensity time series from (A) after normalization

and detrended (color curves) and their average (black curve). (C) A heat map showing the

periodogram of each of the 1969 single cells fluorescence trajectories from (A). On the

Y-axis is the cell number of the 1969 single cells and on the X-axis is the period. Yellow

is indicative of higher power at a particular period. (D) Average of the periodograms of

all the single cells fluorescent time series in (A). The periodgoram is normalized so t For

each periodogram, the sum of periodogram values is used to normalize the power output of

each period so that the power can be interpreted as the fraction of oscillators of a particular

frequency.
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Figure 4.8: Period, amplitude and phase of the entrained oscillators under 3 hours light on

and 3 hours light off. (A)Amplitude vs. period of 1330 single cell oscillators in Figure 4.5.

The amplitude is half of the square root of the maximum power in the periodogram. The

correlation (r) of amplitude and period is r = -0.035 (Fishers z = -0.035, P = 0.2016)[123].
The Spearman rank correlation (rs) is rs = -0.057 (P = 0.0378)[122]. The straight line

regression of amplitude on period is shown in red. (B) Plot of phase vs. period of 1330

single cell oscillators in Figure 4.5. The phase is defined as described in Figure 4.3 but

also normalized by dividing the number of days of the measurement. The correlation (r)
of phase and period is r = -0.1373 (Fishers z = -0.1382, P < 0.001)[123]. The Spearman

rank correlation (rs) is rs = -0.1221 (P < 0.001)[122]. The straight line regression of phase
on period is shown in red. (C) Plot of amplitude vs. phase for 1330 single cell oscillators in

Figure 4.5. The correlation (r) of amplitude and phase is r = -0.4310 (Fishers z = -0.4612,
P < 0.001)[123]. The Spearman rank correlation (rs) is rs = -0.5644 (P < 0.001)[122].

The straight line regression of phase on period is shown in red. (D) Phase histogram of

1330 single cell oscillators in Figure 4.5. The mean phase (+/- two standard errors) of the

entrained oscillators is 5.5868 (+/-0.0485) cycles per day
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cycles period (6 hours) are much shorter than the intrinsic oscillation period ( 21 hours),

or not enough data. The amplitude has a positive correlation with the period for the 12

hours artificial day and 36 hours artificial day (Figure 4.9A and Figure 4.8A). Single

cells oscillators that are entrained to the corresponding LD cycle period here show large

amount of variation in their amplitudes. The mean amplitudes (+/- two standard errors)

of the single cell oscillators with period at ∼ 6 hours, 12 hour and 36 hours are 2.5190

(+/- 0.2040), 4.2929 (+/- 0.1515), and 3.8674 (+/- 0.1936). The phase has a negative

correlation with the period (Figure 4.8B, Figure 4.9B and Figure 4.10B) as expected since

slower oscillators with longer period complete less number of cycles in a fix period of

time. The amplitude is also negatively related to the phase (Figure 4.8C, Figure 4.9C and

Figure 4.10C). Histograms of phase distributions are shown in Figure 4.8D, Figure 4.9D

and Figure 4.10D with mean phase (+/- two standard errors) of 5.5868 (+/-0.0485), 4.5816

(+/- 0.0626) and 5.1177 (+/- 0.0656).

4.4 Temperature compensation is observed in single cells of Neurospora crassa

In addition to light entrainment, a biological clock also has a characteristic called

temperature compensation[20]. Temperature compensation means the clock period does

not change over the physiological temperature range (15 oC to 34 oC)[137]. Many

mechanisms for temperature compensation have been proposed based on the logic

that stable period across large range of temperature change is achieved by balancing

positive and negative contributions in the circadian oscillator[138–140]. Another adaptive

mechanismwas proposed that the ratio of two FRQ forms are regulated by temperature and

thus the required threshold of FRQ for robust circadian rhythmicity can be maintain across
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Figure 4.9: Period, amplitude and phase of the entrained oscillators under 6 hours light on

and 6 hours light off. (A)Amplitude vs. period of 1626 single cell oscillators in Figure 4.6.

The amplitude is half of the square root of the maximum power in the periodogram. The

correlation (r) of amplitude and period is r = 0.0358 (Fishers z = 0.0359, P =0.1485)[123].
The Spearman rank correlation (rs) is rs = 0.0935 (P = 0.0002)[122]. The straight line

regression of amplitude on period is shown in red. (B) Plot of phase vs. period of 1626

single cell oscillators in Figure 4.6. The phase is defined as described in Figure 4.3 but

also normalized by dividing the number of days of the measurement. The correlation (r)
of phase and period is r = -0.1079 (Fishers z = -0.1083, P < 0.001)[123]. The Spearman

rank correlation (rs) is rs = -0.0406 (P < 0.001)[122]. The straight line regression of phase
on period is shown in red. (C) Plot of amplitude vs. phase for 1626 single cell oscillators in

Figure 4.6. The correlation (r) of amplitude and phase is r = -0.6543 (Fishers z = -0.7829,
P < 0.001)[123]. The Spearman rank correlation (rs) is rs = 0.7409 (P < 0.001)[122].

The straight line regression of phase on period is shown in red. (D) Phase histogram of

1626 single cell oscillators in Figure 4.6. The mean phase (+/- two standard errors) of the

entrained oscillators is 4.5816 (+/- 0.0626) cycles per day
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Figure 4.10: Period, amplitude and phase of the entrained oscillators under 18 hours

light on and 18 hours light off. (A) Amplitude vs. period of 1969 single cell oscillators

in Figure 4.7. The amplitude is half of the square root of the maximum power in the

periodogram. The correlation (r) of amplitude and period is r = 0.1852 (Fishers z = 0.1873,
P < 0.001)[123]. The Spearman rank correlation (rs) is rs = 0.2843 (P < 0.001)[122]. The
straight line regression of amplitude on period is shown in red. (B) Plot of phase vs. period

of 1969 single cell oscillators in Figure 4.7. The phase is defined as described in Figure 4.3

but also normalized by dividing the number of days of the measurement. The correlation

(r) of phase and period is r = -0.6248 (Fishers z = -0.7328, P < 0.001)[123]. The Spearman
rank correlation (rs) is rs = -0.5600 (P < 0.001)[122]. The straight line regression of phase
on period is shown in red. (C) Plot of amplitude vs. phase for 1969 single cell oscillators in

Figure 4.7. The correlation (r) of amplitude and phase is r = -0.4752 (Fishers z = -0.5168,
P < 0.001)[123]. The Spearman rank correlation (rs) is rs = -0.6510 (P < 0.001)[122].

The straight line regression of phase on period is shown in red. (D) Phase histogram of

1969 single cell oscillators in Figure 4.7. The mean phase (+/- two standard errors) of the

entrained oscillators is 5.1177 (+/- 0.0656)
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a wide range of temperature[137]. Therefore it is likely that temperature compensation

will present at the single cell level. In this section, we are going to investigate whether the

circadian oscillator in N. crassa at the single cell level has the temperature compensation

property.

If temperature compensation presents at the single cell level, the period length of the

single cell will not change over a broad temperature range. In order to evaluate the period

of single cells under different temperatures, a thermal stage was used to control/maintain

the temperatures during each measurement. The temperature stability was verified in order

to ensure the cells were kept at a constant temperature during each experiment as shown

in chapter 3 section section 3.10. The single-cell fluorescence intensities were measured

with the developed microfluidic platform under 5 different temperatures, e.g. 20 oC, 22

oC, 25 oC, 27 oC, and 30 oC.

Figure 4.11 shows the results for five temperature compensation experiments. In

Figure 4.11, A, C, E, G, and I show the individual fluorescence intensity of single cells

(blue curves) measured under the five different temperatures and the average of single

cell fluorescence intensities are shown in red curves. Averages of the periodograms of

single cells were calculated in Figure 4.11 B, D, F, H, and J for the single cells measured

in Figure 4.11, A, C, E, G, and I. The peak at the average periodogram in Figure 4.11

B, D, F, H, and J indicates the period of the single cell circadian oscillators under the

corresponding temperature. The period for each temperature compensation experiment is

used to calculate the temperature coefficient Q10 (Table 4.1). The temperature coefficient

Q10 is a measurement of the rate of change of period of the biological clock for every 10

oC increase in the temperature. In Table 4.1, all the Q10 values are close to or equal to 1,

60



indicating that the period of the circadian rhythm of single cell N. crassa are stable and

efficiently temperature compensated.

Table 4.1: Temperature coefficient Q10 for single cell circadian oscillators. The

temperature coefficient Q10 here is calculated using 30
oC as the reference temperature.

Q10 =
P1

P2

10
T1−T2 . Q10 measures the rate of change of period of the biological clock for every

10 increase in the temperature.

