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ABSTRACT 

The use of multimedia on mobile devices is fast becoming widespread and popular. Since 

mobile devices are typically resource constrained in terms of network bandwidth, battery 

power and available screen resolution, it is often necessary to formulate special encoding 

techniques in order to optimize for power consumption, and network bandwidth, during 

multimedia data playback and streaming. 

This dissertation reports the design and implementation of several novel content 

aware algorithms for compact representation, and dissemination, of multimedia data 

suitable for power -and -network constrained environments. The multimedia sub domains 

of computer animation data, videos, and images, have been considered.  

Content aware data processing is a key theme in all the proposed algorithms. 

Content information for animation data, represented as Motion Capture (MoCap) data, 

has been derived from the hierarchical structure of the virtual human associated with the 

data. For video sequences and images, low level content information, such as gradients, 

motion, curvature etc. have been detected, and exploited, in the proposed algorithms. 

Another key theme in the proposed algorithms is the elimination, or reduction, of spatio-

temporal redundancy, occurring in MoCap and video sequences. The third key theme is 



the use of domain specific customization of data, in order to render the multimedia data 

more suited for resource-constrained environments. 

Several novel algorithms, based on these three key concepts, have been proposed 

for MoCap data compression suitable for power-and-network constrained devices. 

Several content aware image and video transcoding algorithms have been proposed, 

which transcode images and video sequences as multi-resolution, multi-layered 

representations, in order to allow power - and - network bandwidth adaptive video 

playback and dissemination. Results have shown significant power -and -network 

bandwidth - adaptive capabilities of the videos, which surpass performance of existing 

standards of layered video encoding. Further, several caching schemes have been 

developed in order to disseminate videos created using the proposed technologies to 

power -and network bandwidth - constrained clients over the Internet, resulting in cache 

designs with improved performance compared to existing cache designs. 
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CHAPTER 1 

INTRODUCTION 

 

Multimedia is a form of digital data that uses computer graphics and animation, images, 

videos, audio etc to represent information. Specialized information processing and 

encoding is used to represent various types of multimedia contents. One of the main 

purposes of multimedia is to inform and/or entertain the (user) audience. Multimedia data 

is typically voluminous, and requires dedicated computational resources in order to 

process and use it. As a result, it is required to “transcode” multimedia data in order to 

make it more suitable for devices which have limited resources in terms of storage and 

computational power. Transcoding is the digital-to-digital conversion from one lossy 

encoding format to another, typically with the aim to have more compact representation 

of the data with acceptable loss in quality of the content. Without loss of generality, 

throughout this dissertation, other terms similar to transcoding, such as compression and 

encoding, have been used. 

Keeping the above definition in mind, this dissertation investigates various novel 

content-aware algorithms, developed to transcode multimedia content, specifically 

tailored for network and power constrained devices, such as multimedia enabled mobile 

phones, PDAs and laptop computers in environments where the computer has to run on a 

battery. In addition, novel multimedia dissemination schemes have been reported which 

aid in distribution of the multimedia content over the Internet to end users. An end to end 

software system has been developed to support various forms of multimedia encoding, 

and their dissemination.  
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1.1 Background 

The sub-domains of multimedia contents that have been addressed in this report are 

motion capture (MoCap) data for virtual human animation, and video. 

 Motion capture (MoCap) data is used for digitally recording movements for 

entertainment, sports and medical applications. A human subject wears markers near each 

joint to identify the motion by the positions or angles between the markers. Typically, 

reflective markers are tracked, and the motion capture computer software records the 

positions, angles, velocities, accelerations and impulses, providing an accurate digital 

representation of the motion. For this dissertation, the MoCap data has been obtained 

from the free archive of MoCap data in http://mocap.cs.cmu.edu. 

MoCap data is extensively used to animate virtual characters in animated movies, 

video games and virtual reality applications. MoCap data is somewhat analogous to other 

spatio temporal data such as video. MoCap encoding, similar to video encoding, involves 

a series of frames, each frame containing information about the joint angles of the model. 

There is a frame-rate associated with MoCap data, similar to that in a video sequence 

(typically 30 frames per second). Typically, each second of MoCap information requires 

30 frames, each frame being a multi-dimensional vector. 

 A video is a series of images, taken at a particular frame rate (which, again, is 

typically 30 frames per second). Each image is typically a two dimensional array of 

pixels, each pixel having color values defined by its red, green, blue component, or some 

other three dimensional components from some color space.  

The amount of data required for both video and MoCap is typically voluminous. 

Over the past decade, various techniques have been proposed to encode both, video and 
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MoCap data, using various state-of-art techniques [Arikan, 2006] [Glardon 2004] 

[Safonova, 2004]. A detailed literature study of existing methods has been done at the 

beginning of each chapter. With the recent advance of multimedia enabled mobile 

devices, such as mobile phones, PDAs etc., video, as well as MoCap, is used in these 

mobile devices for various entertainment, or research, purposes. A significant drawback 

with these multimedia mobile devices is the fact that they run on battery, which is a 

limited power resource. Video playback, as well MoCap data processing, is typically a 

computationally resource intensive task [Chandra, 2003], which means that the limited 

battery power resources in these mobile devices drain out quickly, which is not desirable. 

Thus, it is required to “customize” MoCap, and video, in order to maximize viewer usage 

and reducing battery consumption in these mobile devices.  

This dissertation reports novel content-aware algorithms to compress MoCap, and 

video, data, suitable for use in resource constrained mobile devices. Content aware data 

processing is a key theme in all the proposed algorithms. Content information for 

animation data, represented as Motion Capture (MoCap) data, has been derived from the 

hierarchical structure of the virtual human associated with the data. For video sequences 

and images, low level content information, such as gradients, motion, curvature etc. have 

been detected, and exploited, in the proposed algorithms. Another key theme in the 

proposed algorithms is the elimination, or reduction, of spatio-temporal redundancy, 

occurring in MoCap and video sequences. The third key theme is the use of domain 

specific customization of data, in order to render the multimedia data more suited for 

resource-constrained environments. 
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1.2 Research challenges 

The nature of data to be encoded has some interesting characteristics which made the 

conducted research surprisingly challenging and exciting. The following sub-sections 

detail some of the challenges. 

 

1.2.1. Distortion due to loss 

The novel transcoding techniques reported in this dissertation are lossy 

transcoding/encoding algorithms. This means that data loss occurs while transcoding the 

original data, thus resulting in a slightly lossy data after reconstruction from the 

transcoded version. The loss is inevitable in order to obtain significant reduction in the 

data size for storage. Loss incurred in MoCap data leads to distortion of the pose and 

action of the virtual human, on which the MoCap data is used. Lossy data for images and 

video lead to visual distortion of the image/video contents. Naturally, one of the most 

challenging aspects in the conducted research is to reduce loss in data, while increasing 

the amount of compression, of the multimedia data. A related challenge has been to 

quantify loss. Data loss, or distortion, when measured directly in terms of quantity, does 

not suffice to reflect the observed loss in quality directly. For MoCap data, we compared 

spatial displacement errors of body joints. For erroneous data, this spatial displacement is 

magnified significantly. For images/video frames, peak signal to noise ratio (PSNR) is a 

common metric used to compare the original image (or video frame) to the reconstructed 

image (video frame). However, experience reveals that PSNR is often not an accurate 

measure of quality, and often undermines the quality of a transcoding algorithm. As a 
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result, subjective evaluations, and other non-standard methods derived from computer 

vision tasks, have been smartly used in order to compare obtained results. 

 

1.2.2. Spatio-Temporal nature of data 

A commonality between MoCap and video data is the fact that both are spatio-temporal 

data; i.e. information content pertains to spatial attributes, which change across time. For 

example, in a video, the spatial content is the color elements in the image, and the 

temporal information is the commonality of the color information across series of frames. 

For MoCap data, the spatial content is the joint angle corresponding to each joint in the 

virtual character, whereas the temporal content is the change of joint-angles across each 

frame. A significant challenge of the conducted research has been the use of temporal 

coherency between successive spatial data, both for MoCap and video data, in order to 

improve transcoding efficiency. Measuring, and harnessing the use of, temporal data has 

proven to be non trivial. A common challenge associated with temporal data is to find 

correspondence. For example, in two consecutive frames of a video, it is non-trivial to 

find correspondence between features in one frame, to the next. The associated error 

observed while trying to determine correspondence between temporally dissociated data 

points can lead to an increase in data loss and precision, which, as discussed earlier, is not 

desirable at all. Hence, the temporal aspect of the data makes transcoding/encoding more 

challenging. 
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1.2.3. Data redundancy 

Data redundancy arises when some portions of the data can be omitted without 

significant change to the information content of the data. Exploitation of data redundancy 

has been used in almost all existing video encoding algorithms [Richardson, 2004]. A 

challenge in the conducted research was to utilize these techniques of exploiting data 

redundancy in the novel proposed transcoding algorithms. For example, in MoCap data, 

the change in some joint angles is often not substantial enough in a series of frames. 

These data points are hence redundant. For video data, pixels corresponding to regions in 

the scene which do not change can often be considered redundant. A key challenge is the 

determination of redundancy. Often, due to noise, redundancy in real world is not 

reflected in the corresponding data. For example, in MoCap data, a body joint angle, even 

if stationary for all practical purposes in the real scenario, is mathematically shown to 

change over time in the captured data, due to error/loss while measuring. Hence, it is a 

challenge to come up with automated techniques to determine whether a subset of data is 

“redundant enough”, so that its omission does not affect the system performance 

significantly. 

 

1.2.4. Inherent Structure in data (Content Aware) 

This is one of the most important aspects of MoCap and video data which led to the 

development of the novel innovative technologies for MoCap and video transcoding. 

MoCap data, for example, depends on the underlying structural hierarchy of the virtual 

human model for which the data is. Each frame of MoCap corresponds to a pose. Any 

lossy compression of MoCap data leads to a distortion in the pose of the virtual human 
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for that particular frame. Using this structural correlation between the data points, the 

techniques developed as a part of this research dissertation display superior compression 

ratio with reduced error in the virtual human model pose. For image and videos, low level 

content such as edges in images, motion between images etc., have been used to drive the 

transcoding process.  

 

1.3. Structure of the Dissertation 

Including the introduction, this dissertation report is divided into six chapters. The 

outlines of the remaining chapters are as follows: 

Chapter 2: This chapter reports the various content-aware algorithms developed to 

compress/transcode MoCap data. After reviewing the state of art of MoCap 

compression, existing global standard, MPEG, is discussed. Three MoCap 

compression algorithms, used to create lossy compressed version of MoCap data 

for virtual humans, are proposed, viz. BAP-Sparsing, BAP-Sparse-Indexing and 

Weighted PCA. These algorithms exploit the structural hierarchy of the virtual 

human in order to efficiently compress the MoCap data with reduced distortion 

due to loss. Experiments and observations reveal that these algorithms perform 

better compared to existing MPEG algorithms, in terms of standard established 

metrics used for MoCap data. 

Chapter 3: This chapter reports novel techniques for content-aware multi-resolution 

layered image and video encoding, in order to stream video to environments with 

dynamically changing network bandwidths, such as the Internet. The state-of-art 

of layered video encoding has been studied in detail. First, a novel content aware 
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multi-resolution technique to transcode an image into multi-resolution 

representation has been reported. Next, a novel content-aware multi-resolution 

layered video encoding scheme, termed as FMOE-MR (Features, Motion and 

Object Enhanced Multi-Resolution) has been proposed and implemented. FMOE-

MR uses content aware techniques in order to improve rate-distortion 

performance of existing, popular layered video encoding paradigms. Results 

indicate that the proposed multi-resolution, layered video algorithm is suitable for 

streaming video in resource constrained environments with fluctuating network 

resources.  

Chapter 4: This chapter reports a novel technology termed as Hybrid Layered Video 

(HLV). HLV is a content aware layered video transcoding algorithm, which is 

used to create a combination of sketchy representations of the video, termed as 

Generative Sketch-based Video (GSV), and approximate texture information 

driven by FMOE-MR, discussed in the previous chapter. HLV is used for video 

streaming to, or video playback in, power resource constrained devices, whose 

available (battery) power decrease with time. 

Chapter 5: Novel caching techniques and algorithms, used for efficient, low latency 

dissemination of layered video content, have been reported in this chapter. Smart, 

customized cache replacement policies have been proposed in order to improve 

cache performance. Experiments and results confirm that client observed video 

download latency is considerably reduced by using these smart caching methods.  

Chapter 6: This chapter begins with an overview of my contributions to the field of 

multimedia encoding. Next, the conclusions to the overall dissertation is 
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mentioned, followed by a discussion on possible future work based on the 

developed algorithms. 

 

1.4 Publication of research articles 

Most of the technologies described in this dissertation have been published in highly 

rated, popular peer-reviewed conferences and journals. Figure 1.1 shows an overview of 

the work done, and the various resulting publications, in order to familiarize the reader 

with the names of the algorithms, and the broad sub-domains to which they belong to. 

Figure 1.1 The various algorithms developed for this dissertation, and the various 
corresponding publications. 
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CHAPTER 2 

MOTION CAPTURE DATA COMPRESSION 

 

2.1. Introduction to MoCap 

Motion capture (MoCap) data is used for digitally recording movements for 

entertainment, sports and medical applications. A (human) performer wears markers near 

each joint to identify the motion by the positions or angles between the markers. 

Typically, reflective markers are tracked, and the motion capture computer software 

records the positions, angles, velocities, accelerations and impulses, providing an 

accurate digital representation of the motion. 

 

2.1.1. Standardizing MoCap data representation - MPEG-4 

In order to standardize representation of MoCap data, the MPEG-4 standard seeks 

efficient representation and encoding of synthetically generated audiovisual information, 

such as virtual humans [ISO/IEC-Systems, 1999] [ISO/IEC-Visual, 1999]. A virtual 

human body model is animated using a stream of body animation parameters (BAPs), 

which are essentially obtained from Motion Capture data. BAP encoding is particularly 

suited for low-bitrate transmission in dedicated interactive communications and broadcast 

environments. The BAPs control the various independent degrees of freedom in the 

skeletal model of the body to produce animation of the body parts. The BAP data enable 

real time transmission, rendering and manipulation of life-like visual scenes of the human 

body on a remote device without the need for transmission of the pictorial and video 
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details of the human body in every frame. An overview of body encoding, using MPEG-4 

and MPEG-4 compliant avatar control, is given in [Capin, 1999]. 

 

2.1.2. MoCap data representation as a matrix 

The Motion Capture Data, or MPEG-4 BAPs, are represented as an n x m dimensional 

matrix X, where n is a multiple of the frame rate (expressed as frames per second or fps) 

and m is the number of degrees of freedom for the avatar (the maximum value of m = 296 

as defined in MPEG-4 standard). Each row of the matrix represents a pose of the avatar 

for a small time step. Each column corresponds to either the displacement of the model 

from a fixed origin, or the Euler angle of rotation of a particular joint in the skeletal 

avatar to achieve the desired pose during the corresponding time interval. Successive 

rows of X depict incremental changes in the pose of the avatar in small time steps, thus 

animating the avatar. 

A 62-dimensional avatar, with a frame rate of 33 fps, has been used in the studies. 

This means that, for a 10 second motion sequence, the motion matrix X is a 330 x 62 

array of floating point numbers. The first 3 columns of X represent the absolute 

displacement of the avatar from a fixed origin in the 3-D virtual world. The next three 

columns represent the absolute orientation of the avatar with respect to the virtual world 

coordinates. As a first step in the compression process, the matrix X is represented by a 

difference matrix, dn-1 x m, and the initial pose vector I, where I is assigned the first row of 

X, and the rows of d are the differences between successive rows of X. 

 I1, j = X1, j   j = 1, 2, …, m 

 di, j = Xi+1, j – Xi, j  i = 1... n-1; j = 1…m 
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The difference matrix d, subsequently termed the motion matrix, can be interpreted as 

successive small angular changes needed by the avatar for each of its degrees of freedom 

in order to realize the desired animation. Without loss of generality, we will assume that 

d has n rows. 

Having decided the matrix representation, three methods, viz. BAP-Sparsing, 

BAP-Sparsed-Indexing and Weighted PCA will be discussed in the subsequent section. 

Each of these methods is aimed at compressing the BAP data by exploiting the 

hierarchical structure of the virtual human figure which is being animated, such that the 

resulting distortion is less. 

 

2.2. BAP-Sparsing 

An important application of BAP based animation is the streaming of the BAP data 

across the Internet to clients, such that real time animation is possible. A practical use of 

such an animation is in intelligent next-generation distributed human-computer 

interaction. Issues pertaining to video streaming over the Internet have been well 

researched [Wu, 2001] [Kang, 2002] [Elsen, 2001] [McNamee, 2000], and a standard 

compression pipeline for reduced throughput has been established over time. Recent 

standards in MPEG-4 allow streaming of BAPs over the Internet. Compression of BAP 

data for efficient network transmission with low bit-rates can be represented by a pipeline 

of stages that yields a lossless compressed version of the original data [Capin, 2000b]. A 

lossy adaptation of the existing BAP compression technique includes frame dropping, 

which results in loss of motion animation quality. A major drawback of the conventional 

lossy compression pipeline that uses frame dropping is the lack of intelligent, data-and 
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model-dependent compression; i.e. the inherent structure of the underlying model is not 

utilized. Hence, it is desirable to have a more sophisticated frame dropping algorithm that 

exploits the structure of the underlying model. 

Keeping this philosophy in mind, the first novel technique used for content aware 

MoCap (or BAP) compression is termed as BAP-Sparsing. In this technique, animation 

frames are dropped and modified intelligently by exploiting the hierarchical structure of 

the human skeletal model. The proposed method results in a higher compression ratio 

compared to standard MPEG-4 BAP compression pipeline, and enables control of the 

motion animation quality via a single tunable parameter. 

As mentioned earlier, the MoCap data is represented by a matrix consisting of a 

single I-frame, followed by a sequence of P-frames. The given compression algorithm 

results in a modified version of the matrix with many elements of the matrix reduced to 

zero (sparsing). The motion resulting from the new matrix is observed to be minimally 

distorted compared to the motion derived from the original matrix (Section 3). The sparse 

matrix is the offline emulation of P-frame dropping, and leads to an improved 

compression ratio, resulting in a lower network throughput requirement for streaming the 

motion data. The performance comparison is done essentially between the animations 

resulting from the use of the sparse matrix and the non-sparse matrix.  

 

2.2.1. MPEG-4 BAP Compression 

The Face and Body Animation (FBA) object is a collection of nodes in a scene graph, 

which are animated using two separate FBA object bit-streams, called BIFS (Binary 

Format for Scenes). The first bitstream contains instances of Body Definition Parameters 
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(BDPs) in addition to Facial Definition Parameters (FDPs), and the second bitstream 

contains Body Facial Animation Parameters (FAPs) [Capin, 2000a].  

The BAPs are compressed for efficiency using a standard compression pipeline 

comprising of quantization taking into account the physical constraints of the joints, 

representation using prediction errors and finally arithmetic coding for generic bit-level 

compression. To achieve further compression, frame dropping is used to reduce the 

number of transmitted frames, consequently reducing the network throughput 

requirement and hence the bit-rate. Assuming no packet loss, the BAP stream consists of 

a single I-Frame followed by all the predicted P-Frames necessary to render the complete 

animation. For a new animation sequence, another set of data, consisting of an I-frame 

followed by a long sequence of P-frames is streamed.  

 

 

 
 
Figure 2.2.1: The standard compression and decompression pipeline for MPEG-4 
BAPs, enhanced with a novel alternative stage termed as BAP sparsing. 
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2.2.2. Error Sparsing Stage in the Compression Pipeline 

A novel BAP (error) sparsing stage is introduced between the error encoding and 

arithmetic coding stages of the standard MPEG-4 BAP compression pipeline (Figure 

2.2.1). The basic intuition underlying BAP sparsing is to allow the joint corresponding to 

the BAP parameter to be frozen, for a fraction of a second, and then released all of a 

sudden. However, once released, the joint corresponding to the BAP parameter will have 

greater cumulative displacement to make up for the lost displacements when frozen. If 

performed judiciously, the freeze-release operation should be imperceptible to the human 

eye. 

To implement this idea, each BAP parameter is considered, and consecutive P-

frames are dropped, and the values of the dropped P-frames are accumulated until the 

cumulative value exceeds a predefined threshold. At this point, the current P-frame value 

is replaced by the cumulative value, and reset (to zero) the variable corresponding to the 

cumulative value. The same process is repeated for succeeding frames until all the P-

frames have been scanned once. 

As mentioned previously, the BAP P-frame encoding error data is represented by 

an n x m matrix Xn x m, where n is the number of frames of the animation, and m is the 

number of BAP parameters to be used for defining a pose of the model (the maximum 

value for m = 296 as defined in the MPEG-4 standard). Initially, the mean mi and 

standard deviation si of each column (parameter) i is computed. For each instance of each 

BAP parameter i that passes through the compression pipeline, a variable Si is used to 

accumulate the difference of predictive encoding errors, in successive frames. The 

current encoding error is set to zero (sparsing stage), until the normalized cumulative 
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encoding error (|Sk - mk |/ sk) exceeds a predefined threshold value Ti. The value of the 

threshold Ti is determined using information derived from the hierarchical skeletal model 

of the human, for which the BAPs are being used. The error sparsing algorithm is given 

in Figure 2.2.2. A detailed discussion on the determination of threshold Ti is presented in 

the next section. 

The centered and normalized value of the cumulative predictive encoding (|Sk - 

mk |/ sk) is used in order to determine the value of the threshold Ti irrespective of the 

mean and spread of the data in the columns of X. This stage renders the algorithm to be 

more general, spanning a wide range of motions, and enables the setting of a default 

value of the control parameter.  

 

2.2.3. Determination of the Threshold Ti 

The threshold value for each BAP parameter is computed by exploiting the hierarchical 

structure of the underlying human skeletal model. The basic observation that has been 

for  k  1 to m 
Sk= X1,k 

for  i  2 to n 
for  k  1 to m 

Sk  Sk + Gi-1, k 
if  ((|Sk - mk |/ Sk) > Tk) 

Bi, k = Sk 
Sk   = Xi, k 

else 
Bi, k = 0 

for  i  2 to n 
for  k  1 to m 

Xi-1,k = Bi, k 
 
Figure 2.2.2: The algorithm for BAP Sparsing, assuming the P-Frames are in a matrix 
format Xn x m. Gi, k = Xi,  k  - Xi-1,  k. B is a temporary matrix, whose values are finally 
assigned to X. 
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utilized is the fact that the threshold value for a particular BAP parameter should depend 

on the position of the corresponding body joint in the human skeletal model. For 

example, consider the hierarchical human skeletal model given in Figure 2.2.3. Any joint 

higher in the hierarchy is allowed less angular error compared to joints lower down in the 

hierarchy. For example, an angular error at Rhipjoint displaces the joint Rfoot more than the 

same angular error at the joint Rtibia, which is lower down in the hierarchy.  

