TOWARDS ADVANCED EVENT MONITORING SERVICES ON

DECENTRALIZED AND DELAY TOLERANT NETWORKS

by
JIANXIA CHEN

(Under the direction of Lakshmish Ramaswamy and David L dinad

ABSTRACT

Event monitoring services are rapidly gaining importamcaany application domains ranging
from real time monitoring systems in production, logisticel networking to complex event mon-
itoring in finance and security. However, the current evenhitoring services do not have the
capabilities needed for emerging domains of applicatidhs dissertation is devoted to study and
address the challenges involved in providing event momigoservices on decentralized and delay
tolerant networks.

First, we consider the problem of event aggregation andn@aiocy elimination in decentral-
ized broker overlays. We propose two systems for efficieahesaggregation and redundancy elim-
ination. The first system, Agele, presents our ideas forteyatherer, a designated broker in the
routing graph that acts as a proxy sink for all messages oftacpkar event. The second system,
Caeva, is built on Agele. Caeva exhibits three novel featuneultiple distributed aggregators,
adaptive aggregator placement and customized subscokiécation schedule.

Second, we consider the complex event detection on delenatdinetworks. The existing work
on complex event detection employs a centralized approalbse limitations are exacerbated
when the underlying environment is delay tolerant netwavks long latency and intermittent

connection. Hence, the event detection system has to bestxeé/ redesigned for the adaptation

to underlying environment. We propose a novel multi-levahfework called Comet for complex
event detection services on delay tolerant networks.
The evaluation has demonstrated that our solutions to thbeciges in the advanced event

monitoring services are effective and efficient.

INDEX WORDS. Event Monitoring, Event Aggregation, Redundancy Elintiioa,
Complex Event Detection, Delay Tolerant Network, Heucigtigorithm

TOWARDS ADVANCED EVENT MONITORING SERVICES ON

DECENTRALIZED AND DELAY TOLERANT NETWORKS

by

JIANXIA CHEN

B.E., Xiamen University, 2002
M.E., Xiamen University, 2005

A Dissertation Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

DOCTOR OFPHILOSOPHY

ATHENS, GEORGIA

2011

© 2011
Jianxia Chen

All Rights Reserved

TOWARDS ADVANCED EVENT MONITORING SERVICES ON

DECENTRALIZED AND DELAY TOLERANT NETWORKS

by

JIANXIA CHEN

Approved:

Major Professors: Lakshmish Ramaswamy
David Lowenthal

Committee: Suchendra Bhandarkar
Kang Li
Shivkumar Kalyanaraman

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
August 2011

DEDICATION

To my dear parents and my beloved girlfriend Jiran for theiratant love and support.

ACKNOWLEDGMENTS

First, | would like to sincerely thank my advisor Dr. LakskamiRamaswamy for his vision, guid-
ance, understanding and patience during my Ph.D progranouldaalso greatly thank my co-
advisor Dr. David Lowenthal for his suggestion, encouragetmnsupport and humor. | would also
like to express my gratitude to my committee members: Drh8odra Bhandarkar, Dr. Kang Li
and Dr. Shivkumar Kalyanaraman for their precious time andluable advices.

This dissertation work was funded by the Dissertation Cetigh Award from the Graduate

School, The University of Georgia.

TABLE OF CONTENTS

ACKNOWLEDGMENTS

LIST OF FIGURES

LIST OF TABLES .

CHAPTER

1 INTRODUCTION o v v vt it e e e
1.1 DISSERTATIONCONTRIBUTIONS

1.2 ORGANIZATION OF THE DISSERTATION

2 BACKGROUND AND CHALLENGES .
2.1 BEVENT AGGREGATION AND REDUNDANCY ELIMINATION
2.2 DeLAY TOLERANT NETWORKS

2.3 CoMPLEX EVENT DETECTION . .

3 EVENT AGGREGATION AND REDUNDANCY ELIMINATION
3.1 ABSTRACT
3.2 SYsSTEM OVERVIEW
3.3 GRAPH CENTERS.
3.4 AGELE IMPLEMENTATION

3.5 EXPERIMENTAL RESULTS

4 ENHANCED EVENT AGGREGATION AND REDUNDANCY ELIMINATION
4.1 ABSTRACT

4.2 SYsSTEM OVERVIEW

Vi

Page

viii

10
11

17
18
18
24

31
33

39
40
40

4.3

5 COMPLEX EVENT DETECTION ONDELAY TOLERANT NETWORKS

5.1 ABSTRACT

5.2 COMET OVERVIEW

5.3

5.4 AvOIDING REDUNDANCY IN COMET

5.5 EXPERIMENTAL EVALUATION

6 LITERATURE REVIEW
6.1 PRUBLISH-SUBSCRIBE
6.2 DISTRIBUTED STREAM PROCESSING
6.3 COMPLEX EVENT PROCESSING

6.4 DeLAY TOLERANT NETWORKS

7 CONCLUSIONS ANDFUTURE WORK
7.1 DISSERTATION CONCLUSIONS

7.2 RJUTURE WORK

BIBLIOGRAPHY

EXPERIMENTAL RESULTS

INDIVIDUALIZED CED PLANNING IN COMET

Vil

50

56
57
57

60

65
69

78

78
80
81
82

84
84
85

87

2.1
3.1

3.2
3.3

3.4

3.5

3.6

4.1

4.2
4.3

4.4

4.5

LIST OF FIGURES

Centralized CEDONDTN e e 15
Pictorial representation of a topology with the centatenindicated. All messages

are partofthesameevent. 22
Pictorial representation of the eccentricity deteation phase. 26
Percentage of messages suppressed, breakdown of wthettsippressed mes-
sages were duplicates or merged, and time increase Whearies. 35
On the left, percentage of messages suppressed Tyheries. On the right, for

T, = 10, the time increase for five differentvalues®f 35
Percentage of messages suppressed and time increas¢éhemeimber of nodes
varies. The graph uses alog scale forthe x-axis. 37
On the left, event times for aggregator nodes usingréifiteeccentricities. On the

right, the time to find the graph center for various node ceumbrmalized based

on the number of aggregator nodesused. 37
Distributed Message Aggregation@aeva 44
lllustration of Customized Notification Scheme 48

WhenT,, varies, percentage of messages in broker overlay supprésfg time
increase (center). On the right, tradeoff between delaypancentage of messages
eliminated. 50
Percentage of messages in broker overlay suppressedsphéal locality and
redundancy ratio vary; the first letter indicates the ldgaknd the second the
redundancy ratio 35
Incomplete events when varying the per-event drain tiageper-event buffer size

isfixedat20 fields 55

5.1 lllustration of Multi-level Push-Pull Conversion 59
5.2 Virtual Topology Creationvia Shorting., 63
5.3 lllustrating the Need for Avoiding Redundancies in NHével CED 64
5.4 CJN Selection and CED Tree Reconstruction 69
5.5 Performance with nonuniform cost and uniform delay pae. 1. 71
5.6 Performance with uniform cost and uniform delay per.link 72
5.7 Performance with nonuniform delay per link for nonunificcost per link. 73
5.8 Performance of Comet with different heuristics. The pes link is nonuniform. . 73

5.9 Performance where the degree of the junction nodes isdvélandomly) from 1

101 74
5.10 Performance of Comet with different CED treelevels...... 75
5.11 Benefit of using two-phase algorithminComet. 75
5.12 Performance on Different Number of Shared PEs 76
5.13 Comparison of Different Hosting Nodes (2 Shared PEs) 76

5.14 Comparison of Different Hosting Nodes (4 Shared PEs) 77

LIST OF TABLES

4.1 Number of messages for different numbers of publish@rbdth static and adap-
tive algorithm
4.2 Number of messages for different numbers of publish@rbdth static and adap-

tive algorithm when publishers have nonuniform charastes

CHAPTER 1

INTRODUCTION

Event monitoring services are the services that monitorebkworld events which are of interest
to the users, and deliver the event notifications to the usdal-world events are represented
as data (or messages) in the event monitoring services.iWdteased commodity use of mobile
devices, and the popularity of collaborative social oeeirdpplications, the event monitoring ser-
vices are rapidly gaining importance in many emerging dosyasuch as production, logistics,
finance and security etc. Currently, the event monitorimgises take the form of publish-subscribe
(pub-sub) [1, 2, 3,4, 5, 6, 7, 8, 9], distributed stream pssocey [10, 11, 12, 13, 14, 15, 16, 17]
and complex event processing [18, 19, 20, 19, 21, 22]. Theecuevent monitoring services are
usually based on the decentralized broker overlay, whitiuils on top of the traditional TCP/IP
based network. Examples of such overlay networks are Gaygs], CAN [24], Chord [25] and
Pastry [26].

The pub-sub event monitoring services consist of publshsubscribers and the pub-sub
system. The publishers publish events to the systems, th&csbers subscribe the events of
interest. The pub-sub system offers the event monitoringees to the subcribers, such that the
published events that match the interest of the subcribéirbewdelivered to the subscribers. The
pub-sub system is loosely coupled and uses an asynchrooousunication model, which makes
it particularly well-suited for large-scale distributedpmications. The pub-sub systems generally
are categorized as topic-based [6], type-based [27], tgpd-attribute-based [7] and contented-
based [3].

Event monitoring services also take the form of distribuse@am processing, in which the
events are pushed and processed by different operators in the overlay network. Unlike tra-
ditional database management system, where the “activer’s ysull the “passive” data, in the
distributed stream processing systems, the “active” edatd are processed by relatively “pas-
sive” operators. Research in the distributed stream psoogsncludes operators and descrip-
tion languages [28], centralized streaming processingnesd10], load balancing [29], fault-
tolerance [30], high availability [31] and revision prosex) [32] etc.

Recently, the complex event detection (CED) services hamoie a key capability of
emerging domain of event monitoring applications. Compegnts (CEs) are composed from
multiple atomic, possibly geographically distributedrpitive events (PEs) [20]. CED services is
capable of monitoring correlated events. Current work o @&s focused on two main issues,
namely, reducing the computational overheads at the dgmtreessing site [18, 19] and reducing
the event communication costs on the broker overlay [20].

Existing event monitoring services have the following liations:

First, redundancy in the event messages is not taken insademation, which results in signif-
icant overhead to both the event monitoring system and teusar devices. Most existing event
monitoring systems make an implicit assumption that thdiplud event data is clean, complete,
and accurate (i.e., the event data is devoid of noise). Whdexssumption may be valid in appli-
cations where the publications are electronically geeeréte, the publishers are gadgets such as
servers and different kinds of sensors), this is hardly #s®dn systems with human participants.
In community/social group-oriented event monitoring 8888, noisy events are almost a given.
This noise can take various forms, such as redundant eveatsnplete event messages, inac-
curate event messages, and even events generated withoomlictent. Redundant event mes-
sages and messages containing incomplete (partial) iatoomabout the corresponding events
are among the most common forms of noise in applications itiman participants. As more
and more human participants in the social networks becommam sensors”, who monitor and

report events of interest. Upon the observation of certaiaerésted event, large group of users

tend to send out event messages which contain significant@nod redundant information. The

resulting high volume of redundant event messages willwlrelm the event monitoring systems
and the end-user devices as well, especially those deviitedimited resources, such as power
and band-width. Ideally, superfluous messages should beefiltoy eliminating redundant event
messages and aggregating event messages containingiptotraation. However, doing so poses
significant challenges both from data management andlalistd systems perspectives.

Second, the overhead of existing complex event detectioicss is prohibitively expensive,
when the underlying network is delay tolerant network. Viittreased commodity use of mobile
devices, delay-tolerant networks, or DTNs, are necegdagitoming more commonplace. DTNs
exist outside of the Internet; DTN links are characterizgddmng delays, frequent interruptions,
and high error rates [33]. Examples of such networks inchatdefield [34, 35], rural [36, 37, 38],
vehicular [39, 40], and interplanetary networks [41].

Research on DTNs has primarily focused on routing data froance to destination [40, 42].
Unfortunately, there is little research on building apations that are important and appropriate for
these networks. Complex event detection is one such apiphcahose importance and applica-
bility transcends the diversity of different DTN domains Aoted by several researchers, complex
or composite event detection (CED) is one of the fundamewotalponents of an event monitoring
application. For example, traffic incident and congestiamitoring are attractive for vehicular
networks, while monitoring seismic and meteorologicalditans are important for interplane-
tary networks.

Existing work in CED services rely, explicitly or implicitl on centralized processing of PEs.
Unfortunately, centralization is unacceptable in netwdHhat are prone to long delays and frequent
disruptions. While the cost and latency imposed by a cam@ICED framework may be tolerable

for high bandwidth wired networks, it is prohibitively expsve for DTNSs.

1.1 DISSERTATION CONTRIBUTIONS

To address the limitations and problems of current eventitong services, this disseration
makes the following contributions:

In the first contribution, we presem{gele an event monitoring service that embodies our
ideas towards reducing superfluous messages from potemtistinct event publishers in semi-
real time.Agelés architecture is based upon a decentralized broker oyexlaere the message
brokers interact with one another in peer-to-peer (p2@itas The twin design goals dfgeleare
to minimize the message load in the overlay and to simultasiganinimize the latency overheads
of subscribers. These goals are achieved by eliminatiomggregation of event messages as they
travel through the overlay from their publishers to the subgrs. We introduce the concept of
event gathererswvhich are broker nodes that identify and eliminate redahdaent messages, as
well as temporarily hold and merge partial event messagesshw that in order to achieve our
goal of minimizing message load in the system, the evenegatlior a set of related subscription
predicates should be located at tjraph centerof the corresponding routing acyclic graph. We
present a novel decentralized algorithm for determinirggghaph center of a acyclic graph. An
important feature of our algorithm is that it does not neetbaa view of the overlay, and it only
relies upon message exchanges between neighboring natiesowverlay. Further, our algorithm is
efficient and provably accurate. We perform experimentsudysthe viability of our ideasAgele
reduces the message load by o9e¥; in some cases and ové0% in most. Furthermore, the
overhead to subscribers can be kept typically to araiyd, and results in a real-world system
with stringent bandwidth constraints would likely be muahedler.

In the second contribution, in order to further achieve auidity and load balancing for event
aggregation and redundancy elimination in event monigpgearvices, in the extended work of
Agele we describe the design, implementation, and performah&@aeva which is a decentral-
ized, dynamic, and configurable event monitoring systerrttaadles redundant and partial events.
Caevauses a collaborative broker overlay to eliminate redundsgsages and merge same-event

messages. By performing this task at the brok€esgvaavoids placing this burden on the sub-

scribers, who may be resource constrained in terms of pomteairedwidth. To operate effectively
at a large scalegCaevamust address two key problems. First, aggregation must tentialized,
dynamic, and adaptive to achieve good performance, ancethmlachieving this is developing an
effective algorithm for placing aggregators within the kepoverlay. Second, the ability of sub-
scribers to control the inherent tradeoff between degreggfegation and latency of notification
is critical for usability. We present a collaborative evaggregation and redundancy elimination
technique, in which event messages are aggregated in tedéiiels and at multiple aggregators.
Our technique includes decentralized protocols to coatdithe actions of various aggregators of
an event so that subscribers receive notifications with lelayd We design and implement a dis-
tributed aggregator placement algorithm that continuypagapts to event message publication pat-
terns with the aim of minimizing the message load within thertay. In addition, we also develop
an efficient notification scheme for supporting subscrégeified notification cycles. This is done
through a unique combination of upstream propagation aiiddal notification schedules and
selective downstream propagation of aggregated messafgestudy the benefits and overheads
of our scalable, decentralized mechanisms through sefriegp@riments with particular attention
to the broker overlay and the resource-constrained sudessri The results demonstrate that the
message load i@aevasystem can be over 70% less tHaiena[3], a similar system that does no
message elimination; furthermore, the number of messagemg at subscribers is up to a factor
of 2 lower inCaevathan inSiena

In the third contribution, this dissertation contributes@vel, multi-level framework, called
Comet for efficient and scalable complex event detection (CEDY@hay tolerant networks
(DTNSs). To the best of our knowledge, Comet is the first sydiesih supports distribution of the
CED process among multiple nodes, with each node detecpag af the CE (sub-CE) by aggre-
gating two or more PEs or sub-CEs. Because finding an optioaéét) cost plan is exponential,
we propose a novel cost-latency sensitive heuristic algori Given a CE definition and DTN
topology, we start with a lowest latency and highest cost ptawhich all PEs and sub-CEs are

pushed to the next level. Then, we progressively changetétessof individual links at various

levels from push to pull until the delay tolerance does notieany more changes. Our algorithm
adopts a greedy strategy and chooses links that providethilgly value in terms of the ratio of
cost savings to CED delay. In order to exploit multi-targeligto further lower communication
costs, when single-target pulls are no longer possible dube delay tolerance, our algorithm
switches to simultaneous pull mode. In this mode, we consia@nging remaining links with push
status to simultaneous pulls with existing pull statusdinkhis reduces the costs with typically
only a marginal increase in delay. Any planning strategy Waaks at the granularity of links suf-
fers from the limitation that it cannot explore certain aB8pecifically, suboptimality can result
from the need for certain PEs to be pushed along a particgakawhile other PEs are pulled along
the same link. Comet overcomes this limitation by creatingtiple virtual topologies through a
unique technique calleshorting Our link-based heuristic algorithm is executed on thes® i
topologies, and the plan that yields the minimum cost iscsete The overall event monitoring
cost can be further reduced by exploiting the shared evemiag different types of CEs. Multiple
types of CEs may share common PEs. Using a novel heuristaritdg, Comet reconstructs
the CED trees with shared common PEs, so that the shared RE® aetected as sub-CEs at a
common junction node. Hence the cost of detecting the sub¢ah be shared by multiple types
of CEs, which significantly reduces the overall detectiostdor all types of CEs. We have run
extensive experiments with Comet. Performance resultes $hat Comet reduces cost in some
topologies by over 89% compared to pushing all primitivengseand over 60% compared to a
two-level exhaustive search algorithm [20]. Comet carhieirteduce the overall cost by more than
30% when the shared PEs are leveraged. Moreover, in mosbotes, Comet outperforms all
other techniques, often by similar margins. This includethlskewed topologies and topologies

with increasing depth.

1.2 ORGANIZATION OF THE DISSERTATION

The remainder of this dissertation is organized as folloBisapter 2 provides the background

and challenges of this dissertation. Chapter 3 addressesrtilem of event aggregation in the

advanced event monitoring services with decentralizeldsroverlay. Chapter 4 further improves
the solution with a more scalable and customizable digeibapproach. Chapter 5 is dedicated
to the complex event detection in advanced event monita@ngices, with a special focus on the
delay tolerant networks, followed by Chapter 6 with literat review on advanced event moni-

toring services. Finally, Chapter 7 concludes the diserta

CHAPTER 2

BACKGROUND AND CHALLENGES

In this chapter we briefly discuss the fundamentals of ads@mwent monitoring services, which
includes event aggregation, redundancy elimination, ¢exnpvent detection (CED) and delay
tolerant networks (DTNs). We also formally state the prabtef CED on DTNs and explain why

the existing CED techniques are not appropriate for DTNs.

2.1 EVENT AGGREGATION AND REDUNDANCY ELIMINATION

Recently, community/social group-oriented event ses/ggch as twitter [43] are gaining popu-
larity. In these applications, the members of a (possibMhac) community or social group col-
laboratively report and receive events that may be of istdrethat group. Observe that this is a
pub-sub system in which participants (both publishers adaibers) are human. Generally, the
application provides a subscription mechanism througtchkvhiparticipant can specify the events
of interest. Participants who notice a particular event thay be of interest to the community
report it to the system using their communication devicskthgps, laptops, mobile gadgets, etc.).
In such applications, several participants may notice anesimultaneously (or within a short
duration of time). However, some or all of these particigamiay only have partial information
about the event. The event messages published by thesaearts would naturally contain par-
tial information. Also, individual messages may containyrag degrees of information about the
event. Since several participants may individually pubbs event to the system, it can lead to
redundant event messages. Event message redundancy damwbdams. First, two event mes-
sages may contain the exact same information. dinéxt form of redundancy is generally referred

to asexact duplicatesHowever, there is another, subtler form of redundancy. iff@mation

8

contained in an event message might have already been pdbwidbits and pieces” by a set of
publishers. In other words, a set of previous messagasulatively containgll the information
that the current message is carrying. We call ilmirect redundancy. As an example, consider the
example of a collaborative traffic incident report systerhewvein participants report traffic inci-
dents that they notice, which would then be delivered to sstibscribers. In such a system, many
participants might report a traffic incident. While all magss pertaining to an accident would
contain its location, some of them might provide detailstatibe accident such as how many cars
are involved, whether is a fire and whether there are casgaiome may contain information that
is already known from earlier messages.

