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Abstract

In this dissertation, we develop an R package, NlcOptim, to solve the optimization

problems with nonlinear objective functions and nonlinear constraints. This pack-

age can be used to solve problems in sufficient dimension reduction and variable

selection because of its capability to accept the input parameters as a constrained

matrix. We propose a framework for dimension reduction problems via Distance Co-

variance (DCOV) where both the response and the predictor are vectors. In this

framework, distance covariance method is employed to estimate the central subspace

effectively, and we also propose two different methods based on projective resampling

technique to transfer multivariate response to univariate response. This approach

keeps the model-free advantage, and can fully recover the central subspace even when

many predictors are discrete. We then extend DCOV methods to canonical analy-

sis, termed as Canonical Distance Covariance Analysis (CDCA), where we explore

the relationships between two multivariate sets of variables. In addition, we extend

DCOV to estimate the dual central subspace (DCS), which is to find the basis that

span the subspace of YYY as well as the basis that span the subspace of XXX. At last,



we develop a new concept, termed the Dual Variable Selection (DVS), to propose a

method for simultaneously selecting subsets for each of the two random vectors, by

employing DCOV method combined with LASSO penalty.

Index words: Central subspace, Distance Covariance, Dual Central subspace,
Dual Variable Selection, Nonlinear constraints, Nonlinear
optimization, Projective Resampling, Sequential quadratic
programming, Sufficient Dimension Reduction
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Chapter 1

Introduction

In recent years, we have witnessed the explosive growth of interest in the research

of “Big Data”. As technology advances, data now stream from daily life: phones,

credit cards, televisions, and computers; from the infrastructure of cities; from sensor-

equipped buildings, trains, buses, planes, bridges, and factories. Meanwhile, data flow

so fast that the total accumulation or storage in the past two years-a zettabyte-dwarfs

the prior record of human civilization. How to effectively process these dynamic large

data sets so as to enable discovery and innovations is becoming critical and enjoying

the great popularity in the statistical field.

Sufficient Dimension Reduction (SDR) can be brought into this picture. The

essence of SDR is to extract information about statistical dependence of a response

on predictors from the data without loss of any regression information. Ever since

the establishment of the ground-breaking framework and theoretical foundation two

decades ago (Li 1991; Cook 1994; Cook 1996; Cook 1998), SDR methods have been

widely applied in many scientific disciplines. For example, they are often used as

an intermediate step in data analysis and model fitting that efficiently downsizes the

data from high or even ultra-high dimension to a relatively low one in order to avoid
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the effects of the curse of dimensionality, a situation where most classic regression

methods fail.

Most existing SDR methods have shown their merits in coefficient estimation.

However, they often involve kernel smoothing techniques and/or tend to put strong

assumptions on link functions and/or underlying distributions of predictors. For in-

stance, inverse approaches such as well-known sliced inverse regression (SIR; Li 1991)

and Sliced Average Variance Estimates (SAVE; Cook and Weisberg 1991) require lin-

earity and/or constant variance conditions; Forward approaches such as rMAVE (Xia

et al., 2002) require smoothing techniques; joint approaches such as informational

methods of Yin and Cook (2005) also require smoothing techniques while Fourier

method by Zhu and Zeng (2006) requires strong distribution of predictors. Recently,

Ma and Zhu (2012) developed a seminal paper using semi-parametric methods, but it

again requires kernel smoothing. In addition, when predictors are categorical, these

approaches may perform badly, due to their estimating algorithms or strong condi-

tions.

More recently, Sheng and Yin (2013) and Sheng and Yin (2015) developed a

novel method using distance covariance (DCOV; Székely, Rizzo, Bakirov, et al. 2007;

Székely, Rizzo, et al. 2009) for sufficient dimension reduction. The method does

not require linearity condition or constant covariance condition, neither does it any

particular distribution on X, X|Y or Y |X. These advantages enable the method to

work effectively under a variety of X: X could be normal, non-normal but continuous,

or discrete. In this dissertation, based on the advantages of DCOV, we apply DCOV

to deal with multivariate response problems, and develop penalized procedure for

variable selection.

Many SDR methods and other optimization problems involve a constrained ma-

trix. However, there seems a lack of optimization algorithm in R, comparing with

2



Matlab, the commercial software. In Chapter 2, we present an R package “NlcOp-

tim” to solve optimization problem with nonlinear objective function and nonlinear

constraints. Using DCOV method for dimension reduction involves solving nonlinear

optimization problems, but the existing R packages dealing with these problems do

not fulfill the expectation. They are either inefficient or do not accept matrix input

indeed, and most methods involving nonlinear constraint optimization use non-free

software Matlab. NlcOptim utilizes gradient-based algorithms to tackle a general op-

timization problem with nonlinear constraints and nonlinear objective functions. In

particular, it also accepts the input constrained parameters as a matrix.

In Chapter 3, we extend DCOV to sufficient dimension reduction with multiple-

index models and multivariate responses. We also present two DCOV methods using

projective resampling on multivariate response to convert the SDR with multivariate

response to univariate response. One is to average the m subspaces to get the central

subspace, where m is a pre-selected integer. The other is to sum m distance covariance

functions and then obtain the central subspace. We also introduce an kNN procedure

to estimate the dimension of the central subspace. Theoretical properties for DCOV

on multivariate response such as asymptotic results are established based on the

work of Sheng and Yin (2015). Our developed R package in Chapter 2 is used for the

algorithms.

In Chapter 4, we extend DCOV method to canonical distance covariance analysis,

where we explore the relationships between two multivariate sets of variables. Com-

paring to the traditional CCA, our methods can capture linear relationship as well as

nonlinear relationship. We also use DCOV for recovering dual central subspaces. Two

approaches based on distance covariance have been proposed. A bootstrap procedure

is used to identify the dimension of dual central subspace. Asymptotic theory for the

developed methods may be established, following the development of Sheng and Yin
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(2013) and Sheng and Yin (2015). Again algorithms are developed using R package

in Chapter 2.

In Chapter 5, we develop a new concept, termed the Dual Variable Selection

(DVS), to propose a method for simultaneously selecting subsets for each of the two

random vectors, by employing Distance Covariance (DCOV) method combined with

LASSO (Tibshirani, 1996) penalty. This method is a model-free approach and does

not need nonparametric smoothing. Algorithms, the performance of the proposed

methods, and their theoretical studies are under investigation as our future work.
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Chapter 2

NlcOptim: An R Package for

Nonlinear Constrained

Optimization Program 1

1Chen, X. and Yin, X. Submitted to [Journal of Statistical Software], 10/22/2015

7



Abstract

In this chapter, we present an R package, NlcOptim, to solve the optimization problem

with nonlinear objective function and nonlinear constraints by using gradient-based

algorithms. In particular, it accepts the input parameters as a constrained matrix,

thus leveraging existing R packages where only vector parameters are acceptable.

Key Words: Nonlinear constraints; Nonlinear optimization; Quasi-Newton

approximation; Sequential quadratic programming.

2.1 Introduction

R (Team, 2015) provides various packages and functions for different optimizations.

Some packages can solve linear or quadratic optimization problems, for example,

liprog (Henningsen, 2010), quadprog (Turlach and Weingessel, 2013), limSolve

(Soetaert, Meersche, and Oevelen, 2009), and rcdd (Geyer and Meeden, 2015) etc.

Others support unconstrained or box-constrained optimization problems with nonlin-

ear objective functions, for example, nlm() function in stat package, optimx (Nash

and Varadhan, 2011), dfoptim (Varadhan and Borchers, 2011), subplex (King and

King, 2014), and trustOptim (Braun, 2014) etc. In addition, some packages can deal

with linear equality and inequality constraints, such as constrOptim() function in

stat package, and package BB (Varadhan and Gilbert, 2009).

There are limited packages that can solve an optimization problem with nonlin-

ear constraints and nonlinear objective functions. Among the few, packages alabama

(Varadhan and Grothendieck, 2015) and Rsolnp (Ghalanos and Theussl, 2014) aim to

solve a general nonlinear optimization with both nonlinear constraints and objective

function based on the augmented Lagrange multiplier method. Packages employing
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the differential evolution method to solve this kind of nonlinear problem are for exam-

ple, DEoptim (Mullen et al., 2011) and DEoptimR (Conceicao and Maechler, 2015).

This differential evolution method is useful when the objective function is difficult to

differentiate, but inefficient for a problem with a smooth objective function.

There are plenty of chances in statistics that we are dealing with optimization

problems with parameters in the form of matrix. For example, in the field of suffi-

cient dimension reduction (Li, 1991; Cook, 1994; Cook, 1996), many methods have an

optimization with a constraint βββ>βββ = IIId, where βββ is a q × d matrix, III is an identity

matrix and d is the dimension of a subspace. In this situation, we cannot use the

aforementioned packages, since they all cannot deal with parameters in a constrained

matrix form. Even if we transform the parameter matrix into a vector, in our ex-

periences packages such as alabama and Rsolnp raise the error message because of

redundant constraints while package DeoptimR experiences a convergence problem.

In this paper, we present an R package, called NlcOptim, to overcome the draw-

backs that other packages have experienced. Especially our package can be efficiently

used for nonlinear constraints. The newly-developed package utilizes gradient-based

algorithms to tackle a general optimization problem with nonlinear constraints and

nonlinear objective functions. In particular, it accepts the input parameters as a

constrained matrix. The rest of this article is organized as follows. In Section 2.2, we

give a brief description of the algorithms that guide the programming of NlcOptim.

In Section 2.3, we show an example of how to use NlcOptim function. Section 2.4

presents four general nonlinear optimization examples and three sufficient dimension

reduction examples. We compare the results for these examples with the solutions

from fmincon function in MATLAB, Rsolnp (Ghalanos and Theussl, 2014), and DE-

optimR (Conceicao and Maechler, 2015). Finally, a short discussion is presented in

Section 2.5.
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2.2 Theoretical background

2.2.1 SQP framework

A general constrained optimization problem can be written as:

minx∈<n f(x),

s.t. ci(x) = 0 i ∈ E ,

ci(x) ≤ 0 i ∈ I,

where the objective f and the constraint function ci are all smooth, real-valued func-

tions on a subset of <n; while E and I are two finite sets of equality constraints and

inequality constraints, respectively.

The Lagrangian function for this special problem can be expressed as L(x, λ) =

f(x) + λλλ>c(x), where λλλ is a tuning parameter vector while ccc(x) is a vector of con-

strained functions, consisting of ci(x). With the Lagrangian objective function, the

nonlinear problem converts to a linearly constrained optimization problem. In the

kth iteration, with Lk and fk, the problem is simplified to solve:

minppp∈<n
1
2
ppp>∇2

xxLkppp+∇f>k ppp,

s.t. ∇ci(xk)>ppp+ ci(xk) = 0 i ∈ E ,

∇ci(xk)>ppp+ ci(xk) ≤ 0 i ∈ I,

where ∇ denotes the gradient, and ∇2
xx denotes the Hessian matrix; while ppp is the

parameter vector that we are interested in. Let pppk be the the optimal solution of the

above linearly constrained problem. The new iterate is obtained by xxxk+1 = xxxk +akpppk,

where ak ∈ (0, 1] is a suitable step length parameter determined by a line search

procedure in a merit function (Section 2.3). This linearly constrained problem can

10



be solved using any quadratic programming (QP) algorithm. The whole procedure

is called sequential quadratic programming (SQP; Powell 1978). In each iterate of

SQP, we first compute the gradient of ci(x) and the Hessian matrix ∇2
xxLk, then use

any algorithms for quadratic programming to solve the linearly constrained problem,

and at last update xxxk. The Hessian of the Lagrangian L(xxx,λλλ) is replaced by a quasi-

Newton approximation method BFGS (Broyden, 1970).

2.2.2 Update Hessian of the Lagrangian

Let Hk := ∇2
xxLk be the Hessian of the Lagrange L(x, λ) at the kth iteration step.

The update for Hk from iterate k to iterate k + 1 makes use of the vectors below:

sk = xk+1 − xk,

yk = ∇L(xk+1, λk+1)−∇L(xk, λk+1),

rk = θkyk + (1− θk)Hksk,

where the scalar θk is defined as

θk =

 1 if s>k yk ≥ 0.2s>k Hksk,

0.8s>k Hksk
s>k Hksk−s>k yk

if s>k yk < 0.2s>k Hksk.

Then update Hk as

Hk+1 = Hk −
Hksks

>
k Hk

s>k Hksk
+

rkr
>
k

s>k rk
.

Standard BFGS (Broyden, 1970) updates yk and sk. However, the method requires

s>k yk > 0 so as to make sure that the Hessian matrix is positive definite. Using

rk instead of yk in the above formula meets this requirement, since when θk 6= 1,

s>k rk = 0.2s>k Hksk > 0.

11



2.2.3 Merit functions

SQP methods often use a merit function to determine the step length parameter ak

in a line search where the merit function decreases sufficiently. A variety of merit

functions have been used in SQP methods. In our implementation, we choose an

L1−penalty merit function (Powell, 1978; Han, 1977), detailed as follows:

φ(xxx) = f(xxx) +
∑
i∈E

vi|ci(xxx)|+
∑
i∈I

vi|min(0, ci(xxx))|,

where vi is recommended as vi = max(|λi|, vi+|λi|2
), | · | denotes absolute value.

2.3 Using the package

The main function in this package is named as NlcOptim(). Before starting to call

this function, we need to prepare the objective function and constraint functions.

The objective function objfun should be with one argument in form of a vector, and

should return as a scalar. The constraint function confun should be one argument in

form of a vector, and should return a ceq vector and a c vector as nonlinear equality

constraints and inequality constraints, respectively. Set the vector to NULL in the

constraint function if there is no such nonlinear constraints.

NlcOptim can have thirteen arguments–X, objfun, confun, A, B, Aeq, Beq,

lb, ub, tolX, tolObj, tolCon, nFunmax, Itmax. tolX, tolObj, and tolCon are

the tolerances in X, the objective function, and the constraint function, and with their

respective default values 1e-5, 1e-6 and 1e-6. nFunmax and Itmax are the respective

maximum numbers of parameters updated and maximum iteration steps, with the

default values 1,000,000 and 4,000, respectively. If the optimization problem has no

more constraints other than the nonlinear constraint written in confun, we can call
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the function as: NlcOptim(X0, objfun=objfun, confun=confun), where X0 is the

initial value. If the problem has linear constraints, we should write the constraint as

A ∗ X ≤ B, and Aeq ∗ X = Beq, then put A, B, Aeq, Beq in the argument when

calling the function NlcOptim(X0, objfun=objfun, confun=confun, A, B, Aeq,

Beq). If the parameters have lower bounds and up bounds, one should add them as

lb and ub. The outputs of this function are p, as the optimum solution; fval, as

the value of the objective function at the optimal point; lambda, as the Lagrangian

multiplier; grad and hessian, as the gradient and hessian of the objective function at

the optimal point, respectively.

In what follows, we take problem A1 in section 2.4.1 as the example to better

describe the definitions used in this function. First, we write the objective and con-

straint functions as:

R> obj = function(x){

+ return(exp(x[1] * x[2] * x[3] * x[4] * x[5]))

+ }

R> con = function(x){

+ f = NULL

+ f = rbind(f,x[1] ^ 2 + x[2] ^ 2 + x[3] ^ 2 + x[4] ^ 2 + x[5] ^ 2 - 10)

+ f = rbind(f,x[2] * x[3] - 5 * x[4] * x[5])

+ f = rbind(f,x[1] ^ 3 + x[2] ^ 3 + 1)

+ return(list(ceq = f, c = NULL))

+ }

Then we choose an initial value and call the NlcOptim function, respectively as

R> x0 = c(-2, 2, 2, -1, -1)

13



R> NlcOptim(x0, objfun = obj, confun = con)

The output of the solution looks like:

$p

[,1]

[1,] -1.7171435

[2,] 1.5957096

[3,] 1.8272459

[4,] -0.7636431

[5,] -0.7636431

$fval

[1] 0.05394985

$lambda

$lambda$lower

[,1]

[1,] 0

[2,] 0

[3,] 0

[4,] 0

[5,] 0

$lambda$upper

[,1]

[1,] 0

[2,] 0

[3,] 0
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[4,] 0

[5,] 0

$lambda$eqnonlin

[1] 0.040162737 0.037957774 -0.005222606

$grad

[,1]

[1,] 0.09173207

[2,] -0.09871287

[3,] -0.08620505

[4,] 0.20627103

[5,] 0.20627103

$hessian

[,1] [,2] [,3] [,4] [,5]

[1,] 0.6490970 0.12265571 -0.14577731 0.21968845 0.21968842

[2,] 0.1226557 0.61355598 0.21559060 -0.04869998 -0.04870000

[3,] -0.1457773 0.21559060 0.35647651 -0.06607590 -0.06607589

[4,] 0.2196885 -0.04869998 -0.06607590 1.45587101 0.45587101

[5,] 0.2196884 -0.04870000 -0.06607589 0.45587101 1.45587102
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2.4 Examples

2.4.1 Comparisons of optimizations

In this section, we compare methods, Rsolnp, NlcOptim and DEoptimR in R, and

fmincon in MATLAB by the following four problems:

(A1) min e(x1x2x3x4x5),

s.t. x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 10,

x2x3 − 5x4x5 = 0,

x3
1 + x3

2 + 1 = 0.