We have represented the hierarchical significance of the various joints in the 

human body by a level number, as shown in the parentheses in Figure 2.2.3. The 

threshold Ti for a joint i, represented by column i in matrix Xn x m, should be such that the 

joints higher in the hierarchy, with a smaller level value, should be allowed less angular 

error due to sparsing of the predictor error, when compared to joints with a larger level 

value. This ensures that the displacement error induced by the sparsing operation is small. 

For a column i of Xn x m, with level Li, the corresponding threshold Ti is given by 

Ti = KLi           (2.2.1) 

 

Figure 2.2.3: An example of hierarchical structure of a human consisting of 31 nodes, 
with a total of 62 degrees of freedom of motion (rotational and translational). For 
convenience, the root node is drawn at the bottom. 
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Figure 2.2.4: (Left) Percent P-Frames dropped vs Quality Control Parameter K (Center) Mean 
Displacement Error vs K (Right) Network throughput requirement vs K. Walking and exercise 
yield similar throughputs, hence the lines are superimposed. 

where K is the quality control parameter (QCP). Typically, the value of K is chosen such 

that the maximum threshold value is less than 1. 

 

2.2.4. Animation quality, network throughput requirement and power consumption 

The sparsing algorithm has been tested for different motions of varied duration and 

complexity. We present our results on the following representative motion examples: 

 Walking: Simple periodic motions. 

 Sword Play: Simple non-periodic motions. 

 Walking-Climbing: Complex but slow motions. 

 Exercises: Motions with multiple complexities. 

 Dancing: Slow, but ill-correlated motions. 
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 Fancy Footwork: Fast, erratic and extremely ill-correlated motions, where the subject 

rolls on the floor and performs complex dance motions very rapidly. 

The dependence of the percentage of P-Frames dropped, the mean displacement error and 

the percentage network throughput requirement for the above mentioned motion 

examples, as a function of the quality control parameter K, has been given in Figure 

2.2.4. The percentage network throughput requirement is simply the fraction of the 

original number of bytes to be transferred over the network. The mean displacement error 

is the cumulative displacement error induced by sparsing, normalized with respect to the 

number of frames in the motion sequence.  

The mean displacement error depends on the nature of the motion. As shown in 

Figure 2.2.4, complex motions such as a combination of motions (walking and climbing) 

and erratic motions (fancy footwork) yield more noise/distortion in the motion data, 

compared to regular motions such as walking. The percentage network throughput 

requirement is greater for regular motions such as walking, whereas it is less for erratic 

and sudden motions such as fancy footwork. Although this seems counter-intuitive, it 

makes sense when the mean displacement error is also considered; for the same value of 

K, the animated motion results in different mean displacement errors depending on the 

type of motion. This means that the quality control parameter K is not an absolute 

universal measure of motion animation quality; the more erratic or complex the motion, 

the greater is the mean displacement error for a given value of K. Ideally, this should not 

be the case. However, at this juncture, it should also be noted that K, though not a perfect 

and universal quality control parameter, is adequate for most types of motions 

encountered in practice.  
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Since the motion animation quality, throughput requirement, and percentage of P-

frame BAPs dropped are all dependent on the quality control parameter K, it is desirable 

to have a default, “safe” value of K, which guarantees an acceptable level of displacement 

error that is not obviously perceptible. Additional experiments and empirical studies with 

human observers have shown that choosing K = 0.1, and hence ensuring that the 

normalized cumulative predictive error (P-Frame values) is less than 1, yields negligible 

motion distortion for all the examples we have studied. 

Since the MPEG-4 standard uses arithmetic coding as the final stage for 

compression of the BAP data, we have implemented and tested the amount of 

compression for various motion data, having processed them through the enhanced 

pipeline incorporating BAP sparsing, as depicted in Figure 2.2.1. We have obtained a 

significant amount of compression after the final arithmetic coding stage, with no visual 

distortion of the motion, with K = 0.1. The test results for some of the representative 

motions are given in Table 2.2.1.  

Table 2.2.1: Comparison of the degree of compression and number of CPU cycles 
required to encode and decode motion data, with simple arithmetic coding, and arithmetic 
coding after BAP sparsing. The BAP sparsing step prior to arithmetic coding yields 
superior results in both cases. QCP K = 0.1 for all the experiments. 

 

Motion 
No. of 
Frames 

Arithmetic 
Coding 
(KB) 

BAP 
Sparsing + 
Arithmetic 
Coding 
(KB) 

% 
reduction 
in file 
size 

CPU 
Giga 
Cycles 
Encoding 
Original 

CPU Giga 
Cycles 
Encoding 
Sparsed 

CPU 
Giga 
Cycles 
Decoding 
Original 

CPU 
Giga 
Cycles 
Decodin
g 
Sparsed 

% 
reduc-
tion in 
CPU 
Cycles 

Walking 343 83 63 75.9% 1.341 1.031 0.928 0.756 81.5% 
Dance 434 104 73 70.2% 1.684 1.169 1.169 0.859 73.5% 
Sword Play 2251 515 386 75.0% 8.491 6.394 5.981 4.503 75.3% 
Fancy Foot 2555 586 448 76.5% 9.625 6.394 6.841 4.538 66.3% 

Exercise 4653 1024 743 72.6% 16.981 12.272 11.928 8.697 72.9% 

Walk, Climb 4839 1082 776 71.7% 17.864 12.684 13.166 8.972 68.1% 
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For a power constrained device, both encoding and decoding of motion data using 

arithmetic coding are critical sources of power consumption in the case of streaming 

motion data. To estimate power consumption, the number of CPU cycles needed to 

encode and decode the motion data for the representative motion examples mentioned 

above has been computed. A 2.2 GHz Intel Celeron Processor with 128 KB L2 cache and 

512 MB RAM for running the arithmetic coding and decoding algorithms has been used. 

As shown in Table 2.2.1, BAP-Sparsing requires fewer CPU cycles for both the encoding 

and decoding process, from which it is safe to infer that the proposed method saves 

power during both encoding and decoding of the streaming motion data. 

Trading bandwidth and CPU resource consumption with data quality has been a 

common practice, especially for media streaming over the Internet. The MPEG standard 

has been designed with the ability of making data quality adaptations by simply 

performing frame dropping. There exists considerable published research literature on 

this topic [Rowe, 1994] [Krasic, 2003] [Zhang, 1999]. When compared to data quality 

adaptation using traditional frame dropping adaptations, BAP sparsing can be considered 

to be a "smart" data dropping technique. Instead of skipping frames and simply 

discarding the motion data, BAP sparsing reduces the amount of transmitted data by 

simplification and aggregation of the motion data to approximate the same underlying 

motion. BAP sparsing can achieve this by taking advantage of the knowledge of the 

moving objects and their internal physical representation. 

BAP sparsing has a significant advantage over the simple frame dropping 

technique, especially for animation video. For example, in the case of traditional MPEG 

random frame dropping, once a P-frame is dropped, all its subsequent frames within the 
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same GOP and even some B-frames, transmitted before the dropped P-Frame that refer to 

the P-Frame, have to be skipped because of decoding failure. For a normal video clip, 

because of the relatively small GOP size [Feng, 2003], the quality degradation caused by 

P-frame dropping is constrained to lie within a very short time interval (determined by 

the GOP size). The video quality can recover to its original value when the first frame of 

the next GOP arrives. Unfortunately, the BAPs are organized as a single long GOP with a 

single I-frame at the beginning of the sequence followed by several P-frames. This makes 

traditional frame dropping unsuitable for data quality adaptation in the standard BAP 

compression pipeline, since the quality of BAP data is severely compromised. BAP 

Sparsing, on the other hand, understands the motion data and the associated skeletal 

model hierarchy, and keeps track of the accumulated error so that P-frames can be 

skipped and modified without affecting future frames. 

 

2.2.5. Future Improvements 

There is scope for future improvements in the proposed method. Although the current 

default value for the QCP K = 0.1 yields satisfactory results, it is desirable to obtain an 

optimal value for the QCP K via statistical analysis of the underlying motion data. A 

good metric for quantification of the quality of motion is needed, as the current measure 

based on mean displacement error does not map to any direct measure of the visual 

quality of motion animation. 
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2.3. BAP Sparse-indexing 

Animation of human-like virtual characters has potential applications in the design of 

human computer interfaces, computer games and modeling of virtual environments using 

power-constrained devices such as laptop computers in battery mode, pocket PCs and 

PDAs [Gutiérrez, 2003] [Kruppa, 2003]. Distributed virtual human (avatar) animation is 

used in many applications that depict human models interacting with networked virtual 

environments [Capin, 1999]. Distributed virtual environments (DVEs) either require 

exchange of motion files between hosts to simulate the avatar motion, or use locally 

stored motion data [Joslin, 2000] [Cavazza, 2003] [Vacchetti, 2003] [Barakonyi, 2004] 

[Capin, 1997]. In order to standardize avatar animation, MPEG-4 has proposed H-Anim 

standards to represent avatars [ISO/IEC-systems, 1999] [ISO/IEC-visual, 1999] [Preda, 

2004]. An avatar is animated using a stream of body animation parameters (BAPs) 

encoded for low-bitrate transmission [Capin, 1999b], using the MPEG-4 compression 

pipeline (Figure 2.2.1), in dedicated interactive communications and broadcast 

environments [Capin, 2000a] [Preda, 2002] [Preda, 2001] [Capin, 1997]. The BAPs 

control the various independent degrees of freedom in the skeletal avatar model to 

produce an animation of the body parts [Capin, 2000b]. 

The two major issues in MPEG-4 BAP based animation in mobile devices are  

(a) Limited bandwidth available for streaming BAP data, and  

(b) Limited power available to process the animation data.  

Network overload, while streaming, can be reduced by using smart techniques 

such as dead reckoning [Capin, 1997], and BAP quantization and grouping [Capin, 

1999b]. Although these techniques reduce the network load significantly, decompression 
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of the data at the client end entails extra CPU cycles. To reduce the power consumption 

resulting from the CPU cycles needed for decompression, raw data may be used. 

However, the direct use of raw data is undesirable as the network may become too 

overloaded. Hence, it is desirable to have a compression method which reduces the 

network load significantly, and also requires minimum computation, hence power 

consumption, at the client side to reconstruct the motion data from the compressed data 

stream. In addition, the hierarchical structure of the skeletal avatar model needs to be 

judiciously exploited in the case of lossy compression such that any undesired reduction 

in motion animation quality is minimized. 

A combination of two novel compression algorithms for MPEG-4 BAP data is 

reported in this section, which (a) intelligently exploit the structural hierarchy of the 

virtual human avatar to achieve efficient compression which, though lossy, results in 

reconstructed motion of good quality, (b) use indexing techniques for compression of 

BAP data, resulting in significant reduction in power consumption required for 

decompression, and (c) provide quality control parameters for tighter control of the 

reconstructed motion quality and compression ratio. One of the proposed compression 

algorithms termed as BAP-Sparsing [Chattopadhyay, 2005], creates a sparsed 

representation of the original BAP data. This results in improved compression of the BAP 

data upon using the MPEG-4 compression pipeline (Figure 2.2.1). A detailed description 

of BAP-Sparsing has been given in the previous section. The other proposed algorithm, 

BAP-Indexing [Chattopadhyay, 2006], creates byte-size indices for representation of the 

BAP data. BAP-Indexing results in the compression of the BAP data, since the indices 

can be represented using fewer bits, compared to the original floating point representation 
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of the BAPs. The resulting compression ratio is significantly superior to that obtained 

under similar conditions using the MPEG-4 compression standard [Chattopadhyay, 

2006]. A combination of the two algorithms mentioned above, resulting in a sparse, 

quantized representation of the original BAP data, has been reported. The resulting 

hybrid algorithm yields significantly better compression ratio compared to those obtained 

using the MPEG-4 standard, and requires significantly less client-side power measured in 

terms of CPU cycles and energy (measured in mJoules) needed to receive and 

decompress the data. Standard MPEG-4 techniques such as grouping can be used atop the 

proposed technique to further reduce the bit rate, as can be done in the case of MPEG-4 

based BAP compression. 

There exist quantization methods for efficient use and distribution of, avatar 

motion data over the network. Endo et al. [Endo, 2003] propose quantization of the 

motion type, rather than the motion data itself. Hijiri et al. [Hijiri, 2000] describe a new 

data packet format which allows flexible scalability of the transmission rate, and a data 

compression method, termed as SHCM, which maximizes the efficacy of this format by 

exploiting the 3D scene structure. The reported method uses quantization to achieve data 

compression in a manner somewhat similar to the above chapter, but incorporates 

intelligent exploitation of the hierarchical structure of the human skeletal model. 

Giacomo et al. [Giacomo, 2003] present methods for adapting a virtual human’s 

representation and the resulting animation stream, and provide practical details for the 

integration of these methods into MPEG-4 and MPEG-21 architectures. Aubel et al. 

[Aubel, 1998] present a technique for using impostors to improve the display rate of 

animated characters by acting solely on the geometric and rendering information.  
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The known techniques mentioned above do not describe any direct impact on the 

power consumption of the client device on which the animation is being rendered. Also, 

there is not sufficient quantitative analysis of the quality of the rendered motion upon 

decompression of the compressed motion data. The algorithm proposed in this chapter 

not only allows low-bitrate encoding of motion data, but is also suitable for data 

reception and data reconstruction on power-constrained devices. Henceforth, the 

proposed algorithm will be termed as Sparse-indexing in the remainder of the chapter. 

 

2.3.1. BAP-Indexing: Indexing of BAP data 

The basic concept underlying the proposed indexing technique is to be able to index some 

(perhaps all) of the numbers within the original motion matrix d, and generate a 

corresponding lookup table for the indices. This compression method results in 

significant data reduction, as each index value can be represented using fewer bits than 

that the corresponding floating point number. 

 

2.3.1.1 Indexing Motion Matrix d 

In order to ensure efficient indexing, we have used the standard equal frequency 

distribution technique to uniformly assign the n●m numbers in d to buckets numbered 

from 0 to 255. This is done as follows: 

Step 1: The floating point numbers in matrix d are collected into a single 1-D array A of 

size n●m. The array A is sorted in ascending order. All the numbers in A are multiplied 

by the resolution quantization term (RQT), M. The RQT depends on the number of 
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significant digits used to represent the floating point number. The numbers are rounded to 

represent integers in the range [Amin●M, Amax●M]. 

Step 2: The integers in the range [Amin●M, Amax●M] are divided into buckets numbered 

from 0 to 255. It is desirable to allocate each of the 256 buckets an equal share of n●m 

numbers in A. This implies that each bucket should have freq = (Amax●M - Amin●M)/256 

numbers allocated to it. This is done by computing the histogram of the integers in A, and 

dividing the histogram into 256 vertical strips such that each strip has the same area, freq. 

After all the numbers in A have been allocated to a bucket numbered from 0 to 255, the 

numbers in A are divided by the RQT to recover the original numbers.  

At the end of this step, we get a set of 256 buckets denoted by bucket(j) for j = 0 

to 255, such that each floating point entry in the motion data matrix d is contained in 

exactly one of the 256 buckets. An index matrix dindex is used to store the bucket number 

for the corresponding entry in the matrix d. 

 

2.3.1.2. Lookup Table for dindex 

The creation of an appropriate lookup table for the recovery of the original motion data 

matrix d from the index matrix dindex is critical, since recovery of the original data after 

discretization invariably results in motion distortion. A straightforward method to recover 

the number associated with a bucket is to compute the arithmetic mean of all the floating 

point numbers assigned to the bucket. However, this invariably leads to poor 

approximation of the original motion matrix d. We have intelligently exploited the 

hierarchical structure of the skeletal avatar model to construct the lookup table Tlookup as 

follows. 
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Step 1: The avatar is represented by a hierarchical skeletal model. For each m-

dimensional pose vector (or row in d), each dimension, or column in d, is assigned a 

level li (Figure 2.2.3). The level li signifies the importance of the degree of freedom 

associated with a particular joint, in the overall displacement of the model joints. A joint 

i, at level li = 1, when given a small angular displacement, affects the model more in 

terms of the overall displacement, than a joint j at level lj = 2, 3, 4, 5 or 6. 

Step 2: After assigning level values to the various joints of the avatar model, these joint 

level values are used to compute a weighted sum of the numbers belonging to a bucket. 

The jth lookup value in lookup table Tlookup is given by: 

  (2.3.1) 

where η is a constant. Empirical observations have revealed that as η increases, the Tlookup 

values result in a better approximation to the data, resulting in reduced displacement 

error. This is due to the fact that the numbers associated with level = 1 affect the 

displacements in the body the most. Hence, emphasizing the numbers within a bucket 

with level = 1 leads to better approximation of the motion data. As η  ∞, all the 

weighting terms in equation (2.3.1) tend to zero, except for the terms with level =1. 

Hence, when computing the weighted sum of the numbers in a bucket, we consider only 

those numbers with level = 1 (selective averaging), and compute a simple mean of these 

numbers. If none of the entries in a bucket have level =1, we use the next smallest level 

to compute the weighted sum. 

There is an inherent tradeoff between the size of the motion data that is indexed 

and the quality of the reconstructed motion. The longer the motion sequence, the lower 
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the reconstructed motion quality after indexing. To overcome this problem, the original 

difference matrix d is fragmented into a succession of smaller matrices d1, d2, …, dL. 

Each fragmented motion matrix has nd rows. Each of the fragmented matrices of size nd x 

m in turn is discretized using the above method resulting in separate lookup tables, 

Tlookup
1, …, Tlookup

L. This simple technique yields a good approximation to the motion 

data of any arbitrary duration.  

 

2.3.1.3. Combining the original and indexed data 

It is often desirable to preserve the original data contained within some of the columns of 

the original motion matrix d, and index the remainder of the columns. This is especially 

true for the first six columns of d, which represent the absolute displacement and 

orientation of the avatar with respect to a fixed origin. Indexing these columns may lead 

to undesirable motion distortion, and consequently result in contradictory physical 

appearances such as the avatar’s feet not touching the ground while walking, etc. A 

 
Figure 2.3.1: BAP-Indexing. The motion matrix d is decomposed into equal fragments
of length nd each. The first FDF rows are untouched; the next m – FDF columns are 
indexed. Each fragment is indexed separately, with its own lookup table.  
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combination of the original and indexed columns can be achieved by not indexing the 

first FDF (Fixed Degrees of Freedom) columns, and indexing the remainder of the m – 

FDF columns. Figure 2.3.1 depicts the indexing of the original motion matrix d. 

 

2.3.2. BAP-Sparsing: Sparse representation of indexed matrix 

Once the difference matrix d is indexed, we now use the second algorithm, BAP-

Sparsing, in order to eliminate several indices from the index matrix. The basic intuition 

underlying BAP sparsing is to allow the joint corresponding to the BAP parameter to be 

frozen, for a fraction of a second, and then released all of a sudden. However, once 

released, the joint corresponding to the BAP parameter will have greater cumulative 

displacement to make up for the lost displacements when frozen. If performed 

judiciously, the freeze-release operation should be imperceptible to the human eye. 

 

2.3.2.1. Implementation of Sparsing Algorithm 

To implement BAP-Sparsing, for each column i of the motion matrix d, we consider each 

floating point number corresponding to the BAP index, and drop (reduce to zero) 

consecutive indices along column i, and accumulate the floating point values 

corresponding to the dropped indices until the cumulative value exceeds a predefined 

threshold Ti. At this point, we replace the current index by the corresponding index of the 

cumulative value, and reset (to zero) the variable corresponding to the cumulative value. 

This process is repeated until all the rows in the column are either reduced to zero or 

replaced by a corresponding index for the cumulative value (Figure 2.2.2). A detailed 

discussion on the determination of the threshold value Ti is presented in the next section. 
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The centered and normalized value of the cumulative predictive encoding, |Sk - 

mk |/ sk (see Figure 2.2.2) is used so that the value of the threshold Ti can be determined 

irrespective of the mean (mk) and spread (Sk) of the data in the columns of d. This stage 

renders the algorithm more general, enabling it to span a wide range of motions, and also 

enables the setting of a default value of the control parameter. 

 

2.3.2.2. Determination of the threshold Ti 

We hypothesize that the threshold value Ti for a particular BAP parameter should depend 

on the position of the corresponding body joint in the hierarchical human skeletal model. 

We have represented the hierarchical significance of the various joints in the human body 

by a level number, as shown in the parentheses in Figure 2.2.3. The threshold Ti for a 

joint i, represented by column i in matrix dn x m, should be such that the joints higher in 

the hierarchy, with a smaller level value, should be allowed less angular error due to 

sparsing of the prediction error, when compared to joints with a larger level value. This 

ensures that the displacement error induced by the sparsing operation is small. For a 

column i of d, with level Li, the corresponding threshold Ti is given by: 

Ti = KLi           (2.3.2) 

where K is another quality control parameter (QCP). Typically, the value of K is chosen 

such that the maximum threshold value is less than 1. 

 

2.3.3. Effect of QCP on compression ratio and animation quality 

The two algorithms, BAP-Indexing and BAP-Sparsing when combined, as mentioned 

above, have four associated quality control parameters (QCPs). The bounds for the QCPs 
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are as follows: 1 ≤ FDF ≤ m (where m = number of columns in motion matrix d), 8 ≤ b ≤ 

32 (assuming byte boundary for the indices), nd
min ≤ nd ≤ n and 0 < K < ∞.  

 

2.3.3.1. Compressed file size as a function of FDF, b, nd and K 

In practice, the BAPs in motion matrix d are represented by floating point numbers. 

Assuming that floating point numbers take 4 bytes each, the original raw file size for dnxm 

is 4●m●n. We first compute the file size assuming no sparsing, and then introduce 

sparsing to compute the file size as a function of all four QCPs (FDF, nd, b and K). 

 

1) File size assuming no sparsing (K = 0): Assuming no sparsing (i.e. sparsing parameter 

K = 0), the resulting file size is obtained simply by expressing the number of bytes as a 

function of the three indexing parameters FDF, nd and b. In the case of a motion data file 

that has been decomposed into smaller segments, each segment contains a header and a 

data section. The header file for each segment (Figure 2.3.1) takes 4●2b bytes for the 

lookup table, and a few extra c1 bytes to store the numbers nd and b. Hence, the total 

number of bytes taken by the header for a motion segment is given by: 

seg_head = 4●2b + c1 (2.3.3) 

For the actual motion data, the first FDF columns (0 ≤ FDF ≤ m) are floating point 

numbers taken directly from the motion matrix d, and the next m – FDF columns are 

indices for the lookup table, where each index takes a maximum of b bits (⎡b/8⎤  bytes).  

