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 Feral swine (Sus scrofa) is a very destructive exotic mammal in the United States that 

carries pathogens of several diseases, endangers the safety of human beings, and disturbs local 

ecosystems. Although efforts have been made to monitor the distribution of feral swine, little has 

been done to model and predict the future distribution of feral swine. This project aims at 

tackling this problem by identifying the relationship between feral swine distribution and a series 

of environmental and cultural factors based on logistic regression. To assess the effects of spatial 

autocorrelation in modeling feral swine, autologistic regression was also applied to be compared 

with the ordinary logistic regression. The results suggest the autologistic regression model is 

superior to the ordinary counterpart with better performance. In addition, it is strongly 

recommended that the ordinary logistic regression methods should be employed with caution 

when spatial autocorrelation exists because they may yield misleading results. 
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CHAPTER 1 

INTRODUCTION 

Feral Swine: A Dangerous and Destructive Pest 

“Feral swine” is a collective term referring to escaped domestic pigs, Eurasian wild 

boars, and the hybrids of these two (Mapston 2004; Seward, VerCauteren et al. 2004). Native to 

Europe and Asia (Eurasia), domestic pigs were introduced to the United States mainland in 1539 

by Spanish explorer Hernando de Soto (Towne and Wentworth 1950; Simmons 2010). The 

domestic pigs were not strictly controlled so they were able to roam freely, and many of them 

became feral. Later, Eurasian wild boars were also brought into the United States by American 

hunters for hunting purposes. Both of them, together with their hybrids, constitute the feral swine 

population existing on the American continent today (Simmons 2010).  

Feral swine are the most abundant, free-ranging, exotic ungulate in the United States 

(McKnight 1964; Decker 1978; Seward, VerCauteren et al. 2004), and they have been spreading 

throughout the United States quickly due to several reasons. First is the absence of natural 

predators of feral swine over much of the area they occupy. Although there are certain species 

which prey on feral swine piglets including coyote, owls and bobcats (Stevens 1996), adult feral 

swine do not have many natural predators in the North American continent other than humans. 

Historically, species including mountain lion, black bear, wolf, and panther were the main 

predators of adult feral swine. However, they either do not currently exist in the United States, or 

their populations cover a much smaller area than feral swine (Stevens 1996; Seward, 

VerCauteren et al. 2004).  
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The second reason feral swine are spreading in the United States is their high 

reproductive ability. Characteristics of feral swine including large litter sizes, short gestation 

periods and early maturity enable them to possess very high reproductive potential. According to 

Seward, VerCauteren et al. (2004) and Mapston (2004), feral swine possess the greatest 

reproductive potential of all free-ranging, large mammals in the United States. A variety of 

examples in the literatures suggested that feral swine can produce two litters per year with 

average litter size ranging from four to ten (Choquenot, McIlroy et al. 1996; Stevens 1996; 

Taylor, Hellgren et al. 1998; Seward, VerCauteren et al. 2004; Simmons 2010). Their breeding 

behavior can occur any time throughout the year under favorable conditions (Choquenot, 

McIlroy et al. 1996; Mapston 2004). Given conditions with adequate nutrition, a feral swine 

population can double in four months (Mapston 2004).  

The third reason for feral swine spread is their strong adaptability of feral swine. 

Although some literature reports that feral swine prefer moist bottomlands with adequate water 

supply and thick vegetation, they are also capable of quickly adapting to a wide range of habitat 

types (Choquenot, McIlroy et al. 1996; Stevens 1996; Mapston 2004). It was reported that feral 

swine had established populations in 38 states throughout the United States as of 2009 (Wyckoff, 

Henke et al. 2009).   

Feral swine are very detrimental and destructive in terms of carrying diseases, causing 

huge economic losses and disturbing the environment. 

Pathogens and Diseases 

Feral swine can carry pathogens and virus of several diseases and thus are a 

tremendous threat to both humans and animals. There has not been a consensus on the exact 

number of diseases that can be carried and transmitted by feral swine. Simmons (2010) claims 



 

3 

that feral swine can carry up to 13 serious diseases. However, according to Seward, VerCauteren 

et al. (2004) and Williams and Barker (2001), at least 30 significant viral and bacteriological 

diseases can be harbored by feral swine. Among the diseases hosted by feral swine, pseudorabies 

and swine brucellosis are of most concern. Feral swine have proved to be related to the spread of 

the pseudorabies virus (PRV), which is a highly contagious viral disease spreading among not 

only feral swine, but also domestic swine (Vanderleek, Becker et al. 1993; Choquenot, McIlroy 

et al. 1996; Corn, Cumbee et al. 2009). The swine will become lifetime carriers once they are 

infected by the pseudorabies virus (Stevens 1996). Adult feral swine seldom suffer from the 

infection of pseudorabies virus, serving primarily as reservoir hosts (Tozzini, Poli et al. 1982; 

Mengeling and Pirtle 1989; Pensaert and Kluge 1989; Vanderleek, Becker et al. 1993). The 

symptoms related to the infection of domestic swine include high piglet mortality, central 

nervous and respiratory system damages, anorexia and abortion in adults (Pensaert and Kluge 

1989; Vanderleek, Becker et al. 1993). Other than domestic swine, the pseudorabies virus can 

also infect a large amount of secondary hosts including cats, dogs, cattle, horses, sheep, raccoons, 

skunks, goats, opossum and small rodents (Simmons 2010). Infection of these secondary hosts is 

often fatal (Fenner, Bachmann et al. 1987; Pensaert and Kluge 1989). According to Corn et al. 

(2004), among more than 15,000 feral swine of the United States through 1995, 28% were tested 

to be pseudorabies seropositive.  

Swine brucellosis is another major disease that can be hosted by feral swine. As a 

chronic swine disease, its adverse effects include sterility and abortion in sows, orchitis in boars, 

and piglet mortality, and it is transmitted through reproductive discharges such as semen and 

afterbirth (Blood, Radostits et al. 1983; Fletcher, Creekmore et al. 1990; Stevens 1996). 

Compared to pseudorabies, a much more dreadful characteristic of swine brucellosis is that the 
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latter can infect not only animal, but also humans, with possible symptoms ranging from severe 

flu-like symptoms to arthritis or meningitis (Stevens 1996). As of now, swine brucellosis has 

almost been eradicated from domestic swine in the United States, leaving feral swine the only 

remaining host reservoir (Fletcher, Creekmore et al. 1990; Olsen 2010). However, it is extremely 

difficult to eradicate swine brucellosis virus form feral swine because it is infeasible to test and 

remove infected feral swine individuals and there has not been an effective vaccine that can be 

delivered in oral baits and does not require capture of swine (Stevens 1996; Olsen 2010). 

Other major diseases that can be harbored by feral swine include foot-and-mouth 

disease (FMD), African swine fever (ASF), and trichinosis (or trichinellosis). Some of these 

diseases are contagious to humans and therefore pose a threat to public health (Choquenot, 

McIlroy et al. 1996). 

Economic Impacts 

Feral swine cause serious damage to the local economy, especially agriculture. Known 

as formidable predators, they prey on a variety of livestock including lamb, goats, newborn cattle, 

etc. Although these livestock only make up a small portion of a feral swine’s diet, together they 

were of great importance to local economy. In addition, due to the facts that: 1) feral swine 

usually consume the prey thoroughly leaving little evidence; 2) they are not considered as a 

“common” predator by most people; and 3) the cause of predation is frequently misidentified 

(e.g., signs of feral swine are very similar to those of coyote), the damage of feral swine to 

livestock industry is often underestimated and the annual loss caused by feral swine predation is 

unable to estimate (Stevens 1996; Seward, VerCauteren et al. 2004). Plant et al. (1978) estimated 

that feral swine accounted for 32% of losses of newborn lambs in the semi-arid rangelands of 

Australia. Rollins (1993) reported that 1,243 sheep and goats were lost due to the predation of 
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feral swine in Texas in 1990, with an estimated value of $63,000. And according to the National 

Agricultural Statistics Service (NASS) (1991), the total lost to feral swine in the United States in 

1990 was estimated to be more than $1 million.  

Feral swine also impose tremendous damage to various crops such as wheat, sorghum, 

barley, oilseeds, sugarcane, oats, and maize by direct consuming and trampling plants in order to 

form bedding or to gain access to the center of the crop (Choquenot, McIlroy et al. 1996). 

According to a conservative estimation by Pimentel (2002), feral swine cause a damage of $800 

million in agricultural crops every year in the United States. In California, a total amount of 

$1,731,920 in crop damage caused by feral swine in 1998 was estimated (Frederick 1998).  

Environmental Threats 

In addition to disease and economic considerations, feral swine also are a considerable 

threat to the biological and physical environment. Being exotic, feral swine significantly and 

adversely impact the animals which are native to the United States in terms of at least two 

aspects: direct predation and indirect competition.  

Due to their omnivorous diet composition, a large variety of resources can be utilized 

by feral swine for food, ranging from grasses, forbs, shoots, roots, tubers, fruit, and seeds to 

invertebrates including earthworms, leeches, grasshoppers, centipedes, beetles, and vertebrates 

including salamanders, frogs, fish and livestock. Their inefficient stomach also requires them to 

forage almost continuously in order to intake enough nutrients to sustain a high energy level 

(Engeman, Stevens et al. 2007). Ecol (1992) reported that in Australia, feral swine consume over 

95% of the available worms  at paired quadrat sites in lowland ephemeral swamps near Cape 

Tribulation during April - July 1992 (this is a crucial link in the ecosystems because worms 

decompose rotten plants and animals and therefore nutrients are returned back to soil). An 
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experiment in Texas suggested that feral swine had a strong negative effect on bobwhite quail 

populations by accounting for 28% of predation of bobwhite quail (Colinus virginianus) 

(Tolleson, Rollins et al. 1993; Seward, VerCauteren et al. 2004).  

Feral swine are aggressive competitors with native wildlife of the United States in 

terms of food, space and shelter (Stevens 1996). Potential competition for resources occurs 

between feral swine and animals including deer, turkey, waterfowl, squirrels, raccoons, 

opossums, foxes, bobcats, javelinas, bears, sandhill cranes, chipmunks, etc.  

Other than their adverse impacts on animals, feral swine also directly disturb the 

environment, and this is largely attributed to their rooting behavior. Feral swine constantly root 

(i.e., dig up soil with their snouts) in order to find food beneath the soil surface. This behavior 

jeopardizes the environment in that it loosens the soil, changes soil properties, accelerates 

erosion, destroys vegetation, sets back plant succession, reduces earthworm activity, and 

exacerbates exotic plant invasion. Thus, feral swine are commonly considered as a major factor 

of habitat degradation (Stevens 1996; Mungall 2001; Seward, VerCauteren et al. 2004). 

Engeman, Smith et al. (2003) monitored the damage to native wet pine-flatwoods at three State 

Parks in Florida caused by feral swine, and the estimated cost of resource restoration was given. 

According to their estimation, the economic value of damage caused by feral swine at these three 

parks ranged from $5,331 to $43,257 per ha.  

Efforts to Manage and Control Feral Swine 

Due to the fact that feral swine cause extensive damage to the environment and their 

area of distribution is still spreading, a series of efforts have been taken to control the distribution 

of feral swine in the United States by different organization and institutions.  
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Shooting and trapping are two methods that have been most commonly used to control 

feral swine throughout the North America (Stevens 1996). In several states where feral swine are 

populated, various shooting regulations have been applied. According to the Georgia Department 

of Natural Resources, feral swine are considered an exotic species and there is no limit on 

shooting. They can be hunted any time of the year as long as the shooter owns a Georgia hunting 

license (Lang and Mengak 2007). Whereas in Texas and Oklahoma, hunters can shoot feral 

swine even without a hunting license if feral swine are damaging the landowner’s property 

(Stevens 1996; Mapston 2004).  

Trapping is a more effective way of removing feral swine than shooting because:  1) 

shooting will normally not reduce the feral swine population greatly; and 2) feral swine are so 

intelligent that they may adapt to the intensive hunting activities by shifting home range or 

becoming nocturnal (Mapston 2004). An extensive amount of trapping methods has been 

proposed. For example, Engeman, Constantin et al. (2001) implemented the passive tracking 

method to assess the abundance and distribution of feral swine in Florida as an important part of 

their swine control program. The indexes of pervasiveness and damage were used to assess the 

change of feral swine effects after a total of 25 feral swine were removed from the study area. 

Their study suggested that removing feral swine could indeed decrease the feral swine 

distribution, changing their normally clumped pattern of activity to a more isolated pattern, and 

reduce the amount of damage caused by feral swine. In addition, the passive tracking method 

proved to be an easy and relatively reliable source of gathering data about feral swine abundance 

and distribution.  

Laws and regulations are another tool to control feral swine that is complementary to 

the common methods such as shooting and trapping. This is especially true in the southern states 



 

8 

of the United States where feral swine are a considerable threat. For example, in Texas, a series 

of regulations on the movement of feral swine were promulgated by the Texas Animal Health 

Commission (TAHC). These regulations include prohibiting the movement of feral swine in 

Texas unless they are moved directly from the premises where they were trapped to a recognized 

slaughter facility, approved holding facility or authorized hunting preserve (Texas Animal Health 

Commission 2008).  

In addition to these controlling methods, the distribution of feral swine has been 

actively monitored by researchers and managers. Prior to 2007, the spread of feral swine was 

tracked by means of compiling the hardcopy (for 1982 and 1988) or digital format (for 2004) 

maps of feral swine distribution reported by individual state resource managers and federal 

wildlife agencies (Tyler Campbell 2008; Madden, Zhao et al. 2009). However, this process was 

extremely time-consuming and costly. There was a great need for an efficient method of 

gathering information from various agencies and managers throughout the United States and 

maintaining an up-to-date feral swine distribution geodatabase that was accessible to the public 

(Tyler Campbell 2008; Madden, Zhao et al. 2009). Serving to meet these requirements, the 

National Feral Swine Mapping System (NFSMS) (http://128.192.20.53/nfsms/) was 

implemented in 2007. Maintained by SCWDS and based in the College of Veterinary Medicine 

at the University of Georgia, this web-based system aims at providing information on the 

distribution of feral swine across the United States. The data on which this system is based are 

provided by state and territorial natural resources agencies, U.S. Fish and Wildlife Service 

personnel and USDA, Animal and Plant Health Inspection Service (USDA-APHIS) (Tyler 

Campbell 2008; Madden, Zhao et al. 2009). Although being primarily maintained and edited by 

the Center for Remote Sensing and Mapping Science (CRMS), Department of Geography and 

http://128.192.20.53/nfsms/
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the College of Veterinary Medicine, The University of Georgia , NFSMS allows the authorized 

users to add, edit or delete the polygons indicating feral swine distribution anywhere with 

internet access (Tyler Campbell 2008). This feature significantly accelerates the updating process, 

and therefore enables NFSMS to be able to be updated on a monthly basis. Figure 1 shows the 

NFSMS opening page with the current feral swine distribution in the United States as of 

February 11, 2011 (Madden, Zhao et al. 2009).  

Objectives and Scientific Significances 

Despite the fact that feral swine still cause a massive amount of economic damage to 

the United States today, and a huge amount of effort has been expended to monitor and control 

the distribution of feral swine in the United States, little has been done to understand preferences 

of feral swine in terms of habitat selection. Most examples in the literature point out that feral 

swine can live in almost any kind of habitat, with certain preferences favoring adequate water 

and thick vegetation. This vague understanding is not sufficient for an effective and efficient 

management of feral swine at a small scale (e.g., at the state or national level) especially when 

the objective is to predict the future expansion of their habitat.  