T1 20 oC 22 oC 25 oC 27 oC

Period

(Hours)
22.6 20.55 21.17 20.55

Q10 0.91 1.00 0.94 1.00

4.5 Conclusion

Most measurements on the biological clock are made macroscopically on > 107

cells. We illustrate a universal system of measurement on single cells. Oscillators in

one cell can be measured by the developed microfluidics droplet platform. Single cells

of N. crassa are shown to have cell-autonomous circadian oscillators in a fungal system

with a biological clock well understood macroscopically. With the microfluidic droplet

platform developed here, the light entrainment property is for first time demonstrated to

present in the single cells N. crassa by measuring >1000 single cells under 3 different

light entrainment conditions. The single cells of N. crassa can be entrained to a short

artificial day with a 6 hours period as well as to a long artificial day with a 36 hours

period. Single-cells of N. crassa was shown to have temperature compensation properties.

Therefore, we demonstrated that single-cells of N. crassa have a biological clock.

What is missing from single cell measurements on biological processes, such as

circadian rhythms, is a universal system of measurement. Such a system should be able

61



Figure 4.11: Single cell temperature compensation.(A), (C), (E), (G), and (I) are

fluorescence intensity of single cells (blue curves) and the their average (red curve) under

20 oC, 22 oC, 25 oC, 27 oC, and 30 oC. (B), (D), (F), (H), and (J) are the average

periodograms of single cells fluorescence intensities in (A),(C), (E), (G), and (I). The

periodogram values are normalized by the sum of powers at all the frequencies or periods.
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to identify both cellular stochastic variation and detection noise (i.e., experimental error).

The detection model needs to be a well-grounded physical model to generate detection

noise. Second, the cellular measurements should ideally be normalized against an internal

control to capture uncontrolled factors. Such a system should also be able to propagate

the sources of error (stochastic intracellular noise and detection noise) to the statistics

used to test biological hypotheses of interest. Finally, the sources of error should have

quantifiable effects on these statistics. With the single cell measurements made here

by the microfluidics droplet platform , such a universal system of measurement can be

achieved with a noise detection model[104]. Doped bead experiments were conducted

on the microlfuidics droplet platform in stead of cells to capture the fluorescent detection

noise. The two sources of error,intercellular stochastic noise and experimental noise, are

each propagated through the analysis pipeline to the end statistics used to quantify the

biological features, e.g. periodogram, amplitude, phase of the biological clock.

Single N.crassa cells were shown to have an stochastic circadian oscillator, and

the mechanism for how the stochasticity is generated is hypothesized to be that involving

transcriptional bursting of frq and ccg-2 by WCC. At least 94% of the periodogram

variation in oscillators from cell to cell is stochastic, a new result for the fungal circadian

field.
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CHAPTER 5

SYNCHRONIZATION OF THE BIOLOGICAL CLOCK NEUROSPORA CRASSA

5.1 Synchronization measures of the circadian stochastic oscillators.

In the face of substantial variation in the circadian stochastic oscillators within

single cells (Figure 4.3), the question remains: how do they synchronize to produce the

regular biological clock observed at the macroscopic level by race tubes or fluorescent

or luciferase recorders? At some point the ensemble of oscillators overcomes stochastic

asynchrony. We would like to look at whether there is synchrony among cells encapsulated

within the same droplet, where they have a chance to communicate with each other.

In order to demonstrate this synchronization we needed to be able to measure their

collective behavior[141]. For example, Garcia-Ojalvo et al.[142] have suggested one way

ofmeasuring synchronization, namely in our context, the variance in themean fluorescence

of cells within a droplet divided by variance in fluorescence of a single cell (i.e., the

variance of the red curve over time divided by the variance in individual trajectories in

blue in Figure 4.2B over time). They analyzed this measure in the context of a system of

coupled repressilators related to our own working clock network[118]. What was missing

from this measure is accounting for the between droplet variability in our experiment.

For other systems an array of synchronization measures have been utilized, such

as the maximum of the cross-correlation between cells (with respect to frequency), mutual

information, phase synchronization extracted by either Hilbert or Wavelet transform, or an

index based on a circular variance[141, 124]. A careful study of the utility of suchmeasures
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has led some authors to conclude there is no universally best measure of synchronization,

but the measure needs to be tailored to the problem at hand[124]. The focus of most of

these measures is on phase synchronization.

A good synchronization measure should not only capture similarity in the phase

of circadian oscillators, but also the similarity in their amplitude and period. Second,

the measure should measure the synchrony or similarity of cell trajectories within a

droplet relative to the variability between droplets. Third, the measure should be easily

interpretable, as is the measure suggested previously[142]. Fourth, the measure should

have well defined statistical properties to allow inference about the systems of coupled

oscillators.

One such measure with all of these properties is the intraclass correlation[143,

144]. Consider one time point in the microfluidics droplet experiment. Let Xij be

the fluorescence of the jth cell in the ith droplet at one time point when there are a

cells per droplet. We assume that the measurements Xij have the following covariance

structure[143]:

COV (Xij, Xkj) = 0, i 6= k (different droplet)

= ρσ2, i = k, j 6= l (different cells within a droplet)

= σ2, i = k, j = l (same cell within a droplet)

(5.1)

The covariance (COV ) is defined over all cells j in droplet i of size a at a particular time

point.

In this variance components model[143] the intraclass correlation is ρ, the

correlation between different measurements within a droplet. This measure has been used
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for over 150 years[143], particularly in twin studies as a measure of heritability[145].

The variance σ2 in one cell within one droplet at one time can be estimated by observing

cells in replicate droplets. The partitioning of fluorescence variation is summarized in an

analysis of variance (ANOVA) in Table 5.1[143]. The total variation in fluorescence SST

was partitioned into a between droplet sum of squares (SSB) and a within droplet sum of

squares (SSW ) in Equation 5.2 such that SST = SSB + SSW . By setting the estimated

mean squares (EMSB andEMSW ) equal to their expectations in Table 5.1, we obtain two

equations in two unknowns (σ2 and ρ) in Table 5.1 to arrive at a sample estimator of the

intraclass correlation (ICC):

ICC = (EMSB − EMSW )/(EMSB + (a− 1)EMSW ) (5.2)

The measure ICC in Equation 5.2 estimating ρ captures similarity of measurements

within droplets relative to the variation between droplets. This measure of synchronization

has two simple interpretations: (1) the correlation between cell measurements within a

droplet from Equation 5.1; (2) the fraction of variation explained within droplets relative

to between droplets from Table 5.1.

5.2 A deterministic quorum sensing model for the circadian oscillators

Kreuz et al.[124] have provided strong evidence that the utility of a synchronization

measure depends strongly on the context for its use. Thus, we developed a relatively simple

quorum sensing model of communication between cells within droplets. This model has

some of the features used previously[118] and has been referred to as a mean-field model

for coupled oscillators[146]. Other forms of cell to cell communication may be relevant

that involve contact between cells or distance between cells[147–149]. The model is
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Table 5.1: Analysis of Variance (ANOVA) of fluorescence of the ccg-2 promoter between

and within droplets is used to estimate the intraclass correlation ρ. The one-factor model is
a balanced variance components model with cells grouped by droplets[143]. The number

of cells in a droplet is a; the number of droplets is n. The variance in a single fluorescent
measurement is σ2, and the intraclass correlation is ρ. The intraclass correlation is a

measure of fraction of total variation (SST ) within droplets as well as the correlation

between fluorescence measurements on different cells within the same droplet. The

statisticsXBARi andXBAR are the mean fluorescence in droplet i and over all droplets.
The estimated mean square (EMS) is a sum of squares (SS) divided by its degrees of

freedom. The EMS estimates its expectation in the last column. Setting the EMS equal to

their expectations allows the solution for ρ.

Source

Degrees

of

freedom

(df)

Sums of Square (SS)
Estimated Mean

Square (EMS)

expectation of

EMS

Between

droplets
n

SSB = a
∑

i(XBARi −
XBAR)2

SSB/(n− 1) σ2 + (a− 1)ρσ2

Within

droplets
n(a− 1)

SSW =∑
i

∑
j(Xij −XBARi)

2 SSW/n(a− 1) (1− ρ)σ2

Corrected

droplets
na− 1

SST =∑
i

∑
j(Xij −XBAR)2

summarized in Figure 5.1. Only a few parts in Equation 5.3 (in Figure 5.1 red) are new

additions to a previously working model ensemble for the clock[120]:
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d[wc− 10]

dt
= 0

d[wc− 1r0]

dt
= S1 ∗ [wc− 10]−D1 ∗ [wc− 1r0]− C1 ∗ [wc− 1r0] ∗ [FRQ]

d[wc− 1r1]

dt
= C1 ∗ [wc− 1r0] ∗ [FRQ]−D7 ∗ [wc− 1r1]

[WC − 1]

dt
= L1 ∗ [wc− 1r1]−D4[WC − 1]

− (C2− C4 ∗ [Sj]) ∗ [WC − 2] ∗ [WC − 1]

d[wc− 20]

dt
= 0

d[wc− 2r]

dt
= S2 ∗ [wc− 20]−D2 ∗ [wc− 2r]

d[WC − 2]

dt
= L2 ∗ [wc− 2r]−D5 ∗ [WC − 2]