(B1) min (x1 − 1)2 + (x1 − x2)2 + (x2 − x3)3 + (x3 − x4)4 + (x4 − x5)4,

s.t. x1 + x2
2 + x3

3 = 2 + 3
√

2,

x2 − x2
3 + x4 = −2 + 2

√
2,

x1x5 = 2.

(C1) min (1− x1)2 + (x2 − x2
1)2,

s.t. x2
1 + x2

2 − 1.5 ≤ 0.

(D1) min x2
1 + x2

2,

s.t. − x1 − x2 + 1 ≤ 0,

− x2
1 − x2

2 + 1 ≤ 0,

− 9x2
1 − x2

2 + 9 ≤ 0,

− x2
1 + x2 ≤ 0,

x1 − x2
2 ≤ 0.

The initial value chosen for (A1) is (−2, 2, 2,−1,−1)>, for (B1) is (1, 1, 1, 1, 1)>,
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for (C1) is (−1.9, 2)>, and for (D1) is (3, 1)>. Besides the above constraints, in the

application of DEoptimR, a range (-1,1) for the parameters is considered to shorten

the computing time.

Results from different packages are close to each other. Rsolnp generates an

error message in inverting Hessian matrix when solving problem D1. DEoptimR gets

a slightly different solution from others in problem A1, which may be due to the

computing tolerance. However, it is worthwhile to point out that the value of the

objective is -2.900 at the minimum point given by DEoptimR, slightly greater than

-2.9192, the minimum objective value given by the other three methods.

Table 2.1: Solutions for A1, B1, C1 and D1 by different methods.

Problem Method Solution

A1 MATLAB (−1.7171 1.5957 1.8272 − 0.7636 − 0.7636)>

Rsolnp (−1.7171 1.5957 1.8272 − 0.7636 − 0.7636)>

NlcOptim (−1.7171 1.5957 1.8272 − 0.7636 − 0.7636)>

DEoptimR (−1.6921 1.5667 − 1.8686 − 0.8386 0.6981)>

B1 MATLAB (1.1168 1.2206 1.5377 1.9724 1.7907)>

Rsolnp (1.1166 1.2204 1.5377 1.9727 1.7910)>

NlcOptim (1.1168 1.2206 1.5377 1.9724 1.7907)>

DEoptimR (1.1166 1.2204 1.5377 1.9726 1.7910)>

C1 MATLAB (0.9167 0.8122)>

Rsolnp (0.9167 0.8122)>

NlcOptim (0.9167 0.8122)>

DEoptimR (0.9167 0.8121)>

D1 MATLAB (1.0000 1.0000)>

Rsolnp ∗ ...
NlcOptim (1.0000 1.0000)>

DEoptimR (1.0000 1.0000)>

∗ Rsolnp generates error.

In order to demonstrate the novel capability of this newly-developed function, we

carry out three models in sufficient dimension reduction by comparing with Rsolnp,

NlcOptim, and DEoptimR in R, and fmincon function in MATLAB. The sufficient

dimension reduction method is DCOV of Sheng and Yin, 2013; Sheng and Yin, 2015.

We use their MATLAB code, while we code the DCOV method in R with the three

optimization approaches. Let βββ1 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)>, βββ2 = (1, 0, 0, 0, 0, 0)>,

and βββ3 = (0, 1, 0, 0, 0, 0)>. The constraint is βββ>βββ = IIId, where d is the dimension of
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central subspace (Li, 1991; Cook, 1994; Cook, 1996). Sample sizes n=100, 200, and

400 are tested for each model. The accuracies are measured by the distance between

the two subspaces (Li, Zha, and Chiaromonte, 2005), ∆m(BBB,B̂BB) = ||PPPB−PPP B̂||, where

PPPB and PPP B̂ are the orthogonal projections onto the subspaces spanned by the columns

of BBB and B̂BB, respectively, while || · || is the maximum singular value of a matrix. Thus

the smaller ∆m is, the better the estimate is. For each sample size n, the results of

the mean ∆̄m, standard error (SE), and mean computing time, and its standard error

over 100 replicates are reported. Set the error ε ∼ N(0, 1). The three models are:

(A2) Y = βββ>1XXX + ε,

(B2) Y = (βββ>1XXX)2 + ε,

(C2) Y = βββ>2XXX + (βββ>3XXX)2 + 0.1ε.

Tables 2.2, 2.3 and 2.4 show the respective results for Models A2, B2, and C2. In

general, it can be seen that the accuracy increases and the computing time increases

when n gets larger. MATLAB performs best in terms of computing time, with smallest

mean time and SE(time) in all four packages, while NlcOptim is the best among all

three R packages. For example, the average computing time for Model A2 with

n = 100 is 4.75 sec by NlcOptim, but 78.13 sec by Rsolnp, 845.26 sec by DEoptimR

with 20,000 iterations, and 3,324.40 sec with 100,000 iterations. The solution from

DEoptimR does not converge with 100,000 iterations. Because of the computing

time, we do not consider DEoptimR in our Model C2.

With respect to the accuracy, NlcOptim also outperforms other R packages, some-

times even better than that of MATLAB. For example, for Models A2 and B2, Nl-

cOptim gives slightly better accuracy than that of MATLAB, but similar to that of

Rsolnp. DEoptimR, even with 100,000 iterations, still yields much lower accuracy
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than other three methods did for Models A2 and B2.

NlcOptim and fmincon in MATLAB can solve the optimization problems with a

constrained matrix of parameters, while Rsolnp does not have this option. Even we

vactorize the matrix, Rsolnp still fails.

Table 2.2: Average estimation accuracy (∆̄m) and its standard error (SEδm), average
computing time ( ¯time) and SEtime for Model A2.

n Method ∆̄m SEδm
¯time(sec) SEtime(sec)

100 MATLAB 0.2536 0.0648 0.60 0.07
Rsolnp 0.2197 0.0534 78.13 17.39

NlcOptim 0.2240 0.0571 4.75 1.68
DEoptimR1 ∗ 0.4074 0.0803 845.26 27.73
DEoptimR2 ∗ 0.4051 0.0917 3324.40 69.31

200 MATLAB 0.1755 0.0432 0.84 0.55
Rsolnp 0.1553 0.0332 207.70 40.32

NlcOptim 0.1521 0.0401 7.64 2.98
DEoptimR1 ∗ 0.3650 0.0761 1569.30 37.40
DEoptimR2 ∗ 0.3444 0.0774 4265.07 115.04

400 MATLAB 0.1281 0.0301 1.42 0.18
Rsolnp 0.1019 0.0234 630.12 112.91

NlcOptim 0.1032 0.0222 28.64 8.38
DEoptimR1 ∗ 0.3495 0.0767 4382.22 231.96
DEoptimR2 ∗ 0.3404 0.0785 8069.70 296.81

∗ DEoptimR1: iteration=20,000, not converged; DEop-
timR2: iteration=100,000, not converged.

Table 2.3: Average estimation accuracy (∆̄m) and its standard error (SEδm), average
computing time ( ¯time) and SEtime for Model B2.

n Method ∆̄m SEδm
¯time(sec) SEtime(sec)

100 MATLAB 0.1900 0.1791 0.45 0.07
Rsolnp 0.1737 0.1372 95.55 72.76

NlcOptim 0.1535 0.0422 2.35 1.38
DEoptimR1 ∗ 0.4381 0.1342 823.84 12.36
DEoptimR2 ∗ 0.4045 0.1081 3313.58 74.49

200 MATLAB 0.1062 0.0281 0.79 0.13
Rsolnp 0.0978 0.0239 193.06 43.06

NlcOptim 0.0972 0.0246 21.73 10.89
DEoptimR1 ∗ 0.3703 0.0772 1531.65 57.78
DEoptimR2 ∗ 0.3732 0.0960 4261.85 117.78

400 MATLAB 0.0719 0.0192 2.04 0.28
Rsolnp 0.0648 0.0145 504.16 90.63

NlcOptim 0.0619 0.0134 63.64 18.43
DEoptimR1 ∗ 0.3433 0.0835 4440.58 244.88
DEoptimR2 ∗ 0.3348 0.0711 8081.10 391.61

∗ DEoptimR1: iteration=20,000, not converged; DEop-
timR2: iteration=100,000, not converged.
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2.5 Discussion

In this paper, we have developed a new R package, NlcOptim, for nonlinear objective

and nonlinear constrained optimization. Our comparisons show that it outperforms

the existing two R packages dealing with the same problem, with respect to com-

puting time and accuracy of the solutions. Although NlcOptim is a little bit more

time-consuming than fmincon function in MATLAB, our package is free. We can fur-

ther improve the computing speed of our package. Furthermore, we only programme

this package based on one optimization approach, there are other optimization meth-

ods in literature which may be used as well for our package.

NlcOptim can accept the constrained arguments in form of a vector as well as a

matrix. Especially, in sufficient dimension reduction, we often have an orthogonal

constraint βββ>βββ = Id, where βββ is a q × d matrix. This makes it very essential to

develop a R package to accept a constrained matrix argument in order to implement

sufficient dimension reduction techniques.

It is necessary to mention that NlcOptim finds local minima. But if the problem is

convex optimization – minimizing a convex function over a set of convex constraints,

Table 2.4: Average estimation accuracy (∆̄m) and its standard error (SEδm), average
computing time ( ¯time) and SEtime for Model C2.

n Method ∆̄m SEδm
¯time(sec) SEtime(sec)

100 MATLAB 0.2026 0.1027 0.72 0.20
Rsolnp ... ... ... ...

NlcOptim ∗ 0.2967 0.2415 8.33 3.69
200 MATLAB 0.1211 0.0354 1.32 0.33

Rsolnp ∗ ... ... ... ...
NlcOptim 0.1378 0.0420 10.69 4.04

400 MATLAB 0.0820 0.0253 3.02 0.47
Rsolnp ∗ ... ... ... ...
NlcOptim 0.0981 0.0300 62.73 13.60

∗ Rsolnp cannot deal with matrix input.
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the local minima is also a global minima. Thus for a non-convex optimization, choos-

ing a good starting point is very important. We encourage more tries with different

starting points when using NlcOptim for a non-convex optimization problem. For

the sufficient dimension reduction examples in our paper, the solutions from existing

dimension reduction methods such as SIR (Li, 1991) and SAVE (Cook and Weisberg,

1991) are used as the initial value.
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Chapter 3

Sufficient Dimension Reduction via

Distance Covariance with

Multivariate Responses1

1Chen, X. and Yin, X. To be Submitted to [Journal of Computational and Graphical Statistics].
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Abstract

In this article, we propose a new method for dimension reduction problems where

both response and predictors are vectors. Distance covariance (DCOV) method,

which finds the maximum of the dependency between response and reduced direction,

is used to estimate the central subspace effectively. Projective resampling method,

which converts multivariate responses to univariate response, is used to combine with

distance covariance method to conduct dimension reduction. This approach keeps

the model-free advantage, and can fully recover the central subspace even when many

predictors are categorical or discrete. Based on DCOV method, we defined three opti-

mization problems and present three estimators. All measures are illustrated through

extensive simulations and data sets, and compared with some existing methods. The

comparison suggests that our method is competitive and robust.

Key Words: Central subspace; Distance Covariance; Projective Resampling;

Sufficient Dimension Reduction.

3.1 Introduction

Suppose Y is a scalar response and X is a p×1 predictor vector. Sufficient dimension

reduction (SDR; Li 1991; Cook 1994; Cook 1996) is a methodology for reducing the

dimension of predictors while preserving the regression relation with response. Many

methods have been proposed to estimate SY |X or part of it. These include the inverse

approaches: SIR (Li, 1991), SAVE (Cook and Weisberg, 1991), IR (Cook and Ni,

2005), DR (Li and Wang 2007); forward approaches: Hristache et al. (2001), MAVE

(Xia et al., 2002) and SR (Wang and Xia, 2008); Correlation approaches: CAN-

COR (Fung et al., 2002), KL-distance (Yin and Cook, 2005) and (Yin and Cook,
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2005), Fourier transform (Zeng and Zhu, 2010) and (Zhu and Zeng, 2006), and Re-

producing Kernel Hilbert Space type (Fukumizu, Bach, and Jordan, 2004). However,

these methods either need the linearity condition or constant covariance condition,

or require the predictors to be multivariate normal or at least continuous and the

link function to be smooth. More recently, Sheng and Yin (2013) and Sheng and

Yin (2015) developed a novel method using distance covariance for sufficient dimen-

sion reduction (DCOV; Székely, Rizzo, Bakirov, et al. (2007); Székely, Rizzo, et al.

(2009)). The method does not require linearity condition or constant covariance con-

dition, or any particular distribution on X, X|Y or Y |X. These advantages enable

the method to work effectively under a variety of X: X could be normal, non-normal

but continuous, or discrete or categorical.

Various dimension reduction concepts can be extended to multivariate response by

replacing random scalar Y with random vector Y. Generally, there are three ap-

proaches to extend dimension reduction objects. The first approach is to slice the

multidimensional Y into hypercubes. However, this method faces “curse of dimen-

sionality” since the number of observations within each hypercube decreases sharply

as when the dimension of response increases. The second approach is to target the

central mean subspace (Cook and Setodji, 2003) or the central moment subspace (Yin

and Bura, 2006). The third approach is to estimate the marginal dimension reduc-

tion spaces, and then pool these estimates to recover the central subspace. However,

the latter two methods are not guaranteed to fully recover the dimension reduction

space. Projective resampling method (Li, Wen, and Zhu, 2008) solves these problems

by projecting the multivariate response along m randomly sampled directions, where

m is a pre-selected integer, to obtain m scalar valued responses, and then use any

dimension reduction method to get a subspace. Averaging these m subspaces, we

can estimate the central subspace. It is shown that this method can fully recover the

27



central subspace.

In this article, we extend DCOV to dimension reduction for multivariate response.

Also based on projective resampling method, we propose two estimates combining it

with DCOV. One is to average the m subspaces to get the central subspace. And

the other is to sum m distance covariance functions and then obtain the central sub-

space. We also introduce a kNN procedure to estimate the dimension of the central

subspace. Through a number of simulation experiments, most of which are based on

published models, we demonstrate the superb performance of DCOV and projective

resampling method.

The rest of the article is organized as follows: In section 3.2, we describe our method

in details, including DCOV, projective resampling method, and kNN procedure. In

section 3.3, we conduct simulation comparisons between the our estimators and others

in a large variety of models; and in section 3.4, we summarize our work.

3.2 Methodology

3.2.1 Sufficient dimension reduction

To facilitate our discussion, let BBB be a p × d matrix and let S(BBB) be the subspace

of Rp spanned by the column vectors of BBB. Let ΣΣΣX be the covariance matrix of X,

which is assumed to be nonsingular. Let PBBB(ΣΣΣX) denote the orthogonal projection

on to S(BBB) with respect to the inner product < aaa,bbb >= aaaTΣΣΣbbb. That is, PBBB(ΣΣΣX) =

BBB(BBBTΣΣΣXBBB)−1BBBTΣΣΣX . Let QBBB(ΣΣΣX) = I−PBBB(ΣΣΣX), where I is the identity matrix.

The ultimate goal of sufficient dimension reduction is to search a number of linear

combinations of X, say βββTX, where βββ is a p× d matrix, d < p, such that Y depends
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on X only through βββTX. That is:

Y X|βββTX,

where means independence. The column space of βββ, denoted by S(βββ), forms a

dimension reduction subspace (Li 1991; Cook 1996). The intersection of all such sub-

spaces, if itself is a dimension reduction subspace, is called the central subspace (Cook,

1996), and is denoted by SY |X. The dimension of SY |X, denoted by dim(SY |X) = d,

is called the structural dimension. Under mild conditions (Cook 1996; Yin, Li, and

Cook 2008), the central subspace is well-defined and unique. We assume central

subspace exists throughout this article.

