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Abstract

In item response theory (IRT), the origin and unit of the ability scale in IRT are arbitrary.

This arbitrariness is referred to as scale indeterminacy or the identification problem. Stan-

dard IRT models may not fit the data when there is unexplained heterogeneity present. In

such cases, a mixture IRT model, which models this heterogeneity by fitting an IRT model to

latent classes in the data, may be useful. The purpose of this study was to explore the effect

of three different kinds of constraints for identifying the metric in the mixture IRT (MixIRT)

model: (1) equating in which an anchor item is used to anchor the metrics between latent

classes, (2) person centering in which the mean of the ability parameters is set to zero after

each calibration, and (3) item centering in which the mean of the item difficulty parameters

is set to zero. Results based on an analysis of the empirical data indicated that the number

of latent classes detected differed depending on the particular MixIRT model and constraint

combination. The mean ability, proportion of group memberships, and item parameters

also differed between the three constraints. Results of a simulation study are presented fol-

lowed by an illustrative example using real data from the TIMSS 2011 8th grade science

test. In the simulation study, the impact of the three identification methods was examined

on classifications of latent class memberships and on item and ability parameter estimates



for three dichotomous MixIRT models. There was no effect of identification constraint on

the MixRM and Mix2PLM. Only the item anchoring constraint was found to work well

with the Mix3PLM, although recovery was relatively poor for this model compared to the

MixRM and Mix2PLM. When the types of constraint were compared, the person centering

constraint produced the worst recovery results. Test length and sample size did not appear

to have an effect on the recovery of item parameters. The longer test length improved group

member ship identification. Percent of correct model selection using AIC was lower for the

larger sample size. Recovery or group membership, item difficulty, and item discrimination

decreased with an increase in the number of latent classes simulated. Recovery of the lower

asymptote, however, was slightly better for the larger sample size and for more latent classes.

Index words: Scale identification, Identification problem, mixture item response
model, Bayesian analysis, TIMSS 2011 science test
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Chapter 1

STATEMENT OF THE PROBLEM

The invariance of item and person statistics is an important assumption of item response

theory (Lord, 1980; Lord & Novick, 1968). Under this assumption, item and person param-

eters remain invariant over different samples from the same population and over different

combinations of items that fit the model (Lord, 1980). A useful benefit of this assumption

is that invariance permits establishing a metric that does not change either when the same

test is given to new examinees or when new items are calibrated to the same model. The

assumption of invariance is one of the characteristics that differentiates IRT from classical

test theory (Hambleton, Swaminathan, & Rogers, 1991).

The assumption of invariance also poses a significant problem, however, as the choice of

the origin and scale for the ability metric are arbitrary (Lord, 1980). This arbitrariness is

referred to as scale indeterminacy or the metric identification problem (Baker & Kim, 2004).

Various methods to identify (or fix) the metric have been developed for IRT models.

When the same IRT model does not fit all members of a population, a Mixture IRT

model (MixIRTM) may be appropriate. The MixIRTM is formed by an integration of an

IRT model with a latent class model (Cho, Cohen, & Kim, 2013). The IRT portion of

the model estimates a continuous latent variable and the latent class portion of the model
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estimates a categorical latent variable. Combining these two models permits examining the

possibility that a population of examinees can be classified into some number of discrete

latent classes, and that item and ability parameters may differ for the different classes (Bolt,

Cohen, & Wollack, 2002).

Characterizing members of different latent classes is important in interpreting the mean-

ing of the classes. Comparison of item parameter estimates between latent classes is one

approach for characterizing the latent classes (Rost, 1990). In order to make such compar-

isons, however, the latent classes need to have a common metric. That is, estimates of model

parameters need to be on the same scale in order for comparisons to be made.

There are currently three methods commonly used for developing a common metric be-

tween latent classes. The first method is concurrent calibration in which one or more items

are used to anchor the metrics between classes (Bolt et al., 2002; Choi, Alexeev, & Cohen,

2014). The second method is to impose equality constraints by setting the mean of one

latent class to zero and its standard deviation to one (Baker & Kim, 2004; Cho, Cohen, &

Kim, in press; Cho, Cohen, & Templin, 2008; De Boeck, Cho, & Wilson, 2011; von Davier

& Yamamoto, 2004). A third method is setting the sum of item difficulties to zero for

each latent group (Cho & Cohen, 2010; Dai & Mislevy, 2006; Rost, 1990; Samuelsen, 2008).

Although each of these methods has been reported in the literature, to date, relatively lit-

tle research exists investigating the impact of these constraints on metric identification in

MixIRT models.

A commonly used method is one suggested by Rost (1990) for the mixture Rasch model

(MixRM) in which the mean of item difficulties is set to zero. There is somewhat less

agreement, however, about constraints used for identification for the mixture 2PL model

(Mix2PLM) or mixture 3PL model (Mix3PLM). Results from Choi, Alexeev, Cohen, and

Kim (2010) for the Mix3PLM indicated that setting the within class average of item dif-

ficulties to zero worked well with respect to recovery of generating parameters. Likewise,
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fixing the mean and standard deviation of the ability estimates to zero and one, respectively,

also worked well. Comparison of these three identification constraints suggested the latter

constraint had no effect on the accuracy of parameter recovery. These results were based on

only five replications, however, and for a relatively small number of conditions.

The purpose of this study was to explore the effects of these three methods for establishing

a common metric between latent classes in MixIRT models. An example is provided using

real data from the TIMSS 2011 Grade 8 Science Test to motivate the simulation study. The

impact of each of these methods was then examined in the context of a simulation study on

selection of the correct (i.e., the generating) model, recovery of item and latent group mean

parameter estimates, and selection of the correct latent class for each examinee.

3



Chapter 2

THEORETICAL FRAMEWORK

2.1 Mixture Item Response Theory Models

Item response theory (IRT) is composed of a family of statistical models each designed to

model the relationship between a continuous latent ability and performance on a test item.

As an example, the 2-parameter logistic model (2PLM) shown below in Equation 2.1 gives

the probability of a correct response for examinee j on item i:

P (yij = 1|θj) =
exp[ai(θj − bi)]

1 + exp[ai(θj − bi)]
, (2.1)

where θj is the latent ability for examinee j, ai is the item discrimination of item i, and bi

is the difficulty of item i.

When item performance is scored dichotomously (e.g., zero for an error and one for

a correct response), there are three standard models that tend to be used to model this

relationship. Using the logistic form of these models, they are the 1-parameter logistic

model (1PLM), the 2-parameter logistic model (2PLM), and the 3-parameter logistic model

(3PLM). Each of these models assumes that latent variable (e.g., ability) is measured the
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same for all members of a population.

Mixture IRT (MixIRTMs) assume that there may be groups or classes of examinees that

are latent in the population and for which the same IRT model does not hold. That is, there

may be different values for model parameters depending on the latent class to which a given

examinee belongs. The MixIRTM can be viewed as a combination of an IRT model and a

latent class model.

MixIRTMs assume that an examinee population is composed of a fixed number of discrete

latent classes of examinees (Cohen, Wollack, Bolt, & Mroch, 2002). All examinees who

belong to a certain latent class are assumed to have unique characteristics and are assumed

to be homogeneous on the categorical latent variable that differentiates one class from the

others. These models may be appropriate, in other words, when a single IRT model is not

the best fit to the data.

The Mixture Rasch Model (MixRM). The MixRM (Rost, 1990) is the simplest of

the dichotomous MixIRTMs and is based on the assumption that an examinee population is

composed of a number of discrete latent classes, each of which has unique item and ability

parameters (Cohen et al., 2002). The MixRM in Equation (2.2) associates a class membership

parameter, g, with each examinee. Class membership decides the relative difficulty of the

items for an examinee in that class. Additionally, g also determines a latent ability parameter,

θjg, which then has an effect on determination of the number of correct answers on the test.

The probability of a correct response in the MixRM can be written as

P (yij = 1|θjg) = ΣG
g=1πg

exp(θjg − big)
1 + exp(θjg − big)

, (2.2)

where g is an index for the latent class, g = 1, . . . , G; j = 1, . . . , N examinees; θjg, is

the latent ability of a examinee j within class g; πg is the proportion of examinees for each

class; and big is the Rasch difficulty parameter of item i for latent class g. In this way, the
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MixRM assumes that the Rasch model fits in each latent class but may have different item

and ability parameters.

The Mixture 2-Parameter Logistic Model (Mix2PLM). The Mix2PLM can be

viewed as a relaxed version of the MixRM in which the item discrimination parameter is left

unconstrained. Similar to the MixRM, the 2-parameter logistic model (2PLM) is assumed to

hold for each class, but each class may have unique item difficulty and discrimination param-

eters and different ability parameters. As with the MixRM, each examinee is parameterized

both by a class membership parameter (g = 1,...,G) and a within-class ability parameter

(θjg). That is, the Mix2PM also associates a class membership parameter, g, with each

examinee as well as a latent ability parameter, θg. The probability of a correct response in

the Mix2PLM can be written as

P (yij = 1|θjg) = ΣG
g=1πg

exp[aig(θjg − big)]
1 + exp[aig(θjg − big)]

, (2.3)

where g is an index for latent class, g = 1, . . . , G; j is the jth examinee among N examinees;

θjg is the latent ability of examinee j within class g; πg is the proportion of examinees for

each class; aig is the discrimination parameter for item i in class g; and big is the difficulty

parameter for item i in class g.

The Mixture 3-Parameter Logistic Model (Mix3PLM). The Mix3PLM can be

viewed as an extension of a Mix2PLM in which a term is added to model the lower asymptote

of the item response function. A 3-parameter logistic model is assumed to hold for each class

in the Mix3PLM. Item and ability parameters are allowed to differ between latent classes.

Each examinee is parameterized both by a class membership parameter (g = 1, . . . , G) and a

within-class ability parameter (θjg). The probability of a correct response in the Mix3PLM
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can be written as

P (yij = 1|θjg) = ΣG
g=1πg

[
cig + (1− cig)

exp[aig(θjg − big)]
1 + exp[aig(θjg − big)]

]
, (2.4)

where g is an index for latent class (g = 1, . . . , G), j is the jth examinee among N examinees

(j = 1, . . . , N examinees), θjg is the latent ability of examinee j within class g, πg is the

proportion of examinees for each class, aig is the discrimination parameter for item i in class

g, big is the difficulty parameter for item i in class g, and cig is the lower asymptote parameter

for item i in class g.

2.2 Scale Identification

The property of invariance of item and ability parameters in IRT is an important difference

from classical test theory (Hambleton et al., 1991). This property implies that item and

ability parameters do not depend on characteristics of the examinee sample or the specific

set of items used to measure ability. Thus, it allows for comparison of item and ability

parameter estimates from different sets of items or from different samples of examinees by

linking them to a common metric.

The choice of origin for the ability metric is arbitrary. That is, adding the same constant

to every θj and to every bi in this model does not change the value of ai(θj − bi) and so

pij also remains unchanged. Similarly, if we multiply every θj and every bi by the same

constant, and divide every ai by the same constant, there is no change in the value of the

term ai(θj − bi) or of Pij (Lord, 1980). Lord (1980) notes that item parameters will remain

invariant for groups from the same population as long as the ability scale is not changed.

This property is referred to as scale indeterminacy or metric indeterminacy.

Thus, it is necessary to fix the metric to a particular origin and unit in order to locate it.
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There are three methods that are commonly used in IRT to fix the metric: item anchoring,

person centering, and item centering (de Ayala, 2009). Item anchoring is usually used for

multiple group analysis. In this method, some items are fixed so that the same parameters

are used across groups. This is done based on either theoretical or empirical considerations

or both [e.g., the items are known to function the same in each group (Bolt et al., 2002; Choi

et al., 2014; Choi, Cohen, Lu, & Kim, 2014)]. Person centering sets the mean of the ability

parameters to zero or the mean and standard deviation of the ability parameters to zero and

unity during calibration of model parameters (Cho & Cohen, 2010; Finch & Pierson, 2011).

The third method, item centering, fixes the mean of item difficulty parameters to zero during

calibration (Bolt, Cohen, & Wollack, 2001; Izsák, Orrill, Cohen, & Brown, 2010; Meiser &

Machunsky, 2008; Meyer, 2008). These three methods are described below in the context of

IRT and are then discussed as they apply in the context of MixIRT.

Methods for Solving the Identification Problem

Item anchoring may be used when there are either theoretical or empirical reasons for fixing

some set of items to given values. If item parameters are known, for example, it is possible to

fix the item parameters at known values in each group. When multiple groups are analyzed,

therefore, these items may be used as anchors to link the metric across groups. As an

example, in the likelihood ratio test for differential item functioning (DIF), all item parameter

estimates can be constrained to the same values in each group except those of the studied

item (Thissen, Steinberg, & Wainer, 1993). Then the item parameters of the studied item

are estimated in each group. In the person centering method, the mean of the ability

parameters is set to zero after each calibration. Person centering is used in programs such

as LOGIST (Wingersky, Barton, & Lord, 1982), BILOG-MG (Zimowski, Muraki, Mislevy,

& Bock, 2003), PARSCALE (Muraki & Bock, 2003), and MULTILOG (Thissen, Chen, &

Bock, 2003). Item centering sets the mean of the item difficulty parameters to zero following
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calibration. IRT programs such as WINSTEPS (Linacre, 2001a), BIGSTEPS (Linacre &

Wright, 2001), and FACETS (Linacre, 2001b) use item centering (de Ayala, 2009).

Item anchoring, person centering, and item centering for handling the identification prob-

lem are also used for MixIRTMs. Item anchoring is used either by constraining some subset

of items to equality between groups or by fixing some subset of items to the same values in

each group. In either case, the specific subset of items will have the same item parameters

in each group. The second method, person centering, is to impose equality constraints for

some reference class by setting the mean of one group to zero and the unit of scale (i.e., its

standard deviation) to one. The item and ability parameter estimates for the other groups

are then estimated relative to the estimates for the reference group. The third method, item

centering, is done by setting the sum of item difficulties to zero for each latent group. The

WINMIRA program (von Davier, 2001) uses this type of item centering. Programs such as

M-plus (Muthén & Muthén, 2012) and OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn,

2007) allow researchers to impose any of these three methods.

In the next section, an empirical example is presented to illustrate the potential impact

of the different identification constraints on establishing a common metric in MixIRTMs.

2.3 Empirical Example

Data

For this example, data were taken from the TIMSS 2011 Grade 8 Test. The TIMSS 2011

Test consists of six sets of questions: A mathematics test, a science test, a student back-

ground questionnaire, a teacher background questionnaire (focusing on mathematics and

science teaching), a school background questionnaire, and a curriculum questionnaire. The

17 multiple-choice items and 8 short constructed response items (scored dichotomously) from

the 2011 TIMSS 8th grade science test were analyzed for this example.
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The multiple-choice items were scored correct or incorrect, and blanks were skipped and

not scored. In addition, the short answer items were scored as either correct or incorrect,

and blank items were skipped. The items selected for this example assessed four content

domains: Biology (8 items), Chemistry (6 items), Physics (4 items), and Earth science (7

items).

Sample. Data from seven of the 45 countries participating in the TIMSS 2011 pro-

gram were used for this example. The sample of 2,493 students in this data set were from

the following countries: 357 students from Chinese Taipei, 410 students from Ghana, 361

students from the Republic of Korea, 464 students from Morocco, 247 students from Nor-

way, 423 students from Singapore, and 231 students from The Ukraine. The seven nations

were selected, because, as a group, their average scale scores on the test approximated high,

middle and low achievement among the participating countries. Singapore, Chinese Taipei,

and the Republic of Korea had the highest mean mathematics scores of 590, 564, and 560,

respectively. The mean scores for Ukraine and Norway of 501 and 494, respectively, were

average among participating countries. Mean scores for Morocco and Ghana were 376 and

306, respectively, and were among the lowest for participating countries.

Estimation of Model Parameters

The MixRM and Mix2PLM were estimated with each of the three identification constraints

for establishing a common metric: Item anchoring (Constraint 1) was established by using

a single anchor item. Person centering (Constraint 2) was done by setting the mean ability

of the first latent group to zero with unit variance. Item centering (Constraint 3) was

implemented by setting the mean of item difficulties to zero in each class.

Estimation of model parameters was done using Markov Chain Monte Carlo (MCMC) es-

timation as implemented in the OpenBUGS computer software (Spiegelhalter et al., 2007).

MCMC is the sampling algorithm from probability distributions based on constructing a
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Markov chain. Heidelberger and Welch’s (1983) convergence diagnostics were used to de-

termine the number of iterations as implemented in the Coda package using R (Plummer,

Best, Cowles, Vines, Sarkar, & Almond, 2012).

The following conjugate priors were used in the estimation of the MixRM and Mix2PLM

in the empirical example:

ai,g ∼ Normal(0, 1) and ai,g > 0, i = 1, . . . , n

bi,g ∼ Normal(0, 1), i = 1, . . . , n

θg,j ∼ Normal(µg, 1), j = 1, . . . , N

µg ∼ Normal(0, 1), g = 1, . . . , G

(π1, . . . , πG) ∼ Dirichlet(0.5, . . . , 0.5)

where a is the discrimination parameter, b is the difficulty parameter, N is the total number

of examinees, n is the total number of items, G is the number of latent class group, i is the

ith item, j is the jth examinee, and g is the gth latent group.

The coda file for OpenBUGS contains the value of the estimate from each iteration for

each parameter. This information was analyzed using the Heidelberger and Welch conver-

gence diagnostics to determine the length of the burn-in and post-burn-in iteration chains.

The burn-in arises when early iterations in Markov chain simulation are discarded to diminish

the effect of the starting values (Gelman, Carlin, Stern, & Rubin, 2003; Gilks, Richardson,

& Spiegelhalter, 1996). After discarding the burn-in period, the number of iterations for

Bayesian estimation was determined.

For the MixRMs, a burn-in of 8,000 iterations was found to be sufficient for convergence

for all parameters. For the Mix2PLM, 22,000 post-burn-in iterations were used with Con-

straint 1 (item anchoring with a single anchor item) and Constraint 3 (item centering with

the sum of item difficulties set to zero). A burn-in of 2,000 iterations and 24,000 post-burn-

in iterations were sufficient for obtaining convergence for Constraint 2 (person centering in
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which the first group mean and variance were set to zero and one, respectively). For the

Mix2PLMs, a burn-in of 8,000 iterations and 21,000 post-burn-in iterations were used for

Constraint 1. A burn-in of 9,000 iterations and 16,000 post-burn-in iterations were used for

Constraint 2, and a burn-in of 3,000 iterations and 27,000 iterations for Constraint 3 were

used.

RESULTS

Detection of Label Switching

When estimating MixIRTMs, it is important to monitor the estimation for possible label

switching. This can be observed in real data when latent classes switch during a single

MCMC chain. To determine if label switching has occurred, modes of the posterior densities

for group membership were monitored. If multiple modes are present, then label switching

can be assumed to have occurred. For this example, modes of posterior parameters were

examined by using the group membership information in the coda output files. Cross-

tabulation analyses were then done for these modes for each constraint for the MixRMs and

Mix2PLMs.

Label switching between constraints was assumed when the same latent classes estimated

from the two models using different constraints did not agree. The presence of label switching

can be seen in Tables 2.1 and 2.2. Label switching was inferred, in other words, when different

latent classes for the two models had higher percentages of agreement. When label switchings

was observed, labels were switched for reporting purposes based on the highest percent of

agreement for group membership.

Tables 2.1 and 2.2 show the agreement in group membership classifications between

MixRMs for different identification constraints. The values on the main diagonal are shown

in bold and indicate the number of exact agreements in group membership between con-
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straints. In Table 2.1, for example, 959 simulated examinees were placed into Class 1 by

both Constraints 1 (item anchoring) and 2 (person centering). This represented 38.5% of

the total sample of 2,493 simulated examinees. The percent matching for group membership

was 91.2% between Constraints 1 (item anchoring) and 2 (person centering) and 94.3% be-

tween Constraints 1 (item anchoring) and 3 (item centering). There was no label switching

for the MixRMs with Constraints 1 and 2 but label switching existed on the MixRM with

Constraint 3.

Table 2.1: Latent Class Classifications for the MixRM with Constraint 1 (Item Anchoring)
and Constraint 2 (Person Centering)

MixRM MixRM with Constraint 2
with Constraint 1 Class 1 Class 2 Class 3 Class 4 Class 5 Total

Class 1 959 31 0 0 3 993
(38.5%) (1.2%) (0.0%) (0.0%) (0.1%) (39.8%)

Class 2 1 239 1 0 0 241
(0.0%) (0.6%) (0.0%) (0.0%) (0.0%) (9.7%)

Class 3 132 6 990 1 0 1129
(5.3%) (0.2%) (39.7%) (0.0%) (0.0%) (45.3%)

Class 4 20 14 0 48 3 85
(0.8%) (0.6%) (0.0%) (1.9%) (0.1%) (3.4%)

Class 5 6 0 1 0 38 45
(0.2%) (0.0%) (0.0%) (0.0%) (1.5%) (1.8%)

Total 1118 290 992 49 44 2493
(44.8%) (11.6%) (39.8%) (2.0%) (1.8%) (100.0%)

Tables 2.3 and 2.4 show the numbers and percentages of agreement of group membership

classifications for the Mix2PLM with different identification constraints. The percent of

agreement for classification of group membership was 80.8% between Constraints 1 and 2

and 89% between Constraints 1 and 3. There was label switching for the Mix2PLMs with

Constraints 2 and 3.
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Table 2.2: Latent Class Classifications for the MixRM with Constraint 1 (Item Anchoring)
and Constraint 3 (Item Centering)

MixRM MixRM with Constraint 3
with Constraint 1 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total

Class 1 0 0 4 985 1 3 993
(0.0%) (0.0%) (0.2%) (39.5%) (0.0%) (0.1%) (39.8%)

Class 2 0 0 231 10 0 0 241
(0.0%) (0.0%) (9.3%) (0.4%) (0.0%) (0.0%) (9.7%)

Class 3 7 1 3 90 16 1012 1129
(0.3%) (0.0%) (0.1%) (3.6%) (0.6%) (40.6%) (45.3%)

Class 4 0 0 0 6 79 0 85
(0.0%) (0.0%) (0.0%) (0.2%) (3.2%) (0.0%) (3.4%)

Class 5 0 45 0 0 0 0 45
(0.0%) (1.8%) (0.0%) (0.0%) (0.0%) (0.0%) (1.8%)

Total 7 46 238 1091 96 1015 2493
(0.3%) (1.8%) (9.5%) (43.8%) (3.9%) (40.7%) (100.0%)

Table 2.3: Latent Class Classifications for the Mix2PLM with Constraint 1 (Item Anchoring)
and Constraint 2 (Person Centering)

Mix2PLM with Mix2PLM with Constraint 2
Constraint 1 Class 1 Class 2 Class 3 Total

Class 1 375 780 32 1187
(15.0%) (31.3%) (1.3%) (47.6%)

Class 2 733 0 2 735
(29.4%) (0.0%) (0.1%) (29.5%)

Class 3 68 2 501 571
(2.7%) (0.1%) (20.1%) (22.9%)

Total 1176 782 535 2493
(47.2%) (31.4%) (21.5%) (100.0%)
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Table 2.4: Latent Class Classifications for the Mix2PLM with Constraint 1 (Item Anchoring)
and Constraint 3 (Item Centering)

Mix2PLM with Mix2PLM with Constraint 3
Constraint 1 Class 1 Class 2 Class 3 Total

Class 1 969 31 187 1187
(38.9%) (1.2%) (7.5%) (47.6%)

Class 2 0 6 729 735
(0.0%) (0.2%) (29.2%) (29.5%)

Class 3 2 521 48 571
(0.1%) (20.9%) (1.9%) (22.9%)

Total 971 558 964 2493
(38.9%) (22.4%) (38.7%) (100.0%)

Model Selection

Two information indices are reported for each of the MixIRTM analyses, the Bayesian in-

formation criterion (BIC: Schwartz, 1978) and Akaike’s Information Criterion (AIC: Akaike,

1973). Values for AIC and BIC are reported in Table 2.5 and smaller AIC and BIC values

indicate the better model. Both AIC and BIC suggest different numbers of latent classes de-

pending on the constraint used. Based on AIC, a five latent classes were detected using item

anchoring, six latent classes were detected using person centering, and seven latent classes

were detected using item centering. Using BIC, five latent classes were detected using item

anchoring and person centering and six classes were detected using item centering.

AIC and BIC values in Table 2.6 show the number of latent classes detected for the

Mix2PLM. Based on AIC, four latent classes were detected using item anchoring and person

centering. Using item centering, a 3-group solution was suggested. Using BIC, a 3-group

solution was the best fit to the data for the Mix2PLM for all three constraints.
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Table 2.5: Model Comparison Information Criteria for MixRMs

AIC BIC
Latent Constraint 1 Constraint 2 Constraint 3 Constraint 1 Constraint 2 Constraint 3
Classes (Item (Person (Item (Item (Person (Item

Anchoring) Centering) Centering) Anchoring) Centering) Centering)

1 67670 67670 67670 67820 67820 67820
2 65890 65870 65870 66190 66170 66180
3 65210 65180 65200 65660 65640 65660
4 64910 64810 64850 65510 65430 65470
5 64520 64460 64490 65280 65240 65270
6 64520 64420 64240 65430 65350 65170
7 64190 65280

Table 2.6: Model Comparison Information Criteria for Mix2PLMs

AIC BIC
Latent Constraint 1 Constraint 2 Constraint 3 Constraint 1 Constraint 2 Constraint 3
Classes (Item (Person (Item (Item (Person (Item

Anchoring) Centering) Centering) Anchoring) Centering) Centering)

1 66430 66460 66460 66580 66750 66760
2 65300 65550 65210 65890 66140 65810
3 64660 64550 64570 65540 65450 65470
4 64370 64330 64570 65540 65530 65770
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Comparison of Class Means and Latent Group Proportions between Constraints

Comparison of model parameters between latent classes requires that the parameter esti-

mates are expressed on a common scale. Additional equating or scale transformation was

not required for comparisons of scale parameters within each constraint as this is what these

constraints are designed to do. Comparisons of scale parameters between constraints for

the same model, however, did require an additional scale transformation. Mean and sigma

equating was used for this set of transformations. The means for each of the five classes

using each of the constraints are reported in Table 2.7. The means appear to be different

between the three constraints for the MixRMs. In particular, the difference between means

for Constraint 2 (person centering) and Constraint 3 (item centering) appears to be large

(see Table 2.7).

Table 2.7: Ability Means of Latent Classes for MixRM and Mix2PLM

Mixture Rasch Model Mixture 2PL Model
1 0.38 0.00 0.78 -1.24 -1.43 -1.58
2 0.77 0.59 1.12 1.34 -0.07 0.86
3 -1.18 -1.47 -0.72 0.90 0.92 0.79
4 0.15 -0.50 0.46
5 1.45 0.90 1.46
6 -0.24

The latent class means for Constraints 1 (item anchoring) and 3 (item centering) for the

Mix2PL model do not appear to be similar. In addition, the means for the second latent

class using Constraint 2 (person centering) also look different from those for the other two

constraints. The first and third latent class means for Constraints 2 (person centering) were

similar to those for Constraints 1 and 3 (see Table 2.7).

