
TOWARDS ADVANCED EVENT MONITORING SERVICES ON

DECENTRALIZED AND DELAY TOLERANT NETWORKS

by

JIANXIA CHEN

(Under the direction of Lakshmish Ramaswamy and David Lowenthal)

ABSTRACT

Event monitoring services are rapidly gaining importance in many application domains ranging

from real time monitoring systems in production, logisticsand networking to complex event mon-

itoring in finance and security. However, the current event monitoring services do not have the

capabilities needed for emerging domains of applications.This dissertation is devoted to study and

address the challenges involved in providing event monitoring services on decentralized and delay

tolerant networks.

First, we consider the problem of event aggregation and redundancy elimination in decentral-

ized broker overlays. We propose two systems for efficient event aggregation and redundancy elim-

ination. The first system, Agele, presents our ideas for event gatherer, a designated broker in the

routing graph that acts as a proxy sink for all messages of a particular event. The second system,

Caeva, is built on Agele. Caeva exhibits three novel features: multiple distributed aggregators,

adaptive aggregator placement and customized subscriber notification schedule.

Second, we consider the complex event detection on delay tolerant networks. The existing work

on complex event detection employs a centralized approach,whose limitations are exacerbated

when the underlying environment is delay tolerant networkswith long latency and intermittent

connection. Hence, the event detection system has to be extensively redesigned for the adaptation

to underlying environment. We propose a novel multi-level framework called Comet for complex

event detection services on delay tolerant networks.

The evaluation has demonstrated that our solutions to the challenges in the advanced event

monitoring services are effective and efficient.

INDEX WORDS: Event Monitoring, Event Aggregation, Redundancy Elimination,
Complex Event Detection, Delay Tolerant Network, Heuristic Algorithm

TOWARDS ADVANCED EVENT MONITORING SERVICES ON

DECENTRALIZED AND DELAY TOLERANT NETWORKS

by

JIANXIA CHEN

B.E., Xiamen University, 2002

M.E., Xiamen University, 2005

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

DOCTOR OFPHILOSOPHY

ATHENS, GEORGIA

2011

c© 2011

Jianxia Chen

All Rights Reserved

TOWARDS ADVANCED EVENT MONITORING SERVICES ON

DECENTRALIZED AND DELAY TOLERANT NETWORKS

by

JIANXIA CHEN

Approved:

Major Professors: Lakshmish Ramaswamy
David Lowenthal

Committee: Suchendra Bhandarkar
Kang Li
Shivkumar Kalyanaraman

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
August 2011

DEDICATION

To my dear parents and my beloved girlfriend Jiran for their constant love and support.

iv

ACKNOWLEDGMENTS

First, I would like to sincerely thank my advisor Dr. Lakshmish Ramaswamy for his vision, guid-

ance, understanding and patience during my Ph.D program. I would also greatly thank my co-

advisor Dr. David Lowenthal for his suggestion, encouragement, support and humor. I would also

like to express my gratitude to my committee members: Dr. Suchendra Bhandarkar, Dr. Kang Li

and Dr. Shivkumar Kalyanaraman for their precious time and invaluable advices.

This dissertation work was funded by the Dissertation Completion Award from the Graduate

School, The University of Georgia.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

L IST OF FIGURES . viii

L IST OF TABLES . x

CHAPTER

1 INTRODUCTION . 1

1.1 DISSERTATION CONTRIBUTIONS . 4

1.2 ORGANIZATION OF THE DISSERTATION 6

2 BACKGROUND AND CHALLENGES . 8

2.1 EVENT AGGREGATION AND REDUNDANCY ELIMINATION 8

2.2 DELAY TOLERANT NETWORKS . 10

2.3 COMPLEX EVENT DETECTION . 11

3 EVENT AGGREGATION AND REDUNDANCY ELIMINATION 17

3.1 ABSTRACT . 18

3.2 SYSTEM OVERVIEW . 18

3.3 GRAPH CENTERS . 24

3.4 AGELE IMPLEMENTATION . 31

3.5 EXPERIMENTAL RESULTS . 33

4 ENHANCED EVENT AGGREGATION AND REDUNDANCY ELIMINATION 39

4.1 ABSTRACT . 40

4.2 SYSTEM OVERVIEW . 40

vi

vii

4.3 EXPERIMENTAL RESULTS . 50

5 COMPLEX EVENT DETECTION ON DELAY TOLERANT NETWORKS 56

5.1 ABSTRACT . 57

5.2 COMET OVERVIEW . 57

5.3 INDIVIDUALIZED CED PLANNING IN COMET 60

5.4 AVOIDING REDUNDANCY IN COMET 65

5.5 EXPERIMENTAL EVALUATION . 69

6 LITERATURE REVIEW . 78

6.1 PUBLISH-SUBSCRIBE . 78

6.2 DISTRIBUTED STREAM PROCESSING 80

6.3 COMPLEX EVENT PROCESSING . 81

6.4 DELAY TOLERANT NETWORKS . 82

7 CONCLUSIONS AND FUTURE WORK . 84

7.1 DISSERTATION CONCLUSIONS . 84

7.2 FUTURE WORK . 85

BIBLIOGRAPHY . 87

L IST OF FIGURES

2.1 Centralized CED on DTN .. . 15

3.1 Pictorial representation of a topology with the center node indicated. All messages

are part of the same event. .. 22

3.2 Pictorial representation of the eccentricity determination phase. 26

3.3 Percentage of messages suppressed, breakdown of whether the suppressed mes-

sages were duplicates or merged, and time increase whenTm varies. 35

3.4 On the left, percentage of messages suppressed whenTr varies. On the right, for

Tr = 10, the time increase for five different values ofTb. 35

3.5 Percentage of messages suppressed and time increase when the number of nodes

varies. The graph uses a log scale for the x-axis. 37

3.6 On the left, event times for aggregator nodes using different eccentricities. On the

right, the time to find the graph center for various node counts, normalized based

on the number of aggregator nodes used. 37

4.1 Distributed Message Aggregation inCaeva . 44

4.2 Illustration of Customized Notification Scheme 48

4.3 WhenTm varies, percentage of messages in broker overlay suppressed (left); time

increase (center). On the right, tradeoff between delay andpercentage of messages

eliminated. 50

4.4 Percentage of messages in broker overlay suppressed when spatial locality and

redundancy ratio vary; the first letter indicates the locality, and the second the

redundancy ratio . 53

4.5 Incomplete events when varying the per-event drain rate; the per-event buffer size

is fixed at 20 fields . 55

viii

ix

5.1 Illustration of Multi-level Push-Pull Conversion 59

5.2 Virtual Topology Creation via Shorting 63

5.3 Illustrating the Need for Avoiding Redundancies in Multi-level CED 64

5.4 CJN Selection and CED Tree Reconstruction 69

5.5 Performance with nonuniform cost and uniform delay per link. 71

5.6 Performance with uniform cost and uniform delay per link. 72

5.7 Performance with nonuniform delay per link for nonuniform cost per link. 73

5.8 Performance of Comet with different heuristics. The cost per link is nonuniform. . 73

5.9 Performance where the degree of the junction nodes is varied (randomly) from 1

to 3. 74

5.10 Performance of Comet with different CED tree levels. 75

5.11 Benefit of using two-phase algorithm in Comet. 75

5.12 Performance on Different Number of Shared PEs 76

5.13 Comparison of Different Hosting Nodes (2 Shared PEs) 76

5.14 Comparison of Different Hosting Nodes (4 Shared PEs) 77

L IST OF TABLES

4.1 Number of messages for different numbers of publishers for both static and adap-

tive algorithm . 54

4.2 Number of messages for different numbers of publishers for both static and adap-

tive algorithm when publishers have nonuniform characteristics 54

x

CHAPTER 1

INTRODUCTION

Event monitoring services are the services that monitor thereal-world events which are of interest

to the users, and deliver the event notifications to the users. Real-world events are represented

as data (or messages) in the event monitoring services. Withincreased commodity use of mobile

devices, and the popularity of collaborative social oriented applications, the event monitoring ser-

vices are rapidly gaining importance in many emerging domains, such as production, logistics,

finance and security etc. Currently, the event monitoring services take the form of publish-subscribe

(pub-sub) [1, 2, 3, 4, 5, 6, 7, 8, 9], distributed stream processing [10, 11, 12, 13, 14, 15, 16, 17]

and complex event processing [18, 19, 20, 19, 21, 22]. The current event monitoring services are

usually based on the decentralized broker overlay, which isbuilt on top of the traditional TCP/IP

based network. Examples of such overlay networks are Gnutella [23], CAN [24], Chord [25] and

Pastry [26].

The pub-sub event monitoring services consist of publishers, subscribers and the pub-sub

system. The publishers publish events to the systems, the subscribers subscribe the events of

interest. The pub-sub system offers the event monitoring services to the subcribers, such that the

published events that match the interest of the subcribers will be delivered to the subscribers. The

pub-sub system is loosely coupled and uses an asynchronous communication model, which makes

it particularly well-suited for large-scale distributed applications. The pub-sub systems generally

are categorized as topic-based [6], type-based [27], type-and attribute-based [7] and contented-

based [3].

1

2

Event monitoring services also take the form of distributedstream processing, in which the

events are pushed and processed by different operators in the in the overlay network. Unlike tra-

ditional database management system, where the “active” users pull the “passive” data, in the

distributed stream processing systems, the “active” eventdata are processed by relatively “pas-

sive” operators. Research in the distributed stream processing includes operators and descrip-

tion languages [28], centralized streaming processing engines [10], load balancing [29], fault-

tolerance [30], high availability [31] and revision processing [32] etc.

Recently, the complex event detection (CED) services have become a key capability of

emerging domain of event monitoring applications. Complexevents (CEs) are composed from

multiple atomic, possibly geographically distributed primitive events (PEs) [20]. CED services is

capable of monitoring correlated events. Current work on CED has focused on two main issues,

namely, reducing the computational overheads at the central processing site [18, 19] and reducing

the event communication costs on the broker overlay [20].

Existing event monitoring services have the following limitations:

First, redundancy in the event messages is not taken into consideration, which results in signif-

icant overhead to both the event monitoring system and the end-user devices. Most existing event

monitoring systems make an implicit assumption that the published event data is clean, complete,

and accurate (i.e., the event data is devoid of noise). Whilethe assumption may be valid in appli-

cations where the publications are electronically generated (i.e, the publishers are gadgets such as

servers and different kinds of sensors), this is hardly the case in systems with human participants.

In community/social group-oriented event monitoring services, noisy events are almost a given.

This noise can take various forms, such as redundant events,incomplete event messages, inac-

curate event messages, and even events generated with malicious intent. Redundant event mes-

sages and messages containing incomplete (partial) information about the corresponding events

are among the most common forms of noise in applications withhuman participants. As more

and more human participants in the social networks become “human sensors”, who monitor and

report events of interest. Upon the observation of certain interested event, large group of users

3

tend to send out event messages which contain significant amount of redundant information. The

resulting high volume of redundant event messages will overwhelm the event monitoring systems

and the end-user devices as well, especially those devices with limited resources, such as power

and band-width. Ideally, superfluous messages should be filtered by eliminating redundant event

messages and aggregating event messages containing partial information. However, doing so poses

significant challenges both from data management and distributed systems perspectives.

Second, the overhead of existing complex event detection services is prohibitively expensive,

when the underlying network is delay tolerant network. Withincreased commodity use of mobile

devices, delay-tolerant networks, or DTNs, are necessarily becoming more commonplace. DTNs

exist outside of the Internet; DTN links are characterized by long delays, frequent interruptions,

and high error rates [33]. Examples of such networks includebattlefield [34, 35], rural [36, 37, 38],

vehicular [39, 40], and interplanetary networks [41].

Research on DTNs has primarily focused on routing data from source to destination [40, 42].

Unfortunately, there is little research on building applications that are important and appropriate for

these networks. Complex event detection is one such application whose importance and applica-

bility transcends the diversity of different DTN domains. As noted by several researchers, complex

or composite event detection (CED) is one of the fundamentalcomponents of an event monitoring

application. For example, traffic incident and congestion monitoring are attractive for vehicular

networks, while monitoring seismic and meteorological conditions are important for interplane-

tary networks.

Existing work in CED services rely, explicitly or implicitly, on centralized processing of PEs.

Unfortunately, centralization is unacceptable in networks that are prone to long delays and frequent

disruptions. While the cost and latency imposed by a centralized CED framework may be tolerable

for high bandwidth wired networks, it is prohibitively expensive for DTNs.

4

1.1 DISSERTATION CONTRIBUTIONS

To address the limitations and problems of current event monitoring services, this disseration

makes the following contributions:

In the first contribution, we presentAgele, an event monitoring service that embodies our

ideas towards reducing superfluous messages from potentially distinct event publishers in semi-

real time.Agele’s architecture is based upon a decentralized broker overlay, where the message

brokers interact with one another in peer-to-peer (p2p) fashion. The twin design goals ofAgeleare

to minimize the message load in the overlay and to simultaneously minimize the latency overheads

of subscribers. These goals are achieved by elimination andaggregation of event messages as they

travel through the overlay from their publishers to the subscribers. We introduce the concept of

event gatherers, which are broker nodes that identify and eliminate redundant event messages, as

well as temporarily hold and merge partial event messages. We show that in order to achieve our

goal of minimizing message load in the system, the event gatherer for a set of related subscription

predicates should be located at thegraph centerof the corresponding routing acyclic graph. We

present a novel decentralized algorithm for determining the graph center of a acyclic graph. An

important feature of our algorithm is that it does not need a global view of the overlay, and it only

relies upon message exchanges between neighboring nodes inthe overlay. Further, our algorithm is

efficient and provably accurate. We perform experiments to study the viability of our ideas.Agele

reduces the message load by over90% in some cases and over60% in most. Furthermore, the

overhead to subscribers can be kept typically to around25%, and results in a real-world system

with stringent bandwidth constraints would likely be much smaller.

In the second contribution, in order to further achieve scalability and load balancing for event

aggregation and redundancy elimination in event monitoring services, in the extended work of

Agele, we describe the design, implementation, and performance of Caeva, which is a decentral-

ized, dynamic, and configurable event monitoring system that handles redundant and partial events.

Caevauses a collaborative broker overlay to eliminate redundantmessages and merge same-event

messages. By performing this task at the brokers,Caevaavoids placing this burden on the sub-

5

scribers, who may be resource constrained in terms of power or bandwidth. To operate effectively

at a large scale,Caevamust address two key problems. First, aggregation must be decentralized,

dynamic, and adaptive to achieve good performance, and the key to achieving this is developing an

effective algorithm for placing aggregators within the broker overlay. Second, the ability of sub-

scribers to control the inherent tradeoff between degree ofaggregation and latency of notification

is critical for usability. We present a collaborative eventaggregation and redundancy elimination

technique, in which event messages are aggregated in multiple levels and at multiple aggregators.

Our technique includes decentralized protocols to coordinate the actions of various aggregators of

an event so that subscribers receive notifications with low delay. We design and implement a dis-

tributed aggregator placement algorithm that continuously adapts to event message publication pat-

terns with the aim of minimizing the message load within the overlay. In addition, we also develop

an efficient notification scheme for supporting subscriber-specified notification cycles. This is done

through a unique combination of upstream propagation of individual notification schedules and

selective downstream propagation of aggregated messages.We study the benefits and overheads

of our scalable, decentralized mechanisms through series of experiments with particular attention

to the broker overlay and the resource-constrained subscribers. The results demonstrate that the

message load inCaevasystem can be over 70% less thanSiena[3], a similar system that does no

message elimination; furthermore, the number of messages arriving at subscribers is up to a factor

of 2 lower inCaevathan inSiena.

In the third contribution, this dissertation contributes anovel, multi-level framework, called

Comet, for efficient and scalable complex event detection (CED) indelay tolerant networks

(DTNs). To the best of our knowledge, Comet is the first systemthat supports distribution of the

CED process among multiple nodes, with each node detecting apart of the CE (sub-CE) by aggre-

gating two or more PEs or sub-CEs. Because finding an optimal (lowest) cost plan is exponential,

we propose a novel cost-latency sensitive heuristic algorithm. Given a CE definition and DTN

topology, we start with a lowest latency and highest cost plan in which all PEs and sub-CEs are

pushed to the next level. Then, we progressively change the status of individual links at various

6

levels from push to pull until the delay tolerance does not permit any more changes. Our algorithm

adopts a greedy strategy and chooses links that provide highutility value in terms of the ratio of

cost savings to CED delay. In order to exploit multi-target pulls to further lower communication

costs, when single-target pulls are no longer possible due to the delay tolerance, our algorithm

switches to simultaneous pull mode. In this mode, we consider changing remaining links with push

status to simultaneous pulls with existing pull status links. This reduces the costs with typically

only a marginal increase in delay. Any planning strategy that works at the granularity of links suf-

fers from the limitation that it cannot explore certain plans. Specifically, suboptimality can result

from the need for certain PEs to be pushed along a particular link while other PEs are pulled along

the same link. Comet overcomes this limitation by creating multiple virtual topologies through a

unique technique calledshorting. Our link-based heuristic algorithm is executed on these virtual

topologies, and the plan that yields the minimum cost is selected. The overall event monitoring

cost can be further reduced by exploiting the shared events among different types of CEs. Multiple

types of CEs may share common PEs. Using a novel heuristic algorithm, Comet reconstructs

the CED trees with shared common PEs, so that the shared PEs can be detected as sub-CEs at a

common junction node. Hence the cost of detecting the sub-CEs can be shared by multiple types

of CEs, which significantly reduces the overall detection cost for all types of CEs. We have run

extensive experiments with Comet. Performance results show that Comet reduces cost in some

topologies by over 89% compared to pushing all primitive events, and over 60% compared to a

two-level exhaustive search algorithm [20]. Comet can further reduce the overall cost by more than

30% when the shared PEs are leveraged. Moreover, in most topologies, Comet outperforms all

other techniques, often by similar margins. This includes both skewed topologies and topologies

with increasing depth.

1.2 ORGANIZATION OF THE DISSERTATION

The remainder of this dissertation is organized as follows.Chapter 2 provides the background

and challenges of this dissertation. Chapter 3 addresses the problem of event aggregation in the

7

advanced event monitoring services with decentralized broker overlay. Chapter 4 further improves

the solution with a more scalable and customizable distributed approach. Chapter 5 is dedicated

to the complex event detection in advanced event monitoringservices, with a special focus on the

delay tolerant networks, followed by Chapter 6 with literature review on advanced event moni-

toring services. Finally, Chapter 7 concludes the dissertation.

CHAPTER 2

BACKGROUND AND CHALLENGES

In this chapter we briefly discuss the fundamentals of advanced event monitoring services, which

includes event aggregation, redundancy elimination, complex event detection (CED) and delay

tolerant networks (DTNs). We also formally state the problem of CED on DTNs and explain why

the existing CED techniques are not appropriate for DTNs.

2.1 EVENT AGGREGATION AND REDUNDANCY ELIMINATION

Recently, community/social group-oriented event services such as twitter [43] are gaining popu-

larity. In these applications, the members of a (possibly ad-hoc) community or social group col-

laboratively report and receive events that may be of interest to that group. Observe that this is a

pub-sub system in which participants (both publishers and subscribers) are human. Generally, the

application provides a subscription mechanism through which a participant can specify the events

of interest. Participants who notice a particular event that may be of interest to the community

report it to the system using their communication device (desktops, laptops, mobile gadgets, etc.).

In such applications, several participants may notice an event simultaneously (or within a short

duration of time). However, some or all of these participants may only have partial information

about the event. The event messages published by these participants would naturally contain par-

tial information. Also, individual messages may contain varying degrees of information about the

event. Since several participants may individually publish an event to the system, it can lead to

redundant event messages. Event message redundancy can be of two forms. First, two event mes-

sages may contain the exact same information. Thisdirect form of redundancy is generally referred

to asexact duplicates. However, there is another, subtler form of redundancy. Theinformation

8

9

contained in an event message might have already been provided in “bits and pieces” by a set of

publishers. In other words, a set of previous messagescumulatively containsall the information

that the current message is carrying. We call thisindirect redundancy. As an example, consider the

example of a collaborative traffic incident report system, wherein participants report traffic inci-

dents that they notice, which would then be delivered to set of subscribers. In such a system, many

participants might report a traffic incident. While all messages pertaining to an accident would

contain its location, some of them might provide details about the accident such as how many cars

are involved, whether is a fire and whether there are casualties. Some may contain information that

is already known from earlier messages.

The simplest strategy for dealing with redundant and partial event messages would be to rele-

gate these responsibilities to the subscribers. Thishands-offapproach, however, is fraught with sev-

eral drawbacks. First, the subscriber devices may not have the computational and communication

capabilities to deal with redundant and partial event messages. For each actual event, subscribers

may receive several messages that may overwhelm low-end devices, thus causing them to drop

legitimate and important messages. Second, even if the devices were capable of handling the mes-

sage load, this approach would lead to significant bandwidthoverhead, and, in case of mobile

devices, corresponding battery-power drain. Third, it would also lead to high communication

overhead within the pub-sub system, thereby affecting its scalability and efficiency. Fourth, this

approach assumes that the subscriber devices have the software necessary for for performing aggre-

gation and elimination, which raises practicality concerns due to the vast heterogeneity among the

subscriber devices.

