

BLACKBOARD-BASED INFORMATION SYSTEMS:

QUERYING AND RESOLUTION

by

DEEPAK CHINTHAMALLA

(Under the direction of Dr.Walter D. Potter)

ABSTRACT

It can be safely said that today's world is driven by information.There is a lot of

information available today in various forms and sources, including databases,

knowledge bases, flat file systems and the world wide web. The challenging task is to

integrate the information available in these different formats. Our architecture performs

integration of information that is available from such varied sources, at the heart of which

lies a problem-solving technique of AI, the Blackboard technique. We model our query

controller as a blackboard and perform integration using the knowledge provided to the

system.

INDEX WORDS: Information Integration, Information Retreival, Querying, Query

Controller , Blackboard, Wrappers.

BLACKBOARD-BASED INFORMATION SYSTEMS:

QUERYING AND RESOLUTION

by

DEEPAK CHINTHAMALLA

B.E., Osmania University, India, 1999

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2002

© 2002

Deepak Chinthamalla

All Rights Reserved

BLACKBOARD-BASED INFORMATION SYSTEMS:

QUERYING AND RESOLUTION

By

DEEPAK CHINTHAMALLA

Approved

Major Professor Walter D. Potter

Committee: Daniel M. Everett

Jeffrey W. Smith

Electronic Version Approved:

Gordhan L. Patel
Dean of the Graduate School
The University of Georgia
August 2002

iv

ACKNOWLEDGEMENTS

Firstly I would like to thank Dr. Walter D. Potter for all his encouragement and support

throughout this thesis. I would also like to thank my committee members, Dr. Jeffrey W.

Smith and Dr. Daniel M. Everett for being willing to preside over my defense and for

providing their support. Last but not the least I would like to thank Ms. Haritha Muthyala,

whose constant help made this thesis possible.

v

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 Information and Integration .. 1

1.2 Information Integration Systems (IIS) .. 1

1.3 Issues in Information Integration .. 2

1.4 Querying in IIS.. 3

1.5 Issues in Querying... 4

1.6 Synopsis .. 5

 1.7 Organization of following chapters ... 6

2. QUERYING IN VARIOUS INFORMATION INTEGRATION SYSTEMS.............. 7

2.1 Infomaster.. 7

2.2 Garlic... 8

2.3 CoBase .. 9

2.4 InfoSleuth.. 10

2.5 TSIMMIS .. 11

2.6 DISCO... 12

2.7 Information Manifold.. 13

2.8 InterDB.. 14

2.9 OBSERVER.. 14

2.10 KOMET... 15

2.11 COIN ... 16

vi

3. SYSTEM ARCHITECTURE.. 18

 3.1 The Blackboard Technique... 18

 3.2 Over-all Architecture... 21

4. DATA MODEL AND USER INTERFACE... 26

4.1 Object Exchange Model (OEM) ... 26

4.2 User Interface.. 28

5. BLACKBOARD AND QUERY CONTROLLER ... 31

 5.1 Blackboard .. 32

 5.2 Query Format and Conversion.. 33

 5.3 Query Controller ... 33

 5.4 Example... 36

 5.5 Query Optimization... 39

6. OTHER SUBSYSTEMS... 41

7. IMPLEMENTATION DETAILS... 44

 7.1 Objective... 44

 7.2 Technical Issues.. 44

 7.3 Sources and Domains.. 45

 7.4 Wrappers... 47

 7.5 User Interface and Querying.. 49

8. CONCLUSIONS AND FUTURE WORK ... 53

REFERENCES.. 54

1

CHAPTER 1

 INTRODUCTION

1.1 Information and Integration

 Today's world is driven by information, which is available in several different

forms. Information can be textual, in the form of graphs and charts or in the form of

pictures. But it is not just sufficient for information to be present if it cannot be accessed

and used by people who need it.

One of the biggest problems faced by most organizations today is that of the

integration of information that is available from disparate information sources and in

repositories. This integration might be necessary because decision-makers need to access

the information available in these multiple forms in a unified manner. This is a time-

consuming task because the different systems cannot be accessed in a uniform manner

and also the information represented in each of these forms might be inconsistent and

contradictory.

1.2 Information Integration Systems

 Systems that perform the integration that was described in the previous

paragraphs are referred to as Information Integration Systems (IIS). When the user poses

a query that requires accessing several different sources for retrieving the answer, the IIS

has to combine the results returned by each source before presenting them to the user.

2

1.3 Issues in Information Integration

 Even before the information can be integrated, one important thing that has to be

done is data format conversion. That is, the data that needs to be integrated has to be

translated into a common format. Also, during translation, several inherent schematic

conflicts have to be considered as the formats differ. Some common types of schematic

conflicts are listed here:

• Generalization conflicts - A class or attribute in one database may subsume multiple

classes or attributes in another database. For example, one data source may contain

first name and last name as its attributes, while another may contain the full name as a

single attribute.

• Structural conflicts - An entity in one system may be modeled as an attribute in

another system. For example, employee and student may be different entities in a data

source, while they may be the values of an attribute in another data source.

• Naming conflicts - Semantically equivalent classes or attributes may be assigned

different names. It may be the other way round also i.e., attributes or entities with the

same name may not represent the same thing semantically.

• Missing attributes – For example, salary of an employee may be included in one

source while it may not be included in another source.

• Data type conflicts - Different types may be assigned to semantically equivalent

attributes. For example, ‘ssn’ can be represented either as a string or an integer.

• Scale conflicts – Salaries may be recorded in one source on a per month basis while

in another they may be stored on a per hour basis.

3

The information system should be able to resolve these conflicts before the actual

integration of information. But apart from the schematic conflicts, there are many other

issues that have to be handled. Firstly, is the process of integration transparent to the user

or not? That is, does the user need to know the intricate details involved in getting data

from many sources and combining them or does the system do this with least interaction

with the user.

Also, is the information on how the integration is to be carried out provided by the

user or decided by the system itself? And, last but not least, the data in the different

sources has to be converted into a pre-decided common format so they are represented

uniformly. Query handling is a critical part of an Information Integration System and

should address most of the issues that are discussed here.

1.4 Querying in I IS

 Query handling and resolution in Information Integration Systems can be thought

of as a process involving the following steps:

• Query specification - The user enters a request for data by specifying constraints on

attributes. End-users pose queries against a predefined integrated view using a

declarative query language, or by entering constraints in a graphical interface.

• Query modification - A query is decomposed into sub-queries, one for each

component database to be accessed by the query.

• Query translation - The component sub-queries are translated into the syntax required

by the corresponding local data sources. The component information system reads the

query and produces a result set.

4

• Result translation - Each result is translated back into the common data model as

necessary

• Result integration - The multiple result sets are integrated and returned to the user.

There are several issues in each of these steps and some of them are discussed below.

1.5 Issues in Querying

Querying is a means for users to communicate with the system and retrieve the

necessary information. There are many different issues involved in querying a system.

The querying means provided must be clear, concise and easy to understand. Providing a

query language with a strict syntax can ease querying, but some systems may not have a

query language at all. Sometimes, a query can be divided into several sub-queries that the

system identifies and whose results are to be combined to form the final results.

When the user expresses an information request in the form of a query, the system

should be able to resolve the query in order to find the correct results efficiently. This is

referred to as query resolution and the process may involve many steps, wherein the

query may be divided into sub-queries. The sub-queries are in turn executed to give

intermediate results, which are combined into the final result.

 The query provided by the user can be composed by either using a command line

or a graphical interface. The command line query relies more on the expertise of the user

and assumes an inherent understanding of the system on the part of the user, who should

be able to write the entire query without any visual aids from the system. On the other

hand, if a graphical interface is provided to the user, then the user might be able to see the

type of information that is present in the system and this visualization can help in

building or composing the user query.

5

 This brings us to the issue of whether or not to present a view of the system to the

user - a view showing the different kinds of information that is present in the system and

that can be queried on. In the event that a view is not provided, the user would have to

search all the information in the system to see if the information that is required is present

in the system at all.

 Another issue is declarative versus procedural querying. In the latter case, the user

would have to provide all the details on how to retrieve some information, and how

different data can be combined to form the final answer that is required. This reduces the

workload on the system as the user provides most of the logic for resolving the query. On

the contrary, in systems using declarative querying, the user just mentions the

information that is required and the system figures out how to retrieve and display the

results, combining intermediate results, if necessary.

 It is even possible that querying be done by example. For instance, the user might

provide a data example that shows the type of information required, and the system

matches the information in the system to the example provided in order to deliver the

final answer.