The proportions of examinees classified into Classes 1 to 6 by the MixRM using each of

the constraints are reported in Table 2.8. The proportions for the different constraints in

MixRM look somewhat similar although the proportions for the first and third classes differ

for each of the three constraints.
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Table 2.8: Proportions of Latent Classes for MixRM and Mix2PLM

Mixture Rasch Model Mixture 2PL Model
Latent Constraint 1 Constraint 2 Constraint 3 Constraint 1 Constraint 2 Constraint 3
Classes (Item (Person (Item (Item (Person (Item

Anchoring) Centering) Centering) Anchoring) Centering) Centering)

1 39.8 44.8 43.8 47.6 31.4 38.9
2 9.7 11.6 9.5 29.5 47.2 38.7
3 45.3 39.8 40.7 22.9 21.5 22.4
4 3.4 2.0 3.9
5 1.8 1.8 1.8
6 0.3

The proportions of examinees classified into each of the three latent classes detected with

the Mix2PLM also are reported in Table 2.8. The Mix2PLMs had different proportions of

class membership for the different constraints. The proportions in Class 3 look similar for the

three constraints, however, the proportions of Classes 1 and 2 look different for the different

constraints. These results suggest that students were assigned to different latent classes by

the different constraints.

Comparison of Joint Classifications

Group memberships were compared to examine the effects of the constraints on classification

of examinees into latent classes after solving the label switching problem. Joint classifications

for Constraint 1 (item anchoring) and Constraint 2 (person centering) for the MixRM are

given in Table 2.9. Agreement between constraints is calculated by taking the sum of the

numbers on the main diagonal. Results in this table indicate 91.2% (n = 2,274) agreement.

Agreement between Constraints 1 (item anchoring) and 3 (item centering) was 94.3% (n =

2,352)(see Table 2.10). Agreement between Constraint 2 and Constraint 3 was 92.7% (n =

2,312)(see Table 2.11).

For the Mix2PLM, there was 80.8% agreement in classification (n = 2014) between Con-

18



Table 2.9: Group Membership Classification for MixRMs Using Constraints 1 and 2

MixRM with MixRM with Constraint 2
Constraint 1 Class 1 Class 2 Class 3 Class 4 Class 5 Total

Class 1 959 31 0 0 3 993
(38.5%) (1.2%) (0.0%) (0.0%) (0.1%) (39.8%)

Class 2 1 239 1 0 0 241
(0.0%) (9.6%) (0.0%) (0.0%) (0.0%) (9.7%)

Class 3 132 6 990 1 0 1129
(5.3%) (0.2%) (39.7%) (0.0%) (0.0%) (45.3%)

Class 4 20 14 0 48 3 85
(0.8%) (0.6%) (0.0%) (1.9%) (0.1%) (3.4%)

Class 5 6 0 1 0 38 45
(0.2%) (0.0%) (0.0%) (0.0%) (1.5%) (1.8%)

Total 1118 290 992 49 44 2493
(44.8%) (11.6%) (39.8%) (2.0%) (1.8%) (100.0%)

Table 2.10: Group Membership Classification for MixRMs Using Constraints 1 and 3

MixRM with MixRM with Constraint 3
Constraint 1 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total

Class 1 985 4 3 1 0 0 993
(39.5%) (0.2%) (0.1%) (0.0%) (0.0%) (0.0%) (39.8%)

Class 2 10 231 0 0 0 0 241
(0.4%) (9.3%) (0.0%) (0.0%) (0.0%) (0.0%) (9.7%)

Class 3 90 3 1012 16 1 7 1129
(3.6%) (0.1%) (40.6%) (0.6%) (0.0%) (0.3%) (45.3%)

Class 4 6 0 0 79 0 0 85
(0.2%) (0.0%) (0.0%) (3.2%) (0.0%) (0.0%) (3.4%)

Class 5 0 0 0 0 45 0 45
(0.0%) (0.0%) (0.0%) (0.0%) (1.8%) (0.0%) (1.8%)

Total 1091 238 1015 96 46 7 2493
(43.8%) (9.5%) (40.7%) (3.9%) (1.8%) (0.3%) (100.0%)
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Table 2.11: Group Membership Classification for MixRMs Using Constraints 2 and 3

MixRM with MixRM with Constraint 3
Constraint 2 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Total

Class 1 1033 0 60 19 6 0 1118
(41.4%) (0.0%) (2.4%) (0.8%) (0.2%) (0.0%) (44.8%)

Class 2 39 237 0 14 0 0 290
(1.6%) (9.5%) (0.0%) (0.6%) (0.0%) (0.0%) (11.6%)

Class 3 16 1 955 11 2 7 992
(0.6%) (0.0%) (38.3%) (0.4%) (0.1%) (0.3%) (39.8%)

Class 4 0 0 0 49 0 0 49
(0.0%) (0.0%) (0.0%) (2.0%) (0.0%) (0.0%) (2.0%)

Class 5 3 0 0 3 38 0 44
(0.1%) (0.0%) (0.0%) (0.1%) (1.5%) (0.0%) (1.8%)

Total 1091 238 1015 96 46 7 2493
(43.8%) (9.5%) (40.7%) (3.9%) (1.8%) (0.3%) (100.0%)

straint 1 and Constraint 2 (see Table 2.12). Agreement between Constraint 1 and Constraint

3 agreement for the Mix2PLM was 89% (n = 2,219), and 90.9% agreement (n = 2,267) be-

tween Constraint 2 and Constraint 3 in the Mix2PLM (see Tables 2.13 and 2.14).

Table 2.12: Latent Group Classification for the Mix2PL Model Using Constraints 1 and 2

Mix2PLM Mix2PLM with Constraint 2
with Constraint 1 Class 1 Class 2 Class 3 Total

Class 1 780 375 32 1187
(31.3%) (15.0%) (1.3%) (47.6%)

Class 2 0 733 2 735
(0.0%) (29.4%) (0.1%) (29.5%)

Class 3 2 68 501 571
(0.1%) (2.7%) (20.1%) (22.9%)

Total 782 1176 535 2493
(31.4%) (47.2%) (21.5%) (100.0%)

All comparisons, except for those between the Constraints 1 and 3 for the MixRM,

indicated that the different constraints resulted in some lack of agreement in latent group

classifications. The group membership agreement between constraints used with the MixRM
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Table 2.13: Latent Group Classification for the Mix2PL Model Using Constraints 1 and 3

Mix2PLM Mix2PLM with Constraint 3
with Constraint 1 Class 1 Class 2 Class 3 Total

Class 1 969 187 31 1187
(38.9%) (7.5%) (1.2%) (47.6%)

Class 2 0 729 6 735
(0.0%) (29.2%) (0.2%) (29.5%)

Class 3 2 48 521 571
(0.1%) (1.9%) (20.9%) (22.9%)

Total 971 964 558 2493
(38.9%) (38.7%) (22.4%) (100.0%)

Table 2.14: Latent Group Classification for the Mix2PL Model Using Constraints 2 and 3

Mix2PLM Mix2PLM with Constraint 3
with Constraint 2 Class 1 Class 2 Class 3 Total

Class 1 782 0 0 782
(31.4%) (0.0%) (0.0%) (31.4%)

Class 2 177 963 36 1176
(7.1%) (38.6%) (1.4%) (47.2%)

Class 3 12 1 522 535
(0.5%) (0.0%) (20.9%) (21.5%)

Total 971 964 558 2493
(38.9%) (38.7%) (22.4%) (100.0%)
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was higher than that when used with the Mix2PLM.

Comparisons of Item Parameter Estimates

As noted above, mean and sigma equating was used to obtain a common metric between

latent classes and across the different constraints for each MixIRTM. This permitted direct

comparisons such as plotting difficulty estimates on the same graph in order to observe differ-

ences between constraints. Item difficulty parameter estimates for the different constraints

for the MixRM are shown for classes 1, 2, and 4 in Tables 2.15, 2.16, and 2.17.

Table 2.15: Difficulty Parameters For the MixRM Under Constraint 1

Item No. TIMSS Item ID Class 1 Class 2 Class 3 Class 4 Class 5

1 S032611 0.89 0.89 0.89 0.89 0.89
2 S032614 -0.14 -0.31 1.04 -0.09 0.69
3 S032156 -0.13 -0.50 1.18 0.83 -0.16
4 S032056 0.44 -0.18 2.67 0.39 2.23
5 S032087 0.50 0.80 1.30 1.25 -0.11
6 S032279 1.98 1.36 1.10 1.37 0.73
7 S032238 0.37 -1.56 1.53 -0.78 -0.54
8 S032160 -0.58 -0.10 0.01 0.06 -0.72
9 S032654 0.43 0.04 1.10 0.19 1.22
10 S032126 0.21 0.18 1.19 -0.72 1.64
11 S032510 -1.18 -1.47 0.36 -0.02 -0.07
12 S032158 -0.83 -0.04 0.14 -0.08 -0.93
13 S052093 -1.77 -1.35 -1.14 -0.75 -1.04
14 S052088 -1.13 -1.26 0.31 0.17 2.64
15 S052030 0.58 1.05 0.61 0.33 1.03
16 S052080 -0.39 -0.65 0.13 2.60 0.05
17 S052091 0.19 -0.85 1.39 -0.26 0.70
18 S052152 0.50 -0.06 1.57 1.28 -0.72
19 S052136 -0.07 -0.18 1.49 -0.05 0.61
20 S052046 -2.89 -2.60 0.05 -0.94 -1.24
21 S052254 0.30 2.21 1.07 1.45 -0.24
22 S052207 0.79 0.25 2.34 0.26 -0.48
23 S052297 -1.04 1.65 0.62 0.07 0.03
24 S052032 1.67 1.69 3.02 2.61 2.74
25 S052106 1.19 0.26 2.18 0.24 1.04

As can be seen in Figure 2.1, plots of difficulty parameter estimates in Class 1 were
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Table 2.16: Difficulty Parameters For the MixRM Under Constraint 2

Item No. TIMSS Item ID Class 1 Class 2 Class 3 Class 4 Class 5

1 S032611 0.92 1.78 0.10 1.00 0.33
2 S032614 -0.15 0.29 0.66 0.25 0.68
3 S032156 -0.10 0.14 0.77 0.87 0.04
4 S032056 0.50 0.42 2.36 1.12 1.96
5 S032087 0.47 1.41 0.94 1.15 0.33
6 S032279 1.82 2.03 0.59 1.32 1.31
7 S032238 0.41 -0.99 1.00 0.13 -0.32
8 S032160 -0.61 0.46 -0.43 0.02 -0.28
9 S032654 0.38 0.65 0.67 0.41 1.21
10 S032126 0.14 0.76 0.84 -0.13 1.36
11 S032510 -1.10 -0.88 -0.02 0.01 0.02
12 S032158 -0.86 0.51 -0.35 0.13 -0.66
13 S052093 -1.80 -0.86 -1.52 -0.96 -0.69
14 S052088 -1.03 -0.66 -0.05 0.09 1.96
15 S052030 0.53 1.61 0.08 0.36 0.97
16 S052080 -0.42 0.13 -0.28 1.71 0.76
17 S052091 0.21 -0.25 0.94 0.22 0.60
18 S052152 0.53 0.58 1.04 1.58 -0.21
19 S052136 -0.06 0.41 1.15 0.35 0.66
20 S052046 -2.64 -2.10 -0.34 -0.58 -1.02
21 S052254 0.25 2.65 0.60 1.46 0.23
22 S052207 0.81 0.84 1.93 0.91 0.06
23 S052297 -0.97 2.02 0.21 0.08 0.16
24 S052032 1.67 2.29 2.68 2.61 2.85
25 S052106 1.19 0.84 1.69 0.98 1.18

23



Table 2.17: Difficulty Parameters For the MixRM Under Constraint 3

Item No. TIMSS Item ID Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

1 S032611 0.93 1.27 0.49 0.23 -0.23 -0.56
2 S032614 -0.13 -0.30 -0.09 -0.49 0.28 0.23
3 S032156 -0.11 -0.49 0.04 0.42 -0.52 0.06
4 S032056 0.43 -0.12 1.55 0.08 1.64 1.08
5 S032087 0.51 0.84 0.03 0.83 -0.35 0.30
6 S032279 1.96 1.40 0.06 0.96 0.42 -0.05
7 S032238 0.34 -1.53 0.81 -1.12 -0.84 -0.18
8 S032160 -0.57 -0.10 -1.12 -0.40 -0.87 -0.41
9 S032654 0.43 0.04 0.04 -0.26 0.74 0.16
10 S032126 0.21 0.20 0.04 -1.11 1.08 0.36
11 S032510 -1.15 -1.50 -0.81 -0.45 -0.47 -0.47
12 S032158 -0.85 -0.01 -0.74 -0.48 -1.21 -0.65
13 S052093 -1.77 -1.40 -2.54 -1.14 -1.27 -1.08
14 S052088 -1.10 -1.30 -0.96 -0.25 1.78 -0.05
15 S052030 0.57 1.10 -0.32 -0.12 0.48 -0.21
16 S052080 -0.36 -0.67 -1.13 2.12 -0.18 -0.41
17 S052091 0.19 -0.87 0.44 -0.67 0.17 0.10
18 S052152 0.48 -0.01 0.81 0.92 -0.91 0.04
19 S052136 -0.04 -0.15 0.27 -0.45 0.20 0.32
20 S052046 -2.95 -2.64 -0.96 -1.34 -1.48 -0.96
21 S052254 0.30 2.28 0.09 1.13 -0.46 0.04
22 S052207 0.80 0.29 1.30 -0.13 -0.56 0.63
23 S052297 -0.99 1.71 -0.46 -0.39 -0.31 -0.36
24 S052032 1.68 1.70 1.85 2.24 2.22 1.44
25 S052106 1.19 0.26 1.31 -0.13 0.63 0.62

24



essentially on top of one another. The plots of difficulty parameter estimates for Class

2 were a little different between the three constraints. In class 2, Constraint 2 (person

centering) had difficulty parameter estimates which were higher than Constraints 1 (item

anchoring) and 3 (item centering) (see Figure 2.2). The results from Classes 3 to 5 indicated

that difficulty parameter estimates clearly differed for all three constraints (see Figures 2.3

to 2.5). Correlations are reported in Table 2.18) showing the degree of the relationships

between estimates for the different constraints.
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Figure 2.1: Difficulty Estimates Comparison in the MixRM for Class 1

Correlations Between Parameter Estimates. Correlations between parameter esti-

mates for the same latent class should be high if constraints had no impact. To examine this

conjecture, correlations were calculated between estimates for each MixIRTM with each of

the constraints. The correlations for the MixRM are presented in Table 2.18. Correlations

for the Mix2PLM are presented in Table 2.25. The following notation is used in these tables:

C1&A indicates a parameter estimate in Class 1 under Constraint 1 (item anchoring); C2&P

indicates Class 2 for Constraint 2 (person centering); C2&I indicates class 2 for Constraint

3 (item centering), etc. In this notation, constraints are indicated as Constraint 1 = A,
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Figure 2.2: Difficulty Estimates Comparison in the MixRM for Class 2
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Figure 2.3: Difficulty Estimates Comparison in the MixRM for Class 3
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Figure 2.4: Difficulty Estimates Comparison in the MixRM for Class 4
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Figure 2.5: Difficulty Estimates Comparison in the MixRM for Class 5
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Constraint 2 = P, and Constraint 3 = I.

Correlations in Table 2.18 indicate that difficulty parameter estimates were similar be-

tween the three constraints within the same latent class. Most of these correlations, in fact,

were .99. The correlations between Constraints 1 and 2 (r = .918) and between Constraint

2 and 3 (r = .928) in Class 4, however, were slightly smaller, suggesting that there might

be some effect of constraints in Class 4. The sample size for Class 4 was very small (n = 85

(3.4%) for Constraint 1, n = 49 (2.0%) for Constraint 2, and n = 96 (3.9%) for Constraint

3). The slightly smaller correlations may be due to the instability resulting from these small

sample sizes (see Table 2.8).

Discrimination parameter estimates under each constraint for the Mix2PLM are given in

Tables 2.19, 2.20, and 2.21 and difficulty parameter estimates under each constraint for this

model are given in Tables 2.22, 2.23, and 2.24. Correlations were computed between param-

eter estimates to help detect constraint effects on item parameter estimation. Correlations

between discrimination parameters are given in Table 2.25.

One would expect correlations between the estimates for the same parameters within the

same latent class but between different constraints to be close to 1 if there were no differences

due to constraints. Although all within class correlations were high and significant (p < .01),

they were not all close to 1. Correlations in Table 2.25 indicated there were some differences

in discrimination parameter estimates in class 2 under Constraints 1 and 2. The correlations

between discrimination parameters for all three constraints for class 3, however, were close

to unity, suggesting there was very little effect between constraints in this latent class.

Correlations for these analysis was reported to get more statistically reasonable compar-

ison (see Table 2.26). Correlations in Table 2.26 indicated that most difficulty parameter

estimates differed between constraints within latent class. Exceptions were correlations be-

tween Constraints 1 and 3 in class 1 (r = .980) and Constraints 1 and 2 in class 3 (r =

.997).
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Table 2.19: Discrimination Parameters For the Mix2PLM Under Constraint 1

Item No. TIMSS Item ID Class 1 Class 2 Class 3

1 S032611 0.46 0.47 0.42
2 S032614 1.10 0.66 1.29
3 S032156 0.65 0.91 1.11
4 S032056 1.22 0.50 1.19
5 S032087 0.56 0.94 0.88
6 S032279 0.52 0.78 0.44
7 S032238 0.47 1.29 1.76
8 S032160 0.45 0.81 0.72
9 S032654 0.54 0.61 1.18
10 S032126 1.22 0.53 0.84
11 S032510 0.68 0.95 1.11
12 S032158 0.45 1.15 0.48
13 S052093 0.76 1.09 0.82
14 S052088 1.03 0.48 0.83
15 S052030 0.38 1.04 0.46
16 S052080 0.26 0.52 0.64
17 S052091 1.09 1.11 0.76
18 S052152 0.46 1.12 1.39
19 S052136 1.21 0.56 1.38
20 S052046 0.86 2.02 1.47
21 S052254 0.40 1.02 0.51
22 S052207 1.73 1.26 1.30
23 S052297 0.92 1.31 0.21
24 S052032 1.24 0.61 1.12
25 S052106 1.20 1.15 0.49
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Table 2.20: Discrimination Parameters For the Mix2PLM Under Constraint 2

Item No. TIMSS Item ID Class 1 Class 2 Class 3

1 S032611 0.25 1.00 0.57
2 S032614 1.02 0.83 1.30
3 S032156 0.40 1.22 1.07
4 S032056 1.17 0.96 1.26
5 S032087 0.51 1.10 0.93
6 S032279 0.45 0.51 0.47
7 S032238 0.41 1.39 1.77
8 S032160 0.15 0.89 0.69
9 S032654 0.51 0.64 1.36
10 S032126 1.11 0.66 0.84
11 S032510 0.48 1.07 1.14
12 S032158 0.20 1.27 0.50
13 S052093 0.58 0.83 0.82
14 S052088 0.81 0.50 0.82
15 S052030 0.27 0.99 0.47
16 S052080 0.15 0.59 0.67
17 S052091 0.80 1.14 0.77
18 S052152 0.37 1.39 1.43
19 S052136 1.02 0.81 1.35
20 S052046 0.34 2.12 1.42
21 S052254 0.31 1.19 0.59
22 S052207 1.54 1.26 1.32
23 S052297 0.53 1.44 0.20
24 S052032 1.44 0.72 1.16
25 S052106 1.05 1.16 0.47
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Table 2.21: Discrimination Parameters For the Mix2PLM Under Constraint 3

Item No. TIMSS Item ID Class 1 Class 2 Class 3

1 S032611 0.29 1.06 0.61
2 S032614 1.07 0.78 1.39
3 S032156 0.49 1.09 1.18
4 S032056 1.23 0.78 1.36
5 S032087 0.53 1.12 0.97
6 S032279 0.50 0.64 0.48
7 S032238 0.45 1.46 1.96
8 S032160 0.26 0.83 0.74
9 S032654 0.55 0.63 1.45
10 S032126 1.21 0.60 0.93
11 S032510 0.61 1.04 1.21
12 S032158 0.29 1.28 0.51
13 S052093 0.65 0.90 0.86
14 S052088 0.87 0.48 0.88
15 S052030 0.33 1.07 0.50
16 S052080 0.18 0.55 0.70
17 S052091 0.98 1.16 0.83
18 S052152 0.42 1.35 1.53
19 S052136 1.15 0.69 1.51
20 S052046 0.59 2.10 1.52
21 S052254 0.36 1.14 0.61
22 S052207 1.70 1.30 1.44
23 S052297 0.74 1.35 0.22
24 S052032 1.35 0.69 1.23
25 S052106 1.16 1.22 0.51
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Table 2.22: Difficulty Parameters For the Mix2PLM Under Constraint 1

Item No. TIMSS Item ID Class 1 Class 2 Class 3

1 S032611 0.52 0.60 0.83
2 S032614 -0.48 -0.34 0.03
3 S032156 0.32 -0.09 -0.09
4 S032056 1.13 0.31 0.13
5 S032087 0.86 0.20 1.00
6 S032279 0.89 2.04 2.03
7 S032238 1.45 0.84 -0.51
8 S032160 -1.40 -0.97 -0.58
9 S032654 0.42 0.04 0.48
10 S032126 -0.38 0.01 -0.02
11 S032510 -1.00 -1.15 -0.91
12 S032158 -0.93 -0.92 -1.46
13 S052093 -2.97 -1.35 -2.04
14 S052088 -1.13 -1.87 -1.33
15 S052030 0.33 0.55 0.58
16 S052080 -0.62 -1.47 -0.53
17 S052091 -0.07 0.73 -0.99
18 S052152 1.71 0.59 0.51
19 S052136 -0.20 -0.29 0.12
20 S052046 -1.39 -1.71 -1.69
21 S052254 1.20 -0.05 2.28
22 S052207 0.26 1.10 0.60
23 S052297 -0.80 -0.66 -0.14
24 S052032 1.44 2.35 1.96
25 S052106 0.76 1.60 -0.29
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Table 2.23: Difficulty Parameters For the Mix2PLM Under Constraint 2

Item No. TIMSS Item ID Class 1 Class 2 Class 3

1 S032611 0.72 0.51 1.08
2 S032614 -0.21 -0.77 0.01
3 S032156 0.06 0.84 -0.09
4 S032056 0.86 1.10 0.19
5 S032087 0.30 0.59 1.06
6 S032279 1.95 0.62 1.92
7 S032238 0.68 0.97 -0.51
8 S032160 -0.93 -0.83 -0.69
9 S032654 0.08 0.27 0.52
10 S032126 0.03 -0.62 -0.03
11 S032510 -0.94 -0.99 -0.85
12 S032158 -0.75 -0.48 -1.27
13 S052093 -2.45 -3.68 -2.05
14 S052088 -2.13 -1.11 -1.42
15 S052030 0.34 0.21 0.53
16 S052080 -1.27 0.16 -0.40
17 S052091 0.44 -0.11 -1.02
18 S052152 0.58 1.54 0.55
19 S052136 0.02 -0.23 0.08
20 S052046 -1.19 -0.87 -1.73
21 S052254 0.15 1.19 2.24
22 S052207 0.84 0.21 0.56
23 S052297 -0.56 -0.63 -0.15
24 S052032 2.13 1.62 1.90
25 S052106 1.31 0.55 -0.37
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Table 2.24: Difficulty Parameters For the Mix2PLM Under Constraint 3

Item No. TIMSS Item ID Class 1 Class 2 Class 3

1 S032611 0.79 1.03 0.78
2 S032614 -0.62 0.01 -0.22
3 S032156 0.74 -0.07 0.00
4 S032056 1.11 0.17 0.72
5 S032087 0.78 0.98 0.29
6 S032279 0.72 1.82 1.86
7 S032238 1.16 -0.43 0.75
8 S032160 -1.04 -0.65 -1.04
9 S032654 0.26 0.48 0.07
10 S032126 -0.53 0.01 -0.03
11 S032510 -1.06 -0.81 -0.96
12 S032158 -0.63 -1.29 -0.76
13 S052093 -3.34 -1.97 -2.07
14 S052088 -1.11 -1.34 -2.07
15 S052030 0.23 0.52 0.45
16 S052080 -0.06 -0.44 -1.41
17 S052091 -0.15 -0.92 0.55
18 S052152 1.64 0.49 0.61
19 S052136 -0.26 0.12 -0.14
20 S052046 -1.26 -1.62 -1.32
21 S052254 1.19 2.08 0.12
22 S052207 0.15 0.54 0.92
23 S052297 -0.78 -0.15 -0.59
24 S052032 1.47 1.76 2.15
25 S052106 0.60 -0.29 1.36

Table 2.25: Correlations between Discrimination Parameters in the Mix2PLM

C1&P C1&I C2&A C2&P C2&I C3&A C3&P C3&I
C1&A .939** .980** -.024 -.013 -.058 .278 .243 .257
C1&P .985** -.216 -.209 -.241 .311 .299 .307
C1&I -.107 -.105 -.143 .308 .286 .297
C2&A .880** .921** .139 .086 .084
C2&P .980** .240 .204 .206
C2&I .190 .158 .158
C3&A .991** .993**
C3&P .999**
Note. ** p < .01 (2-tailed)
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Table 2.26: Correlations between Difficulty Parameters in Mix2PLM

C1&M C1&S C2&A C2&M C2&S C3&A C3&M C3&S
C1&A .858** .980** .778** .952** .773** .760** .767** .846**
C1&M .822** .957** .800** .764** .757** .753** .995**
C1&S .714** .989** .763** .746** .759** .800**
C2&A .670** .703** .702** .691** .978**
C2&M .732** .719** .729** .768**
C2&S .998** .999** .750**
C3&A .997** .743**
C3&M .739**
Note. ** p < .01 (2-tailed)
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Figure 2.6: Difficulty Estimates Comparison in the Mix2PLM for Class 1
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Figure 2.7: Difficulty Estimates Comparison in the Mix2PLM for Class 2

‐3.00

‐2.00

‐1.00

0.00

1.00

2.00

3.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Constraint 1 (one anchor item) Constraint 2 (first group mean = 0) Constraint 3 (sum of b = 0)

Figure 2.8: Difficulty Estimates Comparison in the Mix2PLM for Class 3
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Comparison plots were done to examine further the possible effects of the constraints

on item of difficulty parameter estimates. Plots between Constraints 1 and 3 suggests the

parameter estimates were similar in Class 1. However, for Constraint 2, the difficulty param-

eter estimates appear to be different from those obtained with Constraints 1 and 3 in class

1 (see Figure 2.6). Nineteen items (Items 1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 16, 17, 18, 20,

21, 22, 24, and 25) appeared to have different difficulty parameter estimates across the three

constraints in Class 2 (see Figure 2.7). The difficulty parameters between Constraints 1 and

2 were similar in Class 3, but those between Constraints 1 and 3 and between Constraints 2

and 3 in class 3 were somewhat different (see Figure 2.8). These plots suggest that for the

Mix2PLM, the three constraints provided somewhat different estimates of item difficulty.

Conclusions

The three constraints were applied to establish a common metric between latent classes for

a MixRM and a Mix2PLM. The data set was taken from the TIMSS 2011 8th Grade Sci-

ence Test. Results from the MixRM suggested that each of the constraints had a somewhat

different effect on item difficulty estimates, ability estimates, numbers of latent classes, clas-

sifications of examinees into latent classes, and proportions of membership in each latent

class. Similar results were observed for the Mix2PLM with the exception that the same

number of latent classes was extracted using all three constraints.