Thus, it is desirable to have an underlying system that aggregates event information and elim-

inates redundant messages so that a single (or at most a few) consolidated event messages are

delivered to the subscribers. An alternative would be to perform these operations at centralized

brokers (one broker per event) of the overlay [44]. However,the centralized brokers can quickly

become overloaded. Further, relaying each published message to a centralized broker causes high

messaging overheads within the overlay. Thus, in order to achieve scalability, the task of aggre-

10

gating messages of an event should be shared by multiple brokers, and the set of brokers involved

in aggregation should adapt to message publication patterns. In addition, the subscribers should be

able to choose the degree of consolidation as per their needsand resource availabilities.

2.1.1 RESEARCH CHALLENGES

Designing a distributed broker network that delivers consolidated non-redundant event messages

to the subscribers poses a number of distributed systems problems. First, since the messages corre-

sponding to an event may be published by several publishers,event messages may enter the broker

overlay through many different brokers, and, depending upon the routing scheme employed by

the system, the event messages might follow non-overlapping (or barely overlapping) paths to the

subscribers. Hence, individual brokers in the overlay might not even be aware of the existence of

multiple (redundant and incomplete) event messages. Second, the individual messages pertaining

to an events might be published over a certain period of time,which necessitates storage and main-

tenance of aggregated information about different events.The questions in this regard are where

(on which broker node(s)) would this information be maintained and for how long? Third, consol-

idating messages pertaining to an event implies that there would be an inherent delay in notifying

the subscribers of the information that has been published about it. Managing the tradeoffs between

the extent of aggregation and the delay in communicating published information about events to the

respective subscribers is another challenge. Fourth, failure of individual brokers may result in loss

of aggregated event information in addition to service disruptions. Protecting loss of aggregated

event information in the face of broker node failures is yet another problem.

2.2 DELAY TOLERANT NETWORKS

Delay Tolerant Networks (DTNs) are networks in which continuous, bi-directional, end-to-end

connectivity between two arbitrary hosts is not guaranteed. The links (also referred to ascon-

tacts) of a DTN are characterized by intermittent connectivity, asymmetric data rates, and high

error rates. DTNs operate on a store-and-forward paradigm where a node stores data it receives

11

until a link that can carry the data forward towards its destination becomes operational. Based

on the temporal link connectivity characteristics, DTNs can be classified into two broad classes:

scheduled-contacts DTNsandopportunistic-contacts DTNs. As the name suggests, in scheduled-

contacts DTNs, the contacts among nodes occur according to aschedule, as opposed to in an

ad-hoc manner in opportunistic-contacts DTNs. In other words, the up and down times of the links

of a scheduled contacts DTN can be predicted to a reasonable degree of accuracy.

Our discussion is based on the following conceptual model ofscheduled-contact DTNs. The

DTN is composed ofN nodes represented as{V1, V2, . . . , VN}. A link or contact is the intermittent

connection between two nodes. The intermittent link between nodesVf andVg is represented as

Lfg. Each link is associated with four properties. The expecteddisconnection period of the link

Lfg, represented asEDP (Lfg) is the time duration between two consecutive active sessions of

the link. In other words, onceLfg becomes disconnected, it is expected to remain dormant for

EDP (Lfg). Analogously, the expected active period ofLfg, represented asEAP (Lfg), is the

time duration for whichLfg is expected to remain active after gaining connectivity. The bandwidth

of Lfg, denotedBW (Lfg), is the number of bytes per second that can be transferred over Lfg

when the link is active. The latency ofLfg (represented asLT (Lfg)) is the time required for a

packet to travel fromVf toVg when theLfg is operational. Generally,EDP (Lfg) ≫ LT (Lfg) and

EAP (Lfg) ≫ LT (Lfg). Several routing techniques have been proposed for scheduled-contacts

DTNs [40, 42].

2.3 COMPLEX EVENT DETECTION

As mentioned in the introduction, complex events (CEs) are composed from two or more primitive

events (PEs). PEs are events that are generated atomically from the sources. For example, the sur-

face temperature at a particular location exceeding100◦F is a PE that is produced by a temperature

sensor at that location. Each time the surface temperature exceeds100◦F, aninstanceof this event

is produced. Each event (PE or CE) is associated with a uniqueidentifier, called theEvent-ID. A

PE with ID i is represented aspei. Every instance of a particular event is also associated with a

12

unique ID, called theInstance-ID. Thejth instance ofpei is represented aspeji . Each event has a

distinct schema to which every instance of that event adheres to. In addition to the Event-ID and

Instance-ID, the event schema contains three mandatory attributes:Node-ID, which is the ID of

the node at which the event originated,Start-Time, which is the time at which the particular event

instance began (i.e., the time instance at which the event conditions were met), andEnd-Time,

which is the time at which the event instance ended (i.e., event conditions ceased to be met). For

instantaneous events (e.g., an RFID tag being scanned at a particular sensor), the Start-Time and

the End-Time are both set to the same value. An event instanceis said tooccur within a certain

time duration if both the Start-Time and the End-Time of the instance fall within the duration.

Similar to centralized CED schemes [20, 45, 46], our system supports a standard set of event

composition operators (shown below). CEs are defined in terms of these operators and each oper-

ator incorporates a set of at least 2 PE arguments. Ifpek appears as an argument in the definition

of cei, thenpek is said to be aconstituent eventof cei. In other words, detectingcei requires moni-

toring ofpek. Most of the operators incorporate a time window argument (represented asw) which

specifies the maximum duration between any two PE instances that are part of a CE instance.

Below, we provide informal descriptions of the operators. Formal descriptions can be found else-

where [20].

• and operator (and(pe1, pe2, . . . , pem;w)): An instance of the CE is detected when at least

one instance of every constituent PE occurs within a slidingwindow of lengthw. The Start-

Time of the CE is set to theminimumof the Start-Times of constituent PE instances and

End-Time of the CE is themaximumof the End-Times of constituent PE instances.

• seq operator (seq(pe1, pe2, . . . , pem;w)): A special case of theand operator where the PE

instances must occur in a pre-specified order. In other words, not only should at least one

instance of every constituent PE occur within the sliding window, but they should occur in the

same orderas specified in the parameter list (i.e.,∀i ∈ {1, . . . , (m− 1)}, pei.End-Time ≤

pei+1.Start-Time).

13

• or operator (or(pe1, pe2, . . . , pem)): A CE instance is detected each time an instance of any

one the constituent PEs occurs. In contrast to theand and theseq operators theor operator

does not require a time window parameter.

• negation operator (!): Negation operator is used to specifically exclude events in and and

seq operators. Theand(pe1, pe2, . . . , !pei, . . . , pem;w) operator specifies that an instance of

CE is detected when at least one instance of eachpe1, pe2, . . ., pei−1, pei+1, . . ., pem occurs

within a window of lengthw andno instance ofpei occurs within the same time window.

Theseq(pe1, pe2, . . . , !pei, . . . , pem;w) operator specifies that an instance of CE is detected

when at least one instance of eachpe1, pe2, . . ., pei−1, pei+1, . . ., pem occursin the same

order within a window of lengthw andno instance ofpei occurs betweenpei−1.Start-Time

andpei+1.End-Time.

2.3.1 PROBLEM STATEMENT

Consider a set ofm PE sources. Each PE source resides on one of the DTN nodes, although a

DTN node may host more than one PE source. The DTN may have additional nodes other than

those that host PE sources. Every node is assumed to have computation, communication (radio

transmission) and storage capabilities. In addition to EAP, EDP LT and BW, each link is also

assumed to be associated with a cost factor (denoted asCF (Lfg) for link Lfg). The cost factor

represents the cost of transferring one packet of data over the link. In this dissertation, we regard

the cost factor as a generic parameter. A commonly used cost factor is the inverse of the link

bandwidth (CF (Lfg) =
µ

BW (Lfg)
), whereµ is a constant. However, the application can provide an

alternate specification; for example, in case the nodes of the DTN are power constrained, the cost

factor can be defined as the power consumed for transferring apacket over the link.

CEs are composed from the PEs using the above operators. For each CE, a node of the DTN

is designated as itsdestination(also called as sink). This is the node at which the CE is eventually

needed. For example, this can be a base station on earth (in case of interplanetary DTNs) or a logis-

tics planning camp (in battlefield DTNs). The destination node ofcei is represented asVD(cei). The

14

user who defines a CE also specifies the maximum detection delay that can be tolerated for that

CE. We call this thedelay tolerance limitor simply thedelay tolerance(represented as∆(cei)).

The delay for a CE instance is the difference between the timeat which the last constituent PE of

the CE occurred and the time at which the CE was detected at thedestination. The delay of the CE

is the maximum of the detection delay over all of its instances.

Given (1) the topology of the DTN (including the EDP, EAP, BW and LT of various links),

(2) the location of the various PE sources, (3) the frequencyof each PE, and (4) the definition of

the CE and its delay tolerance limit, the problem is to come upwith a plan that minimizes the

cumulative cost of detecting the CE. The cost of a linkLfg under a certain CED plan is the product

of its cost factor (CF (Lfg)) and the average number of bytes transferred through the link per unit

time. The cumulative cost of a detection plan is the sum of thecosts of all links involved in the

plan.

The plan will essentially include three things: (1) where (on which node(s)) the CED process

will execute; (2) for each node involved in the CED, which of its constituent events will be pro-

actively sent (pushed) to the node, and which will be obtained by the node when needed (pulled);

and (3) if a node pulls multiple constituent events, in what order would it be done. A CED plan is

usually represented as a set offinite state machines (FSMs). Each node executing the CED process

has an associated FSM that specifies the sequence of push and pull operations that are executed by

that node.

2.3.2 CHALLENGES

With an example, we now explain two existing CED techniques and discuss why they cannot be

trivially adopted for DTN settings. Figure 2.1(a) shows a scheduled contacts DTN with 7 nodes.

There are four PEs{pe1, pe2, pe3, pe4}. which reside on nodesV4, V5, V6 andV7, respectively. The

PE frequencies are shown in the diagram, where the notationx/y means thatx events are generated

everyy time units. The numbers next to the link indicate their respective cost factors and EDP.

15

V1

V9V8V7V6

V4V3

pe1 pe4pe3pe2

1/1 1/2 1/4 1/8

(1,1)
S

(pe1,pe2,pe3,pe4) F
 V1:

S

(c) Centralized Push-Pull:
(pe4)

F
 S1

 (pe1,pe2)
V1: S2

 (pe3)

(a)
(b) Centralized All-Push:

(1,1)

(1,1) (1,1) (1,1)(1,1)

V11V10

V5

pe6pe5

1/2 1/1

(1,1)

V2

(1,1) (1,1)

(1,1)

S
(pe3,pe4,pe5,pe6) F

 V2:

S
(pe4)

F
 S1

 (pe5,pe6)
V2: S2

 (pe3)

ce1 ce2

Figure 2.1: Centralized CED on DTN

The most straightforward approach to CED is to push every instance of each PE as and when

they occur to the destination. The destination uses a sliding window to check which set of PE

instances result in a CE instance. This approach is an adaptation of the centralized CED technique

used in active databases and triggers [45, 46]. Figure 2.1(b) shows the only FSM (at nodeV1) of

this plan. The other nodes do not perform any detection tasks, and hence do not have associated

FSMs.

This approach yields the lowest latency but is very costly—in fact this approach has maximum

cost. This is because it pushes instances irrespective of whether an instance has any chance of

being a part of a CE instance. In our example, on average one instance ofpe1 is produced every

second. But, most of these instances will not become part of any CE because an instance ofpe4 is

produced only once in 8 seconds, and the window length is set to 2. The problem is that even if the

user specifies a higher delay tolerance limit, this scheme fails to utilize it to lower the CED costs.

An alternate technique proposed by Akdere et al. [20], attempts to alleviate the problem by

selectively pushing certain (usually the cheapest) PEs to the destination. The destination pulls the

other PEs when it notices (based on PE instances that have arrived) that there is likelihood of a

CE instance. The problem is to decide which PE sources will bepulled by the destination and in

what order, so that the detection cost is minimized while ensuring that the detection delay does

not exceed the specified tolerance limit. The authors prove that finding an optimal plan requires

exponential time, and the paper proposes a heuristic algorithm. Their algorithm employs two kinds

16

of pulls. single-target pullsin which the node send out a pull request to only one PE source at

a time andmulti-target pullsor simultaneous pullsin which the node simultaneously pulls from

multiple PE sources.

However, note that even with this technique, the CED processis essentially executed at the

destination, which means that again there is only one FSM in the plan. The plan consists of a start

state in which certain PEs are pushed to the destination, possibly followed by a sequence of states,

each corresponding to a single or a multi-target pull. Figure 2.1(c) illustrates one such plan. Note

that stateS1 corresponds to a single target pull, whereasS2 corresponds to a multi-target pull. Even

this technique suffers from several limitations. First, centralized CED can still result in significant

degree of wasted communication. In Figure 2.1(a), one of thelowest-cost centralized CED plans

will involve pushingpe4 to V1, andV1 pulling pe3, pe2 andpe1 in that order. Note, however, that

for a significant fraction ofpe4 instances, there might not be anype3 instances that occur within

the time window (w = 2). Pushing such events toV1 will result in wasted communication and

higher costs, especially if the cost factor ofL13 is high. In general, it is better to discard such

instances early (at nodes closer to the PE source). Second, due to frequent and potentially long link

disconnections, pulling events by the destination would add significantly to the detection delay. The

additional delay can be as much as twice the sum of the EDPs of the links forming the path from the

destination to the PE source, because of the request/reply format of pulls. In our example, pulling

pe3 can add up to2 × (EDP (L1,3) + EDP (L3,6)). (The factor of two is because the structure is

request/reply, and there can be a disconnection period before each.) The problem is exacerbated

in situations where PE sources are several hops away from thedestination. Considerable delay

savings can be obtained by pullingPE3 from V3. In general, when the EDP of the links closest to

the sources is relatively high, it is beneficial to push the PEto an intermediate node with a lower

EDP; then, the destination can then pull from the intermediate node. Centralized CED techniques

(including the sophisticated one that allows selective push and pull) preclude such plans, thereby

resulting in substantially higher CED costs and delays.

CHAPTER 3

EVENT AGGREGATION AND REDUNDANCY ELIMINATION 1

1J. Chen, L. Ramaswamy, and D. Lowenthal. Towards efficient event aggregation in a decentralized
publish-subscribe system. in Proceedings of the Third ACM International Conference on Distributed Event-
Based Systems, ser. DEBS ’09. New York, NY, USA: ACM, 2009, pp. 18:1-18:11. Reprinted here with
permission of publisher.

17

18

In this chapter, we presentAgele, an event monitoring service that embodies our ideas towards

reducing superfluous messages from potentially distinct event publishers in semi-real time.

3.1 ABSTRACT

Recently, decentralized publish-subscribe (pub-sub) systems have gained popularity as a scal-

able asynchronous messaging paradigm over wide-area networks. Most existing pub-sub systems,

however, have been designed with the implicit assumption that published data is clean and accu-

rate. As the pub-sub paradigm is incorporated in real-worldapplications with human participants,

this assumption becomes increasingly invalid due to the inherent noise in the event stream. The

noise can take many forms, including redundant, in- complete, inaccurate, and even malicious

event messages. This chapter explores the distributed computing issues involved in handling event

streams with redundant and incomplete messages. Given a distributed broker overlay-based pub-

sub system, we present our initial ideas for (1) aggregatingevent information scattered across mul-

tiple messages generated by different publishers and (2) eliminating redundant event messages.

Key to our approach is the concept of an event-gatherer, a designated broker in the routing graph

that acts as a proxy sink for all messages of a particular event, located at the graph center of the cor-

responding routing tree. This chapter proposes a novel decentralized algorithm to find this graph

center. Results show that the proposed scheme typ- ically reduces the message load by over 60time

overhead to subscribers.

3.2 SYSTEM OVERVIEW

In this section, we provide an architectural overview of oursystem. Our event aggregation and

redundancy elimination model is generic, and it can be applied to most pub-sub frameworks. How-

ever, for conceptual clarity, in this dissertation, we focus on a framework that is similar to type-and

attribute-based pub-sub paradigm [7] (details about the subscription model is provided later in the

section). However, the proposed architecture as well as theassociated techniques can be adapted

to topic-based or content-based publish-subscribe systems.

19

Ageleis based upon a distributed overlay of message brokers (alsoreferred to asnodes). The

N message brokers in the overlay are represented as{b1, b2, . . . , bN}. Each broker is logically

connected to a few other brokers such that the network forms aconnected graph. Set of publishers

and set of subscribers are represented as{p1, p2, . . . , pG} and{s1, s2, . . . , sH} respectively. Each

publisher and subscriber must be connected to one of the brokers.

3.2.1 EVENTS, MESSAGES ANDSUBSCRIPTIONS

Similar to type-and attribute-based pub-sub paradigm [7],every event in our system is associated

with a topic, which provides a broad context for the event. Continuing with the example presented

in the previous section, a traffic incident in a certain geographical area would represent a topic.

In addition, events have a set of attributes (fields) that provide details of the event. The fields

of an eventeq are represented as{eq(1), eq(2), . . . , eq(V)}. One of these fields (without loss of

generality, the first field) is designated as theevent key. Within a certain time-window, the key

along with the topic corresponds uniquely (or can be resolved uniquely) to an event. In our system,

the key field is descriptive, and it can be used in subscription predicates. For example, the key for

a traffic incident event would be the street intersection at which it occurs. The number of fields of

an event, their types and the key are determined by the event’s topic.

However, in contrast to existing pub-sub systems, there canbe multiple messages associated

with a single event, and these messages may have been published by multiple publishers. The

messages corresponding to an eventeq are represented as{e1q, e
2
q , . . . ,

eUq }. Each message provides some (possibly partial) information about the event. The fields of an

event messageerq are represented as{erq(1), e
r
q(2), . . . , e

r
q(V)}. In a message that carries partial

information about the event, one or more fields (other than the event key) would be empty. Our

assumption of key-topic uniqueness implies that if the firstmessage of an event is published at

time tf , any messages with the same key-topic pair generated between tf andtf +W correspond

to the same event.

20

In Agele, subscriptions are specified with respect to the event topicas well as its fields. A

subscription has to necessarily identify the topic of interest. Additionally. itmayspecify predicates

involving the fields associated with the topic.Advertisementsare messages used by publishers to

indicate the types of events they are going to generate. However, the system can be configured to

work without advertisements, in which case it is assumed that every publisher can publish all types

of events. Notice that the basicAgeleframework can be considered as a special kind of content-

based pub-sub model, where the content of every published item includes a topic and an event key.

In fact, theAgeleimplementation is based on a content-based pub-sub system,Siena [3].

3.2.2 ROUTING

As in many pub-sub systems [2, 3], an acyclic network of brokers, called arouting acyclic graph

(routing AG, for short)forms the basis for routing events from publishers to consumers. Routing

AGs are embedded in the broker overlay. Notice that routing AGs are connected, non-directed, and

acyclic (may also be considered as non-rooted trees). Similar toSiena[3] andHermes[7], routing

AGs in Ageleare constructed in a completely decentralized fashion by peer-to-peer forwarding of

subscriptions and advertisements. Furthermore, the predicates of subscriptions with thesametopic

are aggregated at brokers, and a more generic subscription is forwarded. In effect,Agelemaintains

a distinct routing AG for each topic. However, individual brokers can belong to multiple routing

AGs. When available, advertisements can be utilized for optimizing the routing AGs.

3.2.3 EVENT GATHERERS

We now explain our mechanisms for message aggregation and redundancy elimination. Our

strategy is to merge partial messages and eliminate redundant messages within the routing AG

as they travel from their publishers to the subscribers. Oneof the nodes in the routing AG is

designated as theevent-gathererfor events disseminated through that routing AG. All the event

messages with the same topic value are routed through the corresponding event gatherer. The event

gatherer, upon receiving an event message, determines whether (1) this is the first message in a

21

possible sequence of messages from the same event, in which case it is stored, (2) it is redundant,

and hence needs to be eliminated, or (3) it can be merged with an existing message. At an appro-

priate point in time (see below), the event-gatherer disseminates the aggregated message to the

respective subscribers.

Concretely, an event-gatherer maintains a message buffer,which stores at most one message

per distinct event. When a message comes in, the event gatherer checks whether an event message

with the same event key already exists in the buffer. If so, there is an earlier message in the buffer

corresponding to the same event. The event gatherer now determines if the newly arrived message

is redundant (data contained in it is a subset of the data already available message existing in the

buffer) or whether it can be merged with the existing message. Redundant messages are discarded.

A message ismergeableif it contains some extra information that the existing message does not

have (i.e., there exists one field which is empty in the existing message, but the corresponding

field in the incoming message contains data). If the incomingmessage is deemed mergeable, the

event gatherer creates a new aggregate message by combiningthe information available in the two

messages and stores it in the buffer instead of the current buffered message. If the buffer does not

contain an event with a matching key, the incoming message isinserted into the buffer.