Hence, the total number of bytes needed for the motion data segment is given by: 

seg_mot = nd● (4●FDF + ⎡b/8⎤●(m – FDF))   (2.3.4) 
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For a motion data sequence spanning n frames, the number of blocks, or motion 

segments, each consisting of nd frames, is ⎡n/nd⎤. Hence, the total number of bytes, 

T(FDF, b, nd) of the semi-indexed matrix is obtained by combining equations (2.3.3) 

and (2.3.4): 

T(FDF, b, nd)  = ⎡n/nd⎤●(seg_ head + seg_mot) + 4m  (2.3.5) 

The minimum file size Tmin with sparsing parameter K = 0 is obtained by assigning the 

values FDF = 0, nd = n and b = 8 (assuming a byte boundary for the indexed data) in 

equation (2.3.5). The maximum file size, Tmax, should not exceed the original file size 

4●m●n. For the parameter values mentioned above, the minimum file size Tmin (including 

the lookup table and initial pose vector) is given by: 

Tmin = (n-1)m + 4m + c2          (2.3.6) 

where c2 is the number of bytes needed to store 256 buckets, each containing a 4-byte 

floating point number; i.e. c2 = 1024.  

Since the motion quality decreases with increase in compression ratio, it is 

desirable to obtain the maximum file size permitted by the network, as a fraction of the 

original file size. For a desired fraction of the original motion data, the corresponding 

quality control parameters can be obtained by exhaustively searching the space of all 

possible parameter values such that the following constraint holds: 

(n-1)m + 4m + 1024 ≤ T(FDF, b, nd) ≤ f●4mn       (2.3.7) 

where f (henceforth termed as the minimum-compression-ratio) is the fraction of the 

maximum file size of the original motion data. The parameter values that satisfy 

equation (2.3.7) can be termed as valid points in the parameter space. 

 



 34

2) File size with sparsing and indexing (K > 0): In order to obtain a sparsed-indexed 

representation of the motion matrix d, it is essential to determine a suitable value for the 

sparsing parameter K such that the resulting motion quality is not too distorted. A basic 

heuristic is to maintain the normalized threshold value Ti ≤ 1 for each column (joint 

degree of freedom). This is possible by ensuring that K ≤ 0.2, since the maximum level 

value can be 5. Having assigned K an empirically selected value less than 0.2, say K = 

0.1, the degree of sparsing in the resulting indexed matrix depends on the type of motion. 

We will present experimental results obtained for K = 0.1 for various motion examples to 

demonstrate how sparsing helps to reduce the file size in Section 2.3.6. The total file size 

is now given by T(FDF, b, nd, K), which is a certain function of T(FDF, b, nd). 

 

2.3.3.2. Quality of reconstructed motion vs FDF, b, nd and K 

To quantify the reconstructed motion quality, we use the metric DEF (Displacement 

Error per Frame). Let Cnx3m be the original coordinates of the joints of the human model, 

and C’nx3m be the coordinates of the joints of the human model after reconstruction of the 

motion from the indexed matrix. We define the error function, ∆:I  R as follows: 

∆(i) = ∑
=

−
n

j
jiji PP

1
' ,           i = 1 , 2, ..., m   (2.3.8) 

where Pji = (Cj,3i-2 , Cj,3i-1 , Cj,3i) and P’ji = (C’j,3i-2 , C’j,3i-1 , C’j,3i), i = 1,2, .., m, and ║.║ is 

the Euclidean norm defined as ║(x, y, z)║ = √(x2 + y2 + z2). This error metric represents 

the error at each joint position.  

The DEF is defined as the sum of the errors for all the joints, normalized by the 

total number of rows (i.e. frames) in the motion data matrix. 
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  (2.3.9) 

Although the DEF value does not represent the motion quality in an absolute sense, 

comparing the DEF values for various values of the quality control parameters (QCPs) 

provides an adequate measure of relative motion quality. 

 

2.3.3.3. Determining optimal values  of FDF, b, nd and K 

In order to compress the BAP data matrix d in practice, it is essential to obtain the values 

for the four QCPs (FDF, nd, b and K). Recall that the value of K is fixed at 0.1 as 

described in subsection 2.3.5.1. Empirical studies reveal that for b > 8, the size of the file 

explodes exponentially, thus violating the upper bound in equation (2.3.7) even for f = 1 

(100%). Hence, we fix b = 8, which means that a motion segment will have a 256-bucket 

lookup table, and that each index value is represented by a single byte. The surface plots 

 
Figure 2.3.2: (Left) Displacement error per frame (DEF) for 30 ≤ nd ≤ 120 rows and 
1 ≤ FDF ≤ 62 columns. (Right) Obtained throughput for 30 ≤ nd ≤ 120 rows and 1 ≤ 
FDF ≤ 62 columns. (b = 8, K = 0.1). 
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of T(FDF, b, nd, K) and DEF(FDF, b, nd, K), for a jogging motion example, for the 

various possible values of FDF and nd, while fixing the other parameters as b = 8 and K = 

0.1,  are presented in Figure 2.3.2. As can be observed, the lower the DEF, the better is 

the motion quality. Hence, the set of parameters amongst the valid parameters which 

minimize both DEF(FDF, b, nd, K), and T(FDF, b, nd, K), are the optimal quality control 

parameters (QCPs). Since we have already fixed b = 8 and K = 0.1, we now need to 

determine the optimal values for the quality control parameters FDF and nd. These are 

the values which minimize the following figure of merit function: 

M(FDF,b,nd,K) = T(FDF,b,nd,K)•DEF(FDF,b,nd,K)   (2.3.10) 

A simple exhaustive search reveals that FDF = 41 and nd = 60 (with b = 8 and K = 0.1 as 

fixed values) minimizes the figure of merit function M for the jogging example. 

Although the indexing method is inherently lossy, the visual degradation in the 

reconstructed motion is imperceptible. The functions T and DEF are inversely 

proportional to each other. A relationship plot can be used to select the desired 

throughput requirement T based on an acceptable value of DEF. 

The QCPs can also depend on the display size of the screen on which the 

animation is being rendered. For small QVGA resolution displays (320 X 240), the 

amount of error allowed for the joints of the avatar in each frame can be higher, 

compared to that in the case of higher resolutions such as 640 X 480. This screen size 

information can be used to weigh the DEF value appropriately (perhaps empirically) in 

equation (2.3.10) to allow greater quantization (smaller FDF and larger nd), and hence 

more compact compressed file sizes in the case of lower-resolution displays. 
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2.3.4. Experimental results for different motion types 

In order to test the usefulness of the proposed Sparse-indexing technique, we have 

experimented with various types of motions. The motion types we have selected range 

from periodic motions (jogging, walking, jumping, long jump etc) to extremely ill-

correlated and complex motions such as dancing. We have considered b = 8 (number of 

bits used to encode an index) and K = 0.1 (the sparsing coefficient) for all of our analysis. 

The motion examples have been created using motion capture data from real human 

actors. The motion data files are obtained from the website mocap.cs.cmu.edu. 

 

2.3.4.1. Compatibility of Sparse-indexing with existing BAP encoding technologies: 

Sparse-indexing is partially compatible with existing MPEG-4 quantization and grouping 

techniques [Capin, 1999b]. The quantization portion of Sparse-indexing has several 

advantages over MPEG-4 quantization. The former uses a byte to represent each of the 

derived indices, whereas MPEG-4 quantization may require indices up to 4 bytes long, 

depending on the precision [Capin, 1999b]. MPEG-4 spatial grouping groups together 

joint types, in order to encode only certain portions of the joints. A similar approach can 

be easily incorporated in Sparse-indexing; i.e., for the 62 degrees of freedom avatar, a 62 

bit mask (rounded up to 8 bytes) can be used as a mask to tell the decoder which joints 

are encoded in the BAP data. Another popular technique, called dead-reckoning [Capin, 

1997] can be used easily in conjunction with Sparse-indexing. In joint-level dead 

reckoning, joint angles of the avatar are the only information that is required. Since 

Sparse-indexing is another way of encoding the joint angles, dead-reckoning techniques 

require trivial modifications to be made compatible with Sparse-indexing. 



 38

 In the next three subsections, various comparisons are made with MPEG-4. We 

have not used grouping for the MPEG-4 encoded file; i.e. the entire 62 degrees of 

freedom of the BAP data are completely encoded in each row/frame. Quantization, 

followed by arithmetic coding, is used for MPEG-4 encoding. To ensure a fair 

comparison, the Sparse-indexing does not group the data either. 

 

2.3.4.2. Minimum BAP data file size obtained by Sparse-indexing compared to MPEG-4 

Table 2.3.1 gives the minimum throughput T obtainable using Sparse-indexing, and the 

corresponding displacement error DEF. As expected, the throughput T is significantly 

less than that obtained by MPEG-4-based compression. 

 

Table 2.3.1: Comparison of compression ratio obtained via sparse-indexing and power 
consumption in m-joules by the wireless network interface card (WNIC) for various motion 
examples. Column [3] gives the compression file size after MPEG-4 arithmetic coding based 
compression. Column [5] gives the compressed file size obtained after sparse-indexing. 
Columns [6] and [7] give the energy consumption in milli-Joules for the reception of 
streaming MPEG-4 and Sparse-indexing data for a 128 Kbps network. Column [8] gives the 
ratio of power consumption by the WNIC using the sparse-indexing, compared to MPEG-4. 
Columns [9] – [11] give comparisons for network bandwidth of 1 Mbps, and columns [12] –
[14] for 4 Mbps. ES = 177 mJ/s and ER = 1425 mJ/s. 
 



 39

2.3.4.3. Power consumption by Sparse-indexing compared to MPEG-4  

The process of data reception, decoding and rendering for BAP based animation can be 

broken into four steps: 

(1) The Wireless Network Interface Card (WNIC) periodically receives the encoded BAP 

data and stores it in the WNIC buffer 

(2) The CPU periodically transfers the data from the WNIC buffer to MEMORY 

(3) The CPU reads the encoded data from MEMORY, and stores the reconstructed 

floating point numbers corresponding to the various joint angles in MEMORY. 

(4) The Graphics Processing Unit (GPU) renders avatar animation using reconstructed 

data. 

Power consumption in each of the above four high level steps can be attributed to the 

CPU (we will ignore the power consumption by the MEMORY) and also by the three 

main buses; i.e. the buses connecting CPU and MEMORY (BUScm), MEMORY and 

WNIC (BUSmw), and MEMORY and GPU (BUSmg). Power is consumed for each bus 

clock cycle, and the number of bus clock cycles is directly proportional to the number of 

bytes transferred over the bus.  Hence, in order to estimate power consumption by the 

buses, it is adequate to quantify the amount of data transferred. 

The above four steps consume power as follows: In step 1, power is consumed by 

the WNIC while receiving data from the server. In step 2, power is consumed by the 

BUSmw while transferring data from the WNIC buffer to the MEMORY (the power 

consumed by the CPU during this data transfer is considered relatively small and hence 

ignored). In step 3, power is consumed by both the CPU while decoding the data, and the 

BUScm while transferring data between the CPU and the MEMORY. In step 4, power is 
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consumed data by both BUSmg (while transferring data from MEMORY to GPU), and the 

GPU while rendering the avatar for each frame. 

Power consumption by BUSmg is the same for both the MPEG-4 coded BAP data 

(henceforth termed as M-data) and Sparse-indexing coded BAP data (henceforth termed 

as SI-data), since the amount of data upon decompression is the same in both cases. 

Decoding M-data requires a substantial number of CPU cycles, compared to decoding of 

SI-data, since decoding of M-data requires a pipeline of processes such as inverse-

arithmetic coding, and inverse quantization, whereas decoding of SI-data entails only an 

access to the lookup table. Hence, the power consumption by BUScm is greater in the case 

of decoding of M-data compared to SI-data. Finally, the BUSmw transfers less data in the 

case of SI-data compared to M-data. This is evident from the results presented in 

subsection 2.3.6.2, which shows that the amount of SI-data generated is much less 

compared to the amount of M-data generated, in comparable settings. 

Power consumption by the GPU in order to render the frames is same for both M-

data and SI-data, since after decompression, the data required to animate the actual avatar 

model, are the same for both M-data and SI-data. The GPU is a major source of power 

consumption, along with data decoding and the bus data transfer. The significance of 

reducing power consumption for data reception, data transfer and data decoding, 

increases when simpler graphics models are used, such as in mobile devices [Chandra, 

2003]. 

In order to ensure a fair comparison of power consumption during decompression 

of M-data and SI-data, we encode the M-data and SI-data to yield identical data file sizes. 

To achieve this, we first generate the M-data using MPEG-4 quantization and arithmetic 
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coding (without grouping). We then compute the minimum-compression-ratio f of the 

obtained M-data file size to the original motion file size, and use this minimum-

compression-ratio f in equation (2.3.7) to compute an upper bound on the network 

throughput requirement (file size) for the motion example. Next, we exhaustively 

enumerate all the possible values of FDF and nd which satisfy the constraint in equation 

(2.3.10) (note that b = 8 and K = 0.1 have been fixed previously). We select the parameter 

values FDF and nd which yield the minimum reconstruction error (DEF). The final 

parameters for the indexed motion file are chosen to be these parameter values. The 

results of the experiment are presented in Table 2.3.2. As evident from the table, 

decoding of the M-data requires a significant number of CPU cycles. On the other hand, a 

simple table lookup is required for decoding of the SI-data to obtain the actual data for 

joint angles, which, logically, entails fewer CPU cycles. 

 Finally, an analytical comparison of power consumption for receiving M-data and 

Table 2.3.2: Comparison of MPEG-4 BAP compression vs Sparse-indexing (b = 8 
and K = 0.1). The file sizes are in Kbytes. To compute the CPU cycles needed for 
decoding, we have used a 2.2 GHz Celeron CPU with 128 KB L2 cache and 512 MB 
RAM. 
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SI-data at the WNIC is made. For a motion of time duration T, data size S and given 

available bandwidth B, the energy used by the WNIC is given by 

Enetwork = ER•S/B + ES•(T – S/B)  (2.3.11) 

ER is the energy used by the WNIC during data reception and ES is the energy used by the 

WNIC when it is sleeping and not receiving data. Using equation (2.3.11), we compute 

the WNIC energy utilization for reception of M-data and SI-data (Table 2.3.1). We have 

used energy usage data from [Stemm, 1996] [Havinga, 2000] to obtain the energy usage 

for data reception in m-joules. Again, reception of SI-data resulted in significantly less 

energy consumption by the WNIC when compared to reception of M-data. 

 We conclude that BAP data compressed using Sparse-indexing leads to less 

power consumption for decompression, and much smaller compressed file sizes, 

compared to MPEG-4 compressed BAP data.  

 

2.3.5. Conclusions and Future Work 

A novel Sparse-indexing technique to compress the BAP data used for MPEG-4 

compliant character animation has been reported. The proposed Sparse-indexing method 

leads to reduction in both, the throughput requirement for networked applications 

requiring motion data exchange, and client power consumption for data reception and 

data decompression. The resulting quality of the reconstructed motion is improved 

considerably by intelligent exploitation of the hierarchical structure of the skeletal avatar 

model during the process of creation of optimal lookup tables for reconstruction of the 

quantized motion. The quality and throughput requirements of the motion data are 

controlled via four quality control parameters. We have proposed a simple systematic 
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search procedure to obtain the optimum combination of these parameters depending on 

the required compression ratio. 

 A limitation of the proposed technique is that the optimal values of two of the 

parameters, FDF and nd, are obtained via exhaustive search, and values for the sparseness 

coefficient K and indexing-bits b are obtained via empirical observations. It may be 

possible to obtain the optimal values for these parameters more efficiently. Another 

drawback with any animation research is that there is no perfect quantitative measure for 

the quality of the reconstructed motion. Finally, the intelligent use of the hierarchical 

structure of the model yields good results for full body motions of the avatar; for small 

delicate motions such as movement of the fingers, or for facial animation, the proposed 

technique offers considerable scope for future improvement. 

 

2.4. Weighted PCA 

As seen in previous sections, MoCap data is typically represented as a matrix of 

dimensions n × m, where n is the number of frames of the captured motion, and m is the 

number of degrees of freedom which can be independently manipulated. The number of 

columns m is referred to as the dimensionality of the motion data. MoCap data in this 

form is widely used for motion editing, and creation of new motions from a database of 

MoCap data [Brand, 2000], [Glardon, 2004], [Jenkins, 2002], [Lim, 2001], [Safonova, 

2000]. A common preprocessing step is to alternatively project the MoCap data onto an 

appropriately determined k-dimensional sub-space, where k < m. This projection would 

result in a lower-dimensional representation of the motion data, making it easier to 

analyze, manipulate and edit the motion data. Hence, dimensionality reduction is a 

fundamental step in most applications of MoCap data.  
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A popular method for dimensionality reduction (DR) of MoCap data is Principal 

Component Analysis (PCA) [Bowden, 2000], [Jenkins, 2002]. PCA attempts to derive an 

efficient low-dimensional representation of the MoCap data by first, determining a set of 

mutually orthonormal axes which maximally de-correlate the input data, and second, by 

projecting the input data onto a lower dimensional subspace spanned by a judiciously 

chosen subset of these orthonormal axes. The projections of the input data on the above 

subset of the orthonormal axes are termed as the principal components (PCs) of the input 

data [Alexa, 2000]. However, a major drawback of the standard PCA technique is that the 

reconstructed motion from the lower-dimensional representation invariably exhibits 

visual distortion, irrespective of the error metric used. To reduce the distortion error, 

researchers have used various ad-hoc schemes for assigning weights to the columns of 

the original MoCap data matrix (termed as axis stretching) to improve the visual quality 

of the reconstructed motion [Gleicher, 1998], [Grochow, 2000]. These axis-stretching 

methods use various ad-hoc optimization techniques to determine a locally optimal 

solution (i.e. set of weights). However, none of the axis stretching methods explicitly 

exploit the hierarchical structural information derived from the human skeletal model. 

The use of PCA as a compression methodology, or as a pipeline component in the general 

scheme of MoCap compression, has been made explicit in the recent chapter by Arikan 

[Arikan, 2006]. In Arikan’s approach, short clips of motion are first approximated by 

Bezier curves and compressed using standard PCA. Since the proposed WPCA is an 

improvement over standard PCA, it represents an important and significant step towards 

MoCap data compression in general. 

Our empirical observations have shown that when a node displacement-based 

metric is used to measure the reconstruction error, lossy PCA, obtained via omission of 

eigenvectors corresponding to small eigenvalues from the basis set, does not necessarily 

yield optimal rate-distortion performance. A node displacement metric essentially 

considers the error metric as the amount of relative displacement that the nodes or bone 
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joints of the skeletal model have undergone upon reconstruction from the reduced 

dimensional representation of the MoCap data matrix. In this article, we first propose a 

simple weighing scheme, which exploits the hierarchical structural information from the 

skeletal model to compute these weights. Although these weights result in improved rate-

distortion performance, they are not necessarily optimal. To resolve this issue, we 

propose a Genetic Algorithm (GA) to efficiently learn the optimal weights. The initial 

heuristic weighing scheme is used to create the initial population for the GA. Results 

show that, for a given dimensionality of representation, the reconstruction error is 

significantly less for the proposed WPCA when compared to standard PCA. GAs are 

known to give near-globally optimal solutions, thus enabling the determination of a near-

optimal set of weights which yield a near-global minimum of the reconstruction error. 

 

2.4.1. Principal Component Analysis (PCA) 

PCA attempts to efficiently represent the weighted data in δ by first determining a set of 

mutually orthonormal axes, which maximally de-correlate the data. The input data is then 

projected on a lower-dimensional subspace spanned by a judiciously selected subset of 

the mutually orthonormal axes termed as the principal components. Let the covariance 

matrix of δ be Σ and the eigenvalues and the eigenvectors of Σ be λi and Λi respectively, 

where 1 ≤ i ≤ m.  We can now write δ as 

δ = USVT      (2.4.1) 

where U is an n x m principle component (PC) matrix. Each of the m columns of U 

represents a single PC curve. S is an m x m diagonal matrix, with the diagonal containing 

the eigenvalues λi, computed above, arranged in a non-increasing order, from top to 

bottom. The columns of matrix V are the eigenvectors computed above, arranged in the 

same order as the corresponding eigenvalues in S, i.e., the column Λj = (Λ1j, Λ2j, ..., Λmj)T 

of the matrix V denotes the jth eigenvector corresponding to eigenvalue λj.  
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 The desired dimensionality reduction is achieved by retaining the first k of the m 

eigenvalues in S, and their corresponding columns in the U and VT matrices, and 

discarding the rest, such that, for a given fraction f of motion data that is to be retained, 

the following equation holds: 

f
m

i
i
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i
i

=

∑

∑

=

=

||

||

1

1

λ

λ
     (2.4.2) 

Each of the three truncated matrices U, S and VT is represented by a k < m dimensional 

matrix, which requires much less data than the original matrix δ. The dimensionality of 

the compressed motion representation is k < m. This procedure is termed as 

dimensionality reduction via PCA. 