Results based on this data set clearly differed depending on the MixIRT model and on the

constraint used. A major purpose of this dissertation, therefore, was to examine this issue in

greater depth with an eye to better understanding the impact of these kinds of constraints.

In addition, it is also possible that results may differ depending on conditions in the data. To

examine this latter point, we also considered the effects of different test lengths and sample

sizes (described in the next section) on developing a common metric for MixIRT models.
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Chapter 3

METHODS AND RESEARCH

DESIGN

3.1 Estimation

Bayesian Estimation for Mixture IRT Models Using a Markov Chain

Monte Carlo Algorithm

MCMC estimation algorithms have been used widely in IRT and have been found to make it

possible to estimate more complex types of item response models (Kim, 2001; Patz & Junker,

1999a, 1999b). MCMC methods estimate the full conditional posterior distribution of each

parameter being estimated. Markov chain estimates the posterior using a sample from the

parameter’s posterior distribution at the stages. The sample mean for a parameter over the

post-burn-in iterations of the MCMC chain can be taken as the parameter estimate. When

mixture distributions are estimated, a class membership parameter for each observation (i.e.,

examinee) at each stage of the chain is sampled. A class membership is sampled for each

examinee along with a continuous ability, θjg, at each stage of the Markov chain. The class
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membership parameter is proportional to the probability of the examinee’s membership

for a given examinee (θjg). The item parameters in each class are decided based on the

frequency with which each examinee is sampled into each class. The posterior probability

of the examinee’s membership in each class is also determined by the frequency of sampling

each examinee into each class (Bolt et al., 2002).

Prior Distributions

To estimate the MixIRTMs using MCMC, priors need to be specified for all item and ability

parameters to be estimated. The following conjugate priors were used in this example as

well as for the simulation study that follows:

aig ∼ Normal(0, 1) and aig > 0, i = 1, . . . , n

big ∼ Normal(0, 1), i = 1, . . . , n

cig ∼ Beta(5, 17), i = 1, . . . , n

θjg ∼ Normal(µg, 1), j = 1, . . . , N

µg ∼ Normal(0, 1), g = 1, . . . , G

(π1, . . . , πG) ∼ Dirichlet(0.5, . . . , 0.5)

where a is the discrimination parameter, b is the difficulty parameter, c is the lower asymptote

parameter, N is the total number of examinees, n is the total number of items, G is the

number of latent class group, i is the ith item, j is the jth examinee, and g is the gth latent

group.

There is some agreement that item parameters follows log-normal distribution for diffi-

culty, normal distribution for discrimination, beta distribution for lower asymptote in IRT

model (du Toit, 2003). Based on this agreement, IRT computer programs such as BILOG

and MULTILOG use default or user assigned priors for Bayesian estimates (Zimowski et al.,

2003; Thissen et al., 2003). Although the calculation of posterior distribution is difficult, the

40



calculation of posterior can be easier when prior distribution and posterior distribution are

under the same distribution family. It refers to as conjugate prior (Gelman et al., 2003).

The Bayesian defaults for prior from BILOG-MG computer program were used for the

difficulty and lower asymptote parameters (du Toit, 2003). The prior default for the discrim-

ination parameter follows the log-normal distribution with mean = 0 and SD = 0.5 in the

BILOG-MG. The prior for the discrimination parameter follows the normal distribution with

mean = 0 and SD = 1 and should be larger than zero in this study. This prior distribution

was also used by Li, Cohen, Kim, and Cho (2009).

Label Switching

Label switching is a concern because it can lead to difficulties in interpretation. This kind

of problem arises in MCMC estimation when the model components are ordered arbitrarily

in mixture models (Sperrin, Jaki, & Wit, 2010). The term label switching was proposed by

Render and Walker (1984) to describe the invariance of the likelihood estimates when the

mixture components were relabeled (Stephens, 2000). Label switching must be addressed

before convergence diagnostics since it is a prerequisite of convergence of an MCMC sampler

(Jasra, Holmes, & Stephens, 2005).

There are two types of label switching. The first one arises when the latent classes are

reordered multiple times over the course of an MCMC chain during a run of an MCMC

sampler (Sperrin, Jaki, & Wit, 2010). There are some methods to handle this type of label

switching. Three commonly used methods are imposing artificial identifiability constraints on

the model parameters, implementing a relabelling algorithms (Stephens, 1997), and imposing

invariant loss functions (Celeux, Hurn, & Robert, 2000).

The second type of label switching arises when the latent class switches among the

replications in a simulation study (Choi et al., 2010; Li et al., 2009). This type can cause

the difficulty in interpretation of results since the latent class will have taken different orders
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in each replication. In a simulation study, since the generating values for item parameters

for each latent class and the group membership parameters are already known, estimated

parameters can be compared with the generating values. If label switching is observed, then

relabelling can be done to re-align the latent classes based on matching estimates with the

generating parameters.

Two ways can be used to handle label switching. The first method uses group member-

ship parameters and the second used item parameters and the second method uses group

membership parameters to check for label switching. With respect to the first method, a

cross-tabulation can be done to compare the generating group membership information to

group membership estimates. For the second method, comparing item parameters, the gen-

erating parameter for items in each latent class can be compared to the parameter estimates.

The pattern of matches can then be compared and the latent classes relabeled to the closest

pattern.

Monitoring Convergence

The initial iterations in a Markov chain are referred to as burn-in iterations and are assumed

to reflect some effect of the starting values. These are discarded in order to diminish the

effect of the starting values (Gelman et al., 2003; Gilks et al., 1996). Iterations after the

burn-in are used to obtain estimates of parameters. Convergence diagnostics are used to

determine how many iterations to retain following burn-in. This requires examining each

iteration in a chain for each parameter.

Commonly used convergence diagnostics methods include the Brook, Gelman, & Ru-

bin convergence diagnostic (Gelman & Rubin, 1992), the Geweke convergence diagnostic

(Geweke, 1992), the Heidelberger and Welch convergence diagnostic (Heidelberger & Welch,

1983), and the Raftery and Lewis convergence diagnostic (Raftery & Lewis, 1992). The first

method can be used when two or more parallel chains are run simultaneously. It was not
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used in this study as only single chains were estimated. The Heidelberger and Welch (1983)

convergence diagnostic can be used when a single chain is run and was used for this study

as implemented in the Coda software package using R (Plummer et al., 2012).

The Heidelberger and Welch convergence diagnostic consists of two tests. A stationarity

test using the Cramer-von-Mises statistic and a halfwidth test. If the posterior means of

selected iterations are non-stationary, the test is repeated after discarding the first 10% of

the iterations. This process is stopped when the resulting chain passes the stationarity test

or when more than 50% of the iterations have been discarded (Smith, 2007). Passing the

stationarity test is taken to indicate that convergence has been realized and the number of

burn-in and post burn-in is determined at that point. Table 3.1 provides Heidelberger and

Welch convergence diagnostic output used in this study. b1 in Table 3.1 is the item difficulty

parameter for Class 1. Convergence was obtained since the item difficulties for all 20 items

in Class 1 passed the stationarity test.

A halfwidth test is based on the chain that has passed the stationarity test for each

parameter being estimated. If the halfwidth of the credibility interval for the posterior mean

is less than a specified accuracy of this mean, the halfwidth test can be interpreted to mean

the parameter has been estimated with acceptable accuracy. If the halfwidth test fails, a

longer run of the MCMC chain is required to improve the accuracy of the estimate (Smith,

2007). For monitoring convergence, the success of stationarity test was counted for all item

difficulty parameters. We determined the burn-in and post burn-in iterations when all item

difficulty parameter passed the stationarity test.

The ratio of the standard deviation of the parameter to the MC standard error for the

parameter was also monitored. The usual criterion for this ratio is that the MC standard

error should be not more than 5% of the standard deviation of the parameter. In addition,

the credibility interval was considered to monitor the convergence especially for Mix3PLM. A

credibility interval in Bayesian statistics is analogous to confidence intervals. The computer
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Table 3.1: Heidelberger & Welch Convergence Diagnostic for the Example in Chapter 2

Stationarity Start Halfwidth Mean Halfwidth
Test Iteration P-value Test

b1[1] passed 1 0.206 passed -0.648 0.004
b1[2] passed 1 0.570 passed -0.456 0.004
b1[3] passed 1 0.732 passed -0.075 0.004
b1[4] passed 1 0.093 passed 0.512 0.004
b1[5] passed 1 0.740 passed 0.506 0.004
b1[6] passed 1 0.351 passed -1.994 0.005
b1[7] passed 1 0.437 passed -1.848 0.005
b1[8] passed 1 0.222 passed -1.443 0.004
b1[9] passed 1 0.298 passed -1.326 0.004
b1[10] passed 1 0.471 passed -0.935 0.004
b1[11] passed 1 0.126 passed -0.464 0.004
b1[12] passed 1 0.468 passed -0.242 0.004
b1[13] passed 1 0.175 passed 0.045 0.004
b1[14] passed 1 0.412 passed 0.382 0.004
b1[15] passed 1 0.825 passed 0.494 0.004
b1[16] passed 1 0.905 passed 0.936 0.004
b1[17] passed 1 0.831 passed 1.384 0.004
b1[18] passed 1 0.682 passed 1.321 0.004
b1[19] passed 1 0.487 passed 1.619 0.005
b1[20] passed 1 0.360 passed 1.973 0.005
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software OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) provides a 95% credibility

interval for all parameter estimates as a default. When the posterior means are placed within

the 95% credibility interval, there is an evidence for convergence.

Model Selection

If an IRT model does not fit the data, the model does not support an accurate interpretation

of the latent variable (e.g., of ability). When the competing models are nested, the likelihood

ratio test can be used for model selection. When models are not nested, then information

indices can be used to help inform model selection. In this study, model selection indices

were used as MixIRT models are not nested.

Congdon (2003) and Gill (2002) suggest the Bayesian information criterion (BIC; Schwartz,

1978) and the Akaike’s Information Criterion (AIC; Akaike, 1973) for model selection in a

Bayesian context. Kass (1993) and Kass and Raftery (1995) also suggested using the BIC

as a substitute for full calculation of the Bayes factor because calculation without specifying

priors is possible in BIC. Bayesian researchers have proposed somewhat different methods

as well as the AIC and BIC for model selection: the deviance information criterion (DIC;

Spiegelhalter Best, Carlin, & van der Linde, 2002), Hannan-Quinn information criterion

(HQC; Hannan & Quinn, 1979; Claeskens & Hjort, 2008), posterior predictive model checks

(PPMC; Gelman et al., 2003), and the pseudo-Bayes factor (PsBF; Geisser & Eddy 1979;

Gelfand & Dey, 1994). The equations were described at Li et al. (2009) and Hannan and

Quinn (1979).

Li et al. (2009) found BIC to be more accurate than AIC, DIC, PPMC, and PsBF for

model selection with MixIRT models. Claeskens and Hjort (2008) introduced HQC as a

BIC-like criterion but hesitated to use it because of the unclearness of the HQC equation.

They concluded that both AIC and the BIC have good properties for model selection because

AIC is efficient and the BIC is consistent. Based on the conclusion of Li et al. (2009) and
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Claeskens and Hjort (2008), AIC and BIC were determined as a model selection index.

The AIC is very useful in comparing and selecting non-nested models but AIC has a

strong bias toward models that overestimated with extra parameters and AIC tended to

select the more complex model with an increase in sample size (Gill, 2002; Carlin & Louis,

2001; Sawa, 1978; Li et al., 2009).

AIC and BIC indices can be calculated as

AIC = D(ξ) + 2p (3.1)

BIC = D(ξ) + p logN, (3.2)

where D(ξ) is the posterior mean of the deviance in MCMC estimation, ξ denotes all pa-

rameters in the model, p is the number of parameters, and N is the number of examinees.

The number of latent classes was determined using the Bayesian information criterion (BIC)

as suggested by Li et al. (2009) and AIC was also monitored.

3.2 Simulation Study Design

Conditions Simulated

A simulation study was performed to examine the impact of different identification con-

straints in the context of three MixIRT models: MixRM, Mix2PLM, and Mix3PLM. The

design of the simulation study included the three constraints used in the example described

above. These were Constraint 1 (item anchoring), Constraint 2 (person centering), and

Constraint 3 (item centering).

In this study, there were four competing candidate models. These included models with

from 1- to 4-latent groups. Each iteration calculated posterior mean of the deviance and
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then calculate AIC and BIC. AIC and BIC were calculated after mean of posterior mean.

Lower AIC and BIC values indicate the preferred model.

Li et al. (2009) report differences in recovery for different sample sizes for each of the three

dichotomous mixture IRT models, the MixRM, Mix2PLM, and Mix3PLM. The following

simulation conditions were used in this study: two sample sizes (600 examinees and 2,400

examinees), two test lengths (20 and 40 items), three different cases of latent groups (1-

, 2-, and 3-groups) with different proportions of simulated groups for each of these three

MixIRT models (see Table 3.2). For different proportions of simulated groups, 60% and

40% were used for two latent group solution and three latent group solution used three

different proportions, 60%, 30%, and 10%, respectively. The simulation conditions are not

fully crossed because proportions of group membership and sample sizes differ depending on

the MixIRT model being simulated.

Table 3.2: Simulation Conditions

Number of Sample Size
Group Latent Groups Proportions N = 600 N = 1200 N = 2400

G1 1 600 1,200 2,400
G2 2 .60 : .40 360 / 240 720 / 480 1,440 / 960
G3 3 .60 : .30 : .10 360 / 180 / 60 720 / 360 / 120 1,440 / 720 / 240

Note. G1 = one group, G2 = two groups, G3 = three groups

Twenty replications for each condition were generated. Random numbers seeds were

used to generate the 60 data sets (= 20 replications × 3 latent groups). The random

numbers were generated without replacement using the generator at the following website:

http://stattrek.com/statistics/random-number-generator.aspx. The random numbers were

generated in August 2012. Each random number was used as a seed for generating data for

each condition using N(0,1) in a program written in R. Code for this program is given in

Appendix A.

The first 20 random numbers were used for the 20 replications for the theta parameter
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generated for the 1-group case and the first group of the 2-group and of 3-group cases. The

next 20 random numbers were used for the 20 replications for the theta parameter generations

for the second group of the 2-group and 3-group cases, and the last 20 random numbers were

used for generating the 20 replications for the theta parameter generations of the third group

of the 3-group case.

Table 3.3: Simulated Performance Patterns

Type of Knowledge Group 1 Group 2 Group 3
1 Good Average Poor
2 Average Poor Good
3 Poor Good Average

There were 20 replications of the 108 conditions: Three identification constraints × two

test lengths × two sample sizes × one to three latent groups × three mixture IRT models

yields 108 conditions.

Three types of knowledge were simulated in each test as suggested by Li et al. (2009).

The generating parameters for the knowledge type are given in Table 3.3. The three types

of knowledge are related to sets of responses. Items 1 to 5 have same item parameters for

the three groups. Items 6 to 10 measure Type 1 knowlege, Items 11 to 15 measure Type

2 of knowledge, and Items 16 to 20 measure Type 3 knowledge (see Table 3.4). Group 1

is simulated to have good performance in first type of knowledge, average performance in

second type of knowledge, and poor performance in last type of knowledge. Three different

groups were simulated as performing differently based on the type of knowledge.

Item parameters were modified from Li et al. (2009). Two discrimination parameters

were used: A good performance was simulated with a discrimination of 2; a value of 1 was

used for average or poor performing groups. Three lower asymptote parameters, .25, .2, and

.1, were assigned to high difficulty, medium difficulty, and low difficulty items, respectively.

The item parameters for Group 1 were used for the 1-group model. Data for the 2-group

model were simulated using the item parameters for Groups 1 and 2. Data for the 3-group
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model were simulated using the item parameters for Groups 1, 2, and 3. For the 40-item

condition, the pattern for the 20-item test was used twice.

Table 3.4: Generating parameters for MixIRT Model Simulations: 25% Anchor Items

Type of Group 1 Group 2 Group 3
Knowledge Anchor Item b a c b a c b a c

anchor 1 -0.50 1 .20 -0.50 1 .20 -0.50 1 .20
anchor 2 -0.50 1 .20 -0.50 1 .20 -0.50 1 .20
anchor 3 0.00 1 .20 0.00 1 .20 0.00 1 .20
anchor 4 0.50 1 .20 0.50 1 .20 0.50 1 .20
anchor 5 0.50 1 .20 0.50 1 .20 0.50 1 .20

1 6 -2.00 2 .10 -0.50 1 .20 1.00 1 .25
7 -1.75 2 .10 -0.25 1 .20 1.25 1 .25
8 -1.50 2 .10 0.00 1 .20 1.50 1 .25
9 -1.25 2 .10 0.25 1 .20 1.75 1 .25
10 -1.00 2 .10 0.50 1 .20 2.00 1 .25

2 11 -0.50 1 .20 1.00 1 .25 -2.00 2 .10
12 -0.25 1 .20 1.25 1 .25 -1.75 2 .10
13 0.00 1 .20 1.50 1 .25 -1.50 2 .10
14 0.25 1 .20 1.75 1 .25 -1.25 2 .10
15 0.50 1 .20 2.00 1 .25 -1.00 2 .10

3 16 1.00 1 .25 -2.00 2 .10 -0.50 1 .20
17 1.25 1 .25 -1.75 2 .10 -0.25 1 .20
18 1.50 1 .25 -1.50 2 .10 0.00 1 .20
19 1.75 1 .25 -1.25 2 .10 0.25 1 .20
20 2.00 1 .25 -1.00 2 .10 0.50 1 .20

Note. a = discrimination parameter; b = difficulty parameter; c = lower asymptote parameter

Table 3.5 presents the numbers of hours needed to complete these runs. The MixRM

took between 3.6 and 26 hours to run the data for one condition using OpenBUGS. The

Mix2PLM took between 3 and 50 hours and the Mix3PLM took between 9 and 197 hours

to complete.

Recovery Evaluation

A recovery analysis was performed to evaluate the accuracy of the estimates of item and

group mean parameters. It is important to determine whether the data were simulated
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Table 3.5: OpenBUGS Running Times for One Replication

Model Test Length Sample Size Time (hour)
MixRM 20 600 3
MixRM 20 2400 17
MixRM 40 600 6
MixRM 40 2400 26
Mix2PLM 20 600 3
Mix2PLM 20 2400 29
Mix2PLM 40 600 7
Mix2PLM 40 2400 50
Mix3PLM 20 600 9
Mix3PLM 20 2400 71
Mix3PLM 40 600 18
Mix3PLM 40 2400 197

as intended in order to be able to make the intended inferences as to how the different

constraints can be expected to affect parameter estimation. The following three indices were

calculated to determine accuracy of recovery: BIAS, root mean square error (RMSE), and

Pearson correlations.

Bias(̂b) = E (̂b)− b (3.3)

RMSE (̂b) =

√
E[(̂b− b)

2
] (3.4)

Cor(̂b, b) =
Cov(̂b, b)

σb̂σb
(3.5)

Let b̂ be a point estimator for a parameter b. Then b̂ is defined as an unbiased estimator

if E (̂b) = b. If not, b̂ is said to be biased. Based on this definition, the bias of a point

estimator b̂ is given by Equation 3.3.

RMSE was computed by the square root of mean square error (MSE: the average of
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the square of the distance between the estimator and its target or generating parameter) in

Equation 3.4. If the bias and RMSE increased, an estimator is said to be bad and estimated

parameter is considered not to recover generating parameter well.

Harwell, Stone, Hsu, and Kirisci (1996) suggested using the correlation between estimated

and true parameters as a criterion in Monte Carlo studies. Using correlations makes it pos-

sible to compare variables with different metrics. However, the correlation only explains the

rank ordering between the estimated and true parameters and there is no clear criterion to

compare the magnitude of correlation. For this study, Pearson correlations (Cor) were com-

puted to evaluate the accuracy of recovery analysis as well as bias and RMSE. The correlation

between the estimator and its generating parameter was calculated by Equation 3.5.

The bias, RMSE, and Pearson correlation were computed across items, latent class

groups, and replications by Equations 3.6 and 3.8.

Bias(b̂) =

R∑
r=1

G∑
g=1

I∑
i=1

(̂bigr − big)

RGI
(3.6)

RMSE(b̂) =

√√√√√ R∑
r=1

G∑
g=1

I∑
i=1

(̂bigr − big)
2

RGI
(3.7)

Cor(̂b, b) =
1

R

R∑
r=1

Cov(̂bigr, big)

σb̂igrσbig
, (3.8)

where b̂igr is the estimated item difficulty parameter for item i in latent group g for rth

replication, big is the generating true value of item difficulty for item i in latent group g, R

is the number of replications (r = 1, . . . , R), I (i = 1, . . . , I) is the number of items, and G

(g = 1, . . . , G) is the number of latent classes in the model being estimated.
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Linking of Metrics for Recovery Analysis

In order to estimate BIAS and RMSE, item parameter estimates need to be on the same scale

as the generating parameters. The metrics of estimates from each replication were trans-

formed to the metric of generating parameters using the mean and sigma equating method

(de Ayala, 2009; Hambleton & Swaminathan, 1985; Kolen & Brennan, 2004). The mean and

sigma is a simple and widely used method for IRT equating. The equating constants A and

B for the linear transformation were computed as follows:

A =
SbB

SbT

(3.9)

B = bB − AbT , (3.10)

where bB is a generating item difficulty to be placed onto the base metric of the generating

parameter, bT is the estimated item difficulty on the target scale, S is the standard deviation

and b is the mean of item difficulty parameters (Hambleton & Swaminathan, 1985). The

estimated parameters from each replication were equated and placed onto the metric of the

generating parameter using the mean and sigma method as shown in Equations 3.11 to 3.13.

BIAS, RMSE, and correlations were computed after this transformation.

bi
∗ = Abi +B =

SbB

SbT

bi + (bB −
SbB

SbT

bT ) (3.11)

ai
∗ =

ai
A

= ai
SbT

SbB

(3.12)
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ci
∗ = ci, (3.13)

where bi is item difficulty parameter of item i, ai is item discrimination parameter of item i,

and ci is lower asymptote parameter of item i. bi
∗, ai

∗, and ci
∗ represent estimated parameters

transformed by mean and sigma equating method. They were calculated from the Table 3.4.
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Chapter 4

RESULTS

The purpose of this study was to compare the effects of three different constraints for iden-

tifying the metric in MixIRT models. In this chapter, we present results from a simulation

study examining the effects of these on three different dichotomous MixIRT models, the

MixRM, the Mix2PLM and the Mix3PLM. The following conditions were generated: two

different test lengths (20 and 40 items), two different sample sizes (600 and 2,400 examinees),

three different numbers of latent classes (1-, 2-, and 3- latent classes), and three different

constraints (item anchoring, person centering, and item centering).

4.1 Results of the Simulation Study

Monitoring Convergence

Three convergence diagnostics were used to determine convergence, the Heidelberger and

Welch (1983) convergence diagnostics, the ratio of the standard deviation of the parameter

estimate to the MC standard error for the parameter estimate, and the 95% credibility in-

terval. For the MixRM and Mix2PLM, estimation chains were monitored using Heidelberger

and Welch convergence diagnostics and the ratio of the standard deviation of the parame-
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ter to the MC standard error for the parameter. The 95% credibility interval was used to

monitor the convergence of the Mix3PLM.

Tables E.1 and E.2 in Appendix E contain the convergence results from the Heidelberger

& Welch test for the MixRM and Mix2PLM. These tables show the convergence results for

the MixRM and Mix2PLM, person centering, 20- and 40-items, 600 and 2,400 examinees,

and three-group solution. The total number of parameters passing the stationarity test was

counted to evaluate convergence. For 20-item condition, the total number passing the test

should be 200 (20 for the one-group model, 40 for the two-group model, 60 for the three-

group, 80 for the four-group model) and 400 for the 40-item condition (40 for the one-group

model, 80 for the two-group model, 120 for the three-group model, 160 for the four-group

model). Convergence of all parameters was achieved when the value in the last column in

Tables E.1 and E.2 equaled 1,200. As can be seen in these tables, convergence was good but

not perfect.

The chain for the MixRM was found to have converged perfectly for all parameters after

a burn-in of 5,000 iterations and 5,000 post-burn-in iterations (see Table E.1). The chain for

the Mix2PLM did not converge perfectly, but was very close with 1,185 estimates passing

among the 1,200 total with a burn-in of 6,000 iterations and 11,000 post burn-in iterations

(see Table E.2). Autocorrelations, density plots, and history plots also provided evidence of

convergence for the MixRM and Mix2PLM (see Figures F.1 to F.3).

The Mix3PLM failed to converge after 35,000 iterations based on the Heidelberger and

Welch diagnostics and the ratio of the standard deviation of the parameter estimate to

the MC standard error for the parameter estimate. Autocorrelation plots, density plots,

and history plots also failed to show convergence (see Figures G.1 to G.3). As an alternative

approach, the 95% credibility interval was used. A credibility interval in Bayesian statistics is

analogous to confidence intervals in frequentist statistics. The computer software OpenBUGS

(Spiegelhalter et al., 2007) used in this study provides a 95% credibility interval as a default
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for all parameter estimates. Based on the 95% credibility interval, the Mix3PLMs were

considered to have converged after a burn-in of 6,000 iterations and 11,000 post burn-in

iterations (see Tables E.3 to E.10).

To test convergence using the ratio of the standard deviation of the parameter to the MC

standard error for the parameter, MC standard error and standard deviation were derived

from OpenBUGS stat output files and the ratio was calculated. This method also supported

the results of Heidelberger & Welch diagnostics for MixRM and Mix2PLM. However, the

parameters for Mix3PLM are not converged using this method. Only the method using 95%

credibility interval provided the evidence of convergence for Mix3PLM.

Model Selection

Exploratory MixRM, Mix2PLM, and Mix3PLM analyses were done to determine the best

fitting model to the simulated data. The criterion used for model selection was BIC as

suggested by Li et al. (2009). AIC was provided as a comparison index. The percentages in

Table 4.1 indicate the number of correct model selection decisions for each condition.

Model selection for the MixRM using BIC was close to 100 percent correct for all con-

ditions except one condition for Constraint 1 (item anchoring) for 20 items, 2,400 simulees,

and the 2-group model had 95 percent agreement. All model selections were perfect for the

Mix2PLM. For the Mix3PLM, however, there were some low percentages of correct model

selection. These occurred under Constraint 2 (person centering) and Constraint 3 (item

centering). These results are discussed below.