− (C3− C4 ∗ [Sj]) ∗ [WC − 2] ∗ [WC − 1] + P ∗ [WCC] ∗ [FRQ]4

d[frq0]

dt
= −A ∗ [frq0] ∗ [WCC]4 + Abar ∗ [frq1]

d[frq1]

dt
= A[frq0] ∗ [WCC]4 − Abar ∗ [frq1]

d[frqr]

dt
= S3 ∗ [frq0] + S4 ∗ [frq1]−D3[frqr]

d[FRQ]

dt
= L3 ∗ [frqr]−D6 ∗ [FRQ]

d[WCC]

dt
= −n ∗ A ∗ 4 ∗ [frq0] ∗ [WCC]4 + n ∗ Abar ∗ [frq1]−D8 ∗ [WCC]+

(C2− C4[Sj]) ∗ [WC − 2] ∗ [WC − 1]− P ∗ [WCC] ∗ [FRQ]4

d[ccg0]

dt
= −Ac[ccg

0] ∗ [WCC]4 +Bc ∗ [ccg1]
d[ccg1]

dt
= Ac[ccg

0] ∗ [WCC]4 − kb20 ∗ [ccg1] ∗ [WCC]4 −Bc ∗ [ccg1]
d[ccgr]

dt
= Sc ∗ [ccg1]−Dcr ∗ [ccgr]

d[CCG]

dt
= Lc ∗ [ccgr]−Dcp ∗ [CCG]

d[Sj]

dt
= −D9 ∗ [Sj] + kS1 ∗ [CCG] + η ∗ (−[Sj] + [Se]))

d[Se]

dt
= −D10 ∗ Se + ηext ∗

∑
([Sj]− [Se])

(5.3)
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where kb20 = 0, D2 = 0.0001, η = 100, ηext = 1.44, D9 = 26, D10 = 4,

C4 = 0.8, kS1 = 5×109. A source for the remaining coefficients is given in the legend

of Figure 5.1. There is an implicit index j = 1, ..., a on all species in Equation 5.3, and

the sum in the last equation is over all cells in a single droplet. Also the parenthetical

terms including C2 and C4 are implicitly multiplied by a Heaviside step function to keep

them non-negative. This quorum sensing model (Figure 5.1A) is based upon a mean-field

assumption of instantaneous and uniform diffusion of the signaling molecule (sometimes

referred to as the autoinducer) within a droplet. In our model, this signal is formed by

a “clock-controlled gene (ccg)” and is, consequently, an oscillating output driven by the

central clock network specied by Equation 5.3. This signal moves into and out of the

cell at rates (η and ηext) dependent upon the relationship between internal and external

signal concentration ([Sj] and [Se], respectively) as well as based upon the difference

in volume of the cell compared to its droplet microenvironment (incorporated into the

ext parameter). The signal in the media decays at a rate D10. There are a number of

possible models for how the signal interacts with the oscillator in each cell[150]. When

the model in Equation 5.3 is linearized, it then becomes similar to the repressilator[120].

This fact suggested that the coupling of cells might be taken to be similar to that of coupled

repressilators[142]. A remaining question is what clock gene interacts with the incoming

signal. The WCC complex interacts with Flavin Adenine Dinucleotide or FAD to receive

the light signal and has a number of additional domains that may interact with other

incoming signals[151]. These facts suggestedWCC as the interactor with the hypothesized

quorum sensing signal in Equation 5.3. The sign of the interaction was determined by the

relative ease of synchronizing oscillators in different cells by using the signal to inhibit
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WCC production. The signal within a cell interacts with [WC − 1] and [WC − 2] in

Equation 5.3 in order to slow the formation of [WCC]which slows the production of [CCG]

and [Sj], thereby closing a coupling negative feedback loop.

Two classes of negative feedback models have been used for circadian rhythms,

protein sequestration models and Hill Type transcriptional repression models[153]. In

protein sequestration models it is assumed that that the repressor (FRQ homolog) binds

stochiometrically in a 1:1 ratio with the transcriptional activator(s) (WCC homolog). In

Hill Type transcriptional repression models the repressor (FRQ homolog) binds upstream

of the activator as a multimer. These Hill Type models have been argued to be similar

in structure to models with phosphorylation dependent repression of the activator[120].

Phosphorylation-dependent repression of the activator cannot currently be distinguished

experimentally from the mechanism of FRQ inactivation of WCC in Equation 5.3[118].

The protein sequestration models are predicted to apply to Drosophila and mammals; the

Hill Type models are predicted to apply to cyanobacteria and N. crassa[150, 153]. Each

class of negative feedback models with cell-to-cell communication makes fundamentally

different predictions about how the period of the single cell oscillators behave as a function

of the number of communicating oscillators[153]. In protein sequestration models the

mean period across single cell oscillators is predicted not to change with the number

of communicating oscillators, but the variance in period across single cell oscillators

should decrease with the number of communicating oscillators. In contrast with a Hill

Type model the mean period across single cell oscillators is predicted to change with the

number of oscillators. In mammals the prediction of stable mean period and decreasing

variance in period with increasing number of communicating single cell oscillators has
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Figure 5.1: Conidial cells communicate the state of their oscillators to each other within a

droplet. (A) A deterministic quorum sensing model is developed to interpret the similarity

of trajectories within a droplet relative to the variation between droplets. Within each

cell the oscillator network is hypothesized to be that of the working ensemble fitting the

data at the macroscopic level of 107 cells. Boxes denote reactants and products in the

network; circles denote reactions. Arrows pointing into reactions denote reactants, while

arrows pointing out indicate products. Lines with arrows on both ends connect catalysts

to a reaction. Reaction and molecular species labels in the network denote parameters in

the model, rate coefficients and initial conditions, respectively. A new feature of the model

is a clock-controlled gene (ccg) that makes a signaling molecule Si within the cell, which

then diffuses in or out at a rate η or ηext. The signaling molecule Si interacts with WC

− 1 and WC − 2 to slow the production of WCC to synchronize the clocks of different

cells. Modified from earlier network diagram[118]. (B) The synchronization surface of

the quorum sensing model with new parameters given in Equation 5.3 and remaining

parameters published previously[152] and released in sourceforge.net. Synchronization

of cell trajectories within droplets is measured by the intraclass correlation (ICC). The ICC

is shown as a function of time and number of cells per droplet for the model. (C) The ICC

synchronization surface of the data on 7,903 cells is quite similar in structure to that of the

quorum sensing model. (D) As a control, neighboring cells within droplets are replaced at

random with strangers that have experienced no neighbors. The resulting surface has no

structure, providing prima facie evidence of cell-cell communication within droplets.
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been experimentally confirmed[113, 115]. The prediction for N. crassa was confirmed

here as well in a ten day microfluidics experiment with the reference strain MFNC9 – the

mean period of the single cell oscillators shifted significantly as the number of oscillators

per droplet was increased (Table 5.2). The variance in period also declined significantly

with the number of cells per droplet (Table 5.2), as in mammalian systems. This decline in

variance in period across single cell oscillators within droplets could be understood by the

examination of synchronization of these oscillators within droplets.

5.3 Synchronization of stochastic circadian oscillators

Under the null hypothesis of mean-field quorum sensing we established an

expectation for the synchronization surface (Figure 5.1B) based on a working ensemble

of deterministic models for the clock. We then constructed the synchronization surface

for the ten day microfluidics droplet experiment involving 7,903 cells as a function of

time and number of cells per droplet (Figure 5.1C). As can be seen in Figure 5.1C,

the synchronization surface was quite similar to that of the mean-field quorum sensing

model. Both surfaces (Figure 5.1B,C) increase along the time axis for an even number

of cells per droplet. It is natural to ask whether or not this synchronization surface is

real and significant. First, as a confirmation we replicated the experiment leading to

the synchronization surface (Figure 5.1C) with over 25,000 cells, producing a surface

of similar structure from >12 million time points (Figure 5.5). As another control for

each droplet with more than one cell, the fluorescence value was replaced randomly with

replacement by the fluorescence value of a singleton at the same time point. At each

time point the minimum number of singletons in the pool was 193. This sampling with
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Table 5.2: The mean period of single cell oscillators within a droplet increases signicantly

with the number of cells per droplet at two major frequencies in the periodogram, and

the variance in period among single cell oscillators within a droplet decreases signicantly

with the number of cells per droplet at two major frequencies in the periodogram. Each

single cell oscillator was examined at two frequencies in the periodogram, the frequency

with the highest peak (primary harmonic) and the frequency with the second highest peak

(secondary harmonic). Each cell’s periods were computed by determining the maximum in

the periodogram and second largest maximum in the periodogram on each cell trajectory

a er normalization and detrending. With respect to the highest peak in the periodogram

