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ABSTRACT 

 Cilia are microscopic hair like projections that lie on almost every cell of the body. 

Motile cilia have a rhythmic beating motion to clear mucus and irritants. If the mucociliary 

defense mechanism does not work properly, it leads to a wide spectrum of diseases called 

ciliopathies. Identifying ciliopathies early and implementing proactive therapies is clinically 

compelling to minimize procedural invasiveness. However, previous work in this area was 

limited to separating normal from abnormal ciliary motion, and ignored the existence of broader 

spectrum of ciliary beat patterns that may have clinical implications with different disorders. 

Hence, defining a universal, quantitative “language” that describes phenotypes of ciliary motion 

is of particular clinical and translational interest. The analysis presented here groups patients 

with similar ciliary motion patterns, establishing a platform that can unravel ciliary motion 

subtypes in patients.  

INDEX WORDS: Cilia, ciliary motion subtype, dynamic textures, bag of dynamical systems, 

transformation invariant metrics, time series analysis. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Cilia are microscopic hair like structures that extend from the surface of cells. They are found on 

cells in the lungs, kidneys, eyes, ear, nose, and brain [1-3]. Cilia play a vital role in human and 

animal development [3], but also play an important role in health upkeep and maintenance. 

Motile cilia lining in the nasal and lungs beat in a rhythmic motion to keep the airways clear of 

mucus and irritants, enabling easy breathing and exchange of oxygen and carbon dioxide [4]. If 

the cilia function is disrupted, it can result in a wide spectrum of diseases known as ciliopathy 

[6]. Primary ciliary dyskinesia (PCD) is an example of ciliopathy caused by a rare genetic 

disorder. The symptoms of PCD are malformed cilia ultrastructure that causes abnormal motion 

leading to ineffective mucociliary clearance [7].  

Patients with these diseases suffer from frequent ear infections, chronic nasal congestion, male 

infertility [8] and respiratory infections. These infections can cause increased inflammation and 

scarring, ultimately resulting in bronchiectasis [9] and requiring organ transplantation [9]. Ciliary 

motion (CM) defects have been associated with increased respiratory complications and poor 

postsurgical outcomes [10-13]. Early diagnosis of CM abnormalities helps the clinician to 

institute respiratory therapies that could benefit patients without resorting to invasive, risky, and 

expensive surgeries.  
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Currently the most robust procedure to identify and diagnose ciliopathies is visual examination 

of the video microscope of nasal or bronchial biopsies by the clinicians for ciliary beat 

abnormalities. However, this procedure has several disadvantages. Relying on visual 

examination by expert reviewers is highly subjective, time consuming, and error prone [20-23]. 

Furthermore, these manual evaluations are not amenable to cross-institutional comparisons. 

 

In Quinn et.al 2015, [24] the authors developed a computational framework that classifies 

normal and abnormal CM, achieving almost 93% accuracy. But, their work was limited to binary 

classification of normal and abnormal classification and were incapable of recognizing CM 

subtypes or novel categories of CM outside the binary paradigm. Given the variety of conditions 

associated with CM abnormalities, it is widely accepted by clinicians that there are more than 

two motion subtypes [30]. These subtypes may be diagnostically relevant to various disorders 

associated with certain ciliopathies. But, all the clinicians do not arrive at a consensus on the 

types of CM that exist. 

 

Identifying CM subtypes is a very hard problem and requires unsupervised machine learning 

techniques to discover the latent motion patterns. Our work in this paper is an initial attempt to 

quantize CM and develop features amenable to identifying distinct CM patterns in patients. Our 

work draws from dynamic texture (DT) analysis in computer vision to extract features from raw 

CM, investigates several distance metrics for comparing geodesic DT representations of CM 

patterns, and explores the resolution of the resulting models [31]. In this way, we can recognize 

subtle variations in CM phenotypes with the ultimate goal of conducting more focused CM 

disease association studies. 



 

3 

1.2  Major Contributions 

We treated CM as an instance of DTs which collectively form equivalence classes [25, 30], in 

which parameters describing the motion of two systems can be different in absolute terms but 

drawn from identical distributions. CM patterns inhabit a high dimensional geodesic space that 

cannot be analyzed using traditional linear (Euclidean) distance metrics. We tested several 

nonlinear distance metrics amenable to time series data: Bhattacharya distance [36], Martin 

distance [39, 40], Cepstral distance [36], and Kullback Leibler (KL) divergence [36]. Using these 

distance measures, we computed pairwise distances between DT representations of regions of 

interest (ROI) [24]. This pairwise distance formed a kernel matrix, which we used for further 

analysis. We applied clustering techniques like spectral and agglomerative clustering on these 

kernel matrices to observe the relationship between CM patterns for different patients. Due to the 

large number of ROIs, we chose t- distributed stochastic neighbor embedding (t-SNE) [64] for 

reducing the high dimensional data and visualizing the resulting CM-clustered patient data. t-

SNE is proven to be a better technique for revealing the structure of high dimensional data that 

lies on several different but related low dimensional manifolds, such as image data [37].  

Also, we applied few supervised techniques like support vector machine (SVM), random forest 

(RF), and k- nearest neighbors (KNN) to assess the validity of our DT-based features in relation 

to the manual labels supplied by clinicians. In this paper, we represent patients as a mixture of 

motion patterns to discover the CM subtypes.  

 

We refined the process of selecting regions of interest by considering only the pixel intensities 

that vary a lot over time per each ROI. We assumed that the pixels that show large variation in 

pixel intensities over time are probably cilia that move in the videos and the pixels with least 
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pixel intensity variation over time are background of the video or cell bodies. We modeled the 

motion of cilia as a bag of dynamical systems [35]. The bag of systems (BOS) is similar to the 

bag of features (BOF) approach for document representation. Since CM patterns do not live in 

Euclidean space we applied non-Euclidean distance metrics as explained in the previous 

paragraph. But, now we obtained the kernel matrix on the pixel data instead of directly on ROI 

data. 

Hence, we used nonlinear dimensionality reduction techniques to convert the high dimensional 

nonlinear data in to low dimensional Euclidean space which preserves the relationship in high 

dimensional nonlinear space. Then we applied a strategy similar to the bag of words approach in 

which we consider patients as documents and dynamical systems as the code words [35].  Then 

we applied clustering algorithms to represent the patients as mixture of CM patterns.  

 

Chapter 3 provides a detailed explanation of the procedure we followed in identifying the CM 

subtypes and results analysis is explained in chapter 5. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

In this chapter, we discuss in detail the structure of cilia and previous work done in this area. 

 

2.1 Cilia: Structure and function 

Cilia are microscopic hair-like organelles that extend from the surface of nearly all mammal cells 

[41]. They are found in linings of the airway, reproductive system, and other organs and tissues 

[1-3]. The length of a single cilium ranges from 1 to 10 micrometers [42]. In the airways, cilia 

function in concert with airway mucus to mediate the critical function of mucociliary clearance, 

cleansing the airways of inhaled particles and pathogens [4]. They also help in propelling sperm 

[1,4,7]. Cilia can be considered as a sensory cellular antenna that coordinate many cellular 

signaling pathways, coupling the signaling to ciliary motility or alternatively to cell division and 

differentiation [2]. Figure 1 shows the example of cilia in lungs [43]. 

 

Figure 1: Example of cilia lying in lungs (Taken from [43]) 
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2.2 Ciliopathies 

If the proper motion of cilia is disrupted, it can lead to a wide spectrum of diseases collectively 

known as ciliopathies. 

 

PCD is an example of a ciliopathy. It is a sinopulmonary disease arising from CM defects in the 

cilia of respiratory epithelia [44, 45, 46]. PCD is a genetic autosomal recessive disorder [7, 48] 

with incidence rate of about 1:15000 among Caucasians. Most infants with PCD experience 

breathing problems at birth, which suggests that cilia play an important role in clearing fetal fluid 

from the lungs [47]. The affected individuals develop frequent respiratory tract infections [8], as 

bacteria remain in the respiratory tract. People with PCD also have chronic nasal congestion and 

cough [48], which can develop into bronchiectasis [48]. This condition damages the airway 

passages leading from the windpipe to the lungs and can cause life-threatening respiratory 

problems. PCD in males lead to infertility [48, 49]. Infertility occurs in some affected females 

and is likely due to abnormal cilia in the fallopian tubes. Because motile cilia are also required 

for left- right patterning, PCD patients can exhibit mirror symmetric organ placement such as 

Kartagener syndrome or randomized left-right organ placement such as heterotaxy [50, 51]. 

Heterotaxy syndrome results from problems establishing the left and right sides of the body 

during embryonic development. Patients with congenital heart disease (CHD) and heterotaxy 

exhibit a high prevalence of CM defects similar to those seen with PCD [60]. This was 

associated with increased respiratory complications and poor postsurgical outcomes [11, 12, 60]. 

Similar findings were observed in patients with a variety of other CHD, including transposition 

of the great arteries (TGA), a CHD that may also arise from left-right patterning defects [61].  

Diagnosing patients with CM abnormalities prior to surgery may provide a clinician with 
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opportunities to institute prophylactic respiratory therapies to prevent these complications. 

Access to early diagnosis and effective treatment is essential to curtail disease progression and to 

alleviate the burden of symptoms [67]. Hence there is a high need for early diagnosis of CM 

abnormalities.  

 

2.3 Current ciliopathy diagnostic methods 

Current procedures for diagnosing ciliopathies and associated disorders entail an ensemble of 

methods. One of these methods is to measure nasal nitric oxide (nNO) levels [52, 53]. Nasal 

nitric oxide levels have been demonstrated to correlate with certain ciliopathies [52]. But this is 

an unreliable technique amongst young children, and low nNO is also seen in other pulmonary 

diseases [53], hence this test leads to a high false positive rate. Another technique is to compute 

the ciliary beat frequency (CBF). Healthy CM tends to beat at higher frequencies (10-12 Hz) 

while abnormal motion is observed outside that range. However, there are numerous cases where 

these ranges are not definitive [14, 19-22]. Transmission electron microscopy (TEM) of ciliated 

epithelia can be used to find defects in the ciliary ultrastructure and determine ciliary orientation 

within cells [54,55], but few defects are very hard to detect due to low contrast [56] of the 

electron microscope. To identify such subtle ultra-structural defects a high-resolution 

immunofluorescence is extremely useful [57]. However, it needs the cells to be fixed, making the 

live observations impossible. Furthermore, CM defects can be observed with no detectable 

ultrastructural defects [58]. High-speed video microscopy is one of the most popular methods, 

both for its relative simplicity and for its ability to capture specific motion patterns. In practice, it 

has become an essential first step in the diagnostic evaluation of PCD and other ciliopathies [59]. 
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Clinicians perform manual beat pattern analysis where a nasal brush biopsy from patient is 

collected, grown in a petri dish, and observed with a high speed digital microscope. The clinician 

observes the CM to identify motion defects. Although this is a widely-followed practice, reliance 

on the visual evaluations by expert reviewers makes these assessments highly subjective, time-

consuming and error prone. It also heavily depends on how the clinician is trained in identifying 

such defects; without a universal CM language, each clinician is left to describe CM 

independently. These manual evaluations are not amenable to cross- institutional comparisons or 

any study of sufficient scale and quantity to draw definitive conclusions, necessitating 

quantitative identification of CM subtypes without manual intervention. 