Since there is still a practical need to further understand the relationship between 

habitat suitability and feral swine distribution at the broad state-level scale in order to better 

manage the spread of this destructive exotic species, this study attempts to approach this with 

five specific objectives: 

1) Compile a geodatabase of environmental factors that may be significantly related to 

the distribution of feral swine from various datasets based on remote sensing within a geographic 

information system (GIS); 
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2) Identify and quantify the spatial relationships among these environmental factors 

and the established distribution of feral swine using logistic regression; 

3) Incorporate spatial autocorrelation into the ordinary logistic regression model by 

means of autologistic regression modeling; 

4) Evaluate whether the incorporation of spatial autocorrelation improves the logistic 

model outcome; 

5) Assess the influence of scale on the performance of the habitat models. 

Despite the fact that the current study is not the first attempt to link feral swine habitat 

preference to environmental factors, this is the first attempt to examine this species-environment 

relationship from a broad scale and relatively comprehensive perspective. There are few 

examples of similar previous studies, with the exception of the model constructed by Gaines et al. 

(2005). They used the logistic regression analysis method as a pivotal part of their research on an 

ecological risk assessment using feral swine as an indicator. Logistic regression models were 

built during their model development phase to determine the relationship between feral swine 

abundance and two environmental factors: habitat classification and landscape metrics. The 

abundance data of feral swine were obtained through the recorded number of kills of feral swine 

per area unit. Unlike the previous study by Gaines et al. (2005), which used the habitat 

classification dataset as their parimary data input, the data input of this study consists of various 

geographic datasets related to food, shelter, water and social requirements of the swine, as well 

as human influences on their distribution.  

Moreover, this study tries to examine the relationship between feral swine distribution 

and environmental and cultural factors at multiple spatial scales. Scale is a major concept in 

landscape ecology. At different spatial scales, a single phenomenon can be interpreted in 
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completely different ways. In order to yield the legitimate and reasonable results, a proper scale 

should be used (Wu and Hobbs 2007). There has been no consensus on the exact home range of 

feral swine (which is a key factor determining the proper scale to use when modeling feral swine 

distribution). According to Stevens (1996), the home range of feral swine can vary from 1 to 49 

square kilometers (0.4 to 19 square miles). In addition, feral swine home range can be greatly 

subject to sex and the environmental conditions (e.g. food abundance) (Singer, Otto et al. 1981). 

Given these facts, this study explicitly incorporates multiple spatial scales into the model 

building process and compares their difference in terms of model outcomes. 

Finally, this study takes into account the spatially dependent relationship between the 

feral swine distribution and the environmental factors both implicitly and explicitly. Distance to 

certain key environmental and cultural factors such as major streams and roads were 

incorporated into this study to evaluate the effect of both positive and negative proximity of 

these factors on the distribution of feral swine. Spatial autocorrelation was also examined and 

then explicitly employed to modify the ordinary modeling method in order to avoid committing 

errors such as assumption violation, and to yield more accurate results.  

Study Area 

Since the focus of this study is to investigate the distribution-habitat relationship for 

feral swine over a relatively broad scale, several criteria were considered when selecting the 

proper study area. Criteria included data availability and presence of feral swine presumed to 

result primarily from natural influences rather than translocation by human transportation and 

release. Given these criteria, the Coastal Plain Province of Georgia was selected as the study area, 

as shown in Figure 2. The Coastal Plain Province is one of four distinct physiographic regions of 

Georgia (the other three regions are the Valley and Ridge, The Blue Ridge and the Piedmont) 
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(Hodler and Schretter 1986; UGA Department of Geology 2011). To the south of the Fall Line, 

which is a boundary of bedrock geology separating the Piedmont Province and the Coastal Plain 

Province, the Coastal Plain Province occupies a territory of approximately 97,000 kilometers and 

takes up more than half of the total land area of Georgia. This region mainly consists of 

alternating layers of sand, clay, and limestone, with kaolin being the most economically 

significant mineral resource. Terrain elevation within this region ranges from sea level to 182 

meters (Hodler and Schretter 1986; Georgia State Climate Office 1998; UGA Department of 

Geology 2011).  

The Coastal Plain region is rich in water supply. One of the geological features of the 

Coastal Plain region compared to the other three regions of Georgia is the abundance in 

groundwater due to the water-rich Floridian aquifer system lying beneath this region. The 

Floridian aquifer provides approximately 50% of the groundwater for domestic consumption, 

industry and agricultural irrigation in Georgia. Major rivers in this region include the Altamaha, 

Flint, Ocmulgee, Oconee, Ogeechee, and Savannah Rivers (Hodler and Schretter 1986; UGA 

Department of Geology 2011).  

In terms of climate, the Coastal Plain Province is mostly similar to the rest of Georgia 

with higher temperatures and fewer days below freezing. Temperatures are warm throughout this 

region, with the southern portion slightly higher than the northern part. Savannah, one of the 

major cities in this region, only experiences an average of 26 days of low temperatures of 0 

degrees (Celsius) or below per year (Georgia State Climate Office 1998). Another city, 

Brunswick, which is south of Savannah, experiences only no more than 11 days of low 

temperatures of 0 degrees or below per year (Georgia State Climate Office 1998). The average 

precipitation of the Coastal Plain Province is approximately 1,143 millimeters (45 inches). 
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Similar to the temperature pattern, the southern part of the region has slightly more precipitation 

than the northern, with the number of rainy days being relatively constant throughout the entire 

region (121 days on average) (Georgia State Climate Office 1998).  

The longleaf/slash pine forest is the dominant forest type for most of the area in the 

Coastal Plain region. Close to the Fall Line, loblolly/shortleaf pine forest extended from the 

Piedmont Province is dominant over the longleaf/slash pine forest. Oak/gum/cypress forest is 

mostly found dominant over other forest types in areas with abundant water supply such as river 

corridors and swamps. On the coast line, salt marsh is the dominant vegetation type with dense 

stands of salt tolerant herbs, grasses and shrubs. Common tree species in this region include 

white oak (Quercus alba), turkey oak (Quercus laevis), live oak (Quercus virginiana), loblolly 

pine (Pinus taeda), longleaf pine (Pinus palustris), shortleaf pine (Pinus echinata), slash pine 

(Pinus elliottii), bald cypress (Taxodium distichum), southern magnolia (Magnolia grandiflora) 

and dwarf palmetto (Sabal minor) (Hodler and Schretter 1986). 
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Figure 1: National Feral Swine Mapping System (NFSMS) opening page showing the current feral swine distribution in the United 

States (http://128.192.20.53/nfsms/). Blue areas indicate feral swine distribution. 
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Figure 2: The study area, depicted as a mosaic of Landsat Thematic Mapper (TM) images from 1999 to 2000.
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CHAPTER 2 

LITERATURE REVIEW 

The study presented here can be considered an application of landscape ecology 

theories utilizing several geospatial methods including geographic information systems, remote 

sensing, habitat modeling and logistic regression analysis. This chapter serves to introduce and 

illustrate these theories and methods. 

Geographic Information System  

A geographic information system (GIS) is a computer-based set of tools for capturing 

(collecting), storing, retrieving at will, transforming and displaying spatial data from the real 

world for a particular set of purposes (Burrough and McDonnell 1998). Composed of hardware, 

software and geospatial data, GIS is used to manipulate and operate on standard geographical 

primitives, such as points, lines and areas, and/or continuously varying surfaces known as grids 

or raster images (Bailey and Gatrell 1996; Burrough and McDonnell 1998).  

The ability to process, catalog, map and analyze spatial data is the unique property of 

GIS which makes it different from other software programs (Wing and Bettinger 2008). Before 

the establishment of the first true operational GIS, spatial data were manipulated for quite a long 

time in hardcopy map format. Overlay analysis, which is an essential data analysis method of 

GIS, has been employed through manual techniques for over 200 years by printing maps at the 

same scale and physically overlaying them on a backlit surface (Bernhardsen 2002; Wing and 

Bettinger 2008). Examples of early development of GIS technology include cartographer 

Louis-Alexandre Berthier using overlaid maps to analyze troop movements during the American 
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Revolution, creation of early mapping programs in the United States such as IMGRID, CAM and 

SYMAP, and the establishment of the world’s first GIS database called “World Data Bank” by 

the US Central Intelligence Agency (CIA) (Clarke 2000; Ghilani and Wolf 2002; Wing and 

Bettinger 2008). 

In the 1960s, the first true operational GIS, Canada Geographic Information System 

(CGIS), was created by the Canadian government under the guidance of Roger Tomlinson in 

order to quantify existing and potential land uses in Canada (Bernhardsen 2002; Wing and 

Bettinger 2008). Other than this, the development of the Land Use and Natural Resource 

Inventory System (LUNR) in 1967 and the Minnesota Land Management System (MLMIS) in 

1969 also are considered as the landmark events during the history of GIS development 

(Foresman 1998; Wing and Bettinger 2008).  

With the ever-growing spatial awareness that has accompanied advances in computer 

technology and increased availability of geospatial data, the huge potential of GIS has been 

realized and utilized by people from various fields, such as health care managers, transportation 

authorities, forestry companies, national park authorities, etc. (Longley, Goodchild et al. 2005). 

Since GIS is a collection of a massive amount of techniques and software, operation of GIS 

requires a comprehensive understanding of a wide range of skills and knowledge, such as 

statistics, photogrammetry, remote sensing, programming, database design, etc. Among all the 

applications of GIS, manipulation of spatial data so that information hidden in the data layers can 

be revealed and analyzed is one of the most important one. 

In this particular project, the role which GIS played was multifold. First, all the 

datasets that were obtained were manipulated and processed using ArcGIS (ESRI 2009) which is 

a prevalent GIS software. The purpose for this step was to make sure: 1) the information within 
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each dataset could be readily extracted in the later step, and 2) all the data layers were 

compatible with each other in terms of projection. Then, all the layers were displayed and 

overlaid with the same geographic framework or GIS geodatabase. Finally, values from the 

various data layers spatially coincident with the specified locations of randomly selected points 

were extracted using a series of GIS spatial analysis methods. These data were the basis on 

which the statistical analysis could be carried out later. 

Remote Sensing 

Remote sensing is the “science and art of obtaining information about an object, area, 

or phenomenon through the analysis of data acquired by a device that is not in contact with the 

object, area, or phenomenon under investigation” (Lillesand, Kiefer et al. 2007). It is a powerful 

technology and has been widely used for acquisition of information (in the form of 

electromagnetic energy) of objects or areas on the Earth and other planetary surfaces. Different 

portions of the electromagnetic spectrum can be detected and utilized by various types of sensors, 

such as visible, infrared (IR) and microwave, each possessing unique properties. For example, 

the sensors that can detect the visible portion of the spectrum can create images that are 

convenient for manual image interpretation in that they are similar to views seen by the human 

eyes. The IR sensors are sensitive to infrared radiation, which is extremely helpful in vegetation 

monitoring because healthy green vegetation reflects strongly in the near IR spectrum. The 

microwave portion of the electromagnetic spectrum is used by the radio detection and ranging 

(radar) sensors. Due to the capability that microwave can penetrate the atmosphere under 

virtually all conditions, radar sensors can function well even when the ground objects of interest 

are covered by clouds (Lillesand, Kiefer et al. 2007). 
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Satellite remote sensing systems, or space remote sensing systems, refer to those 

systems that are mounted on satellite platforms. Although it can be dated back to 1940s, when 

small cameras were brought aboard by a series of rockets and satellites launched at that time, it 

was not until the creation of the Landsat (NASA, NOAA) program in 1967 that satellite remote 

sensing has shown the full potential of remote sensing in terms of data acquisition (Goward and 

Williams 1997). Originally named Earth Resources Technology Satellite 1 (ERTS-1), the first 

Landsat satellite was launched on July 23, 1972. Since then, seven Landsat satellites have been 

sent into space. Despite the failure of Landsat-6 to launch and the fact that the current Landsat-5 

and Landsat-7 are old and suffering from failures to some degree, together they have provided a 

huge amount of extremely valuable data for the Earth surface. The images produced by Landsat 

satellites have been used in a wide variety of fields such as agricultural management, climate 

research, civil engineering, environmental monitoring, natural resource management, public 

safety, homeland security, land use planning, etc. (Behrens 2010). Table 1 shows the technical 

details of all the Landsat projects, and Table 2 shows the specifications of the sensors on board 

the Landsat satellites (Global Land Cover Facility 2010; U.S. Geological Survey 2010; NASA 

2011). In addition to the Landsat program, some other major satellite remote sensing programs 

include MODIS (Moderate-Resolution Imaging Spectroradiometer, NASA), ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer, NASA & ERSDAC), SPOT (Satellite 

Pour l'Observation de la Terre, Spot Image, France), China-Brazil Earth Resources Satellite 

(CBERS), etc.  
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Table 1: Technical details of the Landsat projects (Global Land Cover Facility 2010; U.S. Geological Survey 2010; NASA 2011). 

Project Launch 
Date Sensors* Altitude Inclination Period of Revolution Repeat 

Coverage Status 

Landsat 1 July 23, 
1972 

RBV, 
MSS 

nominally 
900 km 99.2° 103 minutes; ~14 

orbits/day 18 days 

expired on January 6, 1978 

Landsat 2 January 22, 
1975 expired on February 5, 1982 

Landsat 3 March 5, 
1978 expired on March 31, 1983 

Landsat 4 July 16, 
1982 TM, 

MSS 

705 km 98.2° 99 minutes; ~14.5 
orbits/day 16 days 

decommissioned on June 15, 2001 

Landsat 5 March 1, 
1984 

TM still operational, MSS instrument 
decommissioned 

Landsat 6 October 5, 
1993 ETM lost at launch 

Landsat 7 April 15, 
1999 ETM+ operational despite Scan Line Corrector 

(SLC) failure on May 31, 2003 
 
Table 2: Technical specifications of the sensors on board the Landsat satellites (Global Land Cover Facility 2010; U.S. Geological Survey 2010; NASA 
2011). 

Sensor Spatial Resolution Spectral Range Number of Bands Image Size 

RBV 80 m, 40 m (Landsat 3 only) 0.5-0.75 µm 3 185 x 185 km 

MSS 57 x 79 m 0.5 - 1.1 µm 4, 5 (Landsat 3 only) 185 x 185 km 

TM 30 m (120 m thermal) 0.45 - 12.5 µm 7 185 x 172 km 

ETM 30 m (120 m thermal, 15 m pan) 0.45 - 12.5 µm 8 184 x 185.2 km 

ETM+ 30 m (120 m thermal, 15 m pan) 0.45 - 12.5 µm 8 183 x 170 km 

* RBV: Return Beam Vidicon System, MSS: Multispectral Scanner System, TM: Thematic Mapper, ETM: Enhanced Thematic Mapper, ETM+: 

Enhanced Thematic Mapper Plus  

http://landsat.gsfc.nasa.gov/about/landsat6.html#lost
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With the development of satellite remote sensing, its ever-increasing capability has led 

to the fact that satellite remote sensing has been organically embedded into various 

environmental studies and it is a quite unlikely scenario that a study dealing with the 

environmental problems does not utilize any product of remote sensing as data input at all. 

Various applications of remote sensing have been proposed by a vast amount of researchers. For 

instance, Fuller, Groom et al. (1994) created the Land Cover Map of Great Britain based on the 

Landsat Thematic Mapper (TM) data using supervised maximum-likelihood classification 

method. The map consisted of 25 land cover types, including 18 types of semi-natural vegetation. 

Zhang, Friedl et al. (2003) proposed a method using MODIS data to monitor vegetation 

phenology for the New England region, United States. Based on the vegetation index (VI) 

portion of MODIS data, the transition dates of vegetation activity can be determined without the 

processes such as pre-smoothing and manual threshold identification, and the results achieved 

was satisfactory.  