(labeled primary harmonic below) the Spearman rank correlation (rs) of average period of

cells with the number of cells per droplet (a) is rs = 0.3669 (P < 0.10), and the Spearman

rank correlation (rs) of variance of period within a droplet with the number of cells per

droplet is rs = −0.6316 (P < 0.01)[122]. With respect to the second highest peak in the

periodogram (labeled secondary harmonic) the Spearman rank correlation (rs) of average
period of cells with the number of cells per droplet (a) is rs = 0.7083 (P < 0.005)[122], and
the Spearman rank correlation (rs) of variance of period within a droplet with the number
of cells per droplet is rs =−0.7083 (P < 0.005)[122]

Number of cells/Droplets (a)
Primary harmonic Secondary harmonic

Mean

of

period

Variance

of

period

Mean

of

period

Variance

of

period

1 16.357 57.06 9.077 56.095

2 16.608 52.225 9.3168 53.431

3 16.18 53.93 9.3788 52.724

4 16.426 53.351 10.025 52.699

5 17.068 50.007 10.468 52.338

6 16.504 49.729 10.267 49.443

7 16.324 47.549 10.115 47.244

8 16.23 51.906 9.708 47.59

9 16.537 51.911 10.065 49.642

10 16.701 50.377 10.539 47.125

11 16.206 55.129 10.424 48.35

12 17.034 41.147 10.86 44.434

13 16.388 46.923 10.171 47.247

14 16.768 45.904 10.725 46.066

15 17.214 42.897 11.502 42.188

16 17.146 46.499 10.893 53.131

17 17.445 37.217 11.106 42.044

18 16.879 53.687 9.6857 52.153

19 16.853 49.419 10.92 40.386

20 16.129 39.879 10.628 24.815
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replacement was done for all droplets with multiple cells at all time points. In other words,

neighbors were replaced with strangers in each droplet. The result was the synchronization

surface in Figure 5.1D. There was no structure to this surface, unlike Figure 5.1B,C.

This synchronization surface was replicated 20 times, replacing neighbors with strangers,

with the same result. This is prima facie evidence that the cells within droplets are

communicating. There were several other interesting features to the synchronization

surfaceFigure 5.1C. For certain droplets with a specified number of cells, there was an

upward trend in time in the intraclass correlation, as might be expected as synchronization

evolves.

Figure 5.2: The synchronization asmeasured by the “order parameter” R in [142] or Hilbert

transform phase synchronization[124] are high along the ridge formed at 4 cells per droplet

in the Synchronization Surface, shown in Figure 5.1C, and they are low when neighbors

are replaced with strangers. The figures on the top row, (A) and (B), are from the 4-cell

droplet data subset of the main experiment involving 7,903 cells, as shown in Figure 5.1C.

The bottom row, (C) and (D), is for the control experiment in which neighbors are replaced

with strangers.
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Figure 5.3: The Kuramoto order parameter K displays an alternating structure with number

of cells per droplet and substantial coherence between oscillators. The order parameter K

is the mean absolute deviation of oscillators phases[154]. The phase was computed about

zero by removing the mean, extracting the discrete Hilbert Phase, and continuizing the

discrete Hilbert phase as described in the legend of Figure 4.3.

We examined how this synchronization surface may be originating. Using

sampling with replacement of neighbors by strangers again, we found that the more

traditional measures of phase synchronization behaved as expected between the experiment

(Figure 5.1C) and control (Figure 5.1D).Along the ridges of Figure 5.1C of 2 or 4 cells per

droplet, the synchronization measure of Garcia-Ojalvo et al.[142] or of Kreuz[124], was

high, Figure 5.2, but hovered around 0.5 or 0, respectively for the control with strangers

replacing neighbors. The Kuramoto order parameter K (i.e., another synchronization

measure) also displayed the ridges and coherence of the single cell oscillators (Figure 5.3),

but was less informative than the ICC surface[154]. This order parameter K involves time

averages over each droplet with a particular number of cells (a) that eliminate the structure

visible in the time dimension of the ICC surface. There was also a ridge and valley structure
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Figure 5.4: The synchronization surface for the Kuramoto phase-locking model[155] as a

function of time and the number of oscillators The model is defined by the equations: For

s ∈ [1, N ], ϕ̇ = ωs +
K
N
∗
∑N

r=1 sin(ϕr − ϕs). The parameters are ωs =
2π
20
, K=0.05

to the synchronization surface (ICC) both for the model and data. It is clear that we can

measure synchronization with the microfluidics droplet platform and that the behavior of

cells varies not only with time but neighborhood size as well.

As a final control on the choice of synchronization measure ICC in Equation 5.2,

we let the dynamics of each cell’s fluorescence be governed by the classic Kuramoto

phase-locking model with the data structure of the primary ten day experiment[155].

The resulting synchronization surface Figure 5.4 looked very similar to the data and

quorum sensing model in Figure 5.1B with a little delay to synchronization due to a local

phase-locking assumption in the Kuramoto model.

The synchronization surface (ICC) is a reaction norm, which is not only a

function of the “social environment” of a cell through neighborhood size, but also

of genotype. In a genetic screen we have identified a gain-of-function mutation that
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Figure 5.5: The synchronization surface(ICC) is afunction of genotype.(A) A replicate of

the ICCs urface with >25,000 cells was constructed[144] and resembles Figure 5.1B. (B)

The deletion of prd-4 in prd-4 ∆,ccg- 2p:mCherry results in increased synchronization. (C)

The deletion of the oscillator frq ∆,ccg-2p:mCherry leads to a more even synchronization

surface. (D) The power at 21 h in the average periodogram over singletons for the frq ∆ is

reduced 3-fold relative to MFNC9, but is not eliminated, suggesting a FRQ-less oscillator.

Period (Hours) is plotted on a log scale.

increases synchronization. The gain of function mutation is from the knockout, prd-4

∆,ccg-2p:mCherry. As previously reported[156], this mutant reduces the period by 3

h to 19 h (Figure 5.5D). Some single cell trajectories are also given (Figure 5.6). This

gene probably acts as a checkpoint kinase in mitosis[156] (and hence affects conidiation

over time, the main clock phenotype assayed in race tubes). Our initial hypothesis is that

prd-4 acts to monitor for DNA damage, a quality control operation that likely introduces

a delay between cells. The result is some asynchronization. In prd-4 ∆ ,ccg-2p:mCherry

there is no such delay introduced, and much higher synchronization is achieved at the

cost of no proof-reading of the genome (Figure 5.5A vs. Figure 5.5B). In contrast frq

∆,ccg-2p:mCherry
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Figure 5.6: Randomly picked trajectories of (A) frq ∆,ccg-2p:mCherry and (B) prd-4

∆,ccg-2p:mCherry over 144 and 216 h, respectively. These trajectories are normalized,

detrended, and smoothed by the smooth function in MATLAB with ’rloess’ method.

In contrast frq ∆,ccg-2p:mCherry knockout has a period of 24 h, and

the synchronization surface is responding to a loss of clock function. The frq

∆,ccg-2p:mCherry was confirmed not to band in race tubes. Synchronization surface

looks more even than the MFNC9 genotype (Figure 5.5C vs 5A or 5B). Consistent

with experiments done on Synnecocchus elongatus, knockout of a clock gene does not

completely remove oscillations, only reduces their power by 3-fold (Figure 5.5D)[157].

Some examples of frq ∆,ccg-2p:mCherry trajectories with low amplitudes are given

(Figure 5.6). This outcome is consistent with earlier data suggesting a second weaker

oscillator in N. crassa other than the one that is FRQ based. In this case the residual

synchronization may be due to another FRQ-less oscillator[158]. Alternatively, the

FRQ-based oscillator may be orchestrating cell-to-cell synchronization in a light response
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and may be secondary to the FRQ-less oscillator[159]. This alternative hypothesis cannot

be ruled out at this stage as well.

The significance of genotypic differences in synchronization (ICC) can be assessed

by plotting one genotype’s synchronization surface against another genotype’s surface

(Figure 5.7). The plots in Figure 5.7 are based on a total of 50 million time points.

The synchronization values are organized into stripes of different numbers of cells per

droplet (i.e., a). For example, the ICC surface of prd-4 ∆,ccg-2p:mCherry is seen to reach

much higher ICC values than the reference strain MFNC9 (Figure 5.7B vs. Figure 5.7A).

Significance can be assessed by regressing the ICC surface on another ICC surface.

