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ABSTRACT

In item response theory (IRT), the origin and unit of the ability scale in IRT are arbitrary.
This arbitrariness is referred to as scale indeterminacy or the identification problem. Stan-
dard IRT models may not fit the data when there is unexplained heterogeneity present. In
such cases, a mixture IRT model, which models this heterogeneity by fitting an IRT model to
latent classes in the data, may be useful. The purpose of this study was to explore the effect
of three different kinds of constraints for identifying the metric in the mixture IRT (MixIRT)
model: (1) equating in which an anchor item is used to anchor the metrics between latent
classes, (2) person centering in which the mean of the ability parameters is set to zero after
each calibration, and (3) item centering in which the mean of the item difficulty parameters
is set to zero. Results based on an analysis of the empirical data indicated that the number
of latent classes detected differed depending on the particular MixIRT model and constraint
combination. The mean ability, proportion of group memberships, and item parameters
also differed between the three constraints. Results of a simulation study are presented fol-
lowed by an illustrative example using real data from the TIMSS 2011 8th grade science
test. In the simulation study, the impact of the three identification methods was examined

on classifications of latent class memberships and on item and ability parameter estimates



for three dichotomous MixIRT models. There was no effect of identification constraint on
the MixRM and Mix2PLM. Only the item anchoring constraint was found to work well
with the Mix3PLM, although recovery was relatively poor for this model compared to the
MixRM and Mix2PLM. When the types of constraint were compared, the person centering
constraint produced the worst recovery results. Test length and sample size did not appear
to have an effect on the recovery of item parameters. The longer test length improved group
member ship identification. Percent of correct model selection using AIC was lower for the
larger sample size. Recovery or group membership, item difficulty, and item discrimination
decreased with an increase in the number of latent classes simulated. Recovery of the lower

asymptote, however, was slightly better for the larger sample size and for more latent classes.
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Chapter 1

STATEMENT OF THE PROBLEM

The invariance of item and person statistics is an important assumption of item response
theory (Lord, 1980; Lord & Novick, 1968). Under this assumption, item and person param-
eters remain invariant over different samples from the same population and over different
combinations of items that fit the model (Lord, 1980). A useful benefit of this assumption
is that invariance permits establishing a metric that does not change either when the same
test is given to new examinees or when new items are calibrated to the same model. The
assumption of invariance is one of the characteristics that differentiates IRT from classical
test theory (Hambleton, Swaminathan, & Rogers, 1991).

The assumption of invariance also poses a significant problem, however, as the choice of
the origin and scale for the ability metric are arbitrary (Lord, 1980). This arbitrariness is
referred to as scale indeterminacy or the metric identification problem (Baker & Kim, 2004).
Various methods to identify (or fix) the metric have been developed for IRT models.

When the same IRT model does not fit all members of a population, a Mixture IRT
model (MixIRTM) may be appropriate. The MixIRTM is formed by an integration of an
IRT model with a latent class model (Cho, Cohen, & Kim, 2013). The IRT portion of

the model estimates a continuous latent variable and the latent class portion of the model



estimates a categorical latent variable. Combining these two models permits examining the
possibility that a population of examinees can be classified into some number of discrete
latent classes, and that item and ability parameters may differ for the different classes (Bolt,
Cohen, & Wollack, 2002).

Characterizing members of different latent classes is important in interpreting the mean-
ing of the classes. Comparison of item parameter estimates between latent classes is one
approach for characterizing the latent classes (Rost, 1990). In order to make such compar-
isons, however, the latent classes need to have a common metric. That is, estimates of model
parameters need to be on the same scale in order for comparisons to be made.

There are currently three methods commonly used for developing a common metric be-
tween latent classes. The first method is concurrent calibration in which one or more items
are used to anchor the metrics between classes (Bolt et al., 2002; Choi, Alexeev, & Cohen,
2014). The second method is to impose equality constraints by setting the mean of one
latent class to zero and its standard deviation to one (Baker & Kim, 2004; Cho, Cohen, &
Kim, in press; Cho, Cohen, & Templin, 2008; De Boeck, Cho, & Wilson, 2011; von Davier
& Yamamoto, 2004). A third method is setting the sum of item difficulties to zero for
each latent group (Cho & Cohen, 2010; Dai & Mislevy, 2006; Rost, 1990; Samuelsen, 2008).
Although each of these methods has been reported in the literature, to date, relatively lit-
tle research exists investigating the impact of these constraints on metric identification in
MixIRT models.

A commonly used method is one suggested by Rost (1990) for the mixture Rasch model
(MixRM) in which the mean of item difficulties is set to zero. There is somewhat less
agreement, however, about constraints used for identification for the mixture 2PL model
(Mix2PLM) or mixture 3PL model (Mix3PLM). Results from Choi, Alexeev, Cohen, and
Kim (2010) for the Mix3PLM indicated that setting the within class average of item dif-

ficulties to zero worked well with respect to recovery of generating parameters. Likewise,



fixing the mean and standard deviation of the ability estimates to zero and one, respectively,
also worked well. Comparison of these three identification constraints suggested the latter
constraint had no effect on the accuracy of parameter recovery. These results were based on
only five replications, however, and for a relatively small number of conditions.

The purpose of this study was to explore the effects of these three methods for establishing
a common metric between latent classes in MixIRT models. An example is provided using
real data from the TIMSS 2011 Grade 8 Science Test to motivate the simulation study. The
impact of each of these methods was then examined in the context of a simulation study on
selection of the correct (i.e., the generating) model, recovery of item and latent group mean

parameter estimates, and selection of the correct latent class for each examinee.



Chapter 2

THEORETICAL FRAMEWORK

2.1 Mixture Item Response Theory Models

Item response theory (IRT) is composed of a family of statistical models each designed to
model the relationship between a continuous latent ability and performance on a test item.
As an example, the 2-parameter logistic model (2PLM) shown below in Equation 2.1 gives

the probability of a correct response for examinee j on item i:

Pl = 116) = oeB =) 21

where 0; is the latent ability for examinee j, a; is the item discrimination of item 4, and b;
is the difficulty of item i.

When item performance is scored dichotomously (e.g., zero for an error and one for
a correct response), there are three standard models that tend to be used to model this
relationship. Using the logistic form of these models, they are the 1-parameter logistic
model (1PLM), the 2-parameter logistic model (2PLM), and the 3-parameter logistic model

(3PLM). Each of these models assumes that latent variable (e.g., ability) is measured the



same for all members of a population.

Mixture IRT (MixIRTMs) assume that there may be groups or classes of examinees that
are latent in the population and for which the same IRT model does not hold. That is, there
may be different values for model parameters depending on the latent class to which a given
examinee belongs. The MixIRTM can be viewed as a combination of an IRT model and a
latent class model.

MixIRTMs assume that an examinee population is composed of a fixed number of discrete
latent classes of examinees (Cohen, Wollack, Bolt, & Mroch, 2002). All examinees who
belong to a certain latent class are assumed to have unique characteristics and are assumed
to be homogeneous on the categorical latent variable that differentiates one class from the
others. These models may be appropriate, in other words, when a single IRT model is not
the best fit to the data.

The Mixture Rasch Model (MixRM). The MixRM (Rost, 1990) is the simplest of
the dichotomous MixIRTMs and is based on the assumption that an examinee population is
composed of a number of discrete latent classes, each of which has unique item and ability
parameters (Cohen et al., 2002). The MixRM in Equation (2.2) associates a class membership
parameter, g, with each examinee. Class membership decides the relative difficulty of the
items for an examinee in that class. Additionally, g also determines a latent ability parameter,

0.

g, which then has an effect on determination of the number of correct answers on the test.

The probability of a correct response in the MixRM can be written as

exp(fjg — big)

P(y; = 1/0;,) = 5 2.2
(y] | 39) g—lﬂ-gl + eXp(ng . big)J ( )
where g is an index for the latent class, g = 1, ..., G; j = 1, ..., N examinees; 0;4, is

the latent ability of a examinee j within class g; m, is the proportion of examinees for each

class; and b;4 is the Rasch difficulty parameter of item ¢ for latent class g. In this way, the



MixRM assumes that the Rasch model fits in each latent class but may have different item
and ability parameters.

The Mixture 2-Parameter Logistic Model (Mix2PLM). The Mix2PLM can be
viewed as a relaxed version of the MixRM in which the item discrimination parameter is left
unconstrained. Similar to the MixRM, the 2-parameter logistic model (2PLM) is assumed to
hold for each class, but each class may have unique item difficulty and discrimination param-
eters and different ability parameters. As with the MixRM, each examinee is parameterized
both by a class membership parameter (¢ = 1,...,G) and a within-class ability parameter
(0;4). That is, the Mix2PM also associates a class membership parameter, g, with each
examinee as well as a latent ability parameter, 6,. The probability of a correct response in

the Mix2PLM can be written as

Plys; = 116,,) = 567, —Plia050 — big) (2.3)

9= 1 explaig (04 — big)]’
where ¢ is an index for latent class, g = 1,...,G; j is the jth examinee among N examinees;
8, is the latent ability of examinee j within class g; m, is the proportion of examinees for
each class; a;, is the discrimination parameter for item ¢ in class g; and b;, is the difficulty
parameter for item ¢ in class g.

The Mixture 3-Parameter Logistic Model (Mix3PLM). The Mix3PLM can be
viewed as an extension of a Mix2PLM in which a term is added to model the lower asymptote
of the item response function. A 3-parameter logistic model is assumed to hold for each class
in the Mix3PLM. Item and ability parameters are allowed to differ between latent classes.

Each examinee is parameterized both by a class membership parameter (¢ = 1,...,G) and a

within-class ability parameter (6;,). The probability of a correct response in the Mix3PLM



can be written as

explaig(fig — big)]

P 1:10 :EG,W Ci—f—l—Ci s 2.4

(y] | ]9) g=1"g g ( 9) 1+ eXp[aig(ejg o bzg)] ( )

where ¢ is an index for latent class (g = 1,...,G), j is the jth examinee among N examinees
(j =1, ..., N examinees), 6}, is the latent ability of examinee j within class g, 7, is the

proportion of examinees for each class, a;, is the discrimination parameter for item ¢ in class
g, big is the difficulty parameter for item ¢ in class g, and ¢;4 is the lower asymptote parameter

for item ¢ in class g.

2.2 Scale Identification

The property of invariance of item and ability parameters in IRT is an important difference
from classical test theory (Hambleton et al., 1991). This property implies that item and
ability parameters do not depend on characteristics of the examinee sample or the specific
set of items used to measure ability. Thus, it allows for comparison of item and ability
parameter estimates from different sets of items or from different samples of examinees by
linking them to a common metric.

The choice of origin for the ability metric is arbitrary. That is, adding the same constant
to every 6; and to every b; in this model does not change the value of a;(6; — b;) and so
pi; also remains unchanged. Similarly, if we multiply every 6; and every b; by the same
constant, and divide every a; by the same constant, there is no change in the value of the
term a;(0; — b;) or of P;; (Lord, 1980). Lord (1980) notes that item parameters will remain
invariant for groups from the same population as long as the ability scale is not changed.
This property is referred to as scale indeterminacy or metric indeterminacy.

Thus, it is necessary to fix the metric to a particular origin and unit in order to locate it.



There are three methods that are commonly used in IRT to fix the metric: item anchoring,
person centering, and item centering (de Ayala, 2009). Item anchoring is usually used for
multiple group analysis. In this method, some items are fixed so that the same parameters
are used across groups. This is done based on either theoretical or empirical considerations
or both [e.g., the items are known to function the same in each group (Bolt et al., 2002; Choi
et al., 2014; Choi, Cohen, Lu, & Kim, 2014)]. Person centering sets the mean of the ability
parameters to zero or the mean and standard deviation of the ability parameters to zero and
unity during calibration of model parameters (Cho & Cohen, 2010; Finch & Pierson, 2011).
The third method, item centering, fixes the mean of item difficulty parameters to zero during
calibration (Bolt, Cohen, & Wollack, 2001; Izsdk, Orrill, Cohen, & Brown, 2010; Meiser &
Machunsky, 2008; Meyer, 2008). These three methods are described below in the context of

IRT and are then discussed as they apply in the context of MixIRT.