3.2.2 Distance covariance as a sufficient dimension reduction

tool

DCOV is introduced by Székely, Rizzo, Bakirov, et al. (2007) as a new measurement

of multivariate dependence. Let ZZZ1 ∈ Rp, and ZZZ2 ∈ Rq be random variables, where

p and q are positive integers. Let V(ZZZ1,ZZZ2) be the distance covariance between ZZZ1

and ZZZ2. The squared distance covariance can be defined as the weighted L2 norm

of the distance between the joint characteristic function of the random variables and

the product of their marginal characteristic functions:

V2(ZZZ1,ZZZ2) =

∫
Rp+q
|fZZZ1,ZZZ2(t, s)− fZZZ1(t)fZZZ2(s)|2w(t, s)dtds

where fZZZ1 ,fZZZ2 , and fZZZ1,ZZZ2 are the characteristic functions of ZZZ1, ZZZ2,and (ZZZ1,ZZZ2),

respectively. The weight function w(t, s) = (cpcq|s|1+p
p |t|1+q

q )−1, where cq, cq are con-

stants, and is chosen to be positive. An equivalent form of the squared DCOV is
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given by Székely, Rizzo, et al. (2009) as

V2(ZZZ1,ZZZ2) = E|ZZZ1 −ZZZ ′1||ZZZ2 −ZZZ ′2|+ E|ZZZ1 −ZZZ ′1|E|ZZZ2 −ZZZ ′2|

−E|ZZZ1 −ZZZ ′1||ZZZ2 −ZZZ ′′2| − E|ZZZ1 −ZZZ ′′1|E|ZZZ2 −ZZZ ′2|,

where (ZZZ1,ZZZ2),(ZZZ ′1,ZZZ
′
2),(ZZZ ′′1,ZZZ

′′
2) are i.i.d. distributed. In this form, DCOV requires

E|ZZZ1| < ∞ and E|ZZZ2| < ∞ so that DCOV is finite (Székely, Rizzo, Bakirov, et al.,

2007).

DCOV equals to 0 if and only if two random vectors are independent (Székely, Rizzo,

Bakirov, et al., 2007). Based on this property, Sheng and Yin (2013) and Sheng and

Yin (2015) proposed DCOV as a sufficient dimension reduction tool. Suppose βββ is a

p × d matrix, where 1 ≤ d ≤ q. The solution to the following optimization problem

will yield a basis of the central subspace.

max
βββTΣΣΣXβββ=Id

V2(βββTX, Y ) (3.1)

under E|X| < ∞ and E|Y | < ∞ (Székely, Rizzo, Bakirov, et al., 2007). In this

article we assume E|X| < ∞ and E|Y | < ∞. The constraint βββTΣΣΣXβββ = Id in

the optimization problem guarantees the solution of βββ in the same scale and the

optimization solver does not diverge.

3.2.3 DCOV for multivariate response

Sheng and Yin (2013) and Sheng and Yin (2015) developed the DCOV method for

the case that the response is a scalar. In this article, we extend DCOV method to

multivariate response. Suppose XXX is p× 1 random vector, YYY is q × 1 random vector,

and βββ is a p × d matrix, where 1 ≤ d ≤ p. A basis of the central subspace can be
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obtained by solving the following optimization problem.

max
βββTΣΣΣXβββ=Id

V2(βββTXXX,YYY ). (3.2)

under E|XXX| < ∞ and E|YYY | < ∞ (Székely, Rizzo, Bakirov, et al., 2007). Sheng and

Yin (2013) and Sheng and Yin (2015) demonstrated that under some mild conditions,

the solution to (1) always spans the central subspace. We generalize their propositions

to multivariate response cases for (2).

Proposition 1 Let ηηη be a basis of the central subspace with dimension d, βββ be a

p × d0 matrix, d0 ≤ d, dim(S(β)) = d0, ηηη>ΣΣΣXηηη = IIId, and βββ>ΣΣΣXβββ = IIId0. Assume

S(βββ) ⊆ S(ηηη), then V2(βββ>XXX,YYY ) ≤ V2(ηηη>XXX,YYY ). The equality holds if and only if

S(βββ) = S(ηηη).

Proposition 2 Let ηηη be a basis of the central subspace with dimension d, βββ be a p×d0

matrix, ηηη>ΣΣΣXηηη = IIId, and βββ>ΣΣΣXβββ = IIId0. Here d0 could be bigger, less or equal to d.

Suppose P>BBB(ΣΣΣX)XXX Q>BBB(ΣΣΣX)XXX, and S(βββ) * S(ηηη), then V2(βββ>XXX,YYY ) < V2(ηηη>XXX,YYY ).

Proposition 1 suggests that if S(βββ) is a subspace of S(ηηη), then the squared distance

covariance between βββ>XXX and YYY is always less than or equals that between ηηη>XXX and

YYY . The equation holds if and only if S(βββ) = S(ηηη). Proposition 2 suggests that if

S(βββ) is not a subspace of S(ηηη), then under a mild condition, the DCOV between βββ>XXX

and YYY is always less than the DCOV between ηηη>XXX and YYY . These two propositions

together indicate that by maximizing V2(βββ>XXX,YYY ) with a constraint of βββ can always

identify the central subspace.

Based on the sample version of squared distance covariance V2
n(βββTX, Y ) proposed by

Székely, Rizzo, Bakirov, et al. (2007), a sample version for multivariate response can
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be defined as

V2(βββ>XXX,YYY ) =
1

n2

n∑
k,l=1

Akl(βββ)Bkl, (3.3)

where, for k, l = 1, · · · , n,

Akl(βββ) = akl(βββ)− āk.(βββ)− ā.l(βββ) + ā..(βββ)

akl(βββ) = |βββTXk − βββTXl|, āk.(βββ) =
1

n

n∑
l=1

akl(βββ),

ā.l(βββ) =
1

n

n∑
k=1

akl(βββ), ā..(βββ) =
1

n2

n∑
k,l=1

akl(βββ).

Similarly, define bkl = |YYY k − YYY l| and Bkl = bkl − b̄k. − b̄.l + b̄.., where | · | is the

Euclidean norm in the respective dimension. Replacing ΣΣΣX with its sample version

Σ̂ΣΣX , the estimated basis matrix of the central subspace is

ηηηn = arg max
βββT Σ̂ΣΣXβββ=Id

V2
n(βββ>XXX,YYY ). (3.4)

Using Sequential Quadratic Programming method for R introduced in Chen and Yin

(2015), we can solve this nonlinear optimization problem. The asymptotic properties

of ηηηn can be derived in the same way as in the study of Sheng and Yin (2015), which

is presented in section 3.2.5.

3.2.4 DCOV with projective resampling

Existing dimension reduction methods for univariate response can be extend to mul-

tivariate response by combining with projective resampling method (Li, Wen, and

Zhu, 2008). Let ttt be a generic vector in Rq. The projective was established on the
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statement: Y X|βββTX if and only if tttTY X|βββTX for all t ∈ Rq. That is

SY|X = Span{StttTY|X, ttt ∈ Rq}.

In this way, the multivariate response problem is reduced to the many univariate

response problem. Thus, all sufficient dimension reduction methods developed for

univariate response can be employed to multivariate response by estimating StttTY|X

for all ttt ∈ Rq. However, it is impossible to conduct dimension reduction for all ttt ∈ Rq.

Hilafu and Yin (2013) discuss the size of t as:

(i) If the structural dimension is d, there exist d ttti’s such that SY|X = Span{StTY|X};

(ii) If the size of ttt is large enough, the subspace will be recovered through those

univariate central subspaces. In practice, we may take the size of ttt as large as

the computer allowed.

Li, Wen, and Zhu (2008) proposed projective resampling SIR, SAVE, and DR. In this

article, beside the multivariate DCOV (DCOV0) in section 3.2.3, we apply projective

resampling to univariate DCOV. Suppose the sample size of random direction ttt is

m. With different approaches to combine all generated univariate tttTY, we develop

DCOV1 and DCOV2 similar to the idea of outer product gradient (OPG) and rMAVE

(Xia et al., 2002):

DCOV 1 For each of the m combinations of Y, ttti
TY, i = 1, ...,m, solve the opti-

mization problem to get

β̂ββi = arg max
βββTΣΣΣXβββ=Id

V2(βββTX, ttti
TY).
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Then an estimated basis of central subspace can be the first d eigenvectors of

1

m

m∑
i=1

β̂ββiβ̂ββ
T

i .

DCOV 2 Instead of obtaining a basis for each ttti
TY, sum the squared distance co-

variance for each ttti
TY as the new objective function, and then solve the optimization

problem

β̂ββ = arg max
βββTΣΣΣXβββ=Id

m∑
i=1

V2(βββTX, ttti
TY);

DCOV1 is similar to the outer product gradient (OPG) type, we get an basis for each

univariate ttti
TY, β̂ββi, for i = 1, ...,m. Then we apply SVD to 1

m

m∑
i=1

β̂ββiβ̂ββ
T

i to obtain the

estimated β̂ββ. While DCOV2 is similar to a MAVE type, we sum V2(βββTX, tttTY) first

and get the estimated β̂ββ. In the simulation section, results of both methods are given

for comparison.

The R package Nlcoptim (Chen and Yin, 2015) is used to solve the above nonlinear

optimization problem. This package implements Sequential Quadratic Programming

(SQP) method to solve nonlinear optimization problems with nonlinear objective and

nonlinear constraint functions. The initial value for the optimization problem can be

generated randomly, but it is not efficient when the dimension ofXXX is not small, since

we need variation on each parameter. While in this article, we obtain the initial value

by comparing the estimates by SIR and SAVE, and choose the one which gives the

larger squared distance covariance.

Note that by invariance law, we can equivalently work on standardized predictor

Z-scale, then transform back to X-scale. We first standardize X into Z-scale, where

ZZZ = ΣΣΣ
− 1

2
X (XXX−E(XXX)), such that ΣΣΣZ = III, the p×p identity matrix. Then the direction

of in X-scale would be ηηη = ΣΣΣ
− 1

2
X ηηηZ , where ηηηZ is the direction in Z-scale. Then

the optimization problem is transformed to Z-scale, where the constraint becomes
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βββ>ZβββZ = Id. After obtaining the estimate under Z scale, we transform the estimate

back into X scale, β̂ββ = Σ̂ΣΣ
− 1

2

X β̂ββZ . This scheme works well in our simulations and real

data analysis. An alternative procedure is to use a successive one-at-a-time search

similar to that of Yin, Li and Cook (2008).

3.2.5 Asymptotic properties

Sheng and Yin (2015) showed in their paper that the estimator of univariate DCOV,

ηηηn = arg maxβββ>Σ̂ΣΣXβββ=III V2
n(βββ>XXX,Y ), is consistent and asymptotically normal. Based

on their results, we develop the asymptotic properties of the estimator of multivariate

DCOV (DCOV0), ηηηn = arg maxβββ>Σ̂ΣΣXβββ=III V2
n(βββ>XXX,YYY ).

Proposition 3 Assume η is a basis matrix of the central subspace SY|X and ηηηTΣΣΣXηηη =

Id. Suppose the support of X ∈ Rp, say S, is a compact set, E|Y | < ∞, and

PT
ηηη(ΣΣΣX)XXX Q>ηηη(ΣΣΣXXX)XXX. Let ηηηn = arg maxβββT Σ̂ΣΣXβββ=Id

V2
n(βββ>X,YYY ), then ηηηn is a consistent

estimator of a basis of SY|X, that is, there exists a rotation matrix QQQ : QQQ>QQQ = IIId,

such that ηηηn
p→ ηηηQQQ.

Proposition 4 Assume η is a basis matrix of the central subspace SYYY |XXX and ηηηTΣΣΣXηηη =

Id. Suppose the support of X ∈ Rp, S, be a compact set, E|Y | <∞ and PT
ηηη(ΣΣΣX)XXX Q>ηηη(ΣΣΣXXX)XXX.

Let ηηηn = arg maxβββT Σ̂Xβββ=1 V2
n(βββ>XXX,YYY ), then under some regularity conditions, there

exists a rotation matrixQQQ : QQQ>QQQ = IIId, such that
√
n[vec(ηηηn)−vec(ηηηQQQ)]

D→ N(0, V (ηηηQ)),

where V (ηηηQ) is covariance matrix.

If the support of XXX is compact, E|YYY | < ∞ and PT
ηηη(ΣΣΣX)XXX Q>ηηη(ΣΣΣXXX)X, then ηηηn is a

consistent estimator of basis of SY |X. Sheng and Yin (2015) also discussed that the

support of XXX does not necessarily to be compact, this assumption is set just to sim-

plify the proof. They proved the
√
n−consistency and asymptotic normality of the
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estimator ηηηn.The proofs of Proposition 3 and 4 are straightforward from Sheng and

Yin (2015), replacing the scalar Y by a multivariate YYY . We omit the proofs.

For DCOV1, by the consistency proposition for univariate response in the work of

Sheng and Yin (2015), ηηηin
p→ ηηηQQQ for each ttt>i YYY , with i = 1, ...m. Then combining

all these ηηηin to obtain the estimator in DCOV1 should also have these consistency

property, that is ηηηn
p→ ηηηQQQ. The asymptotically normal property can be shown in the

same way. For each univariate response ttt>i YYY , i = 1, ...m, by the normality property,

√
n[vec(ηηηin) − vec(ηηηQQQ)]

D→ N(0, V (ηηηQ)), then when adding these estimators, the fi-

nal estimator by DCOV1 should also has asymptotic normality as in Sheng and Yin

(2015). Consider m = 1 in DCOV2, the estimator has
√
n-consistency and asymptotic

normality, when increasing m, that is adding squared distance covariance, the esti-

mator should also have
√
n-consistency and asymptotic normality, but with tedious

calculations based on Sheng and Yin (2015).

3.2.6 Estimating d

In practice, the dimension of the central subspace d = dim(SY |X) is unknown and

must be inferred from data. A few methods have been proposed in literature, such as

a sequential test based on a chi-squared statistic proposed by Li (1991) and Li (1992),

a permutation based test by Cook and Yin (2001), and a bootstrap procedure ini-

tialed by Ye and Weiss (2011), followed by Zhu and Zeng (2006), and Sheng and Yin

(2015). In this article we introduce a kNN procedure for the purpose of choosing d,

following the idea of k nearest neighbors (kNN) method (Wang, Yin, and Critchley,

2015).

Given {(Xi, Yi)}, 1 ≤ i ≤ n, the structural dimension can be evaluated by the follow-

ing kNN procedure:
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1. For each point in {(Xi, Yi), 1 ≤ i ≤ n}, obtain the k nearest neighbors of sample

point i using Euclidean distance |Xi − Xj|,where 1 ≤ j ≤ n. The k nearest

neighbors of sample point i is denoted as {(X(i)
j , Y

(i)
j ), 1 ≤ j ≤ k};

2. For each sample point i, apply any dimension reduction method to its k nearest

neighbors {(X(i)
j , Y

(i)
j ), 1 ≤ j ≤ k} , we can estimate β̂ββi. Setting the dimension

of β̂ββi as 1 or 2 is good enough usually ;

3. After all β̂ββi, 1 ≤ i ≤ n are obtained, we can get the eigenvalues of
n∑
i=1

β̂ββiβ̂ββ
T

i ,

denote as λ1, λ2, ..., λp;

4. Calculate the ratio ri = λi/λi+1, 1 ≤ i ≤ p− 1. Choose d as where the largest

ri happens in the sequence.

3.3 Numerical studies

In this section, we assess the efficiency of the proposed DCOV methods through

the simulation and application to a real data. In the simulations, we compare the

performance of our methods DCOV0, DCOV1 and DCOV2 with some well-established

dimension reduction methods, that is, the PRSIR (Li, Wen, and Zhu, 2008), PRSAVE

(Li, Wen, and Zhu, 2008), and RMAVE-FC (Yin and Li, 2011). We choose these

three methods because SIR and SAVE are the most common methods in the area of

dimension reduction, and RMAVE-FC is the most efficient method for multivariate

dimension reduction since it is a nonparametric way to estimate the basis of the

subspace. We include the results from sequential way of DCOV1 and DCOV2 as

well, which is to calculate the first single direction, and calculate the second direction

in the orthogonal subspace of the first direction and so on.

The accuracies are measured by the distance between the two subspaces (Li, Zha,
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and Chiaromonte, 2005):

∆m(Ŝ1,S2) = ||PŜ1
−PS1||

where ||·|| is the maximum singular value of a matrix, S1, and S2 are two same dimen-

sional subspace, and PŜ1
and PS2 are the orthogonal projections onto the subspace

Ŝ1 and S2, respectively. The smaller the ∆m is, the better the estimate is.

3.3.1 Simulations

Here we simulate several models. For each model setting, 100 replicates of the data

are generated. The comparison is made for three sample size n = 100, 200 and 400.

For PRSIR and PRSAVE, we use m = 200 random directions; for RMAVE-FC , we

take m = 100 random directions; and for DCOV1 and DCOV2, we study relationship

between the number of random directions and accuracy, and choose m = 50. We also

consider three different designs on predictors for each model to examine that if the

model assumption can be extended to distributions other than normal. The three

different designs are: part (I), standard multivariate normal predictors, XXX ∼ N(0, III);

part (II), non-normal but continues predictors; and part (III), discrete predictors.

The following three models come from the paper by Li, Wen, and Zhu (2008).