The simplest strategy for dealing with redundant and gdastient messages would be to rele-
gate these responsibilities to the subscribers. fi&mis-ofpproach, however, is fraught with sev-
eral drawbacks. First, the subscriber devices may not levedmputational and communication
capabilities to deal with redundant and partial event ngssa-or each actual event, subscribers
may receive several messages that may overwhelm low-endedethus causing them to drop
legitimate and important messages. Second, even if the@ewere capable of handling the mes-
sage load, this approach would lead to significant bandwegtdrhead, and, in case of mobile
devices, corresponding battery-power drain. Third, it ldoalso lead to high communication
overhead within the pub-sub system, thereby affectingdésability and efficiency. Fourth, this
approach assumes that the subscriber devices have thasoftecessary for for performing aggre-
gation and elimination, which raises practicality consaiine to the vast heterogeneity among the
subscriber devices.

Thus, it is desirable to have an underlying system that agdges event information and elim-
inates redundant messages so that a single (or at most a desdllated event messages are
delivered to the subscribers. An alternative would be tdgoer these operations at centralized
brokers (one broker per event) of the overlay [44]. Howethex,centralized brokers can quickly
become overloaded. Further, relaying each published medea centralized broker causes high

messaging overheads within the overlay. Thus, in order lheege scalability, the task of aggre-

10

gating messages of an event should be shared by multiplefs;,aknd the set of brokers involved
in aggregation should adapt to message publication patteraddition, the subscribers should be

able to choose the degree of consolidation as per their rr@etiesource availabilities.

2.1.1 RESEARCHCHALLENGES

Designing a distributed broker network that delivers cdidated non-redundant event messages
to the subscribers poses a number of distributed systerbepns. First, since the messages corre-
sponding to an event may be published by several publisteest messages may enter the broker
overlay through many different brokers, and, dependinghupe routing scheme employed by
the system, the event messages might follow non-overlggpinbarely overlapping) paths to the
subscribers. Hence, individual brokers in the overlay migi even be aware of the existence of
multiple (redundant and incomplete) event messages. Setonindividual messages pertaining
to an events might be published over a certain period of timhé;h necessitates storage and main-
tenance of aggregated information about different evérts.questions in this regard are where
(on which broker node(s)) would this information be mainéa and for how long? Third, consol-
idating messages pertaining to an event implies that thetgdabe an inherent delay in notifying
the subscribers of the information that has been publishedtat. Managing the tradeoffs between
the extent of aggregation and the delay in communicatingjghex information about events to the
respective subscribers is another challenge. Fourtliyéadf individual brokers may result in loss
of aggregated event information in addition to serviceupsons. Protecting loss of aggregated

event information in the face of broker node failures is yeither problem.

2.2 DEeELAY TOLERANT NETWORKS

Delay Tolerant Networks (DTNs) are networks in which coatins, bi-directional, end-to-end
connectivity between two arbitrary hosts is not guarant@dw links (also referred to ason-
tactg of a DTN are characterized by intermittent connectivigyrametric data rates, and high

error rates. DTNs operate on a store-and-forward paradigereva node stores data it receives

11

until a link that can carry the data forward towards its dedion becomes operational. Based
on the temporal link connectivity characteristics, DTNa t& classified into two broad classes:
scheduled-contacts DTNsdopportunistic-contacts DTN#\s the name suggests, in scheduled-
contacts DTNSs, the contacts among nodes occur accordingsthedule, as opposed to in an

ad-hoc manner in opportunistic-contacts DTNs. In otherdspthe up and down times of the links

of a scheduled contacts DTN can be predicted to a reasonappteelof accuracy.

Our discussion is based on the following conceptual modskcb&duled-contact DTNs. The
DTN is composed ofV nodes represented &8, V5, ..., Vi }. Alink or contact is the intermittent
connection between two nodes. The intermittent link betweedesl’; andV/, is represented as
L;,. Each link is associated with four properties. The expedisdonnection period of the link
Ly,, represented aBDP(Ly,) is the time duration between two consecutive active sessibn
the link. In other words, oncé s, becomes disconnected, it is expected to remain dormant for
EDP(Ly,). Analogously, the expected active period lof,, represented a8 AP(Ly,), is the
time duration for which_ , is expected to remain active after gaining connectivitye Bandwidth
of Ly, denotedBW (Ly,), is the number of bytes per second that can be transferradigye
when the link is active. The latency df;, (represented as7'(Ly,)) is the time required for a
packet to travel fromy; to V, when theL , is operational. GenerallyyDP(Ly,) > LT (L,) and
EAP(Lg,) > LT(Ly,). Several routing techniques have been proposed for sdtdohtacts
DTNs [40, 42].

2.3 COMPLEX EVENT DETECTION

As mentioned in the introduction, complex events (CEs) areosed from two or more primitive
events (PEs). PEs are events that are generated atomrcatiytie sources. For example, the sur-
face temperature at a particular location exceedifgF is a PE that is produced by a temperature
sensor at that location. Each time the surface temperataezdsl 00°F, aninstanceof this event

is produced. Each event (PE or CE) is associated with a undgungifier, called th€event-ID A

PE with ID i is represented gs;. Every instance of a particular event is also associatel avit

12

unique ID, called thénstance-ID The j*" instance ofpe; is represented asaf Each event has a
distinct schema to which every instance of that event adgherdn addition to the Event-ID and
Instance-1D, the event schema contains three mandatoiyuttis:Node-ID, which is the ID of
the node at which the event originat&tart-Time which is the time at which the particular event
instance began (i.e., the time instance at which the evamdittons were met), an&nd-Time
which is the time at which the event instance ended (i.e ntesenditions ceased to be met). For
instantaneous events (e.g., an RFID tag being scanned ati@ufza sensor), the Start-Time and
the End-Time are both set to the same value. An event insiargad tooccur within a certain
time duration if both the Start-Time and the End-Time of th&ance fall within the duration.
Similar to centralized CED schemes [20, 45, 46], our systepperts a standard set of event
composition operators (shown below). CEs are defined ind@fthese operators and each oper-
ator incorporates a set of at least 2 PE argumengs:lappears as an argument in the definition
of ce;, thenpe,, is said to be @onstituent eventf ce;. In other words, detecting:; requires moni-
toring of pe,.. Most of the operators incorporate a time window argumeagrgsented as) which
specifies the maximum duration between any two PE instaiagsate part of a CE instance.
Below, we provide informal descriptions of the operatoinral descriptions can be found else-

where [20].

e and operator &nd(pey, pes, . . ., pe; w)): An instance of the CE is detected when at least
one instance of every constituent PE occurs within a slidimglow of lengthw. The Start-
Time of the CE is set to theninimumof the Start-Times of constituent PE instances and

End-Time of the CE is themaximunof the End-Times of constituent PE instances.

e seq operator §eq(pey, pes, . . ., pen,; w)): A special case of thand operator where the PE
instances must occur in a pre-specified order. In other waratsonly should at least one
instance of every constituent PE occur within the slidingadaw, but they should occur in the
same ordeias specified in the parameter list (i¥i,c {1,...,(m — 1)}, pe;.End-Time <

pe;iq.Start-Time).

13

e or operator ¢r (peq, pes, . . ., pen)): A CE instance is detected each time an instance of any
one the constituent PEs occurs. In contrast taatiteand theseq operators the@r operator

does not require a time window parameter.

e negation operator {): Negation operator is used to specifically exclude eventnd and
seq operators. Thand(pey, pes, . . ., Ipe;, . . ., pen; w) operator specifies that an instance of
CE is detected when at least one instance of @achpes, . . ., pe;_1, peit1, - . ., pe, OCCUrS
within a window of lengthw andno instance ope; occurs within the same time window
Theseq(pes, pes, . .., Ipe;, . . ., pen; w) Operator specifies that an instance of CE is detected
when at least one instance of eaeh, pes, ..., pe;_1, peii1, ..., pe, OCcursin the same
order within a window of lengthw andno instance ope; occurs betweepe;_;.Start-Time

andpe; . 1.End-Time

2.3.1 HROBLEM STATEMENT

Consider a set ofn PE sources. Each PE source resides on one of the DTN nodesgtit a
DTN node may host more than one PE source. The DTN may havéaddinodes other than
those that host PE sources. Every node is assumed to havait@aiiop, communication (radio
transmission) and storage capabilities. In addition to HAPP LT and BW, each link is also
assumed to be associated with a cost factor (denotédrdd ;,) for link Ly,). The cost factor
represents the cost of transferring one packet of data bedirtk. In this dissertation, we regard
the cost factor as a generic parameter. A commonly used aogirfis the inverse of the link
bandwidth C'F'(Ly,) = m), wherey is a constant. However, the application can provide an
alternate specification; for example, in case the nodeseobiiN are power constrained, the cost
factor can be defined as the power consumed for transferuagleet over the link.

CEs are composed from the PEs using the above operatorsaéioiCGE, a node of the DTN
is designated as idestination(also called as sink). This is the node at which the CE is exadiyt
needed. For example, this can be a base station on eartis@motmterplanetary DTNSs) or a logis-

tics planning camp (in battlefield DTNs). The destinatiod@ofce; is represented d§,(ce;). The

14

user who defines a CE also specifies the maximum detectiog thelacan be tolerated for that
CE. We call this thedelay tolerance limibr simply thedelay tolerancdgrepresented ai (ce;)).
The delay for a CE instance is the difference between theaiméhich the last constituent PE of
the CE occurred and the time at which the CE was detected desimation. The delay of the CE
is the maximum of the detection delay over all of its instance

Given (1) the topology of the DTN (including the EDP, EAP, BWdalL T of various links),
(2) the location of the various PE sources, (3) the frequefi@ach PE, and (4) the definition of
the CE and its delay tolerance limit, the problem is to comemtp a plan that minimizes the
cumulative cost of detecting the CE. The cost of a link under a certain CED plan is the product
of its cost factor ('F'(L,)) and the average number of bytes transferred through th@é&nunit
time. The cumulative cost of a detection plan is the sum ofcthsts of all links involved in the
plan.

The plan will essentially include three things: (1) whera (hich node(s)) the CED process
will execute; (2) for each node involved in the CED, which tsf ¢constituent events will be pro-
actively sent (pushed) to the node, and which will be obthimgthe node when needed (pulled);
and (3) if a node pulls multiple constituent events, in whaleo would it be done. A CED plan is
usually represented as a sefiofte state machines (FSM$ach node executing the CED process
has an associated FSM that specifies the sequence of pushlboplgrations that are executed by

that node.

2.3.2 (HALLENGES

With an example, we now explain two existing CED techniques discuss why they cannot be
trivially adopted for DTN settings. Figure 2.1(a) shows hextuled contacts DTN with 7 nodes.
There are four PE§pe;, pes, pes, pes }. which reside on nodésg,, Vs, Vs andVz, respectively. The

PE frequencies are shown in the diagram, where the notatipmeans that events are generated

everyy time units. The numbers next to the link indicate their resige cost factors and EDP.

15

(b) Centralized All-Push:

vlz. (pev.pespespes) .
vz:. (pes,pespes,pes) .

(c) Centralized Push-Pull:

(Pes) 2\ (Pes) (pel,pez)
Vi
A On OO nns@
U1 12 u4 U8 12 11 Py (peg)\(pes.pee)
HOS 0ROt 0

Figure 2.1: Centralized CED on DTN

The most straightforward approach to CED is to push evemante of each PE as and when
they occur to the destination. The destination uses a glidimdow to check which set of PE
instances result in a CE instance. This approach is an aaaptd the centralized CED technique
used in active databases and triggers [45, 46]. Figure Rshgws the only FSM (at nodé) of
this plan. The other nodes do not perform any detection tasid hence do not have associated
FSMs.

This approach yields the lowest latency but is very costlyfact this approach has maximum
cost. This is because it pushes instances irrespective efrwhan instance has any chance of
being a part of a CE instance. In our example, on average at@nice ofpe; is produced every
second. But, most of these instances will not become pamyC& because an instancepef, is
produced only once in 8 seconds, and the window length i®setthe problem is that even if the
user specifies a higher delay tolerance limit, this scheiigettautilize it to lower the CED costs.

An alternate technique proposed by Akdere et al. [20], giterto alleviate the problem by
selectively pushing certain (usually the cheapest) PEsdaaléstination. The destination pulls the
other PEs when it notices (based on PE instances that havedrthat there is likelihood of a
CE instance. The problem is to decide which PE sources wiillled by the destination and in
what order, so that the detection cost is minimized whileugng that the detection delay does
not exceed the specified tolerance limit. The authors proaefinding an optimal plan requires

exponential time, and the paper proposes a heuristic ghgarirheir algorithm employs two kinds

16

of pulls. single-target pullsn which the node send out a pull request to only one PE source a
a time andmulti-target pullsor simultaneous pullén which the node simultaneously pulls from
multiple PE sources.

However, note that even with this technique, the CED protesssentially executed at the
destination, which means that again there is only one FSMarmptan. The plan consists of a start
state in which certain PEs are pushed to the destinatiosilppg$ollowed by a sequence of states,
each corresponding to a single or a multi-target pull. Fegtid (c) illustrates one such plan. Note
that state5; corresponds to a single target pull, wher8asorresponds to a multi-target pull. Even
this technique suffers from several limitations. Firspttalized CED can still result in significant
degree of wasted communication. In Figure 2.1(a), one ofaWest-cost centralized CED plans
will involve pushingpe, to V;, andV; pulling pes, pes andpe; in that order. Note, however, that
for a significant fraction ope, instances, there might not be apys instances that occur within
the time window (v = 2). Pushing such events g will result in wasted communication and
higher costs, especially if the cost factor bf; is high. In general, it is better to discard such
instances early (at nodes closer to the PE source). Secoath dlequent and potentially long link
disconnections, pulling events by the destination wouttlsagnificantly to the detection delay. The
additional delay can be as much as twice the sum of the EDPRg &ifiks forming the path from the
destination to the PE source, because of the request/mphaf of pulls. In our example, pulling
pez can add up t@ x (EDP(L,3) + EDP(Lsg)). (The factor of two is because the structure is
request/reply, and there can be a disconnection periodébefich.) The problem is exacerbated
in situations where PE sources are several hops away frordestiation. Considerable delay
savings can be obtained by pullidgf; from V3. In general, when the EDP of the links closest to
the sources is relatively high, it is beneficial to push thet®Bn intermediate node with a lower
EDP; then, the destination can then pull from the internteciade. Centralized CED techniques
(including the sophisticated one that allows selectivéhparsd pull) preclude such plans, thereby

resulting in substantially higher CED costs and delays.

CHAPTER 3

EVENT AGGREGATION AND REDUNDANCY ELIMINATION 1

1J. Chen, L. Ramaswamy, and D. Lowenthal. Towards efficieahieaggregation in a decentralized
publish-subscribe system. in Proceedings of the Third A@tdrhational Conference on Distributed Event-
Based Systems, ser. DEBS '09. New York, NY, USA: ACM, 2009, p:1-18:11. Reprinted here with
permission of publisher.

17

18

In this chapter, we preseAgele an event monitoring service that embodies our ideas tavard

reducing superfluous messages from potentially distiretnepublishers in semi-real time.

3.1 ABSTRACT

Recently, decentralized publish-subscribe (pub-sublesys have gained popularity as a scal-
able asynchronous messaging paradigm over wide-area nkstvidost existing pub-sub systems,
however, have been designed with the implicit assumptiahghblished data is clean and accu-
rate. As the pub-sub paradigm is incorporated in real-waplplications with human participants,
this assumption becomes increasingly invalid due to thererit noise in the event stream. The
noise can take many forms, including redundant, in- comspletaccurate, and even malicious
event messages. This chapter explores the distributeduwtorgpssues involved in handling event
streams with redundant and incomplete messages. Givetriulied broker overlay-based pub-
sub system, we present our initial ideas for (1) aggreg&tegt information scattered across mul-
tiple messages generated by different publishers and if@)nelting redundant event messages.
Key to our approach is the concept of an event-gatherer,igradged broker in the routing graph
that acts as a proxy sink for all messages of a particulartglomated at the graph center of the cor-
responding routing tree. This chapter proposes a novehtietized algorithm to find this graph
center. Results show that the proposed scheme typ- icallyces the message load by over 60time

overhead to subscribers.

3.2 SrsSTEM OVERVIEW

In this section, we provide an architectural overview of eystem. Our event aggregation and
redundancy elimination model is generic, and it can be agpb most pub-sub frameworks. How-
ever, for conceptual clarity, in this dissertation, we foom a framework that is similar to type-and
attribute-based pub-sub paradigm [7] (details about the@iption model is provided later in the
section). However, the proposed architecture as well aagbeciated techniques can be adapted

to topic-based or content-based publish-subscribe sgstem

19

Ageleis based upon a distributed overlay of message brokers r@fised to anode$. The
N message brokers in the overlay are representefas,, ...,by}. Each broker is logically
connected to a few other brokers such that the network foroasmaected graph. Set of publishers
and set of subscribers are representefipasps, . . ., pe} and{si, sq, ..., sy} respectively. Each

publisher and subscriber must be connected to one of thetsok

3.2.1 B/ENTS, MESSAGES ANDSUBSCRIPTIONS

Similar to type-and attribute-based pub-sub paradigmevgyy event in our system is associated
with atopic, which provides a broad context for the event. Continuinipwhe example presented
in the previous section, a traffic incident in a certain gapbical area would represent a topic.
In addition, events have a set of attributes (fields) thavipieo details of the event. The fields
of an event, are represented gs,(1),¢,(2),...,¢e,(V)}. One of these fields (without loss of
generality, the first field) is designated as #hent keyWithin a certain time-window, the key
along with the topic corresponds uniquely (or can be resblwvequely) to an event. In our system,
the key field is descriptive, and it can be used in subscnpti@dicates. For example, the key for
a traffic incident event would be the street intersectionlattvit occurs. The number of fields of
an event, their types and the key are determined by the suepict.

However, in contrast to existing pub-sub systems, therebeamultiple messages associated
with a single event, and these messages may have been gabbghmultiple publishers. The
messages corresponding to an evgrdre represented 43}], e?], e
eff }. Each message provides some (possibly partial) informatiimut the event. The fields of an
event message, are represented &7 (1), e;(2),...,ep(V)}. In a message that carries partial
information about the event, one or more fields (other thanetrent key) would be empty. Our
assumption of key-topic uniqueness implies that if the finslssage of an event is published at

timet;, any messages with the same key-topic pair generated betweedt; + W correspond

to the same event.

20

In Agele subscriptions are specified with respect to the event tapiwell as its fields. A
subscription has to necessarily identify the topic of ieser Additionally. itmayspecify predicates
involving the fields associated with the topfdvertisementare messages used by publishers to
indicate the types of events they are going to generate. i#awie system can be configured to
work without advertisements, in which case it is assumeta¥ery publisher can publish all types
of events. Notice that the basigeleframework can be considered as a special kind of content-
based pub-sub model, where the content of every publiseediitcludes a topic and an event key.

In fact, theAgeleimplementation is based on a content-based pub-sub sySteng [3].

3.2.2 PROUTING

As in many pub-sub systems [2, 3], an acyclic network of brekealled aouting acyclic graph
(routing AG, for shortforms the basis for routing events from publishers to coresirRouting
AGs are embedded in the broker overlay. Notice that routi@g Are connected, non-directed, and
acyclic (may also be considered as non-rooted trees). &itoibiena[3] andHermeq7], routing
AGs in Ageleare constructed in a completely decentralized fashion ley-fepeer forwarding of
subscriptions and advertisements. Furthermore, theqatsdi of subscriptions with tlsametopic
are aggregated at brokers, and a more generic subscrigtiomiarded. In effectAgelemaintains

a distinct routing AG for each topic. However, individuabkers can belong to multiple routing

AGs. When available, advertisements can be utilized fanuping the routing AGs.

3.2.3 BEVENT GATHERERS

We now explain our mechanisms for message aggregation ahohdancy elimination. Our
strategy is to merge partial messages and eliminate redungessages within the routing AG
as they travel from their publishers to the subscribers. Gmnine nodes in the routing AG is
designated as thevent-gatherefor events disseminated through that routing AG. All thergve
messages with the same topic value are routed through thesponding event gatherer. The event

gatherer, upon receiving an event message, determinefievh@j this is the first message in a

21

possible sequence of messages from the same event, in vasehtds stored, (2) it is redundant,
and hence needs to be eliminated, or (3) it can be merged wigixiating message. At an appro-
priate point in time (see below), the event-gatherer digsates the aggregated message to the
respective subscribers.

Concretely, an event-gatherer maintains a message bwfieh stores at most one message
per distinct event. When a message comes in, the event gatiiercks whether an event message
with the same event key already exists in the buffer. If serghs an earlier message in the buffer
corresponding to the same event. The event gatherer nowrdeés if the newly arrived message
is redundant (data contained in it is a subset of the datadyravailable message existing in the
buffer) or whether it can be merged with the existing messlgdundant messages are discarded.
A message isnergeabldf it contains some extra information that the existing naggsdoes not
have (i.e., there exists one field which is empty in the exgsthessage, but the corresponding
field in the incoming message contains data). If the incommegsage is deemed mergeable, the
event gatherer creates a new aggregate message by conthimingprmation available in the two
messages and stores it in the buffer instead of the currdiered message. If the buffer does not
contain an event with a matching key, the incoming messaigsésted into the buffer.