Methods for Solving the Identification Problem

Item anchoring may be used when there are either theoretical or empirical reasons for fixing
some set of items to given values. If item parameters are known, for example, it is possible to
fix the item parameters at known values in each group. When multiple groups are analyzed,
therefore, these items may be used as anchors to link the metric across groups. As an
example, in the likelihood ratio test for differential item functioning (DIF), all item parameter
estimates can be constrained to the same values in each group except those of the studied
item (Thissen, Steinberg, & Wainer, 1993). Then the item parameters of the studied item
are estimated in each group. In the person centering method, the mean of the ability
parameters is set to zero after each calibration. Person centering is used in programs such
as LOGIST (Wingersky, Barton, & Lord, 1982), BILOG-MG (Zimowski, Muraki, Mislevy,
& Bock, 2003), PARSCALE (Muraki & Bock, 2003), and MULTILOG (Thissen, Chen, &

Bock, 2003). Item centering sets the mean of the item difficulty parameters to zero following



calibration. IRT programs such as WINSTEPS (Linacre, 2001a), BIGSTEPS (Linacre &
Wright, 2001), and FACETS (Linacre, 2001b) use item centering (de Ayala, 2009).

[tem anchoring, person centering, and item centering for handling the identification prob-
lem are also used for MixIRTMs. Item anchoring is used either by constraining some subset
of items to equality between groups or by fixing some subset of items to the same values in
each group. In either case, the specific subset of items will have the same item parameters
in each group. The second method, person centering, is to impose equality constraints for
some reference class by setting the mean of one group to zero and the unit of scale (i.e., its
standard deviation) to one. The item and ability parameter estimates for the other groups
are then estimated relative to the estimates for the reference group. The third method, item
centering, is done by setting the sum of item difficulties to zero for each latent group. The
WINMIRA program (von Davier, 2001) uses this type of item centering. Programs such as
M-plus (Muthén & Muthén, 2012) and OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn,
2007) allow researchers to impose any of these three methods.

In the next section, an empirical example is presented to illustrate the potential impact

of the different identification constraints on establishing a common metric in MixIRTMs.

2.3 Empirical Example

Data

For this example, data were taken from the TIMSS 2011 Grade 8 Test. The TIMSS 2011
Test consists of six sets of questions: A mathematics test, a science test, a student back-
ground questionnaire, a teacher background questionnaire (focusing on mathematics and
science teaching), a school background questionnaire, and a curriculum questionnaire. The
17 multiple-choice items and 8 short constructed response items (scored dichotomously) from

the 2011 TIMSS 8th grade science test were analyzed for this example.



The multiple-choice items were scored correct or incorrect, and blanks were skipped and
not scored. In addition, the short answer items were scored as either correct or incorrect,
and blank items were skipped. The items selected for this example assessed four content
domains: Biology (8 items), Chemistry (6 items), Physics (4 items), and Earth science (7
items).

Sample. Data from seven of the 45 countries participating in the TIMSS 2011 pro-
gram were used for this example. The sample of 2,493 students in this data set were from
the following countries: 357 students from Chinese Taipei, 410 students from Ghana, 361
students from the Republic of Korea, 464 students from Morocco, 247 students from Nor-
way, 423 students from Singapore, and 231 students from The Ukraine. The seven nations
were selected, because, as a group, their average scale scores on the test approximated high,
middle and low achievement among the participating countries. Singapore, Chinese Taipei,
and the Republic of Korea had the highest mean mathematics scores of 590, 564, and 560,
respectively. The mean scores for Ukraine and Norway of 501 and 494, respectively, were
average among participating countries. Mean scores for Morocco and Ghana were 376 and

306, respectively, and were among the lowest for participating countries.

Estimation of Model Parameters

The MixRM and Mix2PLM were estimated with each of the three identification constraints
for establishing a common metric: Item anchoring (Constraint 1) was established by using
a single anchor item. Person centering (Constraint 2) was done by setting the mean ability
of the first latent group to zero with unit variance. Item centering (Constraint 3) was
implemented by setting the mean of item difficulties to zero in each class.

Estimation of model parameters was done using Markov Chain Monte Carlo (MCMC) es-
timation as implemented in the OpenBUGS computer software (Spiegelhalter et al., 2007).

MCMC is the sampling algorithm from probability distributions based on constructing a

10



Markov chain. Heidelberger and Welch’s (1983) convergence diagnostics were used to de-
termine the number of iterations as implemented in the Coda package using R (Plummer,
Best, Cowles, Vines, Sarkar, & Almond, 2012).

The following conjugate priors were used in the estimation of the MixRM and Mix2PLM

in the empirical example:

a;g ~ Normal(0,1) and a;, > 0,0 =1,...,n
big ~ Normal(0,1),i=1,....,n

0y ~ Normal(pg, 1), j=1,...,N

pg ~ Normal(0,1),g=1,...,G

(71, ...,mq) ~ Dirichlet(0.5,...,0.5)

where a is the discrimination parameter, b is the difficulty parameter, N is the total number
of examinees, n is the total number of items, GG is the number of latent class group, ¢ is the
ith item, j is the jth examinee, and g is the gth latent group.

The coda file for OpenBUGS contains the value of the estimate from each iteration for
each parameter. This information was analyzed using the Heidelberger and Welch conver-
gence diagnostics to determine the length of the burn-in and post-burn-in iteration chains.
The burn-in arises when early iterations in Markov chain simulation are discarded to diminish
the effect of the starting values (Gelman, Carlin, Stern, & Rubin, 2003; Gilks, Richardson,
& Spiegelhalter, 1996). After discarding the burn-in period, the number of iterations for
Bayesian estimation was determined.

For the MixRMs, a burn-in of 8,000 iterations was found to be sufficient for convergence
for all parameters. For the Mix2PLM, 22,000 post-burn-in iterations were used with Con-
straint 1 (item anchoring with a single anchor item) and Constraint 3 (item centering with
the sum of item difficulties set to zero). A burn-in of 2,000 iterations and 24,000 post-burn-

in iterations were sufficient for obtaining convergence for Constraint 2 (person centering in
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which the first group mean and variance were set to zero and one, respectively). For the
Mix2PLMs, a burn-in of 8,000 iterations and 21,000 post-burn-in iterations were used for
Constraint 1. A burn-in of 9,000 iterations and 16,000 post-burn-in iterations were used for
Constraint 2, and a burn-in of 3,000 iterations and 27,000 iterations for Constraint 3 were

used.

RESULTS

Detection of Label Switching

When estimating MixIRTMs, it is important to monitor the estimation for possible label
switching. This can be observed in real data when latent classes switch during a single
MCMC chain. To determine if label switching has occurred, modes of the posterior densities
for group membership were monitored. If multiple modes are present, then label switching
can be assumed to have occurred. For this example, modes of posterior parameters were
examined by using the group membership information in the coda output files. Cross-
tabulation analyses were then done for these modes for each constraint for the MixRMs and
Mix2PLMs.

Label switching between constraints was assumed when the same latent classes estimated
from the two models using different constraints did not agree. The presence of label switching
can be seen in Tables 2.1 and 2.2. Label switching was inferred, in other words, when different
latent classes for the two models had higher percentages of agreement. When label switchings
was observed, labels were switched for reporting purposes based on the highest percent of
agreement for group membership.

Tables 2.1 and 2.2 show the agreement in group membership classifications between
MixRMs for different identification constraints. The values on the main diagonal are shown

in bold and indicate the number of exact agreements in group membership between con-
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straints. In Table 2.1, for example, 959 simulated examinees were placed into Class 1 by
both Constraints 1 (item anchoring) and 2 (person centering). This represented 38.5% of
the total sample of 2,493 simulated examinees. The percent matching for group membership
was 91.2% between Constraints 1 (item anchoring) and 2 (person centering) and 94.3% be-
tween Constraints 1 (item anchoring) and 3 (item centering). There was no label switching
for the MixRMs with Constraints 1 and 2 but label switching existed on the MixRM with
Constraint 3.

Table 2.1: Latent Class Classifications for the MixRM with Constraint 1 (Item Anchoring)
and Constraint 2 (Person Centering)

MixRM MixRM with Constraint 2
with Constraint 1 Class1 Class2 Class3 Class4 Class 5 Total

Class 1 959 31 0 0 3 993
(38.5%) (1.2%) (0.0%) (0.0%) (0.1%)  (39.8%)
Class 2 1 239 1 0 0 241
(0.0%) (0.6%) (0.0%)  (0.0%)  (0.0%) (9.7%)
Class 3 132 6 990 1 0 1129
(5.3%)  (0.2%) (39.7%) (0.0%) (0.0%)  (45.3%)
Class 4 20 14 0 48 3 85
(0.8%)  (0.6%) (0.0%) (1.9%) (0.1%) (3.4%)
Class 5 6 0 1 0 38 45
(0.2%)  (0.0%) (0.0%) (0.0%) (1.5%) (1.8%)
Total 1118 290 992 49 44 2493

(44.8%) (11.6%) (39.8%) (2.0%) (1.8%) (100.0%)

Tables 2.3 and 2.4 show the numbers and percentages of agreement of group membership
classifications for the Mix2PLM with different identification constraints. The percent of
agreement for classification of group membership was 80.8% between Constraints 1 and 2
and 89% between Constraints 1 and 3. There was label switching for the Mix2PLMs with

Constraints 2 and 3.
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Table 2.2: Latent Class Classifications for the MixRM with Constraint 1 (Item Anchoring)

and Constraint 3 (Item Centering)

MixRM MixRM with Constraint 3
with Constraint 1 Class 1 Class2 Class3 Class4 Classb Class 6 Total

Class 1 0 0 4 985 1 3 993
(0.0%) (0.0%) (0.2%) (39.5%) (0.0%) (0.1%)  (39.8%)
Class 2 0 0 231 10 0 0 241
(0.0%)  (0.0%) (9.3%) (0.4%)  (0.0%) (0.0%) (9.7%)
Class 3 7 1 3 90 16 1012 1129
(0.3%)  (0.0%) (0.1%) (3.6%) (0.6%) (40.6%) (45.3%)
Class 4 0 0 0 6 79 0 85
(0.0%)  (0.0%)  (0.0%) (0.2%) (3.2%) (0.0%) (3.4%)
Class 5 0 45 0 0 0 0 45
(0.0%) (1.8%) (0.0%) (0.0%)  (0.0%) (0.0%) (1.8%)
Total 7 46 238 1091 96 1015 2493
(0.3%)  (1.8%) (9.5%) (43.8%) (3.9%)  (40.7%) (100.0%)

Table 2.3: Latent Class Classifications for the Mix2PLM with Constraint 1 (Item Anchoring)

and Constraint 2 (Person Centering)

Mix2PLM with

Mix2PLM with Constraint 2

Constraint 1 Class 1 Class 2 Class 3 Total
Class 1 375 780 32 1187
(15.0%) (31.3%) (1.3%)  (47.6%)

Class 2 733 0 2 735
(29.4%) (0.0%) (0.1%)  (29.5%)

Class 3 68 2 501 571
(2.7%) (0.1%) (20.1%)  (22.9%)

Total 1176 782 535 2493
(47.2%)  (31.4%)  (21.5%) (100.0%)
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Table 2.4: Latent Class Classifications for the Mix2PLM with Constraint 1 (Item Anchoring)
and Constraint 3 (Item Centering)

Mix2PLM with Mix2PLM with Constraint 3
Constraint 1 Class 1 Class 2 Class 3 Total
Class 1 969 31 187 1187
(38.9%) (1.2%) (7.5%)  (47.6%)
Class 2 0 6 729 735
(0.0%) (0.2%) (29.2%)  (29.5%)
Class 3 2 521 48 571
(0.1%) (20.9%) (1.9%)  (22.9%)
Total 971 558 964 2493

(38.9%)  (22.4%)  (38.7%) (100.0%)

Model Selection

Two information indices are reported for each of the MixIRTM analyses, the Bayesian in-
formation criterion (BIC: Schwartz, 1978) and Akaike’s Information Criterion (AIC: Akaike,
1973). Values for AIC and BIC are reported in Table 2.5 and smaller AIC and BIC values
indicate the better model. Both AIC and BIC suggest different numbers of latent classes de-
pending on the constraint used. Based on AIC, a five latent classes were detected using item
anchoring, six latent classes were detected using person centering, and seven latent classes
were detected using item centering. Using BIC, five latent classes were detected using item
anchoring and person centering and six classes were detected using item centering.

