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ABSTRACT 

With an emergence of geographic information systems (GIS), spatial data have been 

represented by a traditional layer-based data model using geometry and thematic attributes. In 

the real world, geographic phenomena also possess relationships among them and temporal 

attributes. Since late 1980, a feature concept has been developed that uses three dimensions for 

representation: space, theme, and time. A feature approach in developing GIS has the potential 

for more accurate representation of geographic reality because the features correspond to the 

basic level of human cognitive observation. The aim of this study is to derive a feature data 

model and to develop a feature-oriented GIS (FOGIS). The objectives are 1) to apply the object-

oriented model and feature concepts to GIS and construct a feature data model, 2) to develop a 

spatial data input procedure using an interactive rule-based expert system, 3) to apply the input 

procedure for spatial data generation, 4) to design and implement a FOGIS architecture, and 5) to 

demonstrate the utility of FOGIS by entering, storing, analyzing, and displaying spatial data for 

multiple types of geographic features. A feature data model was derived from the feature concept. 

Classes in the feature data model were derived using abstraction methods in Spatial Data 

Transfer Standard (SDTS) and key concepts of object-orientation. A prototype system was then 

developed using the feature data model. This system consists of an input module, an 



 

import/export module, a feature database, and a display module. Specifically, the input module 

includes the expert system to provide a guideline to users for producing land use/cover data 

through an interactive question-and-answer sequence. The display module can be used to 

effectively visualize the hierarchical structure of objects in the feature data model. The 

developed system was applied for several geographic applications. The input module with an 

expert system was applied for thematic mapping of land use/cover in Athens, Georgia. The 

FOGIS was applied for the visualization of multi-temporal representations of buildings and 

coastlines in Camp Lejeune Marine Corps Base, North Carolina. Also, thematic relationships 

were used for spatial query on the roads in Camp Lejeune area. 
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CHAPTER 1 

RESEARCH OBJECTIVES AND BACKGROUND 

1.1 Introduction 

Since late 1980, a feature concept has been developed to represent geographic 

phenomena in geographic information systems (GIS) (Guptill et al., 1990; USGS, 1997). A 

feature representing a geographic phenomenon is an entity in a real world and an object in 

computer technology, and may include combinations of basic geometric elements. Features are 

the units of aggregation and analysis instead of a theme or layer (Usery, 1993). 

In computer science, an object-oriented paradigm has been built and applied for both 

programming and data modeling (Booch, 1994; Graham, 2001). In a conventional programming 

paradigm, programming is separated from data models. However, objects in an object-oriented 

model have both data (status or attributes) and behavior (functions or methods). Objects are 

abstracted entities in the real world so that the object-orientation may be a better support for 

complex spatial data in GIS.  

There are still some limitations in GIS even with its rapid advances. Some thematic 

relations such as ‘part of’ are not contained in a conventional layered model in GIS. A feature in 

different time periods cannot be saved as one object. However, it is possible to take advantage of 

the advances in a feature concept and an object-oriented paradigm in order to overcome some of 

the current limitations in GIS  
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1.2 Research Objectives 

The primary goal of this research is to develop a prototype GIS that fully implements 

feature-oriented concepts based on object-oriented analysis, design, and implementation for 

spatial data input, storage, analysis, and output (Figure 1.1). The input procedure will generate 

spatial data for both conventional GIS and the developed system (feature-oriented GIS) in order 

to increase usability. The input procedure also will include the ability to generate spatial data 

based on an interactive rule-based expert system for neophytes in GIS (Figure 1.2). 

 

 
Figure 1.1 Prototype User Interface of Feature-Oriented GIS 
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Figure 1.2 Prototype User Interface of Input Procedure with Expert System in FOGIS 

 

The term, Feature-Oriented Geographic Information System (FOGIS), is defined as a 

geographic information system in which a feature can be entered, stored, analyzed, and displayed 

as an object wholly in the digital environment of a computer. Therefore, in FOGIS, the data 

model and programming methods are based on the object-oriented model. Also, several other 

terms used in this research are identified in Table 1.1. 
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Table 1.1 Terminology for Feature and Object 

Term Definition 

Feature 

• A feature represents geographic phenomena. 

• A feature is an entity in a real world and an object in the digital 

environment. 

Object 
• An object is an entity in the digital environment that combines the 

properties of methods and data. 

Object-

oriented 

approach 

• The object-oriented approach is a method for developing systems and 

databases. 

• Object-orientation includes object-oriented analysis, object-oriented 

design, and object-oriented implementation using object-oriented 

programming. 

Feature-

oriented 

approach 

• The feature-oriented approach is a method for developing a GIS using an 

object-oriented approach. 

• The feature-oriented approach uses object-orientation for both conceptual 

design (using object-oriented analysis and design) and programming for 

implementation. 

Feature-

based 

approach 

• The feature-based approach is a method for developing GIS using both 

object-oriented approach and a relational model. 

• The feature-based approach uses object-orientation for conceptual design 

(using object-oriented analysis and design) and uses a functional 

programming for implementation. 
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Specifically, the objectives of this research are as follows: 

1) To apply the object-oriented model and feature concepts to GIS and construct a feature 

data model; 

2) To develop a spatial data input procedure using an interactive rule-based expert system 

in order to generate spatial data for both conventional GIS and FOGIS; 

3) To demonstrate the usability of the input procedure with an interactive rule-based 

expert system for spatial data generation by land use/cover mapping of urban features 

from aerial photographs; 

4) To design and implement a FOGIS architecture with the input procedure and a feature 

database for data storage, which includes both spatial data analysis procedures for time 

and thematic relationships and a spatial data output procedure for feature display; 

5) To demonstrate the utility of FOGIS by entering, storing, analyzing, and displaying 

spatial data for multiple types of geographic features.  

For the analysis ability of FOGIS, the multi-temporal occurrences of features will be 

retrieved by simple query operation for searching features in a feature database and the features 

can be queried by thematic relationships. 
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1.3 Background 

With an emergence of a feature concept, generic lists of features useful in GIS operations 

have been compiled (Guptill et al., 1990; USGS, 1997). The Topologically Integrated 

Geographic Encoding and Referencing (TIGER) system of the U.S. Census Bureau (Trainor, 

1990), Digital Line Graph-Enhanced (DLG-E) of the U.S. Geological Survey (USGS) (Guptill et 

al., 1990), feature lists for military requirements by the U.S. Defense Mapping Agency (Defense 

Mapping Agency, 1987), and the Feature and Attribute Coding Catalogue (FACC) of the 

National Geospatial-Intelligence Agency (NGA) (Digital Geographic Information Working 

Group, 2000) are examples of feature lists that are useful for each organization. However, these 

feature lists tend to vary according to their applications. Usery (1993) already tried to build a 

conceptual framework of features, which should be effective for various applications and 

resolutions using region theory, cognitive category theory, cartographic principles of abstraction, 

and set theory. 

Region theory in geography provides a basis for the geographic feature concept (James 

and Jones, 1954). A region is an area which is not only homogenous in terms of criteria, but also 

possesses a unique character in terms of a particular association of phenomena. Therefore, a 

region in region theory is an entity for the purpose of thought based on an intellectual concept to 

group associated phenomena. A feature is also an intellectual concept with attributes and 

relationships for a geographic phenomenon. Cognitive category theory provides a method to 

aggregate features based on similarity (Rosch, 1978; Lakoff, 1987). Human cognition can build 

an identity of a feature based on perception and judgment. Categorical boundaries of features are 

also constructed from the human cognition based on their similarity. Cartographic principles 

provide abstraction and generalization methods for geographic phenomena, which are well-
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established for various map scales (Robinson et al., 1984; McMaster, 1989). Set theory has a 

clear and well-established collection of rules so that it provides a method to build thematic 

groupings of geographic phenomena with no ambiguity (Gatrell, 1983 and 1991). For example, 

physical materials provide a common set of attributes in buildings and multispectral 

classification of remotely sensed data into land use/cover categories is based on a statistical set 

of spectral distribution (Usery, 1996a). 

With an emergence of the object-oriented paradigm, several researchers have attempted 

to apply object-oriented concepts to GIS since 1990. Some researchers have used object 

representations directly for geographic phenomena without the feature concept. Worboys et al. 

(1990), for example, tried to build object-oriented data models for spatial databases. 

For a database design, the means of representation is provided by the data model. The 

relational model is limited with respect to semantic content (expressive power) (Codd, 1970; 

Chen, 1976). Using only relations, a common difficulty in computer-aided design (CAD) and 

GIS is the gap between the richness of the knowledge structures in the application domain and 

the relative simplicity of the data model in which these knowledge structures are expressed and 

manipulated (Worboys et al., 1990). Many real world problems in GIS are not naturally 

expressible in terms of relations such as one-to-one, one-to-many, and many-to-many. 

Real world phenomena can be captured by an abstraction that arises from recognition of 

similarities between certain objects, situations, or processes in the real world (Booch, 1994). 

Common abstraction of similar objects can be grouped and implemented as a class of a feature in 

an object-oriented model. Therefore, object-oriented models have the capability to express more 

readily the knowledge structure of real world phenomena than relational models. 
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Wachowicz (1999) chose object-oriented analysis and design methods to build a 

versioning module in GIS for deriving temporal differences of an object. Versioning is the 

tracking of the evolution of an object’s state through time. The need for object versions to have 

separate identities is deemed a fundamental temporal issue, and the identity approach supported 

by object-oriented databases would be better suited for incorporating time into GIS than the 

value-based approach of the relational database (Barrea et al., 1991; Loomis, 1992). The time 

concept can be modeled and implemented effectively using object-oriented methods. A single 

object and identity with versions can be used to capture temporal differences. Each version of an 

object is associated with the attributes or relationships of the object. 

For a spatial database, Milne et al. (1993) built a spatial data model based on object-

orientation and tested it using both an object-oriented database (ONTOS) and a relational 

database (ORACLE). For contour retrieval, ONTOS was about 10 times faster than ORACLE 

(ONTOS, 1991). For the implementation of GIS, Vckovski (1998) used the object-oriented 

model for high interoperability based on the complexity reduction, which is accomplished by 

encapsulation (information hiding) of properties (data) and operations (functions or methods). 

An object’s complexity of properties and methods is hidden for the object user. Objects are 

accessed only by sending and receiving a set of messages. 

Other researchers have used feature-based representations of geographic phenomena in 

applying object-oriented concept to GIS. For example, Usery (1993 and 1994b) found a feature-

based approach in building GIS may have the potential to better support geographical models 

and analytical procedures with accurate representation of geographic reality because the features 

correspond to the basic level of human cognitive observation. When people are questioned about 

what is viewed in a geographic scene, the answers are not likely to include geometric elements 
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such as points, lines, areas, and grid cells, but rather geographic entities such as rivers, lakes, 

buildings, and roads. 

With a conceptual framework of features, a prototype feature-based GIS (FBGIS) has 

been developed for both vector and raster data representation (Usery, 1994a and 1994b; Usery et 

al, 2002). Features can be characterized by a three-dimensional framework: space, theme, and 

time. Each dimension includes both attributes and relationships to build a FBGIS. Although a 

FBGIS has been implemented using relational database techniques, the logical implementation 

strategy for the feature-based conceptual model is the object-oriented approach (Usery, 1996b). 

Tang et al. (1996) used object-oriented concepts such as encapsulation, inheritance, and 

polymorphism for building an object-oriented feature-based data model of a FBGIS. As satate 

previously, encapsulation is a method of hiding information in a class definition and only data 

declared as ‘public’ in an object definition can be accessed by other objects. Inheritance is a 

method of data transfer in objects hierarchy. Objects in sub class inherit information from objects 

in super class. Polymorphism is a method to invoke different methods with the same message. 

The same name can be used for methods in different classes, which make different results.  

These studies have shown that the object-oriented paradigm is better for GIS than 

conventional data models and programming methods. The reason is that the object-oriented 

paradigm is closer to real world situations, features and their relations, which are very complex. 

GIS deal with very complex spatial data that are captured from the real world. 
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1.4 Research Methodology 

Five specific problems in conventional GIS are identified, which may be addressed by a 

feature approach based on object-orientation. 

� Disjunctive thematic relations such as ‘part of’ are not contained in the conventional 

layered model in GIS. 

� The same feature from different time periods cannot be saved as a single object. 

� For multiple scale application, the geographic data model should allow multiple 

geometry types for features. 

� Feature retrieval by name will consume significant resources in the conventional GIS. 

� An expert system that can help neophytes generate and analyze spatial data is not 

available. 

However, first four limitations in conventional GIS can be solved by a feature approach 

based on object-orientation. For final limitation, the integration of an expert system and GIS has 

been tried. 

This research mainly consists of three parts: feature-oriented model development, system 

implementation, and application using geographic features. The feature-oriented model will start 

with a review of object-orientation and apply it to GIS modeling as a feature-oriented GIS model. 

It is the step to accomplish the first objective in this research. A prototype GIS will be developed 

based on feature-orientation. The implementation step will accomplish the second and fourth 

objectives. Finally, a developed system will be applied for generation, storage, analysis, and 

display of geographic data (Figure 1.3), which accomplish the third and fifth objectives. As a 

spatial analysis, time query will be used for differentiating the multi-temporal situations of 
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features. With time query, feature query will be also performed with the feature thematic 

relationships.  

 

 
Figure 1.3 Research Flow for Feature-Oriented GIS and Geographic Applications 
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1.4.1 Solving Problems with Feature-Orientation 

This research focuses on building a feature-oriented GIS using object-oriented methods. 

Therefore, the feature-oriented model should start with a review of key concepts and elements in 

object-orientation that include programming methods and databases. 

With the feature concept for geographic phenomena, current spatial data transfer standard 

(SDTS) specifications, and key concepts in object-orientation, a feature data model will be 

constructed and implemented as a prototype of a feature-oriented GIS including input, analysis, 

and output procedures (USGS, 1997). By constructing a feature data model and the system 

architecture based on the feature data model, the first three problems that are identified in this 

research can be solved. 

 

1.4.1.1 Disjunctive Thematic Relation 

Almost all current commercial GIS have been developed based on conventional 

programming methods and a layered or an entity-relational data model for database management 

and query (Peuquet, 1988; Rhind et al, 1991). In a layer-based model, spatial attributes (location) 

and relationships (topology) can be structured using basic geometric objects (points, lines, areas, 

and pixels) and planar topology. Thematic attributes are directly attached to the basic geometric 

objects, but certain thematic relations are not contained in a layered model. 

For example, “Kennesaw Mountain is a national park” is a thematic relation that can be 

represented in a layered model by including the Kennesaw Mountain in a layer called ‘National 

Parks’. However, “Kennesaw Mountain is a part of Atlanta” is a thematic relation that is difficult 

to be represented in a layered model because of the thematic disjunction of the park layer and the 

city limit layer. Thematic disjunction relations need a hierarchical model for effective 
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representation that may not be represented in a layer-based model. Therefore, conventional GIS 

have limitations to contain spatial data fully. 

The object-oriented model basically uses hierarchical representation for inheritance of 

attributes and methods of an object. Therefore, thematic disjunction relations may be 

implemented directly in a feature data model using the object-oriented paradigm. 

 

1.4.1.2 Temporal Representation of Features 

In a conventional GIS based on the relational model, the temporal representation of 

spatial data has been problematic because it is difficult and consumes significant resources to 

implement. For example, if a lake’s boundary has changed through time and a user wants to save 

the changes, then the snapshot of the lake boundary for each time could be saved with its time as 

an attribute in two different lake layers including all other lakes which might not have changed 

through the time. The difference of the lake boundary can be calculated easily by the overlay of 

the two lake layers. However, the lake cannot be retrieved as the same one by its own name from 

the two different lake layers. It is impossible for two objects to have the same name with 

different attributes in the relational model, which means that an object in a different time should 

be saved as two different objects and the two objects could not be modeled as the same one by 

the relational model.  
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Figure 1.4 Feature with Time Attribute in a Feature Data Model  

 

In the object-oriented paradigm, an object in a different time can be saved as the same 

object with different attributes or situations because an object can be created as two instances 

that inherit basic attributes and then save different situations through time. For example, if there 

is a road named ‘Broad Street’ and that road has been changed from September 1, 1970 to 

October 1, 2000 by constructing a new shortcut between two locations on the road which was 

originally a bypass, in an object-oriented design, a feature instance called ‘Broad Street’ has two 

sub-trees of attributes, one for attributes bound to September 1, 1970 and the other to October 1, 

2000 (Figure 1.4). 

A feature data model will be based on the object-orientation, which can save time as one 

of a feature’s attributes. Therefore, FOGIS based on a feature data model can save a feature with 

different situations through time.  

Broad Street 

Road 

Sept. 1, 1970 Oct 1, 2000 

Line Line 4 2 

Time 

Lane 

Cover 
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Spatial Reference 
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Instance 
Attribute 
Instance 
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1.4.1.3 Multiple Geometry Types for Features 

The conventional layer-based data model has a limitation on the geometry type for 

storing features in a layer. If multiple geometry types for a feature type were needed for an 

application, the same number of layers should be created for each to contain one geometry type. 

For example, if buildings have to be mapped at a certain map scale, then all buildings will be 

mapped as polygons or points in a layer-based model. However, if some buildings have to be 

mapped as polygons and the others as points because of the size of buildings related to the 

application scale and symbolization, it cannot be contained in a layer. It needs two layers based 

on the different geometry type even though both layers are containing the same feature type 

(Buildings). 

However, the feature data model can contain multiple geometry types for a feature. For 

mapping buildings, the large buildings can be stored as polygons and the small buildings can be 

stored as points. During the digitizing process, a building can be mapped either as point or 

polygon according to the proper scale of an application. Therefore, the representation of features, 

both points and polygons, can be used for representing building features. 

 

1.4.2 Solving Problems with System Implementation 

This prototype system will consist of four main modules: (1) database, (2) data 

generation and input module with expert system, (3) data display module, and (4) analysis 

module for temporal representation and feature search using thematic relationships (see Figure 

1.3). Each module will be designed for specific purposes from data input to output. 

For the database, a feature database will be designed and used for physical storage of 

features from the feature data model using a Microsoft Access database. The input and display 
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modules can be developed with MapObjects which is a set of mapping software components that 

can be customized for mapping applications (ESRI, 1999a). Visual Basic 6.0 will be used to 

implement FOGIS including the input procedure with the rule-based expert system, the output 

procedure, and the analysis modules (Harris, 1997; Ryu, 1999; Stephens, 2000). 

Specifically, the input module with an expert system will be developed using a rule-based 

method in an interactive mode in which a user can determine a solution from the result of an 

expert system for generating vector data (points, lines, and polygons) from image data such as 

aerial photographs or satellite images. The input module should be compatible with a 

conventional GIS by producing spatial data as shape file format. 

The analysis module for temporal representation will be developed to retrieve different 

temporal situations of a feature from a database. The versioning concept and algorithm for 

feature retrieval will be used (Barrea et al., 1991; Loomis, 1992; Wachowicz, 1999). Versioning 

means maintaining an extra copy of old data existed on another time period. While versioning 

needs copies of layers in a layer-based model, it needs copies of only some features that have 

been changed through time periods in a feature data model. Also, a feature searching tool will be 

developed to retrieve the other related features using thematic relationships.  

The analysis module will demonstrate the temporal representation in the third problem 

which is solved in the previous step. The final two problems that are identified in this research 

can be solved in the implementation step. 

 

1.4.2.1 Feature Retrieval by Name 

Spatial data are originally captured from real world features. Features should be retrieved 

by name, but the retrieval may cause problems in conventional GIS. A feature retrieval using 
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names in conventional GIS using a relation data model requires accessing the same attribute over 

many instances of the geometric or topologic data, because a feature’s name is not an identifier 

but a thematic attribute of geometric elements such as points, lines, and areas in a commercial 

GIS (Guptil et al., 1990). A feature’s name can be an identifier of a feature in the feature-based 

approach so that all spatial and non-spatial information including geometrical and topological 

relationships are directly linked to the identifier. Therefore, a feature’s name can be used to 

retrieve all geometric or topologic information of a feature at once. 