 

2.4 Related work  

Given the deficiencies of the current diagnostic practices followed by clinicians, some work has 

been proposed to provide a quantitative definition of CM. Quinn et. al 2015 [24] proposed a 

computational framework to quantitatively assess the CM using DT analysis. DTs are sequences 

of images of a moving scene which exhibit temporal regularity subjected to stochastic noise [25-

28]. Some examples of DTs include rippling water, flickering flames, and grass in the wind; each 

has a regular visual pattern that is combined with some stochastic behavior. CM is well-

described as an instance of DT, since the motion of cilia is rhythmic but also subjected to 

stochastic noise that collectively determines the beat pattern. This assumption showed good 

results in interpreting CM in the case of binary classification. Therefore, in this paper we build 

on this work by also considering CM as an instance of DT.  
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2.5 Quantitative representation of CM 

We quantitatively represent CM in the form of a DT. DT analysis relies on using a linear 

dynamical system (LDS) such as autoregressive (AR) models [38] to parameterize the 

components of DT motion. Instead of working directly on the grayscale pixel intensities, we used 

elemental components to quantitatively represent CM. Grayscale pixel intensities are not 

invariant to affine transformations, complicating the derivation of higher-order statistics such as 

AR models from the grayscale pixel values. 

Hence, we used the elemental components obtained after computing the optical flow [29] of the 

grayscale CM. Using the optical flow [29] we can model the apparent change in CM between 

two consecutive frames as a vector field. This indicates the direction and magnitude of apparent 

motion at each pixel position in the ROI.  

The following sections explains the related work done in the area, a procedure followed to 

quantitatively describe CM, and few limitations to the previous work.  

 

2.6 Optical flow 

The apparent motion of objects in a scene caused by the relative motion between an observer and 

the subject is called optical flow [29]. Optical flow represents the relative displacement of 

motion between a pair of consecutive frames from the original video. We do not explicitly track 

individual cilia when determining the CM, but rather estimate CM using the spatial and temporal 

derivatives of the optical flow. Using these derivatives of the optical flow we computed the 

elemental components of CM. 

The size of the neighborhood and strength of contribution of the neighborhood to the final optical 

flow of the pixel of interest varies across implementations. In general, these constraints are 
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pooled over a neighborhood of pixels to smooth the effects of noise [29]. In [24], few techniques 

such as temporal smoothing, median filtering, and a few noise filtering techniques like spatial 

median filtering of dominant frequencies and principal component analysis (PCA) on AR models 

are used to remove lower modes of motion and keep only the dominant ones. The authors also 

applied Gaussian filtering with a scaling parameter while computing the optical flow and its 

derivatives. In our work, we used the Farneback optical flow algorithm, as implemented in 

OpenCV [62]. Farneback is a dense optical flow algorithm and computes optical flow for all 

pixels in the frame.  

 

The main assumption of optical flow is that the intensities of an object does not change between 

consecutive frames (brightness constancy) and the neighborhood pixels have similar motion.  

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑢𝛿𝑡, 𝑦 + 𝑣𝛿𝑡, 𝑡 + 𝛿𝑡)   (1) 

Equation (1) indicates that the image intensity at a location (x, y) at time t 𝐼(𝑥, 𝑦, 𝑡) is preserved 

locally for small changes (uδt, vδt) in the next frame taken after δt time. Here (u, v) are the 

horizontal and vertical image velocity components of the optical flow vector 𝑓𝑇⃗⃗ ⃗⃗   at pixel location 

(x, y). Applying Taylor series approximation on the right-hand side, removing the common 

terms, and dividing by dt, we get the following equation 

   𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 where     (2) 

   𝐼𝑥 =
𝛿𝐼

𝛿𝑥
   𝐼𝑦 =

𝛿𝑓

𝛿𝑦
 

𝑢 =
𝛿𝑥

𝛿𝑡
  𝑣 =

𝛿𝑦

𝛿𝑡
 

In Equation (2), 𝐼𝑥 and 𝐼𝑦 are components of the spatial gradient, and 𝐼𝑡 is the temporal gradient. 

The optical flow vector (u, v) is estimated from an overdetermined system of linear equations 
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which are formed from the gradient constraint that is pooled over small image neighborhood 

around pixel (x, y). 

 

The optical flow vector 𝑓 = (𝑢, 𝑣)𝑇 provides information on the image dynamics; the first-order 

flow derivatives (ux, uy, vx, vy), can be derived from the optical flow to represent an affine model 

of optical flow. For derivation of the optical flow and for computing its derivatives to obtain the 

final elemental components, please refer to the Appendix.  

 

Fig 2 illustrates the process of computing optical flow and elemental components of 3 frames in 

a CM video. The elemental components of the CM are obtained by spatial and temporal 

derivatives of the optical flow. From the optical flow, we compute three elemental components: 

rotation, divergence, and deformation. 

 

Rotation indicates the curl of cilia, in radians per second. Divergence captures scaling or motion 

of the cilia towards and away from us (zoom in and zoom out). For 2D videos where most CM 

lies within the plane of the camera, divergence is not a useful quantity. Deformation is the biaxial 

shear of the cilia (crushing and squeezing). Elemental components are computed at each pixel, 

and therefore have the same dimensionality as the original grayscale data. However, it should be 

noted that deformation is a vectorial quantity and consists of horizontal and vertical components 

(similar to optical flow), whereas rotation is a scalar quantity (similar to grayscale).  
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Figure 2: Compute optical flow for three frames. (A) Stacked frames indicating the cilia and 

cilia body from a video of nasal brush biopsy Black box is the ROI selected. (B) Shows the 

direction and magnitude of optical flow for each pair of frames in the video. (C) Changes in the 

optical flow to compute elemental components. Red arrows indicate optical flow at time t, green 

arrows show optical flow at frame t+1, blue arrows are optical flow at t+2. (D) Elemental 

components of optical flow, top left is rotation which we used in this paper and bottom left is 

divergence. Top and bottom right are deformation templates. Deformation is vector quantity. 

 

Previous studies [24] show that rotation and deformation components for healthy CM displayed 

strong periodic behavior and a wide range of magnitudes. In contrast, abnormal cilia showed 

weak periodic behavior in addition to magnitude variations heavily centered around 0, indicating 

very little movement overall. Between the two elemental components, rotation could accurately 

differentiate the abnormal CM [24]. Clinical studies describe the abnormal CM as having 

reduced beat amplitude, stiff beat pattern, and failure to bend along the length of the ciliary shaft 

[19, 20]. This observed stiffness is shown most apparently with rotation elemental component 

[24], suggesting a translational pathway that rotation quantity captures a biologically meaningful 

phenotype. Therefore, we used the rotation component in our analysis. 

 



 

13 

2.7 Auto regressive models 

AR models are the state of art DT analysis methods that are useful in representing periodic 

signals containing noise [25, 31-33]. Linear models are sufficient to capture the motion between 

successive frames [24]. We represent the dynamics of CM using two equations: 

𝑦 𝑡 = 𝐶𝑥 𝑡 + �⃗� 𝑡       (3) 

𝑥 𝑡 = 𝐴1𝑥 𝑡−1 + 𝐴2𝑥 𝑡−2 + ⋯+ 𝐴𝑑𝑥 𝑡−𝑑 + 𝑣 𝑡   (4) 

where Eq. 3 models the appearance of the cilia 𝑦  at a given time t plus a noise term �⃗� 𝑡. Eq.4 

represents the state  𝑥  of the CM in a low-dimensional subspace defined by an orthogonal basis 

C at time t, plus a noise term  𝑣 𝑡, and how the state changes from t to t + 1. 

 

Eq. 3 is a decomposition of each frame of a CM video 𝑦 𝑡 into a low-dimensional state vector 𝑥 𝑡 

using an orthogonal basis C. Singular Value Decomposition (SVD) was used to derive this 

basis. The input to the SVD is raster-scan of the original video; the video is restructured into a 

matrix where each row corresponded to a single pixel from the video and each column is a 

frame (or the value of that pixel in a given frame). Therefore, if the height and width of the 

video in pixels were given by h and w respectively and the number of frames as f, the 

dimensions of the raster-scanned matrix would be hw × f. 

 

The main assumption in DT analysis is that the DT lives in a low-dimensional subspace as 

defined by the principal components C; a significant majority of the variance in 

the data can be explained with only a few dimensions [24]. Once the data 𝑦 𝑡  is projected in to 

this subspace, we can model the motion of the DT 𝑥 𝑡   using a relatively few parameters by 

virtue of its low dimensionality relative to 𝑦 𝑡. This motion can be described as a linear process: 
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at time t+1, the position of cilia in this low dimensional space is a linear function of its position 

at some number d of previous positions. This intuition is represented in Eq. 4: CM at position 

𝑥 𝑡 is a function of the sum of d of its previous positions 𝑥 𝑡−1, 𝑥 𝑡−2, 𝑥 𝑡−𝑑, each multiplied by its 

corresponding coefficients A = {A1, A2, ..., Ad}. The noise terms �⃗�  and 𝑣  are used to represent 

the residual difference between the observed data and the solutions to the linear equations; this 

is modeled as Gaussian white noise. 

 

Each DT is represented as a combination of its coefficients A and its subspace C when 

comparing the DT using AR models. In other words, a DT model M is represented using its 

parameters (A, C) [35]. However, our work differs from most other DT analyses that attempt to 

differentiate distinct instances of DTs. Here, we hypothesize that all CM lives within same 

subspace C, shared by all the instances of CM [24]. What differs, we claim, is the movement of 

the cilia within this subspace. This movement is captured solely by the coefficients A; therefore, 

we represent each instance of CM using only the coefficients. 

 

The orientation-invariance property of the elemental components enables our use of PCA to 

define the low-dimensional orthogonal basis C. PCA realigns the axes of the data in the 

directions of maximal variance. Performing PCA on a video of raw pixel intensities would result 

in different principal components depending on the relative orientations of the structures in the 

video. For example, if a video depicting a profile-view of cilia beating from left to right, then 

principal components will be different from those after rotating it 90 degrees. However, since 

rotation and deformation are computed from the magnitudes of optical flow derivatives, the 

relative orientation of structures defined by the pixel intensities does not matter in the 
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computations. This makes rotation and deformation orientation-invariant and allows CM to be 

compared irrespective of relative ciliary orientation across multiple videos. 

 

2.8 Previous approach and few limitations in it 

In [65], the authors built automated image analysis methods to eliminate the manual 

examination of beat patterns. While this research served as a basis for our analysis to use some 

of their techniques, there is a need to quantitatively identify various CM subtypes. Our work 

helps in achieving this goal.  

In the previous approach of [24], Quinn et. al 2015 successfully quantified CM data and were 

able to identify normal and abnormal CM with almost 93% accuracy. But grouping of CM into 

one of the binary types is an oversimplification that ignores the underlying spectrum of CM 

subtypes. 
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CHAPTER 3 

CILIARY MOTION SUBTYPING AND OUR APPROACH 

This chapter justifies the need for CM subtyping, provides the motivation for our work and 

explains the techniques used. 

3.1 Why CM subtyping is needed? 

The previous approach [24] was successfully able to discriminate normal and abnormal patterns, 

ignoring the continuum of ciliary beat patterns. This continuum most likely has biological and 

clinical implications with various disorders and ciliopathies. This makes the identification of CM 

subtypes and their association with these disorders of translational interest. One of the main 

roadblocks in identifying distinct CM subtypes is that no consensus exists as to the exact number 

of subtypes or how to objectively define them. This work focuses on identifying the latent CM 

patterns in the patient that can later help to quantify the CM subtypes computationally. Using the 

computational pipeline outlined here, we conclude that at least 10 CM subtypes exist. We also 

compare the DT representations of CM developed in our analysis with one expert categorization 

of CM into 4 beat pattern types and discuss the results of this comparison.  