Other than the fact that a growing number of remote sensing datasets are available, 

another phenomenon, which is employing multiple datasets from various sources, becomes quite 

prevalent nowadays. A couple of reasons lead to this phenomenon, such as the data availability 

issue. For a certain study area, it might be difficult to obtain a certain kind of remote sensing 

dataset with adequate quantity and quality, under such scenario, it might be more practical to use 

the remote sensing images from other data sources as complementary inputs. Oliveira, Kampel et 

al. (2008), for example, examined the geomorphologic evolution of the coastal region of the 

Restinga of Marambaia, Brazil between 1975 and 2004. Multiple remote sensing images were 

employed as data inputs ranging from Landsat MSS, Landsat TM, Land ETM+ to CBERS-2 

images, due to the fact that there was no single dataset can satisfactorily cover the study area 
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during the period of interest. Another scenario when integration of remote sensing images from 

multiple sources is favorable is due to the fact that different datasets have their own limitation 

and strengths, thus by employing datasets of different kinds, the information which can be 

extracted from the images can be maximized. A striking example would be the application of an 

image fusion method called pan-sharpening. Pan-sharpening is a technique to merge 

multispectral images (high spectral resolution, low spatial resolution) with panchromatic images 

(high spatial resolution, low spectral resolution) to obtain images with both high spatial 

resolution and spectral resolution, and it is one of the commonly used techniques in image 

interpretation (Thomas, Ranchin et al. 2008; Guo, Chen et al. 2010).  

Remote sensing technology plays a pivotal role in this project in that it provided 

datasets on which the final statistical analyses could be based. All the datasets that were used in 

this study were products of a diversity of remote sensing projects. For instance, the Normalized 

Difference Vegetation Index (NDVI) is a secondary product derived from the Landsat TM, 

ETM+ and MODIS images. And the Land Cover datasets were also developed based on the 

Landsat TM and ETM+ images through image interpretation and classification.  

Landscape Ecology, Scale, and Habitat Modeling 

Landscapes are areas that are heterogeneous in at least one factor of interest, and they 

are comprised of sets of ecosystems that are interacting with each other and repeated in a similar 

fashion in space (Forman and Godron 1986; Forman 1995; Turner, Gardner et al. 2001; 

Bissonette and Storch 2003; Burel and Baudry 2003). Due to its nature of heterogeneity, various 

patterns emerge within a single landscape or through the interaction between multiple landscapes. 

Landscape ecology emerged to study these patterns, and it is an individual interdisciplinary field 

focusing on studying landscape structure, function, and change (Liu and Taylor 2002; Burel and 
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Baudry 2003). As a term, landscape ecology was first introduced by German biogeographer Carl 

Troll in 1939, and it was derived from the traditional concepts of regional geography and 

vegetation in Europe and greatly influenced by impetus such as the invention of aerial 

photography (Turner, Gardner et al. 2001). Turner, Gardner et al. (2001) summarized two 

features of landscape ecology that make it unique from other ecology subdisciplines: 1) 

landscape ecology explicitly addresses the importance of spatial configuration for ecological 

processes; and 2) landscape ecology often focuses on spatial extents that are much larger than 

those traditionally studied in ecology. Since its recognition as a subdiscipline of ecology, a set of 

issues as well as topics were proposed to be considered and dealt with in landscape ecology. 

Table 3 shows six key issues within the domain of landscape ecology and ten key research areas 

to deal with these issues, identified by Wu and Hobbs (2002). 

Almost all literature reviews concerning landscape ecology consider scaling as one of 

the key topics in this field, and it is such an fundamental concept that it is a basic concern for just 

about every landscape ecological study and still a question needs to be addressed (Turner, 

Gardner et al. 2001; Wu and Hobbs 2002; Bissonette and Storch 2003; Burel and Baudry 2003; 

Wu and Hobbs 2007). There is spatial pattern in the landscape at all practical scales (Bissonette 

and Storch 2003). A phenomenon that is significant at a particular scale may be inconsiderable at 

another scale, and thus totally different interpretations will be yielded. The importance of scale 

theory for ecological study can be understood in two aspects. Firstly, the data used for landscape 

ecology study is inextricably related to spatial resolutions, i.e. scale. For example, most Landsat 

Thematic Mapper (TM) images, a satellite imagery product commonly used for a variety of 

ecological studies, have 30 meter spatial resolution, and the resolution of airborne light detecting 

and ranging (LiDAR) data can be as small as one millimeter (Wadsworth and Treweek 1999;  
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Table 3: Key issues and key research areas of landscape ecology (Wu and Hobbs 2002). 

Key Issues 

Interdisciplinarity or transdisciplinarity 

Integration between basic research and applications 

Conceptual and theoretical development 

Education and training 

International scholarly communication and collaborations 

Outreach and communication with the public and decision makers 

Key Research Areas 

Ecological flows in landscape mosaics 

Causes, processes, and consequences of land use and land cover change 

Nonlinear dynamics and landscape complexity 

Scaling 

Methodological development 

Relating landscape metrics to ecological processes 

Integrating human and their activities into landscape ecology 

Optimization of landscape pattern 

Landscape conversation and sustainability 

Data acquisition and accuracy assessment 

 

Bissonette and Storch 2003). This nature of spatial data often triggers the Modifiable Areal Unit 

Problem (MAUP), which results from the improper use of arbitrary areal units when data used 

are area-based or raster-based (Bailey and Gatrell 1995; Wu and Hobbs 2007). Secondly, a 

landscape phenomenon typically occurs only at a certain spatial scale; interpretation at an 

improper scale may produce inaccurate inference about the reality. One proper example would 
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be the existence of habitat fragmentation. At a fine scale and small extent, this phenomenon may 

not be detectable (e.g. within one homogeneous patch), however, it may be quite severe at 

broader scales. The ecological fallacy, which is a problem occurring when unwarranted 

inferences about a lower level are made based on knowledge from an upper level, is a typical 

consequence of improper selection of scales (Wu and Hobbs 2007).  

Scale is not just a topic of geography and landscape ecology, but also a typical issue to 

address in geography and landscape ecology study. It took researchers a long time to realize that 

there is no single scale that is appropriate for the study of all ecological problems (Turner, 

Gardner et al. 2001). Owing to the fact that scale is usually closely related to the landscape 

pattern that emerges, which is the key subject of landscape ecology studies, finding the proper 

scale at which problems should be addressed specifically becomes crucial in order to yield robust 

results. However, this is often difficult to achieve in practice, as numerous factors need to be 

taken into account, for instance, the arrangement of communities in space and how they interact 

with heterogeneous patterns of resources on the landscape (Turner, Gardner et al. 2001). Despite 

this, efforts have been made to further understand the scale issue and search for the “right” scale.  

Mitchell et al. (2001) used three different scales to model the distribution of several 

bird species in a managed forest in South Carolina. The three scales are microhabitat scale, 

landscape scale and a scale that combined these two. Their study suggested that no single scale 

was appropriate for all the bird species, and in general, the third combined scale was found more 

likely to produce better fits. A study conducted by O'Neill et al. (1996) examined the sensitivity 

of the landscape indices (e.g. dominance, contagion, etc.) to the resolution (or grain) of the 

remote sensing data and calculation scale (the area unit over which the indices are calculated) 

based on statistical analysis. Through this study, they recommended that the resolution of the 
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data used should be 2 to 5 times smaller than the smallest feature in the area of interest; 

meanwhile, the calculation scale should be 2 to 5 times larger than the largest feature in the area 

of interest. In addition, they also suggested that the commonly used landscape indices were not 

sensitive to fine scale landscape patterns and thus were limited in detecting and capturing the 

changes of interest at fine scales. Recently Thornton, Branch et al. (2011) examined a total of 

122 studies on the response (in terms of distribution, abundance and density) of a wide range of 

species to the influence of various variables (i.e. taxonomic, life history, and methodological 

variables) at multiple scales. The variables were divided into three categories: landscape scale, 

patch scale and within-patch scale based on the arbitrary criteria determined by the authors. 

According to their review, different species differed in their sensitivity to the influence of 

variables at different scales. For example, mammals were more sensitive to landscape scale 

variables than the variables of the other two scales. This difference of sensitivity, as they pointed 

out, could play an important role in environment conservation.  

The interdisciplinary nature of landscape ecology enables it to incorporate a vast 

amount of methods from the other disciplines. These methods, including approaches and tools 

for data collection and analysis, have significantly improved the capability of landscape ecology 

to deal with various empirical ecological issues (Liu and Taylor 2002). Nowadays, GIS and 

remote sensing have become extremely valuable for landscape ecology, with GIS being a tool for 

storing, analyzing and manipulating data and remote sensing being a major data provider. 

Among all the applications of landscape ecology, habitat modeling is no doubt one 

which carries huge scientific significance. Habitat, according to Morrison et al. (1998), is “an 

area with the combination of resources (e.g., food, cover, water) and environmental conditions 

(e.g., temperatures, precipitation, presence or absence of predators and competitors) that 
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promotes occupancy by individuals of a given species (or population) and allows those 

individuals to survive and to reproduce.” Residing in and nourished by natural elements, species 

are strongly subject to the influences of the environment. Because natural landscape systems are 

extremely complicated, usually different aspects are dynamic and stationary at the same time, the 

interaction between species and the environment they inhabit is therefore complex and results in 

diverse distribution patterns. The purpose of habitat modeling is to capture and quantify the 

relationship between species and the environmental elements that they rely on through 

mathematical and statistical methods. This species-environment relationship can further be used 

for multiple research and management purposes including predicting the occurrence of species, 

which is a primary goal for conservation biologists, identifying the most influential predictor of a 

certain species, or producing habitat quality or suitability maps for certain species (Guisan and 

Zimmermann 2000; Zaniewski, Lehmann et al. 2002; Bissonette and Storch 2003).  

Maggini et al. (2002) modeled the distribution of  narrow-headed ant (Formica 

exsecta) living within a Swiss National Park based on the environmental factors including slope, 

vegetation, solar radiation, etc. Their results showed that with only the spatially explicit variables 

included, the model accounted for nearly 53% of the null deviance, or adjusted D2, which is 

equivalent to the residual sum of squares in multiple linear regression (Weisberg 2005). After 

adding the non-spatially explicit variables, the model could account for up to nearly 74% of 

deviance. A study conducted by Ambrosini, Bolzern et al. (2002) investigated the relationship 

between the distribution and abundance of barn swallows (Hirundo rustica) in north-western 

Europe using logistic regression. The results suggested that livestock farming affected the 

distribution and abundance of barn swallows. Specifically, there was a positive relationship 

between the number of farms with livestock and the distribution and abundance of barn swallows: 
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breeding of barn swallows was found in more than 90% in all the farms with livestock, while 

only 43.9% of the farms without livestock were occupied by barn swallows. Zaniewski et al. 

(2002) attempted to predict the distribution of 43 native fern species of New Zealand using both 

generalized additive models (GAM) and ecological niche factor analysis (ENFA) models. 

Different results were yielded, which according to Zaniewski et al. was attributed to the fact that 

ENFA predicts habitat suitability while GAM produces probability of presence. Among all the 

methods to model species distribution, each has its own applicable requirements and limitations. 

For this particular project, logistic regression was chosen rather than the other methods was 

primarily due to the fact that the feral swine distribution data that were acquired was 

presence/absence data, which can be readily dealt with by logistic regression. 

Logistic Regression 

Species distribution data are often binomial, i.e., only occurrence or presence/absence 

of the species is known. Due to this characteristic, logistic regression, which is a transformed 

case of generalized linear model (GLM) with a logistic link function (Augustin, Mugglestone et 

al. 1996; Ryan 1997), is considered to be a preferred method to study the distribution data of 

species. Among various modeling methods, it is logistic regression that allows binomial inputs 

which do not have a normal distribution (Wrigley 1985; Hosmer and Lemeshow 2000). And it is 

for this reason that logistic regression has been extensively used to model the distribution of 

species by relating their distribution with the environmental factors. Gibson et al (2004a) utilized 

logistic regression to predict the habitat of rufous bristlebird (Dasyornis broadbenti) by using a 

series of environmental variables including elevation, distance to creek, distance to coast and sun 

index, and their results suggested rufous bristlebird prefer habitats with low altitude, close 

distance to the coastal fringe and drainage lines and less direct sunlight. They also conducted 
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another study to predict the presence of swamp antechinus (Antechinus minimus maritimus) in 

southwestern Victoria, Australia using logistic regression (Gibson, Wilson et al. 2004b). Their 

results suggested a negative correlation between the swamp antechinus habitat and altitude and 

vertical vegetation structure complexity. Based on this relationship, the final predictive 

performance of the selected model was higher than 90%. Lopez-Lopez et al. (2006) performed 

logistic regression to model the habitat preference of Bonelli’s eagle (Hieraaetus fasciatus) in 

Castellon province, east of the Iberian Peninsula at four scales. Based on automatic stepwise 

selection, four models were established at different scale. At the 1×1 km2 scale, only topographic 

variables were included in the final model. At the 3×3 km2 scale, the model included climate and 

disturbance variables. At both 5×5 km2 and 9×9 km2 scales, topographic, climate, disturbance and 

land use variables were included. Based on the study, they suggested that Bonelli’s eagle 

preferred scrublands, agricultural areas and disperse forests.  

Spatial Autocorrelation 

Closely tied to the “Tobler’s First Law of Geography”, i.e. closer features in space tend 

to share more similarities than those farther apart (Tobler 1970; Wong and Lee 2005), spatial 

autocorrelation is defined as “the correlation among values of a single variable strictly 

attributable to the proximity of those values in geographic space, introducing a deviation from 

the independent observations assumption of classical statistics” (Griffith 2003). With an 

increasing awareness of spatial autocorrelation in the past decades, the drawback of the ordinary 

logistic regression method in modeling species distribution is revealed. In other words, the 

assumption on which ordinary logistic regression is based, that each individual observation is 

statistically independent of each other (Legendre 1993; Keitt, Bjornstad et al. 2002; De Frutos, 

Olea et al. 2007) is violated by the fact that both environmental factors and species distribution 
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are often spatially autocorrelated (Keitt, Bjornstad et al. 2002; Knapp, Matthews et al. 2003). 

This causes the importance of environmental variables to be overestimated (De Frutos, Olea et al. 

2007). It is for this reason that an increasing number of studies have employed autologistic 

regression modeling instead of using ordinary logistic regression modeling only, as it is believed 

that autologistic regression can identify and remove weak predictors from the ordinary logistic 

regression model and yield better fits (Boyce and McDonald 1999; Jiang, Ma et al. 2009). 

Augustin, Mugglestone et al. (1996), for example, compared the autologistic regression 

model with the ordinary logistic model by using red deer census data of the East and West 

Grampians, UK. The comparison suggested that autologistic regression models had better 

predictive capacity in that they had lower mean number of misclassified patches of each type and 

they were especially accurate in predicting absence. Based on these results, Augustin and 

Mugglestone et al. came to the conclusion that the autologistic regression model was superior for 

estimating the spatial distribution of the deer and should be used when mapping the spatial 

distribution of a species. Jiang, Ma et al. (2009) tried both logistic regression and autologistic 

regression to model moose resource selection in a study area in northeastern China at two 

different scales, patch scale and landscape scale. The results suggested that autologistic 

regression had improved overall true skill statistic (TSS), which is a measure of performance of the 

species distribution models recommended by Allouche et al. (2006), lower Akaike Information 

Criterion (AIC) and maximum data variability accounted for.  

While research conducted to compare the performance of autologistic regression 

models and the ordinary logistic regression models support the conclusion that the former have a 

generally better performance than the later in terms of species distribution modeling when spatial 

autocorrelation does exist, there are also some researchers indicating that this is not the case all 
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the time. For example, a comparison between autologistic regression model and ordinary logistic 

regression model was described by Betts, Diamond et al. (2006). In their study, the 

presence/absence data of a series of bird species were modeled using both methods and no 

significant difference in model outputs with or without taking into account spatial autocorrelation 

was observed. 