An event gatherer is allowed to maintain the message corresponding to an event for at most

W time units, since beyond this time another distinct event with the same event key might occur

From message aggregation and redundancy elimination perspectives, it is optimal to have the event

gatherers maintain the message corresponding forW time units, and after that send out the merged

message to the actual recipients. However, waiting this long may sometimes affect the subscribers’

ability to react properly to the event. To address this concern, the event gatherers periodically send

out merged messages, while maintaining them in its buffer2. Specifically, for each event message

in its buffer, the event gatherer evaluates the respective subscription predicates everyTm time units

and sends out the merged message to a subscriber if its predicate is satisfied. However, subscrip-

tion predicates might depend upon fields of the message that are currentlyempty. This issue can be

2Depending upon its buffer-space constraints, an event gatherer may store messages for shorter durations
than what is permissible.

22

B7
B5

B8

B4

B3

B2

B9

B6

Cen
B1 (d)(b),(c)(b)

a(c
)

B7
B5

B8

B4

B3

B2

B9

B6

Cen
B1

a

(a,b,c,d)

(a
,b

,c
,d

)

aa

b c d

Figure 3.1: Pictorial representation of a topology with thecenter node indicated. All messages are
part of the same event.

resolved in two ways - the event gatherer might simply wait until all the fields necessary for eval-

uating the respective predicate are available, or it mightoptimisticallytreat the predicate terms for

which the values are not available astrue. In the later case, there is a chance offalse notifications.

Figure 3.1 provides an example of the idea of eliminating messages with an event gatherer

(labeledCen in the graph). On the left, the center node buffers a message with field a, while

messages containing fieldsb, c, andd are traveling through the graph. On the right, the latter three

fields pass through the center node and are merged into one message. Moreover, the new, merged

message containing all four fields is buffered in case redundant messages later arrive at the center

node.

3.2.4 WHERE SHOULD AN EVENT GATHERER BE LOCATED?

Next, we explore the crucial question ofwhere an event gatherer should be located?In other

words,on which brokers of the routing AG should the event gatheringfunctionality be placed?The

location of the event gatherer within the routing AG has a significant impact on the message load

in the broker overlay. Our main objective when choosing the event gatherer location is to minimize

the message load in the broker overlay. A second, but equallyimportant, objective is to minimize

the latency overheads on the subscribers.

23

We now formulate the problem in terms of the first objective. However, as explained in our

technical report [47], our solution achieves both objectives. In the routing AG consisting of bro-

kers{b1, b2, . . . , bM}, suppose the brokerbi is designated as the event gatherer. Now, if an event-

message were to be generated by a publisher attached to nodebj , the messaging cost of transmitting

this message to the event gathererbi is Dist(bj , bi), whereDist(bj , bi) represents the path length

between the brokersbj andbi in terms of number of hops. Similarly, the cost of sending a merged

message from the center to a subscriberbk isDist(bk, bi). Since the event can enter into the system

through any broker, the expected message load due to an eventmessage is

ECost(Rag, bi) =
1
M

∑

bj∈Rag Dist(bj , bi),

whereRag represents the routing acyclic graph. Thus, the problem is to find a brokerbi such that
∑

bj∈Rag Dist(bj , bi) is minimized.

Traditional optimization strategies cannot be applied here as most of them arecentralized

schemes requiring a global view of the routing AG topology, whereas our system is based on

a completely decentralized architecture wherein the brokers only interact with their neighbors.

Furthermore, these strategies are computationally expensive. Therefore, we seek to develop an

alternate solution that is not only amenable to decentralized implementation but is also efficient.

Our strategy is dependent upon the following observation. Since the cost of transferring a mes-

sage from an arbitrary nodebj to the event gathererbi is determined byDist(bj , bi), in order to

achieve low message loads, the event-gatherer should be located not too far away from any node

in the routing AG. So, which broker in the routing AG satisfiesthis criterion? Intuitively, the event

gatherer should be located in thecore regionof the routing AG. In fact, it can shown that the broker

that satisfies this property would be thegraph centerof the routing AG. The graph center is defined

as follows. Consider a undirected connected graphG = (B,E) with nodesB = {b1, b2, . . . , bn}.

Thedistancebetween two nodesbj andbi, represented asDist(bj , bi) is the length of the shortest

path between them. Theeccentricityof a nodebi is defined as the largest of the shortest paths

betweenbi and any other node in the graph. That isEccentricity(bi) = Maxbj∈B(Dist(bi, bj)).

24

The graph centers ofG are the set of nodes with minimum eccentricity3. Since, graph center has

the minimal longest path, it naturally satisfies the above criterion.

3.3 GRAPH CENTERS

The problem now is to develop a completely decentralized algorithm to determine the center of

acyclic graph, which would execute only through message exchanges among neighboring brokers.

Several algorithms have been proposed for finding graph centers [48, 49]. However, very few of

them are applicable to a decentralized setting where a global view of the network is not available.

To the best of our knowledge there are very few distributed algorithms for locating centers of gen-

eral graphs [50, 51]. However, even these algorithms have significant limitations, which prevents

us from utilizing them.

Before presenting our solution, we define a few concepts thatare necessary for its description.

Consider two neighboring brokersbi andbj in the routing AG. Since the routing graph is acyclic

(and undirected) , if the edge(bi, bj) is removed, the graph is partitioned. The partition (subgraph)

that contains the nodebj is called thesubgraph anchored by(bi, bj) and is represented asSG(bi, bj).

Similarly, the partition that containsbi is thesubgraph anchored by(bj , bi) (SG(bj , bi)). Note that

in the routing AG, the path frombi to any node inSG(bi, bj) has to necessarily pass throughbj .

The subgraph eccentricity ofbi with respect tobj (represented asSEcc(bi, bj)) is defined as the

eccentricity ofbi with respect to only the nodes inSG(bi, bj). In other words,SEcc(bi, bj) =

Maxbx∈SG(bi,bj)(Dist(bi, bx)). The neighboring brokers ofbi in the routing AG is represented as

NbrList(bi).

3.3.1 DISTRIBUTED CENTER DETERMINATION

As we remarked earlier, our algorithm is completely decentralized, and it relies purely on message

exchanges among neighbor brokers. The algorithm works in three stages, as explained below.

3There could be multiple graph centers, all of which have minimum eccentricities

25

INITIATION PHASE

In this phase any broker in the routing AG initiates the center determination algorithm. It does

so by sending an initiation (INIT) message to all its neighbors in the routing AG. The INIT mes-

sage contains the routing AG topic and the identifier of the broker initiating the process. Each

broker receiving the INIT message propagates it to all its neighbors in the routing AG. Concurrent

initiations are resolved by ignoring all but the first message.

ECCENTRICITY DETERMINATION PHASE

In the second phase, the brokers in the routing AG progressively discover their eccentricities with

respect to the routing AG. A brokerbj sends one or more messages to its neighbor brokerbi, each

of which updates the current value ofSEcc(bi, bj). Finally, whenbj discovers that current value of

SEcc(bi, bj) has reached its final value, it sends a STABLE message tobi.

Concretely, the algorithm works as follows. Supposebi andbj are neighboring brokers in the

routing AG, and supposeNbrList(bi)

= {be, . . . , bh, bj} andNbrList(bj) = {bi, bk, . . . , bp}. Every broker in the routing AG maintains

its subgraph eccentricity with respect to each of its neighbors. Further, it also maintains the sub-

graph eccentricities of each of its neighbors with respect to itself. For example, brokerbi maintains

SEcc(bi, bx) andSEcc(bx, bi) ∀bx ∈ NbrList(bi). When a broker receives an initiation message,

it initializes its subgraph eccentricities with respect toeach of its neighbors to zero.

When a leaf broker, denotedbk, receives an INIT message from its only neighbor (bj), it sends

back a UPDATE message containingSEcc(bj , bk), which is equal to 1 (asbk is the only node in the

subgraph reachable through itself). It also updates its local copy ofSEcc(bj , bk) to 1. Further,bk

sends a STABLE message tobj indicating thatSEcc(bj , bk) has stabilized. When an intermediate

nodebj receives an UPDATE message from its neighborbk, it updates its copy ofSEcc(bj, bk).

Then, for each of its neighbor brokers,bj checks whether its subgraph eccentricity with respect to

bj needs to be updated.SEcc(bi, bj) needs to be updated if the current value ofSEcc(bi, bj) is less

26

bbbb���� ����

bbbb���� bbbb����

����

bbbb����

bbbb���� ����

bbbb����

Secc(b1,b2) = 0

Secc(b2,b1) = 1
Secc(b2,b3) = 0

Secc(b3,b2) = 2
Secc(b3,b4) = 0
Secc(b3,b5) = 0

Secc(b5,b3) = 3
Secc(b5,b6) = 0

Secc(b6,b5) = 4
����

����

Secc(b4,b3) = 3

A

bbbb����
bbbb���� bbbb����

����

bbbb				

bbbb

bbbb����

Secc(b1,b2) = 4

Secc(b2,b1) = 1
Secc(b2,b3) = 3

Secc(b3,b2) = 2
Secc(b3,b4) = 0
Secc(b3,b5) = 2

Secc(b5,b3) = 3
Secc(b5,b6) = 1

Secc(b6,b5) = 4
����

����

				

Secc(b4,b3) = 3

B

bbbb����

bbbb

 bbbb����

bbbb����

bbbb����

bbbb����

Secc(b1,b2) = 4
Ecc(b1) = 4

Secc(b2,b1) = 1
Secc(b2,b3) = 3

Ecc(b2) = 3

Secc(b3,b2) = 2
Secc(b3,b4) = 1
Secc(b3,b5) = 2

Ecc(b3) = 2

Secc(b5,b3) = 3
Secc(b5,b6) = 1

Ecc(b5) = 3

Secc(b6,b5) = 4
Ecc(b6) = 4

Secc(b4,b3) = 3
Ecc(b4) = 3

����

C

Figure 3.2: Pictorial representation of the eccentricity determination phase.

thanSEcc(bj , bk) + 1. If SEcc(bi, bj) needs to be updated,bj sets its local copy ofSEcc(bi, bj) to

(SEcc(bj , bk) + 1), and sends the same value as an UPDATE message tobi.

Notice thatSEcc(bi, bj) can only updated whenbj receives an UPDATE message from one of

its neighbors other thanbi. Therefore, ifbj receives a STABLE message from all of its neighbors

other thanbi, it can safely conclude thatSEcc(bi, bj) will not be updated further. Thus, whenbj

receives a STABLE message from all of its neighbors other than bi, it sends a STABLE message to

bi.

Whenbi receives STABLE messages fromall its neighbors, it decides that its subgraph eccen-

tricity values with respect to all of its neighbors has stabilized. It can now compute its eccentricity

value as the maximum of its subgraph eccentricity values with respect to each of its neighbors.

Formally,

Ecc(bi) = Max(bx∈NbrList(bi))(SEcc(bi, bx)).

Figure 3.2 illustrates the eccentricity determination phase on a sample routing AG consisting of

6 brokers. It is assumed that all the brokers have received the INIT messages, and the leaf brokers

are about to start the process of sending UPDATE messages. All SEcc values at each broker are

initialized to zero. For better comprehensibility, the figure shows the three leaf brokers sending

27

out their UPDATE messagessequentially. However, it is important to note that the algorithm itself

does not place any such sequentiality restrictions. Further, for simplicity, we do not show STABLE

messages. Figure 3.2-A shows the propagation of UPDATE message fromb1. The figure also shows

theSEcc values of every broker with respect to all of its neighbors. These are values resulting from

the propagation ofb1’s UPDATE message. Similarly, Figure 3.2-B shows the dissemination of an

UPDATE message fromb6 and the variousSEcc values resulting from this dissemination. Notice

that b6’s message is not propagated tob4, becauseSEcc(b4, b3) is already 3, and it would not be

altered byb6’s message. Similarly, in Figure 3.2-Cb4’s UPDATE message is not propagated beyond

b3. Figure 3.2-C also shows the eccentricity values of all the brokers in the routing AG.

CENTER DETERMINATION PHASE

Once a node discovers its eccentricity, it sends its eccentricity value to all of its neighbors. A broker

whose eccentricity is less than or equal to the eccentricities of all of its neighbors determines that

it is one among possibly many centers of the routing AG. Upon discovering that it is a center

of the routing AG, the broker sends an announcement message to all its neighbors, which is then

propagated through the routing AG. Upon completion of this phase, every broker in the routing AG

knows about all the centers of the routing AG. Note that a routing AG might have more than one

center. However, if it has multiple centers, these centers form a connected subgraph (i.e., any broker

that lies in between two center brokers should itself be a center). The center broker is anointed as

the event gatherer for the routing AG. If there are multiple centers, ties may be broken in favor

of the broker with the smallest id. Notice that in Figure 3.2-C, b3, having the least eccentricity,

discovers itself as the center of the routing AG.

3.3.2 PROOF AND ANALYSIS OF ALGORITHM

We outline the termination and correctness proofs of our distributed algorithm to find the center of

a routing AG. Furthermore, we theoretically analyze its messaging costs.

28

TERMINATION

Recall that each broker sends a single INIT message to its neighbors in the first phase. Similarly, in

the center determination phase, brokers send a single message to their neighbors to communicate

their respective eccentricities. Further, the brokers also send a single message to their neighbors

for disseminating the center information. Thus, we just need to show that the eccentricity determi-

nation phase of the algorithm always terminates, which we doby induction.

Recall that the eccentricity determination phase concludes when every broker receives a

STABLE message for each of its neighboring brokers. Withoutloss of generality consider two

neighboring brokersbi and bj . We will now show thatbi receives a STABLE message frombj

within a finite time. We distinguish between two cases, namely bj being a leaf broker andbj being

an intermediate broker. Ifbj is a leaf broker (the base case), it sends a STABLE tobi message as

soon as it sends the only UPDATE message tobi.

In casebj is not a leaf node, we use induction. The routing AG can be divided into two sub-

graphs− a subgraph anchored by(bi, bj), (denotedSG(bi, bj)) and a subgraph anchored through

(bj , bi) (denotedSG(bj, bi)). Recall that theSG(bi, bj) consists of nodes that are reachable from

bi by only passing only throughbj . In our algorithm,bj sends a STABLE message tobi as soon

as it receives a STABLE message from all of its neighbors other thanbi. Notice that except for

bi, all other neighbors ofbj lie in SG(bi, bj). Thus, the act ofbj sending a STABLE message tobi

can recursively depend upon the state of the brokers inSG(bi, bj), but it can never depend upon

any broker inSG(bj, bi). The same argument can now be inductively applied for each neighbor

of bj and the subgraphs anchored by the corresponding edges. Observe that with each successive

application of the logic we are dealing with a smaller subgraph. Since the routing AG has finite

number of nodes, eventually the subgraphs contain only leafnodes, which is covered by the base

case. Hence, within a finite number of messages,bj will send a STABLE message tobi.

29

ALGORITHM CORRECTNESS

We prove the correctness of our algorithm in two steps. First, we show that our algorithm ensures

that every broker in the routing AG correctly discovers its eccentricity. Then, we outline the cor-

rectness argument for our center determination protocol (involving eccentricity value exchanges

among neighboring nodes). Recall that ifbi and bj are neighboring brokersSG(bj , bi) denotes

the subgraph anchored by(bj, bi) andSEcc(bi, bj) represents the subgraph eccentricity ofbi with

respect tobj . Ecc(bi) represents the eccentricity ofbi, NbrsList(bi) denotes the neighbor ofbi in

the routing AG, andDist(bi, bk) represents the distance betweenbi andbk.

The correctness argument for eccentricity determination phase itself involves two steps. In

the first, we show that in an undirected acyclic graph, the eccentricity of any node can be cor-

rectly computed as the maximum of its subgraph eccentricities with respect to all of its neighbors.

In the second step we demonstrate that through the proposed algorithm, any arbitrary node in

the routing AG can correctly determine its subgraph eccentricity with respect to every neighbor.

Consider an arbitrary nodebi in the routing AG. Letbk be the most distant node frombi in the

routing AG (thus the distance betweenbi andbk is bi’s eccentricity). Supposebk lies inSG(bi, bj),

thenSEcc(bi, bj) = Dist(bi, bk). The acyclic nature of the routing graph implies that there is

exactly one path frombi to bk in the routing path, and that path entirely lies in the subgraph

SG(bi, bj) ∪ bi. Thus, the distance betweenbi and bk in subgraphSG(bi, bj) ∪ bi is the same

as the distance between them in the original routing AG. The acyclic nature also implies there

is also no other node inSG(bi, bj) that is at a greater distance frombi than bk. Further, the

acyclic property can be used to show thatSEcc(bi, bx) ≤ Dist(bi, bk); ∀bx ∈ NbrList(bi). Thus,

Maxbx∈NbrList(bi)(SEcc(bi, bx)) = Dist(bi, bk) = Ecc(bi).

Now, we demonstrate that our algorithm ensures that every broker correctly discovers all of

its SEcc values. Again, consider two neighboring brokersbi andbj . Observe that ifbj forwards

an UPDATE message originating at an arbitrary leaf node (saybl) to bi, then that value of that

30

message would beDist(bi, bl). Next, if bk is the most distant node inSG(bi, bj)
4, then the UPDATE

message frombk would be eventually forwarded bybj to bi. The only scenario in whichbj does not

forward the message frombk would be when it has already received a message with a higher value

from another node inSG(bi, bj). However, this cannot happen sincebk is the most distant node in

SG(bi, bj). Thus,bi correctly discoversSEcc(bi, bj).

Next, we outline the correctness proof for our center determination protocol. Recall that in the

third phase each broker compares its eccentricity information with all of its neighbors, and a node

bi discovers that it is the center if the satisfies the twin conditions (Ecc(bi) ≤ Ecc(bx); ∀bx ∈

NbrsList(bi) and∃by ∈ NbrsList(bi) such thatEcc(bi) < Ecc(by)). The correctness proof is

based on the following three lemmas, whose proofs we omit dueto space limitations. (1) In an

acyclic graph, at least one neighbor of a center node has higher eccentricity that the center node.

(2) For two arbitrary non-neighbor nodesbi andbj of a connected acyclic graph, ifbx is a node in

the path between them, then it satisfies the conditionEcc(bx) ≤ Max(Ecc(bi), Ecc(bj)). (3) In

an acyclic graph, if the nodebk is the most distant node tobi, then the path frombi to bk always

passes through at least one graph center. Using these three lemmas we can show that for node

eccentricities of a connected acyclic graph, the local minima is also the global minimum. This

implies that the center nodes and only the center nodes satisfy the two conditions.

ALGORITHM ANALYSIS

Next, we analyze the message costs of our decentralized center determination algorithm. The three

phases of the algorithm are considered separately, and for each phase we try to determine an upper

bound for the number of messages circulated in the routing AG.

In the initiation phase, the initiation message sent by one of the nodes is sent to all brokers.

If there areM brokers in the routing AG, the total number of messages circulated in this phase is

(M − 1). Thus, the message load for this phase isO(M).

4For simplicity, we assume that there is only one most distantnode inSG(bi, bj). However, this assump-
tion can be easily relaxed.

31

Analyzing the message load in the eccentricity determination phase is a bit tricky. Unlike the

first phase, we cannot determine the exact number of messagescirculated in the routing AG during

this phase. In this phase each leaf broker sends out an UPDATEmessage, which is then circu-

lated to some brokers in the routing AG. The extent to which anUPDATE message is circulated

in the routing AG depends upon the subgraph eccentricity values of various brokers when the

message reaches them, which in turn depends upon other UPDATE messages that have traversed

through that node. Thus, the exact number of UPDATE messagesis non-deterministic. Even if

every UPDATE message reaches every single node of the routing AG, the total number of mes-

sages circulated during this phase would be no more thanL × (M − 1), whereL represents the

number of leaves in the routing AG. Thus,L× (M − 1) is an upper bound on the message load for

the second phase. However, the actual number of messages circulated during this phase is much

smaller.

The third phase involves two distinct operations, namely brokers communicating their eccen-

tricity values to their neighbors and disseminating centerinformation to all brokers in the routing

AG. The first operation results in2×(M−1) messages and the second operation results in(M−1)

messages. Therefore the total message load for this phase is3× (M − 1). Thus, the message load

of the entire algorithm is no more than(L+ 4)× (M − 1), but typically is much smaller.

3.4 AGELE IMPLEMENTATION

This section describes theAgeleimplementation.Ageleis built on top of theSienasimulator [3].

It implements the graph center determination algorithm discussed in Section 3.3. It also eliminates

redundant and partial messages. For completeness, we first describe briefly theSienasystem. Then,

we describeAgele.

3.4.1 SIENA

Siena(Scalable Internet Event Notification Architectures) is a wide-area event-based notification

system [3]. It was developed at the University of Colorado. In Siena, a message consists of a

32

set of typed attributes. Each attribute has a unique name, type and value. A predicate consists

of the disjunction of conjunctions of elementary constraints, where each element constraint is

a quadruple (name, type, operator, value). We also adapt thecombined broadcast and content-

based (CBCB) routing scheme [52] for a content based network. In CBCB routing, the broadcast

tree of each message is pruned so that the message is only propagated to those nodes that issued

the matching predicates. The routing information in the content based network is propagated in

the network using push and pull mechanisms. In the push mechanism, the subscribers push the

Receiver Advertisement (RA) to the potential publishers. This sets the routing table along the path,

which allows the messages to be forwarded to the subscribers. In the pull mechanism, Sender

Requests (SRs) and Update Replies (URs) are applied to maintain the routing table. The router

sends the SRs to pull a content based address from other routers, and the routers that are queried

reply with URs that contain updated content based address.