In a conventional layer-based model, a layer is a basic unit for data input and output so 

that it consumes resources to retrieve all information of a feature from a layer by name. If 

attributes of a feature are saved in different locations such as files and tables, the retrieval of all 

attributes of the feature will consume significant system resources to link the files or tables. This 

problem may also be related to the system performance. However, in a feature-based approach, a 

feature is a basic unit for data handling so it is fast and easy to use the name as a primary 

identifier for retrieving all related information of a feature. In the system implementation with a 

feature data model, a feature name will be used for an identifier for the feature to retrieve its 

attributes and relationships. 

 

1.4.2.2 Expert System for Neophyte, Novice User 

Almost all current commercial GIS software packages lack utilities or tools that can help 

neophytes in GIS to generate and analyze spatial data with proper explanation in a step-by-step 

fashion. An expert system could be incorporated with GIS to help neophytes to generate and 

analyze spatial data. 
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An expert system is a knowledge-based artificial intelligence technique because this 

system solves problems with the knowledge of experts (Carrico et al., 1989). The basic unit of 

knowledge in these expert systems is the rule which is a conditional test-action pair, for example, 

if condition is true, then action.  

In remote sensing and GIS, previous studies using rule-based expert systems have 

focused on the automatic interpretation of aerial photographs or satellite images or on the 

automatic mapping of spatial data for experts (Tatsuyama, 1987; Usery et al., 1988; Moller-

Jensen, 1990; Foschi and Smith, 1997; Wilson, 1997). However, the rule-based expert system 

can be applied to the interactive image interpretation for neophytes. 

The input procedure will be developed using an interactive rule-based expert system, 

which will show how an expert system can be integrated with GIS. In FOGIS, an interactive 

rule-based expert system will be used for the interpretation of aerial photographs in order to 

generate spatial data from the interpretation. 

 

1.4.3 Geographic Application 

The developed system will be tested using geographic applications. The first application 

is to map urban features from aerial photographs for testing the data input procedure with the 

interactive rule-based expert system. The data input modules with the expert system will be 

applied for urban area mapping since a rule for urban mapping will be simple and can be 

generated as a general rule over locations. A general rule for urban mapping can be constructed 

by the key elements of the image interpretation: tone, texture, pattern, size, shape, shadow, and 

situation (Avery and Berlin, 1992). 
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The second application is to save, analyze, and display urban vector data for testing the 

database, analysis, and display modules because urban areas include various complex features. 

The FOGIS will be applied for multiple feature type data such as coastlines, buildings, roads, and 

administrative boundaries of Camp Lejeune area (the U.S. Marine Corps Base) in North Carolina 

to test the performance. Two analysis operations will be executed: representation of multi-

temporal instances of a feature and a feature search using thematic relationships. 

Both coastlines and buildings will be represented geometrically as area and have simple 

attributes and relations that are easy to use for the temporal analysis. Changes in buildings are 

evident since there was a hurricane in the study area between two dates of image sources. Multi-

temporal instances of building features can be used to clearly visualize the temporal differences 

of buildings. The road data are linear and have comparatively complex attributes and relations 

that are useful to test the feature retrieval by name and searching features based on the thematic 

relationships. The road data are provided in shape file format so that they can also be used for 

testing the import/export module. 

 

1.5 Summary 

Five problems in conventional GIS will be solved by a feature-oriented approach using 

the object-oriented model. The feature-orientation step that accomplishes the first objective, 

which is to construct a feature data model with a feature concept and object-orientation, will 

solve the first three problems. First, disjunctive thematic relations such as ‘part of’ are not 

included in the conventional layer-based model, but are incorporated in a feature-based approach 

by a hierarchical representation. Second, a feature that exists at different time periods cannot be 

saved as one object in a conventional GIS based on a relational database, but a feature can have 
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versioned attributes of one object through time in a feature data model. Third, a layer in a layer-

based model cannot contain multiple geometry types for representing different size of features, 

but features (buildings) in a feature data model can be any type of geometry instances (either 

point building or polygon building). 

The implementation of FOGIS that accomplishes the second and fourth objectives, which 

are developing input procedure based on an expert system and implementing FOGIS based on a 

feature data model, will solve the final two problems. A feature retrieval by name in 

conventional GIS needs to access all related instances of geometric and topologic data so that it 

consumes significant system resources, but the name is the primary identifier for retrieving 

features including their attributes and relationships in the FOGIS. An expert system will be 

incorporated in the input procedure of FOGIS for helping neophytes to generate and analyze 

spatial data. 

The geographic applications will accomplish the third and fifth objectives, which are 

demonstrations for the utility of a rule-based expert system and FOGIS. Specifically, the analysis 

module will include two operations: multi-temporal representation and a feature search using 

thematic relationships. 

 

1.6 Chapter Organization 

The construction of a feature data model is mainly based on the object-oriented design 

and analysis methods. The development of a feature-oriented system is also based on the object-

oriented programming. Therefore, in Chapter 2, the basic concepts of the object-oriented 

paradigm will be reviewed. This chapter includes the historical background of the object-

oriented paradigm, the key elements of object-oriented programming for the system development 
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(such as abstraction, encapsulation, hierarchy, and so on), and the concepts and design methods 

of object and class. 

In Chapter 3, the previous data model for the data container will be reviewed. The 

hierarchical and network model is a physical data model and the relational data model is logical 

data model. More recently, the object-oriented model has emerged and includes both data and 

methods. Based on the feature concepts, the SDTS data model, and object-orientation, the feature 

data model will be designed. 

In Chapter 4, the feature data model will be implemented to construct FOGIS. The 

implementation will include an import/export module, a feature database for physical data 

storage, and a display module. Also, a time query tool will be added. To test the implemented 

system, time query for the multi-temporal situations will be executed on building features.    

In Chapter 5, for spatial data generation, the input procedure will be designed and 

implemented. Specifically, the expert system will be designed and implemented as a part of the 

input module. To test the input procedure incorporated with the expert system, the application 

will be focused on land use/cover mapping from the image sources. The land use/cover 

categories will be decided by the expert system. Accuracy assessment will be conducted on the 

resulting land use/cover map in order to test the usability of the rule in the expert system.  

In Chapter 6, system modules developed in both Chapter 4 and 5 will be integrated into 

one complete system as FOGIS. A feature population tool for the input module, projection tool 

for import/export module, and tree viewer for the display module will be developed and added to 

FOGIS during an integration process. Also, a feature searching tool using thematic relationships 

will be added in the display module as one of the spatial analysis tools.  
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Finally, in Chapter 7, all five problems observed in Chapter 1 will be discussed and 

summarized as conclusions. The discussion will include the level of accomplishment for each 

problem addressed in Chapter 1 through FOGIS development. Limitations and further research 

directions also will be discussed.   
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CHAPTER 2 

OBJECT-ORIENTATION WITH VISUAL BASIC FOR FEATURE-ORIENTATION 

2.1 Introduction 

While both programming and a data model are separated in the conventional 

programming paradigm, the object-oriented model includes both. The reason is the object in an 

object-oriented model has both data (status) and behaviors (functions or methods). In the 

conventional programming paradigm, data have their own structure based on the data model and 

are independent from the functional action that is implemented by procedural programming. 

Many GIS have been developed based on the conventional programming method with an 

entity-relational data model. The entity-relational data model has some limitations to fully 

contain spatial data because spatial data are originally captured from the real world features. 

Features have complex relationships with other features. However, the relational data model 

cannot capture these complex relationships because the relationships between entities (tables) are 

modeled by the linkage of tables in the entity-relational models. There is no room for the 

relationship itself. Therefore, conventional GIS only focus on the spatial relationship of 

topological information as feature relationships. Other relationships of features such as thematic 

and temporal relationships are not currently handled in the layer-based GIS model. The object-

oriented model provides a solution for those complex relationships so that it has been suggested 

for building a GIS (Graham, 2001). Version-management is another important demand for GIS 

applications and can be embodied more effectively by object-oriented programming (Wachowicz, 

1999). 
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In this chapter, important concepts of the object-oriented model will be reviewed as the 

main methods for designing the feature data model and building FOGIS. The next section 

provides a historical review of object-orientation. Key concepts and characteristics of object-

orientation will be reviewed and discussed with the meaning in Visual Basic, which is the main 

programming language for FOGIS. Also, the concepts of objects and classes are discussed, 

which are the containers of the data and methods.  

 

2.2 History of Object-Orientation 

The earliest work in computing was concerned with programming. Later, concepts of 

design and analysis arose. Similarly, in object-orientation, programming first attracted attention 

and object-oriented design and analysis later become major areas of endeavor (Graham, 2001).  

Therefore, the history of object-orientation should start with object-oriented programming (OOP), 

and move on to object-oriented design (OOD) and object-oriented analysis (OOA). 

The history of object-oriented programming starts with the development of Simula 

language in 1965, based on the ALGOL-60 language, which was specifically oriented towards 

discrete event simulation (Dahl and Nygaard, 1966). In 1967, Simula-67 was developed to solve 

problems of conventional language in simulation modeling, which introduced the basic concept 

of object and class first (Dahl el al., 1968). The inheritance mechanism, through which a class 

could inherit the data from super classes, was also introduced in Simula-67. 

In the mid-1970s, the term “object-oriented” finally came into the language with the 

programming language Smalltalk. Smalltalk was developed at the Xerox Palo Alto Research 

Center (PARC) based on not only Simula but also the doctoral work of Alna Kay (Rentsch, 

1982).  Smalltalk was influenced by both the notion of classes and inheritance of Simula and the 
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functional abstractions of the LISt Processing (LISP) language (McCarthy, 1960). In Smalltalk, 

everything is perceived as an object and objects can communicate with each other by passing 

messages. 

There have been five releases of Smalltalk between 1972 and 1980 from Smalltalk-72 to 

Smalltalk-80. Generally, Smalltalk has a complete programming environment, including editors 

and browsers. Smalltalk has influenced not only the design of every subsequent object-oriented 

programming language, but also the look and feel of graphic user interfaces such as the 

Macintosh user interface and Motif (Booch, 1994). One of the reasons for the success of object-

oriented programming was the complexity of these user interfaces and the high cost of building 

them. Without the inherent reusability of programming code in the object-oriented concept, these 

interfaces could not have been built on such a wide scale (Graham, 2001). 

After the advent of object-orientation, there were two demands of users: the development 

of a user interface and reusable software components (modularity). User interface development 

possessed no significant data management problems, but there were performance problems 

associated with early object-oriented languages. This led to the development of new languages, 

such as Eiffel, and to extensions of existing efficient conventional languages such as C and 

Pascal. The modularity has been addressed by Ada language developed by U.S. Department of 

Defense. Any changes in a module have no effect on the other modules. Object-oriented 

programming promises to enable system developers to assemble systems from reusable 

components, thus addressing modularity. Several researchers (Biggerstaff and Richter, 1989; 

Prieto-Diaz and Freeman, 1987) have argued that the higher the levels of reuse the greater the 

benefit for the object-oriented programming in a general software engineering context. 
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Almost all object-oriented methods have in common basic characteristics such as 

methods associated with objects, inheritance of attributes and methods from super classes, and 

the ability to define the type of objects, their attribute types and relationships. However, these 

object-oriented databases still suffer from the lack of standards in query language. The lack of a 

standard for object-oriented query languages has caused differences in query language syntax, 

completeness, standard query language (SQL) compatibility and treatment of encapsulation 

(Cattell, 1994). Recently, two approaches in object-oriented databases have been developed: pure 

object-oriented databases and hybrid object-relational databases.  

As object-oriented programming began to mature, interest shifted to object-oriented 

design and analysis or specification, which developed as an approach to improving our 

understanding of the concepts, activities, rules, and assertions of the object-orientation paradigm. 

Computer-aided software engineering (CASE) has become increasingly important as a graphical 

tool for supporting object-oriented analysis and design (Graham, 2001). The increasing products 

of CASE tools are based on the composition of graphical symbols and notations depicting the 

semantics and features. The most important benefits of using CASE tools are automatic code 

generation and enhancement of productivity. However, the rules and methods provided by CASE 

tools are inappropriate or even non-existent in some innovative applications (Wachowicz, 1999). 

Now, the object-oriented method is a part of the general toolkit of the software developer 

such as Java, Visual C++, Visual Basic, and so on. It means that object-oriented programming 

can be regarded as a mature discipline worthy of regular use by commercial organizations. In the 

next section, the key concepts and characteristics of object-orientation will be reviewed and 

discussed based on the programming methods of Visual Basic, which is the major tool for 

building FOGIS. 
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2.3 Key Elements of Object-Orientation 

Five key elements of the object-oriented model include abstraction, encapsulation, 

modularity, hierarchy, and polymorphism. The methods to accomplish each element in the 

object-oriented programming language, especially with the Visual Basic, will be discussed 

(Roman, 1997).  

 

2.3.1 Abstraction 

Abstraction denotes the essential characteristics of an object that distinguish it from all 

other kinds of objects and thus provides crisply defined conceptual boundaries, relative to the 

perspective of the viewer. Objects with common abstraction based on their similarity can be 

grouped as a class. 

There are several sets of abstraction: entity abstraction, action abstraction, virtual 

machine abstraction, and coincidental abstraction (Graham, 2001). An object represents a useful 

model of problem-domain entity using entity abstraction, provides a general set of functions or 

operations through action abstraction, ties together operations using virtual machine abstraction, 

and packages a set of operations that have no relation to each other by coincidental abstraction. 

Deciding upon the right set of abstractions for a given domain is the central problem in object-

oriented design. Generally, programmers use entity abstractions because they are directly parallel 

to the vocabulary of a given problem domain. Abstractions give us an inside view of an object. 

The outside view of an object or abstraction can be explained by the contract model 

(Meyer, 1988). In the contract model, a client is any object that uses the resources of another 

object as a server. The behavior of an object can be specified by considering the services or 

operations that it provides to other objects. The entire set of services or operations of an object is 
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called its protocol, which is the way an object may act and react. The protocol constitutes the 

entire outside view of the abstraction. 

In Visual Basic, the abstraction data type is an example of abstraction of a basic data type. 

The abstraction data type is a user defined data type or class, which is different from common 

data type variables such as integer, double, or string data types. 

The data type is used as a variable and initialized by assigning a value to the variable. To 

use the abstract data type, the object of ‘CFeature’ has to be initialized by the set method. Then 

the instance (‘instFeature’) will be created. In Figure2.1, an instance (‘instFeature’) of 

‘CFeature’ is created by ‘New’ parameter from the ‘CFeature’ that is an abstract data type or a 

class and then instantiated as ‘instFeature’ by ‘Set’ methods. ‘CFeature’ is an abstraction for all 

geographic features that may have common data and methods. 

 

 
Figure 2.1 Common Data Type vs. Abstract Data Type 

 

2.3.2 Encapsulation 

Encapsulation is the process of compartmentalizing the elements of an abstraction that 

constitute its structure and behavior (Booch, 1994). Encapsulation serves to separate the 

contractual interface of an abstraction and its implementation. Encapsulation is achieved through 

information hiding. The structure of an object is hidden, as well as the implementation of its 

methods. Each implementation encapsulates details about which no client may make 

assumptions. Implementation of a class comprises the representation of the abstraction as well as 

the mechanisms that achieve the desired behavior.  

 Dim X as Integer 
 X = 200 

Data Type 

 Dim instFeature as CFeature 
 Set instFeature = New CFeature 

Abstract Data Type 
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For example, in C++, members may be placed in the public, private, or protected parts of 

a class. Members declared in the public part are visible to all clients. Members declared in the 

private part are fully encapsulated, and members declared in the protected part are visible only to 

the class itself and its sub class. Specifically, the notion of friends that can be used to permit 

access each other’s private parts is supported in C++ (Zaratian, 1998). In Visual Basic, public 

and private declarations are allowed.  

Encapsulation also allows the inclusion of validation code to help catch errors in the use 

of the exposed interface. If any variable is defined as private and referred from an outside 

interface, it will automatically generate errors. If the public interface is used for a variable that 

could be any data or method, then it can be inherited and used on the other classes. 

 

2.3.3 Modularity 

In programming, the act of partitioning a program into individual components can reduce 

its complexity to some degree. Although partitioning a program is helpful for this reason, a more 

powerful justification for partitioning a program is that it creates a number of well-defined, 

documented boundaries within the program. Modularity is the property of a system that has been 

decomposed into a set of cohesive and loosely coupled modules by grouping logically related 

abstractions and minimizing the dependencies among modules (Booch, 1994). Classes and 

objects form the logical structure of a system. These abstractions are placed in modules in order 

to produce the system’s physical architecture. Modules serve as the physical containers in which 

the classes and objects of logical design will be declared. 

 The greatest advantage of modularity is the cost in that the decomposition into modules 

will reduce the software cost by allowing modules to be designed and revised independently. The 
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identification (abstraction) of classes and objects is part of the logical design of the system, but 

the identification of modules is part of the system’s physical design. Therefore, modularity 

makes reuse of classes and objects convenient. 

In Visual Basic, the module has two types: form modules and class modules. The main 

similarity is both modules can have both data (property) and methods. The difference is the form 

module has a visible interface but a class module does not. Also, the way to access public 

properties and methods is different. With a class module, one class can only access another 

class’s public properties and methods by instancing of the super class. With a form module, the 

public properties and methods of a form can be directly accessed by the other modules (Figure 

2.2). However, both modules make reusability possible.  

 

 
Figure 2.2 Qualifications of Public Property and Method 

 

2.3.4 Hierarchy 

The fourth element of object-orientation is hierarchy that is a ranking or ordering of 

abstractions. Two most important hierarchies in system design are class structure using the “is a” 

hierarchy for generalization or specialization and object structure using the “part of” hierarchy 

for aggregation. Inheritance is the most important method of the “is a” hierarchy. It defines a 

form Display { 
    public Display_Propt1 
    public Display_Method1 
} 
 

-- No need to create  
    Instance of form Display 
 

Display.Display_Propt1 
Display.Display_Method1 

Form Module 

class CStudent { 
     public CStudent_Propt1 
     public CStudent_Meth1 
} 
 

Dim Jimmy as CStudent 
Set Jimmy = New CStudent 
 

Jimmy.CStudent_Propt1 
Jimmy.CStudent_Meth1    

Class Module 
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relationship among classes and allows groups to be easily reused. Aggregation is the most 

important method of the “part of” hierarchy. It permits the physical grouping of logically related 

structures. 

In Visual Basic, the explicit class inheritance technique is not provided, but the references 

for the variables of sub class to super class make the hierarchy possible. Also, the interface 

inheritance is allowed, by which a class can inherit properties and methods defined in the 

interface class (Harmon and Sawyer, 1999). 

The principles of abstraction, encapsulation, and modularity are synergistic. An object 

provides a crisp boundary around a single abstraction, and both encapsulation and modularity 

provide barriers around this abstraction. Also, in almost all applications, there are too many 

abstractions to comprehend at one time. Encapsulation helps manage this complexity by hiding 

the inside view of these abstractions. Modularity provides a way to cluster logically related 

abstractions. Hierarchy in system design helps simplify the understanding of the problem. 

 

2.3.5 Polymorphism 

Polymorphism represents a concept in type theory in which a single name may denote 

objects of many different classes that are related by some common super class. Therefore, any 

object denoted by this name can respond to some common set of operations. Polymorphism is 

the ability to process objects differently depending on their data type or class by redefining 

methods for derived classes. For example, given a base class ‘shape’, it is possible to define 

different ‘area’ methods for any number of derived classes, such as polygons, circles, and 

rectangles. According to the shape of an object, the ‘area’ method to the object will return the 

correct results. 
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In Visual Basic, the clear example of polymorphism is any method that uses the 

polymorphic variable ‘Variant’. The ‘Variant’ variable will be a different form for integer, 

double, or string in run time so that the same name method with ‘Variant’ variable will work 

differently based on the input data for the variable. Through the interface inheritance, 

polymorphism is accomplished. 

 

2.4 Objects and Classes 

2.4.1 Objects 

Objects are entities that combine the properties of methods and data since they perform 

computations and save local state (Stefik and Bobrow, 1986). Object-oriented programming is a 

method of implementation in which programs are organized as cooperative collections of objects, 

each of which represents an instance of some class, and whose classes are all members of a 

hierarchy of classes united via inheritance relations.  