Model Selection using BIC

The percentages of correct detections shown in Table 4.1 are also plotted in Figures 4.1

to 4.3 to help provide another indication of the effects of the three constraints. In the

figures, the three lines indicated the type of MixIRTM (i.e., the MixRM, Mix2PLM, and
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Table 4.1: Percent of Correct Model Selections for the MixIRTM

Constraint Item Sample Latent BIC AIC
Classes MixRM Mix2PLM Mix3PLM MixRM Mix2PLM Mix3PLM

1. Item 20 600 1 100 100 100 95 100 100
Anchoring 2 100 100 100 90 100 100

3 100 100 100 95 100 100
2400 1 100 100 100 85 100 100

2 95 100 95 70 90 95
3 100 100 95 65 95 95

40 600 1 100 100 100 100 100 100
2 100 100 100 100 100 100
3 100 100 100 100 100 100

2400 1 100 100 90 100 100 90
2 100 100 100 100 100 100
3 100 100 100 100 100 100

2. Person 20 600 1 100 100 100 90 100 100
Centering 2 100 100 100 90 100 100

3 100 100 40 100 100 100
2400 1 100 100 45 65 100 45

2 100 100 90 75 95 65
3 100 100 90 55 100 60

40 600 1 100 100 90 100 100 65
2 100 100 95 100 100 95
3 100 100 25 100 100 100

2400 1 100 100 45 100 100 45
2 100 100 95 100 100 95
3 100 100 95 100 100 85

3. Item 20 600 1 100 100 100 95 100 100
Centering 2 100 100 100 95 100 100

3 100 100 40 100 100 100
2400 1 100 100 100 75 100 100

2 100 100 100 75 95 95
3 100 100 100 70 95 90

40 600 1 100 100 100 100 100 100
2 100 100 95 100 100 95
3 100 100 25 100 100 100

2400 1 100 100 25 100 100 25
2 100 100 60 100 100 60
3 100 100 30 100 100 70

MixIRTM 99.86 100.00 82.36 91.25 99.17 88.06
Constraint 1 99.58 100.00 98.33 91.67 98.75 98.33
Constraint 2 100.00 100.00 75.83 89.58 99.58 79.58
Constraint 3 100.00 100.00 72.92 92.50 99.17 86.25

20-items 99.72 100.00 88.61 82.50 98.33 91.39
40 items 100.00 100.00 76.11 100.00 100.00 84.72

n=600 100.00 100.00 82.78 98.33 100.00 97.22
n=2400 99.72 100.00 80.83 85.28 98.33 78.61

1-class 100.00 100.00 82.92 92.08 100.00 80.83
2-class 99.58 100.00 94.17 91.25 98.33 91.67
3-class 100.00 100.00 70.00 90.42 99.17 91.67
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Mix3PLM) and the y-axis describes the percentages of correct detection using BIC index.

The simulation conditions are described along the x-axis (I2 indicates 20-items, I4 indicates

40-items, S6 indicates 600 examinees, S24 indicates 2,400 examinees, G1 to G3 indicate one-

group to three-group models). For example, I2S6G1 indicates the condition with 20-items,

600 examinees, one group solution under 20 replications.

Model Selection using BIC under Constraint 1 (Item Anchoring). The plots

in Figure 4.1 for Constraint 1 clearly indicate that the three MixIRTMs provided nearly the

same results for all conditions for both the MixRM and Mix2PLM. Those places where the

plots separate mainly occur where less than 100 percent correct detections were observed.

The percent of correct model selection was 99.58% for MixRM, 100.00% for Mix2PLM, and

98.33% for Mix3PLM in Table 4.1. Constraint 1 (item anchoring) did not affect the model

selection for any of the MixIRTMs.

Model Selection using BIC Under Constraint 2 (Person Centering). Unlike

results for the MixRM and Mix2PLM, there were clearly some problems for the Mix3PLM,

with Constraint 2 (person centering) (See Figure 4.2. For the smaller sample size (n = 600),

the Mix3PLM detected fewer correct models simulated with 3 latent classes. Likewise, for

the larger sample size (n = 2,400), the Mix3PLM detected fewer models simulated with

1 latent class. For 3 latent groups and the smaller sample size conditions, correct model

selection was 40 percent for 20 items and 25 percent for 40 items (see Figure 4.2). When

these data sets were generated, the numbers of students for each group in the small sample

(n = 600) with three groups condition were 360, 180, and 60, respectively. It is possible that

the small sample size for class 3 of 60 examinees might not be sufficient to estimate all the

parameters in the Mix3PLM. In addition, increasing test length to 40 items but with the

same smaller sample (n = 600) may not have provided sufficient information for accurate

estimation of all model parameters.

In addition, for the larger sample size (n = 2,400) and one latent group condition in the
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Mix3PLM, only 45 percent correct detections were observed for both the 20- and 40-item

tests. The one group solution is the usual IRT with no latent classes. In this case, it appears

that under Constraint 2 (person centering), model selection did not work well for the usual

3PL IRT model. These results suggest that person centering affected model selection using

the BIC index, when the larger sample size was simulated for the one latent class model (i.e.,

a 3PL model without any latent classes).

Model Selection using BIC Under Constraint 3 (Item Centering). Model se-

lection was perfect for the MixRM and Mix2PLM under Constraint 3 (item centering).

Problems were observed for the Mix3PLM under this constraint. For the smaller sample

size (n = 600) and 3-latent group model conditions, correct model selection was 40 % for

the 20-item test and 25 % for the 40-item test condition (see Figure 4.3). This result was

similar to what was observed under Constraint 2 (person centering). For the longer test (40

items) × larger sample (n = 2,400) condition, the percent of correct model selection was low

regardless of the number of latent groups simulated (e.g., one group = 25 %, two groups =

60 %, three groups = 30 %). One conclusion appears to be that Constraint 3 (item center-

ing) did not work well in two conditions, one was the smaller sample size and the 3-latent

group model and the other was the longer test length and larger sample size regardless of

the number of latent groups in the model.

When the three types of constraints were compared, there was no great difference in

model selection accuracy between the MixRM and the Mix2PLM. When Constraint 2 (person

centering) and Constraint 3 (item centering) were compared for the Mix3PLM, there was

no difference in the percentage of correct model selections for the smaller sample size (600

examinees). Constraint 2 (person centering) had higher a percentage than Constraint 3

(item centering), however, in the larger sample size condition regardless of test length or the

number of latent classes in the model. Constraint 3 (item centering) had higher percentages

of correct model selection than Constraint 2 (person centering) in the smaller sample size
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regardless of test length or number of latent classes. The percentage were low for two

simulation conditions (the 40-items, 600 examinees, and 3-group condition and the 40-items,

2,400 examinees, and 1-group condition) for both Constraints 2 and 3 (see Table 4.1).

Overall, model selection for the MixRM and Mix2PLM was close to 100 percent for all

three constraints. Model selection under Constraint 1 (item anchoring) was better for the

Mix3PLM than under Constraints 2 or 3. There was poor model selection in the mix3PLM

with Constraint 2 (person centering) when the smaller sample size and 3-group model

were simulated and when the larger sample size and 1-group model were simulated. Un-

der Constraint 3 (item centering), low percentages of correct detections were observed for

the Mix3PLM for the longer test (i.e., 40 items) × larger sample size (i.e., n = 2,400).
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Figure 4.1: Percent Correct Detections with BIC for Constraint 1 (Item Anchoring)

Model Selection using AIC

Although BIC was used as the criterion for model selection in this study, results for AIC are

provided here for comparison purposes, as AIC is also often used for model selection. The

main problem with AIC is that it has been found to be sensitive to model complexity (Li
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Figure 4.2: Percent Correct Detections with BIC for Constraint 2 (Person Anchoring)
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Figure 4.3: Percent Correct Detections with BIC for Constraint 3 (Item Centering)
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et al., 2009). That is, AIC has been shown to have a tendency to select the more complex

model regardless of the generating (i.e., the correct) model.

Table 4.1 presents model selection results for AIC under each constraint. These correct

detection rates are also plotted Figures 4.4 to 4.6.

Model Selection using AIC under Constraint 1 (Item Anchoring). The plots

in Figure 4.4 indicate that correct model selection was poor only for the shorter test (i.e.,

20 items) × larger sample size (n = 2,400) condition for the MixRM. The percent of correct

model selection with the shorter test × larger sample size was low for this model with

correct detection percentages of 85, 70, and 65 for the one- to three-latent group models,

respectively. AIC detected the correct model relatively well under Constraint 1, however,

for the Mix2PLM and Mix3PLM.

Model Selection using AIC under Constraint 2 (Person Centering). When

Constraint 2 (person centering) was used, low percentages of correct detection using AIC

were observed for the 20-item × 2,400 sample size condition for both the MixRM and the

Mix3PLM (see also Figure 4.5). For the MixRM, low these percentages were observed: 65

% for the 1-group model, 75 % for the 2-group model, and 55 % for the 3-group model. Low

percentages of correct model selection also were observed for the Mix3PLM of 45 percent

for the one-group condition, 65 percent for the two-group condition, and 60 percent for the

three-group condition. In addition, 65 percent of correct model selections were observed

for the shorter 20-item test × smaller sample size (n = 600) × one-group condition. For

the longer test (i.e., 40 items) × larger sample size (i.e., n = 2,400) condition, 45 percent

of correct detection were observed for the one-group and 85 percent for the three-group

conditions.

Model Selection using AIC under Constraint 3 (Item Centering). Correct

models were selected between 95 and 100 percent of the time for the Mix2PLM (see also

Figure 4.6). For the MixRM and Mix3PLM, however, there were some conditions with low
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percentages of correct selection. For the MixRM, the shorter test length (20 items) × larger

sample size (n= 2,400) condition had lower percentages of correct model selection (75 percent

for the one- and two-group conditions and 70 percent for the three-group condition). For the

longer test length (40 items) × larger sample size (n = 2,400) condition, the Mix3PLM had

low percentages of correct model selection regardless of the number of latent classes in the

model (25 percent for the one-group model, 60 percent for the two-group model, 70 percent

for the three-group model. As can be seen in Table 4.1, this pattern was similar to that

observed for Constraint 3 for the Mix3PLM when BIC was used.

Overall, AIC results for the Mix2PLM indicated good model selection results for all three

constraints. For the MixRM, however, the percent of correct model selection decreased for

shorter test lengths (20 items) × larger sample size (n = 2,400). Selection of the correct

model was good for the Mix3PLM under Constraint 1 (item anchoring). Under Constraints

2 (person centering) and 3 (item centering), however, the Mix3PLM had lower percentages

of correct selection.
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Figure 4.4: The Percent of Correct Number of Latent Classes with Item Anchoring Constraint
Based on AIC
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Figure 4.5: The Percent of Correct Number of Latent Classes with Person Centering Con-
straint Based on AIC
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Figure 4.6: The Percent of Correct Number of Latent Classes with Item Centering Constraint
Based on AIC
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Comparison of Model Selection for AIC and BIC

As can be seen in Table 4.1, for the MixRM and Mix2PLM, BIC had more correct model

selections than AIC. For the Mix3PLM, BIC had more often correct model selections than

AIC except for three conditions: longer test length × smaller sample size × 3-class using

Constraints 2 (person centering) and 3 (item centering), longer test length × larger sample

size × 3-class using Constraint 3 (item centering). This is agreement with results from Li et

al. (2009) which found that BIC made more correct model selections for all three MixIRTMs.

Comparisons Between BIC and AIC for the MixRM and Mix2PLM. For the

MixRM and Mix2PLM, BIC selected the correct model more often than did AIC for all

conditions (i.e., type of constraint, test length, sample size, and number of latent group)

at more than 99.5%. AIC and BIC, however, had about the same close to 100% of correct

model selections for the longer test length in the MixRM and for the longer test length,

smaller sample size, and 1-group model in the Mix2PLM.

Comparisons Between BIC and AIC for the Mix3PLM. AIC and BIC seemed to

work least well in Mix3PLM than in either the MixRM or Mix2PLM. AIC and BIC were

equally accurate at selection of the correct model with 98.33 percent under Constraint 1

(item anchoring). However, AIC more often selected the correct model than BIC under

Constraints 2 (person centering ) and 3 (item centering). For both test lengths, AIC was

more accurate than BIC. In addition, for the small sample size, AIC was more accurate,

whereas BIC was more accurate for the large sample size. For the 1-class and 2-class models,

BIC was more accurate and slightly better. For the 3-class model, however, AIC was much

better with 91.67 percent correct compared to 70 percent correct for BIC.

Among the 36 condition, AIC and BIC selected correct models for 25 conditions. BIC

selected more correct models for 6 conditions and AIC did so for 5 conditions. For the small

sample size, 3-class model, and for Constraints 2 (person centering) and 3 (item centering),

AIC was more accurate. For the longer test length, larger sample size, 3-class models, AIC
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also was more accurate. BIC was more accurate when the shorter test length, larger sample

size, and Constraint 2 (person centering) was used. For the longer test length, larger sample

size, and 3-class model, and Constraint 2 (person centering) and for the shorter test length,

larger sample size, 2- and 3-class models, and Constraint 3 (item centering), BIC was slightly

more accurate.

Label Switching

The possibility of label switching needs to be monitored in a simulation study with MixIRT

models in order to determine recovery of group membership. Label switching occurred in

this study when the latent classes switched between replications. As was noted earlier, when

latent classes switch on a given replication, it can cause confusion in interpretation of results

(Li et al., 2009). This type of label switching is easily observed in simulation studies because

the generating parameters are known and can be compared with the estimated parameters

for each of the latent classes (Cho, Cohen, & Kim, 2006; Li et al., 2009).

In this study, replications were monitored to determine whether or not label switching had

occurred. When it was observed, the problem was solved by comparing frequencies between

generated group membership and the posterior mode estimates of group membership. The

latent classes of each replication were switched based on the frequency comparisons prior to

the recovery analysis.

Table 4.2 indicates how many time label switching was observed in the simulation study.

Percent was calculated by the number of times label switching was observed over the num-

ber of correct model selection based on BIC index. For example, the condition having 20

replications with the Mix3PLM, Constraint 3 (item centering), 40-items, 2,400 examinees,

and 3-class model had 100 % (= 6/6) model selection. This condition, however, had only 6

data sets and the correct model was selected in all six. In addition, thought, label switching

was observed in all six data sets. There was not much difference in percent correct any of the
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MixIRTMs, test length, or sample size. However, the percent of label switching was very low

(14%), when Constraint 1 (item anchoring) was used in the Mix2PLM. When the number

of latent classes in the model increased, the percent of label switching increased as well.

Recovery Analysis

A recovery analysis was done to evaluate whether the estimation algorithms based on each

of the constraints had an effect on recovery of the generating parameters from the simulated

data. The item and latent group mean parameters used to generate the data were compared

to the estimated item and latent group mean parameters. Recovery of item and latent group

mean parameters were assessed using bias, root mean square error (RMSE), and Pearson

correlations between the generating parameters and the estimated parameters. Before re-

covery analysis, all estimated parameters were been placed onto the metric of the generating

parameters using the mean and sigma equating method.

RECOVERY OF ITEM AND LATENT GROUP MEAN PARAMETERS

Recovery Analysis for the MixRM. Bias, RMSE, and correlations for the MixRM be-

tween generating parameters and parameter estimates are reported in Table 4.3 for each of

the simulation conditions. All bias and correlation statistics appeared to indicate that gen-

erating parameters were recovered successfully. Bias values were all zero for item difficulty

and very small for latent group means, ranging between -.002 and .002. Correlations between

generating values and item difficulty estimates were all high, ranging from .979 to .999.

RMSEs for item difficulty ranged from .049 to .229. Most RMSEs were less than .144,

suggesting relatively good recovery. Values above .2 can be taken as indicating conditions

that may be causing problems with recovery. These values are presented in bold in Table 4.3.

RMSEs of .144 to .160 were observed in the 2-class × n = 600 conditions for all three

constraints suggesting the algorithm had difficulty recovering the generating values for these
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Table 4.2: Percent of Label Switching under 20 replications for MixIRTMs

Constraint Item Sample Latent Classes MixRM Mix2PLM Mix3PLM
1. Item 20 600 1 0 0 0

anchoring 2 65 10 60
3 75 60 100

2400 1 0 0 0
2 74 0 90
3 50 75 100

40 600 1 0 0 0
2 0 0 5
3 100 25 100

2400 1 0 0 0
2 0 0 10
3 100 0 100

2. Person 20 600 1 0 0 0
centering 2 0 100 50

3 95 100 38
2400 1 0 0 0

2 35 15 94
3 100 100 56

40 600 1 0 0 0
2 5 15 11
3 100 90 100

2400 1 0 0 0
2 0 100 100
3 100 100 95

3. Item 20 600 1 0 0 0
centering 2 0 100 100

3 100 0 50
2400 1 0 0 0

2 0 100 90
3 100 0 10

40 600 1 0 0 0
2 100 100 100
3 90 85 60

2400 1 0 0 0
2 100 100 75
3 100 10 100

MixIRTM 41 36 47
Constraint 1 39 14 47
Constraint 2 36 52 45
Constraint 3 49 41 49

20-items 39 37 47
40-items 44 35 48

n = 600 41 38 43
n = 2400 42 33 51

1-class 0 0 0
2-class 32 53 65
3-class 93 54 76
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conditions. Values above .2 were observed for the 3-class × n = 600 conditions for all three

constraints. These results suggest that recovery was negatively affected by the small sample

size (i.e., n = 600) as the number of latent classes increased (see also Figure 4.7). The type

of identification constraint did not appear to affect recovery of item difficulties as indexed

by RMSEs. Recovery of the generating item and group mean parameters was also generally

satisfactory.
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Figure 4.7: RMSEs for Item Difficulties in the MixRM

Recovery Analysis for the Mix2PLM. Bias statistics for item difficulty and dis-

crimination estimates are given in Table 4.4. Bias statistics were all zero for item difficulty.

RMSEs for item difficulty were also generally small, most ranged from .059 to .133. There

were some, however, that ranged from .164 to .222. These latter values all occurred for the

3-class model in the small sample (n = 600) conditions for all three constraints. This was

similar to the RMSE results for item difficulty for the MixRM. Correlations for item diffi-

culty were high and ranged from .980 to .999. Recovery of item difficulty for the Mix2PLM

was generally good with the possible exceptions of the 3-class model for the small sample

conditions. The type of constraint did not appear to affect recovery of item difficulty.
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Table 4.3: BIAS, RMSE and Correlations (Cor.) of Difficulty (β) Parameters and Latent
Group Mean (θ̄) in MixRM over 20 Replications

Constraint Item Sample Latent Item Difficulty Latent Group Mean
Classes BIAS RMSE Cor. BIAS RMSE

1. Item 20 600 1 0.000 0.083 0.997 0.001 0.004
Anchoring 2 0.000 0.150 0.991 0.001 0.008

3 0.000 0.208 0.983 0.002 0.016
2400 1 0.000 0.049 0.999 -0.001 0.004

2 0.000 0.075 0.998 -0.001 0.008
3 0.000 0.108 0.996 -0.002 0.014

40 600 1 0.000 0.094 0.996 0.001 0.003
2 0.000 0.144 0.992 0.000 0.015
3 0.000 0.206 0.983 0.000 0.017

2400 1 0.000 0.048 0.999 0.000 0.001
2 0.000 0.073 0.998 -0.001 0.009
3 0.000 0.104 0.996 0.000 0.005

2. Person 20 600 1 0.000 0.093 0.997 0.001 0.003
Centering 2 0.000 0.160 0.990 0.001 0.007

3 0.000 0.229 0.979 0.001 0.015
2400 1 0.000 0.053 0.999 -0.001 0.004

2 0.000 0.081 0.998 -0.001 0.008
3 0.000 0.116 0.995 -0.002 0.016

40 600 1 0.000 0.098 0.996 0.001 0.003
2 0.000 0.148 0.991 0.000 0.014
3 0.000 0.214 0.982 -0.001 0.014

2400 1 0.000 0.050 0.999 0.000 0.001
2 0.000 0.075 0.998 -0.001 0.009
3 0.000 0.108 0.995 0.000 0.005

3. Item 20 600 1 0.000 0.093 0.997 0.002 0.008
Centering 2 0.000 0.160 0.990 0.002 0.012

3 0.000 0.229 0.979 0.001 0.018
2400 1 0.000 0.053 0.999 0.003 0.014

2 0.000 0.081 0.998 -0.005 0.021
3 0.000 0.116 0.995 -0.002 0.011

40 600 1 0.000 0.098 0.996 -0.001 0.004
2 0.000 0.148 0.991 0.000 0.014
3 0.000 0.214 0.982 -0.001 0.017

2400 1 0.000 0.050 0.999 -0.001 0.003
2 0.000 0.075 0.998 0.001 0.027
3 0.000 0.108 0.995 0.000 0.002

Constraint 1 0.000 0.112 0.994 0.000 0.009
Constraint 2 0.000 0.119 0.993 0.000 0.008
Constraint 3 0.000 0.119 0.993 0.000 0.013

20-items 0.000 0.119 0.993 0.000 0.011
40-items 0.000 0.114 0.994 0.000 0.009

n = 600 0.000 0.154 0.990 0.001 0.011
n = 2400 0.000 0.079 0.997 -0.001 0.009

1-class 0.000 0.072 0.998 0.000 0.004
2-class 0.000 0.114 0.994 0.000 0.013
3-class 0.000 0.163 0.988 0.000 0.013

Note. When RMSE is larger than .2 or correlation is less than .8, the values are bold.
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Figure 4.8: RMSEs of Item Difficulties by the Type of Identification Constraint in the
Mixture 2PL Model

Bias statistics for item discrimination parameters were also relatively small, ranging from

.002 to .043. RMSEs for item discrimination parameters appeared to be higher for the small

sample conditions, ranging from .150 to .316. RMSEs in the large sample conditions were

slightly smaller, ranging from .080 to .199. This result suggests a sample size effect on recov-

ery of item discrimination. In addition, RMSEs for the 2-class and 3-class conditions were

larger than those in the 1-class conditions. Correlations for item discrimination generally

moderately high to high, ranging from .772 to .985. Correlations for the 1-class conditions

ranged from .938 to .985. Correlations for the 2-class conditions ranged from .861 to .965.

Correlations for the 3-class conditions ranged from .772 to .928. These correlations sug-

gest that the number of latent classes in the model had an impact on the recovery of the

discrimination parameters.

The bias and RMSE for latent group mean parameter estimates appeared to be recovered

successfully. All bias values were less than .005 and all RMSE statistics were less than .027.

71



Table 4.4: BIAS, RMSE and Correlations (Cor.) of Difficulty (β) and Discrimination (a)
Parameters and Latent Group Mean (θ̄) in Mix2PLM over 20 Replications

Constraint Item Sample Latent Item Difficulty Item Discrimination Latent Group Mean
Classes BIAS RMSE Cor. BIAS RMSE Cor. BIAS RMSE

1. Item 20 600 1 0.000 0.104 0.996 0.039 0.157 0.947 0.003 0.015
Anchoring 2 0.000 0.164 0.989 0.037 0.228 0.873 0.001 0.013

3 0.000 0.201 0.984 0.014 0.286 0.800 0.005 0.024
2400 1 0.000 0.060 0.999 0.034 0.092 0.985 -0.001 0.004

2 0.000 0.097 0.996 0.042 0.143 0.955 -0.002 0.011
3 0.000 0.123 0.994 0.043 0.181 0.922 0.000 0.009

40 600 1 0.000 0.119 0.994 0.028 0.150 0.948 0.001 0.005
2 0.000 0.162 0.990 0.023 0.219 0.882 0.001 0.007
3 0.000 0.211 0.982 0.003 0.265 0.819 0.002 0.027

2400 1 0.000 0.059 0.999 0.014 0.080 0.984 0.001 0.003
2 0.000 0.092 0.997 0.015 0.118 0.965 -0.001 0.005
3 0.000 0.128 0.993 0.025 0.171 0.928 0.000 0.009

2. Person 20 600 1 0.000 0.113 0.995 0.043 0.169 0.938 0.003 0.013
Centering 2 0.000 0.172 0.988 0.037 0.239 0.862 0.001 0.005

3 0.000 0.222 0.980 0.009 0.313 0.776 0.004 0.024
2400 1 0.000 0.065 0.999 0.034 0.097 0.983 -0.001 0.004

2 0.000 0.102 0.996 0.043 0.150 0.950 -0.002 0.018
3 0.000 0.133 0.993 0.043 0.199 0.909 0.001 0.005

40 600 1 0.000 0.123 0.994 0.028 0.156 0.943 0.001 0.004
2 0.000 0.166 0.989 0.022 0.224 0.878 0.001 0.005
3 0.000 0.219 0.981 0.003 0.279 0.807 0.001 0.008

2400 1 0.000 0.062 0.999 0.013 0.083 0.983 0.001 0.002
2 0.000 0.094 0.997 0.016 0.122 0.963 -0.001 0.011
3 0.000 0.132 0.993 0.026 0.177 0.924 0.001 0.014

3. Item 20 600 1 0.000 0.113 0.995 0.043 0.169 0.938 0.004 0.020
Centering 2 0.000 0.172 0.988 0.038 0.240 0.861 0.000 0.018

3 0.000 0.221 0.980 0.007 0.316 0.772 0.005 0.029
2400 1 0.000 0.065 0.999 0.034 0.097 0.983 -0.004 0.019

2 0.000 0.102 0.996 0.043 0.150 0.950 0.001 0.005
3 0.000 0.134 0.993 0.043 0.199 0.908 0.001 0.011

40 600 1 0.000 0.123 0.994 0.028 0.156 0.943 0.003 0.013
2 0.000 0.166 0.989 0.023 0.224 0.878 0.001 0.008
3 0.000 0.219 0.981 0.002 0.280 0.805 0.003 0.031

2400 1 0.000 0.061 0.999 0.013 0.083 0.983 -0.001 0.003
2 0.000 0.094 0.997 0.016 0.122 0.963 0.001 0.011
3 0.000 0.132 0.993 0.026 0.177 0.924 0.001 0.012

Constraint 1 0.000 0.127 0.993 0.026 0.174 0.917 0.001 0.011
Constraint 2 0.000 0.134 0.992 0.026 0.184 0.910 0.001 0.009
Constraint 3 0.000 0.134 0.992 0.026 0.184 0.909 0.001 0.015

20-items 0.000 0.131 0.992 0.035 0.190 0.906 0.001 0.014
40-items 0.000 0.131 0.992 0.018 0.171 0.918 0.001 0.010

n = 600 0.000 0.166 0.988 0.024 0.226 0.871 0.002 0.015
n = 2400 0.000 0.096 0.996 0.029 0.136 0.953 0.000 0.009

1-class 0.000 0.089 0.997 0.029 0.124 0.963 0.001 0.009
2-class 0.000 0.132 0.993 0.030 0.182 0.915 0.000 0.010
3-class 0.000 0.173 0.987 0.020 0.237 0.858 0.002 0.017

Note. When RMSE is larger than .2 or correlation is less than .8, the values are bold.
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Figure 4.9: RMSEs of Item Discriminations by the Type of Identification Constraint in the
Mixure 2PL Model

Recovery Analysis for the Mix3PLM. Table 4.5 presents the Bias, RMSE, and cor-

relation results for recovery analysis of item and group mean parameters in the Mix3PLM.

Bias and RMSE values were all close to zero for group mean parameters indicating these

parameters were recovered well. Bias for the item difficulty and lower asymptote parameters

were close to zero as well, although there were some simulation conditions which had ab-

solute Bias values higher than .3 for the item discrimination parameters. These conditions

included the 2,400 students × one group condition for Constraint 2 (person centering) and

for Constraint 3 (item centering) in the 40-items × 2,400 students × one group condition.