3.4.2 AGELE

We added significant infrastructure toSienato createAgele. First, we added the center-finding

algorithm given in the previous section. This algorithm is run at the start of the simulation, con-

currently while the simulation is proceeding. In other words, eliminating redundant and partial

messages only occurs after the graph center is found. (However, the center is found quickly, so this

effect is minor.)

To implement theAgelecenter-finding algorithm, we construct a connected acyclicoverlay for

each topic on top of the network of brokers. The algorithm runs on the overlay to find the graph

center. All control messages related to the establishment of the graph center are routed through the

overlay. Upon the termination of graph center algorithm, each node will have a forwarding table

that contains the information to force messages originatedfrom publishers to be routed through

the graph center. Once the messages are processed at the graph center, the processed messages are

propagated to the subscriber using the content based network routing table [52].

33

Second, we implemented elimination of redundant and partial messages. To do this, we added

a buffer at the center node. When a messageMa arrives at the center, it is buffered. The idea is that

a message will be buffered for a period of time, during which incoming messages will be compared

for redundancy; however, incoming messages will be considered for merging for no more than (but

possibly less than) the buffering time. Two different timers are kept: one is set toTr, the redundant

threshold, and the other toTm, the merge threshold. The redundant threshold must always be at

least as large as the merge threshold (see below).

If a messageMb arrives before the redundant timer expires, andMb is a subset ofMa, then

messageMb is dropped. On the other hand, ifMb is not a subset, and it can be merged withMa,

then a messageMab is created and buffered. In addition,Ma andMb are removed from the buffer.

On the other hand, if no mergeable message arrives before themerge timer forMa expires,

thenMa is forwarded on from the center node to the next node (according to the forwarding table).

However, note thatMa remains in the buffer of the center node. It is removed only when the

redundant threshold is reached. As an optimization, if a complete message is ever received at the

graph center, it is immediately forwarded, independent of either timer.

3.5 EXPERIMENTAL RESULTS

This section reports the results obtained usingAgele. We first describe the experimental setup and

then move on to specific results.

3.5.1 SETUP

Our experiments were set up as follows. Each complete event in our experiments consists of 20

fields including the event key. In published messages, the number of fields that holds valid data

varies from 1 to 10. The number of messages pertaining to an individual event can vary, and they

are generated in the following manner. Each publisher of a particular event generates messages

pertaining to that event according to a Poisson process. Theevent duration (time window in which

the messages of an event are generated), however, is chosen to be such that it falls withinTb, which

34

we define as the maximum amount of time that any event can take (our experiments investigate

different values forTb). Intuitively, real-world events will likely consist of a burst of messages

in a relatively short time period. In our experiments, all nodes subscribe once and for any event,

20% of nodes publish messages pertaining to it. The particular event and associated field names

are selected according to a uniform random distribution. Wehave experimented with two kinds of

broker overlay topologies, namely random and power-law networks.

We varied separately the merge threshold,Tm, and the redundant threshold,Tr. Note that ide-

ally, Tr would be set toW (the event time window), but it might not be known a priori, and even

if it is, buffer capacities might mandate a smaller value. Inour experiments, these ranged between

0 and 10 simulated time units, such thatTm ≤ Tr. The buffer requirement at the center node was

quite modest; it was never more than 100 messages, even on simulations of 3200 nodes.

If Tm andTr are both 0, then the center node becomes merely a “pass-through”, and subscribers

will incur additional overhead with no benefit to the overallsystem. Nevertheless, this is useful

from a measurement perspective, as it allows us to isolate the overhead for re-routing messages

through the center node.

Generally, we examine the two key metrics: what percentage of the messages were suppressed

and how much extra time was added due to using a center node andbuffering messages. We use

the termsuppressedbecause a message can be eliminated (as a duplicate) or merged (with a like

event); either way, that message does not emerge from the center node. Note that the minimum

number of messages that a subscriber can receive is one. Thatis, if Tm andTr are both sufficiently

large (generally much larger than the values that we use), all messages will be held at the center

node until just one message is forwarded on. For the latter, we measure time per event as the

difference between the time that the event is fully receivedby the subscriber and the time that the

first message of that event is published. As the event generation is random, all results presented are

the median of several test runs (typically 50).

We start by presenting several results with a random graph and random message origination.

All results (except where noted) are relative toSiena, where there is no notion of a center node

35

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12

%
 o

f
M

e
s

s
a

g
e

s
 S

u
p

p
re

s
s

e
d

Tm

Tr = 10, 500 nodes

Tb=50
Tb=75

Tb=100
Tb=125
Tb=150 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11

%
 o

f
M

e
s

s
a

g
e

s
 S

u
p

p
re

s
s

e
d

Tm

Tr = 10, Tb = 100, 500 nodes
Elim

Merged

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12

%
 T

im
e

 I
n

c
re

a
s

e

Tm

Tr = 10, 500 nodes

Tb=50
Tb=75
Tb=100
Tb=125
Tb=150

Figure 3.3: Percentage of messages suppressed, breakdown of whether the suppressed messages
were duplicates or merged, and time increase whenTm varies.

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12

%
 o

f
M

e
s

s
a

g
e

s
 S

u
p

p
re

s
s

e
d

Tr

Tm = 0, 500 nodes

Tb=50
Tb=75
Tb=100
Tb=125
Tb=150

Tb % Time Increase
50 6
75 4
100 4
125 3
150 4

Figure 3.4: On the left, percentage of messages suppressed whenTr varies. On the right, forTr =
10, the time increase for five different values ofTb.

and no buffering of messages. Note that in this section, messages suppressed refers tooriginated

messagesfrom a publisher. In addition,Tm andTr are measured in simulated time units.

3.5.2 VARYING Tm AND Tr

First, we investigate the effect of varyingTm (see Figure 3.3) for five different values ofTb (50, 75,

100, 125 and 150 time units). For this experiment, we setTr to 10 and use 500 nodes. The number

of messages suppressed (left-hand graph) is only somewhat dependent onTm—with the large

redundant threshold, many messages are suppressed (especially whenTm is small) even though

36

they conceptually could be merged. (In other words, as one might expect, dropping a message

takes priority over merging one.) In addition, the percentage of messages that are suppressed is

largest whenTb is smallest. This is expected, as when messages are clustered, there is a greater

chance that when one message from a given event arrives at thegraph center, other messages from

the same event arrive beforeTm time units. Note that the percentage of suppressed messageslevels

off in our range ofTm values because events with few messages cannot be suppressed in practice.

The right-hand graph shows the cost of suppressing messages, which ranges from a 5% to 34%

overhead. WhenTb is 100, the overhead is quite good—at most 24%. Furthermore,choosingTm

to be 4, we limit the overhead to 15% yet suppress over 70% of the messages. This would likely be

a good tradeoff. In a real-world system, one benefit of suppressing—which we are not considering

here, but will in future work—is that bandwidth consumptionis lower. This in turn will decrease

potential message drops due to overloaded nodes. Therefore, the time for a subscriber to receive

an event will likely belower when using Agele than baseline Siena.

Second, we investigate the effect of varyingTr (see Figure 3.4). For this experiment, we set

Tm to 0. It is clear that the number of messages suppressed (left-hand graph) is strongly dependent

onTr. The effect is similar as the number of nodes increases. The time increase is independent of

Tr, because time overhead occurs only when messages are buffered at the center node for potential

merging. Therefore, we show the effect on time increase whenvaryingTb. The table on the right-

hand side of the figure shows that the time increase, for a fixedvalue ofTr (10 in this case), is only

slightly dependent onTb (which is varied between 50 and 150).

3.5.3 SCALABILITY

We next investigate the scalability ofAgeleby varying the number of nodes from 100 to 3200,

doubling the number each time (see Figure 3.5). For this experiment, we setTm to 5 andTr to 10.

The left-hand graph contains two plots. One is the percentage of total messages suppressed, and one

is only the number of messages merged. The total messages suppressedincreaseswith the number

of nodes. This is because there is a fixed number of events, andhence more duplicate messages

37

 0

 20

 40

 60

 80

 100

 100 1000

%
 o

f
M

e
s

s
a

g
e

s
 S

u
p

p
re

s
s

e
d

Nodes

Tr = 10, Tm = 5

Merge+Elim
MergeOnly Number of Nodes % Time Increase

100 17
200 32
400 27
800 29
1600 20
3200 22

Figure 3.5: Percentage of messages suppressed and time increase when the number of nodes varies.
The graph uses a log scale for the x-axis.

Eccentricity Normalized Event Time (s)
7 18
8 53
9 340
10 1263
11 1572

Nodes Time to Find Graph Center (s)
100 10
200 11
400 15
800 16
1600 19
3200 20

Figure 3.6: On the left, event times for aggregator nodes using different eccentricities. On the
right, the time to find the graph center for various node counts, normalized based on the number of
aggregator nodes used.

are suppressed. Note that in a real-world system, increasing the number of human participants will

likely only slightly, if at all, increase the number of events, assuming that the geographical area

is fixed. The number of messages merged—which is more difficult to scale—remains relatively

constant as the number of nodes increases. Not until 1600 nodes does this number start to fall off,

and it does so slowly.

38

The right-hand table shows the time increase relative to Siena. The overhead is between 17%

and 32%, which is quite good. Overall,Agelescales well especially considering that typical pub-

sub systems contain less than 1000 broker nodes.

3.5.4 GRAPH CENTERS

TheAgelesystem is predicated on finding the graph center, because this is the most effective node

through which messages should be routed. To show the effectiveness of finding the center, we

performed the following experiment. We started with a 300-node random graph, where the center

node has an eccentricity of 7. We tried using as aggregators all nodes with eccentricity value 8.

We repeated this (separately) using values 9, 10, and 11. Theidea is that using centers with larger

eccentricities will yield inferior results.

The left-hand side of Figure 3.6 shows the results. We measured the average time for an event

in Ageleover aggregators with five different eccentricities. Because there are more nodes with

eccentricity 8 than 7, 9 than 8, etc., we normalize the results based on the number of centers. (This is

because with more aggregators in general means lower event times.) The figure clearly shows that

using aggregators with larger eccentricities produces inferior results. Hence, using center nodes to

aggregate is critical.

Finally, the right-hand side of Figure 3.6 presents the timeto find the graph center for different

numbers of nodes (ranging from 100-3200). This shows clearly that the center finding algorithm

within Ageleis efficient.

CHAPTER 4

ENHANCED EVENT AGGREGATION AND REDUNDANCY ELIMINATION 1

1Jianxia Chen; Ramaswamy, L.; Lowenthal, D.K.; Kalyanaraman, S.; , “CAEVA: A customizable and
adaptive event aggregation framework for collaborative broker overlays,” Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCom),2010 6th International Conference on , vol.,
no., pp.1-9, 9-12 Oct. 2010. Reprinted here with permissionof publisher.

39

40

In this chapter, we describe the design, implementation, and performance ofCaeva[53], which

is a decentralized, dynamic, and configurable event monitoring system that handles redundant and

partial events.

4.1 ABSTRACT

The publish-subscribe (pub-sub) paradigm is maturing and integrating into community-oriented

collaborative applications. Because of this, pub-sub systems are faced with an event stream that

may potentially contain large numbers of redundant and partial messages. Most pub-sub systems

view partial and redundant messages as unique, which wastesresources not only at routers, but also

at possibly resource constrained subscribers. In this chapter, we present Caeva, a customizable and

adaptive event aggregation framework. The design of Caeva exhibits three novel features. First, the

tasks of merging messages and eliminating redundancies areshared among multiple, physically

distributed brokers called aggregators. Second, we designa decentralized aggregator placement

scheme that continuously adapts to decrease messaging overheads in the face of changing event

publishing patterns. Third, we allow subscribers to choosea notification schedule that meets their

specific needs. Results of extensive experiments show that Caeva is quite effective in providing

flexibility and efficiency.

4.2 SYSTEM OVERVIEW

Caevais a collaborative, distributed-overlay based pub-sub infrastructure that supports event mes-

sage aggregation and redundancy elimination in addition torouting messages from publishers to

subscribers. Its design is motivated byAgele [44], which is described further in Chapter 3. In

this section, we first describe the architecture ofCaeva. Then, we discuss decentralized, adaptive

aggregation. Finally, we discuss customizing a notification schedule at the subscriber.

41

4.2.1 ARCHITECTURE

Caevais built upon a distributed overlay of message brokers (alsoreferred to asnodes), repre-

sented as{b1, b2, . . . , bN}. Each broker is logically connected to a few other brokers such that the

network forms a connected graph. The set of publishers and set of subscribers are represented as

{p1, p2, . . . , pG} and{s1, s2, . . . , sH} respectively, with each publisher and subscriber connected

to one of the brokers.

Caeva’s subscription model is similar to type-and attribute-based pub-sub paradigm [7]. How-

ever, the proposed architecture as well as the associated techniques can be adapted to topic-based

or content-based pub-sub systems. Every event in our systemis associated with atopic, which pro-

vides a broad context for the event. For example, a traffic incident in a certain geographical area

would represent a topic. In addition, events have a set of attributes (fields) that provide details of

the event. The fields of an eventeq are represented as{eq(1), eq(2), . . . , eq(V)}. One of these fields

(without loss of generality, the first field) is designated astheevent key. The key field is descriptive,

and it can be used in subscription predicates. For instance,the key for a traffic incident event would

be the street intersection at which it occurs. Within a certain time-window, the key along with the

topic corresponds uniquely to an event. The number of fields of an event, their types, and the key

are determined by the event’s topic. Subscriptions are specified with respect to the event topic as

well as its fields. A subscription has to necessarily identify the topic of interest. Additionally, it

mayspecify predicates involving the fields associated with thetopic.

There can be multiple published messages associated with a single event (represented as

{e1q, e
2
q , . . . , e

U
q } for eventeq) , possibly published by multiple publishers. Each messagecontains

a subset of fields of the corresponding event. The fields of an event messageerq are represented as

{erq(1), e
r
q(2), . . . , e

r
q(V)}. According to key-topic uniqueness assumption, if the firstmessage of

an event is published at timetf , any messages with an identical key-topic pair generated between

tf andtf + W correspond to the same event. Publishers mayadvertisethe types of events they

are going to generate. However, the system can be configured to work without advertisements, in

which case it is assumed that every publisher can publish alltypes of events.

42

Similar to many existing pub-sub systems [2, 3],routing AGs graphscomprised of brokers

from the overlay form the basis for routing events from publishers to subscribers. Routing AGs

are constructed in a completely decentralized fashion by peer-to-peer forwarding of subscriptions

and advertisements. The predicates of subscriptions with thesametopic are aggregated at brokers

using the subsumption relationship, and a more generic subscription is forwarded. WhileCaeva

maintains a distinct routing AG for each topic, individual brokers can belong to multiple routing

AGs.

4.2.2 DECENTRALIZED, ADAPTIVE AGGREGATION

Caevauses a collaborative, decentralized and adaptive approachto aggregating events and elim-

inating redundancy. At a high-level, decentralized aggregation has a resemblance to the oper-

ator placement problem in distributed stream processing systems [54]. The question, therefore, is

whether similar techniques can be used for the problem at hand. However, in a community-based

event system, message publishers (source nodes) of a particular event are not known before hand,

which precludes adopting heavyweight, plan-based techniques that have been used for distributed

stream processing systems. We need a lightweight and dynamic scheme that does not need apriori

knowledge of message sources of an individual event.

In our approach, designated brokers within the routing AG ofa particular event type participate

in aggregating and eliminating events of that type. Such brokers are referred to asaggregators.

Each aggregator is autonomous and maintains a buffer that stores part of an event.

In Caeva, we coordinate the activities of the various aggregators ofan event. This ensures

that subscribers receive event information available in one composite message at the end of each

notification cycle. A subset of aggregators, calledactive aggregators(AAs), additionally perform

coordination. One of the active aggregators, thecoordinator, coordinates the final round of aggre-

gation and routes the aggregated message to subscribers. Wedenote all non-active aggregators as

passive aggregators(PAs).The key toCaevais that the aggregators are chosen dynamically, and

then are moved adaptively when necessary.

43

In the next two subsections we explain the operations of active and passive aggregators and the

coordinator. In turn, we discuss the dynamic aggregation within Caeva, its coordination algorithm

for the active aggregator, and then how aggregators are placed within the broker overlay and moved

adaptively.

In this discussion, we focus on the routing AG of a single event type. However, multiple routing

AGs can simultaneously exist inCaeva, and the techniques and mechanisms discussed below apply

to the routing AGs within the broker overlay. For now, we assume all subscribers have the same

notification cycle duration; the next section relaxes this assumption.

Notationally, the set of passive aggregators is denotedPvSet = {pv1, pv2, . . . , pvF} and its

active aggregator setAvSet = {av1, av2, . . . , avG}. The coordinator of the eventeq is represented

asCq.

DYNAMIC AGGREGATION

When the event messageerq reaches a passive aggregatorpvf , there are three possible cases:(1) pvf

has a message corresponding to the eventeq in its buffer, and that message is a superset of all the

fields contained inerq. In this scenario,erq is redundant and therefore dropped.(2) pvf has a message

pertaining to eventeq in its buffer, but that message does not have all the fields contained inerq.

In this case ,erq is merged with the buffered message.(3) erq is the first message of eventeq. Here,

pvf inserts it into its buffer, but also passes it to its upstreamneighbor; it will eventually reach an

active aggregator. PApvf will eventually get a reply back from the active aggregator indicating

the coordinator and notification cycle.pvf sends the (partially) aggregated message in its buffer to

Cq just before the end of every notification cycle (the manner inwhich pvf discoversCq and the

duration ofeq’s notification cycle is discussed later).

An active aggregator (sayavg), upon receiving an event messageerq, behaves identically to a

passive aggregator except in case 3. In that case, it first checks whether another active aggregator is

already designated as the coordinator ofeq. If so, it just insertserq into its buffer as the first message

of eq. AA avg will eventually finds out the notification cycle details fromeq’s coordinator (if it

44

does not know already). Ifavg is not aware of any other node claiming the coordinator-hoodof

eq, it executes the coordinator establishment protocol described in the next sub-section. In all three

scenarios, iferq was sent toavg by a passive aggregator,avg informs the passive aggregator about

the coordinator and the notification cycle details ofeq.

The coordinator performs all the aggregation-related duties described above. In addition, at

the end of every notification cycle, it receives partially aggregated messages from passive and

active aggregators. These messages are merged and any redundancies are eliminated. The merged

message is then sent to the subscribers.

av0

b3

C

pv1

b0

pv0b1

b2

C

pv

P

av

Coordinator

Active Aggregator

Passive Aggregator

Publisher

To
 Subscribers

w

P0

P1

P2

P3

w

x

y

z

y z

x zy

axw

b Broker Node
 b4

b5

b6 S0

S Subscriber

Figure 4.1: Distributed Message Aggregation inCaeva

Figure 4.1 depicts the multi-stage merging at the passive/active aggregators and the coordinator.

DYNAMIC COORDINATION

In Caeva, coordination involves two parts:(1) establishing the coordinator for an event and(2)

informing the relevant set of aggregators of the coordinator identity and the notification cycle

details. This way, other aggregators can forward aggregated messages to the coordinator at the

appropriate time. Designing scalable and efficient coordination in loosely coupled systems such as

Caevais challenging. In order to limit the overheads, we confine most coordination-related duties

to active aggregators.

When an active aggregatoravg receives a message of an eventeq with no established coordi-

nator,avg attempts to become the coordinator. It sends a message to allother active aggregators.

An active aggregatoravh receiving such a message fromavg consents toavg ’s claim if avh has not

45

attempted to become the coordinator ofeq. Ties are broken in decreasing order of broker ID; the

“winner” sends a denial message to the “loser”, who consents.

Once the coordinator is established, it determines the duration of the notification cycle and

the start time of the first cycle. With the assumption (for now) that all subscribers have the same

fixed notification cycle duration, determining the cycle duration is trivial. The coordinator sends

its identity and the notification cycle to the relevant set ofaggregators; these aggregators in turn

forward partially aggregated messages to the coordinator “just in time” (before the end of the

notification cycle) to avoid additional latency.

In Caeva, we avoid sending the coordinator identity/notification cycle toeveryaggregator. We

do this by relying on the fact that typically, event messageshave topological locality (e.g., a fire

is seen by publishers in the same region of the network). First, Caevainforms only the active

aggregators of the coordinator identity/notification cycle. The passive aggregators then receive

this information lazily, from its associated active aggregator, if and when they receive a message

pertaining to the event. This means that most passive aggregators are oblivious to most events.