An object has a state and a unique identity. A state exhibits some well-defined behavior 

and a unique identity is the structure and behavior of similar objects that are defined in their 

common class. Attributes such as time, beauty, or color and emotions such as love and anger are 

not objects, but are all potential properties of an object. An object is defined by a crisp physical 

boundary, by a crisp conceptual boundary (i.e., intangible events or processes), or by a tangible 

fuzzy physical boundary (i.e., rivers, fog, or crowds of people). 

The state of an object encompasses all of the static properties of the object and the current 

(or dynamic) values of each of these properties. A class is not an object because it does not 

represent a specific instance. Behavior is how an object acts and reacts in terms of its state 

changing by message passing. The state of an object represents the cumulative results of its 
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behavior. Operations such as modifier, selector, iterator, constructor, and destructor are services 

that a class offers to its clients. An object may be active or passive. An active object 

encompasses its own thread of control, whereas a passive object can only undergo a state change 

when explicitly acted upon. 

An identity of an object is a unique property that distinguishes the object from all other 

objects. A structure is useful for a certain abstraction when the abstraction represents a simple 

record of other objects and has no behavior that applies to the object as a whole. However, a 

class is useful for an abstraction if the abstraction requires behavior more intense than just simple 

puts and gets of independent record items. An identity of an object may be lost when the object 

is copied by a reference (as a pointer). If a pointer of one object aliases another object then the 

original object designated by that pointer can no longer be named and the identity of the object is 

lost. It is problematic because it will cause memory leaks, memory-access violations, and even 

unexpected state changes. Therefore, it would be better to copy an object by value (or deepcopy) 

instead of by reference (shallowcopy) (Booch, 1994).  

In Visual Basic, an object can be created either explicitly or implicitly (Figure 2.3). 

Explicit object creation needs two lines. The first line declares a variable named ‘Jimmy’ to be of 

type ‘CStudent’. The second line creates an object of type ‘CStudent’ by the ‘New’ keyword and 

assigns ‘Jimmy’ as a reference to that object by the ‘Set’ keyword. With these two lines, an 

instance ‘Jimmy’ of ‘CStudents’ exists. It is the explicit procedure to create an instance of the 

class ‘CStudent’. Implicit object creation needs only one line. The line declares ‘Jimmy’ as a 

variable of type ‘CStduent’ with the ‘New’ keyword. It will not create an instance (‘Jimmy’) 

immediately. When the object variable ‘Jimmy’ is used for the first time, the instance will be 
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created. Generally, the explicit object creation method is recommended for tracking the creation 

of instances. 

 

 
Figure 2.3 Object Creation in Visual Basic 

 

2.4.2 Classes 

A class is a set of objects that share a common structure and a common behavior. A class 

represents only an abstraction that is the essence of an object, whereas an object is a concrete 

entity that exists in time and space. An object is simply an instance of a class. Classes can have 

an outside view known as an interface and an inside view known as an implementation or the 

secrets of its behavior. The interface can be separated as two or three types: public and private in 

Visual Basic, or public, protected, and private part in C++. Public parts are opened to all clients, 

protected parts to itself, sub class, and friend, and private parts to itself and friend. 

The relation between classes might indicate some sort of sharing or some kind of 

semantic connection. There are three basic types of class relationships: 

generalization/specialization, whole/part, and association. The “is a” relation represents 

generalization/specialization of classes. The “part of” relation for object aggregation is also used 

for whole/part relation of classes. The association shows some semantic dependency between 

classes (i.e., ladybugs protect flowers). 

class CStudent { 
     public Last_name 
     public CStudent_Meth1 
} 
 
Dim Jimmy as New 
CStudent 
… 
Jimmy.Last_name = “Choi” 

Implicit Object Creation 

class CStudent { 
     public Last_name 
     public CStudent_Meth1 
} 
 
Dim Jimmy as CStudent 
Set Jimmy = New CStudent 

Explicit Object Creation 



 

 35 

The inheritance among classes uses the generalization/specialization of classes, and hence 

the hierarchy among abstractions is largely a matter of classification. The aggregation from the 

“part of” relation makes a class as a container of objects or instance of another class. There are 

two classes named A and B, and if an instance of class A can be created in the private part 

declaration of class B, the instance of class A does not exist independently of its enclosing class 

B instance. When an instance of class B is created or destroyed, the instance of class A will be 

created or destroyed. This kind of aggregation is direct containment by value (Booch, 1994).  

A less direct kind of aggregation is containment by reference. When an instance of class 

B declared using Pointer, instances of each class A and B can be created independently. If and 

only if there is a whole/part relationship between two objects, there must be an aggregation 

relationship between their corresponding classes. If it is not sure that there is an “is a” 

relationship between two classes, then aggregation or some other relationship should be used 

instead of inheritance. 

An instance of a class can be generated by value or by reference. Also, several different 

instances of a class can be created using different parameters. This kind of class is a 

parameterized class or a generic class that serves as a template for other classes. A template may 

be parameterized by other classes, objects, and/or operations. Instances of a class using different 

parameters are instances of distinctly different classes and not united by any common super class, 

even though they are derived from the same parameterized class. A parameterized class must be 

instantiated with its parameters before objects can be created. 

A meta class is a class of classes. It means that instances of a meta class are themselves 

classes. The primary purpose of a meta class is to provide class variables that are shared by all 
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instances of the class and to provide operations for initializing class variables and for creating the 

meta class’s single instance. 

In Visual Basic, both class modules and collection classes are allowed to be used (Roman, 

1997). A class module has two parts: properties and methods (Figure 2.4). Visual Basic does not 

allow the array type properties inside a class. Using a class module a new name of instance is 

needed, whenever an object is instantiated from the class. However, it may be impossible to get 

the new name of the instance in run time unless the name is known before the program is 

compiled. Therefore, with only a class module, it may be impossible to create multiple instances 

for which the name is currently unknown. 

 

 
Figure 2.4 Creating Classes in Visual Basic 

 
The ‘CStudent’ class in Figure 2.4 has private property that can be accessed only by the 

Let/Get methods inside the class. It hides the property from the outside of the class, which is an 

encapsulation. If multiple instances for a class need to be alive in run time, a collection class 

Collection Class (CStudents) 

class CStudents { 
 
   private mStudents as New Collection 
 
   'Expose count property 
   Public Property Get Count() As Long 
      Count = mStudents.Count 
   End Property 

Class Module (CStudent) 

 
    'Wrapper for Item method 
    Public Function Item(Index As Variant) As CStudent 
        Set Item = mStudents.Item(Index) 
    End Function 
 
    'Wrapper for Add method 
    Public Function add(mL_name As String) As CStudent 
        'Define a new CStudent class 
        Dim mStudent As New CStudent 
        'set property 
         mStudent.L_name = mL_name 
        'add featuretype to featuretype collection 
        mStudents.add mStudent 
    End Function 
 
    Public Sub Delete(ByVal Index As Variant) 
        mStudents.Remove Index 
    End Sub 
} 

class CStudent { 
    
   ‘property 
   private mL_name as String 
 
   ‘method 
   public Let L_name(vData as string) { 
        mL_name = vData 
   } 
   public Get L_name( ) { 
        L_name = mL_name 
   }       
} 
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should be used. The collection class allows making multiple instances using same name with a 

different index at any time the program is alive. The collection class also has both properties and 

methods, but the collection data type should be used for properties. For a collection class module, 

a single class for the collection should be defined and used inside the collection class for Add, 

Item, Count, and Delete methods (Figure 2.4). These methods of the collection method have 

been inherited from the Visual Basic Collection Interface, which is the interface inheritance.  

 

2.4.3 Classification 

The way to find classes and objects with our knowledge is a classification problem. 

Recognizing the similarity among entities shows the commonality within key abstractions and 

mechanisms, and eventually leads to smaller and simpler architecture. There are three ways for a 

classification: classical categorization, conceptual clustering, and prototype theory. 

In classical categorization, all entities, that have a given property or collection of 

properties in common, form a category. Such properties are necessary and sufficient to define the 

category. However, natural categories tend to be messy. For example, most birds can fly but 

some cannot. In conceptual clustering, classes (or clusters of entities) are generated by first 

formulating conceptual descriptions of these classes and then classifying the entities according to 

the descriptions. It is closely related to fuzzy set theory, in which objects may belong to one or 

more groups, in varying degrees of fitness. There are some abstractions that have neither clearly 

bounded properties nor concepts. In prototype theory, a class of objects is represented by a 

prototypical object, and an object is considered to be a member of this class if and only if it 

resembles this prototype in significant ways (Booch, 1994).  
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There are several practical approaches to classify classes and objects: classical approach, 

behavior analysis, domain analysis, use-case analysis, informal English description, and 

structured analysis. These approaches are mainly used for object-oriented analysis, which is to 

find a way to model the world by discovering the classes and objects that form the vocabulary of 

the problem domain. 

Several classical approaches use various sources of classes and objects derived from the 

requirements of the problem domain (Shlaer and Mellor, 1988; Ross, 1987; Coad and Yourdon, 

1990). These are called classical because they derive primarily from the principles of classical 

categorization. Whereas these classical approaches focus upon tangible things in the problem 

domain, behavior analysis approach focuses on dynamic behavior as the primary sources of 

classes and objects. Classes are formed based on groups of objects that exhibit similar behavior 

(Shlaer and Mellor, 1992). These behaviors and services of objects are responsibilities; objects 

can be grouped by common responsibilities (Wirfs-Brock et el., 1990; Rubin and Goldberg, 

1992).  

Whereas the classical approach and behavior analysis are applied typically to a single and 

specific application, domain analysis seeks to identify the classes and objects that are common to 

all applications within a given domain. Experts can perceive important objects, operations, and 

relationships about the domain and consult to create a generic model of the domain (Arango, 

1989; Moore and Bailin, 1988). However, it is difficult to find a domain expert. 

All classical analysis, behavior analysis, and domain analysis depend on a large measure 

of personal experience. These approaches are unacceptable for the majority of applications, 

because such a process is neither deterministic nor predictably successful (Booch, 1994). 

However, Jacobson (1992) has formed use-case analysis. In use-case analysis, a case is a 
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particular form or example of usage or scenario. First, users make several scenarios as cases and 

then analysis proceeds by a study of each case to identify objects and classes with operations. 

An informal English description method uses nouns and verbs in an English description 

of the problem (Abbott, 1983). The nouns represent candidate objects, and the verbs represent 

candidate operations or responsibilities of those objects. This approach is very useful because it 

is simple and makes the developer work in the vocabulary of the problem domain. However, 

sometimes it is difficult to use this approach because natural language may not express a 

problem fully (Booch, 1994). 

A structured analysis uses data flow diagrams to provide a formal model of the problem. 

From this model, classes and objects can be identified, and data transformations between objects 

are assigned as operations or behaviors (Ward and Mellor, 1985). However, structured design 

with structured analysis is entirely orthogonal to the principal of object-oriented design. This 

approach uses data flow diagrams as a design rather than an essential model of the problem 

domain (Booch, 1994). 

Cases or scenarios are very powerful tools to form a problem domain explicitly so that 

they can be used to drive the process of classical analysis, behavior analysis, and domain 

analysis (Booch, 1994). Therefore, among above approaches, a mixed approach of use-case 

analysis and one approach among classical analysis, behavior analysis, and domain analysis may 

be the best for identifying objects and classes. 

 

2.5 Summary 

In this chapter, with the brief historical review on object-orientation, the key elements 

and concepts are reviewed. Specifically, five key elements (abstraction, encapsulation, hierarchy, 
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polymorphism, and modularity), objects, and classes have been examined in Visual Basic, which 

is the main programming tool for implementation of FOGIS in this study.  

Abstraction denotes the essential characteristics of an object that provide crisply defined 

conceptual boundaries. Objects with common abstraction based on the similarity can be grouped 

as a class. In Visual Basic, the abstraction data type is a user defied data type or class that is 

different from a common data type such as integer, double, or string. 

Encapsulation is the process of compartmentalizing the elements of an abstraction that 

constitute its structure and behavior. Therefore, encapsulation serves to separate the contractual 

interface of an abstraction and its implementation so it hides information of an object from the 

outside. In Visual Basic, public and private declarations are allowed. The public means it is open 

to the outside and the private means it is closed to the outside. 

In programming, modularity is the act of partitioning a program into individual 

components, which can reduce its complexity to some degree. In Visual Basic, classes are form 

modules or class modules. The main similarity is both modules can have both data (property) and 

methods. With a form module, the public properties and methods of a form can be accessed 

directly by the other modules, which is not true in a class module. However, both modules make 

reusability possible.  

The fourth element of object-orientation is hierarchy, which is a ranking or ordering of 

abstractions. In Visual Basic, the explicit class inheritance technique is not provided but the 

interface inheritance is allowed, by which a class can inherit properties and methods defined in 

the interface class. Also, the hierarchy of classes can be mapped by the references for the 

variables of sub class to super class. 
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Polymorphism means that any object denoted by name can respond to some common set 

of operations. In Visual Basic, the ‘Variant’ variable is called the polymorphic variable. The 

‘Variant’ variable will take different forms as integer, double, or string in run time so that the 

same name method with the ‘Variant’ variable will work differently with different input data for 

the variable. 

Objects are entities that combine the properties of methods and data. An object has a state 

and a unique identity. A state exhibits some well-defined behavior and a unique identity is the 

structure and behavior of similar objects that are defined in their common class. The state of an 

object encompasses all of the static properties of the object and the current (or dynamic) values 

of each of these properties. In Visual Basic, object can be created either explicitly or implicitly. 

Usually, explicit object creation is preferred because it creates an instance immediately. 

A class is a set of objects that share a common structure and a common behavior. A class 

represents only an abstraction that is the essence of an object, whereas an object is a concrete 

entity that exists in time and space. An object is simply an instance of a class. In Visual Basic, 

both class module and collection classes can be used. Because Visual Basic does not allow the 

array type properties inside class, the collection class should be used to create multiple instances 

that use the same name with a different index at any time the program is alive.  

Finally, classification is the way to identify classes and objects with our knowledge. 

Recognizing the similarity among things shows the commonality within key abstractions and 

mechanisms, and eventually leads to smaller and simpler architecture. A mixed approach of use-

case analysis and one approach among classical analysis, behavior analysis, and domain analysis 

may be the best method for identifying objects and classes. 
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CHAPTER 3  

FEATURE DATA MODEL FOR FEATURE REPRESENTATION 

3.1 Early Data Models: Hierarchical and Network Data Model 

Data storage began with the sequential file and the device for data storage was a tape. The 

data of the file was matched and read, and then the tape for the file was rewound for the next 

access. As more sophisticated storage devices, such as drums and disks emerged, the direct 

access method called random was possible. After this, hashing or storing index files could 

improve file access speeds. Index files made it possible to conceptualize a structural relationship 

and hence capture some of the structure of the real world or of the application. 

Early databases used hierarchical or network data models with the structural relationships 

among index files. The hierarchical data model could only express certain kinds of structural 

relationships. The network data model allowed more general graphs to be constructed, but still it 

was very hard to change these relationships if a system had been already designed. If an attribute 

needed to be added or removed after a completed design, the network system might need to be 

redesigned. The early hierarchical and network data models suffered from inflexibility of their 

implemented systems. 

The simplest data structure is a list, lists of lists, and the kind of tree-structured lists. 

These lists are written in a file. If a programmer works with a file, he will open a file or stream of 

data and read through it, record by record, until some condition is satisfied. For example, 

consider a university phone book that stores name, address, and telephone number for students. 

If one has the name and address, it is easy to find the phone number. If one, however, has the 
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phone number and address and wants the name, it is difficult to find the name because lists or 

files have logical structure in which the structure is sorted in a particular order. To find the name 

with phone number and address, a file should be read in a different order. The computerized 

university phone book can be viewed as a table (Figure 3.1). 

 

 
Figure 3.1 File Structure with a Repeating Group (Hierarchical Structure in a File) 
 

For the GEOG department, a repeating group that consists of extensions and names was 

included (Figure 3.1). The arrangement in the table has the logical structure of a tree or hierarchy. 

Given direct access using a logical pointer, a repeating group does not need to be kept in the 

same file. In Figure 3.1, the university phone book table can be separated into two files: a 

department file and an extensions file. The department file records contain logical pointers to the 

extensions file (Figure 3.2). 

 

 
Figure 3.2 Decomposition without Repeating Group (Hierarchical Structure with Two Files) 

Extension Name 
111 S. John 
101 J. Choi 
102 N. Tom 
103 E. Man 
141 P. Pod 

Phone_No Dept Dept_Cod
e 542-1234 CSCI 10 

542-5452 GEOG 13 
542-6788 ELAN 15 

Dept_Cod
e 10 

13 

15 

13 
13 

Extensions Department
s 

Phone_No Dept No_of_Ext
s 

542-1234 CSCI 1 

542-5452 GEOG 3 

542-6788 ELAN 1 

Extension Name 

111 S. John 

101 J. Choi 
102 N. Tom 
103 E. Man 

141 P. Pod 
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There are two files with a common field to link them. It is logically a one-to-many 

relationship between departments and extensions in Figure 3.2. An extension cannot be in two 

departments in this scheme. This is a major limitation of the hierarchical approach to data 

structure. It is very difficult in the hierarchical model to deal with many-to-many relationships 

(Graham, 2001). 

Many-to-many relationships can be captured by the network model. For example, let us 

suppose the stock information that is about particular stock items and their suppliers. The 

relationship represented in Figure 3.3 shows a many-to-many relationship between items and 

suppliers. For every item there may be many suppliers and for every supplier there may be many 

parts. 

 

 
Figure 3.3 Data Structure and Network Pointer Structure (Graham, 2001) 

 

I_No Item_Na
me 

Description 

i1 Marble ½” glass 

s2 Aardvark Paris 

S_N S_Name Location 

s1 ABC London 

.30 

Price 

.30 

* 

I_No Item_Na
me 

Description 

i2 Bat Willow 

s2 Aardvark Paris 

S_N S_Name Location 

s1 ABC London 

40 

Price 

20 

* 

s3 Blue New York 20 

s1 s2 s3 

i1 i2 

a) Data structure if items and suppliers by the supplied-by relationship 

b) Network pointer structure for the supplied-by relationship 

Suppliers 

Supplied-by 
connectors 

Items 
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In Figure 3.3, there are two ways to find item 2 (i2) supplied by s2. From the network 

pointer structure in the bottom part (b) of Figure 3.3, one way is to start with the supplier and 

look along the pointers for a connector linked to the item and the other way is to start with the 

item and look for the supplier.  

In the network model, many-to-many relationship can be implemented efficiently by 

pointers. However, the maintenance associated with practical network databases may be 

expensive. A network diagram for a simple data structure such as that in Figure 3.3 is 

complicated. The relational data model overcomes some of the limitation of hierarchical and 

network data model in terms of flexibility. 

 

3.2 Relational Data Model 

The relational data model was the first formal data model as a theoretical basis of 

database, and based on first order predicate calculus (FOPC) (Codd, 1970). The relational model 

supported a relationally complete, non-procedural query language. Now, standard query 

language (SQL) is used to communicate with databases for data definition and data manipulation. 

Without the need to reconstruct a complex pointer system, relational databases can be used to 

refine complex organizational structures. 

The basic idea of the relational model is that data are represented as a series of tables. 

Repeating groups or implicit hierarchies, and fixed structural links are not allowed. Logical 

relationships between the data are constructed at run time or are held in tables themselves. Tables 

can be used to represent both entities and relationships (Chen, 1976). Also cross-reference tables 

can be rebuilt without reorganizing the basic data. This is a great advantage in case many 

changes in data are needed. 
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The hierarchical or network model is a physical data model, but the relational model is a 

logical one. The logical relational model allows users to view one data structure in many 

different ways such as user views. This is one important benefit of relational databases leading to 

a higher degree of user acceptance. 

The relational model consists of two intrinsic and two extrinsic parts. The intrinsic parts 

are a structural and a manipulative part. A structural part uses notions of domains, attributes, 

tuples, n-ary relations, and primary and foreign keys. A manipulative part includes tools: 

relational algebra and calculus (Graham, 2001).  