1.6 Synopsis

 The motivation behind this system was the difficulties encountered in the

information of integration; this becomes even more complicated if the sources involved

in the integration are heterogeneous in syntax and semantics. Such problems are the

reason behind the development of this system.

 Though this is a relatively new area, there are already several ongoing projects

that are currently conducting research in the field of information integration from

6

heterogeneous sources. Our project is novel because it applies a popular Artificial

Intelligence (AI) problem-solving technique to the problem of information integration.

 The query resolution in our system is handled by the architecture component

called the Query Controller. The Query Controller resolves the query and performs

integration of information, if necessary, using the Blackboard technique. We also

maintain metadata about the keys, constraints and similarities between the data objects in

various sources, for resolving the schematic conflicts and performing constraint mapping

during information integration. Details on this are provided in the following chapters.

1.7 Organization of following chapters

 Chapter 2 provides a very brief overview of some relevant Information

Integration Systems that are currently available, and it contains example queries that

might be posed in those systems.

 Chapter 3 sets the background for the Query Controller and describes the

Blackboard technique that lies at the heart of this architecture.

 Chapter 4 discusses the data model being used for the system and the interface

that is provided to the user to interact with the system.

 Chapter 5 provides details about the Blackboard data unit and the Query

Controller, which are the key query handling components of the system.

 Chapter 6 describes other subsystems relevant to our architecture and finally

chapter 7 provides the implementation details of the entire system.

7

CHAPTER 2

QUERYING IN VARIOUS INFORMATION INTEGRATION SYSTEMS

 This chapter describes various popular Information Integration Systems, briefly

talking about their architectures and the query languages used in those systems (along

with examples to illustrate the query structure). The main purpose of this section is to

provide an introduction, without much detail, as to what type of queries are posed in each

of these systems, with a brief overview of the system. A discussion of these systems is

relevant here to serve as a background for our Information Integration System, whose

architecture is proposed in the next chapter. A brief listing of various popular Information

Integration Systems is as follows:

2.1 Infomaster

 Infomaster [Duschka and Genesereth 1997] is an Information Integration System

developed at the Stanford University. The general architecture of Infomaster is such that

it has various wrappers over all the different sources, which in turn talk with the

Infomaster facilitator that uses its knowledge base to intelligently query and integrate the

information. The system also has various interfaces to the clients who are using the

system.

 Infomaster uses a programmatic interface called Magenta, which supports ACL

(Agent Communication Language). ACL consists of KQML (Knowledge Query and

Manipulation Language) and KIF (Knowledge Interchange Format). The sources are

visible to the user in the form of database relations. This is accomplished by providing an

8

abstraction over the source so that the user sees only the relational view of the source.

Also, the relationships are described using special definitions, which can be used when

the user is querying the system. There are three types of relations used in this system: The

interface relations that are used by the User Interface, the base relations that are used by

the query engine and the site relations that are used by the information sources. Hence a

typical query in this system would look as follows:

Say the user is querying for BMWs built in 1996 and whose sale price is below

their average market value then the query will look as

 Q(Model, Mileage, Price) ≡

Cars (bmw, Model, 1996, Mileage, Price, Value)

& Price < Value

The query processing in Infomaster is a three-step process, viz., reduction, abduction and

optimization. In reduction the interface relations are transformed into the base relation. In

the abduction phase, the base relations are transformed into the site relations and in the

final phase of optimization access planning for the sources is undertaken. Infomaster

provides a simple view of the system, which can be effectively queried by the user with

much ease.

2.2 Gar lic

 Garlic [Cody, et al. 1995] is an Information Integration System developed at IBM

Almaden Research Center. This system is different from other systems in the sense that it

is a multimedia middleware, which can handle both text and multimedia sources. Each

source is called a repository and a ‘ repository wrapper’ is present above each repository,

which can be queried.

9

 Garlic uses a query language called GQL, which is an object-oriented extension

of SQL. The interfaces to each of the repository wrappers are in an object-oriented

fashion and the queries posed on the system are as follows:

The query to find the campaigns, the associated report and magazine ads for those

campaigns that ran since 1989 and that had a magazine image that resembles the

given image (the user drawn sketch): -

 select C.campaign_name, C.report, C.mag_ads

 from Campaign C, C.mag_ads A

 where (C.report.date > “ 1989”) and A.match_image(SKETCH) > .5

Here in the above query .5 is the goodness of the match that can be acceptable. The

advantage of Garlic compared to other systems is that it can handle all sorts of data (text

and multimedia) and can be used in real world applications.

2.3 CoBase

 In general databases, we might encounter situations like, the result of a query is

unavailable or the query is not well formed or the data is missing. In such cases the

databases return a null answer or an error. An intelligent database system would thus be

very resourceful if it can permit cooperative and conceptual level querying (facilities that

are not provided in conventional database schema) when the user query is not precise.

The system should be able to provide some relevant information even if some data is

missing. CoBase [Chu, et al. 1993] (developed at UCLA) is a variation of a distributed

database, called co-operative database, which has these intelligent capabilities.

 CoBase uses the language LOOM for representing its knowledge and uses CSQL,

an extended version of SQL with cooperative features, for querying. CSQL is just like

SQL but has some cooperative operators like approximate, within, near-to, similar-to,

10

relaxation-order, not-relaxable, nearer and further. An example of a query expressed in

CSQL is the following:

List the airports with the parking capacity approximately equal to 200,000 square

feet: -

select airport_name, parking_sq_ft from airports

where parking_sq_ft =/\ 200,000

This CSQL query is translated by CoBase into the following SQL: -

select airport_name, parking_sq_ft from airports

where parking_sq_ft >= 100,000 and parking_sq_ft <= 300,000

The approximation of 200,000 to lie between 100,000 and 300,000 is decided by the

knowledge base rules specified in the system. The advantage of cooperative querying is

that it can be effectively used in cases where the user is not sure of the data present in the

information system.

2.4 InfoSleuth

InfoSleuth is an agent based integration system developed at Microelectronics and

Computer Technology Corporation (MCC), Texas [Bayardo, et al. 1997]. InfoSleuth uses

the concepts of agent technology, domain ontologies, brokerage and Internet computing

to support integration of data. The InfoSleuth system is designed to effectively handle

dynamically changing environments and is thus different from its predecessor, the Carnot

information system [Finin, et al. 1994]. The system works in the manner that all the

agents sit on the top of sources/other agents and advertise their services and process

requests either by making inferences using the knowledge, by routing the request to a

more appropriate agent, or by decomposing the request into a collection of sub-requests

and then routing these requests to the appropriate agents and integrating the results.

11

 InfoSleuth uses the high-level agent query language KQML and the ontologies in

the system are represented using a dialect of Knowledge Interchange Format and the

query language SQL. A KQML query message consists of a performative, its associated

arguments and a set of optional arguments, which describe the sender and the receiver.

As an example, a KQML query would be as follows:

Say a message representing a query about the price of a share of IBM stock might

be encoded as:

 (ask-one

 : content (PRICE IBM ?price)

 : receiver stock-server

 : language LPROLOG

 : ontology NYSE-TICKS)

In this message the KQML performative is ask-one (which asks for a single reply), the

content is (PRICE IBM ?price), the ontology assumed by the query is identified by the

token NYSE-TICKS, the receiver of the message is to be a server identified as stock-

server and the query there is written in the language LPROLOG. The most general query

performatives are evaluate, ask-if, ask-in, ask-one, ask-all, stream-in and stream-all.

InfoSleuth is an agent based Information Integration System, which effectively integrates

information in dynamically changing environments.

2.5 TSIMMIS

 TSIMMIS [Chawathe, et al. 1994] is an integration system that was developed at

Stanford University. TSIMMIS is a mediator-based system with a hierarchy of mediators

that resolve the queries posed by the user. Each source has a wrapper and the mediators

talk with the wrappers to get the information required from the sources. The knowledge

of the system lies in the mediators, which have rules defining which data to gather from

12

other mediators or wrappers. TSIMMIS uses the OEM (Object Exchange Model) data

model, which is object oriented.

 TSIMMIS uses OEM-QL as its querying language and all of the data in the

system is in the form of OEM objects. A typical OEM query would look as follows:

 Find each document for which “Ullman” is one of the authors:

select bib.doc.topic from Biblio

where bib.doc.authors.author-ln = “ Ullman”

In the above query bib, doc and topic are the corresponding OEM objects for the

mediators, bib, doc, and the wrapper is topic. Querying this system is typically easy as all

the queries are posed on the object-oriented OEM view of the system, which can be

directly queried upon.

