
A Model That Combines Diagnostic Classification Assessment with

Mixture Item Response Theory Models

by

Hye-Jeong Choi

(Under the direction of Allan S. Cohen and Jonathan L. Templin)

Abstract

The purpose of this dissertation is to present a new psychometric model that combines

a Mixture Rasch model with a diagnostic model. We refer to this model as a diagnostic

classification mixture Rasch model (DCMixRM). The motivation for the development of the

DCMixRM is twofold. First, the DCMixRM is designed to provide rigorous explanation as

to factors that are potentially causing the latent classes to form. In doing so, this model uses

attribute mastery states as covariates. Second, the DCMixRM is also designed to connect

assessment to instruction by furnishing diagnostic information along with a general ability

level.

This model consists of two components: measurement and structural components. The

measurement component includes specification of item responses through simultaneously

taking into account three sets of latent variables, such as a general ability, latent class

membership, and mastery profiles of attributes. In the structural component, characteristics

of three latent variables are specified, including distributions of ability, latent class, and

mastery profile. Further, in this model, we specify the relationship among these variables,

particulary the association between latent class and mastery profile.

The DCMixRM has several advantages: it provides a way to detect heterogeneity in

the population; it yields more accurate classification of latent classes; it provides a rigorous



explanation about features of latent classes; it allows us to examine incompleteness of the

Q-matrix; and it allows us to make inferences on a global ability as well as on mastery profiles

formed over the set of attributes.

A series of simulation studies were conducted to evaluate the quality of estimation pro-

cess for the DCMixRM in terms of convergence and recovery of model parameters. For the

simulation study, two sets of tests were designed: 30 items involving 3 attributes (A3I30), 20

items involving 4 attributes (A4I20). Under each condition, sample size, similarity of ability

means across latent classes, and strength of relationship between latent class and mastery

profile were manipulated. Although for some conditions, convergence appeared problematic,

results showed that the model parameters were well recovered enough to lead appropriate

inferences on the model parameters.

We also applied the model to two empirical data sets, including an international reading

and a statewide mathematics tests to give an illustration of how the model can be used.

Further research directions were discussed as well.

Index words: Latent covariate, Local dependence, Multidimensionality, Latent class
model (LCM), Mixture Rasch Model (MixRM), Log-linear Cognitive
Diagnosis Model (LCDM), Diagnostic Classification Mixture Rasch
Model (DCMixRM)



A Model That Combines Diagnostic Classification Assessment with

Mixture Item Response Theory Models

by

Hye-Jeong Choi

B.A., Seoul National University, Seoul, Korea, 1992

M.A., Seoul National University, Seoul, Korea, 2001

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2010



c© 2010

Hye-Jeong Choi

All Rights Reserved



A Model That Combines Diagnostic Classification Assessment with

Mixture Item Response Theory Models

by

Hye-Jeong Choi

Approved:

Major Professors: Allan S. Cohen

Jonathan L. Templin

Committee: Deborah L. Bandalos

Robert A. Henson

Karen Samuelsen

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2010



Dedication

This is dedicated to my late father and my mother.

iv



Acknowledgments

Unlike in a deterministic world, in a probabilistic world, we talk a lot about uncertainty and

randomness which instill fears within our lives. However, I believe in Karma; there are always

reasons people connect to others in relationships. In particular, in order to be a parent of,

a teacher for, or a friend with another, a very special Karma is required from the eternal

previous lifetimes. Writing a dissertation can be a lonely and isolating experience, yet due to

existence of my special people from the Karma, for me it became a form of catharsis leading

to understanding myself, and I was able to see hopes out of fears I had encountered. Thus

it is time for me to acknowledge several individuals among whom I owe deepest gratitude.

I could not find a single word that I can convey my gratefulness to my advisor, Dr.

Allan S. Cohen. I am heartily thankful to him. Not only has he supported me with all the

resources during my graduate studies at UGA, but also he has demonstrated his faith in

me even when I truly doubted myself. My deepest appreciation goes to my co-advisor, Dr.

Jonathan L. Templin. Without his infectious enthusiasm and unlimited zeal about diagnostic

models and his persistent help, I could not have completed the simulation studies. Because

of them I could see the potential even through my despair.

I owe a special debt to Drs. Bandalos, Olejnik, and Kim. They have provided me with

a tremendous graduate education. They have taught me how to think about problems as a

researcher; they have shown me how to do research; and they have encouraged and inspired

me to become an independent scholar. I have been privileged to be their student.

Drs. Samuelsen and Henson deserve a special thanks as my dissertation committee mem-

bers and for their valuable suggestions and comments over writing the dissertation. I have

enjoyed their questions because they have always sharpened my mind about the model.

v



vi

Being a graduate student has brought me the frustration, pain, dissatisfaction, excite-

ment, meditation, and rich rewards. My graduate studies, however, would not have been the

same without the social and academic challenges and diversions provided by all my friends

in Athens. In particular, my enormous debt of gratitude can hardly be repaid to my friends

Laine Bradshaw and Gregory McClure who not only proof-read multiple versions of all the

chapters of this dissertation, but also provided many stylistic suggestions and substantive

challenges to help me improve my presentation and clarify my arguments.

In probability theory, conditional probability is one of the most important concepts.

However, I have learned that love of my family has never been conditional on anything.

They always love me whatever I am. Despite valuing becoming an independent scholar at

this moment, I still rely heavily on their love and I am just grateful for their unconditional

love. Without their love, I could not survive in this long journey.



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Statement of Problem . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Purpose of the Study . . . . . . . . . . . . . . . . . . . . 6

1.3 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . 6

2 THEORETICAL FRAMEWORK . . . . . . . . . . . . . . . . . . . . . 8

2.1 Latent Class Models (LCMs) . . . . . . . . . . . . . . . . . . 8

2.2 Mixture Rasch Models (MixRMs) . . . . . . . . . . . . . . . 11

2.3 Local dependence and Multidimensionality . . . . . . . . . 20

2.4 Diagnostic Classification Models (DCMs) . . . . . . . . . . 22

2.5 Diagnostic Classification MixRM (DCMixRM) . . . . . . . 33

3 SIMULATION STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Model Specifications . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 83

vii



viii

4 ILLUSTRATIVE ANALYSES: TWO EMPIRICAL STUDIES . . . . 86

4.1 DCMixRM with Reading Comprehension: PIRLS 2006 . . . 86

4.2 DCMixRM with Mathematics: State’s Accountability Test 101

4.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 110

5 CONCLUSIONS AND DISCUSSION . . . . . . . . . . . . . . . . . . . 113

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



List of Figures

2.1 Rost’s Illustration of a Mixture Rasch Model Application to a Physics Test . 15

2.2 A Schematic Representation of the Diagnostic Classification Mixture Rasch

Model (DCMixRM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Configuration of Connections among Components of DCMixRM . . . . . . . 37

3.1 Item Characteristic Curves of Two Items under the A3I30 Condition . . . . 48

3.2 Convergence Rate across Different Conditions . . . . . . . . . . . . . . . . . 54

3.3 Comparison of True and Estimated Values of Item Difficulty (A3I30) . . . . 56

3.4 Overall Bias and RMSE of Item Parameter Estimates (A3I30) . . . . . . . . 58

3.5 Bias and RMSE of Item Difficulty of Each Item (A3I30) . . . . . . . . . . . 59

3.6 Bias in Attribute Effect Estimates of Each Item (A3I30) . . . . . . . . . . . 59

3.7 Scatter Plot of Ability Parameter (θ) Estimates (A3I30) . . . . . . . . . . . 62

3.8 Comparison of True and Estimated Values of Relationship Parameters

between Latent Class and Mastery Profile (A3I30) . . . . . . . . . . . . . . . 66

3.9 Comparison of True and Estimated Values of Item Difficulty (A4I20) . . . . 70

3.10 Overall Bias and RMSE of Item Parameter Estimates (A4I20) . . . . . . . . 71

3.11 Bias and RMSE of Item Difficulty for Each Item (A4I20) . . . . . . . . . . . 72

3.12 Bias in Attribute Effect Estimates of Each Item (A4I20) . . . . . . . . . . . 73

3.13 Scatter Plot of Ability Parameter (θ) Estimates (A4I20) . . . . . . . . . . . 76

3.14 Comparison of True and Estimated Values of Relationship Parameters

between Latent Class and Mastery Profile (A4I20) . . . . . . . . . . . . . . . 81

4.1 Item Difficulty Patterns of the 2-Class DCMixRM for PIRLS 2006 . . . . . . 93

4.2 Item Characteristic Curves of PIRLS 2006 . . . . . . . . . . . . . . . . . . . 93

4.3 Ability Distributions of Two Classes for PIRLS 2006 . . . . . . . . . . . . . 94

ix



x

4.4 Distribution of Raw Scores of PIRLS 2006 . . . . . . . . . . . . . . . . . . . 94

4.5 Hypothetical Relationship among Attributes in PIRLS 2006 . . . . . . . . . 95

4.6 Mastery Profiles of United States and Austria of PIRLS 2006 . . . . . . . . . 99

4.7 Item Difficulty Patterns of the 2-Class DCMixRM for the Mathematics Test 104

4.8 Ability Distributions of Two Classes for the Mathematics Test . . . . . . . . 107

4.9 Distribution of Raw Scores of the Mathematics Test . . . . . . . . . . . . . . 107



List of Tables

2.1 Hypothetical Q-matrix of Five Items with Four Attributes . . . . . . . . . . 26

2.2 An Illustration of Covariate Effect on Latent Class Membership . . . . . . . 39

3.1 True Values of Examinees Proportions in Latent Classes and Mastery Profiles 45

3.2 Item Difficulty Parameters under Each Condition . . . . . . . . . . . . . . . 46

3.3 The Q-matrices under the A3I30 and A4I20 Conditions . . . . . . . . . . . . 47

3.4 Convergence Rate across Different Conditions . . . . . . . . . . . . . . . . . 53

3.5 Correlation between Item Parameters and Estimates (A3I30) . . . . . . . . . 55

3.6 Bias and RMSE of Item Parameter Estimates (A3I30) . . . . . . . . . . . . . 57

3.7 Correlation between Ability Parameters and Estimates (A3I30) . . . . . . . 61

3.8 Hit Rate of Membership in Latent Classes (A3I30) . . . . . . . . . . . . . . . 63

3.9 Hit Rate of Classification in Attribute Mastery States (A3I30) . . . . . . . . 63

3.10 Recovery of Ability (θ) Distribution Parameter Estimates (A3I30) . . . . . . 64

3.11 Recovery of Marginal Proportion of Latent Classes and Mastery Profiles (A3I30) 65

3.12 Recovery of Tetrachoric Correlation between Attributes (A3I30) . . . . . . . 65

3.13 Conditional Proportion of the Latent Class (A3I30) . . . . . . . . . . . . . . 67

3.14 Recovery of Relationship Parameters between Latent Class and Mastery Pro-

file (A3I30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.15 Correlation between Item Parameters and Estimates under the A4I20 . . . . 69

3.16 Bias and RMSE of Item Parameter Estimates (A4I20) . . . . . . . . . . . . . 72

3.17 Correlation between Ability Parameters and Estimates (A4I20) . . . . . . . 75

3.18 Hit Rate and Kappa of Class Membership in Latent Class (A4I20) . . . . . . 75

3.19 Hit Rate and Kappa of Classification in Mastery State of Attributes (A4I20) 77

3.20 Recovery of Ability (θ) Distribution Parameter Estimates (A4I20) . . . . . . 77

xi



xii

3.21 Recovery of Marginal Proportion of the Latent Class and Mastery Profile

(A4I20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.22 Recovery of Tetrachoric Correlation between Attributes (A4I20) . . . . . . . 78

3.23 Conditional Proportion of the Latent Class (A4I20) . . . . . . . . . . . . . . 79

3.24 Recovery of Relationship Parameters between Latent Class and Mastery Pro-

file (A4I20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Demographic Compositions of Examinees in PIRLS 2006 . . . . . . . . . . . 89

4.2 Q-matrix along with Mean and SD of Items in PIRLS 2006 . . . . . . . . . . 90

4.3 Two Released Items that Requires α2 (Inference) from PIRLS 2006 . . . . . 90

4.4 Goodness-of-Fit Statistics of DCMixRMs for PIRLS 2006 . . . . . . . . . . . 91

4.5 Item Difficulty and Attribute Effect of PIRLS 2006 . . . . . . . . . . . . . . 92

4.6 Examinee Classification Results with PIRLS 2006 . . . . . . . . . . . . . . . 96

4.7 Tetrachoric Correlation between Attributes of PIRLS 2006 . . . . . . . . . . 96

4.8 Effects of Mastery Profiles on Latent Class Membership of PIRLS 2006 . . . 99

4.9 Distribution of Latent Classes and Mastery Profiles of Each Country . . . . 100

4.10 Q-matrix with Mean and SD of Items in the Mathematics Test . . . . . . . . 102

4.11 Goodness-of-Fit Statistics of DCMixRMs for the Mathematics Test . . . . . 103

4.12 Item Difficulty and Attribute Effect of the Mathematics Test . . . . . . . . . 105

4.13 Examinee Classification Results with the Mathematics Test . . . . . . . . . . 106

4.14 Tetrachoric Correlations between Attributes of the Mathematics Test . . . . 108

4.15 Effects of Mastery Profiles on Latent Class Membership of Mathematics . . . 109



Chapter 1

INTRODUCTION

Assessments should be valued for their utility in facilitating constructive adapta-

tions of educational programs and for service in offering executable advice to both

students and teachers. Testing and learning should be integral events, guiding the

growth of competence. (Glaser, 1990, p. 480)

This chapter outlines the purpose and scope of the current study. We begin with a brief

description of mixture IRT models focusing on the way these models handle population

heterogeneity. Next, we describe the topic of this study, followed by a description of the

purpose and significance of the study. Finally, we present an overview of subsequent chapters.

1.1 Statement of Problem

Item response theory (IRT) models have been used to provide estimates of examinee pro-

ficiency and of the item parameters that are included in the model. The basic idea of IRT

models is that associations among item responses can be accounted for by a latent trait or

examinees’ ability. This is premised on two related assumptions: local independence and uni-

dimensionality. The local independence assumption states that the observed items are inde-

pendent of each other conditional on the value of the latent trait (Lazarsfeld & Henry, 1968).

This definition is a mathematical way of stating that the latent variable explains why the

observed items are related to one another. On the other hand, the unidimensionality assump-

tion refers to the assumption that items on the test measure a single dimension, ability.

That is, a single underlying latent variable can account for the association between items.

1
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Although these are considered two separate assumptions, the unidimensionality assumption

is not an additional assumption because the local dependence follows automatically from

unidimensionality (Lord, 1980). We detail these two assumptions later in Chapter 2. When

these assumptions hold, IRT models have desire features which would include item char-

acteristics are not group-dependent, ability estimates are not test-dependent, and a model

provides a measure of precision for each ability level(Hambleton, Swaminathan, & Rogers,

1991). Because of these features, it can be used for solving issues in testing such as equating

tests or constructing adaptive tests.

It is frequently the case, however, that local dependencies exist among item responses,

even after controlling for examinees’ ability. This has concerned psychometric researchers

because this local dependence is a serious violation of an IRT assumption. Research has

shown that there are at least two different sources of variation that can result in these

dependencies (Steinberg, Thissen, & Wainer, 2000). First, not all individuals solve test items

in the same way because individuals’ cognitive patterns can differ from one another. Second,

a test consists of several sets of items, each set measuring related but distinct components

designed to assess a common latent trait. Both of these sources of variation cause local

dependence, resulting in secondary dimension(s) in the data. For the purposes of this dis-

sertation, we consider the former source of variability as leading to heterogeneity in the

examinee population and the second source of variability as leading to multidimensionality

in the test items.

Rost (1990) developed the mixture Rasch model (MixRM) to address the local depen-

dence caused by the first source, which is the population heterogeneity. He combined a Rasch

model with a latent class model (LCM) to detect the existence of two or more population

subtypes or latent classes in the data. This is done while also obtaining model-based item

and ability estimates within each latent class. This idea has been extended to more general

IRT models (von Davier & Rost, 2006). Interest in the mixture IRT (MixIRT) models has

grown as researchers have become aware that finding latent subgroups in the data may not
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be that uncommon. Further, such models have been shown to provide a useful framework

for detecting and explaining the differential behavior of members of these latent groups. To

illustrate how to employ MixRM, Rost (1990) fit the model to a physics test data set and

found two latent groups of examinees who responded differently to a set of physics test items.

Members in these two latent groups were characterized as practice- or theory-oriented groups

because one group was better at practice-related items, and the other group was better at

theory-based items. Similarly, in spacial visualization tasks Mislevy, Wingersky, Irvine, and

Dann (1991) found two latent groups that differed in their use of problem solving strategies

for answering test items. One latent group tended to use a rotational strategy, and the other

latent group tended to use an analytical strategy to solve the same mathematics problems.

As shown in both studies above, after identifying latent groups using a MixIRT model,

the next step is to explain the difference(s) between the groups. That is, one needs to

determine what might be the sources of variation that made these different latent classes

form. Unfortunately, the resulting solution from fitting MixIRT models does not by itself

necessarily lead directly to an explanation about why latent classes response differently

to the same items. Most current applications of MixIRT models, in fact, rely on post-hoc

analyses to identify characteristics of examinees in different latent classes (e. g. Maij-de Meij,

Kelderman, & van der Flier, 2008; Cohen & Bolt, 2005; Hong & Min, 2007). One way to

improve some of the explanatory power of such models is to include covariate(s) to help

explain latent class membership.

Smit, Kelderman, and van der Flier (1999, 2000, 2003) have shown that inclusion of

external collateral information, (i.e., as covariate(s)) in the MixIRT model has the potential

to be useful for providing information that can be helpful in describing characteristics of

latent classes to the extent that latent class membership is related to that information. They

also argue that this use of covariates improves the accuracy of detection of latent classes and

latent class membership, even when sample sizes or differences between latent classes are

small.



4

To date, typical covariates include manifest variables such as age, gender, and ethnicity.

Rost (1990) and Mislevy et al. (1991) note, however, that such manifest variables might

not be as informative as would be needed for describing the differences in response patterns

among the latent groups. More useful variables for this purpose would be those that can pro-

vide a more direct explanation as to why these differences in responding may have occurred.

For example, it would be useful if a model could be developed to indicate why some indi-

viduals were more likely to use a rotational strategy in solving mathematical problems while

others tended to use an analytical strategy.

In this regard, Cohen, Gregg, and Deng (2005) found that differences in mastery of

specific mathematical skills were associated with membership in latent classes detected in

a statewide mathematical testing program. From this result, they concluded that the prior

knowledge may have resulted in members of different latent groups taking different paths to

arrive at the same answers to test questions. In other words, differences in mastery state of

various aspects of mathematics required to correctly answer the items on the test may be

one reason why individuals in different latent groups display different response patterns.

This indicates that multidimensionality in a set of test items, which is the second source

of variation that causes local dependence, can be related to different response patterns among

latent classes, or population heterogeneity. What would be useful is to be able to determine if

these skills or components of knowledge can be used to help explain latent class membership

and differences among latent classes. That is, if a test is made up of items to cover several

different, albeit related skills, and if examinees differ in mastery status on these skills, then

the dissimilarity in examinees’ prior mastery status on these skills could affect their response

strategies. For example, some examinees may have had more prior knowledge of geometry

than others, and thus it may be more effective for them to use a rotational strategy than an

analytical strategy to solve certain mathematics items.

One challenge in using individuals’ mastery statuses on particular aspects of ability as

covariates for understanding differences among members of distinct latent groups, however,
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is that these states are themselves latent variables which we cannot observe these states

directly. In order to use the mastery statuses, or more precisely, the latent mastery states,

as exploratory information, it is necessary to first detect mastery statuses so that they can

be employed as covariates for helping to explain membership in the latent groups.

To find a solution to this issue, in this study we proposes a model which is designed

to extract information about individuals’ mastery states as well as a general ability and

then also use that information as covariates to explain latent class membership in a MixIRT

model. In doing so, we combine a MixRM with a diagnostic classification model (DCM) to

identify individual mastery states on the individual skills needed for answering the questions

on the test. We focus only on the MixRM although other MixIRT models could be used.

As is described in detain in Chapter 2, DCMs can be considered restricted latent class

models. These models provide a pattern of mastery and non-mastery for each examinee,

thereby providing substantial diagnostic information that can be used to better understand

examinee performance. Unlike traditional IRT models, these models do not require the uni-

dimensionality assumption. In fact, they explicitly specify multidimensionality of test items,

and thus allow one to handle multidimensionality in item responses, if necessary.

Hereafter we refer to this new model as a diagnostic classification mixture Rasch model

(DCMixRM). This model retains the benefits of the LCM, the Rasch model, and a diagnostic

classification model without having some of the drawbacks of each. Specifically, the model

identifies individuals’ mastery states in skill knowledge and simultaneously uses this informa-

tion for characterizing latent classes detected by the MixRM model. That is, DCMixRM per-

mits classifying individuals’ mastery states in a multidimensional space as well as detecting

population heterogeneity. Furthermore, it uses different mastery states to describe response

pattern heterogeneity, even when examinees have the same level of general ability.

In summary, the basic idea of the model proposed in this study is that if or when two

sources of local dependence exist, including them jointly in the model can resolve the local

dependence issue and render a description of their relationship.
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1.2 The Purpose of the Study

The main purpose of this dissertation is to propose a new model which combines a MixRM

and a diagnostic assessment model to directly relate latent class membership to mastery

status and to show how this model can be carried out through a maximum likelihood

estimator using a standard structural equation modeling software. A unique component

addressed in the model developed in this study is the focus on the impact of the mastery

state on latent class membership. In so doing, the model takes advantage of two sources of

the secondary dimensionality in item response data: heterogeneity and multidimensionality.

The model, the DCMixRM, offers three advantages: (1) it furnishes rich information

about examinees’ performance including information about a general ability, the mastery

states of the examinee on each skill (also known as an attribute), and membership in latent

classes, if the population is composed of several latent classes; (2) it improves the power to

detect latent classes by using latent covariate(s) extracted directly from item responses; and

(3) it provides a means of using examinees’ mastery states to account for why latent classes

may respond differently to items.

An important concern in the application of any new models is the availability of software

to estimate model parameters. In this study, commercially available standard software, Mplus

Version 5.21 (Muthén & Muthén, 1998-2007), is used to implement the DCMixRM.