Given the fact that there has been no definitive conclusion in terms of which of the two 

logistic regression modeling methods, ordinary logistic regression and autologistic regression, is 

superior in modeling species-environment relationship, this study will perform both of these 

modeling methods using existing GIS and remote sensing geospatial data. In this way, the 

optimal method for assessing the relationship between feral swine distribution in the Coastal 

Plain Region of Georgia and the environmental factors will be determined. 
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CHAPTER 3 

DATASETS 

The presence/absence data of feral swine used as the dependent variable in this study 

were based on the 2004 distribution map of feral swine in Georgia. Although at the time of this 

study three distribution maps of feral swine in Georgia of different dates were available, the 2004 

dataset was selected because all the variables used in the modeling should be close in time so 

that the output models are legitimate. Most available corresponding datasets which were used as 

explanatory environmental and cultural variables in this research documented conditions around 

2004. This presence/absence of feral swine dataset was compiled by the USDA Southeastern 

Cooperative Wildlife Disease Study (SCWDS), College of Veterinary Medicine, University of 

Georgia with cooperation by the Center for Remote Sensing and Mapping Science (CRMS), 

Department of Geography, University of Georgia to create a digital ArcGIS geodatabase. Feral 

swine distribution data were independently collected for each state by state and federal nature 

resource agencies. Now, updated on a monthly basis via the web-based National Feral Swine 

Mapping System (NFSMS), this dataset is the only natural dataset of feral swine distribution at 

the national level (Madden, Zhao et al. 2009). Figure 3 shows the feral swine distribution in the 

study area.  

Due to the purpose of this study, which is to find the relationship between feral swine 

distribution and environmental factors, several important environmental and cultural factors were 

derived as the independent variables using datasets from various sources. These datasets were 

selected based on: 1) data availability; and 2) possible association of feral swine distribution to 
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the resulting variables. According to these two criteria, a total of eight datasets were used for this 

study. All of them were clipped to the outline of the study area. 

1) Land Cover of Georgia in 2005 

The land cover referred to in this study is a collective concept including both land 

cover and land use. Land cover refers to the feature type existing on the Earth surface, and land 

use relates to the human activity associated with a specific piece of land (Lillesand, Kiefer et al. 

2007). Being the most prominent characteristic of the Earth surface, land cover greatly 

influences various processes and activities occurring on Earth, including most ecological 

processes (Li 2008). With the advent of the Landsat remote sensing satellite program, and the 

invention of a standardized land cover/land use classification system (i.e. Anderson 

Classification System), it became possible to create consistent and comprehensive datasets such 

as the National Land Cover Dataset (NLCD). The land cover datasets have become one of the 

most commonly used datasets that have been used in ecological studies (Anderson, Hardy et al. 

1976; Li 2008).  

The 2005 land cover of Georgia dataset (Figure 4) was used in this study and it was 

created as one of the products of the Georgia Land Use Trends Project (GLUT) which is 

conducted and managed by the Natural Resources Spatial Analysis Laboratory (NARSAL, 

http://narsal.ecology.uga.edu/), College of Agricultural and Environmental Sciences, University 

of Georgia and the Georgia Cooperative Fish and Wildlife Research Unit at the Warnell School 

of Forest Resources, University of Georgia (Natural Resources Spatial Analysis Lab 2011). This 

land cover dataset has a spatial resolution of 30 meters, and was derived from either Landsat TM 

or Landsat ETM+ (National Aeronautics and Space Administration, NASA) images. The original 

land cover dataset has 13 classes, as shown in Table 4, and was downloaded from the Georgia 
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GIS Clearinghouse (http://data.georgiaspatial.org/) (Natural Resources Spatial Analysis Lab 

2011). 

2) Digital Elevation Model 

The Digital Elevation Model (DEM) dataset used in this study was produced by the 

U.S. Geological Survey (USGS) as part of the National Elevation Dataset (NED) (Gesch 2002; 

Gesch 2007) with 30-meter spatial resolution (Figure 5). The NED is a seamless dataset 

integrating the best available DEM obtained from multiple sources across the United States and 

is updated bimonthly (USGS Seamless Data Warehouse 2010). The DEM used in this project 

was downloaded from the USGS Seamless Data Warehouse (http://seamless.usgs.gov). While 

there are other DEM datasets with higher spatial resolution, such as the DEMs with 10-meter or 

3-meter resolution, this 30-meter DEM is appropriate for this study because the minimum 

distance between the sample points which provided observation values in the later modeling 

stage is considerably larger than 30 meters, and therefore higher resolution is not necessary in 

this case. 

3) Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index (NDVI), developed by Rouse, Haas et al. 

(1974), is an index commonly used for assessing the growing condition of green vegetation. It is 

an important environmental factor that might be correlated with the feral swine habitat because 

vegetation is the most important part of the living environment of feral swine providing both 

food and shelter. The NDVI can be derived from optimal satellite image data such as Landsat 

http://data.georgiaspatial.org/
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Table 4: Classification system of the 2005 Georgia Land Cover Dataset. 

Code Land Cover Type Description 

7 Beach/Dune/Mud Open sand, sandbars, sand dunes, mud - natural environmentals as well as exposed sand from 
dredging and other activities. 

11 Open Water Lakes, rivers, ponds, ocean, industrial water, aquaculture which contained water at the time 
of image acquisition. 

22 Low Intensity Urban Single family dwellings, recreation, cemeteries, playing fields, campus-like institutions, 
parks, schools. 

24 High Intensity Urban Multi-family dwellings, commercial/industrial, prisons, speedways, junkyards, confined 
animal operations. Transportation, roads, railroads, airports and runways. Utility swaths. 

31 Clearcut/Sparse Recent clearcuts, sparse vegetation, and other early successional areas. 

34 Quarries/Strip Mines/Rock 
Outcrop 

Exposed rock and soil from industrial uses, gravel pits, landfills. Rock outcrops, mountain 
tops, barren land. 

41 Deciduous Forest Forest composed of at least 75% deciduous trees in the canopy, deciduous woodland. 

42 Evergreen Forest Evergreen forest, at least 75% evergreen trees, managed pine plantations, evergreen 
woodland. 

43 Mixed Forest Mixed deciduous/coniferous canopies, mixed woodland, natural vegetation within the fall 
line and coastal plain ecoregions, mixed shrub/scrub vegetation. 

81 Row Crop/Pasture Row crops, orchards, vineyards, groves, horticultural businesses. Pasture, non-tilled grasses. 

91 Forested Wetland Cypress gum, evergreen wetland, deciduous wetland, depressional wetlands, and shrub 
wetlands. 

92 Non-Forested Salt/Brackish 
Wetland Salt marsh, brackish. 

93 Non-Forested Freshwater 
Wetland Freshwater marsh. 
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TM, ETM+ or MODIS (NASA) images by taking the normalized ratio of near-infrared (NIR) 

and red bands using based on (Huete, Didan et al. 2002).  

NIR Red

NIR Red

NDVI ρ ρ
ρ ρ

−
=

+  

where NIRρ and Redρ are the surface bidirectional reflectance from the near-infrared and red bands, 

respectively. Higher NDVI values indicate healthier vegetation (Huete, Didan et al. 2002).  

The NDVI dataset used in this study was downloaded from the Global Land Cover 

Facility (GLCF, http://www.landcover.org/) (Carroll, DiMiceli et al. 2004), and it was developed 

based on band 1 and 2 of the MODIS data acquired by the sensor onboard NASA's Terra satellite 

between July 27, 2004 and August 11, 2004 (Figure 6). The cell size for this dataset is 212 

meters. 

4) Major Streams in Georgia 

Despite the fact that feral swine are capable of living in almost any habitat type, it is 

reported they prefer moist bottomlands and other areas with adequate water (Stevens 1996). 

Therefore sufficient water supply is a primary factor influencing the distribution of feral swine, 

and it is reasonable to take into account the distance to major streams in this study. This dataset 

was derived based on the map of major streams in Georgia (Figure 7), which was compiled by 

the USGS and can be downloaded from National Atlas of the United States 

(http://nationalatlas.gov/).  

5) National Overview Road Metric Euclidean Distance 

In order to obtain sufficient food, feral swine may change their feeding place often 

(Choquenot, McIlroy et al. 1996), and roads may serve as barriers blocking the movement of 

feral swine. In addition, the noise brought by the vehicles on roads may be a negative 

environmental impact that feral swine tend to avoid. Thus, the distance to major roads was taken 
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into account in this project. The National Overview Road Metric Euclidean Distance (NORM 

ED) dataset was used to represent this environmental factor. Developed by USGS as one of the 

products of The Road Indicator Project (TRIP), NORM ED dataset describes the extent and 

configuration of the spaces between roads in the United States (USGS 2010). The metric of 

NORM ED is Euclidean distance to the nearest road, and the NORM ED value at any point 

estimates the largest radius of a circle, centered at that point, that contains no roads (USGS 2010). 

The original dataset was downloaded from the TRIP website (http://rmgsc.cr.usgs.gov/trip/) and 

has 30-meter spatial resolution (Figure 8). 

6) Presence of Oak-gum-cypress Forest 

Feral swine are opportunistic predators (Simmons 2010). Despite their omnivorous 

nature, a variety of studies suggest feral swine distribution is closely related to availability of 

acorns especially in winters, which are produced by oaks (Stevens 1996; Linzey 2008). Although 

Oak-hickory forests are prevalent in the Piedmont area of Georgia, oaks in the Coastal Plain 

Region of Georgia are concentrated in the Oak-gum-cypress forests in the bottomland hardwood 

forests in river floodplains.  

A Presence of Oak-gum-cypress Forest dataset (Figure 9) was developed based on the 

Oak-gum-cypress class in the 2002 Forest Cover Types of Georgia dataset produced by the 

USDA Forest Service and USGS. This dataset has 25 classes and was interpreted from the 

Advanced Very High Resolution Radiometer (AVHRR) and Landsat TM images with 

1000-meter spatial resolution. Field observation data and Digital elevation models were used to 

refine the final product (USDA Forest Service and USGS 2002). It is distributed through the 

National Atlas of the United States (http://nationalatlas.gov/) in GeoTIFF format.  

7) Impervious Surface Cover in 2005 
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Impervious surfaces found in developed landscapes are anthropogenic materials 

including rooftops, driveways, sidewalks and other materials that prevent water from infiltrating 

into the ground (Slonecker, Jennings et al. 2001; Mountrakis and Luo 2010), thus they are good 

indicators of urban areas. Due to various reasons (e.g. disturbance of human activities, loss of 

vegetation, highly fragmented landscape, etc.), feral swine may tend to avoid living too close to 

the urban area. The Impervious Surface Cover of Georgia in 2005 dataset was used in this 

project and it was produced by the Natural Resources Spatial Analysis Laboratory (NARSAL), 

College of Agricultural and Environmental Sciences, University of Georgia and the Georgia 

Cooperative Fish and Wildlife Research Unit at the Warnell School of Forestry and Natural 

Resources, University of Georgia. It represents the percentage of each cell that is made up of 

impervious surface with twenty classes in 5% increments (Natural Resources Spatial Analysis 

Lab 2011). Similar to the 2005 Land Cover of Georgia, the 2005 Impervious Surface Cover of 

Georgia dataset was also one product of GLUT. Figure 10 shows the impervious surface cover 

map of Georgia in 2005.  

8) Canopy Cover in 2005 

A variety of studies report feral swine generally prefer areas with thick vegetation as 

these areas provide protection and sufficient food (Stevens 1996; Lang and Mengak 2007). The 

Canopy Cover of Georgia in 2005 dataset was used and it was produced by NARSAL. These 

data represent the percentage of each 30-meter cell that is made up of tree canopy with twenty 

classes of 5% increments, as shown in Figure 11.  
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Figure 3: Feral swine distribution in the study area in 2004. Red indicates areas where feral swine were distributed. 
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Figure 4: Land cover of the study area in 2005. 
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Figure 5: Digital Elevation Model of the study area.  
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Figure 6: Normalized Difference Vegetation Index (NDVI) dataset of the study area during summer in 2004. 
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Figure 7: Major streams in the study area.  
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Figure 8: National Overview Road Metric Euclidean Distance (NORM ED) dataset of the study area. 
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Figure 9: Presence of Oak-gum-cypress Forest in the study area in 2002. Orange indicates areas where oak-gum-cypress forests were 

distributed. 
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Figure 10: Impervious surface dataset of the study area in 2005. Darker red indicates higher percentage of impervious surface and 

lighter red indicates lower percentage of impervious surface. 
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Figure 11: Canopy Cover dataset of Georgia in 2005. Darker green indicates higher percentage of canopy cover and lighter red 

indicates lower percentage of canopy cover. 
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CHAPTER 4 

METHODOLOGY 

Variable Manipulation 

Most of the data downloaded to create a geodatabase for modeling factors spatially 

correlated with feral swine distribution were not ready to use directly in the modeling analysis. A 

variable manipulation process was therefore needed. Different methods were employed to refine 

different variables, and a total of nine variables were compiled for this project in Universal 

Transverse Mercator (UTM) ground coordinate system tied to the North American Datum of 

1983 (NAD 1983).  

1)  Land Use and Land Cover (LULC) 

In order to facilitate the modeling process, the original 13-class LULC dataset was 

modified and all classes whose total area was too small (i.e. less than 2% of the area of Georgia) 

were either grouped into an “Other” class or those classes who shared similar characteristics.  

For example, the High Intensity Urban class was merged into the Low Intensity Urban 

and formed a new class called “Urban”, and the Beaches, Dunes and Mud class, along with the 

Quarries, Strip Mines and Rock Outcrops class and two Non-forested Wetland classes, was 

grouped into the “Other” class. The reason for eliminating those classes with small area was that 

they were so small that the number of the sample points that fell into those classes was 

statistically insignificant; in addition, smaller number of classes could facilitate the whole 

modeling process. After class elimination and grouping, there were nine classes in the modified 

classification system.  
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Table 5 shows the modified LULC types and their descriptions. Figure 12 shows the 

modified LULC map of the study area in 2005.  

2) Slope and Elevation 

Since the elevation information is inherently included in DEM, the elevation values 

were extracted directly from the DEM dataset, as shown in Figure 5. Slope was derived from the 

DEM using the Spatial Analyst Tool in ArcGIS and is displayed in Figure 13. 

3) NDVI 

The numerical values of NDVI were extracted from the original NDVI dataset 

described previously.  

4) Distance to Major Streams 

This variable was derived from the Major Streams in Georgia dataset by using 

Euclidean Distance Tool within Spatial Analyst Tools in ArcGIS. The output was a raster image 

and the value of each pixel represents the Euclidean distance from the target pixel to the nearest 

major streams, as shown in Figure 14. 

5) National Overview Road Metric Euclidean Distance 

The numerical values of the National Overview Road Metric Euclidean Distance v 

were extracted directly from the original National Overview Road Metric Euclidean Distance 

dataset.  

6) Distance to Oak-gum-cypress Forest 

This variable was developed based on the Presence of Oak-gum-cypress Forest dataset 

using Euclidean Distance Tool within Spatial Analyst Tools in ArcGIS. The output was a raster 

image and the value of each pixel represents the Euclidean distance from the target pixel to the 

nearest Oak-gum-cypress forest, as shown in Figure 15. 
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Table 5: Modified classification system of the 2005 Georgia LULC Dataset. 

Code LULC Type Description 

1 Open Water Lakes, rivers, ponds, ocean, industrial water, aquaculture which contained water at the time of image 
acquisition. 

2 Urban 
Family dwellings, recreation, cemeteries, playing fields, campus-like institutions, parks, schools, 

commercial/industrial, prisons, speedways, junkyards, confined animal operations. Transportation, roads, 
railroads, airports and runways. Utility swaths. 

3 Clearcut and Sparse Recent clearcuts, sparse vegetation, and other early successional areas. 

4 Deciduous Forest Forest composed of at least 75% deciduous trees in the canopy, deciduous woodland. 

5 Evergreen Forest Evergreen forest, at least 75% evergreen trees, managed pine plantations, evergreen woodland. 

6 Mixed Forest Mixed deciduous/coniferous canopies, mixed woodland, natural vegetation within the fall line and 
coastal plain ecoregions, mixed shrub/scrub vegetation. 