2. 6 DISCO

 DISCO (Distributed Information Search Component) [Tomasic, et al. 1996] has

the typical mediator-wrapper architecture and apart from this architecture, DISCO also

has a special set of mediators called the catalogs which keep track of all the other

mediators and wrappers in the system. DISCO is based on the ODMG (Object Data

Management Group) standard and consists of a data model, ODL (Object Definition

Language), a query language (OQL) and a language binding mechanism. DISCO uses the

DISCO query language for querying and it looks as follows:

 A query for the names of persons who have a salary greater than 10 is as follows:

 select x.name from x in person

 where x.salary > 10

DISCO mainly addresses the issues of databases where sources may come in and leave at

any time in a dynamic environment. DISCO also provides a flexible wrapper interface

13

using which wrappers can be built. Also the mediator model is quite simple and object-

oriented.

2.7 Information Manifold

 Information Manifold [Kirk, et al. 1995] is a data integration system developed at

AT&T Bell Laboratories. The Information Manifold system is based on a domain model

that is described by the knowledge base, describing the properties of the information

sources. The user queries against the conceptual model of the domain and the knowledge

base of the system, which represents the properties of the information sources, aids in the

building of this conceptual model. The system contains defined ontologies using which

the various aspects of the domain are represented.

 The language used for representing the contents of information sources is a

combination of Horn rules and concepts from the CLASSIC description logic [Brachman,

et al. 1991]. A query in Information Manifold can be formulated as a Horn rule defining

a relation Q as follows:

A query that asks for information about travel agents in Miami, FL (area code

305) who sell tickets from Newark to Santiago for under $1000: -

 quote(Ag, Al, ‘Newark, NJ’ , ‘Santiago, Chile’ , C, D)

 /\dir(Ag, Ac, TelNo) /\ Ac = 305 /\

 /\C < 1000 => Q(Ag, TelNo, C)

The above query uses information from the NY directory (dir) to retrieve phone numbers

of the travel agents. The advantage of this type of querying is that the knowledge and the

query are represented using the same language and also the queries are represented as

Horn rules.

14

2.8 InterDB

 InterDB is a system that provides an abstract interface for various independent

databases. InterDB is developed at the University of Namur, Belgium [Thiran, et al.

1998]. The architecture of InterDB is such that it has a hierarchy of mediators, which

transform the data into a global view and also transform the global queries into the

physical queries of the system. So, on the whole, the data are assessed and queried in a

global form, which is seen by the external world. The user uses the overall conceptual

schema to query the system.

 A typical query for this system can be posed in SQL and since it just involves the

integration of data from databases, the query transformation and result integration are

essential for this system. The system identifies the data conflicts that exist and resolves

them. This system can be termed as an integrated database or federated database system.

2.9 OBSERVER

 OBSERVER [Mena, et al. 1996] provides an architecture for query processing

using various global information systems, which have different structure/organization,

query languages and semantics of the data in them. OBSERVER was developed mainly

at The University of Georgia (in the LSDIS lab) and, as all the different systems have

their own ontologies, the Inter-ontology Relationships Manager (IRM) of the system

relates the terms in various ontologies. The IRM is used when the results from various

sources need to be integrated. The different ontology servers provide the appropriate

ontologies, which can be used to represent the source, and the IRM has information about

the relationships between all these ontologies.

15

 The queries posed by the user are in the form of intentional metadata descriptions

represented using Descriptive Logics (DLs) [Brachman and Scmolze 1985], here called

CLASSIC [Borgida, et al. 1989]. The following query serves as an example for a query

in this system:

 The user query will be expressed in the format:

 <list-of-roles> for <classic-expression>

where list-of-roles is a list of roles to be projected (the roles about which the user

asks) and classic-expression is a list of constraints expressed in DL (the

conditions that the answer must satisfy). For example, the query would look as

follows:

 [title author document pages] for (AND doctoral-thesis-ref

(FILLS keywords ” metadata”) (ATLEAST 1 publisher))

The query posed by the user is then translated into the queries for the individual sources

and then the IRM information can be used to integrate the results in an effective manner.

The query posed by the user is thus processed and the results are generated without much

effort from the user.

2.10 KOMET

 KOMET (Karlsruhe Open MEdiator Technology) [Calmet, et al. 1997] is a

system developed at the University of Karlsruhe, Germany. KOMET is a mediator-based

system and the user is provided with the views of the underlying system on which the

user can pose queries. KOMET uses the declarative language for its mediators, which is

called KAMEL (KArlsruhe MEdiator Language). KAMEL is a language based on

annotated logic. The knowledge as to how the system should retrieve and integrate the

16

results is provided by the information specified by this language. A typical query in this

system would look as follows:

 ans(Name, Date) stockname(Name, SID) &

 close(SID, Date, 500.00)

And the corresponding translated query in SQL for the above query would look as

follows:

 select r1.name, r2.date

 from stockname r1, close r2

 where r1.sid = r2.sid and r2.value = 500.00

The query translator part of the system translates the query from KAMEL into the source

query of the system being queried upon. The rules defined in KAMEL provide

information as to how the data are to be retrieved and integrated.

2.11 COIN

 COntext INterchange [Bressan, et al. 1998] is an Information Integration System

developed at MIT. This system uses the data model called COIN and an object-deductive

language called COINL, which are used to define the contexts of the sources (description

of the sources). The context mediator of the system identifies and resolves the conflicts

involving various sources. Wrappers above the sources display the results in the form of a

relational table format.

 This system uses SQL for querying and the user views the sources as database

relations and can query them directly. The context mediator would resolve any conflicts

that arise while executing this query. For example a query to the system would look like:

 select Local.Ticker, Nyse.CompanyName, Local.Qty * Cnn.Last, Zacks.Rec

from Local, Cnn, Nyse, Zacks

where Nyse.Ticker = Local.Ticker AND Cnn.Ticker = Nyse.Ticker AND

17

Zacks.Ticker = Nyse.Ticker;

In the above example the user queries to retrieve information of stock prices from the

New York Stock Exchange website for the stocks in the portfolio, stored in a relation in

the local database and also relevant information about the stocks from the CNN Financial

Network and Zacks Investment Research Publishers. The advantage of using SQL for

querying various information systems is that the user can easily query them and retrieve

information, as the view available to the user is always in the form of database relations.

 Thus, above are described some of the classical projects of information

integration and their querying schemes, developed using various architectures and

technologies. The next chapter describes the overall architecture of our system,

describing its major components and their functions.

18

CHAPTER 3

SYSTEM ARCHITECTURE

This chapter provides details of our overall system, of which this thesis is just a

part. It also provides details on the significance of my thesis to the whole system. Our

system performs information integration from various heterogeneous sources. We

propose to use a novel approach towards this by making use of a technique that has not

been used for this purpose so far. A similar architecture called NED [Twery, et al. 1997]

is being developed at The University of Georgia. We propose an IIS architecture that

employs the problem-solving Blackboard technique in Artificial Intelligence. A brief

description of this model and technique is provided in the next section.

3.1 The Blackboard Technique

The Blackboard technique is a popular AI technique used for problem solving.

The Blackboard model has three major components – a global database, called the

Blackboard, a set of logically independent knowledge sources (KS), and a set of control

data structures or control modules, used for monitoring the changes on the Blackboard

and for deciding what happens next. The knowledge sources contain some information,

which is exclusive to each one of them, and this information is used for solving problems.

This knowledge is separate and independent from the knowledge present in any other

(knowledge) source.

Another duty of the knowledge sources is to collect the data that are currently

available on the Blackboard and store them after encoding it. All modifications to the

19

Blackboard are made by the knowledge sources and all these modifications are explicit

and visible. Figure 3.1 shows the framework for a Blackboard system [Engelmore, et al.

1988].

The knowledge sources are represented as procedures, sets of rules or logic

assertions. Each of these knowledge sources has information about the conditions that

have to be true so that they can contribute to a solution; they are specified as pre-

conditions that indicate the condition on the Blackboard that must exist before the body

of the knowledge source is triggered.

 Blackboard Data

FIG 3.1: BLACKBOARD FRAMEWORK

 The global database or the Blackboard is at the heart of this architecture where

processes place the problems, which need a solution, on it. It is a hierarchically organized

database, whose main feature is that it contains all the intermediate (and eventually the

final) results to the problem at hand. Each level of the hierarchy in the Blackboard can be

thought of as an abstraction level and each of these levels view a different perspective of

the problem, in terms of a different set of concepts. For example, in the HEARSAY-II

[Erman, et al. 1986] system, which is based on the Blackboard architecture, for the

Control Data Control

KS

KS

KS

20

speech understanding task, the different abstraction levels in the hierarchy comprised

viewing the speech signal in terms of words at one level, at the phonemes at another

level, and into the phrases that the words could be grouped into at another level.