An event gatherer is allowed to maintain the message camnepg to an event for at most
W time units, since beyond this time another distinct ever Wie same event key might occur
From message aggregation and redundancy eliminationguiggs, it is optimal to have the event
gatherers maintain the message corresponding/ftime units, and after that send out the merged
message to the actual recipients. However, waiting thig loay sometimes affect the subscribers’
ability to react properly to the event. To address this camdée event gatherers periodically send
out merged messages, while maintaining them in its bufgpecifically, for each event message
in its buffer, the event gatherer evaluates the respeativeciption predicates evely, time units
and sends out the merged message to a subscriber if its giedcsatisfied. However, subscrip-

tion predicates might depend upon fields of the messagerhatierentlyempty This issue can be

2Depending upon its buffer-space constraints, an evenegatimay store messages for shorter durations
than what is permissible.

22

Figure 3.1: Pictorial representation of a topology with teater node indicated. All messages are
part of the same event.

resolved in two ways - the event gatherer might simply waitl @i the fields necessary for eval-
uating the respective predicate are available, or it migiimisticallytreat the predicate terms for
which the values are not availabletage. In the later case, there is a chancéad$e notifications
Figure 3.1 provides an example of the idea of eliminatingsagss with an event gatherer
(labeledCenin the graph). On the left, the center node buffers a messaitefield a, while
messages containing fieldsc, andd are traveling through the graph. On the right, the lattezehr
fields pass through the center node and are merged into orsageedMoreover, the new, merged
message containing all four fields is buffered in case redaonchessages later arrive at the center

node.

3.2.4 WHERE SHOULD AN EVENT GATHERER BELOCATED?

Next, we explore the crucial question where an event gatherer should be locatdd?ther
words,on which brokers of the routing AG should the event gathetingtionality be placedThe
location of the event gatherer within the routing AG has aisicant impact on the message load
in the broker overlay. Our main objective when choosing thenegatherer location is to minimize
the message load in the broker overlay. A second, but equafigrtant, objective is to minimize

the latency overheads on the subscribers.

23

We now formulate the problem in terms of the first objectivewdver, as explained in our
technical report [47], our solution achieves both objexgivin the routing AG consisting of bro-
kers{by, bs,...,by}, Suppose the broké is designated as the event gatherer. Now, if an event-
message were to be generated by a publisher attached téntduemessaging cost of transmitting
this message to the event gathédreis Dist(b;, b;), whereDist(b;, b;) represents the path length
between the brokerls andb; in terms of number of hops. Similarly, the cost of sending agee
message from the center to a subscripés Dist (b, b;). Since the event can enter into the system
through any broker, the expected message load due to anreessaige is
ECost(Rag, b)) = & b, Rag Dist(bs, b:),
where Rag represents the routing acyclic graph. Thus, the problemfisitl a brokem; such that
Db, rag Dist(bs, b;) is minimized.

Traditional optimization strategies cannot be appliedeh&s most of them areentralized
schemes requiring a global view of the routing AG topologheveas our system is based on
a completely decentralized architecture wherein the bsokaly interact with their neighbors.
Furthermore, these strategies are computationally exgenBherefore, we seek to develop an
alternate solution that is not only amenable to decenadlimplementation but is also efficient.

Our strategy is dependent upon the following observatiorcesthe cost of transferring a mes-
sage from an arbitrary node to the event gatheréy; is determined byDist(b;, b;), in order to
achieve low message loads, the event-gatherer should &tetboot too far away from any node
in the routing AG. So, which broker in the routing AG satistieis criterion? Intuitively, the event
gatherer should be located in tbere regionof the routing AG. In fact, it can shown that the broker
that satisfies this property would be tip@aph centeof the routing AG. The graph center is defined
as follows. Consider a undirected connected graph (B, £) with nodesB = {b,bs,...,b,}.
Thedistancebetween two nodels; andb;, represented aBist(b;, b;) is the length of the shortest
path between them. Theccentricityof a nodeb; is defined as the largest of the shortest paths

betweenb; and any other node in the graph. Thattiscentricity(b;) = Maxy,cp(Dist(b;, b;)).

24

The graph centers @ are the set of nodes with minimum eccentridiysince, graph center has

the minimal longest path, it naturally satisfies the abovteron.

3.3 GRAPH CENTERS

The problem now is to develop a completely decentralizedrélgn to determine the center of
acyclic graph, which would execute only through messaghaxges among neighboring brokers.
Several algorithms have been proposed for finding graprece8, 49]. However, very few of
them are applicable to a decentralized setting where a bWida of the network is not available.
To the best of our knowledge there are very few distributgdrihms for locating centers of gen-
eral graphs [50, 51]. However, even these algorithms hayréfgiant limitations, which prevents
us from utilizing them.

Before presenting our solution, we define a few conceptsatteabecessary for its description.
Consider two neighboring brokebsandb; in the routing AG. Since the routing graph is acyclic
(and undirected) , if the eddé;, b,) is removed, the graph is partitioned. The partition (suplgya
that contains the nodg is called thesubgraph anchored by;, b;) and is represented & (b;, b;).
Similarly, the partition that contairts is thesubgraph anchored bgp;, b;) (SG(b;, b;)). Note that
in the routing AG, the path from; to any node inSG(b;, b;) has to necessarily pass through
The subgraph eccentricity of with respect td, (represented aSEcc(b;, b;)) is defined as the
eccentricity ofb; with respect to only the nodes ifiG(b;,b,). In other words,SEcc(b;, b;) =
Maxy,esawp;) (Dist(bs, b,y)). The neighboring brokers @f in the routing AG is represented as
NbrList(b;).

3.3.1 DSTRIBUTED CENTER DETERMINATION

As we remarked earlier, our algorithm is completely deadizied, and it relies purely on message

exchanges among neighbor brokers. The algorithm workg@etstages, as explained below.

3There could be multiple graph centers, all of which have minh eccentricities

25

INITIATION PHASE

In this phase any broker in the routing AG initiates the cede&termination algorithm. It does
so by sending an initiation (INIT) message to all its neigisba the routing AG. The INIT mes-
sage contains the routing AG topic and the identifier of thekér initiating the process. Each
broker receiving the INIT message propagates it to all itghi®ors in the routing AG. Concurrent

initiations are resolved by ignoring all but the first messag

ECCENTRICITY DETERMINATION PHASE

In the second phase, the brokers in the routing AG progrelysiiscover their eccentricities with
respect to the routing AG. A brokéy sends one or more messages to its neighbor bigkeach
of which updates the current value 8Ecc(b;, b;). Finally, whenb; discovers that current value of
SEcc(b;, b;) has reached its final value, it sends a STABLE message to

Concretely, the algorithm works as follows. Suppésandb; are neighboring brokers in the
routing AG, and suppos&br List(b;)
= {be,...,bn,b;} andNbrList(b;) = {b;, by, ...,b,}. Every broker in the routing AG maintains
its subgraph eccentricity with respect to each of its nexgbbFurther, it also maintains the sub-
graph eccentricities of each of its neighbors with respeitself. For example, brokeét maintains
SFEcc(b;,b,) andSFEce(b,, b;) Vb, € NbrList(b;). When a broker receives an initiation message,
it initializes its subgraph eccentricities with respecesxh of its neighbors to zero.

When a leaf broker, denotég, receives an INIT message from its only neighldg}, (it sends
back a UPDATE message containifig'cc(b;, b), which is equal to 1 (ak; is the only node in the
subgraph reachable through itself). It also updates it loopy of S Ecc(b;, by) to 1. Furtherpy,
sends a STABLE messagetpindicating thatS Ecc(b;, by.) has stabilized. When an intermediate
nodeb; receives an UPDATE message from its neighbgrit updates its copy ob Ecc(b;, by,).
Then, for each of its neighbor brokets,checks whether its subgraph eccentricity with respect to

b; needs to be updated Ecc(b;, b;) needs to be updated if the current valuedicc(b;, b;) is less

Secc
Secc
Secc

ba,bs
b3,b

b3, bs) 0

Secc(bg,b3) =3

Secc(b1,b2) =0
Secc(bz,b1) =1
Secc(b2,bz) =0

I ——

4

Secc
Secc

Secc(by,bp) =4

2

Secc
Secc

@
(bg)Secc(bebs = 4

1

thbg =

26

A

Figure 3.2: Pictorial representation of the eccentricgyedmination phase.

thanSEcc(b;, by,) + 1. If SEcc(b;, b;) needs to be updatetl, sets its local copy of Ecc(b;, b;) to
(SEcc(bj, by) + 1), and sends the same value as an UPDATE messdge to

Notice thatS Ecc(b;, b;) can only updated whely receives an UPDATE message from one of
its neighbors other thab). Therefore, ift; receives a STABLE message from all of its neighbors
other thany;, it can safely conclude thatEcc(b;, b;) will not be updated further. Thus, wheén
receives a STABLE message from all of its neighbors other &hat sends a STABLE message to
b;.

Whenb; receives STABLE messages fratl its neighbors, it decides that its subgraph eccen-
tricity values with respect to all of its neighbors has diabd. It can now compute its eccentricity
value as the maximum of its subgraph eccentricity valueb véspect to each of its neighbors.
Formally,
Ecc(bi) = Max @y, envrListv,)) (SEcc(bs, by)).

Figure 3.2 illustrates the eccentricity determinationgghan a sample routing AG consisting of
6 brokers. It is assumed that all the brokers have receivetNIT messages, and the leaf brokers

are about to start the process of sending UPDATE messagdeS FAt values at each broker are

initialized to zero. For better comprehensibility, the figishows the three leaf brokers sending

27

out their UPDATE messagegquentiallyHowever, it is important to note that the algorithm itself
does not place any such sequentiality restrictions. Fyritvesimplicity, we do not show STABLE
messages. Figure 3.2-A shows the propagation of UPDATEagegsomb; . The figure also shows
the S Ecc values of every broker with respect to all of its neighbotsede are values resulting from
the propagation ob;’s UPDATE message. Similarly, Figure 3.2-B shows the dissation of an
UPDATE message frory and the various$ Ecc values resulting from this dissemination. Notice
thatbs’s message is not propagatedito becauses Ecc(by, b3) is already 3, and it would not be
altered bybs's message. Similarly, in Figure 3.2#s UPDATE message is not propagated beyond

bs. Figure 3.2-C also shows the eccentricity values of all ttodéxs in the routing AG.

CENTER DETERMINATION PHASE

Once a node discovers its eccentricity, it sends its eacégtvalue to all of its neighbors. A broker
whose eccentricity is less than or equal to the eccenggif all of its neighbors determines that
it is one among possibly many centers of the routing AG. UpecaVering that it is a center
of the routing AG, the broker sends an announcement messadits neighbors, which is then
propagated through the routing AG. Upon completion of thiage, every broker in the routing AG
knows about all the centers of the routing AG. Note that aingufAG might have more than one
center. However, if it has multiple centers, these centera &t connected subgraph (i.e., any broker
that lies in between two center brokers should itself be &etgnThe center broker is anointed as
the event gatherer for the routing AG. If there are multipdaters, ties may be broken in favor
of the broker with the smallest id. Notice that in Figure 823, having the least eccentricity,

discovers itself as the center of the routing AG.

3.3.2 HROOF AND ANALYSIS OF ALGORITHM

We outline the termination and correctness proofs of odridiged algorithm to find the center of

a routing AG. Furthermore, we theoretically analyze its saging costs.

28

TERMINATION

Recall that each broker sends a single INIT message to @&hbeis in the first phase. Similarly, in
the center determination phase, brokers send a single geesséheir neighbors to communicate
their respective eccentricities. Further, the brokers abnd a single message to their neighbors
for disseminating the center information. Thus, we justhieeshow that the eccentricity determi-
nation phase of the algorithm always terminates, which wiydimduction.

Recall that the eccentricity determination phase condugben every broker receives a
STABLE message for each of its neighboring brokers. WitHos$ of generality consider two
neighboring broker$; andb;. We will now show that); receives a STABLE message frobm
within a finite time. We distinguish between two cases, ngrhegbeing a leaf broker ang being
an intermediate broker. If; is a leaf broker (the base case), it sends a STABLE toessage as
soon as it sends the only UPDATE messagg to

In caseb, is not a leaf node, we use induction. The routing AG can beddwiinto two sub-
graphs— a subgraph anchored W§¥;, b;), (denotedSG(b;, b;)) and a subgraph anchored through
(b;, b;) (denotedSG(b;, b;)). Recall that theSG(b;, b;) consists of nodes that are reachable from
b; by only passing only througby. In our algorithm,b; sends a STABLE message §pas soon
as it receives a STABLE message from all of its neighborsratien b;. Notice that except for
b;, all other neighbors of; lie in SG(b;, b;). Thus, the act of; sending a STABLE message 4p
can recursively depend upon the state of the brokefsGifb;, b,), but it can never depend upon
any broker inSG(b;, b;). The same argument can now be inductively applied for eaghber
of b; and the subgraphs anchored by the corresponding edgegvelisat with each successive
application of the logic we are dealing with a smaller supbreSince the routing AG has finite
number of nodes, eventually the subgraphs contain onlynledés, which is covered by the base

case. Hence, within a finite number of messa@gwiill send a STABLE message to.

29

ALGORITHM CORRECTNESS

We prove the correctness of our algorithm in two steps. Rivetshow that our algorithm ensures
that every broker in the routing AG correctly discovers itsentricity. Then, we outline the cor-
rectness argument for our center determination protoogblving eccentricity value exchanges
among neighboring nodes). Recall thabifand b; are neighboring brokerSG(b;, b;) denotes
the subgraph anchored By;, b;) andSEcc(b;, b;) represents the subgraph eccentricity,ofvith
respect td;. Ecc(b;) represents the eccentricity &f NbrsList(b;) denotes the neighbor &f in
the routing AG, andDist(b;, by) represents the distance betwéeandby.

The correctness argument for eccentricity determinatioasp itself involves two steps. In
the first, we show that in an undirected acyclic graph, thewrirwity of any node can be cor-
rectly computed as the maximum of its subgraph eccenggitiith respect to all of its neighbors.
In the second step we demonstrate that through the propdgedtlam, any arbitrary node in
the routing AG can correctly determine its subgraph ecastytiwith respect to every neighbor.
Consider an arbitrary nodg in the routing AG. Leth, be the most distant node from in the
routing AG (thus the distance betwegrandb, is b;'s eccentricity). Suppost, lies in SG(b;, b;),
then SEcc(b;, b;) = Dist(b;, b,). The acyclic nature of the routing graph implies that there i
exactly one path frond; to b, in the routing path, and that path entirely lies in the suplgra
SG(b;,b;) U b;. Thus, the distance betweénand b, in subgraphSG(b;, b;) U b; is the same
as the distance between them in the original routing AG. Tdyele nature also implies there
is also no other node i8G(b;,b;) that is at a greater distance frobn than b,. Further, the
acyclic property can be used to show thdicc(b;, b,) < Dist(b;, by.); Vb, € NbrList(b;). Thus,
Maxy, e NorList(v) (S Ecc(bi, by)) = Dist(b;, by) = Ecc(b;).

Now, we demonstrate that our algorithm ensures that evergebrcorrectly discovers all of
its S Ecc values. Again, consider two neighboring brokéreindb;. Observe that ib; forwards

an UPDATE message originating at an arbitrary leaf node §gato b;, then that value of that

30

message would bBist(b;, b;). Next, if b, is the most distant node G (b;, b;)*, then the UPDATE
message from,, would be eventually forwarded ldy to b,. The only scenario in which; does not
forward the message frobp would be when it has already received a message with a higihes v
from another node iWG(b;, b;). However, this cannot happen sirges the most distant node in
SG(b;, bj). Thus,b; correctly discovers Ecc(b;, b;).

Next, we outline the correctness proof for our center deteation protocol. Recall that in the
third phase each broker compares its eccentricity infaonatith all of its neighbors, and a node
b; discovers that it is the center if the satisfies the twin cods (Ecc(b;) < FEcc(b,); Vb, €
NbrsList(b;) and3b, € NbrsList(b;) such thatEcc(b;) < Ecc(by)). The correctness proof is
based on the following three lemmas, whose proofs we omittdigpace limitations. (1) In an
acyclic graph, at least one neighbor of a center node hagheagitentricity that the center node.
(2) For two arbitrary non-neighbor nodgsandb, of a connected acyclic graph,tf is a node in
the path between them, then it satisfies the condifioa(b,) < Max(Ecc(b;), Ecc(b;)). (3) In
an acyclic graph, if the nod, is the most distant node tg, then the path frond; to b, always
passes through at least one graph center. Using these émaeals we can show that for node
eccentricities of a connected acyclic graph, the local manis also the global minimum. This

implies that the center nodes and only the center nodes$ystitestwo conditions.

ALGORITHM ANALYSIS

Next, we analyze the message costs of our decentralizegrabtermination algorithm. The three
phases of the algorithm are considered separately, anddbrghase we try to determine an upper
bound for the number of messages circulated in the routing AG

In the initiation phase, the initiation message sent by drthe nodes is sent to all brokers.
If there areM brokers in the routing AG, the total number of messages lated in this phase is

(M —1). Thus, the message load for this phas@(d/).

“4For simplicity, we assume that there is only one most distade inSG (b, b;). However, this assump-
tion can be easily relaxed.

31

Analyzing the message load in the eccentricity determongbhase is a bit tricky. Unlike the
first phase, we cannot determine the exact number of messiagaated in the routing AG during
this phase. In this phase each leaf broker sends out an UPD#d4sage, which is then circu-
lated to some brokers in the routing AG. The extent to whictU®DATE message is circulated
in the routing AG depends upon the subgraph eccentricityegabf various brokers when the
message reaches them, which in turn depends upon other UlPBWEsages that have traversed
through that node. Thus, the exact number of UPDATE messagasn-deterministic. Even if
every UPDATE message reaches every single node of the goAt®) the total number of mes-
sages circulated during this phase would be no more than(M — 1), whereL represents the
number of leaves in the routing AG. Thusx (M — 1) is an upper bound on the message load for
the second phase. However, the actual number of messagektd during this phase is much
smaller.

The third phase involves two distinct operations, namebkérs communicating their eccen-
tricity values to their neighbors and disseminating ceimtarmation to all brokers in the routing
AG. The first operation results ihx (M — 1) messages and the second operation resu(t®/in 1)
messages. Therefore the total message load for this phase(i3/ — 1). Thus, the message load

of the entire algorithm is no more th&h + 4) x (M — 1), but typically is much smaller.

3.4 AGELE IMPLEMENTATION

This section describes thggeleimplementationAgeleis built on top of theSienasimulator [3].
It implements the graph center determination algorithrowhksed in Section 3.3. It also eliminates
redundant and partial messages. For completeness, weeBisilake briefly th&ienasystem. Then,

we describédgele

3.4.1 SENA

Siena(Scalable Internet Event Notification Architectures) isidavarea event-based notification

system [3]. It was developed at the University of ColoradoSlena a message consists of a

32

set of typed attributes. Each attribute has a unique narpe, and value. A predicate consists
of the disjunction of conjunctions of elementary constisinwhere each element constraint is
a quadruple (name, type, operator, value). We also adaptaimdined broadcast and content-
based (CBCB) routing scheme [52] for a content based netvioi®BCB routing, the broadcast

tree of each message is pruned so that the message is ongpateg to those nodes that issued
the matching predicates. The routing information in theteohbased network is propagated in
the network using push and pull mechanisms. In the push meshathe subscribers push the
Receiver Advertisement (RA) to the potential publishetssBets the routing table along the path,
which allows the messages to be forwarded to the subscrivetse pull mechanism, Sender

Requests (SRs) and Update Replies (URs) are applied to araihie routing table. The router

sends the SRs to pull a content based address from othergoamel the routers that are queried

reply with URs that contain updated content based address.

3.4.2 AGELE

We added significant infrastructure 8enato createAgele First, we added the center-finding
algorithm given in the previous section. This algorithmus &t the start of the simulation, con-
currently while the simulation is proceeding. In other weyrdliminating redundant and patrtial
messages only occurs after the graph center is found. (Haowée center is found quickly, so this
effect is minor.)

To implement theAgelecenter-finding algorithm, we construct a connected acysleriay for
each topic on top of the network of brokers. The algorithmsran the overlay to find the graph
center. All control messages related to the establishnfeheagraph center are routed through the
overlay. Upon the termination of graph center algorithntgheaode will have a forwarding table
that contains the information to force messages originfited publishers to be routed through
the graph center. Once the messages are processed at thegnégr, the processed messages are

propagated to the subscriber using the content based retauting table [52].