In a structural part, given a list of sets A1, …, An, each set of Ai is a called a domain. An 

attribute is a label for each domain. A tuple is a container that has only one element from each 

domain. In a table, domains are columns and tuples are rows. Attributes are column names. A 

relation is defined mathematically as any subset of a Cartesian product of sets so that a relation 

would be a table. An n-ary relation means that there are n attributes in a relation. A primary key 

set of attributes uniquely identifies each tuple at any given time. A foreign key set of attributes is 

used to link logically a relation to the other relations. 

In a manipulative part, the most used language based on relational calculus and algebra is 

SQL (Figure 3.4). The SQL was partly derived from the motivation to produce a ‘structured’ 

language. This kind of relational query language operates on tables, or sets of tuples. A query 

always returns a table. The SQL consists of five functional languages: data query language 

(DQL), data manipulation language (DML), data definition language (DDL), transaction control 

language (TCL), and data control language (DCL) (Table 3.1) (Kochhar and Lad, 1998). There 

are several advantages in using SQL. First, it is efficient in that a lot of work can be done with 

only several lines of commands. Second, it is easy to learn and use because SQL uses English 
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like commands and a simple syntax. Last, it is functionally complete so that it can define, 

retrieve, and manipulate data in a table. 

 

 
Figure 3.4 Relational Calculus and Algebra 

   Table 3.1 Standard Query Language (SQL) Commands (Kochhar and Lad, 1998) 
Type Command Description 

Data Query 
Language: DQL SELECT Data retrieval from table 

Data Manipulation 
Language: DML 

INSERT, UPDATE 
DELETE 

Insert new rows or update existing 
rows in a table, or delete unwanted 
rows from a table 

Data Definition 
Language: DDL 

CREATE, ALTER 
DROP, RENAME 
TRUNCATE 

Create, alter, or remove data structure 
from a table 

Transaction Control  
Language: TCL 

COMMIT, OLLBACK 
SAVEPOINT 

Control or manage changes of a table 
executed by DML command 

Data Control 
Language: DCL GRANT, REVOKE Control or manage access privileges for 

database and data structure 

7738 Blake 4,000 

EMPNO ENAME SAL 

7601 Kim 10,000 

40 
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20 

7854 James 20,000 60 

a) Projection and selection 
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40 
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40 
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20 
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The extrinsic parts include an integrity part with respect to both entities and reference, 

and a design part consisting of the theory of normal forms. Five normal forms have been derived 

to restrict a relation and explain the integrity part and the design part of a relation model. Graham 

(2001) summarized the normal forms as follows. First normal form (1NF) insists that attribute 

value entries are atomic; that is, values must be numbers or strings. Second normal form (2NF) 

says that a primary key uniquely identifies tuples. Third normal form (3NF) says that, with 2NF, 

the other attributes are independent of one another and are all functionally dependent on the 

primary key. Fourth normal form (4NF) helps to avoid redundancy and fifth normal form (5NF) 

prevents a lossy joins, i.e. data is lost when two or more relations are joined and then 

decomposed to the original form. 

In an integrity part, two types of integrity should be considered in a relational model: 

entity integrity and referential integrity. Entity integrity means that primary key cannot include 

an attribute that may take null as a value. Referential integrity means that, given relation R and S, 

if a relation R contains a foreign key whose values are taken from the primary key values of a 

relation S, then every occurrence of the foreign key in R must either match a primary key value 

in S or be null. The relation R and S may be the same. In five normal forms, 3NF also explains a 

functional dependency that is a special form of integrity constraint of a relational model. The 

theory of normal form can be considered as a hierarchy from 1NF (as a base) to 5NF (as a top). 

Therefore, the hierarchy of five normal forms shows an aspect of bottom-up design for a 

relational model. 

A relational model is very strong because it is based on a logical formal theory that makes 

it possible to have a relationally complete non-procedural query language such as SQL. The 
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logic ensures that any job of this language can be proved mathematically. With a relational 

model, a database structure can also be easily changed without complete redesign of the database. 

There are several weaknesses in the relational model (Grahm, 2001). First, the relational 

model handles relations, which are directly perceived in multidimensional form, unnaturally by 

refusal to recognize any object of higher type (abstract data types such as lists, vectors, graphics 

or drawings, etc) as atomic because of the theory of first normal form. Also, any method cannot 

be stored ready for use in the database. Second, normalized relations also rarely correspond to 

any object in the real world. This means a loss of information. The decomposition of an 

application is driven by considerations of computation or logic, rather than modeled on the 

structure of the application. Therefore, normalized relations cannot be reusable in isolation and 

be the assembly of systems from components. Finally, first normal form also disallows recursive 

queries that are queries about an entity’s own relationships. An example of such a relationship is 

the parenthood relationship on the person entity. 

With the emergence of object-oriented programming languages, the object-oriented 

model provides solutions to some of the limitations of a relational model. An object-oriented 

model allows abstract data types that correspond to objects in the real world. Also, the 

inheritance property of an object-oriented model can be applied for recursive queries (Graham, 

2001).  

 

3.3 Object-Oriented Model 

Conceptually, an object in an object-oriented model stores both attributes and methods 

together. In an actual implementation, attributes and methods of complex objects may not be 

physically stored with the object identifier, but pointers to the physical location may be stored. 
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Generally, objects with attributes are stored in a database but methods of those objects are rarely 

stored in a database. Methods are implemented by the run-time system. It is important that any 

query language cope with this question of physical storage quite transparently. Therefore, most 

object-oriented databases are tightly coupled with a particular object-oriented programming 

language for both queries and implementation of methods. 

In an object-oriented model, behavioral abstraction is emphasized and means the 

inheritance of encapsulated methods. In object-oriented database systems, it is very important to 

model the structural properties of data and make explicit inheritance and aggregation structure. 

For explicit inheritance and aggregation structure, several methods can be used to group objects: 

classification, association, composition, and aggregation.  

Inheritance can be derived by classification and association. Classification is a method to 

group objects in classes according to their common structural and behavioral properties. For 

example, students and professors can be grouped as people. Association means that instances are 

grouped into a class according to some shared property. For example, the set of all things is red. 

Classification is used for essential objects and represents a subset relationship, and association is 

used for accidental objects and represents a membership relationship. 

Objects can be grouped as components of some composite object in two ways: 

composition and aggregation. Composition is the way to group objects as parts of the structure of 

an object. For example, a car is composed of wheels, transmission, body, and so on. Aggregation 

is a method to group objects as a set of attributes of an object and includes both conceptual 

composition and physical composition. For example, a computer is a concept aggregated from 

concepts including name, operating system, several hardware and software, location, access right, 

and so on. 
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In an object-oriented model, inheritance and aggregation can interact. An object that may 

be an aggregate of several objects contains attributes and methods of those objects. An object 

that inherits attributes and methods from a parent object also inherits aggregation structure of the 

parent object.  

Compared to the relational data model, an object-oriented model removes the need to 

perform expensive joins when objects are used in an application since objects are stored as 

coherent wholes. This makes them potentially much more efficient for applications involving 

complex objects such as web servers, multimedia databases, geographic information systems 

(GIS), and CAD/CAM systems.  

 

3.4 Feature Data Model with Object-Orientation for GIS 

With the emergence of GIS, the data model for capturing geographic phenomena has 

been focused on the spatial geometry and thematic attributes of the phenomena have been linked 

to the geometry. The basic geometries in the geometric model are point, line, polygon, and grid. 

Different geometric types need different types of data structure with their thematic attributes, so 

multiple geometry types cannot not be handled by one theme or layer. 

The layer-based model emerged to effectively manage the geometric based data. As it 

allows only one type of geometry to be entered into a theme or layer, multiple geometric types of 

geographic phenomena must be represented by multiple layers. In the real world, geographic 

phenomena have not only spatial geometry and thematic attribute, but also relationships with 

other phenomena and temporal attribute. The layer-based data model, however, cannot contain 

the relationships among phenomena. Also, multi-temporal instances of a feature cannot be 

represented by a layer and more than two layers must be used for representing the changes of a 
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feature through time. The same phenomenon in different layers may not be the same any more 

because it may have different object IDs in different layers. 

Since late 1980, there have been significant advances in both the data model of GIS and 

the programming paradigm of computer science. A feature concept has been developed to 

represent geographic phenomena in GIS (Guptill et al., 1990; USGS, 1997). A feature is a 

defined geographical entity and its object representation in the digital environment, so that it is 

the unit of aggregation and analysis instead of a theme or layer (Usery, 1993). A feature is also 

represented by multiple dimensions using space, theme, and time with their relationships among 

features. Therefore, the feature approach for a geographic data model may be the best solution 

for the multiple representations of real world geographic phenomena. 

A feature data model can be constructed basically from the feature conceptual framework, 

the abstraction methods defined in SDTS, and key concepts of object-orientation. With the 

feature conceptual framework, features are represented by three dimensional aspects: space, 

theme, and time. Classes in the feature data model can be derived from the abstraction methods 

of spatial data in SDTS. 

 

3.4.1 Conceptual Framework of a Feature 

A conceptual framework of features has been built, which should be effective for various 

applications and resolutions (Usery, 1993). The framework includes spatial, thematic, and 

temporal dimensions with attributes and relationships for each dimension to build GIS using 

feature concept (Figure 3.5). 
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Figure 3.5 Conceptual Framework of Geographic Feature (Usery, 1996b) 

 

As an example of building GIS using the conceptual framework for structuring features, a 

prototype feature-based GIS (FBGIS) has been developed for both vector (Tang et al., 1996; 

Usery et al, 2002) and raster data representation (Usery, 1994a and 1994b). Although FBGIS has 

been implemented using conventional programming techniques, the logical implementation 

strategy for the feature-based conceptual model was the object-oriented approach in which 

objects are constructed based on either sets or category theory concepts of prototypes. 

 

3.4.2 Feature Abstraction Methods in SDTS Data Model 

The establishment of a standard for the interchange of spatial data has been of significant 

interest to users and producers of spatial data, because of the potential for increased access to an 

sharing of spatial data, the deduction of information loss in data exchange, the elimination of the 

duplication of data acquisition, and the increase in the quality and integrity of spatial data. The 

spatial data transfer standard (SDTS) is a robust way of transferring spatial data between 

dissimilar GIS with the potential for no information loss. 

As the application of computers in geography and cartography grew within the federal 

government, the U.S. Geological Survey (USGS) was designated the agency responsible for 
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developing spatial data standards in 1980. In 1992, after twelve years of development, the 

resulting standard, SDTS, was approved as Federal Information Processing Standard (FIPS) 

Publication 173. The FIPS version has been superceded by current version (ANSI NCITS 320-

1998) and was ratified by the American National Standards Institute (ANSI) in 1998 (USGS, 

1997). 

Features are captured by an abstraction, which arises from recognition of similarities 

between certain objects, situations, or processes in the real world (Booch, 1994). The conceptual 

model of the SDTS is a good example of abstraction for geographic features (USGS, 1997). The 

SDTS conceptual model has three parts: a model of spatial phenomena, a model of the spatial 

objects used to represent phenomena, and a model of spatial features that explains how spatial 

phenomena and spatial objects are related. Four basic terms (classification, generalization, 

aggregation, and association) of an object-oriented model have been defined and explained in 

SDTS for spatial data so that each term can be directly used for a feature data model (Table 3.2). 

Classification can be used for defining a feature class. Generalization and aggregation can be 

used for grouping features into a feature type class. Association can be used for describing 

attributes and relationships of a feature.  
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Table 3.2 Terms for Spatial Data Abstraction in SDTS (USGS, 1997) 
Term Definition Example 

Classification The assignment of similar phenomena 
to a common class. 

Route 10, Lake Herric, and 
Chesterfield County are all 
classified phenomena. 

Generalization 

A process in which classes are 
assigned to other classes. The general 
class includes all the instances of the 
constituent classes. 

Sewers are included in the more 
general class of utilities. 

Aggregation 
The operation of constructing more 
complex phenomena out of 
component phenomena. 

A lock is an aggregation of walls, 
gates, and a reservoir. 

Association 
The assignment of phenomena to sets, 
using criteria different from those used 
for classification. 

Concrete roads may be associated 
with concrete sewers, concrete 
locks, and other phenomena 
constructed of concrete. 

 

A phenomenon is a fact, an occurrence or a circumstance. Route 10, Broad Street, Athens 

& Clarke County are all phenomena that belong to a class of phenomena. A characteristic of 

such a class is called an attribute, whose value is a specific quantity or quality of the attribute 

assigned to a phenomenon in that class. Whether a given phenomenon belongs to a class is 

determined by the definition of the class that includes characteristics that distinguish the class 

from the other classes. Those classes of phenomena are called entity types, and the individual 

phenomena are called entity instances. An entity instance is not further subdivided into 

phenomena of the same type. For example, an entity type is ‘Bridge’ with attribute ‘Name’ and 

‘Material’. An instance of this type, Bridge, might be the “Newton Bridge” composed of “Steel”. 

Entity instances may be aggregated into instances of different types of entity. A lock is 

partly composed of walls but it is not itself a wall. Entity types can be generalized into themes 

based on the definitional characteristics shared by more than one type. For example, 

‘Transportation’ is defined by a function of both ‘Railway’ and ‘Road’. Association of entity 
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instances is defined in terms of characteristics other than those used to define an entity type. A 

common association is the spatial domain, which groups all entity instances having coordinates 

within a specified range. A relationship is a special case of an association and exists between 

entity types. 

Under the spatial object model, entity instances have a digital representation, an entity 

object, which may consist of one or more spatial objects. A spatial object may be an aggregation 

of other spatial objects, not all of which necessarily represent an entity instance. Entity objects 

also have generalizations and associations. In general, all characteristics of phenomena (entities) 

and their digital representations (objects) are the same (Table 3.3). 

 
     Table 3.3 Correspondence between Entities and Objects (USGS, 1997) 

 Phenomena Digital Representation 

Class Entity Type Entity Object Class 

Characteristic Attribute Attribute 

Instance Entity Instance Entity Object 

Characteristic Attribute Value Attribute Value 

Generalization Theme Theme 

Association Spatial Domain Spatial Domain 

 

Entity objects have locational attributes, non-locational attributes, and relationships 

(topology, thematic and temporal relationships). Spatial objects will be used to compose the 

locational attribute of an entity object. A set of simple spatial objects are defined in SDTS, which 

are either primitive objects (not aggregated from any other spatial objects) or aggregated only 

from spatial objects from different classes (polygons are not aggregated from polygons, only 
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from rings, chains or strings). There is also the composite object that may be aggregated from 

simple objects or from other composites. 

Under the feature data model, a feature instance is an instance of a defined entity and its 

object representation, and belongs to a feature type. If a class is viewed as a set whose members 

are the instances of the class, then a feature type is the intersection of the entity type and the 

entity object class. Therefore, all characteristics of entity and object related to the terminology 

such as classification, generalization, aggregation, and association will be the same for a feature. 

 

3.4.3 Key Concepts in Object-Orientation for Feature Data Model 

Even though object-oriented terms are ideal methods for a feature data model, the object-

oriented model cannot replace the feature data model because an object can represent not only a 

feature but also a feature type, relationship, or any kind of geometric types. All things are objects 

in the object-oriented paradigm. 

Three key concepts of the object-oriented paradigm used for building a feature data 

model are inheritance, encapsulation, and polymorphism. In an object-orientation with a feature, 

the encapsulation can hide information (data and method) in a class definition over hierarchical 

inheritance so that a class can be designed to represent characteristics of a feature that are 

relevant to a particular application. For example, schools and houses inherit attributes and 

methods of buildings that are basically area features. If schools have to be represented as area 

features and houses have to be represented as point features according to the resolution of an 

application, the houses need not inherit the area size attribute or the area size calculation method. 

A building class can encapsulate specific data and methods by constraints (Borgida, 1988). 
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The inheritance from super class to sub class makes abstraction of geographical features 

possible. For example, highway and cart track objects can inherit instance variables and methods 

from a road object. Sub class objects (highway and cart tracks) may have additional instance 

variables and methods unique to the sub class that the super class object (road) does not have. 

Polymorphism allows the same message with different instance references to invoke different 

methods for the appropriate classes according to the instance reference so that spatial operations 

on different but similar objects are made easier. For example, a method for distance 

measurement between two features can be applied to compute the distance between two 

buildings and between a building and a road, although the internal algorithm of computation is 

different. 

 

3.4.4 Feature Data Model for Geographic Phenomena 

A feature data model was derived from the feature conceptual framework with abstraction 

methods defined in SDTS and key concepts of object-orientation. With the feature conceptual 

framework, features are represented by three dimensional aspects: space, theme, and time 

(Figure 3.6). Classes in the feature data model were derived from the abstraction methods of 

spatial data in SDTS. A feature class was derived by classification. Feature, time, and attribute 

type classes were derived by aggregation and generalization. Finally, three attribute classes and 

various relationship classes were derived by association. 
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Figure 3.6 Feature Data Model using Object-Oriented Paradigm for Vector Data 

 

Each dimensional attribute is connected to its own relationships. Spatial attributes are 

connected to the spatial relationship (or topology) with a many-to-one relation. Spatial attributes 

of each feature are parts of a spatial relationship. A spatial reference class can represent a 

geographic coordinate or a specific projection so that it has a one-to-many relation with spatial 

attributes. Temporal attributes are connected to temporal relationships with a many-to-many 

relation. Two temporal attributes are used for a temporal relationship and more than two 

relationships can reference the same temporal attribute. Specifically, the thematic relationships 

have been modeled by feature relationships because the thematic relationships in Figure 3.5 do 

not represent the relationships between thematic attribute themselves, but the relationships 

between features. Feature relationships also have a many-to-many relation with features. One 

feature relationship is composed of two features and more than two feature relationships can 
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refer to the same feature. The hierarchical structure between main classes in a feature data model 

such as feature type, feature, spatial attribute, thematic attribute, and temporal attribute is shown 

in Figure 3.7. Conceptually, a feature type class is the biggest class in a feature data model. 

 

 
Figure 3.7 Hierarchical Structure of Classes in a Feature Data Model 

 

A feature type class has been devised to represent a group of features based on their 

similarity. For all land parcels in general, a ‘Land Parcel’ as a feature type to which all land 

parcel features belong can be created. Both feature types and features are related to each other in 

the real world. These relationships can be implemented in a feature data model as a feature type 

relationship class and a feature relationship class that are used for binding two sets of feature 

types and features together, respectively. Relationship classes denote some form of direction 

such as ‘flow into’, ‘belong to’, ‘part of’, ‘next to’, and so on. Figure 3.8 represents feature type 

instances and their feature instances with their relationships. The ‘Belong_To’ relationship is an 

instance of feature type relationship. ‘Next_To’ and ‘Brother_Of’ relationships are the instances 

of feature relationship.  
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Figure 3.8 Feature Type and Feature Instances with their Own Relationships 

 

With an object-orientation, an object can be instantiated as two instances that will inherit 

common attributes from super class. These two instances represent the same object in a different 

time with different attributes or changes through the time. If there is a building named ‘Five & 

Ten’ and that building has been changed from June 15, 1980 to July 10, 2002 by remodeling the 

roof type from wooden triangle to concrete flat and changing from grocery store to restaurant, in 

an object-oriented design, a feature instance called ‘Five & Ten’ has two sub-trees of attributes, 

one for attributes bound to June 15, 1980 and the other to July 10, 2002 (Figure 3.9). Each sub-

tree contains a polygon describing a geometric attribute and a thematic attribute such as a roof 

type and material. Therefore, ‘Five & Ten’ can have two instances through time and be saved as 

one feature without duplicating the other buildings which have not changed through time. 
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Figure 3.9 Feature Representation with Two Temporal Attributes 

 

Attributes can be derived from Attribute Type objects to give a description in that ‘4’ by 

itself has no meaning, but ‘4’ derived from ‘Lane’ Type means 4 lanes (Figure 3.9). Therefore, 

Type in a feature data model is a convenient mechanism for making general descriptions for 

features and for imbuing attributes with more meaning.  