RMSEs for the Mix3PLM are plotted in Figures 4.10 to 4.12 for each of the three iden-

tification constraints. The pattern of RMSEs for item difficulty and discrimination appear

similar with each other. The RMSEs for the lower asymptote parameters in Figures 4.12

clearly indicate that all conditions had lower RMSEs except for the 20-items × 2,400 students

one group condition for Constraint 2 (person centering).
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Figure 4.10: RMSEs for Item Difficulties for the Mix3PLM
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Figure 4.11: RMSEs for Item Discriminations for the Mix3PLM
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Figure 4.12: RMSEs for Item Lower Asymptotes for the Mix3PLM

In addition, Constraint 1 (item anchoring) had the highest RMSE values for the longer

test length. There were no differences across the different constraints for the shorter test

length and smaller sample size. Constraint 2 (person centering) had higher RMSEs for item

difficulty and discrimination parameters on the 20-items × 2,400 students conditions for one

group. All three constraints had high RMSE values for item difficulties and discriminations

in the 40-items × 2,400 students conditions for one group. The 20-items × 2,400 students

conditions for the three group model had higher RMSE values for item difficulties under

Constraint 1 (item anchoring) and Constraint 2 (person centering). Constraint 2 (person

centering) and Constraint 3 (item centering) had higher RMSE values for item difficulty in

the 40-items × 2,400 students condition for the three-group model.

Correlations appeared to differ depending on constraint. For item difficulty, correlations

for Constraint 1 (item centering) were higher, averaging .973. Those for Constraint 2 (person

centering) were lower averaging .935, and those for Constraint 3 (item centering) were the
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lowest, averaging .891. For item discrimination, correlations for Constraint 1 were highest,

averaging .859. Correlations for Constraint 2 were .813, and those for Constraint 3 were the

lowest, averaging .786. Correlations for the lower asymptote were negative and low. The

average correlation for Constraint 1 was -.166, -.282 for Constraint 2, and -.218 for Constraint

3.

Relationship between Model Selection and Recovery Analysis

The lack of correct model detections may be related to poor recovery results. Bias, RMSE,

and Pearson correlation calculated for item recovery analysis are displayed in Tables 4.3 to

4.5. There was a high percent of correct model selection for the MixRM and Mix2PLM and

no apparent affect on model selection for these models. However, the Mix3PLM had a low

percent of correct model selection under Constraint 2 (person centering) and Constraint 3

(item centering) (see Table 4.1 and Figures 4.1 to 4.3). These results appear to be related

to poor recovery of item parameters.

When Constraint 1 (item anchoring) was used with the Mix3PLM, BIAS and RMSE

values were lower than when Constraints 2 (person centering ) and 3 (item centering) were

used. In addition, all correlations were higher with Constraints 2 and 3 (see Table 4.5).

When the conditions having the higher RMSE values (i.e., larger than .5) for item difficulty

are examined, all conditions had lower percent of correct model detection (e.g., RMSE =

.828 and 45% of correct model selection) using BIC for condition with Constraint 2 (person

centering), 20-items, 2,400 examinees, and 1-group model; RMSE = .584 and 25% of correct

model selection for a Constraint 3 (item centering), 40-items, 2,400 examinees, and 1-group

model.) It seems likely that the lack of correct model selection is related to poor recovery.

The Mix3PLM having had the lowest percent of correct model selection and also had poorer

recovery results.
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Recovery of Group Membership

Recovery of group membership was examined by calculating the percentage of correct group

identifications for each condition and comparing that with the percentage of examinees who

were simulated as being in that latent group (see Table 4.6). Only correct model selections

were considered for this comparison. If the correct model was indicated by the BIC index,

this was considered an correct model selection for purposes of the recovery analysis.

The latent class group membership was recovered well in the MixRM and Mix2PLM.

The percentage of correct group identifications ranged from 94% to 100% for the MixRM

and 97% to 100% for the Mix2PLM. For the Mix3PLM, one condition under Constraint

2 (person centering) for the 20-items × 2,400 students for the two-group model had 84%

correct identifications. All other conditions had correct identifications of 90% or higher (See

Table 4.6).

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

MixRM

Mix2PLM

Mix3PLM

Figure 4.13: The Percentage of Correct Group Membership Identifications for Constraint 1
(Item Anchoring)

The percentages of correct group membership are plotted in Figures 4.13 to 4.15. There

is a similar pattern in each of these plots. First, the Mix2PLM had the highest percentage
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Table 4.6: Percent of Latent Class Membership Classification

Constraint Item Sample Latent Classes MixRM Mix2PLM Mix3PLM
1. Item 20 600 1 100 100 100
Anchoring 2 96 98 93

3 94 97 90
2400 1 100 100 100

2 97 98 94
3 94 97 91

40 600 1 100 100 100
2 99 99 97
3 99 99 96

2400 1 100 100 100
2 99 100 97
3 99 99 96

2. Person 20 600 1 100 100 100
Centering 2 96 98 93

3 94 97 90
2400 1 100 100 100

2 97 98 84
3 94 97 90

40 600 1 100 100 100
2 99 99 97
3 99 99 96

2400 1 100 100 100
2 99 100 98
3 99 99 96

3. Item 20 600 1 100 100 100
Centering 2 96 98 93

3 94 97 90
2400 1 100 100 100

2 97 98 94
3 94 97 91

40 600 1 100 100 100
2 99 99 97
3 99 99 96

2400 1 100 100 100
2 99 100 97
3 99 99 96

MixIRTM 98 99 96
Constraint 1 98 99 96
Constraint 2 98 99 95
Constraint 3 98 99 96

20-items 97 98 94
40-items 99 100 98

n = 600 98 99 96
n = 2400 98 99 96

1-class 100 100 100
2-class 98 99 95
3-class 96 98 93
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Figure 4.14: The Percentage of Correct Group Membership Identifications for Constraint 2
(Person Centering)
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Figure 4.15: The Percentage of Correct Group Membership Identifications for Constraint 3
(Item Centering)
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of recovery of correct group membership and the Mix3PLM had the lowest. The Mix2PLM

appeared to recover latent group membership better than the MixRM and Mix3PLM. Sec-

ond, the percentage of correct membership identifications decreased as the number of latent

groups increased, that is, as the models became more complex. Third, higher percentages of

correct group membership classifications were observed for the longer test length. Finally,

sample size and type of constraint did not appear to affect group membership identification.

These patterns are similar to those reported by Li et al. (2009).

Effects of Simulation Conditions on Recovery of Generating Pa-

rameters

Multiple regression was used to help determine the effects of the simulation conditions on

the recovery of generating parameters. The simulation conditions were used as independent

variables in each multiple regression analysis for bias, RMSE, and correlation. Since BIAS

values for item difficulty for MixRM, Mix2PLM, and Mix3PLM were all zero (see Tables 4.3

to 4.5), BIAS was excluded from the multiple regression analysis for recovery of item diffi-

culty. The percent of correct model selection using AIC and BIC was used for analysis of

recovery of group membership.

Table 4.7 provides descriptive statistics for the dependent variables in the multiple regres-

sion analysis. Model selection using AIC and BIC and latent group membership identification

were successful with higher than 92 percentage. The recovery analysis for item difficulty and

discrimination parameters were performed well. All results of recovery analysis for item

difficulty were lower than those for item discrimination. It may be concluded, therefore,

that item difficulty parameters were recovered better than item discrimination parameters.

Based on the bias and RMSE, the lower asymptote seemed to be recovered well. However,

the correlations for lower asymptote were all negative. The negative correlations may be due
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to the very narrow range of lower asymptote values. That is, anytime the estimate of the

lower asymptote was lower than the generating parameter, the correlation would be negative.

Table 4.7: Summary of Descriptive Statistics of Dependent Variables

n M SD Min Max
Model selection

AIC 108 92.82 14.41 25.00 100.00
BIC 108 94.07 17.67 25.00 100.00

Item difficulty
RMSE 108 0.18 0.13 0.05 0.83
Correlation 108 0.97 0.09 0.10 1.00

Item discrimination
Bias 72 0.07 0.09 0.00 0.51
RMSE 72 0.24 0.11 0.08 0.78
Correlation 72 0.87 0.12 0.10 0.99

Lower asymptote
Bias 36 0.03 0.01 0.00 0.08
RMSE 36 0.09 0.04 0.05 0.24
Correlation 36 -0.22 0.22 -0.50 0.34

Correct group membership identification
Percent in group 108 97.68 2.97 84.10 100.00

The latent group mean (θ̄) was not considered in the multiple regression analysis as

all latent group means were very close to zero. The multiple regression analysis was only

performed for bias and RMSE of the latent group means. All the regression coefficients were

close to zero. Therefore, the recovery analysis using bias and RMSE of latent group means

was not involved in the regression analysis.

Variable Recoding

The bias values for item discrimination and lower asymptote were recoded to absolute values

for ease of interpretation. Actual results as indicated in Table 4.1 were used for analyses. All

independent variables involved in the multiple regression were recoded using the following

dummy coding scheme. Two dummy codes were used for MixIRTMs. For one dummy code

(MixIRTM 2PL), the Mix2PLM was coded to one and the MixRM and Mix3PLM were both
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coded as zero. For the other dummy code (MixIRTM 3PL), the Mix3PLM was coded as one

and the MixRM and Mix2PLM were coded as zero. The type of identification constraints

were also recoded using two dummy codes: Constraint 2 (person centering) was coded as

one and Constraints 1 (item anchoring) and 3 (item centering) were coded as zero for the

‘Person Centering’ variable. For the other dummy code (Item Centering), Constraint 3 (item

centering) was coded as one and Constraints 1 (item anchoring) and 2 (person centering)

were coded as zero.

The 20-item test length coded as zero and the 40-item test length was coded as one.

The small sample size (i.e., n = 600) was coded as zero and the large sample size (i.e., n

= 2,400) was coded as 1. The number of latent classes was recoded to 0, 1, and 2 for the

one-, two-, and three-group MixIRTMs, respectively. Using this coding scheme, the intercept

can be interpreted as the expected mean of a dependent variable when for the MixRM ×

Constraint 1 (item anchoring) × 20-items × n = 600 × one-group MixIRTM condition. The

total sample size for the regression analysis is 108, which is the total number of simulation

conditions.

Regression Assumption

There are three assumptions for a multiple regression analysis. First, a linear relationship

is assumed between independent and dependent variables. As previously noted, the latent

group mean (θ̄) had no linear relationship with any simulation condition (i.e., with any

independent variable). Therefore, the recovery analyses using BIAS and RMSE of latent

group means were not included in the regression analysis.

The two assumptions are related to residuals or error terms. The expected residuals

are assumed to be independent of each other. The expected value of residuals is zero and

the residuals are assumed to be normally distributed. To check the assumption of the

normality, p-p plots were constructed for standardized residuals from the regression analysis.
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(a) AIC (b) BIC (c) Percent in Group

Figure 4.16: P-P Plots of Standardized Residuals for Model Selection and Percent Correct
Classifications

These plots indicate deviations from the line indicating the normality expectation for model

selection and percent correctly classified (see Figures 4.16 to 4.19). The criteria for normal

distribution, in other words, is the degree to which the p-p plot for the actual values is

close to the diagonal solid line, which indicates the expected values. For correlations of

item parameters, Fisher’s logarithmic transformation was applied to obtain better normality.

Examination of the p-p plots of residuals of dependent variables, AIC, BIC, and Percent

in group, for model selection and group membership identification, suggest the residuals

were relatively close to the expected values for AIC and percent in group (see Figure 4.16).

Bias, RMSE, and correlation results for item parameters indicated moderate normality (see

Figures 4.17 to 4.19).

Multicollinearity Diagnostics

Multicollinearity refers to the degree to which the independent variables in the regression

analysis are correlated. Complete collinearity would mean that the correlation between in-

dependent variables equals one. Collinearity diagnostics measure how much the independent
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(a) RMSE (b) Correlation

Figure 4.17: P-P Plots of Standardized Residuals for Item Difficulty

(a) BIAS (b) RMSE (c) Correlation

Figure 4.18: P-P Plots of Standardized Residuals for Item Discrimination
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(a) BIAS (b) RMSE (c) Correlation

Figure 4.19: P-P Plots of the Standardized Residuals for Lower Asymptote Item Parameters

variables are each related to the other independent variables and how they affect the stability

and variance of the regression estimates (Belsley, Kuh, & Welsch, 2004; Pedhazur, 1997).

One simple collinearity diagnostic measure is the correlation between independent variables.

In this study, all independent variables were categorical and explained the simulation condi-

tions. There was no correlation simulated among the conditions of the simulation study as

the simulation conditions were designed to be independent. In addition, Phi and Cramer’s V

correlation statistics for categorical variables could not be computed because the asymptotic

standard error equaled zero. Therefore, multicollinearity was not a concern in this regression

analysis.

The Effect of Simulation Conditions on Model Selection and Group Membership

Identification

Three multiple regression analyses were performed to examine the effects of simulation con-

ditions on model selection using AIC and BIC and on group membership identification (see

Table 4.8). The notation ‘B’ is used to indicate that the coefficient is unstandardized. Sim-

ilarly, SE B indicates the standard error of unstandardized coefficient. β represents the
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standardized coefficient. The results of the regression analysis indicated the seven indepen-

dent variables explained 31% of the variance of model selection results using AIC (R2 = .31,

F (7, 100) = 6.48, p < .01), 29% of the variance of model selection results using BIC (R2

= .29, F (7, 100) = 5.86, p < .001), and 67% of the variance of latent group membership

identification (R2 = .67, F (7, 100) = 29.56, p < .001).

Three simulation conditions, MixIRTM, identification constraint, and sample size, signif-

icantly predicted model selection using AIC. The Mix2PLM had a higher percent of correct

model selections than either the MixRM and or the Mix3PLM (B = 7.92, p < .01). In

addition, for Constraint 2 (person centering), AIC had poorer correct model selection (B =

-6.67, p < .05) than for Constraints 1 (item anchoring) or 3 (item centering). AIC also had

lower correct percentages as sample size increased (B = -10.83, p < .001).

For BIC, two simulation conditions, MixIRTM and constraint, significantly affected model

selection. The Mix3PLM had a lower percentage of correct model selection than either the

MixRM or the Mix2PLM (B = -17.50, p < .001). Constraint 2 (person centering) and

Constraint 3 (item centering) had lower percentages of model selection than Constraint 1

(item anchoring) (B = -7.36, p < .05 for Constraint 2 and B = -8.33, p < .05 for Constraint

3).

Three conditions, MixIRTM, test length, and number of latent classes, significantly pre-

dicted the percent of correct group membership identification. The Mix3PLM was less

effective at detecting correct group membership and the Mix2PLM was the best among the

three MixIRTMs (B = .85, p < .05 for Mix2PLM, B = -2.20, p < .001 for Mix3PLM). The

more items and the smaller number of latent classes appeared to get higher percent of correct

group membership (B = 2.41, p < .001 for item, B = -2.04, p < .001 for latent classes).
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The Effect of Conditions on the Recovery Analysis of Item Parameters

Eight multiple regression analyses were performed to help determine whether simulation

conditions significantly affected the recovery of item parameters (See Tables 4.9 to 4.11). As

mentioned previously, analysis of bias for item difficulty was excluded because these values

were all zero in all conditions.

Results of the regression analysis for the other variables indicated the seven predictors

explained 49% of the variance of RMSE of item difficulty (R2 = .49, F (7, 100) = 13.57,

p < .001) and 67% of the variance of correlation of item difficulty (R2 = .67, F (7, 100) =

28.35, p < .001). For item discrimination, the six predictors explained 31% of the variance

of bias (R2 = .31, F (6, 65) = 4.67, p < .01), 39% of the variance of RMSE (R2 = .39,

F (6, 65) = 6.80, p < .001), and 72% of the variance of correlation (R2 = .72, F (6, 65) =

28.26, p < .001). The F-test for bias and RMSE (see Table 4.11) suggested that bias and

RMSE for the lower asymptote parameters could not be predicted by simulation conditions

(F (5, 30) = 1.12, p = .37 for Bias and F (5, 30) = 2.08, p = .10 for RMSE). The results of

the regression analysis indicated that the five predictors explained 58% of the variance of

the correlation for the lower asymptote parameters (R2 = .58, F (5, 30) = 8.15, p < .001)

Table 4.9: Regression Analysis for Item Difficulty Parameters

RMSE Correlation
Variable B SE B β B SE B β
Constant 0.07 0.03 3.40 0.12
MixIRTM 2PL 0.01 0.02 0.06 -0.13 0.10 -0.09
MixIRTM 3PL 0.18 0.02 0.67∗∗∗ -1.00 0.10 -0.70∗∗∗

Person Centering 0.05 0.02 0.18∗ -0.17 0.10 -0.12
Item Centering 0.02 0.02 0.07 -0.12 0.10 -0.08
Test Length 0.02 0.02 0.07 -0.12 0.08 -0.09
Sample Size -0.02 0.02 -0.06 0.34 0.08 0.25∗∗∗

Latent Classes 0.03 0.01 0.19∗ -0.33 0.05 -0.39∗∗∗

R2 0.49 0.67
F (7, 100) 13.57∗∗∗ 28.35∗∗∗

Note. N = 108, * p < .05, ** p < .01, *** p < .001
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RMSEs for the Mix3PLM for item difficulty appeared to be higher (B = .18, p < .001)

and correlations appeared to be lower (B = -1.00, p < .001) than those for the MixRM and

Mix2PLM. RMSEs for item difficulty tended to be higher for Constraint 2 (person centering)

and for models with more latent classes and with larger sample size (B = .05, p < .05 for

Constraint 2 (person centering), B = .03, p < .05 for number of latent classes, B = .25,

p < .05 for number of latent classes). The correlations for item difficulty tended to be lower

for smaller sample size and for more latent classes (B = .34, p < .001 for sample size and B

= -.33, p < .001 for latent classes) (See Table 4.9).

For the recovery of item discrimination, the Mix3PLM had higher bias (B = .09, p < .001)

and RMSEs (B = .12, p < .001) and lower correlations (B = -.44, p < .001) than for the

MixRM or Mix2PLM. Bias for item discrimination also was higher (B =.04, p < .05) with

Constraint 2 (person centering) and RMSEs for item discrimination was higher with more

latent classes (B =.03, p < .05). Lower correlation was observed with smaller sample size

and with more latent classes (B = .32, p < .001 for sample size and B = -.30, p < .001 for

latent class) (see Table 4.10).

For larger sample size and smaller numbers of latent classes, correlations for the lower

asymptote were higher (B = .23, p < .001 for sample size and B = -.15, p < .001 for latent

classes) (See Table 4.11).
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Chapter 5

Discussion and Conclusions

The purpose of this study was to explore the effects of three scale identification methods for

establishing a common metric between latent classes in MixIRT models. There are currently

three methods commonly used for developing a common metric between latent classes. The

first method is concurrent calibration in which one or more items are used to anchor the

metrics between classes. The second method is to impose equality constraints by setting the

mean of one latent class to zero and its standard deviation to one and a third method is

setting the sum of item difficulties to zero for each latent group.

An empirical example from the TIMSS 2011 Grade 8 Science Test motivated the simula-

tion study. The three constraints were applied to establish a common metric between latent

classes for a MixRM and a Mix2PLM. Results from the MixRM suggested that each of the

constraints had a somewhat different effect on item difficulty estimates, ability estimates,

numbers of latent classes, classifications of examinees into latent classes, and proportions of

membership in each latent class. Similar results were observed for the Mix2PLM with the

exception that the same number of latent classes was extracted using all three constraints.

Results based on this data set clearly differed depending on the MixIRT model and on the

constraint used.
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5.1 Summary of Simulation Study Results

A simulation study was designed to explore the impact of different identification constraints

in the context of three MixIRT models: MixRM, Mix2PLM, and Mix3PLM. The design of

the simulation study includes the three types of constraints used in the example described

above: Constraint 1 (item anchoring: equating method), Constraint 2 (person centering:

the mean ability of the first latent group set to zero), and Constraint 3 (item centering: the

mean of item difficulties is set to zero in each class). The simulation conditions also included

the following conditions: two sample sizes (600 examinees and 2,400 examinees), two test

lengths (20 and 40 items), three different cases of latent groups (1-, 2-, and 3-groups) with

different proportions of simulated groups for each of these three MixIRT models. There were

20 replications of the 108 conditions: Three identification constraints × two test lengths

× two sample sizes × one to three latent groups × three mixture IRT models yields 108

conditions.

Three convergence diagnostics were used to monitor the convergence: Heidelberger and

Welch convergence diagnostics, the ratio of the standard deviation of the parameter estimate

to the MC standard error for the parameter estimate, and the credibility interval. THe

Heidelberger and Welch convergence diagnostics and the ratio of the standard deviation of

the parameter to the MC standard error for the parameter were used to check the convergence

for MixRM and Mix2PLM. The 95% credibility interval was used to monitor the convergence

of the Mix3PLM. The burn-in for the MixRM was 5,000 iterations and the post-burn-in was

5,000 iterations. For the Mix2PLM, the burn-in was 6,000 iterations and the post-burn-in

was 11,000 iterations. The Mix3PLM was considered to have converged after 6,000 burn-in

iterations and 11,000 post-burn-in iterations based on the 95 % credibility interval.

Exploratory MixRM, Mix2PLM, and Mix3PLM analyses were done to determine the

best fitting model to the simulated data. The criterion used for model selection was BIC as
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suggested by Li et al. (2009). AIC was provided as a comparison index. Model selection for

the MixRM and Mix2PLM using BIC was almost 100 percent correct. For the Mix3PLM,

however, there were some low percentages of correct model selection. These occurred only

under Constraints 2 (person centering) and 3 (item centering). Model selection under Con-

straint 1 (item anchoring) was better for the Mix3PLM than under Constraints 2 or 3. There

was lack of correct model detection in the Mix3PLM with Constraint 2 (person centering)

when the smaller sample size and 3-class model were simulated and when the larger sample

size and 1-class model were simulated. Under Constraint 3 (item centering), low percentages

of correct detections occurred for the longer test × larger sample size and for the longer test

× smaller sample size × 3-class.

BIC had more correct model selections than AIC for the MixRM and Mix2PLM. For

the Mix3PLM, BIC had equal or more correct model selections than AIC except in three

conditions: the longer test length × smaller sample size × 3-class model using Constraints

2 and 3, and the longer test length × larger sample size × 3-class using Constraint 3. This

agrees with results from Li et al. (2009) which found that BIC made more correct model

selections for all three MixIRTMs.

A recovery analysis was performed to evaluate how the estimation algorithms based

on different constraints affect recovery of the generating parameters from the simulated

data. The item and latent group mean generating parameters were compared to the item

and latent group mean estimates. BIAS, RMSE, and Pearson correlations between the

generating parameters and estimated parameters were calculated. Before recovery analysis,

all estimated parameters were placed onto the metric of the generating parameters using

the mean and sigma equating method. BIAS and RMSE for latent group mean parameter

estimates were close to zero for all conditions under all MixIRTMs. However, there were

variations in recovery results for the different MixIRT models.

For the MixRM, all BIAS and correlations appeared to indicate that generating param-
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eters were recovered well. RMSE results suggested recovery was negatively affected by the

small sample size (i.e., n = 600) as the number of latent classes increased. The type of

identification constraint did not appear to affect recovery of item difficulties as indexed by

RMSEs. Recovery of the generating item and group mean parameters was generally good in

the MixRM.

Recovery of item difficulty for the Mix2PLM was generally good with the possible excep-

tions of the 2-class and 3-class models for the small sample conditions. The type of constraint

did not appear to affect recovery of item difficulty for this model. Bias statistics for item

discrimination parameters were relatively small. However, RMSEs for item discrimination

parameters appeared to be higher for the small sample size and 2- and 3-class conditions.

Correlations for item discrimination generally moderately high to high. These results suggest

sample size and number of latent classes effects on recovery of item discrimination.

Mix3PLM were recovered moderately well for Constraint 1 (item anchoring). Constraints

2 (person centering) and 3 (item centering) had worse item recovery than Constraint 1. Con-

straint 1 (item anchoring) had the highest RMSE values for the longer test length. Constraint

2 (person centering) had higher RMSEs for item difficulty and discrimination parameters on

the 20-items × 2,400 students conditions for one group. All three constraint had high RMSE

values for item difficulties and discriminations in the 40-items × 2,400 students conditions

for the 1-group model. The 20-items × 2,400 students conditions for the 3-group model had

higher RMSE values for item difficulties under Constraint 1 (item anchoring) and Constraint

2 (person centering). Constraint 2 (person centering) and Constraint 3 (item centering) had

higher RMSE values for item difficulty in the 40-items × 2,400 students condition for the

3-group model. The RMSEs for the lower asymptote parameters clearly indicated that all

conditions had lower RMSEs except for the 20-items × 2,400 students 1-group model con-

dition for Constraint 2 (person centering). Correlations appeared to differ depending on

constraint. Correlations were highest for all three item parameters for Constraint 1 (item

96



centering). The correlations for item difficulty and item discrimination were moderately high

or high for all constraints. The correlations for the lower asymptote were negative.

There was no constraint effect on the model selection and recovery analysis under the

MixRM and Mix2PLM. For the Mix3PLM, Constraint 1 (item anchoring) selected the cor-

rect model well using both BIC (98.33%) and AIC (98.33%). Recovery appeared best for

Constraint 1. The correct model was selected more with BIC under Constraint 2 (person

centering) than Constraint 3 (item centering) but recovery of generating parameters was

worse for these two constraints. Results suggest that any of the three constraints can be

used for the MixRM and Mix2PLM but only Constraint 1 is recommended for the Mix3PLM.

The lack of correct model selection appeared to be related to poor recovery results. The

Mix3PLM had a lower percent of correct model selection and also had poorer recovery results.

Recovery of group membership was examined by calculating the percentage of correct group

identifications for each condition and comparing that with the percentage of examinees

who were simulated as being in that latent group. The latent class group membership

was recovered well in the MixRM and Mix2PLM. For the Mix3PLM, one condition under

Constraint 2 (person centering) for the 20-items × 2,400 students for the two-group model

had 84% correct identifications. All other conditions had correct identifications of 90% or

higher (see Table 4.6).

Multiple regression was used to help detect the effects of the simulation conditions on

the recovery of generating parameters. The simulation conditions were used as independent

variables in each multiple regression analysis for BIAS, RMSE, and correlation. The percent

of correct model selection using AIC and BIC and the frequency of correct group member-

ship identification were also used as independent variables for analysis of recovery of group

membership. Table 5.1 summarized Tables 4.8 to 4.11. For easier understanding, all the

regression coefficients are recoded in these tables by ‘+’ for good recovery and ‘-’ for poor

recovery. When the regression coefficients for BIAS and RMSE were significantly negative,
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they were recoded as ‘+’ because smaller bias and RMSE values means better recovery. The

other dependent variables (i.e., AIC, BIC, percent in group, correlation for item parameters)

were recoded by ‘+’ when the coefficients were positive and by ‘-’ when they were negative.

When the MixIRTMs were compared, the Mix2PLM had the best recovery and the

Mix3PLM the worst. For the Mix3PLM, all signs were negative, indicating the Mix3PLM did

not recover the generated parameters well. When the type of constraints were compared by

using the ‘Person Centering’ and ‘Item Centering’ variables, Constraint 2 (person centering)

had worse recovery results. Test length did not appear to have an effect on recovery for item

parameters. The longer test length was associated with improved correct identification of

group membership. The more sample size appeared to have better recovery results using

correlation for item parameters. Percent of correct model selection using AIC was lower

when larger the sample size was used. The more latent classes in the model, the poorer

the recovery of group membership, item difficulty, item discrimination, and lower asymptote

parameters.

5.2 Limitations and Future Studies

The Number of Replications. Although the results of Harwell et al. (1996) recommended

a minimum of 25 replications for monte carlo studies in IRT-based research, 20 replications

were performed in this study due to resource constraints on the campus computing cluster.