Regressing replicate 2 (Figure 5.5A) on replicate 1 (Figure 5.1C) allows us to capture the

stochastic variability in the measurements with Figure 5.7A acting as a negative control

for comparisons of other genotypic ICC surface pairs. These regressions (Figure 5.7)

capture at least 60% of the variation in a particular surface, depending on the surfaces

compared (Table 5.3). From the regression of surface y = ICC2 on x = ICC1, the

mean value of synchronization measure (ICC2) with standard errors can be computed

as a function of the number of cells per droplet (a) (Table 5.3). The 95% confidence

intervals about the mean synchronization (ICC) for a given number of cells per droplet (a)

in Table 5.3 are non-overlapping in comparing prd-4 ∆,ccg-2p:mCherry (Figure 5.7B) and

replicate 2 of MFNC9 (Figure 5.7A) and hence highly significant. From the comparison

of these plots we also see that different genes lead to different levels of variation in

synchronization relative to the reference surface (Figure 5.1C). For example, not only does

prd-4 ∆,ccg-2p:mCherry reach higher levels of synchronization (Figure 5.7B) there is also

more variation in synchronization than that in the reference strain MFNC9 (Figure 5.7A).
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Table 5.3: The intraclass correlation surface (ICC) for prd-4∆,ccg-2p:mCherry is

significantly different from that of MFNC9. To assess this one ICC surface (y) was
regressed on another ICC surface (x), and the following relation y = mx + ba was fit
by least squares to the plots in Figure 5.7. In each fit a constant slope (m) and intercept

(b−a), which varies with the number of cells per droplet (a), was assumed. The regression
R2 summarizes the fraction of variation in the data captured by the linear regression of y
on x. The mean ICC values are reported for droplets of even sizes (a) from 2 to 16 cells

per droplet.

y x ŷ2 ŷ4 ŷ6 ŷ8 ŷ10 ŷ12 ŷ14 ŷ16 R2

MFNC9

-rep2

MFNC9

-rep1
0.29 0.36 0.49 0.49 0.51 0.56 0.44 0.31 0.70

2 ×

Standard

error

(SE)

0.006 0.006 0.004 0.004 0.004 0.004 0.004 0.006

prd-4∆
MFNC9

-rep1
0.40 0.48 0.82 0.70 0.72 0.49 0.53 0.57 0.61

2 X SE 0.016 0.016 0.010 0.010 0.010 0.014 0.010 0.018

frq∆
MFNC9

-rep1
0.37 0.36 0.60 0.50 0.40 0.56 0.50 0.29 0.84

2 X SE 0.012 0.010 0.006 0.006 .0008 0.006 0.006 0.012

The experimental study of stochastic coupled oscillators in biology is largely

missing, particularly in the experimental study of circadian rhythms[160]. There are at

least three theories on how cells in a circadian system might synchronize.

One non-intuitive theory is that single cell oscillators may experience stochastic

resonance, leading to their synchronization[128, 161, 162]. Stochastic behavior of cells

in tissue culture may actually lead to increased synchronization[46]. The stochasticity in

expression of single cells of N. crassa has been quantified here and is substantial (> 94%

of the variation in single cells). Here we have shown that synchronization does depend

on genotype (Figure 5.5). Under this stochastic resonance hypothesis an explanation

would be needed for why some genotypes improve synchronization through varying the

noise in the single cell oscillators. Here the genotype of prd-4 ∆ is likely to act to
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improve synchronization by decreasing the phase noise in the oscillators by removal of

a cell cycle check- point[156]. Another non-intuitive possibility is that the removal of

the checkpoint actually increases phase noise to improve synchronization. A key feature

of the stochastic resonance hypothesis is that synchronization varies non-monotonically

with stochastic intracellular noise and that there is a local maximum in synchronization

as the stochastic noise is varied. In Figure 5.5D the periodogram signal strength near 24

h is weaker for prd-4 ∆ than for either WT or frq ∆ (red = WT, blue = frq ∆, green =

prd-4 ∆), but the synchronization is higher. Let us suppose the reference strain (MFNC9)

sits to the left of a synchronization maximum as a function of intracellular noise. If

the reference strain (MFNC9) were then shifted to a higher intracellular noise level by

the prd-4 deletion, then we would see more synchronization, as seen ( Figure 5.5B). If

we consider instead the synchronization as a function of the phase noise as measured

through the phase standard deviation (SD = 4.41 cycles) of the prd-4 deletion versus

that of reference strain MFNC(SD = 2.40 cycles), increased phase noise would move

us towards the synchronization maximum as well. The results in Figure 5.5 are then

consistent with the stochastic resonance hypothesis. There may be other genes that also

act to improve synchronization through increasing the intracellular noise of single cell

oscillators, such as frq ∆. The micro uidics droplet platform enables the quantification of

the variation introduced into each single cell oscillator by a particular genotype and its

effect on synchronization (Figure 5.5).

A second theory is that discrete replication events drive the coupling of circadian

system and the cell cycle[163]. The circadian system could become phase-locked to the
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Figure 5.7: The synchronization surface for the prd-4 knockout is signi cantly different

from that of the reference strain, ccg-2p:mCherry (MFNC9). (A) Plot of replicate 2

of ccg-2p:mCherry (MFNC9)’s synchronization surface (ICC) in Figure 5.5A against

replicate 1 of ccg-2p:mCherry (MFNC9)’s synchronization surface (ICC) in Figure 5.1C.

This plot is the negative control. (B) Plot of prd-4 ∆,ccg-2p:mCherry’s synchronization

surface (ICC) in Figure 5.5B against replicate 1 of tccg-2p:mCherry (MFNC9)’s

synchronization surface (ICC) in Figure 5.1C. (C) Plot of frq ∆, ccg-2p:mCherry’s

synchronization surface (ICC) in Figure 5.5C against replicate 1 of ccg- 2p:mCherry

(MFNC9)’s ICC synchronization surface in Figure 5.1C.
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cell cycle. The evidence against this theory of synchronization is that the cells in this study

do not experience any cell division.

A final theory of synchronization favored here is that cells communicate the state

of their clocks through some communication mechanism, such as quorum sensing[146]

(Figure 5.1A). We have provided strong evidence that conidial oscillators communicate

the state of their oscillators within droplets (Figure 5.1C and Figure 5.5A). A prediction

of this model is that as the number of cells per droplet (a) increases, one should observe a

rise in synchronization[142]. A trend of this sort is seen in Table 5.3. Another prediction

of this theory is the structure of the synchronization surface (ICC) (Figure 5.1B), which

resembles that measured (Figure 5.1C). The alternating structure to synchronization with

an even number of cells per droplet versus an odd number of cells per droplet is a new

phenomenon. We eliminated the cause being the synchronization measure (Figure 5.2).

We also found this alternating structure in different models describing the data (Figure 5.5

and Figure 5.4). We anticipate further detailed analysis of the ICC surface in these models

will provide an explanation for the phenomenon.

None of these mechanisms of synchronization are mutually exclusive. For

example, Ulner et al.[131] combined the stochastic resonance hypothesis with quorum

sensing in a model to explain cell synchronization in the suprachiasmatic nuclei under light

of randomly varying intensity in mammals. Further experiments will uncover the exact

mechanism of communication through manipulation of cells in their droplet environment.

There are a number of extensions needed. N. crassa has an interesting life

cycle[164]. We have focused on single cells or conidia to take maximum advantage of

high-throughput cell isolation by microfluidics to measure fluorescence on 25,000 cells
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simultaneously over ten days (Figure 5.5A). We selected a media so that cells did not

germinate, divide, or fuse. It is in this stage that we were able for the first time to

demonstrate circadian rhythms in expression of ccg-2 at the single cell level. These conidia

can be multi-nucleate[164], and we have not examined intracellular communication, only

intercellular communication. These conidia ultimately germinate and produce filaments

as a subsequent life stage. Microfluidics devices in other studies also provide a tool for

examination of these filaments for circadian rhythms[165]. It will be very interesting to

see how the stochasticity in circadian rhythms changes at other life stages in an examination

of period, phase, and amplitude variation change under intracellular communication

(Figure 4.3). Even more interesting would be to examine how the synchronization surface

changes as the cells divide during filamentous growth and experience both intracellular and

intercellular communication. To reconstruct the synchronization surface will require on the

order of 50,000,000 time points (Figure 5.7) to make such comparisons, which necessitates

both high-throughput and high-resolution microfluidics measurements[165].

Palma-Guerrero et al.[148] recently described a population genetic approach

through a genome-wide association study (GWAS) for isolating genes involved in

cell-to-cell communication in N. crassa. Their GWAS produced one neuronal calcium

sensor homolog (cse-1) and six other candidate genes. The experiments here provide

a much more direct way to assay communication at the single cell level in which the

environment of a droplet can be manipulated in a variety of ways. The combination of a

top-down and bottom-up approach should provide a means to uncover new communication

pathways between cells in fungi.
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5.4 Light synchronized the circadian oscillators in Neurospora Crassa

From the chapter 4 we see that single cell circadian oscillators of N. crassa can

be entrained by light. The external light signal has the effect of orchestrating the phase

of the single N. crassa cells so that each single oscillator can more or less follow the

phase of the external light signal. We then asked to what extent the light signal can

synchronize the oscillators of individual isolated cells. The next questions would be

whether coupling/communication between cells plays a role in the light entrainment and

synchronization.

First we looked at the quality of the global response of all the single N. crassa cells

to the external light signal. A measure of this response is given by computing the so-called

spectral amplification factor R defined as in Equation 5.4[166]:

GR =
4

L2
0

∗ | 〈e−iωtX(t)〉 | (5.4)

GR is the amplitude of Fourier component of the time series X(t) = 1
N

∑N
i Xi(t) at the

forcing frequency ω normalized by the strength of the external force (the light intensity).