1.3 Overview of Chapters

The remainder of this dissertation is organized as follows: In Chapter 2, relevant psychometric

models are reviewed including the Rasch Model, the latent class model (LCM), and the log-

linear cognitive diagnosis model (LCDM). The review focuses on strengths and weaknesses of

each model. At the end of Chapter 2, the DCMixRM is introduced by showing how a Rasch

model, an LCM and an LCDM contribute to and can be combined to form the DCMixRM.

The primary challenge in this model is that three person-related latent variables (ability,
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mastery profile, and class membership) are embedded in one model, all of which need to

be simultaneously estimated from the data. For such a complex model, it is necessary to

verify whether the model and estimation procedures behavior appropriately in estimating

relevant parameters. Hence, in Chapter 3 we present a series of simulation studies conducted

to evaluate the estimation process with respect to the recovery of model parameters under

varying conditions. In Chapter 4 we demonstrates how to apply this new model to large-scale

data sets from reading and mathematics tests. Finally, in Chapter 5, we conclude the study

by presenting discussion of results and directions for future research.



Chapter 2

THEORETICAL FRAMEWORK

This chapter discusses how to integrate three latent variable models to formulate the latent

space involved in the DCMixRM proposed in this dissertation. We begin by reviewing several

relevant latent variable models, including latent class models (LCMs), mixture Rasch models

(MixRMs), and diagnostic classification models (DCMs). Among these models, DCMs have

been recently developed and these models intend to classify individuals’ mastery states on

the skills needed for answering the questions on the test. We focus on Log-linear Cognitive

Diagnosis Models (LCDMs) because they provide the most general framework for DCMs.

Advantages and limitations of each model are described, followed by a discussion of how the

advantages of each model provide the bases for building the diagnostic classification mixture

Rasch model (DCMixRM) proposed in this study. In the last section of this chapter, the

characteristics of the DCMixRM are described in detail.

2.1 Latent Class Models (LCMs)

Latent Class Models (LCMs). Lazarsfeld and Henry (1968) delineated that latent struc-

ture models describe “the probability relation between the set of observed indicators and the

inferred position of the units involved in an empirical study” (p. 3), and “particular latent

structure model is a specification of the nature of the latent space, and of how the item

probabilities vary within the space” (p.16).

One of latent structure models is the latent class models (LCMs). These models include

the latent space consisting of a finite number of points called latent classes. The relation

8
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between the latent space and the observable indicators is defined through the axiom of local

independence. Lazarsfeld and Henry (1968) defined the local independence as:

Within a latent class, α, responses to different items are independent. The within

class probability of any pattern of response to any set of items is the product of

the appropriate marginal probabilities. (p. 22)

In other words, the underlying latent variable explains why the observed indicators are

related to one another. This is because if such a latent variable exists, after controlling for the

latent variable, the dependencies among the indicators should vanish. The local independence

assumption, the discrete nature of the latent variables, and the use of probability are the

most important elements of LCMs.

To outline LCMs in a mathematical form, suppose that (1) a sample of N individuals is

drawn from a population, (2) the population is composed of a mixture of G latent classes that

are mutually exclusive and exhaustive, (3) the proportion of individuals in each latent class,

π1, π2, ..., πG, is unknown, and (4) the class membership of each individual is also unknown.

Let Yij ∈ {0, 1} be a random variable indicating a response of individual i ∈ {1, 2, ..., N}
to item j ∈ {1, 2, ..., T}, and g ∈ {1, 2, ..., G} denote the latent class membership of the

individual. Under the assumption of local independence, the marginal probability of the

correct response, P (Yij = 1), can be written as

P (Yij = 1) =
G∑

g=1

πgP (Yij = 1|G = g), (2.1)

where πg denotes the latent class probability and P (Yij = 1|G = g) is the conditional

probability that individual i in class g correctly answers item j.

As shown in Equation 2.1, the probability of obtaining response Yij is a weighted average

of the class-specific probabilities. The latent class probability πg and the conditional prob-

ability P (Yij = 1|G = g), therefore, are the two main components of LCMs. The latent

class probability πg describes the distribution of latent classes; the number of classes and the

relative sizes of these classes. Since the conditional probability P (Yij=1|G = g) indicates the
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probability that individuals in class g correctly respond to item j, it can be used to describe

the characteristics of latent classes. This use of the conditional probability can be considered

an analogue of a factor loading in factor analysis (McCutcheon, 1987).

Since both the latent class probability and conditional probability are probabilities, they

should satisfy properties of a probability: (1) both should be non-negative, (2) the sum of

the latent class probabilities over all latent classes should equal one (
∑G

g=1 πg = 1), and

(3) within each class the conditional probability over all categories for each item sum to 1,

for example, for binary responses, P (Yij = 1|G = g) + P (Yij = 0|G = g) = 1 (Dayton &

Macready, 2007).

The main purpose of LCMs is to define a set of latent classes within which items are

locally independent. Once the parameters in LCMs are estimated, it is possible to classify

each individual into the appropriate latent class. The modal rule is the most commonly used

for assigning an individual to a latent class (McCutcheon, 1987). In this way, a person is

classified into the likely class with the highest a posteriori probability of the membership by

utilizing the Bayes rule:

P (G = g|Y = y) =
P (G = g)P (Y = y|G = g)

P (Y = y)
. (2.2)

LCMs have been used for detecting latent heterogeneity in the population in several

research areas: medical research (e.g., Laumann, Paik, & Rosen, 1999; Bucholz et al.,

1996), economics (e.g., Jedidi, Jagpal, & DeSarbo, 1997; Eckstein & Wolpin, 1999; Deb &

Trivedi, 2002; Thacher & Morey, 2003), psychometric research (e.g., Thomas & Horton,

1997; Uebersax, 1999), and educational research (e.g., Aitkin, Bennett, & Hesketh, 1981;

Brown, Askew, Baker, Denvir, & Millett, 1998). More general overviews of LCMs, including

identification issues, can be found in Lazarsfeld and Henry (1968), Goodman (1974), and

Hagenaars and McCutcheon (2002).

Limitations of the LCMs. The LCMs allow for differences in response probabilities

across latent classes, and yet, the conditional probability is the same for all members in the

same class. Stated differently, all individuals within a latent class have the same response
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probability for a given item (e.g., identical probability of a correct answer to an item). Since

this assumption is too strong for some cases, it is difficult to realize in practice, and may even

result in “spurious” latent classes being detected in order to reconcile the data structure to

the latent class model (Uebersax, 1999).

2.2 Mixture Rasch Models (MixRMs)

When introducing latent structure models, Lazarsfeld and Henry distinguished latent class

models from latent trait models depending upon whether the latent space is continuous or

discrete. Whereas LCMs assume a discrete latent variable to account for the relationship

among item responses, as latent trait models, item response theory (IRT) models assume a

continuous latent space as cause of association among indicators. However, MixRMs combine

both discrete and continuous latent variables as the latent space in the models. In MixRMs,

a continuous latent variable is modeled by a Rasch model, and a discrete latent variable is

modeled by an LCM. Below, we begin with the Rasch model, and then describe how it can

be combined with an LCM. We also extend how a covariate or covariates can be incorporated

with MixRMs.

The Rasch Model. Rasch (1960/80) emphasized the importance of the use of proba-

bility in describing the response behavior of an examinee on a psychological or educational

assessment. He specified the probability of correct answer through relationship between item

and ability as

every person has a certain probability of solving correctly each problem of a given

kind and his probability (P ) is - independently of the answers to the preceding

problems - given by formula 2.3 where ξ is a characteristic of the person and δ

of the problem

P =
ξ

ξ + δ
. (2.3)
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Even though his choice of the model was rather simple, this model has quite important

features: it assumes statistical independence between examinees and items (this is the local

independence assumption); it separates item and person parameters; and it yields a scale for

latent ability. This model is equivalent to the one parameter logistic IRT model as

P (Yij = 1|θi) = exp(θi − bj)

1 + exp(θi − bj)
, (2.4)

where Yij indicates response of individual i to item j; θi is an ability parameter of individual

i; bj is a difficulty parameter of item j; and P (Yij = 1|θi) denotes the probability of a correct

answer to item j given ability level θ (Baker & Kim, 2004). This probability is a function

of examinee ability and the item difficulty and is the same as Equation 2.3. When examinee

ability equals item difficulty, the probability of an examinee answering the item correctly is

.5. For each ability, performance increases as difficulty decreases or ability increases. That

is, items and individuals are strictly monotonically ordered.

As with LCMs, the local independence assumption is necessary in the Rasch model for

linking the observed item responses and the latent variable. In other words, it is assumed

that responses to any items are uncorrelated for a given ability level. Furthermore, the latent

space in the Rasch model consists of only one continuous variable, examinees’ ability, and

this is also referred to as unidimensionality.

As with LCM, local independence or unidimensionality may be too strong, and it may

be violated in practice (Dorans & Kingston, 1985). That is, responses may be determined

by more than a single latent variable. When this is the case, the Rasch model does not

accurately describe the generation of item responses. Several alternative models have been

developed to relax this assumption, including the multidimensional IRT model (Reckase,

1997), the Hybrid model (Yamamoto, 1987), and the Saltus model (Wilson, 1989).

It is also possible that the population under consideration may not be homogeneous with

respect to the latent variable, contrary to assumption in the Rasch Model (Rost, 1990).

Instead, the population may be composed of several latent classes, and further it may be

that individuals in different latent classes may possess different response propensities to an
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item, which may, in turn, result in different probabilities of a correct response. One way to

model such data is to use a MixRM.

Mixture Rasch Models (MixRMs). As discussed in the previous chapter, “hetero-

geneity” in a population has been a concern among researchers in educational and psycho-

logical measurement. The question is whether or not the latent ability “turns out to be

scalable traits for all individuals when analyzed with a latent trait model accounting for

differential scalability in latent subpopulations” (Rost, Carstensen, & von Davier, 1997, p.

324). Rost (1990) suggested the mixture Rasch models (MixRMs) where the Rasch model is

consolidated with an LCM to overcome “the deficiencies of both approaches and retain their

positive features” (p. 271).

The main ideas of MixRMs are: (1) the observed item responses arise from a number of

subpopulations, or latent classes; (2) the latent classes are assumed to be mutually exclusive

and exhaustive; and (3) the Rasch model holds in each latent class, and yet different sets

of item difficulties may hold in different classes. Then, for a MixRM, the probability of the

correct response can be written as

P (Yij = 1|θi) =
G∑

g=1

πgP (Yij = 1|θi, g) =
G∑

g=1

πg
exp(θi − bjg)

1 + exp(θi − bjg)
, (2.5)

where θi denotes the ability of person i as in the Rasch model, πg is latent class probability

as in an LCM, and P (Yij = 1|θi, g) denotes the conditional probability that person i gives a

correct response to item j given the class membership g and ability level θ; bjg has a critical

meaning here such that it denotes item difficulty of item j for class g, indicating that each

class has its own item difficulty. It should be noted that unlike items, individuals have one

ability parameter given their latent class membership, and therefore examinees do not have

subscripts to indicate their class membership.

This model allows not only heterogeneity across latent classes but also variability among

persons’ ability within a latent class. The class membership can be understood as reflecting

qualitative differences in response patterns across latent classes while ability can be under-

stood as reflecting quantitative differences in ability level. If item difficulties are on the same
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scale, the item difficulty patterns among latent classes can also help to characterize the latent

classes. Furthermore, the MixRM (and MixIRT models in general) may be viewed as one

solution for handling the possibility of over-extraction of the number of classes that may arise

with LCMs, caused by local dependence (as noted in Chapter 1). As a result, the MixRM

would be expected to recover “true” latent classes more accurately than the conventional

LCMs.

Due to such flexibility and the potential for finding meaningful latent classes, interest

in MixRMs has been growing in several research areas, including marketing (e.g., Kaiser &

Keller, 2001), medical research (e.g., Bonnefon, Eid, Vautier, & Jmel, 2008), and longitu-

dinal data analysis (e.g., Meiser, Stern, & Langeheine, 1998; Feddag, 2008). This is partic-

ularly the case in educational and psychological assessment, where applications of MixRMs

include studies on different problem solving strategies (e.g., Mislevy & Verhelst, 1990; Mis-

levy et al., 1991; Rijkes & Kelderman, 2006; Rost & von Davier, 1993), differential item

functioning (DIF) (e.g., Samuelsen, 2005; Schultz-Larsen, Kreiner, & Lomholt, 2007; Van

Nijlen & Janssen, 2008), test speededness (e.g., Bolt, Cohen, & Wollack, 2002; Meyer, 2008;

Mroch, Bolt, & Wollack, 2005), faking or desirability tendency in personality questionnaires

(e.g., Maij-de Meij et al., 2008), subtypes in personality (e.g., Hong & Min, 2007; Meiser &

Machunsky, 2008; Rost et al., 1997), different mastery types of skills (e.g., Bolt, 1999; Rost,

1990), and measurement invariance (e.g., Eid & Rauber, 2000). von Davier and Carstensen

(2007) provide a more extensive description of applications of MixRMs.

As mentioned briefly in Chapter 1, in general, analyses with the MixRM are conducted in

sequence. First, one fits candidate models with different numbers of latent classes. Next, one

selects the best fitting model among the candidates from the first step. Since these models are

not nested within one another, the model selection decision is made by comparing information

indices such as Akaike’s information criterion (AIC), Bayesian Information Criterion (BIC),

or Deviance information criterion (DIC) (see, for example, Li, Cohen, Kim, & Cho, 2009).

The last step is to provide an interpretation of the parameters for the chosen model. In
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Figure 2.1: Rost’s Illustration of a Mixture Rasch Model Application to a Physics Test

this regard, the class-specific item difficulties may be useful for examining the heterogeneity

among the populations defined by the different latent classes. In addition, the item difficulty

patterns of each class can help one infer what may have caused the classes to form. This

is because, in part, the class-specific item difficulties may reveal distinctive profiles for each

class in response propensities (i.e., which items are more or less difficult for the members

of the different classes). On the basis of the profile of the class-specific item difficulties, the

researcher might be able to make some inferences about the second dimension or dimension(s)

causing the classes to form.

To illustrate how the MixRMs can work for test items, Rost (1990) fit a physics test with

three different MixRMs, each with a different number of latent classes. Taking into account

interpretability along with fit statistics, he concluded that there existed two distinct latent

classes: a practice-oriented latent class and a theory-oriented latent class. This interpretation
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was drawn by scrutinizing the item response pattern of each latent class. As shown in Figure

2.1, for the theory-oriented class, the first five items turned out to be easier, whereas for the

practice-oriented latent class, the last five items were easier. An important point illustrated

by Rost (1990) is that determining how many latent classes remain is not simply a matter

of statistical fit indices, but it is also important to have a substantive rationale for which

model fits better as it is this rationale that helps to delineate what causes the latent classes

to form in the population (see, for example, Bolt et al., 2002; Mislevy et al., 1991).

Note that depending on research design and research questions, a MixRM analysis can

be conducted as either exploratory or confirmatory. The exploratory analysis can be carried

on to attempt to understand the latent structure in the population and the nature of the

qualitative differences between classes. On the other hand, the confirmatory analysis can be

used to test hypotheses about different interpretations. In both types of analyses, a test is

conducted to determine which model fits better (see, for example, Li, Cohen, & Bottge, 2007).

If a researcher conducts an exploratory analysis, ad hoc analyses can be used to interpret the

resulting latent classes. For instance, after finding three classes in the data for a depression

scale using a MixRM (i.e., loss-of-libido, hopelessness, and genuine depression class), in order

to characterize latent classes, Hong and Min (2007) fit a multinomial logistic model to the

data set in which posterior membership was regressed on gender. They concluded that females

tend to belong to a genuinely depressed class more than males do. As in exploratory factor

analysis, in the absence of a theoretical justification for the interpretation, however, the

exploratory MixRM analyses alone provide no guarantee that any particular interpretation

is accurate.

Limitations of MixRMs. The MixRMs have the potential for developing a scale for

each latent class, and yet this comes with possible disadvantages. First, the number of param-

eters in MixRMs increases exponentially as the number of latent classes increases because

the model requires estimating ability and membership parameters for each examinee and

each item parameters for each class. As a result, to obtain reliable estimates, larger samples



17

are required as the number of latent classes increases (Li et al., 2007). Second, as pointed

out previously, MixRMs themselves do not provide an explicit rationale as to what causes

the latent classes to form. In most cases, in order to provide an accurate explanation for how

the latent classes differ, researchers must either have a well-grounded theoretical rationale in

advance or they need to conduct appropriate ad hoc analyses to relate the class membership

to external (and typically manifest) variables. Care needs to be taken in either case as the

results may be confounded by classification, measurement, and other possible types of errors.

To address both issues, Smit et al. (1999) have suggested using additional information in

the form of covariates to help improve the detection of latent classes in MixRMs. As Smit

et al. (1999) note, the effectiveness of the covariate is based on the strength of the relation

with latent class membership. In the next section, we detail their idea of the inclusion of

covariates in MixRMs.

Mixture Rasch Models (MixRMs) with Covariate(s). One of the most challenging

tasks in utilizing a MixRM is to determine what may have caused the heterogeneity in

the population. For example, Mislevy et al. (1991) encountered two groups of people who

employed different cognitive strategies to solve the same spatial visualization problems. Even

after two latent groups were detected, however, it was still necessary to determine who chose

the rotation strategy and who chose the analytic strategy. Further, it was necessary to

describe why some individuals had difficulty with problems dealing with length, and yet

were able to solve problems about degree of rotation and vice versa.

The same type of question is present with the use of LCMs. To address this issue with

LCMs, Dayton and Macready (1988) proposed concomitant-variable (or covariate) latent

class models in which covariate(s) are included to predict class membership. This type of

models is also known as a latent class regression model because the model forms a logistic

regression model. In the case of two classes with one covariate, the probability of a person

being in the first class conditioning on a covariate would be formulated as

π1|x =
exp(β0 + β1x)

1 + exp(β0 + β1x)
, (2.6)
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where β0 is an intercept, x denotes the covariate, and β1 is a logistic regression coefficient

for x, which indicates the magnitude of impact of x on a person belonging to the first class

compared with the second class. To generalize Equation 2.6 to multiple classes with multiple

covariates, let X = (x1, x2, ..., xp) denote realization of p predictors. Then, the probability

that person i with X falls into class g can be represented by

πg|X =
exp(βg0 + β′

gX)

1 +
∑G−1

g=1 exp(βg0 + β′
gX)

, (2.7)

where βg0 is an intercept of class g, βg = (βg1, βg2, ..., βgp) are logistic regression coefficients

of a set of covariates X = (x1, x2, ..., xp) for class g, and the last class, or G is the arbitrary

chosen reference class. The β ’s indicate the influence of log-odds that an individual falls

into class g compared with being in class G. Covariates used in this way have impact only

on the latent class membership, but not on the conditional probability of an item response.

The item response is still a function of item and person parameters within class. We revisit

to distinguish this equation from Equation 2.18 later.

Latent class regression models have several advantages: (1) they allow for testing

hypotheses about the relationships between latent class membership and covariates in the

model while taking estimation errors into consideration; (2) since the models take a logistic

regression form, they are flexible in the sense that covariates can be either continuous or

categorical, and interactions between covariates can be easily modeled via products of their

respective terms; and (3) the models can be applied to small data sets because the covariates

may provide additional information and provide more degrees of freedom for estimation.

See Chung (2003) for detailed descriptions regarding estimation procedures for LCMs with

covariates models.

Smit et al. (1999, 2000, 2003) presented the same idea applied to MixRMs. They suggest

using collateral variable(s) to predict membership in classes by simply substituting πg in
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Equation 2.5 with πg|X in Equation 2.7 but keeping the conditional probability as follows

P (Yij = 1|θi,X) =
G∑

g=1

πg|X︷ ︸︸ ︷
exp(βg0 + β′

gX)

1 +
∑G−1

g=1 exp(βg0 + β′
gX)

Rasch︷ ︸︸ ︷
exp(θi − bjg)

1 + exp(θi − bjg)
(2.8)

where βg0 denotes an intercept for class g, and βg = (βg1, βg2, ..., βgp) is a vector of logistic

regression coefficients of covariates, and θ and bjg are ability and a class-specific item dif-

ficulty, respectively. They argued that by including collateral variable(s), one may possibly

obtain more stable identification of latent classes and reduced standard errors of estimation.

Cho, Cohen, and Kim (2006) noted that the use of covariates, in fact, improved recovery

of both item difficulty and group membership, and this use may reduce the attenuation in

estimation of the relationship between covariates and class membership which can occur in

ad hoc analyses noted previously. To some extent, the use of covariates also has the potential

to aid in detecting latent classes when the sample sizes or differences among latent classes

are small (Cho, Cohen, Kim, & Bottge, 2007; Li et al., 2007).

To date, most covariates considered in the MixRM have been manifest variables such as

race, gender, English language learner status, etc. Such covariates are useful to the extent

they are associated with the factor(s) causing the latent classes to form. Even though they

may be proxies for the underlying causes, unfortunately most manifest variables are not

themselves causally related to why the latent classes form. As a result, these manifest covari-

ates actually may tell us little about what have caused the classes to form.

For example, Samuelsen (2005) included ethnicity and gender as covariates of a MixRM

in DIF analyses of an English language test in order to investigate whether such variables

were related to the underlying cause of the DIF. She, however, did not find a sufficiently

strong association between latent class and either gender or ethnicity to adequately explain

the DIF present in an English language proficiency test. Rather, by investigating patterns

of item difficulties between two classes, she suggested that the type of instruction or the

cognitive style of the students were more plausible explanations for the causes of the differ-

ences observed in item functioning between the classes. As another example, Lee, Fradd, and
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Sutman (1995) found that students with adequate knowledge were more adept at applying

appropriate problem solving strategies specific to the tasks than were their peers who had

less knowledge in science class. They concluded content knowledge had something to do with

the use of particular strategies for solving problems on a science test.

These studies suggest that examinees’ knowledge states may result in different ways of

thinking or different ways of approaching problems, and these differences may result in the

formation of latent classes. From here, we may conclude that to understand the formation of

latent classes, it may be instructive to better understand the structure of examinees’ knowl-

edge relative to the use of particular strategies for answering test items. One challenge is that,

as with ability in IRT, knowledge state is a latent construct, and adding this kind of variable

to the MixRM requires adding a second set of latent variables. Fortunately, it is possible to

take advantage of recent advances in the development of DCMs for describing examinees’

knowledge states. In this dissertation, we make use of this to facilitate the development of

the DCMixRM. Before detailing DCMs, in the next section, we connect local dependence

and multidimensionality.