The Blackboard stores information in the form of entries. An entry can be thought

of as a complex data structure [Craig 1995]. The problem-solving data are available on

the Blackboard. The knowledge sources produce the changes to the Blackboard that

might finally lead to a solution. Modifying one of the existing entries on the Blackboard

or adding a new one does this. There is no direct interaction or communication between

the sources themselves, but they communicate only through the changes that are made on

the Blackboard. Thus, the purpose of the global database, the Blackboard, is to hold the

computation and necessary information required to find the problem solution that is

produced by the sources. The following is a brief overview of the processing involved in

this technique.

A knowledge source makes some changes to the current state of the Blackboard.

These changes are tracked in the control structures and each source also points out how

much and what it can contribute to the new Solution State. A control module then decides

the approach to the processing depending on the above information. The processing can

be either event-driven or knowledge-driven: it is said to be event-driven if the control

module chooses to invoke appropriate knowledge rules on a particular Blackboard object.

On the other hand, if the control module decides to execute a knowledge source and then

chooses an object that it has to be invoked on, then the processing is said to be

knowledge-driven (It is also possible that the module chooses both a knowledge source

and a Blackboard object, and invokes the former on the latter). The process is terminated

21

when a solution is found, as a result of the changes or contributions made by the

knowledge sources, or when nothing much else can be done without more knowledge.

This architecture operates on a three-phase cycle. In the first phase, the

Knowledge Sources examine the Blackboard and decide if they can make a contribution,

by comparing the latest happening with the pre-condition of the production rule. If a

source decides that it can make a worthwhile and effective contribution, then they are

considered as possible 'next-steps' by the control module. In the next phase, the control

module chooses which of the sources selected in the first phase can be executed. And in

the third and final phase, the knowledge source actions are finally executed.

This series of actions eventually leads to a final solution. It is even possible that

once a possible solution is found, the control module tries to find alternative solutions

and then chooses the most optimal and effective solution to the original problem.

The Blackboard technique has been employed in various applications and real-

time systems. Some of them are ATOME [Laasri, et al. 1987], GBB [Corkill, et al.

1988], Erasmus [Baum, et al. 1989], and Poligon [Rice 1986].

3.2 Overall Architecture

Figure 3.2 shows the block diagram of our system. There are several different

components in the system, each of which performs a specific function. They are the

information sources, the wrappers, the Wrapper Generator, the Blackboard, the Query

Controller and the User Interface.

The information sources in the system are heterogeneous, in that they might not

use the same data model or schema to represent the information stored in them. The

22

 FIG 3.2 OVERALL SYSTEM ARCHITECTURE

User Interface

B

L

A

C

K

B

O

A

R

D

Blackboard

Module

Knowledge

Module

Output

Module

Wrapper

Module

KS1

KS2

KS3

KSn

WKS

Wrapper

Generator W1 W2 W3 Wn

S1 S2 S3 Sn

KS- Knowledge Source
WKS- Wrapper Knowledge Source
W- Wrapper
S- Source

QUERY

CONTROLLER

23

sources may be accessed using different query languages or might not have a query

language at all.

The wrappers are used to interface the system with the various heterogeneous

sources. The wrappers translate the user-query, which might not be in a format

understandable by the sources, into the native language for the sources. And the wrappers

also translate the results returned by the source (in its native language) into a format

understandable by the system. The wrappers are source-specific and one wrapper is built

for each heterogeneous source that exists in the system. The Wrapper Generator

generates the wrappers for the sources in our system.

The most important component of the IIS is the Query Controller. The Query

Controller accepts the user query from the User Interface and performs the duty of

passing it on to the relevant source(s), and refines and/or integrates the data coming from

the wrappers. It divides the query into sub-queries, if necessary, depending on its

knowledge of the information available in the sources. It also has the knowledge on how

to integrate the information returned by the wrappers, and this knowledge is used to

integrate the (intermediate) results produced by the sources. This knowledge is contained

in knowledge sources that exist inside the Query Controller.

The Wrapper Generator makes easy the task of addition of a new information

source and relieves the administrator of having to write a wrapper for each source that is

available in the system, by automatically generating the wrappers. This is accomplished

by using the specifications of the new source that is being added, which are provided by

the administrator. These specifications are stored in a Wrapper Knowledge Source that is

accessed for generating all the wrappers. The Wrapper Knowledge Source is populated

24

with information whenever a new source has to be added to the system (i.e., the process

of Source Registration).

We use the Object Exchange Model (OEM) [Papakonstantinou, et al. 1995],

developed at Stanford University, as the common data model for our system. The classic

<attribute, type, value> format seemed to be the best choice for the communication needs

of the system. OEM is one such model and hence was used for our system. The common

data model serves as a common ground for the information contained in different formats

in the various heterogeneous sources that exist in our system. In other words, the data that

has to be communicated to the information source by the system is converted into the

native language of the source from OEM. And the data that are returned by the

information source, which is in its native language, is converted into OEM so the system

can understand it.

When a source is being added, details on the type of OEM object exported by the

wrapper for this source are also provided. The system matches the requested attributes of

the user query with the attributes of the returned object to see if this wrapper will be used

for query execution to return the desired results. After specifying what a new source

returns, details have to be provided as to how that information can be accessed. These

details are necessary to provide information about how the system and the source

communicate and how the results are translated.

The main function of the Query Controller of our system is to accept the user

query and forward it to the relevant source(s), execute the query (or sub-queries) and then

return the results to the user. We achieve this by using the Blackboard technique.

25

The Blackboard serves as the major data unit of our system. All user queries for

information are initially placed on the Blackboard, from where they are read and

processed by the Query Controller. The Blackboard is also the place for all the

intermediate results that may need to be combined with intermediate results returned by

other wrappers, or which can in turn be requests for more information. This process of

reading requests and writing results on the Blackboard is continued either until the final

solution is found or no more progress can be made, in which case a user alert is initiated.

The Query Controller is composed of different programming modules that

perform their respective functions. It also contains the knowledge sources that contain

rules for combining information from different sources. They are the Blackboard Module,

the Knowledge Module, the Wrapper Module and the Output Module. Details on each of

these modules are provided in the following chapters.

 This chapter describes the overall details of the system and the architecture. The

following chapters will provide the details specific to the thesis.

26

CHAPTER 4

DATA MODEL AND USER INTERFACE

The common data model being used by our system is the Object Exchange Model

(OEM) [Papakonstantinou, et al. 1995]. For the purpose of communication between the

system and the various heterogeneous sources and also within the system, a common

ground becomes necessary. The classic <attribute, type, value> format seemed to be the

best choice for these communication needs. OEM is one such model that has been used

for information exchange in several other Information Integration Systems and so OEM

was used for our system.

The user interacts with the User Interface to be able to query the system. The User

Interface is graphical in nature and assists the user in formulating the query. The user

query is then forwarded and written onto the Blackboard as a request. And the final

results are filtered and displayed to the user via the User Interface.

Details of both the OEM model and the User Interface of the system are provided

in the following sections.

4.1 Object Exchange Model (OEM)

The Stanford University Database Group developed the Object Exchange Model,

popularly known as the OEM. OEM is being used as the data model for our system. The

key advantage of OEM is that it allows for easy exchange of objects between various

heterogeneous sources. Also, it is easy to integrate the information thus obtained from

heterogeneous sources using OEM. The basic idea is that we associate a descriptive tag to

27

each object along with the value. For example, if we have to transfer the SSN for an

employee, we can describe it as

 {ssn, integer, 777777777}

where the tag “ssn” is a label, “ integer” indicates the type of value and “777777777” is

the value. This is the general description of an OEM object. In addition, every OEM

object has a unique Object Identifier (OID), which is generally not displayed. There can

also be complicated objects of the form shown below, where the object value is a set of

(one or more) other objects. Here each component of the object has its own label.

 The important feature of OEM that makes it very attractive is that there is no

necessity to describe the structure of an object and hence it is not bound by the limitations

of fixed schema or structures. In other words, we can say that each object has its own

structure. And this structure is as follows:

 {OID, Label, Type, Value}

The OID is a globally unique identifier that is assigned to each OEM object. The label is

a tag, a variable length string that describes what the object does and also what it means

in the present context. The type is the data type of the values that the object can take. For

example, in the above example, the object can take any integer value. The standard types

provided by OEM are int, string and set.