At least 10 more replications would be preferable to ensure that results are somewhat more

stable.

Time-Consuming Estimation using OpenBUGS. As mentioned in Table 3.5, the

MixRM took up to 26 hours to run for one condition using OpenBUGS, 50 hours for the

Mix2PLM, and 197 hours (about 8 days) for the Mix3PLM. For the 2,160 jobs run using

OpenBUGS ( = 20 replications of the 108 conditions), simulations for this research required
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approximately five months was taken using the GCA blades and the campus linux cluster

computer.

Convergence Issue in Mix3PLM. Heidelberger and Welch diagnostic reported non-

convergence for 35,000 iterations in the Mix3PLM. Instead of Heidelberger and Welch di-

agnostic, the 95 %credibility interval was used to monitor convergence of the Mix3PLM.

Although the Mix3PLM was considered to have converged based on the 95 % credibility

interval, more convergence diagnostic methods need to be examined with this model.

How to Determine Anchor Items. Among the three types of constraint, Constraint 1

(item anchoring) performed best. There is one issue when item anchoring constraint is used

for metric identification with MixIRTMs. This is how to determine anchor items. This is

also an important problem in IRT, particularly in studies of differential item functioning and

equating. There are two methods to determine the anchor items in the MixIRTMs: deciding

on the basis of theoretical background reasons which items to select and deciding based on

statistical evidence. Bolt et al. (2002) studied test speededness using the MixRM. To test

speededness, the first 18 of 32 items were assumed to be non-speeded and so were identified

as not being speeded. These 18 items were used as anchor items. The last 8 items on the 32-

item test were considered as potentially speeded items. Choi et al. (2014) used a statistical

criterion based on the likelihood ratio test with the Mix3PLM to determine the anchor items.

The likelihood ratio test was conducted using the MULTILOG computer program (Thissen

et al., 2003). Additional methods to determine anchor items could profitably be explored.

Model Selection using BIC. Li et al. (2009) concluded that BIC was most effective

among the AIC, DIC, PPMC, and PsBF. The MixIRTMs used in that simulation study did

not contain any metric identification constraints. When three different types of constraint

were involved in the present study, there was no problem for either the MixRM or the

Mix2PLM. However, the Mix3PLM did not do as well with respect to selection of the correct

model. This was particularly the case, when person centering and item centering were used.
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Results from this study extend those by Li et al. (2009) by showing the differential effects

of identification constraints for each of the MixIRT models considered. Comparison using

different information indices might be useful for further extending this kind of research.
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Appendix A

R Code for Generating Data:

Mix3PLM with Three Latent Class

Groups

# Fix the working directory

setwd("c:/yj/DataThree")

getwd()

mainFolder <- "c:/yj/DataThree"

# Number of items

nItem<-20

#nItem<-40

# Number of subjects

nSub<-600

#nSub<-2400

# Item parameter information for 20 items

# Item difficulty parameters

b1<-c(-0.50, -0.50, 0, 0.50, 0.50, -2.00, -1.75, -1.50, -1.25, -1.00,

-0.50, -0.25, 0, 0.25, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00)

b2<-c(-0.50, -0.50, 0, 0.50, 0.50, -0.50, -0.25, 0, 0.25, 0.50,

1.00, 1.25, 1.50, 1.75, 2.00, -2.00, -1.75, -1.50, -1.25, -1.00)
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b3<-c(-0.50, -0.50, 0, 0.50, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00,

-2.00, -1.75, -1.50, -1.25, -1.00, -0.50, -0.25, 0, 0.25, 0.50)

# Item discrimination parameters

a1<-c(1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1)

a2<-c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2)

a3<-c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1)

# Lower asymptote parameters

c1<-c(0.20, 0.20, 0.20, 0.20, 0.20, 0.10, 0.10, 0.10, 0.10, 0.10,

0.20, 0.20, 0.20, 0.20, 0.20, 0.25, 0.25, 0.25, 0.25, 0.25)

c2<-c(0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20,

0.25, 0.25, 0.25, 0.25, 0.25, 0.10, 0.10, 0.10, 0.10, 0.10)

c3<-c(0.20, 0.20, 0.20, 0.20, 0.20, 0.25, 0.25, 0.25, 0.25, 0.25,

0.10, 0.10, 0.10, 0.10, 0.10, 0.20, 0.20, 0.20, 0.20, 0.20)

# Item parameter information for 40 items

# Item difficulty parameters

#b1<-c(-0.50, -0.50, 0, 0.50, 0.50, -2.00, -1.75, -1.50, -1.25, -1.00,

# -0.50, -0.25, 0, 0.25, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00,

# -0.50, -0.50, 0, 0.50, 0.50, -2.00, -1.75, -1.50, -1.25, -1.00,

# -0.50, -0.25, 0, 0.25, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00)

#b2<-c(-0.50, -0.50, 0, 0.50, 0.50, -0.50, -0.25, 0, 0.25, 0.50,

# 1.00, 1.25, 1.50, 1.75, 2.00, -2.00, -1.75, -1.50, -1.25, -1.00,

# -0.50, -0.50, 0, 0.50, 0.50, -0.50, -0.25, 0, 0.25, 0.50,

# 1.00, 1.25, 1.50, 1.75, 2.00, -2.00, -1.75, -1.50, -1.25, -1.00)

#b3<-c(-0.50, -0.50, 0, 0.50, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00,

# -2.00, -1.75, -1.50, -1.25, -1.00, -0.50, -0.25, 0, 0.25, 0.50,

# -0.50, -0.50, 0, 0.50, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00,

# -2.00, -1.75, -1.50, -1.25, -1.00, -0.50, -0.25, 0, 0.25, 0.50)

# Item discrimination parameters

#a1<-c(1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1)

#a2<-c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2)

#a3<-c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1)

# Lower asymptote parameters

#c1<-c(0.20, 0.20, 0.20, 0.20, 0.20, 0.10, 0.10, 0.10, 0.10, 0.10,

# 0.20, 0.20, 0.20, 0.20, 0.20, 0.25, 0.25, 0.25, 0.25, 0.25,

# 0.20, 0.20, 0.20, 0.20, 0.20, 0.10, 0.10, 0.10, 0.10, 0.10,

# 0.20, 0.20, 0.20, 0.20, 0.20, 0.25, 0.25, 0.25, 0.25, 0.25)

#c2<-c(0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20,
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# 0.25, 0.25, 0.25, 0.25, 0.25, 0.10, 0.10, 0.10, 0.10, 0.10,

# 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20,

# 0.25, 0.25, 0.25, 0.25, 0.25, 0.10, 0.10, 0.10, 0.10, 0.10)

#c3<-c(0.20, 0.20, 0.20, 0.20, 0.20, 0.25, 0.25, 0.25, 0.25, 0.25,

# 0.10, 0.10, 0.10, 0.10, 0.10, 0.20, 0.20, 0.20, 0.20, 0.20,

# 0.20, 0.20, 0.20, 0.20, 0.20, 0.25, 0.25, 0.25, 0.25, 0.25,

# 0.10, 0.10, 0.10, 0.10, 0.10, 0.20, 0.20, 0.20, 0.20, 0.20)

# To make file names

if (nItem==20) {

nItemm<-2

}

if (nItem==40) {

nItemm<-4

}

if (nSub==600) {

nSubb<-6

}

if (nSub==1200) {

nSubb<-12

}

if (nSub==2400) {

nSubb<-24

}

# Mean of normal distribution for class 1, 2, and 3

meanTheta1<-0

meanTheta2<-0

meanTheta3<-0

# SD of normal distribution for class 1, 2, and 3

sdTheta1<-1

sdTheta2<-1

sdTheta3<-1

# Random seeds for three groups and 20 replications

seed3<-c(14834, 37776, 60718, 83659, 06602, 29544, 52485, 75427, 98369, 21311,

44253, 63389, 74860, 86330, 97801, 09273, 20744, 32215, 43686, 55156,

10756, 22227, 33697, 45168, 56639, 68110, 79581, 91052, 02523, 13994,

25465, 36936, 48407, 59878, 71348, 82819, 94290, 05762, 17233, 28703,

97476, 53212, 08948, 64683, 20419, 76154, 31890, 87625, 43361, 99096,
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54831, 10567, 66302, 22038, 77773, 33509, 89244, 44980, 00716, 56451)

seed3<-matrix(seed3,20,3)

for (iter in 1:20) {

theta1<-mat.or.vec(nSub*.6,1)

theta2<-mat.or.vec(nSub*.3,1)

theta3<-mat.or.vec(nSub*.1,1)

set.seed(seed3[iter,1])

theta1<-rnorm(nSub*.6,mean=meanTheta1,sd=sdTheta1)

set.seed(seed3[iter,2])

theta2<-rnorm(nSub*.3,mean=meanTheta2,sd=sdTheta2)

set.seed(seed3[iter,3])

theta3<-rnorm(nSub*.1,mean=meanTheta3,sd=sdTheta3)

thetatemp<-c(theta1,theta2,theta3)

### Generating complete data set ###

response<-mat.or.vec(nSub,nItem+1)

for (row in 1:nSub) {

if (row<=nSub*.6) {

class<-1

b<-b1

a<-a1

c<-c1

theta<-thetatemp[row]

}

if (row>nSub*.6 & row<=nSub*.9) {

class<-2

b<-b2

a<-a2

c<-c2

theta<-thetatemp[row]

}

if (row>nSub*.9) {

class<-3

b<-b3

a<-a3

c<-c3

theta<-thetatemp[row]

}

for (column in 1:nItem) {
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p=c[column] + (1-c[column])*(exp(a[column]*(theta-b[column]))

/(1+exp(a[column]*(theta-b[column]))))

r<-runif(1,0,1)

if (r<=p) {

response[row,column]<-1

}

else {

response[row,column]<-0

}

}

response[row,nItem+1]<-class

}

#### The End of generating complete data set ####

# generating output file for complete data

# response : item + 1 = class

comp<-response[,1:nItem]

# File for item calibration

filename1<-paste("ThreeI",nItemm,"S",nSubb,"G3B_",iter,".txt",sep="")

# Original file containing class information

# ThreeI2S6G3_1 : Mix3PLM & 20 items & 600 subjects & 3 latent groups & 1st replication

filename2<-paste("ThreeI",nItemm,"S",nSubb,"G3B_C",iter,".txt",sep="")

# Data with generated class information

write.table(response,file=filename2,sep=’,’,row.names=FALSE,col.names=FALSE)

# Data for OpenBUGS script

write(paste("list(NE=",nSub,", NI=",nItem,",G2=2,G3=3,G4=4,alpha2=c(.5,.5),

alpha3=c(.5,.5,.5),alpha4=c(.5,.5,.5,.5),",sep=""),

file=file.path(mainFolder,filename1), append=T)

write("resp=structure(.Data=c(",file=file.path(mainFolder,filename1), append=T)

for (j in 1:nSub) {

write(comp[j,],sep=’,’,ncolumns=nItem,

file=file.path(mainFolder,filename1), append=T)

}

write(paste("), .Dim=c(",nSub,",",nItem,")))",sep=""),

file=file.path(mainFolder,filename1), append=T)
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temp <- readLines(file.path(mainFolder,filename1),n=-1)

for (i in 3:(3+nSub-2)) {

temp[i] <- paste(temp[i],",",sep="")

}

write(temp,file=file.path(mainFolder,filename1), append=F)

}
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Appendix B

OpenBUGS Code Used for Mixture
Rasch Model with Item Anchoring

# NE: the number of examinees

# NI: the number of items

# theta: ability parameter

# b: item difficulty parameter

# p: probability of correct response

# mut: latent group mean

# gmem: group membership

# G1 to G4: one to four latent groups

# par: the number of estimated parameters

model

{

for (j in 1:NE) {

for (i in 1:NI) {

r1[j, i] <- resp[j, i]

r2[j, i] <- resp[j, i]

r3[j, i] <- resp[j, i]

r4[j, i] <- resp[j, i]

}

}

# one group

for (j in 1:NE) {

for (i in 1:NI) {

logit(p1[j, i]) <- theta1[j] - b1[i]

r1[j, i] ~ dbern(p1[j, i])

l1[j, i] <- log(p1[j, i]) * r1[j, i] + log(1 - p1[j,i]) * (1 - r1[j, i])

}

}
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for (j in 1:NE) {

theta1[j] ~ dnorm(mut1, 1)

}

mut1 ~ dnorm(0.00000E+00, 1)

for (i in 6:NI) {

b1[i] ~ dnorm(0.00000E+00, 1)

}

# five anchor items

b1[1] <- -0.5

b1[2] <- -0.5

b1[3] <- 0.00000E+00

b1[4] <- 0.5

b1[5] <- 0.5

# two groups

for (j in 1:NE) {

for (i in 1:NI) {

logit(p2[j, i]) <- theta2[j] - b2[gmem2[j], i]

r2[j, i] ~ dbern(p2[j, i])

l2[j, i] <- log(p2[j, i]) * r2[j, i] + log(1 - p2[j,i]) * (1 - r2[j, i])

}

}

for (j in 1:NE) {

theta2[j] ~ dnorm(mut2[gmem2[j]], 1)

gmem2[j] ~ dcat(pi2[1:G2])

}

for (k in 1:G2) {

mut2[k] ~ dnorm(0.00000E+00, 1)

}

pi2[1:G2] ~ ddirch(alpha2[])

for (i in 1:NI) {

b2[1, i] ~ dnorm(0.00000E+00, 1)

}

for (i in 6:NI) {

b2[2, i] ~ dnorm(0.00000E+00, 1)

}

# five anchor items

b2[2, 1] <- b2[1, 1]

b2[2, 2] <- b2[1, 2]

b2[2, 3] <- b2[1, 3]

b2[2, 4] <- b2[1, 4]

b2[2, 5] <- b2[1, 5]
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# three groups

for (j in 1:NE) {

for (i in 1:NI) {

logit(p3[j, i]) <- theta3[j] - b3[gmem3[j], i]

r3[j, i] ~ dbern(p3[j, i])

l3[j, i] <- log(p3[j, i]) * r3[j, i] + log(1 - p3[j,i]) * (1 - r3[j, i])

}

}

for (j in 1:NE) {

theta3[j] ~ dnorm(mut3[gmem3[j]], 1)

gmem3[j] ~ dcat(pi3[1:G3])

}

for (k in 1:G3) {

mut3[k] ~ dnorm(0.00000E+00, 1)

}

pi3[1:G3] ~ ddirch(alpha3[])

for (i in 1:NI) {

b3[1, i] ~ dnorm(0.00000E+00, 1)

}

for (k in 2:G3) {

for (i in 6:NI) {

b3[k, i] ~ dnorm(0.00000E+00, 1)

}

}

# five anchor items

b3[2, 1] <- b3[1, 1]

b3[2, 2] <- b3[1, 2]

b3[2, 3] <- b3[1, 3]

b3[2, 4] <- b3[1, 4]

b3[2, 5] <- b3[1, 5]

b3[3, 1] <- b3[1, 1]

b3[3, 2] <- b3[1, 2]

b3[3, 3] <- b3[1, 3]

b3[3, 4] <- b3[1, 4]

b3[3, 5] <- b3[1, 5]

# four groups

for (j in 1:NE) {

for (i in 1:NI) {

logit(p4[j, i]) <- theta4[j] - b4[gmem4[j], i]

r4[j, i] ~ dbern(p4[j, i])
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l4[j, i] <- log(p4[j, i]) * r4[j, i] + log(1 - p4[j,i]) * (1 - r4[j, i])

}

}

for (j in 1:NE) {

theta4[j] ~ dnorm(mut4[gmem4[j]], 1)

gmem4[j] ~ dcat(pi4[1:G4])

}

for (k in 1:G4) {

mut4[k] ~ dnorm(0.00000E+00, 1)

}

pi4[1:G4] ~ ddirch(alpha4[])

for (i in 1:NI) {

b4[1, i] ~ dnorm(0.00000E+00, 1)

}

for (k in 2:G4) {

for (i in 6:NI) {

b4[k, i] ~ dnorm(0.00000E+00, 1)

}

}

# five anchor items

b4[2, 1] <- b4[1, 1]

b4[2, 2] <- b4[1, 2]

b4[2, 3] <- b4[1, 3]

b4[2, 4] <- b4[1, 4]

b4[2, 5] <- b4[1, 5]

b4[3, 1] <- b4[1, 1]

b4[3, 2] <- b4[1, 2]

b4[3, 3] <- b4[1, 3]

b4[3, 4] <- b4[1, 4]

b4[3, 5] <- b4[1, 5]

b4[4, 1] <- b4[1, 1]

b4[4, 2] <- b4[1, 2]

b4[4, 3] <- b4[1, 3]

b4[4, 4] <- b4[1, 4]

b4[4, 5] <- b4[1, 5]

# model selection using AIC and BIC

loglik[1] <- sum(l1[1:NE, 1:NI])

loglik[2] <- sum(l2[1:NE, 1:NI])

loglik[3] <- sum(l3[1:NE, 1:NI])

loglik[4] <- sum(l4[1:NE, 1:NI])
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par[1] <- (NI - 5) + 1

for (k in 2:G4) {

par[k] <- (k * NI) - 5 * (k - 1) + (2 * k - 1)

}

for (k in 1:G4) {

AIC[k] <- -2 * loglik[k] + 2 * par[k]

BIC[k] <- -2 * loglik[k] + par[k] * log(NE)

}

}
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Appendix C

OpenBUGS Code Used for Mixture
2PL Model with Person Centering

# NE: the number of examinees

# NI: the number of items

# theta: ability parameter

# a: item discrimination parameter

# b: item difficulty parameter

# p: probability of correct response

# mut: latent group mean

# gmem: group membership

# G1 to G4: one to four latent groups

# par: the number of estimated parameters

model

{

for (j in 1:NE) {

for (i in 1:NI) {

r1[j, i] <- resp[j, i]

r2[j, i] <- resp[j, i]

r3[j, i] <- resp[j, i]

r4[j, i] <- resp[j, i]

}

}

# one group

for (j in 1:NE) {

for (i in 1:NI) {

logit(p1[j, i]) <- a1[i] * (theta1[j] - b1[i])

r1[j, i] ~ dbern(p1[j, i])

l1[j, i] <- log(p1[j, i]) * r1[j, i] + log(1 - p1[j, i]) * (1 - r1[j, i])

}
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}

for (j in 1:NE) {

theta1[j] ~ dnorm(mut1, 1)

}

mut1 <- 0.00000E+00

for (i in 1:NI) {

a1[i] ~ dnorm(0.00000E+00, 1)T(0,)

b1[i] ~ dnorm(0.00000E+00, 1)

}

# two groups

for (j in 1:NE) {

for (i in 1:NI) {

logit(p2[j, i]) <- a2[gmem2[j], i] * (theta2[j] - b2[gmem2[j], i])

r2[j, i] ~ dbern(p2[j, i])

l2[j, i] <- log(p2[j, i]) * r2[j, i] + log(1 - p2[j, i]) * (1 - r2[j, i])

}

}

for (j in 1:NE) {

theta2[j] ~ dnorm(mut2[gmem2[j]], 1)

gmem2[j] ~ dcat(pi2[1:G2])

}

mut2[1] <- 0.00000E+00

mut2[2] ~ dnorm(0.00000E+00, 1)

pi2[1:G2] ~ ddirch(alpha2[])

for (k in 1:G2) {

for (i in 1:NI) {

a2[k, i] ~ dnorm(0.00000E+00, 1)T(0,)

b2[k, i] ~ dnorm(0.00000E+00, 1)

}

}

# three groups

for (j in 1:NE) {

for (i in 1:NI) {

logit(p3[j, i]) <- a3[gmem3[j], i] * (theta3[j] - b3[gmem3[j], i])

r3[j, i] ~ dbern(p3[j, i])

l3[j, i] <- log(p3[j, i]) * r3[j, i] + log(1 - p3[j, i]) * (1 - r3[j, i])

}

}

for (j in 1:NE) {

theta3[j] ~ dnorm(mut3[gmem3[j]], 1)

122



gmem3[j] ~ dcat(pi3[1:G3])

}

for (k in 2:G3) {

mut3[k] ~ dnorm(0.00000E+00, 1)

}

mut3[1] <- 0.00000E+00

pi3[1:G3] ~ ddirch(alpha3[])

for (k in 1:G3) {

for (i in 1:NI) {

a3[k, i] ~ dnorm(0.00000E+00, 1)T(0,)

b3[k, i] ~ dnorm(0.00000E+00, 1)

}

}

# four groups

for (j in 1:NE) {

for (i in 1:NI) {

logit(p4[j, i]) <- a4[gmem4[j], i] * (theta4[j] - b4[gmem4[j], i])

r4[j, i] ~ dbern(p4[j, i])

l4[j, i] <- log(p4[j, i]) * r4[j, i] + log(1 - p4[j, i]) * (1 - r4[j, i])

}

}

for (j in 1:NE) {

theta4[j] ~ dnorm(mut4[gmem4[j]], 1)

gmem4[j] ~ dcat(pi4[1:G4])

}

for (k in 2:G4) {

mut4[k] ~ dnorm(0.00000E+00, 1)

}

mut4[1] <- 0.00000E+00

pi4[1:G4] ~ ddirch(alpha4[])

for (k in 1:G4) {

for (i in 1:NI) {

a4[k, i] ~ dnorm(0.00000E+00, 1)T(0,)

b4[k, i] ~ dnorm(0.00000E+00, 1)

}

}

# model selection using AIC and BIC

loglik[1] <- sum(l1[1:NE, 1:NI])

loglik[2] <- sum(l2[1:NE, 1:NI])

loglik[3] <- sum(l3[1:NE, 1:NI])

loglik[4] <- sum(l4[1:NE, 1:NI])
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for (k in 1:4) {

par[k] <- (NI * 2 * k) + 2 * (k - 1)

AIC[k] <- -2 * loglik[k] + 2 * par[k]

BIC[k] <- -2 * loglik[k] + par[k] * log(NE)

}

}
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Appendix D

OpenBUGS Code Used for Mixture
3PL Model with Item Centering

# NE: the number of examinees

# NI: the number of items

# theta: ability parameter

# a: item discrimination parameter

# b: item difficulty parameter

# c: lower asymptote parameter

# p: probability of correct response

# mut: latent group mean

# gmem: group membership

# G1 to G4: one to four latent groups

# par: the number of estimated parameters

model

{

for (j in 1:NE) {

for (i in 1:NI) {

r1[j, i] <- resp[j, i]

r2[j, i] <- resp[j, i]

r3[j, i] <- resp[j, i]

r4[j, i] <- resp[j, i]

}

}

# one group

for (j in 1:NE) {

for (i in 1:NI) {

logit(tt1[j,i]) <- a1[i]*(theta1[j]-b1[i])

p1[j,i] <- c1[i]+(1-c1[i])* tt1[j,i]

r1[j, i] ~ dbern(p1[j, i])
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l1[j, i] <- log(p1[j, i]) * r1[j, i] + log(1 - p1[j, i]) * (1 - r1[j, i])

}

}

for (j in 1:NE) {

theta1[j] ~ dnorm(mut1, 1)

}

mut1 ~ dnorm(0.00000E+00, 1)

for (i in 1:NI) {

a1[i] ~ dnorm(0.00000E+00, 1)T(0,)

beta1[i] ~ dnorm(0.00000E+00, 1)

b1[i] <- beta1[i] - mean(beta1[1:NI])

c1[i] ~ dbeta(5, 17)

}

# two groups

for (j in 1:NE) {

for (i in 1:NI) {

logit(tt2[j,i]) <- a2[gmem2[j],i]*(theta2[j]-b2[gmem2[j],i])

p2[j,i] <- c2[gmem2[j],i]+(1-c2[gmem2[j],i])* tt2[j,i]

r2[j, i] ~ dbern(p2[j, i])

l2[j, i] <- log(p2[j, i]) * r2[j, i] + log(1 - p2[j, i]) * (1 - r2[j, i])

}

}

for (j in 1:NE) {

theta2[j] ~ dnorm(mut2[gmem2[j]], 1)

gmem2[j] ~ dcat(pi2[1:G2])

}

for (k in 1:G2) {

mut2[k] ~ dnorm(0.00000E+00, 1)

}

pi2[1:G2] ~ ddirch(alpha2[])

for (k in 1:G2) {

for (i in 1:NI) {

a2[k, i] ~ dnorm(0.00000E+00, 1)T(0,)

beta2[k, i] ~ dnorm(0.00000E+00, 1)

b2[k, i] <- beta2[k, i] - mean(beta2[k, 1:NI])

c2[k, i] ~ dbeta(5, 17)

}

}

# three groups

for (j in 1:NE) {
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for (i in 1:NI) {

logit(tt3[j,i]) <- a3[gmem3[j],i]*(theta3[j]-b3[gmem3[j],i])

p3[j,i] <- c3[gmem3[j],i]+(1-c3[gmem3[j],i])* tt3[j,i]

r3[j, i] ~ dbern(p3[j, i])

l3[j, i] <- log(p3[j, i]) * r3[j, i] + log(1 - p3[j, i]) * (1 - r3[j, i])

}

}

for (j in 1:NE) {

theta3[j] ~ dnorm(mut3[gmem3[j]], 1)

gmem3[j] ~ dcat(pi3[1:G3])

}

for (k in 1:G3) {

mut3[k] ~ dnorm(0.00000E+00, 1)

}

pi3[1:G3] ~ ddirch(alpha3[])

for (k in 1:G3) {

for (i in 1:NI) {

a3[k, i] ~ dnorm(0.00000E+00, 1)T(0,)

beta3[k, i] ~ dnorm(0.00000E+00, 1)

b3[k, i] <- beta3[k, i] - mean(beta3[k, 1:NI])

c3[k, i] ~ dbeta(5, 17)

}

}

# four groups

for (j in 1:NE) {

for (i in 1:NI) {

logit(tt4[j,i]) <- a4[gmem4[j],i]*(theta4[j]-b4[gmem4[j],i])

p4[j,i] <- c4[gmem4[j],i]+(1-c4[gmem4[j],i])* tt4[j,i]

r4[j, i] ~ dbern(p4[j, i])

l4[j, i] <- log(p4[j, i]) * r4[j, i] + log(1 - p4[j, i]) * (1 - r4[j, i])

}

}

for (j in 1:NE) {

theta4[j] ~ dnorm(mut4[gmem4[j]], 1)

gmem4[j] ~ dcat(pi4[1:G4])

}

for (k in 1:G4) {

mut4[k] ~ dnorm(0.00000E+00, 1)

}

pi4[1:G4] ~ ddirch(alpha4[])

for (k in 1:G4) {

for (i in 1:NI) {
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a4[k, i] ~ dnorm(0.00000E+00, 1)T(0,)

beta4[k, i] ~ dnorm(0.00000E+00, 1)

b4[k, i] <- beta4[k, i] - mean(beta4[k, 1:NI])

c4[k, i] ~ dbeta(5, 17)

}

}

# model selection using AIC and BIC

loglik[1] <- sum(l1[1:NE, 1:NI])

loglik[2] <- sum(l2[1:NE, 1:NI])

loglik[3] <- sum(l3[1:NE, 1:NI])

loglik[4] <- sum(l4[1:NE, 1:NI])

for (k in 1:4) {

par[k] <- (NI * 3 * k) + 2 * k - 1

AIC[k] <- -2 * loglik[k] + 2 * par[k]

BIC[k] <- -2 * loglik[k] + par[k] * log(NE)