2.3 Local dependence and Multidimensionality

The assumption of local independence is pivotal in both LCMs and IRT models. This assump-

tion implies that the latent variables imposed by the model should fully account for the

associations between observed item responses. Mathematically speaking, item responses can

be related to each other only though the imposed latent space. Therefore, in a fixed latent

space, the joint distribution of item responses is equal to the product of the marginal item

distributions. This can be written as

P (Yi1 = 1, Yi2 = 1, ..., YiT = 1|Θi) =
T∏

j=1

P (Yij = 1|Θi), (2.9)

where Yij are the item responses, Θi are parameters in the latent space, and P (Yij = 1|Θi)

are the conditional probabilities of a correct answer given the parameters.
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Local dependencies, however, are often observed in practice. These dependencies can

arise from several sources including fatigue, examinee knowledge or ability in specific areas,

speededness, item format, passage dependence, item chaining (i.e., relation of item responses

through a particular stimulus), raters, or item content etc. (Yen, 1993). Some dependencies

are irrelevant to the latent variable of interest, while others are necessarily related to a

dimension of the latent space being measured.

Ignoring local dependence among items may result in overestimating the precision of the

measurements and biased estimates, and therefore it also may lead to misinterpretation of

the latent space (Yen, 1993; Wainer & Thissen, 1996). This is particularly the case when the

local dependence suggests multidimensionality in test items. Hence, it is useful to consider

the distinction between violation of local independence due to idiosyncratic features of test

format and the departures from unidimensionality (Rosenbaum, 1988). The former can be

considered nuisance variation, but the latter may be substantially significant in detecting

the latent space which needs to be accounted for in modeling item responses.

While discussing the construct validity of IRT models, Steinberg et al. (2000) present a

distinction between two types of sources which can cause the multidimensionality, or local

dependence in test items: differences in examinees’ cognitive patterns (between group), and

testing formats (within group). Previously, we also mentioned that examinees’ cognitive

difference may result in heterogeneity in population and testing formats can result in multi-

dimensionality.

To copy with local dependence, testlet models (e.g., Bradlow, Wainer, & Wang, 1999),

hybrid models (e.g., Yamamoto, 1987), rater effect models (e.g., Patz, Junker, Johnson, &

Mariano, 2002), and method effect models (e.g., Tomás & Oliver, 1999) have been developed.

Each model focuses on specific source to cause the local dependence, or a secondary dimension

among items, but typically all of these models consider this secondary dimension a nuisance

dimension or noise, which is unrelated to the latent variable measured by test items. Bifactor

models, however, provide an alternative for resolving the local dependence and accounting
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for the a set of secondary dimension, or multidimensionality, among item responses. This is

done by assuming that the latent space is made up of multiple domain specific factors along

with a global factor (Holzinger & Swineford, 1937). The DCMixRM is similar to bifactor

models in the sense that it assumes that there are several domain or group factors as well as

a general factor.

In the next section, we describe DCMs in greater detail. We show how DCMs can be

used to model discrete latent variables in multidimensional space. Moreover, we present how

this multidimensional space can be used to account for heterogeneity in population.

2.4 Diagnostic Classification Models (DCMs)

IRT models have been successfully applied in many areas because by using these models one

can establish a common metric for expressing estimates of item and ability parameters (Baker

& Kim, 2004). One concern with the use of IRT models, however, is that the ability measures

usually provide only a coarse description of the latent variable that explains examinees’ item

responses. IRT models, particularly unidimensional IRT models, provide a linear explanation

of the latent construct but may not lead to a more direct understanding of the possible factors

involved. In other words, IRT models are useful for ranking, comparing examinees, or even

for predicting who will do well in future, but IRT scales do not generally provide sufficient

diagnostic information for helping teachers intervene with students.

At the heart of this criticism is a recognition of the need for alternative assessment

methods from which one may draw more detailed diagnostic information about examinees,

and from which one may directly connect that information to examinees’ specific instructional

needs. Considered that diagnostic information or feedback about examinees’ weaknesses and

strengths plays a fundamentally important role of assessment in improving learning, this

agrement is valid. Emphasizing the instructional uses of tests, Linn (1986) argued that

a test that reliably rank orders students in terms of global test scores provides a

teacher with relatively little information about the nature of a student’s weak-
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nesses, errors, or gaps. For example, the knowledge that a student scores, say, in

the 10th percentile on a standardized arithmetic test suggests the student has a

general weakness in the area of arithmetic relative to his or her peers. However,

such a score does not, by itself, indicate the source of the problem or what should

be done to improve the student’s level of achievement; that is, it lacks diagnostic

information. (p. 1158)

Nichols, Chipman, and Brennan (1995) articulated the same concern:

The assessment must respond to questions like these: What is the appropriate

level of detail to represent performance for the purpose of diagnosis? What sta-

tistical approaches are most useful for making inferences about the procedural

knowledge underlying performance? How do you take into account the learning

that is, after all, the goal of the tutor? (p. 3)

The DCM family of models provides one response to this need. These models are intended

to yield diagnostic information specific to the mastery state of individual knowledge com-

ponents needed for correctly answering test items. Several terms have been used to refer

to these components, including attributes (e.g., Tatsuoka, 1983), skills (e.g., Francis et al.,

2006), components (e.g., Kruidenier, 2002), and sub-skills (e.g., Moseley, 2004). Attribute

is usually taken as the generic term in DCMs to characterize these specific components in

test items. In this dissertation, the terms attribute and mastery profile are used to indicate

a knowledge component and pattern of mastery status on these components, respectively.

Attributes defined for DCMs are intended to be used for providing diagnostic information in

a form that can be used for instructional decisions (Nichols et al., 1995). In this section, we

describe some variations of DCMs, but we focus more on describing the log-linear cognitive

diagnosis model (LCDM).

Diagnosis Classification Models (DCMs). The primary purpose of DCMs is to

provide a mathematical model that can be used to describe individuals’ knowledge states by
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referring to the presence or absence of the set of attributes needed for correctly answering

test items. The mastery status of an examinee on each of these attributes is assumed to

provide useful information on the examinee’s strengths and weaknesses. Rupp, Templin, and

Henson (2010) offer the following definition of diagnostic classification models:

Diagnostic classification models are probabilistic confirmatory multidimensional

latent variable models with a complex loading structure. They are suitable for

modeling categorical response variables and contain categorical latent variables

that generate latent classes, which are used to classify respondents. Thus, they

enable multiple criterion-referenced interpretations and associated feedback for

diagnostic purposes at a comparatively fine grain size. (p. 108)

This definition points out several important features of DCMs: the models are confirmatory;

more than one attribute can be involved in solving an item; latent variables are discrete and

multidimensional; and the models yield classification of examinees in terms of knowledge

states.

This definition covers the following models, most of which have been developed over

the last two decades: the Rule Space Model (Tatsuoka, 1983); the Restricted Latent Class

Model (Haertel, 1989); the Reparameterized Unified (Fusion) Model (RUM, DiBello, Stout,

& Roussos, 1995); the Noisy Inputs, Deterministic And Gate Model (NIDA, Maris, 1999);

the Deterministic Inputs, Noisy And Gate Model (DINA, Junker & Sijtsma, 2001); the Bayes

Nets Model (Mislevy, Steinberg, Breyer, Almond, & Johnson, 2002); the general diagnostic

model (GDM, von Davier, 2005); the Deterministic Input, Noisy Or Gate Model (DINO,

Templin & Henson, 2006); and the Log-linear Cognitive Diagnosis Model (LCDM) (Henson,

Templin, & Willse, 2009). See Fu (2005), Junker (1999), and Templin (2004) for a more

comprehensive review.

As detailed below, these models differ in how they conceptualize relationships among

attributes, but as defined, they have one thing in common: all the models classify examinees

based on mastery states on a set of attributes. The usual way of classifying examinees is to
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use mastery profiles. Typically, these are represented in vectors consisting of 1’s to indicate

mastery and 0’s to indicate non-mastery. For instance, if an examinee is classified as having

mastery profile (1,1,0,0), this is taken to mean the individual is thought to have mastered

the first two attributes but not the last two attributes.

Specifying mastery status in this way requires understanding knowledge structures in spe-

cific and detailed forms as the basis for classification. All DCMs explicitly include this knowl-

edge structure in the model. This is done through an item-by-attribute incidence matrix,

commonly referred to as a Q-matrix (Tatsuoka, 1990). The Q-matrix is designed to rep-

resent the relationship that is assumed between items and attributes. It indicates which

attributes are required for successful performance on specific items. The entries in the Q-

matrix can be viewed as loading indicators that specify a factor structure in a confirmatory

factor analysis (Rupp & Templin, 2008).

In order to understand how a Q-matrix works with DCMs, let Q be the K×T attribute-

by-item incidence matrix in which items are typically organized in rows and attributes in

columns, qjk be the entry that lies in the jth row and the kth column of a matrix:

qjk =





1 if item j involves attribute k

0 otherwise

and αi = (α1, α2, ..., αK) be a vector of an examinee’s mastery profile:

αi =





1 if person i mastered attribute k

0 otherwise.

Combining a Q-matrix and an examinee mastery profile produces a predicted, deterministic

response matrix. Table 2.1 depicts a Q-matrix with five items and four attributes along with

the predicted responses of the person who is presumed to have mastered first two attributes

but not the last two items, (1,1,0,0). According to this Q-matrix, the first item requires

mastery of the first attribute, the second item requires the first two attributes, the third

requires the fourth attribute, the fourth requires the second and third attributes, and the

last item requires the third and fourth attributes. As shown in the table, in general, the
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Table 2.1: Hypothetical Q-matrix of Five Items with Four Attributes

Item α1 α2 α3 α4 Response a

1 1 0 0 0 1

2 1 1 0 0 1

3 0 0 0 1 0

4 0 1 1 0 0/1b

5 0 0 1 1 0

a Predicted responses of mastery profile (1,1,0,0).
b It depends on whether the posited model requires intersection or union among
attributes for answering correctly to an item.

entries are binary (i.e., indicating the absence or presence of an attribute), but they could

be ordinal or even continuous (i.e., indicating the degree to which an attribute is present)

(see Karelitz, 2004; Templin, 2004; von Davier, 2005).

Ideally, given this Q-matrix, a person, who has the mastery profile of (1,1,0,0), should

respond correctly to Items 1 and 2, but not to Items 3 and 5 as indicated in the last column

of the table. This can be done through a simple matrix multiplication as follows

Q×αi =




1 0 0 0

1 1 0 0

0 0 0 1

0 1 1 0

0 0 1 1




×




1

1

0

0



=




1

1

0

0/1

0




.

As indicated in the table, however, it is not clear whether or not the person can answer

Item 4 correctly because this person has mastered only one out of two required attributes. In

addition, there are some sources that may cause such a response pattern to vary in real data.

These include alternate strategy selection, incompleteness of the Q-matrix, low positivity in

an attribute, and slip (i.e., random error) (DiBello et al., 1995). When formulating the
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probabilistic model, each model handles this variation slightly differently. We elaborate this

below in the discussion of compensatory and conjunctive models.

All DCMs rely heavily on the Q-matrix because it maps item responses onto those under-

lying attributes that can be used to give a diagnosis of individuals’ knowledge status with

respect to mastery or non-mastery status. As a result, the Q-matrix is an essential component

in DCMs. Along these lines Junker (1999) asserted:

The Q-matrix is thus essentially an accounting device that describes the ‘exper-

imental design’ of tasks or responses in terms of underlying attributes that the

responses are intended to be sensitive to. Although it has gained prominence in

recent years as a tool for task analysis in the work of Tatsuoka (e.g. Tatsuoka,

1990, 1995), it or something like it, would be present in any well specified model

of task performance in terms of underlying student attributes or task features.

(p. 13)

Tatsuoka (1990) emphasized a systematic or automatic interpretation of mastery state using

the Q-matrix by describing the purposes of the Q-matrix is: (1) to make it easier to con-

struct a set of items relevant for diagnosing weaknesses or strengths of knowledge states in

terms of the attributes of interest, and (2) to extract a set of binary patterns describing

performance over the given items, each pattern being produced by a systematic application

of a combination of the set of attributes.

There are a number of ways to develop a Q-matrix. In educational testing, Q-matrices

are typically constructed based on learning or cognition theory, experts’ judgement, empir-

ical research, or examinees’ think-aloud protocols. (Buck & Tatsuoka, 1998). Also, various

methods can be integrated for constructing a Q-matrix. Gierl, Tan, and Wang (2005), for

instance, used both examinees’ responses and experts’ judgement by employing exploratory

and confirmatory factor analytic methods to analyze mathematics and critical reading items

on the SAT.
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To date, DCMs have been being applied to several testing programs including the Sci-

ence Education for Public Understanding Project as a prototypical example of a DCM-

grounded classroom-formative assessment (Stout, 2007), and the PSAT/NMSQT (Prelimi-

nary SAT/National Merit Scholarship Qualifying Test) as an example of a summative assess-

ment (DiBello & Crone, 2001, 2002; Wang & Gierl, 2007).

Thus far, we have described common features of DCMs, but as mentioned before, each

model provides unique ways of linking observable responses on test items to the latent

attributes. Broadly speaking, all DCMs can be classified into two categories, compensatory

or conjunctive, based on the way the model conceptualizes the compensatory relationship

among attributes. In a compensatory model, mastery of a subset of all the required attributes

can compensate for the lack of mastery of the remaining attributes. In a conjunctive model,

all attributes defined in the Q-matrix have to be mastered in order to respond correctly on

an item. The DINO model is an example of a compensatory model and the DINA model

is an example of a conjunctive model (see Junker & Sijtsma, 2001 and Templin, Henson,

& Douglas, in press, for more details of the distinction). As described in the next section,

the LCDM provides a general framework for DCMs and can include both compensatory and

conjunctive models.

Log-linear Cognitive Diagnosis Model (LCDM). To specify relationship between

item and attributes, the LCDM utilizes one of categorical data analysis methods for contin-

gency tables, a log-linear model framework. A very simple log-linear model can be employed

to analyze a contingency table in which two categorical data present. Assuming one of cat-

egorical data in the table is a latent variable rather than manifest one, the LCDM can be

formulated as exactly the same way as the regular log-linear model. Let αi = (α1, α2, ..., αK)

be a vector representing mastery states of examinee i on attributes, qj = (qj1, qj2, ..., qjK)

is a vector denoting attributes required by item j, and K indicates the total number of

attributes. For the LCDM, Henson et al. (2009) adopted a log-linear model to define the
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probability of a correct response as

log

[
P (Yij = 1|αi,qj)

1− P (Yij = 1|αi,qj)

]
= λ0j + λ′

jh(αi,qj), (2.10)

or equivalently

P (Yij = 1|αi,qj) =
exp[λ0j + λ′

jh(αi,qj)]

1 + exp[λ0j + λ′
jh(αi,qj)]

(2.11)

where i and j indicate person and item, respectively; λj represents a vector of logistic

regression coefficients of attributes indicating the effects of mastery of attributes on a correct

response; h(αi,qj) is a set of linear combinations of αi and qj which connects a Q-matrix

into the probability; and λ0j is an intercept.

To better understand the model, let’s take a close look at each parameter. λj’s, as indi-

cated in Equation 2.10, are influences of mastery attributes on a correct response compared

with non-mastery of any of the attributes. All parameters are given in the odds ratio scale,

and therefore, λ0j is the odds ratio of correct response from those who have not mastered

any of the attributes. λ′
jh(αi,qj) on the right side of Equation 2.10 designates the effect

structure of attributes in the model as follows

λ′
jh(αi,qj) =

K∑

k=1

λjk(αkqjk) +
K∑

k=1

∑

u>k

λjku(αkαuqjkqju) + . . . . (2.12)

where λjk’s in the first part of the right side of Equation 2.12 represent the main effects of

each attribute on item j, and λjku’s in the second part of the equation indicate the two-way

interaction effects of the combinations of attributes k and u on items j. For instance, Item

4 in Table 2.1 requires two attributes, q42 = 1 and q43 = 1. The probability of the correct

response on that item takes the form

P (Yi4 = 1|αi,q4) =
exp(λ0 + λ2α2 + λ3α3 + λ23α2α3)

1 + exp(λ0 + λ2α2 + λ3α3 + λ23α2α3)
. (2.13)

Therefore, for the examinee in Table 2.1 who has mastered the first and second attributes,

or mastery pattern (1,1,0,0), the probability of getting a correct answer for this item is

determined by only quantities of λ0 and λ2. This is because the examinee has not mastered
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the third attribute, α3 = 0, and hence neither λ3 nor λ23 has an impact on the probability

of getting a correct answer. Depending on how many attributes are included in the test,

the LCDM may include main effects for each attribute, two-way interactions, three-way

interactions, and so forth.

As with other DCMs, the LCDM is a confirmatory latent class model because it imposes

restrictions on the parameters for classifying latent classes. It does this by setting some

conditional probabilities to be equal across latent classes. Therefore, an important part of

the LCDM specification concerns imposing appropriate restrictions on model parameters.

Each restriction relates to identity, design, and monotonicity on probability. First, as with

other logit models for categorical data, a baseline is required for model identification. In this

model, the nonmastery class, consisting of those who have not mastered any of the attributes,

is arbitrarily taken as the baseline. Second, as a factor loading design matrix in a confirmatory

factor analysis, a Q-matrix specifies the structure of λ′h(αi,qj). For instance, for Item 4

λ′h(αi,qj) forms λ2α2 + λ3α3 + λ23α2α3 as shown in Equation 2.13. This is because the Q-

matrix specifies that this item requires Attributes 2 and 3 for a correct answer. For Item 2,

however, it should be λ1α1+λ2α2+λ12α1α2, as Attributes 1 and 2 are required by the item.

Finally, sets of constraints are included to ensure the monotonicity of the model, namely, the

probability increases as examinees master more attributes. In doing so, all main effects must

be positive, and interaction effects are constrained to be greater than the negative values

of all related main effects: for Item 4, λ2 ≥ 0, λ3 ≥ 0 and λ23 ≥ -minimum (λ2, λ3) (i.e.,

negative value of the smaller of λ2 or λ3) to ensure λ2 + λ23 ≥ 0 and λ3 + λ23 ≥ 0.

Because of the use of log-linear models with latent variables, the LCDM has several

advantages over other DCMs. First, the LCDM provides a general framework for DCMs in

the sense that one may define any DCM by adding simple constraints for relevant parameters

of either the main effects or the interaction effects (i.e., λ’s).

Second, the LCDM allows one to specify the compensatory relationship at the item-level

in one model. That is, some items can be specified as compensatory and others as conjunctive.
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This can be accomplished by manipulating the interaction terms for individual item in the

model because the interaction effects indicate whether or not there is a conjunctive relation

among attributes. As the interaction effect is positive, there is an additional effect above and

beyond each main effect on the probability of the right answer as in a conjunctive model.

However, when the interaction effect is less than zero, there is no effect of mastery of multiple

attributes and the model becomes compensatory. For instance, if one has reason to believe

that the first two attributes in Table 2.1 have a compensatory relationship, but the second

and third attributes do not have such relationship, one can fit Item 2 to a compensatory

model by setting λ2 ≥ 0, λ3 ≥ 0 and λ12 = 0, yet fit Item 3 to a conjunctive model by

constraining λ2 = 0, λ3 = 0 and λ23 ≥ 0.

Third, it is easy to interpret coefficients in the LCDM. For example, λ1 indicates the

main effect of possessing Attribute 1 on the probability of getting a correct answer. Likewise,

λ12 represents an interaction effect for a correct answer if an examinee has mastered both

Attributes 1 and 2.

Fourth, this model enables one to test hypotheses about the Q-matrix or about a posited

relationship among attributes by examining the significance level of λ’s in the model. The

magnitudes of the λ’s can also be used to help prioritize attributes.

Limitations of DCMs. The Q-matrix is a fundamental part of all DCMs including the

LCDM. Hence, verification of a Q-matrix is essential, and misspecification and incomplete-

ness of the Q-matrix can result in inaccurate estimates. Rupp and Templin (2008) have noted

that misspecification of a Q-matrix has an impact on both parameter estimation and accu-

racy of classification. Incompleteness of Q-matrix refers to the fact that an item may require

one or more attributes in the Q-matrix in addition to the ones that have been specified

(DiBello et al., 1995; Hartz, 2002). DiBello et al. (1995) further caution that examinees may

employ different response strategies than those assumed in the Q-matrix. Incompleteness

due to either of these poses a threat to the validity of inferences drawn from a DCM.



32

In addition, unlike IRT models, DCMs are defined by discrete latent spaces, and there-

fore it is not possible to obtain a continuous scale regarding general ability from DCMs.

In order to fully support instruction, assessment should provide two types of information:

attainment assessments which deal with whether a student has attained the desired instruc-

tional goals; diagnostic assessments which are designed to provide specific information on

individual learning deficiencies and misunderstandings in order to regulate learning processes

(Nitko, 1995).

Several models have been proposed to attempt to overcome these issues, including the

Rule Space model (Tatsuoka, 1983), the RUM (DiBello et al., 1995), and the Higher Order

DINA model (de la Torre & Douglas, 2004). Currently, none of these models is capable of

handling incompleteness in the Q-matrix and at the same time of providing a continuous

scale on a general latent variable.

In this dissertation, we propose a diagnostic classification mixture Rasch model (DCMixRM)

as an alternative way for resolving these issues. In so doing, a MixRM and an LCDM are

combined into the DCMixRM. As previously noted, a MixRM is itself a combination of

a Rasch model and an LCM. In a MixRM, an LCM and a Rasch model capture different

aspects of examinees’ responses: the Rasch model describes quantitative differences in

examinees’ ability within a latent class, and hence it enables one to obtain quantitative

information regarding a continuous latent ability; the LCM captures qualitative differences

among the latent classes. In the mean while, the LCDM attempts to provide even finer,

more detailed analyses by specifying the attributes needed to answer each item on the

test and incorporating that information into the mastery profile. The DCMixRM includes

these aspects of each component model and, as a result, can provide richer information to

characterize examinees’ responses. In the next section we describe the model and estimation

procedures.



33

2.5 Diagnostic Classification MixRM (DCMixRM)

The motivation for the development of the DCMixRM was twofold. First, the DCMixRM

was designed to provide explanatory information regarding factors that were potentially

causing the latent classes to form. In order to accomplish it, this model includes mastery

states of attributes as covariates. Second, the DCMixRM was designed to rigorously con-

nect assessments to instruction by furnishing diagnostic information along with summative

information.

In doing so, the DCMixRM incorporates the LCM, the IRT model, and the LCDM.