Sometimes, when the source is, for example, a Simulation System, it might not

return textual data as results, but might instead return graphical data. For example, a

graph-drawing program might return a graph when given the input variables. To take into

account such scenarios, we add another type called the 'Graphical' type. Right now,

28

considering the types of sources that are currently available in our system, this is the only

extra type that we think is needed.

And, finally, the value is the actual value of the object. For ease of representation,

the OID of the objects is omitted in our examples

 Example of an OEM object, that has a set of other OEM objects as its value, is as

follows:

< result, set, { Employee1, set, { <ssn, integer, S1> <first_name, string, f1>

<last_name, string, l1> },

 {Employee2, set, {<ssn, integer, S2> <first_name, string, f2>

 <last_name, string, l2> } } >

The 'result' object shown in the above example is a complex object, which takes other

OEM objects, 'Employee1' and 'Employee2', as its values. In turn, Employee1 and

Employee2 are again complex objects having OEM objects as values.

4.2 User Inter face

 The User Interface displays a logical view of the system, used in query

formulation. This view has all the objects (and their attributes) that can be queried and

this helps the user in formulating the query. Suppose there is an internal queriable OEM

object, called Employee, in the system, of the following format:

< Employee, set, { <ssn, integer, S> <first_name, string, f>

 <last_name, string, l> }>

This OEM object would then be displayed as follows (logically represented):

 Employee (ssn, first_name, last_name)

where ssn, first_name and last_name are attributes of the 'Employee' Object that can be

queried by the user.

29

 The attributes that the user queries are stuffed into the required resultant OEM

object and this OEM object is placed on the Blackboard as a request. For example, if the

user queries all Employees that have last_name 'Johnson', then the required resulting

object would be of the form

< Employee, set, { <ssn, integer, S> <first_name, string, f>

 <last_name, string, l> }>

The query value 'Johnson' is stuffed into this OEM object, giving the OEM object that is

to be placed on the Blackboard, which looks as shown below.

< Employee, set, { <ssn, integer, null> <first_name, string, null>

 <last_name, string, 'Johnson'> }>

When the query is executed and the final results are ready, the Query Controller sends

them back to the User Interface, which are then displayed to the user.

 The User Interface interacts with the System Knowledge Sources, which contain

rules on the creation of new complex objects from objects returned by existing wrappers,

and displays these complex objects to the user. The user can then choose to query them if

necessary. There is an option provided to the user whether or not these complex items

should be displayed.

 When the user formulates the query to be submitted, the Constraint Table of the

system is accessed to see if all constraints on the condition variable, if any, are being met.

The Constraint Table is a system table containing a list of existing constraints on all the

attributes of all the OEM objects returned by the wrappers. For example, if there is a

wrapper returning an OEM object that has an attribute called 'gpa', where there is a

constraint that 'gpa' has to have a numeric value that has to have a value between 2.0 and

4.0, then this constraint information is available in the Constraint Table.

30

 A snapshot of the User Interface of the system is shown below, which comprises

of the query section, where the user poses the query, the logical view section, which

shows the overall logical view of the system using which the user frames the query and

finally the results section, where the results returned by the system are displayed.

FIG 4.1 SNAPSHOT OF USER INTERFACE

 The following chapter provides a detailed description on the working of the Query

Controller and the Blackboard, which is the data unit of the system.

31

CHAPTER 5

BLACKBOARD AND QUERY CONTROLLER

The query processing is mainly carried on in the Query Controller. The Query

Controller reads the request from the Blackboard and executes it and also writes any

intermediate results, which can in turn be requests, onto the Blackboard again. The Query

Controller is made of four different modules, each carrying out a different functionality,

which enables this to happen. They are the Blackboard Module, the Knowledge Module,

the Wrapper Module and the Output Module. Each of these modules has a unique

functionality; details are provided in the following sections.

The Query Controller also contains the System Knowledge Sources. These

knowledge sources contain all the rules on how different OEM objects, which are

returned by the sources, can be integrated to form new (complex) objects that can in turn

be queried on.

The Query Controller also interacts with the Key Table, the Constraint Table and

the Cross-Reference Table. The Key Table contains details on the primary and foreign

keys of the OEM objects returned by the sources. The Constraint Table contains

constraints that need to be met by attributes of the OEM objects. And, finally, the Cross-

Reference Table is a lookup on the attributes in different or similar domains that might

mean the same. Each of these tables is populated during the process of Source

Registration.

32

5.1 Blackboard

The Blackboard is the central data unit of the system. All requests to the system

are placed on the Blackboard. These requests are processed and the intermediate results

are again placed on the Blackboard. This process is repeated until the final solution is

found or there is no other way to proceed, which initiates a user alert. The requests and

intermediate results that are placed on the Blackboard are also in the form of OEM

objects.

The Query Controller executes the requests that are on the Blackboard. If the

request is for a complicated object that is formed by the integration of the intermediate

results from several wrappers, then each of these intermediate results is posted back on

the Blackboard and are considered as requests themselves, unless they are returned by the

wrappers.

There are two options in implementing the Blackboard. The first alternative is to

implement it as a database, which is more persistent and slow or the other alternative is to

model the Blackboard as a memory unit, which is faster but more volatile. Hence a trade-

off has to be made between the access times and availability.

In order to exploit the advantages of both the alternatives, a hybrid scheme is

more efficient. In this scheme, a fixed size of the Blackboard is in the memory, and the

rest is in the database. Whenever there is a request, the in-memory portion of the

Blackboard is accessed first. And if there is no place on the Blackboard for the new

request, then one of the requests that is already on the Blackboard is written out to the

database to make place for the new request. The replacement scheme employed is the

Least Recently Used (LRU) scheme.

33

5.2 Query Format and Conversion

The syntax for posing queries in the User Interface is in the form of

<Object.Attribute><Operator><Value>

(<Connective> <Object.Attribute><Operator><Value>) *

The essential rules for posing a query that would be parsed by the system, would be as

follows:

 Query := Statement | Statement Connective Statement

Statement := Entity Operator Value

Operato := > | >= | < | <= | =

Connective := And | Or ('And' has more precedence over 'Or')

Entity := Object.Attribute Operator Value

 Object := <object name>

 Attribute := <attribute name>

 Value := <value>

The parser of the system would then parse this query and create the OEM object that it

represents and then stuff the appropriate attribute with the value mentioned, and this is

posted on the Blackboard as a request. The format for this type of querying is just a

suggestion so that the users can easily frame the query for the data that the user would

need from the system.

5.3 Query Controller

 The Query Controller resolves the query that is posed by the user and generates

the final result. It is composed of different programming modules that perform their

respective functions. They are the Blackboard Module, the Knowledge Module, the

Wrapper Module and the Output Module. Details on each of these modules are provided

in the following part of this document.

34

 The Blackboard Module continuously monitors the Blackboard for any requests.

When there is a request or intermediate result on the Blackboard, the Blackboard Module

forwards this request to the Knowledge Module and goes back to monitoring the

Blackboard again.

 When the Knowledge Module receives a request from the Blackboard Module, it

accesses the Cross-Reference Table to see if any attributes of the requested OEM objects

mean the same across different wrappers. Then it compares the requested object against

the heads of the rules in each of the knowledge sources of the Query Controller. If a

match is found, then the objects of the tail of the matching rule are placed on the

Blackboard again, along with the data structures representing the association with the

parent object.

When the user makes a request for a complex object, the Knowledge Module

figures out which objects need to be integrated, i.e., the OEM objects in the tail of the

production rule corresponding to the requested object. If there is a condition variable in

the request, the Knowledge Module then accesses the Constraint Table to see and checks

if there is any constraint on the condition variable and if so, if that constraint is being

met. If the constraint is violated, then an alert is sent to the user with the constraint

information.

Also, while integrating two or more objects to form a complex object, the Key

Table is accessed to ascertain that all key constraints are being met, e.g., if there is a

primary key in an object that is a foreign key in another, then this information has to be

utilized to ensure proper integration of objects.

35

This process is repeated until the request does not match the head in any of the

production rules. Then it is checked to see if the object in question is being returned by

some wrapper. If so the request is sent to the Wrapper Module.