DYNAMIC AND ADAPTIVE AGGREGATORPLACEMENT

We now describe our adaptive passive aggregator placement algorithm. This algorithm adapts the

placement of the passive aggregators based upon the patterns of published event messages. This

algorithm executes continuously in the background, and at the conclusion of each event, it decides

whether to alter the positions of the passive aggregators orto maintain the current placement. When

altering the PA placement, the PAs are moved by only one hop ateach step. In other words, at the

end of an event, the algorithm decides one of three things: (1) maintain the current PA placement;

(2) move the PAs one hop away from the active aggregators (towards the edge of the routing AG);

or (3) move the PAs one hop towards the center of the routing AG. The decision is based on the

estimated costs and benefits of each option.

Three types of brokers are involved in executing the algorithm, namely, the current set of PAs,

the immediate upstream brokers of the current PAs (parents of current PAs) and the active aggre-

46

gator of the event under consideration. Each parent broker estimates the benefits and costs of

moving the PA functionality from its children to itself (i.e., moving its downstream PAs one hop

closer to the center), while each PA estimates the costs and benefits of moving the PA functionality

to its children brokers (i.e., moving PAs one hop away from the center). The estimates from all PAs

and parent brokers are consolidated at the active aggregator, which computes the cumulative costs

and benefits of the three options and adapts the PA placement accordingly.

Now we discuss the formulations for estimating the costs andbenefits for moving PAs one hop

closer and one hop away from the center of the routing AG. First, we explain the cost and benefit

formulae for moving PAs one hop closer to the center. Each parent broker uses these formulae to

calculate the costs and benefits of moving PA functionality from its children to itself. Consider one

such parent nodeptx. Let CH(ptx) = {pv1, pv2, . . . pvY } be its children brokers (note that these

nodes are a subset of the currentPvSet). LetH denote the distance between the active aggregator

and the currentPvSet. For any brokerbi of the overlay, letPm(bi) denote the number of messages

of an individual eventeq published directly atbi (i.e., published by publishers directly connected

to bi), Fm(bi) denote the number of messages of the same event forwarded by its downstream

neighbors, andRm(bi) represent the sum ofPm(bi) andFm(bi). Let Nc denote the number

of notification cycles for which the eventeq lasts (Nc = dn(eq)

tm
, wheredn(eq) denotes the total

duration for which the messages pertaining toeq are published andtm denotes the length of the

notification cycle.

We now formulate the benefits of moving the PA functionality from {pv1, pv2, . . . pvY } to

ptx. If ptx were to assume the PA functionality, it would send one aggregated message to the

coordinator at the end of each notification cycle instead ofpv1, pv2, . . . pvY individually sending

an aggregated message at the end of each notification cycle. Furthermore, the aggregated mes-

sage fromptx would need to travel one hop fewer than the messages from the aggregated mes-

sages from the current PAs. Thus, the number of message hops saved over the entire duration is

Nc × (H × Y − (H − 1)). Also, if ptx assumes the PA functionality, the messages published

directly atptx would be aggregated/eliminated immediately, thereby avoiding the need for these

47

messages to individually travel until the coordinator. Therefore the benefits of moving the PA

functionality toptx is BN(ptx) = Nc × (H × Y − (H − 1)) + Pm(ptx) × (H − 1). How-

ever, there are also costs associated with moving the PA functionality to ptx. Notice that ifptx

becomes the PA, all the messages received atpv1, pv2, . . . pvY have to travel one extra hop before

being aggregated. Therefore, the extra overheads involvedin moving PA functionality toptx is

CN(ptx) =
∑

pvy∈CH(ptx)
Rm(pvy). Thus, the relative savings obtained by moving the PA func-

tionality toptx is SN(ptx) = BN(ptx)− CN(ptx).

Through a similar reasoning, we can compute the costs (CF (pvi)) and benefits (BF (pvi))

of moving the PA functionality from an arbitrary passive aggregatorpvi to its Z child brokers

{cp1, cp2, . . . , cpZ}, respectively, asCF (pvi) = NC × ((H + 1)× Z −H) + Pm(pvi)×H and

BF (pvi) = Fm(pvi). Thus, the savings obtained by transferring PA functionality to child brokers

of pvi is SF (pvi) = BF (pvi)− CF (pvi). Note thatSN andSF can acquire negative values.

At the end of culmination of an event, the coordinator obtains theSF values from each current

passive aggregator andSN values from each parent broker of current passive aggregators. It then

sums up the variousSN values to obtain the cumulative SN (CSN) value, and it computes the

cumulative SF (CSF) value as the sum of variousSF values. These values are used in adjusting

the PA placement as follows. IfCSF ≥ δ then PAs are moved one hop away from the center. If

on the other hand,CSN ≥ δ then PAs are moved one hop closer to the center. If neither condition

holds, then PAs are maintained at their current positions.

One issue that still need to be addressed is that of preventing thrashing (PAs continuously

alternating between two positions). We achieve this by introducing an extra condition. The PA

adaptation direction can be reversed only when the estimated savings are higher than the savings

in the previous adaptation that brought PAs to their currentposition. Concretely, suppose in the

last adaptation the PAs moved one hop closer to the center andthe estimated cumulative savings

(CSN) wasµ. The PAs move back to their earlier positions (one hop away from the center) only

if the estimated savings (CSF) of the current adaptation is higher thanµ. Otherwise the PAs are

48

b1

b4

C

b8

av0

b3

gc

av1

b6

b5

b2

b7

b0

32

16

16

16

8
16

32

8

16

64

88

C

av

Coordinator

Active Aggregator

Center
b Broker Node

gc

HCF=8

(a) Upward Preference Propagation

b1

b4

C

b8

av0

b3

gc

av1

b6

b5

b2

b7

b0

C

av

Coordinator

Active Aggregator

Center
b Broker Node

gc

TIME=16

(b) Selective Notification Dissemina-
tion

Figure 4.2: Illustration of Customized Notification Scheme

maintained at their current positions even thoughCSF ≥ δ. An analogous strategy is adopted for

moving the PAs closer to the center when they had moved away inthe last adaptation.

4.2.3 SUBSCRIBER-CUSTOMIZED NOTIFICATION CYCLE

Finally, we describe howCaevaallows each subscriber to choose its notification cycle duration. In

theCaevaprototype, a subscriber can choose its notification cycle duration in integer multiples of

minimum notification duration (md). As mentioned before, a client specifies this at subscription

time. A simple and naive way of implementing a customized notification cycle would be to hoard

the notification messages sent out by the coordinator at the broker that is directly connected to

an arbitrary subscribersi. The broker would send out notification messages tosi at appropriate

instances of time. However, this leads to unnecessary messaging within the overlay.

Instead,Caevasends a notification through a path of the routing AG only if there is a subscriber

downstream that should receive the notification at current instance. This is achieved by a combi-

nation ofupward propagation of subscriber preferencesandselective downward dissemination of

notifications.

49

Upward Preference Propagation:The subscriber chooses its notification cycle duration in

integer multiples ofmd. An arbitrary leaf broker of a routing AG, saybk, may have multiple sub-

scribers with different notification cycle durations. The edge broker calculates the highest common

factor (HCF) of the notification cycle durations of the subscribers directly attached to it. This value

indicates the period at whichbk should receive notification from its upstream node. Brokerbk

sends this value to its upstream neighbor. A non-leaf broker, saybj , calculates the HCF of the

values sent by its downstream neighbors and the notificationcycle durations of the subscribers

directly attached to it, and propagates to its upstream neighbor. This is the period at whichbj should

receive notification from its upstream neighbor. This process culminates at the graph center, which

performs the same computation. The result is the HCF of the notification cycle durations ofall

subscribers being served by the routing AG. This value is maintained at the center and is used by

the coordinator as the cycle duration for issuing aggregated messages. Figure 4.2(a) illustrates the

upward preference propagation mechanism on a routing AG with 13 brokers. The HCF of the noti-

fication durations of all subscribers is 8, which is used as the cycle duration for issuing aggregated

messages.

Selective Notification Dissemination:As described in Section 4.2.2, at the end of each cycle

the coordinator obtains partially aggregated messages from various aggregators and merges them

to create a notification message. However, the aggregated message at the end of a particular cycle

needs to be sent only if subscribers depend upon their notification cycle preferences. Thus, instead

of blindly sending the aggregated message through the routing AG, the coordinator checks which

of its neighbors should receive notification at the current time and sends the aggregated message

only to them. The intermediate brokers and the leaf brokers also work in a similar fashion. When a

brokerbj receives an aggregated message from its upstream neighbor,it sends the message to only

those downstream neighbors (if any) and subscribers (if any) that are due to receive the message

at the current time. If the message is not sent to at least one downstream neighbor or subscriber,

bj maintains the message in a temporary buffer. While sending amessage to a downstream broker,

saybk, bj sends all those fields that have not been sent tobk but are available currently atbj . The

50

0 2 4 6 8 10 12
0

20

40

60

80

100

T
m

%
 o

f
M

es
sa

g
es

 E
lim

in
at

ed

Agele
Caeva

0 2 4 6 8 10 12
0

20

40

60

80

100

T
m

%
 T

im
e

In
cr

ea
se

Agele
Caeva

0 5 10 15 20
0

20

40

60

80

100

% Time Increase

%
 o

f
M

es
sa

g
es

 E
lim

in
at

ed

Agele
Caeva

Figure 4.3: WhenTm varies, percentage of messages in broker overlay suppressed (left); time
increase (center). On the right, tradeoff between delay andpercentage of messages eliminated.

exact same process is followed when sending messages to subscribers. Figure 4.2(b) demonstrates

the selective notification dissemination technique at time16. Notice thatav2 sends the aggregated

message tob4 andb5, but not tob6.

4.3 EXPERIMENTAL RESULTS

Caevahas been implemented on top of theSienapub-sub infrastructure [3]. We have performed

several experiments to study the performance ofCaeva. The goals of our study are two fold:(1)

Evaluating the effects ofCaevaon the broker overlay; and(2) Evaluating the effects on resource-

constrained subscribers;

4.3.1 SETUP

Our experiments were set up as follows. In all cases we use a random graph topology. Each com-

plete event in our experiments consists of 20 fields, including the event key. In published messages,

the number of fields that holds valid data varies from 1 to 10. The number of messages pertaining

to an individual event can vary, and they are generated in thefollowing manner. Each publisher

of a particular event generates messages pertaining to thatevent according to a Poisson process.

The event duration is chosen to be a maximum of 100 time units.In our experiments, all nodes

51

subscribe once and for any event. The particular event and associated field names are selected

according to a uniform random distribution.

In our experiments, we use a merge threshold (denotedTm) and a redundancy threshold

(denotedTr, and this value is fixed in our experiments).Tm is the notification cycle (defined in the

Section 4.2.3),Tr is the amount of time messages are buffered at broker nodes inan attempt to

discard later redundant messages.

Overall, an experiment is defined by its spatial locality forpublishers, redundancy ratio for

messages, and values forTm andTr. Spatial locality can be defined using the median distance

between all pairs of publishers. However, in practice, it isdifficult to set these distances inCaeva

(due to limitations inSiena). Therefore, we vary the spatial locality between three configurations:

(1) completely local, where all publishers reside at the same point in the graph; (2) partially local,

where there are a few clusters of publishers, and (3) non-local, where all publishers are at different

points in the graph.

In addition, the messages sent by the publishers for a given event can vary in their redundancy.

We define theredundancy ratiofor an event asFr/Mt, whereFr denotes the number of messages

whose fields are a subset of the fields previously sent, andMt is the total number of messages

sent. In our experiments, bothTm andTr ranged between 0 and 10 simulated time units, such that

Tm ≤ Tr.

In the experiments below, we generally measure three different implementations.Sienapro-

vides the baseline.Ageleis our previous system [44], on whichCaevais based;Ageleis central-

ized, static, and uses one center node for aggregation, while Caevais distributed and adaptive.

Generally, we examine three important metrics: (1) percentage of the messages that are suppressed

(by merging or duplicate elimination), (2) extra time that is added due to buffering at aggregators

(measured by when the complete event is received), and (3) complete events and amount of data

that subscribers receive.

52

4.3.2 EFFECT ONBROKER OVERLAY

We begin by investigating the effect thatSiena, Agele, andCaevahave on the broker overlay.

Here, we are interested in the total messages in the system. For this experiment, we use a random

topology, low spatial locality, and the medium redundancy ratio. ForAgeleandCaeva, we varyTm

in the experiments. All results are relative toSiena.

Figure 4.3 shows the results. BecauseSienadoes not handle redundant and partial event mes-

sages, it incurs more messages than eitherAgeleor Caeva. In particular,Caevaeliminates up to

80% of the messages in the overlay. ComparingCaevato Ageleshows that the former suppresses

more messages asTm increases. This is becauseCaevaeliminates messages at the passive aggre-

gators, which are closer to the publisher. This has two beneficial effects: (1) it takes additional

message load off of broker nodes in between the passive aggregators and the coordinator, and (2) it

can, in some situations, take additional message load off ofbrokers in between the coordinator and

the subscribers. The latter point is somewhat subtle: if a message is not eliminated at the passive

aggregator, then it proceeds to the coordinator. The coordinator may eliminate it, but it is possible

thatTm is sufficiently small that it isnot eliminated.

The center graph in the figure shows a time increase (for completed events) for bothCaevaand

Agele. Additionally, as expected, the relative time increase is larger with largerTm. One item to

note is thatCaevaandAgelehave essentially the same overhead. This is by design—the passive

aggregators flush their buffered messages such that they reach the coordinator just in time to be

flushed to the subscriber. (The small difference is because the coordinator inCaevais a different

broker node than the center inAgele.) The right graph shows similar information to the left and

center graphs, but specifically shows the tradeoff between increased latency and the number of

messages eliminated.

Next, we study the effect on the broker overlay when the spatial locality of the publishers as

well as the redundancy ratio vary. We used the spatial localities and redundancy ratios specified

above. In the graph, the first letter refers to the spatial locality; “H” for completely local, “M” for

partially local, and “L” for non-local. The second letter refers to the redundancy ratio; “H” for a

53

L/L L/M L/H M/L M/M M/H H/L H/M H/H
0

10

20

30

40

50

60

70

80

90

100

Spatial Locality / Redundancy Ratio

%
 o

f
M

es
sa

g
es

 E
lim

in
at

ed

Agele
Caeva

Figure 4.4: Percentage of messages in broker overlay suppressed when spatial locality and redun-
dancy ratio vary; the first letter indicates the locality, and the second the redundancy ratio

redundancy ratio of 85%, “M” for 50%, and “L” for 20%. In thesetests,Tm andTr are both 10.

Figure 4.4 shows the results. We see that as the spatial locality of the publishers increases, the

advantage ofCaevaincreases overAgele, in terms of message load in the broker overlay. This

is because more of the published messages are directed to thesame passive aggregator, which

eliminates some of them.

We note that many scenarios of publisher locality and redundancy ratio are possible. For

example, a news bulletin occurring at night would potentially lead to widely distributed publishers,

whereas an accident during rush hour would likely lead to mostly localized publishers.Caevais

actually the best choice for all of these cases, though its advantage increases with more locality

in space and time. The one disadvantage ofCaevarelative toAgeleis that it is more complex and

involves more broker-broker communication.

4.3.3 ADAPTIVE PA PLACEMENT

Table 4.1 shows the number of messages for different numbersof publishers for both the static

and adaptive algorithms. For the static algorithm, the passive aggregators can reside at several

different places; we show both the minimum and the maximum. This experiment uses publishers

with similar characteristics. The key point is that the adaptive algorithm is always close to as good

54

Publishers Static Adaptive
Min Max

3 101,796 125,714 102,583
7 147,913 220,126 150,239
31 181,189 232,420 197,141
255 203,241 227,747 211,375

Table 4.1: Number of messages for different numbers of publishers for both static and adaptive
algorithm

Varying Static Adaptive
Publishers Min Max

Uniform 153,847 203,474 153,385
Nonuniform 293,265 361,287 266,722

Table 4.2: Number of messages for different numbers of publishers for both static and adaptive
algorithm when publishers have nonuniform characteristics

as the minimum and avoids the large penalty of choosing the maximum. Keep in mind that the static

algorithm requires a single placement, and without application-specific knowledge, it is possible

that a bad placement might be chosen.

Next, Table 4.2 shows the same attributes, but compares the uniform and nonuniform publisher

case. It is clear that for nonuniform publishers, the adaptive algorithm is significantly (10%) better.

This is because when publisher characteristics change, thestatic algorithm cannot change. On the

other hand, the adaptive algorithm changes based on these characteristics.

4.3.4 EFFECT ONSUBSCRIBERS

We now look at the effect ofSiena, Agele, andCaevaon subscribers. The metric that we study

is number of completed events. Here, we assume, reasonably,that subscribers are mobile devices

that have scarce computing resources. We use a simple model where each subscriber has a buffer to

55

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Per−event Drain Rate

N
um

be
r

of
 In

co
m

pl
et

e
E

ve
nt

s

Siena
Caeva

Figure 4.5: Incomplete events when varying the per-event drain rate; the per-event buffer size is
fixed at 20 fields

store incoming messages. The messages will be processed andconsumed by the application (or the

user) at a certain rate. With the intention of avoiding interference among multiple events that could

affect consistency of results, we allocate and maintain individual buffers for each active event at

a particular subscriber. The parameterper-event buffer size (sz) controls the size of the individual

event buffers. Similarly,per-event drain rate (dr) controls the rate at which the messages of an

individual event are consumed (removed from the respectivebuffer) by the application or the user

on the subscriber device. Any messages that would cause buffer overflow are dropped. Note that if

there aref active events at a subscriber the total allocated buffer size isf × sz and the cumulative

message consumption rate isf × dr. In our experiments, we study the effects ofsz anddr on the

number of completed events inSienaandCaeva(Ageleis similar toCaeva). For this experiment,

we use non-local publishers and a medium message redundancyratio.

Figure 4.5 shows that with small per-event buffer sizes and small per-event drain rates, there

is a significant difference betweenCaevaandSiena. This difference, as expected, decreases as the

buffer size and drain rate increase. Keep in mind that while the buffer size we used is small, each

subscriber only subscribes to one event, and the number of fields in an event is small. In a real

system, all of these things would be much larger, but the fundamental issue remains: there will be

situations where a buffer cannot hold all messages arrivingat a subscriber.

CHAPTER 5

COMPLEX EVENT DETECTION ON DELAY TOLERANT NETWORKS 1

1Jianxia Chen, Lakshmish Ramaswamy, David K. Lowenthal and Shivkumar Kalyanaraman. “Comet:
Decentralized Complex Event Detection in Delay Tolerant Networks”. Submitted to the 28th IEEE Interna-
tional Conference on Data Engineering (ICDE 2012), 07/22/2011

56

57

In this chapter, we discuss a novel, multi-level framework,calledComet, for efficient and scal-

able complex event detection (CED) in delay tolerant networks (DTNs).

5.1 ABSTRACT

Complex event detection is fundamental to monitoring applications. Current complex event detec-

tion (CED) techniques are targeted for continuously connected, high-bandwidth, Internet-based

environments, and are mostly centralized. However, event monitoring applications are becoming

increasingly important in domains such as deep-space, warfare and rural, where lack of infras-

tructure to support the Internet has led to the development of the delay tolerant networking (DTN)

paradigm. DTNs are characterized by decentralization, long delays and frequent disruptions, which

necessitates a complete, end-to-end re-design of CED techniques. In this chapter, we create Comet,

which provides efficient and scalable CED for DTNs. The novelty of Comet is that it addresses effi-

ciently all pertinent CED issues in a decentralized environment. Comet shares the task of detecting

complex events (CEs) among multiple nodes, with each node detecting a part of the CE by aggre-

gating two or more primitive events or sub- CEs. Comet uses a unique h-function to construct cost

and delay efficient CED trees. Comet finds near-optimal individual CED plans through two novel

heuristic planning techniques: multi-level push-pull conversion and virtual CED tree creation.

Additionally, Comet eliminates redundancy that occurs when complex events contain common

primitive events; the redundancy is eliminated by efficiently merging the respective CED trees.

Performance results show that Comet reduces cost by up to 89to pushing all primitive events and

over 60single-level exhaustive search algorithm.

5.2 COMET OVERVIEW

As mentioned earlier, a distinguishing feature of Comet is that it supports multi-level CED in

which multiple nodes can participate by performing parts ofCED. In other words, each node

involved in the CED process detects a sub-complex event (sub-CE) of the original CE. Suppose

a nodeVf is involved in the detection process ofcei, the sub-CE detected atVf is represented as

58

scefi . Comet consists of two major components, namely aCED plannerthat creates a cost effective

detection plan based upon known or estimated statistics, and anexecution and adaptation engine

that executes a CED plans and adapts it to cope with various dynamics. In this dissertation, our

focus is on theCED planner.

Comet has to provide answers to a set of important and inter-related questions.(1) Which sub-

CEs of the given CE are to be detected? In other words, how do we(recursively) divide a CE into

multiple sub-CEs?(2) Where (on which nodes) are the processes for detecting the given CE and

each of its sub-CEs going to be hosted?(3) For each CE and sub-CE, which of its component

events (PEs or other sub-CEs) are going to be pushed to its hosting node, and which component

events are going to be pulled, via single-target and multi-target pulls, and in which order? Finally,

(4) if multiple CEs share common sets of PEs, when and how is redundant communication and

computation avoided? In particular, which DTN nodes shouldhost the common sub-CEs corre-

sponding to the shared sets of PEs, and what push-pull strategies should be adopted for common

sub-CEs? The goal is to come up with answers to these questions such that the delay tolerance

limit of each CE is respected and the cumulative cost of detecting CEs is minimized.