Rasch models are the simplest among IRT models, and in general, item difficulties are easier

to estimate than other item parameters. Hence, here we limit the IRT model to a Rasch

model, and yet its extension to other IRT models such as a 2-parameter, 3-parameter, or

polytomous IRT models is straightforward. In the rest of this chapter, we detail assumptions,

specifications, and advantages of the model.

2.5.1 General Framework of DCMixRM

As indicated previously, the purposes of the DCMixRM are (1) to obtain an estimate of

examinee’s general ability, θ, (2) to classify an examinee into one of the mastery profiles

pre-specified by the Q-matrix, α, (3) to detect heterogeneity in response patterns in the

population, g, and (4) to provide a plausible explanation as to why one latent class may

respond differently from others using mastery profiles. We begin with introducing the fol-

lowing assumptions of the model.

Local Independence. As with other latent structure models, local independence

is assumed for this model. However, item responses are locally independent

conditioning jointly on examinees’ ability, class membership, and mastery

profile. In other words, we redefine the local independence assumption by

extending a latent space to three types of latent variables. This results in

relaxing the strong local independence of an LCM and a Rasch model.
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Figure 2.2: A Schematic Representation of the Diagnostic Classification Mixture
Rasch Model (DCMixRM)

Exclusivity and Exhaustivity. Both latent classes and mastery profiles are

mutually exclusive and exhaustive. Mutual exclusivity means that the inter-

section of any latent classes or mastery profiles is null; that is, there is no

overlapping among latent classes or mastery profiles. Exhaustivity means that

the union of all the latent classes covers entire classes and the union of all the

mastery profiles covers the entire profiles.

Monotonicity. The probability of a correct response to an item increases as

ability increases or as an examinee masters more attributes.

Compensatory. A general ability and attribute mastery in the model are com-

pensatory such that having higher ability may compensate for lack of one or

more requisite attribute(s), and vice versa.
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Figure 2.2 illustrates how the DCMixRM can be understood given the Q-matrix in Table

2.1. As portrayed in this figure, the DCMixRM consists of four elements: multivariate out-

comes (item responses, Y ’s); a continuous latent variable (ability, θ); a discrete latent vari-

able (latent classes, G); and a vector of discrete latent variables (attributes, α’s). These four

elements constitute a measurement model and a structural model connected by regression

components. Central to this model is the specification of hierarchical conditional relation-

ships: the measurement model specifies the probability of the observed responses conditional

on the three latent variables such as ability, mastery profile, and membership, whereas in

the structural model these latent variables themselves are regressed on one another.

To be more specific, in the measurement component, observed item responses are jointly

regressed on θ and α’s through the Rasch model and the LCDM. As shown in the bottom

of the figure, it is possible for one item to include more than one attribute. In addition, the

dotted lines from G to each item indicate each latent class may have different sets of item

difficulty parameters as is the case in the MixRM. Next, in the structural model, ability

is regressed on class membership, and class membership is regressed on mastery profile to

explain latent class as covariates. As shown in Figure 2.2, the classified mastery profile is

the variable of interest in the structural model while the mastery of an individual attribute

is the variable of interest in the measurement model.

The most challenging task here is that of the four elements in the model, three variables

are latent and have to be inferred from the data. The question then becomes how we estimate

these three latent variables from a set of item responses. This requires a set of constraints in

specifying the model. In the next section, the model constraints and estimation procedures

are described.

2.5.2 Model Specification

The DCMixRM is made up of two components: the measurement component and the struc-

tural component. The measurement component contains the probabilistic statement for item
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responses conditioning on item and person parameters; the structural component describes

the relationship among latent person variables such as ability, class membership, and mastery

profile. Two pieces of information are required to fully specify the DCMixRM: (1) the con-

ditional probability of a correct response given the latent space in the measurement model,

and (2) the joint distribution of ability, mastery profile, and class membership of examinees

in the structural component.

To begin, we combine the Rasch model with the LCDM in the measurement model. Recall

Yij and θi denotes the response of person i to item j and person i’s ability, respectively.

With the Rasch model, assuming local independence with one continuous latent variable,

the probability of a correct response to item j can be written as

P (Yij = 1|θi) = exp(θi − bj)

1 + exp(θi − bj)
, (2.14)

where bj is the difficulty parameter of the item as in Equation 2.4. Likewise, in the LCDM

the probability of a correct response on item j can be written as

P (Yij = 1|αi,qj) =
exp[λ0j + λ′

jh(αi,qj)]

1 + exp[λ0j + λ′
jh(αi,qj)]

, (2.15)

where λj denotes a vector of coefficients of mastery effects on the correct response to the

item, λ0j is an intercept, and h(αi,qj) is a set of linear combinations of αi and qj in which

αi represents mastery state, and qj is a vector of attributes for the item in a Q-matrix as in

Equation 2.11.

Not only are both the Rasch Model and LCDM probabilistic models, but they also rely on

the local independence assumption: item responses are independent of each other conditional

on the latent variable(s). If item responses are assumed to depend both on the general ability

and the mastery profile, and if ability and attribute mastery are assumed to be compensatory,

then these two models can be combined and revised as

P (Yij = 1|θi,αi,qj) =
exp[θi − bj0 + λ′

jh(αi,qj)]

1 + exp[θi − bj0 + λ′
jh(αi,qj)]

, (2.16)

where for identification purposes, the intercept of LCDM (λ0) is absorbed into item diffi-

culty and becomes bj0. Further, in case where there are more than two latent classes in the
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Figure 2.3: Configuration of Connections among Components of DCMixRM

population, and each class may have its own item difficulty parameters, then the probability

can be reformulated as

P (Yij = 1|θi, g,αi,qj) =
exp[θi − bjg0 + λ′

jh(αi,qj)]

1 + exp[θi − bjg0 + λ′
jh(αi,qj)]

(2.17)

where bjg0 indicates item difficulty for class g reflecting that each class is allowed to have its

own set of item difficulty parameters.

Next, Figure 2.3 sketches how each part is connected in the model. In particular, this

figure points out that in the structural component of the model, the latent class is regressed on

the mastery profile. Here, both the latent class and the mastery profile are discrete variables,

and hence a multinomial logit is a natural choice as a link function to specify the relationship

between these two variables (Agresti, 2002). Recall αk = (α1, . . . , αk) is a vector of mastery

profile and K is the number of non-redundant profiles. The mastery profiles are assumed

to be mutually exclusive, and hence each individual belongs to only one of the profiles. For

instance, if there are four attributes in a Q-matrix, there exist 16 mastery profiles (i.e.,
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24 = 16). If an examinee possesses all four attributes, the mastery profile for this person

can be expressed by (α1, α2, α3, α4) = (1, 1, 1, 1). However, when a dummy coding system is

used to denote each mastery profile, the mastery profile of this individual can be represented

as α=(01, 02, . . . , 116). This indicates that this examinee is classified into the 16th profile,

and in this dummy coding system, this is also equivalent to α=(01, 02, . . . , 015), and as a

result those who master all attributes serve as the baseline in the model. That is, in the case

of four attributes included in the Q-matrix, 15 profiles are non-redundant profiles (i.e., the

total number of profiles minus one). Now, let βg = (βg1, βg2, . . . , βgk) be another vector of

logistic regression coefficients relating the mastery profiles to latent classes. The probability

that person i belongs to class g conditional on the mastery profile αk can be written

πg|αk
=

exp(βg0 + β′
gαk)

1 +
∑G−1

g=1 exp(βg0 + β′
gαk)

, (2.18)

where βg0 is an intercept. As in a regular multinomial logit model, the exponentiated coef-

ficients (β’s) indicate the magnitude of influences of the mastery profiles on the log-odds

that an individual belongs to class g compared with the last latent class G. That is, these

coefficients may be interpreted as estimated odds ratios. It should be noted that βgk’s are

set to zero because the last profile is a reference group for the model.

To illustrate how these parameters in the model can be interpreted, we take an example

from Lanza, Collins, Lemmon, and Schafer (2007). Using an LCM with covariates, the

authors investigated adolescent drinking behavior in the United States. Table 2.2 (taken

from Lanza et al., 2007) summarizes the effects of covariates on adolescent drinking pat-

terns. School skipping and grades were included as covariates, and five classes were detected

in the study. “Non drinkers” and “No skip” were selected (arbitrarily) as baselines. One

plausible interpretation based on this table is that when conditioning for grades, adolescents

who skipped school were five times (i.e., e1.6
.
=5) more likely to become “Heavy drinkers”

than those who did not skip school at all.

It is noteworthy that in a MixRM covariate(s) only affect latent class membership (as

is shown in Equation 2.8), but in a DCMixRM the mastery status appears twice. It first
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Table 2.2: An Illustration of Covariate Effect on Latent Class Membership

Skipped School Grades

Class β Odds Ratio β Odds Ratio

Nondrinkers a .0 1.0 .0 1.0

Experimenters .4 1.5 -.2 .8

Drinkers .7 2.0 -.4 .7

Bingers .9 2.5 -.3 .7

Heavy drinkers 1.6 5.0 -.5 .6

Note.The table was reprinted with permission from Lanza et al. (2007, p. 688 ).
a.Reference group.

appears in the measurement component as all attributes relevant to an item have influence

on the conditional probability (see Equation 2.17). Mastery profiles appears again in the

structure component where they are used to explain latent class membership (as shown in

Figures 2.2, 2.3 and Equation 2.18).

Advantages of the DCMixRM. The DCMixRM has several advantages over the

MixRM or the LCDM alone. First, it allows us to handle incompleteness of the Q-matrix. As

discussed in the previous chapter, the Q-matrix is pivotal in DCMs. If relevant attributes are

incorrectly omitted in the Q-matrix, this incompleteness of the Q-matrix can be a threat to

the validity of inferences drawn from a DCM. By introducing θ, the DCMixRM can poten-

tially overcome some of this issue. That is, all necessary but unspecified attribute(s) in the

Q-matrix can be absorbed into θ. Second, the model provides a way to detect heterogeneity

in the population even at the same ability level. This is done through the LCM component of

the model. Third, the model has potential to yield more accurate classification of latent class

membership and reduce standard errors in classification because it incorporates the mastery

profile as a covariate. Fourth, it allows for testing hypotheses regarding relationships between
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latent classes and mastery profiles, and as a result, it is possible to directly provide a rigorous

explanation about features of latent classes. Fifth, the model furnishes two sets of inferences

about examinees’ performances at different grain sizes: inference on a global ability level

and inferences on mastery profiles that yield a finer level of information about sources of

examinees’ weaknesses or strengths in knowledge states. As mentioned earlier, estimating the

three different latent variables is a challenging task. Thus, in the next chapter, we present a

series of simulation studies in order to evaluate recovery of parameters, and also analyses of

two sets of empirical data to illustrate how to implement and how to use the DCMixRM.



Chapter 3

SIMULATION STUDY

In Chapter 2, a review was presented of the following models: the LCM, Rasch Model,

MixRM, and LCDM. We also presented the development of the DCMixRM as a combina-

tion of these models. The primary purposes of the DCMixRM are to extend the latent space

in order to better account for the associations among item responses and to support infer-

ences about the secondary dimension(s) that may have caused the population heterogeneity.

In the latter regard, this was done by inclusion of a set of latent covariates, specifically, mas-

tery profiles. Although this model has the potential for disclosing richer information about

examinees’ learning processes than is available using the usual MixIRT models, it is first

necessary to determine that the estimation process yields accurate and stable parameter

estimates. This is because, with complicated models, even when parameters are statistically

identifiable and substantively sensible, it does not imply that the model parameters can be

reliably or accurately estimated. Hence, the simulation study described below was conducted

in order to evaluate the behavior of the model under varying practical testing conditions.

In addition, two empirical data analyses were conducted on reading comprehension and

mathematics tests to illustrate how the model can be implemented and used in practice.

3.1 Research Design

To be realistic and informative simulation studies depend on the representativeness of the

conditions modeled. However, it is challenging to construct conditions that include all factors

in a simulation study because the real world is too complicated to represent. It is essential to

41
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balance practicality with fidelity to the real world one is attempting to represent (Bandalos,

2006).

In the current simulation study, two test conditions were considered: one test condition

included three attributes with 30 items (A3I30), and the other had four attributes with 20

items (A4I20). The first simulation had fewer attributes but more items and the latter had

more attributes but fewer items. The first condition was chosen based upon the characteristics

of the tests for State accountability programs; the second condition was more similar to tests

in international testing programs. In both simulations, the population was assumed to be

composed of two latent classes. Throughout the simulation study, the following questions

were considered in evaluating the parameter estimation for the DCMixRM:

1. How well does the estimation converge to yield estimates with acceptable standard

errors?

2. How well are the item parameters of the model recovered?

3. How accurately are the examinee parameters estimated?

4. How well are the structural parameters of the model recovered?

As is the case with both the LCM and the LCDM, mis-specification of either or both

the number of latent classes or the Q-matrix could be important estimation issues. In this

study, however, we assumed that the “correct” number of latent classes and the “correct”

specification of the Q-matrix were realized, and therefore it was assumed that we fit the

“correct” model in terms of the number of latent classes and the specification of the Q-

matrix.

3.1.1 Design of the Simulation Study

For each test condition (A3I30 or A4I20), the factors manipulated as independent variables

in the current simulation study were (1) three levels of sample size (2,000, 5,000, and 10,000

examinees), (2) two levels of strength of association between class membership and mastery

profile (moderate and strong relation), and (3) two levels of mean ability differences between
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latent classes (equal and unequal ability means). As all three factors were crossed, the sim-

ulation study had 12 conditions for the A3I30 and the A4I20 conditions, and each condition

had 100 replications.

Sample Size. In this study, examinees were cross-classified by latent class member-

ship and mastery profile. For the A3I30 condition, this resulted in a 2-by-8 cross-table (16

cells) and for the A4I20 condition, a 2-by-16 cross-table (32 cells). In order to have enough

examinees for every cell, relatively large sample sizes were chosen: 2,000, 5,000, and 10,000.

Strength of Relationship of Latent Class and Mastery Profile. Two levels of the

strength of association between latent class and mastery profile were manipulated: moderate

and strong association. Since the relationship between latent class and mastery profile was

of primary interest in the structural component of this model, the impact of the strength

of association on the relevant parameter estimates was considered important. Cramér’s V

was used to determine the size of the strength because Cramer’s V measures the strength of

association between two polytomous categorical variables in contingency tables regardless of

table size. It is defined as

V =

√
χ2

N(q − 1)
(3.1)

where N is the sample size and q is the number of columns or rows, whichever is smaller

(Cramér, 1946, p. 443). Cramér’s V is bound by 0 and 1; the closer V is to 0, the smaller the

association between the categorical variables; the closer V is to 1, the stronger the association

between variables. Following convention, the strength of the relationship is interpreted as

follows: values between 0 ∼ .30 indicate a weak association; values between .31 ∼ .60 indicate

a moderate association; and values > .60 indicate a strong association.

In the A3I30 condition, the relationship was manipulated as follows: those who belonged

to Class 1 tend to lack Attribute 3; those who belonged to Class 2 tended to have mastered

Attribute 3. For the A4I20 condition, those who had mastered both Attributes 3 and 4

tended to belong to Class 2, and those who had not mastered either Attribute 3 or 4 tended
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to belong to Class 1. The resulting proportions of examinees within each cell of each condition

are shown in Table 3.1.

Item Difficulty across Latent Classes. Table 3.2 represents item difficulties for each

condition. In the A30I30 condition, item difficulties for Class 1 were sampled from a uniform

distribution between -3.0 and 2.8. By subtracting 1 from difficulties of 10 items (33%) that

involved Attribute 3, we generated item difficulties for the second latent class. Difficulties of

the remaining 20 items were invariant between latent classes. In the A4I20 condition, item

difficulties for Class 1 were sampled from a uniform -2.7 to 2.7, and then difficulties of 8

items (40%) that required both Attributes 3 and 4 were altered for Class 2. These conditions

resulted that item difficulty means differed by .33 and .40 between two latent classes in the

A3I30 and A4I20 conditions, respectively. These differences can be considered effect sizes

of the latent classes. According to Cohen’s guideline, d=.2, .5, and .8 are small, medium,

and large effects for two groups. Following this guideline, we considered that the item mean

differences are small for both conditions.

Q-matrix and Effect Size of Attributes. Table 3.3 displays the Q-matrix for this

study. It had low complexity in that there was an average of 1.5 and 1.6 attributes per item

under the A3I30 and A4I20 conditions, respectively. The main effects of all attributes were

set to .25 and the interaction effects of two attributes were set to .05. In other words, as

examinees mastered more attributes, the probability of getting a correct response increases,

and as examinees mastered two attributes, the probability of getting a right answer increases

above the two main effects.

Ability of Latent Classes. Ability parameters were randomly sampled from normal

distributions: for the equal ability means condition, N(0,1) was used to generate ability

parameter; for the different ability means condition, N(0,1) and N(1,1) were used to generate

ability parameter for the first class and the second class, respectively. In this way, the two

simulated latent classes differed in mean ability, but their variances were the same.
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Table 3.1: True Values of Examinees Proportions in Latent Classes and Mas-
tery Profiles

Moderatea Strongb

A3I30

Profile C1 C2 C1 C2 Marginal

1 (000) 73 27 88 12 14.2

2 (001) 27 73 12 88 10.5

3 (010) 73 27 88 12 10.5

4 (011) 27 73 12 88 11.6

5 (100) 73 27 88 12 10.5

6 (101) 27 73 12 88 11.6

7 (110) 73 27 88 12 11.6

8 (111) 27 73 12 88 19.2

Marginal 49 51 48 52 100.0

Moderatec Strongd

A4I20

Profile C1 C2 C1 C2 Marginal

1 (0000) 73 27 88 12 0.9

2 (0001) 73 27 88 12 4.0

3 (0010) 73 27 88 12 4.0

4 (0011) 27 73 12 88 17.9

5 (0100) 73 27 88 12 4.0

6 (0101) 73 27 88 12 6.6

7 (0110) 73 27 88 12 6.6

8 (0111) 27 73 12 88 10.9

9 (1000) 73 27 88 12 4.0

10 (1001) 73 27 88 12 6.6

11 (1010) 73 27 88 12 6.6

12 (1011) 27 73 12 88 10.9

13 (1100) 73 27 88 12 6.6

14 (1101) 73 27 88 12 4.0

15 (1110) 73 27 88 12 4.0

16 (1111) 27 73 12 88 2.4

Marginal 54 46 56 44 100.0

a Cramér’s V=.461; b Cramér’s V=.761; c Cramér’s V=.458; d Cramér’s V=.758.
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Table 3.2: Item Difficulty Parameters under Each Condition

A3I30a A4I20b

Item C1 C2 Item C1 C2 Item C1 C2 Item C1 C2 Item C1 C2

1 -3.0 -3.0 11 -1.0 -2.0 21 1.0 1.0 1 -2.7 -2.7 11 .0 .0

2 -2.8 -2.8 12 -.8 -1.8 22 1.2 1.2 2 -2.4 -2.4 12 .3 .3

3 -2.6 -2.6 13 -.6 -1.6 23 1.4 1.4 3 -2.1 -2.1 13 .6 -.4

4 -2.4 -2.4 14 -.4 -1.4 24 1.6 1.6 4 -1.8 -1.8 14 .9 -.1

5 -2.2 -2.2 15 -.2 -1.2 25 1.8 1.8 5 -1.5 -1.5 15 1.2 1.2

6 -2.0 -2.0 16 .0 .0 26 2.0 1.0 6 -1.2 -1.2 16 1.5 1.5

7 -1.8 -1.8 17 .2 .2 27 2.2 1.2 7 -.9 -1.9 17 1.8 .8

8 -1.6 -1.6 18 .4 .4 28 2.4 1.4 8 -.6 -1.6 18 2.1 1.1

9 -1.4 -1.4 19 .6 .6 29 2.6 1.6 9 -.3 -.3 19 2.4 1.4

10 -1.2 -1.2 20 .8 .8 30 2.8 1.8 10 .0 .0 20 2.7 1.7

a 3-attribute with 30-item condition
b 4-attribute with 20-item condition

Item Characteristic Curves. Figure 3.1 illustrates item characteristics of Items 15 and

26 for the A3I30 condition. For Item 15, four curves were required to describe the probability

of a getting correct answer for two latent classes because it required only one attribute. For

each class, we needed two curves: one for those who had mastered the required attribute and

another for those who had not. For Item 26, however, six curves were required because, as

the Q-matrix indicates, the item required two attributes. So, three curves were needed to

describe the probability patterns for each class: a curve for those who had mastered both of

attributes, a curve for those who had mastered either of the attributes, and a curve for those

who had mastered none of the attributes.

In general, all the curves had similar shapes. There was no intersection among curves.

Since it was based on the Rasch model, the probability of a correct response increases as

ability increases. For Item 15, the probabilities of Class 2 were always higher than those of
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Figure 3.1: Item Characteristic Curves of Two Items under the A3I30 Condition

Class 1. Such patterns were similar for Item 26, but the probability of a correct answer for

those who had mastered both attributes and belonged to Class 1 was very close to that for

Class 2 for those who had not mastered any of them.

Data Generation. First, distributions of mastery profiles were generated and then joint

distributions with latent classes were generated. Using these distributions, each simulee was

assigned to a mastery profile and a latent class. Given class membership, a value of ability

for each simulee was drawn from a normal distribution using the distributions previously

described. Finally, item responses for each condition were simulated using examinees’ param-

eters and conditional probability function. Codes written in SAS software, version 9.1 of the

SAS system for Windows, were used to generate data sets.
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3.2 Model Specifications

As discussed in Chapter 2, each latent structural model has its own way to identify the

model which includes placing a series of constraints. In order to implement the DCMixRM

via Mplus, several constraints were required. First, factor loadings for all items on θ were

set equal to 1. This is how to specify a Rasch model component in a DCMixRM. Further,

to anchor the metrics between latent classes, the mean and variance of the first latent class

were set to be zero and one, respectively. The mean of the second class was set free to be

estimated for the unequal means conditions, but for the equal mean conditions, it was fixed

to zero as for the first class. This choice was purely arbitrary and determined for convenience.

Second, characteristics of mastery profiles were established by setting constraints on item

thresholds for each mastery profile. The constraints were done to ensure monotonicity. That

is, all the main effects of the attributes were set to be positive, λk ≥ 0, and the interaction

effects were constrained to be greater than the negative values of the smaller of the main

effects (i.e., λku ≥ −λk and λku ≥ −λu). These constraints are the same as those required

by the LCDM.

Finally, the structural component of the DCMixRM employs a multinomial logit model

where mastery profiles relate to latent classes. Multinomial logit models require reference

groups. We chose the second latent class and all mastery profiles as reference groups, or

baselines. This choice was made purely arbitrarily.