 When the request is on the Blackboard, the Knowledge Module has to figure out

which wrappers have to be used for query execution. For this purpose, the Knowledge

Module accesses the knowledge sources, which are part of the Query Controller, to see if

there are one or more rules that provide knowledge for integrating the required

information to result in the requested object. Then it accesses the Cross-Reference Table

to see if any attributes from these wrappers mean the same. If they do, then the names of

those attributes are sent to the Output Module, while the request for those attributes is

sent to the Wrapper Module, specifying the names of the wrappers that are to be used,

and the results returned are written back on the Blackboard.

 The Wrapper Module has a very straightforward functionality. When the Wrapper

Module receives a request, it forwards it to the appropriate wrapper. The wrapper does

the necessary processing and forwards the request to the information source, which

executes it and returns the results. The results are then translated again by the wrapper

and returned to the Wrapper Module, which writes them back on the Blackboard, along

with the data structures representing the association with the parent object.

Finally, the Output Module integrates all the necessary information that is

available on the Blackboard, to create the final result object. For this purpose, it uses the

information about identical attributes that is sent by the Knowledge Module earlier on. It

also clears the Blackboard completely so that it is ready for new requests. The result is

then sent to the User Interface for further processing and to be displayed to the user.

36

 The following section provides a detailed example explaining the various steps

involved in the execution of a user query and how the different modules interact to return

the final result to the user.

5.4 Example

Consider the following OEM objects that are returned by the wrappers to two different

sources. The latter is a simple variation of the 'person' object that was described in the

Wrappers section, the difference being the social security number being called

'socialNum' in this object.

• < CSemployee, set,

{ <ssn, integer, S> <first_name, string, F> <last_name, string, L>

<title, string, T> <reports_to, integer, R> } >

• < person1, set,

{ <socialNum, integer, S> <email, string, E> <salary, integer, A>

<sex, string, X> }>

Assuming that both 'CSemployee' and 'person1' are being specified in the domain of a

'University', the following note is made in the Cross-Reference Table when the source

corresponding to 'person1' is being registered as follows:

<University, ssn> :- <University, socialNum>

Which implies that both 'ssn' and 'socialNum' attributes are equivalent in the 'University'

domain.

Suppose the user now poses a query that is as follows:

"Find the first names of all the employees in the University whose salary is

greater than 60000".

When the query is posted on the Blackboard, the Blackboard Module, which is

continuously monitoring the Blackboard, forwards it to the Knowledge Module. The

37

Knowledge Module then identifies that the required attributes are the 'first_name' and

'salary' from the 'University' domain. The Knowledge Module of the Query Controller

identifies the objects that contain these attributes. This is done by searching through the

rules that exist in the knowledge sources of the Query Controller. Suppose the following

rule is in one of the knowledge sources:

 < CSemployee_person, set, { <ssn, integer, S> <first_name, string, F>

 <last_name, string, L> <title, string, T> <reports_to, integer, R>

<emai, string, E> <salary, integer, A> <sex, string, X> } >

: -

< CSemployee, set, {<ssn, integer, S> <first_name, string, F>

<last_name, string, L>, < title, string, T>

<reports_to, integer, R>} > @ univDB

AND

< person1, set, { <socialNum, integer, S> <email, string, E>

 <salary, integer, A> <sex, string, X> } > @ flatfile

The Knowledge Module of the Query Controller recognizes that this rule may lead

towards the result, since it has the required 'first_name' and 'salary' attributes in the head.

It then decides that the wrappers that need to be accessed are, in this case, 'CSemployee'

and 'person1' and so a request for them is placed on the Blackboard again. The requests

are then sent to the Wrapper Module for all such objects. When the results are ready, they

are written back on the Blackboard.

 The Knowledge Module again accesses the Cross-Reference Table and figures out

the common attributes from the objects returned by the required wrappers based on

whose value the integration is performed. Here, the attributes are identified as 'ssn' and

'socialNum' and this information is sent to the Output Module for later use.

38

 After the results are ready on the Blackboard, the Output Module reads them and

applies the query condition specified by the user, in this case, "salary greater than

60000" on the 'person1' objects. Depending on the values of the 'ssn' and 'socialNum'

attributes, the final set of integrated result objects is generated, of which the requested

'first_name' values are displayed to the user.

 Sometime the mapping between the attribute constraints may not be direct. For

example, you have ‘ fullname’ in one object being mapped to a ‘ first_name’ &

‘ last_name’ combination in another. This problem can be generally termed as the

constraint mapping problem. In such a case, the mapping rule should be defined in the

Cross-Reference Table using functions that perform the appropriate partitioning or

combining of attributes. Say, here, for example, we can have a function called

LnFnToName (L,F). So the rule that would map these attributes would look as follows,

where the mapping is done using the function, which would combine the attributes

first_name and last_name so that they can be mapped:

<University, fullname> :- LnFntoName(<University, first_name>,

<University, first_name>)

The Cross-Reference Table would also have such information about objects and their

mappings. The functions that are associated with this constraint mapping can be reused

and a set of such functions if developed in advance can be used effectively whenever new

sources are incorporated into the system.

 Here it would be appropriate to mention the fact that though the Blackboard

scheme looks closely like the working of the mediator-wrapper architecture, which is

hierarchical in nature, the overall architecture of the Query Controller can be changed to

a more parallel version where the Knowledge Module is divided into sub modules where

39

each of these modules can be processed in parallel by assigning them to individual

processors, as shown below. The Knowledge Modules can be logically partitioned

depending on the knowledge stored about the integration process i.e., the Knowledge

Modules can be logically partitioned in the same manner that the knowledge sources are

populated. This is where the effectiveness of the Blackboard technique is evident and this

parallel version clearly indicates its difference from the mediator wrapper architecture,

which is more hierarchical in nature.

FIG 5.1 PARALLEL SYSTEM ARCHITECTURE

 In the entire process, there are several places where query optimization can be

applied. These details are provided in the following section.

5.5 Query Optimization

Given a query, there may be many different ways in which it can be processed

and its results produced. Each of these ways is equivalent in terms of the final output, but

might vary in the cost, i.e., the amount of time that it takes to run. In such a case, which is

the best method to run? This process of identifying the best method to execute to

maximize efficiency is known as Query Optimization.

In our system, two places have been identified where query optimization can be

performed. The first optimization is with regards to the query condition. According to the

Query Controller

KM1

KM2

KM3

KMn

Wrapper1

Wrapper2

Wrapper3

Wrappern

I
N
T
E
R
F
A
C
E

40

current working of the system, the Knowledge Module identifies the wrappers that can

return either one or more of the required attributes. Then the request is forwarded to the

Wrapper Module, which in turn forwards it to the respective wrappers. The wrappers then

return all the objects to the Wrapper Module to be posted on the Blackboard. Instead, if

the user's query condition also can be executed directly at the wrappers, then the number

of objects returned by the wrapper would be lesser if only not all of them satisfy the

condition.

Another situation wherein query optimization can be performed is if the wrappers

return only those attributes that they have and that are requested by the user, as opposed

to returning the entire object with all the attributes each time. This way, the integration of

the objects returned becomes easier, less time-consuming and more efficient.

41

CHAPTER 6

OTHER SUBSYSTEMS

The aim of this chapter is to give a brief insight into the other subsystems that

exist in the system and that provide more functionality and effectiveness to the overall

information system.

Wrappers are the interface between the system and the various heterogeneous

information sources. The wrappers translate the data and queries between the data model

of the system (OEM) and the native languages of the sources. The Wrapper Generator

generates the wrappers for the sources in our system.

The Wrapper Generator is that component of the system that automatically

generates wrappers for each of the information sources that exists in the system using the

information available in the Wrapper Knowledge Source. During source registration, the

Wrapper Knowledge Source is populated with information on how to handle a new

source and what kind of a query request it expects, and all the other information

necessary to interact with it.

The Wrapper Generator is the system component that eases the task of the

addition of a new information source into the system. This entails automating the process

of generating a wrapper for every new source that is added, thereby decreasing the duties

of the system administrator reasonably. This automation is achieved by using pre-defined

templates for various different sources, in addition with some source-specific information

that is provided by the administrator while adding the new source. This information is

42

initially stored in the Wrapper Knowledge Source and used when the wrapper is being

generated.

Every time a new information source is added to the system, it has to be

'registered', so that the system knows what kind of information is present in this source

and how to access it. This requires an inherent understanding of the working of the

information source. The Wrapper Knowledge Source is populated with the details of the

new source that is being added into the system. Some of the information about the source

that needs to be provided during the registration process includes the name, type,

description and details of the source, the input and output formats, objects exported,

request nature and type, and details on the connection and communication with this

source. The Wrapper Generator generates the appropriate wrapper for this source

depending on this information using the code templates for different kinds of sources and

configuring them appropriately for the given source. And also as a part of this process the

knowledge sources in the Query Controller are populated with information as to how to

combine information from various sources, this process is aided also by the information

from the Cross Reference Table, the Key Table and the Constraint Table.