7 Row Crops and Pastures Row crops, orchards, vineyards, groves, horticultural businesses. Pasture, non-tilled grasses. 

8 Forested Wetland Cypress gum, evergreen wetland, deciduous wetland, depressional wetlands, and shrub wetlands. 

9 Others 
Open sand, sandbars, sand dunes, mud - natural environmentals as well as exposed sand from dredging 

and other activities. Exposed rock and soil from industrial uses, gravel pits, landfills. Rock outcrops, 
mountain tops, barren land. Salt marsh, brackish. Freshwater marsh. 
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7) Distance to Impervious Surfaces 

A Distance to Impervious Surfaces variable was developed based on the 2005 

Impervious Surface Cover of Georgia. During the pre-processing, only the classes with more 

than 80% impervious surface percentage were kept in order to emphasize the highly urbanized 

area and to avoid the distraction from the low urbanized areas such as roads. Consequently, a 

raster image representing the Euclidean Distance of each pixel to the nearest urban areas was 

generated using the Spatial Analyst Tool in ArcGIS, as shown in Figure 16. 

8) Canopy Cover 

A Canopy Cover dataset was reclassified based on the 2005 Canopy Cover dataset in 

order to facilitate for modeling process. It contains 11 classes, with 10 classes being grouped 

based on the original 20-classes dataset, and one extra class representing areas with zero canopy 

cover values which was not contained in the original dataset (Figure 17).  

Table 6 shows all variables that were used in this project as well as their abbreviations. 

All the datasets except for LULC and canopy cover can be input into the model directly because 

they are in ordinal and/or ranked numeric data format. Because the LULC and canopy cover 

datasets are nominal (or categorical) data, conversion to a numerical format was required before 

they could be used in logistic regression. This was accomplished by converting these two 

datasets into dummy variables, respectively. Dummy variable conversion is a prevalent approach 

to convert nominal variables to numerical variables, and each dummy variable represents a 

subgroup (Kleinbaum, Klein et al. 2010). Nine dummy variables and eleven dummy variables 

were generated, respectively, to replace the LULC and canopy cover in modeling (Table 7 and 

Table 8). LULC9 and CC11 variables were used as reference dummy variables and, in order to 

avoid the issue of exact collinearity, they were not entered in model building (Weisberg 2005). 
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Finally, all environmental and cultural variables were imported as individual layers and input to 

logistic regression analysis.  

 

Table 6: List of variables and their abbreviations. 

Variable Name Abbreviation Variable Type 

Feral Swine Presence/Absence Pre Dependent 

Land Cover LULC Independent 

Slope SL Independent 

Elevation EL Independent 

Normalized Difference Vegetation Index NDVI Independent 

Distance to Major Streams D2S Independent 

National Overview Road Metric Euclidean Distance NORM Independent 

Distance to Oak-gum-cypress Forest D2O Independent 

Distance to Impervious Surfaces D2I Independent 

Canopy Cover CC Independent 

 

Logistic Regression Models 

Since comparing the performance between the ordinary logistic regression and the 

autologistic regression is one of the objectives of this project, both of these analyses were 

performed. The ordinary logistic regression takes the form: 

1 1 2 2 i i

1 1 2 2 i i

1 1 2 2 i i
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53 

where 1|iP and 2|iP are the probability of presence and absence, respectively, α is the model 

constant, iX are the independent variables and iβ are the model coefficients (Wrigley 1985). 

As discussed in the previous chapter, scale plays an important role in landscape 

ecological modeling. This study took scale into account by establishing the models at multiple 

scales and selecting the optimal model to be the final scale at which the autologistic regression 

model was established. Based on the reported home range of feral swine (i.e., 1 to 49 square 

kilometers) (Stevens 1996; Mapston 2004), four different scales were considered, i.e. 1000 m, 

3000 m, 5000 m and 10000 m.  

The method proposed by Wiser el al. (1998) was adopted as the approach to resample 

and generalize all environmental variables based on four scales. Four grids were created to cover 

the entire study area, each consisting of square cells with cell size being 1000 m, 3000 m, 5000 

m and 10000 m, respectively. All cells that intersected with the boundary of the study area were 

dropped to make sure that each cell is complete. All variable layers were generalized to the four 

cell sizes. For all the nominal data layers including presence/absence of feral swine, LULC and 

canopy cover, the dominant attribute (i.e., majority) within each cell was selected to represent 

that cell. For the rest of the ordinal data layers, the average attribute within each cell was used to 

represent that cell. Therefore, each variable layer was generalized and four layers for each 

variable were created. As an example, Figure 18 shows the distance to impervious surface data 

layer after it was generalized based on cell size of 10000 m. 

Four sets of random points were generated across the study area in ArcGIS, each 

included 1000 points. These points were used as sample points for the purpose of model training. 

Based on the rule proposed by Pereira and Itami (1991) that the appropriate ratio of the number 

of points used in model training to that of points used in validation is two to one, another set of  
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Table 7: List of dummy variables for the LULC variable. 

Code LULC Type LULC1 LULC2 LULC3 LULC4 LULC5 LULC6 LULC7 LULC8 LULC9 
1 Open Water 1 0 0 0 0 0 0 0 0 
2 Urban 0 1 0 0 0 0 0 0 0 
3 Clearcut and Sparse 0 0 1 0 0 0 0 0 0 
4 Deciduous Forest 0 0 0 1 0 0 0 0 0 
5 Evergreen Forest 0 0 0 0 1 0 0 0 0 
6 Mixed Forest 0 0 0 0 0 1 0 0 0 
7 Row Crops and Pastures 0 0 0 0 0 0 1 0 0 
8 Forested Wetland 0 0 0 0 0 0 0 1 0 
9 Others 0 0 0 0 0 0 0 0 0 

 

Table 8: List of dummy variables for the Canopy Cover variable. 

Code Canopy Cover CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 C11 
0 0 1 0 0 0 0 0 0 0 0 0 0 
1 1% - 10% 0 1 0 0 0 0 0 0 0 0 0 
2 11% - 20% 0 0 1 0 0 0 0 0 0 0 0 
3 21% - 30% 0 0 0 1 0 0 0 0 0 0 0 
4 31% - 40% 0 0 0 0 1 0 0 0 0 0 0 
5 41% - 50% 0 0 0 0 0 1 0 0 0 0 0 
6 51% - 60% 0 0 0 0 0 0 1 0 0 0 0 
7 61% - 70% 0 0 0 0 0 0 0 1 0 0 0 
8 71% - 80% 0 0 0 0 0 0 0 0 1 0 0 
9 81% - 90% 0 0 0 0 0 0 0 0 0 1 0 
10 91% - 100% 0 0 0 0 0 0 0 0 0 0 0 
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500 random points was also generated across the study area to be used for the model validation. 

All the points were tied to the attributes of the different environmental factors extracted from the 

corresponding data layers in the GIS database. 

Logistic regression relies on the assumption that the independent variables in the 

model are not correlated with each other (Chatterjee and Hadi 2006). If there is correlation 

between the independent variables, the regression results may be rendered ambiguous. This is 

commonly referred to as the problem of collinearity or multicollinearity. There are two types of 

collinearity. One is perfect collinearity, which is the situation when at least one independent 

variable is a perfect linear combination of the other variables. The other one is partial collinearity 

in which the degree of collinearity is less than perfect collinearity. Perfect collinearity is rare in 

practice, but partial collinearity is quite common. If the level of collinearity existing between 

variables is high enough, it becomes problematic and must be eliminated because it will lead to 

problems including large standard errors for regression coefficients, statistically non-significant 

or unreasonably high coefficients (Menard 1995; Chatterjee and Hadi 2006). In this project, 

Spearman’s rank correlation coefficient was used to test the correlation between each pair of 

variables that entered the model. Spearman’s rank-order correlation coefficient is a 

non-parametric measure of correlation between variables recommended by Borcard et al. (2011) 

and Cerezo et al. (2010). It is similar to Pearson’s correlation coefficient, which is another 

correlation coefficient commonly used, in terms of the range of values and ways of interpretation. 

However, unlike Pearson’s correlation which compares the scores of the variables, Spearman’s 

correlation emphasizes on the difference of ranks between each pair of variables. Its expression 

takes the form of: 
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where sr  is the Spearman’s correlation coefficient, id is the difference in rank between pairs of 

scores of the variables, and n is the sample size (Clark and Hosking 1986). Partial linear 

regression analysis was undertaken if the correlation between any pair of variables is larger than 

0.6 (Cerezo, Perelman et al. 2010). Since the nature of Spearman’s correlation coefficient 

dictates that the variables being assessed must be in interval or ratio scale, the LULC and canopy 

cover variables were not considered in this step.  

Each variable needs to be tested to see if their parameters are statistically significantly 

different from zero. The null hypothesis (H0) is that each individual variable has zero 

significance, while the alternative hypothesis (H1) is that each variable has significance. There 

are two tests that can be used to serve this purpose, i.e. Wald test and likelihood-ratio (LR) test. 

The Wald test evaluates the support for the null hypothesis by assessing the distance between the 

estimated coefficients and hypothesized values, while the LR test essentially compares the 

log-likelihood of the full model which does not suffer any constraints and a model which is 

under restriction of the null hypothesis. The Wald test and LR test are considered asymptotically 

equivalent. They usually yield very similar results and neither of them is uniformly superior 

(Long, Freese et al. 2006). In this project, the Wald test was used to test the significance of 

individual variables. For logistic regression, Wald statistics (Z score) follows a normal 

distribution, and in the statistical software such as Stata it associates with p-values used to judge 

the significance of the coefficient, and chi-squared values with certain degrees of freedom which 

equal the square of the Z scores (Chatterjee and Hadi 2006; Long, Freese et al. 2006). If the 
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p-value for a coefficient is smaller than a predetermined value at a certain significance level, then 

the null hypothesis (which states that coefficient is equal to zero) shall be rejected at that 

significance level.  

The stepwise regression method, which is a way of selecting and eliminating 

independent variables by an automatic and iterative procedure, was used to select variables to 

construct the optimal model among the variables that remained after the first two tests. While 

being criticized for a series of drawbacks including possible inflation of R2, it is still one of the 

most commonly used methods to generating optimal models (Clark and Hosking 1986). 

According to the selecting manner, there are two forms of stepwise regression: forward selection 

and backward elimination (or backward selection). Forward selection starts with a model with a 

constant term only, then adds the variables into the model one-by-one based on whether they are 

statistically significant. On the contrary, backward selection starts the selection process by first 

considering all variables, then eliminates them one-by-one according to their significance. Since 

it has been suggested that backward selection is slightly superior to forward selection in that the 

former carries less risk to ignore a certain variable which is statistically significant only when 

another variable is present (or called “suppressor effect”), backward elimination was 

implemented in this project to determine the optimal models (Menard 1995; Ryan 1997). A 

threshold value of 0.05 was used to assess statistical significance. Although stepwise selection is 

trustworthy in most cases, when a variable was tested by the Wald Test to be statistically 

significant, a further scrutiny was carried out on this particular variable to insure that it was 

legitimate for the automatic selection process to exclude this variable. 

After the optimal model was found, residuals resulting from its prediction were 

examined using Pregibon leverage statistics. This is a common measure to detect the influential 
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observations, which include potential outliers. By employing such a detection analysis, all 

unusual observations that may be problematic can be identified, enabling further scrutiny to 

focus solely on these observations and determine whether they are outliers and should be 

removed (Christensen 1997). The Pregibon leverage statistics for each observation were obtained 

and plotted based on the geographic location of the respective point, and the resulting map was 

manually interpreted to determine whether removing influential observations was necessary, 

based on the spatial patterns that were exhibited. If high influential observations were highly 

clustered, and legitimate explanations could be proposed in accordance to this pattern, all 

observations in that clustered area were removed. The model fitting process was then conducted 

again based on the remaining observations.  

The goodness-of-fit of the models was examined using several methods and measures 

in this project, including receiver operating characteristic (ROC) plots, Akaike Information 

Criterion (AIC), classification accuracy and rate of successful prediction in validation (Wrigley 

1985). 

The ROC plot is rooted in the concept of a confusion matrix. A confusion matrix (or 

error matrix) tabulates the actual presence/absence pattern with the pattern predicted by a certain 

algorithm (or classifier), which in this case is logistic regression. There are essentially four 

elements in a confusion table: 1) true positive (TP) samples correctly identified as present; 2) 

true negative (TN) samples correctly identified as absent; 3) false positive (FP) samples 

incorrectly identified as present; and 4) false negative (FN) samples incorrectly identified as 

absent. Table 9 shows a general confusion matrix. The proportion of all TP samples of all 

samples that are actually positive (TP+FN) is called Sensitivity (true positive rate). Similarly, the 

proportion of all TN samples of all samples that are actually negative (TN+FP) is called 
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Specificity (true negative rate). The ROC plot is in effect a graph of x and y coordinates with the 

y-coordinate being Sensitivity and the x-coordinate being 1-Specificity (false positive rate). Its 

derivative index, the area under the ROC curve (AUC), is usually used as a measure to assess the 

discriminative ability of a classifier. Its value ranges from 0.5 to 1.0, with the score of 0.5 

indicating the model has no discriminative ability and 1.0 suggesting that the model can 

discriminate two different groups perfectly (Fielding and Bell 1997; Hosmer and Lemeshow 

2000; Pearce and Ferrier 2000; Reese, Wilson et al. 2005). A large number of studies employed 

ROC plot method in their ecological study (Guisan and Zimmermann 2000; Osborne, Alonso et 

al. 2001; Gibson, Wilson et al. 2004; Reese, Wilson et al. 2005; Smolik, Dullinger et al. 2010). It 

was chosen in this study in favor of the other counterparts due to the consideration that the ROC 

plot method is superior to the other measures because it is independent of the decision threshold 

and capable of maximizing information provided by the classifier (Fielding and Bell 1997; 

Pearce and Ferrier 2000).  

Classification accuracy was obtained using the post-estimation command after running 

the logistic regression. Similar to the ROC plot, it is based on the confusion matrix produced by 

the classifier, with the difference being that it needs an arbitrary threshold value before 

calculation. The expression of classification accuracy is: 

TP TNCA
TP TN FP FN

+
=

+ + +
 

where CA represents classification accuracy, TP, FP, FN and TN represent true positive, false 

positive, false negative and true negative, respectively (Wrigley 1985; Fielding and Bell 1997). 

The threshold value in this study was 0.5.  
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It is ideal to have an independent dataset to validate the model outcome (Wrigley 1985; 

Hosmer and Lemeshow 2000; Long, Freese et al. 2006). For this purpose, 500 random points 

were generated throughout the study area for validation, and the rate of successful prediction was  

 

Table 9: A general confusion matrix. TP, FP, FN and TN represent true positive, false positive, 

false negative and true negative, respectively. 

 
Actual + Actual - 

Predicted + TP FP 

Predicted - FN TN 

 

derived based on these points. All the validating points went through the same processes as the 

training sample points, except that they were not used to develop the logistic regression model. 

Instead, their attributes were used together with the corresponding coefficients obtained by the 

logistic regression models based on the training data to predict the presence/absence of feral 

swine condition at each point. The result of prediction was then compared with the actual 

presence/absence of feral swine data to yield the rate of successful prediction.  

All the measures of goodness-of-fit described above were calculated using Stata 

(StataCorp 2005) and Microsoft Excel (Microsoft 2007).  

Tests for Spatial Autocorrelation 

Before constructing the autologistic regression models, a series of tests were conducted 

to examine whether there was indeed existing spatial autocorrelation that needed to be eliminated. 