 

2.4.2. Weighted Principal Component Analysis (WPCA) 

In the proposed WPCA technique, the matrix δ is reduced to a lower-dimensional 

representation, by first normalizing the matrix, then multiplying each matrix column by a 

weight, and finally, performing PCA on the resulting matrix, as described in Section 

2.4.3. Let the mean and standard deviation of the columns of δ be µ and σ, where µi and 

σi are the mean and standard deviation of the ith column, respectively. We normalize the 

data by re-computing δij  (δij - µi)/max(σi) , 1 ≤ i ≤ n, 1 ≤ j ≤ m. The elements of each 

row of the normalized matrix δ are then multiplied by weights wj, j = 1, 2...m. This 

process is termed as axis stretching, as all axes in the m-dimensional space to which the 

rows of δ belong, are stretched along mutually orthogonal directions. The stretching is 

generally asymmetrical, with some axes being stretched more, and some less. The 

objective of this chapter is to determine an optimal set of weights wi, j = 1, .., m, which 

results in minimum reconstruction error. After performing PCA on the axis-stretched 

matrix δ, the motion data is recovered from the low-dimensional representation, and each 

column is multiplied by the inverse of the weights to recover the original motion data. 
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2.4.2.1. The Reconstruction Error Metric 

The reconstruction error is essentially the degree of error perceived in the motion capture 

data after the data is reconstructed from the low dimensional representation. Consider the 

motion matrix δ, whose columns represent the various degrees of freedom of the human 

skeletal model. For each of the m joint positions representing the degrees of freedom in 

the human skeletal model, the reconstruction error at a specific joint position is defined as 

the sum of Euclidean distances between the joint position in the original motion matrix 

and the joint positions in the reconstructed motion matrix over all the motion frames. Let 

Cnx3p be the original coordinates of the joints of the human skeletal model corresponding 

to the original motion matrix, and C’nx3p be the coordinates of the joints of the human 

skeletal model corresponding to the reconstructed motion matrix. We define the error 

function at a joint position, ∆:I  R as follows: 

∆(i) = ∑
=

n

j 1
|| Pji – P’ji ||, i = 1, 2, ..., m   (2.4.3) 

where Pji = (Cj,3i-2 , Cj,3i-1 , Cj,3i), P’ji = (C’j,3i-2 , C’j,3i-1 , C’j,3i), i = 1,2, .., m, and || . || is the 

conventional Euclidean norm defined as||(x, y, z)|| = √(x2 + y2 + z2). The error metric ∆(i) 

represents the error at each joint position. To get an estimate of the overall error for the 

motion sequence, the errors at each joint position (equation (2.4.3)) are summed, and 

divided by the number of frames n, in the motion sequence (the number of rows in the 

motion matrix) to get the average error per frame Є as follows. 

Є =
n

i
m

i
∑
=

∆
1

)(
    (2.4.4) 

Thus, Є is the reconstruction error corresponding to the motion matrix after performing 

PCA. 
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2.4.2.2. Heuristic Weight Assignment 

Once the error metric is defined, it is now 

required to determine an appropriate set of 

weights which can further reduce the error Є 

in equation (2.4.4). We first determine a 

heuristic weighing scheme which exploits the 

hierarchical structural encoding of the human 

model. The human model has a hierarchical 

representation, as shown in Figure 2.2.3. An important observation is that the manner in, 

and extent to, which the error at a joint position is propagated through the human body 

depends largely on the position of the joint in the skeletal hierarchy. We have exploited 

this fact to compute the heuristic weights. Each node representing a joint in the skeletal 

hierarchy has an associated level value, which can be interpreted as the tree depth of the 

node from the root. Consequently, each column i of the matrix δ has a level value li 

associated with it (Figure 2.2.3). We hypothesize that columns (nodes) with a higher 

level value should be allowed a lower contribution to the weighted PCA, (and vice versa) 

since the overall displacement error caused by a joint is inversely proportional to the level 

value of its corresponding node in the skeletal human model. Such a weight assignment 

scheme would be expected to limit the overall error. Thus, we compute weight wi 

corresponding to column i as: 

i
i l

rKw =    (2.4.5) 

where K is a constant scaling factor and r is a real number between 0 and 1. We use a 

predetermined empirical value r = 1 in the case of the heuristically determined weights. 

Later, we assign a random value in the range [0, 1] to r when determining the initial 

population for the GA. 

Table 2.4.1. Comparison of 
Reconstruction error for WPCA and 
standard PCA. 
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We have tested impact of the heuristically chosen weights on some typical motion 

data. Table 2.4.1 shows that the reconstructed error Є is significantly lower for most 

motion types when the MoCap matrix is pre-multiplied by the heuristically determined 

weights before performing PCA. In the next section, we describe a GA-based algorithm 

to determine the optimal weights. As is evident from the results, the reconstruction error 

Є obtained using the near-optimal weights determined by the GA is significantly lower 

compared to the reconstruction error obtained by using standard PCA. 

 

2.4.3. Determining the near-optimal weights wi using a Genetic Algorithm 

In this section, we demonstrate how a near-optimal weight vector w = <w1, w2 ... wm> can 

be determined using a Genetic Algorithm (GA) [Goldberg, 1989]. The GA is particularly 

suited for this problem since the solution space is high-dimensional and contains several 

local optima. In addition, the objective function depends on the chosen motion example, 

and as such, does not have a functional representation. As a result, conventional 

derivative-based optimization algorithms cannot be readily used.  

 

2.4.3.1. Representation of a solution 

A potential solution to the axis stretching or weight determination problem is represented 

by an m-dimensional vector w = <w1, w2 ... wm>. The elements of each row of the motion 

matrix δ are multiplied by the weight vector w for the purpose of axis stretching. The 

optimal set of weights is expected to result in minimum reconstruction error. In this 

chapter, we have used a steady state model for the GA. The population size for the GA is 

varied between 10 and 40. The dimensionality (the number of columns) of the original 

motion matrix δ is 62; i.e. m = 62. 

The fitness function value for a given weight vector is given by: 

F(w) = C/(1 + Є)   (2.4.6) 
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where C is a constant, and Є is obtained from equation (2.4.4) computed after 

reconstruction of the motion from the weighted PCA, weighted using the corresponding 

set of weights. The goal therefore is to determine the optimal weight vector w = <w1, w2 

... wm> such that the fitness function F(w) is maximized. 

 

2.4.3.2. Initialization Strategy 

The initialization of the weights is done by using equation (2.4.5) as in the case of 

heuristic weight assignment. The only difference here is that the parameter r is assigned a 

random value between 0 and 1. Since it is possible that standard PCA may well prove to 

be more optimal than the WPCA, a special member, all of whose weights are 1, is 

inserted into the population. 

 

2.4.3.3. Selection Strategy 

We have used the roulette wheel procedure [Goldberg, 1989] to select a subset of the 

potential solutions for the purpose of reproduction. Hence, the selection probability of a 

member in the population is given by the ratio of its fitness to the sum of fitness values of 

all the members in the population. This is a good choice for a selection operator in our 

case, as the fitness values of the various members of the population are comparable. 

 

2.4.3.4. Crossover Operators 

We have investigated three different types of crossover (X-over) operators; single point 

crossover, random crossover and arithmetic crossover. For the point crossover, we create 

the offspring by randomly selecting a crossover point, such that weights to the left of that 

point come from one parent, and the weights to the right come from the other parent. For 

random crossover, each weight value in the offspring is chosen randomly from either of 

the parents. Arithmetic crossover is performed by computing each weight of the offspring 

as the arithmetic mean of the corresponding weights of the two parents. 
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 2.4.3.5. Mutation Operator 

We have implemented a uniform mutation operator by changing a single component wi in 

the weight vector of the offspring. This is effectively accomplished by selecting a random 

number i between 1 and m, and using equation (2.4.5) to re-compute wi. 

 

2.4.3.6. Replacement Strategy 

We have implemented a simple replacement policy by removing the worst member from 

the population after the new offspring is added to the population. Note that the worst 

member is defined by the weight vector that results in maximum reconstruction error Є 

(equation (2.4.4)) after having performed the weighted PCA procedure. 

 

2.4.4. Analysis 

For the purpose of analysis, we have considered the popular motion example of running, 

which is commonly used in many computer games, war simulations and other animation 
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Figure 2.4.1: Behavior of Mean Reconstruction Error for Weighted PCA over 
successive generations for different population sizes (10, 20, 30, and 40), different X-
Over operators (Single Point, Random and Arithmetic) for a running example (136 
Frames). The mean reconstruction error for standard PCA without axis stretching is 5.2. 
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applications. We also provide examples of various other types of motions that are 

commonly encountered in computer animation. The running motion example has 136 

frames of motion, sampled at 33 frames per second. Furthermore, we require that 90% of 

the information in the original data needs to be preserved using PCA (equivalently, f = 

0.9 in equation (2.4.2)). Empirical results show that a choice of f = 0.9 results in 

reconstructed motion of acceptable visual quality. The original motion data is 62-

dimensional, whereas standard PCA results in a 14-dimensional representation. In order 

to ensure a fair comparison, the number of reduced dimensions in the case of WPCA is 

kept same as that in the case of PCA obtained by retaining 90% of the information 

content in the input data.  A plot of the behavior of the Mean Reconstruction Error for the 

weighted PCA (WPCA) with a 14-dimensional representation of the original 62-

dimensional motion vector, over 500 successive generations for different population sizes 
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Figure 2.4.2 : Convergence of reconstruction error for the running example over 4000 
generations. The GA is seen to converge in 2000 generations. The reconstruction error 
is almost a third of that obtained using standard PCA (dotted line) 
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(10, 20, 30, and 40), and different crossover operators (single point, random and 

arithmetic) for the running example is given in Figure 2.4.1. 

 One immediate observation from the plot is that the initial population itself has a 

much lower reconstruction error than that obtained by standard PCA. Surprising as this 

may seem, note that we have intelligently exploited the hierarchical structure of the 

human skeletal model to generate the initial population. The fact that this is tantamount to 

a smart way of initial axis stretching is apparent from this observation. It now remains to 

use a good combination of the initial population and the selection, crossover and mutation 

operators to rapidly converge to a good set of weights. A brief study of the three plots in 
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Figure 2.4.3: Displacement errors obtained for 2000 generations of the steady state 
GA for four motion examples. The dotted line represents the displacement error for 
standard PCA with 90% of the information in the input data retained. The solid line 
represents the displacement error for the weighted PCA, where the weights are 
determined using a steady state GA. 



 54

Figure 2.4.1 reveals that that the GA with a population size of 40, and with the arithmetic 

crossover as the crossover operator of choice is seen to converge faster for the running 

example, based on the first 500 generations that are plotted. The GA with a population 

size of 10 exhibits the weakest performance. The GA with a population size of 20 is, in 

general, good for all the three crossover operators, and is also computationally less 

intensive. However, for motion examples of short duration, the GA generally takes less 

time to converge; hence, using a population size of 40 appears to be the proper choice. 

The convergence plot of the reconstruction error for the running example over a span of 

3000 generations is shown in Figure 2.4.2. The GA is seen to converge in around 1250 

generations.  

 Using the best combinations of GA parameters discussed above (population size = 

40 and arithmetic crossover), we have tested the weighted PCA method for various 

motion examples. The PCA is performed such that reconstruction preserves 90% of the 

information in the original data. The WPCA is performed by retaining the same number 

of reduced dimensions as obtained via standard PCA, in order to ensure a fair comparison 

between PCA and WPCA. The results are shown in Figure 2.4.3.   

 A natural concern is whether this technique works universally for all types of 

motions. The proposed WPCA technique appears to be especially good for regular 

motions such as running, walking or striding, that are typical of regular human activity, 

or for slightly more complex motions such as run and leap, or basketball dribbling. 

However, this method may not perform well in situations where PCA itself performs 

badly, such ill-correlated motions resulting from arbitrary human actions. Another 

concern is that the proposed WPCA may result in worse reconstruction errors compared 

to PCA. To address this issue, one of the members of the initial population is chosen such 

that all of its weights are unity. If standard PCA (i.e. WPCA with unit weights) does 

indeed result in the best solution, then in the version of the GA algorithm presented in 

this chapter, the unit weight vector will always survive in the population to result in the 
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least reconstruction error. This ensures that WPCA is at least as good as standard PCA, if 

not better. However, experimental results have shown that the proposed WPCA technique 

outperforms the standard PCA technique in terms of overall reconstruction error in all of 

the animation examples considered in this chapter. 

 Some videos comparing the results obtained via PCA and WPCA are presented at 

the web-address given in [Project-WebPage]. The very low-dimensional representation of 

the motions obtained using standard PCA show marked distortion in the motion quality, 

and are visually unacceptable. The motions corresponding to the same number of 

(reduced) dimensions, but obtained using WPCA instead, show marked improvement in 

quality, and are, in fact, acceptable. 

 Finally, with regard to the run-time for determining the weights, the GA-based 

optimal weight determination cannot be accomplished in real time. The run-time of the 

GA depends primarily on the size of the motion data and the chosen size of the GA 

population. Our typical running times were around 3 minutes for a 15 second motion 

sequence on a 2.2 GHz Intel processor with 512 KB L2 cache and 512 MB RAM. The 

heuristic determination of weights via exploitation of the hierarchical human skeletal 

model, however, can be computed easily in real time. The GA-based scheme is thus 

better suited for determination of the optimal weights for off-line compression of the 

MoCap data whereas the heuristic scheme could be potentially used for on-line 

compression of the MoCap data if some degree of sub-optimality is tolerable.  

  

2.4.5. Conclusion and Future Works 

In this chapter, we propose a weighted PCA (WPCA) technique as an improvement over 

the standard PCA technique commonly used for low-dimensional lossy representation of 

Motion Capture Data. The proposed WPCA scheme weighs the columns of the motion 

matrices prior to using standard PCA. We describe two schemes for weight 

determination. The first scheme is heuristic, and is based on exploitation of the 
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hierarchical model of the skeletal humanoid. The second scheme, based on the Genetic 

Algorithm, yields near-optimal weights that result in minimum overall reconstruction 

error (i.e., the sum of node displacement errors). The heuristically determined weights are 

computationally efficient, and are well suited for quick computation. The determination 

of near-optimal weights using the GA involves computation which, typically, cannot be 

performed in real time, but which yields significantly lower reconstruction error. 

 We believe that this work will generate a fair amount of interesting discussion and 

open avenues for future research. First, since GAs are computationally expensive, direct 

gradient-based methods or other more sophisticated optimization methods may be used in 

the future to determine the optimal weights. Second, the current visual quality metric is 

based on the sum of node joint displacement errors in the human skeletal model after 

motion reconstruction. Although this is a reasonable metric, there exist many other 

metrics for visual quality assessment, which need to be tested. Finally, the basic GA-

based scheme used in this article can be further improved to increase efficiency and speed 

of convergence. 
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CHAPTER 3 

MULTI-RESOLUTION LAYERED VIDEO ENCODING 

 

3.1. Introduction 

Typically, images and video as encoded in a single spatial resolution. The measure of 

how closely lines can be resolved in an image is called spatial resolution. It depends on 

properties of the system creating the image, not just the pixel resolution in pixels per inch 

(ppi). For practical purposes the clarity of the image is decided by its spatial resolution, 

not the number of pixels in an image. Thus, typically images and videos frames have 

uniform clarity throughout the image. 

 A fundamental property with low clarity image is that, with proper transcoding, 

low resolution/clarity image leads to more compact representation of the image or video. 

The theme of this chapter is to achieve compactness in order to display multimedia data 

in mobile devices which require compact multimedia representation to preserve power. 

However, overall low clarity of the multimedia content is not generally desirable.  

 Apropos, multi-resolution image/video encoding is essentially the technique of 

imposing good clarity in “visually important” regions of the image, and low clarity in so 

called unimportant regions. This representation results in a more compact representation 

compared to the original image/video with uniform clarity, yet the user is more satisfied 

than having to view a uniform low clarity image/video. 

 In this chapter, various novel techniques to create multi-resolution images and 

videos have been discussed and explored. Further, methods to create layered 

representation of multi-resolution videos has been reported, which enables the viewer to 

view video quality with clarity ranging from the original, best quality, to multi-resolution 

videos with general low clarity, but with good clarity in selected regions. 
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3.2. MMR: mask based multi-resolution images and videos 
 
A multi-resolution (MR) image representation [Wilson, 1990] is useful for image 

encoding at multiple bit-rates. MR video, being a sequence of images, uses MR images to 

encode video at variable bit rates [Finkelstein, 1996]. MR images also have other 

applications in content-based image retrieval [Jacobs, 1995], medical imaging [Liu, 

2001], storing and manipulating remotely sensed satellite data [Benz, 2004] among 

others. MR frames of an MR video yield better quality video compared to uniform 

resolution (UR) frames of the same encoded size, since each MR frame is encoded at 

multiple resolutions (within the same image), with average resolution comparable to that 

of the UR image, yet with better resulting image quality. 

The standard algorithms used to create MR images exploit spatial redundancy 

within the image to group certain pixels with similar color values to form pixel blocks of 

uniform color. However, this approach is not sensitive to important spatial image features 

such as edges, object shapes, and other semantically or visually important objects such as 

human faces. As a result, MR often leads to sub-optimal image/video representations, 

where interesting regions of the image/video are represented at low resolution, and/or 

uninteresting regions of the image/video are represented at high resolution. In addition, 

since the definition of interesting regions of an image/video is subjective and application 

dependent, the generalized color difference-based schemes used by existing MR 

algorithms are not adequate to obtain MR representations of images/videos that are best 

suited for a specific application. 

In this chapter, a novel mask-based MR (MMR) image/video representation 

technique is proposed. Rather than strict color based segmentation, a mask is used instead 
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to define regions of interest within the image, where the best resolution is desired. Such a 

mask, when used appropriately, can be used to encode the desired features of the image at 

the highest resolution, and encode the rest of the image at the lowest resolution. The 

introduction of such a mask results in three significant benefits; (a) the quality of the 

multi-resolution image is completely controlled by the mask; (b) the mask-based multi-

resolution image encoding algorithm is parametric in the mask-parameter space, instead 

of the original MR image space. This is desirable, since the mask is visually more 

intuitive to control; and finally (c) since the image contents and quality are now 

completely controlled by the mask, many existing algorithms for low-level feature 

extraction and semantic feature detection can be used to create the mask. 

 

3.2.1. Quad-Tree for MR Images 

In this section, we give an overview of the methods used for creating MR images. Note 

that multi-resolution (MR) videos [Finkelstein, 1996] use the same spatial encoding 

techniques used for multi-resolution (MR) images. Hence, the techniques for generation 

of MR images are automatically applicable to MR videos frames. 

 

3.2.1.1. Creating quad-trees for multi-resolution images 

Quad-trees are, by far, the most popular data structures to represent MR images [Wilson, 

1990] [Samet, 1990]. Quad-tree decomposition is a simple technique for representing 

images at multiple resolutions. In this technique, the image is recursively divided into 

four equal-size square regions depending on the contents of the blocks. For example, a 

2nx2n image is represented as a tree of depth n. The root of the tree represents the original 
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image at resolution level zero, and the four equally-sized squares represent its children at 

resolution level one. Each node at every resolution level encodes its own color values 

(RGB); the parent node color is the mean of the colors of its child nodes. The details of 

the quad-tree decomposition algorithm can be found in [Wilson, 1990] and [Samet, 

1990]. 

 

3.2.1.2. Color difference-based quad-tree pruning 

In most standard MR algorithms, at each node of the quad-tree corresponding to an 

image, a decision is made as to whether to decompose the corresponding block into four 

equal-size squares or to halt the decomposition process. In order to arrive at a decision, 

the most widely used measure is a difference measure of color values [Samet, 1990]. At 

each node, the value of the difference measure is compared with a threshold value; if the 

absolute difference is smaller than the threshold value, the recursive decomposition 

procedure at that node is halted. Otherwise, the node is further decomposed into four 

equal-size squares. The data structure for each node of the quad-tree can be represented 

by: 

 

struct QuadNode 

ENUM type: NODE | LEAF 

QuadNode child[0, 1][0, 1] 

COLOR: RGBA 

REDUNDANCY: 0 or 1 

end struct 
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If the node type is LEAF, then each child is NULL, and the COLOR is the color of the 

corresponding pixel. Otherwise, the node type is NODE, and each child is a pointer to the 

four equal sections of the block. The COLOR attribute in this case is the average color of 

the four children. The attribute REDUNDANCY, which is a binary number, is used to 

describe the degree of redundancy. REDUNDANCY = 1 in a node means that this node 

(and its children) can be eliminated, whereas REDUNDANCY = 0 means that this node 

(and consequently its children) cannot be eliminated at all.  

 

3.2.2. Using Masks For Quad-Tree Pruning 

The quad-tree pruning mask is defined as follows: 

Mask-Bin(i, j)  = 1  if that pixel should not change at all 

                                                 = 0  otherwise 

Assuming that the quad-tree and the desired mask, Mask-Bin, exist, the quad-tree 

branches can be pruned using the given mask by the following recursive pseudo-code: 

 

function Mask_Prune(QuadNode p) returns 0 or 1 

if p. type = LEAF then 

i, j  pixel corresponding to this leaf 

return (1 - Mask-Bin(i, j)) 

end if 

redundancy = 1 // assume this node is redundant 

for each i, j = 0 and 1 

 flag = Mask_Prune(p.child[i][j]) 
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 if flag = 0 then redundancy = 0 

end for 

p.REDUNDANCY = redundancy 

return redundancy 

end function 

 

The root of the quad-tree is passed to the Mask_Prune function. The function 

Mask_Prune results in the best resolution (by preserving the original pixels) in the 

smallest-size image blocks corresponding to non-zero mask values. It also results in the 

maximum number of low resolution blocks in the other regions of the image. In the next 

section, we discuss some plausible masks for MMR images and MMR videos. 

 

3.2.3. Masks for MMR Images and Videos 

In this section, we present three broad categories of masks, which can be used for most 

applications requiring MR images and videos. Note that the advantage of mask based 

multi-resolution (MMR) image is that the average resolution of the image is much lower 

than that of the original image. Hence, the MMR image when encoded using a standard 

encoding technique for quad-tree based image representation, results in much less data 

compared to the original image, thus proving to be an enhanced image/video compression 

method. 
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3.2.3.1. Feature masks 

Features masks are useful in preserving low level spatial image features such as edges, 

boundaries, texture etc. For example, edges can be preserved in MMR using edge masks. 

An interesting application of edge masks is in multi-resolution streaming video 

applications, such as Google-Earth, where the basic edge features are maintained while 

zooming in on a country or region. We used an edge mask on a Google-Earth image 

(Figure 3.2.1), obtained by using the standard Canny edge detector [Canny, 1986]. The 

value of the Canny edge detector parameter, σ, is obtained semi-empirically; a detailed 

discussion on this issue is beyond the scope of this chapter. Note that the MMR image 

quality is significantly superior compared to the MR image quality. Detailed quantitative 

analysis on the comparison of MMR and MR image qualities is given in section 3.2.5. 

 

3.2.3.2. Object masks 

Object masks exploit the basic human psychology of focusing on semantically important 

objects while ignoring other artifacts in an image/video. For example, in a video 

requiring attention to be drawn to human faces, a face mask can be used for each frame in 

the video stream. A face mask can be obtained using a face-detection algorithm [Rowley, 

    
 (a)                        (b)                        (c)                  (d) 
Figure 3.2.1.  MR vs MMR for a google earth image. (a) The original image (b) 
Standard MR image; δMR = 76.1% (c) MMR edge mask (d) MMR image; δMMR = 
78.8% i.e. δMMR and δMR are comparable; which means that the MMR image has 
approximately the same average resolution as that of MR image, but significantly 
better image quality. 
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1998]. Other object masks, such as shape masks, emphasize certain shapes in an image, 

which can be useful for robotic applications. Such a mask may be obtained using pattern 

recognition algorithms [Jain, 2000]. Figure 3.2.2 illustrates a combination of an edge 

mask and a face mask. Note that visually interesting regions, such as the face, hair, and 

   
                         (a)                                (b)                        (c)                                (d) 
Figure 3.2.2.  MR vs MMR for the Lena image with embedded 3D objects. (a) The 
original image (b) MR image; δMR = 72.4% (c) MMR combination of edge mask and 
face object mask (d) MMR image; δMMR = 78.4%.  