There is a Cross-Reference Table in the system, which contains a mapping

between all the terms in the different sources that mean the same, although they have

different names. For example, the social security number of a person may be referred to

as 'ssn' in a database, but it might be referred to as 'social ' in a flat-file system, where 'ssn'

and 'social' are both items of the OEM objects that are being returned by the two

wrappers in question. This issue is relevant within the same domain or between different

domains of reference.

43

 This is thus an important part of the registration process. The Cross-Reference

Table has to be populated with those attributes of the new source that are same as the

attributes in the other (existing) sources. A typical entry in the Cross-Reference Table

would look as shown below:

 <d1, attrib1> :- <d2, attrib2>, <d1, attrib3>

where d1 and d2 are domains and attrib1, attrib2 and attrib3 are the attributes within the

domains that mean the same even though they have different names.

Similarly the Key Table and the Constraint Table are also populated during the

source registration process, with the information about the keys for different OEM

objects exported by the wrappers and also the constraints on the attributes of those

objects.

These are the important components of the system other than the Query Controller

and the User Interface, which increase the effectiveness of our Information Integration

System.

44

CHAPTER 7

IMPLEMENTATION DETAILS

7.1 Objective

The motive behind the implementation of this system was to show that the design

proposed is robust. We developed a ‘prototype’ system and in this chapter we discuss

each component and its implementation, and the integration issues involved when trying

to put the different components together. We chose to use information sources from

different domains and using different technologies to further drive home the point that the

design is correct and effective. In the following sections, we first provide a brief

overview of the entire system and later concentrate on the individual components.

7.2 Technical Issues

 The entire system was implemented using Java. We chose to use Java because it

is highly platform independent and also because it can be used to make the system web-

based in the future, if desired.

 The mSQL database was used because it belongs to the most general class of

databases used today, that is, relational. Also it is simple and freely available. It was also

easy to find a JDBC driver to interface it with the Java source code. We used JDBC to

connect with the mSQL database. The database runs on a remote server and this

contributes to the distributed facet of the sources.

 The knowledge base that we use is a fuzzy expert system that was developed

using TIL Shell (fuzzy logic development tool by Togai Infralogic, Inc.) . We used this

45

system because the knowledge base generates rule bases that are in the C language and

this was a good opportunity for us to prove that it is possible to interface our source code

with a source that is non-Java. We accomplished this by using the Java Native Interface

(JNI).

 We use a flat file as a semi-structured data source. This was to show that, in

future, if necessary, it would be possible to use the Internet as a data source, which can be

considered to be the largest repository of unstructured and semi-structured data.

 Our simulation system is a web-based applet. A wrapper was constructed over it

that interacts with the GUI using OEM objects. The applet then returns a GUI object that

is displayed on our screen. This proves that even complicated systems like simulation

systems can be interfaced with our system.

7.3 Sources and Domains

The following are the systems that we used as data sources for the implementation of

our project.

• Flat File System

• Database Management System

• Knowledge Base

• Simulation System

Each of these systems will be described in more detail in the following sections.

7.3.1 Flat File System

This is a semi-structured source that we created for the purpose of testing. It

contains some details about University personnel, including:

Person : SSN, name, sex, title, salary and email

46

SSN here is the primary key and represents the Social Security Number of the person.

And the name here implies that full name of the person.

We later try to integrate this information with the data available in another,

structured source.

7.3.2 Database Management System

 We have used the mSQL relational database as our second source. We have

created two different databases – the first is a University Employee database and it

contains the following information:

 CSemployee - SSN, name, title, salary, reports_to

Various rules have been authored for the two sources – the flat file system and the

University database – and the records can be joined on the various attributes.

The second database that we have created holds information about various storage

devices. This database contains the device name and its temperature range. This database

is used for integration with the Knowledge Base that we used.

deviceInfo – deviceName, minTemp, maxTemp

deviceName is the name of the device and minTemp and maxTemp together define the

range of temperature that this device can be used to store within.

7.3.3 Knowledge Base

 We use a fuzzy knowledge base that was created in the Biological & Agricultural

Engineering Department. The system was developed using TIL Shell, which generates C

files that we use. The C files are interfaced with Java, which is the language that we use,

using Java Native Interface (JNI). The system has about 25 rules, and given the

47

‘Consumption day’ and the ‘Degree of Ripeness’ , the system outputs the ‘Temperature’

that the fruit should be stored at.

7.3.4 Simulation System

We use the NanoCAD [Drexler, et al. 1991] , simulation system that was

developed by Will Ware of SecureMedia, Inc. NanoCAD uses mathematical techniques

of molecular modeling to simulate the behavior of molecules. With respect to our system,

we can specify a molecule name as the input, and the molecular structure is displayed in a

new window.

WRAPPERS

SOURCES

University DB Flat File Knowledge Base Device DB Simulation

FIG 7.1 OVERALL SYSTEM STRUCTURE
7.4 Wrappers

The above was a brief description of the sources that we used for our system and

their structures. The next step was to develop wrappers for each of these sources. This

GUI

CSemployee person temperature deviceInfo nanoCAD

QUERY CONTROLLER

48

was done so as to accomplish the representation of the data in each source in OEM,

which is our underlying data model, since each source has a model of its own. Wrappers

are source-specific software modules that are used to convert data from one model to

another. Java DataBase Connectivity (JDBC) is used to access the remote databases and

JNI is used to interface non-Java source code with our Java source code.

The wrappers are specified in WSL (Wrapper Specification Language), an

extension of MSL.

The following are the OEM objects exported by each of the wrappers created for

our information sources:

• CSemployee – University DB – uses JDBC to connect to database

• < CSemployee { <ssn S> <first_name F> <last_name L> <title T> <reports_to R>

<salary A> } >

• Person – Flat File

< person { <ssn S> <fullname F> <sex X> <email E> <title T> <salary A> } >

• deviceInfo – Device DB – uses JDBC to connect to database

< deviceInfo { < deviceName D> <minTemp T> <maxTemp H> } >

• molecularStructure – Simulation System

< moleculeStructure { < molecule_name > } >

• temperatureData – KB – uses JNI to interface with non-Java source code

< temperatureData { <temperature T> <consumptionDay CD> <degreeRipeness

DR> }

When each of these sources are registered these wrappers are generated and also the

corresponding knowledge sources are populated with rules as to how the objects returned

from various wrappers can be combined. Also the Cross-Reference, Key and Constraint

Tables are populated with the appropriate information depending on the sources and the

objects returned by them. A typical rule, for example, which would combine information

49

from the objects ‘CSemployee’ and ‘person’ would be populated in the knowledge source

as a rule, which is defined as follows:

 < CSemployee_person, set, { <ssn, integer, S> <first_name, string, F>

 <last_name, string, L> <title, string, T> <reports_to, integer, R>

<email, string, E> <salary, integer, A> <sex, string, X> } >

: -

< CSemployee, set, {<ssn, integer, S> <first_name, string, F>

<last_name, string, L>, < title, string, T>

<reports_to, integer, R> <salary, integer, A>} > @ univDB

 And

 <person, set, {<ssn, integer, S> <fullname, string, FN>

 <sex, string, X> <email, string, E>

 <title, string, T> <salary, integer, SL>} > @ flatfile

Hence the complex object ‘CSemployee_person’ can be queried upon directly or the

simple objects ‘CSemployee’ and ‘person’ can be queried if necessary.

7.5 User Inter face and Querying

The User Interface reads the knowledge sources dynamically and the logical

structures of all the objects in the system are shown to the user. The user has an option to

choose the display of attributes for just simple objects or also complex objects. The user

then uses the Interface as shown below to pose the query. The GUI takes the users query

and then posts it on the Blackboard where the Query Controller reads the request and

then processes it to send the results back to the User Interface, which are then displayed.

The following is a snapshot of the GUI, showing the logical view of the entire

system. It has been organized hierarchically as a tree, showing the available queriable

objects, depending on the option selected (simple or complex). The visible attributes that

appear, as the leaf nodes in the following figure are the ones that can be queried on.