 

3.2 Different ciliary subtypes 

There are multiple phenotypes associated with the CM, though an exact number is still a 

scientific research area. But all the clinicians in Children’s hospital of Pittsburgh and Children’s 

National Medical Centre agree upon that there are at least 4 subtypes. Hence here in fig 3 we 
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present the 4 subtypes, hand drawn for easier identification. But this does not mean that there are 

just four CM types that are accepted by all the clinicians. There are several other motion patterns. 

 

Figure 3: Hand drawn diagrams of CM subtypes. Although there are multiple subtypes, these 4 

are the widely-accepted ones. (Taken from 24) 

 

3.3 Our approach 

CM represented in digital videos inhabit a high dimensional space (since all video data is high 

dimensional) although we assumed they exist on a common low-dimensional manifold. The 

space is geodesic and highly nonlinear; thus, linear distance metrics like Euclidean cannot be 

used to compare motion patterns. In addition, we also need metrics that are transformation 

invariant. The following explains the need for transformation invariant metrics and the metrics 

we chose. 
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3.3.1 Transformation invariant metrics  

To quantitatively differentiate the CM between ciliary beat patterns represented as AR 

processes, let us take two instances of CM θ1 = (C, A, Q) and θ2 = (C1, A1, Q1). These parameters 

constitute the principal components C, the state space coefficients A, and the covariance matrix 

Q for the residual noise vector 𝑣 𝑡. Since we assumed that cilia lie in common state space C, we 

consider C = C1 for all C1. We are left with coefficients A and the covariance matrix Q to 

distinguish between CM phenotypes. However, it is not sufficient to check for absolute equality 

of parameters as instances of CM (and any DT represented as an AR process) may be generated 

by an equivalence class of models. This means, for any invertible square matrix M, the model 

(CM−1, MAM−1, MQMT) generates a sequence of frames from the same distribution as (C, A, Q) 

[36]. Thus, any metric for comparing instances of CM as represented using AR models must be 

transformation-invariant. Here, we experimented with four metrics that capture this property.  

 

3.3.2 Time series spectrum 

We measure the divergence between the DT models in terms of the Fourier transform of the 

autocovariance of the time series or its spectral density [63, Ch3].  

 

The spectrum 𝐹(𝑉𝑘) is estimated using the fast Fourier transform (FFT) of the raw time series. 

Let X be the state space projection of the original data of dimensions q*M, q is the number of 

principal components used, and M is the number of features.  

FFT of the series, fk is calculated by first computing the component wise FFT  

𝑓(𝑖, ∶) = 𝑓𝑓𝑡(𝑋(𝑖, ∶)) and then set 𝑓𝑘 = 𝑓(: , 𝑘). 
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The periodogram Gk is computed using 𝐺𝑘 = 𝑓𝑘𝑓𝑘
∗. 

 The spectrum is given by smoothing G with a window of size 2H + 1, yielding  

 𝐹(𝑉𝑘) = ∑ 𝐺𝑘
𝑘+𝐻
𝑖=𝑘−𝐻     (5) 

This is called the time series method.  

 

3.3.3 Distance between DTs 

Now that we calculated the spectrum, we defined the distance between DTs using KL 

divergence, Bhattacharya distance, Cepstral distance, and Martin distance.  

 

3.3.3.1 KL divergence 

To compute the KL divergence of our DT model, suppose we have two videos  (𝐶𝑗, 𝐴𝑗 , 𝑄𝑗)𝑗=1,2, 

the spectral densities 𝐹𝑗(𝑣𝑘) for both the videos are computed using equation 5. From this 

definition, the KL distance from (C1, A1, Q1) to (C2, A2, Q2) is 

𝐷𝐾𝐿(𝐹1, 𝐹2) = ∑ [𝑡𝑟𝑎𝑐𝑒{𝐹1(𝑉𝑘) 𝐹2
−1(𝑉𝑘)} − ln

|𝐹1(𝑉𝑘)|

|𝐹2(𝑉𝑘)|
−𝑁

 

0<𝑣𝑘<
1

2

] (6) 

However, its lack of symmetry presents challenges for defining a cohesive and intuitive space of 

CMs. 
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3.3.3.2 Bhattacharya symmetric divergence 

As KL divergence is non-symmetric, we therefore included the Bhattacharyya symmetric 

divergence which measures the dissimilarity between the distributions of dynamic features. We 

represent this distance DB between (C1, A1, Q1) to (C2, A2, Q2) after computing spectral densities 

F (Vk) from equation (5) using 

𝐷𝐵(𝛼, 𝐹1, 𝐹2) =
1

2
 ∑ [ln

|𝛼𝐹1(𝑉𝑘)+(1−𝛼)𝐹2(𝑉𝑘)|

|𝐹2(𝑉𝑘)|
− 𝛼ln

|𝐹1(𝑉𝑘)|

|𝐹2(𝑉𝑘)|
]

 

0<𝑣𝑘<
1

2

,   (7) 

where 0 < α < 1 is a tuning parameter 

[36] shows that the success rate did not depend sensitively on α near the middle of the interval 

(0,1). Thus, we took α = 0.5. This metric satisfies the triangle inequality and obeys all metric 

axioms.  

3.3.4 Cepstral distance 

The cepstrum of a time series can be derived from the frequency domain representation in the 

same way that the time series comes from the time domain. Intuitively, peaks in the cepstrum 

correspond to “echoes” in the signal. The cepstrum coefficients are powerful features for 

characterizing speech and music signals [34]. 

To compute the Cepstral distance, we applied the discrete Fourier transformation (DFT) to each 

video patch. The cepstrum of a multivariate time series (𝑥𝑡)𝑡=1
𝑇  is the inverse DFT of the 

logarithm of the DFT of (𝑥𝑡): 

    (𝑥�̂�)𝑡=1
𝑇 = 𝐼𝐷𝐹𝑇(ln (𝐷𝐹𝑇((𝑥𝑡)𝑡=1

𝑇 )))  (8)  
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Here the DFT of a sequence of vectors is taken component wise. Thus, the cepstral coefficients of 

a multivariate time series are vectors. The cepstral distance is defined as  

∑ ||𝑥�̂� − 𝑦�̂�|| 
𝑛
𝑡=1      (9) 

 

3.3.5 Martin distance 

Martin distance was used for discriminating between the parameters of LDS. It is defined over 

the subspace angles between two systems. Martin distance over subspace of the system C and 

motion parameter A is defined as  

𝐴𝑇𝑃𝐴 =  −𝐶𝑇𝐶      (10) 

where, for 2 patches vi and vj with q subspace dimensions, and patch size w,  

   𝑃 = [
𝑃11 𝑃12
𝑃21 𝑃22

] ∈ 𝑅2𝑞 𝑋 2𝑞     (11) 

   𝐴 =  [
𝐴𝑣𝑖

0

0 𝐴𝑣𝑗

]  𝜖𝑅2𝑞 𝑋 2𝑞    (12) 

   𝐶 = [𝐶 𝐶]  ∈  𝑅𝑤2 𝑋 2𝑞     (13) 

 

Once we find P by solving the above Lyapunov equations, we get a symmetric matrix of the 

components P and perform the following eigen decomposition. Each eigenvalue λi of this 

matrix is the cosine of the subspace angle θi squared. 

Cos2θk = kth eigenvalue (𝑃11
−1𝑃12𝑃22

−1𝑃21)   (14) 

Now that we have values of this matrix, we can compute Martin distance DM between video 

patches Vi and Vj using 
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   𝑑𝑀(𝑣𝑖, 𝑣𝑗)
2 = 𝑙𝑛∏ 𝑐𝑜𝑠2𝑞

𝑘=1 𝜃𝑘   (15) 

We used martin distance for 3rd order AR processes. The main assumption of martin distance is 

that it depends on the subspace angles. But we used pixel data for every ROI which is a 1-D 

space, which has no subspace for cilia. C is essentially an identity matrix, for which calculating 

subspace angles does not make sense. While we initially tried Martin distance, we did not 

obtain meaningful results; thus, we will not discuss them further. 

 

Once we computed the pairwise kernel using above 3 distance metrics, we get a square matrix 

of dimensions – (number of ROI*top pixel intensities) x (number of ROI * top pixel 

intensities).  

 

3.4 Bag of dynamical systems approach 

This approach models each patient as a collection of LDSs describing the dynamics of 

spatiotemporal video patches. This BOS representation is analogous to the BOF representation of 

document analysis. In this case, we use LDSs as feature descriptors and essentially consider each 

patient to be analogous to a single “document”. This poses several technical challenges to the 

BOF framework. Most notably, LDSs do not live in a Euclidean space, hence novel methods for 

clustering LDSs and for computing code words of LDSs are used. Our framework makes use of 

nonlinear dimensionality reduction and clustering techniques combined with KL divergence, 

Bhattacharya distance, cepstral distance for LDSs for tackling these issues. 

The typical steps followed in the BOF framework are: (1) Features and their corresponding 

descriptors are extracted from all the images in the training set, (2) A codebook is formed using 

clustering methods such as k-means, where the cluster centers represent code words in the 
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codebook, (3) Each image in the training dataset is represented using the codebook, and (4) A 

classifier is chosen to compare a new query image to the training set and thus infer its category. 

We describe the corresponding BOS analogue to the BOF steps. As we use the parameters of a 

LDS as feature descriptors, we now have features in a non-Euclidean space. In the traditional 

BOF framework [25], once we extract feature points and their corresponding descriptors, the 

descriptors are clustered using an algorithm such as k-means to form the codebook. But, in our 

case the descriptors are parameters of a LDS, i.e. pixel data which lie on non-Euclidean space. 

We cannot apply clustering algorithms that assume a Euclidean space. But if we can find a low-

dimensional Euclidean embedding for these points, we can apply clustering techniques. The 

following section explains the process of clustering and the code book formation.  

 

3.5 Codebook formation 

We applied a variety of nonlinear dimensionality reduction techniques using Laplacian Eigen 

Maps (LEM), Multi-Dimensional Scaling (MDS), Isomap, and PCA. These techniques work 

with pairwise distances between points in a high dimensional space. In this paper, we made use 

of the fact that LDS is established with several distances (KL divergence, Bhattacharya distance, 

and cepstral distance) and used the corresponding distance metric to perform dimensionality 

reduction and clustering to form the code book.  

Given the set of features {𝑀𝑖  }𝑖=1
𝑇 , where T represents the total number of features extracted from 

the videos in the training set and we have N such data point, we first form the matrix 

𝐷𝜖𝑅𝑁 𝑋 𝑁 such that 

𝐷𝑘𝑙𝑖𝑗 = 𝑑𝑘𝑙(𝑀𝑖, 𝑀𝑗)     (16) 

   𝐷𝑏𝑐𝑖𝑗 = 𝑑𝑏𝑐(𝑀𝑖,𝑀𝑗)     (17) 
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   𝐷𝑐𝑒𝑝𝑖𝑗 = 𝑑𝑐𝑒𝑝(𝑀𝑖,𝑀𝑗)    (18)  

  

Once pairwise distances are available between the features, nonlinear dimensionality reduction 

techniques are used to obtain a low-dimensional embedding of these points {𝑒𝑖 𝜖 𝑅
𝑑𝑒  }𝑖=1

𝑁  where 

𝑑𝑒is the dimension of embedding. This low dimensional representation helps us to obtain a set of 

Euclidean points, which preserves the relationship in the high-dimensional nonlinear space. Now 

we applied clustering algorithms on {𝑒𝑖}𝑖=1
𝑁  since this low dimensional space is Euclidean.  