33

Second, we implemented elimination of redundant and pangssages. To do this, we added
a buffer at the center node. When a messageurrives at the center, it is buffered. The idea is that
a message will be buffered for a period of time, during whietoiming messages will be compared
for redundancy; however, incoming messages will be consiti®r merging for no more than (but
possibly less than) the buffering time. Two different timare kept: one is set ., the redundant
threshold, and the other tG,,, the merge threshold. The redundant threshold must alway b
least as large as the merge threshold (see below).

If a messagé\/, arrives before the redundant timer expires, arigis a subset of\/,, then
message\/, is dropped. On the other hand,\f, is not a subset, and it can be merged with,
then a messagk/,, is created and buffered. In additiak/,, and M, are removed from the buffer.

On the other hand, if no mergeable message arrives beformehge timer forM, expires,
then, is forwarded on from the center node to the next node (acagitdi the forwarding table).
However, note thafl/, remains in the buffer of the center node. It is removed onlgnvthe
redundant threshold is reached. As an optimization, if agietea message is ever received at the

graph center, it is immediately forwarded, independenitbke timer.

3.5 EXPERIMENTAL RESULTS

This section reports the results obtained ughggle We first describe the experimental setup and

then move on to specific results.

3.5.1 &ETUP

Our experiments were set up as follows. Each complete ememtii experiments consists of 20
fields including the event key. In published messages, timebeu of fields that holds valid data
varies from 1 to 10. The number of messages pertaining todividual event can vary, and they
are generated in the following manner. Each publisher ofragodar event generates messages
pertaining to that event according to a Poisson processelidr duration (time window in which

the messages of an event are generated), however, is clodsesuch that it falls withiff},, which

34

we define as the maximum amount of time that any event can takeekperiments investigate
different values forT;). Intuitively, real-world events will likely consist of aupst of messages
in a relatively short time period. In our experiments, aldas subscribe once and for any event,
20% of nodes publish messages pertaining to it. The particianteand associated field names
are selected according to a uniform random distributionh@iee experimented with two kinds of
broker overlay topologies, namely random and power-lawoeks.

We varied separately the merge threshdlg, and the redundant threshold,. Note that ide-
ally, T, would be set tdV (the event time window), but it might not be known a prioridagven
if it is, buffer capacities might mandate a smaller valueodm experiments, these ranged between
0 and 10 simulated time units, such thHat < T,. The buffer requirement at the center node was
quite modest; it was never more than 100 messages, even atasons of 3200 nodes.

If T,,, andT, are both 0, then the center node becomes merely a “pasggtiit@nd subscribers
will incur additional overhead with no benefit to the ovetstem. Nevertheless, this is useful
from a measurement perspective, as it allows us to isolat®terhead for re-routing messages
through the center node.

Generally, we examine the two key metrics: what percentaffgeanessages were suppressed
and how much extra time was added due to using a center nodeuffiedng messages. We use
the termsuppressedecause a message can be eliminated (as a duplicate) orthfetgea like
event); either way, that message does not emerge from therasrde. Note that the minimum
number of messages that a subscriber can receive is onasTidt, andT, are both sufficiently
large (generally much larger than the values that we udenedsages will be held at the center
node until just one message is forwarded on. For the lattermgasure time per event as the
difference between the time that the event is fully receiwgthe subscriber and the time that the
first message of that event is published. As the event geoeiatrandom, all results presented are
the median of several test runs (typically 50).

We start by presenting several results with a random graghramdom message origination.

All results (except where noted) are relativeSiena where there is no notion of a center node

35

T, =10, 500 nodes T,=10, T, = 100, 500 nodes T, =10, 500 nodes

Eliny e 30

3 ged mm—

o
g 80 é é § A L a & 59 270+ ° 25 * o B A A
s70f X L a5 vV 2 @ o a
o o A v 260 © ¥ A
Sek A AV 3 o 20 A L AV
H60m a v (7] = o A
@502 Y 20 £ *0oa L s
o VY 8740 ; 15 ¥ 0O & a
=) v
@ 40 3 £ A a vV
ﬁ 30 2 30 ': 10f x = 4 v
= Ty=50 X =20 BN A Ty=50 X
= 20 Ty=75] 5 5 - Ty=75]
5} T,=100 A 10 T,=100 A
o 10 Ty=125 4 2 To=125 4
° o T=150 ¥ 0 T,=150

0 2 4 6 8 10 12 0 2 4 6 8 10 12

m Tm

Figure 3.3: Percentage of messages suppressed, breakflovinetber the suppressed messages
were duplicates or merged, and time increase Whgnaries.

T, =0, 500 nodes

70
T ¥ -
% 600 w« ¥ 50 T, || % Timelncrease
7] ¥] b
o x 5o, -
o 50r x* o . 4 A A A 50 6
1 0O a 4 a gV
<3 40¢ * g @ 4 9 75 4
[}]
Fof 8 100 2
(7]
2207 T50 ¥ 125 3
Y b=
5 10} nh0o &
1% B 150 4

06 5 Z 6 8 10 12

T

r

Figure 3.4: On the left, percentage of messages suppressadiwvaries. On the right, for, =
10, the time increase for five different valuestf

and no buffering of messages. Note that in this section, agesssuppressed refersaigginated

messagefom a publisher. In additiori,,, and7, are measured in simulated time units.

3.5.2 V\ARYING T}, AND T,

First, we investigate the effect of varyifig, (see Figure 3.3) for five different valuestf (50, 75,
100, 125 and 150 time units). For this experiment, we&/s¢b 10 and use 500 nodes. The number
of messages suppressed (left-hand graph) is only somewpandent ory,,—with the large

redundant threshold, many messages are suppressed &igpebenT,, is small) even though

36

they conceptually could be merged. (In other words, as orghing@xpect, dropping a message
takes priority over merging one.) In addition, the percgataf messages that are suppressed is
largest wherl}, is smallest. This is expected, as when messages are clijstieeee is a greater
chance that when one message from a given event arrivesgidple center, other messages from
the same event arrive befdfg, time units. Note that the percentage of suppressed medsages

off in our range ofT,,, values because events with few messages cannot be suplirepsactice.

The right-hand graph shows the cost of suppressing messalgiel ranges from a 5% to 34%
overhead. Whefi}, is 100, the overhead is quite good—at most 24%. Furthernoti@gsing’;,,
to be 4, we limit the overhead to 15% yet suppress over 70%eaissages. This would likely be
a good tradeoff. In a real-world system, one benefit of s.gging—which we are not considering
here, but will in future work—is that bandwidth consumptisower. This in turn will decrease
potential message drops due to overloaded nodes. Therdiereme for a subscriber to receive
an event will likely belower when using Agele than baseline Siena.

Second, we investigate the effect of varyihg(see Figure 3.4). For this experiment, we set
T,, to 0. It is clear that the number of messages suppressedhéelt graph) is strongly dependent
onT,. The effect is similar as the number of nodes increases.ifiteeibcrease is independent of
T,, because time overhead occurs only when messages areeludfahe center node for potential
merging. Therefore, we show the effect on time increase wheying7,. The table on the right-
hand side of the figure shows that the time increase, for a fiakok of 7, (10 in this case), is only

slightly dependent off;, (which is varied between 50 and 150).

3.5.3 S ALABILITY

We next investigate the scalability &fgeleby varying the number of nodes from 100 to 3200,
doubling the number each time (see Figure 3.5). For thisraxpeat, we sefl}, to 5 and7, to 10.

The left-hand graph contains two plots. One is the percergtptal messages suppressed, and one
is only the number of messages merged. The total messagaess@dncreaseith the number

of nodes. This is because there is a fixed number of eventdhemzk more duplicate messages

37

T,=10,T,=5
9100[Nerserrim % . «| | Number of Nodes | % TimeIncrease
gm— « . 100 17
| * 200 32
g x 400 27
© 40+
2 800 29
%2@3 . . . 0 . 1600 20
* q ‘ 3200 22

00 1000

Nodes

Figure 3.5: Percentage of messages suppressed and tims@saerhen the number of nodes varies.
The graph uses a log scale for the x-axis.

| Eccentricity || Normalized Event Time (s) | | Nodes || Time to Find Graph Center () |

100 10
; ég 200 11
400 15
9 340
800 16
10 1263
11 1572 1600 19
3200 20

Figure 3.6: On the left, event times for aggregator nodesgudifferent eccentricities. On the
right, the time to find the graph center for various node ceumirmalized based on the number of
aggregator nodes used.

are suppressed. Note that in a real-world system, incrgésegnnumber of human participants will
likely only slightly, if at all, increase the number of evenassuming that the geographical area
is fixed. The number of messages merged—which is more diffioudcale—remains relatively
constant as the number of nodes increases. Not until 1608srabmks this number start to fall off,

and it does so slowly.

38

The right-hand table shows the time increase relative to&Si€he overhead is between 17%
and 32%, which is quite good. Overallgelescales well especially considering that typical pub-

sub systems contain less than 1000 broker nodes.

3.5.4 RAPH CENTERS

TheAgelesystem is predicated on finding the graph center, becausestiie most effective node
through which messages should be routed. To show the effeetss of finding the center, we
performed the following experiment. We started with a 3@@erandom graph, where the center
node has an eccentricity of 7. We tried using as aggregalione@es with eccentricity value 8.
We repeated this (separately) using values 9, 10, and 11lid€hds that using centers with larger
eccentricities will yield inferior results.

The left-hand side of Figure 3.6 shows the results. We meddhe average time for an event
in Ageleover aggregators with five different eccentricities. Besmathere are more nodes with
eccentricity 8 than 7, 9 than 8, etc., we normalize the regased on the number of centers. (This is
because with more aggregators in general means lower évess.} The figure clearly shows that
using aggregators with larger eccentricities producesimif results. Hence, using center nodes to
aggregate is critical.

Finally, the right-hand side of Figure 3.6 presents the tiofend the graph center for different
numbers of nodes (ranging from 100-3200). This shows ¢léhdt the center finding algorithm

within Ageleis efficient.

CHAPTER 4

ENHANCED EVENT AGGREGATION AND REDUNDANCY ELIMINATION 1

LJianxia Chen; Ramaswamy, L.; Lowenthal, D.K.; Kalyananan®; , “CAEVA: A customizable and
adaptive event aggregation framework for collaborativeker overlays,” Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCor@),10 6th International Conference on , vol.,
no., pp.1-9, 9-12 Oct. 2010. Reprinted here with permissigoublisher.

39

40

In this chapter, we describe the design, implementaticsh p@nformance o€aeva[53], which
is a decentralized, dynamic, and configurable event mongaystem that handles redundant and

partial events.

4.1 ABSTRACT

The publish-subscribe (pub-sub) paradigm is maturing ategrating into community-oriented
collaborative applications. Because of this, pub-subesgystare faced with an event stream that
may potentially contain large numbers of redundant andglanessages. Most pub-sub systems
view partial and redundant messages as unique, which wasi@srces not only at routers, but also
at possibly resource constrained subscribers. In thistehape present Caeva, a customizable and
adaptive event aggregation framework. The design of Cadviaiits three novel features. First, the
tasks of merging messages and eliminating redundancieshared among multiple, physically
distributed brokers called aggregators. Second, we desidgecentralized aggregator placement
scheme that continuously adapts to decrease messagingeadsrin the face of changing event
publishing patterns. Third, we allow subscribers to chasetification schedule that meets their
specific needs. Results of extensive experiments show thexaCs quite effective in providing

flexibility and efficiency.

4.2 SYSTEM OVERVIEW

Caevais a collaborative, distributed-overlay based pub-sukastfucture that supports event mes-
sage aggregation and redundancy elimination in additiocdting messages from publishers to
subscribers. Its design is motivated Bgele [44], which is described further in Chapter 3. In
this section, we first describe the architectur&€Cakva Then, we discuss decentralized, adaptive

aggregation. Finally, we discuss customizing a notificaichedule at the subscriber.

41

4.2.1 ARCHITECTURE

Caevais built upon a distributed overlay of message brokers (ed$éexred to ashode$, repre-
sented agby, bo, ..., by }. Each broker is logically connected to a few other brokechghat the
network forms a connected graph. The set of publishers anof sebscribers are represented as
{p1,p2,...,pc} and{sy, s, ..., sy} respectively, with each publisher and subscriber condecte
to one of the brokers.

Caevas subscription model is similar to type-and attribute-dxhpub-sub paradigm [7]. How-
ever, the proposed architecture as well as the associatiedigeies can be adapted to topic-based
or content-based pub-sub systems. Every event in our systssociated with opic, which pro-
vides a broad context for the event. For example, a trafficlent in a certain geographical area
would represent a topic. In addition, events have a set obates (fields) that provide details of
the event. The fields of an eventare represented 4s8,(1), ¢,(2), ..., e,(V)}. One of these fields
(without loss of generality, the first field) is designatedresevent keyThe key field is descriptive,
and it can be used in subscription predicates. For instaime&gey for a traffic incident event would
be the street intersection at which it occurs. Within a ¢etime-window, the key along with the
topic corresponds uniquely to an event. The number of fieldm@vent, their types, and the key
are determined by the event’s topic. Subscriptions areifsgeevith respect to the event topic as
well as its fields. A subscription has to necessarily idgritiie topic of interest. Additionally, it
mayspecify predicates involving the fields associated withttipéc.

There can be multiple published messages associated withgke £vent (represented as
{es.e2,... e[} for evente,) , possibly published by multiple publishers. Each messagains
a subset of fields of the corresponding event. The fields oantenessage], are represented as
{en(1),ep(2), ..., ep(V)}. According to key-topic uniqueness assumption, if the fiisssage of
an event is published at tintg, any messages with an identical key-topic pair generataudes
t; andt; + W correspond to the same event. Publishers adyertisethe types of events they

are going to generate. However, the system can be configomedrk without advertisements, in

which case it is assumed that every publisher can publididls of events.

42

Similar to many existing pub-sub systems [2, BJuting AGs graphsomprised of brokers
from the overlay form the basis for routing events from psidirs to subscribers. Routing AGs
are constructed in a completely decentralized fashion ley-fmepeer forwarding of subscriptions
and advertisements. The predicates of subscriptions titbametopic are aggregated at brokers
using the subsumption relationship, and a more genericcgphion is forwarded. WhileCaeva
maintains a distinct routing AG for each topic, individuabkers can belong to multiple routing

AGS.

4.2.2 DECENTRALIZED, ADAPTIVE AGGREGATION

Caevauses a collaborative, decentralized and adaptive apptoaa@igregating events and elim-

inating redundancy. At a high-level, decentralized aggtieg has a resemblance to the oper-
ator placement problem in distributed stream processistgsys [54]. The question, therefore, is
whether similar techniques can be used for the problem at.héowever, in a community-based

event system, message publishers (source nodes) of autarevent are not known before hand,
which precludes adopting heavyweight, plan-based teclesithat have been used for distributed
stream processing systems. We need a lightweight and dgrsméme that does not need apriori
knowledge of message sources of an individual event.

In our approach, designated brokers within the routing A@ pérticular event type participate
in aggregating and eliminating events of that type. Suctkdnoare referred to asggregators
Each aggregator is autonomous and maintains a buffer traisgpart of an event.

In Caeva we coordinate the activities of the various aggregatoraroevent. This ensures
that subscribers receive event information available i@ composite message at the end of each
notification cycle. A subset of aggregators, caldative aggregator¢AAs), additionally perform
coordination. One of the active aggregators,aberdinator, coordinates the final round of aggre-
gation and routes the aggregated message to subscribedentdte all non-active aggregators as
passive aggregator@As). The key tadCaevais that the aggregators are chosen dynamically, and

then are moved adaptively when necessary.

43

In the next two subsections we explain the operations of@eind passive aggregators and the
coordinator. In turn, we discuss the dynamic aggregatighisvCaeva its coordination algorithm
for the active aggregator, and then how aggregators areglaithin the broker overlay and moved
adaptively.

In this discussion, we focus on the routing AG of a single étgre. However, multiple routing
AGs can simultaneously exist @aeva and the techniques and mechanisms discussed below apply
to the routing AGs within the broker overlay. For now, we asstall subscribers have the same
notification cycle duration; the next section relaxes tissumption.

Notationally, the set of passive aggregators is denétefdet = {pvy,pvs,...,pvr} and its
active aggregator setvSet = {avy, av, . .., avg }. The coordinator of the evenj is represented

asC,.

DYNAMIC AGGREGATION

When the event messaggreaches a passive aggregator, there are three possible cas@3pvy
has a message corresponding to the evgit its buffer, and that message is a superset of all the
fields contained i;. In this scenariog; is redundant and therefore dropp€2).pv; has a message
pertaining to event, in its buffer, but that message does not have all the fieldsagued ine;.
In this caseg, is merged with the buffered messa®). e; is the first message of event Here,
puy inserts it into its buffer, but also passes it to its upstreeighbor; it will eventually reach an
active aggregator. Ppv; will eventually get a reply back from the active aggregataticating
the coordinator and notification cycle.; sends the (partially) aggregated message in its buffer to
C, just before the end of every notification cycle (the mannewiich pv; discoversC, and the
duration ofe,’s notification cycle is discussed later).

An active aggregator (say,), upon receiving an event messagje behaves identically to a
passive aggregator exceptin case 3. In that case, it firskshehether another active aggregator is
already designated as the coordinatot,oif so, it just inserts; into its buffer as the first message

of e,. AA av, will eventually finds out the notification cycle details fraeis coordinator (if it

44

does not know already). Hv, is not aware of any other node claiming the coordinator-hafod
eq, it executes the coordinator establishment protocol desgin the next sub-section. In all three
scenarios, it; was sent taw, by a passive aggregatar, informs the passive aggregator about
the coordinator and the notification cycle details of

The coordinator performs all the aggregation-relatededutiescribed above. In addition, at
the end of every notification cycle, it receives partiallygegpated messages from passive and
active aggregators. These messages are merged and anglaedi@s are eliminated. The merged

message is then sent to the subscribers.

@ Coordinator

@ Active Aggregator
Passive Aggregator

(b) Broker Node
APub\isher
Asubscnber

4

To

EERE ©; sbseribers
O o

Figure 4.1: Distributed Message AggregatiorCaeva

Figure 4.1 depicts the multi-stage merging at the passitieésaggregators and the coordinator.

DYNAMIC COORDINATION

In Caeva coordination involves two part$l) establishing the coordinator for an event gay
informing the relevant set of aggregators of the coordinatentity and the notification cycle
details. This way, other aggregators can forward aggrdgatessages to the coordinator at the
appropriate time. Designing scalable and efficient coatilm in loosely coupled systems such as
Caevais challenging. In order to limit the overheads, we confinestwoordination-related duties
to active aggregators.

When an active aggregatay, receives a message of an eveptvith no established coordi-
nator,av, attempts to become the coordinator. It sends a messagedthafl active aggregators.

An active aggregatatuv;, receiving such a message frem, consents taw,’s claim if av,, has not

45

attempted to become the coordinatofegf Ties are broken in decreasing order of broker ID; the
“winner” sends a denial message to the “loser”, who consents

Once the coordinator is established, it determines thetidaraf the notification cycle and
the start time of the first cycle. With the assumption (for htlmat all subscribers have the same
fixed notification cycle duration, determining the cycleation is trivial. The coordinator sends
its identity and the notification cycle to the relevant seagfregators; these aggregators in turn
forward partially aggregated messages to the coordingwst fn time” (before the end of the
notification cycle) to avoid additional latency.

In Caeva we avoid sending the coordinator identity/notificatioleyto everyaggregator. We
do this by relying on the fact that typically, event messdugge topological locality (e.g., a fire
is seen by publishers in the same region of the network)t, Fdi@evainforms only the active
aggregators of the coordinator identity/notification eycrhe passive aggregators then receive
this information lazily, from its associated active aggey, if and when they receive a message

pertaining to the event. This means that most passive agigmagare oblivious to most events.

DYNAMIC AND ADAPTIVE AGGREGATORPLACEMENT

We now describe our adaptive passive aggregator placerggmitm. This algorithm adapts the
placement of the passive aggregators based upon the gattepublished event messages. This
algorithm executes continuously in the background, andeatonclusion of each event, it decides
whether to alter the positions of the passive aggregatdcsroaintain the current placement. When
altering the PA placement, the PAs are moved by only one hepdt step. In other words, at the
end of an event, the algorithm decides one of three thingsnéintain the current PA placement;
(2) move the PAs one hop away from the active aggregatoraftsihe edge of the routing AG);
or (3) move the PAs one hop towards the center of the routing @ decision is based on the
estimated costs and benefits of each option.