50

As shown below, the User Interface would contain three sections. The query

section, where the user would pose the query; the system’s logical view section, where

the user would see the view of the system and all the queriable objects available; and

finally the results section which displays the results of the query being posed. The above

figure shows the snapshot of the User Interface, when a query is posed and the result is

being displayed.

FIG 7.2 USER INTERFACE

Figure 7.2 shows the snapshot of the UI when a simple query is being posed. The

system would respond in a similar manner for all the queries where the user poses the

query in the query section and the results are displayed in the results section. The system

will respond differently if the user queries a simulation system. In such a case, the system

51

returns a graphical object, which is displayed as a pop-up. Figure 7.3, shows the

corresponding query and the query object returned.

FIG 7.3 USER INTERFACE AND RESULT

52

This chapter was an attempt at providing information about some implementation

details that went into the development of the various components of our system. In the

above sections, we have tried to put forth the issues and details involved in the process of

the implementation of the system. It is a working prototype of a Blackboard based IIS

and we have employed five different sources to show that it can extended to include any

number of sources from any domains.

53

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

 This thesis focuses mainly on the Query Controller of an Information Integration

System, which is based on the Blackboard technique, and on the data modeling and

interfacing for the same.

The Query Controller can rightfully be said to be the "brain" of the system, as this

is the place where most of the decision-making capabilities reside. It makes use of the

proven AI problem-solving technique, the Blackboard technique, and uses the knowledge

generated when the new sources generated to aid in the decision-making. Hence, it can be

safely said that the efficiency and correctness of the Query Controller itself depends on

how well this knowledge is provided and how well a new source is incorporated into the

system.

The data model we used, OEM, belongs to the classic <attribute, type, value>

category. Though it can be used to represent most types of data that need to be dealt with

today, the list is definitely not exhaustive. There may be some data in the future that may

not be represented properly using OEM.

Though the basic architecture of the system may not vary with future additions

that might come up due to the ever-growing information needs, the efficiency of the

system can be further improved by providing tools that make the addition of new

information sources into the system easier.

54

REFERENCES

Baum, L., R. Dodhiawala, and V. Jagannathan, 1989. The Erasmus System, Blackboard
Architectures and Applications, Academic Press, pp. 347-370.

Bayardo, R., W. Bohrer, R. Brice, A. Cichocki, J.Fowler, A. Helal, V. Kashyap, T.
Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk, 1997. InfoSleuth: Agent-Based Semantic Integration of
Information in Open and Dynamic Environments, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Tuscon, Arizona, pp.195-206.

Borgida, A., R. Brachman, D. McGuinness, and L. Resnick, 1989. CLASSIC: A
structural data model for objects, Proceedings of ACM SIGMOD-89, Portland, Oregon,
pp.58-67.

Brachman, R., and J.Scmolze, 1985. An overview of the KL-ONE knowledge
representation system, Cognitive Science, Volume 9, Number 2, pp.171-216.

Brachman, R. J., A. Borgida, D. L. McGuinness, P. F. Patel-Schneider, and L. A.
Resnick, 1991. Living with classic: When and how to use a KL-one-like language,
Principles of Semantic Networks, Morgan Kaufmann Publishers, San Mateo, CA, pp.
401-456.

Bressan, S., and C. Goh, 1998. Answering queries in context, Proceedings of the
International Conference on Flexible Query Answering Systems, FQAS'98, Roskilde,
Denmark, pp. 68-82.

Calmet, J., S. Jekutsch, and J. Schü, 1997. "A Generic Query-Translation Framework for
a Mediator Architecture", Proceedings of the 13th International Conference on Data
Engineering ICDE, Birmingham, UK, pp. 434-443.

Chawathe, S., H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,
and J. Widom, 1994. The TSIMMIS Project: Integration of Heterogeneous Information
Sources, Proceedings of IPSJ Conference, Tokyo, Japan, pp.7-18.

Chu, W., M. A. Merzbacher, and L. Berkovich, 1993. The design and implementation of
CoBase, Proceedings of the 1993 ACM SIGMOD: International Conference on
Management of Data, ACM Press, Washington, D.C., pp.517-522.

Cody, W. F., L. M. Haas, W. Niblack, M. Arya, M. J. Carey, R. Fagin, M. Flickner, D.
Lee, D. Petkovic, P. M. Schwarz, J. Thomas, M. Tork Roth, J. H. Williams, and E. L.
Wimmers, 1995. Querying Multimedia Data from Multiple Repositories by Content: the
Garlic Project, 3rd IFIP Working Conference on Visual Database Systems, Lausanne,
Switzerland, pp.17-35.

55

Corkill, D., K. Gallagher, and K. Murray, 1988. GBB: A Generic Blackboard
Development System, in Blackboard Systems, edited by R. Engelmore and T. Morgan,
Addison-Wesley.

Craig, I., 1995. Blackboard Systems, Alex Publishing Corporation.

Drexler, E., C. Petersonth, and G. Pergamit, 1991.Unbounding the Future: the
Nanotechnology Revolution, William Morrow and Company.

Duschka, O., and M. Genesereth, 1997. Infomaster - An Information Integration Tool,
Proceedings of the International Workshop - Intelligent Information Integration - during
the 21st German Annual Conference on Artificial Intelligence, KI-97. Freiburg, Germany,
pp.13-18.

Engelmore, R., A. Morgan, and H. Nii, 1988. Introduction, Blackboard Systems, edited
by R. Engelmore and A. Morgan, Addison-Wesley.

Erman, L., F. Hayes-Roth, V. Lesser, and D. Reddy, 1986. The Hearsay-II Speech-
Understanding System: Integrating Knowledge to Resolve Uncertainty, Proceedings of
AAAI-86, Saint Paul, Minnesota, pp.58-64.

Finin, T., R. Fritzson, D. McKay, and R. McEntire, 1994. KQML as an Agent
Communication Language, Proceedings of the 3rd International Conference on
Information and Knowledge Management (CIKM94), ACM Press, Gaithersburg,
Maryland, pp. 456-463.

Kirk, T., A. Levy, Y. Sagiv, and D. Srivastava, 1995. The information manifold, Working
Notes of the AAAI Spring Symposium on Information Gathering in Heterogeneous,
Distributed Environments, Technical Report SS-95-08, AAAI Press, Menlo Park, CA,
pp.1312-1316.

Laasri, H., B. Maitre, T. Mondot, F. Charpillet, and J-P. Hatton. 1987. ATOME: Another
Tool for Developing Multi-Expert Systems, Proceedings of AAAI-Workshop on
Blackboard Systems, Seattle, Washington, pp.309-322.

Mena, E., V. Kashyap, A. Sheth, and A. Illarramendi, 1996. OBSERVER: An approach
for Query Processing in Global Information Systems based on Interoperation across Pre-
existing Ontologies, Proceedings of the 1st IFCIS International Conference on
Cooperative Information Systems (CoopIS '96), Brussels, Belgium, pp. 223-271.

Papakonstantinou, Y., H. Garcia-Molina, and J. Widom, 1995. Object Exchange Across
Heterogeneous Information Sources, Proceedings of the Eleventh International
Conference on Data Engineering, Taipei, Taiwan, pp. 251-260.

56

Subrahmanian, V. S., S. Adali, A. Brink, R. Emery, J. J. Lu, A. Rajput, T. J. Rogers, R.
Ross, and C. Ward, 1995. Hermes: Heterogeneous Reasoning and Mediator System,
"http://www.cs.umd.edu/projects/hermes/overview/paper".

Rice, J.,1986. Poligon: A system for parallel problem solving, Stanford Univ. Technical
Report KSL-86.

Twery, M. J., D. J. Bennett, R. P. Kollasch, S. A. Thomasma, S. L. Stout, J. F. Palmer, R.
A. Hoffman, D. S. DeCalesta, J. Hornbeck, H. M. Rauscher, J. Steinman, E. Gustafson,
G. Miller, H.Cleveland, M. Grove, B. McGuinness, N. Chen, and D. E. Nute. 1997.
NED-1: An integrated decision support system for ecosystem management. Proceedings
of the Resource Technology '97 Meeting. pp. 331-343.

Thiran, Ph., J-L. Hainaut, S. Bodart, A. Deflorenne, and J-M. Hick, 1998. Interoperation
of Independent, Heterogeneous and Distributed Databases. Methodology and CASE
Support: the InterDB Approach, Proceedings of Coopis'98, IEEE, New York, pp. 54-63.

Tomasic, A., L. Raschid, and P. Valduriez, 1996. Scaling heterogeneous databases and
the design of DISCO, Proceedings of ICDCS, Hong Kong, pp.449-457.