According to the assumptions of logistic regression, the error term should be independently 

distributed. Whether this assumption is violated can be determined by examining the residuals 
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that the model yields. The basic idea behind these tests is if a significant spatial autocorrelated 

pattern is found within the residuals, then efforts must be taken to eliminate this effect to make 

sure the assumption of independency is not violated (Legendre 1993; Chatterjee and Hadi 2006).  

The standardized residuals for each point were calculated in Stata based on the model 

with the best performance after the ordinary logistic regression was performed. Then both Global 

and Local Moran’s I were calculated based on the standardized residuals. Moran’s I is a popular 

measure of spatial autocorrelation originally proposed by Moran (1950) with several modified 

versions. In general, a Moran’s I value ranges from -1, indicating complete negative spatial 

autocorrelation, to 1, indicating complete positive spatial autocorrelation. A Moran’s I value 

equal to 0 means no significant spatial autocorrelated pattern is found, i.e. the distribution of the 

attributes is random (Moran 1950; Anselin 1995; Bailey and Gatrell 1996; Griffith 2003). The Z 

score and p-value associated with Moran’s I indicate the significance of the calculated Moran’s I 

and whether the null hypothesis, which is that the feature attributes are randomly distributed 

throughout the study area, can be rejected (ESRI 2009).  

The Global Moran’s I is a measure of spatial autocorrelation examining the overall 

pattern existing throughout the entire study area, and it is defined by ESRI (2009): 

n n

i, j i j
i 1 j 1

n
20

i
i 1

w (x X)(x X)
nI
S (x X)

= =

=

− −
=

−

∑∑

∑
 

where ix and jx are values for feature i and j, respectively, X  is the mean of the all corresponding 

attributes, i, jw is the spatial weight between observation i and j, n is the total number of features, 

and 
0S is the sum of all the spatial weights shown in: 
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n n

0 i, j
i 1 j 1

S w
= =

=∑∑  

The Z score associated with Global Moran’s I is defined as: 

I E[I]Z
V[I]
−

=   

where  

1E[I]
n 1

= −
−  

and
 

2 2V[I] E[I ] E[I]= −  

The Local Moran’s I, unlike its global counterpart, evaluates the spatial autocorrelated 

pattern at the local level, and it was proposed by Anselin (1995). It is defined as: 

n
i

i i, j i2
j 1, j ii

x XI w (x X)
S = ≠

−
= −∑   

where ix is the value for feature i, X  is the mean of the all corresponding attributes, i, jw  is the 

spatial weight between observation i and j, n is the total number of features, and: 

n

i, j
2j 1, j i2

i

w
S X

n 1
= ≠= −

−

∑
 

The Z score associated with Local Moran’s I is defined as: 

I E[I]Z
V[I]
−

=  

where  
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n

j 1, j iE[I]
n 1
= ≠= −
−

∑
 

and
 

2 2V[I] E[I ] E[I]= −  

Both Global Moran’s I and Local Moran’s I were calculated and plotted in ArcGIS 

9.3.1. 

A correlogram was then generated with twofold purposes: 1) to validate the results of 

the previous spatial correlation measures; and 2) to examine at what spatial lag distance the 

spatial autocorrelated patterns are most significant. A correlogram is a distance-based diagram 

where the estimated spatial autocorrelation at a particular spatial lag is plotted against the lag 

distance (Bailey and Gatrell 1996; Rosenberg and Anderson 2011). There are a variety of forms 

of correlograms (e.g. Moran’s I correlogram, Geary’s C correlogram, etc.). Moran’s I 

correlogram, which evaluates the relationship between Moran’s I value and spatial lag distance, 

was constructed in this project in PASSaGE 2 (Rosenberg and Anderson 2011).   

Autologistic Regression Models 

Autologistic regression takes into account the spatial dependence by adding an 

autocorrelation (or autocovariate) term based on (Wrigley 1985; Augustin, Mugglestone et al. 

1996; Hinely 2006; Santika and Hutchinson 2009): 

1 1 2 2 i i i 1 i 1

1 1 2 2 i i i 1 i 1

1 1 2 2 i i i 1 i 1

X X ... X autocov

1|i X X ... X autocov

2|i X X ... X autocov

eP
1 e

1P
1 e

+ +

+ +

+ +

α+β +β + +β +β

α+β +β + +β +β

α+β +β + +β +β

=
+

=
+  
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where 1|iP and 2|iP are the probability of presence and absence, respectively, α is the model 

constant, iX are the independent variables, iβ are the model coefficients, and  

i

i

k
ij jj 1

i k
ijj 1

w y
autocov

w
=

=

=
∑
∑  

is a weighted average of the number of occupied squares amongst a set of ik neighbors of square i 

where yj is the observed value at site j surrounding i, and wij is the Euclidean distance between site 

i and its neighbor site j.  

Three autocovariate terms were calculated based on three different levels of threshold 

distance in order to find out the optimal autocovariate term which enabled the final model to 

achieve the best performance. All points whose Euclidean distance to the point of interest was 

smaller than the threshold value were considered as neighbors to that particular point at that level. 

Threshold values were selected based on the correlograms generated in the last step. After the 

autocovariate terms were obtained, they were added to the corresponding equation of the 

identified optimal model of the ordinary logistic regression, one at a time. By doing so, three 

autologistic regression models were yielded, each containing an autocovariate term at different 

levels of distance. Finally, these three models were assessed by the same manner as the ordinary 

logistic regression analysis. The autocovariate term was calculated in Excel, and the performance 

of the autologistic regression models were analyzed in Stata.  
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Figure 12: LULC map of the study area in 2005 based on the modified 9-class classification system. 
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Figure 13: Slope of the study area derived from the DEM dataset. 
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Figure 14: Map of distance to major streams. 
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Figure 15: Map of distance to oak-gum-cypress forests. 
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Figure 16: Map of distance to impervious surface. 
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Figure 17: Map of Canopy Cover of the study area. 
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Figure 18: Distance to impervious surface data layer after it was generalized based on cell size of 10000 m. 
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CHAPTER 5 

RESULTS 

Ordinary Logistic Regression Outcomes 

Table 10, 11, 12 and 13 show the Spearman’s correlation coefficients for each pair of 

interval/ratio variables performed to assess correlation between pairs of variables intended for 

input to the regression models. This test was repeated for each of the scales being evaluated for 

optimal modeling (i.e., 1000 m, 3000 m, 5000 m and 10000 m scales). As these tables suggest, 

all the coefficients between each pair of variables at all scales were less than 0.5 other than the 

correlation between elevation and slope. This suggested that elevation or slope should not be 

entered into the model at the same time even if they were later tested to be significantly different 

from zero. 

 

Table 10: Spearman’s correlation coefficient matrix for logistic regression model generated at 

1000 m scale. See Table 6 for full variable names. 

 
sl el ndvi norm d2s d2o d2i 

sl 1.0000 
      

el 0.7256 1.0000 
     

ndvi 0.0084 -0.0468 1.0000 
    

norm -0.0026 -0.0030 0.2317 1.0000 
   

d2s 0.0629 0.1611 -0.0514 -0.0543 1.0000 
  

d2o 0.1894 0.3292 -0.2633 -0.0886 0.0515 1.0000 
 

d2i -0.0601 -0.0381 0.0900 0.1737 -0.0737 -0.1358 1.0000 
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Table 11: Spearman’s correlation coefficient matrix for logistic regression model generated at 

3000 m scale. See Table 6 for full variable names. 

 
sl el ndvi norm d2s d2o d2i 

sl 1.0000 
      

el 0.7495 1.0000 
     

ndvi 0.0339 -0.0295 1.0000 
    

norm 0.0554 -0.0039 0.1685 1.0000 
   

d2s 0.1151 0.2230 -0.0706 -0.1354 1.0000 
  

d2o 0.2935 0.4545 -0.3105 -0.1177 0.0933 1.0000 
 

d2i -0.0481 -0.0891 0.0451 0.2310 -0.1587 -0.1621 1.0000 

 

Table 12: Spearman’s correlation coefficient matrix for logistic regression model generated at 

5000 m scale. See Table 6 for full variable names. 

 
sl el ndvi norm d2s d2o d2i 

sl 1.0000 
      

el 0.7883 1.0000 
     

ndvi 0.0683 -0.0016 1.0000 
    

norm 0.0961 -0.0103 0.2455 1.0000 
   

d2s 0.0818 0.1780 -0.0564 -0.1201 1.0000 
  

d2o 0.2452 0.4463 -0.3492 -0.1991 0.1193 1.0000 
 

d2i -0.0368 -0.0981 0.0571 0.2640 -0.0428 -0.1739 1.0000 

 

The results of the Wald tests, which were used to test whether the variables were 

statistically significantly different from zero, for each single variable are presented in Table 14. 

As shown by the highlighted cells, different numbers of variables were tested to be significantly 

different from zero at the significance level of 0.05 at all four scales. As described previously, 

the stepwise selection was the primary procedure in this project to determine which variables 
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should be included in the optimal models, the results of the Walt tests and the Spearman’s 

correlation tests were used to provide auxiliary information required under certain circumstances, 

such as in the model construction by backward elimination excluding the variables which were 

tested to be significantly different from zero.  

 

Table 13: Spearman’s correlation coefficient matrix for logistic regression model generated at 

10000 m scale. See Table 6 for full variable names. 

 
sl el ndvi norm d2s d2o d2i 

sl 1.0000 
      

el 0.8000 1.0000 
     

ndvi 0.0810 -0.0175 1.0000 
    

norm 0.0283 -0.0722 0.1722 1.0000 
   

d2s 0.1071 0.1979 0.0058 -0.1699 1.0000 
  

d2o 0.3262 0.4769 -0.4102 -0.2470 0.1104 1.0000 
 

d2i -0.0758 -0.0705 0.0890 0.3028 -0.0904 -0.1027 1.0000 

 

Backward elimination was then implemented at each scale respectively, and the results 

are shown in Table 15 comparing with all the variables that were tested by the Wald tests to be 

statistically significant at 0.05 significance level. The highlighted cells represent the variables 

that were tested to be significant while excluded during backward elimination. At the 1000 m 

scale, all variables that were significant were included in the model constructed by backward 

elimination, and the automatic algorithm also included two extra land cover variables (i.e. lulc5 

and lulc7) in the optimal model. Therefore the final model at this scale contained variables 

including ndvi, norm, d2s, d2o, lulc2, lulc4, lulc5, lulc7 and cc1. For the other three scales, there 

were significant variables being excluded by backward elimination. At the 3000 m scale, six 
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variables were selected by backward elimination, with a significant variable lulc6 being excluded. 

Lulc6 was then added in to the model fitting along with the six pre-determined variables, and the 

outcome suggested that while being statistically significant alone, lulc6 was statistically 

insignificant when co-existing with the other variables. Thus lulc6 was confirmed to be excluded 

and the optimal model at this scale was finalized. Similar scrutiny was undertaken for both 5000 

m scale and 10000 m scale, and after this procedure, the final models at these two scales 

contained eight and four variables respectively. 

Table 16 shows the composition of the ordinary logistic regression models at each scale 

as well as the measures of goodness-of-fit associated with them, including Akaike information 

criterion (AIC), the area under the ROC curve (AUC), classification accuracy and prediction 

accuracy. The comparison of AUC of these four models is also displayed in Figure 19. There 

were not significant differences between AIC values of the four models, as the largest difference 

was only 0.268 (between Model O1 and O4). Slight differences were observed for the other three 

measures. In terms of AUC, Model O3 was superior to other three (0.7505), although not 

considerably. The AUC values of Model O1 and O2 were similar, and Model O4 had the worst 

AUC performance, with the value of 0.7119. However, when considering the measures of 

classification accuracy and prediction accuracy, Model O4 outperformed all the other three 

models. It correctly classified 78.40% of the total training points and correctly predicted 78.60% 

of the total validation points. Model O1, O2 and O3 had similar performances insofar as 

classification accuracy and O3 slightly outperformed O1 and O2. In terms of prediction accuracy, 

Model O2 performed the best among O1, O2 and O3. Model O3 and Model 1 ranked third and 

fourth respectively in this regard. Based on the goodness-of-fit of these models, Model O3 and 

Model O4 were considered to be superior to Model O1 and O2, and since the scale on which  



 

76 

Table 14: Results of Wald tests for each variable. Variables that no points were tied to are not included. Highlighted cells represent 

variables that were tested to be statistically significantly different from zero at significance level of 0.05. 

1000 m scale 3000 m scale 5000 m scale 10000 m scale 
Variable Z score p-value Variable Z score p-value Variable Z score p-value Variable Z score p-value 

sl 1.62 0.105 sl 1.14 0.253 sl 0.89 0.375 sl 0.89 0.374 
el -1.79 0.074 el -0.41 0.678 el -0.77 0.442 el -1.06 0.291 

ndvi 2.26 0.024 ndvi 1.76 0.078 ndvi 1.23 0.219 ndvi 1.91 0.056 
norm -2.99 0.003 norm -3.04 0.002 norm -3.95 0.000 norm -2.44 0.015 
d2s -4.73 0.000 d2s -7.10 0.000 d2s -7.07 0.000 d2s -6.12 0.000 
d2o -4.54 0.000 d2o -3.75 0.000 d2o -3.37 0.001 d2o -3.27 0.001 
d2i 0.21 0.833 d2i 0.81 0.418 d2i -1.63 0.104 d2i -0.27 0.783 

lulc1 -0.41 0.680 lulc1 -1.29 0.198 lulc2 -12.22 0.000 lulc2 -10.47 0.000 
lulc2 -2.44 0.015 lulc2 -1.83 0.068 lulc3 -10.50 0.000 lulc4 -9.84 0.000 
lulc3 -1.19 0.235 lulc3 -1.19 0.235 lulc4 -11.99 0.000 lulc5 -10.60 0.000 
lulc4 -2.41 0.016 lulc4 -3.03 0.002 lulc5 -12.31 0.000 lulc7 -10.40 0.000 
lulc5 -1.69 0.091 lulc5 -1.95 0.051 lulc6 -9.14 0.000 lulc8 -9.84 0.000 
lulc7 -1.84 0.066 lulc6 -2.26 0.024 lulc7 -12.60 0.000 cc1 -1.05 0.294 
lulc8 -1.23 0.220 lulc7 -2.25 0.024 lulc8 -10.73 0.000 cc8 -0.39 0.695 
cc1 -2.93 0.003 lulc8 -1.28 0.202 cc1 -2.00 0.046 

   
cc7 -0.29 0.772 cc1 -1.65 0.100 cc8 -1.27 0.206 

   
cc8 -1.50 0.133 cc8 -0.29 0.771 
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Table 15: Comparison of variables that were tested by the Wald tests to be significantly different 

from zero and variables that were selected by backward elimination. The highlighted cells 

represent the variables that were tested to be significant while excluded during backward 

elimination, and variables in bold font are those comprised of the base model at each scale. 

1000 m Scale 3000 m Scale 5000 m Scale 10000 m Scale 

Stepwise Wald Test Stepwise Wald Test Stepwise Wald Test Stepwise Wald Test 

ndvi ndvi norm norm norm norm norm norm 

norm norm d2s d2s d2s d2s d2s d2s 

d2s d2s d2o d2o d2o d2o d2o d2o 

d2o d2o lulc4 lulc4 lulc2 lulc2 cc1 lulc2 

lulc2 lulc2 lulc7 lulc6 lulc4 lulc3 
 

lulc4 

lulc4 lulc4 cc1 lulc7 lulc5 lulc4 
 

lulc5 

lulc5 cc1 
  

lulc7 lulc5 
 

lulc7 

lulc7 
   

cc1 lulc6 
 

lulc8 

cc1 
    

lulc7 
  

     
lulc8 

  

     
cc1 

  
 

Model O3 was based is within the general home range of feral swine described previously (1 to 

49 square kilometers), Model O3 was selected as the optimal model during the ordinary logistic 

regression model stage.  