      
   FRAME 1      δMR = 72.2%              edge + motion mask       δMMR = 77.5% 

       
   FRAME 1                    δMR = 72.2%              edge + motion mask        δMMR = 78.1% 

      
   FRAME 30      δMR = 72.4%             edge + motion mask        δMMR = 78.4% 
 
Figure 3.2.3.  MMR on frames from a video sequence. (Column 1) The original frames 
(Column 2): Standard MR frames (Column 3): Mask for MMR: edge + motion mask; 
motion mask obtained by background separation (Column 4): MMR frames. 
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the shapes of the 3D objects, are preserved at their original resolution, whereas other 

areas are displayed at the lowest local resolution possible. 

 

3.2.3.3. Motion Masks 

Motion masks can be used to render temporally changing objects in a video at higher 

resolution compared to the rest of the video. An example, using a combination of an edge 

mask and a motion mask, obtained by simple background subtraction, is illustrated in 

Figure 3.2.3. The MMR frames show a significant improvement in quality of the 

interesting video regions such as the moving object and background edges; these specific 

enhancements are absent in the general MR frames. 

 

3.2.4. MMR VS MR 

A comparison between MMR and MR involves two fundamental attributes; the visual 

quality obtained and the size in bytes of the encoded image/video. The image/video 

quality resulting from both MMR-based and MR-based rendering can only be assessed 

subjectively by the user, based on the requirements of a particular application. To have a 

numerical estimation of the image/video size obtained using MR or MMR, we have used 

a percentage metric δ such that: 

δ = 100*n / N              (3.2.1) 

where n is the number of pixels in the multi-resolution image, obtained by treating each 

block as a single pixel, and N is the total number of pixels in the original image. To 

ensure a fair comparison between MR and MMR, we compute δMR and δMMR for MR and 

MMR respectively, and report the resulting image quality where δMR is comparable to 
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δMMR. Figures 3.2.1, Figure 3.2.2 and Figure 3.2.3 illustrate the difference in the 

image/video quality obtained by using MR and MMR, where δMR and δMMR are 

comparable. The MMR images/videos retain all the desired visually and semantically 

meaningful features of the images/video-frames. The MR images/videos, on the other 

hand, are not subjected to the same quality control, resulting in visual distortion in some 

critical regions. 

  

3.2.5. Conclusions and Future Work 

A mask-based multi-resolution (MMR) image/video representation technique has been 

discussed. The MMR representation uses a mask to control the quad-tree pruning for 

generation of multi-resolution (MR) quad-tree image/videos. The masks are defined such 

that a value of 1 indicates that the pixel is totally redundant (i.e. pixel color can be 

changed at will) whereas a value of 0 indicates that the pixel has to remain unaltered in 

the image. Three groups of masks i.e. feature masks, object masks and motion masks have 

been suggested. Examples and results have shown the considerable advantage of using 

MMR compared to MR in terms of image/video quality control. 

Using masks provides enormous opportunity for future work. Various masks 

suitable for different types of images/videos can be proposed. Application-specific masks 

can be developed in future to aid in compression, representation and querying of images 

and videos. 
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3.3. FMOE-MR: Features, Motion and Object Enhanced Multi-Resolution Layered 

Video Encoding 

Streaming video across the Internet has become one of the most important means of 

distributed information sharing. Since the Internet bandwidth availability is dynamic, it is 

essential to dynamically adapt the bit rate of streaming video, in order to ensure 

uninterrupted video streaming. Although H.264 (also called MPEG-4 part 10) is 

currently one of the most popular encoding standards for standard Video encoding, 

MPEG-4 Fine Grained Scalability (FGS) profile [ISO/IEC-visual, 2004] [Li, 2001] 

[Radha, 2001] is still one of the most popular standards to achieve adaptive video 

streaming. MPEG-4 FGS encodes the video into a Base Layer and an Enhancement 

Layer. The Base Layer bit rate is the minimum bit rate at which the video can be 

streamed. However, this bit rate may not be sufficient for low bandwidth networks which 

cannot support even the low bit rate of the Base Layer. Theoretically, the Base Layer may 

be encoded at even lower bit rates to allow streaming to these low bandwidth networks; 

however, this inevitably leads to a drastic reduction in video quality to the point that the 

visual information is almost useless. Hence, the rate distortion performance of standard 

MPEG-4 Base Layer encoding for FGS calls for improvement, in order to allow 

transmission at even lower bit rates at a reasonable video quality. 

One way of improving the rate distortion performance of the MPEG-4 encoding 

scheme for the low bit rate Base Layer is by filtering out semantically and visually 

“uninteresting” information from the video frames. This can be achieved by re-encoding 

each frame as a multi-resolution frame, with the visually and semantically “interesting” 

information at high resolution, and the rest in low resolution. The multi-resolution 
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scheme is implemented such that it fits within the scheme of the standard MPEG-4 

compression pipeline, consisting of predictive encoding, quantization and variable length 

encoding of the DCT space of the video frames. 

In this section, we have described and implemented a mask-based multi-resolution 

(MR) step in the standard MPEG-4 FGS Base Layer encoding pipeline, which can 

achieve acceptable video quality in visually important regions of the video at very low 

overall bit rates. Each frame of the FGS Base Layer video is re-encoded, using the 

proposed Features, Motion and Objects Encoded-Multi-Resolution (FMOE-MR) scheme, 

such that the regions defined by the mask are at high resolution, whereas the remaining 

regions in the frame are at low resolution. The multi-resolution scheme is implemented in 

a manner such that when the MPEG-4 video encoding pipeline converts the color-space 

of frames to their corresponding DCT space, the DCT coefficients require a very low 

number of bits for encoding. This leads to low bit rate Base Layer MPEG-4 video 

encoding schemes. We demonstrate unsupervised and semi-supervised methods to create 

Features, Motion and Objects (FMO)-masks based on the presence of features, motions 

and objects detected in the video sequence. The FMO-Mask essentially defines the 

importance of a pixel in the image by assigning it a weight that lies between 0 and 1. The 

FMO-Mask is obtained computationally via content analysis of the video sequences using 

appropriate computer vision algorithms. The combination of the FMO-Mask and Base 

Layer selective video enhancement using multi-resolution (MR) techniques is what we 

term as the proposed FMOE-MR scheme.  

It must be noted that there exist technologies [Richardson, 2004] to selectively 

enhance the quality of spatial regions in the video frame while streaming within a 
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constrained bandwidth. MPEG-4 selective enhancement [Van der Schaar, 2001] is 

employed in the Enhancement Layer of MPEG-4 FGS in order to stream higher quality 

video within selected image regions. However, MPEG-4 selective enhancement does not 

provide quality improvement for the Base Layer. Improving video quality of the Base 

Layer is essential, because for low network bandwidths since the Base Layer is often the 

only layer which can be streamed. In order to improve the quality of the Base Layer, 

MPEG-4 FGS uses adaptive quantization (FGS-AQ) [Van der Schaar, 2001]. FGS-AQ 

quantizes each 8×8 DCT block differently based on its relevance in improving the overall 

video quality.  

The proposed FMOE-MR technique has several advantages over the existing 

MPEG-4 FGS-AQ based Base Layer encoding; (a) FMOE-MR results in significantly 

better rate distortion performance compared to FGS-AQ, by using a pixel-level multi-

resolution video frame representation (b) FMOE-MR is transparent to the decoder; FGS-

AQ, on the other hand, requires additional parameters and components for the decoder to 

decode each frame (c) FMOE-MR requires no additional changes to the existing MPEG-4 

codecs, thus making the overall scheme very portable. 

The rest of the section is organized as follows: In Section 3.3.2, an overview of 

the existing technologies for MPEG-4-based layered coding of video (FGS), and FGS-

AQ, is provided. Section 3.3.3 describes the proposed FMOE-MR scheme in detail. 

Detailed quantitative and qualitative comparisons of the proposed FMOE-MR Base Layer 

video encoding scheme with the existing MPEG-4 FGS-AQ scheme are presented in 

Section 3.3.4. Finally, the conclusions and potential future work are presented in Section 

3.3.5. 
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3.3.1. Background 

MPEG-4 fine grained scalability profile, FGS, separates the video frames into two layers, 

which are referred to as the Base Layer and the Enhancement Layer (Figure 3.3.1, minus 

the shaded box). The Base Layer is encoded at the minimum bit rate available to the 

video streaming network. The Enhancement Layer is obtained by encoding the difference 

between the original DCT coefficients and the coarsely quantized Base Layer coefficients 

in a bit-plane manner [Radha, 2001] [Richardson, 2004]. The Enhancement Layer can be 

truncated at any bit position and can provide fine granularity of control of the 

reconstructed video quality which is proportional to the number of bits actually decoded.  

  The Base Layer, since it is encoded at the minimum bit rate, is often the most 

significant layer that can be streamed across to the client when the bandwidth drops down 

to a certain minimum value. Thus it is necessary that the Base Layer retain the highest 

quality in the semantically and visually important regions of the video for a specified bit 

rate. MPEG-4 uses adaptive quantization [Richardson, 2004] [Van der Schaar, 2001] in 

 
 
Figure 3.3.1: The MPEG-4 FGS scalable video encoding pipeline, with the proposed 
FMOE-MR step added. (grey box).  
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its Fine Grained Scalability Base Layer encoding (FGS-AQ) scheme to assign more bits 

to the DCT coefficients of the blocks that correspond to the desired regions that need to 

be enhanced. FGS-AQ is achieved via a quantization matrix that defines different 

quantization step sizes for the different transform coefficients within a block (prior to 

performing entropy coding on these coefficients). These adaptive quantization tools have 

been employed successfully in the MPEG-2 and MPEG-4 (base-layer) standards [Van der 

Schaar, 1999]. However, the aim of FGS-AQ is not to improve the rate distortion 

performance, but rather to improve the visual quality of the resulting video. As a result, 

the rate distortion performance of an FGS encoder that uses FGS-AQ may actually 

degrade due to the overhead entailed in the transmission of the FGS-AQ parameters.  

One of the main aims of the proposed FMOE-MR technique is to actually obtain 

better rate distortion performance for the Base Layer encoding compared to the FGS-AQ 

technique. A crucial by-product of using the proposed FMOE-MR scheme is its 

transparency to the existing MPEG-4 codecs; thus not requiring any additional codecs for 

decoding multi-resolution video frames. In the next section, we describe the proposed 

FMOE-MR technique in detail. 

 

3.3.2. Proposed approach: FMOE-MR 

The proposed FMOE-MR scheme is based on the fundamental observation that applying 

a low pass filter in the color space of an image is equivalent to DCT coefficient 

truncation in the corresponding DCT space of the image [Geusebroek, 2001] [Gonzalez, 

1992]. The FMOE-MR scheme is a two step process: 
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(i) Creating the FMO-Mask: Features, Motion and Objects (FMOs) are detected in the 

video sequence using state-of-the-art computer vision algorithms. A corresponding 

mask (FMO-Mask) is created to mark the regions corresponding to the presence of 

the FMOs. The mask has floating point values between (and inclusive of) 0 and 1, 

where 0 represents a completely uninteresting region and 1 represents a vital region 

for visual and semantic understanding of the image. 

(ii) Multi-Resolution (MR) re-encoding: The original frame is re-encoded as a multi-

resolution representation, guided by the FMO-mask such that regions corresponding 

to mask values near 1 are at higher resolution compared to regions corresponding to 

mask values near 0. 

 

3.3.2.1. Creating the FMO-Mask 

The FMO-Mask is essentially a combination of one or more of the following three 

individual masks; the Feature-Mask (F-Mask), Motion-Mask (M-Mask) and the Object-

Mask (O-Mask). As discussed in Section 3.2.3.1, the masks can be the following: 

 

Feature mask (F-mask) 

The F-Mask captures the low-level spatial features of the video frame. Edges are one of 

the most important low-level features of an image (or video frame) because human 

perception tends to first detect edges for object recognition and general scene analysis.  

Edges can be detected automatically in a given image. There are many ways to 

perform edge detection. However, the majority of different methods may be grouped into 

two broad categories: gradient-based and Laplacian-based. The gradient-based methods 
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detect the edges by seeking the maximum and minimum in the first derivative of the 

image intensity (color) function. The Laplacian-based methods, on the other hand, search 

for zero crossings in the second derivative of the image intensity (color) function to find 

edges. We have used a gradient-based edge detection algorithm, known as the Canny 

edge detector [Canny, 1986], to find edges in a video frame.  

Once the edges in the video frame are determined by using the Canny edge 

detector, the F-mask is created by assigning the value of 1 to regions in and around the 

edges, and the value of 0 elsewhere. Note that the mask is actually a weighting matrix, 

and as such, each pixel may be assigned any value between (and inclusive of), 0 and 1. 

 

Motion mask (M-mask) 

Motion within a video sequence constitutes a very important visual phenomenon. The 

human eye tends to follow the moving objects to note their activities. Therefore, in 

situations which demand reduction in quality of the video, the regions with motion in the 

video can be rendered at high resolution and the rest of the video at low resolution. 

Detection of motion in video sequences is summarized in two major steps:  

(i) Background Subtraction: The background of a video sequence is either the stationary 

backdrop, or backdrops which change as a result of camera motion such as panning 

and translation. Background subtraction is required in order to extract foreground 

objects which are moving relative to the camera, or had been moving recently. 

Background subtraction is done typically by first creating background models [Luo, 

2005a]. The video sequences are then compared with the background model to detect 
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regions which are not part of background. These regions are classified as belonging to 

the foreground object. 

(ii) Foreground Object Tracking: Once the foreground objects are detected, they are 

tracked over the video sequence. Note that a simpler modification would be to just 

detect the foreground in each frame, as the mask is dependent on the foreground 

objects only. However, this approach fails when the moving object stops temporarily; 

in such a case, just the foreground becomes a part of the background. Tracking, on the 

other hand, will still detect the still object as part of the foreground. 

Motion tracking by itself is an extremely well-researched area, and a detailed discussion 

on the same is clearly beyond the scope of this chapter. We have implemented a novel 

tracking algorithm based on optical flow-based multi-scale elastic matching [Luo, 

2005b]. The algorithm can detect and track multiple objects moving in a video sequence. 

The tracked objects constitute an important part of the M-mask. 

 

Object mask (O-mask) 

All the foreground objects in a video sequence may not be equally important visually or 

semantically. For example, in a video sequence containing a news reader, with a rotating 

background logo, the face of the news reader is more important than the moving logo 

(which too is a part of the foreground). In this case, the face is deemed an object of 

interest amongst the foreground regions.  

Face recognition and tracking is typically done by extracting feature points that 

characterize a face, and tracking these feature points in the video sequence. A detailed 

description of the face recognition and tracking algorithm is again beyond the scope of 



    75

this chapter. Faces in a video sequence can be detected using the algorithm described in 

[Zarit, 1999] and tracked using the algorithm described in [Luo, 2005b] to create an O-

mask based on human faces automatically. 

 

3.3.2.2 Mask Combinations 

The three masks mentioned above are implemented such that each element of the mask 

value represents a weight in the range [0, 1]. The higher the weight, the more significant 

the corresponding pixel in the overall visual and semantic content of the image frames. A 

combination of these masks may be more appropriate for a particular application. The 

three masks, F-Mask, M-Mask and O-Mask, can be combined as follows: 

(i) Optimistic Combination: An arithmetic MAX operation at each pixel would assign 

the maximum of the three mask values at each pixel location. This is an optimistic 

combination, as this would mean that a non-interesting pixel would not affect an 

interesting pixel. 

(ii) Pessimistic Combination: An arithmetic MIN operation on each pixel would set the 

minimum mask of the three mask values at each pixel location. This is a pessimistic 

combination, as an uninteresting pixel would render the combined value to be that of 

the uninteresting pixel. 

(iii)Arithmetic Combination: Each pixel of the combined FMO-mask is the arithmetic 

mean of the three mask values at each pixel location. This gives the maximum weight 

to pixels where all the masks values are 1, and the minimum weight at pixels where 

all the values are 0. 
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Since the M-Mask requires identification of objects in the video scene, one may argue 

that a natural method of encoding would be to use MPEG-4 object-based coding [Bertini, 

2004][ Wang, 2005]. However, MPEG-4 FGS does not support object based coding. In 

addition, object-based coding requires additional components at both the encoder and the 

decoder end. FMOE-MR, on the other hand, does not require any modifications either at 

the encoding side, or at the decoding side.  

The visual performance of FMOE-MR can be improved by using a proper 

combination of the above mentioned masks. The combination depends on the application 

on hand. For example, in order to encode a surveillance video, combinations of motion 

mask (to render moving objects at good resolution) and face mask (to recognize faces of 

the people moving around) might be required. For generic movies, where contents are not 

known, a combination of motion mask and edge masks can be used, as these two features 

are generally the most robust recognition mechanisms for human perception. An example 

of a combination of all the three masks to create an FMO-Mask, using optimistic 

combination, is given in Figure 3.3.2. A 

detailed study of the effect of mask 

combinations is present in Section 

3.3.4.4. It must be noted that the FMO-

Mask is used only at the encoding side, 

and, as such, is transparent to the 

decoding side. 

 

 
 Original   FMO-Mask 
 
Figure 3.3.2: An optimistic combination of 
F-Mask, M-Mask and O-Mask to form the 
FMO-mask. 
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3.3.2.3. Multi-resolution (MR) Re-encoding using the FMO-Mask 

Once the FMO-Mask is created, it remains now to re-encode the original frame in a 

multi-resolution manner, guided by the FMO-Mask. The goal of the MR step is to take 

the original video frame, VO, re-encode it at multiple resolutions using the FMO-Mask, 

and produce the final video frame, VF. The final video frame, VF, is in turn fed to the 

MPEG-4 FGS Base Layer encoding pipeline (Figure 3.3.1) to obtain the Base Layer for 

FGS.  

The simplest method of creating the MR video frame VF is to render a weighted 

combination of two video frames at different resolutions. The original video frame, VO, is 

used to render two video frames, VH and VL, such that VH is a high resolution rendering 

and VL is a low resolution rendering of the same video frame. We assume that a Gaussian 

filter [Davies, 1990], denoted by G(σ), with parameter σ representing the standard 

deviation, is used as a representative low pass filter. VL can be obtained by convolving 

VO with a Gaussian filter G(σL); similarly, VH can be obtained by convolving VO with a 

Gaussian filter G(σH). Maintaining σL > σH ensures that VL is smoother than VH; in other 

words, VL is rendered at a lower resolution compared to VH. In order to combine the 

video frames at the two resolutions, the mask weight matrix, W (matrix version of the 

FMO-Mask), is created which describes, in terms of normalized weights (between 0 and 

1), the regions in a frame which need to be rendered at good resolution. An intermediate 

video frame, VI, is created from the two video frames, VH and VL, and the weight matrix 

W, and is given by 

VI = (I - W)VL + WVH  (3.3.1) 
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where I is the matrix with all of its entries as 1. The intermediate video frame, VI, 

represents a multi-resolution re-encoding of the original video frame, VO. However, VI 

contains abrupt changes in resolution, which is not pleasing to the eye. Another 

smoothing operation is performed on the intermediate frame VI with a Gaussian filter 

G(σI), to yield the final frame VF as a multi-resolution version of VI. The detailed 

description of the FMOE-MR step is depicted pictorially in Figure 3.3.3. Note that the 

final video frame VF is fed to the standard MPEG-4 Base Layer encoding pipeline, as 

shown in Figure 3.3.1. 

The Base Layer video quality and encoded bit rate, after FMOE-MR and MPEG-4 

video encoding, depend on the MR-Parameters σL, σH, σI and the FMO-Mask, depicted 

by the matrix W. The parameters σL, σH, and σI are bounded scalar quantities which 

control the bit rate; the weight matrix W controls the quality of the encoded video frame 

 
 
Figure 3.3.3: The proposed FMOE-MR enhancement step. The steps in the dotted box 
create the Multi-Resolution (MR) rendering of the original video frame. 
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(it also controls, to a some extent, the encoded bit rate). Detailed discussions on the 

analysis, evaluation and performance of FMOE-MR are presented in the next section. 

 

3.3.3. Analysis, Evaluation and Discussion 

In this section, we first describe our evaluation methodology for the performance of the 

FMOE-MR scheme, followed by an objective comparison between the FMOE-MR and 

FGS-AQ schemes. Next, we analyze the rate distortion performance of FMOE-MR as a 

function of the three MR-Parameters σL, σH and σI. Finally, we analyze the rate distortion 

performance of FMOE-MR with respect to the FMO-Mask. 

 

3.3.3.1. Evaluation Methodology 

We have implemented the F-Mask using the Canny edge detector [Canny, 1986], and the 

M-Mask/O-Mask using the optical flow based multi-scale elastic matching algorithm 

given in [Luo, 2005b]. In order to have an objective quantification of video quality, we 

have used PSNR (peak signal to noise ratio) as the quality metric. Similarly, the bit rate is 

computed by measuring the size of the video file after FMOE-MR followed by MPEG-4 

compression. A set of different videos has been used to compute the bit-rates and average 

PSNR per frame. The videos have been obtained under various background conditions 

(stationary, moving), various lighting conditions (moderately lighted, well lighted), 

various levels of motion complexity (single moving person, multiple moving persons), 

and various frame rates. The reported results in the section are based on the following 

four representative videos: 
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• Video 1: A 16 second video of a single person walking in a well lighted room. Frame 

rate: 30 fps, Frame Size: 320 × 240 pixels. 

• Video 2: A 30 second panning view across a room in poor light (non-stationary 

background). Frame rate: 30 fps, Frame Size: 176 × 144 pixels. 

• Video 3: Another panning video sequence of 30 seconds, this time at Frame Rate: 15 

fps, Frame Size: 176 × 144 pixels. 

• Video 4: A 40 second video of two people moving together in a well lighted room. 

Frame rate: 30 fps, Frame Size: 320 × 240 pixels. 