AIC and BIC values in Table 2.6 show the number of latent classes detected for the
Mix2PLM. Based on AIC, four latent classes were detected using item anchoring and person
centering. Using item centering, a 3-group solution was suggested. Using BIC, a 3-group

solution was the best fit to the data for the Mix2PLM for all three constraints.
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Table 2.5: Model Comparison Information Criteria for MixRMs

AIC BIC
Latent Constraint 1 Constraint 2 Constraint 3 Constraint 1  Constraint 2 Constraint 3
Classes (Item (Person (Item (Item (Person (Item
Anchoring) Centering) Centering) Anchoring) Centering) Centering)

1 67670 67670 67670 67820 67820 67820

2 65890 65870 65870 66190 66170 66180

3 65210 65180 65200 65660 65640 65660

4 64910 64810 64850 65510 65430 65470

5) 64520 64460 64490 65280 65240 65270

6 64520 64420 64240 65430 65350 65170

7 64190 65280

Table 2.6: Model Comparison Information Criteria for Mix2PLMs
AIC BIC
Latent Constraint 1 Constraint 2 Constraint 3 Constraint 1  Constraint 2 Constraint 3
Classes (Item (Person (Item (Item (Person (Item
Anchoring) Centering) Centering) Anchoring) Centering) Centering)

1 66430 66460 66460 66580 66750 66760

2 65300 65550 65210 65890 66140 65810

3 64660 64550 64570 65540 65450 65470

4 64370 64330 64570 65540 65530 65770
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Comparison of Class Means and Latent Group Proportions between Constraints

Comparison of model parameters between latent classes requires that the parameter esti-
mates are expressed on a common scale. Additional equating or scale transformation was
not required for comparisons of scale parameters within each constraint as this is what these
constraints are designed to do. Comparisons of scale parameters between constraints for
the same model, however, did require an additional scale transformation. Mean and sigma
equating was used for this set of transformations. The means for each of the five classes
using each of the constraints are reported in Table 2.7. The means appear to be different
between the three constraints for the MixRMs. In particular, the difference between means
for Constraint 2 (person centering) and Constraint 3 (item centering) appears to be large
(see Table 2.7).

Table 2.7: Ability Means of Latent Classes for MixRM and Mix2PLM

Mixture Rasch Model Mixture 2PL Model

0.38 0.00 0.78 -1.24  -143 -1.58
0.77  0.59 1.12 1.34 -0.07  0.86
-1.18  -147  -0.72 0.90 0.92 0.79

0.15 -0.50  0.46
1.45  0.90 1.46
-0.24

ST W N~

The latent class means for Constraints 1 (item anchoring) and 3 (item centering) for the
Mix2PL model do not appear to be similar. In addition, the means for the second latent
class using Constraint 2 (person centering) also look different from those for the other two
constraints. The first and third latent class means for Constraints 2 (person centering) were
similar to those for Constraints 1 and 3 (see Table 2.7).

The proportions of examinees classified into Classes 1 to 6 by the MixRM using each of
the constraints are reported in Table 2.8. The proportions for the different constraints in
MixRM look somewhat similar although the proportions for the first and third classes differ

for each of the three constraints.
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Table 2.8: Proportions of Latent Classes for MixRM and Mix2PLM

Mixture Rasch Model Mixture 2PL Model
Latent Constraint 1 Constraint 2 Constraint 3 Constraint 1  Constraint 2 Constraint 3
Classes (Item (Person (Item (Item (Person (Item
Anchoring) Centering) Centering) Anchoring) Centering) Centering)

1 39.8 44.8 43.8 47.6 31.4 38.9

2 9.7 11.6 9.5 29.5 47.2 38.7

3 45.3 39.8 40.7 22.9 21.5 22.4

4 3.4 2.0 3.9

) 1.8 1.8 1.8

6 0.3

The proportions of examinees classified into each of the three latent classes detected with
the Mix2PLM also are reported in Table 2.8. The Mix2PLMs had different proportions of
class membership for the different constraints. The proportions in Class 3 look similar for the
three constraints, however, the proportions of Classes 1 and 2 look different for the different
constraints. These results suggest that students were assigned to different latent classes by

the different constraints.

Comparison of Joint Classifications

Group memberships were compared to examine the effects of the constraints on classification
of examinees into latent classes after solving the label switching problem. Joint classifications
for Constraint 1 (item anchoring) and Constraint 2 (person centering) for the MixRM are
given in Table 2.9. Agreement between constraints is calculated by taking the sum of the
numbers on the main diagonal. Results in this table indicate 91.2% (n = 2,274) agreement.
Agreement between Constraints 1 (item anchoring) and 3 (item centering) was 94.3% (n =
2,352)(see Table 2.10). Agreement between Constraint 2 and Constraint 3 was 92.7% (n =
2,312)(see Table 2.11).

For the Mix2PLM, there was 80.8% agreement in classification (n = 2014) between Con-
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Table 2.9: Group Membership Classification for MixRMs Using Constraints 1 and 2

MixRM with MixRM with Constraint 2
Constraint 1 Class1 Class2 Class3 Class4 Class 5 Total
Class 1 959 31 0 0 3 993
(38.5%) (1.2%) (0.0%) (0.0%) (0.1%)  (39.8%)
Class 2 1 239 1 0 0 241
(0.0%) (9.6%) (0.0%)  (0.0%)  (0.0%) (9.7%)
Class 3 132 6 990 1 0 1129
(5.3%)  (0.2%) (39.7%) (0.0%) (0.0%)  (45.3%)
Class 4 20 14 0 48 3 85
(0.8%)  (0.6%) (0.0%) (1.9%) (0.1%) (3.4%)
Class 5 6 0 1 0 38 45
(0.2%)  (0.0%) (0.0%) (0.0%) (1.5%) (1.8%)
Total 1118 290 992 49 44 2493

(44.8%) (11.6%) (39.8%) (2.0%) (1.8%) (100.0%)

Table 2.10: Group Membership Classification for MixRMs Using Constraints 1 and 3

MixRM with MixRM with Constraint 3
Constraint 1  Class1 Class2 Class3 Class4 Class 5  Class 6 Total
Class 1 985 4 3 1 0 0 993
(39.5%) (0.2%) (0.1%)  (0.0%)  (0.0%) (0.0%)  (39.8%)
Class 2 10 231 0 0 0 0 241
(0.4%) (9.3%) (0.0%) (0.0%)  (0.0%) (0.0%) (9.7%)
Class 3 90 3 1012 16 1 7 1129
(3.6%) (0.1%) (40.6%) (0.6%) (0.0%) (0.3%)  (45.3%)
Class 4 6 0 0 79 0 0 85
(0.2%)  (0.0%) (0.0%) (3.2%) (0.0%) (0.0%) (3.4%)
Class 5 0 0 0 0 45 0 45
(0.0%)  (0.0%) (0.0%) (0.0%) (1.8%) (0.0%) (1.8%)
Total 1091 238 1015 96 46 7 2493

(43.8%)  (9.5%) (40.7%) (3.9%) (1.8%) (0.3%) (100.0%)
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Table 2.11: Group Membership Classification for MixRMs Using Constraints 2 and 3

MixRM with MixRM with Constraint 3
Constraint 2 Class1 Class2 Class3 Class4 Class b5 Class 6 Total
Class 1 1033 0 60 19 6 0 1118
(41.4%) (0.0%) (2.4%)  (0.8%) (0.2%)  (0.0%)  (44.8%)
Class 2 39 237 0 14 0 0 290
(1.6%) (9.5%) (0.0%) (0.6%) (0.0%) (0.0%) (11.6%)
Class 3 16 1 955 11 2 7 992
(0.6%) (0.0%) (38.3%) (0.4%) (0.1%) (0.3%) (39.8%)
Class 4 0 0 0 49 0 0 49
(0.0%)  (0.0%) (0.0%) (2.0%) (0.0%) (0.0%) (2.0%)
Class 5 3 0 0 3 38 0 44
(0.1%)  (0.0%) (0.0%) (0.1%) (1.5%) (0.0%) (1.8%)
Total 1091 238 1015 96 46 7 2493
(43.8%)  (9.5%)  (40.7%) (3.9%) (1.8%) (0.3%) (100.0%)

straint 1 and Constraint 2 (see Table 2.12). Agreement between Constraint 1 and Constraint
3 agreement for the Mix2PLM was 89% (n = 2,219), and 90.9% agreement (n = 2,267) be-
tween Constraint 2 and Constraint 3 in the Mix2PLM (see Tables 2.13 and 2.14).

Table 2.12: Latent Group Classification for the Mix2PL. Model Using Constraints 1 and 2

Mix2PLM Mix2PLM with Constraint 2

with Constraint 1  Class 1 Class 2 Class 3 Total
Class 1 780 375 32 1187
(31.3%)  (15.0%) (1.3%)  (47.6%)
Class 2 0 733 2 735
(0.0%) (29.4%) (0.1%)  (29.5%)
Class 3 2 68 501 571
(0.1%) (2.7%) (20.1%)  (22.9%)
Total 782 1176 535 2493
(31.4%)  (472%)  (21.5%) (100.0%)

All comparisons, except for those between the Constraints 1 and 3 for the MixRM,
indicated that the different constraints resulted in some lack of agreement in latent group

classifications. The group membership agreement between constraints used with the MixRM
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Table 2.13: Latent Group Classification for the Mix2PL. Model Using Constraints 1 and 3

Mix2PLM Mix2PLM with Constraint 3

with Constraint 1  Class 1 Class 2 Class 3 Total
Class 1 969 187 31 1187
(38.9%) (7.5%) (1.2%)  (47.6%)
Class 2 0 729 6 735
(0.0%) (29.2%) (0.2%)  (29.5%)
Class 3 2 48 521 571
(0.1%) (1.9%) (20.9%)  (22.9%)
Total 971 964 558 2493
(38.9%)  (38.7%) (22.4%) (100.0%)

Table 2.14: Latent Group Classification for the Mix2PL Model Using Constraints 2 and 3

Mix2PLM Mix2PLM with Constraint 3

with Constraint 2 Class 1 Class 2 Class 3 Total
Class 1 782 0 0 782
(31.4%) (0.0%) (0.0%)  (31.4%)
Class 2 177 963 36 1176
(7.1%) (38.6%) (1.4%)  (47.2%)
Class 3 12 1 522 535
(0.5%) (0.0%) (20.9%) (21.5%)
Total 971 964 558 2493
(38.9%)  (38.7%) (22.4%) (100.0%)
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was higher than that when used with the Mix2PLM.

Comparisons of Item Parameter Estimates

As noted above, mean and sigma equating was used to obtain a common metric between
latent classes and across the different constraints for each MixIRTM. This permitted direct
comparisons such as plotting difficulty estimates on the same graph in order to observe differ-
ences between constraints. Item difficulty parameter estimates for the different constraints

for the MixRM are shown for classes 1, 2, and 4 in Tables 2.15, 2.16, and 2.17.