 

After applying clustering algorithms, we get k cluster centers {𝑘𝑖}𝑖=1
𝐾 . But, these cluster centers 

do not correspond to any of the original LDSs. Additionally, there is no explicit way to go from 

the lower dimensional embedding to the original space. Hence, to select the code words {𝐹𝑖}𝑖=1
𝐾 , 

we chose the corresponding systems in the high dimensional space whose distance to the cluster 

center in the lower dimensional space is the least  

 𝐹𝑖 = 𝐾𝐿𝑝        

 𝐹𝑖 = 𝐵𝐶𝑝        

 𝐹𝑖 = 𝐶𝑒𝑝𝑝 

where 𝑝 = arg𝑚𝑖𝑛
𝑗

||𝑒𝑗− 𝑘𝑖||
2

 ,  

KL – KL divergence, BC – Bhattacharya distance and Cep- Cepstral distance. 

In this way, we obtain our codebook 𝐶 = {𝐹1, … , 𝐹𝑘}, where Fi = (Mi), where M is the original 

set of features. This essentially means that we mapped k low-dimensional cluster centers to the 

nearest original high-dimensional data points. During the query phase, each detected feature is 

associated with model parameters M. The membership to the code word is given by  

𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑖 𝑑𝐾𝐿(𝑀, 𝐹𝑖)  (19) 
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3.6 Representing patients using codebook 

Now that we have k code words available, we represent each patient as a mixture of these 

codewords, analogous to how documents are represented as a mixture of words in the bag-of-

words model. This can be done using weight vector 

   𝑊 = {𝑤1, 𝑤2, 𝑤3 … .𝑤𝑘} 𝜖 𝑅
𝑘   (20) 

We used couple of approaches to represent this weight vector. 

 

Let us assume that code word k occurs 𝑁𝑘𝑖 times in the i th patient and there are total of Ni code 

words in the ith patient. Term frequency (TF) is computed using  

𝑤𝑖𝑘 =
𝑁𝑘𝑖

𝑁𝑖
      (21) 

Let V be the total number of video sequences and Vi be the total number of patients in which 

code word i occurs. Term frequency inverse document frequency (TF-IDF) is defined as  

   𝑤𝑖𝑘 =
𝑁𝑘𝑖

𝑁𝑖
 ln (

𝑉

𝑉𝑖
)     (22) 

Once the weight vector W is computed, it is normalized by L1 norm to become a histogram. We 

applied L1 norm only for TF, so that highly weighted code words do not completely dominate the 

least weighted code words.  

 

To compare the weight vectors, we used the standard distances between histograms such as χ2 

distance and cosine similarity. 

 

3.6.1 χ2 distance 

To compare the weight vectors between patients, the standard distances between the histograms, 

χ2 distance is used. χ2 distance is defined as  
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𝑑𝜒2(𝑊1,𝑊2) =
1

2
 ∑

|𝑤1𝑖− 𝑤2𝑖|

𝑤1𝑖+𝑤2𝑖

𝐾
𝑖=1     (23) 

We applied χ2 distance for the normalized TF weight vector and applied cosine similarity for TF-

IDF weight vector.  

 

3.6.2 Cosine similarity 

Cosine similarity computes the similarity as the L2- normalized dot product between two weight 

vectors. Cosine similarity between 2 weight vectors 𝑊1 and 𝑊2 is defined as   

𝑑𝑐𝑜𝑠𝑖𝑛𝑒(𝑊1,𝑊2) =
𝑊1𝑊𝑇

2

||𝑊1||||𝑊2||
     (24) 

Since the Euclidean (L2) normalization projects the vectors on to the unit sphere, this is called 

cosine similarity and their dot product is then the cosine angle between the points denoted by the 

vectors. 

 

After computing the kernel matrix using χ2distance and cosine similarity we applied both 

classification and clustering algorithms. 

 

3.7 Classification 

For the given training data set {(𝑊𝑖, 𝑙𝑖)}𝑖=1
𝑉  , where 𝑙𝑖 𝜖 {1, … ,𝑚} denotes class labels of the 

weight vector, our main aim is to find out the class label of a new weight vector Wt. To compare 

the training weight vectors and new unseen query weight vectors, the standard distances between 

the histograms, χ2 distance and cosine similarity are used.  

 

Classification is a supervised machine learning technique mainly useful for separating 

categorical data which forms a model using training examples. When new unseen data is given to 
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the model it tries to predict based on the learning experience and try to classify it into one of the 

labels. This method works only if we train the model using known labels. The main aim of 

classification is to generalize the unobserved data. There are multiple classification algorithms 

available and different algorithms implement different assumptions about the data. In this work, 

we experimented with three classification algorithms to see which works best on our data. Each 

patient is marked on a scale of 1 through 4 by our collaborating experts, where 1- corresponds to 

normal, 2- close to normal, 3- close to abnormal, and 4- abnormal. We trained the model using 

these labels and queried on new patients.  

 

It is important to note that these labels are not an indicator of CM subtype, but rather a 

rudimentary measure of degree of CM abnormality. There is some relationship between the two 

but this relationship is neither necessary nor sufficient to identify CM subtypes. Nevertheless, we 

need some basis to compare our results against. So, we used these labels as one of the criteria. 

The accuracy of prediction does not yield information about CM subtypes, but serves to deepen 

our intuition for the data and evaluate our quantitative CM representations. 

 

We trained each model using stratified k- fold cross-validation, which splits the data into training 

and testing folds while also preserving the percentage of samples of each class that are in each 

fold. We used 3-fold random cross validation and computed the mean accuracy of classification 

in each round. 

 

Our first classifier was a k-nearest neighbors model, or KNN. Using the KNN model to predict 

the category of a query patient, the majority class label of the query patient’s k closest weight 



 

28 

vectors from the training dataset is used to predict its label. k -NN is an instance based learning 

where the function is only approximated locally and all computations are deferred until the 

classification is applied. We used weighted k- NN where the weights assigned to the neighbors 

are proportional to the inverse of the distance from the query point. We used 3 nearest neighbors 

by prioritizing few weights based on the distance between them.  

 

Our second classifier was the Support Vector Machine, or SVM. SVMs perform classification by 

defining a hyperplane that most accurately separates training data into its constituent classes. 

When trained, an SVM builds a maximum margin hyperplane to separate the classes; when an 

unseen example is given it tries to assign this to one of the categories. This means, given the 

training data, the algorithm outputs an optimal hyperplane which can categorize new examples. 

Here we used a multi-class generalization of the core SVM referred to as a Nu-support vector 

classification (NuSVC), which works like SVMs but uses a parameter to control the number of 

support vectors. We used our precomputed distance kernels with the upper bound fraction of 

training errors of 0.2. We trained our data using NuSVC with these parameters and tested on 

unseen patient data.  

 

We also experimented with three ensemble classifiers. The first was Random Forest (RF), that 

operates by constructing multiple decision trees classifiers on various subsamples of the dataset 

and uses averaging to improve the prediction accuracy and to control overfitting of the data. In 

training the model when we split a node in a tree, the split we chose was not the best split among 

all the features but rather the best split among a random subset of features. Because of this 

randomness, the bias of the forest slightly increases (with respect to the bias of a single non-
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random tree) but since we average it the variance also decreases usually more than compensating 

for the increase in bias. Hence, we get an overall better model.  

 

The second ensemble classifier was bagging that fits base classifiers each on random subsets of 

the original dataset and then aggregate their individual predictions (either by voting or by 

averaging) to form a final prediction. Such a meta-estimator can typically be used to reduce the 

variance of a black-box estimator, by introducing randomization into its construction procedure 

and then making an ensemble out of it [69]. 

 

The third and the final ensemble classifier was ada boost to fit a sequence of weak learners on 

repeatedly modified versions of the data. The predictions from all of them are then combined 

through a weighted majority vote (or sum) to produce the final prediction. The data 

modifications consist of applying weights , , ...,  to each of the training samples. 

Initially, those weights are all set to , so that the first step simply trains a weak 

learner on the original data. For each successive iteration, the sample weights are individually 

modified and the learning algorithm is reapplied to the reweighted data. At a given step, those 

training examples that were incorrectly predicted by the boosted model induced at the previous 

step have their weights increased, whereas the weights are decreased for those that were 

predicted correctly. As iterations proceed, examples that are difficult to predict receive ever-

increasing influence. Each subsequent weak learner is thereby forced to concentrate on the 

examples that are missed by the previous ones in the sequence [70]. 
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3.8 Clustering 

Clustering is an example of unsupervised machine learning technique which describes the hidden 

structure from unlabeled data; in this case, our goal was to use clustering to group patients 

together who exhibited similar CM patterns. By applying clustering techniques, we can identify a 

structure to totally unstructured data. In our paper, we applied clustering algorithms on the kernel 

matrix of the weight vectors of the patients. This enables us to identify any hidden pattern in the 

CM of the patients. We applied spectral clustering algorithm to our data. 

 

Spectral clustering relies on the eigen-decomposition of the pairwise similarity matrix of the data 

in order to reduce the dimensionality of the data and generalize anisotropic latent data 

distributions. In other words, it applies clustering to the principal components of the underlying 

connectivity graph of the data. It is very useful when the structure of the individual clusters is not 

Gaussian. Here we applied spectral clustering to our precomputed kernel matrices (kernel 

obtained after computing cosine similarity and χ2 distance).   

   

We also applied t-SNE, an algorithm which is well suited for embedding high dimensional data 

into 2 or 3 dimensions, which can then be useful for visualization on a scatter plot. T -SNE 

converts the similarities between data points to joint probabilities and tries to minimize the KL 

divergence between the joint probabilities of the low-dimensional embedding and the high-

dimensional data. It has a non-convex cost function i.e. with different initializations we can get 

different results [64].  

t- SNE focuses on the local structure of the data and tends to extract clustered local groups of 

samples. This ability to group samples based on the local structure might be beneficial to visually 
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disentangle a dataset that comprises several manifolds at once. Optimizing t-SNE depends on 

various factors like perplexity, learning rate, maximum number of iterations [66]. Perplexity is 

twice the Shannon entropy of the conditional probability distribution. Larger perplexities lead to 

more nearest neighbors and less sensitive to small structure. Larger datasets tend to require larger 

perplexities. The maximum number of iterations is usually high enough and does not need any 

tuning. The early exaggeration of the joint probabilities in the original space can be artificially 

increased by multiplying with a given factor. Larger factors result in larger gaps between natural 

clusters in the data. If the factor is too high, the KL divergence could increase during this phase. 

Usually it does not have to be tuned. A critical parameter is the learning rate. If it is too low 

gradient descent will get stuck in a bad local minimum. If it is too high the KL divergence will 

increase during optimization.  

In our analysis, we reduced the number of dimensions to two, perplexity to thirty, early 

exaggeration to four, learning rate as thousand with thousand iterations, and precomputed 

distance metric. We obtained an embedding matrix and visualized it using a scatter plot of the 

embedding, where we color coded each patient based on the spectral clustering labels.  
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CHAPTER 4 

ARCHITECTURE 

This chapter explains the data used in our work and the architecture of our pipeline. 