Three types of brokers are involved in executing the algorjtnamely, the current set of PAs,

the immediate upstream brokers of the current PAs (pardrmsroent PAs) and the active aggre-

46

gator of the event under consideration. Each parent brokenates the benefits and costs of
moving the PA functionality from its children to itself (i,emoving its downstream PAs one hop
closer to the center), while each PA estimates the costsemefits of moving the PA functionality
to its children brokers (i.e., moving PAs one hop away froedénter). The estimates from all PAs
and parent brokers are consolidated at the active aggregétich computes the cumulative costs
and benefits of the three options and adapts the PA placemerdingly.

Now we discuss the formulations for estimating the costshamekfits for moving PAs one hop
closer and one hop away from the center of the routing AGt,Rirs explain the cost and benefit
formulae for moving PAs one hop closer to the center. Eaclrpdoroker uses these formulae to
calculate the costs and benefits of moving PA functionatdyfits children to itself. Consider one
such parent nodgt,.. Let CH (pt,) = {pv1, pvs, ... pvy} be its children brokers (note that these
nodes are a subset of the curréhtSet). Let H denote the distance between the active aggregator
and the currenPuvSet. For any brokeb; of the overlay, let?m(b;) denote the number of messages
of an individual event, published directly ab; (i.e., published by publishers directly connected
to b;), F'm(b;) denote the number of messages of the same event forwarded dgwnstream

neighbors, and?m(b;) represent the sum aPm(b;) and F'm(b;). Let Nc denote the number

dn(eq)

tm

of notification cycles for which the even}, lasts (V¢ = , Wheredn(e,) denotes the total
duration for which the messages pertaining:jare published and,, denotes the length of the
notification cycle.

We now formulate the benefits of moving the PA functionalitgrfi {pv;, pvs, ... puy} to
pt.. If pt, were to assume the PA functionality, it would send one aggeshmessage to the
coordinator at the end of each notification cycle insteaghofpus, . . . pvy individually sending
an aggregated message at the end of each notification cyotheFRnore, the aggregated mes-
sage frompt, would need to travel one hop fewer than the messages fromgtiregated mes-
sages from the current PAs. Thus, the number of message hopd sver the entire duration is

Ne x (H xY — (H —1)). Also, if pt, assumes the PA functionality, the messages published

directly atpt, would be aggregated/eliminated immediately, therebydingithe need for these

a7

messages to individually travel until the coordinator. fEfere the benefits of moving the PA
functionality topt, is BN(pt,) = Ne x (H xY — (H — 1)) + Pm(pt,) x (H — 1). How-
ever, there are also costs associated with moving the PAidunadity to pt,. Notice that ifpt,
becomes the PA, all the messages receivedaipus, . . . pvy have to travel one extra hop before
being aggregated. Therefore, the extra overheads invatvetbving PA functionality topt, is
CN(ptz) = X, ecmpr.) Bm(pvy). Thus, the relative savings obtained by moving the PA func-
tionality topt,. is SN (pt,) = BN (pt,) — CN(pt,).

Through a similar reasoning, we can compute the casis(fv;)) and benefits B F'(pv;))
of moving the PA functionality from an arbitrary passive sggatorpv; to its Z child brokers
{cp1,cpa, ..., cpz}, respectively, a€'F(pv;) = NC x ((H+ 1) x Z — H) + Pm(pv;) x H and
BF(pv;) = Fm(pv;). Thus, the savings obtained by transferring PA functiayadi child brokers
of pv; is SF(pv;) = BF (pv;) — C'F(pv;). Note thatS N andSF' can acquire negative values.

At the end of culmination of an event, the coordinator otgdieS F’ values from each current
passive aggregator aidV values from each parent broker of current passive aggnegdtohen
sums up the variouS' N values to obtain the cumulative S'6N) value, and it computes the
cumulative SF('SF') value as the sum of variousF’ values. These values are used in adjusting
the PA placement as follows. f'SF > § then PAs are moved one hop away from the center. If
on the other hand;SN > § then PAs are moved one hop closer to the center. If neithafiton
holds, then PAs are maintained at their current positions.

One issue that still need to be addressed is that of preggttinrashing (PAs continuously
alternating between two positions). We achieve this byoohiicing an extra condition. The PA
adaptation direction can be reversed only when the estthssteings are higher than the savings
in the previous adaptation that brought PAs to their curpasition. Concretely, suppose in the
last adaptation the PAs moved one hop closer to the centethanestimated cumulative savings
(CSN) wasyu.. The PAs move back to their earlier positions (one hop awam fthe center) only

if the estimated saving€ (S F) of the current adaptation is higher thanOtherwise the PAs are

48

TIME=16

@Coordinator

@ Active Aggregator

Center

@ Broker Node

@ Coordinator

@ Active Aggregator

Center

(&) Broker Node

(a) Upward Preference Propagatiofp) Selective Notification Dissemina-
tion

Figure 4.2: lllustration of Customized Notification Scheme

maintained at their current positions even thodgh/' > §. An analogous strategy is adopted for

moving the PAs closer to the center when they had moved awidneilast adaptation.

4.2.3 SJBSCRIBERCUSTOMIZED NOTIFICATION CYCLE

Finally, we describe howaevaallows each subscriber to choose its notification cycletamaln
the Caevaprototype, a subscriber can choose its notification cyctattn in integer multiples of
minimum notification durationrfd). As mentioned before, a client specifies this at subsonpti
time. A simple and naive way of implementing a customizedfication cycle would be to hoard
the notification messages sent out by the coordinator atrblebthat is directly connected to
an arbitrary subscribes;. The broker would send out notification messages; tat appropriate
instances of time. However, this leads to unnecessary miegsaithin the overlay.

Instead Caevasends a notification through a path of the routing AG onlyéirehis a subscriber
downstream that should receive the notification at curmnestaince. This is achieved by a combi-
nation ofupward propagation of subscriber preferen@wselective downward dissemination of

notifications

49

Upward Preference Propagatiorthe subscriber chooses its notification cycle duration in
integer multiples ofnd. An arbitrary leaf broker of a routing AG, say, may have multiple sub-
scribers with different notification cycle durations. Ttige broker calculates the highest common
factor (HCF) of the notification cycle durations of the suiisers directly attached to it. This value
indicates the period at which,, should receive notification from its upstream node. Braker
sends this value to its upstream neighbor. A non-leaf bradagrd;, calculates the HCF of the
values sent by its downstream neighbors and the notificatyole durations of the subscribers
directly attached to it, and propagates to its upstreamhiveig This is the period at which should
receive notification from its upstream neighbor. This pesceulminates at the graph center, which
performs the same computation. The result is the HCF of thiéication cycle durations odll
subscribers being served by the routing AG. This value istaaied at the center and is used by
the coordinator as the cycle duration for issuing aggrepatessages. Figure 4.2(a) illustrates the
upward preference propagation mechanism on a routing A M@torokers. The HCF of the noti-
fication durations of all subscribers is 8, which is used a<iftle duration for issuing aggregated
messages.

Selective Notification DisseminatiorAs described in Section 4.2.2, at the end of each cycle
the coordinator obtains partially aggregated messages ¥esious aggregators and merges them
to create a notification message. However, the aggregatsshge at the end of a particular cycle
needs to be sent only if subscribers depend upon their radtditcycle preferences. Thus, instead
of blindly sending the aggregated message through thengd, the coordinator checks which
of its neighbors should receive notification at the curranetand sends the aggregated message
only to them. The intermediate brokers and the leaf brokemswaork in a similar fashion. When a
brokerb, receives an aggregated message from its upstream neigtdsords the message to only
those downstream neighbors (if any) and subscribers (if trat are due to receive the message
at the current time. If the message is not sent to at least owastream neighbor or subscriber,
b; maintains the message in a temporary buffer. While sendmgssage to a downstream broker,

sayby, b; sends all those fields that have not been sebf taut are available currently &t. The

50

=
o
S

100

=
o
S

3 80 pootd 80 T 80
2 [* %
g oH % x % o < o
€ £ m]
5 60t % * g 60 = 60 g oo°
8 * 2 P o s * ¥
¢ s g o *
& @ *
g * E g 40 o %
= * R g8 ® @B s *
5 _— w o 5 m]
& 20 20 * 20 *
& * Agele * Agele * Agele
O Caeva O Caeva O Caeva

o
o
o

2 4 8 10 12 5 10 15 20

6
T T % Time Increase

o
N
IS
S
®
s
Iy
o
o

Figure 4.3: Wheril;, varies, percentage of messages in broker overlay suppréless; time
increase (center). On the right, tradeoff between delayp@ncentage of messages eliminated.

exact same process is followed when sending messages wibebs. Figure 4.2(b) demonstrates
the selective notification dissemination technique at tiheNotice thatav, sends the aggregated

message té, andbs, but not tobg.

4.3 BEXPERIMENTAL RESULTS

Caevahas been implemented on top of tBenapub-sub infrastructure [3]. We have performed
several experiments to study the performanc€aéva The goals of our study are two foldt)
Evaluating the effects d€aevaon the broker overlay; an@) Evaluating the effects on resource-

constrained subscribers;

4.3.1 STUP

Our experiments were set up as follows. In all cases we usedonagraph topology. Each com-
plete event in our experiments consists of 20 fields, incigdine event key. In published messages,
the number of fields that holds valid data varies from 1 to 1@ mumber of messages pertaining
to an individual event can vary, and they are generated irialf@ving manner. Each publisher
of a particular event generates messages pertaining t@vwkat according to a Poisson process.

The event duration is chosen to be a maximum of 100 time umitsur experiments, all nodes

51

subscribe once and for any event. The particular event asaceded field names are selected
according to a uniform random distribution.

In our experiments, we use a merge threshold (den@igdand a redundancy threshold
(denotedr’,, and this value is fixed in our experiments), is the notification cycle (defined in the
Section 4.2.3)7,. is the amount of time messages are buffered at broker nodas attempt to
discard later redundant messages.

Overall, an experiment is defined by its spatial locality paiblishers, redundancy ratio for
messages, and values f6f, andT,. Spatial locality can be defined using the median distance
between all pairs of publishers. However, in practice, dificult to set these distances @aeva
(due to limitations inSieng. Therefore, we vary the spatial locality between thredigomations:

(1) completely local, where all publishers reside at theesaoint in the graph; (2) partially local,
where there are a few clusters of publishers, and (3) noal;ladere all publishers are at different
points in the graph.

In addition, the messages sent by the publishers for a givemt ean vary in their redundancy.
We define theedundancy ratidor an event as",./M,, whereF,. denotes the number of messages
whose fields are a subset of the fields previously sent,Mdn& the total number of messages
sent. In our experiments, bofh), and7, ranged between 0 and 10 simulated time units, such that
T, <T..

In the experiments below, we generally measure three diffemplementationsSienapro-
vides the baselinédgeleis our previous system [44], on whicPaevais basedAgeleis central-
ized, static, and uses one center node for aggregatione Whivais distributed and adaptive.
Generally, we examine three important metrics: (1) peaggbf the messages that are suppressed
(by merging or duplicate elimination), (2) extra time thaidded due to buffering at aggregators
(measured by when the complete event is received), and (Bplete events and amount of data

that subscribers receive.

52

4.3.2 BFECT ONBROKER OVERLAY

We begin by investigating the effect th&tena Agele and Caevahave on the broker overlay.
Here, we are interested in the total messages in the systarthik experiment, we use a random
topology, low spatial locality, and the medium redundaratior ForAgeleandCaeva we varyT,,

in the experiments. All results are relativeS@na

Figure 4.3 shows the results. Beca@enadoes not handle redundant and partial event mes-
sages, it incurs more messages than eilggleor Caeva In particular,Caevaeliminates up to
80% of the messages in the overlay. Compafagvato Ageleshows that the former suppresses
more messages &35, increases. This is becauSaevaeliminates messages at the passive aggre-
gators, which are closer to the publisher. This has two beaegffects: (1) it takes additional
message load off of broker nodes in between the passivegajgrs and the coordinator, and (2) it
can, in some situations, take additional message load bffaiers in between the coordinator and
the subscribers. The latter point is somewhat subtle: if asage is not eliminated at the passive
aggregator, then it proceeds to the coordinator. The coatoli may eliminate it, but it is possible
thatT,, is sufficiently small that it isiot eliminated.

The center graph in the figure shows a time increase (for cetegbevents) for botGaevaand
Agele Additionally, as expected, the relative time increasearger with largef;,. One item to
note is thatCaevaand Agelehave essentially the same overhead. This is by design—gwvea
aggregators flush their buffered messages such that thely tea coordinator just in time to be
flushed to the subscriber. (The small difference is becawsedordinator irCaevais a different
broker node than the center Agele) The right graph shows similar information to the left and
center graphs, but specifically shows the tradeoff betweereased latency and the number of
messages eliminated.

Next, we study the effect on the broker overlay when the aphtcality of the publishers as
well as the redundancy ratio vary. We used the spatial libesland redundancy ratios specified
above. In the graph, the first letter refers to the spatialltyc “H” for completely local, “M” for

partially local, and “L” for non-local. The second lettefees to the redundancy ratio; “H” for a

53

. Agele
90H [caeva

% of Messages Eliminated

L LM LH ML MM MIH HIL HIM HIH
Spatial Locality / Redundancy Ratio

Figure 4.4: Percentage of messages in broker overlay ssggmevhen spatial locality and redun-
dancy ratio vary; the first letter indicates the localityddahe second the redundancy ratio

redundancy ratio of 85%, “M” for 50%, and “L”’ for 20%. In thesests,T,, andT, are both 10.
Figure 4.4 shows the results. We see that as the spatialtjooélthe publishers increases, the
advantage ofCaevaincreases oveAgele in terms of message load in the broker overlay. This
is because more of the published messages are directed sanie passive aggregator, which
eliminates some of them.

We note that many scenarios of publisher locality and redooy ratio are possible. For
example, a news bulletin occurring at night would potehtiglad to widely distributed publishers,
whereas an accident during rush hour would likely lead totipdscalized publishersCaevais
actually the best choice for all of these cases, though Nargtdge increases with more locality
in space and time. The one disadvantag€aévarelative toAgeleis that it is more complex and

involves more broker-broker communication.

4.3.3 ADAPTIVE PA PLACEMENT

Table 4.1 shows the number of messages for different nundfgablishers for both the static
and adaptive algorithms. For the static algorithm, the ipasaggregators can reside at several
different places; we show both the minimum and the maximulnis €xperiment uses publishers

with similar characteristics. The key point is that the adapalgorithm is always close to as good

54

Publishers Static Adaptive
Min | Max

3 101,796| 125,714 102,583

7 147,913| 220,126| 150,239

31 181,189| 232,420| 197,141

255 203,241| 227,747 211,375

Table 4.1: Number of messages for different numbers of phbiis for both static and adaptive
algorithm

Varying Static Adaptive
Publishers Min | Max
Uniform 153,847| 203,474| 153,385
Nonuniform || 293,265| 361,287 266,722

Table 4.2: Number of messages for different numbers of phbiis for both static and adaptive
algorithm when publishers have nonuniform charactesstic

as the minimum and avoids the large penalty of choosing thémuam. Keep in mind that the static
algorithm requires a single placement, and without apgptioaspecific knowledge, it is possible
that a bad placement might be chosen.

Next, Table 4.2 shows the same attributes, but comparesitfterm and nonuniform publisher
case. Itis clear that for nonuniform publishers, the adaglgorithm is significantly (10%) better.
This is because when publisher characteristics changstdtie algorithm cannot change. On the

other hand, the adaptive algorithm changes based on thassctéristics.

4.3.4 BFECT ONSUBSCRIBERS

We now look at the effect oBiena Agele andCaevaon subscribers. The metric that we study
is number of completed events. Here, we assume, reasottadtigubscribers are mobile devices

that have scarce computing resources. We use a simple mbdeg wach subscriber has a buffer to

55

iena
%0 [caeva

60|

s0f

Number of Incomplete Events

2 a 6

14
Per-event Drain Rate

Figure 4.5: Incomplete events when varying the per-eveaminhdiate; the per-event buffer size is
fixed at 20 fields

store incoming messages. The messages will be processedrmsuined by the application (or the
user) at a certain rate. With the intention of avoiding ifge¥nce among multiple events that could
affect consistency of results, we allocate and maintaiividdal buffers for each active event at
a particular subscriber. The paramgter-event buffer sizes{) controls the size of the individual
event buffers. Similarlyper-event drain ratedr) controls the rate at which the messages of an
individual event are consumed (removed from the respebtiéfer) by the application or the user
on the subscriber device. Any messages that would causer lowtrflow are dropped. Note that if
there aref active events at a subscriber the total allocated bufferisiz x sz and the cumulative
message consumption ratefis< dr. In our experiments, we study the effectssefanddr on the
number of completed events 8ienaandCaeva(Ageleis similar toCaeva. For this experiment,
we use non-local publishers and a medium message redunddimy

Figure 4.5 shows that with small per-event buffer sizes andllsper-event drain rates, there
is a significant difference betwe&uaevaandSiena This difference, as expected, decreases as the
buffer size and drain rate increase. Keep in mind that whigetiuffer size we used is small, each
subscriber only subscribes to one event, and the numberlds$ fie an event is small. In a real
system, all of these things would be much larger, but thedomehtal issue remains: there will be

situations where a buffer cannot hold all messages arr&iragsubscriber.

CHAPTERS

COMPLEX EVENT DETECTION ONDELAY TOLERANT NETWORKS?

LJianxia Chen, Lakshmish Ramaswamy, David K. Lowenthal dridkBmar Kalyanaraman. “Comet:
Decentralized Complex Event Detection in Delay Tolerantweks”. Submitted to the 28th IEEE Interna-
tional Conference on Data Engineering (ICDE 2012), 072212

56

57

In this chapter, we discuss a novel, multi-level framewogtledComet for efficient and scal-

able complex event detection (CED) in delay tolerant neka/@DTNS).

5.1 ABSTRACT

Complex event detection is fundamental to monitoring agpions. Current complex event detec-
tion (CED) techniques are targeted for continuously cotetechigh-bandwidth, Internet-based
environments, and are mostly centralized. However, evamtitoring applications are becoming
increasingly important in domains such as deep-spaceaveaend rural, where lack of infras-
tructure to support the Internet has led to the developmiagheadelay tolerant networking (DTN)
paradigm. DTNs are characterized by decentralizatiom ¢ttalays and frequent disruptions, which
necessitates a complete, end-to-end re-design of CEDitpe®) In this chapter, we create Comet,
which provides efficient and scalable CED for DTNs. The niyved Comet is that it addresses effi-
ciently all pertinent CED issues in a decentralized envitent. Comet shares the task of detecting
complex events (CEs) among multiple nodes, with each notetileg a part of the CE by aggre-
gating two or more primitive events or sub- CEs. Comet usesgue h-function to construct cost
and delay efficient CED trees. Comet finds near-optimal idd& CED plans through two novel
heuristic planning techniques: multi-level push-pull wersion and virtual CED tree creation.
Additionally, Comet eliminates redundancy that occurs nvbemplex events contain common
primitive events; the redundancy is eliminated by effidemierging the respective CED trees.
Performance results show that Comet reduces cost by up agp88hing all primitive events and

over 60single-level exhaustive search algorithm.

5.2 CoOMET OVERVIEW

As mentioned earlier, a distinguishing feature of Cometat it supports multi-level CED in
which multiple nodes can participate by performing part<C&D. In other words, each node
involved in the CED process detects a sub-complex event@&t)bof the original CE. Suppose

a nodeV; is involved in the detection process @f;, the sub-CE detected & is represented as

58

sce{ . Comet consists of two major components, nameélE® plannerthat creates a cost effective
detection plan based upon known or estimated statistickaaexecution and adaptation engine
that executes a CED plans and adapts it to cope with varionardigs. In this dissertation, our
focus is on theCED planner

Comet has to provide answers to a set of important and ietated questiongl) Which sub-
CEs of the given CE are to be detected? In other words, how dpewarsively) divide a CE into
multiple sub-CEs?2) Where (on which nodes) are the processes for detecting viea gIE and
each of its sub-CEs going to be hostd@p For each CE and sub-CE, which of its component
events (PEs or other sub-CESs) are going to be pushed to its¢poode, and which component
events are going to be pulled, via single-target and maitit pulls, and in which order? Finally,
(4) if multiple CEs share common sets of PEs, when and how is gahtrcommunication and
computation avoided? In particular, which DTN nodes shdwddt the common sub-CEs corre-
sponding to the shared sets of PEs, and what push-pullgatshould be adopted for common
sub-CEs? The goal is to come up with answers to these quesiiarh that the delay tolerance
limit of each CE is respected and the cumulative cost of detgCEs is minimized.

Before discussing the design of our CED planner, we state fuledamental assumptions that
will be used throughout our discussion. First, we assumeltoener knows the frequencies of the
various PEs of a given CE and the topology of the DTN and thpgatas of various links (EDP,
EAP, BW, LT, CF, and DL). Second, the nodes of the DTN have ghaiorage to hold all the
incoming data until it can be transferred to the next nodeglts path. Third, once a link becomes
active, its EAP and BW are sufficient to transfer all the datde outgoing buffers of its end nodes.
Dealing with resource constraints requires effectiveriimation of communication, storage and
processing of events, and it is part of our future work.