Table 2.15: Difficulty Parameters For the MixRM Under Constraint 1

Item No. TIMSS Item ID Class1 Class2 Class3 Class4 Class b

1 5032611 0.89 0.89 0.89 0.89 0.89
2 5032614 -0.14 -0.31 1.04 -0.09 0.69
3 5032156 -0.13 -0.50 1.18 0.83 -0.16
4 5032056 0.44 -0.18 2.67 0.39 2.23
) 5032087 0.50 0.80 1.30 1.25 -0.11
6 5032279 1.98 1.36 1.10 1.37 0.73
7 5032238 0.37 -1.56 1.53 -0.78 -0.54
8 5032160 -0.58 -0.10 0.01 0.06 -0.72
9 5032654 0.43 0.04 1.10 0.19 1.22
10 5032126 0.21 0.18 1.19 -0.72 1.64
11 S032510 -1.18 -1.47 0.36 -0.02 -0.07
12 5032158 -0.83 -0.04 0.14 -0.08 -0.93
13 5052093 -1.77 -1.35 -1.14 -0.75 -1.04
14 5052088 -1.13 -1.26 0.31 0.17 2.64
15 5052030 0.58 1.05 0.61 0.33 1.03
16 5052080 -0.39 -0.65 0.13 2.60 0.05
17 5052091 0.19 -0.85 1.39 -0.26 0.70
18 5052152 0.50 -0.06 1.57 1.28 -0.72
19 5052136 -0.07 -0.18 1.49 -0.05 0.61
20 5052046 -2.89 -2.60 0.05 -0.94 -1.24
21 5052254 0.30 2.21 1.07 1.45 -0.24
22 5052207 0.79 0.25 2.34 0.26 -0.48
23 5052297 -1.04 1.65 0.62 0.07 0.03
24 5052032 1.67 1.69 3.02 2.61 2.7
25 5052106 1.19 0.26 2.18 0.24 1.04

As can be seen in Figure 2.1, plots of difficulty parameter estimates in Class 1 were

22



Table 2.16: Difficulty Parameters For the MixRM Under Constraint 2

Item No. TIMSS Item ID Class1 Class2 Class3 Class4 Classb
1 S032611 0.92 1.78 0.10 1.00 0.33
2 S032614 -0.15 0.29 0.66 0.25 0.68
3 S032156 -0.10 0.14 0.77 0.87 0.04
4 S032056 0.50 0.42 2.36 1.12 1.96
5 S032087 0.47 1.41 0.94 1.15 0.33
6 S032279 1.82 2.03 0.59 1.32 1.31
7 S032238 0.41 -0.99 1.00 0.13 -0.32
8 S032160 -0.61 0.46 -0.43 0.02 -0.28
9 S032654 0.38 0.65 0.67 0.41 1.21
10 S032126 0.14 0.76 0.84 -0.13 1.36
11 S032510 -1.10 -0.88 -0.02 0.01 0.02
12 S032158 -0.86 0.51 -0.35 0.13 -0.66
13 S052093 -1.80 -0.86 -1.52 -0.96 -0.69
14 S052088 -1.03 -0.66 -0.05 0.09 1.96
15 S052030 0.53 1.61 0.08 0.36 0.97
16 S052080 -0.42 0.13 -0.28 1.71 0.76
17 S052091 0.21 -0.25 0.94 0.22 0.60
18 S052152 0.53 0.58 1.04 1.58 -0.21
19 S052136 -0.06 0.41 1.15 0.35 0.66
20 S052046 -2.64 -2.10 -0.34 -0.58 -1.02
21 S052254 0.25 2.65 0.60 1.46 0.23
22 S052207 0.81 0.84 1.93 0.91 0.06
23 S052297 -0.97 2.02 0.21 0.08 0.16
24 S052032 1.67 2.29 2.68 2.61 2.85
25 S052106 1.19 0.84 1.69 0.98 1.18
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Table 2.17: Difficulty Parameters For the MixRM Under Constraint 3

Item No. TIMSS Item ID Class1 Class2 Class3 Class4 Class 5 Class 6

1 5032611 0.93 1.27 0.49 0.23 -0.23 -0.56
2 5032614 -0.13 -0.30 -0.09 -0.49 0.28 0.23
3 S032156 -0.11 -0.49 0.04 0.42 -0.52 0.06
4 5032056 0.43 -0.12 1.55 0.08 1.64 1.08
) 5032087 0.51 0.84 0.03 0.83 -0.35 0.30
6 5032279 1.96 1.40 0.06 0.96 0.42 -0.05
7 5032238 0.34 -1.53 0.81 -1.12 -0.84 -0.18
8 5032160 -0.57 -0.10 -1.12 -0.40 -0.87 -0.41
9 5032654 0.43 0.04 0.04 -0.26 0.74 0.16
10 S032126 0.21 0.20 0.04 -1.11 1.08 0.36
11 S032510 -1.15 -1.50 -0.81 -0.45 -0.47 -0.47
12 5032158 -0.85 -0.01 -0.74 -0.48 -1.21 -0.65
13 5052093 -1.77 -1.40 -2.54 -1.14 -1.27 -1.08
14 S052088 -1.10 -1.30 -0.96 -0.25 1.78 -0.05
15 5052030 0.57 1.10 -0.32 -0.12 0.48 -0.21
16 5052080 -0.36 -0.67 -1.13 2.12 -0.18 -0.41
17 5052091 0.19 -0.87 0.44 -0.67 0.17 0.10
18 5052152 0.48 -0.01 0.81 0.92 -0.91 0.04
19 5052136 -0.04 -0.15 0.27 -0.45 0.20 0.32
20 5052046 -2.95 -2.64 -0.96 -1.34 -1.48 -0.96
21 S052254 0.30 2.28 0.09 1.13 -0.46 0.04
22 5052207 0.80 0.29 1.30 -0.13 -0.56 0.63
23 5052297 -0.99 1.71 -0.46 -0.39 -0.31 -0.36
24 5052032 1.68 1.70 1.85 2.24 2.22 1.44
25 5052106 1.19 0.26 1.31 -0.13 0.63 0.62
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essentially on top of one another. The plots of difficulty parameter estimates for Class
2 were a little different between the three constraints. In class 2, Constraint 2 (person
centering) had difficulty parameter estimates which were higher than Constraints 1 (item
anchoring) and 3 (item centering) (see Figure 2.2). The results from Classes 3 to 5 indicated
that difficulty parameter estimates clearly differed for all three constraints (see Figures 2.3
to 2.5). Correlations are reported in Table 2.18) showing the degree of the relationships

between estimates for the different constraints.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

—4—Constraint 1 (one anchor item) ~ —=Constraint 2 (first group mean = 0) Constraint 3 (sum of b = 0)

Figure 2.1: Difficulty Estimates Comparison in the MixRM for Class 1

Correlations Between Parameter Estimates. Correlations between parameter esti-
mates for the same latent class should be high if constraints had no impact. To examine this
conjecture, correlations were calculated between estimates for each MixIRTM with each of
the constraints. The correlations for the MixRM are presented in Table 2.18. Correlations
for the Mix2PLM are presented in Table 2.25. The following notation is used in these tables:
C1&A indicates a parameter estimate in Class 1 under Constraint 1 (item anchoring); C2&P
indicates Class 2 for Constraint 2 (person centering); C2&I indicates class 2 for Constraint

3 (item centering), etc. In this notation, constraints are indicated as Constraint 1 = A,
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—e—Constraint 1 (one anchor item) == Constraint 2 (first group mean =0) =~ Constraint 3 (sum of b= 0)

Figure 2.2: Difficulty Estimates Comparison in the MixRM for Class 2

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

—o—Constraint 1 (one anchor item) ~ —#=Constraint 2 (first group mean) ~ —— Constraint 3 (sum of b = 0)

Figure 2.3: Difficulty Estimates Comparison in the MixRM for Class 3

26



N\

-1.00 )¢ Y V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

—4—Constraint 1 (one anchor item) ~ —f—Constraint 2 (first group mean) -~ Constraint 3 (sum of b= 0)

Figure 2.4: Difficulty Estimates Comparison in the MixRM for Class 4
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—o—Constraint 1 (one anchor item) ~ —=Constraint 2 (first group mean) s~ Constraint 3 (sum of b = 0)

Figure 2.5: Difficulty Estimates Comparison in the MixRM for Class 5
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Constraint 2 = P, and Constraint 3 = 1.

Correlations in Table 2.18 indicate that difficulty parameter estimates were similar be-
tween the three constraints within the same latent class. Most of these correlations, in fact,
were .99. The correlations between Constraints 1 and 2 (r = .918) and between Constraint
2 and 3 (r = .928) in Class 4, however, were slightly smaller, suggesting that there might
be some effect of constraints in Class 4. The sample size for Class 4 was very small (n = 85
(3.4%) for Constraint 1, n = 49 (2.0%) for Constraint 2, and n = 96 (3.9%) for Constraint
3). The slightly smaller correlations may be due to the instability resulting from these small
sample sizes (see Table 2.8).

Discrimination parameter estimates under each constraint for the Mix2PLM are given in
Tables 2.19, 2.20, and 2.21 and difficulty parameter estimates under each constraint for this
model are given in Tables 2.22, 2.23, and 2.24. Correlations were computed between param-
eter estimates to help detect constraint effects on item parameter estimation. Correlations
between discrimination parameters are given in Table 2.25.

One would expect correlations between the estimates for the same parameters within the
same latent class but between different constraints to be close to 1 if there were no differences
due to constraints. Although all within class correlations were high and significant (p < .01),
they were not all close to 1. Correlations in Table 2.25 indicated there were some differences
in discrimination parameter estimates in class 2 under Constraints 1 and 2. The correlations
between discrimination parameters for all three constraints for class 3, however, were close
to unity, suggesting there was very little effect between constraints in this latent class.

Correlations for these analysis was reported to get more statistically reasonable compar-
ison (see Table 2.26). Correlations in Table 2.26 indicated that most difficulty parameter
estimates differed between constraints within latent class. Exceptions were correlations be-
tween Constraints 1 and 3 in class 1 (r = .980) and Constraints 1 and 2 in class 3 (r =

.997).
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Table 2.19: Discrimination Parameters For the Mix2PLM Under Constraint 1

Item No. TIMSS Item ID Class1 Class 2 Class 3

1 5032611 0.46 0.47 0.42
2 S032614 1.10 0.66 1.29
3 5032156 0.65 0.91 1.11
4 5032056 1.22 0.50 1.19
5 5032087 0.56 0.94 0.88
6 5032279 0.52 0.78 0.44
7 5032238 0.47 1.29 1.76
8 5032160 0.45 0.81 0.72
9 5032654 0.54 0.61 1.18
10 5032126 1.22 0.53 0.84
11 5032510 0.68 0.95 1.11
12 5032158 0.45 1.15 0.48
13 5052093 0.76 1.09 0.82
14 5052088 1.03 0.48 0.83
15 5052030 0.38 1.04 0.46
16 5052080 0.26 0.52 0.64
17 5052091 1.09 1.11 0.76
18 5052152 0.46 1.12 1.39
19 5052136 1.21 0.56 1.38
20 5052046 0.86 2.02 1.47
21 5052254 0.40 1.02 0.51
22 5052207 1.73 1.26 1.30
23 5052297 0.92 1.31 0.21
24 5052032 1.24 0.61 1.12
25 5052106 1.20 1.15 0.49

30



Table 2.20: Discrimination Parameters For the Mix2PLM Under Constraint 2

Item No. TIMSS Item ID Class1 Class 2 Class 3

1 5032611 0.25 1.00 0.57
2 S032614 1.02 0.83 1.30
3 5032156 0.40 1.22 1.07
4 5032056 1.17 0.96 1.26
5 5032087 0.51 1.10 0.93
6 5032279 0.45 0.51 0.47
7 5032238 0.41 1.39 1.77
8 5032160 0.15 0.89 0.69
9 5032654 0.51 0.64 1.36
10 5032126 1.11 0.66 0.84
11 5032510 0.48 1.07 1.14
12 5032158 0.20 1.27 0.50
13 5052093 0.58 0.83 0.82
14 5052088 0.81 0.50 0.82
15 5052030 0.27 0.99 0.47
16 5052080 0.15 0.59 0.67
17 5052091 0.80 1.14 0.77
18 5052152 0.37 1.39 1.43
19 5052136 1.02 0.81 1.35
20 5052046 0.34 2.12 1.42
21 5052254 0.31 1.19 0.59
22 5052207 1.54 1.26 1.32
23 5052297 0.53 1.44 0.20
24 5052032 1.44 0.72 1.16
25 5052106 1.05 1.16 0.47
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Table 2.21: Discrimination Parameters For the Mix2PLM Under Constraint 3