Before discussing the design of our CED planner, we state a few fundamental assumptions that

will be used throughout our discussion. First, we assume theplanner knows the frequencies of the

various PEs of a given CE and the topology of the DTN and the properties of various links (EDP,

EAP, BW, LT, CF, and DL). Second, the nodes of the DTN have enough storage to hold all the

incoming data until it can be transferred to the next node along its path. Third, once a link becomes

active, its EAP and BW are sufficient to transfer all the data in the outgoing buffers of its end nodes.

Dealing with resource constraints requires effective prioritization of communication, storage and

processing of events, and it is part of our future work.

At a very high level, our planner is comprised of two modules,namely, aindividualized multi-

level CED planning modulefor producing cost-efficient, multi-level, push-pull plans for each indi-

vidual CE, and aredundancy avoidance modulefor leveraging PEs shared among multiple CEs by

incorporating common sub-CE detection processes.

59

V1

V5V4

V2

S

pe2pe1

1/1 1/2

V3

V8V7V6

pe3 pe5pe4

1/4 1/6 1/8

(b) Initialization:
(sce 2,sce3)

F

S
(pe1,pe2)

F

S
(pe3,pe4,pe5)

F

S

(c) Phase 1:
(sce 3)

F

S
(pe2)

F

S
(pe4,pe5)

F
 S1

 (sce2)
S1

 (pe1)
S1

(pe3)

S

(d) Phase 2:
(sce 3)

F
 S

(pe2)
F

S

(pe5)
F

 S1
 (sce2)

S1
 (pe1)

S1
 (pe3,pe4)

V1: V2: V3:

V1: V2: V3:

V1: V2: V3:

(a)

Push

Multi -target Pull

Push

Single-target Pull

ce

Figure 5.1: Illustration of Multi-level Push-Pull Conversion

The CED tree forms the edifice of both of these modules. The CEDtree of a complex event

cei is composed ofcei’s destination as its root and the source nodes ofcei’s component PEs as it

leaves (although a PE source can be a non-leaf node). Comet computes cost-and-delay effective

paths (see below) from the source of each component PE to the CE destination. The DTN links

and nodes that are part of at least one such path (from a component PE source tocei’s destination)

form edges and the intermediate nodes of the CED tree. A DTN node that lies at the intersection

of the paths from two or more PE sources to the CE destination is called ajunction.

CED TREE CONSTRUCTION AND SUB-CE DETERMINATION

The first challenge in supporting multi-level CED is to construct an efficient CED tree for each

CE. We do this by computing cost-and-delay effective paths from each component PE source to

the CE destination. Ideally, the path should minimize both the cost and the delay of transferring

PE instances from the source to destination. However, in most practical scenarios it is almost

impossible to obtain such paths – DTN links that have minimumcost may not have minimum

delay, and vice-versa. We address this problem by assigningweights to DTN links according to

a novelh-functionthat combines both cost and the delay characteristics of links. The h-value of

a DTN link Lfg is computed ash(Lfg) = α ×
CF (Lfg)

MAX-CF + (1 − α) ×
(DLfg)

MAX-DL , whereCF (Lfg)

andDL(Lfg) are the cost factor and delay ofLfg respectively, MAX-CF and MAX-DL are the

60

maximum cost factor and maximum delay over all links in the DTN, andα is a weight factor that

can be used to adjust the relative importance of cost factor and delay respectively. Notice that the

lower the cost factor and delay of a DTN link, the lower theh value.

Once the h-values of all the DTN-links are determined, we useDijkstra’s shortest path algo-

rithm [55] to find the path with minimal cumulativeh value from each PE source to the CE desti-

nation. The union of these paths form the CED tree. We then determine the set of junction nodes

in the CED tree. Each junction in the CED tree may potentiallyhost a sub-CED process. The sub-

CE to be hosted at a junction nodeVf is determined by applying the same operator as that of the

original CE to the set of PEs and sub-CEs that intersect atVf .

5.3 INDIVIDUALIZED CED PLANNING IN COMET

As mentioned earlier, our basic multi-level planner produces efficient multi-level plans for

detecting individual CEs. In essence, this module treats each CE independently (without con-

sidering any overlap with other CEs) and produces near-optimal plan for that CE. If the CEs that

are being concurrently detected do not share any PEs, the setof plans obtained by applying this

multi-level planning module to each of the CEs will be close to optimal with respect to cumulative

detection costs over all the CEs in the system. This module itself has two novel components. Our

first component addresses the challenges in extending the push-pull conversion-based planning

strategy to multi-level CED trees. The second component creates multiple virtual trees for a given

CED tree to overcome the potential suboptimality caused by operating at link granularity (see

Section 5.3.2). Comet creates a set of virtual CED trees, executes the push-pull component on

each topology, and selects the best plan among them.

5.3.1 MULTI -LEVEL PUSH-PULL CONVERSION COMPONENT

Given a CED tree (original or virtual), this module producesa near-optimal plan (in terms of detec-

tion costs) consisting of push-pull schedules at every junction node for detecting the corresponding

CE/sub-CE. Our technique starts with a simple plan in which the CED process at every junction

61

node follows a simple 2-state FSM analogous to the all-push plan. This module progressively trans-

forms the FSMs at the junction node through conversion of thecorresponding links from push to

pull (see Figure 5.1).

Our scheme operates in two distinct phases. In the first phase, as many links as possible are

converted from push to single-target pull without violating the detection delay tolerance limit. In

the second phase, we convert as many of the remaining push links as possible to multi-target pulls

(i.e., pull them simultaneously with sibling links that already have pull status). The rationale for

performing these two phases in this order is that, while converting a push link to a sequential

pull always yields higher cost savings, it also substantially increases the CED delay (as much as

2×EDP (Lfg) for link Lfg). On the other hand, generally, converting a push link to a multi-target

pull causes only marginal increase (or in some cases no increase) in detection delay. Our scheme

essentially follows a greedy strategy by seeking to maximize cost savings with each conversion in

the first phase, and trying to obtain further cost savings, albeit in (relatively) smaller amounts for

each conversion, while ensuring that the resulting impact on delay is marginal.

Two important questions need to addressed when converting links from push to single target

pulls in the first phase.(1) For each junction node, which set of links should be converted

from push to pull so that the cost of the plan is minimal and thecorresponding delay does

not exceed the tolerance?(2) If a node has multiple incoming pulls, in which order should

they be performed? Since the optimal algorithm to solve question 1 is exponential even for

centralized settings (single level CED trees), we adopt a greedy heuristic approach. Since our

goal is to minimize cumulative costs, our heuristic is the ratio of cost reduction to the delay

increase caused by a push-to-pull conversion. We denote thecost-to-delay ratioas CDR, so

CDR(Lfg) =
Cost Reduction obtained by convertingLfg from push to pull
Delay increase caused by convertingLfg from push to pull . Our technique performs push to single

target pull conversions in the decreasing order of the links’ CDR values until a stage where any

additional conversion would cause violation of the specified delay tolerance. If a node has several

incoming pull links, the respective component events are pulled in increasing order of their fre-

62

quencies. The idea is to let the sub-CED process at a node advance only after resolving the most

difficult hurdles.

Computing CDR values requires estimation of the cost and delay of a multi-level CED plan. We

extend the FSM-based cost estimation model [20] for multi-level CED trees. The idea is to use a

bottom-up approach to estimate the frequencies of various sub-CEs. This is in turn used to estimate

the amount of data transferred per unit time at every link in the CED tree. The cost of a plan is

the weighted sum of data transferred per unit time overall links in the tree, the weight being the

cost-factor of the link. The delay of a plan is also estimatedthrough a bottom up approach. At each

junction node, we estimate the delay of the corresponding CE/sub-CE by analyzing thecritical

pathof its FSM (longest sequence of operations), along with the EDP values of the incoming links

and the delays of its constituent events. Our technical report provides the mathematical formulation

and a detailed discussion of our cost and delay estimation models [56].

In the second phase, our planner checks the links that still have a push status at the end of the

first phase to see if any of these links can be converted to multi-target pulls. In order to ensure that

delay tolerance limit is honored we enforce the following condition: a linkLfg that has push status

at the end of phase 1 can be converted to a simultaneous pull with a sibling linkLfh only if (1) Lfh

already has pull status and (2) the push-pull conversion ofLfg doesn’t violate the delay tolerance

limit. We consider the links for conversion in the decreasing order of the estimated cost reduction.

5.3.2 VIRTUAL TOPOLOGY CREATION COMPONENT

The above multi-level push-pull conversion technique assumes that the junction node of the CED

tree hosts a sub-CED process. In most scenarios, executing this component on the original CED

tree is sufficient for obtaining a near-optimal plan. However, in certain settings, performing sub-

CED at every junction node of the original CED tree will yieldplans that are suboptimal irrespec-

tive of the combination and order of links that are pushed andpulled.

Figure 5.2-a gives one such example. In this CED tree, there is one junction node (V3) other than

the destinationV1. On this topology, if the delay tolerance limit is large, ourpush-pull conversion

63

V1

V5V4

V3V2

PE1

PE3PE2

1/4

1/1 1/8

(1, 1)

V1

V5V4V2

PE1 PE3PE2

1/4 1/1 1/8

(b)(a)

(1, 1)

(1, 1)(1, 1)

(1, 1) (2, 2)
(2, 2)

COST=0.7943 COST=0.5167

Short V 3

Figure 5.2: Virtual Topology Creation via Shorting

module will produce the following plan:pe3 is pushed toV3; V3 pulls pe2; the detected sub-CE

(and(pe3, pe2)) is pushed toV1; thenV1 pulls pe1. The cost in this case is 0.7943 per unit time. In

fact, this is the lowest cost planif V3 is forced to detect the sub-event and(pe3, pe2). However, the

true lowest-cost plan is to pushpe3 all the way up toV1, which will then pullpe1 and subsequently

pull pe2. This yields a cost of 0.5167 per unit time. However, executing our push-pull module on

the original CED tree fails to produce this plan.

Our mechanism to circumvent this problem is to create multiple virtual CED trees by selec-

tively eliminating one or more junction nodes through a unique technique calledshorting. When

we short a particular junction node, sayVf , we remove it from the topology and connect each of

its children (sayVg andVh) to Vf ’s parent node, sayVe. The cost factor of the new link betweenVg

andVe is set to the sum of the cost factor of the original link between Vg andVf and the cost factor

of the original link betweenVf andVe (CF (Leg) = CF (Lef)+CF (Lfg)). This is because the cost

of transferring a byte of data fromVg to Ve in the original topology isCF (Lef) + CF (Lfg) if Vf

were to just act as a transit node (instead of detecting the sub-CE). Analogously,EDP (Leg) is set

to EDP (Lef) + EDP (Lfg) because this is the worst case disconnectivity period betweenVg and

Ve in the original topology. However,EAP (Leg) is approximated asmin(EAP (Lef), EAP (Lfg))

andBW (Leg) is approximated asmin(BW (Lef), BW (Lfg)). The reason is that this represents

the worst case EAP and bandwidth betweenVg andVe in the original topology. Figure 5.2-b indi-

64

V1

V8V7

V3

pe2pe1

1/1 1/4

V4

V10

V2

V9

pe3 pe5pe4

1/9 1/16 1/4

(a)

V5 V6

V11 V12

ce1=and (pe1,pe2,pe3,pe4;2);
ce2

pe6

1/1

S
(sce 2)

F

S
(pe2)

F

S
(pe4)

F

S1
 (sce 1)

S1
 (pe1)

S1
 (pe3)

V1:

V3:

V4:

S
(sce 3)

F

S
(pe4)

F

S
(pe5)

F

S1
 (sce4)

S1
 (pe3)

S1
 (pe6)

V2:

V5:

V6:

(b)(1,1)

(1,1)

(1,1)(1,1)(1,1)

(1,1)
(1,1)

(1,1)
(5,1)

(5,1)

(5,1)
(5,1)

ce1

ce2=and (pe3,pe4,pe5,pe6;2);

Figure 5.3: Illustrating the Need for Avoiding Redundancies in Multi-level CED

cates a virtual topology created by shortingV3. The numbers next to the links indicate the CF and

EDP values, respectively.

Theoretically, we can create virtual topologies by shorting every possible combination of junc-

tion nodes and executing the push-pull module on these topologies to yield an optimal plan. How-

ever, this is inefficient because it will require us to execute the push-pull module on
∑r

b=1

(

r

b

)

wherer is the number of junctions in the original CED tree exceptingthe original destination.

Therefore, we adopt alevel-basedstrategy. Suppose the original CED tree is of heightH. If the

tree isshorted at levelq, all the junctions that are at leastq hops away from the destination are

eliminated. Note that if a tree is shorted at level1 we get a single-level tree. If the original CED

tree is of heightH, Comet generatesH − 1 virtual trees by shorting at levelsH − 1 through1.

The push-pull module is executed on each of these virtual trees in addition to the original CED

tree and the lowest cost plan is selected. In our example, if we execute the push-pull strategy on

the virtual topology generated by shorting at level 1, whicheliminatesV3 (see Figure 5.2-b), we

get the aforementioned lowest-cost plan (pushingpe3 all the way up toV1 and then pullingpe2

followed bype1).

65

5.4 AVOIDING REDUNDANCY IN COMET

Comet’s individualized CED planner evolves plans for each CED independently without con-

sidering other CEDs that may be concurrently detected. As our experiments in Section 5.5

demonstrate, this yields highly efficient plans for each individual CE. However, thisindividual-

ized approach may lead to redundant computation and communication in scenarios where CEs

share common constituent PEs. This may in turn lead to situations where individual CE plans

are optimal, but thecumulative detection costsof the system may be suboptimal. The scenario in

Figure 5.3 has two CEs,ce1 andce2, with pe3 andpe4 shared between them. The detection plan

for ce1 andce2 obtained through our planner is shown in the figure. In fact, these are the optimal

individual plans for these two CEs. The cumulative detection cost of the two CEs is 2944 over

2000 time units. On the other hand, detecting the sub-CE (and(pe3, pe4; 2)) either at nodeV4 or

V5 and then sending the detected event instances to bothV1 andV2 yields a cumulative cost of

1999 over 2000 time units. This illustrates the need for leveraging common parts of CEs to avoid

redundant communication and computation.

Although Akdere et al [20] have proposed a technique to leverage common parts of CEs, their

technique is designed for a centralized CED system with the assumption that all the CEs are entirely

detected at the same destination. This assumption obviously does not hold for a multi-level, decen-

tralized environment. Thus, we need a technique that works in conjunction with distributed, multi-

level CED plans and can leverage common parts between CEs that may have different destinations.

Broadly, our idea is to avoid duplication by instantiating common processes to detect the sub-CEs

corresponding to each set of shared PEs (e.g.,and(pe3, pe4; 2) in Figure 5.3). Each such common

sub-CED process will be hosted on a DTN node and the detected sub-CE instances from the pro-

cess will be sent to destinations of CEs sharing the sub-CE (or intermediate nodes performing next

stage of detection). In effect, we merge the CED trees to obtain a directed acyclic graph (DAG)

where the nodes hosting the common sub-CED processes will have multiple parents.

Designing a concrete technique to realize this idea poses several challenges. First, given a set

of CE definitions (specifying the destination and constituent PEs for each CE), we need to decide

66

whether it is even beneficial to avoid duplication. In not allcircumstances is it worthwhile to do

so. For instance, if the destinations of two CEs sharing a setof PEs are far apart with respect to the

underlying DTN topology, it is better to retain individual CED plans despite incurring overheads

of duplicate communication. Second, we need to decide whichnode to employ for detecting the

common sub-CE. The chosen node should minimize the cumulative detection costs. Finally, the

original detection plans of CEs may embed conflicting sub-plans for detecting the common sub-

CE. In Figure 5.3, for example, the original plan force1 specifiespe4 to be pushed andpe3 to be

pulled, whereas the original plan force2 requires bothpe3 andpe4 to be pushed due to stringent

delay tolerance. We need to reconcile such conflicting plansfor the common sub-CE. In many

cases, reconciliation will necessitate modification to thenon-common parts of the CED trees as

well.

We propose a two step technique to address these challenges.For the first step, we propose a

novel heuristic-based algorithm to select the best node (node that minimizes cumulative detection

costs) for hosting the detection process corresponding to the common sub-CE (sub-CE comprising

of the shared PEs). In doing so, we also decide whether instantiating a common sub-CED process is

beneficial from a cumulative detection cost standpoint. Theoriginal CED trees are merged to utilize

the results from the node hosting common sub-CED process (this node is henceforth referred to

ascommon junction nodeor CJN for short). In the second step, we use a conservative approach

to determine the detection plan for the common sub-CE (to avoid any delay tolerance violations)

and then apply the previously-described push-pull conversion algorithm to the non-common parts

of the reconstructed CED trees. We now briefly discuss each step.

5.4.1 CJN SELECTION AND CED TREE RECONSTRUCTION

We now explain our heuristic-based CJN selection algorithm. Once the CJN is decided, we deter-

mine whether it is at all beneficial to merge CED trees so as to leverage common sub-CE detection

at the CJN. We also outline the CED tree reconstruction mechanism to utilize the CJN. Our primary

objective in choosing a DTN node as CJN is to minimize the cumulative detection costs. Such a

67

hosting node could be a junction node in the original CED trees, or a node outside of all CED trees

(but nevertheless part of the underlying DTN). Towards thisend, our algorithm takes into account

both the cost factor and the delay of the paths from the sources to the destinations of the CEs via the

node being considered as a candidate for CJN. The reason for considering cost factors is straight-

forward as they directly impact the cumulative detection costs. It is also important to consider the

delays of the paths because we have to ensure that the merged CED trees along with new detection

plans (discussed in the next subsection) honor the delay restrictions for all of the CEDs involved.

By considering path delays, we increase the likelihood of producing a near-optimal plan in step 2.

Our algorithm starts by constructing a list of candidate CJNs. A DTN node must satisfy two

conditions to be considered a candidate CJN: (1) It has pathsto all the shared PE source nodes, and;

(2) It has paths to the destinations of all CEs. Such a list is constructed through simple reachability

analysis. Once such a list is constructed, we have to choose the node that minimizes the cumulative

detection costs. The problem is that we cannot evaluate the cumulative detection costs for the

candidate CJN node until the exact push-pull plan associated with the node is known. Determining

the exact plan for each candidate CJN (by repeatedly executing step 2) is prohibitively expensive.

We address this problem byestimatingthe cost-delay benefits of choosing a candidate node

as the CJN, irrespective of any specific detection plan. In fact, we quantify the cost and delay

characteristics of the paths from the sources of the shared PEs to the CE destinations via the

candidate node being considered. We utilize the h-factor (see Section 5.3) for this purpose. Theeb

value of a candidate node is the weighted sum of h-factors of the links from each shared PE source

to the candidate node being considered and the h-factors of the links from candidate node to the

destinations of the various CEs. The h-factor of each link isweighted by the frequency of the event

that it is supposed to convey.

eb =
∑

i

(fi ∗ Shi) +
∑

j

(Dhj ∗
∑

i

fi) (5.1)

whereShi is the sum of theh factors of all the links along the path from the candidate CJNto

the source of the shared primitive eventpei, fi is the expected number ofpei instances per unit

68

time, Dhj is the sum of theh factors of all the links along the path from the candidate node

under consideration to the destination of complex eventcej, and
∑

i fi is the expected number of

occurrences for all shared PEs.

Our algorithm evaluates theeb values for all candidate CJNs. The node with the minimumeb

value is to be selected as the CJN. However, at this stage it isstill not decided whether to leverage

shared parts of the CED trees. We do this by calculating theeb values of the junction nodes in

the original (individual) CED trees corresponding to the shared PEs. If the sum of theeb values

of the junction nodes of original CED trees is less than theeb value of the CJN, it means that

leveraging shared events will not lower the cumulative detection costs, and the independent CED

plans with original CED trees are retained. On the other hand, if the eb value of the CJN is lower,

Comet leverages the common parts by reconstructing the CED trees. This is done by redirecting the

shared PEs to the CJN, which detects the sub-CE corresponding to the shared PEs. The results of

the sub-CE detection are then sent to the next stage of the detection process in each of the original

CED trees.

Figure 5.4 illustrates our algorithm on the two CED trees from Figure 5.3. We assume that

there are direct links fromV4, V5 andV13 to bothV1 andV2 making them candidate CJNs (for

better clarity, the figure does not show all the links from theunderlying DTN). Theeb values ofV4,

V5 andV13, corresponding to the merged CED trees are indicated next tothem. The nodesV4 and

V5 were part of the two original CED trees detecting the sub-CEand(pe3, pe4; 2). Theeb values of

these nodes corresponding to the independent CED trees are indicated in the parentheses.V13’s eb

value is the lowest. Furthermore, it is also less than the sumof eb values ofV4 andV5 from the two

independent CED trees. Therefore,V13 is selected as the CJN, and the two CED trees are merged.

The resulting DAG is shown with bolder lines.