 

4.1 Data Used 

We performed our analysis on the data provided by Children’s Hospital of Pittsburg. All study 

protocols were approved by the University of Pittsburgh Institutional review board. This data 

cohort consisted of nasal brush biopsies of the patients suffering from PCD, few suffering from 

TGA, and some normal patients (people who do not have abnormal CM). Nasal epithelial tissue 

was collected by curettage for high speed digital video microscopy (using 200 Hz) using well 

established methods. 

                                                                                                                                                                                                                                                                                                              

Video samples were examined by the clinicians at University of Pittsburgh and given a ground 

truth CM identification from 1(normal), 2(Probably normal), 3(probably abnormal) and 

4(abnormal) that reflects the degree of normal and abnormal CM. These numbers are assigned by 

majority rule meaning that a group of clinicians observed these videos and marked them on a 

scale of 1 through 4. If all the clinicians agree that the patient is normal then patient is marked 1 

and if all the clinicians agree that a patient is abnormal then the patient is marked as 4. If there is 

a disagreement among the clinicians about a patient, then they are marked as either 2 or 3.  

In this paper, we experimented with biopsies recorded with high speed digital videos from 18 

patients, with 46 ROI out of which 10 people are normal, 2 closer to normal, 2 of them are closer 
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to abnormal and 4 patients are abnormal. Table 1 represents the distribution of ROIs for each 

patient based on their marked labels. 

 

Label marked for a patient Number of ROIs selected 

1 12 

2 10 

3 10 

4 14 

Total ROIs 46 

 

Table 1: Represents the number of ROIs selected for patients labeled by the clinicians.  

 

The ROIs were manually drawn by the clinicians where cilia exist. There were typically multiple 

ROIs per video. This helped in removing some of the noise, background, and unnecessary data 

for further computations. Once we extracted the ROI, we performed more preprocessing steps as 

explained in next section.  

  

4.2 Architecture 

ROIs from high speed digital video are drawn and the following steps are followed  

1. Optical flow is computed in user specified ROI for the digital videos. This helps in 

indicating the direction and magnitude of the apparent motion at each pixel position in 

the ROI. The derivative of the optical flow- rotation component is used in our analysis 

instead of gray scale pixel intensities.  
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2. From the rotation data, we located a pixel in the middle of each ROI with dominant 

frequency and expanded a w x w (15 x 15) box called a “patch.” We truncated each frame 

of the video at 250 frames and flattened the 15 x 15 patch in each frame to a single 225 

length vector. We repeated this process for all 250 frames generating a data structure of 

size 225 X 250. We repeated this process for all ROIs, appending each patch to the end of 

previous one. Hence, for our data set with 46 ROIs, we ended with a data structure of size 

225 x (250*46) i.e. a matrix of dimensions 225 x 11500. 

3. From the 225 pixels in each patch, we picked top 100 pixels per frame with high standard 

deviation across frames assuming that the pixels with high standard deviation most likely 

represented cilia that was moving. We also cut down the number of frames to 200. From 

this, we reduced our data matrix to 100 x 200 dimensions per each ROI. We then stacked 

each such pixels across all the patients for all ROIs. For 46 ROIs, we ended up with a 

matrix of dimensions 4600 x 200. 

4. We computed the pairwise kernel matrix for each of the distance metrics. We calculated 

distances between every pair of 4600 x 200 with 4600 x 200, which yielded a kernel 

matrix of dimensions 4600 x 4600. 

5. We applied bag of dynamical system approach on this matrix, computing AR parameters 

for each pixel. We converted this high dimensional data to a low dimensional Euclidean 

space using PCA, LEM, MDS, and isomap encompassing a manifold of 4600 x 2. This 

low dimensional embedding gives us a set of Euclidean points which preserves the 

relationship in the high dimensional nonlinear space. 

6. K-means clustering was applied and k clusteroids were obtained for the embedding. We 

used k = 1000, hence we got 1000 cluster centers corresponding to each embedding.  
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7. We found the corresponding systems in high dimensional space whose distance to cluster 

center in low dimensional space was the smallest. These indices with the corresponding 

points were matched against original data (4600 x 200). These were our code words, we 

have 1000 such code words (each vector of length 200). 

8. Step 7 converts the unknown low dimensional embedded cluster centers into known 

corresponding clusteroids in high dimensional space. We then calculated the distance 

from every code word (1000 x 200) to the original data (top pixel data of dimensions 

4600* 200) and considered the code word closest to each pixel as the membership to the 

code word. Here we used the corresponding distance metric to calculate the smallest 

distance. Hence, we now obtained a data structure with list of patient ids and its closest 

code word with 4600 such items in the list. 

9. Each patient is represented using a code book. This was done using a weight vector of k 

(1000) code words 𝑊 = {𝑤1, 𝑤2, 𝑤3 … .𝑤𝑘} 𝜖 𝑅
𝑘. We represented it using TF and TF- 

IDF. TF is computed using  𝑤𝑖𝑘 =
𝑁𝑘𝑖

𝑁𝑖
 , where  𝑁𝑘𝑖 – Number of times code word k 

occurs in the i th patient and Ni – Total number of code words in the ith patient. We have 

1000 such weight vectors for all 18 patients. 

10. TF-IDF is computed using 𝑤𝑖𝑘 =
𝑁𝑘𝑖

𝑁𝑖
 ln (

𝑉

𝑉𝑖
) , where V is the total number of video 

sequences and Vi is the total number of patients in which code word i occurs. We have 

1000 such TF- IDF weight vectors per each patient.  

11. We normalized the TF weight vector using L1 norm to become a histogram. We applied 

L1 norm only for TF so that highly weighted code words do not completely dominate the 

least weighted code words.  
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12. Then we computed standard distances between histograms on both TF and TFIDF weight 

vectors using χ2 distance and cosine similarity on 18 patients. We now get a kernel matrix 

of size 18 x 18.  

13. We applied spectral clustering to represent the patients with similar CM pattern into same 

cluster. We visualized the results using t-SNE plot.  

14. We ran our classifiers on the precomputed kernel matrix from step 12: SVC, KNN and 

random forest. The true labels based on the CM condition of the patient were marked by 

the clinicians. We trained and tested classifier using 3-fold cross validation.  

 

Figure 4 explains the step by step process performed in our paper. 

Figure 4: Architecture of our pipeline. (A) Nasal brush biopsy of the patient developed in a petri 
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dish. (B) CM videos observed in a high speed digital microscope from the patient. (C) ROI 

drawn on each video, (D) Optical flow computed to observe the direction and magnitude of CM. 

(E) 3 elemental components of optical flow out of which we used rotation data for further 

analysis. (F) Picked top 100 pixels with high standard deviation from each ROI across 200 

frames video. (G) Computed pairwise kernel matrix between all the ROIs for all patients. (H) 

Pairwise kernel matrix in non-Euclidean distance is converted to low dimensional embedding by 

applying nonlinear dimensionality reduction techniques. (I) Applied k means clustering 

algorithm on the embedded matrix to find k cluster centers. (J) Computed k code words from 

cluster centers corresponding to original high dimensional space. This is the codebook. (K) 

Membership of original ROIs with respect to each code word is computed. (L) Represented 

membership as weight vectors using TF and TFIDF format. (M) Computed the distances between 

weight vectors using χ2 and Cosine similarity. (N) Applied classification algorithms on the kernel 

matrix to test the accuracy of prediction. (O)Applied clustering algorithms to find the groups of 

patients closer to each other.  

 

4.3 Software  

In our work, we used Python 2.7 to implement the analysis pipeline. We used joblib for 

parallelization, and several of the scientific computing packages (NumPy, SciPy, scikit-learn, 

matplotlib) for reading, analyzing, and serializing the data. We also used the plotting package 

Matplotlib.  

 

Since we used large data structures, computing time and code efficiency played a major role in 

developing the computational pipeline. Hence, we used an on-premise BlueData cluster with 
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large quantities of compute resources to run our code and gather our results. We used cProfile 

profiling tool in python to perform time analysis and make it more efficient. 
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CHAPTER 5 

RESULTS AND ANALYSIS 

This section explains results obtained in our analysis and some interpretations based on the 

results.  

 

5.1 Identifying Pixels 

As explained in chapter 4.1, we used the elemental components of the optical flow (i.e. rotation 

quantity) instead of grayscale pixel intensities for our analysis. From each ROI, we chose 100 

pixels with the largest variation in rotation magnitudes.  

 

Figure 5 illustrates the spatial representation of the pixels we chose using this selection strategy. 

One frame from each ROI is shown; the x axis is the width of each frame and y axis represents 

the height of that frame. The pixels chosen likely include some extreme outliers that generate 

noise; few pixels we selected overlapped with regions containing cilia, and some of them 

consisted of noise: background and cell bodies. We believe that the background and cell body 

have high magnitude variations because of translational motion of the sample and the 

background particulate obstructing the proper view of cilia. Another reason is because of cell 

body that moves due to the stroke that is caused by CM which is misinterpreted as cilia. 

 



 

40 

 

Figure 5: Spatial representation of pixels chosen for a patient. A) The red small patch illustrates 

the pixels chosen at the edge of cilia and big red patch indicates the cilia. B) For this patient, 

few pixels chosen are cilia and the big patch is back ground of ROI. C) Big patch indicates the 

pixels proximal to the cell wall of cilia and other pixels are chosen from the background of ROI.  

 

The temporal representation of these pixels chosen is represented in the form of a kymograph. A 

kymograph explains whether the motion of pixels across the frames is continues over time. 

Figure 6 shows the kymograph for 2 patients. It illustrates the time series of the pixels along x 

axis, where the frames are stacked on top of each other (on y axis). We can see a continuous flow 

of motion from one pixel to another, while pixels drawn from separate regions are clearly 

stratified. 
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Figure 6: Kymograph representation of the pixels chosen from 2 patients. 

 

5.2 Kernel representation of the patients 

We plotted the pairwise distance between each pixel for a patient. After choosing the high 

magnitude variation pixels, we represented the kernel matrix for each patient using all three-

distance metrics.  Figures 7 - 9 represents the intra-patient pixel distance for one of the patients 

using these three-distance metrics. The x axis and the y axis represent the 100 pixels chosen for 

an ROI for a patient with the ID ‘1026’. We can see three distinct blobs, labeled A, B, and C in 

the kernel matrix. These labeled blobs correspond to the chosen regions of pixels as represented 

in Figure 7. Note how these “blobs” of pixels create a block wise structure in the kernel matrix, 

where each pixel within a blob is relatively “closer” to the other pixels in the same blob, and 

relatively “farther” away from the pixels in the other blobs. These 3 blobs can be thought of as 3 
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cluster patterns that this patient exhibits. We observed similar pattern for this patient using all 3-

distance metrics revealing some structure to CM that this patient exhibits. These blobs also 

correlate with the pixels chosen shown in Figure 10. The red mark in Figure 10 indicates the 

pixels chosen that might correspond to A, B, and C blobs in figure 7, 8, and 9. 

 

Figure 7: Represents the intra patient pair wise pixel distance computed using Bhattacharya 

distance for patient ‘1026’. Right side bar represents the color coding based on distance 

between each pair. 0 distance represents the distance with the pair itself and is white in color. 

Darker color represents that the distance between the pair is higher. 
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Figure 8: Represents the intra patient pair wise pixel distance computed using cepstral distance 

for patient ‘1026’. A, B, C reveals the CM structure this patient exhibits.  
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Figure 9: Represents the intra patient pair wise pixel distance computed using KL divergence for 

patient ‘1026’.  

 

Figure 10 shows the spatial representation of the pixels chosen for patient ‘1026’. It shows that 

most of pixels chosen are cilia and few pixels are chosen from the background.  
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Figure 10: Spatial representation of pixels chosen for patient ‘1026’.  