}

}
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Appendix E

Monitoring Convergence using

Heidelberger and Welch’s (1983)

Convergence Diagnostics and

Bayesian Credible Intervals

Table E.1: Heidelberger and Welch’s (1983) Convergence Diagnostics for MixRM

Post 20-items 40-items

Burn-in Burn-in n = 600 n = 2,400 n = 600 n = 2,400 Total

0 15,000 200 200 400 398 1,198

1,000 7,000 200 199 400 379 1,178

1,000 8,000 199 200 392 397 1,188

1,000 9,000 200 196 400 398 1,194

2,000 9,000 199 198 396 400 1,193

Continued on next page
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Table E.1 – continued from previous page

Post 20-items 40-items

Burn-in Burn-in n = 600 n = 2,400 n = 600 n = 2,400 Total

2,000 10,000 199 199 399 395 1,192

2,000 11,000 200 200 400 395 1,195

2,000 12,000 198 200 400 400 1,198

2,000 13,000 200 200 393 400 1,193

3,000 7,000 199 198 400 400 1,197

3,000 8,000 199 200 399 399 1,197

3,000 9,000 199 199 400 395 1,193

3,000 10,000 200 200 400 398 1,198

3,000 11,000 197 199 398 400 1,194

3,000 12,000 199 200 361 400 1,160

4,000 6,000 199 200 400 332 1,131

4,000 7,000 199 200 399 399 1,197

4,000 8,000 200 199 400 391 1,190

4,000 9,000 200 200 400 399 1,199

4,000 10,000 199 199 363 400 1,161

4,000 11,000 199 200 359 388 1,146

5,000 5,000 200 200 400 400 1,200

5,000 6,000 186 199 400 398 1,183

5,000 7,000 186 194 400 398 1,178

5,000 8,000 200 200 400 400 1,200

5,000 9,000 198 200 360 400 1,158

5,000 10,000 199 200 357 392 1,148

Continued on next page
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Table E.1 – continued from previous page

Post 20-items 40-items

Burn-in Burn-in n = 600 n = 2,400 n = 600 n = 2,400 Total

6,000 4,000 179 200 400 400 1,179

6,000 5,000 199 199 399 366 1,163

6,000 6,000 179 199 400 398 1,176

6,000 7,000 199 200 398 400 1,197

6,000 8,000 195 198 360 400 1,153

6,000 9,000 198 200 358 397 1,153
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Table E.2: Heidelberger and Welch’s (1983) Convergence Diagnostics for Mix2PLM

Post 20-items 40-items

Burn-in Burn-in n = 600 n = 2,400 n = 600 n = 2,400 Total

0 15,000 200 190 348 393 1,131

1,000 7,000 200 182 386 351 1,119

1,000 8,000 196 178 382 385 1,141

1,000 9,000 187 198 391 370 1,146

2,000 9,000 193 194 382 390 1,159

2,000 10,000 196 192 367 391 1,146

2,000 11,000 197 174 358 391 1,120

2,000 12,000 198 194 352 361 1,105

2,000 13,000 200 189 344 357 1,090

3,000 7,000 181 193 391 370 1,135

3,000 8,000 196 195 385 389 1,165

3,000 9,000 197 191 362 394 1,144

3,000 10,000 198 175 356 372 1,101

3,000 11,000 197 193 351 357 1,098

3,000 12,000 200 189 346 375 1,110

4,000 6,000 181 197 383 342 1,103

4,000 7,000 191 196 380 396 1,163

4,000 8,000 196 195 360 386 1,137

4,000 9,000 196 181 357 358 1,092

4,000 10,000 196 194 355 380 1,125

4,000 11,000 198 192 353 381 1,124

Continued on next page
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Table E.2 – continued from previous page

Post 20-items 40-items

Burn-in Burn-in n = 600 n = 2,400 n = 600 n = 2,400 Total

4,000 12,000 200 189 356 397 1,142

4,000 13,000 200 191 376 396 1,163

4,000 14,000 199 195 375 389 1,158

4,000 15,000 198 195 377 391 1,161

4,000 16,000 199 198 387 392 1,176

5,000 5,000 182 197 381 374 1,134

5,000 6,000 198 194 375 386 1,153

5,000 7,000 196 193 359 379 1,127

5,000 8,000 196 184 363 396 1,139

5,000 9,000 195 196 364 395 1,150

5,000 10,000 199 195 358 382 1,134

5,000 11,000 200 184 361 396 1,141

5,000 12,000 197 196 375 394 1,162

5,000 13,000 200 195 380 389 1,164

5,000 14,000 199 196 388 391 1,174

5,000 15,000 199 197 388 392 1,176

6,000 4,000 187 197 367 388 1,139

6,000 5,000 196 192 376 390 1,154

6,000 6,000 195 188 367 394 1,144

6,000 7,000 198 183 376 399 1,156

6,000 8,000 195 195 379 369 1,138

6,000 9,000 199 183 359 393 1,134

Continued on next page
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Table E.2 – continued from previous page

Post 20-items 40-items

Burn-in Burn-in n = 600 n = 2,400 n = 600 n = 2,400 Total

6,000 10,000 200 193 364 396 1,153

6,000 11,000 199 200 391 395 1,185

6,000 12,000 200 196 385 386 1,167

6,000 13,000 199 196 385 391 1,171

6,000 14,000 199 196 390 393 1,178

7,000 9,000 200 193 371 397 1,161

7,000 10,000 196 199 396 392 1,183

7,000 11,000 199 196 387 387 1,169

7,000 12,000 199 194 389 391 1,173

7,000 13,000 198 195 389 391 1,173

8,000 8,000 197 193 391 399 1,180

8,000 9,000 195 198 398 391 1,182

8,000 10,000 199 195 387 388 1,169

8,000 11,000 198 193 389 390 1,170

8,000 12,000 199 195 391 389 1,174

9,000 7,000 197 192 392 400 1,181

9,000 8,000 194 196 396 391 1,177

9,000 9,000 198 197 385 385 1,165

9,000 10,000 199 193 386 389 1,167

9,000 11,000 197 191 392 389 1,169

10,000 6,000 195 193 395 393 1,176

10,000 7,000 194 196 394 387 1,171

Continued on next page
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Table E.2 – continued from previous page

Post 20-items 40-items

Burn-in Burn-in n = 600 n = 2,400 n = 600 n = 2,400 Total

10,000 8,000 198 194 380 376 1,148

10,000 9,000 198 185 383 388 1,154

10,000 10,000 197 175 392 390 1,154

11,000 5,000 193 188 391 396 1,168

11,000 6,000 195 194 379 364 1,132

11,000 7,000 197 190 371 378 1,136

11,000 8,000 199 174 380 388 1,141

11,000 9,000 196 177 390 391 1,154

12,000 4,000 195 180 394 359 1,128

12,000 5,000 195 173 350 379 1,097

12,000 6,000 198 172 376 388 1,134

12,000 7,000 198 171 381 387 1,137

12,000 8,000 199 195 386 393 1,173

13,000 3,000 196 168 374 366 1,104

13,000 4,000 199 177 369 375 1,120

13,000 5,000 199 176 372 387 1,134

13,000 6,000 200 184 385 387 1,156

13,000 7,000 199 196 391 390 1,176

14,000 3,000 183 176 365 369 1,093

14,000 4,000 195 186 388 374 1,143

14,000 5,000 199 197 387 386 1,169

14,000 6,000 200 196 388 386 1,170

Continued on next page
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Table E.2 – continued from previous page

Post 20-items 40-items

Burn-in Burn-in n = 600 n = 2,400 n = 600 n = 2,400 Total

15,000 3,000 198 176 377 395 1,146

15,000 4,000 199 200 391 363 1,153

15,000 5,000 198 190 390 390 1,168

16,000 3,000 198 193 391 386 1,168

16,000 4,000 195 193 388 390 1,166

17,000 3,000 200 192 393 392 1,177

18,000 2,000 192 190 387 373 1,142
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Table E.3: Bayesian Credible Intervals for Mix3PLM with 20-items and 1-group

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 1 -0.28 -0.79 0.30 -0.65 -1.12 0.38

1 2 0.18 -0.37 0.68 0.00 -0.38 0.39

1 3 0.37 -0.31 1.09 -0.24 -0.72 0.28

1 4 2.49 2.09 2.89 -2.07 -2.70 -1.49

1 5 0.42 0.02 0.88 -0.09 -1.01 0.55

1 6 0.42 -0.25 1.04 -0.56 -1.13 0.02

1 7 1.44 0.87 2.25 0.05 -0.40 0.85

1 8 -0.97 -1.55 0.06 -1.07 -2.21 -0.47

1 9 0.26 -0.40 0.94 -0.22 -0.74 0.32

1 10 -0.63 -1.53 0.27 -0.54 -1.33 0.18

1 11 0.17 -0.48 0.97 1.05 0.52 1.69

1 12 0.55 -0.55 1.59 1.47 0.75 2.07

1 13 -0.20 -1.03 0.85 1.41 0.86 2.54

1 14 0.55 -0.95 1.44 -0.26 -0.97 0.43

1 15 1.39 -0.17 2.47 1.22 0.50 1.63

1 16 -0.78 -1.18 0.27 1.00 0.22 1.86

1 17 1.12 0.14 1.99 -0.79 -1.61 -0.34

1 18 0.87 -0.30 2.21 -0.06 -0.70 0.71

1 19 1.08 0.48 1.67 1.79 1.13 2.68

1 20 0.89 0.20 1.67 -1.31 -2.49 -0.22
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Table E.4: Bayesian Credible Intervals for Mix3PLM with 20-items and 2-group

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 1 -1.55 -2.02 -0.85 -0.97 -1.99 -0.31

1 2 -0.21 -1.10 0.44 1.81 0.98 2.55

1 3 -0.08 -0.54 0.54 0.31 -0.86 1.16

1 4 0.06 -0.41 0.92 1.25 0.82 1.77

1 5 -1.30 -1.64 -0.83 0.56 0.26 0.93

1 6 -2.76 -3.28 -2.31 -2.45 -3.11 -2.06

1 7 -2.61 -2.94 -2.22 1.84 1.42 2.13

1 8 -2.61 -2.99 -2.06 -2.57 -2.99 -2.15

1 9 -2.08 -2.70 -1.51 -2.78 -3.81 -2.12

1 10 -2.09 -2.65 -1.56 -1.85 -2.71 -0.48

1 11 0.42 -0.03 1.02 -1.50 -2.08 -0.96

1 12 0.07 -0.38 0.61 0.56 -0.83 1.09

1 13 1.14 0.13 1.78 -0.18 -0.83 0.35

1 14 0.26 -0.22 0.71 -0.06 -0.48 0.44

1 15 -0.21 -1.34 0.81 0.09 -0.61 0.90

1 16 -0.04 -0.72 0.34 0.03 -0.65 0.71

1 17 -0.25 -0.70 0.20 -0.46 -1.12 0.12

1 18 -0.58 -1.16 0.07 1.04 -0.19 1.73

1 19 2.10 1.60 2.76 -0.97 -1.64 -0.44

1 20 1.21 0.58 2.11 0.31 -1.20 2.17

2 1 0.30 -0.01 0.73 0.73 -0.03 1.80

Continued on next page
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Table E.4 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 2 0.69 0.24 1.08 -0.28 -0.59 0.00

2 3 0.27 -0.45 0.81 1.71 1.04 2.40

2 4 2.09 1.74 2.41 1.97 1.48 2.40

2 5 -0.11 -0.99 1.25 -0.43 -1.83 1.97

2 6 0.19 -0.20 0.70 0.03 -0.32 0.52

2 7 -2.03 -2.55 -1.28 -0.21 -1.15 0.79

2 8 1.19 0.12 1.99 0.78 -0.29 1.34

2 9 0.26 -0.20 0.73 1.33 0.67 2.39

2 10 1.10 -0.05 1.69 2.08 1.34 2.99

2 11 -0.15 -0.80 0.61 0.32 -0.62 1.18

2 12 0.82 -0.44 1.56 1.54 1.12 1.90

2 13 0.21 -1.11 1.27 -1.98 -2.83 -0.86

2 14 -0.22 -0.92 0.52 1.76 -0.74 3.20

2 15 2.18 1.75 2.72 2.65 1.76 2.99

2 16 1.37 0.62 2.08 0.54 0.07 0.90

2 17 -0.87 -1.56 -0.29 0.37 -0.27 0.85

2 18 0.50 0.07 0.99 -0.11 -0.75 0.59

2 19 0.03 -0.45 0.57 -0.74 -1.38 -0.11

2 20 1.10 0.08 1.94 0.41 -0.17 1.08
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Table E.5: Bayesian Credible Intervals for Mix3PLM with 20-items and 3-group

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 1 -1.41 -1.79 -1.15 -0.16 -0.96 0.56

1 2 0.38 -0.68 1.66 -1.07 -1.64 -0.29

1 3 -1.37 -2.01 -0.63 -1.12 -1.82 -0.41

1 4 1.10 0.34 1.81 -0.80 -1.45 -0.03

1 5 -0.59 -1.15 -0.15 -0.10 -1.64 0.92

1 6 -3.47 -3.98 -2.63 -0.87 -3.48 1.00

1 7 1.30 0.85 1.85 -3.24 -3.63 -2.94

1 8 -2.31 -2.81 -1.60 -2.65 -3.37 -1.74

1 9 -2.15 -2.80 -1.73 -0.12 -1.04 0.71

1 10 -0.63 -1.73 0.45 -2.12 -2.75 -1.64

1 11 0.70 0.31 1.29 -1.00 -1.62 -0.65

1 12 -0.11 -0.64 0.61 -1.36 -2.19 -0.28

1 13 1.55 0.81 2.15 -0.68 -1.51 0.10

1 14 -0.61 -1.15 -0.06 -0.14 -0.76 0.62

1 15 -0.29 -0.97 0.25 -0.16 -0.79 0.68

1 16 1.64 1.19 2.11 -1.70 -2.57 -0.89

1 17 -0.38 -1.01 0.08 0.89 0.32 1.52

1 18 1.05 0.72 1.59 0.48 -0.09 0.90

1 19 -2.47 -3.30 -1.89 2.49 1.93 3.07

1 20 1.58 1.16 2.03 2.78 2.17 3.94

2 1 0.14 -0.49 0.69 1.03 0.41 1.66

Continued on next page
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Table E.5 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 2 -0.38 -0.74 -0.03 1.86 1.07 2.77

2 3 -2.40 -2.77 -2.02 2.71 2.16 3.35

2 4 -1.07 -1.55 -0.61 2.70 1.94 3.18

2 5 -0.17 -0.51 0.42 2.18 1.06 2.87

2 6 -0.75 -1.20 -0.05 -0.18 -0.71 0.39

2 7 -0.96 -1.67 -0.25 -1.33 -1.88 -0.74

2 8 -1.47 -1.87 -1.07 -2.06 -2.82 -1.23

2 9 0.30 -0.29 0.90 1.68 1.30 2.02

2 10 -0.35 -1.00 0.34 2.15 1.85 2.47

2 11 -0.46 -0.94 -0.01 -0.12 -2.03 1.47

2 12 -0.18 -1.42 0.68 0.48 -0.16 1.44

2 13 0.29 -0.29 0.87 0.33 -0.76 1.77

2 14 1.53 1.09 1.93 -0.86 -1.67 0.98

2 15 0.68 -0.08 1.36 2.73 2.05 3.39

2 16 -2.66 -2.99 -2.39 0.62 -0.06 1.04

2 17 -0.90 -2.03 0.13 1.15 -0.30 1.89

2 18 -1.99 -2.68 -1.34 2.36 1.86 3.13

2 19 -1.15 -2.14 0.49 1.41 -0.32 2.33

2 20 -1.29 -2.43 -0.65 2.34 1.85 2.91

3 1 -0.51 -1.24 0.00 -0.59 -0.85 -0.21

3 2 -1.09 -1.81 -0.39 -0.29 -0.82 0.37

3 3 1.25 0.71 1.83 -0.35 -0.86 0.12

Continued on next page
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Table E.5 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

3 4 1.77 1.21 2.26 -1.52 -2.44 -0.58

3 5 1.86 1.23 2.60 0.09 -0.24 0.53

3 6 0.67 -0.29 1.53 -0.50 -0.93 0.07

3 7 0.02 -0.62 0.94 -0.34 -1.21 0.12

3 8 1.73 1.19 2.33 -1.15 -1.94 -0.34

3 9 -0.91 -1.77 -0.24 1.18 0.25 2.10

3 10 0.53 -0.56 1.63 1.23 0.62 1.90

3 11 1.53 0.89 1.93 0.32 -0.43 1.09

3 12 0.58 0.10 1.12 -0.21 -0.76 0.76

3 13 2.01 1.64 2.42 -1.19 -2.05 0.60

3 14 2.42 2.00 2.84 0.87 0.17 1.45

3 15 0.91 -0.40 1.92 0.88 -0.34 1.87

3 16 1.48 0.90 2.22 -2.99 -3.44 -2.20

3 17 1.07 0.08 1.74 -2.44 -2.85 -2.09

3 18 1.15 0.62 1.61 -2.38 -2.95 -1.47

3 19 1.83 1.44 2.34 -1.79 -2.38 -0.88

3 20 2.16 1.60 2.61 -1.18 -2.83 0.33
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Table E.6: Bayesian Credible Intervals for Mix3PLM with 20-items and 4-group

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 1 -0.27 -0.67 0.24 -1.18 -1.74 -0.63

1 2 -1.29 -2.20 -0.23 -0.57 -1.12 0.41

1 3 -0.19 -0.74 0.14 -0.01 -0.57 0.66

1 4 1.01 0.62 1.36 0.49 -0.73 1.36

1 5 -0.06 -0.51 0.93 -1.67 -2.42 -1.07

1 6 0.16 -0.29 0.57 -0.32 -0.70 0.15

1 7 1.92 1.03 2.60 -2.42 -3.29 -1.93

1 8 0.38 -0.37 0.83 0.69 0.19 1.31

1 9 0.40 -0.18 1.01 0.28 -0.28 1.18

1 10 -0.02 -0.36 0.38 -0.11 -0.79 0.78

1 11 -2.15 -2.62 -1.71 0.36 -0.24 1.22

1 12 -1.49 -2.27 -0.93 0.65 0.32 1.16

1 13 -1.36 -1.98 -0.94 0.21 -1.05 1.38

1 14 -0.86 -1.75 0.09 2.09 1.62 2.77

1 15 1.43 1.10 1.91 1.11 -0.25 2.53

1 16 0.70 0.02 1.44 -2.77 -4.03 -0.69

1 17 -1.29 -1.84 -0.58 -0.42 -1.29 0.21

1 18 -0.16 -1.27 0.72 -0.40 -1.19 0.11

1 19 -0.32 -1.39 1.29 -1.67 -2.29 -1.19

1 20 0.59 -0.09 1.34 0.77 0.07 1.21

2 1 0.07 -0.26 0.35 -1.40 -1.89 -0.62

Continued on next page
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Table E.6 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 2 0.14 -0.16 0.52 -0.23 -0.95 0.30

2 3 1.43 0.92 2.06 -0.83 -1.54 -0.21

2 4 1.32 0.80 1.75 0.88 -0.07 1.68

2 5 1.95 1.57 2.31 -0.07 -0.49 0.23

2 6 -2.01 -2.38 -1.44 -3.60 -4.10 -3.10

2 7 0.20 -0.53 0.93 -3.56 -4.30 -2.23

2 8 -0.24 -0.58 0.12 -3.27 -3.76 -2.91

2 9 -0.44 -0.80 -0.08 -2.99 -3.54 -2.25

2 10 0.06 -0.42 0.45 0.96 0.61 1.37

2 11 0.63 0.22 1.02 0.18 -0.19 0.60

2 12 -0.65 -2.13 0.71 0.38 -0.70 0.97

2 13 0.91 0.37 1.52 -1.46 -1.88 -1.01

2 14 1.88 1.11 2.40 1.17 -0.58 2.11

2 15 1.48 1.05 1.87 0.30 -0.41 1.09

2 16 0.08 -1.44 1.26 0.47 -0.09 1.25

2 17 1.23 0.65 1.90 -2.07 -2.54 -1.58

2 18 1.21 0.73 1.64 -0.07 -1.01 0.87

2 19 1.38 0.60 2.13 0.44 -0.08 0.82

2 20 1.52 0.90 2.23 0.65 -0.50 1.22

3 1 -2.00 -2.56 -1.33 2.56 1.65 3.16

3 2 0.22 -0.66 1.42 1.61 1.07 2.10

3 3 -1.04 -1.53 -0.52 1.17 0.86 1.58

Continued on next page
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Table E.6 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

3 4 0.31 -0.19 0.93 1.71 0.89 2.19

3 5 0.42 -0.21 1.09 2.02 1.57 2.56

3 6 -2.91 -3.37 -2.52 0.65 -0.34 1.50

3 7 -0.03 -0.63 0.47 -0.48 -1.30 0.29

3 8 -0.33 -2.09 0.86 -1.10 -1.91 -0.54

3 9 -2.66 -3.33 -2.11 0.14 -0.43 0.65

3 10 -2.68 -3.19 -2.17 0.86 0.00 2.09

3 11 -0.80 -1.38 -0.38 -1.14 -1.84 -0.28

3 12 -0.35 -1.18 0.19 -0.87 -1.93 0.20

3 13 0.94 0.40 1.41 1.32 0.34 2.10

3 14 -1.02 -2.09 -0.30 1.12 -0.38 2.07

3 15 -0.17 -0.79 0.28 1.92 1.26 2.74

3 16 0.54 -0.02 0.97 1.36 0.80 1.95

3 17 -0.18 -0.51 0.19 1.15 0.60 1.71

3 18 -0.22 -0.67 0.69 2.73 1.65 3.26

3 19 0.05 -0.73 0.64 3.29 2.48 3.98

3 20 -1.10 -1.70 -0.46 2.30 1.88 2.85

4 1 -0.10 -0.85 0.41 0.32 -0.62 1.11

4 2 -0.08 -0.49 0.31 0.17 -0.54 0.85

4 3 -0.54 -0.91 -0.15 0.11 -0.38 0.49

4 4 1.08 0.60 1.33 0.36 -0.14 0.85

4 5 0.05 -0.39 0.60 0.63 0.13 1.20
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Table E.6 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

4 6 -0.67 -1.19 0.51 0.52 -0.03 1.01

4 7 0.44 -0.11 1.21 1.22 0.68 1.81

4 8 0.38 -0.20 1.04 1.68 1.19 2.35

4 9 -0.91 -1.37 -0.57 1.04 0.00 1.67

4 10 1.18 0.65 1.92 0.98 0.38 1.47

4 11 0.22 -0.20 0.90 -0.79 -1.10 -0.19

4 12 -1.15 -2.26 0.02 -0.75 -1.08 -0.29

4 13 0.79 0.44 1.30 -0.67 -1.06 -0.12

4 14 1.84 0.88 2.56 -0.61 -1.02 -0.11

4 15 0.70 0.33 1.34 -0.57 -0.84 -0.12

4 16 -1.88 -2.58 -1.23 0.99 0.42 1.79

4 17 -2.96 -3.48 -2.36 0.27 -0.61 1.21

4 18 0.42 -0.73 1.27 -1.40 -2.50 -0.76

4 19 -1.36 -1.88 -0.76 -0.30 -0.84 0.10

4 20 1.14 0.57 1.93 1.07 0.62 1.49
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Table E.7: Bayesian Credible Intervals for Mix3PLM with 40-items and 1-group

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 1 -1.07 -1.74 -0.44 1.53 0.96 1.93

1 2 -0.71 -1.35 -0.19 -2.02 -2.42 -1.25

1 3 -0.16 -0.58 0.28 -1.73 -2.24 -1.19

1 4 0.82 0.26 1.39 0.67 0.29 1.21

1 5 -0.54 -1.81 0.49 -1.40 -1.96 -0.92

1 6 1.97 1.04 2.86 -1.12 -1.56 -0.59

1 7 -1.19 -2.13 -0.23 -3.17 -3.79 -2.42

1 8 -1.41 -2.07 -0.39 -0.78 -1.29 -0.47

1 9 0.63 -0.56 1.32 0.10 -0.46 0.61

1 10 0.19 -0.65 1.02 0.46 -0.10 1.08

1 11 0.10 -0.39 0.51 1.17 -0.29 2.22

1 12 0.52 0.01 0.88 1.88 1.41 2.35

1 13 0.46 -0.15 0.80 0.98 0.37 1.44

1 14 0.36 -0.37 1.07 -0.07 -0.44 0.40

1 15 1.20 0.42 1.64 1.64 0.92 2.97

1 16 1.02 0.30 1.57 -1.25 -2.25 -0.69

1 17 0.58 -0.39 1.20 0.37 -0.09 0.76

1 18 0.32 0.02 0.77 0.51 0.07 1.05

1 19 0.00 -0.79 0.77 -0.99 -1.48 -0.34

1 20 -0.65 -1.17 0.09 -1.74 -2.25 -1.03

1 21 -0.35 -1.00 0.38 1.01 0.23 1.58

Continued on next page

147



Table E.7 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 22 -0.16 -1.01 0.30 0.08 -0.44 0.88

1 23 0.40 -0.33 1.01 -0.32 -1.00 0.55

1 24 3.00 2.21 3.66 0.58 0.08 1.06

1 25 0.81 0.16 1.50 0.60 0.03 1.02

1 26 -1.47 -1.85 -1.01 0.13 -1.11 1.08

1 27 -1.40 -2.29 -0.66 0.36 -0.97 1.72

1 28 -0.54 -1.03 0.01 -0.10 -0.41 0.26

1 29 -0.44 -1.30 0.14 -1.53 -2.14 -0.83

1 30 -1.15 -1.92 -0.35 1.20 0.41 2.03

1 31 0.87 0.42 1.36 0.70 0.30 1.20

1 32 1.00 0.39 1.39 0.51 -0.33 1.48

1 33 0.16 -0.19 0.46 1.42 0.64 1.90

1 34 1.29 0.65 1.92 1.02 0.37 1.72

1 35 -0.70 -1.49 0.42 0.84 -0.07 1.74

1 36 0.11 -0.29 0.50 0.13 -1.05 1.28

1 37 0.28 -0.55 1.17 -1.16 -1.60 -0.66

1 38 0.70 0.08 2.07 0.97 0.44 1.58

1 39 1.95 1.18 2.81 -0.38 -0.88 0.00

1 40 1.44 0.84 2.35 0.21 -0.48 0.97
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Table E.8: Bayesian Credible Intervals for Mix3PLM with 40-items and 2-group

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 1 0.08 -0.37 0.86 -0.18 -0.82 0.48