Item No. TIMSS Item ID Class1 Class 2 Class 3

1 5032611 0.29 1.06 0.61
2 5032614 1.07 0.78 1.39
3 5032156 0.49 1.09 1.18
4 5032056 1.23 0.78 1.36
5 5032087 0.53 1.12 0.97
6 5032279 0.50 0.64 0.48
7 5032238 0.45 1.46 1.96
8 5032160 0.26 0.83 0.74
9 5032654 0.55 0.63 1.45
10 5032126 1.21 0.60 0.93
11 5032510 0.61 1.04 1.21
12 5032158 0.29 1.28 0.51
13 5052093 0.65 0.90 0.86
14 5052088 0.87 0.48 0.88
15 5052030 0.33 1.07 0.50
16 5052080 0.18 0.55 0.70
17 5052091 0.98 1.16 0.83
18 5052152 0.42 1.35 1.53
19 5052136 1.15 0.69 1.51
20 5052046 0.59 2.10 1.52
21 5052254 0.36 1.14 0.61
22 5052207 1.70 1.30 1.44
23 5052297 0.74 1.35 0.22
24 5052032 1.35 0.69 1.23
25 5052106 1.16 1.22 0.51
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Table 2.22: Difficulty Parameters For the Mix2PLM Under Constraint 1

Item No. TIMSS Item ID Class1 Class 2 Class 3

1 5032611 0.52 0.60 0.83
2 5032614 -0.48 -0.34 0.03
3 5032156 0.32 -0.09 -0.09
4 5032056 1.13 0.31 0.13
5 5032087 0.86 0.20 1.00
6 5032279 0.89 2.04 2.03
7 5032238 1.45 0.84 -0.51
8 5032160 -1.40 -0.97 -0.58
9 5032654 0.42 0.04 0.48
10 5032126 -0.38 0.01 -0.02
11 5032510 -1.00 -1.15 -0.91
12 5032158 -0.93 -0.92 -1.46
13 5052093 -2.97 -1.35 -2.04
14 5052088 -1.13 -1.87 -1.33
15 5052030 0.33 0.55 0.58
16 5052080 -0.62 -1.47 -0.53
17 5052091 -0.07 0.73 -0.99
18 5052152 1.71 0.59 0.51
19 5052136 -0.20 -0.29 0.12
20 5052046 -1.39 -1.71 -1.69
21 5052254 1.20 -0.05 2.28
22 5052207 0.26 1.10 0.60
23 5052297 -0.80 -0.66 -0.14
24 5052032 1.44 2.35 1.96
25 5052106 0.76 1.60 -0.29
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Table 2.23: Difficulty Parameters For the Mix2PLM Under Constraint 2

Item No. TIMSS Item ID Class1 Class 2 Class 3

1 5032611 0.72 0.51 1.08
2 5032614 -0.21 -0.77 0.01
3 5032156 0.06 0.84 -0.09
4 5032056 0.86 1.10 0.19
5 5032087 0.30 0.59 1.06
6 5032279 1.95 0.62 1.92
7 5032238 0.68 0.97 -0.51
8 5032160 -0.93 -0.83 -0.69
9 5032654 0.08 0.27 0.52
10 5032126 0.03 -0.62 -0.03
11 5032510 -0.94 -0.99 -0.85
12 5032158 -0.75 -0.48 -1.27
13 5052093 -2.45 -3.68 -2.05
14 5052088 -2.13 -1.11 -1.42
15 5052030 0.34 0.21 0.53
16 5052080 -1.27 0.16 -0.40
17 5052091 0.44 -0.11 -1.02
18 5052152 0.58 1.54 0.55
19 5052136 0.02 -0.23 0.08
20 5052046 -1.19 -0.87 -1.73
21 5052254 0.15 1.19 2.24
22 5052207 0.84 0.21 0.56
23 5052297 -0.56 -0.63 -0.15
24 5052032 2.13 1.62 1.90
25 5052106 1.31 0.55 -0.37
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Table 2.24: Difficulty Parameters For the Mix2PLM Under Constraint 3

Item No. TIMSS Item ID Class1 Class 2 Class 3

1 5032611 0.79 1.03 0.78
2 5032614 -0.62 0.01 -0.22
3 5032156 0.74 -0.07 0.00
4 5032056 1.11 0.17 0.72
5 5032087 0.78 0.98 0.29
6 5032279 0.72 1.82 1.86
7 5032238 1.16 -0.43 0.75
8 5032160 -1.04 -0.65 -1.04
9 5032654 0.26 0.48 0.07
10 5032126 -0.53 0.01 -0.03
11 5032510 -1.06 -0.81 -0.96
12 5032158 -0.63 -1.29 -0.76
13 5052093 -3.34 -1.97 -2.07
14 5052088 -1.11 -1.34 -2.07
15 5052030 0.23 0.52 0.45
16 5052080 -0.06 -0.44 -1.41
17 5052091 -0.15 -0.92 0.55
18 5052152 1.64 0.49 0.61
19 5052136 -0.26 0.12 -0.14
20 5052046 -1.26 -1.62 -1.32
21 5052254 1.19 2.08 0.12
22 5052207 0.15 0.54 0.92
23 5052297 -0.78 -0.15 -0.59
24 5052032 1.47 1.76 2.15
25 5052106 0.60 -0.29 1.36

Table 2.25: Correlations between Discrimination Parameters in the Mix2PLM

Cl&P Cl&l  C2&A C2&P  C2&I C3&A  C3&P  C3&1

C1&A  .939%*  980** -.024 -.013 -.058 278 243 257

C1&P 985%F  -216  -.209 -.241 311 299 307
C1&l -.107  -.105 -.143 308 .286 297
C2&A 880%*F .921** 139 .086 084
C2&P .980%* 240 204 206
C2&1 190 158 158
C3&A 091%*  993**
C3&P .99

Note. ** p < .01 (2-tailed)

35



Table 2.26: Correlations between Difficulty Parameters in Mix2PLM

Cl&M C1&S C2&A C2&M C2&S  C3&A C3&M  C3&S
Cl&A  .858*%F  980** . 778%* 952%*  773%* 760** .767*F  .846**
C1&M 822%%  9RTHFE - 800**  .T64™*  ThTH* 7H3*K 995¥*
C1&S L4 989K 763K 746 7HO**  800**
C2&A L70%F703%*F702FF 691 QT8
C2&M 732K 719 T29%K T68%
C2&S 008%* - 999*k  TH0**
C3&A 997K T43%*
C3&M 739%*

Note. ** p < .01 (2-tailed)

—o—Constraint 1 (one anchor item) ~ —#i=Constraint 2 (first group mean = 0)

Constraint 3 (sum of b= 0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 2.6: Difficulty Estimates Comparison in the Mix2PLM for Class 1
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Figure 2.7: Difficulty Estimates Comparison in the Mix2PLM for Class 2
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Figure 2.8: Difficulty Estimates Comparison in the Mix2PLM for Class 3
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Comparison plots were done to examine further the possible effects of the constraints
on item of difficulty parameter estimates. Plots between Constraints 1 and 3 suggests the
parameter estimates were similar in Class 1. However, for Constraint 2, the difficulty param-
eter estimates appear to be different from those obtained with Constraints 1 and 3 in class
1 (see Figure 2.6). Nineteen items (Items 1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 16, 17, 18, 20,
21, 22, 24, and 25) appeared to have different difficulty parameter estimates across the three
constraints in Class 2 (see Figure 2.7). The difficulty parameters between Constraints 1 and
2 were similar in Class 3, but those between Constraints 1 and 3 and between Constraints 2
and 3 in class 3 were somewhat different (see Figure 2.8). These plots suggest that for the

Mix2PLM, the three constraints provided somewhat different estimates of item difficulty.

Conclusions

The three constraints were applied to establish a common metric between latent classes for
a MixRM and a Mix2PLM. The data set was taken from the TIMSS 2011 8th Grade Sci-
ence Test. Results from the MixRM suggested that each of the constraints had a somewhat
different effect on item difficulty estimates, ability estimates, numbers of latent classes, clas-
sifications of examinees into latent classes, and proportions of membership in each latent
class. Similar results were observed for the Mix2PLM with the exception that the same
number of latent classes was extracted using all three constraints.

Results based on this data set clearly differed depending on the MixIRT model and on the
constraint used. A major purpose of this dissertation, therefore, was to examine this issue in
greater depth with an eye to better understanding the impact of these kinds of constraints.
In addition, it is also possible that results may differ depending on conditions in the data. To
examine this latter point, we also considered the effects of different test lengths and sample

sizes (described in the next section) on developing a common metric for MixIRT models.
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Chapter 3

METHODS AND RESEARCH
DESIGN

3.1 Estimation

Bayesian Estimation for Mixture IRT Models Using a Markov Chain

Monte Carlo Algorithm

MCMC estimation algorithms have been used widely in IRT and have been found to make it
possible to estimate more complex types of item response models (Kim, 2001; Patz & Junker,
1999a, 1999b). MCMC methods estimate the full conditional posterior distribution of each
parameter being estimated. Markov chain estimates the posterior using a sample from the
parameter’s posterior distribution at the stages. The sample mean for a parameter over the
post-burn-in iterations of the MCMC chain can be taken as the parameter estimate. When
mixture distributions are estimated, a class membership parameter for each observation (i.e.,
examinee) at each stage of the chain is sampled. A class membership is sampled for each

examinee along with a continuous ability, 6,,, at each stage of the Markov chain. The class

Jg»
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membership parameter is proportional to the probability of the examinee’s membership
for a given examinee (;,). The item parameters in each class are decided based on the
frequency with which each examinee is sampled into each class. The posterior probability
of the examinee’s membership in each class is also determined by the frequency of sampling

each examinee into each class (Bolt et al., 2002).

Prior Distributions

To estimate the MixIRTMs using MCMC, priors need to be specified for all item and ability
parameters to be estimated. The following conjugate priors were used in this example as

well as for the simulation study that follows:

aig ~ Normal(0,1) and a;, > 0,i=1,...,n
big ~ Normal(0,1), 1 =1,...,n

Cig ~ Beta(5,17),i=1,...,n

0, ~ Normal(pg, 1), j=1,...,N

pg ~ Normal(0,1),g=1,...,G

(71, ...,mq) ~ Dirichlet(0.5,...,0.5)

where a is the discrimination parameter, b is the difficulty parameter, c is the lower asymptote
parameter, N is the total number of examinees, n is the total number of items, G is the
number of latent class group, ¢ is the ith item, j is the jth examinee, and ¢ is the gth latent
group.

There is some agreement that item parameters follows log-normal distribution for diffi-
culty, normal distribution for discrimination, beta distribution for lower asymptote in IRT
model (du Toit, 2003). Based on this agreement, IRT computer programs such as BILOG
and MULTILOG use default or user assigned priors for Bayesian estimates (Zimowski et al.,

2003; Thissen et al., 2003). Although the calculation of posterior distribution is difficult, the
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calculation of posterior can be easier when prior distribution and posterior distribution are
under the same distribution family. It refers to as conjugate prior (Gelman et al., 2003).

The Bayesian defaults for prior from BILOG-MG computer program were used for the
difficulty and lower asymptote parameters (du Toit, 2003). The prior default for the discrim-
ination parameter follows the log-normal distribution with mean = 0 and SD = 0.5 in the
BILOG-MG. The prior for the discrimination parameter follows the normal distribution with
mean = 0 and SD = 1 and should be larger than zero in this study. This prior distribution
was also used by Li, Cohen, Kim, and Cho (2009).