The Mplus Version 5.21 (Muthén & Muthén, 1998-2007) was used to estimate the model

with these constraints. The choice of Mplus was made for two main reasons. First, with Mplus

a marginal maximum likelihood estimator (MLE) is employed with various algorithms for

searching for parameter estimates to maximize the likelihood. The MLE has desired prop-

erties as an estimator such as consistency, efficiency, and asymptotic normality. These are

very useful and important properties for statistical inference. In particular, for finite mixture

models which the DCMixRM belongs to, by imposing proper constraints, the MLE yields

consistent estimates (McLachlan & Peel, 2000). McLachlan and Peel also argued that “the
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lack of identifiability is not of concern in the normal course of events in the fitting of mixture

models by maximum likelihood, say, via the EM algorithm” (p. 27). Further, in addition

to the Expectation Maximization (EM) algorithm, several algorithms are utilized to opti-

mize MLE in Mplus, including Quasi-Newton, Fisher scoring, and Newton-Raphson. Also,

for continuous latent variables, numerical integration is carried out with or without adap-

tive quadrature in combination with rectangular integration, Gauss-Hermite integration, or

Monte Carlo integration. As a result of this flexibility, computation time can be substan-

tially reduced compared to other approaches such as Markov Chain Monte Carlo estimation

(MCMC).

Second, one of the main barriers limiting the use of DCMs in practice is that accessible

computer programs for the models are not readily available (de la Torre, 2009; Templin et

al., in press). To this end, Templin et al. have demonstrated that it is possible to fit several

DCMs via Mplus by imposing a series of constraints since DCMs can be viewed as restricted

LCMs. In this study, we extend this implementation to the DCMixRM.

3.3 Evaluation Criteria

The main question of the simulation study was whether the estimation procedure yielded

reliable parameter estimates for the DCMixRM. In answering this question, three criteria

were employed: convergence rate, recovery of parameters, and accuracy of classification. We

describe each criterion in this section.

Convergence Rate. In order to make inferences on parameters from the statistical

analyses, it is necessary that the model converges properly. This is particulary the case with

the MLE because the MLE is an estimator that estimates the values of the parameters that

maximize the likelihood of the observed data via an iterative process. When the algorithm

is unable to arrive at values which meet prescribed criteria, the resulting estimates cannot

be trusted for making inferences.
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In Mplus, there are four criteria used to monitor convergence through the observed-data

log likelihood: the change in both the absolute and relative log likelihood, the change in

any class count, the observed-data log likelihood derivation criterion, and the capability of

computing the standard errors (information matrix positive definite) (Muthén & Muthén,

1998-2004, p. 35). In this study, we calculated convergence rates by ratios of the number of

converged data sets to the number of generated data sets.

Recovery Evaluation. The recovery of item difficulties (b’s), attribute effects (λ’s), coef-

ficients of mastery profile effect on class membership (β’s) and ability (θ’s) were of interest.

The bias, relative bias, root mean square error (RMSE) of each parameter estimate, and

Pearson correlation between parameter and estimate values were employed to evaluate the

quality of parameter estimation for those parameters as each gives slightly different infor-

mation about the quality of the estimation. By definition, the Pearson correlation reflects

the degree of linear relationship between the parameters and estimates. The bias provides

information on the amount of difference between generating values and realized estimates.

Relative bias gives the same information but after taking into account the size of the param-

eter. Values of zero for bias and relative bias measures indicate the estimation results in

unbiased parameter estimates; the signs on these indices provide information about under-

or over-estimation, respectively. Additionally, since the RMSE is a function of both the bias

and variance of estimates, it can help inform about the efficiency of the estimates; the smaller,

the better. Each is defined as follows

Bias (Ω̂) = E(Ω̂)− Ω (3.2)

Relative Bias (Ω̂) =
E(Ω̂)− Ω

Ω
(3.3)

RMSE (Ω̂) =

√
E(Ω̂− Ω)2, (3.4)

where E(•) indicates the expected values, and Ω and Ω̂ denote parameters and estimates,

respectively.
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In calculating the bias of item difficulties, different scales between the generating values

and the realized estimates might be problematic. To take these scale differences into account,

parameter estimates from each replication were placed onto the parameter scale through the

mean and sigma equating method which is both simple and preferred (Kolen & Brennan,

2004). The equating was carried out as follows

b∗j = bj − (bj − bp), (3.5)

where b∗j denotes the equated difficulty for the simulated item, bj is the difficulty estimate of

that item, and bj and bp denote the means of the item difficulty estimates for the simulated

data set and parameters, respectively.

Accuracy of Classification. The DCMixRM includes two discrete latent variables,

latent class membership and mastery profile. To assess degree of classification accuracy with

respect to these variables, we investigated group and individual levels of classification accu-

racy. In terms of group level, we calculated marginal and joint proportions; for the individual

level, we computed hit rates and κ measures. The κ is an indicator of the degree of agreement

between two categorical variables against that which might be expected by chance. A value

of 1 implies perfect agreement, and a value of 0 implies no agreement. It is defined as

κ =

∑
πii −

∑
πi+π+j

1−∑
πi+π+j

, (3.6)

where πii is the observed agreement, and πi+π+j is the chance agreement (Cohen, 1960).

3.4 Results

The results of this study are presented in three parts: in the first part, convergence rates are

presented for both the A3I30 and A4I20 conditions. In the remaining two parts, the results

for the A3I30 and the A4I20 conditions are presented separately. For each condition, the

quality of estimation of the model is discussed in terms of item, examinee, and relationship

parameter estimates. The results presented here are only from replications that converged.

We use three acronyms to refer to each condition in this section: N indicates the sample
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Table 3.4: Convergence Rate across Different Conditions

A3I30 A4I20

Sample DM DT SM ST DM DT SM ST

N02 29 32 81 84 24 34 53 47

N05 29 42 79 81 32 33 53 52

N10 34 38 83 90 48 46 61 59

Note. In the second row, the first letter refers ability mean condition and the
second letter refers strength of relationship between latent class and
master profile. For instance, DT refers a condition where two classes have
different ability means and have strong relationship with mastery profile.
Also, in first column N02 indicates the sample size 2000.

size; D/S indicates whether two classes have different (D) or same (S) means in ability;

M/T indicates whether the association between latent class and mastery profile is moderate

(M) or strong (S). For example, N02DM indicates the condition that has 2000 examinees,

different or unequal ability means across latent classes, and moderate relationship between

latent class and mastery profile.

3.4.1 Convergence Rate

Table 3.4 and Figure 3.2 summarize the results for convergence rates across the various

conditions. In the figure, results for the A3I30 condition are presented in the left panel and

those under the A4I20 condition are presented in the right panel. Overall, similar patterns

for convergence rates were observed under both conditions. First, the effect of the mean

condition on the convergence rate was noticeable. The equal mean conditions, in which the

two latent classes had the same means in ability, showed better convergence rates than the

unequal mean conditions. Second, in the equal mean ability condition, the larger the sample,
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Figure 3.2: Convergence Rate across Different Conditions

the better the convergence rate. Also, the stronger the relationship between mastery profile

and latent class, the better the convergence rate.

As clearly shown in Figure 3.2, convergence for the A3I30 conditions was much better

than for the A4I20 conditions. The A3I30 condition achieved about 80% convergence rate,

even for the sample size of 2,000. As expected, the highest convergence rate occurred for

the equal means × strong relationship condition with the largest sample size (e.g. STN10).

In contrast, under the A4I20 conditions, even for a sample size of 10,000 examinees and a

strong relationship between latent class and mastery profile, a number of replications failed

to converge.

The A4I20 condition appeared to be sensitive to sample size, but in general, the equality

of mean ability and the degree of relationship had more impact than sample size on the

convergence rate, and hence these two factors were of primary interest in investigating quality

of recovery of parameter estimates. For this reason, in next sections we report results for

some cases, after we collapsed the sample size conditions.
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Table 3.5: Correlation between Item Parameters and Estimates (A3I30)

DM DT SM ST

N02 N05 N10 N02 N05 N10 N02 N05 N10 N02 N05 N10

Difficulty .999 .999 1.000 .998 .999 .999 1.000 1.000 1.000 1.000 1.000 1.000

Attribute .879 .894 .929 .863 .961 .929 .993 .989 .992 .991 .990 .989

3.4.2 Results under the 3-Attribute with 30-Item Condition (A3I30)

Recovery in Item Parameter. The recovery of item parameters was evaluated by corre-

lation, bias, relative bias, and RMSE statistics. The summary of results across conditions is

presented in Tables 3.5 and 3.6 and Figures 3.3 to 3.5.

First, as shown in Table 3.5, the correlations suggest the item difficulty and attribute

effect parameters were well recovered across all conditions. The correlations between attribute

effect parameters and estimates were slightly lower than those for item difficulties. This was

particulary the case for the small sample size in the unequal mean conditions (i.e., DTN02).

Plots of the true and estimated values are presented in Figure 3.3 to help describe the

recovery accuracy of the item difficulty parameters with sample size conditions collapsed.

In the figure, the solid lines indicate perfect recovery, and the dots indicate the estimated

values. The plots in the upper panel are the overall results under all conditions; those in

the lower panel show results by latent class: the straight lines represent item difficulties for

Class 1 and the crooked lines for Class 2. The dots appear to be well aligned with the perfect

recovery line, suggesting that the true values were successfully recovered and in addition,

the relationship between the true and estimated values was likely linear. However, estimates

deviated from the true values for the very difficult items for Class 1 under the unequal mean

conditions. It should be noted that label switching is an important concern for mixture
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Figure 3.3: Comparison of True and Estimated Values of Item Difficulty (A3I30)
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Table 3.6: Bias and RMSE of Item Parameter Estimates (A3I30)

Bias Relative Bias RMSE

DM DT SM ST DM DT SM ST DM DT SM ST

Item Difficulty

N02 -.005 -.008 -.006 -.009 .053 .045 .000 -.007 .298 .296 .131 .125

N05 -.006 -.009 -.006 -.009 .037 .024 -.003 -.010 .226 .218 .095 .089

N10 -.007 -.010 -.006 -.009 .015 .017 -.003 -.012 .175 .179 .083 .072

Average -.006 -.009 -.006 -.009 .035 .028 -.002 -.010 .233 .231 .103 .095

Attribute Effect

N02 .150 .145 .018 .017 .197 .202 .044 .057 .407 .407 .096 .088

N05 .107 .097 .014 .012 .153 .163 .031 .043 .327 .309 .092 .074

N10 .061 .057 .013 .010 .074 .125 .026 .041 .232 .238 .097 .068

Average .106 .100 .015 .013 .175 .182 .038 .050 .322 .318 .095 .077

distribution modeling (Chung, 2003), and yet for this particular model, this result indicates

that label switching did not take place during estimation.

Next, Figure 3.4 and Table 3.6 summarize overall bias, relative bias and RMSE results.

Figures 3.5 and 3.6 display recovery at the item level. As indicated in Equations 3.3 and

3.4, relative bias takes into account magnitude of parameter values in calculating bias of

an estimator, and RMSE assesses the quality of an estimator in terms of its variation and

biasedness, or the efficiency and bias of the estimator. Each statistic informs quality of

estimates from a slightly different perspective. Figure 3.4 clearly suggests that item difficulty

parameters were well recovered even though the estimates were slightly negatively biased;

bias values ranged from -.005 to -.010. The relative bias and RMSEs for item difficulty were

smaller in the equal mean conditions, and they also decreased as sample size increased. Figure

3.5 shows bias and RMSEs estimates at each difficulty level. From this figure, we observed the

salient phenomenon that the directions of bias were changed at the point of item difficulty
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of zero. That is, for easy items, difficulties were overestimated; for difficult items, difficulties

were underestimated. Figure 3.4 does not show any impact of mean condition on overall

bias in item difficulty parameter estimates, but Figure 3.5 reveals that under the equal mean

conditions, item difficulty was better recovered, and at the the point of item difficulty of zero

the estimators yielded the least bias. These results are consistent with previous research on

item difficulty.

On the other hand, the attribute effect estimates were positively biased, ranging from .012

to .150. This indicates that the attribute effect parameters were overestimated (see Table

3.6). For instance, in the unequal means condition of DTN02, the relative bias approached .20

(i.e., 20%). The results show a pattern in bias that for the equal mean conditions, attribute

effect estimates were less biased than under the unequal mean conditions, and further, for

the unequal mean conditions, as sample size increased, bias decreased. Similar results were

also observed with RMSEs and relative bias. Results at the item level, however, revealed

that the estimates themselves deviated from their true or generating values. This appeared

to be more pronounced in the unequal mean conditions and can be seen clearly in Figure

3.6. This was particulary the case with items that involved only one attribute such as Items

1 to 15.

Recovery of Examinee Parameters. The quality of the estimation of the examinee

parameters was evaluated with correlations between ability parameters and estimates, the

hit rate and Cohen’s κ for classification of latent class membership and of mastery profile.

Table 3.7 shows correlations for ability. Under the unequal mean conditions, the correlations

were higher than those under the equal mean ability conditions. This pattern is the opposite

of what was observed for item parameter estimates. Figure 3.7 shows the recovery of ability

parameters for the 2,000 examinees sample size (i.e., the smallest sample size condition).

The four plots in the upper panel show the relationship between ability parameters and

estimates; the four plots in the lower panel show the residuals. Although the relationship

between the parameters and estimates appears to be linear in the upper panel, the residuals
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Table 3.7: Correlation between Ability Parameters and Estimates (A3I30)

DM DT SM ST

N02 N05 N10 N02 N05 N10 N02 N05 N10 N02 N05 N10

θ .901 .906 .906 .902 .904 .905 .883 .883 .882 .881 .880 .880

in the lower panel suggest that the ability estimates were overestimated for the lower ability

group and underestimated for the higher ability group. This can be understood as the scale

shrinkage phenomenon in IRT. See (Lord, 1975) for further discussion.

The hit rate and Cohen’s κ for the class membership and mastery attribute are shown

in Tables 3.8 and 3.9, respectively. For class membership, the larger the sample size, the

better the hit rate. Under the unequal mean conditions, the hit rates were higher. Further,

under the strong relationship conditions (i.e., the strong association between latent class and

mastery profile), the highest hit rate of .806 was observed. Also, κ measures suggest latent

class membership was well detected.

In terms of mastery attributes, however, the hit rates ranged from .547 to .647, sug-

gesting the model did not perform well in identifying the mastery attributes. Consistently,

the resulting κ’s suggest that the observed agreement may be due to chance (see Table 3.9).

Note that in the current study, the marginal probability of mastering each attribute was used

for classifying the mastery attribute of each individual. This differs from classification based

on posterior probability and in this way, we were able to take into account the uncertainty

in classification.

Recovery in Structural Component Parameter. One of the main purposes of the

current study is to use mastery profiles to help explain latent class membership. This is

accomplished in the form of the relationship parameters in the structural component of the
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Figure 3.7: Scatter Plot of Ability Parameter (θ) Estimates (A3I30)
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Table 3.8: Hit Rate of Membership in Latent Classes (A3I30)

DM DT SM ST

N02 N05 N10 N02 N05 N10 N02 N05 N10 N02 N05 N10

Hit Rate .784 .793 .795 .796 .802 .806 .704 .710 .712 .716 .721 .723

κ .568 .585 .590 .592 .603 .610 .407 .419 .423 .431 .441 .446

Table 3.9: Hit Rate of Classification in Attribute Mastery States (A3I30)

DM DT SM ST

N02 N05 N10 N02 N05 N10 N02 N05 N10 N02 N05 N10

Hit Rate α1 .548 .549 .551 .550 .550 .550 .556 .557 .555 .554 .555 .554

α2 .548 .547 .549 .549 .551 .550 .558 .561 .559 .560 .561 .561

α3 .584 .588 .595 .618 .623 .631 .605 .606 .606 .642 .646 .647

κ α1 .091 .094 .097 .095 .096 .097 .111 .113 .108 .107 .109 .107

α2 .093 .093 .095 .094 .100 .097 .115 .121 .116 .119 .121 .121

α3 .168 .177 .189 .236 .247 .263 .212 .213 .212 .285 .293 .294
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Table 3.10: Recovery of Ability (θ) Distribution Parameter Estimates (A3I30)

Parametera Mean Standard Deviation

DM DT SM ST DM DT SM ST

C1 N(0,1) -.201 -.200 -.209 -.209 .746 .748 .854 .853

C2 N(1,1) 1.179 1.203 .202 .203 .745 .747 .881 .885

a Parameters include the mean and variance of ability for each class. For the same
mean conditions, the means and variances are the same across two latent classes.

model. The structural component of the model also includes other important features of the

population such as distributions of ability, marginal proportions of the latent classes and

mastery profiles, and relationships between attributes. The results for these components are

given in Tables 3.10, 3.11, and 3.12. First, Table 3.10 contains means and standard devia-

tions for ability of each class. As can be seen in this table, under all conditions, estimated

mean abilities approached the theoretically expected values. This suggests the ability distri-

bution of the population was reasonably well captured. The estimated standard deviations

of ability, however, were smaller than the true values. This was particularly the case for the

unequal mean conditions. The reduction in standard deviations of ability is an indicator of

scale shrinkage (as discussed earlier in this section of the recovery of examinee parameter

estimation).

Second, the resulting marginal proportions of latent class and mastery profile in the

DCMixRM are reported in Table 3.11. The estimated marginal proportions for each mastery

profile were close to the true distributions and the discrepancies appeared to be negligible:

the calculated marginal proportions differed from the true distribution by less than 6%.

Third, the results of the tetrachoric correlations between attributes are given in Table

3.12. The correlations for the population were around .170. Under all conditions, correlations

appeared to be underestimated even though under the equal mean conditions, the correlation
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Table 3.11: Recovery of Marginal Proportion of Latent Classes and Mastery Profiles
(A3I30)

Profile Truea DM DT SM ST

1 (000) 14.23 12.82 12.42 13.92 13.45

2 (001) 10.54 10.83 11.42 11.06 11.16

3 (010) 10.54 11.07 11.27 12.39 12.12

4 (011) 11.65 11.34 10.95 9.90 10.33

5 (100) 10.54 11.15 10.29 8.93 9.03

6 (101) 11.65 12.96 12.85 14.80 14.70

7 (110) 11.65 14.31 14.81 15.56 15.71

8 (111) 19.21 15.51 16.00 13.45 13.50

Class 1 48.00 47.84 47.04 48.38 48.16

Class 2 52.00 52.16 52.96 51.62 51.84

a True values of marginal proportion of each profile and latent class.

Table 3.12: Recovery of Tetrachoric Correlation between Attributes (A3I30)

Truea DM DT SM ST

α2 α3 α2 α3 α2 α3 α2 α3 α2 α3

α1 .170 .169 .081 .078 .122 .086 .126 .039 .131 .010

α2 .169 -.061 -.053 -.176 -.176

a True values of correlation.
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Table 3.13: Conditional Proportion of the Latent Class (A3I30)

Moderate Relationship Strong Relationship

Truea DM SM Truea DT ST

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

1 (000) 73.11 26.89 60.78 39.22 56.40 43.60 88.08 11.92 64.47 35.53 58.31 41.69

2 (001) 26.89 73.11 52.77 47.23 33.36 66.64 11.92 88.08 52.58 47.42 31.79 68.21

3 (010) 73.11 26.89 53.23 46.77 55.16 44.84 88.08 11.92 53.97 46.03 57.06 42.94

4 (011) 26.89 73.11 37.82 62.18 20.15 79.85 11.92 88.08 33.04 66.96 18.33 81.67

5 (100) 73.11 26.89 56.54 43.46 64.59 35.41 88.08 11.92 57.10 42.90 65.47 34.53

6 (101) 26.89 73.11 42.45 57.55 48.49 51.51 11.92 88.08 39.18 60.82 46.81 53.19

7 (110) 73.11 26.89 51.23 48.77 64.32 35.68 88.08 11.92 51.71 48.29 65.94 34.06

8 (111) 26.89 73.11 32.25 67.75 37.65 62.35 11.92 88.08 29.47 70.53 35.62 64.38

a True values for each condition.

between α1 and α2 seemed to be well recovered. This was particularly the case for the

correlation between α2 and α3.

In addition, Tables 3.13 and 3.14, and Figure 3.8 display the recovery in the relationship

parameters. Mplus provides two kinds of class probability estimates, or mixing proportion

estimates: posterior probability-based and estimated model-based mixing proportions. These

may be consistent with each other, but they also can yield quite different results.

The class proportions conditioning on mastery profiles are given in Table 3.13. In spite

of the poor recovery of the relationship parameters, under the equal mean conditions, the

conditional distribution patterns were correctly scratched. However, their relationships were

underestimated as presented in In Table 3.14. The upper part of the table gives classification

results based on the posterior probability of class membership, and the lower part gives the

model-based classification results. This order is the same for Figure 3.8. According to these

results, it appears that one cannot recover relationship parameters using the model-based
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Table 3.14: Recovery of Relationship Parameters between Latent Class and Mastery Profile
(A3I30)

Based on the Posterior Probability

Moderate Relationship Strong Relationship

Profile True DM SM True DT ST

1 (000) 1 1.300 (0.579) .767 (0.293) 2 1.603 (0.660) .932 (0.266)

2 (001) -1 .932 (0.957) -.200 (0.315) -2 1.035 (0.824) -.186 (0.314)

3 (010) 1 .965 (0.736) .713 (0.288) 2 1.098 (0.847) .884 (0.259)

4 (011) -1 .274 (1.002) -.900 (0.409) -2 .194 (0.930) -.928 (0.346)

5 (100) 1 1.130 (1.020) 1.119 (0.329) 2 1.256 (0.943) 1.250 (0.292)

6 (101) -1 .498 (0.875) .440 (0.259) -2 .477 (0.676) .460 (0.212)

7 (110) 1 .881 (1.116) 1.100 (0.279) 2 .984 (0.834) 1.258 (0.255)

8 (111) -1 -.813 (0.624) -.503 (0.188) -2 -.951 (0.528) -.592 (0.183)

Based on the Estimated Model

Moderate Relationship Strong Relationship

Profile True DM SM True DT ST

1 (000) 1 .177 (.110) .040 (.042) 2 .269 (.120) .057 (.044)

2 (001) -1 .109 (.217) .011 (.044) -2 .152 (.182) .008 (.036)

3 (010) 1 .125 (.156) .041 (.041) 2 .183 (.153) .058 (.037)

4 (011) -1 .054 (.260) .008 (.046) -2 .053 (.225) .003 (.028)

5 (100) 1 .131 (.223) .041 (.045) 2 .191 (.194) .057 (.040)

6 (101) -1 .022 (.206) .004 (.036) -2 .041 (.171) .002 (.026)

7 (110) 1 .086 (.262) .043 (.034) 2 .122 (.189) .062 (.031)

8 (111) -1 -.152 (.176) -.052 (.054) -2 -.222 (.154) -.066 (.048)

Note. The values in parentheses are standard deviations.
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Table 3.15: Correlation between Item Parameters and Estimates under the A4I20

DM DT SM ST

N02 N05 N10 N02 N05 N10 N02 N05 N10 N02 N05 N10

Difficulty .999 .999 .999 .998 .998 .999 .999 .999 .999 .999 .999 .999

Attribute .903 .942 .977 .898 .942 .959 .959 .947 .944 .946 .927 .930

mixing proportions, but it might be possible to obtain a general pattern of relationship using

the posterior probability-based estimates. Examining results using posterior probability of

membership suggests that the general pattern of relationship between latent class and mas-

tery profile was fairly reproduced, but they were underestimated. In addition, the resulting

estimates were similar in patterns and values although for the moderate relationship condi-

tions, the parameters were better recovered. For the equal mean conditions, the estimation

yielded smaller standard deviation and better recovery than for the unequal mean condition.