At a very high level, our planner is comprised of two moduleanely, andividualized multi-
level CED planning moduli®r producing cost-efficient, multi-level, push-pull pkafor each indi-
vidual CE, and aedundancy avoidance moduta leveraging PEs shared among multiple CEs by

incorporating common sub-CE detection processes.

59

ce
(@ @ (b) Initialization:
(sce?,sce’) (pe1,pey) (pes,pes,pes)
LMD @) v RO
@ @ (c) Phase 1:
(sce’) ~(sce’) (pe2),~\(pe1) (Pea,pes) (pes)
D -OHID v PEIEED
@ @ @ @ @ Single-target Pull
(d) Phase 23: ,
per pe, pes Pes pes ., NSOl NS Pz ~\(pe) \(Pes) \(pes.pes)
UL 12 ya U6 18 Vl’ V(S (s V(S)#(s) 7 @
Multi -target Pull

Figure 5.1: lllustration of Multi-level Push-Pull Convera

The CED tree forms the edifice of both of these modules. The GE®of a complex event
ce; is composed ofe;’s destination as its root and the source nodesg$ component PEs as it
leaves (although a PE source can be a non-leaf node). Commgtutes cost-and-delay effective
paths (see below) from the source of each component PE toEh#e€tination. The DTN links
and nodes that are part of at least one such path (from a canpBE& source tee;’s destination)
form edges and the intermediate nodes of the CED tree. A DTd¢ tioat lies at the intersection

of the paths from two or more PE sources to the CE destinatioalled gunction

CED TREE CONSTRUCTION ANDSUB-CE DETERMINATION

The first challenge in supporting multi-level CED is to counst an efficient CED tree for each
CE. We do this by computing cost-and-delay effective patbsifeach component PE source to
the CE destination. Ideally, the path should minimize bb#h ¢ost and the delay of transferring
PE instances from the source to destination. However, int m@ctical scenarios it is almost
impossible to obtain such paths — DTN links that have mininaast may not have minimum
delay, and vice-versa. We address this problem by assigméights to DTN links according to

a novelh-functionthat combines both cost and the delay characteristics ké.lihhe h-value of

a DTN link Ly, is computed a®(Ls,) = a x fﬂig(L_égF) + (1 —a)x ,\(,l’/ii_fga, whereCF(Ly,)

andDL(Ly,) are the cost factor and delay 6f, respectively, MAX-CF and MAX-DL are the

60

maximum cost factor and maximum delay over all links in theND@nd« is a weight factor that
can be used to adjust the relative importance of cost facthidalay respectively. Notice that the
lower the cost factor and delay of a DTN link, the lower thealue.

Once the h-values of all the DTN-links are determined, weDiglestra’s shortest path algo-
rithm [55] to find the path with minimal cumulativevalue from each PE source to the CE desti-
nation. The union of these paths form the CED tree. We thegriah@te the set of junction nodes
in the CED tree. Each junction in the CED tree may potentiadigt a sub-CED process. The sub-
CE to be hosted at a junction nollg is determined by applying the same operator as that of the

original CE to the set of PEs and sub-CEs that intersek} .at

5.3 INDIVIDUALIZED CED PLANNING IN COMET

As mentioned earlier, our basic multi-level planner pragtuefficient multi-level plans for

detecting individual CEs. In essence, this module treaty €2E independently (without con-
sidering any overlap with other CEs) and produces nearrgbiplan for that CE. If the CEs that
are being concurrently detected do not share any PEs, thle# pktns obtained by applying this
multi-level planning module to each of the CEs will be clos@ptimal with respect to cumulative
detection costs over all the CEs in the system. This mods#df ihas two novel components. Our
first component addresses the challenges in extending el conversion-based planning
strategy to multi-level CED trees. The second componeitesemultiple virtual trees for a given
CED tree to overcome the potential suboptimality caused gmrating at link granularity (see
Section 5.3.2). Comet creates a set of virtual CED trees;ut@e the push-pull component on

each topology, and selects the best plan among them.

5.3.1 MuLTI-LEVEL PUSH-PuLL CONVERSION COMPONENT

Given a CED tree (original or virtual), this module produaegear-optimal plan (in terms of detec-
tion costs) consisting of push-pull schedules at everytjanaode for detecting the corresponding

CE/sub-CE. Our technique starts with a simple plan in whith@ED process at every junction

61

node follows a simple 2-state FSM analogous to the all-ptesth his module progressively trans-
forms the FSMs at the junction node through conversion ottreesponding links from push to
pull (see Figure 5.1).

Our scheme operates in two distinct phases. In the first plagsemany links as possible are
converted from push to single-target pull without violgtithe detection delay tolerance limit. In
the second phase, we convert as many of the remaining plkshegpossible to multi-target pulls
(i.e., pull them simultaneously with sibling links thateddy have pull status). The rationale for
performing these two phases in this order is that, while eding a push link to a sequential
pull always yields higher cost savings, it also substagtiatreases the CED delay (as much as
2 x EDP(Ly,) for link L;,). On the other hand, generally, converting a push link to Hirtarget
pull causes only marginal increase (or in some cases noaseyeén detection delay. Our scheme
essentially follows a greedy strategy by seeking to max@mizst savings with each conversion in
the first phase, and trying to obtain further cost savindseitin (relatively) smaller amounts for
each conversion, while ensuring that the resulting impaaeday is marginal.

Two important questions need to addressed when conveitikg from push to single target
pulls in the first phase(l) For each junction node, which set of links should be conderte
from push to pull so that the cost of the plan is minimal and ¢beresponding delay does
not exceed the tolerancd?) If a node has multiple incoming pulls, in which order should
they be performed? Since the optimal algorithm to solve tijesl is exponential even for
centralized settings (single level CED trees), we adoptesdy heuristic approach. Since our
goal is to minimize cumulative costs, our heuristic is theor@f cost reduction to the delay

increase caused by a push-to-pull conversion. We denotedsieto-delay ratioas C DR, so

Cost Reduction obtained by converti from push to pull
CDR(Ly,) = e

Delay increase caused by convertihg, from push to pull * Our technlque performs pUSh to Slngle

target pull conversions in the decreasing order of the liGBR values until a stage where any
additional conversion would cause violation of the spediflelay tolerance. If a node has several

incoming pull links, the respective component events atkegun increasing order of their fre-

62

guencies. The idea is to let the sub-CED process at a nodaaeealy after resolving the most
difficult hurdles.

Computing CDR values requires estimation of the cost araydwla multi-level CED plan. We
extend the FSM-based cost estimation model [20] for meitel CED trees. The idea is to use a
bottom-up approach to estimate the frequencies of varioisEs. This is in turn used to estimate
the amount of data transferred per unit time at every linkhe €ED tree. The cost of a plan is
the weighted sum of data transferred per unit time ovenaltsliin the tree, the weight being the
cost-factor of the link. The delay of a plan is also estimakbedugh a bottom up approach. At each
junction node, we estimate the delay of the corresponding@ECE by analyzing theritical
pathof its FSM (longest sequence of operations), along with e Ealues of the incoming links
and the delays of its constituent events. Our technicaltgpovides the mathematical formulation
and a detailed discussion of our cost and delay estimatiatera¢56].

In the second phase, our planner checks the links that ati# B push status at the end of the
first phase to see if any of these links can be converted ta-tandtet pulls. In order to ensure that
delay tolerance limit is honored we enforce the followingdition: a link L ;, that has push status
at the end of phase 1 can be converted to a simultaneous pluksibling link L ¢, only if (1) Ly,
already has pull status and (2) the push-pull conversiahypdoesn’t violate the delay tolerance

limit. We consider the links for conversion in the decregsander of the estimated cost reduction.

5.3.2 MRTUAL TOPOLOGY CREATION COMPONENT

The above multi-level push-pull conversion technique assithat the junction node of the CED
tree hosts a sub-CED process. In most scenarios, exechigpagamponent on the original CED
tree is sufficient for obtaining a near-optimal plan. Howewe certain settings, performing sub-
CED at every junction node of the original CED tree will yiglns that are suboptimal irrespec-
tive of the combination and order of links that are pushedrikkd.

Figure 5.2-a gives one such example. In this CED tree, tkemee junction nodédg) other than

the destinatior;. On this topology, if the delay tolerance limit is large, @ush-pull conversion

63

@) COST=0.7943 (b) COST=0.5167

1) 2.2
(2,2)
PE, PE; PE:

14 11 18

11 18

Figure 5.2: Virtual Topology Creation via Shorting

module will produce the following plames is pushed td/; Vi pulls pes; the detected sub-CE
(andpes, pes)) is pushed td/;; thenV; pulls pe;. The cost in this case is 0.7943 per unit time. In
fact, this is the lowest cost plahV; is forced to detect the sub-event éand, pe,). However, the
true lowest-cost plan is to pugh; all the way up td/;, which will then pullpe; and subsequently
pull pes. This yields a cost of 0.5167 per unit time. However, exegutur push-pull module on
the original CED tree fails to produce this plan.

Our mechanism to circumvent this problem is to create meltyrtual CED trees by selec-
tively eliminating one or more junction nodes through a weidechnique calledhorting When
we short a particular junction node, sby, we remove it from the topology and connect each of
its children (say/, andV},) to V;'s parent node, say,. The cost factor of the new link betwe&f
andV. is set to the sum of the cost factor of the original link betwg&gandV’; and the cost factor
of the original link betweefv; andV, (CF(L.,) = CF(L.s)+CF(Ly,)). Thisis because the cost
of transferring a byte of data froij, to V. in the original topology isC'F'(Ley) + CF(Lyy) if V;
were to just act as a transit node (instead of detecting theC#&t). AnalogouslyEDP(L.,) is set
to EDP(L.;) + EDP(Ly,) because this is the worst case disconnectivity period tigand
V. in the original topology. HoweveF, AP (L.,) is approximated asvin(EAP(L.s), EAP(Ly,))
and BW (L.,) is approximated asvin(BW (L.r), BW(Ly,)). The reason is that this represents

the worst case EAP and bandwidth betwé&grandV., in the original topology. Figure 5.2-b indi-

64

ce;=and(pey,pe;,pes,pes;2); ce,=and(pes,pes,pes,pes;2);

(b)

Vi .(scez) .(scel)‘ Vi .(sce3) .(sce“)‘
o

A 20 - O SN G MO= O=10)

Figure 5.3: lllustrating the Need for Avoiding Redundasdie Multi-level CED

cates a virtual topology created by shortivig The numbers next to the links indicate the CF and
EDP values, respectively.

Theoretically, we can create virtual topologies by shgrgrery possible combination of junc-
tion nodes and executing the push-pull module on thesedgped to yield an optimal plan. How-
ever, this is inefficient because it will require us to exectite push-pull module o, _, (g)
wherer is the number of junctions in the original CED tree exceptiing original destination.
Therefore, we adopt kevel-basedstrategy. Suppose the original CED tree is of heightf the
tree isshorted at level;, all the junctions that are at leagthops away from the destination are
eliminated. Note that if a tree is shorted at levele get a single-level tree. If the original CED
tree is of height//, Comet generateH — 1 virtual trees by shorting at level§ — 1 throughl.
The push-pull module is executed on each of these virtuaktie addition to the original CED
tree and the lowest cost plan is selected. In our exampleg iExecute the push-pull strategy on
the virtual topology generated by shorting at level 1, whatiminatesl; (see Figure 5.2-b), we
get the aforementioned lowest-cost plan (pushiagall the way up tol; and then pullingpe,

followed bype,).

65

5.4 AVOIDING REDUNDANCY IN COMET

Comet’s individualized CED planner evolves plans for ea&Ddndependently without con-
sidering other CEDs that may be concurrently detected. Asesperiments in Section 5.5
demonstrate, this yields highly efficient plans for eachviadial CE. However, thisndividual-
ized approach may lead to redundant computation and commuuricatiscenarios where CEs
share common constituent PEs. This may in turn lead to stumtwvhere individual CE plans
are optimal, but theumulative detection costd the system may be suboptimal. The scenario in
Figure 5.3 has two CEgg; andce,, with pe; andpe, shared between them. The detection plan
for ce; andce, obtained through our planner is shown in the figure. In fdsé are the optimal
individual plans for these two CEs. The cumulative detectiost of the two CEs is 2944 over
2000 time units. On the other hand, detecting the sub#Bt (pes, pey; 2)) either at nodé/; or

V5 and then sending the detected event instances too#imd V5 yields a cumulative cost of
1999 over 2000 time units. This illustrates the need forrggmg common parts of CEs to avoid
redundant communication and computation.

Although Akdere et al [20] have proposed a technique to layecommon parts of CEs, their
technique is designed for a centralized CED system withskeraption that all the CEs are entirely
detected at the same destination. This assumption obyidask not hold for a multi-level, decen-
tralized environment. Thus, we need a technique that warksmjunction with distributed, multi-
level CED plans and can leverage common parts between Cesdlyahave different destinations.
Broadly, our idea is to avoid duplication by instantiatimpunon processes to detect the sub-CEs
corresponding to each set of shared PEs (ard,(pes, pes; 2) in Figure 5.3). Each such common
sub-CED process will be hosted on a DTN node and the deteate@E instances from the pro-
cess will be sent to destinations of CEs sharing the sub-Ciat@rmediate nodes performing next
stage of detection). In effect, we merge the CED trees toimlatalirected acyclic graph (DAG)
where the nodes hosting the common sub-CED processes wdlrhaltiple parents.

Designing a concrete technique to realize this idea posesaechallenges. First, given a set

of CE definitions (specifying the destination and constitueEs for each CE), we need to decide

66

whether it is even beneficial to avoid duplication. In nota@ttumstances is it worthwhile to do
so. For instance, if the destinations of two CEs sharing afdeEs are far apart with respect to the
underlying DTN topology, it is better to retain individuaED plans despite incurring overheads
of duplicate communication. Second, we need to decide whacte to employ for detecting the
common sub-CE. The chosen node should minimize the cumweldatection costs. Finally, the
original detection plans of CEs may embed conflicting sumglfor detecting the common sub-
CE. In Figure 5.3, for example, the original plan fer, specifiege, to be pushed ange; to be
pulled, whereas the original plan fog, requires bottpe; andpe, to be pushed due to stringent
delay tolerance. We need to reconcile such conflicting pfanshe common sub-CE. In many
cases, reconciliation will necessitate modification to lbe@-common parts of the CED trees as
well.

We propose a two step technique to address these challdfagebe first step, we propose a
novel heuristic-based algorithm to select the best nodeégtioat minimizes cumulative detection
costs) for hosting the detection process correspondirtgegtodmmon sub-CE (sub-CE comprising
of the shared PESs). In doing so, we also decide whether imstisig a common sub-CED process is
beneficial from a cumulative detection cost standpoint.driginal CED trees are merged to utilize
the results from the node hosting common sub-CED processrtiue is henceforth referred to
ascommon junction noder CJN for short). In the second step, we use a conservative agproac
to determine the detection plan for the common sub-CE (tadasay delay tolerance violations)
and then apply the previously-described push-pull comweralgorithm to the non-common parts

of the reconstructed CED trees. We now briefly discuss ea&gh st

5.4.1 CJN &LECTION AND CED TREE RECONSTRUCTION

We now explain our heuristic-based CJIN selection algoritBnce the CJIN is decided, we deter-
mine whether it is at all beneficial to merge CED trees so asverage common sub-CE detection
at the CIN. We also outline the CED tree reconstruction nmeshrato utilize the CIN. Our primary

objective in choosing a DTN node as CJN is to minimize the dative detection costs. Such a

67

hosting node could be a junction node in the original CEDstreea node outside of all CED trees
(but nevertheless part of the underlying DTN). Towards é&md, our algorithm takes into account
both the cost factor and the delay of the paths from the setiodie destinations of the CEs via the
node being considered as a candidate for CIN. The reasoarisidering cost factors is straight-
forward as they directly impact the cumulative detectiostsolt is also important to consider the
delays of the paths because we have to ensure that the meffett€es along with new detection
plans (discussed in the next subsection) honor the del&yctems for all of the CEDs involved.
By considering path delays, we increase the likelihood ofipcing a near-optimal plan in step 2.
Our algorithm starts by constructing a list of candidate €INDTN node must satisfy two
conditions to be considered a candidate CJIN: (1) It has patikthe shared PE source nodes, and;
(2) It has paths to the destinations of all CEs. Such a lististructed through simple reachability
analysis. Once such a list is constructed, we have to chbesede that minimizes the cumulative
detection costs. The problem is that we cannot evaluate uhmikative detection costs for the
candidate CJN node until the exact push-pull plan assatwith the node is known. Determining
the exact plan for each candidate CJIN (by repeatedly exerstep 2) is prohibitively expensive.
We address this problem lgstimatingthe cost-delay benefits of choosing a candidate node
as the CJN, irrespective of any specific detection plan. ¢h, fae quantify the cost and delay
characteristics of the paths from the sources of the shaEsdt® the CE destinations via the
candidate node being considered. We utilize the h-facesr ection 5.3) for this purpose. Téte
value of a candidate node is the weighted sum of h-factorsedlinks from each shared PE source
to the candidate node being considered and the h-factofsediriks from candidate node to the
destinations of the various CEs. The h-factor of each linkagghted by the frequency of the event

that it is supposed to convey.

eb=2_ (fixShi)+ Y (Dhj =) fi) (5.1)

where Sh; is the sum of thé: factors of all the links along the path from the candidate GIN

the source of the shared primitive evet, f; is the expected number @t; instances per unit

68

time, Dh; is the sum of the: factors of all the links along the path from the candidateenod
under consideration to the destination of complex eveptand) _, f; is the expected number of
occurrences for all shared PEs.

Our algorithm evaluates thé values for all candidate CIJNs. The node with the minimum
value is to be selected as the CJIN. However, at this stagstitlisot decided whether to leverage
shared parts of the CED trees. We do this by calculating-thealues of the junction nodes in
the original (individual) CED trees corresponding to tharsld PEs. If the sum of the values
of the junction nodes of original CED trees is less thandhealue of the CJN, it means that
leveraging shared events will not lower the cumulative clete costs, and the independent CED
plans with original CED trees are retained. On the other héitide b value of the CJIN is lower,
Comet leverages the common parts by reconstructing the €€B.{This is done by redirecting the
shared PEs to the CJN, which detects the sub-CE corresgptuiihe shared PEs. The results of
the sub-CE detection are then sent to the next stage of thetoet process in each of the original
CED trees.

Figure 5.4 illustrates our algorithm on the two CED treesrfrbigure 5.3. We assume that
there are direct links fron¥,, V5 and Vi3 to both1; and 1, making them candidate CJINs (for
better clarity, the figure does not show all the links fromuahneerlying DTN). The:b values ofV/,,

V5 and Vi3, corresponding to the merged CED trees are indicated néketa. The nodeg, and

Vs were part of the two original CED trees detecting the suba@ (pes, pey; 2). Theeb values of
these nodes corresponding to the independent CED treesdacated in the parenthesés;’s eb
value is the lowest. Furthermore, it is also less than theduwhvalues ofl/; andV; from the two
independent CED trees. Therefolg; is selected as the CIN, and the two CED trees are merged.

The resulting DAG is shown with bolder lines.

5.4.2 RJsH-PuLL CONVERSION ONRECONSTRUCTEDCED TREES

Once the CED trees are reconstructed, the next step is tordetethe actual push-pull plans for

the DAG obtained after merging the individual CED trees. \Welds by first considering the part

69

Figure 5.4: CIN Selection and CED Tree Reconstruction

of the DAG corresponding to each CE (including CJINs thatrmrelved in detecting common sub-
CEs). We run our original push-pull conversion algorithmdependently for each CE. At the end
of this step we have a plan for all CEs, within each of whichnigedded a plan for the sub-CEs
that it shares with other CEs. However, notice that if a sbisCcommon tdk CEs, it may have
up tok distinct plans. The question is which of these plan shoulchzsen. We use a conservative
approach and choose the plan with lowest delay for the consubrCE. The rationale for this
choice is that we have to ensure that delay restrictions fo€&s containing the sub-CE are
honored. Also, if the two CEs have different time windowshait CE definition, the selected sub-
plan should use the larger time window for the pull requéltss ensures that we do not miss any
CE instance. Our choice of the lowest delay plan may cread@iadal delay slack in some CEs
whose plans had embedded a higher delay plan for the sub{@&€slack may allow us to further
reduce the cost of such CEs. This is done by executing the puisbonversion algorithm on the

non-shared part of such CED trees, with the shared sub-Q& gfezach tree being fixed

5.5 EXPERIMENTAL EVALUATION

We have implemented botbometand our DTN simulator in Java. The DTN simulator simulates

the DTN model described in Section 2.2. The simulator castai number of DTN nodes, each

2An incremental approach can used for re-planning to recueeamputational effort involved

70

of which connects to its neighbors according to a given saleedeach DTN node can be either
a PE source, a CE sink, or a junction node, depending on hoW Hi2 tree is constructed. If
the node is a PE source, it generates PE instances accoodangdisson distribution. We use the
Zipfian distribution to generate the PE occurrence fregesn&ach DTN node is also capable of
executing the sub-CED plan, which is represented as a fitaite siachine.