Label Switching

Label switching is a concern because it can lead to difficulties in interpretation. This kind
of problem arises in MCMC estimation when the model components are ordered arbitrarily
in mixture models (Sperrin, Jaki, & Wit, 2010). The term label switching was proposed by
Render and Walker (1984) to describe the invariance of the likelihood estimates when the
mixture components were relabeled (Stephens, 2000). Label switching must be addressed
before convergence diagnostics since it is a prerequisite of convergence of an MCMC sampler
(Jasra, Holmes, & Stephens, 2005).

There are two types of label switching. The first one arises when the latent classes are
reordered multiple times over the course of an MCMC chain during a run of an MCMC
sampler (Sperrin, Jaki, & Wit, 2010). There are some methods to handle this type of label
switching. Three commonly used methods are imposing artificial identifiability constraints on
the model parameters, implementing a relabelling algorithms (Stephens, 1997), and imposing
invariant loss functions (Celeux, Hurn, & Robert, 2000).

The second type of label switching arises when the latent class switches among the
replications in a simulation study (Choi et al., 2010; Li et al., 2009). This type can cause

the difficulty in interpretation of results since the latent class will have taken different orders
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in each replication. In a simulation study, since the generating values for item parameters
for each latent class and the group membership parameters are already known, estimated
parameters can be compared with the generating values. If label switching is observed, then
relabelling can be done to re-align the latent classes based on matching estimates with the
generating parameters.

Two ways can be used to handle label switching. The first method uses group member-
ship parameters and the second used item parameters and the second method uses group
membership parameters to check for label switching. With respect to the first method, a
cross-tabulation can be done to compare the generating group membership information to
group membership estimates. For the second method, comparing item parameters, the gen-
erating parameter for items in each latent class can be compared to the parameter estimates.
The pattern of matches can then be compared and the latent classes relabeled to the closest

pattern.

Monitoring Convergence

The initial iterations in a Markov chain are referred to as burn-in iterations and are assumed
to reflect some effect of the starting values. These are discarded in order to diminish the
effect of the starting values (Gelman et al., 2003; Gilks et al., 1996). Iterations after the
burn-in are used to obtain estimates of parameters. Convergence diagnostics are used to
determine how many iterations to retain following burn-in. This requires examining each
iteration in a chain for each parameter.

Commonly used convergence diagnostics methods include the Brook, Gelman, & Ru-
bin convergence diagnostic (Gelman & Rubin, 1992), the Geweke convergence diagnostic
(Geweke, 1992), the Heidelberger and Welch convergence diagnostic (Heidelberger & Welch,
1983), and the Raftery and Lewis convergence diagnostic (Raftery & Lewis, 1992). The first

method can be used when two or more parallel chains are run simultaneously. It was not
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used in this study as only single chains were estimated. The Heidelberger and Welch (1983)
convergence diagnostic can be used when a single chain is run and was used for this study
as implemented in the Coda software package using R (Plummer et al., 2012).

The Heidelberger and Welch convergence diagnostic consists of two tests. A stationarity
test using the Cramer-von-Mises statistic and a halfwidth test. If the posterior means of
selected iterations are non-stationary, the test is repeated after discarding the first 10% of
the iterations. This process is stopped when the resulting chain passes the stationarity test
or when more than 50% of the iterations have been discarded (Smith, 2007). Passing the
stationarity test is taken to indicate that convergence has been realized and the number of
burn-in and post burn-in is determined at that point. Table 3.1 provides Heidelberger and
Welch convergence diagnostic output used in this study. b1 in Table 3.1 is the item difficulty
parameter for Class 1. Convergence was obtained since the item difficulties for all 20 items
in Class 1 passed the stationarity test.

A halfwidth test is based on the chain that has passed the stationarity test for each
parameter being estimated. If the halfwidth of the credibility interval for the posterior mean
is less than a specified accuracy of this mean, the halfwidth test can be interpreted to mean
the parameter has been estimated with acceptable accuracy. If the halfwidth test fails, a
longer run of the MCMC chain is required to improve the accuracy of the estimate (Smith,
2007). For monitoring convergence, the success of stationarity test was counted for all item
difficulty parameters. We determined the burn-in and post burn-in iterations when all item
difficulty parameter passed the stationarity test.

The ratio of the standard deviation of the parameter to the MC standard error for the
parameter was also monitored. The usual criterion for this ratio is that the MC standard
error should be not more than 5% of the standard deviation of the parameter. In addition,
the credibility interval was considered to monitor the convergence especially for Mix3PLM. A

credibility interval in Bayesian statistics is analogous to confidence intervals. The computer
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Table 3.1: Heidelberger & Welch Convergence Diagnostic for the Example in Chapter 2

Stationarity Start Halfwidth Mean Halfwidth
Test Iteration P-value Test
b1[1] passed 1 0.206 passed  -0.648 0.004
b1[2] passed 1 0.570 passed  -0.456 0.004
b1[3] passed 1 0.732 passed  -0.075 0.004
b1[4] passed 1 0.093 passed 0.512 0.004
b1[5] passed 1 0.740 passed 0.506 0.004
b1[6] passed 1 0.351 passed  -1.994 0.005
b1[7] passed 1 0.437 passed  -1.848 0.005
b1[8] passed 1 0.222 passed  -1.443 0.004
b1[9] passed 1 0.298 passed  -1.326 0.004
b1[10] passed 1 0.471 passed  -0.935 0.004
b1[11] passed 1 0.126 passed  -0.464 0.004
b1[12] passed 1 0.468 passed  -0.242 0.004
b1[13] passed 1 0.175 passed 0.045 0.004
b1[14] passed 1 0.412 passed 0.382 0.004
b1[15] passed 1 0.825 passed 0.494 0.004
b1[16] passed 1 0.905 passed 0.936 0.004
b1[17] passed 1 0.831 passed 1.384 0.004
b1[18] passed 1 0.682 passed 1.321 0.004
b1[19] passed 1 0.487 passed 1.619 0.005
b1[20] passed 1 0.360 passed 1.973 0.005
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software OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) provides a 95% credibility
interval for all parameter estimates as a default. When the posterior means are placed within

the 95% credibility interval, there is an evidence for convergence.

Model Selection

If an IRT model does not fit the data, the model does not support an accurate interpretation
of the latent variable (e.g., of ability). When the competing models are nested, the likelihood
ratio test can be used for model selection. When models are not nested, then information
indices can be used to help inform model selection. In this study, model selection indices
were used as MixIRT models are not nested.

Congdon (2003) and Gill (2002) suggest the Bayesian information criterion (BIC; Schwartz,
1978) and the Akaike’s Information Criterion (AIC; Akaike, 1973) for model selection in a
Bayesian context. Kass (1993) and Kass and Raftery (1995) also suggested using the BIC
as a substitute for full calculation of the Bayes factor because calculation without specifying
priors is possible in BIC. Bayesian researchers have proposed somewhat different methods
as well as the AIC and BIC for model selection: the deviance information criterion (DIC;
Spiegelhalter Best, Carlin, & van der Linde, 2002), Hannan-Quinn information criterion
(HQC; Hannan & Quinn, 1979; Claeskens & Hjort, 2008), posterior predictive model checks
(PPMC; Gelman et al., 2003), and the pseudo-Bayes factor (PsBF; Geisser & Eddy 1979;
Gelfand & Dey, 1994). The equations were described at Li et al. (2009) and Hannan and
Quinn (1979).

Li et al. (2009) found BIC to be more accurate than AIC, DIC, PPMC, and PsBF for
model selection with MixIRT models. Claeskens and Hjort (2008) introduced HQC as a
BIC-like criterion but hesitated to use it because of the unclearness of the HQC equation.
They concluded that both AIC and the BIC have good properties for model selection because

AIC is efficient and the BIC is consistent. Based on the conclusion of Li et al. (2009) and
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Claeskens and Hjort (2008), AIC and BIC were determined as a model selection index.
The AIC is very useful in comparing and selecting non-nested models but AIC has a
strong bias toward models that overestimated with extra parameters and AIC tended to
select the more complex model with an increase in sample size (Gill, 2002; Carlin & Louis,
2001; Sawa, 1978; Li et al., 2009).
AIC and BIC indices can be calculated as

AIC =D(&) +2p (3.1)

BIC = D(§) + plog N, (3.2)

where D(§) is the posterior mean of the deviance in MCMC estimation, £ denotes all pa-
rameters in the model, p is the number of parameters, and N is the number of examinees.
The number of latent classes was determined using the Bayesian information criterion (BIC)

as suggested by Li et al. (2009) and AIC was also monitored.

3.2 Simulation Study Design

Conditions Simulated

A simulation study was performed to examine the impact of different identification con-
straints in the context of three MixIRT models: MixRM, Mix2PLM, and Mix3PLM. The
design of the simulation study included the three constraints used in the example described
above. These were Constraint 1 (item anchoring), Constraint 2 (person centering), and
Constraint 3 (item centering).

In this study, there were four competing candidate models. These included models with

from 1- to 4-latent groups. Each iteration calculated posterior mean of the deviance and
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then calculate AIC and BIC. AIC and BIC were calculated after mean of posterior mean.
Lower AIC and BIC values indicate the preferred model.

Liet al. (2009) report differences in recovery for different sample sizes for each of the three
dichotomous mixture IRT models, the MixRM, Mix2PLM, and Mix3PLM. The following
simulation conditions were used in this study: two sample sizes (600 examinees and 2,400
examinees), two test lengths (20 and 40 items), three different cases of latent groups (1-
, 2-, and 3-groups) with different proportions of simulated groups for each of these three
MixIRT models (see Table 3.2). For different proportions of simulated groups, 60% and
40% were used for two latent group solution and three latent group solution used three
different proportions, 60%, 30%, and 10%, respectively. The simulation conditions are not
fully crossed because proportions of group membership and sample sizes differ depending on

the MixIRT model being simulated.

Table 3.2: Simulation Conditions

Number of Sample Size
Group Latent Groups Proportions N = 600 N = 1200 N = 2400
G1 1 600 1,200 2,400
G2 2 .60 : .40 360 / 240 720 / 480 1,440 / 960
G3 3 60:.30: .10 360 /180 /60 720 /360 /120 1,440 / 720 / 240

Note. G1 = one group, G2 = two groups, G3 = three groups

Twenty replications for each condition were generated. Random numbers seeds were
used to generate the 60 data sets (= 20 replications x 3 latent groups). The random
numbers were generated without replacement using the generator at the following website:
http://stattrek.com/statistics/random-number-generator.aspx. The random numbers were
generated in August 2012. Each random number was used as a seed for generating data for
each condition using N(0,1) in a program written in R. Code for this program is given in
Appendix A.

The first 20 random numbers were used for the 20 replications for the theta parameter
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generated for the 1-group case and the first group of the 2-group and of 3-group cases. The
next 20 random numbers were used for the 20 replications for the theta parameter generations
for the second group of the 2-group and 3-group cases, and the last 20 random numbers were
used for generating the 20 replications for the theta parameter generations of the third group
of the 3-group case.

Table 3.3: Simulated Performance Patterns

Type of Knowledge Group 1 Group 2 Group 3

1 Good  Average  Poor
2 Average Poor Good
3 Poor Good  Average

There were 20 replications of the 108 conditions: Three identification constraints x two
test lengths X two sample sizes X one to three latent groups x three mixture IRT models
yields 108 conditions.

Three types of knowledge were simulated in each test as suggested by Li et al. (2009).
The generating parameters for the knowledge type are given in Table 3.3. The three types
of knowledge are related to sets of responses. Items 1 to 5 have same item parameters for
the three groups. Items 6 to 10 measure Type 1 knowlege, Items 11 to 15 measure Type
2 of knowledge, and Items 16 to 20 measure Type 3 knowledge (see Table 3.4). Group 1
is simulated to have good performance in first type of knowledge, average performance in
second type of knowledge, and poor performance in last type of knowledge. Three different
groups were simulated as performing differently based on the type of knowledge.