Spatial attributes are used for spatially grounding these features to reality. In a feature 

data model, only three simple geometries among several geometric objects in the SDTS 

conceptual model are used to represent spatial attributes: point, line, and polygon (see Figure 

3.6). A point is for a geometric point, which represents a set of coordinates (x, y, z). A line is 

merely a list of points. A polygon is just a line with the implication that it forms a loop, which is 

an essentially a list of points that describe a simple, closed polygon. 
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3.5 Discussion: Feature Data Model vs. Existing Data Model in GIS 

The new feature data model derived in this chapter is modified from the existing feature-

based data model and different from the existing layer-based geographic model in the following 

ways. First, the layer-based data model can only contain one geometry type such as point, line, or 

polygon in each layer. This mechanism has a limitation for the map representation. The feature 

representation on a map is always based on the scale. Therefore, the same feature types for 

different feature instances can be different geometric types. For building feature types, very 

small buildings will be mapped using point geometry rather than polygon geometry because of 

the difficulty for mapping it as polygon from the small scale source image data such as airphotos 

and satellite images. On the other hand, some large buildings should be mapped as polygon 

geometry rather than point geometry because of the size of the buildings. These two different 

sizes of buildings make it difficult to be contained in the same layer, even though they are in the 

same feature type. However, the feature data model has no limitation for the geometry type for 

each feature database. Also, for linear features, the highway can be saved as polygon and the 

central line for the highway can be saved as line under the same feature type in a feature data 

model. 

Second, the layer-based data model can represent implicitly the thematic relationship 

among features in the same layer, but cannot describe the relationships among features in 

different layers. This makes disjunctive thematic relations. The disjunctive thematic relations can 

be solved by the hierarchical representation. A feature data model can represent any kind of 

thematic relationship among features because the feature data model uses basically the 

hierarchical representation from feature type to detail each feature’s thematic attributes. 
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Third, in the layer-based data model, a feature with multi-temporal situations should be 

represented by several layers because one feature can only have one time attribute in one layer. 

Once a feature has been mapped into a different layer, the feature in each layer is not 

conceptually the same feature. However, in the feature data model, the feature can have multi-

temporal situations. The temporal situations are from the same feature instance node so they 

reference exactly the same feature. Also, the feature can have different situation information 

according to the reference time because the spatial and thematic attributes and relationships of 

the feature reference the feature instance through the specific time node. 

Someone may argue that a feature model is already used in a spatial database in a 

commercial GIS such as the geodatabase of Environmental Systems Research Institute (ESRI). 

However, the feature database based on the newly devised feature data model is different from 

ESRI’s geodatabase for two reasons (ESRI, 1999b). First, the geodatabase still uses a layer-based 

model for each feature so that only one geometry type can be contained for one feature layer. A 

feature data model, however, can save different type of geometry for the same feature instance 

because the feature data model has no limitation on the geometry types for a feature instance.  

Second, the geodatabase can only represent certain feature relationships. A feature in the 

real world has not only spatial relationships between features but also thematic and temporal 

relationships. To represent these relationships, the geodatabase can support the relationships 

between feature types. The example of the relationship between feature types would be the 

relationships between land parcel and land owner. However, a feature data model contains even 

more relationships: feature type relationship, temporal relationship, and thematic relationship. 

The feature type relationship can represent the same relationship as the relationship between land 

parcel and the owner in the geodatabase. The temporal relationship can capture the relationship 
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among different time spots for a feature. The temporal relationship will include “was a”, “will 

be” relations. The thematic relationship is the positional or thematic relation between features. 

The positional relationship include “is the right side of”, “is in the middle of”, “is the above of”, 

“is the below of”, and so on. The thematic relationship includes “is belong to”, “is part of”, “is 

connected to”, and so on. 

 

3.6 Summary 

In the first two sections of this chapter, existing data models were reviewed including 

hierarchical, network, and relational data models. The hierarchical data model may not deal with 

many-to-many relationships. A many-to-many relationship can be implemented efficiently in the 

network data model, but the network diagram is too complex even with simple data structure.  

The hierarchical and network data models are physical models for managing data, but the 

relational data model is a logical model allowing multi-views for one data structure and 

flexibility for data management. However, the relational data model has limitations on 

abstraction of real world objects and recursive query of relationships.   

The object-oriented model provides a solution to the abstraction of objects in the real 

world by allowing abstract data types and recursive queries using the inheritance property. 

Specifically, the object-oriented model removes the need of expensive joins in the relational data 

model so that it is potentially much more efficient for applications involving complex objects 

such as GIS and CAD/CAM systems. 

With the advantage of the object-oriented model, a feature data model was derived from 

the feature concept, abstraction methods of SDTS, and the key concepts of an object-orientation. 

Geographic features can be effectively represented using three aspects: spatial, thematic, and 
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temporal dimensions. For each dimension, attributes and relationships are included in the feature 

data model. 

Conclusively, the introduced feature data model has advantages over the traditional layer-

based model in GIS. For example, multiple types of geometry can be used for the same feature 

class. Various types of feature relationships including spatial, thematic, and temporal dimension 

can be represented. Multi-temporal situations of a phenomenon can be saved in one feature. The 

feature data model also extends the capability of ESRI’s geodatabase. Geodatabase can capture 

only the feature type relationships such as the relationship between land owner and land parcel, 

but the feature data model can represent even the feature relationships such as the relationship 

among land owners or land parcels (see Figure 3.8). 

Even though a feature data model can effectively represent various relationships, there 

may be some disadvantages of the feature data model. First, it may be difficult to identify all 

relationships of a feature. Second, the identification of relationships of features requires manual 

effort because there is currently no automatic method for it. Finally, there is no standard term in 

the relationship representation of features so the same relationship may be represented by 

different terms. For example, ‘Is A’ relationship may be represented by ‘Is A’, ‘Is-A’, ‘Is_A’, 

and so on. This inconsistency makes the implementation of query procedures using the 

relationships difficult.   
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CHAPTER 4 

SYSTEM DEVELOPMENT WITH FEATURE DATA MODEL 

4.1 Introduction 

A feature approach for system design and implementation can take advantage of the 

object-oriented paradigm because object-oriented analysis and design are conceptually 

compatible with the geographic feature model (Bian, 2000). Three basic abstraction levels in the 

object-oriented model are object-oriented analysis, object-oriented design, and object-oriented 

implementation. Object-oriented analysis used for the feature data model conceptualizes real 

world phenomena and identifies objects relevant to the phenomena. Object-oriented design is a 

formal model using attributes and methods of the objects that are identified at the object-oriented 

analysis level. Object-oriented implementation is a step to implement object abstractions 

(attributes and methods) in a computer environment (Abadi and Cardelli, 1996). 

An object-oriented programming language cannot support persistent objects. The state of 

objects that are stored off-line on secondary storage devices continues to exist after a session 

terminates. Object-oriented languages have no ability to store and manage persistent objects off-

line and no means for dealing with concurrency, security, and recovery in the manner of a 

database management system. 

Object-orientation in databases has emerged in two forms: object-relational database and 

pure object-oriented database. There are two groups for each standard: the Committee for 

Advanced DBMS Function (CADF) and the Object Database Management Group (ODMG), 

respectively. The first group (CADF) laid the theoretical basis for object-relational databases and 
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the SQL3 query language that they support. This resulted in commercial object-relational 

databases such as Oracle 8 and Illustra. These object-relational databases support object-oriented 

features on top of a relational storage mechanism and use SQL3 as a query language. However, 

Taylor (1991) pointed out that an object identity (OID) is value-based, not reference-based, and 

is simply another candidate key because of the mathematical foundations of the relational model. 

Object-relational databases use a middle ground between object-oriented programming 

languages and relational databases by mapping language objects onto database tables invisibly 

and providing caching services to improve performance. 

The second group (ODMG) laid the basis for standards for pure object-oriented databases 

and the object query language (OQL) for them (Atkinson et al., 1989). Specifically, OQL is part 

of the ODMG-93 standard (Cattell, 1996). The key discriminator between pure object-oriented 

databases and the object-relational databases is performance, though it depends on application 

type (Graham, 2001). 

In this chapter, the designed feature data model in the previous chapter is implemented. 

Data model needs data structure for the implementation and the detail structure of classes in the 

feature data model was designed (Egenhofer and Herring, 1991). A system using the designed 

classes was designed and programmed. For the data storage of classes in the feature data model, 

the physical database structure was designed and implemented using a table structure in the 

relational database. Finally, multi-temporal instances of buildings were visualized using the 

developed system in order to test the built system and the database. In the study area, there was a 

hurricane between two dates of input image sources. Therefore, the application will be focused 

on the effective visualization of the different feature instances through the time.  
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4.2 Class Design 

In the feature data model represented in Figure 3.6, fifteen classes have been identified 

for representing geographic features: Feature Type, Feature Type Relation, Feature, Feature 

Relation, Spatial Attribute, Spatial Reference, Spatial Relation, Point, Line, Polygon, Thematic 

Attribute, Attribute Type, Temporal Attribute, Time, and Temporal Relation. With the exception 

of two classes (Feature and Spatial Reference), these classes can be grouped into four groups 

according to the similarity of the usage of the class: type, attribute, and relationship, and 

geometry classes (Table 4.1). The feature class is used for the storage of feature instances. The 

Spatial Reference class, derived for a visualization purpose as a total view of geographic features, 

has coordinate and projection information for the frame of geometric attributes of features and 

bounding box information for an effective visualization of features as a whole.  

 
Table 4.1 Groups of Classes in Feature Data Model 

Groups Classes Usage 

Type Feature Type, Attribute Type, Time Storage of descriptive 
information for referring classes 

Attribute Spatial Attribute, Thematic Attribute, 
Temporal Attribute 

Storage of detail value for a 
feature 

Relationship Feature Type Relation, Feature Relation, 
Spatial Relation,  Temporal Relation 

Storage of detail relationship for 
a feature 

Geometry Point, Line, Polygon Primary form of spatial 
attributes 

Feature Storage of descriptive 
information for a feature Others 

Spatial Reference Storage of coordinate system 
and spatial bounding 

 

Type classes include Feature Type, Attribute Type, and Time class. All these type classes 

are used to define a type so that they have the type information and its description as a data 

member. The time class may have only a time value as a data member. A feature only needs 



 

 70 

feature name as a data member because detailed feature characteristics are represented by the 

attribute classes. A feature class is inherited from Feature Type class so that the feature class also 

has feature type information as a data member. 

 

 
Figure 4.1 Attribute Classes Inherited from Geometry and Type Group 

 

Attribute classes includes Spatial, Thematic, and Temporal Attribute. Attribute classes 

inherit information from other group classes: Spatial Attribute from geometry classes (Point, 

Line, and Polygon), Thematic Attribute from Attribute Type, and Temporal Attribute from Time 

class (Figure 4.1). Therefore, attribute classes can have the information and methods of related 

type or geometry classes by inheritance. Specifically, the attribute instances can only have 

meaning when they are instantiated by the related type classes. The number ‘4’ has no meaning 

by itself but it means 4-lane when it is instantiated from the attribute type instance ‘Lane’. The 

text ‘October 2, 1999’ has no meaning by itself but it can be considered as time when it is 

instantiated from time class. 

Relationship classes include Feature Type Relation, Feature Relation, Temporal Relation, 

and Spatial Relation. The other relationship classes, except the Spatial Relation, have the relation 
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information and related objects as data members. The Spatial Relation class will have only one 

instance of geometric relationship of topology from all geometric attributes. Even though 

topology has more information than only spatial relationship, topologic structure with geometry 

is already known and is no different under the feature data model than it is under the layer-based 

model. The topology construction should be performed every time new feature instances are 

added in the database. The developed system focused on handling the feature thematic and 

temporal relationships, so the Spatial Relation class was not implemented in this prototype 

system. 

Geometry classes are directly derived from MapObjects classes (ESRI, 1999a). These 

geometry classes contain not only geometry data but also methods (Table 4.2). All classes except 

geometry classes are designed simply for the data storage of objects in the prototype system, so 

they do not have methods except get and set methods for the encapsulation of their data members. 

If any action is needed for a class, it can be easily implemented later. 

    
     Table 4.2 Data and Methods for Basic Geometry Classes 

Class Data (Attribute) Methods (Functions) 

Point X, Y, Z, Measure 
shapeType  

Buffer, Difference, DistanceTo, DistanceToSegment, 
GetCrossings,Intersect, Union, Xor 

Line  

Extent, shapeType 
IsFullyMeasured, 

Length, Parts 
 

Buffer, Difference, DistanceTo, etCrossings, 
Intersect, MultiplyMeasures, Offset, OffsetMeasures, 
ReturnLineEvent, ReturnMeasure, ReturnPointEvent, 

SetMeasures, SetMeasuresAsLength, 
UpdateMeasures, Union, Xor 

Polygon 
Area, Centroid, 

Extent, Perimeter, 
Parts, shapeType 

Buffer, Difference, DistanceTo, GetCrossings, 
Intersect, IsPointIn, Offset, Union, Xor 
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4.3 System Design and Implementation 

Usery (1996b) used an object-oriented approach to derive a feature as an abstraction of 

real world phenomena, but the FBGIS was implemented using conventional functional 

programming methods. Vckovski (1998) used the object-oriented approach for interoperable and 

distributed processing in GIS. High interoperability means that the complexity should be reduced 

while keeping high flexibility and expressivity. The complexity reduction is accomplished by 

encapsulation (information hiding) of properties (data) and operations (functions or methods), 

which is one of the basic concepts in object-orientation. Much of an object’s complexity is 

hidden for the object user, and the object is typically accessed by sending and receiving a set of 

messages to and from the object. An object-oriented programming is therefore very useful to 

achieve interoperability. 

Previous studies have shown that the object-oriented approach is a good method for the 

development of an information system. It leads to quality software which is extendible and 

reusable (Meyer, 1988). The reuse of software tends to improve the quality because reuse implies 

testing and debugging. 

The conventional functional approach starts with the first question: “what does the 

system do?” This first question is adequate if the written procedure solves a fixed problem once 

and for all. Object-oriented design avoids the first question as long as possible, and starts with 

the decomposition of the categories of objects in the problem domain (Meyer, 1987). The object-

oriented approach may also result in good user interfaces, including both visual and non-visual 

aspects because if the objects are well chosen, the user can easily form a mental model of the 

system (Oosterom and Bos, 1989). 
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The system developed in this chapter for a feature data model consists of file 

import/export module, database, and display module (Figure 4.2). The file import/export module 

can import a shape file into a feature database and export parts of a feature database into a shape 

file. The import module is mainly used for populating a feature database. For a database, a 

feature database has been designed in the next section. A feature database is used for the storage 

of the data members of the classes in the feature data model (see Figure 3.6). The display module 

is used for data visualization, not only for the geometry data, but also for the hierarchy of the 

feature data structure, thematic attributes, and background images or other file types of vector 

data as different layers.  

 

 
Figure 4.2 System Design from Feature Data Model 

 

The system is implemented using Visual Basic 6.0 and some components in the display 

module have been customized from MapObjects2 (Ryu, 2000; Stephens, 2000). The main 
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sub-option menu interface (Figure 4.4). Once the import option is selected in the main 

import/export window, the sub-option interface will be displayed for the schema construction of 

the feature database. 

 

 
Figure 4.3 Main GUI of the System for Feature Data Model 

 

 
Figure 4.4 GUI for the Import/Export Module 
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For a schema construction of a feature database in the sub-option window, a feature type 

can be named from the input filename. The feature name, time, and thematic attribute in the 

feature data model can be populated from the selected column of the data file of the input shape 

file. For a feature name, the schema for a feature database allows the same name with different 

numbers to be used for multiple instances of a feature. For example, a feature ‘Broad Street’ can 

be instantiated as three different instances as ‘Broad Street_1’, ‘Broad Street_2’, and ‘Broad 

Street_3’. With this naming scheme, three instances of ‘Broad Street’ can be handled as either 

one feature for searching features with a single name or three different features containing 

different situations such as a certain block for road construction or changing lane numbers 

through the same road. 

 

 
Figure 4.5 GUI for the Display Module 
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The display module is composed of four parts: a hierarchical viewer for a feature 

database, a map area for viewing geometry, an attribute viewer, and a layer manager (Figure 4.5). 

The hierarchical viewer uses a tree structure for the representation of the hierarchical structure of 

the feature data model. The map area is a canvas where the geometry is displayed. The map area 

is directly connected with the hierarchical viewer. If an instance of any class is chosen in the 

hierarchical viewer, then all objects under the chosen object in the hierarchy will be selected and 

displayed using different colors from those that are not selected.  

The Attribute viewer is used to visualize the data members for each object. Like the map 

area, the attribute viewer is also directly connected with the hierarchical viewer. Once any object 

is selected, the data member of the object will be shown in the attribute viewer. Finally, the layer 

manager is used to load background images or vector data layers that are not in a feature 

database, but are used for the comparison or overlay analysis with the features in the feature 

database. For background images, various kinds of image formats can be supported such as 

ERDAS Imagine files (*.img), windows metafile (*.wmf), standard image data such as bitmap 

(*.bmp), gif (*.gif), jpeg (*.jpg), tiff (*.tif), and others. 

 

4.4 Feature Database 

For data storage, an object-oriented database may have better performance for 

applications in using an object-oriented programming language than a relational database 

(Graham, 2001). If a programming language is based on object-oriented programming 

environments, the data model is harmonious with the object representation in an object-oriented 

database. On the other hand, considerable data transformation, construction, and decomposition 

occur in the data transfer process into a relational database (Milne et al., 1993). 
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Milne et al. (1993) composed a spatial data model based on object-orientation from the 

draft of the SDTS, and tried to implement the spatial data model using a commercial object-

oriented database, ONTOS (ONTOS, 1991). The performance test for spatial data between using 

ONTOS and a relational database, ORACLE, was executed, and the contour retrieval execution 

using ONTOS was about 10 times faster than using ORACLE. 

Persistence is the property of an object through which the object continues to exist after 

its creator ceases to exist, and/or the object’s location moves from the address space in which it 

was created. The type of object persistence is one of the following (Atkinson et al., 1983): 1. 

Transient results in expression evaluation, 2. Local variables in procedure activation, 3. Own 

variables, global variables, and heap items whose extent is different from their scope, 4. Data 

that exists between executions of a program, 5. Data that exists between various versions of a 

program, and 6. Data that outlives the program. Introducing the concept of persistence to the 

object model gives rise to object-oriented databases. Persistence is archived through a modest 

number of commercially available object-oriented databases. Another reasonable approach to 

archive persistence is to provide an object-oriented skin over a relational database (Booch, 1994). 

Though object-oriented databases have a number of advantages over relational databases, 

there are still unsolved problems concerning query optimization, locking, and non-procedural 

query languages. In an object-oriented database, it is difficult to implement query optimization 

fully, because optimization requires examining the implementation but object-orientation hides 

information by encapsulation. With distributed object-oriented databases, the guarantee of 

network-wide object identity is still unsolved. It is related to the locking and commit-strategy 

over a network.  Therefore, users should consider object-oriented databases for performance 
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critical applications, and object-relational databases for record-oriented applications and 

extensions of existing systems. 

There are also no explicit standard query methods such as SQL for object-oriented 

database. In object-orientation, objects themselves are the storage for the data members and the 

data members of an object may be different from one application to another. The objects scheme 

for an object-oriented database should be modified from one application to another in order to 

fully contain the data members of the objects. To avoid these problems, it is possible to 

implement an object-oriented paradigm into a relational database name as an object-relational 

database such as Oracle8.x (Oracle Corporation, 1998). In this way, the object-oriented paradigm 

can be used for system design and implementation and then the objects can be entered into 

tabular structures of the relational database as a physical storage of objects. Also, entered objects 

in tables can be easily retrieved by SQL in the relational database. 

In this study, a Microsoft Access database has been used for the physical storage of the 

objects of the feature data model (Figure 4.6). The data members of each class in Table 4.1 will 

be entered into a table. The tables in a feature database are related to each other for populating 

the data members of the classes when the feature database is uploaded into the system based on 

feature data model. The entity-relation between tables in a feature database is only used for 

populating objects. 
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Figure 4.6 Table Structure for Classes in Feature Database 

 

Once a shape file is imported into a new feature database, Feature Type, Feature Type 

Relation, and Spatial Reference classes will have an instance so that the corresponding table for 

each class will be created and populated. A feature table for Feature class will be named after the 

feature type instance such as ‘Road’ and ‘Building’. All attribute and relationship classes, except 

Feature Type Relation class, will also be named after feature type name (‘Road’) with their own 

identifier (‘Theme’) such as ‘Road_Theme’ for thematic attribute of the ‘Road’ type features 

(Figure 4.6). The instances of Attribute Type class will be used automatically for populating the 

column names of the thematic attribute table. The instances of Time class will be used for 

populating instances of the ‘date’ column in the temporal attribute table.  