 

3.3.3.2. FMOE-MR vs MPEG-4 FGS-AQ 

In order to compare the proposed FMOE-MR technique with the existing MPEG FGS-

AQ technique, we have compared the quality of video sequences (using PSNR) for a 

given target bit rate. We have used a Gaussian kernel for the low pass filter. Figure 3.3.4 

shows a frame of Video 1, encoded using FGS-AQ and FGS-MR, at the same bit rate 

(0.17 Mbps), using an edge mask as the F-mask. The visual quality of the video frame 

using F-MR (PSNR = 26.5 dB) is significantly better than that obtained by FGS-AQ 

(PSNR = 22.77 dB). We observed empirically that assigning σL = 15, σH = 3 in equation 

(3.3.1), in order to obtain an F-MR representation of the videos, produces the best results 

for this video. We obtain these numbers by adjusting the parameters and asking human 

evaluators to judge the maximum extent of deterioration in the important and unimportant 

regions of the video frames (as depicted by the mask), that can be sustained such that the 

resulting video is still not unpleasant to view. 
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Figure 3.3.5: Rate-Distortion comparisons for the three video sequences, Video 1 (30 
FPS, 16 seconds), Video 2 (30 FPS, 30 seconds) and Video 3 (15 FPS, 30 seconds). 

 

  In order to provide objective evidence of the superior video quality resulting from 

FMOE-MR compared to FGS-AQ, Figure 3.3.5 shows plots of the PSNR as a function 

of the target bit rate for Video 1, Video 2 and Video 3, by fixing σL = 15, σH = 3 and 

varying σI from 3 to 25 in equation (3.3.1). All the videos have been encoded using an F-

     
           (a)                   (b)            (c) 
Original (5.12 Mbps) MPEG-4 Adaptive Quantization      Proposed Multi-Resolution 
   PSNR=22.77 dB (0.17 Mbps)       PSNR = 26.5 dB (0.17 Mbps) 

 
Figure 3.3.4: F-MR vs FGS-AQ: Comparison of video quality of Video 1, using the 
proposed F-MR (only edge mask is used) Base Layer encoding; compared with 
MPEG-4 Adaptive Quantization (FGS-AQ) Base Layer video encoding technique; 
(a) The original 320 X 240 frame; original AVI video is encoded at 5.12 Mbps (b) 
Video frame after MPEG-4 Adaptive Quantization for target bit rate around 0.17 
Mbps; PSNR = 22.77 dB (c) Multi-Resolution Video frame; bit rate = 0.17 Mbps; 
PSNR = 26.5 dB.  



    82

Mask. Note that the PSNR values for FGS-MR are much higher than those for the FGS-

AQ technique for the entire range of bit rates. 

  The results above show that the FMOE-MR technique yields a higher quality 

video for the same bit rate, compared to the FGS-AQ technique. This can be attributed to 

the fact that pixel-level enhancement can be performed in FMOE-MR, whereas FGS-AQ 

does block-based enhancements in the DCT space. Thus, in order to enhance even a 

single pixel in a block, FGS-AQ needs to enhance the whole block; although this 

improves the overall PSNR slightly, the overall bit rate requirement increases 

substantially. This is not the case for FMOE-MR, since FMOE-MR enhances a single 

pixel. The DCT coefficients in the corresponding block in the case of FMOE-MR may be 

enhanced less dramatically.  

  Thus, for the same target bit rate encoding of the Base layer for FGS, the resulting 

video quality (measured in terms of PSNR) is significantly better in the case of FMOE-

MR adaptation, compared to standard MPEG-4 FGS-AQ adaptation.   

In order to analyze the rate distortion performance of FMOE-MR as a function of 

the three MR-Parameters, σL, σH and σL, we have generated 3D plots of PSNR and bit 

                     
Figure 3.3.6:  Rate distortion 3D plots of FMOE-MR vs σL σH and σI. σH = 3 in all 
cases. 
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rate as functions of the MR-Parameters. Since the plots for all the four videos are similar, 

we show the plots for only Video 4 in Figure 3.3.6. This figure shows the dependence of 

PSNR and bit rate on the two MR-Parameters, σL and σI, by maintaining σH = 3 (Note 

that fixing σH to an empirically chosen value of 3 renders the foreground at a consistently 

good resolution). The two persons in Video 4 have been tracked using the algorithm 

described in [Luo, 2005b], to create the motion mask (M-Mask), for the video sequence.  

As is evident from the 3-D plots in Figure 3.3.6, the bit rate varies more as a function of 

σI compared to σL. This is because σI smoothes the video frame uniformly overall, thus 

effectively truncating all the DCT coefficients of the frame. The dependence of PSNR on 

the values of σL than σI are not apparent, except for the fact that PSNR increases as either 

value decreases. From the analysis, it is clear that if the bit rate is the primary concern, 

the MR-parameter σI should be used to control the bit rate. The visual quality of the video 

frame depends on the proper combination of σL and σH. We have empirically found that 

σH = 3 renders the “interesting” regions defined by the mask at good visual quality, and 

also reduces the overall bit rate to some extent.  

 

3.3.3.3. Computing the optimal values of the MR-Parameters (σL, σH, σI) 

The optimal values of the MR-parameters can be computed by optimizing a suitable 

figure of merit function. We have devised a figure of merit function δ, which is the ratio 

of the visual quality (Q) to the obtained compression ratio (C) for a given video sequence. 

The metric δ is designed such that the higher its value, the better the rate distortion 

performance. We have defined δ as 

δ = Q/C  (3.3.2) 
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where Q = 2PSNR(σL, σH, σI)/10 and C = Compression Ratio (FMOE-MR + MPEG-4 encoded 

versus MPEG-4-only encoded Base Layer). The expression Q is obtained from the 

standard PSNR equation: PSNR = 10log(Q), where Q is the ratio of the mean square 

error to the number of pixels in the frame. The metric δ is maximized for the video of 

best visual quality with the least bit rate requirement. Thus, the higher the metric δ, the 

more efficient the video encoding scheme. The values of σL, σH, σI which maximize δ can 

potentially be found by exhaustively enumerating all possible values of σL, σH, σI, and 

computing δ for each combination. The MR-Parameters σL, σH, σI are essentially the size 

of the Gaussian convolution masks, which take odd integral values, and are bounded 

from above. Hence, enumerating all possible combinations of σL, σH, σI is not as daunting 

as it seems, and is certainly computationally not very challenging for bounded, small 

values of the MR-Parameters. 

 

3.3.3.4. FMOE-MR vs FMO-Mask 

The FMO-Mask plays a significant role in the rate distortion performance of FMOE-MR. 

In order to compare the effect of the FMO-Mask on performance of FMOE-MR for Video 

4 (Video 4 is chosen arbitrarily), we fix values of the MR parameters empirically as 

follows: σL = 21, σH = 3 and σI = 1. We have used three kinds of masks: F-mask (edge 

mask, implemented using the Canny edge operator [Canny, 1986]), M-mask (object 

tracking mask, implemented using the algorithm described in [Luo, 2005b]), and an 

optimistic combination of the two masks (FM-Mask).  

  Figure 3.3.7 shows the multi-resolution re-rendering of the original frame based 

on the three types of masks mentioned above. The F-Mask has high resolution areas 
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spread over the entire frame. An interesting observation is that the effect of the M-mask 

is synonymous with the focusing of the human eye, which typically focuses on an object 

    
(a) Original            (b) Table 1 

                              
(c) F-Mask           (d) F-MR 

    
(e) M-Mask             (f) M-MR 

    
(g) FM-Mask             (h) FM-MR 

 
Figure 3.3.7:  Multi-resolution using different masks. Frame 1070 from Video 4 (a) 
The original frame (b) The Table of results showing compression ratio, PSNR and 
evaluation metric (discussed in text) (c) The F-Mask, obtained by edge detection using 
Canny edge detector, and padding added (d) Multi-Resolution (MR) Frame, re-
rendered aided by F-Mask (e) Motion mask using Motion tracking (f) MR-Frame 
aided by M-Mask (g) Optimistically combined FM-Mask (h) MR-Frame aided by FM-
Mask. 
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of interest by blurring the other uninteresting background objects. The optimistically 

combined FM-Mask delivers the best visual quality, as expected, but at a price of only a 

modest compression gain. Figure 3.3.7(b) shows the compression ratio (FMOE-MR 

versus standard MPEG-4), the corresponding PSNR obtained by using the various mask 

types, and the corresponding value of δ (using equation (3.3.2)) in a tabular format.  

  The values of δ reveal that the resulting compression from the M-Mask is the best 

in terms of rate distortion performance. A brief analysis will reveal why this is the case. 

Although the M-Mask seems to yield the worst overall PSNR, the bit rate obtained is 

significantly less as well, compared to that obtained by the other masks. The bit rate is 

significantly lower for the M-Mask because the white regions (i.e. semantically and 

visually important regions) in the frame are grouped together in the mask. The grouping 

results in large DCT coefficients in only the DCT blocks in which the white portions of 

the mask are present. In the multi-resolution frame resulting from the F-Mask and FM-

Mask, on the other hand, the relevant regions (or white portions of the mask) are spatially 

distributed throughout the entire frame. This makes FMOE-MR less effective, because 

after using the proposed FMOE-MR scheme, the MPEG-4 DCT-based compression is 

faced with large DCT coefficients for almost all the DCT blocks in the frame.  

 

3.3.3.5. Encoding time for FMOE-MR 

The time Tbase taken to encode a given raw video as an MPEG-4 FGS Base Layer is given 

by 

Tbase = Tf + Tm   (3.3.3) 
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where Tf is the time taken to re-encode the given raw video frames in multi-resolution 

format, and Tm is the time required to encode the re-encoded raw video using the 

standard MPEG-4 video compression pipeline. Since standard MPEG-4 video encoding 

can be done in near real time, we limit our discussion to the complexity of Tf, given by: 

Tf = Tmask + TσL + TσH + Tmerge    (3.3.4) 

where Tmask is the time taken to create the mask, TσL is the time taken to create the low 

resolution image, TσH is the time taken to create the high resolution image, and Tmerge is 

the time to merge the two different images. For an edge mask, the time to create the mask 

is O(nmN), where the raw video has N 3-channel frames, each frame of size n×m pixels. 

Similarly, in the case of motion masks, optical flow analysis for each pair of successive 

frames is computationally the most complex aspect of the computation and takes O(nm) 

time; thus the overall time is O(nmN) for all the N frames. In general, the computational 

complexity for Tmask is O(nmN). TσL depends on the time taken for convolution of the 

image of size n×m with a Gaussian mask of constant size; thus TσL is O(nmN) for all the 

N frames. Similarly, TσH is also O(nmN). Since the merging is done on a pixel-by-pixel 

basis, Tmerge is O(nmN) for all the N frames. The video frame size of n×m pixels is O(n2) 

since n and m are typically scaled to a fixed ratio of 4:3. Thus, from equation (3.3.4), we 

get Tf = O(n2N), where n is the width (or height) of each video frame, and N is the total 

number of frames in the video. Theoretical analysis apart, we have achieved real time 

encoding speed quite comfortably (more than 30 frames per second) for Edge-Mask 

based MR. 
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3.3.4. Conclusions and future work 

A novel multi-resolution Base Layer encoding technique for MPEG-4 fine grained 

scalability (FMOE-MR) video encoding has been described and implemented. Results 

show that the rate distortion performance of the proposed FMOE-MR technique is 

significantly better than that of the existing MPEG-4 adaptive quantization technique 

(FGS-AQ) for FGS Base Layer encoding. FMOE-MR entails “smart” preprocessing of 

the video prior to MPEG-4 encoding for creation of the Base Layer for FGS; as a result, 

existing codecs for creating FGS video can be easily used in the proposed scheme. In 

addition, FMOE-MR is transparent to the decoder; FGS-AQ, on the other hand, requires 

special AQ parameters, and components, at the decoder end to reconstruct the video.  

Since FMOE-MR is a mask based technique; the effectiveness of the MR video 

depends on the creation of the FMO-Mask. The FMO-Mask is designed to highlight 

features, motion and objects in the video sequence. We have proposed unsupervised and 

semi-supervised algorithms for effective creation of the FMO-Mask from any given 

video sequence.  

FMOE-MR is more than just a tool; it is a whole new approach to intelligent, 

content-based scalable video encoding. Since FMOE-MR is inherently parametric, a 

potential future research endeavor will be to compute the MR-Parameters automatically 

from the given video. In addition, many new types of masks may be used, such as 

application-specific object masks. We are working on real-time applications where the 

masks can be created in real time in order to facilitate applications such as video 

conferencing in the presence of dynamically changing quality constraints. 
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CHAPTER 4 

HYBRID LAYERED VIDEO ENCODING 

 

4.1. Introduction 

Video playback on a mobile device such as a PDA, pocket-PC, multimedia-enabled 

mobile phone (such as an iPhone), or a laptop PC operating in battery mode, is a 

resource-intensive task in terms of CPU cycles and battery power [Sikora, 2005]. Video 

playback typically results in rapid depletion of battery power in the mobile device, 

regardless of whether the video is streamed from a hard drive on the device, or from a 

remote server. Several techniques have been proposed to reduce power consumption 

during video playback on the mobile device [Cucchiara, 2003], [Ni, 2003], [Liang, 2006] 

[Mohapatra, 2003] [Cornea, 2006]. These techniques use various hardware and software 

optimizations to reduce power consumption during video playback. Typically, power 

savings are realized by compromising the quality of the rendered video. This tradeoff is 

not always desirable, since the user may choose to watch the video at its highest quality if 

sufficient battery power is available on the device. Thus, it is desirable to formulate and 

implement a multi-layer encoding of the video such that distinct layers of the video 

display different power consumption characteristics. The lowest layer should consume 

the least power during video decoding and rendering. The power consumption during 

video decoding and rendering should increase as more layers are added to the video. 

Typically, the less battery power available to decode and render the video, the lower the 

quality of the rendered video [Dai, 2003]. Thus, it is necessary to enhance quality of the 

lower video layers in order to ensure that the quality of the rendered video is acceptable.  
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Traditional layered video encoding, as used by MPEG-4 Fine Grained Scalability 

profile (MPEG-FGS), is customized for varying bitrates, rather than power-adaptive 

usage. In this chapter, the design and implementation of a novel Hybrid Layered Video 

(HLV) encoding scheme is presented. The proposed representation is termed as “hybrid” 

due to the fact that its constituent layers are a combination of standard MPEG-based 

video encoding and a generative sketch-based video representation. The input video 

stream is divided into two components: a sketch component and a texture component. 

The sketch component is a Generative Sketch-based Video (GSV) representation, where 

the outlines of the objects of the video are represented as curves [Chattopadhyay, 2007b]. 

The evolution of these curves (termed as pixel-threads), across the video frames is 

explicitly modeled in order to reduce temporal redundancy. A considerable body of work 

on object-based video representation using graphics overlay techniques has been 

presented in the literature [Khan, 2003] [Salembier, 2003] [Ku, 2003]. These methods are 

based primarily on the segmentation of the video frames into regions and the subsequent 

representation of these regions by closed contours. A major drawback of the 

aforementioned contour-based representation is the fact that the complexity of the 

representation increases significantly with an increasing number of contours in the video 

frames. In contrast, the proposed GSV representation uses sparse parametric curves, 

instead of necessarily closed contours, to represent the outlines of objects in the video 

frames. This ensures that the number of graphical objects that one needs to overlay is 

small. In addition, whereas closed contours are capable of addressing local region-based 

consistency, global shape-based information may be seriously compromised. This is not 

so in the case of the proposed GSV representation, which ensures that the global shape is 
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correctly represented. Although contour-based representations have been very successful 

in some specific applications involving low-bitrate videos such as video phones 

[Hakeem, 2003], generic contour-based video representations for a wider class of power-

constrained devices have, thus far, not been studied in detail. 

The texture component in the proposed HLV encoding scheme is represented by 

three layers; a base layer video, an intermediate mid-layer video, and the original video. 

The base layer represents a very low bitrate video with very low visual quality whereas 

the highest layer in the HLV representation denotes the original video. The base layer 

video can be augmented by the object outlines (that are emphasized with dark contours) 

using the Generative Sketch-based Video (GSV) representation mentioned above. This 

ensures that the visual quality of the base layer is improved significantly. The visual 

quality of the mid-layer video is better than that of the base layer video, but lower than 

that of the original video. The mid-layer video quality is further enhanced via high-level 

object-based re-rendering of the video at multiple scales of resolution. The result is 

termed as a Features, Motion and Object-Enhanced Multi-Resolution (FMOE-MR) video 

[Chattopadhyay, 2007a]. Note that although the visual quality of the mid-layer video is 

lower than that of the original video, some semantically relevant portions of the frames in 

the mid-layer video are highlighted by selectively rendering them at higher resolution, 

thus enhancing the overall viewing experience of the end user.  

We show via formal analysis and experimental results that the various video 

layers in the proposed HLV representation have different power consumption 

characteristics. Thus, the overall power consumption of an HLV-encoded video depends 

on the combination of layers used during decoding and rendering of the video on the 
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mobile end user device. A direct benefit of the proposed HLV representation is that the 

video content can be decoded and rendered at different levels of power consumption on 

the mobile device. Experimental results show that it is possible to save 45 minutes of 

battery power for an IBM Thinkpad laptop PC with a 2 GHz Centrino Processor and 1 

GByte RAM by using the lowest layer of the proposed HLV representation (comprising 

only of the sketch component without any texture content) when compared to the 

playback of the original video. Adding approximated texture to the sketch component 

results in an average battery power savings of 30 minutes when compared to the playback 

of the original video. The proposed HLV representation is thus extremely well suited for 

video streaming to power-constrained devices, such as multimedia-enabled mobile 

phones, PDAs, pocket-PCs and laptop computers operating in battery mode, where the 

available power for video playback typically changes over the video playback duration. A 

schematic diagram depicting the proposed Hybrid Layered Video (HLV) representation is 

given in Figure 4.1. 

In the following sections, we elaborate upon the two components of the proposed 

HLV representation, i.e., the sketch component, VSKETCH and the texture component, 

VTEXTURE. This is followed by a description of how to combine the various video layers 

 
Figure 4.1. The Hybrid Layered Video (HLV) Scheme. 
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comprising the aforementioned components to result in a power-scalable video 

representation. We discuss issues pertaining to the implementation of the proposed HLV 

representation followed by a presentation and analysis of the experimental results. 

Finally, we conclude the chapter with an outline of future research directions.   

 

4.2. Creating video component Vsketch 

In this section, we describe a technique to represent a video stream as a sequence of 

sketches, where each sketch in turn is represented by a sparse set of parametric curves. 

The sketch-based video essentially represents the outlines of the objects in the video. The 

resulting video representation is termed a Generative Sketch-based Video (GSV).  

 The video is first divided into a series of Groups of Pictures (GOPs), in a manner 

similar to standard MPEG video encoding. Each Group of Pictures (GOP) consists of N 

frames (typically, N = 15 for standard MPEG/H.264 encoding) where each frame is 

encoded using the following four steps: 

1. The object outlines are extracted in each of the N frames. These outlines are 

represented as a sparse set of curves. 

2. The curves in each of the N frames are converted to a suitable parametric 

representation.  

3. Temporal consistency is used to remove spurious curves which occur intermittently in 

consecutive frames. These spurious curves, if not removed, create an undesirable 

flickering effect. 

4. Finally, the parametric curves in the N frames of the GOP are encoded in a compact 

manner. The first frame of the GOP enumerates the curve parameters in a manner that 
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is independent of their encoding, analogous to the I-frame in MPEG H.264 standard. 

The remaining N-1 frames in the GOP are encoded using motion information derived 

from previous frames, in a manner analogous to the P-frames in the MPEG H.264 

standard. 

The proposed GSV encoding is similar the MPEG video encoding standard. The GOP is 

a well established construct in the MPEG standard that enables operations such as fast 

forward, rewind and frame dropping to be performed on the encoded video stream. 

Motion vectors are used in GSV encoding to reduce temporal redundancy as in the case 

of MPEG video encoding, where motion vectors are used to describe the translation of 

frame blocks relative to their positions in previous frames. The error vector, in the case of 

GSV encoding, has the same form as the encoded representation of the moving object(s) 

in the video. This is analogous to MPEG video encoding, where the encoding error is 

represented in the form of macroblocks similar to the macroblock representation of the 

moving object(s) in the video. 

 The parametric curves used to represent the object outlines in each frame are 

termed as pixel-threads. A pixel-thread is derived from a polyline P:[0, N], which is a 

continuous and piecewise linear curve made of N connected segments. A polyline can be 

parameterized using a parameter a  R (set of real numbers) such that P(a) refers to a 

specific position on the polyline, with P(0) referring to the first vertex of the polyline and 

P(N) referring to its last vertex. Note that the pixel-threads contain information only 

about the vertices (or break points) of the polyline. Note that these break points can be 

joined by straight line segments (as in the case of a polyline), or by more complex spline-

based functions to create smooth curves.  
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The pixel-threads essentially depict the outlines of objects in the underlying video 

stream. Each video frame is associated with its own collection of pixel-threads termed as 

a Pixel-thread-Pool. Thus, successive video frames are associated with successive Pixel-

thread-Pools. Due to the temporal nature of the video, the pixel-threads and Pixel-thread-

Pool are modeled as dynamic entities that evolve over time to generate the outlines of the 

moving objects in the video. The dynamic nature of the pixel-threads is modeled by the 

processes of birth and evolution of pixel-threads over time. We provide a detailed 

description of these processes in the following subsections. 

 

4.2.1. Birth of pixel-threads 

For a given video frame, the Pixel-thread-Pool is created by first generating (or 

sketching) the outlines of the objects in the video frame, and then representing these 

outlines parametrically in the form of pixel-threads.  

 

4.2.1.1. Generating a sketch from a video frame 

The edge pixels in a video frame are extracted using the Canny edge detector [Canny, 

1986]. The edge pixels are grouped to form one-pixel wide edge segments or edgels, 

many of which are intersecting. Edgels of small length are removed to avoid excessively 

cluttered sketches. The threshold below which an edgel is considered “small” depends on 

the screen size. Since GSV encoding is typically meant for mobile devices with small 

screens, removal of these small edgels typically do not produce any adverse effect. It 

must be noted that the edge detection process is inherently sensitive to noise and several 

edgels may, in fact, be noisy artifacts. Edgels extracted in two successive frames may 
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cause flickering; i.e., an edgel in a previous frame may disappear in the current frame, 

even in instances where the human eye can clearly discern an object boundary. A method 

to reduce this flickering effect is described in Section 4.2.4.  