3.4.3 Results under the 4-Attribute with 20-Item Condition (A4I20)

Recovery in Item Parameter. The results for item parameter recovery are presented in

Tables 3.15 and 3.16 and Figures 3.9 to 3.11. As in the A3I30 condition, the item parameters

were recovered well with the DCMixRM. To be specific, as can be seen in Table 3.15, under

the A4I20 condition, correlations between attributes were better recovered than those under

the A3I30 condition, even for the unequal mean and small sample size conditions.

Plots of the true and estimated values are presented in Figure 3.9 to help describe the

recovery accuracy of the item difficulty parameters with sample size conditions collapsed.

In the figure, the solid lines indicate perfect recovery, and the dots indicate the estimated

values. The plots in the upper panel are the overall results under all conditions; those in

the lower panel show results by each class: the straight lines represent item difficulties for
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Figure 3.9: Comparison of True and Estimated Values of Item Difficulty (A4I20)
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Table 3.16: Bias and RMSE of Item Parameter Estimates (A4I20)

Bias Relative Bias RMSE

DM DT SM ST DM DT SM ST DM DT SM ST

Item Difficulty

N02 .005 .011 .012 .017 -.023 .004 .006 .009 .297 .280 .194 .206

N05 .009 .010 .015 .019 .006 -.003 -.002 -.003 .219 .248 .167 .184

N10 .008 .015 .015 .021 -.018 -.007 -.004 -.003 .182 .183 .137 .148

Average .008 .012 .014 .019 -.012 -.002 .000 .001 .232 .237 .166 .179

Attribute Effect

N02 .106 .109 .037 .034 .504 .501 .154 .131 .324 .334 .182 .178

N05 .078 .088 .037 .045 .338 .369 .133 .148 .270 .294 .172 .192

N10 .061 .051 .027 .025 .243 .168 .149 .122 .213 .200 .144 .148

Average .082 .083 .034 .035 .362 .346 .145 .134 .269 .276 .166 .173
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Figure 3.11: Bias and RMSE of Item Difficulty for Each Item (A4I20)
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Figure 3.12: Bias in Attribute Effect Estimates of Each Item (A4I20)

Class 1 and the crooked lines those for Class 2. All the plots in this figure indicate that item

difficulty parameters were well recovered because the dots appear to agree with the solid

lines. In addition, as indicated by the plots in the lower panel, the results here imply that

labeling switching on the latent classes did not occur (see discussion in the section on the

A3I30 condition).

The recovery was also evaluated by examining bias, relative bias, and RMSE. As can be

seen in Table 3.16, under all conditions, the overall bias in item difficulty estimates were

slightly positive, and yet the magnitudes of the bias were small enough to be essentially

negligible; the largest value was .021 under the strong relationship with equal mean condi-

tions. Figure 3.11 further shows bias and RMSEs at each level of item difficulty. Unlike the

A3I30 condition where a systematic pattern in bias was observed, no systematic pattern was

exhibited except that the estimator yielded the most bias in extremely difficulty items.

For the attribute effect parameter, the estimation process seemed to have some difficulty

in recovering the true values, particularly for the unequal mean conditions (see Figure 3.12).

Attribute effects were substantial positively biased; this was more evident in the relative
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bias indices (see Table 3.16). The bias decreased, however, as sample size increased or ability

means were equal across latent classes. To illustrate this, under the DWN02 condition, the

magnitude of bias was .109, but under the STN10 condition, it was .025 which was much

smaller. This pattern was also observed for the RMSEs for both item difficulty and attribute

effect parameter estimates.

Recovery in Examinee Parameter. Tables 3.17 to 3.19 and Figure 3.13 contain results

about the correlations between ability parameters and estimates and about the hit rates with

respect to latent class membership and mastery profile. It can be seen that under the unequal

mean conditions, the correlations were slightly higher than those under the equal mean

conditions, and yet all these correlations were lower than those under the A3I30 condition

(see Tables 3.17 and 3.7 for comparison)

Second, Figure 3.13 illustrates how well the ability parameters were recovered with the

sample size of 2,000 (i.e., the smallest sample size conditions). As explained in the section on

the A3I30 condition, the four plots in the upper panel display linear relationships between

parameters and estimates and four in the lower panel display the residuals. The patterns were

similar to those with the A3I30 condition: the relationship between the ability parameters

and estimates appears to be linear in plots at the upper panel, and yet the residuals in the

lower panel suggest that the ability estimates for the lower ability group were overestimated

while the ability estimates for the higher ability group were underestimated. This is consistent

with previous research that discussed scale shrinkage for ability (Lord, 1975). Furthermore,

for the unequal mean conditions, the figure suggests that an upper limit, or ceiling effect,

seems to appear on the ability estimates.

Finally, Tables 3.18 and 3.19 show the hit rate and Cohen’s κ for class membership and

attribute mastery status. The same pattern as with the A3I30 conditions can be seen in

these tables. The larger the sample size, the better the hit rate for class membership. Also,

the unequal mean conditions were better for detecting class membership, with κ indices

supporting the finding that under the unequal mean conditions, latent class membership was



75

Table 3.17: Correlation between Ability Parameters and Estimates (A4I20)

DM DT SM ST

N02 N05 N10 N02 N05 N10 N02 N05 N10 N02 N05 N10

θ .878 .881 .881 .880 .879 .881 .857 .857 .856 .858 .858 .858

Table 3.18: Hit Rate and Kappa of Class Membership in Latent Class (A4I20)

DM DT SM ST

N02 N05 N10 N02 N05 N10 N02 N05 N10 N02 N05 N10

Hit rate .761 .763 .766 .755 .760 .764 .652 .660 .664 .643 .653 .659

κ .519 .523 .528 .504 .513 .520 .303 .317 .326 .283 .300 .313

well detected. In terms of attribute mastery state, however, the hit rates were essentially the

same regardless of the conditions, ranging from .514 to .534 (also see κ’s in Table 3.19), and

were even smaller than those in the A3I30 condition.

Recovery of the Structural Component Parameter. In this section, we present

results about the structural component parameters. These include ability distributions,

marginal proportions of the latent classes and mastery profiles, and the relationships between

mastery profile and latent class membership. The summary results are presented Tables 3.20,

3.21, and 3.22. Across all conditions (see Table 3.20), the estimated ability means approached

the theoretically expected values, but the estimated standard deviations were much smaller

than the expected values. This suggests that ability means were reasonably captured but

underestimated the scale parameters, or standard deviations, resulting in scale shrinkage.
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Table 3.19: Hit Rate and Kappa of Classification in Mastery State of Attributes (A4I20)

DM DT SM ST

N02 N05 N10 N02 N05 N10 N02 N05 N10 N02 N05 N10

Hit α1 .519 .523 .530 .523 .522 .533 .527 .526 .527 .523 .524 .526

rate α2 .521 .525 .532 .520 .522 .534 .526 .528 .529 .524 .524 .525

α4 .517 .520 .525 .515 .514 .523 .527 .526 .531 .525 .526 .532

α3 .430 .439 .458 .422 .420 .435 .440 .442 .450 .419 .422 .427

κ α1 .047 .053 .068 .056 .053 .074 .056 .056 .058 .050 .052 .055

α2 .048 .053 .069 .049 .049 .072 .051 .056 .057 .047 .050 .051

α3 .027 .032 .043 .022 .021 .035 .056 .055 .061 .052 .052 .062

α3 -.013 -.015 -.021 -.047 -.043 -.068 -.008 -.010 -.012 -.036 -.039 -.044

Table 3.20: Recovery of Ability (θ) Distribution Parameter Estimates (A4I20)

Parametera Mean Standard Deviation

DM DT SM ST DM DT SM ST

C1 N(0,1) -.242 -.273 -.248 -.252 .695 .683 .790 .793

C2 N(1,1) 1.150 1.100 .229 .224 .687 .684 .846 .843

a Parameters include the mean and variance of ability for each class. For the same
mean conditions, the means and variances are the same across two latent classes.
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Table 3.21: Recovery of Marginal Proportion of the Latent Class and Mastery Profile
(A4I20)

Profile Truea DM DT SM ST

1 (0000) 0.89 3.96 3.84 5.97 5.75

2 (0001) 4.00 6.20 6.07 5.57 5.85

3 (0010) 4.00 4.91 4.52 5.75 5.48

4 (0011) 17.93 6.12 5.78 5.81 5.83

5 (0100) 4.00 4.84 4.97 5.18 5.17

6 (0101) 6.60 6.30 6.08 6.48 6.57

7 (0110) 6.60 6.09 6.40 5.59 5.49

8 (0111) 10.88 5.15 5.04 5.81 6.03

9 (1000) 4.00 4.75 4.70 4.42 4.46

10 (1001) 6.60 6.82 7.33 7.20 7.43

11 (1010) 6.60 7.21 6.76 6.88 6.46

12 (1011) 10.88 7.25 7.14 7.75 8.02

13 (1100) 6.60 6.45 6.62 5.76 5.62

14 (1101) 4.00 7.41 7.73 8.15 8.06

15 (1110) 4.00 9.30 9.59 6.94 6.91

16 (1111) 2.43 7.25 7.45 6.77 6.89

Class 1 56.01 54.44 56.47 52.15 53.05

Class 2 43.99 45.56 43.53 47.85 46.95

a True values of marginal proportion of each profile and latent class.

Table 3.22: Recovery of Tetrachoric Correlation between Attributes (A4I20)

Truea DM DT SM ST

α2 α3 α4 α2 α3 α4 α2 α3 α4 α2 α3 α4 α2 α3 α4

α1 .213 .303 .305 .046 .074 -.001 .040 .060 .001 .026 .048 .084 .017 .043 .100
α2 .304 .304 -.005 .060 .034 .079 .041 .018 .045 .021
α3 .142 .123 .139 .113 .125

a True values of correlation.
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Table 3.24: Recovery of Relationship Parameters between Latent Class and Mastery Profile
(A4I20)

Based on the Posterior Probability

Moderate Relationship Strong Relationship

Profile True DM SM True DT ST

1 (0000) 1 2.078 (0.757) 1.371 (0.806) 2 2.152 (1.589) 1.288 (0.806)
2 (0001) 1 1.200 (2.014) .345 (0.739) 2 1.487 (1.626) .373 (0.859)
3 (0010) 1 1.643 (0.854) 1.618 (0.837) 2 1.579 (0.754) 1.640 (0.811)
4 (0011) -1 1.115 (0.863) .262 (0.764) -2 1.421 (1.632) .466 (0.701)
5 (0100) 1 1.532 (1.947) 1.526 (0.834) 2 1.698 (1.601) 1.388 (0.882)
6 (0101) 1 .767 (2.006) .070 (0.672) 2 1.052 (1.490) -.001 (0.705)
7 (0110) 1 1.473 (0.872) 1.786 (0.668) 2 1.520 (1.528) 1.758 (0.714)
8 (0111) -1 1.004 (1.758) .185 (0.585) -2 1.017 (1.422) .241 (0.569)
9 (1000) 1 1.496 (1.744) 1.215 (0.841) 2 1.311 (2.511) 1.042 (0.789)
10 (1001) 1 1.409 (1.788) .239 (0.630) 2 .870 (1.811) .136 (0.747)
11 (1010) 1 1.282 (1.063) 1.532 (0.787) 2 1.163 (0.923) 1.480 (0.679)
12 (1011) -1 .893 (0.968) .303 (0.571) -2 1.047 (1.692) .433 (0.557)
13 (1100) 1 1.210 (1.039) 1.356 (0.747) 2 1.258 (1.732) 1.176 (0.744)
14 (1101) 1 .709 (1.855) -.057 (0.525) 2 .551 (1.382) -.255 (0.590)
15 (1110) 1 1.160 (1.001) 1.708 (0.627) 2 1.172 (1.486) 1.585 (0.652)
16 (1111) -1 -1.303 (0.643) -.890 (0.490) -2 -1.455 (1.314) -.882 (0.497)

Based on the Estimated Model

Moderate Relationship Strong Relationship

Profile True DM SM True DT ST

1 (0000) 1 -.022 (.096) -.038 (.082) 2 -.064 (.087) -.054 (.077)
2 (0001) 1 -.020 (.133) -.025 (.069) 2 -.044 (.138) -.033 (.078)
3 (0010) 1 -.043 (.122) -.029 (.081) 2 -.079 (.121) -.034 (.069)
4 (0011) -1 -.005 (.120) -.013 (.076) -2 -.012 (.141) -.006 (.062)
5 (0100) 1 -.041 (.141) -.037 (.082) 2 -.077 (.125) -.055 (.071)
6 (0101) 1 -.036 (.150) -.029 (.068) 2 -.064 (.130) -.040 (.063)
7 (0110) 1 -.030 (.135) -.019 (.063) 2 -.060 (.138) -.030 (.057)
8 (0111) -1 .004 (.158) -.013 (.052) -2 -.016 (.106) -.011 (.050)
9 (1000) 1 -.027 (.189) -.037 (.074) 2 -.089 (.125) -.055 (.066)
10 (1001) 1 .004 (.146) -.015 (.069) 2 -.053 (.126) -.026 (.062)
11 (1010) 1 -.060 (.164) -.026 (.072) 2 -.083 (.145) -.030 (.057)
12 (1011) -1 .004 (.119) -.001 (.063) -2 .000 (.139) .005 (.047)
13 (1100) 1 -.069 (.100) -.041 (.071) 2 -.092 (.160) -.061 (.060)
14 (1101) 1 -.041 (.134) -.024 (.054) 2 -.070 (.118) -.038 (.055)
15 (1110) 1 -.042 (.125) -.019 (.048) 2 -.061 (.134) -.030 (.050)
16 (1111) -1 -.112 (.081) -.041 (.058) -2 -.136 (.096) -.052 (.064)

Note. The values in parentheses are standard deviations.
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Figure 3.14: Comparison of True and Estimated Values of Relationship
Parameters between Latent Class and Mastery Profile (A4I20)
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Next, Table 3.21 contains the estimates of the marginal proportions for latent classes and

mastery profiles. The estimation process yielded comparable results for the latent classes but

did not do as well for the mastery profiles. This is also seen in the tetrachoric correlations

between attributes as presented in Table 3.22. Although in general, the tetrachoric correla-

tions between α3 and α4 were recovered well, the estimation process failed to capture the

relationships between attributes and, in fact, underestimated them.

Finally, Tables 3.24 and 3.23 and Figure 3.14 present results for the recovery of the rela-

tionship parameters. The upper parts of Table 3.24 and Figure 3.14 present the classification

results based on the posterior probability of class membership; the lower part presents results

based on the posited model. Several observations can be made from the results. First, the

results show that regardless of the strength of relationship conditions, the estimation process

yielded similar sets of parameter estimates. Second, as with the A3I30 condition, using the

model-based mixing proportions the relationship parameters were not recovered well; the

classification based on the posterior probability provided better estimates for relationship

parameters. Third, under the moderate relationship conditions, all relationship parameters

were overestimated; however, under the strong relationship conditions, parameter estimates

tended toward moderate values; the parameters having high values were underestimated

whereas the parameters having low values were overestimated.

The class proportions conditioning on mastery profiles are given in Table 3.23. In spite

of the poor recovery of the relationship parameters, under the moderate relationship and

equal mean conditions, the patterns of conditional proportions for the 12 profiles were close

to truth, and under unequal mean conditions, for nine of 12 mastery profiles the conditional

proportions were close to true values. Despite that the general picture of the association was

well captured, however, the strengths of association were underestimated.
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3.5 Summary and Conclusions

The item and ability parameters of the DCMixRM appeared to be well recovered. Even

so, item difficulty tended to be slightly underestimated and attribute effect slightly overesti-

mated. Under the A3I30 condition, at the point of item difficulty of zero, the direction of bias

was altered: underestimation occurred at high difficulty items and overestimation occurred

at low difficulty items. These phenomena can be referred to as scale shrinkage. This is con-

sistent with the previous research on item difficulty estimation in IRT. Scale shrinkage also

occurred with ability parameter estimation. For attribute effect estimates, bias tended to be

larger for single-attribute items compared to bias in two-attribute items.

For the structural component of the DCMixRM, the distribution of latent classes was

recovered well. More interestingly, the latent classes appeared to be well detected with the

use of the mastery profiles. It also appears that the use of the mastery profiles (i.e., the use

of the attributes as covariates on the structural parameter) reduced or possibly prevented

label switching. As indicated earlier, label switching occurs because the likelihood is not

sufficiently informative to the estimation process (McLachlan & Peel, 2000). Yet, the inclu-

sion of covariates, such as the mastery profiles, may be sufficiently informative to become

inequality constraints on the parameter space to prevent the label switching (see McLachlan

& Peel, 2000). This can also be interpreted in such a way that, as Smit et al. (1999, 2000,

2003) suggest, the inclusion of mastery profiles as covariates may be sufficiently informative

to detect latent classes.

Under the A3I30 condition, the relationship between the latent classes and mastery pro-

files were fairly recovered. As a result, the model appears to be supported for providing

information about characteristics of latent classes in the form of mastery profiles. The short

test length condition (A4I20) appeared to cause some difficulties in the estimation process

in terms of detecting the relationship parameters. For both cases (i.e., A3I30 and A4I20),

the classification based on the posterior probability worked better in recovering the asso-

ciation between the latent classes and mastery profiles. It should be noted, however, that
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the classification based on the posterior probability does not take into account uncertainty

in classification. Also, the correlations between attributes appeared to be attenuated. These

results may have been due to the small magnitudes of the correlations that were used in

generating data sets.

For the unequal mean conditions, the convergence rates were not as good as for the

equal mean conditions. To better understand this, it is useful to note that there are at

least two types of non-convergence: (1) estimation stops without converging because the

maximum number of iterations was reached (hard stopping rule) or (2) estimation failed to

converge because it was difficult to optimize the function being fit (soft stopping rule). For

the current study, examination of the optimization history of the analyses suggested that all

of the non-convergence results occurred due to difficulties in optimizing the parameter space

(soft stopping rule). The largest number of iterations that was run was 120 for the data

set for the condition of 2,000 examinees with moderate relationship between latent class and

profile under the different mean condition (DMN02). This suggests that the non-convergence

occurred due to the complexity of the parameter space. It is possible that the MLE used here

may have had difficulty in finding maximization points over the relatively complex parameter

space of the DCMixRM.

To deal with this complexity, other estimators might be considered to improve the esti-

mation for the DCMixRM; Bayesian estimation via MCMC is one possibility. Limiting the

parameter space may also be a useful alternative for improving the optimization process

for parameter estimation. For instance, fixing certain parameters that are not of interest or

imposing constraints that reflect a conjecture or theoretical framework may help improve

the process.

In this study, the magnitudes of attributes and interaction effects were set to be the same

across all attributes. Furthermore, small values were chosen for these as parameters. These

two factors may have caused problems in recovering attribute effects. One problem faced

here is that no testing program yet exists that combines measurement of both a general
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proficiency and mastery state on attributes. As a result, deciding what the appropriate

magnitudes should be for both item difficulties and attribute effects was difficult. In this

study, item difficulties were generated from a uniform distribution with mean of zero and a

bound of -3 and 3, and ability was generated from a normal distribution with a mean of zero

and a variance of 1. Given these restrictions, there was little room to set the magnitudes of

attribute effects in formulating probability of getting a correct answer. Since the DCMixRM

is a probabilistic model with three sets of parameters, such as θ (ability), b (item difficulty),

and λ (attribute effect), the influence on probability of getting a correct answer is bound by

relative magnitude to one another. Further study is needed to investigate reasonable values

for attribute effects and how these values might affect on parameter recovery and convergence

for the DCMixRM.



Chapter 4

ILLUSTRATIVE ANALYSES: TWO EMPIRICAL STUDIES

Two empirical data analyses are presented in this section to illustrate the use of the

DCMixRM. The intent of this presentation is to illustrate how to fit the model and how

to interpret results for large-scale assessments. Data from a reading test and data from a

mathematics test were used for this purpose. The reading test was from an international

assessment program, The Progress in International Reading Literacy Study (PIRLS) 2006,

and the mathematics test was administered in a Midwestern state as a part of state’s

accountability program.

The two analyses are presented separately. In each section, the description of the data

set is presented first, followed by descriptive statistics and the model selection process used

with the DCMixRM. Then the results are provided for estimates of item, examinee, and

structural parameters.

4.1 DCMixRM with Reading Comprehension: PIRLS 2006

Overview of The Progress in International Reading Literacy Study. The Progress in

International Reading Literacy Study (PIRLS) is an international comparative trend study

of reading literacy. It is coordinated by the International Association for the Evaluation of

Educational Achievement (IEA) (Mullis, Martin, Kennedy, & Foy, 2007). The assessment is

taken by fourth-grade students (primarily nine- and ten-year-old) every five years beginning

in 2001. The target grade was chosen because it is an important point at which students begin

to transition from learning how to read to how to read to learn. PIRLS provides informa-

tion about reading literacy that complements two other international assessment programs.

86
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These are the IEA’s Trends in International Mathematics and Science Study (TIMSS), which

assesses achievement at fourth and eighth grades, and the Programme for International Stu-

dent Assessment (PISA), which assesses reading literacy of 15-year-old students.