In all of our experiments, we assume that the DTN links aialé when they are in operation.
Also, recall that we assume the expected active period (EoAR)I links is sufficiently long to
transmit all data in the buffer of the sending node. We widie on two major properties of the
DTN link — Bandwidth and Expected Disconnection Period {iagsee Section 2.2). Our planner
and DTN simulator support different models for bandwidtd &DP. However, for simplicity, we
use three categories of bandwidths: low bandwidth (128 Kbpsdium bandwidth (256 Kbps)
and high bandwidth (1.2 Mbps). We define the cost facto%. For EDP, we also use

three categories: low EDP (30 seconds expected discoongaiiod), medium EDP (2.5 minutes

expected disconnection period), and high EDP (5 minutesa®p disconnection period).

5.5.1 ReESULTS

In the first set of experiments, we exclusively evaluate Gmedividualized multi-level CED
planning mechanism. Therefore, for these set of expersnerg assume that the CEs do not have
any common PEs. We compare Comet’s individualized mw&ll€ED planning mechanism to
three other algorithms. The baseline plakisPush where all events are pushed to the CE desti-
nation immediatelyAll-Pushalways satisfies any delay restriction for which there exadieasible
plan. TheCentralized Optimaplan is the one suggested as optimal in the work by Akdere. et al
[20]. Note that it is optimal only for centralized solutiomswhich the CED plan is only executed
at the destination, so Comet, with its multi-level natuign outperform this notion dfentralized
Optimal The Centralized Heuristiglan is our adaptation of the single-level heuristic altjon

suggested by Adkere et al.[20]. In implementifdPush Centralized Optimaand Centralized

71

—©— Comet
—%¥— Centralized Heuristic
—A—Centralized Optimal | |
—&—All Push

Cost Per Minute

L L
0 50 100 150 200 250

Delay Tolerance (Minutes)

Figure 5.5: Performance with nonuniform cost and unifordageer link.

Heuristic, we use the most cost-and-delay efficient paths (guided vwlue) for transferring PE
instances to their respective destinations.

Figure 5.5 shows results of cost for the aforementioned &gorithms. The delay tolerance
ranges from 0 to 250 minutes. The topology in this experiniesuch that the EDP is high (5
minutes) for all links, and the bandwidth per link is 128 Klapsall links connected to the sink,
1.2 Mbps on all links connected to the sources, and 256 Kbjadl other links. Note that for delay
restrictions smaller than 16.5 minutes, there is no feasblution, even witt\ll-Push

The results clearly show that Comet is superior to the othieet algorithms. Comet has a
cost that is 89% less thakll-Push 66% less thai©Centralized Heuristicand 56% less thaGen-
tralized Optimal Specifically, as expectedJl-Pushfails to filter PEs and so incurs a large cost
across various DTN links due to transmission of PEs that aabe part of any CE. The other
two algorithms—€entralized OptimaandCentralized Heuristie-are able to filter out some PEs.
Comet is superior to both because its multi-level naturewa| PEs to be pulled from the inter-
mediate nodes closer to their respective sources, whielnsfittut extraneous PE instances. Again,
Centralized Optimaand Centralized Heuristionly pull events at the destination. Note that cre-

ating a multi-level optimal algorithm is infeasible becautsis exponential in the number of links.

72

—©— Comet
—%— Centralized Heuristic | |
—A— Centralized Optimal
—E&—All Push

[
2]

Cost Per Minute
5

0.5F

L L L L
0 50 100 150 200 250

Delay Tolerance (Minutes)

Figure 5.6: Performance with uniform cost and uniform dedaylink.

Figure 5.6 shows results for a similar experiment as was showigure 5.5, except that the
bandwidth per link is uniform. The results are similar in ma&ases, but there is a range of delay
restrictions—85 to 100—in which Comet has a higher cost ®amntralized OptimalThis occurs
because when the cost per link is uniform, the benefit of pylPEs from nodes closer to the
source is lower. For this narrow range of delay restrictidhere are some centralized plans that
outperform multi-level plans. A€entralized Optimaéxhaustively explores the solution space of
the centralized plans, it can and does perform better festiiall range of delay restrictions. Future
work will address this issue; briefly, we plan to explore tioggmtial of concurrent pulls when the
delay tolerance is modest. The timing of pull requests maghssigned so that the event sources
with similar frequencies will be pulled concurrently dedarg on the given delay tolerance. We
will also consider re-scanning the overlay tree topologldtance the sub-CE delays for different
subtrees, which will eventually fully utilize the poterte@ncurrency in detecting CEs.

Figure 5.7 shows results for the same experiment as distabswe, except that the link delay
is now nonuniform. The links connected to the sink have an BDB minutes, an EDP of 30
seconds for the links connected to the sources, and an EDE5 ahidutes for all other links.

Essentially, this experiment shows similar, if not quitgpaenounced, results to Figure 5.5.

73

—©— Comet
—*— Centralized Heuristic
—A— Centralized Optimal | |
—&— All Push

Cost Per Minute

0 . Q Q < 54
0 20 40 60 80 100 120

Delay Tolerance (Minutes)

Figure 5.7: Performance with nonuniform delay per link fonaniform cost per link.

14 T T T T

T
—S— Comet
121 —t+— Cost Only Heuristic |

Cost Per Minute

L
0 20 40 60 80 100 120

Delay Tolerance (Minutes)

Figure 5.8: Performance of Comet with different heuristidse cost per link is nonuniform.

Next, Figure 5.8 shows results for the same two experimentissgaussed in Figure 5.7, except
that the ordering of status changes in our multi-level ppstheonversion technique are determined
using only cost rather than the ratio of cost to delay. No# iththis experiment we compare only
the two versions of Comet.

This experiment makes it clear that it is better to use thie @t cost to delay for ordering
potential status changes in Comet. On one hand, using pcosly irrespective of the change in
delay, may cause Comet to choose pull operations that case cagnificant delay increases and

also leads to fewer pull operations elsewhere in the plandltiee delay tolerance. On the other

74

T T T T T
—©— Comet
—%— Centralized Heuristic | |
—A— Centralized Optimal
—&—All Push |

ek

Cost Per Minute

0 L L L L < < < <
0 20 40 60 80 100 120 140 160 180 200 220

Delay Tolerance (Minutes)

Figure 5.9: Performance where the degree of the junctioesi@ivaried (randomly) from 1 to 3.

hand, using the ratio of cost reduction to delay better lwaanhe change of both cost and delay.
It also can leverage the potential of pull concurrency, Wltian in turn lead to cost reduction with
only a small delay penalty.

Figure 5.9 shows results of the four algorithms on a skewpdltgy, in which the degree
of junction nodes varies from 1 to 3. The EDP is set to high (futes) for all links, and the
bandwidth per link is 128 Kbps for all links connected to thks1.2 Mbps for all links connected
to the sources, and 256 Kbps on all other links. Again, Comstiperior to all other algorithms,
even with such a skewed topology. On average, Comet is 619tHasCentralized Optimal69%
less tharCentralized Heuristicand 89% less thaall-Pushin term of cost per minute.

Figure 5.10 shows the impact of the number of levels in the @&B on the cost of the detec-
tion plan. When the number of levels of the CED tree increabescost decreases. This is due to
the multi-level sub-CED of Comet; recall that it allows thEs”to be pulled from junction nodes
closer to the source. This not only alleviates the load atitiks connected to the sink, where the
bandwidth is usually limited, but also significantly remexke unnecessary delay due to the long
turnaround time of pull request and reply between the siksamurce. At times when there is no
PE satisfying the pull request, the penalty is limited beeaaf the relative short delay between the

junction node and the source. Note that at the same time oteo€ centralized optimal remains

75

Delay Tolerance = 60

T
I Comet
[Icentralized Optimal

L
2 3

I
» N

Cost Per Minute
®

S o o o
o N » o

CED Tree Level

Figure 5.10: Performance of Comet with different CED treels.

T T T T T T T T
[_Icomet Phase 1 Only

0.9r 1
Il Comet 2-Phase

10 20 30 40 50 60 70 80 90

Delay Tolerance (Minutes)

Figure 5.11: Benefit of using two-phase algorithm in Comet.

constant, because centralized detection plans do nateutiie junction node to further reduce the
plan cost and delay.

Figure 5.11 shows the benefit of the two-phase push-pullersion algorithm of Comet. The
concurrent pull phase of Comet (the second phase) furtlpors the concurrency of pull oper-
ations, especially when the delay tolerance is modest. Miate time, the two-phase algorithm
results in a significant cost reduction compared with therdtligm with only conversion of pushes
to single target pulls (the first phase). The second phaskeiureduces the cost by converting

more pushes to pulls, but without a significant delay pen<te that in this figure, when the

76

delay tolerance is 10 and 90 minutes, there is no differemteden the single phase and two-
phase algorithms. This is because (1) at the tolerance ofidGtes, the only available plan is to
push all events to the sink; and (2) at 90 minutes, there isimgpfor the concurrent pull phase to

improve, because the first phase has already convertecadlale push operations.

4000 [Jcomet w/o RA]
I Comet with RA

3500
3000 —
2500

2000

verall Cost

O
-
a
=}
S

1000

500

3 4
Number of Shared PEs

Figure 5.12: Performance on Different Number of Shared PEs

3000

Overall Cost

1.22 1.39 1.56 1.74 2.60
EB Value

Figure 5.13: Comparison of Different Hosting Nodes (2 SH&ES)

In the second set of experiments, we evaluate Comet’s reshaydavoidance (RA) mechanism.
First, in Figure 5.12, we compare two versions of Comet—ameiich the redundancy elimination
module (represented as Comet with RA) is enabled and the othghich the RA module is
disabled (represented as Comet without RA)—with diffeneminbers of common PEs among
two CEs. Results show that Comet’s redundancy avoidanceigdo can successfully reduce the

overall detection cost when the number of common PEs varies.

77

4000

3500

3000

Overall Cost

2500

2000

1500

16 21 23 25 35
EB Value

Figure 5.14: Comparison of Different Hosting Nodes (4 SH&ES)

Figure 5.13 evaluates th# value model for selecting the candidate hosting nodes. ©he h
zontal line in the figure indicates the cumulative cost font@b without RA. The corresponding
eb value for this case is 2.08. The overall detection costsifterént candidate hosting nodes with
differenteb values are presented in the figure. For the candidate hasbiaes witheb value lower
than 2.08 (Comet without RA case), the overall cost is sigaifily lower than the Comet without
RA case. Note that, for a candidate hosting node wittialue greater than the eb value of Comet
without RA case, its overall cost would be higher than the €omithout RA case case. Generally,
the lower theeb value, the lower the resulting overall cost. The Comet Istigralgorithm will
choose the candidate hosting node with the lowestlue (1.22), which results in the lowest cost

(1999). Figure 5.14 shows similar experiments with 4 comBs; the results are similar.

CHAPTER 6

LITERATURE REVIEW

Our work in this dissertation is directly related to pubtsiibscribe, distributed stream processing,
complex event processing and delay tolerant networks.isrctiapter, we survey the related work

of event monitoring services in these areas.

6.1 PRUBLISH-SUBSCRIBE

Publish-subscribe (pub-sub) systems have continued to ben@ortant research area over sev-
eral years [6, 2, 57, 3, 58, 9, 59, 60, 61, 62, 8, 5, 4, 7, 63]. lxnkasis of how subscriptions

are specified, pub-sub systems are classified into topech@s 64], content-based [2, 3, 5, 65],
type-based [27], and type- and attribute-based [7] categioFrom an architectural standpoint,
distributed pub-sub systems [1, 2, 3, 66, 60, 8, 4] providaificantly better scalability than their

centralized counterparts [67]. As mentioned in chapterh8,dubscription mechanism éfyele

is similar to type and attribute-based subscription modgl gnd it adopts a distributed broker
framework.

Over the past decade, various aspects of pub-sub system®ben widely studied including
subscription mechanisms, architectures, quality-ofiser mobility, and reliability [6, 68, 2, 3,
69, 58, 70,9, 71, 72, 7, 63]. Surprisingly, the issue of retdum and partial event messages, which
are very common in settings with human participants, hasived little research attention. A few
researchers have considered the problemxaictduplicate elimination [63, 73, 74]. However,
most solutions are simplistic with performing duplicaterehation at the subscribers being the
most common approach [63]. The XTreeNet system [73] uses-aptiwork duplicate elimination

scheme. The scheme has two major limitations. First, itireg@each node in the tree to maintain a

78

79

cache of messages that has recently passed through it. 48ecades often participate in multiple
trees, they need to store large number of messages for thesnecto be effective. Second, the
technique is not effective in reducing message traffic dudgufdicates originating from different
regions of the overlay. Thus, the system is not able to peoaity guarantees to the subscribers or
offer them flexibility with respect to the degree of duplea&iimination or the notification times.
Our definition of redundancy is broader in the sense that antamessage is considered to be
duplicate if the information it carries has already beeraot®d by aggregation of other messages,
even though it was not an exact match to any of the previousages. Thus, our duplication
elimination is more powerful. By designating specific evgatherers for every routing AG, we
eliminate the need for message caching at each node in thypveurthermore, our technique
is effective even when the messages originate in differegitons of the network. To the best
our knowledge, our work witliAgelewas the first system to consider incomplete (partial) event
messagesAgeleis a centralized system that uses a center node to aggrdbatessages; i.e.
there is one, fixed active aggregator and no passive aggregat addition Ageleis static; the
notification cycle is fixed over the entire syste@aevais much different; it is distributed and
therefore scalable, it allows flexible, adaptive placenoépissive aggregators as well as a flexible
choice of the notification cycle for each subscriber.

In the context of multicast routing, Thaler and Ravishanl&] propose heuristic-based
strategy for finding the graph center, which works in muétippunds. There are two main differ-
ences between their algorithm and ours. First, being a $tezbased approach, their algorithm
may not always locate the exact center. Second, and moreatamply, although their scheme does
not require a global view of the overlay topology, it assuried in each round the center knows
about all nodes in the multicast group. By contrast, our rtlgm does not require centralized
membership information, and it always discovers the exactar of the routing AG. The scheme
by Song [50] requires each node to first discover the idewfitgll other nodes, and then exe-

cute the all pairs shortest path algorithm. Unfortunatiklig straightforward distribution strategy

80

imposes significant computation and communication oveth@a all nodes in the network, thus

making it impractical for our application.

6.2 DISTRIBUTED STREAM PROCESSING

Our work in this dissertation is directly related to the apédistributed stream processing [10, 11,
12,13, 14, 15, 16, 17]. Compared to the traditional DBMS vehadasta is relatively static, the data
in distributed stream processing systems is extremely ledhisuch systems, DBMS is active and
human is passive, while in traditional DBMS, human is morévacand DBMS is passive [10].
Existing work focuses on different aspects of distributeedaam processing systems [13, 14, 16,
17]. The Aurora [10] and Borealis [11] study the techniquegrbcess the data streams on single or
multiple sites with the emphasis on load balancing, runtjonery and result modification, and QoS
based optimization. The STREAM system [12] is trying to pdevsimilar DBMS functionality
on the data streams with special concentration on the meneguirements. TelegraphCQ [15]
specializes on shared, continuous query processing oeey @nd data streams.

The area of distributed stream processing [75, 76, 77, 54{9830] has similarities to event
aggregation in decentralized pub-sub systems. In botle tteeses, data originating from the nodes
of an overlay needs to be processed and delivered to a setipier# nodes. However, there are
also crucial differences between the two. First, in streanegssing systems, the source nodes of
various data streams are generally known when the queryipkwolved. Whereas in a pub-sub
system, any publisher that has issued an advertisemeneoanaje a corresponding event. Second,
the data streams last for relatively long durations of tiame] so do the data processing operators
defined on these streams. Third, many of the stream progesgsiems assume a global view
of the overlay topology. These characteristics justify pednit the heavy-weight, optimization-
based query planning, operator placement, and adjustrtrategies used by stream processing
applications. The pub-sub environment, especially in comitg-oriented applications, is much
more ad-hoc — publishers generate event messages in a ntnumus manner and at arbitrary

points in time. Furthermore, each event is active for shoration of time, in the sense that the

81

messages pertaining an event are published in a short tim#owi Thus, the heavy-weight oper-
ator placement strategies are not appropriatdgmeandCaeva In contrast to distributed stream
processing system§aevadoes not require a priori knowledge of event message squandsts

protocols and techniques are lightweight and dynamic.

6.3 COMPLEX EVENT PROCESSING

Complex event detection (CED) originated in the field ohaetlatabase systems as a mechanism
to respond automatically to events that are taking pladeeinside or outside of the database
system [46]. Current work on CED has focused on two main sso@mely, reducing the com-
putational overheads at the server [18, 19] and reducingdnemunication costs [20]. Wu et
al [19] study NFA based optimization techniques to achi@aster complex event processing at
the server-end on high volume event streams with long timedaws. Ding et al. [18] exploit
event constraints to optimize complex event processing lavge volumes of business transac-
tion streams. The plan-based CED technique [20] reducesatmenunication overheads of CED
by intelligently pushing and pulling (through single and Itiatarget pulls) PEs. Our work also
focuses on reducing the communication overheads. Howiinae are several crucial differences
between Comet and these existing systems. First, therexsgstems are designed for traditional,
continuously connected networks. Comet, on the other hamtdsigned for intermittently con-
nected DTNs. Second, most of these techniques are ceattatizhe sense that the entire CED
process occurs at a single node. Comet on the other handed basmulti-level CED paradigm
and it enables sharing of CED tasks among multiple nodes.

Complex event detection [20] also bears similarities toneaggregation. However, most of
the current approaches to complex event detection rely apdori planning which assumes that
the event sources are known before hand. The differenceekatwur work and existing stream
processing system is that existing work tends to focus ordngplex event language and stream
processing performance at the data stream sink, while wesfoa reducing data transmission

cost within the stream processing network by executing:gffe detection plans which utilize the

82

properties of the event streams and network to eliminaterdresmission of unnecessary data.
Adaikkalavan and Chakravarthy [81] discuss modeling aretifipation of incomplete events.
The SASE+ [21, 22] processes multiple event streams tryirfimd certain pattern of correlation.
It has a more descriptive event language to improve the egjiniéity of complex events. At the
same time, a NFA model is applied to improve the performamcemplex event processing at the
event sink.

There is a crucial difference between data stream proaggsgsiems and complex event detec-
tion systems. As Akdere et al. [20] have noted, data streamegsing systems operate on a con-
tinuous query paradigm and are expected to produce resuittantly. Hence they rely exclu-
sively on push-based data transfer. Complex event detesyistems on the other hand are geared
towards detecting certain events of interest. Unless suehtg occur, the system essentially does
not produce any output. Thus, CED systems can utilize bosth aund pull data transfer modes.
Furthermore, most of the current distributed data streamgssing systems are designed for tra-
ditional, continuously-connected networks. While our kvi based on delay tolerant networks,

where long latency and intermittent connection are common.

6.4 DeLAY TOLERANT NETWORKS

Delay Tolerant Networks (DTN) has been an active area ofirebdor the past few years [42, 82,
83]. One of the typical types of DTN is the interplanetarywak (IPN) or deep space network,
which is used for the data transmission among different sggaee vehicles and the ground station
on earth. For example, in Mars exploration [41], Bundle &cot [84, 33] has been widely used for
the transmission of data in IPN. Recent develop in IPN inefugsting the Bundle Protocol from
space using the United Kingdom Disaster Monitoring Cotetieh, a multi-satellite earth-imaging
low-earth-orbit sensor network where captured image asedtored on board each satellite and
later downloaded to a ground station [85, 86, 87].
The major focus of DTN research is on routing and messagerdigssition algorithms [42].

Since there is no end-to-end path in DTN, messages are @atguhig a store-and-forward manner.

83

Historical data and replication techniques are usuallgis®TN routing, such as [82, 83]. There
are also some designated nodes called data mule or datddgreyform the major routing task,
for example in [88, 89]. Recently social-based approacheslso applied in the DTN routing,
for example [90, 91].

Although DTN has been the active research area in the paatidethere is very limited number
of work on running the applications on the DTN. Research anithportant aspect of DTNs has
been limited to web applications and distributed file syst¢@2, 93]. This dissertation is a step
towards closing this gap in the sense that it studies how &®ogvent monitoring applications
have to adapt when the underlying network is a DTN. To the bestur knowledge, we are the
first to apply the plan based multi-level complex event detactechniques on delay tolerated

network (DTN).