1 2 0.06 -0.87 1.00 -0.02 -0.32 0.29

1 3 0.31 -0.09 0.62 0.85 0.20 1.33

1 4 0.82 0.44 1.21 1.28 0.81 2.01

1 5 1.24 0.53 1.95 1.49 0.73 2.73

1 6 -0.40 -0.79 -0.11 -1.05 -1.47 -0.26

1 7 -0.24 -0.57 0.22 0.17 -0.56 0.66

1 8 0.05 -0.35 0.32 0.70 0.16 1.08

1 9 0.30 -0.12 1.06 1.32 0.78 1.72

1 10 0.70 0.22 1.17 2.72 1.10 3.81

1 11 0.72 0.35 1.10 0.84 0.48 1.29

1 12 1.13 0.25 1.65 0.56 -0.10 1.27

1 13 0.88 0.41 1.38 1.56 0.99 2.14

1 14 1.60 1.06 2.14 1.43 0.58 2.08

1 15 1.41 0.86 1.83 1.81 1.17 2.33

1 16 0.20 -0.18 0.79 -1.05 -1.73 -0.42

1 17 0.11 -0.44 0.69 0.38 -0.63 1.32

1 18 1.06 0.44 1.94 0.01 -0.54 0.73

1 19 -0.12 -0.64 0.45 -0.37 -1.01 0.02

1 20 -0.26 -0.62 0.13 0.09 -0.38 0.70

1 21 -0.42 -0.78 -0.06 -0.88 -1.66 0.16
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Table E.8 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 22 0.29 -0.38 0.87 0.85 -0.38 2.38

1 23 1.20 0.50 1.72 0.56 0.16 0.89

1 24 0.71 -0.36 1.71 2.12 1.18 3.01

1 25 1.89 1.35 2.58 -0.43 -1.79 1.39

1 26 -0.38 -0.78 0.08 -0.04 -0.46 0.42

1 27 -0.38 -1.22 0.78 -0.21 -0.64 0.42

1 28 -0.31 -0.89 0.37 0.61 0.17 1.01

1 29 0.24 -0.09 0.53 0.92 0.42 1.34

1 30 0.29 -0.19 0.76 -1.33 -1.97 -0.67

1 31 1.83 1.15 3.16 0.24 -0.38 0.83

1 32 0.31 -0.18 0.67 1.44 -0.58 2.33

1 33 0.85 -0.57 1.53 -1.52 -1.92 -1.13

1 34 1.78 1.03 2.34 2.06 1.44 2.77

1 35 1.27 0.49 2.40 1.94 1.49 2.43

1 36 0.66 0.18 1.12 -0.36 -0.79 0.61

1 37 0.90 -0.30 1.65 -0.31 -0.73 0.28

1 38 -1.25 -1.69 -0.61 -0.44 -0.89 -0.08

1 39 -0.89 -1.53 -0.03 0.18 -0.59 0.91

1 40 0.52 0.19 0.98 -0.50 -1.38 0.10

2 1 -1.08 -2.06 -0.22 -0.17 -0.67 0.28

2 2 -2.32 -2.79 -1.91 -0.48 -0.96 0.15

2 3 1.40 0.77 1.94 0.08 -0.29 0.60
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Table E.8 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 4 0.74 0.12 1.28 0.59 -0.04 1.14

2 5 -0.27 -1.28 0.79 1.36 0.17 2.42

2 6 1.41 0.66 2.23 -4.08 -4.57 -3.34

2 7 -0.49 -0.84 0.04 0.18 -1.19 1.83

2 8 -0.33 -1.24 0.45 -2.45 -2.91 -1.48

2 9 -0.71 -1.73 0.20 -2.09 -2.92 -1.10

2 10 -1.89 -2.69 -1.13 -1.50 -2.49 -0.66

2 11 -0.99 -2.06 0.10 -0.98 -1.60 0.08

2 12 -1.41 -1.74 -1.06 0.16 -0.42 0.67

2 13 0.07 -0.47 0.57 0.05 -0.80 0.92

2 14 -0.52 -0.93 0.16 0.38 -0.58 1.10

2 15 1.44 1.02 1.80 0.67 0.02 1.43

2 16 -1.04 -1.66 -0.39 0.94 0.45 1.36

2 17 -1.04 -1.37 -0.71 0.47 -0.59 1.13

2 18 -0.54 -0.90 -0.05 1.40 1.08 1.79

2 19 -0.50 -0.87 -0.17 1.44 -0.04 2.17

2 20 -0.52 -1.20 0.54 2.61 2.07 3.26

2 21 1.59 1.00 1.99 -1.16 -1.70 -0.45

2 22 -0.72 -1.32 -0.23 -0.72 -1.27 -0.22

2 23 0.17 -0.57 0.67 -0.53 -1.00 0.34

2 24 0.23 -0.17 0.63 0.94 0.43 1.78

2 25 -0.78 -1.21 -0.38 0.04 -0.35 0.62
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Table E.8 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 26 0.39 -0.27 1.42 -2.96 -3.58 -2.20

2 27 0.24 -0.19 0.75 -3.31 -3.76 -2.98

2 28 0.29 -0.28 0.69 -2.37 -2.95 -1.08

2 29 -1.65 -2.41 -0.66 -1.72 -2.32 -1.12

2 30 -2.51 -3.48 -1.77 -0.99 -1.73 -0.26

2 31 -1.44 -2.12 -0.96 0.66 -0.12 1.28

2 32 -0.63 -1.12 -0.14 0.40 -0.13 0.87

2 33 -0.17 -0.79 0.48 -0.34 -1.07 0.24

2 34 -1.29 -2.06 -0.76 -1.07 -1.80 -0.24

2 35 -0.84 -1.44 -0.43 0.38 -0.19 0.94

2 36 0.42 -0.10 1.02 0.11 -0.50 0.69

2 37 0.29 -0.33 1.05 1.04 0.29 1.71

2 38 -0.14 -0.83 0.61 1.50 0.87 2.29

2 39 0.32 -1.16 1.28 2.42 1.33 3.01

2 40 0.29 -0.30 1.03 2.33 1.86 3.01
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Table E.9: Bayesian Credible Intervals for Mix3PLM with 40-items and 3-group

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 1 1.80 1.12 2.37 0.29 -0.15 0.70

1 2 0.51 0.16 0.89 0.92 0.52 1.44

1 3 0.43 -0.09 1.01 1.72 1.26 2.17

1 4 2.26 1.37 2.69 1.90 1.43 2.51

1 5 1.24 0.84 1.54 1.80 1.47 2.24

1 6 0.11 -0.81 0.78 -0.16 -0.54 0.25

1 7 0.77 0.23 1.38 -1.31 -1.95 -0.69

1 8 0.78 -0.35 1.64 -0.83 -1.52 0.05

1 9 1.37 1.02 1.93 1.36 0.89 1.82

1 10 0.81 0.39 1.28 1.86 1.46 2.28

1 11 0.39 0.00 0.68 0.59 0.22 0.91

1 12 1.35 0.91 1.77 1.32 0.75 1.71

1 13 1.06 0.80 1.55 0.58 -0.48 1.04

1 14 -0.36 -1.45 1.23 1.39 0.91 1.86

1 15 0.64 0.17 1.38 2.38 1.27 3.47

1 16 0.71 -0.20 1.52 1.04 -0.06 1.75

1 17 1.41 0.91 2.05 0.87 0.40 2.05

1 18 0.59 -0.26 1.61 0.38 -1.95 1.96

1 19 2.02 1.56 2.55 0.03 -1.26 1.47

1 20 2.40 1.74 2.92 2.31 1.95 2.68

1 21 0.24 -0.43 0.73 -1.93 -2.21 -1.56
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Table E.9 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 22 0.86 0.49 1.27 1.65 1.18 2.00

1 23 0.77 -0.74 2.13 1.83 1.50 2.31

1 24 0.70 0.23 1.40 2.36 1.75 2.99

1 25 1.95 1.22 2.60 2.31 1.72 2.80

1 26 -0.54 -0.98 -0.03 0.02 -0.80 0.82

1 27 0.60 -0.16 1.22 0.77 0.38 1.39

1 28 -0.63 -1.58 -0.02 0.07 -0.72 0.86

1 29 -1.35 -1.96 -0.59 1.43 0.81 2.04

1 30 0.82 0.53 1.09 -1.21 -1.83 -0.06

1 31 1.43 0.89 2.20 1.34 0.47 2.00

1 32 0.44 -0.24 1.16 1.22 0.13 1.83

1 33 0.52 0.23 0.92 1.53 1.02 2.11

1 34 0.96 0.57 1.79 1.30 0.88 1.81

1 35 2.21 1.88 2.48 2.10 1.27 2.92

1 36 -0.99 -1.74 -0.19 1.28 0.68 2.16

1 37 1.08 0.54 1.91 1.52 1.07 1.92

1 38 1.13 0.62 1.73 -0.84 -1.40 0.25

1 39 2.07 1.07 2.76 1.54 0.94 2.07

1 40 2.06 1.64 2.49 2.05 1.71 2.38

2 1 0.52 -0.33 1.01 -1.13 -2.27 -0.57

2 2 -0.50 -1.38 -0.03 -0.19 -0.87 0.38

2 3 -0.65 -1.11 -0.22 -0.43 -1.26 0.28
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Table E.9 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 4 0.53 -0.02 0.97 0.37 -0.26 0.96

2 5 -0.27 -0.80 0.28 -0.67 -1.40 -0.03

2 6 -2.98 -3.68 -1.72 0.81 0.28 1.28

2 7 -2.72 -3.42 -1.59 -1.20 -1.85 -0.50

2 8 -2.66 -3.01 -2.22 -0.88 -1.61 -0.44

2 9 -2.83 -3.28 -2.35 -0.10 -0.63 0.18

2 10 -2.03 -2.60 -1.49 -0.34 -0.73 0.12

2 11 1.01 0.45 1.50 1.30 0.95 1.76

2 12 0.06 -0.98 1.27 -0.41 -1.30 0.42

2 13 -1.07 -1.64 -0.45 0.80 -0.05 1.48

2 14 -0.12 -0.43 0.28 0.17 -0.59 0.81

2 15 -0.03 -0.66 0.52 -0.75 -2.41 1.33

2 16 -0.88 -1.44 -0.44 -2.35 -3.39 -0.76

2 17 1.03 0.58 1.51 1.13 0.00 1.99

2 18 0.90 0.56 1.35 -3.39 -3.78 -2.95

2 19 0.10 -1.38 1.18 -2.14 -2.73 -1.46

2 20 -0.13 -1.38 1.17 -2.16 -2.97 -0.89

2 21 -0.30 -1.34 0.89 0.06 -1.21 0.77

2 22 -1.49 -2.02 -0.99 0.07 -1.35 1.16

2 23 0.10 -0.70 0.77 1.89 0.78 2.76

2 24 1.00 -0.04 1.93 1.34 0.91 1.78

2 25 1.62 1.20 2.34 -2.39 -2.77 -2.08
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Table E.9 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 26 -2.94 -3.40 -2.25 -0.72 -1.76 0.67

2 27 -3.04 -3.82 -2.46 1.44 0.74 2.13

2 28 -2.17 -3.63 -0.72 0.06 -0.66 0.83

2 29 1.36 0.66 2.16 0.23 -0.17 0.62

2 30 -0.56 -1.35 0.24 1.13 0.29 1.70

2 31 0.07 -0.70 1.03 0.72 0.02 1.46

2 32 -0.56 -1.02 0.28 -0.11 -0.54 0.50

2 33 -0.16 -1.40 0.55 0.77 0.25 1.21

2 34 -1.16 -2.09 0.12 0.64 0.08 1.25

2 35 0.63 0.10 1.32 -0.16 -0.59 0.33

2 36 -0.39 -1.37 0.40 -2.39 -3.00 -1.10

2 37 0.76 0.45 1.22 -2.95 -3.38 -2.34

2 38 -0.48 -2.03 0.64 -1.98 -3.51 -0.38

2 39 0.88 0.36 1.35 -3.15 -3.66 -2.76

2 40 1.52 1.06 1.99 -0.67 -1.83 0.58

3 1 0.08 -0.88 1.03 -0.65 -1.75 0.56

3 2 -1.44 -1.99 -0.86 0.23 -0.93 1.16

3 3 -0.39 -1.58 0.39 -2.46 -3.34 -1.27

3 4 2.09 1.58 2.57 -0.73 -1.56 0.02

3 5 1.19 0.04 2.10 -0.64 -0.94 -0.18

3 6 -0.46 -1.22 0.14 -1.77 -3.53 0.60

3 7 -0.89 -1.31 -0.38 -3.68 -4.04 -3.23
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Table E.9 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

3 8 -0.16 -0.99 0.52 -1.94 -3.31 -0.65

3 9 0.10 -0.59 0.67 -3.40 -3.73 -3.00

3 10 0.75 -0.09 1.47 -1.85 -2.65 -1.04

3 11 0.77 0.13 1.50 -0.15 -0.63 0.50

3 12 0.43 -0.24 0.94 0.29 -0.10 0.61

3 13 0.23 -0.86 1.22 0.69 0.26 1.16

3 14 -0.21 -0.76 0.32 0.35 0.01 0.96

3 15 2.41 1.51 3.51 1.06 -0.27 1.89

3 16 -1.50 -2.02 0.12 0.28 -0.35 0.85

3 17 -2.15 -2.61 -1.39 -0.82 -1.74 -0.05

3 18 -1.51 -1.82 -1.18 -0.34 -2.17 0.88

3 19 -1.32 -1.65 -1.03 2.00 1.56 2.49

3 20 -1.02 -1.53 -0.37 2.08 1.35 2.35

3 21 -0.61 -1.08 -0.01 -0.71 -1.61 1.00

3 22 -1.35 -1.84 -0.92 0.36 -0.97 1.16

3 23 -0.45 -0.83 0.13 -0.56 -0.99 0.00

3 24 0.68 0.10 1.31 0.18 -0.58 0.78

3 25 -0.40 -0.73 -0.16 -0.48 -0.98 -0.17

3 26 -0.65 -1.15 -0.24 -3.70 -3.99 -3.42

3 27 0.29 -0.08 0.83 -3.26 -3.84 -1.82

3 28 -0.35 -0.83 0.15 -3.69 -4.21 -3.21

3 29 -0.38 -1.35 0.43 -3.42 -4.23 -1.75
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Table E.9 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

3 30 -0.03 -0.27 0.32 -2.05 -3.03 -0.92

3 31 -0.05 -0.57 0.52 0.78 -0.13 1.52

3 32 0.59 -0.04 1.22 0.70 0.05 1.20

3 33 0.41 0.07 0.85 -0.94 -1.64 -0.24

3 34 1.46 0.98 1.92 -0.16 -1.43 0.77

3 35 2.10 1.60 2.55 -0.94 -1.38 -0.49

3 36 -2.76 -3.02 -2.48 0.23 -0.29 0.73

3 37 -1.91 -2.40 -1.37 1.64 1.25 2.29

3 38 -0.41 -2.05 1.19 0.12 -1.65 1.40

3 39 -1.75 -2.22 -1.27 2.30 1.46 2.77

3 40 -1.29 -1.68 -0.64 2.20 1.63 2.93
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Table E.10: Bayesian Credible Intervals for Mix3PLM with 40-items and 4-group

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 1 1.26 0.88 1.61 0.20 -0.46 1.01

1 2 0.29 -1.20 0.97 -0.61 -1.29 0.10

1 3 1.87 1.41 2.40 -0.85 -1.41 0.06

1 4 2.60 1.95 3.07 -0.42 -1.54 0.65

1 5 1.86 1.48 2.29 -0.53 -1.21 0.11

1 6 0.72 0.25 1.14 1.30 0.00 2.52

1 7 0.76 0.31 1.41 -0.53 -1.64 0.23

1 8 0.64 -0.20 1.51 0.19 -0.11 0.44

1 9 1.75 1.07 2.45 -0.37 -0.61 -0.05

1 10 1.94 1.47 2.61 0.73 0.15 1.43

1 11 0.84 -0.08 1.36 -0.67 -1.58 0.23

1 12 0.17 -0.76 0.84 0.72 0.10 1.30

1 13 1.35 0.85 1.80 0.42 -0.61 1.28

1 14 2.60 1.72 3.32 1.58 0.81 2.35

1 15 1.68 1.16 2.12 1.04 0.52 1.44

1 16 0.05 -0.55 0.78 -1.96 -2.72 -0.67

1 17 0.67 -0.29 1.54 -2.60 -2.98 -2.14

1 18 0.92 0.17 1.31 -2.09 -2.64 -1.52

1 19 1.17 -0.41 2.34 -1.48 -2.45 -0.44

1 20 1.31 0.85 1.88 -1.75 -2.24 -0.71

1 21 0.16 -0.54 0.92 -0.36 -0.93 0.21
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Table E.10 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

1 22 0.76 -0.37 1.38 -0.96 -1.53 -0.30

1 23 1.39 0.59 1.89 0.01 -1.19 0.78

1 24 1.70 0.94 2.30 0.80 -0.02 2.06

1 25 1.23 0.25 1.76 -0.47 -0.98 0.21

1 26 1.12 0.29 1.68 -0.70 -1.03 -0.18

1 27 -0.82 -1.25 -0.27 -0.09 -0.62 0.51

1 28 0.00 -0.91 1.12 0.46 -0.63 1.39

1 29 1.26 0.82 1.87 0.42 -0.42 1.42

1 30 1.11 -0.19 2.03 0.18 -0.10 0.52

1 31 0.93 -0.29 1.48 -0.25 -0.64 0.18

1 32 1.00 -0.15 1.65 -0.62 -1.20 0.31

1 33 1.72 1.31 2.20 0.44 0.05 0.90

1 34 1.52 1.20 1.85 -0.91 -1.79 0.38

1 35 -1.33 -1.89 -0.44 -2.34 -2.99 -1.61

1 36 -0.62 -0.98 -0.11 -2.78 -3.16 -2.38

1 37 0.90 0.31 1.30 -2.28 -2.59 -1.81

1 38 1.32 0.57 2.10 -2.25 -2.63 -1.88

1 39 0.53 -0.93 1.81 -0.51 -1.85 1.19

1 40 1.77 1.49 2.05 -1.52 -2.00 -1.09

2 1 -1.80 -2.34 -1.39 -1.16 -1.67 -0.76

2 2 -1.06 -1.69 -0.37 0.37 -0.03 0.74

2 3 0.43 -0.06 0.86 0.92 0.36 1.23
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Table E.10 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 4 0.75 0.37 1.10 1.36 1.04 1.88

2 5 0.33 -0.50 1.28 0.49 -1.54 1.73

2 6 -0.49 -1.05 -0.08 -1.19 -2.01 0.64

2 7 0.46 -0.87 1.60 -2.19 -2.53 -1.46

2 8 0.99 0.33 1.50 -2.17 -2.94 -1.45

2 9 0.40 -1.00 1.11 -0.92 -1.42 -0.40

2 10 0.66 0.26 1.05 -0.38 -0.67 -0.04

2 11 1.10 0.40 1.89 0.24 -0.02 0.66

2 12 -0.49 -1.88 1.03 0.55 0.10 0.98

2 13 -1.33 -2.05 -0.72 0.90 0.19 1.55

2 14 -1.66 -2.15 -1.03 -0.16 -1.67 1.39

2 15 -0.16 -1.47 0.49 -0.67 -1.51 0.12

2 16 -0.90 -1.53 -0.05 2.06 1.60 2.49

2 17 0.91 0.19 1.54 -0.32 -1.08 0.31

2 18 -0.46 -0.99 0.22 2.36 1.98 2.73

2 19 -0.68 -1.66 0.18 2.07 1.76 2.37

2 20 -0.38 -1.06 0.17 3.08 2.76 3.45

2 21 -0.60 -1.07 0.24 0.32 -0.10 0.76

2 22 0.24 -0.06 0.67 -1.91 -2.52 -1.43

2 23 0.26 -0.46 1.04 0.90 0.37 1.53

2 24 -0.81 -1.53 -0.43 1.54 0.99 1.98

2 25 1.24 0.63 1.86 1.73 1.36 2.30
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Table E.10 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

2 26 0.64 0.19 1.17 -2.14 -2.76 -1.55

2 27 -1.54 -2.36 -0.85 -1.74 -2.45 -1.25

2 28 0.65 -0.42 1.49 -1.31 -1.89 -0.84

2 29 -0.14 -0.59 0.45 -0.67 -0.92 -0.41

2 30 -1.61 -2.02 -1.04 -0.15 -0.44 0.22

2 31 -1.48 -2.60 0.43 0.23 -0.40 0.97

2 32 0.25 -1.03 1.32 0.63 0.31 0.99

2 33 -1.56 -2.09 -0.88 1.16 0.65 1.59

2 34 -1.75 -2.23 -1.13 1.20 0.80 1.58

2 35 -1.04 -1.54 -0.54 1.82 1.31 2.38

2 36 -0.16 -0.76 0.37 1.76 1.27 2.18

2 37 0.54 0.07 1.06 2.70 2.17 3.34

2 38 -0.72 -1.28 0.04 1.83 1.44 2.10

2 39 -0.76 -1.43 -0.18 -0.36 -1.14 0.82

2 40 0.85 0.11 1.56 2.92 2.46 3.50

3 1 -1.13 -1.76 -0.56 -1.44 -2.06 -0.96

3 2 -0.42 -0.75 0.03 -2.37 -2.82 -2.00

3 3 0.42 -0.01 0.88 -1.18 -1.55 -0.80

3 4 -0.54 -0.94 0.13 -0.91 -1.39 -0.44

3 5 1.00 0.34 1.80 -0.53 -1.20 0.55

3 6 -0.13 -0.69 0.43 -2.88 -3.73 -2.44

3 7 -0.45 -1.31 0.83 -3.04 -3.81 -2.49
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Table E.10 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

3 8 0.25 -0.28 0.74 -2.45 -2.86 -1.33

3 9 0.63 -0.01 1.26 1.24 0.00 2.09

3 10 -0.39 -0.82 0.49 -1.72 -2.35 -1.19

3 11 0.54 -0.52 1.22 -2.19 -2.55 -1.75

3 12 2.99 2.29 3.40 0.18 -0.34 0.72

3 13 0.49 -0.38 0.95 -0.63 -1.04 -0.23

3 14 1.47 1.05 1.81 -0.89 -1.85 1.16

3 15 1.00 -0.25 1.71 -0.34 -1.15 0.17

3 16 -1.66 -2.04 -1.34 -0.48 -0.72 -0.15

3 17 -1.88 -2.17 -1.48 -0.11 -0.51 0.28

3 18 -1.71 -2.21 -1.17 0.34 -0.14 0.79

3 19 -1.54 -2.11 -1.13 0.65 0.04 1.04

3 20 -1.78 -2.20 -1.44 0.74 -0.11 1.26

3 21 0.91 0.17 1.69 -0.44 -1.24 0.10

3 22 -0.85 -1.41 -0.32 -1.15 -1.53 -0.81

3 23 0.08 -1.04 0.90 -0.77 -1.56 -0.04

3 24 0.97 0.29 1.67 -1.00 -1.53 -0.56

3 25 -0.32 -1.05 0.36 0.21 -0.43 0.63

3 26 0.16 -0.22 0.45 -3.24 -3.79 -2.80

3 27 -0.72 -1.30 0.05 -2.42 -2.79 -2.03

3 28 0.00 -0.40 0.50 -1.88 -3.33 0.02

3 29 -0.18 -0.61 0.18 -2.95 -3.36 -2.47
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Table E.10 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

3 30 -1.35 -2.74 -0.62 -2.02 -2.65 -1.21

3 31 -0.07 -0.77 0.58 -1.36 -1.72 -1.03

3 32 -0.11 -0.98 0.60 -1.24 -1.65 -0.94

3 33 0.28 -0.52 0.96 -0.47 -1.66 0.23

3 34 2.34 1.38 2.93 -1.05 -1.43 -0.55

3 35 0.20 -0.90 1.29 -0.40 -0.69 0.15

3 36 -0.94 -2.33 0.94 -0.56 -0.90 -0.21

3 37 -1.64 -2.31 -1.09 0.78 0.01 1.55

3 38 -0.61 -1.62 1.09 0.10 -0.77 0.79

3 39 -1.23 -1.68 -0.79 1.24 0.17 1.78

3 40 -1.81 -3.02 -0.89 0.66 0.24 1.02

4 1 -1.07 -1.52 -0.56 1.31 0.46 2.07

4 2 -0.14 -1.02 1.10 1.48 0.98 2.15

4 3 -1.83 -2.52 -0.92 0.48 -0.52 1.83

4 4 -0.40 -1.09 0.39 2.82 2.47 3.43

4 5 -0.03 -0.62 0.53 2.24 1.87 2.54

4 6 -2.11 -2.51 -1.62 1.48 0.99 2.19

4 7 -2.49 -2.90 -1.85 1.05 0.36 1.79

4 8 -2.07 -2.53 -1.75 1.59 1.29 1.86

4 9 -1.43 -2.04 -0.58 2.07 1.71 2.47

4 10 -1.75 -2.36 -0.88 2.62 1.87 3.36

4 11 -1.93 -2.44 -1.32 0.35 -0.44 0.97

Continued on next page

164



Table E.10 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

4 12 0.14 -0.16 0.50 1.99 0.67 3.29

4 13 1.44 0.61 1.87 0.99 0.52 1.36

4 14 1.07 0.58 1.61 1.47 1.05 1.97

4 15 0.98 0.58 1.50 1.64 -0.39 2.76

4 16 0.36 -0.25 1.20 0.41 -0.11 0.87

4 17 1.17 0.49 1.52 0.86 0.29 1.24

4 18 2.61 2.00 3.18 1.10 0.31 1.75

4 19 0.72 -0.53 1.56 1.95 1.50 2.41

4 20 0.29 -0.46 1.33 1.29 -0.22 2.37

4 21 -0.54 -1.04 0.31 0.05 -0.31 0.49

4 22 -1.89 -2.19 -1.46 1.72 1.25 2.34

4 23 0.93 0.42 1.34 0.77 -0.80 1.81

4 24 0.11 -0.52 1.06 2.42 0.94 3.14

4 25 0.76 0.18 1.28 2.67 2.25 3.14

4 26 -2.62 -3.54 -1.96 1.23 0.92 1.67

4 27 -2.29 -3.14 -1.68 1.90 1.44 2.33

4 28 -2.43 -3.25 -1.67 1.99 1.61 2.53

4 29 -0.96 -2.01 0.53 1.96 1.60 2.39

4 30 -1.36 -1.89 -0.69 2.52 2.16 3.34

4 31 -1.50 -1.93 -1.03 0.72 -0.24 1.27

4 32 -0.15 -0.81 0.84 1.21 0.69 1.66

4 33 0.46 -0.25 1.29 0.07 -0.33 0.86
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Table E.10 – continued from previous page

Latent Class Item n = 600 n = 2,400

No. No. Mean 2.5% 97.5% Mean 2.5% 97.5%

4 34 0.18 -0.68 1.19 0.76 0.12 1.59

4 35 -0.35 -1.18 0.60 0.22 -0.88 1.54

4 36 0.49 0.07 1.14 1.63 1.20 2.25

4 37 1.60 0.89 2.19 -1.58 -2.33 -0.88

4 38 0.80 -0.23 1.75 -0.04 -1.02 1.51

4 39 1.53 -0.03 2.43 -0.31 -1.47 1.36

4 40 -1.91 -2.95 -1.27 -1.29 -2.05 -0.80
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Appendix F

Convergence figures for the condition

with Mix2PLM, person centering,

40-items, 600 examinees, 2 latent

groups, and 11th replication
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Figure F.1: The Autocorrelation Graphs for Mix2PLM
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Figure F.2: The Density Plots for Mix2PLM
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Figure F.3: The History Plots for Mix2PLM
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Appendix G

Convergence figures for the condition

with Mix3PLM, person centering,

20-items, 600 examinees, 3 latent

groups, and 1st replication
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Figure G.1: The Autocorrelation Graphs for Mix3PLM
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Figure G.2: The Density Plots for Mix3PLM
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Figure G.3: The History Plots for Mix3PLM
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