5.4.2 PUSH-PULL CONVERSION ONRECONSTRUCTEDCED TREES

Once the CED trees are reconstructed, the next step is to determine the actual push-pull plans for

the DAG obtained after merging the individual CED trees. We do this by first considering the part

69

V1

V8V7

V3

pe2pe1

1/1 1/4

V4

V10

V2

V9

pe3 pe5pe4
1/9 1/16 1/4

V5 V6

V11 V12

ce1 ce2

pe6
1/1

V13

0.52
0.69

(0.35)
0.87

(0.35)

Figure 5.4: CJN Selection and CED Tree Reconstruction

of the DAG corresponding to each CE (including CJNs that are involved in detecting common sub-

CEs). We run our original push-pull conversion algorithm independently for each CE. At the end

of this step we have a plan for all CEs, within each of which is embedded a plan for the sub-CEs

that it shares with other CEs. However, notice that if a sub-CE is common tok CEs, it may have

up tok distinct plans. The question is which of these plan should bechosen. We use a conservative

approach and choose the plan with lowest delay for the commonsub-CE. The rationale for this

choice is that we have to ensure that delay restrictions for all CEs containing the sub-CE are

honored. Also, if the two CEs have different time windows in their CE definition, the selected sub-

plan should use the larger time window for the pull requests.This ensures that we do not miss any

CE instance. Our choice of the lowest delay plan may create additional delay slack in some CEs

whose plans had embedded a higher delay plan for the sub-CE. This slack may allow us to further

reduce the cost of such CEs. This is done by executing the push-pull conversion algorithm on the

non-shared part of such CED trees, with the shared sub-CE parts of each tree being fixed2.

5.5 EXPERIMENTAL EVALUATION

We have implemented bothCometand our DTN simulator in Java. The DTN simulator simulates

the DTN model described in Section 2.2. The simulator contains a number of DTN nodes, each

2An incremental approach can used for re-planning to reduce the computational effort involved

70

of which connects to its neighbors according to a given schedule. Each DTN node can be either

a PE source, a CE sink, or a junction node, depending on how theCED tree is constructed. If

the node is a PE source, it generates PE instances according to a Poisson distribution. We use the

Zipfian distribution to generate the PE occurrence frequencies. Each DTN node is also capable of

executing the sub-CED plan, which is represented as a finite state machine.

In all of our experiments, we assume that the DTN links are reliable when they are in operation.

Also, recall that we assume the expected active period (EAP)of all links is sufficiently long to

transmit all data in the buffer of the sending node. We will focus on two major properties of the

DTN link – Bandwidth and Expected Disconnection Period (again, see Section 2.2). Our planner

and DTN simulator support different models for bandwidth and EDP. However, for simplicity, we

use three categories of bandwidths: low bandwidth (128 Kbps), medium bandwidth (256 Kbps)

and high bandwidth (1.2 Mbps). We define the cost factor aspacket size

bandwidth
. For EDP, we also use

three categories: low EDP (30 seconds expected disconnection period), medium EDP (2.5 minutes

expected disconnection period), and high EDP (5 minutes expected disconnection period).

5.5.1 RESULTS

In the first set of experiments, we exclusively evaluate Comet’s individualized multi-level CED

planning mechanism. Therefore, for these set of experiments, we assume that the CEs do not have

any common PEs. We compare Comet’s individualized multi-level CED planning mechanism to

three other algorithms. The baseline plan isAll-Push, where all events are pushed to the CE desti-

nation immediately.All-Pushalways satisfies any delay restriction for which there exists a feasible

plan. TheCentralized Optimalplan is the one suggested as optimal in the work by Akdere et al.

[20]. Note that it is optimal only for centralized solutionsin which the CED plan is only executed

at the destination, so Comet, with its multi-level nature, can outperform this notion ofCentralized

Optimal. TheCentralized Heuristicplan is our adaptation of the single-level heuristic algorithm

suggested by Adkere et al.[20]. In implementingAll-Push, Centralized OptimalandCentralized

71

0 50 100 150 200 250
0

2

4

6

8

10

12

14

Delay Tolerance (Minutes)

C
os

t P
er

 M
in

ut
e

Comet
Centralized Heuristic
Centralized Optimal
All Push

Figure 5.5: Performance with nonuniform cost and uniform delay per link.

Heuristic, we use the most cost-and-delay efficient paths (guided by h-value) for transferring PE

instances to their respective destinations.

Figure 5.5 shows results of cost for the aforementioned fouralgorithms. The delay tolerance

ranges from 0 to 250 minutes. The topology in this experimentis such that the EDP is high (5

minutes) for all links, and the bandwidth per link is 128 Kbpson all links connected to the sink,

1.2 Mbps on all links connected to the sources, and 256 Kbps onall other links. Note that for delay

restrictions smaller than 16.5 minutes, there is no feasible solution, even withAll-Push.

The results clearly show that Comet is superior to the other three algorithms. Comet has a

cost that is 89% less thanAll-Push, 66% less thanCentralized Heuristic, and 56% less thanCen-

tralized Optimal. Specifically, as expected,All-Push fails to filter PEs and so incurs a large cost

across various DTN links due to transmission of PEs that cannot be part of any CE. The other

two algorithms—Centralized OptimalandCentralized Heuristic—are able to filter out some PEs.

Comet is superior to both because its multi-level nature allows PEs to be pulled from the inter-

mediate nodes closer to their respective sources, which filters out extraneous PE instances. Again,

Centralized OptimalandCentralized Heuristiconly pull events at the destination. Note that cre-

ating a multi-level optimal algorithm is infeasible because it is exponential in the number of links.

72

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

Delay Tolerance (Minutes)

C
os

t P
er

 M
in

ut
e

Comet

Centralized Heuristic

Centralized Optimal

All Push

Figure 5.6: Performance with uniform cost and uniform delayper link.

Figure 5.6 shows results for a similar experiment as was shown in Figure 5.5, except that the

bandwidth per link is uniform. The results are similar in many cases, but there is a range of delay

restrictions–85 to 100—in which Comet has a higher cost thanCentralized Optimal. This occurs

because when the cost per link is uniform, the benefit of pulling PEs from nodes closer to the

source is lower. For this narrow range of delay restrictions, there are some centralized plans that

outperform multi-level plans. AsCentralized Optimalexhaustively explores the solution space of

the centralized plans, it can and does perform better for this small range of delay restrictions. Future

work will address this issue; briefly, we plan to explore the potential of concurrent pulls when the

delay tolerance is modest. The timing of pull requests may bereassigned so that the event sources

with similar frequencies will be pulled concurrently depending on the given delay tolerance. We

will also consider re-scanning the overlay tree topology tobalance the sub-CE delays for different

subtrees, which will eventually fully utilize the potential concurrency in detecting CEs.

Figure 5.7 shows results for the same experiment as discussed above, except that the link delay

is now nonuniform. The links connected to the sink have an EDPof 5 minutes, an EDP of 30

seconds for the links connected to the sources, and an EDP of 2.5 minutes for all other links.

Essentially, this experiment shows similar, if not quite aspronounced, results to Figure 5.5.

73

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

Delay Tolerance (Minutes)

C
os

t P
er

 M
in

ut
e

Comet
Centralized Heuristic
Centralized Optimal
All Push

Figure 5.7: Performance with nonuniform delay per link for nonuniform cost per link.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

Delay Tolerance (Minutes)

C
os

t P
er

 M
in

ut
e

Comet
Cost Only Heuristic

Figure 5.8: Performance of Comet with different heuristics. The cost per link is nonuniform.

Next, Figure 5.8 shows results for the same two experiments as discussed in Figure 5.7, except

that the ordering of status changes in our multi-level push-pull conversion technique are determined

using only cost rather than the ratio of cost to delay. Note that in this experiment we compare only

the two versions of Comet.

This experiment makes it clear that it is better to use the ratio of cost to delay for ordering

potential status changes in Comet. On one hand, using purelycost, irrespective of the change in

delay, may cause Comet to choose pull operations that can cause significant delay increases and

also leads to fewer pull operations elsewhere in the plan dueto the delay tolerance. On the other

74

0 20 40 60 80 100 120 140 160 180 200 220
0

2

4

6

8

10

12

14

Delay Tolerance (Minutes)

C
os

t P
er

 M
in

ut
e

Comet
Centralized Heuristic
Centralized Optimal
All Push

Figure 5.9: Performance where the degree of the junction nodes is varied (randomly) from 1 to 3.

hand, using the ratio of cost reduction to delay better balances the change of both cost and delay.

It also can leverage the potential of pull concurrency, which can in turn lead to cost reduction with

only a small delay penalty.

Figure 5.9 shows results of the four algorithms on a skewed topology, in which the degree

of junction nodes varies from 1 to 3. The EDP is set to high (5 minutes) for all links, and the

bandwidth per link is 128 Kbps for all links connected to the sink, 1.2 Mbps for all links connected

to the sources, and 256 Kbps on all other links. Again, Comet is superior to all other algorithms,

even with such a skewed topology. On average, Comet is 61% less thanCentralized Optimal, 69%

less thanCentralized Heuristic, and 89% less thanAll-Pushin term of cost per minute.

Figure 5.10 shows the impact of the number of levels in the CEDtree on the cost of the detec-

tion plan. When the number of levels of the CED tree increases, the cost decreases. This is due to

the multi-level sub-CED of Comet; recall that it allows the PEs to be pulled from junction nodes

closer to the source. This not only alleviates the load at thelinks connected to the sink, where the

bandwidth is usually limited, but also significantly removes the unnecessary delay due to the long

turnaround time of pull request and reply between the sink and source. At times when there is no

PE satisfying the pull request, the penalty is limited because of the relative short delay between the

junction node and the source. Note that at the same time, the cost of centralized optimal remains

75

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Delay Tolerance = 60

CED Tree Level

C
os

t P
er

 M
in

ut
e

Comet
Centralized Optimal

Figure 5.10: Performance of Comet with different CED tree levels.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay Tolerance (Minutes)

C
os

t P
er

 M
in

ut
e

Comet Phase 1 Only
Comet 2−Phase

Figure 5.11: Benefit of using two-phase algorithm in Comet.

constant, because centralized detection plans do not utilize the junction node to further reduce the

plan cost and delay.

Figure 5.11 shows the benefit of the two-phase push-pull conversion algorithm of Comet. The

concurrent pull phase of Comet (the second phase) further explores the concurrency of pull oper-

ations, especially when the delay tolerance is modest. Mostof the time, the two-phase algorithm

results in a significant cost reduction compared with the algorithm with only conversion of pushes

to single target pulls (the first phase). The second phase further reduces the cost by converting

more pushes to pulls, but without a significant delay penalty. Note that in this figure, when the

76

delay tolerance is 10 and 90 minutes, there is no difference between the single phase and two-

phase algorithms. This is because (1) at the tolerance of 10 minutes, the only available plan is to

push all events to the sink; and (2) at 90 minutes, there is nothing for the concurrent pull phase to

improve, because the first phase has already converted all available push operations.

2 3 4
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Shared PEs

O
ve

ra
ll

C
os

t

Comet w/o RA
Comet with RA

Figure 5.12: Performance on Different Number of Shared PEs

1.22 1.39 1.56 1.74 2.60
1500

2000

2500

3000

EB Value

O
ve

ra
ll

C
os

t

Figure 5.13: Comparison of Different Hosting Nodes (2 Shared PEs)

In the second set of experiments, we evaluate Comet’s redundancy avoidance (RA) mechanism.

First, in Figure 5.12, we compare two versions of Comet—one in which the redundancy elimination

module (represented as Comet with RA) is enabled and the other in which the RA module is

disabled (represented as Comet without RA)—with differentnumbers of common PEs among

two CEs. Results show that Comet’s redundancy avoidance algorithm can successfully reduce the

overall detection cost when the number of common PEs varies.

77

16 21 23 25 35
1500

2000

2500

3000

3500

4000

EB Value
O

ve
ra

ll
C

os
t

Figure 5.14: Comparison of Different Hosting Nodes (4 Shared PEs)

Figure 5.13 evaluates theeb value model for selecting the candidate hosting nodes. The hori-

zontal line in the figure indicates the cumulative cost for Comet without RA. The corresponding

eb value for this case is 2.08. The overall detection costs for different candidate hosting nodes with

differenteb values are presented in the figure. For the candidate hostingnodes witheb value lower

than 2.08 (Comet without RA case), the overall cost is significantly lower than the Comet without

RA case. Note that, for a candidate hosting node witheb value greater than the eb value of Comet

without RA case, its overall cost would be higher than the Comet without RA case case. Generally,

the lower theeb value, the lower the resulting overall cost. The Comet heuristic algorithm will

choose the candidate hosting node with the lowesteb value (1.22), which results in the lowest cost

(1999). Figure 5.14 shows similar experiments with 4 commonPEs; the results are similar.

CHAPTER 6

L ITERATURE REVIEW

Our work in this dissertation is directly related to publish-subscribe, distributed stream processing,

complex event processing and delay tolerant networks. In this chapter, we survey the related work

of event monitoring services in these areas.

6.1 PUBLISH-SUBSCRIBE

Publish-subscribe (pub-sub) systems have continued to be an important research area over sev-

eral years [6, 2, 57, 3, 58, 9, 59, 60, 61, 62, 8, 5, 4, 7, 63]. On this basis of how subscriptions

are specified, pub-sub systems are classified into topic-based [6, 64], content-based [2, 3, 5, 65],

type-based [27], and type- and attribute-based [7] categories. From an architectural standpoint,

distributed pub-sub systems [1, 2, 3, 66, 60, 8, 4] provide significantly better scalability than their

centralized counterparts [67]. As mentioned in chapter 3, the subscription mechanism ofAgele

is similar to type and attribute-based subscription model [7], and it adopts a distributed broker

framework.

Over the past decade, various aspects of pub-sub systems have been widely studied including

subscription mechanisms, architectures, quality-of-service, mobility, and reliability [6, 68, 2, 3,

69, 58, 70, 9, 71, 72, 7, 63]. Surprisingly, the issue of redundant and partial event messages, which

are very common in settings with human participants, has received little research attention. A few

researchers have considered the problem ofexactduplicate elimination [63, 73, 74]. However,

most solutions are simplistic with performing duplicate elimination at the subscribers being the

most common approach [63]. The XTreeNet system [73] uses an in-network duplicate elimination

scheme. The scheme has two major limitations. First, it requires each node in the tree to maintain a

78

79

cache of messages that has recently passed through it. Because nodes often participate in multiple

trees, they need to store large number of messages for this scheme to be effective. Second, the

technique is not effective in reducing message traffic due toduplicates originating from different

regions of the overlay. Thus, the system is not able to provide any guarantees to the subscribers or

offer them flexibility with respect to the degree of duplicate elimination or the notification times.

Our definition of redundancy is broader in the sense that an event message is considered to be

duplicate if the information it carries has already been obtained by aggregation of other messages,

even though it was not an exact match to any of the previous messages. Thus, our duplication

elimination is more powerful. By designating specific eventgatherers for every routing AG, we

eliminate the need for message caching at each node in the overlay. Furthermore, our technique

is effective even when the messages originate in different regions of the network. To the best

our knowledge, our work withAgelewas the first system to consider incomplete (partial) event

messages.Agele is a centralized system that uses a center node to aggregate all messages; i.e.

there is one, fixed active aggregator and no passive aggregators. In addition,Ageleis static; the

notification cycle is fixed over the entire system.Caevais much different; it is distributed and

therefore scalable, it allows flexible, adaptive placementof passive aggregators as well as a flexible

choice of the notification cycle for each subscriber.

In the context of multicast routing, Thaler and Ravishankar[51] propose heuristic-based

strategy for finding the graph center, which works in multiple rounds. There are two main differ-

ences between their algorithm and ours. First, being a heuristic-based approach, their algorithm

may not always locate the exact center. Second, and more importantly, although their scheme does

not require a global view of the overlay topology, it assumesthat in each round the center knows

about all nodes in the multicast group. By contrast, our algorithm does not require centralized

membership information, and it always discovers the exact center of the routing AG. The scheme

by Song [50] requires each node to first discover the identityof all other nodes, and then exe-

cute the all pairs shortest path algorithm. Unfortunately,this straightforward distribution strategy

80

imposes significant computation and communication overheads at all nodes in the network, thus

making it impractical for our application.

6.2 DISTRIBUTED STREAM PROCESSING

Our work in this dissertation is directly related to the areaof distributed stream processing [10, 11,

12, 13, 14, 15, 16, 17]. Compared to the traditional DBMS whose data is relatively static, the data

in distributed stream processing systems is extremely mobile. In such systems, DBMS is active and

human is passive, while in traditional DBMS, human is more active and DBMS is passive [10].

Existing work focuses on different aspects of distributed stream processing systems [13, 14, 16,

17]. The Aurora [10] and Borealis [11] study the techniques to process the data streams on single or

multiple sites with the emphasis on load balancing, runtimequery and result modification, and QoS

based optimization. The STREAM system [12] is trying to provide similar DBMS functionality

on the data streams with special concentration on the memoryrequirements. TelegraphCQ [15]

specializes on shared, continuous query processing over query and data streams.

The area of distributed stream processing [75, 76, 77, 54, 78, 79, 80] has similarities to event

aggregation in decentralized pub-sub systems. In both these cases, data originating from the nodes

of an overlay needs to be processed and delivered to a set of recipient nodes. However, there are

also crucial differences between the two. First, in stream processing systems, the source nodes of

various data streams are generally known when the query planis evolved. Whereas in a pub-sub

system, any publisher that has issued an advertisement can generate a corresponding event. Second,

the data streams last for relatively long durations of time,and so do the data processing operators

defined on these streams. Third, many of the stream processing systems assume a global view

of the overlay topology. These characteristics justify andpermit the heavy-weight, optimization-

based query planning, operator placement, and adjustment strategies used by stream processing

applications. The pub-sub environment, especially in community-oriented applications, is much

more ad-hoc — publishers generate event messages in a non-continuous manner and at arbitrary

points in time. Furthermore, each event is active for short duration of time, in the sense that the

81

messages pertaining an event are published in a short time window. Thus, the heavy-weight oper-

ator placement strategies are not appropriate forAgeleandCaeva. In contrast to distributed stream

processing systems,Caevadoes not require a priori knowledge of event message sources, and its

protocols and techniques are lightweight and dynamic.

6.3 COMPLEX EVENT PROCESSING

Complex event detection (CED) originated in the field of active database systems as a mechanism

to respond automatically to events that are taking place either inside or outside of the database

system [46]. Current work on CED has focused on two main issues, namely, reducing the com-

putational overheads at the server [18, 19] and reducing thecommunication costs [20]. Wu et

al [19] study NFA based optimization techniques to achieve faster complex event processing at

the server-end on high volume event streams with long time windows. Ding et al. [18] exploit

event constraints to optimize complex event processing over large volumes of business transac-

tion streams. The plan-based CED technique [20] reduces thecommunication overheads of CED

by intelligently pushing and pulling (through single and multi-target pulls) PEs. Our work also

focuses on reducing the communication overheads. However,there are several crucial differences

between Comet and these existing systems. First, the existing systems are designed for traditional,

continuously connected networks. Comet, on the other hand is designed for intermittently con-

nected DTNs. Second, most of these techniques are centralized in the sense that the entire CED

process occurs at a single node. Comet on the other hand is based on multi-level CED paradigm

and it enables sharing of CED tasks among multiple nodes.

Complex event detection [20] also bears similarities to event aggregation. However, most of

the current approaches to complex event detection rely uponapriori planning which assumes that

the event sources are known before hand. The difference between our work and existing stream

processing system is that existing work tends to focus on thecomplex event language and stream

processing performance at the data stream sink, while we focus on reducing data transmission

cost within the stream processing network by executing effective detection plans which utilize the

82

properties of the event streams and network to eliminate thetransmission of unnecessary data.

Adaikkalavan and Chakravarthy [81] discuss modeling and specification of incomplete events.

The SASE+ [21, 22] processes multiple event streams trying to find certain pattern of correlation.

It has a more descriptive event language to improve the expressibility of complex events. At the

same time, a NFA model is applied to improve the performance of complex event processing at the

event sink.

There is a crucial difference between data stream processing systems and complex event detec-

tion systems. As Akdere et al. [20] have noted, data stream processing systems operate on a con-

tinuous query paradigm and are expected to produce results constantly. Hence they rely exclu-

sively on push-based data transfer. Complex event detection systems on the other hand are geared

towards detecting certain events of interest. Unless such events occur, the system essentially does

not produce any output. Thus, CED systems can utilize both push and pull data transfer modes.

Furthermore, most of the current distributed data stream processing systems are designed for tra-

ditional, continuously-connected networks. While our work is based on delay tolerant networks,

where long latency and intermittent connection are common.

6.4 DELAY TOLERANT NETWORKS

Delay Tolerant Networks (DTN) has been an active area of research for the past few years [42, 82,

83]. One of the typical types of DTN is the interplanetary network (IPN) or deep space network,

which is used for the data transmission among different typespace vehicles and the ground station

on earth. For example, in Mars exploration [41], Bundle Protocol [84, 33] has been widely used for

the transmission of data in IPN. Recent develop in IPN includes testing the Bundle Protocol from

space using the United Kingdom Disaster Monitoring Constellation, a multi-satellite earth-imaging

low-earth-orbit sensor network where captured image are first stored on board each satellite and

later downloaded to a ground station [85, 86, 87].