Model 1 Let p = 6, q = 4, XXX ∼ N(0, I6). The four dimensional response random
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vector YYY is generated as:

Y1 = βββT1XXX + ε1,

Y2 = βββT2XXX + ε2,

Y3 = ε3,

Y4 = ε4.

where βββ1 = (1, 0, 0, 0, 0, 0), βββ2 = (0, 2, 1, 0, 0, 0), and εεε ∼ N4(0,∆∆∆) with

∆∆∆ =


1 −.5 0

−.5 1 0

0 0 I2


In part (I),XXX follows the standard normal distribution; in part (II),Xi ∼ Unif(−

√
3,
√

3),

for i = 1, ..., 6; and in part (III), Xi ∼ Poisson(1), for i = 1, ..., 3, and Xi ∼ N(0, 1),

for i = 4, ..., 6. For this model, Table 3.1 gives the mean and standard deviation of the

estimation accuracy (∆m) based on N = 100 simulated samples for each combination

of eight models and three sample sizes.

PRSIR performs relatively well, because the response is a linear function of the predic-

tors. DCOV0 performs the best for all three sample sizes and three different designs.

RMAVE-FC also performs well, but worse in all cases than DCOV0, especially for

discrete setting. DCOV1 and DCOV2 is not better than DCOV0 in all cases, which

may due to the fact that the objective functions in DCOV1 and DCOV2 in the op-

timization problem is much more complicated than DCOV0, and the algorithm is

stuck in the local optimum. The error decreases substantially for all methods but

sequential DCOV1 as the sample size increases, reflecting the fact that they are con-

sistent. Figure 3.1 shows the relationship between accuracy and different number of
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random directions from simulation of sample size 100 for method DCOV1. The figure

indicates that a choice of m = 50 is reasonable.

Table 3.1: Comparison based on Model 1

Part (1) Part (2) Part (3)
n Method ∆̄m SE∆m n Method ∆̄m SE∆m n Method ∆̄m SE∆m

100 PRSIR 0.4001 0.1773 100 PRSIR 0.5552 0.1458 100 PRSIR 0.3918 0.1889
PRSAVE 0.9097 0.0977 PRSAVE 0.9398 0.0950 PRSAVE 0.9273 0.1125

RMAVE-FC 0.4144 0.1283 RMAVE-FC 0.4387 0.1492 RMAVE-FC 0.5454 0.2420
DCOV0 0.2730 0.0923 DCOV0 0.2609 0.0940 DCOV0 0.2373 0.1051
DCOV1 0.5831 0.2267 DCOV1 0.7695 0.1743 DCOV1 0.4993 0.2611
DCOV2 0.4083 0.2136 DCOV2 0.4696 0.2448 DCOV2 0.3729 0.2372

DCOV1-seq 0.4956 0.2088 DCOV1-seq 0.4709 0.2131 DCOV1-seq 0.5840 0.2802
DCOV2-seq 0.3536 0.1934 DCOV2-seq 0.2287 0.0855 DCOV2-seq 0.2040 0.1737

200 PRSIR 0.3372 0.1520 200 PRSIR 0.4938 0.1540 200 PRSIR 0.3313 0.1767
PRSAVE 0.7482 0.2174 PRSAVE 0.8891 0.1587 PRSAVE 0.8237 0.1985

RMAVE-FC 0.2595 0.0817 RMAVE-FC 0.3378 0.1441 RMAVE-FC 0.3263 0.0828
DCOV0 0.1943 0.0624 DCOV0 0.1825 0.0583 DCOV0 0.1453 0.0545
DCOV1 0.4802 0.2437 DCOV1 0.4232 0.2395 DCOV1 0.5873 0.2922
DCOV2 0.2745 0.2102 DCOV2 0.3816 0.2349 DCOV2 0.3129 0.2373

DCOV1-seq 0.5028 0.2294 DCOV1-seq 0.4312 0.2248 DCOV1-seq 0.6700 0.2893
DCOV2-seq 0.3699 0.1669 DCOV2-seq 0.1621 0.0972 DCOV2-seq 0.1190 0.1272

400 PRSIR 0.2985 0.1603 400 PRSIR 0.4314 0.1136 400 PRSIR 0.3025 0.1572
PRSAVE 0.6288 0.2392 PRSAVE 0.8773 0.1594 PRSAVE 0.8047 0.2153

RMAVE-FC 0.1963 0.0602 RMAVE-FC 0.1797 0.0771 RMAVE-FC 0.2507 0.0918
DCOV0 0.1412 0.0417 DCOV0 0.1308 0.0399 DCOV0 0.0945 0.0366
DCOV1 0.4470 0.2576 DCOV1 0.5143 0.2588 DCOV1 0.6652 0.3203
DCOV2 0.2114 0.1860 DCOV2 0.3167 0.2165 DCOV2 0.2806 0.2151

DCOV1-seq 0.5251 0.2163 DCOV1-seq 0.5220 0.2777 DCOV1-seq 0.7447 0.2814
DCOV2-seq 0.3449 0.1886 DCOV2-seq 0.1298 0.0437 DCOV2-seq 0.0766 0.1033

Model 2 Let p = 6, q = 4, XXX ∼ N(0, I6). The four -dimensional response random

vector YYY is generated as:

Y1 = 1 + (βββT1XXX)2 + ε1,

Y2 = βββT2XXX + ε2,

Y3 = ε3,

Y4 = ε4.

where βββ1 = (1, 0, 0, 0, 0, 0), βββ2 = (0, 2, 1, 0, 0, 0), and εεε ∼ N4(0,∆∆∆) with
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Figure 3.1: Relationship between the number of random directions m and accuracy
∆̄m for Model 1 using DCOV1.

∆∆∆ =


1 −.5 0

−.5 1 0

0 0 I2


This model is the same as Model 1 except that Y1 is a quadratic form of βββT1XXX. Table

3.2 reports the results for Model 2. We can see that PRSAVE performs better than

PRSIR for normal design, because Y1 has a quadratic function of βββT1XXX. DCOV0

outperforms other methods for normal design and discrete design, and is the second

best for non-normal design. Its derivatives, DCOV1 and DCOV2, both perform better

than PRSIR and PRSAVE. Sequential DCOV1 and DCOV2 performs well on normal

design and discrete design, but it seems that they are not consistent for non-normal
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design, while the accuracy decrease with sample size from 200 to 400. RMAVE-FC

performs the best on non-normal design, but not as well as DCOV0, and sequential

DCOV1 or DCOV2 on normal design and discrete design. The accuracy increases

when the sample size increases for almost all these methods, indicating consistent

estimates. Figure 3.2 suggests that number of random direction m = 50 is reasonable

for DCOV1.

Table 3.2: Comparison based on Model 2

Part (1) Part (2) Part (3)
n Method ∆̄m SE∆m n Method ∆̄m SE∆m n Method ∆̄m SE∆m

100 PRSIR 0.8851 0.1563 100 PRSIR 0.8503 0.1597 100 PRSIR 0.2685 0.0815
PRSAVE 0.8235 0.1902 PRSAVE 0.6010 0.2377 PRSAVE 0.8765 0.1632

RMAVE-FC 0.4486 0.2715 RMAVE-FC 0.6451 0.5345 RMAVE-FC 0.3092 0.0720
DCOV0 0.5547 0.2951 DCOV0 0.7795 0.2317 DCOV0 0.1819 0.0609
DCOV1 0.5316 0.2543 DCOV1 0.8683 0.1528 DCOV1 0.2665 0.0809
DCOV2 0.5200 0.2926 DCOV2 0.8695 0.1508 DCOV2 0.2931 0.1511

DCOV1-seq 0.3328 0.1425 DCOV1-seq 0.6704 0.2221 DCOV1-seq 0.2491 0.1105
DCOV2-seq 0.4946 0.2937 DCOV2-seq 0.6486 0.3352 DCOV2-seq 0.1640 0.0759

200 PRSIR 0.8750 0.1484 200 PRSIR 0.8087 0.1835 200 PRSIR 0.2024 0.0648
PRSAVE 0.3405 0.1450 PRSAVE 0.5542 0.1826 PRSAVE 0.5266 0.2175

RMAVE-FC 0.1963 0.0644 RMAVE-FC 0.2928 0.2912 RMAVE-FC 0.2409 0.0862
DCOV0 0.3527 0.2700 DCOV0 0.5980 0.3017 DCOV0 0.1155 0.0378
DCOV1 0.3612 0.2015 DCOV1 0.7736 0.2233 DCOV1 0.1964 0.0727
DCOV2 0.4011 0.3173 DCOV2 0.8793 0.1641 DCOV2 0.2765 0.1857

DCOV1-seq 0.2090 0.0697 DCOV1-seq 0.4272 0.2010 DCOV1-seq 0.1952 0.0904
DCOV2-seq 0.2381 0.2025 DCOV2-seq 0.4869 0.3907 DCOV2-seq 0.1199 0.0651

400 PRSIR 0.6731 0.2335 400 PRSIR 0.7350 0.2212 400 PRSIR 0.1750 0.0579
PRSAVE 0.2262 0.0763 PRSAVE 0.5288 0.1589 PRSAVE 0.4727 0.2266

RMAVE-FC 0.2042 0.1482 RMAVE-FC 0.1303 0.0353 RMAVE-FC 0.1845 0.0577
DCOV0 0.1443 0.0466 DCOV0 0.3870 0.3038 DCOV0 0.0733 0.0250
DCOV1 0.2059 0.1547 DCOV1 0.6723 0.2815 DCOV1 0.1514 0.0464
DCOV2 0.2983 0.3333 DCOV2 0.8060 0.2490 DCOV2 0.2489 0.1803

DCOV1-seq 0.1398 0.0460 DCOV1-seq 0.6594 0.2375 DCOV1-seq 0.1623 0.0712
DCOV2-seq 0.1712 0.1800 DCOV2-seq 0.5090 0.4282 DCOV2-seq 0.1014 0.0759

Model 3 Let p = 6, q = 5, XXX ∼ N(0, I6). We increase the dimension of YYY to five,

42



●

●

●
●

●

●

● ● ●

●

20 40 60 80 100

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

m

∆ m

●

●

●

●
● ●

●

●
●

●

●

●

● ● ●

● ● ● ● ●

Non−normal
Normal
Discrete

Figure 3.2: Relationship between the number of random directions m and accuracy
∆̄m for Model 2 using DCOV1.

which is generated as:

Y1 = X2 +
3x2

.5 + (X1 + 1.5)2
+ ε1,

Y2 = X1 + e.5X2 + ε2,

Y3 = X1 +X2 + ε3,

Y4 = ε4,

Y5 = ε5.

where εεε ∼ N4(0,∆∆∆) with ∆∆∆ = diag(∆∆∆1,∆∆∆2)
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∆∆∆1 =

 1 −.5

−.5 0.5

 and ∆∆∆2 =


1/2 0 0

0 1/3 0

0 0 1/4


Table 3.3 reports the results for Model 3. All methods perform well with high

accuracies. DCOV0 outperforms all other methods with smallest ∆̄m, and smallest

SE∆m for all three designs and three sample sizes. RMAVE-FC performs well for

normal design, but not as well as other DCOV methods on non-normal design and

discrete design. The errors decrease rapidly when sample size increases for all meth-

ods, which means that all estimates are consistent. Using DCOV1 again, Figure 3.3

shows that m = 50 is reasonable for Model 3.

Table 3.3: Comparison based on Model 3

Part (1) Part (2) Part (3)
n Method ∆̄m SE∆m n Method ∆̄m SE∆m n Method ∆̄m SE∆m

100 PRSIR 0.2716 0.1048 100 PRSIR 0.7269 0.1860 100 PRSIR 0.3071 0.1393
PRSAVE 0.8732 0.1547 PRSAVE 0.5679 0.2320 PRSAVE 0.8142 0.1995

RMAVE-FC 0.2386 0.0827 RMAVE-FC 0.3131 0.1367 RMAVE-FC 0.4173 0.1538
DCOV0 0.2477 0.0877 DCOV0 0.2002 0.0791 DCOV0 0.1556 0.0902
DCOV1 0.2809 0.1155 DCOV1 0.2012 0.0603 DCOV1 0.2436 0.1124
DCOV2 0.2718 0.2008 DCOV2 0.4010 0.2062 DCOV2 0.2633 0.1983

DCOV1-seq 0.3032 0.0877 DCOV1-seq 0.2341 0.0758 DCOV1-seq 0.2715 0.0995
DCOV2-seq 0.2503 0.1242 DCOV2-seq 0.1876 0.0921 DCOV2-seq 0.1049 0.0866

200 PRSIR 0.2250 0.0743 200 PRSIR 0.6074 0.1818 200 PRSIR 0.2618 0.0903
PRSAVE 0.5462 0.2452 PRSAVE 0.2944 0.1279 PRSAVE 0.3823 0.2069

RMAVE-FC 0.1700 0.0610 RMAVE-FC 0.2179 0.0885 RMAVE-FC 0.2595 0.0612
DCOV0 0.1569 0.0519 DCOV0 0.1283 0.0414 DCOV0 0.0987 0.0677
DCOV1 0.2170 0.1252 DCOV1 0.1493 0.0440 DCOV1 0.1579 0.0498
DCOV2 0.1573 0.1021 DCOV2 0.3787 0.2134 DCOV2 0.2377 0.1789

DCOV1-seq 0.2338 0.0800 DCOV1-seq 0.1597 0.0499 DCOV1-seq 0.1986 0.0730
DCOV2-seq 0.1430 0.0488 DCOV2-seq 0.1331 0.0640 DCOV2-seq 0.0698 0.0686

400 PRSIR 0.1660 0.0592 400 PRSIR 0.2826 0.1235 400 PRSIR 0.2229 0.0905
PRSAVE 0.2855 0.1578 PRSAVE 0.2405 0.0876 PRSAVE 0.1991 0.0719

RMAVE-FC 0.1071 0.0367 RMAVE-FC 0.1302 0.0424 RMAVE-FC 0.2069 0.0702
DCOV0 0.1071 0.0319 DCOV0 0.0870 0.0231 DCOV0 0.0633 0.0175
DCOV1 0.1597 0.1061 DCOV1 0.1273 0.1560 DCOV1 0.1189 0.0357
DCOV2 0.1223 0.1579 DCOV2 0.3539 0.2556 DCOV2 0.2235 0.1786

DCOV1-seq 0.1650 0.0623 DCOV1-seq 0.1182 0.0305 DCOV1-seq 0.1260 0.0414
DCOV2-seq 0.1114 0.0467 DCOV2-seq 0.1147 0.0822 DCOV2-seq 0.0542 0.0556

The estimation of the dimension (d) of the central subspace for the three different

models is conducted to illustrate how the kNN method works. For each model, we
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Figure 3.3: Relationship between the number of random directions m and accuracy
∆̄m for Model 3 using DCOV1.

simulation examples with (n, p) = (400, 6). The ratios of λ for Models 1, 2, and 3

are summarized in the Table 3.4. One can see from the table that maximum ratios

happen at the dimension of the central subspace, which indicates that the kNN

method correctly estimates the dimension under different models.

Table 3.4: Ratio of eigenvalues r for Models 1, 2, and 3

Model r1 = λ1/λ2 r2 = λ2/λ3 r3 = λ3/λ4 r4 = λ4/λ5 r5 = λ5/λ6

1 1.0356 1.4020* 1.0317 1.0651 1.0593
2 1.1668 1.3368* 1.0551 1.0254 1.0053
3 1.8969 2.1869* 1.0869 1.0123 1.0381
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3.3.2 Application

In this section, we analyze the Minneapolis Elementary Schools data set, which is

obtained from Cook (1998, p.216), and is used to explore the relationship between

students’ performance and characteristics of school. The data set has 63 observations

(schools) and 13 variables. The response is a four dimension multivariate variable,

which is described as:

• 4BELOW: percentage of 4th graders scoring BELOW average on a standard

4th grade vocabulary test in 1972.

• 4ABOVE: percentage of 4th graders scoring ABOVE average on a standard 4th

grade vocabulary test in 1972.

• 6BELOW: percentage of 6th graders scoring BELOW average on a standard

6th grade comprehension test in 1972.

• 6ABOVE: percentage of 6th graders scoring ABOVE average on a standard 6th

grade comprehension test in 1972.

And the explanatory variables are:

• BP: percent of children in the school living with Both Parents

• AFDC: percent of children receiving Aid to Families with Dependent Children

• Poverty: percentage of persons in the school area who are above the federal

poverty levels

• HSchl: percent of adults in the school area who have completed high school

• Enrol: number of children enrolled in the school
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• Attend: average percentage of children in attendance during the year

• Mobility: percentage of children who started in a school, but did not finish there

• PT-ratio: pupil-teacher ratio

• Minority: percent minority children in the area.

This data is discussed by Yin and Bura (2006) to demonstrate their moment

based dimension reduction method for multivariate response. In order to satisfy the

two assumptions of their method, they square-root transformed the response as well

as the explanatory variables. DCOV method does not require the assumption of

distribution, so we perform the dimension reduction on the original data. But in

order to compare our result with the work of Yin and Bura (2006), we also conduct

the dimension reduction on the square-root transformed data. The kNN method

described in section 3.2.6 results in Table 3.5. The maximum ratios for both cases

are the first one, suggesting that the estimated dimension is one. This also agrees

with the analysis of Yin and Bura (2006).