N is number of oscillators and Xi(t) is the fluorescence time series of each single cell

oscillator. The global response for single cells in the 3 light entrainment experiments is

summarized in Table 5.4.

The single cells have the strongest global response when entrained to the 12 hours

artificial day as compared to the other two. When single cells were under the short 6 hours

artificial day, their global response is low. This may be due to more single cells not being

entrained to the period of the short LD cycles as can be seen from the mean period of the

single cells under this light entrainment conditions that is much high than the period of the
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Table 5.4: Global response and mean period of isolated single cells in 3 light entrainment

conditions. GR is calculated as Equation 5.4 but without normalized by the light intensity

since the light intensity is the same for the 3 experiment. Mean period is the average period

at the maximum power of the periodogram of all the single cells.

6 hours

artificial day

12 hours

artificial day

36 hours

artificial day

GR (Global

response)
8.1869 56.8550 29.0663

Mean period

(+/- two

standard error)

12.4994

(+/-0.4288)

12.3408

(+/-0.1547)

26.1430 (+/-

0.4813)

LD cycles (6 hours). The mean period of the single cells under the long LD cycles (the 36

hours artificial day) is∼26, that is, also far away from the period of the corresponding LD

cycles. A similar calculation of global response was done on single cells under constant

dark (DD) condition as a control by calculating the amplitude of Fourier component of the

average time series of all single cells at the intrinsic circadian period/frequency. The result

is 0.048. This value is much smaller as expected. Because under DD, without external

forcing, isolated single cells’ clocks will drift out of phase with each other likely due to

stochastic noise in gene expression and therefore their clock phase can cancel out each

other when averaging their clocks. The range of entrainment of the circadian clock is

demonstrated to be determined by its intrinsic period of the clock, its amplitude relaxation

rate, and by the ratio between external force (zeitgeber) strength and amplitude of the

clock[132]. Here we see that when the external force has a too short or too long period than

the intrinsic period of the single cells oscillator, single cells are less likely to be entrained.

The LD cycles in light entrainment seems to orchestrate the phase of single cells by

limiting phase drifting introduced by stochastic noise. We then want to know the degree

of phase synchrony among single cell oscillators themselves under light entrainment. One
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way to measure phase synchronization is to calculate the phase locking value between pairs

of cells[124]. The phase locking value for two oscillators oscillating at the same frequency

is defined as in Equation 5.5:

γ =| 1

N

N∑
j=1

ei∗[φx(tj)−φy(tj)] | (5.5)

N is the number of cells, φx(tj) and φy(tj) is the phase of cell x and cell y at time tj .

A phase locking value of 0 indicates no phase synchronization,i.e. the phase relationship

of two cells change randomly over time. A phase locking value of 1 indicates perfect

phase locking between the two cells with their phase difference being constant over time.

Table 5.5 shows the average phase locking value between possible pair of cells of all

the single cells in the 3 light entrainment experiments. Under DD, isolated single cells

phase locking value is the lowest here as a comparison to that under LD cycles. The

phase locking value of single cells under 12 hours cycle light entrainment has the highest

value as compared to those under the 6 hours and 36 hours cycle light entrianment. This

means that the single cells’ clock under the 12 hours period light entrainment response to

the light/dark signal more coherently than that under the other two light entrainment with

more extreme cycles (much shorter or longer than the intrinsic period of N. crassa clock).

Another synchronization measurement that quantifies phase synchronization of a group

Table 5.5: Phase locking value of single cells in 3 light entrainment conditions

DD

6 hours

artificial

day

12 hours

artificial

day

36 hours

artificial

day

γ (+/- two
standard

error)

0.0621 (+/-

4.10E-05)

0.1257 (+/-

9.97E-05)

0.2413 (+/-

1.40E-04)

0.1502 (+/-

09.67E-05)
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of oscillators is the Kuramoto order parameter[154]. The Kuramoto order parameter, K,

defined in Equation 5.6 captures the level of synchrony of a collection of oscillators by

calculating time averaging phase variance among the oscillators.

K = 〈| N−1

N∑
j

exp(iθj)− 〈N−1

N∑
j

exp(iθj)〉 |〉 (5.6)

N is the number of of the oscillators, θj is the phase of the jth oscillator. The angle brackets

means a time average. The Kuramoto order parameter is 0 if all the oscillators are out

of phase with each other and 1 when all the oscillators are perfectly in phase, meaning

they have exactly the same phase at all times. Table 5.6 summarizes the Kuramoto order

parameter K for all 3 light entrainment experiments. The single cell oscillators of N.

crassa entrained under the LD cycles of 12 hours period shows the highest Kuramoto

order parameter. This says that these oscillators have less phase variance as a population

than the others. The Kuramoto order parameter for single cells under DD is the lowest as

compared to those entrained under varied LD cycles. Periodic LD cycles entrain the single

cell circadian oscillators of N.crassa and has the effect to synchronize them to be in phase

with each other. So far we have looked at the light entrainment and synchronization

Table 5.6: Kuramotor order parameter of single cells in 3 light entrainment conditions

DD

6 hours

artificial

day

12 hours

artificial

day

36 hours

artificial

day

K 0.0909 0.3007 0.4208 0.3272

effect on N. crassa at the single cell level. Below, we aim to study the cell-to-cell

communication or cell-cell coupling effect on the light entrainablity or light response of N.

crassa. For SCN, external light signal influences the neuronal synchronization by means
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of neurotransmitters that are responsible for the coupling between cells in the SCN[166].

An interesting mechanism proposed by Gonze et al. suggests that interneuronal coupling

transforms SCN into damped oscillators that can then be easily entrained by external

forcing[167]. Some also have shown that right amount of heterogeneity in the intrinsic

periods of the oscillators facilitates the response of coupled neuronal system to the external

light-dark forcing[166]. Coupling is demonstrated to be governing the entrainment range

of a circadian clock, which explained experimental findings that lung clocks entrained to

extreme zeitgeber cycles, whereas SCN clocks do not[132]. These studies all point to the

fact that cell-cell coupling has an effect on the light entrainment of SCN. Single neuron

oscillates with a period ranging from 20 to 28 hours, which is different from single N.

crassa oscillating with a period ∼21-22 hours. However, N. crassa has substantial phase

and amplitude heterogeneity in their clocks at the single cell level as demonstrated in the

previous chapter. It would be very interesting to see what effect coupling has on the phase,

amplitude and synchrony of the clock ofN. crassa cells under light entrainment conditions.

First we would want to look at how the amplitude of the oscillators affected by

the coupling strength. Here the coupling strength is associated with the number of cells

per droplet. A mechanism relating coupling with entrainability of SCN were proposed

by Gonze et. al[146] and Bernard et. al[168]. They found that coupling induces

damping in individual oscillators, enabling efficient synchronization and entrainment by

LD cycles[146]. A similar mechanism has been hypothesized elsewhere, the effect of

neuron heterogeneity is stressed, and also that inter neuronal heterogeneity is enough to

damp the neuron oscillation and bring the coupled system to a steady state where it can be

easily entrained[166]. These theories suggest that entrained oscillators are those whose
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amplitude is reduced with coupling strength due to them being brought to a damping

state by coupling and heterogeneity when there is no external forcing. Therefore we

hypothesize that the amplitude of entrained cells will decrease as number of cells per

droplet increase. Table 5.7 shows the mean amplitude of all the cells (amplitude at the

maximum periodogram value) as the number of cells per droplet increases from 2 to

10 for the 3 hours light on and 3 hours light off entrainment condition. There is no

significant relationship between the amplitude of all cells (including entrained cells and

non-entrained cells) and number of cells per droplet. Yet the entrained cells’ amplitudes are

negatively correlated with number of cells per droplet. This correlation is consistent with

our hypothesis. The non-entrained cell amplitude is positively correlated with the number

of cells per droplet. For cells under 6 hours light on and 6 hours light off cycles and the

18 hours light on and 18 hours light off cycles (Table 5.8, Table 5.9), the entrained cells

amplitude also shows a negative relationship with the number of cells per droplet while the

amplitude of non-entrained cells show no significant change as number of cells per droplet

increases. Also shown in Table 5.7, Table 5.8 and Table 5.9 is that the Global Response

(GR) does not significantly change with the increase in the number of cells per droplet

while the Global Response of cells within the same droplet (GRW ) behaves differently.

However, GRW is larger than GR for all number of cells per droplet. This indicates that

cells within the same droplet have a more coherent response to the external light signal

than cells in different droplets. Here, coupling among cells within the same droplet plays

a positive role in improving the global response of the cells to the external light signal.