Pregibon leverage analysis was performed based on the fitting results of Model O3 

with Stata and was plotted in ArcGIS, as shown in Figure 20. There were three areas where high 

Pregibon leverage values were found to be aggregated: one at the southern end of the Fall Line, 

one close to the mid-point of the Fall Line, and one in the south of the study area. For the former 

two areas, strong evidence indicated that the points within these areas were outliers. The third  
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Table 16: Composition of the ordinary logistic regression models at each scale associated with 

the measures of goodness-of-fit. 

Scale 1000 m 3000 m 5000 m 10000 m 

Model O1 O2 O3 O4 

Variable 

ndvi norm norm norm 

norm d2s d2s d2s 

d2s d2o d2o d2o 

d2o lulc4 lulc2 cc1 

lulc2 lulc7 lulc4 
 

lulc4 cc1 lulc5 
 

lulc5 
 

lulc7 
 

lulc7 
 

cc1 
 

cc1 
   

AIC 1.237 1.214 1.17 0.969 

AUC 0.7352 0.7452 0.7505 0.7119 

Correctly Classified 68.50% 68.61% 71.10% 78.40% 

Correctly Predicted 66.40% 71.20% 68.40% 78.60% 

 

area was the most evidently clustered compared with the former two and, more importantly, it 

exhibited a strong pattern of all the highly influential observations in this area being located 

simultaneously in the Okefenokee Swamp. Given the fact that feral swine are widely reported to 

prefer swamp habitat and that the boundary of the Okefenokee Swamp was almost identical to 

the outline of the absence-of-feral-swine area at this location, this phenomenon was considered 

as unusual. It indicated that there might be certain factors within the Okefenokee Swamp that had 

stronger influence on the distribution of feral swine differently than the factors considered in this 

project. Since the purpose of this study was to obtain a general relationship between feral swine 

and their environment conditions, all the observations within the Okefenokee Swamp were 
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considered to be outliers and removed. Then logistic regression was fitted based on 

specifications of Model O3 again using the remaining observations, and the fitting results are 

displayed in Table 17. 

Tests for Spatial Autocorrelation 

After the optimal model was fitted, a standardized residual was calculated for each 

point in the training set, and then tests for both Global Moran’s I and Local Moran’s I were 

conducted. The results of Global Moran’s I test (Figure 21) suggested that a strong clustered  

 

Table 17: Fitting results of logistic regression based on Model O3 with the remaining 

observations. 

 
Coef. Std. z P>|z| [95% Conf. Interval] 

cc1 -0.6489 0.202414 -3.21 0.001 -1.04562 -0.25217 

lulc5 -0.74578 0.315227 -2.37 0.018 -1.36361 -0.12794 

lulc7 -1.12578 0.322498 -3.49 0 -1.75786 -0.49369 

norm 0.001522 0.000731 2.08 0.037 0.000089 0.002955 

d2s -0.00018 0.000025 -7.17 0 -0.00023 -0.00013 

d2o -6.4E-05 1.79E-05 -3.57 0 -9.9E-05 -2.9E-05 

lulc4 -1.84184 0.619229 -2.97 0.003 -3.0555 -0.62817 

Constant 2.39277 0.431894 5.54 0 1.546273 3.239267 

 

AIC AUC Correctly Classified Correctly Predicted 

1.173 0.7452 70.67% 66.87% 

 

pattern was detected across the study area, and that the null hypothesis should be rejected, i.e. 

spatial autocorrelation did exist. The results of the Local Moran’s I test, as shown in Figure 22, 

confirmed the conclusion of the Global Moran’s I test, and local clustered pattern (indicated by 

the red dots) was found throughout the study area. 
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Figure 23 shows the correlogram produced by PASSaGE 2 based on the standardized 

residual term of Model O3. Red dots and blue crosses represent significant and insignificant 

autocorrelated patterns respectively. Results of this test suggested that the autocorrelated pattern 

was significant (p<0.05) within a range of approximately 45000 meters, and within this range its 

significance declined with the increasing of distance. Beyond 45000 meters, the autocorrelation 

could be considered as insignificant, although significant spatial autocorrelation was found at 

certain distance which was the results of chance fluctuation (Sokal and Wartenberg 1983).  

Autologistic Regression Outcomes 

In order to explore the relationship between scale and its influence on the power of the 

autocovariate term, and given the fact that spatial autocorrelation vanished with the increasing of 

distance and became insignificant at the distance of approximately 45000 m, 10000 m, 30000 m, 

and 50000 m were selected as the distance values for the neighbor size of three autocovariate 

terms. These three autocovariate terms, i.e. Auto1, Auto3, and Auto5, were calculated and added 

separately into the Model O3, forming Model A1, A2, and A3 respectively, as shown in Table 18. 

Logistic regression was then conducted based on these three models, and their goodness-of-fit 

measures, in comparison with those of Model 3, are also displayed in Table 18. Figure 24 shows 

the comparison of AUC of these four models. 

In order to further test whether by employing autologistic regression modeling spatial 

autocorrelation was effectively removed, Global Moran’s I and Local Moran’s I tests were again 

conducted based on the standardized residual produced by Model A1, which had the best 

performance among all three autologistic models. Results are displayed in Figure 25 and Figure 

26 in comparison with the results of the same tests for Model O3.  
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Table 18: Comparison of the compositions and goodness-of-fit of the ordinary logistic regression 

model and the autologistic regression models. 

Model O3 A1 A2 A3 

Variables 

norm norm norm norm 

d2s d2s d2s d2s 

d2o lulc7 d2o el 

lulc4 auto1 lulc3 lulc4 

lulc5 
 

lulc4 auto5 

lulc7 
 

lulc5 
 

cc1 
 

lulc7 
 

  
auto3 

 
AIC 1.173 0.837 1.011 1.026 

AUC 0.7452 0.8869 0.8223 0.8165 

Correctly Classified 70.67% 81.47% 74.54% 73.73% 

 

Based on the coefficients for each variable after autologistic regression was fitted to 

A1, a map of predicted probability of feral swine presence was produced using the Kriging 

Interpolation Method in ArcGIS (Figure 27a). This map was compared with the one predicted by 

Model O3 (Figure 27b). The actual presence of feral swine was overlaid on top of these two 

maps to assess the accuracy of prediction made by these two models (Figure 27c and 27d). The 

probability map of feral swine predicted by Model A1 was then reclassified into two classes 

based on the cut-off probability of 0.5, as shown in Figure 28. Areas with probability larger than 

0.5 indicate locations where local habitat is suitable for feral swine, and areas with probability 

less than 0.5 indicate locations where feral swine are unlikely to inhabit. A pie chart was also 

generated to compare the area of predicted favorable habitats of feral swine versus predicted 

unfavorable habitats. 
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Figure 19: Comparison of ROC curves generated by four ordinary logistic models. a) Model O1, b) Model O2, c) Model O3, d) Model 

O4. 



 

83 

 

Figure 20: Distribution of the Pregibon leverage statistics based on the fitting results of Model O3. Red circles with larger area 

indicate higher leverage values. The blue area in the south is the Okefenokee Swamp. 
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Figure 21: Graphic results of the Global Moran’s I test based on the standardized residual term generated in ArcGIS. 
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Figure 22: Graphic result of the Local Moran’s I test based on the standardized residual term generated in ArcGIS. Red dots represent 

the strong clustered pattern and blue dots represent strong dispersed pattern. 
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Figure 23: Correlogram created based on the standardized residual term. Red dots represent significant autocorrelated patterns, and 

blue crosses represent insignificant autocorrelated patterns. 
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Figure 24: Comparison of ROC curves generated by both ordinary logistic and autologistic models. a) Model O3, b) Model A1, c) 

Model A2, d) Model A3. 
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Figure 25: Results of Global Moran’s I tests based on standardized residual produced by a) Model A1, and b) Model O3. 
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Figure 26: Results of Local Moran’s I tests based on standardized residual produced by a) Model A1, and b) Model O3. Red dots 

represent the strong clustered pattern and blue dots represent strong dispersed pattern.
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Figure 27: Maps of predicted probability of feral swine presence: a) prediction made based on 

Model A1, b) prediction made based on Model O3, c) prediction made based on Model A1 

overlaid with actual presence of feral swine, d) prediction made based on Model O3 overlaid 

with actual presence of feral swine. 
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Figure 28: Map of predicted habitat suitability for feral swine in the study area based on Model A1 using 0.5 as cut-off probability 

value. Blue indicates areas where feral swine are likely to inhabit and red indicates areas where feral swine is unlikely to inhabit. The 

pie chart on the right shows the area composition of the predicted favorable habitats versus unfavorable habitats. 
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CHAPTER 6 

DISCUSSION 

Ordinary Logistic Regression v.s. Autologistic Regression 

As shown in Table 18 and Figure 24, it is evident that all three autologistic models 

outperform the ordinary logistic model, especially in terms of AUC and classification accuracy. 

This accords with the assumption that autologistic regression models can produce superior 

results to ordinary logistic regression models when spatial autocorrelation exists since the former 

obeys the assumption of independence. Comparisons of the results of both Global and Local 

Moran’s I tests before and after the autologistic regression was fitted was designed to test if 

spatial autocorrelation was effectively removed by autologistic regression. Slight autocorrelation 

still exists in the standardized residual term after the model was fitted, as shown in Figure 25a 

and Figure 26a (i.e. there are still several patches of red dots in the study area), and this may be 

due to the fact that the autocovariate term calculated in Model A1 is still incapable of capturing 

all spatial autocorrelation presented in the study area. Also it is entirely possible that in practice 

there is no single model that can remove spatial autocorrelation perfectly. In this regard, the 

autocorrelated pattern observed after Model A1 was fitted might simply be the results of random 

chance. Despite this, spatial autocorrelation has been considerably lessened by employing 

autologistic regression modeling, and there is a dramatic difference between the level of 

autocorrelated patterns presented in the study area before and after the model was fitted. 

Figure 27 further compares the outcomes produced by the ordinary logistic regression 

model (O3) and its counterpart with an extra autocovariate term (A1), by comparing the maps of 
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predicted probability of feral swine presence produced by them separately. The outcomes of 

these two models differ greatly throughout the study area. High probability of feral swine 

presence in the northern part of the study area is predicted by Model A1, however, Model O3 

only suggests a slightly higher-than-normal probability of feral swine presence for the same area. 

According to Model O3, feral swine are extremely unlikely to inhabit the region slightly to the 

southwest of the center of the study area, while A1 reports that feral swine may live in that 

region because the calculated probability for that region fluctuates around 0.5. After the actual 

presence of feral swine was overlaid on top of these two maps, their prediction accuracy became 

apparent: the prediction map produced based on Model A1 coincides with the actual map quite 

well, with a number of small patches of feral swine presence having been captured by the model 

(e.g. high-probability region in the north); while the one produced by Model O3 clearly fails to 

correctly predict a considerable amount of the study area.  

The comparison among the three models which took into account spatial 

autocorrelation reveals that the model performance decreases dramatically with the increase of 

neighboring size from 10000 meters to 30000 meters. This is in accordance with the 

phenomenon suggested by Figure 21 that within this range, the spatial autocorrelation 

experienced a significant decrease (i.e. Moran’s I value decreases from more than 0.34 to 0.09). 

Model A1 was generated based on a smaller neighboring size, and therefore its capability of 

accounting for spatial autocorrelation is considerably stronger than Models A2 and A3. The 

performance of Model A2 was expected to be superior to Model A3, however, this is not the case. 

Their performances turned out to be quite similar in general, with the former being slightly 

superior in terms of AIC and AUC, while the latter outperforms insignificantly insofar as 

classification accuracy. This deviation from expectation might be due to the fact that spatial 
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autocorrelation observed at 30000 meters is not considerably strong. After all, the observed 

Moran’s I value at this distance is 0.09, which is not significantly greater than 0 at 50000 meters.  

The various tests and comparisons conduced based on the model outcomes of ordinary 

logistic regression and autologistic regression in this project indicate that the existence of spatial 

autocorrelation jeopardizes the reliability of the traditional logistic regression modeling method. 

Although the influence of spatial autocorrelation on habitat modeling has been recently 

recognized, unfortunately a considerable amount of research of this kind is still ignoring this fact 

and employing the ordinary methods. While this study alone is insufficient to fully explore the 

impact that spatial autocorrelation has on habitat modeling and more similar studies are in great 

need, this study successfully discloses the drawbacks of the traditional method of habitat 

modeling using ordinary logistic regression. One conclusion can be drawn in this regard, that 

ordinary logistic regression method should be carried out in great caution in habitat modeling, as 

it may result in misleading results (highlighted by the comparison made by Figure 27). Habitat 

modeling should explicitly take into account spatial autocorrelation existing in various forms. At 

minimum, a test for spatial autocorrelation should be included. 

Coefficient Interpretation 

The influence of each variable involved in model fitting on the dependent variable is 

often evaluated by interpreting the raw regression coefficients, standardized coefficients or odds 

ratios. Raw coefficient represents the change in the dependent variable given one unit increase in 

the independent variable (Menard 1995). While it has been most commonly used, this measure 

has some limitations. For example, evaluation of the strength of the influence of the independent 

variables on the dependent variable using the raw coefficients is not straightforward when the 

independent variables are measured in different units. Therefore, standardized coefficients are 
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proposed to assist the interpretation under circumstances like this. Standardized coefficients are 

modified raw coefficients which represent the change in standard deviation in the dependent 

variable given one standard deviation increase in the independent variable while holding all other 

variables constant (Menard 1995; Long, Freese et al. 2006). Odds ratio is another transformation 

of the raw coefficient which is friendly to interpret. It takes the form: 

iOR eβ=  

where OR represents odds ratio, e is the natural logarithm (2.718) and iβ  is the raw coefficient 

of variable iX . Odds ratio can be interpreted as the factor change in odds in the dependent 

variable associated with one unit increase in the independent variable while holding all other 

variables constant (Long, Freese et al. 2006). All three of these measures were used together to 

examine the relationship between the dependent variable and each independent variable in this 

project and the results for Model O3 and Model A1 are displayed in Table 19 and Table 20, 

respectively. 

 

Table 19: Logistic regression analysis results for Model O3. 

Variables Coefficient Standardized Coefficient Odds Ratio 1/Odds Ratio 

cc1 -0.64890 -0.1439 0.5226222 1.9134281 

lulc5 -0.74578 -0.1774 0.4743663 2.1080756 

lulc7 -1.12578 -0.2644 0.3243998 3.0826160 

norm 0.00152 0.1383 1.0015230 0.9984793 

d2s -0.00018 -0.2620 0.9998206 1.0001794 

d2o -0.00006 -0.1325 0.9999362 1.0000638 

lulc4 -1.84184 -0.1112 0.1585258 6.3081215 

 

 



 

96 

Table 20: Logistic regression analysis results for Model A1. 

Variables Coefficient Standardized Coefficient Odds Ratio 1/Odds Ratio 

lulc7 -0.62550 -0.1152 0.5349917 1.8691879 

d2s -0.00017 -0.1932 0.9998312 1.0001688 

norm 0.00235 0.1671 1.0023500 0.9976555 

auto1 3.95028 0.5892 51.9498100 0.0192493 

 

By examining the components of Model O3, which was selected as the optimal model 

among all four ordinary logistic models, several patterns can be revealed. Firstly, there are seven 

variables that have significantly influence on the distribution of feral swine, and among them, the 

NORM ED index is the only variable that is positively related to the feral swine distribution, i.e., 

increase in NORM ED index will increase the possibility of feral swine presence. This 

relationship suggests that feral swine may indeed tend to avoid areas with high road density, 

potentially due to the disturbing effects of traffic and other human activities associated with 

roads. Secondly, all other variables are negatively related to the possibility of feral swine 

presence. Among all canopy cover dummy variables, only cc1 (no canopy cover) was confirmed 

to correlated with feral swine distribution, and its negative influence is accordant with the 

assumption that feral swine prefer habitat with vegetation, although the further assumption, that 

feral swine prefer thick vegetation as their shelters was not able to be confirmed. Both distance 

to major streams and distance to oak-cypress-gum forests are negatively correlated with feral 

swine distribution, indicating major streams and forests containing oak species are indeed 

attractive to feral swine and they tend to live close to these two factors. The results related to the 

land cover dummy variables, lulc4 (deciduous forest), lulc5 (evergreen forest) and lulc7 (row 

crops and pastures) deviate from the previous expectation. It was expected that feral swine would 

prefer forest and agricultural areas, however, they were found negatively related to forest and 
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agricultural LULC distribution. This obvious deviation may indicate the intrinsic problems (e.g., 

data inconsistency) of the datasets that were employed, but in order to confirm this assumption, 

further study with higher-quality land cover information is needed.  