The Reading Development Group (RDG), the Questionnaire Development Group (QDG),

and the National Research Coordinators (NRCs) were involved in developing the PIRLS

framework. Reading literacy was defined as

the ability to understand and use those written language forms required by society

and/or valued by the individual. Young readers can construct meaning from a

variety of texts. They read to learn, to participate in communities of readers

in school and everyday life, and for enjoyment. (Mullis, Kennedy, Martin, &

Sainsbury, 2006, p. 3)

Based on this definition, the three groups focused on three aspects of students’ reading

literacy in constructing the PIRLS assessment program: purposes for reading, processes of

comprehension, and reading behaviors and attitudes. Of these, the reading purposes and com-

prehension processes provide the foundation for the written assessment of reading literacy.

The PIRLS focuses on two purposes for reading: reading for literary experience and reading

for acquiring and using information. Four processes were identified for the comprehension

process:

- Focus on and retrieve explicitly stated information (Retrieval),

- Make straightforward inferences (Inference),

- Interpret and integrate ideas and information (Integration), and

- Examine and evaluate content, language and textual (Evaluation).

These elements were used as the blueprint for writing items, and hence they were used here

to build the Q-matrix which is described in the following section.

Data and Q-matrix. PIRLS 2006 consisted of 10 passages, five literary and five infor-

mational. Each passage was accompanied by approximately 12 questions, 126 items in total.



88

As is done for the National Assessment of Educational Progress (NAEP), PIRLS implements

a rotated booklet design. In this design, each student is administered one booklet consisting

of two passages. 14,109 examinees who took test items in Booklet 10 in 2006 were sam-

pled. Booklet 10 was chosen because it had the most multiple-choice items and because it

included one information-related and one literary-related passage. Table 4.1 gives a summary

of distributions of gender and nationality of the examinees in the sample.

PIRLS was developed to measure overall proficiency level in reading comprehension.

That is, the test is scored to provide an ability score rather than a diagnostic estimate

of examinees’ strengths or weaknesses on specific attributes. Hence, a Q-matrix was not

developed or used by the test developers. For purposes of this example, therefore, the Q-

matrix was constructed using the four reading comprehension processes used for constructing

the test. Table 4.2 presents the Q-matrix along with descriptive statistics. As shown in the

table, each item requires only a single attribute. This is described as a simple structure Q-

matrix. The descriptive statistics of items indicate many students had difficulty in solving

Items 3, 4 and 13, as less than half of the students answered these items correctly. Two sample

items are given in Table 4.3. Both items require inference but with different contexts. These

items were not included in the analysis described in this example, but they do illustrate how

items on the PIRLS are constructed.

Model Selection and Descriptive Statistics. Three DCMixRMs were fit to the

PIRLS 2006 data. These consisted of DCMixRMs for one- to three-classes. This was done to

determine the number of latent classes that best fit the data. Fit indices used were used to

guide the selection of the best fitting model. These included AIC, BIC, and entropy of three

models. As shown in Table 4.4, although entropy indicated a one-class DCMixRM was the

best, AIC and BIC suggested that a two-class DCMixRM was the best fitting model. There

is no research on model fit indices appropriate for a DCMixRM, however, previous research

on MixIRT models (Li et al., 2009) suggested that BIC and AIC functioned well for this

purpose. Based on the AIC and BIC, therefore, we decided to use the two-class DCMixRM
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Table 4.1: Demographic Compositions of Examinees in PIRLS 2006

Frequency Percent Frequency Percent

Gendera

Female 6,883 48.78 Male 7,218 51.16

Country

Austria 339 2.40 Poland 318 2.25

Bulgaria 255 1.81 Qatar 440 3.12

Taipei 297 2.11 Romania 275 1.95

Denmark 266 1.89 Russia 320 2.27

France 285 2.02 Singapore 424 3.01

Georgia 307 2.18 Slovakia 357 2.53

Germany 525 3.72 Slovenia 352 2.49

Hong Kong 309 2.19 South Africa 875 6.20

Hungary 243 1.72 Spain 259 1.84

Iceland 237 1.68 Sweden 283 2.01

Indonesia 302 2.14 Trinidad & Tobago 267 1.89

Iran 366 2.59 Macedonia 262 1.86

Israel 262 1.86 United States 344 2.44

Italy 241 1.71 England 267 1.89

Kuwait 254 1.80 Scotland 248 1.76

Latvia 284 2.01 Belgium Flemish 309 2.19

Lithuania 313 2.22 Belgium French 299 2.12

Luxembourg 332 2.35 Canada Ontario 265 1.88

Moldova 266 1.89 Canada Quebec 252 1.79

Morocco 213 1.51 Canada Alberta 271 1.92

Netherlands 285 2.02 Canada British Columbia 280 1.98

New Zealand 420 2.98 Canada Nova Scotia 294 2.08

Norway 247 1.75 Total 14,109 100.00

a missing=8
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Table 4.2: Q-matrix along with Mean and SD of Items in PIRLS 2006

Informational passage Literary passage

Item α1 α2 α3 α4 Mean SD Item α1 α2 α3 α4 Mean SD

1 0 0 0 1 .87 .33 8 0 0 0 1 .73 .44

2 0 0 0 1 .50 .50 9 1 0 0 0 .73 .45

3 1 0 0 0 .46 .50 10 1 0 0 0 .80 .40

4 0 1 0 0 .45 .50 11 0 1 0 0 .67 .47

5 0 0 1 0 .76 .43 12 0 0 1 0 .54 .50

6 0 0 1 0 .64 .48 13 0 0 1 0 .62 .49

7 0 0 1 0 .73 .44 Total 3 2 5 3 8.50 3.10

Note. α1 Retrieval; α2 Inference; α3 Integration; and α4 Evaluation.
Means are proportions of examinees who answered correctly to the item.

Table 4.3: Two Released Items that Requires α2 (Inference) from PIRLS 2006

Passage Item

Literary Why was the clay eventually taken out of the bin?

a© All the other lumps of clay were used. *

b© It was on top of the other lumps of clay.

c© The boy chose that lump because he especially liked it.

d© The teacher told the boy to use that lump

Informative Why does the article tell you that ‘a mug of boiling water thrown in

the air would freeze before it hit the ice’?

a© to tell you how hot the water is in Antarctica

b© to show you what they drink in Antarctica

c© to tell you about scientists’ jobs in Antarctica

d© to show you how cold it is in Antarctica *

Note. The items were reprinted with permission from Mullis et al. (2006).
* Answer key.
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Table 4.4: Goodness-of-Fit Statistics of DCMixRMs for PIRLS 2006

Class 1 Class 2 Class 3

Numbera 41 71 101

AIC 200315 199395 199467

BIC 200625 199931 200230

Entropy .56 .50 .41

a Number of parameters that were estimated in the model.

solution. Recall that since four attributes were involved in the test, it was possible to have

16 mastery profiles within each class.

Item Parameter Estimates. Recall that to compare the class-specific item difficulties,

it was necessary first to place the item difficulties for each latent class on the same scale.

As done with item difficulties in the simulation study in the previous chapter, it was done

by the mean and sigma method (see Equation 3.5). Since class 1 was used as baseline, all

item difficulties were on the scale of Class 1. Class-specific item difficulty and attribute effect

parameter estimates are presented in Table 4.5. The results are also visually displayed in

Figure 4.1. Difficulties for Items 1 and 6 were virtually the same across latent classes. Items 7,

9, and 10 were easier for Class 1 whereas Items 2, 3 and 12 were easier for Class 2. Figure 4.2

depicts two sets of item characteristic curves for two items for the same passage. This figure

demonstrates that although Items 10 and 12 belonged to the same passage, they functioned

differently in each latent class. Specifically, Item 10 was easier for examinees who had not

mastered the attribute required for the item, if they were in Class 1. The same examinees

tended to have difficulty in solving Item 12. This pattern does not appear to be related to

passage types as would be modeled by testlet or method effect models.

Attribute effects for Items 2, 3, 4, and 13 were not significant at the .05 level and was

zero for Item 8. Among the items that had significant and relatively large attribute effects,
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Table 4.5: Item Difficulty and Attribute Effect of PIRLS 2006

Item Difficulty Attribute Effect

Item Class 1 Class 2 λ1 λ2 λ3 λ4

1(0001) -2.731 -2.867 .173∗

2(0001) 1.777 .851 4.280

3(1000) 1.951 .536 3.555

4(0100) 2.005 1.678 4.341

5(0010) -1.807 -1.492 .656∗

6(0010) -.737 -.848 .946∗

7(0010) -1.852 -.517 1.162∗

8(0001) -1.642 -1.901 .000∗

9(1000) -1.820 -.905 .577∗

10(1000) -2.766 -1.251 .585∗

11(0100) -1.395 -1.066 .197∗

12(0010) .081 -.853 .986

13(0010) -.467 -.766 1.263

Note.λ1 Retrieval; λ2 Inference; λ3 Integration; λ4 Evaluation.
* p <.05 for attribute effects.

Items 5, 6, 7, and 12 required α3 (integration) and Items 9 and 10 required α1 (retrieval).

These results suggest this test may not be a good one for measuring mastery states of either

α2 (inference) or α4 (evaluation). For each of these attributes, only two items were included

in this test measuring these attributes. It is likely that there was not a sufficient number of

items to estimate mastery state on these attributes.

Ability Distribution and Latent Classes. The ability distributions for each class are

plotted in Figure 4.3. Although there was an overlap between latent classes, those in Class 1

were higher in reading literacy ability than those in Class 2. The difference in mean ability

between classes was 1.35. Approximately 75 % of the examinees belonged to Class 1, and

about 25 % in Class 2 (see Table 4.6). Particularly, as comparing with raw score distribution
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as shown in Figure 4.4, it appears that the 2-class DCMixRM solution well described ability

distribution.

Classification of Mastery Profiles. The mastery profiles detected in these data lead

to some possibly interesting observations. As can be seen in the Total column in Table 4.6,

Profiles 3, 4, 7 and 13 were completely empty and Profiles 8 and 14 had only a few cases.

These results indicate three patterns in mastery profiles. First, if an examinee had mastered

α3 (integration), then he/she also must have mastered α1 (retrieval), because the mastery

profiles of (0010), (0011),(0110) and (0111) were empty. This may also help explain why the

correlation between these two attributes was so high (see Table 4.7).

Second, if an examinee had mastered both α1 and α2, he/she also must have mastered

α3. Therefore, if an examinee answers correctly to Items 5, 6, 7, 12, or 13, it is likely that

Items 3, 4, 9, 11 or 10 were also answered correctly.
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Table 4.6: Examinee Classification Results with PIRLS 2006

Frequency Percent

Profile Class 1 Class 2 Total Class 1 Class 2 Marginal

1 (0000) 1380 1694 3074 44.9 55.1 21.8

2 (0001) 1211 685 1896 63.9 36.1 13.4

3 (0010) 0 0 0 0.0 0.0 0.0

4 (0011) 0 0 0 0.0 0.0 0.0

5 (0100) 1047 332 1379 75.9 24.1 9.8

6 (0101) 933 111 1044 89.4 10.6 7.4

7 (0110) 0 0 0 0.0 0.0 0.0

8 (0111) 32 0 32 100.0 0.0 0.2

9 (1000) 0 411 411 0.0 100.0 2.9

10 (1001) 4 80 84 4.8 95.2 0.6

11 (1010) 881 20 901 97.8 2.2 6.4

12 (1011) 1412 0 1412 100.0 0.0 10.0

13 (1100) 0 0 0 0.0 0.0 0.0

14 (1101) 0 23 23 0.0 100.0 0.2

15 (1110) 1261 69 1330 94.8 5.2 9.4

16 (1111) 2439 84 2523 96.7 3.3 17.9

Total 10600 3509 14109 75.1 24.9 100.0

Meana 0 -1.35

a Mean ability of each class.

Table 4.7: Tetrachoric Correlation between Attributes of PIRLS 2006

α2 Inference α3 Integration α4 Evaluation

α1 Retrieval .384 .997 .316

α2 Inference .479 .212

α3 Integration .389
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Third, the mastery profile results indicate there are two different groups of struggling

readers. In one group, there is a lack of mastery of α1 (retrieval) and in the other group,

there is a lack of mastery of α2 (inference). These attributes appear to be required in order to

acquire α3 (integration). Based on this information, those examinees who were classified as

having Profiles 5 or 6 might benefit from an instructional intervention focusing on acquisition

of α1 (retrieval) because this might help them master α3 (integration). Of those who were

classified as having Profiles 9 or 10, an intervention related to α2 (inference) might have the

same benefit. The other implication of the results is that, in an adaptive testing situation, if

an examinee misses an item related to α3 (integration), it might be a good idea to provide

sets of items which relate to α1 and α2 sequentially to diagnose which of these attributes the

examinee has not yet mastered.

These patterns observed from results here might be an indication of a hierarchical rela-

tionship among attributes (see Figure 4.5). That is, there is not a hierarchical relationship

between Attributes 1 and 2, but both attributes are prerequisite to master Attribute 3.

Relationship of Latent Classes and Mastery Profiles. Results presented in Table

4.6 show that those examinees who mastered more than three attributes tended to belong

to Class 1. This class was also higher in ability than Class 2. What this suggests is that the

more attributes examinees have mastered, the higher their ability is likely to be. Someone

who was able to master only α1 was likely to be classed into Class 2. Mastery of a single

attribute did not always result in someone being classified into Class 2, however, as someone

who mastered either α2 or α4 tended to belong to Class 1.

The association between attributes and latent class membership was modeled in this

study using a multinomial logit model. As discussed in Chapter 3, to construct this model,

we needed reference groups which in this case were Class 2 and Profile 16. Recall that Profiles

3, 4, 7 and 14 were discarded because they contained no observations. The results can be

found in Table 4.8.
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The coefficients for Profiles 8, 9, 11, 12 and 14 were not significant at the .05 level. This

was because most of the examinees belonging to Class 1 had Profiles 8, 11 or 12, and most

of the examinees belonging to Class 2 had Profiles 9 or 14. α3 (integration) was a critical

attribute which appeared to operate to separate Class 1 and Class 2. Not only did Class 1

have higher ability than Class 2, but the members of Class 1 also mastered α3 (integration).

This can be seen in the mastery profiles that were more likely for Class 1 than for Class

2. That is, examinees with Profiles 8, 11, and 12 mastered α3, and examinees with Profile

14 did not, even though examinees with Profile 14 did master the other attributes. Further,

if an examinee mastered all of the attributes, he/she was much more likely (i.e., e3.369=29

times odds ratio) to belong to Class 1 versus Class 2. If an examinee mastered only α1 and

α4, he/she had only e−6.364=.0017 times odds of belonging to Class 1 versus Class 2.

Table 4.9 summarizes class membership and mastery profile for each country. This is a

unique feature of DCMs and can help to identify country-level strengths and weaknesses.

Results presented in this table show that country may not be the best proxy for latent

class membership. For instance, students in the United States and Austria presented the

same reading literacy ability on average, and yet the components of mastery profiles in

two countries were very different from each other (see Figure 4.6). In the United States,

Profile 11 may be considered as a target group for providing a supplementary instructional

program. Since the target group has not mastered α2, the program may be designed to focus

on acquiring α2 (integration). On the other hand, in Austria a group of students classified

as Profile 2 appear to be struggling readers who have not mastered α1, and educators may

consider providing a supplementary instructional program focusing on this attribute (i.e., on

retrieval).
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Figure 4.6: Mastery Profiles of United States and Austria of PIRLS 2006

Table 4.8: Effects of Mastery Profiles on Latent Class Membership of PIRLS 2006

Profile Estimate Std.Dev. χ2 Pr> χ2

1 (0000) -3.573 .117 937.0 <.000

2 (0001) -2.799 .121 536.5 <.000

5 (0100) -2.220 .128 302.7 <.000

6 (0101) -1.240 .150 68.6 <.000

8 (0111) 14.202 1155.400 .0 .990

9 (1000) -21.368 399.500 .0 .957

10 (1001) -6.364 .524 147.4 <.000

11 (1010) .417 .252 2.8 .098

12 (1011) 14.202 173.900 .0 .935

14 (1101) -21.368 1688.900 .0 .999

15 (1110) -.463 .166 7.8 .005

16 (1111) 3.369 .111 921.4 <.000

Note.Class 2 was the reference group.



100

Table 4.9: Distribution of Latent Classes and Mastery Profiles of Each Country

Class Profile

Country 1 2 1 2 5 6 8 9 10 11 12 14 15 16 Total

Austria 305 34 77 93 33 34 1 3 0 15 38 0 10 35 339
Bulgaria 225 30 30 16 29 16 1 6 0 15 26 1 40 75 255
Taipei 248 49 57 52 46 31 0 5 2 10 23 2 22 47 297
Denmark 236 30 40 28 16 20 1 5 0 24 55 0 27 50 266
France 258 27 47 36 42 24 0 2 0 9 25 0 29 71 285
Georgia 237 70 71 34 40 32 0 10 1 19 26 2 22 50 307
Germany 471 54 109 105 38 31 1 2 0 40 97 0 34 68 525
Hong Kong 275 34 37 35 37 34 0 5 2 28 29 0 30 72 309
Hungary 222 21 43 31 31 30 1 5 0 15 17 0 21 49 243
Iceland 204 33 61 46 33 44 1 3 0 4 9 0 8 28 237
Indonesia 85 217 117 55 44 12 0 30 4 2 12 1 9 16 302
Iran 222 144 153 40 25 3 0 21 3 41 24 0 25 31 366
Israel 201 61 31 30 21 18 3 4 3 14 19 3 31 85 262
Italy 221 20 33 40 33 44 2 0 0 6 24 0 15 44 241
Kuwait 41 213 104 70 20 19 0 18 5 1 3 0 2 12 254
Latvia 258 26 48 38 24 32 4 4 1 25 32 0 27 49 284
Lithuania 277 36 54 20 62 39 1 1 0 17 14 0 52 53 313
Luxembourg 305 27 62 81 20 29 0 2 0 34 54 0 13 37 332
Moldova 180 86 79 50 40 44 1 3 0 5 14 1 12 17 266
Morocco 55 158 100 47 16 10 0 11 6 2 3 1 6 11 213
Netherlands 270 15 31 20 16 16 0 4 0 34 63 0 38 63 285
New Zealand 333 87 59 31 24 14 0 20 3 50 66 0 55 98 420
Norway 202 45 69 30 48 33 0 9 0 8 12 0 16 22 247
Poland 269 49 86 42 31 27 1 8 0 24 40 1 23 35 318
Qatar 119 321 176 121 37 23 0 22 10 8 15 1 10 17 440
Romania 221 54 79 41 22 19 2 12 0 21 27 1 16 35 275
Russia 292 28 28 26 45 47 3 4 2 10 10 0 50 95 320
Singapore 370 54 32 17 10 7 0 8 2 46 92 0 74 136 424
Slovakia 294 63 90 47 50 37 2 6 1 13 15 1 31 64 357
Slovenia 308 44 67 58 31 16 1 7 2 39 45 0 27 59 352
South Africa 173 702 424 142 71 38 0 75 21 14 35 4 22 29 875
Spain 225 34 68 33 36 20 1 3 0 18 25 0 12 43 259
Sweden 255 28 36 21 22 31 0 3 1 23 28 0 39 79 283
Trinidad & Tobago 164 103 62 35 17 9 0 21 6 19 41 1 15 41 267
Macedonia 126 136 68 35 30 15 0 15 4 7 6 1 32 49 262
United States 296 48 36 13 10 6 1 8 0 45 44 0 73 108 344
England 218 49 29 24 14 4 0 6 1 24 41 0 29 95 267
Scotland 211 37 30 23 8 6 0 5 1 24 38 1 36 76 248
Belgium Flemish 284 25 28 36 34 32 2 4 1 25 41 0 33 73 309
Belgium French 250 49 56 58 65 45 0 5 0 3 13 0 13 41 299
Canada Ontario 219 46 32 17 26 12 1 6 0 29 32 0 48 62 265
∼ Quebec 222 30 48 32 27 15 1 1 1 13 32 0 28 54 252
∼ Alberta 248 23 22 13 9 9 0 6 0 27 35 0 56 94 271
∼ British Columbia 252 28 25 14 19 6 0 4 1 28 40 1 64 78 280
∼ Nova Scotia 253 41 40 20 27 11 0 9 0 23 32 0 55 77 294
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4.2 DCMixRM with Mathematics: State’s Accountability Test

Description of the Data. A sample of 4,000 examinees was randomly drawn for purposes

of this example from a tenth-grade mathematics test administered in a midwestern state.

The test consisted of 84 dichotomously scored items, and responses from 4,000 examinees

were randomly sampled. The test was used as part of a state assessment program and was

designed to provide information about whether or not state standards had been met in

mathematics. Results were reported at the state level, the district level, and the school level,

and were intended to be used to support both school improvement and accountability.

As was the case for the PIRLS 2006 test, this mathematics test was designed to pro-

vide a single overall measure of proficiency in mathematics. The test was not designed to

classify examinees into mastery profiles and the test was not designed to provide diagnostic

information. The test was specifically designed to measure four standards. For purposes

of this example, therefore, we used these four standards to construct a Q-matrix for the

test. The standards included Number and Computation (α1), Algebra (α2), Geometry (α3),

and Data Analysis (α4). Number and Computation consists of number sense, number sys-

tems and their properties, estimation, and computation; Algebra includes patterns, variables,

equations, and inequalities, functions, and models; Geometry consists of geometric figures,

measurement and estimation, transformational geometry, and geometry from an algebraic

perspective; and Data analysis includes statistics and probability.

The entries of the Q-matrix of items are presented in Table 4.10 along with descriptive

statistics. As indicated in this table, 40 of the 84 items were selected. The resulting Q-matrix

had a simple structure as each item of the 40 items measured a single attribute. These 40

items resulted in a test that consisted of 10 items measuring each of the attributes.