Table 3.5: Ratio of eigenvalues r for Minneapolis Elementary Schools data

r1 r2 r3 r4 r5 r6 r7 r8
Ratio-original 4.439447* 2.093754 1.092490 1.336794 1.162351 1.213189 1.126388 1.097821

Ratio-sqrt tranformation 6.793484* 1.087571 1.234982 1.164279 1.403584 1.150167 1.102947 1.095085

Table 3.6 shows the estimated direction at the original scale. AFDC and HSchl

contribute most to the estimated direction, which makes sense.

Table 3.7 shows the estimated direction at the original scale. Similar to the

results of the original data, the coefficients of
√
AFDC and

√
HSchl have the highest

absolute values, indicating they contribute most to the estimated direction.
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Table 3.6: Estimated direction by DCOV1 on original data.

Variables β̂1

BP -0.2531
AFDC 0.5762
Poverty -0.2060
HSchl -0.4777
Enrol 0.37029
Attend -0.0362
Mobility 0.3007
PT-ratio -0.0270
Minority 0.3217

Table 3.7: Estimated direction by DCOV1 on square-root scale.

Variables β̂1

BP -0.0502
AFDC -0.6843
Poverty 0.0627
HSchl 0.5334
Enrol -0.2467
Attend 0.0388
Mobility -0.3060
PT-ratio 0.0770
Minority -0.2807

The scatterplot of the four response variables vs. the estimated direction for the

original scale can be found in Figure 3.4, and the square-root in Figure 3.5. From

both figures, it seems that using square-root scale may be better to establish models

for each response. Linear model seems good enough for each response.

3.4 Discussion

In this article, we extend DCOV methods to sufficient dimension reduction with mul-

tivariate response. We also present two DCOV methods (DCOV1 and DCOV2) using

projective resampling on multivariate response to convert the SDR with multivari-

ate response into univariate response. DCOV0 performs well on different models with
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Figure 3.4: Scatterplot of four responses and the estimated direction under original
scale of predictors for Minneapolis Elementary Schools data.

highest accuracy. DCOV1 and DCOV2 perform relatively well, better than projection

resampling with SIR and SAVE. We also introduced a kNN method for estimating d.

Results show that this method correctly chooses the dimension under different mod-

els. Theoretical properties for DCOV on multivariate response such as asymptotic

results are established based on the work of Sheng and Yin (2015). Along the line, we

apply our method to a real Minneapolis Elementary Schools data. The result agrees

with previous study as well.

49



2 4 6 8 10 12

3
4

5
6

7

Direction 1

Y
1

2 4 6 8 10 12

2
3

4
5

6
7

8
Direction 1

Y
2

(a) (b)

2 4 6 8 10 12

2
3

4
5

6
7

Direction 1

Y
3

2 4 6 8 10 12

1
3

5
7

Direction 1

Y
4

(c) (d)

Figure 3.5: Scatterplot of four responses and the estimated direction in square-root
scale for Minneapolis Elementary Schools data.
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[19] G. J. Székely, M. L. Rizzo, et al. “Brownian distance covariance”. In: The annals

of applied statistics 3.4 (2009), pp. 1236–1265.

[20] H. Wang and Y. Xia. “Sliced regression for dimension reduction”. In: Journal

of the American Statistical Association 103.482 (2008), pp. 811–821.

[21] Q. Wang, X. Yin, and F. Critchley. “Dimension reduction based on the hellinger

integral”. In: Biometrika 102.1 (2015), pp. 95–106.

[22] Y. Xia et al. “An adaptive estimation of dimension reduction space”. In: Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 64.3 (2002),

pp. 363–410.

[23] Z. Ye and R. E. Weiss. “Using the bootstrap to select one of a new class of

dimension reduction methods”. In: Journal of the American Statistical Associ-

ation (2011).

[24] X. Yin and E. Bura. “Moment-based dimension reduction for multivariate re-

sponse regression”. In: Journal of Statistical Planning and Inference 136.10

(2006), pp. 3675–3688.

[25] X. Yin and R. D. Cook. “Direction estimation in single-index regressions”. In:

Biometrika 92.2 (2005), pp. 371–384.

[26] X. Yin and B. Li. “Sufficient dimension reduction based on an ensemble of

minimum average variance estimators”. In: The Annals of Statistics (2011),

pp. 3392–3416.

53



[27] X. Yin, B. Li, and R. D. Cook. “Successive direction extraction for estimating

the central subspace in a multiple-index regression”. In: Journal of Multivariate

Analysis 99.8 (2008), pp. 1733–1757.

[28] P. Zeng and Y. Zhu. “An integral transform method for estimating the central

mean and central subspaces”. In: Journal of Multivariate Analysis 101.1 (2010),

pp. 271–290.

[29] Y. Zhu and P. Zeng. “Fourier methods for estimating the central subspace and

the central mean subspace in regression”. In: Journal of the American Statistical

Association 101.476 (2006), pp. 1638–1651.

Appendix

Lemma 1 Suppose ηηη is a basis of the central subspace. Let (ηηη1, ηηη2) be any partition

of ηηη, where ηηη>ΣΣΣXηηη = IIId. We have V2(ηηη>i XXX,YYY ) < V2(ηηη>XXX,YYY ), i = 1, 2.

Proof.

Let X̃XX1 = ηηη>1XXX, X̃XX2 = ηηη>2XXX, F (a, b) = V2(

aX̃XX1

bX̃XX2

 ,YYY ), a ∈ R, and b ∈ R,and

G1(a, b) = ∂F (a, b)/∂a, G2(a, b) = ∂F (a, b)/∂b. A simple calculation shows that

aG1(a, b) + bG2(a, b) = F (a, b).

If (ηηη1, ηηη2) ∈ S(ηηη), then F (0, 1), F (1, 0) > 0.

Claim, if 0 ≤ λ < 1, then F (1, λ) < F (1, 1), and F (λ, 1) < F (1, 1).

If not, then there exist a 0 ≤ λ0 < 1 such that F (1, λ0) ≥ F (1, 1) or F (λ0, 1) ≥

F (1, 1).
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Without loss of generality, we assume there exist a 0 ≤ λ0 < 1 such that F (1, λ0) ≥

F (1, 1).

However, F (1, λ) = λF ( 1
λ
, 1), and as λ → ∞, F ( 1

λ
, 1) → F (0, 1) > 0. Thus

F (1, λ)→∞, as λ→∞. That means, there exists a λ1 ∈ (λ0,∞) such that F (1, λ1)

achieves a minimum in (λ0,∞). Hence, G2(1, λ1) = 0. Note that function F (a, b) is a

“ray” function, i.e. F (ca, cb) = cF (a, b). Thus using the fact that F (1, λ) = λF ( 1
λ
, 1),

we can have G1( 1
λ
, 1) = 0. And it is easy to calculate that G1(1, λ1) = G1( 1

λ
, 1) = 0.

However, 0 = 1G1(1, λ1) + λ1G2(1, λ1) = F (1, λ1). F (1, λ1) = 0 means thataX̃XX1

bX̃XX2

 YYY , which conflicts with the assumption. �

Proof of Proposition 1.

Since S(βββ) ⊆ S(ηηη) = SY |X , d1 ≤ d, there exists a matrix AAA, which satisfies βββ = ηηηAAA.

Thus, V2(βββ>XXX,YYY ) = V2(AAA>ηηη>XXX,YYY ).

Suppose the single value decomposition of AAA is UUUDDDVVV >, where UUU is a d×d orthog-

onal matrix, VVV is a d1×d1 orthogonal matrix, and DDD is a d×d1 diagonal matrix with

non-negative numbers on the diagonal. It is easy to prove that all non-negative values

on the diagonal of DDD are 1. According to Székely, Rizzo, et al. (2009), Theorem 3,

(ii),

V2(βββ>XXX,YYY ) = V2(VVVDDDUUU>ηηη>XXX,YYY ) = V2(DDDUUU>ηηη>XXX,YYY ).

Let UUU>ηηη>XXX = (X̃XX1, . . . , X̃XXd)
>. Since all non-negative values on the diagonal of DDD

are 1, and DDD>UUU>ηηη>XXX = (X̃XX1, . . . , X̃XXd1)>, by Lemma 1, we get

V2(DDDUUU>ηηη>XXX,YYY ) ≤ V2(UUU>ηηη>XXX,YYY ).
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The equality holds if and only if d = d1. According to Székely, Rizzo, et al. (2009),

Theorem 3, (ii)

V2(UUU>ηηη>XXX,YYY ) = V2(ηηη>XXX,YYY ).

Thus

V2(βββ>XXX,YYY ) ≤ V2(ηηη>XXX,YYY ),

and equality holds if and only if S(βββ) = S(ηηη). �

Proof of Proposition 2.

For the βββ and ηηη in Proposition 2, there exists a rotation matrix QQQ such that βββQQQ =

(ηa, ηb), and S(ηηηa) ⊆ S(ηηη), and S(ηηηb) ⊆ S(ηηη)⊥, where S(ηηη)⊥ is the orthogonal space

of S(ηηη).

Since YYY ηηη>b XXX|ηηη>XXX and P>BBB(ΣΣΣX)XXX Q>BBB(ΣΣΣX)XXX, therefore

 YYY

ηηη>XXX

 ηηη>b XXX.

According to Proposition 4.3 (Cook, 1998),

 YYY

ηηη>aXXX

 ηηη>b XXX.

LetWWW 1 =

ηηη>aXXX
0

, VVV 1 = YYY ,WWW 2 =

 0

ηηη>aXXX

, and VVV 2 = 0, then (WWW 1,VVV 1) (WWW 2,VVV 2).

According to Székely, Rizzo, et al. (2009), Theorem 3, (iii),

V2(WWW 1 +WWW2,VVV 1 + VVV 2) < V2(WWW 1,VVV 1) + V2(WWW2,VVV 2),
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that is

V2(QQQ>βββ>XXX,YYY ) = V2(βββ>XXX,YYY ) < V2(ηηη>aXXX,YYY ) ≤ V2(ηηη>XXX,YYY ).�
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Chapter 4

Canonical Analysis and Dual

Central Subspace Estimation via

Distance Covariance1

1Chen, X. and Yin, X. To be Submitted to [Computational Statistics & Data Analysis].
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Abstract

In this article, we extend Distance Covariance (DCOV) methods to Canonical Corre-

lation Analysis (CCA), termed as Canonical Distance Covariance Analysis (CDCA),

where we explore the relationship between two multivariate sets of variables. Com-

pared with traditional CCA, CDCA captures both nonlinear and linear relationship.

In addition, we extend DCOV to estimate the dual central subspace (DCS)–that is

to find the basis that span the subspace of Y as well as the basis that span the sub-

space of X–by adding another constraint in the optimization problem. This approach

keeps the model-free advantage, and its performance is investigated through multiple

simulation examples and a real data analysis.

Key Words: Distance Covariance; Dual Central subspace; Projective Resampling;

Sufficient Dimension Reduction.

4.1 Introduction

Suppose there are two sets of variables: Y a q× 1 vector and X a p× 1 vector. If one

set, say X, is known as the predictor, then sufficient dimension reduction (SDR; Li

1991; Cook 1994; Cook 1996) can be used as a methodology for reducing the dimen-

sion of X while preserving the regression relation with response Y. However, there

are cases that the role of predictor and response is not important, but the relation-

ship between them is interesting. Methods for dimension reduction in multivariate

association investigate this kind of problem. Canonical Correlation Analysis (CCA),

introduced by Hotelling (1936), is a standard method in multivariate analysis to ex-

tract pairwise linear relationship between two random vectors, by maximizing their

correlation. Kettenring (1971) extended CCA to multiple sets, by maximizing a gen-
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eralized measure of correlation between the random vectors. Burg and Leeuw (1983)

first proposed a method, termed nonlinear canonical correlation analysis, using an

alternating least squares algorithm. Yin (2004) used Kullback-Leibler (KL) informa-

tion to find linear and nonlinear relationships between two sets of random vectors.

Yin and Sriram (2008), Iaci et al. (2008) and Iaci, Sriram, and Yin (2010) extended

this idea to independent groups and multiple sets of random vectors.

Importantly, all of these CCA methods require that the number of coefficient vectors

from both sets that provide the dimension reduction be equal. While this restriction

simplifies the problem, if the number of coefficient vectors that recover the true asso-

ciations between the random vectors is not equal then this could result in a critical

loss of information. Therefore, methods that allow the number of coefficient vectors

to be different and thus, provide a sufficient dimension reduction, are crucial in mul-

tivariate analysis. Iaci, Yin, and Zhu (2015) introduced the Dual Central Subspaces

(DCS), which provides a dimension reduction of both vectors without requiring the

dimensions of the reduction to be equal.

Some traditional methods in dimension reduction can be extended for estimating

the Dual Central Subspaces. Since sliced inverse regression (SIR; Li 1991) method,

many statistical studies have focused on dimension reduction in a regression setting,

for example, Sliced Average Variance Estimate (SAVE; Cook and Weisberg 1991),

Principal Hessian Directions (PHD; Li 1992), Minimum Average Variance Estimate

(MAVE; Xia et al. 2002). All of these methods consider only a univariate response

and thus, dimension reduction is performed only on the predictor variables. A few

methods have been developed in a multivariate regression setting, but the dimension

reduction is focused only on the predictors; see for example Cook and Setodji (2003),

Yin and Bura (2006) and Li, Wen, and Zhu (2008). Methods for sufficient dimen-

sion reduction, especially with a multivariate response, such as Zhu, Zhu, and Wen
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(2010) and Setodji and Cook (2004), could also be considered to develop a method

to identify the DCS. More recently, Cook, Li, and Chiaromonte (2010) developed an

envelope model for multivariate linear regression that not only reduces the dimension

of the predictors, but also eliminates the noninformative responses in order to obtain

a more efficient estimator. While their method and those of others, such as Su and

Cook (2011), Su and Cook (2012), and Su and Cook (2013), have made significant

advances in this area, the focus of these techniques are only on the regression mean

function for a specified regression model. The proposed method of Li et al. (2003) in

order to achieve a dimension reduction in a multivariate response regression setting

could be considered for the identification of the DCS, however the linearity conditions

and the exhaustive nature of recovering all the directions using SIR based method

are viewed to be somewhat restrictive. Iaci, Yin, and Zhu (2015) considered a higher-

order information measure based on the Kullback-Leibler (KL) divergence, which is

able to detect both linear and nonlinear relationships that exist between random vec-

tors.

More recently, Sheng and Yin (2013) and Sheng and Yin (2015) developed a novel

method using distance covariance for sufficient dimension reduction (Székely, Rizzo,

Bakirov, et al., 2007; Székely, Rizzo, et al., 2009). The method does not require

linearity condition or constant covariance condition, or any particular distribution on

X, X|Y or Y |X. These advantages enable the method to work effectively under a va-

riety of X: X could be normal, non-normal but continuous, or discrete or categorical.

Together with projective resampling method, DCOV is generalized to multivariate

response setting. In this article, we extend DCOV to canonical analysis as Canonical

Distance Covariance Analysi (CDCA) and to estimate DCS.

The article is organized as follows: In Section 4.2.2 we introduce the procedure of

the CDCA, which extends distance covariance method to extract pairwise relation
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between two sets. The extension of DCOV to the identification of the DCS and

computational aspects of our approach are described in Sections 4.2.3 and 4.2.4. Es-

timation of diemnsion is in Section 4.2.5. Simulation studies and the analysis of the

Los Angeles County dataset that was initially investigated in Shumway, Azari, and

Pawitan (1988) to gain further insight into the associations that exist between mor-

tality and environmental conditions using our method are in Section 4.3. A short

discussion for our methods is in Section 4.4.

4.2 Methodology

4.2.1 Distance covariance as a sufficient dimension reduction

tool

DCOV is introduced by Székely, Rizzo, Bakirov, et al. (2007) as a new measure of

multivariate dependence. Let ZZZ1 ∈ Rp,ZZZ2 ∈ Rq be random variables, where p and

q are positive integers. Let V(ZZZ1,ZZZ2) be the distance covariance between ZZZ1 and

ZZZ2. The squared distance covariance can be defined as the weighted L2 norm of the

distance between the joint characteristic function of the random variables and the

product of their marginal characteristic functions:

V2(ZZZ1,ZZZ2) =

∫
Rp+q
|fZZZ1,ZZZ2(t, s)− fZZZ1(t)fZZZ2(s)|2w(t, s)dtds

where fZZZ1 ,fZZZ2 ,and fZZZ1,ZZZ2 are the characteristic functions of ZZZ1,ZZZ2,and ZZZ1,ZZZ2 respec-

tively. The weight function w(t, s) = (cpcq|s|1+p
p |t|1+q

q )−1, where cq, cq are constants, is

chosen as positive. An equivalent form of squared DCOV is given by Székely, Rizzo,
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et al. (2009) under finite assumption of E|ZZZ1| and E|ZZZ2| as

V2(ZZZ1,ZZZ2) = E|ZZZ1 −ZZZ ′1||ZZZ2 −ZZZ ′2|+ E|ZZZ1 −ZZZ ′1|E|ZZZ2 −ZZZ ′2|

−E|ZZZ1 −ZZZ ′1||ZZZ2 −ZZZ ′′2| − E|ZZZ1 −ZZZ ′′1|E|ZZZ2 −ZZZ ′2|,

where (ZZZ1,ZZZ2),(ZZZ ′1,ZZZ
′
2),(ZZZ ′′1,ZZZ

′′
2) are i.i.d. distributed.