If a shape file is imported into an existing feature database, then only the feature type 

instance related tables which are feature, feature relationship, spatial attribute, thematic attribute, 
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temporal attribute, and temporal relationship will be created and populated. The imported shape 

file should be under the same spatial reference information of the spatial reference table in the 

existing feature database. The feature type and feature type relationship tables are only populated 

with a new instance.  

 

4.5 Multi-Temporal Representation of a Coastal Area 

The study site is a part of the U.S. Marine Corps Base, Camp Lejeune, which is located 

along the North Carolina coast. The study site is very small (about 350m X 250m) to visualize 

individual buildings (Figure 4.7).  

 

 
Figure 4.7 Study Site 

 

On the study site, two different remotely sensed images were acquired less than one year 

apart: a color infrared airphoto (CIR) (09/1999) and Ikonos data (05/04/2004). In this application, 

buildings are mapped and visualized so very high resolution images were required. The CIR 
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airphoto image was scanned at 1.2 m ground resolution. The Ikonos image has 1 m ground 

resolution in the panchromatic band and 4 m in the multispectral bands. For enhancing visual 

interpretation ability, the Ikonos multispectral image has been pan-sharpened so that the resulting 

pan-sharpened image has a 1 m ground resolution. The pan-sharpening is an image enhancement 

method to merge the lower spatial resolution multispectal image with a higher resolution 

panchromatic image by replacing the intensity (or brightness) component of multispectal image 

with the panchromatic image. 

 

 
Figure 4.8 Floyd Hurricane Paths on the Study Area on September 16 in 1999 

 

Hurricane Floyd occurred over the study area on September 16, 1999 (Figure 4.8).  When 

Floyd struck the study area, it was a level two hurricane with the wind speeds of 105 mph. A 

level two hurricane may cause some damage to roofing material, doors, and windows, and 

considerable damage to mobile homes and small craft in unprotected anchorages (NOAA, 1999). 
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In the study area, data extracted from the CIR image in 1999 and the Ikonos image in 

2000 shows the removal of some features by Hurricane Floyd. Also, hypothetical data for 1995 

has been created by duplicating 1999 data and removing one building from the duplicated data in 

order to visualize the addition of a feature. With these three input datasets, one building was built 

between 1995 and 1999 and eight buildings were destroyed between 1999 and 2000 (Figure 4.9).  

 

 
Figure 4.9 Source Data for Building Features with Different Time 

 

During the population of features from different times, if a feature exists already in the 

feature database, the attributes and relationships of the feature refer to the existing feature based 

on the different times. A temporal relationship of the feature with different time can be explained 

by the ‘Was_a’ relationship: ‘A feature in 1999 was a feature in 1995’ If the feature does not 

exist previously, then the temporal relationship of the feature will have the ‘built’ relationship by 

itself without any reference to another feature: ‘A feature has been built in 1995’. Figure 4.10 
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shows how building features are populated in the feature database from three different temporal 

datasets. 

 

 
Figure 4.10 Populating Features on Three Different Sources 

 

For the visualization of building features, the feature display module in the developed 

feature system has been used (Figure 4.11). The tree viewer in the display module shows the 

hierarchical structure of building features. Each feature has its time stamps and each time stamp 

has the feature relationship, spatial attributes, and thematic attributes. When a node in the tree 

structure is selected, the data members of the node will be shown in the attribute viewer (Right 

bottom section in Figure 4.11).  
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Figure 4.11 Feature Query based on the Time 

 

The temporal differences of building features can be easily retrieved using the time 

selection tool (‘select Time’ window in Figure 4.11) that is loaded by selecting the clock icon on 

the menu bar. The geometry viewer in Figure 4.11 shows some building features selected when 

the specific time was chosen in the time selection tool. If another time is chosen in the time 

selection tool, then the features with the selected time will be shown. Therefore, features at the 

specific time spot can be easily and effectively queried and differentiated from the features at 

other time spots. Also, the time stamps of each feature can be shown easily under the feature 

instance node in the tree viewer. In this study, there were 12 building features in 1999, but only 4 
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buildings were left in 2000 after the hurricane that occurred during the time gap between the two 

datasets (Figure 4.12).  

 

 
Figure 4.12 Temporal Differences of Buildings between 1998 and 1999 

 

4.6 Summary 

With the feature data model, a prototype system was developed in this chapter. Fifteen 

Classes in the data model were designed and used to build the system. The classes can be 

grouped into type, attribute, relationship, and geometry classes with the exception of the Feature 

and the Spatial Reference classes. Type classes include Feature Type, Attribute Type, and Time 

classes. Attribute classes include Spatial, Thematic, and Temporal Attribute classes. Relationship 

classes include Feature Type Relation, Feature Relation, Temporal Relation classes. Geometry 

classes include Point, Line, Polygon classes, which come directly from MapObjects classes. 

Spatial Reference class can contain the projection information. 

With the derived classes, the developed system has three main parts: import/export 

module, display module, and database for feature storage. The import/export module can import 
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a shape file into a feature database and export parts of a feature database into a shape file. The 

display module is designed to visualize all information of features including geometry. 

Specifically, the tree viewer in the display module can effectively visualize the data structure of 

features because the feature data model uses hierarchical structures. For the storage of features, 

the feature database was schematically designed and implemented using tables in the relational 

database. Using the import/export module, existing spatial data such as a shape files can be 

easily imported into the feature database. 

The developed system was applied for the visualization of geographic features with 

multi-temporal instances. In the study area, there was a hurricane that caused changes on the 

artificial structures directly. In reality, the hurricane destroyed many buildings in the study area 

so that those buildings disappeared between two source images with only a five month time 

difference. The changes in buildings on the coast area were effectively represented with one 

hypothetical situation and two real situations. Background image data were used to show the real 

situation in the study area.  
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CHAPTER 5 

SPATIAL DATA GENERATION WITH RULE-BASED EXPERT SYSTEM 

5.1 Introduction 

One of the most important capabilities of a geographic information system (GIS) is to 

interpret and map data for solving spatial problems. Generally, researchers use a GIS interfaced 

with a statistics package for spatial analysis. One of the other approaches for the analysis of 

spatial data has focused on artificial intelligence (AI) techniques such as knowledge-based 

systems with GIS. 

Artificial intelligence can be considered as tools that enable computers to be intelligent to 

emulate human thought to help in solving problems (Winston, 1992). The knowledge system in 

AI has structured knowledge about a field of expertise so that it can be used for data 

interpretation. A knowledge system is called an expert system because this system solves 

problems with the knowledge of experts (Carrico et al., 1989). 

Although some AI techniques have been applied to generate or interpret spatial data with 

GIS, it is very difficult for a non-expert to develop and use a hybrid system combining GIS and 

AI techniques. The reason is most AI techniques require computer programming skills in order 

to apply knowledge to the system, which is not a simple process. However, a rule-based system 

is the most common technique in knowledge-based AI for a hybrid system with GIS because it 

has a very simple rule structure to derive solutions. 

The basic unit of knowledge in the rule-based systems is the rule, defining a so-called 

‘rule-based expert system’. A rule is a conditional test-action pair (if condition is true, then 
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action) and can be programmed using a natural language such as English, Japanese, and Korean. 

Therefore, once the rule-based engine (or interpreter) for the system is developed, the rule for an 

application can be easily constructed by a non-expert in computer programming (Graham, 1989; 

Naylor, 1989; Nikolopoulos, 1997). 

In remote sensing and GIS, previous studies using rule-based expert systems focused on 

the automatic interpretation of aerial photographs or satellite images, or on the automatic 

mapping of spatial data for experts (Usery et al., 1988; Foschi and Smith, 1997; Wilson, 1997). 

However, the rule-based expert system can be applied to the interactive interpretation of aerial 

photographs for neophytes. 

Automatic interpretation approaches with rule-based systems use the decision theoretic 

method for feature recognition on the aerial photographs. A decision theoretic method uses 

hierarchical decision-making procedures by inference rules incorporated into a tree structure 

(Estes et al., 1983). The inference procedure in the automated approach is very strict. Once the 

rule has been created, then there is no way to incorporate the situation information during the 

inference process of image interpretation. Therefore, the rules should be very detailed and 

specific to an application, such as soil mapping for a certain study area. Thus, it is very difficult 

to use the same rules for a new problem or different data set even with a similar problem. The 

rules should be complete for accuracy of the result of the automatic interpretation. A small 

mistake in the rule construction may produce large errors in the results of the interpretation. 

Therefore, the automatic interpretation is appropriate only for experts (the producers of the rules) 

for their specific application purposes.  

Interactive approaches also use the inference rules with a tree structure but are based on 

the manual method of interpretation of aerial photographs and satellite images. The decision of 
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each node in the decision tree is made by the users based on the manual image interpretation 

using question and answering sequence, so the results of the inference procedure are very 

flexible according to the user’s decision. The inference rules in the interactive approach only 

give guidelines or suggestions for the final solution for the decision, which also depends on the 

users’ recognition of features in the images. Therefore, the rules are not necessarily very detailed 

and specific to an application. Instead, they can be broadly applicable to a group of similar 

problems such as aerial photo interpretation. Also, interactive methods are more focused on the 

user’s aspect with existing expert’s knowledge as a guideline for image interpretation.  

Automated interpretation approaches for aerial photographs and satellite images are strict, 

application-specific methods, and focused on the producers’ aspects. On the other hand, 

interactive interpretation approaches are flexible, broadly applicable methods, and focused on the 

users’ aspects. The interactive method can utilize human recognition ability to include situation 

information. This manual approach for the basic recognition of features will improve the 

accuracy of the result of image interpretation. Therefore, the interactive method has been chosen 

for the inference procedure in this paper. 

In this chapter, a rule-based expert system is developed for an interactive interpretation of 

images and to integrate this expert system with GIS for spatial data generation and mapping. The 

produced data will be directly saved into the feature database. This hybrid system is not oriented 

to a specific problem. Instead, it can be applied to solve various problems if the rules of the 

problems are already constructed in this system. In this paper, this system is applied to assist the 

interpretation and mapping of aerial photographs for an urban area. 

The remainder of this chapter is organized as follows. First, the architecture of the 

integrated system of GIS and a rule-based expert system will be discussed. The next section 
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describes the system development process including both the system module and database design. 

This is followed by a geographic application to evaluate the performance of the integrated 

system. A summary is presented in the final section of this chapter. 

 

5.2 Integration of GIS and a Rule-Based Expert System: System Architecture 

An integrated system of GIS and a rule-based expert system has three main architectural 

components: a rule-based expert module, user interface for input/output, and a GIS module 

(Figure 5.1). The Expert module is composed of three components: the knowledge base, the 

inference engine, and the knowledge acquisition module. The knowledge base is stored and 

retrieved using a database. The GIS module includes a spatial data loader, a viewer, an on-screen 

digitizer, and a spatial data exporter. The GIS and expert modules are connected by the user 

interface for data input and output. 

 

 
Figure 5.1 Architecture of Integrated System 

 

In the expert module, the knowledge base contains domain specific knowledge that is 

used for problem solving. Knowledge is represented as rules in the form of ‘If-then’ constructs. 
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The inference engine is based on an inference rule and a search strategy, and contains algorithms 

(Watson, 1997). The knowledge acquisition module enables experts to store knowledge in the 

knowledge base or expert system to deduce new knowledge through a machine learning process.  

For the inference engine in expert systems, three reasoning methods are generally used: 

rule-based, model-based, and case-based reasoning. A reasoning method should be selected 

carefully according to the application. 

Model-based reasoning has some limitations (Davis and Hamscher, 1986). Current 

modeling technology cannot model and predict the subtle and complicated interactions in certain 

domains. Also, simple problems often do not have to be modeled using complex modeling 

technology. Therefore, model-based reasoning should be used when the structure and behavior of 

the device should be reasonably well known and simple enough to model, but complex enough 

that exhaustive simulation is impossible. 

Case-based reasoning has advantages over model-based systems. Case-based reasoning 

can handle domains where problems are not fully understood because cases learn from 

experiences (Schank, 1982; Slade, 1991; Holt et al, 1997). Also, case-based reasoning has 

advantage over rule-based reasoning because it allows exceptions to rules and automatic 

knowledge updating mechanism from the given cases (Slade, 1991). Therefore, case-based 

reasoning may be the most enhanced reasoning methods for an expert system among current 

reasoning methods, which can be used for solving complex problems. However, in case-based 

reasoning systems, the knowledge is in the form of particular experiences (cases) rather than in 

the form of rules and it is often more difficult to gather case data. 

Rule-based reasoning is more suited to solve a simple problem when it is difficult to 

gather cases (Ford, 1991; Althoff et al. 1994). The expert’s knowledge can be more easily 
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implemented in rule-based reasoning systems than the other reasoning systems because rules can 

be constructed easily by a simple reasoning structure (‘if-then’) and a natural language. In this 

study, a reasoning method also will be used to solve simple problems. Therefore, the rule-based 

reasoning method was selected for the expert system module in this hybrid design. 

However, there are some limitations in rule-based reasoning of this hybrid system. First, 

the maintenance of knowledge in a rule-based expert system is normally a manual process for 

further knowledge acquisition. Second, there are no exceptions to the rules. Rules need explicit 

knowledge, exact questions, and exact answers. 

 

5.3 System Development 

This hybrid system of GIS and a rule-based expert system consists largely of a main 

window system and a database. The main window system includes a knowledge acquisition 

module, a rule-based inference engine, a GIS mapping module, and user interface for data 

input/output as shown in Figure 5.1. A database is used for storage and retrieval of the 

knowledge base. 

The knowledge acquisition module, inference engine, and user interface were built using 

Visual Basic 6.0 (Harris, 1997; Ryu, 1999; Stephens, 2000). Although AI shells are fast and 

convenient for developing simple expert systems, developing hybrid systems often requires 

complete recoding using an entirely different software package (Bramer, 1989).  The GIS was 

built by customizing MapObjects Version 2 (ESRI, 1999a and 2001). MapObjects has many GIS 

facilities and can be extended and integrated easily with other systems using a conventional 

language such as Visual C++ and Visual Basic. The database for the knowledge base (prologue, 

questions and answers, and rules) is Microsoft Access 2002. 
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5.3.1 System Module Design 

The main window system consists of an expert part, a user part, and a map part (Figure 

5.2). The expert system module in the system architecture is implemented separately into expert 

and user parts. The GIS module is implemented directly into the map part. 

 

 
Figure 5.2 Main Windows of Hybrid System 

  

The expert part is the knowledge acquisition module which constructs new knowledge 

(prologue, question, answer, and rule) or updates the existing knowledge by experts. The user 

part includes the user interface for the output of the knowledge base and the rule-based engine. 

The user part can be used to solve a specific problem from the existing knowledge in the 

database using an interactive question-and-answer sequence. The rule-based engine will generate 
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questions according to previous answers. Once the problem is solved through this interactive 

process, the result will be shown in the solution text box. 

The map part is a GIS and deals with various vector (ESRI coverage, ESRI shape data, 

and computer-aided design (CAD) drawings) and raster (ERDAS Imagine files (*.img), ESRI 

Grid data, standard image data such as bitmap (*.bmp), gif (*.gif), jpeg (*.jpg), tiff (*.tif), and 

windows metafile (*.wmf)) data. The map part can be used to analyze spatial data visually, to 

draw a thematic map by on-screen digitizing on top of the imagery, and to generate vector data 

by exporting digitized data. 

 

5.3.2 Database Design 

A relational database structure is used to save the knowledge for problems. The database 

includes a problem table, a question table, and a rule table (Figure 5.3). The problem table 

contains the name and prologue for all problems. The question table contains both questions and 

answers for a problem. The question is symbolized using simply one word for easy processing in 

the rule-based inference engine. The rule table contains the rules for a problem. 



 

 95 

 
Figure 5.3 Table Structure and Relations in the Database 

 

Each problem in the problem table is related to the question table and the rule table for 

that problem. If a new problem is created, the problem will be added in the problem table. Then, 

the question and rule tables for that problem will be created automatically in the database.  
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5.4 Application: Interpretation of Aerial Photographs 

This hybrid system of GIS and a rule-based expert system is applied to the interpretation 

of aerial photographs for an urban area. Rules and symbols are constructed from the key 

elements for land use/land cover interpretation of a black and white aerial photograph. 

 

5.4.1 Rule Construction 

Rule construction requires three steps: decision tree construction, symbolization, and rule 

construction. A decision tree is constructed by the existing expert knowledge in the application 

domain.  

In aerial photography, the seven basic elements for interpretation are tone, texture, pattern, 

shape, shadow, size, and situation (Avery and Berlin, 1992). Tone is the density of brightness. It 

is a record of light reflection from the land surface on the photo. Texture is a frequency of tone 

change within the photographs. Pattern is the spatial arrangement of objects. Shape is the general 

form of an object. Shadow reveals shape and height of an object. Size of particular object is 

related to that of others. Situation is the position of an object in relation to other objects in the 

immediate vicinity. 

Each of these elements is used to construct rules in a decision tree (Figure 5.4). For 

example, if there are artificial structures such as buildings or houses, this area may be used for 

urban land use/land covers such as commercial, industrial, schools, residential, and 

transportation. In the urban uses, some categories are separated from others using shape and 

situation. The forest types (deciduous, mixed, or evergreen) can be separated by the tone. In total, 

fourteen land use/land cover categories are included in developing a rule: residential, commercial, 
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industrial, highway, road, railroad, evergreen forest, mixed forest, deciduous forest, school, golf 

course, park, water, and bare ground. 

 

 
Figure 5.4 Decision Tree for Rule Construction 
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The most difficult categories in rule construction for the interpretation of aerial 

photographs are highways and railroads because of the low resolution of the image for visual 

interpretation. However, highways are wider than railroads or small roads. Also, railroads can be 

separated from small roads between residential areas because railroads have few intersections but 

roads have many intersections. 

 

Symbol Question and Answer 

STRUCTURE Question: ARE THERE ANY ARTIFICIAL STRUCTURES? 
Answer: YES,NO 

SIZE Question: IS THE STRUCTURE SMALL? 
Answer: YES,NO 

SHAPE1 Question: IS THE STRUCTURE CIRCLE? 
Answer: YES,NO 

SITUATION1 Question: IS THERE PLAYGROUND ADJACENT TO THE STRUCTURE? 
Answer: YES,NO 

SITUATION2 Question: ARE THERE LARGE PARKING LOTS ADJACENT TO THE STRUCTURE? 
Answer: YES,NO 

SITUATION3 Question: ARE THERE MANY LARGE STRUCTURES GROUPED? 
Answer: YES,NO 

SITUATION4 Question: DOES THE STRUCTURE HAVE FLAT ROOF? 
Answer: YES,NO 

SHAPE2 Question: DOES IT LOOK LIKE LONG LINEAR FEATURE? 
Answer: YES,NO 

SHAPE3 Question: IS THE LINE FEATURE WIDER THAN THE OTHER LINE FEATURES? 
Answer: YES,NO 

SITUATION5 
Question: ARE THERE MANY INTERSECTIONS / STRUCTURES ALONG THE 
FEATURE?  
Answer: YES,NO 

PATTERN Question: IS IT STRIPED IRREGULARLY WITH DARK AND WHITE TONE? 
Answer: YES,NO 

TEXTURE Question: IS THE SURFACE OF THE FEATURE VERY SMOOTH? 
Answer: YES,NO 

TONE Question: IS THE TONE DARKER THAN OTHER SAME FEATURES? 
Answer: WHOLEY,PARTLY,NO 

SITUATION6 Question: IS THE PARKING LOT SMALLER THAN THE BUILDING? 
Answer: YES,NO 

TONE1 Question: IS IT BRIGHTER THAN OTHERS (EVEN BLURRING)? 
Answer: YES,NO 

Figure 5.5 Symbolization of Rules Decision Tree 
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Each node in the decision tree can be symbolized as a question and each link in the 

decision tree can be symbolized as an answer for the knowledge base (Figure 5.5). For example, 

the first node in the decision tree is ‘Artificial Structure’ and its two links are ‘Yes or No’ in 

Figure 5.4. This node and its links are symbolized as ‘STRUCTURE’ in Figure 5.5. This symbol 

will be used to construct rules and interpreted as a question with possible answers when the 

inference engine is running. 