After the autocovariate term was added into the model, while the overall model 

performance increased dramatically, several variables including lulc4, lulc5, cc1 and d2o were 

dropped from the model composition. The remaining variables, d2s, norm, lulc7 retained their 

own direction of influence on feral swine distribution, i.e. NORM ED index still positively 

influences the distribution of feral swine while distance to major streams and the row crops and 

pastures land cover still possess the negative influences. With the spatial autocorrelation taken 

into account, the autocovariate term has become the most influential variable, and the difference 

in influential power between the autocovariate term and the other three terms is dramatic, i.e. the 

reciprocal of the odds ratio of cc1 (1.869), is considerable less than the odds ratio of auto1 

(51.950). This means that whether feral swine are present at adjacent locations plays a strong 

role in influencing the probability of feral swine distribution at each point, and this relationship 

outweighs the relationship between feral swine distribution and other environmental factors. 

Moreover, this finding also supports the previous conclusion that spatial autocorrelation should 

be explicitly incorporated in habitat modeling.  

Figure 27 shows the map of predicted presence/absence of feral swine based on the 

prediction made by Model A1 and 0.5 was used as the cut-off probability value. If 0.5 is 

arbitrarily selected as the threshold value for determining whether a certain location is a suitable 

habitat for feral swine, this map can further be interpreted as a map of suitable habitats of feral 

swine verse unsuitable habitats of feral swine. The red polygons, which represent the suitable 

habitats, take up 69% (66070 square kilometers) land area of the study area, while the blue 
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polygons only take up 31% (29427 square kilometers). This explains to some degree why feral 

swine cause tremendous damage to Georgia: because Georgia has a large portion of land surfaces 

that are suitable for feral swine.  

Scale Effects 

This project attempts to address two questions that relate to the influence of scale: 1) is 

scale related to the performance of feral swine distribution models? And 2) is scale related to the 

performance of the autocovariate terms in counteracting the inherent spatial autocorrelation? 

In order to address the first question, the models in this project were generated at four 

scales. The fact that Model O3 (5000 m scale) and Model O4 (10000 m scale) have superior 

performance to Model O1 (1000 m scale) and Model O2 (3000 m scale) suggests that at a 

broader scale, the feral swine distribution correlates better with the environmental factors. In 

addition, it is believed that evaluating the models generated at a scale even broader than 10000 m 

is unnecessary because the 10000 m scale has already exceeded the reported home range of feral 

swine. Thus there is no justification for using models generated at a broader scale even if they 

are numerically superior.  

Through the comparison of these models, it is evident that habitat models are sensitive 

to scales. And similar to the fact that there is no single model that has the best performance for 

every species, there is no single optimal scale when modeling the distribution of a certain species. 

The question of upon which scale should the model be constructed for a species should be 

determined on case-by-case analyses. 

The autocovariate terms were created at three scales in order to evaluate the scale 

effects on the explanatory power of the autocovariate terms. The results suggest that at a finer 

scale, the autocovariate terms can better counteract the negative influence of spatial 
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autocorrelation. With the increase of the neighborhood size, the ability of the autocovariate term 

to remove spatial autocorrelation decreases. Since the purpose of this analysis is to explore 

whether there is a relationship between scale and power of the autocovariate terms, the current 

project does not attempt to determine the optimal scale at which a “best” autocovariate term 

should be constructed. 

Research Considerations 

The current study of modeling feral swine distribution has achieved satisfactory results. 

However, several considerations must be pointed out. First, the relationships between feral swine 

distribution and the environmental and cultural factors revealed by this study are not necessarily 

causal. Even if a particular location possesses all the desirable conditions for feral swine 

indicated by the habitat model, it does not mean there are definitely feral swine distributed at that 

location. Possible explanations include the fact that no feral swine have been introduced to that 

area or factors have thus far prevented their spread to that location. As indicated previously, the 

predicted probability of feral swine distribution can better be interpreted as the equivalent 

measure of habitat suitability for feral swine. Second, it is entirely possible that this study 

overlooked certain other environmental and cultural factors which may also play important role 

in influencing the distribution of feral swine. Constraints of time and resources for this study 

governed the number of variables that could be considered in this modeling effort. Future work, 

however, is definitely needed to obtain an even more thorough understanding of feral swine 

distribution by incorporating more variables.  

Similarly, for those variables that were considered in this project, their influence on 

feral swine may differ from the conclusions made by this study under certain circumstances. For 

instance, although elevation has been reported by a variety of habitat modeling research as an 
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influential factor directly related to the distribution of a large number of species (Wiser, Peet et 

al. 1998; Loyn, McNabb et al. 2001; Reese, Wilson et al. 2005), it was not confirmed by the 

current study. This indicates that, in general, feral swine distribution is not directly correlated 

with elevation, at least in the study area. However, as suggested by Ackerman, Harmon et al. 

(1978), feral swine may prefer high elevation areas in March and April in the Great Smoky 

Mountains due to the higher food availability there. Thus, when drawing insights from the 

current study, one should bear in mind that this study only discloses general relationships at a 

broad scale. Finally, there may be some special factors influencing the feral swine distribution 

only at a local scale that cannot be explained by the models discussed in this study. For instance, 

feral swine have been manually introduced to a large number of regions across the Southeastern 

United States mainly for recreational hunting purposes. Since this introduction phenomenon is 

most likely governed by different assumptions such as hunting preferences, ease of transport and 

opportunity for release, human-assisted spread of feral swine cannot be accounted for by the 

habitat models. Another example would be the effects of the Okefenokee Swamp on preventing 

the models from accurately predicting feral swine spread and inhabitation. A detailed 

examination of the geophysical conditions of the Okefenokee Swamp suggests that one potential 

reason that feral swine are not able to inhabit in this swamp is that unlike other regular swamps 

that can be occupied by feral swine, the Okefenokee Swamp is a deep-water swamp containing 

peat soils. The deep water pockets and the soft peat can effectively block feral swine from 

entering the Okefenokee Swamp (US Department of the Interior Fish and Wildlife Service 2006; 

Aicher 2011).  

Error Sources 
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The distribution map of feral swine in 2004 is the pivotal dataset utilized in this project 

and it is assumed that this dataset is flawless. However, in reality this is impossible. Unlike the 

datasets that were produced from remotely sensed data and therefore possess a high level of 

consistency throughout the study area, the 2004 feral swine distribution map was compiled based 

on a number of data inputs from different sources within each state and in various formats. This 

may have resulted in the discrepancy in ways of interpretation of data inputs and levels of 

accuracy. For instance, the expert who reported the presence/absence status of feral swine in the 

field based their conclusion on the various traces left by feral swine, including body remains, 

food remains, signs of rooting, footprints, etc. Interpretation of these traces requires profound 

knowledge of feral swine and speculation which is often subjective. Since a large number of field 

experts were involved in reporting the feral swine distributions, it is inevitable that different 

standards were applied across the study area in determining whether particular evidence is 

indicative of feral swine distribution, thus causing the potential inconsistency resided in the 

distribution of feral swine dataset. Unfortunately, it was not possible to accomplish validation of 

this dataset within the range of this study.  

In addition, several factors related to the other data layers may negatively affect the 

accuracy of the final results of this study. 1) Data accuracy. Similar to the limitations and 

uncertainties of the distribution of feral swine dataset, other data layers might be problematic in 

terms of accuracy. All datasets that were used in this project were of the best quality possible 

among all datasets available at the time of study. Owing to the impracticality of assessing the 

accuracy of each dataset, it could only be assumed that the datasets that were employed were 

sufficient in accuracy to yield justifiable results. Despite this, modelers must be aware of 

potential inaccuracies of the datasets input to predictive models. 2) Data inconsistency. The 
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datasets in this project were produced separately by multiple organizations or agencies, and 

similar to the presence of feral swine dataset, they may suffer from issues of data inconsistency. 

One striking example in this regard would be the time discrepancies that existed among all 

datasets. Ideally, the condition described by all datasets that were employed should focus on the 

same time point, i.e. the year 2004. Since this is impractical to achieve, efforts were made to 

utilize those datasets that were closest to 2004 in time. For example, the NORM ED dataset in 

this project evaluates the road network condition in the United States in 2007 (USGS 2007), it 

was chosen for this project in that a) this was the only dataset available, and b) it was assumed 

that this particular information did not change significantly from 2004 to 2007.  

Future Work 

This project is the first attempt to explore the relationship between the distribution of 

feral swine and a comprehensive set of environmental factors at a relatively broad scale. Due to 

the time limit, further habitat suitability factors were not able to be incorporated in this project. 

Never-the-less, it certainly opens the door for future work to further understand this 

species-environment relationship, which may be focused on the following aspects. 1) 

Incorporating more environmental variables. It is desirable for habitat modeling to take into 

account more variables, even those which are seemingly irrelevant to the distribution of the 

particular species. Due to the various constraints described previously, only nine variables were 

selected as the environmental factors used in this project. Variables excluded by this project, 

such as landscape metrics, may improve the model outcomes. 2) Implementing time series 

analysis. Similar to spatial autocorrelation, which is a correlation of variables within a two 

dimensional surface, the attributes of some particular variables may be also strongly correlated in 

time. This gives rise to the study of time series analysis (Shumway and Stoffer 2006), and the 
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availability of the distribution map of feral swine of multiple dates renders this analysis possible. 

Through time series analysis, the mechanisms behind the patterns in which feral swine 

distributions expanded through time with the change of environmental factors may be understood 

more thoroughly. 3) Expanding the study area. The current project focuses solely on the Coastal 

Plain Region in Georgia, which is only a small portion of the Coastal Plain areas in the 

Southeastern United States where feral swine are widely distributed. It might be worthwhile to 

study the relationship between feral swine distribution and the same set of environmental factors 

for some areas in other states and compare the results to see if they agree with each other. Since 

some of the datasets have been collected and processed by each state independently, such 

comparison may serve to validate the quantified relationship found in this study. 4) Integrating 

Agent-based Modeling techniques. Agent-based Modeling (ABM) is a newly emerging modeling 

method that directly focuses on individuals who are autonomous and takes action which consists 

of various patterns at a broader scale. Its unique nature enables it to tackle some of the complex 

questions that the classic modeling methods cannot (Parker, Manson et al. 2003; Brown, Aspinall 

et al. 2006). Because the distribution pattern of feral swine is an aggregated phenomenon based 

on all the actions made by individual feral swine living alone or in extended family groups 

known as sounders, by employing ABM and focusing on the behaviors of each individual, fair 

understanding of their habitat selection preference may be yielded.  
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CHAPTER 7 

CONCLUSION 

All the objectives of this project have been successfully accomplished. During the 

ordinary logistic regression stage, a set of nine variables were developed individually based on 

various datasets, including land cover, slope, elevation, NDVI, distance to major streams, 

NORM ED, distance to oak-gum-cypress forest, distance to impervious surfaces, and canopy 

cover. According to the characteristics of each dataset, different methods of data processing were 

applied at four different scales (i.e. 1000 m, 3000 m, 5000 m and 10000 m) in order to obtain 

data layers that were appropriate for the following statistical analysis. After the automatic 

backward elimination procedure, a few variables were dropped for models generated at each 

scale. Through comparison between the goodness-of-fit of all the models, Model O3 was 

selected as the optimal model during the ordinary logistic regression stage, and it was based on 

eight variables (i.e., norm, d2s, d2o, lulc2, lulc4, lulc5, lulc7 and cc1) at the scale of 5000 meters. 

This model had a medium performance in terms of predicting the feral swine distribution with 

AUC being 0.7505 and prediction accuracy of approximately 70%. A general relationship 

between the feral swine distribution and these environmental factors was therefore obtained. 

Namely, feral swine prefer habitat that has less road density, is covered by vegetation and is 

close to major streams and oak-cypress-gum forests. In addition, the results suggested that the 

existence of forest and agricultural areas negatively influence the distribution of feral swine, 

which contradicted with our expectation. Although it is likely that this was the result of data 
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inaccuracies, further and more thorough analysis should be conducted to confirm this 

assumption.  

In order to test whether spatial autocorrelation existed and whether this influenced the 

model performance, several tests of spatial autocorrelation were explicitly employed based on 

the residuals calculated using the selected optimal model. Results from multiple perspectives 

indicated that strong autocorrelated patterns were present. Under this scenario the assumption of 

independence of the ordinary logistic regression method might be jeopardized and lead to 

unjustifiable conclusions. Given this, autologistic regression was employed by constructing an 

autocovariate term which accounted for spatial autocorrelation and added the autocovariate term 

to the optimal model. The fitting results of the autologistic model were improved significantly 

compared to those of the ordinary logistic models. Its prediction accuracy increased up to more 

than 80%, and AUC increased even more dramatically to 0.8869.  

In addition to the quantitative comparison, the difference in predictive power of these 

two models was also compared visually by producing the prediction maps based on each model 

separately and comparing them with the actual distribution of feral swine. Such a comparison 

revealed that the ordinary logistic model was significantly restrained and affected by the 

presence of spatial autocorrelation, and it was, therefore, problematic under such a circumstance. 

This discovery led to one of the conclusions of this study, that is, the ordinary logistic regression 

modeling methods may suffer from problems such as the presence of spatial autocorrelation, 

under which circumstance the results might be dubious and misleading. It is strongly 

recommended that any habitat modeling should adopt a stage of testing spatial autocorrelation as 

one of the routine procedures, based on which undesirable spatial autocorrelation can be detected 

and solutions to remove such a negative influential factor can be established.  
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The concept of scale was explicitly incorporated in this study and its role in habitat 

modeling and influence on the significance of spatial autocorrelation was analyzed. During the 

ordinary logistic regression stage, four models were established at four scales: 1000, 3000, 5000 

and 10000 meters, respectively. Their goodness-of-fit were then compared and the model based 

on 5000 meters scale seemed to be superior to the other counterparts. Although this study was 

unable to fully explore the relationship between the scale factor and model performance, it was 

confirmed that the scale factors play a role influencing the performance of the corresponding 

models and it is something that needs to be taken into account when constructing meaningful 

habitat models. In addition, this study suggested that the supplementary predictive power added 

by incorporating an autocovariate terms differs for autocovariate terms generated at different 

scales. Based on the current study, it seemed the autocovariate term created at the distance where 

spatial autocorrelation is the most evident possesses the largest predicting power, but further and 

more thorough analyses should be performed to yield a thorough understanding of the 

relationship between scale and the power of the autocovariate terms.  

This study successfully revealed the less-known relationship between a series of 

environmental factors and the distribution of feral swine at a broad scale, and this information 

might be valuable for agencies or experts who seek to monitor and control the spreading of feral 

swine effectively and efficiently. It is believed this obtained quantitative relationship may be able 

to be applied to a vast area in the Southeastern United States due to the fact that a considerable 

amount of land surfaces in the southeast share the same characteristics in terms of environmental 

conditions. Moreover, the methods proposed in this study can be applied when modeling other 

exotic species. The current study also leaves room for further analyses which are expected to 

improve the model. Future working might be focused on incorporating more environmental 



 

107 

variables, adapting time series analysis, expanding the study area, and integrating Agent-based 

Modeling techniques. 
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