Besides global response to the external signal, we also want to look directly at the

phase synchronization among coupled N. crassa oscillators. The phase locking value and
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Table 5.7: Amplitude and Global Response (Equation 5.4) of N .crassa with different

neighboring cells in a droplet (number of cells per droplet) in the 3 hours light on 3

hours light off condition. Mean amplitude is the average of amplitude at the maximum

periodogram power for each cell. Amplitude of entrained cells,AE, is the amplitude of cell
that has a maximum periodogram value at the same period as the LD cycles. Amplitude

of non-entrained cells, NAE, is the amplitude of cell that has a maximum periodogram

value at a different period than the period of the LD cycles. For Global response, GR is

calculated as describe in Table 5.4 by first averaging the fluorescence intensity time series

of all the cells corresponding to the droplets with the same number of cells. ForGRW ,GR
for cells in each droplet was calculated individually by only averaging the fluorescence

intensity time series of cells in the same droplet and then all the GR for the droplets with

the same number of cells was averaged to get GRW . The correlation coefficient (r) of
amplitude with the number of cells per droplet is r = 0.0139 (P = 0.5067), the correlation
coefficient (r) of entrained cells amplitude, AE, with the number of cells per droplet is
r = −0.1006 (P = 0.008), the correlation coefficient (r) of non-entrained cells amplitude,
NAE, with the number of cells per droplet is r = 0.0516 (P = 0.0408), the correlation

coefficient (r) of GR with the number of cells per droplet is r = −0.1682 (P = 0.6653),the
correlation coefficient (r) of GRW with the number of cells per droplet is r = 0.0224 (P =
0.9543).

Number

of cells

per

droplet

Mean

amplitude (+/-

two standard

error)

AE (+/- two

standard error)

NAE (+/- two

standard error)

GR
(Global

Response)

GRW

(Global

Response)

2
3.2089 (+/-

0.4102)

3.2467 (+/-

0.5978)

3.1952(+/-

0.5156)
13.9821 40.0503

3
2.2514 (+/-

0.1577)

2.4323 (+/-

0.2555)

2.1794(+/-

0.1954)
8.3889 39.4520

4
2.5637

(+/-0.2664 )

2.8218 (+/-

0.5367)

2.4558(+/-

0.3034)
12.5032 37.2256

5
2.4090 (+/-

0.3367)

2.3393(+/-

0.4043)

2.4494(+/-

0.4780)
9.7214 41.9378

6
2.8450 (+/-

0.4031)

2.5118(+/-

0.6004)

3.0167(+/-

0.5257)
13.2791 46.9263

7
2.1840 (+/-

0.3874)

2.1537(+/-

0.5321)

2.2020(+/-

0.5333)
8.2437 40.2727

8
4.3430 (+/-

1.8612)

1.7698(+/-

0.5677)

5.7726(+/-

2.7986)
17.1218 115.7930

9
2.2716 (+/-

0.6999)

1.6601(+/-

0.6485)

2.4091(+/-

0.8417)
7.8365 22.1959

10
2.1818 (+/-

0.6725)

2.2638 (+/-

0.8334)

2.1041(+/-

1.0664)
9.5098 17.6098
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Kuramoto order parameter are calculated for different numbers of cells per droplet. The

Phase locking value, γ , and Kuramoto order parameter, K, are calculated for different

number of cells per droplet by using all the cell data from those droplets with the same

number of cells (not differentiate cells from the same or different droplets). Phase locking

value, γW , and Kuramoto order parameter,KW are calculated for different number of cells

per droplet by first only considering the cells from the same droplet and then averaging

the results from all the droplets that have the same number of cells. By only considering

the cells in the same droplet before averaging the result, γW and KW can eliminate the

differences between droplets. γW , γ, K, KW for the 3 light entrainment experiments are

summarized in Table 5.10,Table 5.11 and Table 5.12. γW andKW show higher values than

γ and K respectively for the 3 light entrainment experiments. These results suggest that

the coupling among cells in the same droplet contributes to the synchronization under light

entrainment and external forcing alone here is not the only cause to the increased phase

synchrony among N. crassa.

The ICC surfaces for cells in DD and 3 light entrainment experiments are shown

in Figure 5.8. The ICC surfaces constructed from multiple cells data under the light

entrainment conditions (Figure 5.8 C, E, and G) have higher values as compared to that

under constant dark condition(Figure 5.8A). This indicates that light entrainment has the

effect of increasing the similarity of rhythm among cells within the same droplets.
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Table 5.8: Amplitude and Global Response (Equation 5.4) of N .crassa with different

neighboring cells in a droplet (number of cells per droplet) in the 6 hours light on 6

hours light off condition. Mean amplitude is the average of amplitude at the maximum

periodogram power for each cell. Amplitude of entrained cells,AE, is the amplitude of cell
that has a maximum periodogram value at the same period as the LD cycles. Amplitude

of non-entrained cells, NAE, is the amplitude of cell that has a maximum periodogram

value at a different period than the period of the LD cycles. For Global response, GR is

calculated as describe in Table 5.4 by first averaging the fluorescence intensity time series

of all the cells corresponding to the droplets with the same number of cells. ForGRW ,GR
for cells in each droplet was calculated individually by only averaging the fluorescence

intensity time series of cells in the same droplet and then all the GR for the droplets with

the same number of cells was averaged to get GRW . The correlation coefficient (r) of
amplitude with the number of cells per droplet is r = -0.0380 (P = 0.024), the correlation
coefficient (r) of entrained cells amplitude, AE, with the number of cells per droplet is r =
-0.0541 (P = 0.005), the correlation coefficient (r) of non-entrained cells amplitude,NAE,
with the number of cells per droplet is r = −0.0037 (P = 0.9172), the correlation coefficient
(r) of GR with the number of cells per droplet is r = −0.5687 (P = 0.1101),the correlation
coefficient (r) of GRW with the number of cells per droplet is r = -0.5300 (P = 0.1423).
Number

of cells

per

droplet

Mean

amplitude (+/-

two standard

error)

AE (+/- two

standard error)

NAE (+/- two

standard error)

GR
(Global

Response)

GRW

(Global

Response)

2
3.2863 (+/-

0.2865)

3.5778(+/-

0.3201)

2.5040(+/-

0.5916)
36.0518 66.9573

3
3.4324 (+/-

0.1814)

3.6159(+/-

0.2051)

2.8160(+/-

0.3769)
39.8296 53.0524

4
3.0159 (+/-

0.2175)

3.1729(+/-

0.2392)

2.5077(+/-

0.4895)
28.6044 36.3701

5
3.2923 (+/-

0.2594)

3.4605(+/-

0.2963)

2.6188 (+/-

0.5060)
37.2041 55.0610

6
3.0365 (+/-

0.2634)

3.2782(+/-

0.2976)

2.0730(+/-

0.5109)
33.2627 34.5946

7
3.2444 (+/-

0.3526)

3.3047(+/-

0.3452)

2.9688(+/-

1.1783)
34.3107 51.5447

8
2.9961 (+/-

0.2937)

3.1360(+/-

0.3312)

2.5075(+/-

0.6224)
30.6363 46.6487

9
3.0382 (+/-

0.3745)

3.1968(+/-

0.4063)

2.5783(+/-

0.8560)
29.3276 44.4677

10
3.1060 (+/-

0.4065)

3.1462(+/-

0.4238)

2.9605(+/-

1.1063)
31.9273 39.1778
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Table 5.9: Amplitude and Global Response (Equation 5.4) of N .crassa with different

neighboring cells in a droplet (number of cells per droplet) in the 36 hours light on 36

hours light off condition. Mean amplitude is the average of amplitude at the maximum

periodogram power for each cell. Amplitude of entrained cells,AE, is the amplitude of cell
that has a maximum periodogram value at the same period as the LD cycles. Amplitude

of non-entrained cells, NAE, is the amplitude of cell that has a maximum periodogram

value at a different period than the period of the LD cycles. For Global response, GR is

calculated as describe in Table 5.4 by first averaging the fluorescence intensity time series

of all the cells corresponding to the droplets with the same number of cells. ForGRW ,GR
for cells in each droplet was calculated individually by only averaging the fluorescence

intensity time series of cells in the same droplet and then all the GR for the droplets with

the same number of cells was averaged to get GRW . The correlation coefficient (r) of
amplitude with the number of cells per droplet is r = -0.0277 (P = 0.0295), the correlation
coefficient (r) of entrained cells amplitude, AE, with the number of cells per droplet is
r = −0.0806 (P = 0.003), the correlation coefficient (r) of non-entrained cells amplitude,
NAE, with the number of cells per droplet is r = −0.0165 (P = 0.2535), the correlation

coefficient (r) of GR with the number of cells per droplet is r = −0.8888 (P = 0.001),the
correlation coefficient (r) of GRW with the number of cells per droplet is r = -0.6074 (P
= 0.083).