Item parameters were modified from Li et al. (2009). Two discrimination parameters
were used: A good performance was simulated with a discrimination of 2; a value of 1 was
used for average or poor performing groups. Three lower asymptote parameters, .25, .2, and
.1, were assigned to high difficulty, medium difficulty, and low difficulty items, respectively.
The item parameters for Group 1 were used for the 1-group model. Data for the 2-group

model were simulated using the item parameters for Groups 1 and 2. Data for the 3-group
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model were simulated using the item parameters for Groups 1, 2, and 3. For the 40-item

condition, the pattern for the 20-item test was used twice.

Table 3.4: Generating parameters for MixIRT Model Simulations: 25% Anchor Items

Type of Group 1 Group 2 Group 3
Knowledge Anchor Item b a c b a c b a ¢
anchor 1 -050 1 .20 -0.50 1 .20 -0.50 1 .20
anchor 2 -0.50 1 .20 -0.50 1 .20 -0.50 1 .20
anchor 3 0.00 1 .20 0.00 1 .20 0.00 1 .20
anchor 4 0.50 1 .20 0.50 1 .20 0.50 1 .20
anchor 5 0.50 1 .20 0.50 1 .20 0.50 1 .20
1 6 -200 2 .10 -0.50 1 .20 1.00 1 .25
7 175 2 .10 -0.25 1 .20 1.25 1 .25
8§ -1.50 2 .10 0.00 1 .20 1.50 1 .25
9 -1.25 2 .10 025 1 .20 1.75 1 .25
10 -1.00 2 .10 0.50 1 .20 200 1 .25
2 11 -050 1 .20 1.00 1 .25 -2.00 2 .10
12 -025 1 .20 1.25 1 .25 -1.75 2 .10
13 0.00 1 .20 1.50 1 .25 -1.50 2 .10
14 025 1 .20 1.7 1 .25 -1.25 2 .10
15 0.50 1 .20 200 1 .25 -1.00 2 .10
3 16 1.00 1 .25 -2.00 2 .10 -0.50 1 .20
17 1.25 1 .25 -1.75 2 .10 -0.25 1 .20
18 1.50 1 .25 -1.50 2 .10 0.00 1 .20
19 1.7 1 .25 -1.25 2 .10 025 1 .20
20 2.00 1 .25 -1.00 2 .10 0.50 1 .20

Note. a = discrimination parameter; b = difficulty parameter; ¢ = lower asymptote parameter

Table 3.5 presents the numbers of hours needed to complete these runs. The MixRM
took between 3.6 and 26 hours to run the data for one condition using OpenBUGS. The
Mix2PLM took between 3 and 50 hours and the Mix3PLM took between 9 and 197 hours

to complete.

Recovery Evaluation

A recovery analysis was performed to evaluate the accuracy of the estimates of item and

group mean parameters. It is important to determine whether the data were simulated
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Table 3.5: OpenBUGS Running Times for One Replication

Model ~ Test Length Sample Size Time (hour)

MixRM 20 600 3
MixRM 20 2400 17
MixRM 40 600 6
MixRM 40 2400 26
Mix2PLM 20 600 3
Mix2PLM 20 2400 29
Mix2PLM 40 600 7
Mix2PLM 40 2400 20
Mix3PLM 20 600 9
Mix3PLM 20 2400 71
Mix3PLM 40 600 18
Mix3PLM 40 2400 197

as intended in order to be able to make the intended inferences as to how the different
constraints can be expected to affect parameter estimation. The following three indices were
calculated to determine accuracy of recovery: BIAS, root mean square error (RMSE), and

Pearson correlations.

Bias(b) = E(b) — b (3.3)
RMSE®) =\ E[(b—b)’] (3.4)
Cor(/l;, b) = %}b) (3.5)

Let b be a point estimator for a parameter b. Then b is defined as an unbiased estimator
if & (B) — b. If not, b is said to be biased. Based on this definition, the bias of a point
estimator b is given by Equation 3.3.

RMSE was computed by the square root of mean square error (MSE: the average of
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the square of the distance between the estimator and its target or generating parameter) in
Equation 3.4. If the bias and RMSE increased, an estimator is said to be bad and estimated
parameter is considered not to recover generating parameter well.

Harwell, Stone, Hsu, and Kirisci (1996) suggested using the correlation between estimated
and true parameters as a criterion in Monte Carlo studies. Using correlations makes it pos-
sible to compare variables with different metrics. However, the correlation only explains the
rank ordering between the estimated and true parameters and there is no clear criterion to
compare the magnitude of correlation. For this study, Pearson correlations (Cor) were com-
puted to evaluate the accuracy of recovery analysis as well as bias and RMSE. The correlation
between the estimator and its generating parameter was calculated by Equation 3.5.

The bias, RMSE, and Pearson correlation were computed across items, latent class

groups, and replications by Equations 3.6 and 3.8.

. 2y r=lg=li=1
Bias(b) = fTeli (3.6)
R G I __ 9
21 Zl 21 (bigr — big)

RMSE(b) = \| == 3.7
(0) RGI (3.7)
~ 1< Cov(g big)

_ = igry Vig
Cor(b,b) = Zl oo (3.8)

where /b\igr is the estimated item difficulty parameter for item ¢ in latent group ¢ for rth
replication, b;, is the generating true value of item difficulty for item ¢ in latent group g, R
is the number of replications (r = 1,...,R), I (i =1,...,I) is the number of items, and G

(9 =1,...,G) is the number of latent classes in the model being estimated.
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Linking of Metrics for Recovery Analysis

In order to estimate BIAS and RMSE, item parameter estimates need to be on the same scale
as the generating parameters. The metrics of estimates from each replication were trans-
formed to the metric of generating parameters using the mean and sigma equating method
(de Ayala, 2009; Hambleton & Swaminathan, 1985; Kolen & Brennan, 2004). The mean and
sigma is a simple and widely used method for IRT equating. The equating constants A and

B for the linear transformation were computed as follows:

_ S

A—
Shy

(3.9)

B = bg — Abr, (3.10)

where bp is a generating item difficulty to be placed onto the base metric of the generating
parameter, by is the estimated item difficulty on the target scale, S is the standard deviation
and b is the mean of item difficulty parameters (Hambleton & Swaminathan, 1985). The
estimated parameters from each replication were equated and placed onto the metric of the
generating parameter using the mean and sigma method as shown in Equations 3.11 to 3.13.

BIAS, RMSE, and correlations were computed after this transformation.

b;* = Ab; + B = %bi + ([_?B — EET) (3.11)
SbT SbT
* a; SbT
* Tt 0T 12
ol = =g (3.12)
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Ci* = Gy, (313)

where b; is item difficulty parameter of item i, a; is item discrimination parameter of item ¢,
and ¢; is lower asymptote parameter of item . b;", a;*, and ¢;* represent estimated parameters

transformed by mean and sigma equating method. They were calculated from the Table 3.4.
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Chapter 4

RESULTS

The purpose of this study was to compare the effects of three different constraints for iden-
tifying the metric in MixIRT models. In this chapter, we present results from a simulation
study examining the effects of these on three different dichotomous MixIRT models, the
MixRM, the Mix2PLM and the Mix3PLM. The following conditions were generated: two
different test lengths (20 and 40 items), two different sample sizes (600 and 2,400 examinees),
three different numbers of latent classes (1-, 2-, and 3- latent classes), and three different

constraints (item anchoring, person centering, and item centering).

4.1 Results of the Simulation Study

Monitoring Convergence

Three convergence diagnostics were used to determine convergence, the Heidelberger and
Welch (1983) convergence diagnostics, the ratio of the standard deviation of the parameter
estimate to the MC standard error for the parameter estimate, and the 95% credibility in-
terval. For the MixRM and Mix2PLM, estimation chains were monitored using Heidelberger

and Welch convergence diagnostics and the ratio of the standard deviation of the parame-
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ter to the MC standard error for the parameter. The 95% credibility interval was used to
monitor the convergence of the Mix3PLM.

Tables E.1 and E.2 in Appendix E contain the convergence results from the Heidelberger
& Welch test for the MixRM and Mix2PLM. These tables show the convergence results for
the MixRM and Mix2PLM, person centering, 20- and 40-items, 600 and 2,400 examinees,
and three-group solution. The total number of parameters passing the stationarity test was
counted to evaluate convergence. For 20-item condition, the total number passing the test
should be 200 (20 for the one-group model, 40 for the two-group model, 60 for the three-
group, 80 for the four-group model) and 400 for the 40-item condition (40 for the one-group
model, 80 for the two-group model, 120 for the three-group model, 160 for the four-group
model). Convergence of all parameters was achieved when the value in the last column in
Tables E.1 and E.2 equaled 1,200. As can be seen in these tables, convergence was good but
not perfect.

The chain for the MixRM was found to have converged perfectly for all parameters after
a burn-in of 5,000 iterations and 5,000 post-burn-in iterations (see Table E.1). The chain for
the Mix2PLM did not converge perfectly, but was very close with 1,185 estimates passing
among the 1,200 total with a burn-in of 6,000 iterations and 11,000 post burn-in iterations
(see Table E.2). Autocorrelations, density plots, and history plots also provided evidence of
convergence for the MixRM and Mix2PLM (see Figures F.1 to F.3).

The Mix3PLM failed to converge after 35,000 iterations based on the Heidelberger and
Welch diagnostics and the ratio of the standard deviation of the parameter estimate to
the MC standard error for the parameter estimate. Autocorrelation plots, density plots,
and history plots also failed to show convergence (see Figures G.1 to G.3). As an alternative
approach, the 95% credibility interval was used. A credibility interval in Bayesian statistics is
analogous to confidence intervals in frequentist statistics. The computer software OpenBUGS

(Spiegelhalter et al., 2007) used in this study provides a 95% credibility interval as a default
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for all parameter estimates. Based on the 95% credibility interval, the Mix3PLMs were
considered to have converged after a burn-in of 6,000 iterations and 11,000 post burn-in
iterations (see Tables E.3 to E.10).

To test convergence using the ratio of the standard deviation of the parameter to the MC
standard error for the parameter, MC standard error and standard deviation were derived
from OpenBUGS stat output files and the ratio was calculated. This method also supported
the results of Heidelberger & Welch diagnostics for MixRM and Mix2PLM. However, the
parameters for Mix3PLM are not converged using this method. Only the method using 95%

credibility interval provided the evidence of convergence for Mix3PLM.

Model Selection

Exploratory MixRM, Mix2PLM, and Mix3PLM analyses were done to determine the best
fitting model to the simulated data. The criterion used for model selection was BIC as
suggested by Li et al. (2009). AIC was provided as a comparison index. The percentages in
Table 4.1 indicate the number of correct model selection decisions for each condition.
Model selection for the MixRM using BIC was close to 100 percent correct for all con-
ditions except one condition for Constraint 1 (item anchoring) for 20 items, 2,400 simulees,
and the 2-group model had 95 percent agreement. All model selections were perfect for the
Mix2PLM. For the Mix3PLM, however, there were some low percentages of correct model
selection. These occurred under Constraint 2 (person centering) and Constraint 3 (item

centering). These results are discussed below.