DCOV equals to 0 if and only if two random vectors are independent (Székely, Rizzo,

Bakirov, et al., 2007). Based on this property, Sheng and Yin (2013) and Sheng and

Yin (2015) proposed DCOV as a sufficient dimension reduction tool. Suppose βββ is a

p × d matrix, where 1 ≤ d ≤ q. The solution to the following optimization problem

will yield a basis of the central subspace.

max
βββTΣΣΣXβββ=Id

V2(βββTX, Y ) (4.1)

under E|X| < ∞ and E|Y | < ∞. So throughout the article we assume E|X| < ∞

and E|Y | <∞. The constraint in the optimization problem guarantees the solution

of βββ in the same scale and the optimization solver does not diverge.

Sheng and Yin (2013) and Sheng and Yin (2015) developed the DCOV method for

the case that the response is a scalar. Chen and Yin (2016) extended DCOV method

to multivariate response. SupposeXXX is p×1 random vector, YYY is q×1 random vector,

and βββ is a p × d matrix, where 1 ≤ d ≤ q. A basis of the central subspace can be

obtained by solving the following optimization problem.

max
βββTΣΣΣXβββ=Id

V2(βββTXXX,YYY ). (4.2)

under E|XXX| < ∞ and E|YYY | < ∞. Sheng and Yin (2013) and Sheng and Yin (2015)

demonstrated that under some mild conditions, the solution to (1) always spans the
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central subspace. Chen and Yin (2016) generalized the conclusion to multivariate

response cases for (2).

Based on the sample version of squared distance covariance V2
n(βββTX,Y) proposed by

Székely, Rizzo, Bakirov, et al. (2007), a sample version for multivariate response can

be defined as

V2(βββ>XXX,YYY ) =
1

n2

n∑
k,l=1

Akl(βββ)Bkl, (4.3)

where, for k, l = 1, · · · , n,

Akl(βββ) = akl(βββ)− āk.(βββ)− ā.l(βββ) + ā..(βββ)

akl(βββ) = |βββTXk − βββTXl|, āk.(βββ) =
1

n

n∑
l=1

akl(βββ),

ā.l(βββ) =
1

n

n∑
k=1

akl(βββ), ā..(βββ) =
1

n2

n∑
k,l=1

akl(βββ).

Similarly, define bkl = |YYY k − YYY l| and Bkl = bkl − b̄k. − b̄.l + b̄.., where | · | is the

Euclidean norm in the respective dimension. Replacing ΣΣΣX with its sample version

Σ̂ΣΣX , the estimated basis matrix of the central subspace is

ηηηn = arg max
βββT Σ̂ΣΣXβββ=Id

V2
n(βββ>XXX,YYY ). (4.4)

We can solve this nonlinear optimization problem using Sequential Quadratic Pro-

gramming method.

4.2.2 Canonical distance covariance analysis (CDCA)

Canonical correlation analysis (CCA) is the most well-known multivariate methods

that explore the amount of linear relationship between two sets of variables, XXX and
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YYY . Suppose that XXX is a p × 1 random vector, YYY is a q × 1 random vector, and XXX

and YYY have zero mean and covariance matrix ΣΣΣXXXYYY . Consider two linear combination

aaaTXXX and bbbTYYY , the goal of CCA is to find the vectors of aaa and bbb that maximize ρ(aaa, bbb),

where ρ(aaa, bbb) is defined as

ρ(aaa, bbb) =
aaaTΣΣΣXXXYYY bbb

(aaaTΣΣΣXXXaaabbbTΣΣΣYYY bbb)1/2
.

Equivalently, CCA is to solve the following optimization problem for aaa and bbb:

max
aaaTΣΣΣXaaa=1
bbbTΣΣΣY bbb=1

aaaTΣΣΣXXXYYY bbb

However, CCA fails when the relationship is nonlinear. In order to solve this problem,

Yin (2004) developed a technique based on an information theory which enables a

generalized CCA to capture nonlinear relationship. Recently, Iaci and Sriram (2013)

applied this method using beta-divergence and power divergence, and Mandal and

Cichocki (2013) generalized their method.

We propose a new method which uses distance covariance to capture the nonlinear

relationship between two sets of variables. The problem can be defined as to find the

vectors of aaa and bbb that maximize the squared distance covariance

max
bbb>ΣΣΣXbbb=1
aaa>ΣΣΣY aaa=1

V2(bbb>XXX,aaa>YYY ).

While estimating the coefficient vectors aaa and bbb simultaneously, that is < âaa, b̂bb >=

arg maxbbb>ΣΣΣXbbb=1
aaa>ΣΣΣY aaa=1

V2(bbb>XXX,aaa>YYY ) may result in solving nonlinear optimization problem

with many parameters, we propose two different approaches dividing this procedure

into steps that estimate aaa and bbb separately:
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Approach 1 Estimate the coefficient vectors bbb and aaa, i.e. b̂̂b̂b = arg maxbbb>Σ̂ΣΣXbbb=1 V2
n(bbb>X,YYY )

and â̂âa = arg maxaaa>Σ̂ΣΣY aaa=1 V2
n(X, aaa>YYY ) at the same time. This means that we obtain

the estimate of â̂âa using XXX, not bbb>XXX, in the squared distance covariance.

Approach 2 After Calculating

b̂̂b̂b = arg max
bbb>Σ̂ΣΣXbbb=1

V2
n(bbb>X,YYY ),

obtain aaa with the projection bbb>XXX,

â̂âa = arg max
aaa>Σ̂ΣΣY aaa=1

V2
n(̂b̂b̂b>X, aaa>YYY );

The main difference between these two approaches is whether to use b̂bb to calculate âaa

or not. In both two approaches described above, DCOV method with multivariate

response is used in the optimization problem to obtain estimates of aaa and bbb, we

call them method “Approach 1 DCOV0” and “Approach 2 DCOV0” respectively.

Chen and Yin (2016) introduced two derivatives of DCOV method with projective

resampling on the multivariate response, DCOV1 and DCOV2. When combining

with the procedure of Approach 1 and Approach 2, we can have methods “Approach

1 DCOV1”,“Approach 2 DCOV1”,“Approach 1 DCOV2”, and “Approach 2 DCOV2”.

The optimization problem of these methods are summarized briefly in Table 4.1, where

ttti, i = 1, ...,m is a random direction that the multivariate response is projected onto,

and m is the total number of random directions. Once the first pair of the directions

is estimated, the search for the second pair of the directions is the same way as before

but in the space that is orthogonal to the first direction. We compare six models and

classical CCA in the simulation section.
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Table 4.1: Methods for CDCA

method estimate bbb estimate aaa

Approach1 DCOV0 max
bbb>Σ̂ΣΣXbbb=1

V2
n(bbb>X,YYY ) max

aaa>Σ̂ΣΣY aaa=1
V2
n(X, aaa>YYY )

Approach2 DCOV0 max
bbb>Σ̂ΣΣXbbb=1

V2
n(bbb>X,YYY ) max

aaa>Σ̂ΣΣY aaa=1
V2
n (̂b̂b̂b>X, aaa>YYY )

Approach1 DCOV1∗ max
bbb>Σ̂ΣΣXbbb=1

V2(bbb>X, ttti>Y) max
aaa>Σ̂ΣΣY aaa=1

V2(ttt>i X, aaa>Y)

Approach2 DCOV1∗ max
bbb>Σ̂ΣΣXbbb=1

V2(bbb>X, ttti>Y) max
aaa>Σ̂ΣΣY aaa=1

V2 (̂b̂b̂b>X, aaa>Y)

Approach1 DCOV2 max
bbb>Σ̂ΣΣXbbb=1

m∑
i=1
V2(bbb>X, ttti>Y) max

aaa>Σ̂ΣΣY aaa=1

m∑
i=1
V2(ttt>i X, aaa>Y)

Approach2 DCOV2 max
bbb>Σ̂ΣΣXbbb=1

m∑
i=1
V2(bbb>X, ttti>Y) max

aaa>Σ̂ΣΣY aaa=1
V2 (̂b̂b̂b>X, aaa>Y)

∗ Approach1 DCOV1 and Approach 2 DCOV1: For each ttti, we obtain esti-
mates, b̂bbi and âaai, the final estimates b̂bb and âaa can be obtained by singular value

decomposition of the
∑m
i=1 b̂bbib̂bb

>
i ,

∑m
i=1 âaaiâaa

>
i , respectively.

4.2.3 The Dual Central Subspaces

Consider two sets of random vectors, X is p × 1 and Y is q × 1. The ultimate goal

of sufficient dimension reduction is to search a number of linear combinations of X,

say βββ>X, where βββ is a p× d matrix, d < p, such that Y depends on X only through

βββ>X. That is,

Y X|βββTX.

The column space of βββ is called S(βββ), and the intersection of such subspaces is defined

as the central subspace, denoted by SY |X. By exchange the role of X and Y, we can

define the CS of Y as SX|Y, which plays an important role in reducing the dimension

of Y sufficiently.

In the sense of treating X and Y equally and reducing the dimension of both vari-

ables, Iaci, Yin, and Zhu (2015) defined the Dual Central Subspaces (DCS) as the

combination of SY|X and SX|Y. Different from the linear combination in usual canon-

67



ical approach, the dimensions of the central subspaces SY|X and SX|Y, dx and dy can

differ in DCS. Iaci, Yin, and Zhu (2015) also demonstrated the difference between

DCS and CCA and its extensions with an example in their paper. If the true di-

mension of central subspace differs, that is dx 6= dy, making the reduced dimensions

equal will underestimate the CS with higher dimension or overestimate the CS with

lower dimension. This calls for the necessity of recovering DCS while studying the

multivariate association.

The proposition below suggests ways to recover the DCS.

Proposition 5 (Iaci, Yin, and Zhu, 2015) Let BBB and AAA be the base for SY|X and

SX|Y respectively. The following conditions are equivalent:

(i) Y X|BBB>X and Y X|AAA>Y,

(ii) Y X|BBB>X and Y BBB>X|AAA>Y,

(iii) AAA>Y X|BBB>X and Y X|AAA>Y.

Proposition 5 suggests that we can first reduce the dimension of X by treating Y as

response and then reduce the dimension of Y by treating X or BBB>X as response.

4.2.4 Estimating DCS via distance covariance

Assume the dimensions dx and dy are known. Let (xxxi, yyyi), i = 1, ..., n be the random

sample from (XXX,YYY ). The estimates of the matrices that form the bases of the DCS,

ÂAA and B̂BB can be obtained by finding the maximum of squared distance covariance:

(ÂAA,B̂BB) = arg max
BBB>Σ̂ΣΣXBBB=Idx
AAA>Σ̂ΣΣYAAA=Idy

V2(BBB>xxx,AAA>yyy)
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The two constraints BBB>Σ̂ΣΣXBBB = Idx , and AAA>Σ̂ΣΣYAAA = Idy guarantee the estimated

directions have unit length and are orthogonal to each other. Here, Σ̂ΣΣX and Σ̂ΣΣY are

the sample covariance matrixes for XXX and YYY , respectively.

As the discussion in section 4.2.2, there are too many parameters when we estimate ÂAA

and B̂BB simultaneously. We propose two approaches to estimate ÂAA and B̂BB separately,

with difference of the estimation of AAA depends on B̂BB or not. The procedure of these

two approaches are described as Approach 3 and Approach 4 below, with multivariate

response in the squared distance covariance (DCOV0) as the objective function in

optimization problem.

Approach 3 Estimate B̂̂B̂B with YYY as response, and Â̂ÂA withXXX as response. This means,

we can calculate B̂̂B̂B = arg maxBBB>Σ̂ΣΣXBBB=Idx
V2
n(BBB>x, yyy) and Â̂ÂA = arg maxAAA>Σ̂ΣΣYAAA=Idy

V2
n(x,AAA>yyy)

at the same time, since the two steps do not depend on each other;

Approach 4 Estimate B̂̂B̂B with YYY as response, and then Â̂ÂA with BBB>XXX as response.

That is, after calculating

B̂̂B̂B = arg max
BBB>Σ̂ΣΣXBBB=Idx

V2
n(BBB>x, yyy),

we obtain AAA with the projection B̂̂B̂B>xxx,

Â̂ÂA = arg max
AAA>Σ̂ΣΣYAAA=Idy

V2
n(B̂̂B̂B>x,AAA>yyy);

We call the above two approaches “Approach3 DCOV0” and “Approach4 DCOV0”,

respectively, since DCOV0 is used in the procedure. When using DCOV derivatives

with projective resampling on the multivariate response, we can develop methods

“Approach 3 DCOV1”,“Approach 4 DCOV1”,“Approach 3 DCOV2” and “Approach

4 DCOV2”, whose optimization problems are summarized in Table 4.2. Note that ttti,
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i = 1, ...,m, is a random direction that the multivariate response is projected onto,

and m is the total number of random directions. For DCOV1, m estimates of B̂BBi is

obtained for each random direction ttti, i = 1, ...,m. The estimate B̂BB is calculated by

singular value decomposition of the sum of B̂BBiB̂BBi

>
.

Table 4.2: Methods for DCS

method estimate BBB estimate AAA

Approach3 DCOV0 max
BBB>Σ̂ΣΣXBBB=IIIdx

V2
n(BBB>X,YYY ) max

AAA>Σ̂ΣΣYAAA=IIIdy

V2
n(X,AAA>YYY )

Approach4 DCOV0 max
BBB>Σ̂ΣΣXBBB=1

V2
n(BBB>X,YYY ) max

AAA>Σ̂ΣΣYAAA=IIIdy

V2
n(Â̂ÂA>X,AAA>YYY )

Approach3 DCOV1∗∗ max
BBB>Σ̂ΣΣXBBB=IIIdx

V2(BBB>X, ttti>Y) max
AAA>Σ̂ΣΣYAAA=IIIdy

V2(ttt>i X,AAA>Y)

Approach4 DCOV1∗∗ max
BBB>Σ̂ΣΣXBBB=IIIdx

V2(BBB>X, ttti>Y) max
AAA>Σ̂ΣΣYAAA=IIIdy

V2(ttt>i B̂̂B̂B
>X,AAA>Y)

Approach3 DCOV2 max
BBB>Σ̂ΣΣXBBB=IIIdx

m∑
i=1
V2(BBB>X, ttti>Y) max

AAA>Σ̂ΣΣYAAA=IIIdy

m∑
i=1
V2(ttt>i X,AAA>Y)

Approach4 DCOV2 max
BBB>Σ̂ΣΣXBBB=IIIdx

m∑
i=1
V2(BBB>X, ttti>Y) max

AAA>Σ̂ΣΣYAAA=IIIdy

m∑
i=1
V2(ttt>i B̂̂B̂B

>X,AAA>Y)

∗ Approach1 DCOV1 and Approach 2 DCOV1: For each ttti, we obtain estimates, B̂BBi and
ÂAAi, the final estimates B̂BB and ÂAA can be obtained by singular value decomposition of the∑m
i=1 B̂BBiB̂BB

>
i ,

∑m
i=1 ÂAAiâaa

>
i , respectively.

4.2.5 Estimating the dimensions of the DCS

In practice, the dimension of the dual central subspaces < dx, dy >, is unknown and

needs to be estimated. There are multiple ways that are developed to estimate the

central subspace. Li (1991) and Li (1992) proposed a sequential test based on a chi-

squared statistic. Cook and Yin (2001) proposed the permutation test to determine

the structural dimension. Ye and Weiss (2011), Zhu and Zeng (2006), and Sheng

and Yin (2015) used bootstrap method to estimate d. Iaci, Yin, and Zhu (2015)

modified bootstrap method to estimate the dimensions of the DCS using squared

vector correlation coefficient. In this section, we adopt this idea by using the accuracy
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measured between the two subspaces. Two measures of accuracy are used in the

simulation study:

1. Distance between the projection matrix (Li, Zha, and Chiaromonte, 2005):

∆m(Ŝ1,S2) = ||PŜ1
−PS1 ||

where || · || is the maximum singular value of a matrix, S1,S2 are two same

dimensional subspace, and PŜ1
and PS2 are the orthogonal projections onto the

subspace Ŝ1 and S2 respectively. The smaller the ∆m is, the better the estimate

is.