Number

of cells

per

droplet

Mean

amplitude (+/-

two standard

error)

AE (+/- two

standard error)

NAE (+/- two

standard error)

GR
(Global

Response)

GRW

(Global

Response)

2
3.8171 (+/-

0.2356)

3.9953(+/-

0.3462)

3.7577(+/-

0.2922)
25.1973 46.6835

3
3.5101 (+/-

0.1903)

3.7169(+/-

0.2925)

3.4407(+/-

0.2343)
22.2537 33.4959

4
3.3673 (+/-

0.2163)

3.4732(+/-

0.3380)

3.3393(+/-

0.2585)
19.9324 35.9674

5
3.4289 (+/-

0.2186)

3.9700(+/-

0.4280)

3.3016(+/-

0.2496)
20.6158 30.7808

6
23.5276 (+/-

0.2511)

3.6092(+/-

0.4739)

3.5055(+/-

0.2924)
20.8161 38.7182

7
3.4694 (+/-

0.2456)

3.4480(+/-

0.3966)

3.4753(+/-

0.2940)
19.3970 28.5748

8
3.3410 (+/-

0.3791)

3.3680(+/-

0.4887)

3.3347(+/-

0.4536)
19.5802 33.4352

9
3.3208 (+/-

0.4427)

3.0500(+/-

0.4231)

3.3867(+/-

0.5476)
16.5947 32.2743

10
3.4415 (+/-

0.4339)

3.2435(+/-

0.5435)

3.4890(+/-

0.5222)
17.8071 31.4357
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Table 5.10: Phase synchronization ofN. crassawith different neighboring cells in a droplet

(number of cells per droplet) in the 3 hours light on 3 hours light off condition. Phase

locking value, γ , and Kuramotor order parameter, K are calculated for different number

of cells per droplet by using all the cell data from those droplet with the same number of

cells (not differentiate cells from the same or different droplets). Phase locking value, γW ,

and Kuramotor order parameter,KW are calculated for different number of cells per droplet

by first only considering the cells from the same droplet then average the results from all

the droplets that has the same number of cells. The correlation coefficient (r) of γW with

the number of cells per droplet is r = -0.0864 (P = 0.1578), the correlation coefficient (r)
of KW with the number of cells per droplet is r = −0.3543 (P < 0.001),
Number of cells per

droplet

γW (+/- two

standard error)
γ

KW (+/- two

standard error)
K

2 0.1788 (+/- 0.0982) 0.1015 0.7042 (+/- 0.0390) 0.2637

3 0.1793 (+/- 0.0736) 0.1156 0.6748 (+/- 0.0551) 0.2861

4 0.1446 (+/- 0.0667) 0.1107 0.6728 (+/- 0.0429) 0.2824

5 0.1572 (+/- 0.0773) 0.1115 0.6680 (+/- 0.0429) 0.2840

6 0.1709 (+/- 0.0754) 0.1078 0.6365 (+/- 0.0782) 0.2835

7 0.1618 (+/- 0.0867) 0.1147 0.6738 (+/- 0.0862) 0.2917

8 0.1811 (+/- 0.0623) 0.1239 0.6350 (+/- 0.0792) 0.3252

9 0.1237 (+/- 0.0403) 0.1043 0.6186 (+/- 0.0604) 0.2960

10 0.1722 (+/- 0.0302) 0.1133 0.6570 (+/- 0.0746) 0.3168

5.5 Conclusion

The circadian oscillators of different cells communicate and synchronize to

overcome stochastic asynchrony. This cell-to-cell synchronization has a genetic basis

because the synchronization surface varies with genotype.

The phase of single cells under light entrainment is shown to be synchronized by

the external light forcing to a certain degree that the oscillations of single cells follow

the external alternating light/dark signal. As cells that are under constant dark condition,

cells with neighbors in the same droplet under light entrainment also communicate their

states through coupling. This means coupling between cells still play an import role in

coordinating the clock rhythm under light entrainment.
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Table 5.11: Phase synchronization ofN. crassawith different neighboring cells in a droplet

(number of cells per droplet) in the 6 hours light on 6 hours light off condition. Phase

locking value, γ , and Kuramotor order parameter, K are calculated for different number

of cells per droplet by using all the cell data from those droplet with the same number of

cells (not differentiate cells from the same or different droplets). Phase locking value, γW ,

and Kuramotor order parameter,KW are calculated for different number of cells per droplet

by first only considering the cells from the same droplet then average the results from all

the droplets that has the same number of cells. The correlation coefficient (r) of γW with

the number of cells per droplet is r = -0.0480 (P = 0.1823), the correlation coefficient (r)
of KW with the number of cells per droplet is r = −0.2280 (P < 0.001),

Number

of cells

per

droplet

γW (+/- two

standard error)
γ

KW (+/- two

standard error)
K

2 0.2523 (+/- 0.1360) 0.1911 0.7223 (+/- 0.0552) 0.3791

3 0.2333 (+/- 0.1265) 0.2079 0.6840 (+/- 0.0760) 0.3934

4 0.2106 (+/- 0.1112) 0.1839 0.6894 (+/- 0.0694) 0.3729

5 0.2362 (+/- 0.1181) 0.1998 0.6956 (+/- 0.0646) 0.3898

6 0.2319 (+/- 0.1220) 0.1992 0.6836 (+/- 0.0742) 0.3913

7 0.2371 (+/- 0.1271) 0.2041 0.6766 (+/- 0.0799) 0.4035

8 0.2378 (+/- 0.1428) 0.1924 0.6720 (+/- 0.0890) 0.3897

9 0.2127 (+/- 0.1168) 0.1833 0.6574 (+/- 0.0841) 0.3705

10 0.2227 (+/- 0.1117) 0.1883 0.6608 (+/- 0.0818) 0.3874

96



Table 5.12: Phase synchronization ofN. crassawith different neighboring cells in a droplet

(number of cells per droplet) in the 18 hours light on 18 hours light off condition. Phase

locking value, γ , and Kuramotor order parameter,K are calculated for different number of

cells per droplet by using all the cell data from those droplet with the same number of cells

(not differentiate cells from the same or different droplets). Phase locking value, γW , and

Kuramotor order parameter, KW are calculated for different number of cells per droplet

by first only considering the cells from the same droplet then average the results from all

the droplets that has the same number of cells. The correlation coefficient (r) of γW with

the number of cells per droplet is r = -0.0660 (P = 0.004), the correlation coefficient (r) of
KW with the number of cells per droplet is r = −0.3635 (P < 0.001),

Number

of cells

per

droplet

γW (+/- two

standard error)
γ

KW (+/- two

standard error)
K

2 0.1681 (+/- 0.1080) 0.1129 0.6887 (+/- 0.0525) 0.2724

3 0.1475 (+/- 0.0894) 0.1103 0.6306 (+/- 0.0683) 0.2662

4 0.1524 (+/- 0.0959) 0.1070 0.6478 (+/- 0.0796) 0.2586

5 0.1362 (+/- 0.0859) 0.1015 0.6142 (+/- 0.0859) 0.2483

6 0.1445 (+/- 0.0759) 0.1001 0.6090 (+/- 0.0925) 0.2477

7 0.1427 (+/- 0.0763) 0.1037 0.6048 (+/- 0.0939) 0.2548

8 0.1461 (+/- 0.0800) 0.0951 0.5770 (+/- 0.1004) 0.2393

9 0.1409 (+/- 0.0737) 0.0947 0.5743 (+/- 0.0998) 0.2388

10 0.1613 (+/- 0.0849) 0.1012 0.5713 (+/- 0.1182) 0.2479
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Figure 5.8: ICC surfaces of cells under 3 light entrainment conditions. (A), (C), (E), and

(G) are ICC surfaces constructed from real multiple cells data. (B), (D), (F), and (H) are

ICC surfaces constructed from singletons randomly sampled from the single cells data. (A)

and (B) are ICC surfaces of cells under DD. (C) and (D) are ICC surfaces of cells under 18

hours light on and 18 hours light off. (E) and (F) are ICC surfaces of cells under 6 hours

light on and 6 hours light off. (G) and (H) are ICC surfaces of cells under 3 hours light on

and 3 hours light off.
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CHAPTER 6

CONCLUSION

This dissertation presents a high-throughput microfluidic droplet platform for

single-cell analysis on the biological clock ofN. crassa. This microfluidic droplet platform

overcomes several technical challenges for measuring the biological clock at the single cell

level. Here it is demonstrated that > 1000 single cells ofN. crassa can be measured up to 10

days simultaneously for their circadian rhythm. We have shown that a circadian oscillator,

with a period ∼21 hours, exists in single-cells of N. crassa. A biological clock consists

of three major components: a circadian oscillator, light entrainment , and temperature

compensation. Using this platform , we also have shown that single-cell oscillators in N.

crassa can be light entrained, and its period can be efficiently temperature compensated.

The presence of a biological clock in a single cell of N. crassa is demonstrated here by

the first time. Cell-clusters(more than one cell in a droplet) measured by the microfluidic

platformwere also examined for synchronization of their circadian rhythm under LD cycles

and D/D. The intraclass correlation (ICC) was used as a measurement of synchronization

for multiple cells in cell-clusters across different droplets. The synchronization surface

ICC provides evidence that the cells communicate the state of their circadian oscillators to

each other.
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