Model Selection using BIC

The percentages of correct detections shown in Table 4.1 are also plotted in Figures 4.1
to 4.3 to help provide another indication of the effects of the three constraints. In the

figures, the three lines indicated the type of MixIRTM (i.e., the MixRM, Mix2PLM, and
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Table 4.1: Percent of Correct Model Selections for the MixIRTM

Constraint Item Sample  Latent BIC AIC
Classes MixRM  Mix2PLM  Mix3PLM MixRM  Mix2PLM  Mix3PLM
1. Item 20 600 1 100 100 100 95 100 100
Anchoring 2 100 100 100 90 100 100
3 100 100 100 95 100 100
2400 1 100 100 100 85 100 100
2 95 100 95 70 90 95
3 100 100 95 65 95 95
40 600 1 100 100 100 100 100 100
2 100 100 100 100 100 100
3 100 100 100 100 100 100
2400 1 100 100 90 100 100 90
2 100 100 100 100 100 100
3 100 100 100 100 100 100
2. Person 20 600 1 100 100 100 90 100 100
Centering 2 100 100 100 90 100 100
3 100 100 40 100 100 100
2400 1 100 100 45 65 100 45
2 100 100 90 75 95 65
3 100 100 90 55 100 60
40 600 1 100 100 90 100 100 65
2 100 100 95 100 100 95
3 100 100 25 100 100 100
2400 1 100 100 45 100 100 45
2 100 100 95 100 100 95
3 100 100 95 100 100 85
3. Item 20 600 1 100 100 100 95 100 100
Centering 2 100 100 100 95 100 100
3 100 100 40 100 100 100
2400 1 100 100 100 75 100 100
2 100 100 100 75 95 95
3 100 100 100 70 95 90
40 600 1 100 100 100 100 100 100
2 100 100 95 100 100 95
3 100 100 25 100 100 100
2400 1 100 100 25 100 100 25
2 100 100 60 100 100 60
3 100 100 30 100 100 70
MixIRTM 99.86 100.00 82.36 91.25 99.17 88.06
Constraint 1 99.58 100.00 98.33 91.67 98.75 98.33
Constraint 2 100.00 100.00 75.83 89.58 99.58 79.58
Constraint 3 100.00 100.00 72.92 92.50 99.17 86.25
20-items 99.72 100.00 88.61 82.50 98.33 91.39
40 items 100.00 100.00 76.11 100.00 100.00 84.72
n=600 100.00 100.00 82.78 98.33 100.00 97.22
n=2400 99.72 100.00 80.83 85.28 98.33 78.61
1-class 100.00 100.00 82.92 92.08 100.00 80.83
2-class 99.58 100.00 94.17 91.25 98.33 91.67
3-class 100.00 100.00 70.00 90.42 99.17 91.67
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Mix3PLM) and the y-axis describes the percentages of correct detection using BIC index.
The simulation conditions are described along the x-axis (I2 indicates 20-items, 14 indicates
40-items, S6 indicates 600 examinees, S24 indicates 2,400 examinees, G1 to G3 indicate one-
group to three-group models). For example, 12S6G1 indicates the condition with 20-items,
600 examinees, one group solution under 20 replications.

Model Selection using BIC under Constraint 1 (Item Anchoring). The plots
in Figure 4.1 for Constraint 1 clearly indicate that the three MixIRTMs provided nearly the
same results for all conditions for both the MixRM and Mix2PLM. Those places where the
plots separate mainly occur where less than 100 percent correct detections were observed.
The percent of correct model selection was 99.58% for MixRM, 100.00% for Mix2PLM, and
98.33% for Mix3PLM in Table 4.1. Constraint 1 (item anchoring) did not affect the model
selection for any of the MixIRTMs.

Model Selection using BIC Under Constraint 2 (Person Centering). Unlike
results for the MixRM and Mix2PLM, there were clearly some problems for the Mix3PLM,
with Constraint 2 (person centering) (See Figure 4.2. For the smaller sample size (n = 600),
the Mix3PLM detected fewer correct models simulated with 3 latent classes. Likewise, for
the larger sample size (n = 2,400), the Mix3PLM detected fewer models simulated with
1 latent class. For 3 latent groups and the smaller sample size conditions, correct model
selection was 40 percent for 20 items and 25 percent for 40 items (see Figure 4.2). When
these data sets were generated, the numbers of students for each group in the small sample
(n = 600) with three groups condition were 360, 180, and 60, respectively. It is possible that
the small sample size for class 3 of 60 examinees might not be sufficient to estimate all the
parameters in the Mix3PLM. In addition, increasing test length to 40 items but with the
same smaller sample (n = 600) may not have provided sufficient information for accurate
estimation of all model parameters.

In addition, for the larger sample size (n = 2,400) and one latent group condition in the
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Mix3PLM, only 45 percent correct detections were observed for both the 20- and 40-item
tests. The one group solution is the usual IRT with no latent classes. In this case, it appears
that under Constraint 2 (person centering), model selection did not work well for the usual
3PL IRT model. These results suggest that person centering affected model selection using
the BIC index, when the larger sample size was simulated for the one latent class model (i.e.,
a 3PL model without any latent classes).

Model Selection using BIC Under Constraint 3 (Item Centering). Model se-
lection was perfect for the MixRM and Mix2PLM under Constraint 3 (item centering).
Problems were observed for the Mix3PLM under this constraint. For the smaller sample
size (n = 600) and 3-latent group model conditions, correct model selection was 40 % for
the 20-item test and 25 % for the 40-item test condition (see Figure 4.3). This result was
similar to what was observed under Constraint 2 (person centering). For the longer test (40
items) x larger sample (n = 2,400) condition, the percent of correct model selection was low
regardless of the number of latent groups simulated (e.g., one group = 25 %, two groups =
60 %, three groups = 30 %). One conclusion appears to be that Constraint 3 (item center-
ing) did not work well in two conditions, one was the smaller sample size and the 3-latent
group model and the other was the longer test length and larger sample size regardless of
the number of latent groups in the model.

When the three types of constraints were compared, there was no great difference in
model selection accuracy between the MixRM and the Mix2PLM. When Constraint 2 (person
centering) and Constraint 3 (item centering) were compared for the Mix3PLM, there was
no difference in the percentage of correct model selections for the smaller sample size (600
examinees). Constraint 2 (person centering) had higher a percentage than Constraint 3
(item centering), however, in the larger sample size condition regardless of test length or the
number of latent classes in the model. Constraint 3 (item centering) had higher percentages

of correct model selection than Constraint 2 (person centering) in the smaller sample size
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regardless of test length or number of latent classes. The percentage were low for two
simulation conditions (the 40-items, 600 examinees, and 3-group condition and the 40-items,
2,400 examinees, and 1-group condition) for both Constraints 2 and 3 (see Table 4.1).
Overall, model selection for the MixRM and Mix2PLM was close to 100 percent for all
three constraints. Model selection under Constraint 1 (item anchoring) was better for the
Mix3PLM than under Constraints 2 or 3. There was poor model selection in the mix3PLM
with Constraint 2 (person centering) when the smaller sample size and 3-group model
were simulated and when the larger sample size and 1-group model were simulated. Un-
der Constraint 3 (item centering), low percentages of correct detections were observed for

the Mix3PLM for the longer test (i.e., 40 items) x larger sample size (i.e., n = 2,400).
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Figure 4.1: Percent Correct Detections with BIC for Constraint 1 (Item Anchoring)

Model Selection using AIC

Although BIC was used as the criterion for model selection in this study, results for AIC are
provided here for comparison purposes, as AIC is also often used for model selection. The

main problem with AIC is that it has been found to be sensitive to model complexity (Li
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Figure 4.2: Percent Correct Detections with BIC for Constraint 2 (Person Anchoring)
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Figure 4.3: Percent Correct Detections with BIC for Constraint 3 (Item Centering)
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et al., 2009). That is, AIC has been shown to have a tendency to select the more complex
model regardless of the generating (i.e., the correct) model.

Table 4.1 presents model selection results for AIC under each constraint. These correct
detection rates are also plotted Figures 4.4 to 4.6.

Model Selection using AIC under Constraint 1 (Item Anchoring). The plots
in Figure 4.4 indicate that correct model selection was poor only for the shorter test (i.e.,
20 items) x larger sample size (n = 2,400) condition for the MixRM. The percent of correct
model selection with the shorter test x larger sample size was low for this model with
correct detection percentages of 85, 70, and 65 for the one- to three-latent group models,
respectively. AIC detected the correct model relatively well under Constraint 1, however,
for the Mix2PLM and Mix3PLM.

Model Selection using AIC under Constraint 2 (Person Centering). When
Constraint 2 (person centering) was used, low percentages of correct detection using AIC
were observed for the 20-item x 2,400 sample size condition for both the MixRM and the
Mix3PLM (see also Figure 4.5). For the MixRM, low these percentages were observed: 65
% for the 1-group model, 75 % for the 2-group model, and 55 % for the 3-group model. Low
percentages of correct model selection also were observed for the Mix3PLM of 45 percent
for the one-group condition, 65 percent for the two-group condition, and 60 percent for the
three-group condition. In addition, 65 percent of correct model selections were observed
for the shorter 20-item test x smaller sample size (n = 600) x one-group condition. For
the longer test (i.e., 40 items) x larger sample size (i.e., n = 2,400) condition, 45 percent
of correct detection were observed for the one-group and 85 percent for the three-group
conditions.

Model Selection using AIC under Constraint 3 (Item Centering). Correct
models were selected between 95 and 100 percent of the time for the Mix2PLM (see also

Figure 4.6). For the MixRM and Mix3PLM, however, there were some conditions with low
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percentages of correct selection. For the MixRM, the shorter test length (20 items) x larger
sample size (n = 2,400) condition had lower percentages of correct model selection (75 percent
for the one- and two-group conditions and 70 percent for the three-group condition). For the
longer test length (40 items) x larger sample size (n = 2,400) condition, the Mix3PLM had
low percentages of correct model selection regardless of the number of latent classes in the
model (25 percent for the one-group model, 60 percent for the two-group model, 70 percent
for the three-group model. As can be seen in Table 4.1, this pattern was similar to that
observed for Constraint 3 for the Mix3PLM when BIC was used.

Overall, AIC results for the Mix2PLM indicated good model selection results for all three
constraints. For the MixRM, however, the percent of correct model selection decreased for
shorter test lengths (20 items) x larger sample size (n = 2,400). Selection of the correct
model was good for the Mix3PLM under Constraint 1 (item anchoring). Under Constraints
2 (person centering) and 3 (item centering), however, the Mix3PLM had lower percentages

of correct selection.
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Figure 4.4: The Percent of Correct Number of Latent Classes with Item Anchoring Constraint
Based on AIC
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Figure 4.5: The Percent of Correct Number of Latent Classes with Person Centering Con-

straint Based on AIC
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Figure 4.6: The Percent of Correct Number of Latent Classes with Item Centering Constraint

Based on AIC
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Comparison of Model Selection for AIC and BIC

As can be seen in Table 4.1, for the MixRM and Mix2PLM, BIC had more correct model
selections than AIC. For the Mix3PLM, BIC had more often correct model selections than
AIC except for three conditions: longer test length x smaller sample size x 3-class using
Constraints 2 (person centering) and 3 (item centering), longer test length x larger sample
size x 3-class using Constraint 3 (item centering). This is agreement with results from Li et
al. (2009) which found that BIC made more correct model selections for all three MixIRTMs.

Comparisons Between BIC and AIC for the MixRM and Mix2PLM. For the
MixRM and Mix2PLM, BIC selected the correct model more often than did AIC for all
conditions (i.e., type of constraint, test length, sample size, and number of latent group)
at more than 99.5%. AIC and BIC, however, had about the same close to 100% of correct
model selections for the longer test length in the MixRM and for the longer test length,
smaller sample size, and 1-group model in the Mix2PLM.

Comparisons Between BIC and AIC for the Mix3PLM. AIC and BIC seemed to
work least well in Mix3PLM than in either the MixRM or Mix2PLM. AIC and BIC were
equally accurate at selection of the correct model with 98.33 percent under Constraint 1
(item anchoring). However, AIC more often selected the correct model than BIC under
Constraints 2 (person centering ) and 3 (item centering). For both test lengths, AIC was
more accurate than BIC. In addition, for the small sample size, AIC was more accurate,
whereas BIC was more accurate for the large sample size. For the 1-class and 2-class models,
BIC was more accurate and slightly better. For the 3-class model, however, AIC was much
better with 91.67 percent correct compared to 70 percent correct for BIC.

Among the 36 condition, AIC and BIC selected correct models for 25 conditions. BIC
selected more correct models for 6 conditions and AIC did so for 5 conditions. For the small
sample size, 3-class model, and for Constraints 2 (person centering) and 3 (item centering),

AIC was more accurate. For the longer test length, larger sample size, 3-class models, AIC
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also was more accurate. BIC was more accurate when the shorter test length, larger sample
size, and Constraint 2 (person centering) was used. For the longer test length, larger sample
size, and 3-cl