2. Hotelling’s squared vector correlation coefficient:

ρ2(Â̂ÂA) = |AAA>Â̂ÂAÂ̂ÂA>AAA| =
p∏
i

λi,

where λi are the eigenvalues of AAA>Â̂ÂAÂ̂ÂA>AAA, and 0 ≤ ρ(Â̂ÂA) ≤ 1. The larger the

ρ(Â̂ÂA) is, the better the estimate is.

Suppose BBBdx and AAAdy are the true bases for SY|X and SX|Y, respectively. Let SBBBk

and SAAAl be subspace for a fixed pair of dimensions k and l. Calculate the estimated

dual subspace on the original data, denote SB̂BBk and SÂAAl . Then calculate the bootstrap

estimated dual subspaces S
B̂BB
b
k

and S
ÂAA
b
l
. If k = dx, and l = dy, the variabilities of S

B̂BB
b
k

and S
ÂAA
b
l

are expected to be small, i.e. S
B̂BB
b
k

and SBBBk estimate the central subspace

SY|X, and S
ÂAA
b
l

and SAAAl estimate central subspace of SX|Y. Use accuracy ∆m(Ŝ1,S2)

to measure the distance between the S
B̂BB
b
k

and SBBBk , and S
ÂAA
b
l

and SAAAl .

Given {(Xi,Yi)}, 1 ≤ i ≤ n, the following procedure can be used to estimate the

dimensions of the dual central subspaces:
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1. For the fixed dimensions of (k, l), calculate the SB̂BBk and SÂAAl based on the original

data;

2. Randomly resample from {(Xi,Yi)}, 1 ≤ i ≤ n, with replacement to generate

N bootstrap samples each with size n, denote by {(X(j)
i ,Y

(j)
i )} for 1 ≤ j ≤ N ;

3. For each bootstrap sample {(X(j)
i ,Y

(j)
i )} for 1 ≤ j ≤ N , calculate the bootstrap

subspace S
B̂BB
b(j)
k

and S
ÂAA
b(j)
l

, for 1 ≤ j ≤ N ;

4. Calculate the distance ∆m(SB̂BBk ,SB̂BBb(j)k

), and ∆m(SÂAAl ,SÂAAb(j)l

), for 1 ≤ j ≤ N

5. Calculate the average ∆m,k,l = [∆m(SB̂BBk ,SB̂BBb(j)k

) + ∆m(SÂAAl ,SÂAAb(j)l

)]/2 for the

estimation of the variability of the dual subspace. Find a pair of (k, l) that the

smallest value of average ∆̄m,k,l, with smallest standard deviation occurs.

4.3 Numerical studies

In this section, we assess the efficiency of the proposed methods through simulations

and application to a real data. In the simulations, we compare the performance

of six models for CDCA and DCS that described in Sections 4.2.2 and 4.2.4. For

CDCA, classic canonical correlation analysis is also conducted to compare with the

performance of our methods. Two measures of accuracy in Section 4.2.5 are presented

to describe the the distance between the two subspaces.

4.3.1 Simulations

Here we simulate several models. For each model setting, 100 replicates of the data

are generated. The comparison is made for three sample size n = 100, 200, and 300.

For DCOV1 and DCOV2, we choose the number of random directions m = 50.
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Canonical distance covariance analysis

In this section, we simulate examples to conduct canonical distance covariance anal-

ysis.

Model 4 Let p = 6, q = 4, XXX ∼ N(0, I6). The four dimensional response random

vector YYY is generated as:

Y1 = 1 + (βββT1XXX)2 + ε1,

Y2 = ε2,

Y3 = ε3,

Y4 = ε4.

where βββ = (0, 2, 1, 0, 0, 0), and εεε ∼ N4(0,∆∆∆) with

∆∆∆ =


1 −.5 0

−.5 1 0

0 0 I2


The results for Model 4 is shown in Table 4.3. All DCOV methods perform better

than traditional CCA with lower ∆̄m(b̂bb) and ∆̄m(âaa), and higher ρ̄(b̂bb) and ρ̄(âaa), this

is because the relationship in this model is quadratic, and CCA cannot capture this

nonlinear pattern. The performance of recovering the directions gets better when

sample size increase, indicating consistency. Overall, Approach 2 outperforms Ap-

proach 1, suggesting that recovering aaa based on the distance covariance of bbb>XXX is

better then based on that of XXX.

Model 5 Now consider a linear relationship. We use the same model as Model 4

except that Y1 = βββT1XXX + ε1.
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Table 4.4 compares the results of different approach of recovering central subspace

for Model 5, as well as the results from CCA. CCA performs well in this case since

the relationship between XXX and YYY is linear. The DCOV methods perform well under

both estimation approaches. The performance of recovering the directions gets better

when sample size increases, indicating consistency. Overall, Approach 2 outperforms

Approach 1, suggesting that recovering aaa based on the distance covariance of bbb>XXX is

better then based on that of XXX.

Dual Central Subspace

We investigate the performance of our methods for DCS by studying two examples.

These two examples are similar to examples provided by Wang, Yin, and Critchley

(2015). There are linear and nonlinear relationships between two sets of random

Table 4.3: Comparison based on Model 4

n Order DCOV ∆̄m(b̂bb) SE∆m (b̂bb) ρ̄(b̂bb) SEρ(b̂bb) ∆̄m(âaa) SE∆m (âaa) ρ̄(âaa) SEρ(âaa)
100 Approach1 DCOV0 0.4209 0.2876 0.7409 0.3041 0.4663 0.2214 0.7339 0.2374

DCOV1 0.2337 0.0976 0.9359 0.0579 0.3055 0.1470 0.8852 0.1146
DCOV2 0.1413 0.1067 0.9687 0.0964 0.6944 0.2120 0.4732 0.2736

Approach2 DCOV0 0.4209 0.2876 0.7409 0.3041 0.4757 0.2461 0.7136 0.2628
DCOV1 0.2337 0.0976 0.9359 0.0579 0.1689 0.0726 0.9662 0.0272
DCOV2 0.1413 0.1067 0.9687 0.0964 0.3087 0.1013 0.8944 0.0731

CCA 0.8160 0.1927 0.2974 0.2778 0.9738 0.0675 0.0472 0.1077
200 Approach1 DCOV0 0.1818 0.0919 0.9585 0.0435 0.2929 0.1494 0.8920 0.1117

DCOV1 0.1645 0.0575 0.9696 0.0200 0.2568 0.1316 0.9169 0.0929
DCOV2 0.1066 0.1175 0.9749 0.1056 0.5374 0.2199 0.6632 0.2508

Approach2 DCOV0 0.1818 0.0919 0.9585 0.0435 0.3261 0.1756 0.8630 0.1532
DCOV1 0.1645 0.0575 0.9696 0.0200 0.1366 0.0528 0.9785 0.0168
DCOV2 0.1066 0.1175 0.9749 0.1056 0.2727 0.0966 0.9163 0.0961

CCA 0.7878 0.1962 0.3413 0.2845 0.9773 0.0337 0.0437 0.0637
300 Approach1 DCOV0 0.1393 0.0506 0.9780 0.0159 0.2529 0.1107 0.9238 0.0652

DCOV1 0.1382 0.0548 0.9779 0.0188 0.1945 0.0841 0.9551 0.0400
DCOV2 0.0882 0.0871 0.9846 0.0509 0.4032 0.1831 0.8041 0.1847

Approach2 DCOV0 0.1393 0.0506 0.9780 0.0159 0.2543 0.1139 0.9224 0.0686
DCOV1 0.1382 0.0548 0.9779 0.0188 0.1144 0.0406 0.9852 0.0099
DCOV2 0.0882 0.0871 0.9846 0.0509 0.2558 0.0569 0.9313 0.0291

CCA 0.7521 0.2184 0.3872 0.3066 0.9726 0.0608 0.0503 0.0956
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vectors XXX and YYY . For each example setting, 100 replicates of the data are generated.

The comparison is made for three sample size n = 100, 200, 300. For the two projective

resampling based method DCOV1 and DCOV2, we choose the number of random

directions m = 50, and transfer the multivariate response to 50 univariate responses.

For DCOV0, we treat the response as it is – multivariate form. The following models

are considered:

Model 6 Let p = 5, q = 4, XXX ∼ N(0, I5). The four dimensional response random

Table 4.4: Comparison based on Model 5

n Order DCOV ∆̄m(b̂bb) SE∆m (b̂bb) ρ̄(b̂bb) SEρ(b̂bb) ∆̄m(âaa) SE∆m (âaa) ρ̄(âaa) SEρ(âaa)
100 Approach1 DCOV0 0.1691 0.0640 0.9673 0.0247 0.1934 0.0779 0.9565 0.0327

DCOV1 0.1680 0.0643 0.9676 0.0242 0.1902 0.0877 0.9561 0.0415
DCOV2 0.1447 0.0756 0.9733 0.0315 0.2577 0.0766 0.9277 0.0420

Approach2 DCOV0 0.1691 0.0640 0.9673 0.0247 0.2024 0.0897 0.9510 0.0390
DCOV1 0.1680 0.0643 0.9676 0.0242 0.1686 0.0639 0.9675 0.0240
DCOV2 0.1447 0.0756 0.9733 0.0315 0.2441 0.0744 0.9348 0.0431

CCA 0.0889 0.0296 0.9912 0.0057 0.4750 0.0727 0.7691 0.0667
200 Approach1 DCOV0 0.1152 0.0473 0.9844 0.0125 0.1613 0.0618 0.9701 0.0227

DCOV1 0.1160 0.0431 0.9846 0.0108 0.1484 0.0527 0.9752 0.0160
DCOV2 0.1003 0.0504 0.9874 0.0157 0.2450 0.0583 0.9365 0.0285

Approach2 DCOV0 0.1152 0.0473 0.9844 0.0125 0.1608 0.0511 0.9715 0.0179
DCOV1 0.1160 0.0431 0.9846 0.0108 0.1348 0.0462 0.9796 0.0132
DCOV2 0.1003 0.0504 0.9874 0.0157 0.2420 0.0445 0.9394 0.0217

CCA 0.0579 0.0160 0.9964 0.0019 0.4536 0.0539 0.7914 0.0487
300 Approach1 DCOV0 0.0862 0.0344 0.9913 0.0069 0.1377 0.0408 0.9793 0.0115

DCOV1 0.0979 0.0361 0.9891 0.0077 0.1451 0.0428 0.9770 0.0131
DCOV2 0.0892 0.0577 0.9887 0.0253 0.2505 0.0464 0.9350 0.0229

Approach2 DCOV0 0.0862 0.0344 0.9913 0.0069 0.1373 0.0421 0.9793 0.0121
DCOV1 0.0979 0.0361 0.9891 0.0077 0.1301 0.0357 0.9817 0.0093
DCOV2 0.0892 0.0577 0.9887 0.0253 0.2490 0.0351 0.9367 0.0169

CCA 0.0414 0.0135 0.9981 0.0012 0.4517 0.0343 0.7948 0.0309
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vector YYY is generated as:

Y1 = 4 cos(BBBT
1XXX) + 0.3ε1,

Y2 = BBBT
1XXX + 0.5ε2,

Y3 = ε3,

Y4 = ε4.

where BBB1 = (1, 1, 0, 0, 0), AAA1 = (1, 0, 0, 0), AAA2 = (0, 1, 0, 0) and εεε ∼ N4(0, I4).

Table 4.5 shows the results of six methods to recover dual central subspaces for

Model 6. All the six methods perform well. For each method, ∆̄m decreases and ρ̄

increases with sample size increases, indicating consistency. Overall, Approach 2 out-

performs Approach 1, suggesting that recovering AAA based on the distance covariance

of BBB>XXX is better then based on that of XXX. A dataset of size n = 300 is selected to

illustrate the bootstrap method, with 100 bootstrap iterations. Table 4.6 shows the

results for different (k, l). We are looking for the smallest mean and least variabil-

ity. We can see that (k, l) = (1, 1) and (k, l) = (1, 2) has the similar smallest mean,

but (k, l) = (1, 2) has the least variability (0.0175 vs. 0.1409). So we will choose

(k, l) = (1, 2), which agrees with the true dimension of dual central subspaces.

Model 7 Let p = 5, q = 4, XXX ∼ N(0, I5). The four dimensional response random

vector YYY is generated as:

Y1 = 4 cos(BBBT
1XXX) + 0.3ε1,

Y2 = BBBT
1XXX + 0.5ε2,

Y3 = Y4 +X5 + 0.6ε3,

Y4 = ε4.
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where BBB1 = (1, 0, 1, 0, 0),BBB2 = (0, 0, 0, 0, 1), AAA1 = (1, 0, 0, 0), AAA2 = (0, 1, 0, 0), AAA3 =

(0, 0, 1,−1) and εεε ∼ N4(0,∆∆∆) with

∆∆∆ =


2 −1 0

−1 1 0

0 0 I2


The results of six methods to recover dual central subspaces for Model 7 is shown in

Table 4.7. Approach 2 outperforms Approach 1, suggesting that recovering AAA based

on the distance covariance of BBB>XXX is better then based on that of XXX. Table 4.8

shows the results for different (k, l). The smallest mean and least variability happen

at (k, l) = (2, 3), which identify the dimension of dual central subspaces correctly.

Table 4.5: Comparison based on Model 6

n Order DCOV ∆̄m(B̂BB) SE∆m (B̂BB) ρ̄(B̂BB) SEρ(B̂BB) ∆̄m(ÂAA) SE∆m (ÂAA) ρ̄(ÂAA) SEρ(ÂAA)
100 Approach1 DCOV0 0.1166 0.0410 0.9847 0.0107 0.2962 0.1943 0.8714 0.1833

DCOV1 0.1154 0.0443 0.9847 0.0115 0.2880 0.1786 0.8799 0.1656
DCOV2 0.1262 0.1130 0.9714 0.0635 0.4409 0.2238 0.7521 0.2317

Approach2 DCOV0 0.1166 0.0410 0.9847 0.0107 0.3106 0.1778 0.8687 0.1578
DCOV1 0.1154 0.0443 0.9847 0.0115 0.0938 0.0410 0.9881 0.0099
DCOV2 0.1262 0.1130 0.9714 0.0635 0.5510 0.2429 0.6181 0.2833

200 Approach1 DCOV0 0.0790 0.0299 0.9928 0.0052 0.2069 0.1248 0.9394 0.0824
DCOV1 0.0817 0.0286 0.9925 0.0049 0.2161 0.1252 0.9353 0.0806
DCOV2 0.0696 0.0863 0.9877 0.0714 0.4069 0.2284 0.7800 0.2422

Approach2 DCOV0 0.0790 0.0299 0.9928 0.0052 0.2009 0.1117 0.9448 0.0617
DCOV1 0.0817 0.0286 0.9925 0.0049 0.0651 0.0225 0.9947 0.0035
DCOV2 0.0696 0.0863 0.9877 0.0714 0.2946 0.2366 0.8466 0.2112

300 Approach1 DCOV0 0.0657 0.0271 0.9949 0.0037 0.1443 0.0784 0.9716 0.0370
DCOV1 0.0684 0.0234 0.9947 0.0036 0.1605 0.0919 0.9633 0.0431
DCOV2 0.0621 0.0615 0.9923 0.0339 0.3702 0.2236 0.8122 0.2109

Approach2 DCOV0 0.0657 0.0271 0.9949 0.0037 0.1451 0.0767 0.9716 0.0364
DCOV1 0.0684 0.0234 0.9947 0.0036 0.0540 0.0208 0.9963 0.0027
DCOV2 0.0621 0.0615 0.9923 0.0339 0.2018 0.1846 0.9189 0.1363
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Table 4.6: Bootstrap distance measure for Model 6

k l ∆̄m,k,l SE∆m,k,l

1 1 0.1489 0.1409
1 2 0.1604 0.0175
1 3 0.4215 0.1260
2 1 0.4402 0.1037
2 2 0.4745 0.1170
2 3 0.7224 0.1985
3 1 0.4240 0.0942
3 2 0.4970 0.1214
3 3 0.7746 0.1828

4.3.2 LA pollution data

In this section, we analyze the LA pollution data set, which is obtained from Shumway,

Azari, and Pawitan (1988), and was used to explore the effects of temperature and

pollution on daily mortality in Los Angeles (LA). The data set has 508 observa-

tions and 11 variables (daily records from 1970 to 1979). These 11 variables include

Table 4.7: Comparison based on Model 7

n Order DCOV ∆̄m(B̂BB) SE∆m (B̂BB) ρ̄(B̂BB) SEρ(B̂BB) ∆̄m(ÂAA) SE∆m (ÂAA) ρ̄(ÂAA) SEρ(ÂAA)
100 Simultaneous DCOV0 0.2383 0.0798 0.9310 0.0444 0.4909 0.1745 0.7288 0.1914