 

4.2.1.2. Creating pixel-threads from a sketch 

The sketch thus obtained is converted to an approximate parametric representation using 

curve approximation techniques proposed by Rosin and West [Rosin, 1995]. Rosin and 

West [Rosin, 1995] describe the implementation and demonstrate the performance of an 

algorithm for segmenting a set of connected points resulting in a combination of 

parametric representations such as lines, circles, ellipses, super-elliptical arcs, and higher-

order polynomial curves. The algorithm is scale invariant (i.e., it does not depend on the 

size of the edgels, or the size of the frame), nonparametric (i.e., it does not depend on 

predefined parameters), general purpose (i.e., it works on any general distribution of 

pixels depicting object outlines in any given video frame), and efficient (i.e., has low 

computational time complexity). Since a detailed discussion of the algorithm is beyond 

the scope of the chapter, it suffices to mention that we use this algorithm to determine 

break points on the various connected components (i.e., edge segments) that are 

generated after the edge pixels have been detected.  

  A curved edge segment is represented by a series of break points along the curve, 

determined using the algorithm of Rosin and West [Rosin, 1995]. The curved edge 

segment is deemed to represent a portion of the outline of an object in the scene. Thus, 

the fitting of straight lines between the break points results in a rendering of an 

approximate version of the original curve. The break points are essentially points of 
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Figure 4.2. The creation of pixel-threads for a video frame (a) The original video 
frame; (b) Edges detected in the video frame, and filtered to remove small, spurious 
edges; (c) Break-points detected in the edge contours generated in the previous step. 

significance along the curve, such as corners and high-curvature points. Altering the level 

of significance or threshold for break-point detection allows various levels of (break-

point based) approximation of the contours in the video frame. This is discussed in 

greater detail in Section 4.5.4.1. 

  The break points along the curve are represented efficiently as a chain-coded 

vector. For each approximated curve i, one of the end points (first or last break point) is 

represented using absolute coordinates {x0, y0} whereas the p-th break point, where p > 0, 

is represented by  coordinates relative to those of the previous break point; i.e.{δxp, δyp} 

where δxp = xp - xp-1 and δyp =  yp - yp-1. The resulting chain-coded vectors constitute the 

pixel-threads which are approximations to the original curve. Figure 4.2 illustrates the 

process by which pixel-threads are generated for a given video frame. Note that pixel-

thread creation is done offline during the encoding process. 

 

4.2.2. Evolution of a pixel-thread 

Due to the temporal redundancy in a video sequence, a majority of the corresponding 

pixel-threads in successive video frames are often similar in shape and size. This 
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temporal redundancy can be exploited to evolve some of the pixel-threads in the current 

frame to constitute the Pixel-thread-Pool for the successive frame. An advantage of 

evolving the pixel-threads over successive video frames is the fact that a pixel-thread, 

once born in a video frame, requires only motion information to characterize its behavior 

in successive frames. Motion modeling significantly reduces the amount of information 

required to render the set of pixel-threads corresponding to the next frame, resulting in a 

compact representation of the dynamic pixel-threads. The evolution parameters are 

determined during the encoding process, which is offline and typically not power 

constrained. As will be shown subsequently, the encoding is done in a manner such that 

the decoding is simple, and can be done in real time by a power constrained device. 

  The evolution of pixel-threads between two successive Pixel-thread-Pools, say 

TP1 and TP2, involves two steps; (a) establishing the pixel-thread correspondence 

between the two Pixel-thread-Pools, and (b) estimating the motion parameters.  

 

4.2.2.1. Establishing pixel-thread correspondence 

In order to model the underlying motion accurately, it is essential to establish the 

correspondence between pixel-threads, belonging to the Pixel-thread-Pools of two 

consecutive frames in the video stream. In order to determine the correspondence 

between pixel-threads in TP1 and TP2 one needs to determine for each pixel-thread in TP1 

its counterpart in TP2.  

  First, we need to predict a position to which a pixel-thread T1 in TP1 is expected 

to move in the next frame. The predicted pixel-thread, say T’, can be determined using a 

suitable optical flow function OpF, such that  
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T’ = OpF(T1)    (4.1) 

The function OpF() computes the coordinates of the break points of the pixel-thread T’ in 

TP2, given the coordinates of the break points of pixel-thread T1 in TP1. The function 

OpF() implements a sparse iterative version of the Lucas-Kanade optical flow algorithm 

designed for pyramidal (or multiscale) computation [Bouguet]. The Lucas-Kanade 

algorithm is a popular version of a two-frame differential technique for motion estimation 

(also termed as optical flow estimation). For each break point location (x,y) of a pixel-

thread, if the corresponding pixel location in the original image (frame) has intensity 

I(x,y); and is assumed to have moved by δx and δy between the two frames, then the 

image constraint equation  is given by: 

Icurrent-frame(x,y) = Inext-frame(x + δx,y + δy) 

The Lucas-Kanade algorithm essentially embodies the above image constraint equation. 

The pyramidal implementation of the Lucas-Kanade algorithm computes the optical flow 

in a coarse-to-fine iterative manner. The spatial derivatives are first computed at a coarse 

scale in scale space (i.e., in a pyramid), one of the images is warped by the computed 

deformation, and iterative updates are then computed at successively finer scales. 

Once the pixel-thread T’ is obtained from T1 via the optical flow function, we 

hypothesize that if pixel-thread T1 in Pixel-thread-Pool TP1 does indeed evolve to a 

corresponding pixel-thread T2 in TP2, then T’ and T2 should resemble each other (to a 

reasonable extent) in terms of shape and size. The key is to determine the pixel-thread T2 

in TP2, which is closest in shape and size to the pixel-thread T’.  

  The correspondence between pixel threads T’ and T2 is determined using the 

Hausdorff distance [Atallah, 1983]. The Hausdorff distance is used as a measure of 
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Figure 4.3. Establishing pixel-thread correspondence for a frame j and the current
All-Threads-Pool Ψ. 
 

(dis)similarity between the pixel-threads, T’ and T2. The Hausdorff distance between the 

two pixel-threads T’ and T2, denoted by δH(T’, T2), is defined as  

δH(T’, T2) = max a Є T’ {min b Є T2 { d(a, b) } }   (4.2) 

where a and b are break points, and d(a, b) is the Euclidean distance between them. Thus, 

given pixel-thread T1 Є TP1, T2 is essentially the pixel-thread in TP2 which is most 

similar to T’, where T’, in turn, is obtained from T1 using the optical flow mapping 

function OpF(); i.e. 

T2 = argmin{ δH(OpF(T1), T): T Є TP2}    (4.3) 

An important observation about the computation of the Hausdorff distance δH is that the 

two pixel-threads under consideration, T1 and T2, need not have the same number of 

break points.  

 Although the pixel-thread T2 in TP2 is deemed to be the closest evolved pixel-

thread to T1 in TP1, it might still not have actually evolved from T1. As a result, we 

define a threshold ε > 0, such that if δH(OpF(T1), T2) < ε, then we consider T2 to have 

evolved from T1; otherwise, T1 is deemed to have become dormant, and T2 in TP2 is 
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deemed to have been born in TP2 and not evolved from TP1. We specify the threshold ε 

as an empirically determined fraction of the video frame width. 

  Based on the above definitions of birth and evolution, the pixel-threads in TP2 can 

be categorized as belonging to two mutually exclusive sets, TPEvolve and TPborn. TPEvolve is 

the set of all pixel-threads in TP2 which are evolved from some pixel-thread in TP1, and 

TPborn is the set of pixel-threads in TP2 which are not evolved from TP2; in other words, 

these pixel-threads are deemed to have been born in TP2. Figure 4.3 provides a 

schematic description of this process. 

 

4.2.2.2. Motion modeling of pixel-threads 

In this section, we discuss how to encode the motion information needed to specify the 

evolution of a pixel-thread T1 in TP1 to its counterpart T2 in TP2 once the correspondence 

between the pixel-threads T1 and T2 has been determined as described in the previous 

subsection. The visual quality and computational efficiency of the final encoding requires 

accurate estimation of the motion of pixel-thread T1 as it evolves into pixel-thread T2. To 

ensure compactness of the final representation, we assume that a linear transformation 

LT, specified by the translational parameters {tx , ty}, can be used for the purpose of 

motion estimation. It must be noted that transformations that incorporate additional 

parameters such as rotation and scaling, and are based on affine motion models can also 

be used. However, simple translational motion requires the least number of bytes for 

representation. Moreover, even if a more accurate and comprehensive motion model were 

to be used, an encoding error term would still need to be computed. The encoding error 

generated by an accurate and comprehensive motion model, although smaller in 
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magnitude compared to that generated by a simple motion model consisting of 

translational parameters only, would still require approximately the same number of bytes 

for representation. For example, a byte would be required to represent the encoding error 

in both cases, whether the error is 1 pixel or 255 pixels. Thus, using the simplest motion 

model (consisting only of translational parameters), and keeping track of the resulting 

encoding error, results in a compact and efficient motion representation. Note that a 

similar motion model is used for motion compensation by the well established MPEG 

standard. Also note that the simple translational motion model is adequate when the 

temporal sampling rate of the video (measured in frames per second) is high enough 

compared to the velocities and complexities of the motions of the various objects within 

the video. In such cases, even complex motions between successive frames can be 

reasonably approximated by a motion model comprising only of translational parameters. 

Thus, the estimated pixel-thread, T2
estimated is computed from T1 by using a 

mapping function LT1, such that 

T2
estimated = LT2(T1) 

The linear transformation coordinates in LT2 can be determined by computing the mean 

of the displacements of each break point, where the displacement of each break point is 

computed using the function OpF() (equation (4.1)). Since T2
estimated may not align 

exactly point-by-point with T2, it is necessary to compute the error between T2
estimated and 

T2. As discussed in the previous subsection, T2
estimated and T2 may not have the same 

number of break points. Suppose the number of break points of T1, and hence, T2
estimated, 

is n1 and that of T2 is n2. In general, n1 ≠ n2. Let the displacement error between T2
estimated 

and T2, be given by the displacement vector ∆T2. Two cases need to be considered: 
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Case 1: n2 ≤ n1: This means that there are fewer or equal number of break points in T2 

compared to T2
estimated. Note that, each component of ∆T2 is a relative displacement 

required to move each break point of T2
estimated to one of the break points in T2. 

Obviously, there can be multiple break points in T2
estimated which map to the same break 

point in T2. 

 

Case 2: n2 > n1: In this case the encoding is slightly different. The first n1 components of 

∆T2 denote the displacements corresponding to break points in T2 in the same order. 

Each of the remaining (n2 - n1) components of ∆T2 are now encoded as displacements 

from the last break point in T2.  

From the above description, it can be seen that the displacement vector ∆T2 has 

max(n , n2) components. Thus, the motion model required to evolve pixel-thread T1 into 

pixel-thread T2, is given by 

ΘT1(T2) = { tx , ty , ∆T2}     (4.4) 

The motion model ΘT1(T2) essentially contains all the parameters needed to transform 

pixel-thread T1 in TP1 to pixel-thread T2 in TP2.  

Let us now consider the number of bytes required to encode the motion model 

ΘT1(T2). The transformation parameters {tx, ty} can be designed to require a byte 

(character) each by restricting the displacement values to lie in the range (-127, 128). If tx 

or ty exceeds these bounds, then the result of the correspondence determination procedure 

is declared void, and T’ is deemed to be a new pixel-thread that is born, instead of one 
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that is evolved from pixel-thread T. However, in practice, for small display screens 

typical of mobile devices, this case occurs very rarely.  

  The prediction error vector ∆T2 requires 2 bytes for each component, if the 

displacements δx and δy are restricted to lie within a range {-128, 127}. Thus, ∆T2 

requires 2•max(n1 , n2) bytes of storage. Hence, the total storage requirement of the 

motion model ΘT1(T2) (in bytes), denoted by Bytes(ΘT1), is given by 

Bytes(ΘT1) = 2•max(n1 , n2) + 2    (4.5) 

In the next section, we present a method to evolve an entire generation of pixel-threads as 

a function of time. This results in the generation of a sketch-based representation of the 

original video sequence.  

 

4.2.3. Evolution of a pixel-thread-pool 

Given a video sequence of N frames, and the current frame j, let Ψ be the pool of all the 

pixel-threads which have been born or evolved thus far in frames 1 through j -1. All the 

pixel-threads in Ψ may not be active, i.e., some may be dormant. The dormant pixel-

threads still belong to Ψ, but represent pixel-threads which were not used to sketch a 

curve in the previous frame, j -1. The pixel-threads in Ψ belong to one of two subsets; 

Ψdormant or Ψactive. Clearly, Ψ = Ψdormant U Ψactive. 

For the current frame j, the pixel-threads corresponding to frame j are first 

determined using the techniques discussed in Section 4.2.1. These recently acquired 

pixel-threads corresponding to frame j are grouped together in Pixel-thread-Pool TPj. 

Assume that TPj has nj pixel-threads {T1
j, T2

j … Tnj
j}. Next, the correspondence 

between the pixel-threads in the set Ψ and the nj pixel-threads in TPj, is determined using 
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the methods mentioned in Section 4.2.2. Note that per the terminology in Section 4.2.2, Ψ 

corresponds to TP1 and TPj corresponds to TP2. Note that, during the correspondence 

determination procedure, the dormant pixel-threads in Ψ are also considered.  

Let TPj
wereEvolved be the subset of the pixel-threads in TPj which have evolved from 

Ψ. Let ΨTPj be the subset of pixel-threads in Ψ which evolve to a corresponding pixel-

thread in TPj
wereEvolved. It must be noted that, the correspondence between ΨTPj and 

TPj
wereEvolved is determined in a manner such that a pixel-thread Ti

j belonging to 

TPj
wereEvolved and the corresponding pixel-thread in ΨTPj from which it has evolved are 

both assigned the same index i. Now, pixel-threads in ΨTPj can be evolved to 

corresponding pixel-threads in TPj
wereEvolved via a set of motion models ΘΨTPj (equation 

(4.4)). Since the remaining pixel-threads in TPi
j cannot be evolved from any existing 

pixel-thread in Ψ, these pixel-threads are considered to belong to the set TPj
born; where 

TPj
born = TPj - TPj

wereEvolved. 

Next, the set Ψ is updated in the following manner: 

(a) Pixel-threads in ΨTPj are evolved to corresponding pixel-threads in TPj
wereEvolved, using 

motion model parameters given by ΘΨTPj. The new pixel-threads in TPj
born are included 

in Ψ.  

(b) The new set of active pixel-threads is given by Ψactive = Ψ ∩ TPj. These pixel-threads 

are used to generate the sketch-based representation of the new video frame. Naturally, 

the pixel-threads in this updated set Ψ, that have no counterparts in TPj, are deemed 

dormant; i.e.,  

Ψdormant = Ψ - Ψactive 
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The data corresponding to frame j required to sketch the jth video frame are given by the 

motion model parameters denoted by ΘΨTPj. The newly born pixel-threads are included 

in TPj
born. Thus, the entire process of evolution of all the pixel-threads across all the N 

frames of the video can be effectively represented as a Generative Sketch-based Video 

(GSV), given by 

Generative-Sketch-based-Video = {< ΘΨTP1, TP1
born>,.., < ΘΨTPN, TPN

born>} (4.6) 

A depiction of the process of evolution of the GSV is given in Figure 4.4a. Figure 4.4b 

shows a plot of the total number of pixel-threads in Ψ as a function of time during the 

entire process of evolution of all the pixel-threads in the GSV representation of a sample 

video. The curve shows that, after the initial pixel-threads are created in the first frame, 

very few new pixel-threads are born thereafter. The initial pixel-threads are seen to be 

adequate to evolve and generate most of the entire GSV representation of the sample 

video. 

 
Figure 4.4. The process of birth and evolution of pixel-threads across the frames to 
create the Generative Sketch-based Video (GSV) (a) The vertical bars represent the 
state of the Pool-of-All-Pixel-Threads Ψi for frame i;  (b) For a video sequence of 160 
frames, the number of pixel-threads in each frame is plotted as a function of the frame 
number (time).  
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Figure 4.5. Flicker removal using the history 
of activity or dormancy of a pixel-thread. The 
encircled portion corresponds to a brief period 
of activity for the pixel-thread. The pixel-
thread is made dormant to remove the 
flickering effect caused by this brief activity. 

4.2.4. Flicker reduction 

When the pixel-threads for each frame are rendered, flickering effects are observed. This 

is due to the fact that some pixel threads appear momentarily in a frame, only to become 

dormant in a series of successive frames. The resulting sudden appearance and 

disappearance of pixel-threads creates a flickering effect. The All-Threads-Pool Ψ 

contains the list of all the dormant pixel-threads. When a pixel-thread, which is dormant 

for some time, becomes active for a few frames, and then becomes dormant again, a 

flickering effect is observed. Thus, if such a pixel-thread is forced to be dormant instead 

of appearing for a short time, the flickering effect is considerably reduced. The history of 

activity and dormancy is maintained for each pixel-thread in each frame, while the frame 

is being encoded. Once the entire 

video has been encoded, a second 

pass is made to determine, for each 

pixel-thread, the frames in which the 

pixel-thread should be made 

dormant, using the algorithm 

described in Figure 4.5. 

 

4.3. Encoding the texture - Vtexture 

In the previous section, we described in detail how a Generative Sketch-based Video 

(GSV) is obtained from the original video. The GSV is used as the sketch component 

within the proposed HLV representation. In this section, we describe how the second 

component of HLV, i.e., the texture component, is created. The texture of the video, 
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given by the component VTEXTURE, consists of three sub-components termed as Vorg, Vmid 

and Vbase where Vorg is the original video which is deemed to be of the highest visual 

quality, Vmid is the video of intermediate visual quality, and Vbase is the base-level video 

of the lowest visual quality. All the above video sub-components are encoded using the 

MPEG H.264 standard. In this section, we will discuss in detail the procedure for 

generation of each of the three layers. 

 

4.3.1. Generating the top-most video layer Vorg 

Vorg is the original video which is encoded efficiently using a state-of-the-art MPEG 

H.264 encoder that is available in the public domain [Squared5]. A raw video encoded 

using the MPEG H.264 codec results in a very compact file representation. The MPEG 

H.264 codec uses inter-frame and intra-frame predictions to reduce significantly the 

spatial and temporal redundancy in the input video stream [Richardson, 2004], [ISO/IEC-

visual, 2000]. 

 

4.3.2. Generating the intermediate video layer Vmid 

The video layer Vmid represents an intermediate-level video which has a more compact 

representation than the original video albeit at the cost of lower visual quality. As will be 

shown in Section 4.5, a lower-size video file leads to reduction in overall power 

consumption during the decoding process. The video layer Vmid is generated using a 

novel multi-resolution video encoding technique termed as Features, Motion and Object-

Enhanced Multi-Resolution (FMOE-MR) video encoding [Chattopadhyay, 2007a]. The 

FMOE-MR video encoding scheme is based on the fundamental observation that 
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applying a low pass filter in the image color space is equivalent to DCT coefficient 

truncation in the corresponding DCT (frequency) space [Geusebroek, 2001]. The FMOE-

MR video encoding scheme is a two step process as described in the following 

subsections.  

 

4.3.2.1. Generating the FMO-Mask  

Instances of Features, Motion and Objects (FMOs) are detected in the video sequence 

using state-of-the-art computer vision algorithms. A corresponding mask (FMO-Mask) is 

created to mark the regions corresponding to the presence of the FMOs. The mask 

contains floating point values between (and inclusive of) 0 and 1, where 0 represents a 

completely uninteresting region and 1 represents a region that is vital for visual and 

semantic understanding of the image. The FMO-Mask is essentially a combination of one 

or more of the following three individual masks; the Feature-Mask (F-Mask), Motion-

Mask (M-Mask) and the Object-Mask (O-Mask). 

 

Feature mask (F-mask) 

The F-Mask captures the important low-level spatial features of the video frame. Edges 

are one of the most important low-level features of an image (or video frame), since 

human perception tends to first detect edges for the purpose of object recognition and 

general scene analysis. Edges can be detected automatically in a given image or video 

frame. There are many ways to perform edge detection. However, the majority of 

different methods may be grouped into two broad categories: gradient-based and 

Laplacian-based. The gradient-based methods detect the edges by seeking a maximum in 
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the magnitude of the first derivative of the image intensity (or color) function. The 

Laplacian-based methods, on the other hand, search for zero crossings in the second 

derivative of the image intensity (or color) function to detect and localize the edges. In 

our current work we have used the Canny edge detector [Canny, 1986] which is a 

gradient-based method to detect and localize the edges in a video frame. Once the edges 

in the video frame are detected and localized using the Canny edge detector, an F-mask is 

created by assigning a value of 1 to regions in and around the edges, and the value of 0 

elsewhere. Note that the mask is essentially a weighting matrix, where each pixel may be 

assigned a value between (and inclusive of), 0 and 1. 

 

Motion mask (M-mask) 

The motion within a video sequence constitutes a very important visual phenomenon 

since human perception of a dynamic scene tends to follow the moving objects and note 

their activities. Therefore, in situations which demand reduction in quality of the video, 

the image regions in the video that are characterized by significant motion can be 

rendered at high resolution and the remainder of the video frame at low resolution. A 

Motion mask (M-mask) is obtained by identifying the regions within the video frames 

that contain moving objects. This is essentially accomplished via a process of background 

subtraction [Cheung, 2006] [Javed, 2002] [Ivanov, 2002] [Luo, 2006]. Background 

subtraction is performed typically by first creating (or learning) a background model for a 

video sequence. The video frames are then compared with the background model to 

detect regions which are not part of background. These regions are classified as 

belonging to the dynamic foreground, i.e., containing moving objects. Background 
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subtraction thus allows one to extract foreground objects which are moving relative to the 

camera, or had been moving until recently. We used the background models described in 

[Luo, 2005], [Luo, 2006] to extract the dynamic foreground (i.e., the moving objects) 

from the background. 

 

Object mask (O-mask) 

All the foreground objects in a video sequence may not be equally important from a 

visual or semantic perspective. For example, in a video sequence containing a news 

reader with a rotating background logo, the face of the news reader is more important 

than the moving logo which, in the current implementation, is also considered part of the 

foreground. In this case, the face is deemed an object of interest amongst the various 

foreground regions. Face detection and tracking is typically done by extracting feature 

points that characterize a face, and tracking these feature points in the video sequence. A 

detailed description of the face recognition and tracking algorithm is once again beyond 

the scope of this chapter. In our current implementation, faces in a video sequence are 

detected using the algorithms described in [Zarit, 1999], [Viola, 2002] and tracked using 

the algorithm described in [Luo, 2007] to create an O-mask based on human faces 

automatically. 