The major focus of DTN research is on routing and message dissemination algorithms [42].

Since there is no end-to-end path in DTN, messages are propagated in a store-and-forward manner.

83

Historical data and replication techniques are usually used in DTN routing, such as [82, 83]. There

are also some designated nodes called data mule or data ferryto perform the major routing task,

for example in [88, 89]. Recently social-based approaches are also applied in the DTN routing,

for example [90, 91].

Although DTN has been the active research area in the past decade, there is very limited number

of work on running the applications on the DTN. Research on this important aspect of DTNs has

been limited to web applications and distributed file systems [92, 93]. This dissertation is a step

towards closing this gap in the sense that it studies how complex event monitoring applications

have to adapt when the underlying network is a DTN. To the bestof our knowledge, we are the

first to apply the plan based multi-level complex event detection techniques on delay tolerated

network (DTN).

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the challenges and our contributions to the event monitoring services

and discuss the future research directions for event aggregation and complex event detection on

delay tolerant networks.

7.1 DISSERTATION CONCLUSIONS

In real world event monitoring systems, especially those ones with human publishers, are poten-

tially faced with event data that is fraught with various kinds of noise. Dealing with this noise

effectively is critical, yet challenging both from data management and distributed computing per-

spectives. This dissertation presents our approach towards designing an efficient distributed broker

overlay-based event monitoring system that eliminates redundant event messages as well as aggre-

gates information from multiple messages corresponding tothe same event.

We first introduce the concept ofevent gathereras a designated broker of a particular routing

graph that is responsible for eliminating redundant messages and merging messages containing par-

tial event information through that routing graph. We show that in order to achieve high efficiency

and low overheads, the event gatherer should be located at the graph center of the corresponding

routing graph. A novel, completely decentralized algorithm has been presented for discovering

the center of an acyclic broker network. The above ideas are incorporated into our system,Agele.

We have performed several experiments for studying the performance of theAgelesystem under

various conditions. Results show that the proposed techniques are effective and efficient, thereby

demonstrating the viability of our approach.

84

85

In the extened work ofAgele, we introduce the distributed event aggregation and redundancy

elimination system: Caeva. Caeva uses a collaborative broker overlay to eliminate redundant mes-

sages and merge same-event messages. By performing this task at the brokers, Caeva avoids

placing this burden on the event subscribers. We also designand implement a distributed aggre-

gator placement algorithm that continuously adapts to message publication patterns with the aim

of minimizing the message load within the overlay. We develop an efficient notification scheme for

supporting subscriber-specified notification cycles.

In terms of complex event monitoring, current centralized CED techniques have significant

limitations that make them ineffective for multi-hop DTN environments. In this dissertation, we

present the design and evaluation of a CED planner for Comet,which, to the best our knowledge is

the first multi-level CED system in which the multiple DTN nodes share CED tasks. The objective

of our planner is to come up with a multi-level plan that minimizes CED costs while respecting a

user-specified detection delay tolerance limit. Comet’s planner is characterized by its three unique

components, namely, push-pull conversion, shorting and shared sub-plan. Push-pull conversion is

a two phase heuristic that starts with a simple all-push planand progressively lowers the cost.

First, Comet converts certain carefully chosen push operations to single target pulls; and, when

such conversions are no longer possible (due to the delay tolerance), converts remaining push

operations to multi-target pull operations where possible. Shorting is designed to counter scenarios

in which detecting sub-CEs at every junction does not yield good plans. This module creates virtual

CED trees by eliminating junction nodes at various levels ofthe CED tree. Shared sub-plan is

generated by reconstructing CED trees with heuristic modeland algorithm. Through extensive

experimental evaluation, we have shown that in most cases, Comet produces significantly better

plans than existing centralized CED mechanisms.

7.2 FUTURE WORK

We propose flexible and scalable framework for event aggregation and redundancy elimination in

event monitoring services. The practical impact of the framework is still in its early stage, because

86

in real world, the decentralized broker overlay network is dynamic. New nodes may continue

joining the broker overlay as the new users joining in the event monitoring services. At the same

time, some nodes may leave the broker overlay as the users quit the services. Currently, we assume

that the broker overlay is relatively stable. Building event monitoring services on a dynamic overlay

brings new challenges to the research. As a continuation of this work, we will design new algorithm

to adapt to the churn of broker overlay. In a addition to the algorithms, we are also considering

using real world traces of Twitter [43] to evaluate the performance of our event aggregation and

redundancy elimination in the event monitoring services. Towards this, we have to analyze the

content of tweets and build data structure for tweets so thatthe keywords and associated attributed

are extracted and stored.

Complex event detection services will become increasinglymore important on emerging delay

tolerant networks. This dissertation is the first step towards the goal of building the complex event

monitoring services on such overlay networks. To achieve this goal, we have identified several

challenges. First, limited resources including storage, power and band width on the DTN nodes.

We currently assume each DTN node has unlimited resources. As the resources become limited,

the algorithm has to be adjusted to adopt the limitations. Second, load balancing for the nodes in the

overlay. Some nodes may host too many sub-plans which results in load imbalance in the overlay.

The burst of certain events can also lead to load spikes. A desirable planer for monitoring complex

events should balance the load of the overlay as the resources of each node is limited. Third,

unpredictable connectivity. Our work is currently based onschedule contact, i.e. the connectivity of

the nodes is predictable to some extent. When the connectivity is unpredictable, how to maximize

the utility of the connections and minimize the communication cost are the goals we are trying to

achieve. Last but not least, real world traces for evaluation. In the future, we are trying to obtain

the real world traces by either getting public available traces or building our own. This will help

us analyze and improve the system. We foresee that our progress in event monitoring services will

provide more insight into different aspects of several realworld applications, including design,

implementation, analysis and improvement.

BIBLIOGRAPHY

[1] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg, “Content-based Publish-Subscribe

over Structured Overlay Networks,” inProceedings ICDCS, 2005.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D. C. Sturman., “An

Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems,” inProceedings

of ICDCS 1999, 1999.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design andevaluation of a wide-area event

notification service,”ACM Transactions on Computer Systems, vol. 19, no. 3, pp. 332–383,

2001.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A Large-Scale and

Decentralised Application-level Multicast Infrastructure,” IEEE Journal on Selected Areas

in Communications (JSAC), 2002.

[5] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, “Content Based Routing with

Elvin4,” in Proceedings of AUUG2k, 2000.

[6] “TIB/Rendezvous,” White paper, 1999.

[7] P. Pietzuch and J. Bacon, “Hermes: A Distributed Event-Based Middleware Architecture,” in

Proceedings DEBS, 2002.

[8] S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. van Steen, “Sub-2-Sub: Self-Organizing

Content-Based Publish Subscribe for Dynamic Large Scale Collaborative Networks,” inPro-

ceedings of the 5th international workshop on peer-to-peersystems, Feb 2006.

87

88

[9] P. T. P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The Many Faces of Publish/Subscribe,”

ACM Computing Surveys, vol. 35, no. 2, 2003.

[10] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,

N. Tatbul, and S. Zdonik, “Monitoring streams: A new class ofdata management applica-

tions,” in Proceedings of VLDB, 2002.

[11] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,

W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik, “The

design of the borealis stream processing engine,” inProceedings of CIDR, 2005.

[12] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava,

D. Thomas, R. Varma, and J. Widom, “Stream: The stanford stream data manager,”IEEE

Data Engineering Bulletin, 26(1), 2003.

[13] Y. Zhou, K. Aberer, and K.-L. Tan, “Toward Massive QueryOptimization in Large-Scale

Distributed Stream Systems,” inMIDDLEWARE, 2008.

[14] B. Gedik, H. Andrade, and K.-L. Wu, “A code generation approach to optimizing high-

performance distributed data stream processing,” inCIKM, 2009.

[15] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,

S. Krishnamurthy, S. R. Madden, V. Raman, F. Reiss, and M. A. Shah, “Telegraphcq: Con-

tinuous dataflow processing for an uncertain world,” inProceedings of CIDR, 2003.

[16] S. Seshadri, B. Bamba, B. F. Cooper, V. Kumar, L. Liu, K. Schwan, and G. Zhang, “Grouping

distributed stream query services by operator similarity and network locality,” inSERVICES

I, 2008.

[17] M. F. Mokbel and W. G. Aref, “Sole: scalable on-line execution of continuous queries on

spatio-temporal data streams,”VLDB J., vol. 17, no. 5, 2008.

89

[18] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W.-P. Hsiung, and K. S. Candan, “Run-

time semantic query optimization for event stream processing,” in ICDE, 2008.

[19] E. Wu, “High-performance complex event processing over streams,” inIn SIGMOD, 2006,

pp. 407–418.

[20] M. Akdere, U. Çetintemel, and N. Tatbul, “Plan-based complex event detection across dis-

tributed sources,” inProceedings of VLDB, 2008.

[21] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman, “On supporting kleene closure over

event streams,” inProceedings of ICDE, 2008.

[22] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient pattern matching over event

streams,” inProceedings of SIGMOD, 2008.

[23] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.Shenker, “Making gnutella-like

p2p systems scalable,” inSIGCOMM, 2003.

[24] S. Ratnasamy, P. Francis, S. Shenker, R. Karp, and M. Handley, “A scalable content-

addressable network,” inIn Proceedings of ACM SIGCOMM, 2001, pp. 161–172.

[25] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Bal-

akrishnan, “Chord: A scalable peer-to-peer lookup protocol for internet applications,” inACM

SIGCOMM, 2001, pp. 149–160.

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing

for large-scale peer-to-peer systems,” inMIDDLEWARE, 2001, pp. 329–350.

[27] P. T. Eugster, R. Guerraoui, and C. H. Damm, “On Objects and Events,” inProceedings of

OOPSLA, 2001.

[28] D. J. Abadi, D. Carney, U. etintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,

N. Tatbul, and S. Zdonik, “Aurora: a new model and architecture for data stream manage-

ment,”The Vldb Journal, vol. 12, pp. 120–139, 2003.

90

[29] Y. Xing, “Dynamic load distribution in the borealis stream processor,” inIn ICDE, 2005, pp.

791–802.

[30] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker, “Fault-tolerance in the

borealis distributed stream processing system,” inIn SIGMOD, 2005, pp. 13–24.

[31] J. hyon Hwang, M. Balazinska, E. Rasin, M. Stonebraker,and S. Zdonik, “High-availability

algorithms for distributed stream processing,” inIn IEEE ICDE Conference, 2005, pp. 779–

790.

[32] E. Ryvkina, A. S. Maskey, M. Cherniack, and S. Zdonik, “Revision processing in a stream

processing engine: A high-level design,” inProceedings of the 22nd International Conference

on Data Engineering, 2006.

[33] V. C. et al., “Delay-tolerant network architecture,”IETF RFC 4838, informational, April

2007.

[34] S. Parikh and R. C. Durst, “Disruption tolerant networking demonstration for marine corps

condor,” inProceedings of MILCOM, 2005.

[35] C. Rigano, K. Scott, J. Bush, R. Edell, S. Parikh, R. Wade, and B. Adamson, “Mitigating

naval network instabilities with disruption tolerant networking,” in Proceedings of MILCOM,

2008.

[36] A. Pentland, A. Hassan, and R. Fletcher, “Daknet: Rethinking connectivity in developing

nations,”IEEE Computer, vol. 37, 2004.

[37] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav, “Lowcost communication for rural

internet kiosks using mechanical backhaul,” inProceedings of MOBICOM, 2006.

[38] R. Y. Wang, S. Sobti, N. Garg, E. Ziskind, J. Lai, and A. Krishnamurthy, “Turning the postal

system into a generic digital communication mechanism,” inProceedings of SIGCOMM,

2004.

91

[39] J. LeBrun, C.-N. Chuah, D. Ghosal, and M. Zhang, “Knowledge-based opportunistic for-

warding in vehicular wireless ad hoc networks,” inProceedings of VTC, 2005.

[40] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang, “Study of a bus-based

disruption-tolerant network: mobility modeling and impact on routing,” in Proceedings of

MOBICOM, 2007.

[41] S. Burleigh, V. Cerf, R. Durst, K. Fall, A. Hooke, K. Scott, and H. Weiss, “The interplanetary

internet: A communications infrastructure for mars exploration,” in World Space Congress,

2002.

[42] S. Jain, K. R. Fall, and R. K. Patra, “Routing in a delay tolerant network,” inSIGCOMM,

2004.

[43] “Twitter (http://twitter.com).”

[44] J. Chen, L. Ramaswamy, and D. Lowenthal, “Towards efficient event aggregation in a

decentralized publish-subscribe system,” inProceedings of the Third ACM International

Conference on Distributed Event-Based Systems, ser. DEBS ’09. New York, NY, USA:

ACM, 2009, pp. 18:1–18:11. [Online]. Available:http://doi.acm.org/10.1145/1619258.

1619283

[45] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy, J. B. Park,

and A. Vernon, “Scalable trigger processing,” inProceedings of ICDE, 1999.

[46] N. W. Paton and O. Dı́az, “Active database systems,”ACM Computing Surveys, vol. 31, 1999.

[47] J. Chen, L. Ramaswamy, and D. K. Lowenthal, “Agele: Dealing with redundant and par-

tial events in a real-world publish-subscribe system,” technical Report UGA-CS-TR-09.001,

2009.

[48] D. Wall, “Mechanisms for Broadcast and Selective Broadcast,” Ph.D. dissertation, Stanford

University, 1980.

92

[49] R. Voigt, R. Barton, and S. Shukla, “A Tool for Configuring Multicast Data Distribution Over

Global Networks,” inProceedings of INET, 1995.

[50] L. Song, “A Distributed Algorithm for Graph Center Problem,” Master’s thesis, 2003.

[51] D. Thaler and C. V. Ravishankar, “Distributed Center-Location Algorithms,”IEEE Journal

on Selected Areas in Communications, vol. 15, no. 3, 1997.

[52] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A Routing Scheme for Content-Based

Networking,” inProceedings of INFOCOM 2004, 2004.

[53] J. Chen, L. Ramaswamy, D. K. Lowenthal, and S. Kalyanaraman, “Caeva: A customizable

and adaptive event aggregation framework for collaborative broker overlays,” inProceedings

of CollaborateCom, 2010.

[54] P. R. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. I. Seltzer,

“Network-Aware Operator Placement for Stream-ProcessingSystems,” inProceedings of

ICDE, 2006.

[55] E. W. Dijkstra, “A note on two problems in connexion withgraphs,”Numerische Mathematik,

vol. 1, 1959.

[56] J. Chen, L. Ramaswamy, D. K. Lowenthal, and S. Kalyanaraman, “Comet: Decentralized

complex event detection in delay tolerant networks,” Department of Computer Science, Uni-

versity of Georgia, Tech. Rep. UGA-CS-TR-11-001, July 2011.

[57] M. Bauer and K. Rothermel, “How to Observe Real-World Events through a Distributed

World Model,” in Proceedings of ICPADS, 2004.

[58] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola, “Epidemic Algorithms for Reliable

Content-Based Publish-Subscribe: An Evaluation,” inProceedings of ICDCS, 2004.

93

[59] L. Fiege, M. Cilia, G. Mühl, and A. P. Buchmann, “Publish-Subscribe Grows Up: Support

for Management, Visibility Control, and Heterogeneity,”IEEE Internet Computing, vol. 10,

no. 1, 2006.

[60] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot: content-based pub-

lish/subscribe over P2P networks,” inMiddleware 2004, 2004.

[61] Z. Jerzak and C. Fetzer, “Bloom Filter Based Routing forContent-based Publish/Subscribe,”

in Proceedings of DEBS, 2008.

[62] J. Mocito, J. A. Briones-Garcı́a, B. Koldehofe, H. Miranda, and L. Rodrigues, “Geographical

Distribution of Subscriptions for Content-based Publish/Subscribe in MANETs,” inMiddle-

ware (Companion), 2008.

[63] Y. Huang and H. Garcia-Molina, “Publish/subscribe in amobile environment,”Wireless Net-

works, vol. 10, no. 6, 2004.

[64] R. Baldoni, R. Beraldi, V. Quéma, L. Querzoni, and S. T.Piergiovanni, “TERA: topic-based

event routing for peer-to-peer architectures,” inProceedings of DEBS, 2007.

[65] S. Tarkoma, “Dynamic content-based channels: meetingin the middle,” inProceedings of

DEBS, 2008.

[66] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Constructing scalable overlays for

pub-sub with many topics,” inProceedings of PODC, 2007.

[67] R. Lewis, “Advanced Messaging with MSMQ and MQSeries,”1999.

[68] I. Aekaterinidis and P. Triantafillou, “PastryStrings: A Comprehensive Content-Based Pub-

lish/Subscribe DHT Network,” inICDCS, 2006.

[69] B. Chandramouli, J. M. Phillips, and J. Yang, “Value-Based Notification Conditions in Large-

Scale Publish/Subscribe Systems,” inProceedings of VLDB, 2007.

94

[70] G. Cugola and L. Mottola, “A Self-Repairing Tree Overlay Enabling Content-based Routing

in Mobile Ad Hoc Networks,”IEEE Transactions on Mobile Computing, 2008.

[71] G. Li, S. Hou, and H.-A. Jacobsen, “A Unified Approach to Routing, Covering and Merging

in Publish/Subscribe Systems Based on Modified Binary Decision Diagrams,” inICDCS,

2005.

[72] J. P. Loyall, M. Gillen, and P. Sharma, “QoS Allocation Algorithms for Publish-Subscribe

Information Space Middleware,” inMIDDLEWARE, 2008.

[73] W. Fenner, M. Rabinovich, K. K. Ramakrishnan, D. Srivastava, and Y. Zhang, “XTreeNet:

scalable overlay networks for XML content dissemination and querying,” inProceedings

WCW, 2005.

[74] M. Srivatsa and L. Liu, “Securing Publish-Subscribe Overlay Services With EventGuard,” in

Proceedings of ACM-CCS, 2005.

[75] M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov, and F. Ye, “CLASP: Collaborating,

Autonomous Stream Processing Systems,” inProceedings of MIDDLEWARE, 2007.

[76] B. Chandramouli and J. Yang, “End-to-End Support for Joins in Large-Scale Pub-

lish/Subscribe Systems,” inProceedings of VLDB, 2008.

[77] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan, “Resource-Aware Distributed

Stream Management Using Dynamic Overlays,” inICDCS, 2005.

[78] N. Jain, M. Dahlin, Y. Zhang, D. Kit, P. Mahajan, and P. Yalagandula, “STAR: Self-Tuning

Aggregation for Scalable Monitoring,” inProceedings of VLDB, 2007.

[79] O. Jurca, S. Michel, A. Herrmann, and K. Aberer, “Query Driven Operator Placement for

Complex Event Detection over Data Streams,” inProceedings of EuroSSC, 2008.

[80] T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: Sharing-Aware Component Composition

for Distributed Stream Processing Systems,” inProceedgins of Middleware, 2006.

95

[81] R. Adaikkalavan and S. Chakravarthy, “Events must be complete in event processing!” in

Proceedings of ACM-SAC, 2008.

[82] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in intermittently connected

networks,” inSIGMOBILE Mobile Computing and Communication Review, 2004, p. 2003.

[83] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “Maxprop: Routing for vehicle-based

disruption-tolerant networks,” inIn Proc. IEEE INFOCOM, 2006.

[84] K. Scott and S. Burleigh, “Bundle protocol specification,” IETF RFC 5050, experimental,

November 2007.

[85] W. Ivancic, W. Eddy, L. Wood, J. Northam, and C. Jackson,“Experience with delay-tolerant

networking from orbit,”preprint for the International Journal of Satellite Communications

and Networking, special issue for best papers of ASMS 2008, 2010.

[86] L. Wood, W. Ivancic, W. Eddy, D. Stewart, J. Northam, C. Jackson, and A. da Silva Curiel,

“Use of the delay-tolerant networking bundle protocol fromspace,” in59th International

Astronautical Congress, 2008.

[87] W. Ivancic, W. Eddy, L. Wood, D. Stewart, C. Jackson, J. Northam, and A. da Silva Curiel,

“Delay/disruption-tolerant network testing using a leo satellite,” in Eighth Annual NASA

Earth Science Technology Conference (ESTC 2008).

[88] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for data delivery in sparse

mobile ad hoc networks,” inACM MobiHoc, 2004.

[89] P. Yang and M. Chuah, “Efficient interdomain multicast delivery in disruption tolerant net-

works,” in Proceedings of MSN, 2008.

[90] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delaytolerant networks: A social

network perspective,” inACM Mobihoc, 2009.

96

[91] Q. Li, S. Zhu, , and G. Cao, “Routing in socially selfish delay tolerant networks,” inIEEE

INFOCOM, 2010.

[92] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Enhancing interactive web appli-

cations in hybrid networks,” inMOBICOM, 2008.

[93] M. J. Demmer, B. Du, and E. A. Brewer, “Tierstore: A distributed filesystem for challenged

networks in developing regions,” inFAST, 2008.