DCOV1 0.3446 0.1822 0.8431 0.1756 0.3583 0.1584 0.8467 0.1471
DCOV2 0.3107 0.1642 0.8672 0.1541 0.3839 0.2380 0.7964 0.2570

Sequential DCOV0 0.2383 0.0798 0.9310 0.0444 0.4802 0.1581 0.7446 0.1654
DCOV1 0.3446 0.1822 0.8431 0.1756 0.2859 0.1336 0.9005 0.0958
DCOV2 0.3107 0.1642 0.8672 0.1541 0.3169 0.2073 0.8569 0.1729

200 Simultaneous DCOV0 0.1606 0.0594 0.9679 0.0212 0.4074 0.0948 0.8251 0.0805
DCOV1 0.2216 0.0862 0.9392 0.0431 0.2743 0.1550 0.9009 0.1374
DCOV2 0.2613 0.1739 0.8955 0.1613 0.4192 0.2900 0.7409 0.3151

Sequential DCOV0 0.1606 0.0594 0.9679 0.0212 0.4055 0.0942 0.8267 0.0794
DCOV1 0.2216 0.0862 0.9392 0.0431 0.2437 0.1012 0.9304 0.0513
DCOV2 0.2613 0.1739 0.8955 0.1613 0.2369 0.1638 0.9172 0.1435

300 Simultaneous DCOV0 0.1339 0.0526 0.9774 0.0166 0.4192 0.1119 0.8118 0.1238
DCOV1 0.1627 0.0761 0.9647 0.0283 0.2546 0.1063 0.9239 0.0580
DCOV2 0.1909 0.1448 0.9387 0.1181 0.3961 0.2942 0.7573 0.3043

Sequential DCOV0 0.1339 0.0526 0.9774 0.0166 0.4112 0.0989 0.8211 0.1048
DCOV1 0.1627 0.0761 0.9647 0.0283 0.2342 0.0758 0.9394 0.0362
DCOV2 0.1909 0.1448 0.9387 0.1181 0.1607 0.1176 0.9604 0.0751
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Table 4.8: Bootstrap distance measure for Model 7

k l ∆̄m,k,l SE∆m,k,l

1 1 0.6473 0.1462
1 2 0.6647 0.1421
1 3 0.5537 0.1562
2 1 0.2046 0.0964
2 2 0.1332 0.0410
2 3 0.1090 0.0322
3 1 0.5217 0.1791
3 2 0.4263 0.1557
3 3 0.3992 0.1548

three mortality measures (total mortality, respiratory mortality and cardiovascular

mortality) which countes all deaths of LA area, two weather measures (temperature

and relative humidity), and six pollution measures including carbon monoxide, sulfur

dioxide, nitrogen dioxide, hydrocarbons, ozone, particulates. The data is also dis-

cussed by Iaci, Sriram, and Yin (2010) and Iaci, Yin, and Zhu (2015).

We apply our method to the data in order to identify the DCS with the mortality

variables as the multivariate response, and two weather measures and four pollution

measures as predictors. Note that sulfur dioxide, nitrogen dioxide are excluded since

they are highly correlated with other predictors. Thus the multivariate response vec-

tor is YYY = (Y1, Y2, Y3)>, where Y1 = total mortality, Y2 = respiratory mortality and

Y3 = cardiovascular mortality; the predictor vector XXX = (X1, ..., X3)>, where X1 =

temperature, X2 = relative humidity, X3 = carbon monoxide, X4 = hydrocarbons,

X5 = ozone, and X6 = particulates.

Table 4.9 shows results form the bootstrap method of Section 4.2.5 which estimates

the dimension of the DCS to be (k, l) = (1, 1). Table 4.10 shows the estimated di-

rection of the multivariate response, and Table 4.11 is the estimated direction of the

predictors. The loadings for the multivariate response indicate that Y1 = total mor-
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tality and Y2 = respiratory mortality contribute the most to the estimated direction,

while Y2 = respiratory mortality does not contribute to SY|X. For the estimated direc-

tion corresponding to the subspace SX|Y, X1 = temperature contribute most positive

to the estimated direction, and X3 = carbon monoxide, X4 = hydrocarbons and X6

= particulates contribute equally negative to the estimated direction. The plot of the

estimated directions of the multivariate response and the predictors is in Figure 4.1,

indicating linear relationship between these two estimated directions, which agrees

with Iaci, Yin, and Zhu (2015) very well. Projecting the data to the two estimated

directions, that is, let v = B̂BB
>
1 xxx and w = ÂAA

>
1 yyy, and fitting a linear regression model,

we get ŵ = −0.7033v.

Table 4.9: Bootstrap distance measure for LA pollution data

k l ∆̄m,k,l SE∆m,k,l

1 1 0.1381 0.0257
1 2 0.5430 0.1073
2 1 0.3398 0.1224
2 2 0.4486 0.1342
3 1 0.4954 0.0883
3 2 0.7428 0.2067

Table 4.10: Estimated direction of the multivariate response by Approch2 DCOV0
for LA pollution data

Variables ÂAA
total mortality 0.5875
respiratory mortality 0.0075
cardiovascular mortality 0.8095

4.4 Discussion

In this article, we extend DCOV method to canonical distance covariance analysis,

where we explore the relationships between two multivariate sets of variables. The
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Table 4.11: Estimated direction of the predictor by Approch2 DCOV0 for LA pollu-
tion data

Variables B̂BB
temperature 0.6585
relative humidity 0.2534
carbon monoxide -0.4162
hydrocarbons -0.3917
ozone 0.1255
particulates -0.3998
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Figure 4.1: Relationship between direction of multivariate response and direction of
predictors.

results show that comparing with the traditional CCA, our methods can capture linear

relationship as well as nonlinear relationship. We also use DCOV for recovering dual

central subspaces. The results show that all DCOV methods estimate the central
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subspaces of dual form with high accuracy. Two approaches for estimating AAA, –based

on XXX or BBB>XXX – have been proposed. The results indicate that the latter approach

recovers SY|X with higher accuracy. A bootstrap procedure is used to identify the

dimension of dual central subspace. Simulation examples show that this approach

can find the true < dx, dy > correctly. Asymptotic theory for the developed methods

may be established, following the development of Sheng and Yin (2013) and Sheng

and Yin (2015). Although the calculations can be tedious, the idea of the proofs is

very straightforward based on Sheng and Yin (2013) and Sheng and Yin (2015).
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Dual Variable Selection via

Distance Covariance & Future

Work1

1Chen, X. and Yin, X. To be Submitted to [Technometrics].
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Abstract

Existing variable selection methods in regression setting have focused on choosing

a subset of the predictor variables. However, for problems involving a multivariate

response, selecting subset of the response vector is also important. In this article,

we develop a new concept, termed the Dual Variable Selection (DVS), to propose a

method for simultaneously selecting subsets for each of the two random vectors, by

employing Distance Covariance (DCOV) method combined with LASSO (Tibshirani,

1996) penalty. This method is a model-free approach and does not need nonparamet-

ric smoothing. The performance of this method is investigated through simulation

studies and a real data analysis.

Key Words: Distance Covariance; Dual Variable Selection; LASSO; Sufficient

Dimension Reduction.

5.1 Introduction

The main difference between variable selection and sufficient dimension reduction

is that variable selection selects important individual variables, while sufficient di-

mension reduction (SDR) creates new variables via using all the original ones. When

people are interested in investigating the effect of original explanatory variables on the

response, variable selection is desirable. Many methods have been proposed for vari-

able selection. These include Model-based methods, for example, LASSO (Tibshirani,

1996), Smoothly Clipped Absolute Deviation (Fan and Li, 2001a), Dantzig selector

(Candes and Tao, 2007), and Adaptive LASSO (Zou, 2006); Model-free methods

(Li, Cook, and Nachtsheim, 2005), for example, Shrinkage inverse regression method

(Bondell and Li, 2009); Methods for ultrahigh dimensional data, for example, SIS
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(Fan and Lv, 2008), and Sequential SDR (Yin and Hilafu, 2015).

Chen, Sheng, and Yin (2016) developed a model free variable selection method us-

ing distance covariance. In their method, they used a LASSO penalty together with

squared distance covariance in the objective function, and solved the optimization

problem for the best direction. LASSO penalty forces the contribution of unimpor-

tant variable of the direction to zero.

In this article, we propose the idea of the Dual Variable Selection (DVS), where the

response is multivariate as that of the explanatory variables and we are interested

in selecting a subset of both sides. Inspired by DCOV variable selection method of

Chen, Sheng, and Yin (2016), we propose a dual variable selection procedure using

DCOV with a penalized approach. Section 5.2 describes the general idea and its

algorithm. Section 5.3 sets up model simulations and application of our method to a

real data, followed by a future work in Section 5.4.

5.2 Methodology

5.2.1 SDR and model-free variable selection

To facilitate our discussion, let BBB be a p × d matrix and let S(BBB) be the subspace

of Rp spanned by the column vectors of BBB. Let ΣΣΣX be the covariance matrix of X,

which is assumed to be nonsingular. Let PBBB(ΣΣΣX) denote the orthogonal projection

on to S(BBB) with respect to the inner product < aaa,bbb >= aaaTΣΣΣbbb. That is, PBBB(ΣΣΣX) =

BBB(BBBTΣΣΣXBBB)−1BBBTΣΣΣX . Let QBBB(ΣΣΣX) = I−PBBB(ΣΣΣX), where I is the identity matrix.

The ultimate goal of sufficient dimension reduction is to search a number of linear

combinations of X, say βββTX, where βββ is a p× d matrix, d < p, such that Y depends
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on X only through βββTX. That is:

Y X|βββTX,

where means independence. The column space of βββ, denoted by S(βββ), forms a

dimension reduction subspace (Li 1991; Cook 1996). The intersection of all such sub-

spaces, if itself is a dimension reduction subspace, is called the central subspace (Cook,

1996), and is denoted by SY |X. The dimension of SY |X, denoted by dim(SY |X) = d,

is called the structural dimension. Under mild conditions (Cook 1996; Yin, Li, and

Cook 2008), the central subspace is well-defined and unique. We assume central sub-

space exists throughout the paper.

Since SDR does not require any traditional model, Li, Cook, and Nachtsheim (2005)

proposed a model-free variable selection method using SDR. One common idea is to

add a penalty term to SDR method. Some methods are developed inspired by this

idea, following Ni, Cook, and Tsai (2005). For instance, Li and Nachtsheim (2012)

developed sparse SIR; Wang and Yin (2008) introduced sparse MAVE; Bondell and Li

(2009) proposed a shrinkage inverse regression method; Sheng, Chen and Yin (2016)

developed sparse DCOV method.

5.2.2 Dual variable selection

In this section, we define the Dual Sufficient Variable Selection (DSVS). Yin and

Hilafu (2015) gave a formal Sufficient Variable Selection (SVS) definition. Suppose

there is a p× p0 matrix βββ, (p0 ≤ p), where the columns of βββ consist of unit vectors of

ejs with jth element 1 and 0 otherwise, such that

YYY XXX|βββ>XXX,
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then the column space of βββ is called the Variable Selection Space. The Central

Variable Selection Space is defined as the intersection of all such variable selection

spaces, if itself satisfies the conditional independence condition above, denoted as

SVY|X with dimension s. SY|X ⊂ SVY|X, and d ≤ s. Also, if SY|X exists, then SVY|X
exists and is unique.

In order to select a subset of YYY , we define the Central Variable Selection Space

of YYY , denoted SVX|Y, by simply interchanging the roles of XXX and YYY in the above

definition. That is suppose there is a q × q0 matrix ααα, (q0 ≤ q), where the columns

of ααα consist of unit vectors of ejs with jth element 1 and 0 otherwise, such that

XXX YYY |ααα>YYY . In the sense of selecting subsets of both sides, the two sets of variables

can be treated equally and thus we term Dual Central Variable Selection Subspaces

as the combination of SVY|X and SVX|Y. We assume the dual central variable selection

subspaces exist throughout the paper.

5.2.3 Sparse DCOV as variable selection method

Chen, Sheng, and Yin (2016) developed sparse DCOV method for variable selec-

tion. Let XXX denote the predictor vector and Y denote a univariate response. DCOV

method for SDR is to find a matrix under Grassman manifold where the maximum

of squared distance covariance of the direction and response happens. By solving

a nonlinear optimization problem, we can find an estimated basis matrix ηηηn of the

central subspace. By adding a penalty term in the objective function, we can shrink

some coefficients in ηηηn to zero. The problem is to solve:

min
βββTΣΣΣXβββ=Id

−V2(βββTX, Y ) + ρλ(βββ)

91



where ρλ(βββ) is a penalty term on βββ, which can be as mentioned above as LASSO,

SCAD, or Dantzig selector; while λ is a tuning parameter. The differences between

this method and usual penalized approach are that: (1), V2 does not have an explicit

solution; (2), nonlinear constraint on βββ. Although the penalty term is the same, this

will certainly add difficulties in the algorithm.

Note that here ρλ(·) is not differentiable. In order to overcome this problem, Chen,

Sheng, and Yin (2016) adopt the local quadratic approximation (Fan and Li 2001b;

Chen, Zou, and Cook 2010), that is, the penalty function is approximated locally

with quadratic function at every step.

5.2.4 DCOV as dual variable selection method

Now consider the response YYY is a random vector. Some variables in the response

vector may be related, so it is also important to remove redundant variables in the

response vector. Adding another penalty term on the direction of YYY , we can force

coefficients of redundant variables to zero. The optimization problem becomes:

min
βββTΣΣΣXβββ=Id
αααTΣΣΣY ααα=Il

−V2(βββTX,ααα>Y) + ρλ1(βββ) + ρλ2(ααα),

where ρλ1(βββ) is a penalty term on βββ, and ρλ2(ααα) is a penalty term on ααα. The penalty

can be LASSO, SCAD, or Dantzig selector, and we choose LASSO in this paper; while

λ1 and λ2 are tuning parameters. We also employ the local quadratic approximation

(Fan and Li 2001b; Chen, Zou, and Cook 2010) to solve the non-differentiable problem

of ρλ1(·) and ρλ2(·).
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5.3 Numerical studies

In this section, we assess the efficiency of the proposed sparse DCOV methods for dual

variable selection through simulations and application to a real data. Sample sizes

n=100, 200, and 400 are run for each model. For each sample size n, the results of

the mean ∆̄m and standard error (SE) by 100 replicates are reported. The following

models come from the models to assess DCOV method for CDCA and DSC from

Chen and Yin (2016):

Model 8 Let p = 6, q = 4, XXX ∼ N(0, I6). The four -dimensional response random

vector YYY is generated as:

Y1 = 1 + (βββT1XXX)2 + ε1,

Y2 = βββT2XXX + ε2,

Y3 = ε3,

Y4 = ε4.

where βββ1 = (1, 0, 0, 0, 0, 0), βββ2 = (0, 2, 1, 0, 0, 0), ααα1 = (1, 0, 0, 0), ααα2 = (0, 1, 0, 0), and

εεε ∼ N4(0,∆∆∆) with

∆∆∆ =


1 −.5 0

−.5 1 0

0 0 I2


Model 9 Let p = 6, q = 5, XXX ∼ N(0, I6). We increase the dimension of YYY to five,
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which is generated as:

Y1 = X2 +
3X2

.5 + (X1 + 1.5)2
+ ε1,

Y2 = X1 + e.5X2 + ε2,

Y3 = X1 +X2 + ε3,

Y4 = ε4,

Y5 = ε5.

where ααα1 = (1, 0, 0, 0, 0), ααα2 = (0, 1, 0, 0, 0), ααα3 = (0, 0, 1, 0, 0), and εεε ∼ N4(0,∆∆∆) with

∆∆∆ = diag(∆∆∆1,∆∆∆2)

∆∆∆1 =

 1 −.5

−.5 0.5

 and ∆∆∆2 =


1/2 0 0

0 1/3 0

0 0 1/4


Model 10 Let p = 5, q = 4, XXX ∼ N(0, I5). The four dimensional response random

vector YYY is generated as:

Y1 = 4 cos(BBBT
1XXX) + 0.3ε1,

Y2 = BBBT
1XXX + 0.5ε2,

Y3 = ε3,

Y4 = ε4.

where ααα1 = (1, 0, 0, 0), ααα2 = (0, 1, 0, 0), ααα3 = (0, 0, 1, 0) and εεε ∼ N4(0, I4).
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5.4 Future work

In this paper, we introduce a concept of DVS, and propose a method of sparse DCOV

to estimate subsets on the predictor and the response as well. We will continue

working on the following:

1. Using Lasso penalty to develop an algorithm to solve the problem.

2. Establish asymptotic property for the algorithm as in Chen, Sheng, and Yin

(2016).

3. Finish simulations and real data application.

4. Try SCAD, or Dantsig selector. Furthermore, we may also use the sequential

SDR of (Yin and Hilafu, 2015) to deal with Large p Small n problems.
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