CHAPTER 7

CONCLUSIONS ANDFUTURE WORK

In this chapter, we summarize the challenges and our coititiis to the event monitoring services
and discuss the future research directions for event agtioegand complex event detection on

delay tolerant networks.

7.1 DISSERTATION CONCLUSIONS

In real world event monitoring systems, especially thosesonith human publishers, are poten-
tially faced with event data that is fraught with various dgnof noise. Dealing with this noise
effectively is critical, yet challenging both from data nagirement and distributed computing per-
spectives. This dissertation presents our approach tevamsigning an efficient distributed broker
overlay-based event monitoring system that eliminatesrrédnt event messages as well as aggre-
gates information from multiple messages corresponditigegsame event.

We first introduce the concept el’ent gathereas a designated broker of a particular routing
graph that is responsible for eliminating redundant messagd merging messages containing par-
tial event information through that routing graph. We shbeatin order to achieve high efficiency
and low overheads, the event gatherer should be locatee gréiph center of the corresponding
routing graph. A novel, completely decentralized alganthas been presented for discovering
the center of an acyclic broker network. The above ideasrm@porated into our systerAgele
We have performed several experiments for studying theopaence of théAgelesystem under
various conditions. Results show that the proposed tedkesiqre effective and efficient, thereby

demonstrating the viability of our approach.

84

85

In the extened work oAgele we introduce the distributed event aggregation and reaturyd
elimination system: Caeva. Caeva uses a collaborativeebmlerlay to eliminate redundant mes-
sages and merge same-event messages. By performing thiattése brokers, Caeva avoids
placing this burden on the event subscribers. We also designmplement a distributed aggre-
gator placement algorithm that continuously adapts to agesgublication patterns with the aim
of minimizing the message load within the overlay. We dep@lo efficient notification scheme for
supporting subscriber-specified notification cycles.

In terms of complex event monitoring, current centralizeeDCtechniques have significant
limitations that make them ineffective for multi-hop DTNwmonments. In this dissertation, we
present the design and evaluation of a CED planner for Comiéth, to the best our knowledge is
the first multi-level CED system in which the multiple DTN resdshare CED tasks. The objective
of our planner is to come up with a multi-level plan that mirees CED costs while respecting a
user-specified detection delay tolerance limit. Comegsipér is characterized by its three unique
components, namely, push-pull conversion, shorting aadeshsub-plan. Push-pull conversion is
a two phase heuristic that starts with a simple all-push plash progressively lowers the cost.
First, Comet converts certain carefully chosen push ojersto single target pulls; and, when
such conversions are no longer possible (due to the delayatate), converts remaining push
operations to multi-target pull operations where possiBlerting is designed to counter scenarios
in which detecting sub-CEs at every junction does not yielodgplans. This module creates virtual
CED trees by eliminating junction nodes at various levelshef CED tree. Shared sub-plan is
generated by reconstructing CED trees with heuristic madel algorithm. Through extensive
experimental evaluation, we have shown that in most casaseCproduces significantly better

plans than existing centralized CED mechanisms.

7.2 FRJUTURE WORK

We propose flexible and scalable framework for event ag@ic@yand redundancy elimination in

event monitoring services. The practical impact of the euork is still in its early stage, because

86

in real world, the decentralized broker overlay network ymamic. New nodes may continue
joining the broker overlay as the new users joining in thenéweonitoring services. At the same
time, some nodes may leave the broker overlay as the usethgservices. Currently, we assume
that the broker overlay is relatively stable. Building e@onitoring services on a dynamic overlay
brings new challenges to the research. As a continuatidnoiork, we will design new algorithm
to adapt to the churn of broker overlay. In a addition to thgpathms, we are also considering
using real world traces of Twitter [43] to evaluate the perfance of our event aggregation and
redundancy elimination in the event monitoring servicesndrds this, we have to analyze the
content of tweets and build data structure for tweets salieekeywords and associated attributed
are extracted and stored.

Complex event detection services will become increasinglye important on emerging delay
tolerant networks. This dissertation is the first step tolsdhe goal of building the complex event
monitoring services on such overlay networks. To achiei® gbal, we have identified several
challenges. First, limited resources including storageygy and band width on the DTN nodes.
We currently assume each DTN node has unlimited resourcethédresources become limited,
the algorithm has to be adjusted to adopt the limitationso8e, load balancing for the nodes in the
overlay. Some nodes may host too many sub-plans which sasutiad imbalance in the overlay.
The burst of certain events can also lead to load spikes. katids planer for monitoring complex
events should balance the load of the overlay as the resoofceach node is limited. Third,
unpredictable connectivity. Our work is currently basedomedule contact, i.e. the connectivity of
the nodes is predictable to some extent. When the conngasviinpredictable, how to maximize
the utility of the connections and minimize the communimattost are the goals we are trying to
achieve. Last but not least, real world traces for evaluatio the future, we are trying to obtain
the real world traces by either getting public availabledsaor building our own. This will help
us analyze and improve the system. We foresee that our pogrevent monitoring services will
provide more insight into different aspects of several matld applications, including design,

implementation, analysis and improvement.

BIBLIOGRAPHY

[1] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenbgr “Content-based Publish-Subscribe

over Structured Overlay Networks,” Proceedings ICDCS005.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajara&.Strom, and D. C. Sturman., “An
Efficient Multicast Protocol for Content-Based PublishbScribe Systems,” iProceedings

of ICDCS 19991999.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design awaluation of a wide-area event
notification service,ACM Transactions on Computer Systend. 19, no. 3, pp. 332-383,
2001.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and A. RowstrteCRIBE: A Large-Scale and
Decentralised Application-level Multicast Infrastruatyi IEEE Journal on Selected Areas

in Communications (JSAC2002.

[5] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Pheli@ontent Based Routing with
Elvind,” in Proceedings of AUUGZ2R000.

[6] “TIB/Rendezvous,” White paper, 1999.

[7] P. Pietzuch and J. Bacon, “Hermes: A Distributed Eveas®&l Middleware Architecture,” in

Proceedings DEBR002.

[8] S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. van &te “Sub-2-Sub: Self-Organizing
Content-Based Publish Subscribe for Dynamic Large Scallel@oative Networks,” irPro-

ceedings of the 5th international workshop on peer-to-pgstemsFeb 2006.

87

88

[9] P. T. P. Felber, R. Guerraoui, and A.-M. Kermarrec, “Thariyl Faces of Publish/Subscribe,”
ACM Computing Surveysol. 35, no. 2, 2003.

[10] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, SeL&. Seidman, M. Stonebraker,
N. Tatbul, and S. Zdonik, “Monitoring streams: A new classdata management applica-

tions,” in Proceedings of VLDR2002.

[11] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, Mh&niack, J.-H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Ying, and S. Zdonik, “The

design of the borealis stream processing engine?rateedings of CIDR2005.

[12] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwaln Nishizawa, U. Srivastava,
D. Thomas, R. Varma, and J. Widom, “Stream: The stanforcastrdata manager/[EEE

Data Engineering Bulletin, 26(12003.

[13] Y. Zhou, K. Aberer, and K.-L. Tan, “Toward Massive QueDptimization in Large-Scale
Distributed Stream Systems,” MIDDLEWARE 2008.

[14] B. Gedik, H. Andrade, and K.-L. Wu, “A code generationpegach to optimizing high-

performance distributed data stream processingZ1kM, 2009.

[15] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. kmadk M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, V. Raman, F. Reiss, and M.hah$S"“Telegraphcq: Con-

tinuous dataflow processing for an uncertain world,Pmoceedings of CIDR2003.

[16] S. Seshadri, B. Bamba, B. F. Cooper, V. Kumar, L. Liu, Khfan, and G. Zhang, “Grouping
distributed stream query services by operator similarmiy aetwork locality,” INSERVICES

[, 2008.

[17] M. F. Mokbel and W. G. Aref, “Sole: scalable on-line enéon of continuous queries on

spatio-temporal data stream¥[.DB J, vol. 17, no. 5, 2008.

89

[18] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, V\dtung, and K. S. Candan, “Run-

time semantic query optimization for event stream prooggssin ICDE, 2008.

[19] E. Wu, “High-performance complex event processingrateeams,” inln SIGMOD, 2006,
pp. 407-418.

[20] M. Akdere, U. Cetintemel, and N. Tatbul, “Plan-basennplex event detection across dis-

tributed sources,” ifProceedings of VLDR2008.

[21] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman, “Ouapporting kleene closure over

event streams,” ifProceedings of ICDE2008.

[22] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efént pattern matching over event

streams,” inProceedings of SIGMO[2008.

[23] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, ar&8h8nker, “Making gnutella-like
p2p systems scalable,” BIGCOMM 2003.

[24] S. Ratnasamy, P. Francis, S. Shenker, R. Karp, and Mdldgn“A scalable content-
addressable network,” im Proceedings of ACM SIGCOMN001, pp. 161-172.

[25] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. Raashoek, F. Dabek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup prattmranternet applications,” iACM
SIGCOMM 2001, pp. 149-160.

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, deedimed object location, and routing
for large-scale peer-to-peer systems,MIDDLEWARE 2001, pp. 329-350.

[27] P. T. Eugster, R. Guerraoui, and C. H. Damm, “On Objeat$ Bvents,” inProceedings of
OOPSLA 2001.

[28] D. J. Abadi, D. Carney, U. etintemel, M. Cherniack, C.n€ey, S. Lee, M. Stonebraker,
N. Tatbul, and S. Zdonik, “Aurora: a new model and architeetior data stream manage-

ment,” The VIdb Journglvol. 12, pp. 120-139, 2003.

90

[29] Y. Xing, “Dynamic load distribution in the borealis sam processor,” iln ICDE, 2005, pp.
791-802.

[30] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stoaker, “Fault-tolerance in the

borealis distributed stream processing systemlfAiSIGMOD, 2005, pp. 13-24.

[31] J. hyon Hwang, M. Balazinska, E. Rasin, M. Stonebraked S. Zdonik, “High-availability
algorithms for distributed stream processing,IMNEEE ICDE Conference2005, pp. 779—
790.

[32] E. Ryvkina, A. S. Maskey, M. Cherniack, and S. ZdonikeWsion processing in a stream
processing engine: A high-level design,Rmoceedings of the 22nd International Conference

on Data Engineering2006.

[33] V. C. et al., “Delay-tolerant network architecturdBTF RFC 4838, informational, April
2007

[34] S. Parikh and R. C. Durst, “Disruption tolerant netwiatkdemonstration for marine corps

condor,” inProceedings of MILCOM2005.

[35] C. Rigano, K. Scott, J. Bush, R. Edell, S. Parikh, R. Weaated B. Adamson, “Mitigating
naval network instabilities with disruption tolerant netking,” in Proceedings of MILCOM

2008.

[36] A. Pentland, A. Hassan, and R. Fletcher, “Daknet: Rudimg connectivity in developing
nations,”IEEE Computervol. 37, 2004.

[37] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshaawtost communication for rural

internet kiosks using mechanical backhaul,Proceedings of MOBICOM20O0G.

[38] R.Y.Wang, S. Sobti, N. Garg, E. Ziskind, J. Lai, and Aistimamurthy, “Turning the postal
system into a generic digital communication mechanism,Piaceedings of SIGCOMM

2004.

91

[39] J. LeBrun, C.-N. Chuah, D. Ghosal, and M. Zhang, “Kna¥ge-based opportunistic for-

warding in vehicular wireless ad hoc networks,Rroceedings of VT(2005.

[40] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. ZparStudy of a bus-based
disruption-tolerant network: mobility modeling and impamn routing,” in Proceedings of

MOBICOM, 2007.

[41] S. Burleigh, V. Cerf, R. Durst, K. Fall, A. Hooke, K. S¢oand H. Weiss, “The interplanetary
internet: A communications infrastructure for mars exatmmn,” in World Space Congress

2002.

[42] S. Jain, K. R. Fall, and R. K. Patra, “Routing in a delajetant network,” inSIGCOMM
2004.

[43] “Twitter (http://twitter.com).”

[44] J. Chen, L. Ramaswamy, and D. Lowenthal, “Towards effitievent aggregation in a
decentralized publish-subscribe system,’Rroceedings of the Third ACM International
Conference on Distributed Event-Based Sysfesas DEBS '09. New York, NY, USA:
ACM, 2009, pp. 18:1-18:11. [Online]. Availabléttp://doi.acm.org/10.1145/1619258.
1619283

[45] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. NorgnBaParthasarathy, J. B. Park,
and A. Vernon, “Scalable trigger processing,’Hroceedings of ICDE1999.

[46] N.W. Paton and O. Diaz, “Active database systed€M Computing Surveysol. 31, 1999.

[47] J. Chen, L. Ramaswamy, and D. K. Lowenthal, “Agele: Degphith redundant and par-
tial events in a real-world publish-subscribe system,htecal Report UGA-CS-TR-09.001,
2009.

[48] D. Wall, “Mechanisms for Broadcast and Selective Brzast,” Ph.D. dissertation, Stanford
University, 1980.

92

[49] R.Voigt, R. Barton, and S. Shukla, “A Tool for ConfigugiMulticast Data Distribution Over
Global Networks,” inProceedings of INETL995.

[50] L. Song, “A Distributed Algorithm for Graph Center Pieln,” Master’s thesis, 2003.

[51] D. Thaler and C. V. Ravishankar, “Distributed Centerchtion Algorithms,”IEEE Journal

on Selected Areas in Communicatipwsl. 15, no. 3, 1997.

[52] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A RouginrScheme for Content-Based
Networking,” inProceedings of INFOCOM 2002004.

[53] J. Chen, L. Ramaswamy, D. K. Lowenthal, and S. Kalyamaa, “Caeva: A customizable
and adaptive event aggregation framework for collaboedinoker overlays,” ifProceedings

of CollaborateCom2010.

[54] P. R. Pietzuch, J. Ledlie, J. Shneidman, M. Roussomwh Welsh, and M. I. Seltzer,
“Network-Aware Operator Placement for Stream-ProcesSpgtems,” inProceedings of

ICDE, 2006.

[55] E. W. Dijkstra, “A note on two problems in connexion wighaphs,"Numerische Mathematik

vol. 1, 1959.

[56] J. Chen, L. Ramaswamy, D. K. Lowenthal, and S. Kalyamara “Comet: Decentralized
complex event detection in delay tolerant networks,” Dapant of Computer Science, Uni-

versity of Georgia, Tech. Rep. UGA-CS-TR-11-001, July 2011

[57] M. Bauer and K. Rothermel, “How to Observe Real-Worldekts through a Distributed
World Model,” in Proceedings of ICPADS004.

[58] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola,ideémic Algorithms for Reliable
Content-Based Publish-Subscribe: An EvaluationPiceedings of ICDCR004.

93

[59] L. Fiege, M. Cilia, G. Muhl, and A. P. Buchmann, “PultiiSubscribe Grows Up: Support
for Management, Visibility Control, and HeterogeneitffEE Internet Computingvol. 10,
no. 1, 2006.

[60] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Melglot: content-based pub-
lish/subscribe over P2P networks,”Middleware 20042004.

[61] Z. Jerzak and C. Fetzer, “Bloom Filter Based Routing@ontent-based Publish/Subscribe,”
in Proceedings of DEBR008.

[62] J. Mocito, J. A. Briones-Garcia, B. Koldehofe, H. Mida, and L. Rodrigues, “Geographical
Distribution of Subscriptions for Content-based Pubhiscribe in MANETS,” inrMiddle-

ware (Companion)2008.

[63] Y. Huang and H. Garcia-Molina, “Publish/subscribe imabile environment,Wireless Net-

works vol. 10, no. 6, 2004.

[64] R. Baldoni, R. Beraldi, V. Quéma, L. Querzoni, and SPiergiovanni, “TERA: topic-based

event routing for peer-to-peer architectures,Pioceedings of DEBR007.

[65] S. Tarkoma, “Dynamic content-based channels: meetirthe middle,” inProceedings of

DEBS 2008.

[66] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Gbacting scalable overlays for
pub-sub with many topics,” iRroceedings of POD007.

[67] R. Lewis, “Advanced Messaging with MSMQ and MQSerigl999.

[68] I. Aekaterinidis and P. Triantafillou, “PastryStrings Comprehensive Content-Based Pub-
lish/Subscribe DHT Network,” ilCDCS 2006.

[69] B. Chandramouli, J. M. Phillips, and J. Yang, “Values®d Notification Conditions in Large-
Scale Publish/Subscribe Systems,Proceedings of VLDR2007.

94

[70] G. Cugola and L. Mottola, “A Self-Repairing Tree Ovsrlanabling Content-based Routing
in Mobile Ad Hoc Networks,TEEE Transactions on Mobile Computiy2008.

[71] G. Li, S. Hou, and H.-A. Jacobsen, “A Unified Approach tou®&ng, Covering and Merging
in Publish/Subscribe Systems Based on Modified Binary DatiBiagrams,” inICDCS
2005.

[72] J. P. Loyall, M. Gillen, and P. Sharma, “QoS Allocatiomgarithms for Publish-Subscribe
Information Space Middleware,” iMIDDLEWARE 2008.

[73] W. Fenner, M. Rabinovich, K. K. Ramakrishnan, D. Srteas, and Y. Zhang, “XTreeNet:
scalable overlay networks for XML content disseminationl guerying,” in Proceedings

WCW 2005.

[74] M. Srivatsa and L. Liu, “Securing Publish-Subscribes@ay Services With EventGuard,” in
Proceedings of ACM-CC005.

[75] M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov,daR. Ye, “CLASP: Collaborating,

Autonomous Stream Processing SystemsPlioceedings of MIDDLEWAREO007.

[76] B. Chandramouli and J. Yang, “End-to-End Support foindoin Large-Scale Pub-
lish/Subscribe Systems,” ifroceedings of VLDB2008.

[77] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and K. SamwWResource-Aware Distributed

Stream Management Using Dynamic Overlays,J&DCS 2005.

[78] N. Jain, M. Dahlin, Y. Zhang, D. Kit, P. Mahajan, and Pla@andula, “STAR: Self-Tuning

Aggregation for Scalable Monitoring,” iRroceedings of VLDR2007.

[79] O. Jurca, S. Michel, A. Herrmann, and K. Aberer, “Quergiven Operator Placement for

Complex Event Detection over Data Streams,Pnoceedings of EuroSS2008.

[80] T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: Shgriéware Component Composition

for Distributed Stream Processing SystemsPmceedgins of Middlewar006.

95

[81] R. Adaikkalavan and S. Chakravarthy, “Events must begete in event processing!” in

Proceedings of ACM-SAQO008.

[82] A. Lindgren, A. Doria, and O. Schelen, “Probabilisticuting in intermittently connected

networks,” inSIGMOBILE Mobile Computing and Communication Reyi2d04, p. 2003.

[83] J. Burgess, B. Gallagher, D. Jensen, and B. N. LevingxXiMop: Routing for vehicle-based
disruption-tolerant networks,” im Proc. IEEE INFOCOM 2006.

[84] K. Scott and S. Burleigh, “Bundle protocol specificatiolETF RFC 5050, experimental,
November 2007

[85] W. Ivancic, W. Eddy, L. Wood, J. Northam, and C. Jacks&xperience with delay-tolerant
networking from orbit,”preprint for the International Journal of Satellite Comnications

and Networking, special issue for best papers of ASMS,Z08).

[86] L. Wood, W. Ivancic, W. Eddy, D. Stewart, J. Northam, @ckison, and A. da Silva Curiel,
“Use of the delay-tolerant networking bundle protocol frepace,” in59th International

Astronautical Congres008.

[87] W. Ivancic, W. Eddy, L. Wood, D. Stewart, C. Jackson, drtRam, and A. da Silva Curiel,
“Delay/disruption-tolerant network testing using a lededlge,” in Eighth Annual NASA
Earth Science Technology Conference (ESTC 2008)

[88] W. Zhao, M. Ammar, and E. Zegura, “A message ferryingrapph for data delivery in sparse

mobile ad hoc networks,” iIACM MobiHog 2004.

[89] P. Yang and M. Chuah, “Efficient interdomain multicastidery in disruption tolerant net-

works,” in Proceedings of MSN2008.

[90] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delwlerant networks: A social

network perspective,” iCM Mobihog 2009.

96

[91] Q. Li, S. Zhu, , and G. Cao, “Routing in socially selfisHaletolerant networks,” iIHEEE
INFOCOM, 2010.

[92] A. Balasubramanian, B. N. Levine, and A. Venkataramédtmhancing interactive web appli-

cations in hybrid networks,” iMOBICOM, 2008.

[93] M. J. Demmer, B. Du, and E. A. Brewer, “Tierstore: A dibtrted filesystem for challenged

networks in developing regions,” iPFAST, 2008.