Consider another patient with ID ‘7127’. This patient has four ROIs, and the spatial 

representation for the pixels chosen is shown in Figure 11. It indicates that most of the pixels 

chosen are from the background of the video and only a few of them are from cilia. The pairwise 

distance between the pixels chosen for the four ROIs is computed using Bhattacharya distance, 

Cepstral distance and KL divergence (Figures 12-14). The kernel matrix shows a pattern of 

seven distinct groups using all three distances. Although Figure 11 shows that background pixels 

are chosen, there is still a common pattern that these distance metrics reveal.  
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Figure 11: Spatial representation of the pixels picked for patient ‘7127’. A, B, C, D are 4 ROIs 

chosen for this patient and red color represents the pixels chosen. 
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Figure 12: Pairwise distances computed between pixels using Bhattacharya distance for 

patient ‘7127’ 
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Figure 13: Pairwise distances computed between pixels using cepstral distance for 

patient ‘7127’ 
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Figure 14: Pairwise distances computed between pixels using KL divergence for patient 

‘7127’ 

 

5.3 Clustering Results 

Table 2 represents the different combinations of the results obtained using three distance metrics, 

dimensionality reduction techniques, and patient weight representations. We represented patient 

weight vectors using both TF and TFIDF. But here we provide the cluster representation for only 

TF weight vectors for all the distance metrics.  
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Distance Metric Embedding Patient weight 

representation 

method 

Figure number 

Bhattacharya distance Isomap TF Figure 15 

LEM TF Figure 16 

MDS TF Figure 17 

PCA TF Figure 18 

KL divergence Isomap TF Figure 19 

LEM TF Figure 20 

MDS TF Figure 21 

PCA TF Figure 22 

Cepstral distance Isomap TF Figure 23 

LEM TF Figure 24 

MDS TF Figure 25 

PCA TF Figure 26 

Table 2: Represents the cluster figure numbers formed using different combinations.  

 

Figures from 15 – 18 are the plots of the clusters for Bhattacharya distance metric. The numbers 

in the cluster represents patient names. The color-coded dots represent the 4 clusters formed after 

applying spectral clustering. Patients belonging to same cluster are coded with same color. Note 

that these figures are plotted using the t-SNE after reducing the dimensions of the kernel matrix 

to 2 and plotted using scatter plot.  
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Figure 15: Cluster results formed using Bhattacharya distance and isomap embedding 

represented using TF weight vector. 

 

Figure 16: Cluster results formed using Bhattacharya distance and LEM embedding represented 

using TF weight vector. 
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Figure 17: Cluster results formed using Bhattacharya distance for pairwise kernel and MDS 

embedding represented using TF weight vector. 

 

Figure 18: Cluster results formed using Bhattacharya distance and PCA embedding represented 

using TF weight vector. 
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Figure 19: Cluster results formed using KL divergence and Isomap embedding represented using 

TF weight vector. 

 

Figure 20: Cluster results formed using KL divergence and LEM embedding represented using 

TF weight vector. 
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Figure 21: Cluster results formed using KL divergence and MDS embedding represented using 

TF weight vector. 

 

Figure 22: Cluster results formed using KL divergence and PCA embedding represented using 

TF weight vector. 
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Figure 23: Cluster results formed using Cepstral distance and Isomap embedding represented 

using TF weight vector. 

 

Figure 24: Cluster results formed using Cepstral distance and LEM embedding represented 

using TF weight vector. 
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Figure 25: Cluster results formed using Cepstral distance and MDS embedding represented 

using TF weight vector. 

 

Figure 26: Cluster results formed using Cepstral distance and PCA embedding represented 

using TF weight vector. 



 

57 

 

Figure 27: Distribution of codewords between patients 7096 and 7127. X axis indicates 1000 

code words and y axis represents the number of occurrences of each codeword for a patient. 

Yellow line indicates the codeword distribution for patient 7096 and cyan represents the 

codeword distribution for patient 7127. Red indicates the codewords common for both the 

patients. 
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Figure 28: Distribution of codewords between patients7096 and 1035. X axis indicates 1000 

code words and y axis represents the number of occurrences of each codeword for a patient. 

Yellow line indicates the codeword distribution for patient 7096 and cyan represents the 

codeword distribution for patient 1035. Red indicates the codewords common for both the 

patients. 

 

Clustering results analysis 

From the above clustering results, we make the following observations. 

5.3.1 Observations using Bhattacharya and KL divergence kernel  
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Clustering results obtained for both Bhattacharya and KL divergence are similar for many 

patients. We observed that some patients are always clustered together and some clustered 

differently in both distance metrics.  

The formula for computing KL divergence using equation 6 can be re written as 

𝐷𝐾𝐿(𝐹1, 𝐹2) = ∑ [𝑡𝑟𝑎𝑐𝑒 {𝐹1(𝑉𝑘)
1

|𝐹2(𝑉𝑘)|
𝑎𝑑𝑗𝑢𝑐𝑡(𝐹2

 
(𝑉𝑘)} − ln

|𝐹1(𝑉𝑘)|

|𝐹2(𝑉𝑘)|
−𝑁

 

0<𝑣𝑘<
1

2

] (25) 

Comparing this to computing Bhattacharya distance in equation 7 and replacing α with 0.5 gives  

𝐷𝐵(𝛼, 𝐹1, 𝐹2) =
1

2
 ∑ [ln

1

2

|𝐹1(𝑉𝑘)+𝐹2(𝑉𝑘)|

|𝐹2(𝑉𝑘)|
−

1

2
ln

|𝐹1(𝑉𝑘)|

|𝐹2(𝑉𝑘)|
]

 

0<𝑣𝑘<
1

2

   (26) 

Comparing equations 25 and 26, they both differ in  

𝐷𝐾𝐿(𝐹1, 𝐹2) = ∑ [𝑡𝑟𝑎𝑐𝑒 {𝐹1(𝑉𝑘)
1

|𝐹2(𝑉𝑘)|
𝑎𝑑𝑗𝑢𝑐𝑡(𝐹2

 
(𝑉𝑘)} − constant

 

0<𝑣𝑘<
1

2

]  

𝐷𝐵(𝛼, 𝐹1, 𝐹2) =
1

2
 ∑ [ln

1

2

|𝐹1(𝑉𝑘)+𝐹2(𝑉𝑘)|

|𝐹2(𝑉𝑘)|
−  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡]

 

0<𝑣𝑘<
1

2

  

Above equations differ only in first part of computation. F(v) for both the distance metrics is 

computed using time series method in equation 5.  Hence, this might be the reason that patient 

cluster results produced by both these distance metrics are similar.  

1. Patients 7110, 7157, 7160, 7172, and 7004 are mostly clustered together for both the 

distance metrics. The spatial representation of the pixels chosen for all these patients 

contains both cilia and background of cilia.  The clinicians labeled patients 7110 and 

7172 as two and patients 7157, 7160, and 7004 are marked as four. Since noise is chosen 

in addition to cilia, we cannot predict with confidence that these patients exhibit similar 

CM patterns.  

2. Patients 7127 and 7096 are grouped together in most cases for both distance metrics. 

Most of the pixels chosen for patient 7096 are cilia and very few pixels are from the 
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background. For patient 7127, pixels are chosen from both cilia and background. Both 

these patients are marked three by the clinicians. We can speculate that the CM patterns 

for both these patients are probably similar since most of the pixels analyzed are of cilia. 

We chose six ROIs for patient 7096 and four ROIs for patient 7127. There are at least 

seventy code words that are expressed at a similar level for both these patients. Using 

PCA embedding, nine code words commonly appeared twice in both the patients and five 

code words commonly appeared thrice. In case of LEM, thirteen common code words 

appeared twice in both the patients and two code words commonly appeared thrice. 

Figure 27 shows the code word distribution common for both the patients.  

3. Patients 7127 and 1035 are always clustered in different groups. The data analyzed for 

patient 1035 contains cilia whereas the pixels chosen for patient 7127 consists of both 

cilia and background. Patient 1035 is marked as one by the clinicians and patient 7217 is 

marked as three. We have four ROIs for patient 7127 and one ROI for patient 1035. Code 

word distribution of these patients show that there are maximum twenty-seven code 

words that are expressed at the same level and all these code words are expressed just 

once for both the patients. From the above observations, we can probably believe that 

these patients might have different CM patterns. But, we cannot arrive at a conclusion 

since the data chosen for patient 7127 contains background along with cilia.   

4. Patients 7096 and 1035 are grouped in different clusters. The data analyzed for patient 

1035 contains only cilia and for patient 7096 contains mostly cilia and very few pixels 

from the background. Patient 7096 is marked as three and patient 1035 is marked as one 

by the clinicians. We have six ROIs for patient 7096 and one ROI for patient 1035. The 

code words commonly expressed for these patients using MDS embedding are twenty-
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three and for PCA are thirty-four. Twenty-one code words out of twenty- three and thirty- 

two out of thirty-four code words occurred once. Two code words occurred twice. Based 

on the above analysis, we can speculate that these patients might exhibit different CM 

patterns, hence clustered differently by two distance metrics. Figure 28 represents the 

common code words expressed between patients 7096 and 1035. Yellow lines, which 

represents the codeword distribution for patient 7096 are higher compared to the cyan 

lines because the number of ROIs for patient 7096 are more compared to patient 1035. 

5. When Bhattacharya distance is used for computing the pairwise kernel, patients 1013 and 

7069 are clustered together in most cases. The pixels chosen for patient 1013 contains 

mostly background and cell body of the cilia, whereas for patient 7069 mostly 

background and small portion of cilia is chosen for our analysis. Patient 1013 is marked 

as one by the clinicians and patient 7069 is marked as four. We cannot conclude anything 

based on the results since the data we analyzed is noisy.  

6. Using KL divergence for computing kernel, patients 1025 and 1026 are clustered 

together. The data chosen for both these patients contains cilia. Both these patients are 

marked as one by the clinicians. We have one ROI for each patient. There are eleven 

common code words for both these patients using MDS embedding. Since the pixels 

chosen do not contain noise, we can speculate that these two patients might exhibit 

similar CM pattern.  

7. Patients 1027 and 1013 are also clustered together using KL divergence. The data 

analyzed for patient 1027 contains mostly cilia and very few pixels from the background, 

whereas pixels chosen for patient 1013 contain mostly noise. Both these patients are 
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labeled as one by the clinicians. Due to noise, we cannot conclude that these patients 

have similar CM patterns.  

 

5.3.2 Observations using cepstral distance 

We computed the cepstrum of the time series using inverse DFT of logarithm of DFT of each 

component rather than using the time series method. Hence this metric produced different 

clustering results compared to the above time series distance metrics.    

1. Patients 1032, 1013, and 1035 are clustered together. The data chosen for patient 1013 

and 1032 contains mostly noise and only few cilia, whereas the pixels chosen for patient 

1035 contains only cilia.  All these patients are marked as one (normal) by the clinicians. 

Since the data, we analyzed is noisy, we cannot conclude that these two patients exhibit 

similar CM pattern.  

2. Patients 7110 and 7127 are clustered together in most cases. Most of the pixels chosen for 

both these patients are background while few of them are cilia. Patient 7110 is marked as 

two and patient 7127 is marked as three by the clinicians. Since the data, we chose mostly 

consists of noise, we cannot conclude if these patients have similar CM pattern. 