Each rule for each solution case will be generated according to the decision tree using 

symbolized questions and answers (Figure 5.6). Constructed rules are saved in a database as a 

knowledge base for the application. 
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If Then 
STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ YES AND SHAPE1 
EQ NO AND SITUATION2 EQ NO Residential 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ YES AND SHAPE1 
EQ NO AND SITUATION2 EQ YES Commercial 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ YES AND SHAPE1 
EQ YES Industrial 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ YES AND SITUATION2 EQ NO School 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ YES AND SITUATION2 EQ YES AND SITUATION6 EQ NO Service(park) 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ NO AND SITUATION2 EQ NO Commercial 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ NO AND SITUATION2 EQ YES AND SITUATION3 EQ NO AND 
PATTERN EQ NO AND SITUATION6 EQ NO 

Commercial 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ NO AND SITUATION2 EQ YES AND SITUATION3 EQ NO AND 
PATTERN EQ YES 

Golf Course 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ NO AND SITUATION2 EQ YES AND SITUATION3 EQ YES 
AND SITUATION4 EQ NO 

Residential 
(Apartment) 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ NO AND SITUATION2 EQ YES AND SITUATION3 EQ YES 
AND SITUATION4 EQ YES 

Industrial 

STRUCTURE EQ YES AND SHAPE2 EQ YES AND SHAPE3 EQ YES AND 
SITUATION5 EQ NO Highway 

STRUCTURE EQ YES AND SHAPE2 EQ YES AND SHAPE3 EQ NO AND 
SITUATION5 EQ NO Railroad 

STRUCTURE EQ YES AND SHAPE2 EQ YES AND SHAPE3 EQ NO AND 
SITUATION5 EQ YES Road 

STRUCTURE EQ NO AND PATTERN EQ YES Golf Course 
STRUCTURE EQ NO AND PATTERN EQ NO AND TONE1 EQ NO AND 
TEXTURE EQ YES Water 

STRUCTURE EQ NO AND PATTERN EQ NO AND TONE1 EQ NO AND 
TEXTURE EQ NO AND TONE EQ WHOLEY 

Evergreen 
Forest 

STRUCTURE EQ NO AND PATTERN EQ NO AND TONE1 EQ NO AND 
TEXTURE EQ NO AND TONE EQ PARTLY Mixed Forest 

STRUCTURE EQ NO AND PATTERN EQ NO AND TONE1 EQ NO AND 
TEXTURE EQ NO AND TONE EQ NO 

Deciduous 
Forest 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ YES AND SITUATION2 EQ YES AND SITUATION6 EQ YES School 

STRUCTURE EQ YES AND SHAPE2 EQ YES AND SHAPE3 EQ YES AND 
SITUATION5 EQ YES Road 

STRUCTURE EQ YES AND SHAPE2 EQ NO AND SIZE EQ NO AND 
SITUATION1 EQ NO AND SITUATION2 EQ YES AND SITUATION3 EQ NO AND 
PATTERN EQ NO AND SITUATION6 EQ YES 

School 
(University) 

STRUCTURE EQ NO AND PATTERN EQ NO AND TONE1 EQ YES Bare Ground 
Figure 5.6 Rules using If-then Structure 
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5.4.2 Processing Steps 

 
Figure 5.7 Processing Steps for Land Use using Expert System 

 

To map spatial data, the system requires five steps: feature selection, solving the problem, 

solution & suggestion, labeling, and exporting (Figure 5.7). First, a user selects and digitizes a 

feature during the interpretation of an aerial photograph. Second, the user chooses the ‘airphoto’ 

interpretation problem in the user part, and then the inference engine will generate the first 

question about the feature selected. The user should answer this question. The inference engine, 

then, will generate the next question. Third, when the condition for a certain feature type is 

satisfied through this interactive question-and answer sequence, the inference engine will suggest 

a feature type. Fourth, the suggested feature name can be labeled on the digitized vector data. 

Last, the thematic data digitized on the image can be exported as vector data (shape file format). 

During export, the labeled feature name will be saved automatically as an attribute of the vector 

data. 
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5.4.3 Urban Mapping and Result 

The study site is Athens-Clarke County, GA. The USGS digital orthophoto quarter 

quadrangle (DOQQ) data in 1993 is used for the interpretation and mapping. In the study area, 

four subsets (2km x 2km) of the DOQQ have been generated and used for land use/land cover 

mapping (Figure 5.8).  The interpretation of black and white DOQQ images was completed only 

by the inference rules of the expert module using the interactive procedure, and the land use/land 

cover maps have been generated by the GIS module in this hybrid system (Figure 5.9). 

 

 
Figure 5.8 Study Area for Expert Mapping 
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Figure 5.9 Land Use/Land Cover Mapping from Aerial Photographs 
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Accuracy assessment of the resulting land use/land cover maps was conducted to evaluate 

the usability of the rule. Forty sample sites were selected for each land use/land cover category 

using the stratified random sampling method (Table 5.1). The original DOQQ image and the land 

use data that were generated by the planning department of Athens-Clarke County were used for 

the reference data. 

 
           Table 5.1 Accuracy Assessment of Classified Land Use/Land Cover Data 

Reference Data  A B C D E F G H I J K L M N Sum 
A 36    1     3     40 
B  36 3  1          40 
C 1  38       1     40 
D    39      1     40 
E 2    37    1      40 
F 1     37 1   1     40 
G 1   3   36        40 
H 1       38  1     40 
I         39 1     40 
J         2 38     40 
K 1         1 38    40 
L          1  38 1  40 
M 4         2   34  40 
N 1             39 40 

C
la

ss
ifi

ed
 L

an
d 

U
se

 / 
C

ov
er

 

Sum 48 36 41 42 39 37 37 38 42 50 38 38 35 39 560 

A: Bare Ground, B: Commercial, C: Industrial, D: Residential, E: School, 
F: Highway, G: Road, H: Railroad, I: Evergreen Forest, J: Mixed Forest, 
K: Deciduous Forest, L: Golf Course, M: Park, N: Water 

Overall Accuracy = 93.39 %          and          Kappa Index value = 0.9288 
 

The accuracy is 93.39 % in overall accuracy with a kappa index of 0.9288. Almost all 

errors occur in the boundary area between different land use/land covers. Land use/land cover 

mapping is executed by a novice user in GIS so that the errors will be reduced by advanced 

digitizing skill. Therefore, the rules developed in this study may be valid and used for the other 

applications. 
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5.5 Summary 

In this chapter, a hybrid system of GIS and a rule-based expert system was discussed. 

This system consists of three main parts with a database: expert, user, and map. The expert and 

user parts are the rule-based expert system, and the map part is a GIS. 

The expert part is used to construct new knowledge (prologue, questions and answers, 

and rules) or update existing knowledge. The knowledge (prologue, questions and answers, and 

rules) in this system can be constructed easily by an expert using a natural language (English). 

The user part is employed to solve a specific problem for which the rules are constructed in the 

system. Novice users who are not good at programming or a particular problem domain can 

derive a solution to a specific problem easily from the constructed rules through the interactive 

question and answer sequence. The questions will be generated by the rule-based engine using 

existing rules. 

The map part is used to generate spatial data. Various vector data formats, such as ESRI 

coverage, shape files, and CAD drawings and raster data formats, such as ESRI Grid, Geotiff, 

and others can also be loaded in the map part. The map part can also be used for visual 

interpretation of image data. 

To test the applicability, the developed system has been used for the interpretation of 

aerial photography by a neophyte user. If users cannot identify a certain feature during the 

interpretation of aerial photographs, they can consult the rule-based expert module in the user 

part of this system through the question and answer sequence. The questions will be generated 

automatically by each of the user’s answers. 

The rules were constructed for the aerial photograph of the study area using basic 

interpretation elements. Using this hybrid system, fourteen land use/land cover categories are 
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interpreted and mapped easily from black-and-white DOQQ images. The mapped land use/land 

cover data were exported to a shape file and evaluated for accuracy. The accuracy of mapped 

data is over 93 % in both overall accuracy and kappa index so that the rules constructed in this 

study are valid for the interpretation of black-and-white aerial photographs. Therefore, users can 

consult this hybrid system of GIS and a rule-based expert system during mapping or digitizing in 

order to produce spatial data. 
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CHAPTER 6 

SYSTEM INTEGRATION FOR FEATURE-ORIENTED GIS (FOGIS) 

6.1 System Architecture for FOGIS 

In this chapter, the feature data viewer in Chapter 4 and the input procedure in Chapter 5 

have been integrated into a complete system. The procedures of the integrated system include 

data generation, creation of a feature database, and visualization of the features in FOGIS. The 

system architecture of the feature data viewer has been extended for FOGIS (Figure 6.1).  

 

 
Figure 6.1 System Architecture for FOGIS 

 

6.2 System Integration for FOGIS 

For the system integration, a new main interface has been designed, which includes the 

input module, the import/export module, the tree viewer, and the display module. For data 
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storage, the feature database designed and implemented in Chapter 4 has been directly used. 

Figure 6.2 shows the main user interface of each module in the integrated FOGIS.  

 

 
Figure 6.2 User Interfaces of FOGIS 

 

6.2.1 Feature Population Method in the Input Module 

The input procedure in Chapter 5 is primarily focused on spatial data generation as a 

common layer-based data format such as a shape file with a new data generation method by a 

rule-based expert system. However, the input procedure in the integrated feature-oriented system 

should have a method of data population directly into the feature database. Therefore, the input 

module in Chapter 5 has been modified for populating newly generated data into a feature 
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database. Also, the input module includes the projection module for setting or entering the proper 

projection information of the generated data into the feature database. 

Figure 6.3 shows the process of populating features from digitized data into the feature 

database through the projection module. First, the features are digitized from the proper image 

source and labeled with appropriate feature type and feature name. Second, the projector module 

is used for setting the proper projection information for the input data. Third, the time 

information of the data is set with the ‘save’ user interface. Finally, digitized data and the 

projection information are populated into the feature database. The features do not have to be one 

type of geometry (point, line, or polygon). Also, various feature types such as buildings, roads, 

and so on can be digitized and populated into the feature database. 

 

 
Figure 6.3 Feature Generation Procedures in the Input Module 
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6.2.2 Data Interoperability with Import/Export Module 

With the Import/Export Module, shape file format spatial data can be imported into a 

feature database and exported from the database. Figure 6.4 shows both the importing and 

exporting processes. The import process from the selected shape file to the selected feature 

database requires the main import/export interface and the schema constructor for a feature 

database. The export process from the selected feature database to the newly created shape file 

requires the main import/export interface and the attribute selector.  

 

 
Figure 6.4 Import/Export Procedure in FOGIS 

 

The import option in the import/export is selected, and then the shape file format will be 

set automatically for input and the Microsoft access database format as a feature database will be 
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set for output. Once the file has been selected, the schema constructor will be used for populating 

features into a feature database from the spatial and attribute data in the input shape file. For 

schema construction, the feature type should be defined for the feature type class in feature data 

model, which comes usually from the shape file name. 

Also, the feature name and the time information should be set for both the feature class 

and the time class. Finally, the attribute columns in the shape file should be chosen for the 

thematic attribute type class and the thematic attribute class. If the input file has no projection 

information, the projector (Figure 6.5) will be used for populating projection instances in the 

spatial reference class. All these classes are populated, and then the feature database will be 

populated from the populated classes on the feature data model. 

 

 
Figure 6.5 User Interface for Projection Selection 

 

When the export option in the import/export is selected, the Microsoft access database 

format as a feature database will be set automatically for input and the shape file format will be 

set for output. Once the file has been selected, the attribute selector will be used to select features 

and related attributes from the feature database for the spatial and attribute data in the output 
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shape file. For attribute selection, the feature type should be chosen for selecting feature 

instances. The geometry type of the features should be selected because the shape file only 

supports one geometry type for one layer. 

The time attribute also has to be selected because the shape file usually contains data for 

one time spot. Once these options are selected, the columns for the output shape file should be 

selected from the feature attributes. The attribute types in the feature database will be directly 

converted into the column name in the output shape file. The feature names of the selected 

feature type will be directly converted as name column in the output file. Also, the projection 

information in the spatial reference class of the feature database will be converted into the 

projection file of the shape file. 

 

6.2.3 Feature Database Structure 

The imported features will be populated in the classes in the feature data model and then 

entered into a feature database. Once the building features are populated, the resultant feature 

database will have tables that cover classes in the feature database design (see Figure 4.6). The 

tables for building features are shown in Figure 6.6. 

All the name of tables related to a certain feature use the feature type name such as 

building_spatial, building_theme, building_time, and so on. The attribute types are populated as 

the column name in the corresponding table. The table structures are very simple so that some of 

the thematic attributes can be directly modified into the theme table of the corresponding feature. 

If a thematic attribute needs to be added to a table, it can also be added directly into the theme 

table by checking the feature instance id of the attribute in the feature type table and the column 

name as attribute type. 
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Figure 6.6 Table Structure in Feature Database from Feature Data Model 

 

With the simple table structure, the developed system does not require an attribute editing 

module because attribute editing can be accomplished by accessing a feature database directly. 

Unfortunately, the current system has no automatic method for populating relationships such as a 

feature type, feature, or temporal relationships. Therefore, all these relationships have to be 

populated by editing a feature database.      

 

6.2.4 Feature View with Tree Viewer and Display Module 

The tree viewer (Figure 6.7) has been included as one of the main modules in the system 

for a clear view of the tree structure of objects (all data related with features) in the feature 

database. The tree viewer includes the tree view section on the top and the attribute view section 



 

 114 

on the bottom. In the tree view section, all classes in a feature database are displayed as nodes: 

feature type, feature instances, all dimensions of feature instances and relationships, and the 

spatial reference information. These classes have been hierarchically organized in the tree view 

section for an effective visualization of data structure in the feature database. If any node in the 

tree view section is selected, the attribute under the node will be shown in the attribute section. 

In the attribute view section, the column name will be populated directly from the instances of 

the attribute type class.  

 

 
Figure 6.7 Tree Viewer for Feature Data 

 

The data in the feature database under the feature data model has been well-organized 

hierarchically from the feature types to the detailed attributes of each feature under the feature 

type. This would be the major advantage of the use of object-orientation for representing features 
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with the feature data model. Also, the hierarchical view of feature information can make it easy 

to query any attribute of a feature by its name so that the feature data model has advantage over 

the layer-based model. In the layer-based model, the feature types such as roads, buildings, and 

so on are usually used for the name of the layers and only the layer name is shown in the user 

interface of the commercial software. The detailed feature names could not be directly shown 

without any query over the database linked to the geometry. 

 

 
Figure 6.8 Tree Viewer and Display Module for a Feature Database 

 

All information of a feature database can be displayed in the display module with 

necessary background data such as remotely sensed images and vector data. In Figure 6.8, the 

feature information populated in Figure 6.3 has been shown with both the tree viewer and the 

display modules. In the feature database, the three different feature types have been populated: 

Building, Fence, and ParkingLot. Under the ‘Building’ feature type, two different geometry 
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types of features have been populated: point and polygon. ‘Line’ type of feature has been 

populated under the ‘Fence’ feature type. Also, the clock icon on the menu bar in the display 

module can be used for time based query for features. Therefore, one feature database can 

contain multiple feature types and multiple time situations, and has no limitation on the geometry 

types of features.  

 

6.2.5 Feature Query using Feature Relationship as Analysis Module 

As one of the spatial analysis methods, the feature query tool has been added with the 

time query tool in the display module (Figure 6.9). For feature query, the feature type has to be 

chosen and then criteria selected from a feature based on a specific time. Finally the relationships 

of selected feature need to be selected.  

 

 
Figure 6.9 Feature Query using Feature Relationship 
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Once all options are selected, the resulting features will be displayed on the canvas in the 

display module. The resulting features will be displayed using different colors so that they can be 

differentiated from the input feature of the query. Each feature of the result query also can be 

differentiated from the others by selecting item in the related feature lists of the feature query 

tool. This query tool directly uses the feature relationship (thematic relationship) for spatial 

analysis. 

 

6.3 Application I: Feature Management using Time 

Coastlines are one of the most changeable natural features. To test the integrated FOGIS, 

coastlines have been chosen for visualization through time. The study area is the same area, 

Camp Lejeune Marine Corps Base in North Carolina that was used in the building change 

application in Chapter 4, but is focused on coastlines (Figure 6.10).  

 

 
Figure 6.10 Camp Lejeune Study Area 
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For extracting coastlines in the study area, three remotely sensed images have been 

acquired: a SPOT Panchromatic image on Sept. 30, 1994, Landsat ETM plus Panchromatic 

image on Sept. 23, 1999, and Ikonos pan-sharpened image on May 4, 2000. Each of these data 

sets has different ground resolution: 10m in SPOT, 15m in Landsat ETM plus, and 1m Ikonos. 

Even though three source images have different ground resolution, the difference of their ground 

resolution will not have much effect in detecting the changes of coastlines because the changes 

are over 100m (Figure 6.11). 

 

 
Figure 6.11 Coastline Changes in Different Image Source in Different Time 
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6.3.1 Processing Steps 

From three different remotely sensed images, the coastlines have been extracted using the 

input procedure. First, the images have been loaded on to the canvas in the input module. Second, 

the coastlines are digitized on screen in each image. Third, once digitizing is finished, the feature 

has been named with a proper class name through the labeling user interface. Fourth, after 

naming the feature, it has been populated into a feature database. During population, the 

projector has appeared for choosing the projection information of the features digitized. Finally, 

if the projection was decided, then all the information with digitized features would be populated 

into a feature database with time information in the database creation interface (Figure 6.12).  

 

 
Figure 6.12 Input Procedure for Populating Coastline 
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Through these procedures, three coastlines from three different image sources have been 

extracted and populated as features into the feature database. If necessary, the digitized 

coastlines can be directly exported into shape file format data for other uses in the input user 

interface. Also, the coastlines in the feature database can be exported into shape file format using 

import/export module. If users are more comfortable using different digitizing methods, then 

they can digitize a data into a shape file format and import it into a feature database using 

import/export module. After populating coastlines, the feature database has been edited directly 

for populating the temporal relationship.  

 

6.3.2 Mapping Result and Query Coastline based on Time 

The mainland area has been imported into the feature database for the reference of the 

coast area. The resulting mapping is shown in Figure 6.13. The same ‘onslow_beach1’ feature 

has changed through time from 1994 to 2000.  

 

 
Figure 6.13 Coastlines Extracted from Three Different Time Image Sources 
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Figure 6.14 clearly shows the changes of coastlines through time. The difference of 

coastlines can be easily visualized by overlaying these lines in a conventional GIS. In a 

conventional GIS, these lines will be entered as different layers of which each layer will be 

referenced to a different time. Even though all three lines would be entered in a layer as lines 

instead of polygons, the lines would have different IDs so that the lines would not be the same 

feature. It could not be visualized under the layer-based model for the conventional GIS that the 

lines represent essentially the same feature. 

 

 
Figure 6.14 Multi-temporal Situation of Coastline Feature 

 

Since three different lines are the same feature, they are populated as one feature 

‘onslow_beach1’ with three different times in the feature database ‘Camp_lejeune’. In the 
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display module of FOGIS, the temporal differences of the coastline feature can be easily queried 

by selecting a specific time under the feature name in the tree viewer and selecting the feature 

type and time in the time query tool that can be activated by selecting the clock icon on the menu 

bar. Figure 6.14 shows the different coastlines are the same feature ‘onslow_beach1’ referenced 

on three different times under the feature type ‘onslow_island’. The coastline in 1994 has been 

selected and easily distinguished from the other coastlines that are referenced to a different time. 

If multiple features under a specific feature type or all feature types need to be queried based on 

a specific time, the time query tool can also be used by selecting the specific feature type or all 

types with time. 