Model Selection. The same model fitting process that was used with the PIRLS 2006

test was used with the mathematics test. Three DCMixRMs, consisting of models with one-

to three-classes, were fit to the data. AIC, BIC, and entropy values were calculated for each

model. The results for these indices are presented in Table 4.11 for each solution. Among the
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Table 4.10: Q-matrix with Mean and SD of Items in the Mathematics Test

Item α1 α2 α3 α4 Mean SD Item α1 α2 α3 α4 Mean SD

1 1 0 0 0 .63 .483 21 0 0 1 0 .62 .486

2 1 0 0 0 .43 .495 22 0 0 1 0 .66 .475

3 1 0 0 0 .60 .491 23 0 0 1 0 .72 .451

4 1 0 0 0 .53 .499 24 0 0 0 1 .53 .499

5 1 0 0 0 .81 .396 25 0 0 0 1 .56 .496

6 1 0 0 0 .58 .493 26 0 0 0 1 .74 .441

7 1 0 0 0 .59 .492 27 0 0 0 1 .65 .476

8 1 0 0 0 .44 .497 28 0 0 0 1 .75 .435

9 1 0 0 0 .72 .451 29 0 0 0 1 .57 .495

10 0 1 0 0 .66 .475 30 1 0 0 0 .60 .489

11 0 1 0 0 .49 .500 31 0 0 1 0 .53 .499

12 0 0 1 0 .58 .494 32 0 1 0 0 .57 .496

13 0 0 1 0 .63 .483 33 0 1 0 0 .57 .495

14 0 0 1 0 .53 .499 34 0 1 0 0 .53 .499

15 0 0 1 0 .62 .486 35 0 1 0 0 .59 .491

16 0 0 0 1 .59 .492 36 0 1 0 0 .49 .500

17 0 0 0 1 .64 .480 37 0 1 0 0 .64 .479

18 0 1 0 0 .68 .467 38 0 0 1 0 .59 .492

19 0 1 0 0 .53 .499 39 0 0 0 1 .60 .489

20 0 0 1 0 .68 .468 40 0 0 0 1 .48 .500

Note.α1 Number & Computation; α2 Algebra; α3 Geometry; and α4 Data Analysis.
Means are proportions of examinees who answered correctly to the item.
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Table 4.11: Goodness-of-Fit Statistics of DCMixRMs for the Mathematics Test

Class 1 Class 2 Class 3a

Numberb 95 152 209

AIC 186303 184692

BIC 186901 185649

Entropy .58 .67

a No convergence.
b Number of parameters that were estimated in the model.

three models, the three-class model was not converged and AIC, BIC, and entropy suggested

that the two-class DCMixRM fit the best for this data set. There was no conflict among fit

indices, and as a result, we decided to fit the two-class model to these test data. Recall that

in this model, 16 mastery profiles were estimated for each latent class.

Item Parameter Estimates. As with the PIRLS data set, in order to compare the

class-specific item difficulties, item difficulties were placed onto the scale of Class 1 through

the mean and sigma method as described in Equation 3.5. The equated class-specific item

difficulties and attribute effects are presented in Table 4.12. Also, item difficulty patterns of

each class can be found in Figure 4.7. First of all, Items 12, 14 and 15 were easier for Class

1, whereas Items 20, 21, 22, and 23 were easier for Class 2. Interestingly, all these items

required α3 (geometry). Two items that had high difficulties for both classes were Items 24

and 25. These items were related to α4 (data analysis).

Two points are noteworthy regarding attribute effects. First, there were 10 items that

involved α1 (number and computation), and yet only for 2 of these 10 items, the attribute

main effects for α1 (number and computation) were significant at the .05 level. The α3

(geometry) effects of 5 items were not significant either. This suggests that either this test

may not be adequate as a measure of α1 and α3 or that the Q-matrix may be misspecified
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Figure 4.7: Item Difficulty Patterns of the 2-Class DCMixRM for the Mathematics Test

for those items. Also, Items 32, 33 and 35 had main effects for α2 (algebra) that were very

high (i.e., greater than 2).

Ability Distribution and Latent Classes. The ability distribution for each class is

shown in Figure 4.8. The difference in means of ability of classes was 0.152 indicating that

although examinees in Class 2 had a slightly higher level of proficiency in mathematics, this

difference is not meaningful. In other words, it is possible to conclude that the two classes had

essentially the same level of mathematics ability. Approximately 46 % of examinees belonged

to Class 1 and 54 % to Class 2, which also indicates examinees were evenly distributed in

terms of class membership (see Table 4.13).

Also, as shown in Figure 4.9, the raw score distribution appeared square-shaped rather

than bell-curved. The 2-class DCMixRM with similar means seems to detect this shape
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Table 4.12: Item Difficulty and Attribute Effect of the Mathematics Test

Item Difficulty Attribute Effect

Item Class 1 Class 2 λ1 λ2 λ3 λ4

1 (1000) -.051 -.101 .000

2 (1000) 1.072 .795 .000

3 (1000) -.137 .349 .000

4 (1000) .273 .569 .000

5 (1000) -1.170 -.852 .192

6 (1000) .151 .347 .184

7 (1000) 1.944 1.381 5.192∗

8 (1000) .870 1.218 .487∗

9 (1000) -.532 -.394 .161

10 (0100) -.066 -.228 .169

11 (0100) .601 .841 .230∗

12 (0010) .921 2.831 4.221∗

13 (0010) .350 .504 1.256∗

14 (0010) 1.281 2.873 3.777∗

15 (0010) .628 2.453 4.305∗

16 (0001) .200 .370 .272∗

17 (0001) -.056 .037 .204∗

18 (0100) -.188 -.463 .069

19 (0100) .504 .650 .348∗

20 (0010) .341 -1.389 .084

21 (0010) 1.241 -2.239 .000

22 (0010) .879 -2.674 .000

23 (0010) .013 -1.609 .000

24 (0001) 6.757 6.451 8.238∗

25 (0001) 5.084 5.259 7.480∗

26 (0001) -.625 -.404 .242∗

27 (0001) -.143 .139 .332∗

28 (0001) -.639 -.547 .235∗

29 (0001) .289 .464 .261∗

30 (1000) .246 -.149 .000

31 (0010) .250 .681 .101

32 (0100) 1.299 1.454 2.503∗

33 (0100) .895 1.584 2.238∗

34 (0100) .810 1.190 1.169∗

35 (0100) .900 1.305 2.257∗

36 (0100) .331 .908 .000

37 (0100) .018 .012 .372∗

38 (0010) .477 .538 .903∗

39 (0001) -.238 .367 .000

40 (0001) .617 .868 .143

Note.λ1 Number & Computation; λ2 Algebra; λ3 Geometry; λ4 Data Analysis.
* p <.05 for attribute effects.
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Table 4.13: Examinee Classification Results with the Mathematics
Test

Frequency Percent

Profile Class1 Class2 Total Class 1 Class 2 Marginal

1 (0000) 368 48 416 88.5 11.5 10.4

2 (0001) 276 33 309 89.3 10.7 7.7

3 (0010) 25 86 111 22.5 77.5 2.8

4 (0011) 26 70 96 27.1 72.9 2.4

5 (0100) 92 25 117 78.6 21.4 2.9

6 (0101) 52 74 126 41.3 58.7 3.2

7 (0110) 16 246 262 6.1 93.9 6.6

8 (0111) 46 524 570 8.1 91.9 14.3

9 (1000) 332 35 367 90.5 9.5 9.2

10 (1001) 215 55 270 79.6 20.4 6.8

11 (1010) 41 61 102 40.2 59.8 2.6

12 (1011) 39 228 267 14.6 85.4 6.7

13 (1100) 133 66 199 66.8 33.2 5.0

14 (1101) 105 106 211 49.8 50.2 5.3

15 (1110) 25 43 68 36.8 63.2 1.7

16 (1111) 39 470 509 7.7 92.3 12.7

Total 1830 2170 4000 45.8 54.3 100.0

Meana .00 .15

a Mean ability of each class.

properly. Although the 2-class DCMixRM fit the best to both PIRLS 2006 and this data set,

in PIRLS 2006 two classes presented different ability means, but here the mean abilities in

mathematics of two classes were very similar.

Classification of Mastery Profiles. Table 4.13 also summarizes a cross-classification

of latent class and mastery profile of examinees. The most noticeable observation is that

with respect to the mastery profiles, Profile 8 was the profile with the most cases (N = 570)
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Table 4.14: Tetrachoric Correlations between Attributes of the Mathematics Test

α2 Algebra α3 Geometry α4 Datab

α1 Number a -.064 -.068 .132

α2 Algebra .570 .318

α3 Geometry .425

a Number and Computation; b Data Analysis.

followed by Profiles 16 (N=509) and 1 (N = 416). Profiles 4 (N=96), 11 (N = 102) and

15 (N = 68) had the fewest cases. This suggests there may be three patterns of mastery

profiles and some possible interpretations: mastery state of α1 (number and computation)

was independent from mastery states of other attributes; if an examinee had mastered α2

(algebra), it was more likely that that person would also have mastered α3 (geometry); if

an examinee had mastered α2 (algebra) and α3 (geometry), that person would also have

mastered α4 (data analysis). This was also supported by tetrachoric correlation patterns

in Table 4.14 in which correlations between α2 and α3 and α3 and α4 were substantially

positive.

Second, since Class 1 was slightly lower in ability than Class 2, it is reasonable to find that

more examinees in the non-mastery group (i.e., Profile 1) appeared in that class. Further,

more examinees in the all mastery group (i.e., Profile 16) were expectedly found in Class 2.

However, if an examinee had mastered only α3 (geometry), that individual had higher odds

of belonging to Class 2 (see Profile 3 in Table 4.13). In fact, every profile which included α3

(geometry) had more examinees belonging to Class 2. This includes Profiles 3, 7, 8, 12, and

16. That is, α3 (geometry) appears to be a critical attribute in determining membership in

Class 1 or Class 2 for these data.

Relationship between Latent Class and Mastery Profile. The association between

latent class and mastery profile was rigorously modeled with a multinomial logit model.
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Table 4.15: Effects of Mastery Profiles on Latent Class Membership of Mathematics

Profile Estimate SD χ2 Pr> χ2

1 (0000) 2.235 .151 217.896 <.0001

2 (0001) 2.322 .179 168.475 <.0001

3 (0010) -1.037 .218 22.657 <.0001

4 (0011) -.792 .220 12.949 .0003

5 (0100) 1.501 .216 48.115 <.0001

6 (0101) -.155 .176 .773 .3794

7 (0110) -2.534 .246 106.077 <.0001

8 (0111) -2.235 .152 217.030 <.0001

9 (1000) 2.448 .173 200.052 <.0001

10 (1001) 1.561 .149 109.346 <.0001

11 (1010) -.199 .195 1.044 .3070

12 (1011) -1.568 .169 85.950 <.0001

13 (1100) .899 .149 36.466 <.0001

14 (1101) .189 .138 1.883 .1700

15 (1110) -.344 .240 2.054 .1518

16 (1111) -.198 .048 16.934 <.0001

Note. Class 2 was reference.
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Consistent with other analyses in this study, Class 2 and Profile 16 were used as baselines

for the multinomial regression. The results are given in Table 4.15. Based on these results,

for instance, examinees with Profile 9 had approximately e2.45
.
= 11.59 times higher odds

of belonging to Class 1 than Class 2. In contrast, those who mastered attributes 2 and 3, or

attributes 2, 3 and 4 tended to have higher odds of being in Class 2 (see Profiles 7 and 8

in Table 4.15). These associations did not appear to be related to the number of attributes

examinees had mastered. For illustration, even when an examinee possessed computation,

algebra, and data analysis, if the examinee did not also master geometry, (i.e., as required

by Profile 14), it was not likely that the individual would belong to Class 2. If, however, an

examinee mastered the other three attributes of algebra, geometry, and data analysis (i.e.,

had Profile 8), then that individual would tend to be classified into Class 2.

An important objective of this analysis was to explain what caused the qualitative differ-

ences in examinees response behaviors on the mathematics test. In this analysis, members of

Class 1 tended to lack knowledge related to geometry. Tetrachoric correlations also support

the unique contribution of geometry as can be seen in the relationship between algebra and

geometry and between data analysis and geometry (see Table 4.14).

4.3 Summary and Conclusions

In this chapter, we presented empirical examples of how to fit the DCMixRM model to

real test data. To do this, we used data from a reading test and from a mathematics test.

The reading test was a part of the PIRLS 2006 international assessment program and the

mathematics test was a part of a state assessment program.

These analyses demonstrated the kinds of information that the DCMixRM is capable of

providing about examinees, items and attributes based only on item responses. The diag-

nostic level information about the attributes appears to provide useful information about

some of the factors that may be causing the latent classes to form.
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In order to determine the best fit model for each data set, AIC, BIC, and entropy indices

were compared among candidate models. Although there is no research reported specifically

focusing on the use of any of these indices with DCMs, previous research with LCM and

MixIRT models suggested that BIC was useful in identifying the most accurate model given

the data. As a result, in this study BIC was used to inform model selection. The principle

of parsimony was also considered. Based on these considerations, a 2-class DCMixRM was

taken as the solution for both tests.

The two-class DCMixRM solution appeared to be the best fit for both data sets. The

ability means for the two latent classes were different in one of the two data sets. For reading,

the two classes showed a large difference whereas for mathematics two classes exhibited

similar mean ability. The characteristics of two latent classes were also discussed in terms of

item difficulty patterns for both tests.

For each test, the distribution of mastery profiles was also examined. In theory 16 mas-

tery profiles were possible because 4 attributes were specified in both tests. Frequencies of

individuals with some profiles were large while other profiles were seldom observed. In par-

ticular, in reading literacy no observations were found for a profile that included mastery of

α1 but nonmastery of α3. The resulting pattern of profiles suggested one possible inference

about the relationship among the attributes in reading literacy: α1 (retrieval) might be pre-

requisite for α3 (integration). On the mathematics test, the relationship among α2 (algebra),

α3 (geometry), and α4 (data analysis) was discussed.

The mastery profile patterns in reading suggest two distinct profiles of struggling readers:

one profile indicated the students had not mastered inference and the other profile indicated

the students had not mastered retrieval. This information can be used to design future

remedial intervention.

However, the most unique contribution of the DCMixRM was that it related mastery

profile to latent class. This was also translated into an attribute level. In reading literacy,
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α3 (integration) was the critical attribute that distinguished Class 1 from Class 2 and in

mathematics, it was α3 (geometry).

In conclusion, the DCMixRM can yield rich and various perspectives for persons and

items. First, taking advantage of item information, we can verify whether or not items or

a test measured correctly the construct of interest as it should. By investigating the signif-

icance of the attribute effects for a given Q-matrix, we can ascertain whether or not the

test included enough items to measure all relevant attributes. If the test cannot measure

some critical attributes, then we may want to revise the Q-matrix or add relevant items in

the test. For instance, the 13 reading items may not have adequately measured the mastery

state for attribute α2 (inference). Likewise, the 40 mathematics items may not have ade-

quately measured mastery status on α1 (number and computation). The DCMixRM allows

for making inferences about why some examinees’ response patterns differed from others

based on mastery profiles.



Chapter 5

CONCLUSIONS AND DISCUSSION

IRT models have been widely used to make inferences regrading item difficulty and examinee

ability in psychometrics. These models depend heavily on the local independence such that

the observed items are independent of each other when conditioning on ability. As with other

statistical models, inferences drawn from IRT models are valid if and only if the assumption

holds.

However, it is often the case that even after conditioning on ability, association between

item responses still exists. This is an indicator that local dependence is violated that threatens

the validity of inferences. The local dependence can be caused from difference among exam-

inees’ cognitive patterns (i.e., heterogeneity) or notable closeness of several items within a

test (i.e., multidimensionality).

MixIRT models have been proposed to handle examinees’ heterogeneity by combining an

IRT model with an LCM. These models have been useful for detecting latent classes while

still providing a model-based scale for items and examinees.

In spite of the usefulness of these models, they do not lead researchers to explanations

as to what causes the latent classes to form and how they can describe the characteristics of

latent classes identified in their study.

Some research has been conducted using a covariate(s) such as age, gender, and ethnicity

to predict latent class membership hoping that it can provide a clue about latent classes.

Although this is somewhat informative, it may not be as informative as would be needed for

describing the reasons behind the differences in response patterns between the latent classes.

113
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Previous research suggests that heterogeneity in item response patterns may be related to

individuals’ differences in knowledge states. However, without a rigorous theory explaining

why these patterns may be expected to occur, it is not easy to confirm what causes latent

classes to form.

Alternatively, this dissertation has suggested that mastery profiles can be used for

describing latent classes in MixIRT models. To do so, the focus of this dissertation was,

in part, on the use of mastery profiles to explain latent classes, and we proposed the

DCMixRM in which a Rasch model, an LCM, and an LCDM were combined. The Rasch

model component captures a general latent ability, or a continuous variable; the LCM is

used in an exploratory way to detect latent classes; and the LCDM classifies mastery profiles

in a confirmatory way by the use of prescribed relationships between items and attributes

explicitly expressed in the Q-matrix. It was assumed that the inclusion of mastery profiles as

covariates might provide useful information to help explain what may be causing the latent

classes to form. In other words, this model takes into account not only heterogeneity in a

population but also multidimensionality of a test resulting from multiple attributes required

for correctly answering test items; and the model specifies association between mastery

states of attributes and heterogeneity of a population in order to provide information that

could be useful in understanding what may have caused the latent classes to form.

The DCMixRM has several advantages: this model provides information about both a

global ability and mastery profiles formed over the set of attributes; it provides a way to

detect heterogeneity in the population; it may yield more accurate classification of latent

classes by the use of covariates; more importantly, it is possible to provide a rigorous expla-

nation about features of latent classes. In addition, the model helps overcome drawbacks of

each model. The major drawback of LCDM is that the misspecification of the Q-matrix can

have a serious impact on parameter estimation. The inclusion of a continuous latent variable

(ability) can handle this possible incompleteness of the Q-matrix.



115

To evaluate whether or not to realize these advantages, the model and estimation methods

were investigated with a simulation study in terms of convergence rates and parameter

recovery under varying conditions. Also, empirical data analyses were conducted with two

sets of large scale data to demonstrate how to use the model in practice. The data sets

were drawn from an international reading test and from a statewide mathematics test. For

both the simulation and the empirical studies, a standard latent variable modeling software

package, Mplus Version 5.21, was used to estimate the model parameters.

Based on the results from the simulation study, the following conclusions may be drawn.

First, the estimation process converged well in estimating parameters when latent classes

have the same levels of mean ability.

Second, the item difficulty and the ability parameters in the DCMixRM were well recov-

ered. This result was consistent with other IRT studies in which item difficulties and abilities

were relatively well recovered.

Third, the attribute effect parameters appeared to be overestimated under some con-

ditions, but as the sample size increased, the bias in attribute effect parameter estimates

decreased. In this study, the magnitudes of attribute effects were set relatively smaller than

those of item difficulties. In general, when coefficients are small, they can be difficult to

accurately be estimated. This might be the case with this result.

Fourth, the class membership was reasonably accurately detected. The inclusion of mas-

tery profiles as covariates seemed to prevent label switching. From these observations, the

inclusion of the mastery profiles as covariates did appear to yield more accurate class mem-

bership and enabled a clearer description of latent classes.

Identifying the correct mastery profile was, however, difficult with this estimation algo-

rithm. This may have been because there are too many mastery profiles (i.e., 16 mastery

profiles), one of which each examinee has to be classified into. Clearly, it would be important

to study this issue further before making inferences about mastery profiles. Also, inferences
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of attribute relationships through the use of tetrachoric correlations may not be completely

accurate.

However, the estimation algorithm appeared to be capable of providing a general picture

of the associations between latent classes and mastery profiles even though results of the

simulation study suggest it may tend to underestimate the strength of that relationship. In

particular, when the number of items per attribute was small, it appeared to have greater

difficulty in estimating this relationship. Further research on this issue is needed.

We also illustrated how to apply the DCMixRM to the empirical data set using two large-

scale testing programs, such as an international reading literacy testing program, the PIRLS

2006, and a statewide mathematics testing program. Even though neither test was developed

using either a DCM or a MixRM, it was shown that the model could be used to evaluate

whether the test was appropriate for measuring a general ability as well as mastery states

for a set of attributes. The model does this by estimating both item difficulties and attribute

effects through their significance levels. In particular, coefficients of attribute effects can be

used to test the impact of the attributes on item responses. Furthermore, the significance

levels of the interaction effects provides information about compensatory relationships among

attributes for the individual items.

Second, the model appeared to be capable of simultaneously yielding information about

examinees’ strengths and weaknesses with respect to both a general ability and mastery

profile. As with other DCMs, this kind of information about the mastery profiles may have

the potential to be useful for designing individualized interventions focusing on strengths

and weaknesses in mastery states of attributes.

The model also provided information about the composition of the examinee population

in terms of mastery profiles. This information may be useful in identifying strengths and

weaknesses of the population identified by a particular latent class, potentially leading to

a means of specifying at-risk groups in the examinee population and possibly informing

decision making about supplementary instructional programs.
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Third, one could examine whether expert knowledge, in fact, matches examinees’ learning

strategies by comparing the Q-matrix with resulting mastery profiles. This kind of informa-

tion can be used in revising the Q-matrix or possibly for better understanding the discrepancy

between learning theory and individual learning strategies. For instance, in the PIRLS 2006

analysis, several mastery profile patterns were missing. This can be an indicator of a plau-

sible association between attributes. This information may be used for investigating whether

there exists hierarchical attribute structures or not.

Finally, the relationship between latent classes and mastery profiles provided a cognitive

explanation as to what may have caused latent classes to form. This information is contained

in the mastery profiles and potentially can be used to indicate which examinees responded

differentially to test items and why they may have done so. Mastery states on integration

and geometry, for example, seemed to cause latent classes to form in the reading and the

mathematics test data, respectively.

It is believed that the DCMixRM developed in this dissertation has the potential to be

useful for many practical testing applications. The proposed DCMixRM is a complex model

measuring high dimensional latent space. It was only partly explored in this study, and future

research is needed to examine applications of this type of model. First, there was no clear

explanation as to the cause(s) of the large biases in attribute effect estimates. This may have

been because the magnitudes of attribute effects in the simulation study were set too small

relative to the item difficulties. Different sets of values may improve recovery in attribute

effect parameters.

Second, selecting the best fitting model is an important concern for latent class models,

DCMs, MixIRT models, as well as for this particular model. Misspecification of a Q-matrix

and determining the correct number of latent classes are very important issues and factors

with DCMs and finite mixture latent models. Research on these issues is warranted to make

valid applications of the models.
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Third, estimation of the DCMixRM was only studied using a maximum likelihood estima-

tion algorithm. Bayesian estimation algorithms offer an alternative for estimating parameters

of such complicated models. Bayesian with Markov chain Monte Carlo (MCMC) methods, for

example, offer some important benefits, particularly for estimating high dimensional models

like the DCMixRM. This is due in part to the capability of Bayesian for taking advantage of

prior knowledge and to the efficiency of MCMC for estimating a large number of dimensions.

It might be informative, for example, to see whether Bayesian estimators yield more efficient

estimates for this model as has sometimes been shown with other models.

Fourth, although the study did not include longitudinal data, the model can also be used

for longitudinal data sets. To do so, vertical equating for item ability and attribute effect

should be investigated. Also, since the model includes two discrete latent variables and one

continuous variable, the way to combine latent growth and latent transition modeling can

be another research area for this model.
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