3. Patients 7127 and 1035 are always clustered in different groups. The pixels chosen for 

patient 7127 are mostly background and few pixels are cilia, whereas the pixels picked 

for patient 1035 are cilia. Patient 7127 is labeled as three and patient 1035 is labeled as 

one by the clinicians. Since the data, we analyzed contains noise along with cilia, we 

cannot conclude if these patients have different CM.  
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5.4 Classification results 

After computing bag of dynamical systems approach on the cilia, we also applied classification 

techniques. We used stratified 10- fold cross validation technique and reported the averaged 

accuracy across these cross validation runs. 

The ground truth labels marked by the clinicians are just a measure of the degree of abnormality. 

Hence, the accuracy of prediction does not yield information about CM subtypes, but helps to 

deepen our intuition of the data and evaluate our quantitative CM representations. In other 

words, a patient marked three can exhibit different CM patterns that can be stiff, wavy or 

controlled. Hence, we cannot decide the CM subtypes based on these labels.  

 

In SVM classifier, we used a precomputed kernel matrix obtained from χ2 distance and cosine 

similarity. It produced results with accuracy between 63% to 70 % using all three-distance 

metrics. The standard deviation for SVM classifier is relatively lower compared to random forest 

and k-NN. SVM tries to find the best possible hyperplane for the patterns, which are not linearly 

separable by transformations of original data, to map into new space. It looks at the global 

picture to identify the hyperplane. Hence overall, we could classify with decent accuracy using 

SVM. 

Bagging classifier too has less standard deviation, compared to k-NN, random forest and ada 

boost classifiers. The samples are drawn at random with replacement, so the accuracy across 

different embedding techniques varied due to randomization. The standard deviation of ada boost 

classifier is relatively higher compared to other classification techniques. We used decision tree 

as the base estimator. It tries to adjust weights based on each iteration, due to this adaptive model 

ada boost performed better compared to bagging in some cases. 
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We can see a lot of variation in accuracy results in case of k-NN. In some cases, it was only able 

to predict with an accuracy of 18 % where as in other cases, it was able to predict with 68% 

accuracy. This is because the standard deviation of k -NN is very high. In other words, the data 

points are distributed unevenly around the mean and because of outliers accuracy fluctuated a 

lot. K-NN depends on multiple factors like the type of embedding used, initialization of data 

points and value of k.  

Random forest operates on multiple subsamples of the data and averages the results. Hence, the 

variance is taken care of to some extent if not completely eliminated. We see that in few cases it 

performed very well with accuracy of 81% but in some cases, it could only predict with 55% 

accuracy. This is due to the presence of variation in the data points.  

Tables 3-5 shows the classification results using multiple embedding techniques across three 

distance metrics.  

 

 SVM Random Forest KNN Bagging Ada boost 

MDS TF 66.6 61.9 63.3 60 67.5 

MDS TFIDF 63.3 73.3 48.3 67.5 63.3 

Isomap TF 63.3 73.5 58.3 71.5 61.2 

Isomap TFIDF 60 65 35 66.6 63.8 

PCA TF 66.6 66.6 65 70 63.3 
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PCA TFIDF 60 55 35 61.2 57.6 

LEM TF 63.3 68.3 68.3 72.2 66.6 

LEM TFIDF 70.8 78.3 58.3 79.1 70.8 

Table 3: Classification results obtained by computing kernel matrix using Bhattacharya distance 

metric 

 

 SVM Random Forest KNN Bagging Ada boost 

MDS TF 63.3 68.3 58.3 65 54.1 

MDS TFIDF 70 73.3 21.6 56.6 65 

Isomap TF 66.6 75 58.3 58.3 70.8 

Isomap TFIDF 66.6 66.6 66.7 66.6 66.6 

PCA TF 70.8 65.8 55.8 67.9 72.6 

PCA TFIDF 63.3 66.6 18.3 70.8 56.9 

LEM TF 66.6 80 60 66 66 

LEM TFIDF 70.8 81.6 47.5 65 65 

Table 4: Classification results obtained by computing kernel matrix using KL divergence.  
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 SVM Random Forest KNN Bagging Ada boost 

MDS TF 70.8 60.8 47.5 55.7 49.3 

MDS TFIDF 66.6 61.6 38.3 56.6 56.6 

Isomap TF 66.6 56.6 60 55.7 42.5 

Isomap TFIDF 63.3 53.3 48.3 59.7 45.8 

PCA TF 66.6 66.6 56.6 50 50 

PCA TFIDF 66.6 66.6 65 56.6 56.6 

LEM TF 70.8 65.8 55.8 63.8 63.8 

LEM TFIDF 63.3 58.3 58.3 56.6 30 

Table 5: Classification results obtained by computing kernel matrix using cepstral distance. 

 

From the above clustering and classification result analysis, we found that the analyzed data 

contains both noise and cilia. Hence, we cannot conclude similarity and dissimilarity between 

patients based on these results. To eliminate this problem, we manually removed the ROIs where 

noise is chosen. We are then left with 15 patients with 25 ROIs. We removed two patients that 

are labeled one and one patient that is labeled four. These 25 ROIs contain pixels with only cilia. 

We re-applied our entire pipeline on this refined ROI. Since the number of ROIs we 

experimented with after refining the data reduced, we used 500 code words instead of 1000. The 
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following section analyzes the results produced on this data. We observed that one of the ROIs 

for a patient in KL divergence skewed the distance to very high range while computing the 

kernel matrix. Hence, we removed that patient for KL divergence. The results shown here are for 

14 patients using KL divergence and 15 patients in case of Bhattacharya and cepstral distance. 

The patient removed was marked as 4 by the clinicians.  

 

5.5 Result analysis on refined ROI 

5.5.1 Clustering results 

The following are the conclusions arrived using Bhattacharya distance metrics and KL 

divergence to compute the kernel matrix.  

The codword distribution across patients is very uneven on the refined ROI. For example, patient 

‘1035’ has few code words that appeared multiple times, but few codewords (almost 150 

codewords) did not appear at all. We observed similar case with many patients. Because of this 

skewed distribution, we observed that there are no common codewords that appeared between 

two patients that are clustered together or clustered differently. The PCA variance of ROI data 

represented by the code word distribution tailed off linearly. It reveals that these data points are 

independent of each other. This is because the number of code words we chose (500) might be 

too many for 25 ROIs. Due to this reason, the distribution of code words is highly skewed. 

1. Patients 1027 and 1023 are clustered together when computing kernel matrix using both 

KL divergence and Bhattacharya distance. For both these patients, cilia pixels are chosen 

for the analysis. Both are labeled as one by the clinicians. We can speculate that the CM 

patterns for both these patients might be similar and hence clustered together by both 

metrics.  
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2. Patients 7110 and 7096 are always grouped in different clusters using both KL and 

Bhattacharya distance. The pixels chosen from both these patients are mostly cilia and 

few from background. Patient 7110 is labeled two and patient 7096 is labeled as three by 

the clinicians. From above observations, we can probably say that these patients exhibit 

different CM patterns, hence grouped differently by both metrics.  

3. Patients 7096 and 1035 are clustered in different groups in all cases when kernel matrix is 

computed using KL and Bhattacharya distance. The pixels chosen for patient 7096 

contain mostly cilia along with few pixels from the background. Whereas pixels chosen 

for patient 1035 contains only cilia. Patient 1035 is marked as one and patient 7096 is 

marked as three by the clinicians. We can speculate that these two patients exhibit 

different CM patterns, hence clustered differently. 

4. Patients 1013 and 1031 are clustered into the same group in most cases when 

Bhattacharya distance is used to compute the kernel. The ROIs for patient 1013 contain 

mostly cilia and few pixels from the cell body. Whereas the ROIs chosen for patient 1031 

are mostly cilia and very few of them are from background of the cilia. Both of these 

patients are labeled as one by the clinicians. Since the data, we analyzed contains cell 

body and background we cannot conclude that these patients exhibit similar CM patterns. 

5. Patients 7110 and 1035 are clustered together in most cases when Bhattacharya distance 

is used to compute the kernel. Pixels chosen for patient 1035 contain cilia. But, pixels 

chosen for patient 7110 contain both cilia and background. Patient 7110 is labeled as two 

and patient 1035 is labeled as one by the clinicians. We cannot speculate if these patients 

exhibit similar CM patterns as the pixels used in our analysis include few background 

pixels.  
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6.  Patients 7110 and 7157 are clustered together using KL divergence kernel. Pixels chosen 

for patient 7110 contain both cilia and background, whereas pixels chosen for patient 

7157 contain cilia. Patient 7110 is labeled as two and patient 7157 is labeled as four by 

the clinicians. Some of the CM patterns for these patients may or may not be similar, 

since the data analyzed on patient 7110 contains noise.  

7. Patients 1023 and 1026 are clustered together for KL Divergence kernel. Cilia pixels are 

chosen for both these patients. Both these patients are labeled as one by the clinicians. 

We can speculate that both these patients might exhibit similar CM patterns and hence 

clustered together. 

8. Patients 7127 and 7096 are clustered differently in most cases when the kernel matrix is 

computed using KL divergence. The ROIs chosen for patient 7127 is cilia, but the data 

chosen for patient 7096 contains both cilia and background pixels. Both patients are 

labeled as three by the clinicians. We can speculate that these 2 patients might exhibit 

different CM patterns.  

9. Patients 1027 and 1013 are grouped in different clusters using KL divergence. Pixels 

chosen for both these patients are cilia. Both these patients are marked as normal (one) by 

the clinicians. Since we analyzed only cilia data we can probably say that CM patterns 

these patients exhibit might be different. Hence clustered in different groups.  

 

The following is the result analysis when the kernel matrix is computed using cepstral distance. 

1. Patients 1013 and 7127 are clustered in same group in most of the cases. The pixels 

chosen for both these patients are cilia. Patient 1013 is marked as one and patient 7127 is 
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marked as three by the clinicians. There might be portion of cilia for patient 7127 that has 

similar motion pattern as patient 1013 which is why our pipeline grouped them together.  

2. Patients 1023 and 1035 are clustered together in most cases. Pixels chosen for both these 

patients contains only cilia. Both these patients are marked as one by the clinicians. We 

can speculate that these patients exhibit similar CM. Hence our pipeline grouped them 

together. 

3. Patients 1027 and 7110 are grouped together in most of the results. Pixels chosen for both 

these patients consists of mostly cilia along with few pixels from the background. Patient 

7110 is marked as two and patient 1027 is marked as one by the clinicians. Since the data 

we analyzed contains noise, we cannot conclude that these patients have similar CM 

patterns.  

4. Patients 1035 and 7096 are clustered in different groups. Pixels chosen for patient 1035 

contain of only cilia and pixels chosen for patient 7096 contain mostly cilia along with 

background. Patient 1035 is labeled as one and patient 7096 is labeled as three by the 

clinicians. We cannot speculate if these patients exhibit different CM, since the data we 

analyzed contains background.   

5. Cluster results show that patients 7127 and 1035 are grouped in different clusters in most 

cases. Pixels chosen for both these patients contain cilia. Patient 7127 is marked as three 

and patient 1035 are marked as one by the clinicians. Based on our observations we can 

speculate that these two patients have different CM patterns. 

 

A patient marked as three can exhibit multiple CM patterns that are a mixture of normal CM, 

wavy motion, and incomplete motion. Hence, a patient can exhibit multiple combination of 
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motion patterns that can be clustered together with patients that are labeled differently. In a 

similar way, a patient can be grouped in a different cluster although labeled with same number 

by the clinicians.  

 

From the above clustering result analysis, we found that each distance metric is picking 

something different. There are no patients that are always clustered together or clustered 

differently across all three-distance metrics.   