 

6.4 Application II: Retrieval of Features using Thematic Relationship 

The representation of thematic relationships is one of the important capabilities of the 

feature data model. The thematic relationship represents the relationships between feature 

instances so that it has been populated under the feature relationship class in the feature data 

model. The thematic relationship of a feature can be used to query for related features. The study 

area for this application is the same Camp Lejeune area, but is focused on roads in Onslow 

County area (Figure 6.15). The road data will be entered and used for a feature query using the 

feature relationship. 
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Figure 6.15 Roads in Camp Lejeune Study Area 

 

6.4.1 Processing Steps 

The existing road data in shape file format has been imported and populated into the 

feature database that was created in the previous application. The procedures for populating road 

features into the feature database are as follows (Figure 6.16). First, the import option and input 

file and output database has to be selected. Second, by clicking ‘OK’, the schema constructor 

will be activated, in which the feature type, feature name, time, and attribute types should be 

chosen and then click ‘OK’. With the selected attribute types, the attribute data that has the same 

column name in the dbf file will be automatically populated as attribute instances under the 

attribute type in the feature database. Third, during populating features in the feature database, 

the projection information of the input data will be examined and compared with that in the 

database. If the feature database is newly created and the input data have no explicit projection 

information, the projector will be activated to select and populate projection information. Finally, 

the populated features can be visualized in the display module.  
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Figure 6.16 Importing Procedures for Populating Road Features 

 

6.4.2 Roads Query based on Feature Relationship 

After populating the features, the feature relationship between each road has been entered 

directly into the feature database ‘Camp_Lejeune’. In this application, only ‘connected_to’ 

relationship has been used for roads that are connected to other roads in order to maintain the 

connectivity information between roads. In a conventional GIS, the connectivity information 

could be extracted from the topology using geometry so that all nodes have to be examined to 

complete connectivity between features. However, in FOGIS, feature relationships are directly 

used for searching connected features. This may reduce processing time for searching features 

based on connectivity. 
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In Figure 6.17, roads that are connected to the road ‘State_Highway_172’ have been 

queried based on a specific time (‘19940930’) and relationship (‘connected_to’) using the query 

tool that can be activated by selecting ‘TR’ icon on the menu bar in the display module. Figure 

6.17 also shows the result of feature query based on the relationship. On the canvas in the display 

module, the criteria feature (road ‘State_Highway_172’) is represented with red color. The 

searched roads with selected relationship (‘connected_to’) are represented with cyan. If one of 

the searched roads is selected, then the road will be colored as yellow. 

 

 
Figure 6.17 Road Query using Feature Relationship (Thematic Relationship) 
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6.5 Summary 

In this chapter, the input procedure in Chapter 5 and the import/export and display 

module in Chapter 4 have been integrated to provide for a complete procedure from data 

generation to the visualization of features stored in feature database. The input module has been 

modified to be incorporated with a feature database. The projector and database creator has been 

added and the input module can populate multiple types of classes and multiple geometry types 

for each class at one time. It may increase the efficiency in the digitizing process because each 

feature type and geometry type can be separated into different layers in the conventional layer-

based model approach. 

In the import/export module, the export procedure has been designed to produce proper 

shape files from parts of the feature database. The shape file usually contains one geometry type 

based on a certain time. The export user interface, therefore, contains the selection for feature 

type, geometry type, and time. One or more attributes for the selected feature type in a feature 

database can be exported by an attribute selector. 

For feature visualization, the tree viewer has been added. Using a tree structure, the 

classes that are well-organized hierarchically can be visualized effectively. The name of a feature 

can be directly shown in the tree structure even with other classes. In the layer-based model, the 

feature types are usually used for the name of the layer so that detailed feature names could not 

be directly shown without query over the database. With the time query tool in the display 

module, a feature query tool as one of the spatial analysis tools has been added, which uses 

feature relationships (thematic relationships) to query features.  

With integrated FOGIS, two applications have been conducted. The first application was 

multi-temporal representation of coastlines. Three different coastlines that are the same feature 
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have been extracted from different image sources at different times and populated into the 

feature database. By a time query in the display module, the differences of coastlines through 

time could be effectively visualized and compared with each other. 

The second application was the feature query based on a thematic relationship. For this 

application, pre-existing road data in shape file format have been imported into the feature 

database. With the feature query tool using the feature relationship, the roads linked to the input 

road have been queried easily and visualized with different colors. Each road in the queried roads 

also can be identified separately with the others. This application shows the usability of feature 

relationship (thematic relationship) for spatial analysis directly.   
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CHAPTER 7 

CONCLUSION AND DISCUSSION 

7.1 Conclusion 

The aim of this study was to develop a prototype FOGIS that fully implements a feature 

concept with object-oriented programming. Many current GIS use a layer-based data model that 

is geometry-oriented model, so they are limited to represent temporal aspects and relationships of 

geographic features. A feature should be represented more effectively in a feature data model, 

which represents geographic phenomena fully with three dimensions: space, theme, and time. A 

FOGIS was developed based on the feature data model with object-oriented programming, so 

geographic features could be represented more effectively.  

Five major research themes addressed in this study were to construct a feature data model, 

to develop an input procedure, to use the procedure for a geographic application, to design and 

implement a FOGIS with a feature database, and to apply the FOGIS for spatial query. Also, five 

problems in the conventional GIS identified in this study were limitations on the representation 

of disjunctive thematic relations, the multi-temporal representation of a feature, the usage of 

multiple geometry types of features, the effective feature retrieval using its name, and the use of 

an expert system for GIS (Table 7.1).    
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Table 7.1 Relation between Research Theme and Solving Problems 
Research Themes Solving Problems 

• To construct a feature data model (Chapter 3) 
• Disjunctive thematic relations 
• Multiple geometry types usage 
• Multi-temporal representation 

• To develop an input procedure (Chapter 5) 
• To apply input procedure (Chapter 5) 

• Expert system with GIS 

• To design and implement FOGIS (Chapter 4, 6) 
• To use FOGIS for spatial query (Chapter 4, 6) 

• Feature retrieval by name 

 

A feature data model, which was the first research theme, was constructed using a feature 

concept, abstraction methods of SDTS, and the key concepts of an object-orientation in Chapter 

3. Geographic features in the feature data model had three aspects: spatial, thematic, and 

temporal dimensions. Each dimension had attributes and relationships. By constructing a feature 

data model, the first three problems identified in this study were solved. 

Disjunctive thematic relations, which was the first problem identified in this study, could 

be effectively represented by the hierarchical structure of features in the feature data model. Also, 

thematic relations could be populated directly in the feature relationship class in the feature data 

model (see Figure 3.6). Multiple geometry types, which was the second problem identified in 

this study, could be used for the same feature class in the feature data model. For example, some 

buildings could be mapped as points and the others as polygons based on the scale of an 

application (see Figure 4.5). Multi-temporal situations of a phenomenon, which was the third 

problem identified in this study, could be entered in one feature. One feature could have multiple 

spatial and thematic attributes and relationships based on each time (see Figure 4.12).  

A spatial data input procedure, which was the second research theme in this study, was 

developed using an interactive rule-based expert system in Chapter 5. The input procedure was 
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designed to generate spatial data for both conventional GIS and FOGIS. Mapped data in the 

input procedure could be directly populated as instances of the classes in the feature data model 

and exported in a shape file for the conventional GIS. The developed input procedure applied for 

airphoto interpretation, which was the third research theme in this study. Knowledge (symbols 

and rules derived from decision tree) for the expert system was constructed and tested for the 

interpretation of panchromatic DOQQ images. The result of land use/cover data, over 93 % in 

overall accuracy, showed the knowledge could be used for another application of the 

panchromatic image interpretation.  

The number of GIS users has been increased continuously because of its data handling 

capability and the spread of spatial data. Almost all current commercial GIS software packages, 

however, lack utilities to help neophytes in GIS to generate and analyze spatial data, which is the 

fifth problem identified in this study. This problem was solved by the input procedure developed 

in Chapter 5, which used an interactive rule-based expert system with proper explanation in a 

step-by-step fashion (see Figure 5.7). The input procedure also provided a way to integrate an 

expert system with GIS. 

With the feature data model, a prototype system and a feature database was designed and 

implemented in Chapter 4. Fifteen classes of feature data model were designed and used for the 

system implementation. The developed system has three main parts: import/export module, 

display module, and database for feature storage. The import/export module could import and 

export data between a shape file and a feature database. The display module was designed to 

visualize all information features: attributes and relationships on space, theme, and time. The tree 

viewer in the display module could effectively visualize the data structure of features. For the 

storage of features, the feature database was designed and implemented using tables in the 
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relational database (see Figure 4.6). The developed system was applied for the visualization of 

multi-temporal feature instances on the coast area and the changes in buildings through time 

were effectively represented (see Figure 4.12). 

System architecture for FOGIS was designed including a prototype system in Chapter 4 

and the input procedure in Chapter 5 and implemented for a complete procedure from data 

generation to the visualization of features, which was the fourth research theme in this study. 

Two spatial analysis tools using time and thematic relationship were developed in FOGIS. In 

FOGIS, all information of features could be visualized by selecting feature name in a tree viewer, 

which solved the fourth problem identified in this study. A feature’s name is an identifier in 

FOGIS so that all attributes and relationships are directly linked to the name, which is used to 

retrieve all information of a feature. 

To test FOGIS, two applications were executed, which was the final research theme in 

this study. The first application was multi-temporal representation of coastlines. Three different 

coastlines extracted from different image sources at different times were populated into the 

feature database and were effectively visualized and compared with each other by a time query 

tool. The second application was the feature query based on a thematic relationship. With the 

feature relationship query tool, the roads were easily queried and effectively visualized with 

different colors, which showed the usability of feature relationships (thematic relationships) for 

spatial analysis.   
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7.2 Contributions and Limitations 

This study makes several contributions to the GIS research community. The most 

important is that it provides a conceptual framework and a methodology for building FOGIS or 

implementing the object-oriented paradigm in a GIS environment.  

Second, this study also provides a methodology for integrating an expert system as a 

consulting tool for GIS, which gives users a guideline for working procedures. In this study, an 

expert system was integrated into FOGIS in order to give users a guideline for the interpretation 

of an aerial photograph using an interactive question-and-answer sequence. With the interactive 

sequence, the expert system generated questions, based on the user’s answers, and finally 

suggested a solution. 

Third, this FOGIS expanded current GIS capabilities for feature representation by 

providing methods of multi-temporal representation and the use of multiple geometry types for a 

feature. The changes of a feature could be effectively represented by multiple instances based on 

time. A feature could be mapped as multiple types of geometry based on the application scale.  

In FOGIS, two query tools were developed: time and feature relationship query tools, which also 

expanded the spatial analysis capabilities of current GIS.  

Finally, FOGIS is compatible with conventional GIS analysis ability and continues the 

usability of conventional GIS, because this system can import and export spatial data with a 

shape file format. The input procedure of FOGIS can also generate spatial data for both 

conventional GIS and FOGIS. 

However, this study has limitations. First, in a feature data model, various relationships 

can be effectively represented, but it may be difficult to identify all relationships of a feature. 

Second, there is no automatic method to identify relationships of features, which requires manual 
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effort. Third, there are no standard terms for representing the relationship of features. One 

relationship (‘Is A’) can be represented by different terms (‘Is A’, ‘Is-A’, and ‘Is_A’). With this 

inconsistency of feature relationships, the implementation of query procedure using the 

relationships would be difficult. Fourth, in FOGIS, analysis functions of GIS except two query 

tools were not implemented, but spatial data in this system could be still used in the conventional 

GIS environment by exporting a feature database. Finally, specific efforts toward optimizing 

code and sophisticating the visual interface were not considered. Thus the performance of this 

system could be improved and enhanced. 

 

7.3 Further Study 

For further study, first, the developed feature system can be applied for improving the 

performance of the geographic analysis. For the shortest-path algorithm in the feature space, the 

feature itself can be a node for the searching process instead of each point in geometry. A line 

representing roads needs at least two points. Even though all lines are composed only of two 

nodes, it will take more time to search a location along roads using geometric nodes than to 

search the location using road relationships. In the road relationships, road name is a node in the 

road networks. It could save significant processing time. 

Second, features in three dimensions (x,y,z) could be represented effectively with feature 

relationships such as ‘inside_of’, ‘northeast_corner_on_2floor’ and so on for buildings in 

complex urban information system. With geometry, the topological structure would be very 

complex to represent features in three dimensional spaces. Even though there is a lack of 

standard terms for representing feature relationships, the feature relationships can easily 
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represent the features in three dimensions because it uses natural language that can be easily 

composed and understood. 

Third, effective directional representation for hierarchical water or road networks could 

be possible with feature relationships for direction such as ‘from_to’, ‘connected_to’, and so on. 

A feature data model uses the hierarchical structure to represent features, which is one of the key 

elements of object-orientation. Even though the current feature data model in this study uses a 

hierarchical structure only for representing feature attributes and relationships, the hierarchical 

structure of a feature data model could be extended to represent the hierarchical structure among 

feature instances in the case of water or road networks. 

Finally, various types of the feature relationships should be defined clearly because there 

are no standard terms for them. A researcher in geography may have the potential for this work 

because geography has well developed discipline in the geographic phenomena. 
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APPENDIX A 

CLASS MODULES AND COLLECION CLASSES ON FEATURE IN FOGIS 

 
1. ‘FeatureType’ Class Module for Single Feature Type 

 
'local variable(s) to hold property value(s) 
Private mft_id As Integer 
Private mft_name As String 'local copy 
Private mft_desc As String 
 
Public Property Let ft_id(ByVal vData As Integer) 
'used when assigning a value to the property, 
    mft_id = vData 
End Property 
 
Public Property Get ft_id() As Integer 
'used when retrieving value of a property, 
    ft_id = mft_id 
End Property 
 
Public Property Let ft_name(ByVal vData As String) 
    mft_name = vData 
End Property 
 
Public Property Get ft_name() As String 
    ft_name = mft_name 
End Property 
 
Public Property Let ft_desc(ByVal vData As String) 
    mft_desc = vData 
End Property 
 
Public Property Get ft_desc() As String 
    ft_desc = mft_desc 
End Property 
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2. ‘FeatureTypes’ Collection Class for Multiple Feature Type Instances 
 
Option Explicit 
'Declare a variable of type collection 
Private mFtypes As New Collection 
 
'Expose count property 
Public Property Get Count() As Long 
   Count = mFtypes.Count 
End Property 
 
'Wrapper for Item method 
Public Function Item(Index As Variant) As CFeatureType 
   Set Item = mFtypes.Item(Index) 
End Function 
 
'Wrapper for Add method 
Public Function add(mft_id As Integer, mft_name As String, mft_desc As String) As 
CFeatureType 
   'Define a new CFeatureType class 
   Dim mFtype As New CFeatureType 
 
   With mFtype 
      'set property 
      .ft_id = mft_id 
      .ft_name = mft_name 
      .ft_desc = mft_desc 
   End With 
 
   'add FeatureType to FeatureTypes collection 
   mFtypes.add mFtype 
End Function 
 
Public Sub Delete(ByVal Index As Variant) 
   mFtypes.Remove Index 
End Sub 
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3. ‘FeatureTypeRel’ Class Module for Single Feature Type Relationship 
 
'local variable(s) to hold property value(s) 
Private mftr_id As Integer 
Private mftr_rel As String 'local copy 
Private mfromft_id As Integer 
Private mtoft_id As Integer 
 
Public Property Let ftr_id(ByVal vData As Integer) 
    mftr_id = vData 
End Property 
 
Public Property Get ftr_id() As Integer 
    ftr_id = mftr_id 
End Property 
 
Public Property Let ftr_rel(ByVal vData As String) 
    mftr_rel = vData 
End Property 
 
Public Property Get ftr_rel() As String 
    ftr_rel = mftr_rel 
End Property 
 
Public Property Let fromft_id(ByVal vData As Integer) 
    mfromft_id = vData 
End Property 
 
Public Property Get fromft_id() As Integer 
    fromft_id = mfromft_id 
End Property 
 
Public Property Let toft_id(ByVal vData As Integer) 
    mtoft_id = vData 
End Property 
 
Public Property Get toft_id() As Integer 
    toft_id = mtoft_id 
End Property 
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4. ‘FeatureTypeRels’ Collection Class for Multiple Feature Type Relationship Instances 
 
Option Explicit 
'Declare a variable of type collection 
Private mFtypeRels As New Collection 
 
'Expose count property 
Public Property Get Count() As Long 
   Count = mFtypeRels.Count 
End Property 
 
'Wrapper for Item method 
Public Function Item(Index As Variant) As CFeatureTypeRel 
   Set Item = mFtypeRels.Item(Index) 
End Function 
 
'Wrapper for Add method 
Public Function add(mftr_id As Integer, mftr_rel As String, mfromft_id As Integer, 
mtoft_id As Integer) As CFeatureTypeRel 
   'Define a new CFeatureTypeRel class 
   Dim mFtypeRel As New CFeatureTypeRel 
 
   With mFtypeRel 
      'set property 
      .ftr_id = mftr_id 
      .ftr_rel = mftr_rel 
      .fromft_id = mfromft_id 
      .toft_id = mtoft_id 
   End With 
 
   'add FeatureTypeRel to FeatureTypeRels collection 
   mFtypeRels.add mFtypeRel 
End Function 
 
Public Sub Delete(ByVal Index As Variant) 
   mFtypeRels.Remove Index 
End Sub 
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5. ‘Feature’ Class Module for Single Feature 
 
'local variable(s) to hold property value(s) 
Private mf_id As Integer 
Private mf_name As String 'local copy 
Private mf_desc As String 
Private mft_id As Integer 
 
Public Property Let f_id(ByVal vData As Integer) 
    mf_id = vData 
End Property 
 
Public Property Get f_id() As Integer 
    f_id = mf_id 
End Property 
 
Public Property Let f_name(ByVal vData As String) 
    mf_name = vData 
End Property 
 
Public Property Get f_name() As String 
    f_name = mf_name 
End Property 
 
Public Property Let f_desc(ByVal vData As String) 
    mf_desc = vData 
End Property 
 
Public Property Get f_desc() As String 
    f_desc = mf_desc 
End Property 
 
Public Property Let ft_id(ByVal vData As Integer) 
    mft_id = vData 
End Property 
 
Public Property Get ft_id() As Integer 
    ft_id = mft_id 
End Property 
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6. ‘Features’ Collection Class for Multiple Feature Instances 
 
Option Explicit 
'Declare a variable of type collection 
Private mFs As New Collection 
 
'Expose count property 
Public Property Get Count() As Long 
   Count = mFs.Count 
End Property 
 
'Wrapper for Item method 
Public Function Item(Index As Variant) As CFeature 
   Set Item = mFs.Item(Index) 
End Function 
 
'Wrapper for Add method 
Public Function add(mf_id As Integer, mf_name As String, mf_desc As String, mft_id As 
Integer) As CFeature 
   'Define a new CFeature class 
   Dim mF As New CFeature 
 
   With mF 
      'set property 
      .f_id = mf_id 
      .f_name = mf_name 
      .f_desc = mf_desc 
      .ft_id = mft_id 
   End With 
 
   'add Feature to Features collection 
   mFs.add mF 
End Function 
 
Public Sub Delete(ByVal Index As Variant) 
   mFs.Remove Index 
End Sub 
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7. Other Class Modules for Single Object 
 
‘SpatialRef’ Class Module for Single Spatial Reference 
 
‘FeatureRel’ Class Module for Single Feature Relationship 
 
‘AttType’ Class Module for Single Attribute Type  
 
‘Spatial’ Class Module for Single Spatial Attribute 
 
‘Theme’ Class Module for Single Thematic Attribute 
 
‘Time’ Class Module for Single Temporal Attribute 
 
‘TimeRel’ Class Module for Single Temporal Relationship 
 
 
 

8. Other Collection Classes for Multiple Objects 
 
‘FeatureRels’ Collection Class for Multiple Feature Relationship Instances 
 
‘AttTypes’ Collection Class for Multiple Attribute Type Instances 
 
‘Spatials’ Collection Class for Multiple Spatial Attribute Instances 
 
‘Themes’ Collection Class for Multiple Thematic Attribute Instances 
 
‘Times’ Collection Class for Multiple Temporal Attribute Instances 
 
‘TimeRels’ Collection Class for Multiple Temporal Relationship Instances 
 

 