 

5.5.2 Classification Results 

The following are the classification results on the refined ROI data for 15 patients. Here we 

applied 3-fold cross validation and k=3 for k-NN classification technique. 

Result analysis using Bhattacharya kernel 

The standard deviation for TF representation for all three classifiers per embedding is the same 

and are in the range 0.09 to 0.14. This low standard deviation indicates that the data points are 

closer to the mean of the set. We believe that there are less or no outliers in the data set. Standard 

deviation of TFIDF representation is also low for both SVM and random forest, but relatively 

high in case of k -NN. Classification accuracy for SVM and random forest across all four 

embedding techniques are mostly consistent but there is a slight variation in case of k-NN. Table 

6 indicates the percentage accuracy results on 15 patients using Bhattacharya distance. 

 

 SVM Random Forest k-NN Bagging Ada boost 

MDS TF 53.3 53.3 46.6 46.6 40 
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MDS TFIDF 53.3 47.7 47.7 53.3 53.3 

Isomap TF 55 55 67.2 61.6 40 

Isomap TFIDF 61.6 53.3 61.6 38.8 30 

PCA TF 55.5 55.5 55 53.3 53.3 

PCA TFIDF 55 55 22.2 55 55 

LEM TF 55.5 55.5 55.5 53.3 53.3 

LEM TFIDF 53.3 53.3 40 53.3 53.3 

 

Table 6: Classification results obtained by computing kernel matrix using Bhattacharya distance 

on 15 patients. 

 

Result analysis using KL divergence 

SVM classifier has the lowest standard deviation compared to random forest and k-NN. K-NN 

tend to have the most deviation in the results. High standard deviation indicates that the data is 

unevenly spread across the mean and produces high variation in the results. Hence, k -NN 

accuracy varied a lot from 18.3% through 61.6%. Random forest classifier predicted very well 

with an accuracy of 81.6 in case of LEM TFIDF but in few cases it could only predict with 66.6 

% accuracy. This is due to the variance in the distribution of the data. Table 7 shows the 

percentage accuracy results for all four embedding techniques using KL divergence. 
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 SVM Random Forest KNN Bagging Ada boost 

MDS TF 63.3 68.3 58.3 61.1 66.6 

MDS TFIDF 70 73.3 21.6 65 58.3 

Isomap TF 66.6 75 58.3 58.8 58.8 

Isomap TFIDF 66.6 66.6 61.6 50 36.6 

PCA TF 70.8 65.8 55.8 48.3 41.6 

PCA TFIDF 63.3 66.6 18.3 53.3 47.7 

LEM TF 66.6 80 60 58.3 58.3 

LEM TFIDF 70.8 81.6 47.5 56.6 35 

Table 7: Classification results obtained by computing kernel matrix using KL divergence on 14 

patients. 

 

Result analysis using cepstral distance 

Standard deviation for SVM and random forest classifier are in similar range, where as the 

standard deviation of k -NN classifier is relatively higher than other two classifiers. Hence the 

accuracy varies a lot in case of k-NN classification. Table 8 represents the percentage accuracy 

across four embedding techniques using three classifiers.  
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Table 8: Classification results obtained by computing kernel matrix using cepstral distance on 

15 patients. 

 

5.6 Challenges 

We faced a few technical and clinical challenges during our research. There is no clear 

understanding of different CM subtypes that exist and categorizing these subtypes is a very hard 

problem. Since all the clinicians do not agree upon the number of subtypes and the patterns they 

belong to, picking the number of clusters to categorize patients is a real challenge. Here we chose 

4 clusters since all the clinicians agree that there are at least 4 CM subtypes that exists.  

 

 SVM Random Forest KNN Bagging Ada boost 

MDS TF 70.8 60.8 47.5 53.3 53.3 

MDS TFIDF 66.6 61.6 38.3 53.3 53.3 

Isomap TF 66.6 56.6 60 60 26 

Isomap TFIDF 63.3 53.3 48.3 55.5 44.4 

PCA TF 66.6 66.6 56.6 53.3 46.6 

PCA TFIDF 66.6 66.6 65 53.3 53.3 

LEM TF 70.8 65.8 55.8 53.3 53.3 

LEM TFIDF 63.3 58.3 58.3 53.3 53.3 
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The ROIs we used here are manually chosen by the clinicians by drawing a patch around the 

cilia. But, these ROIs contain background and cell body of cilia along with the cilia. Also, there 

are some practical problems in the cilia videos as few videos are taken at different angles, at 

different frames per second and few videos are not clear enough to capture the complete motion. 

Preprocessing the ROI and choosing only cilia is a real challenge since the accuracy of the 

results is highly dependent on the data we chose. There is no automatic process to pick the cilia, 

finding the proper technique to pick cilia is challenging. Here we considered pixels with high 

intensity variation as cilia and performed our analysis. 

  

AR parameters which are best for DT analysis in theory should work well but because of noisy 

input we had to look for other techniques. Martin distance, which depends on the AR parameters 

might not be a good option.  Finding other distance metrics that do not use AR parameters and 

which capture non-linearity of the data is really challenging. After 2 months of research we 

found that time series analysis and cepstral analysis are suitable. Hence, we used KL divergence, 

Bhattacharya distance and cepstral distance.  

 

Since we are working on pixel data, each ROI contains 100-pixel data across 200 frames. We 

have hundreds of such ROIs. Running these huge data sets consumed lot of time and resources. 

Finding optimal ways to run this data across multiple clusters and writing code to use optimal 

memory resources is challenging. The clusters crashed several times due to memory leaks and 

running out of CPU resources. Hence, we used profiling techniques to find parts of code causing 

this and optimized the code. 
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I was not a python programmer before this research project, hence learning a new language and 

writing efficient code was a challenge.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

In this thesis, we have provided algorithms and techniques which help in representing CM 

subtypes. We tried to group the patients based on the similarity and dissimilarity of CM patterns 

they exhibit. First, we identified the algorithms that can capture the non-linearity of the data and 

metrics that are invariant to transformations. We developed a novel framework that represents 

the patients using a bag of dynamical systems. This led to exploring different CM patterns a 

patient exhibits. We used unsupervised clustering techniques to bind the patients with similar 

CM patterns and separate the patients with dissimilar motion patterns. We also used 

classification techniques to explore relation between the degree of abnormality and CM 

subtypes. We explained detailed analysis of the results obtained and provided pseudocode in 

Appendix section. We also provided several challenges we faced during this analysis and the 

future work needed to improve up on our analysis. 

 

Our analysis and investigation serves as a stepping-stone for finding CM subtypes. In the long 

run this can help the clinicians in early diagnosis and intervention of ciliopathies, which helps in 

implementing therapies that aims to cure a patient. 
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6.2 Future work 

Future work includes finding pixel selection strategy that automatically selects only the data 

containing cilia by eliminating the noise. This helps in improving the accuracy of the techniques 

we follow.  

Another area of improvement is scaling our analysis to work on more patients with more ROIs. 

This helps in analytical understanding of grouping the patients with similar CM on a larger scale.  

We envision that our current analysis of representing patients as a mixture of CM patterns serves 

as a basis to understand the CM subtypes in future.  
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APPENDICES 

A Elemental components of optical flow 

Consider two spatially nearby image points 𝑟1⃗⃗⃗  =  𝑟  and 𝑟2⃗⃗  ⃗ =  𝑟 +  𝛿𝑟  along a cilium. The vector 

𝛿𝑟 =  𝑟2⃗⃗  ⃗ −  𝑟1⃗⃗⃗   gives their relative position. We assume that the points move according to their 

optical flow velocities 𝑓1⃗⃗  ⃗ =  𝑓 =  (𝑢, 𝑣)𝑇 and  𝑓2⃗⃗  ⃗ =  𝑓 +  𝛿𝑓  and after a small-time interval δt 

they are at locations 𝑟1′⃗⃗⃗⃗ =  𝑟1⃗⃗⃗  +  𝑓1⃗⃗  ⃗𝛿𝑡 and 𝑟2⃗⃗  ⃗
′
= 𝑟2⃗⃗  ⃗ +  𝑓2⃗⃗  ⃗𝛿𝑡. It follows that 

  𝑟2′⃗⃗⃗⃗ −  𝑟1′⃗⃗⃗⃗ = (𝑟2⃗⃗  ⃗ − 𝑟1⃗⃗⃗  ) + (𝑓2⃗⃗  ⃗ − 𝑓1⃗⃗  ⃗) 𝛿𝑡 , 

   𝛿𝑟′⃗⃗ =  𝛿𝑟 +  𝛿𝑓 𝛿𝑡  

Given the spatial closeness of 2 points 𝑟1⃗⃗⃗   and  𝑟2⃗⃗  ⃗, the optical flow vectors 𝑓1⃗⃗  ⃗ and 𝑓2⃗⃗  ⃗ can be related 

by Taylor series expansion that uses first order differentials of the optical flow: 

  𝑓2⃗⃗  ⃗  ≈  𝑓1⃗⃗  ⃗ +
𝛿𝑓1⃗⃗  ⃗

𝛿𝑟 
 𝛿𝑟 + ⋯, 

  𝑓2⃗⃗  ⃗ ≈  𝑓1⃗⃗  ⃗ +  (
𝑢𝑥 𝑢𝑦

𝑣𝑥 𝑣𝑦
) 𝛿𝑟 + ⋯, 

Where (ux, uy, vx, vy) are elements of spatial derivative of optical flow i.e. flow gradient 
𝛿𝑓 

𝛿𝑟 
 . 

Decomposing the flow gradient further gives scaling(divergence), shearing(deformation) and 

rotation (curl) components. These are the scalar quantities defines as  

  Rot 𝑓 =  𝑣𝑥 − 𝑢𝑦 

  Div 𝑓 =  𝑢𝑥 + 𝑣𝑦 

  Def 𝑓 cos(2𝜇) =  𝑢𝑥 − 𝑣𝑦 

  Def 𝑓 sin(2𝜇) = 𝑢𝑦 + 𝑣𝑥  
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Where µ is the angle of maximum distortion. The quantities Div 𝑓 , Rot 𝑓 , (Def 𝑓  ) cos(2µ), (Def 

𝑓  ) sin(2µ) forms a linear space and provide an equivalent representation of flow gradient 
𝛿𝑓 

𝛿𝑟 
 . 

The quantities Def 𝑓 , Div 𝑓  and rot 𝑓  are the elemental components derived from optical flow 

and are also called differential invariants since they are independent of the coordinate system 

used to measure the flow.  

Rotation 

The most salient features of CM are sweeping forward and backward strokes. Curl or rotation 

captures the local rotation of the cilia with angular velocity ½ rot 𝑓 . Curl is orthogonal to 

divergence and is invariant to the orientation of cilia in image plane.  
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B Pseudocode of pipeline 

This section explains the pseudocode used in our analysis. 

 

 

Figure 29: Pseudocode to preprocess rotation data. This helps in picking pixels with high 

magnitude variation across time. 
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Figure 30: Compute pairwise kernel matrix using cepstral distance between pixels.  

 

Figure 31: Compute pairwise kernel matrix using KL divergence between pixels. 
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Figure 32: Compute pairwise kernel matrix using Bhattacharya distance between pixels. 
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Figure 33: Compute code word from the kernel matrix. Then compute the membership of 

original data with respect to each code word. 
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Figure 34: Compute patient weight representation using TF and TF -IDF 

 

 

Figure 35: Compute distance between weight vectors. 
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