 

Combining F, M, O masks to form a single FMO Mask 

The three masks are superimposed to generate the final FMO mask. It is not always 

required to generate all the masks; for example, for a surveillance scenario, only the 

motion mask is required to capture the moving persons. Creation of the mask also 
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depends on the computational resources available; the F-and-M-mask creation can be 

typically done in real time, and combined in real time. For lower available power 

resources at the coding end, the F-mask only can be used; the edge detection by Canny is 

a low computational complexity task. 

 

4.3.2.2. Multi-Resolution (MR) re-encoding 

The original frame is re-encoded as a multi-resolution (MR) representation, guided by the 

FMO-mask such that regions corresponding to mask values close to 1 are at higher 

resolution than regions corresponding to mask values close to 0. The original video frame 

VO is used to render two video frames, VH and VL, such that VH is a high resolution 

rendering and VL is a low resolution rendering of VO. The video frames VL and VH are 

obtained by convolving VO with Gaussian filters characterized by the smoothing 

parameters σL and σH respectively. Maintaining σL > σH ensures that VL is smoother than 

VH, i.e., VL is a lower resolution rendering of VO than VH. If the FMO mask is 

  
  (a)    (b)    (c) 
Figure 4.6.  Using FMO-Mask for multi-resolution video frame re-rendering. (a) The 
original frame; (b) The FMO mask frame; (c) The frame re-rendered using FMOE-MR 
video encoding. The moving objects are rendered at high resolution whereas the 
background is rendered at low resolution. The obtained PSNR is 24.94  
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represented as a matrix W whose elements lie in the range [0, 1], then the MR frame VMR 

is obtained via a linear combination of the two frames VH and VL as follows:  

VMR = W•VH + (I -W)•VL 

where I is a matrix all of whose elements are 1. 

The values of σL and σH used to generate Vmid = VMR are selected empirically by 

the user. Empirical observations have revealed that σL = 9 or 11, and σH = 3, can be used, 

in most cases, to yield videos of reasonable visual quality with significantly smaller file 

sizes than the original video. Figure 4.6 presents an example of a video frame where the 

foreground moving object has been extracted using an FMO-mask. As is apparent, the 

regions where the moving objects are situated are rendered at higher resolution compared 

to the stationary regions comprising the background. Since an exhaustive treatment of the 

FMOE-MR video encoding schemes is beyond the scope of this chapter, the interested 

reader is referred to [Chattopadhyay, 2007a] for further details. It must be noted that 

finally, Vmid too is encoded using standard MPEG H.264, after preprocessing using 

FMOE-MR. 

 

4.3.3. Generating the base video layer Vbase 

The base video layer Vbase is generated by first blurring each frame of the video using a 

Gaussian filter with smoothing parameter σbase prior to MPEG H.264 encoding. Note that 

this is similar to the Gaussian smoothing performed in the case of FMOE-MR video 

encoding. The primary difference is that, in the case of the base video layer generation 

procedure, the smoothing is performed uniformly over the entire video frame in contrast 

to FMOE-MR video encoding where the extent of smoothing can vary within a video 
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frame based on the perceptual significance of the region under consideration. This results 

in further dramatic decrease in the file size upon MPEG H.264 encoding, albeit at the loss 

of video quality. Note that Vbase is at of much lower visual quality than Vmid since object-

based enhancement is not used. Vbase essentially serves to provide approximate color 

information for the Generative Sketch-based Video (GSV) representation described 

previously. 

 

4.3.4. Assessment of visual quality of VTEXTURE 

The visual quality of each of the aforementioned video layers comprising VTEXTURE can 

be assessed in terms of PSNR values, as well as via subjective visual evaluation. A 

quantitative evaluation of the average PSNR of a sample video with respect to the 

percentage decrease in video size is depicted in Figure 4.7. It is apparent that the video 

size can be decreased significantly by using a high value of σbase, albeit with a loss in 

video quality. We have observed empirically that values of σbase in the range {19, 25} can 

be used to generate the base video layer Vbase, resulting in a very small file size albeit at 

the cost of low resolution and low visual quality. However, approximate color 

information is still retained in the video layer Vbase, to the point that the visual quality of 

 
Figure 4.7. The change in PSNR and video file size as a function of the Gaussian 
smoothing parameter σbase for the video. 
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the resulting video improves significantly when the object outlines from the GSV 

representation are superimposed on the video layer Vbase. 

 

4.4. Combining Vsketch and Vtexture: Video states 

As mentioned in the previous sections, the two components, VTEXTURE and VSKETCH, are 

obtained independently of each other. First, a suitable texture frame is extracted from the 

VTEXTURE component of the video by the video display controller. After this frame has 

been written to the frame buffer, the other component, VSKETCH, is used to superimpose 

the object outlines on the frame buffer containing VTEXTURE. Both events are independent 

in terms of processing; they are only related by order, i.e., VTEXTURE is rendered first, 

followed by the superimposition of VSKETCH on VTEXTURE. An example frame obtained 

by superimposing VSKETCH on the Vbase subcomponent of VTEXTURE is shown in Figure 

4.8. 

 
     
Figure 4.8. Super-imposing VSKETCH and VBASE. 
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Let us suppose that the VTEXTURE component has L levels of resolution. In the 

current implementation, L = 4 which includes the three layers Vorg, Vmid and Vbase in 

decreasing order of visual quality and level 0 which denotes complete absence of texture 

information. Let Vj
TEXTURE (0 ≤ j ≤ L-1) correspond to the MPEG H.264-based encoding 

of the video where V0
TEXTURE denotes the complete absence of texture information,  

V1
TEXTURE denotes the video layer of the least visual quality and resolution (with 

deliberately induced loss in visual quality to ensure a very low bitrate and small video file 

size), and VL-1
TEXTURE denotes the video layer of the highest visual quality and resolution 

(i.e., the original video encoded using the MPEG H.264 standard with no deliberately 

induced loss in visual quality). Let the state of the HLV-encoded video be depicted as  

Γ(texture-level, sketch-level) = (Vtexture-level
TEXTURE, Vsketch-level

SKETCH)  (4.7) 

such that 0 ≤ texture-level ≤ L-1, and sketch-level Є {no-sketch, polyline-sketch, spline-

sketch}. The above state-based representation allows for various resolutions of texture 

with superimposition of sketch-based representations of varying degrees of complexity. 

Under the above formalism, Γ(L, no-sketch) represents the original (i.e., best quality) 

video, and Γ(0, polyline-sketch) represents the video that contains no texture, but only the 

object outlines represented by polylines (presumably, the lowest quality video).  

Furthermore, the states in the above representation are linearly ordered such that a 

“higher” video state is deemed to consume more power than a “lower” video state. Thus, 

it is essential to order the different states of the video in the above representation in terms 

of their battery power usage. Let Battery-Time(X, t) be the battery time estimate provided 

by the operating system on the playback device t seconds after the video playback has 
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been initiated, where X denotes the state of the video during playback. Let Γ = {Γ1, …, 

ΓS} be the S distinct video states. We define a relation ≤p such that  

Γi ≤p Γj implies that Battery-Time(Γi, t) ≥ Battery-Time(Γj, t), t > 0  (4.8) 

In other words, the states are linearly ordered from left to right such that for any state 

(except for the states Γ(L, no-sketch) and Γ(0, polyline-sketch)), the state on its left 

consumes less power while decoding the entire video whereas the state on its right 

consumes more power. The value Battery-Time(Γcurrent-state, t) estimated using a simple 

operating systems call, which predicts the remaining battery time based on the current 

system load. In the following section, we present and analyze experimental results in 

order to validate the claim that the proposed HLV representation does indeed result in 

different power consumption estimates for distinct states in the aforementioned video 

state-based representation.   

  

4.5. Experimental results and analysis  

We have conducted experiments using two video examples to measure various aspects of 

power consumption, such as number of CPU cycles needed to decode the video, and the 

battery life of the device during video playback. We first describe how the various 

components of the proposed HLV representation are implemented. Next, we provide 

estimates of the sizes of the files used to store the various video states on hard disk. 

Finally, we show, using the Train Station video as an example, that the various video 

layers of the proposed HLV representation do indeed consume different amounts of 

power. This clearly demonstrates that the proposed Hybrid Layered Video (HLV) 

representation is indeed one that is power-scalable. 
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4.5.1. Implementing the video layers 

As discussed previously, implementing the texture layers is straightforward. We used the 

Gaussian Smoothing filter with smoothing parameter σ = 0 (i.e., no smoothing) and σ = 

15 to encode the video layers Vorg and Vbase respectively. Likewise, the values σL = 9 and 

σH = 3 were chosen as smoothing parameters for the Gaussian Smoothing filters 

associated with the FMOE-MR encoded video Vmid (Section 4.3.2).  The values of σ in 

each case were selected empirically. Together, the sub-components Vorg, Vmid and Vbase 

constitute the VTEXTURE component in the proposed HLV representation. 

The object outlines generated by the GSV file are encoded using a GOP size of 15 

frames in compliance with the MPEG H.264 standard, i.e., the 1st frame is encoded as I 

frame; whereas the remaining 14 frames are encoded as P-frames. The pixel-threads 

corresponding to the first frame (or I-frame) are stored as ‘born’ pixel-threads. This 

means that each pixel-thread is represented as a chain-coded vector as discussed in 

Section 4.2.1.2. A chain-coded pixel-thread requires the first break point to be specified 

in terms of its absolute X and Y-coordinates with respect to the origin of the frame. Since 

typical video resolutions for mobile devices do not exceed the standard XGA video 

resolution (1024×768), 4 bytes are more than adequate to store the absolute X, Y 

positions of the first break point (note that 2 bytes for each coordinate value can represent 

a frame of size 65536×65536 pixels). The remaining break points require computation of 

displacements relative to the previous break point. These displacements can be restricted 

to lie between -127 and 128 (a character); thus 2 bytes are required for each of the 

remaining break points. Note that if a break point is too distant from the previous break 
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Figure 4.9. The GSV file (a) The format 
used to encode a pixel-thread; (b) The 
algorithm used to read a GSV-encoded 
video file 

point for its coordinates to be 

represented by two bytes, then an 

additional dummy break point can be 

inserted so that the resulting 

displacements can be represented 

using 2 bytes. 

From the second frame 

onwards, some of the pixel-threads in 

the current frame are evolved from 

pixel-threads in the previous frame, 

whereas some pixel-threads are born in the current frame. This situation is similar to the 

motion compensation used by a typical MPEG in the case of P-frames. The pixel-threads 

which are deemed to be born are represented using the chain-coding scheme described 

above. For an evolved pixel-thread, the index of the pixel-thread from which it has 

evolved, and the corresponding motion model parameters need to be represented.  

Instead of describing whether a pixel-thread is born in the current frame, or 

evolved from a previous thread, it is sufficient to mention just the index of the pixel-

thread. Based on the definition of the index of a pixel-thread, if the index of the pixel-

thread under consideration is greater than the number of pixel-threads in Ψ (Section 

4.2.3), then this pixel-thread is considered to have been be born in the current frame. 

Thus, subsequent information on this pixel-thread in the GSV file pertains to the chain-

coded representation of its break points.  On the other hand, if the index of the pixel-

thread under consideration is less than the number of pixel-threads in Ψ, then it is 
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deemed to have evolved from some pixel-thread in Ψ. Consequently, subsequent 

information on this pixel-thread in the GSV file pertains to the parameters of the motion 

model describing its evolution. The GSV file format is depicted in Figure 4.9a and the 

algorithm used to read and interpret the GSV file is described in Figure 4.9b. 

We used a motion mask obtained using the background modeling and background 

subtraction algorithms described in [Luo, 2005], [Luo, 2006] to extract the moving 

foreground objects in the Train Station video sequence. Only the moving foreground 

objects in the Train Station video sequence are encoded in the resulting GSV file 

[Chattopadhyay, 2007a]. A sample video frame shown in Figure 4.10 depicts the result 

of the extraction and encoding of the moving foreground objects. The result is an 

          
(a)            (b) 

        
   (c)           (d)  
Figure 4.10. GSV encoding of foreground objects (a) The original video frame; (b) 
The background model learned from the first few frames of the video sequence; (c) 
The foreground mask obtained after background subtraction; (d) The portion 
corresponding to the foreground mask is encoded as a sketch. 
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extremely compact representation, where the background is represented as a single 

parametric image, and the GSV file that encodes only the moving foreground objects in 

the 17-minute Train Station video sequence occupies only 6 MBytes of hard disk space. 

The same motion mask is then used to extract the motion-containing regions that are 

encoded at high spatial resolution in the Vmid video layer. 

A synopsis of the resulting file sizes of the various components and sub-

components of the video is as follows: Vorg (95 MBytes), Vmid (35 MBytes), Vbase (13 

MBytes) and Vsketch (8 MBytes, where the background is encoded as a single GSV 

frame).  As expected, the lower the visual quality of the video, the smaller the file size. 

The combined size of all the components and subcomponents of VTEXTURE and VSKETCH 

is 151 MBytes whereas the original video alone is 95 MBytes. Thus, the proposed power-

scalable HLV encoding of the Train Station video resulted in a data storage overhead of 

approximately 56% compared to the flat file representation of the original video. Given 

the abundance and low price of data storage, data storage overhead of about 56% could 

be deemed acceptable for most video servers that specialize in streaming video files to 

mobile devices. 

 

4.5.2. Visual quality of different video states 

Based on the discussions in the previous section it can be seen that the various video 

layers (or video states) in the proposed HLV encoding scheme are generated by altering 

(or reducing) the quality of the resulting encoded video. In the next subsection, we show 

that the power consumed during the decoding process can also be made to vary 

significantly based on the chosen video layer or video state. However, it is important to 
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          (a)       (b)     (c)   (d) 
Figure 4.11. Objective comparison of the video states Γ3

train = Γ(Vbase, polyline-
sketch), and Γ6

train = Γ(Vorg, null) (a) A video frame from the video state Γ6
train = 

Γ(Vorg, null);  (b) The foreground mask generated using background subtraction on the 
video frame in (a);  (c) The corresponding video frame for the video state Γ3

train = 
Γ(Vbase, polyline-sketch); (d) The foreground mask generated using background 
subtraction on the video frame in (c).  The foreground masks in (b) and (d) are seen to 
overlap by more than 85%.  

note that a video state in the proposed HLV encoding scheme is only an approximation to 

the original MPEG-encoded video; which raises the natural question, i.e., is the 

approximation good enough? Subjective evidence gathered from various students and co-

workers has revealed that all the objects discernable in the MPEG-encoded video are also 

discernable in the HLV-encoded video. A comprehensive quality assessment of the 

proposed HLV encoding scheme, which includes a subjective end-user survey, is 

currently underway. 

As an objective comparison of HLV-encoded video quality, we used the videos 

corresponding to video states Γ3
train = Γ(Vbase, polyline-sketch), and Γ6

train = Γ(Vorg, null), 

to perform some standard computer vision tasks such as background subtraction. Note 

that  Γ6
train = (Vorg, null), in our case, corresponds to the video with the highest visual 

quality. As described previously, background subtraction is the process of first estimating 

the background of the dynamic scene, where the background is deemed to comprise of 

those regions within the video frames which do not move relative to the camera. The 

background, thus determined, is subtracted from each frame to extract the foreground, or 

moving regions within the video frames [Davies, 1990]. We hypothesize that the video 
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states Γ3
train and Γ6

train yield videos of comparable quality if both videos result in similar 

foreground regions upon background subtraction. 

Figure 4.11 shows the resulting foreground masks after background subtraction 

has been performed on a Γ6
train video frame and the corresponding Γ3

train frame. As is 

evident from Figure 4.11, both videos were observed to yield similar foreground masks. 

We further computed the percentage overlap between the foreground masks generated 

from the two videos. The mask generated from the Γ3
train video frame was observed to 

have an 85% overlap with the mask generated from the original video, Γ6
train. Other 

vision-based tasks such as face detection using skin tone yielded similar results since the 

skin tones were observed to be well preserved in the texture component of the Γ3
train 

video [Chattopadhyay, 2007a]. Note that we could not use standard metrics such as the 

Peak Signal-to-Noise Ratio (PSNR) to measure quality of HLV-encoded video, since the 

PSNR measure treats the graphics overlay of outlines as noise. 

It must be noted that for video examples with very detailed images, the lower 

layers of the proposed HLV encoding are often not acceptable, as they cannot capture all 

the fine details present in the original image. But for most typical applications that 

require limited attention to detail (such as wide-area surveillance, wide-area traffic 

monitoring and some sports and news coverage), the lower layers of the HLV encoding 

can be used as an alternative to the original video (or the highest layer of the HLV-

encoded video). The lower layers of the HLV-encoded video are observed to consume 

significantly less power than the original video during the decoding process, as shown in 

the next subsection. 

 



 124

4.5.3. Analysis of power consumption of different video states 

Before comparing power consumption for the different states of the HLV-encoded video, 

we first examine the various parameters affecting the power consumption of the HLV-

encoded video. In the following subsections we discuss the impact of each of these 

parameters on the overall power consumption profile of the HLV-encoded video. Finally, 

we discuss objective evaluation measures that demonstrate that distinct video states do 

indeed exhibit different power saving trends. 

 

4.5.3.1 Parameters for VSKETCH 

The first step in the creation of the VSKETCH component is the generation of the initial 

pixel-based sketch of the video frame using the Canny edge detector [Canny, 1986]. The 

Canny edge detector uses two thresholds, Tlow
canny and Thigh

canny. The range [Tlow
canny, 

Thigh
canny ] determines the number of edges that are detected and the resulting continuity 

        
     (a)       (b) 
 
Figure 4.12. GSV file size vs VSKETCH parameters (a) Tlow

canny and Thigh
canny; (b) Tθ. 
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  (a)           (b)                           (c) 
Figure 4.13. Visual quality vs Tθ (a) Tθ = 0o (i.e., the original frame);  (b) Tθ = 5o; (c) 
Tθ = 10o 

of the edge contours. If Thigh
canny is set too high, important edge information could be 

missed and the resulting edge contours would be discontinuous. On the other hand, if 

Tlow
canny is set too low, a large number of false (noisy) edge pixels will be detected. The 

choice of threshold values can directly affect the power consumption during the decoding 

of the GSV-encoded video. This is so because an encoding that entails fewer pixel-

threads would require fewer CPU cycles for the purpose of decoding. As will be shown 

in Section 4.5.4.3., the power consumed during decoding of the GSV-encoded file is 

directly proportional to its size. Figure 4.12a shows a plot of the GSV file size as a 

function of the Canny edge detector parameters. 

In the second part of the algorithm used to generate the VSKETCH component, 

break points are generated for each edge contour using the algorithm of Rosin and West 

[Rosin, 1995]. The result is a set of non-collinear break points in 2D, where the line 

segments connecting two consecutive break points are termed as pixel-segments. For any 

two consecutive pixel-segments one can define a segment-angle θ between them. In order 

to reduce the number of break points, and hence the number of bytes required to store 

each pixel-thread, consecutive pixel-segments with a segment-angle less than Tθ can be 

joined to form a single pixel-segment, thus eliminating a break point on the pixel-thread. 
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This results in a reduction in the size of the GSV file. Figure 4.12b shows a plot of the 

GSV file size as a function of Tθ. However, even a low value of Tθ, say 2o, results in a 

visually discernable deterioration in image quality. Figure 4.13 depicts the effect of the 

choice of threshold value Tθ on the resulting pixel-threads. As shown in Figure 4.13, a 

small value of Tθ can alter the shapes of the objects within the video dramatically. As a 

result, in our encoding experiments, we have not used a threshold to reduce the number 

of break points in the individual pixel-threads. 

We have so far demonstrated the effect of the three aforementioned threshold 

parameters, on the file size of the GSV-encoded video. As shown in Section 5.4.3, the 

size of the GSV-encoded file, in turn, is shown to determine the power consumed during 

the video decoding process. 

 

Table 4.1. List of all the parameters affecting HLV power consumption. 
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4.5.3.2. Parameters for VTEXTURE 

As discussed in Section 4.3.2, the Vmid video layer is encoded using the proposed FMOE-

MR encoding technique. The FMOE-MR encoding technique, in turn, depends on the 

two Gaussian smoothing parameters; σL and σH. As discussed previously, we have 

empirically determined the values of these parameters to be σL = 9 or 11, and σH = 3 or 5. 

The video layer Vbase is created via uniform blurring of the video frame using a Gaussian 

filter with smoothing parameter σbase. Recall that Figure 4.7 shows that varying the value 

of the Gaussian smoothing parameter σbase results in a dramatic decrease in the file size. 

The CPU power consumption during decoding of the texture layer Vmid, is shown to be 

approximately proportional to the size of the resulting file, as will be shown in the next 

subsection. Table 4.1 summarizes the various parameters used in the generation of video 

layers Vmid and Vbase and their impact on the overall power consumption in the device on 

which the video is being decoded and rendered. 

 

4.5.3.3. Power consumption estimate for various states 

Since the CPU actually contributes about 15% to the overall power consumed in a mobile 

device during the process of video playback (comprising of downloading, decoding and 

rendering of the video) [Hennessy, 2002], it is important to measure the overall power 

consumption for the entire system rather than the CPU power consumption alone. As a 

result, we compare the overall power consumption for the various video states by 

measuring the time-remaining statistics during the process of video playback in each 

case. We have used the following, empirically determined, parameter values: Tlow
canny = 

60, Thigh
canny = 70, Tθ = 0, σL = 3, σH = 9 and σbase = 21. The experiments have been 
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conducted using a laptop PC with a 2 GHz CPU, 2 MBytes L2 Cache, 1 GByte RAM and 

60 GBytes, 5400 rpm hard drive running in battery mode.  

From Figure 4.14, it is apparent that lower states consume less power than the 

higher states in the proposed HLV representation. It is also apparent that the file size on 

hard disk (regardless of whether it is a GSV file or a texture file) for each of the video 

states directly affects the overall power consumption during video playback. We have 

compared the mean difference between the battery time remaining statistics of the 

various video states. The mean difference between the battery time remaining statistics 

for the state Γ(null, spline-sketch) and the state Γ(Vorg, null) is ≈ 45 minutes. Thus, it is 

possible to have ≈ 45 minutes of extra system battery life if the video is viewed using the 

sketch-only version. Similarly, the difference in battery time remaining between the 

states Γ(Vbase, spline-sketch) and Γ(Vorg, null) state is ≈ 30 minutes. Likewise the 

 
Figure 4.14. Power consumption profile for the various video states of the Train 
Station video. The dotted line at the very top represents the idle state; i.e., when the 
device is idle and not running any video. 
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difference in battery time remaining between the states Γ(Vmid, null) and Γ(Vorg, null) is ≈  

15 minutes. 

 

4.5.3.4. Real Time Video State Selection 

When the video playback is initiated on the client device, the video is displayed at the 

highest quality, corresponding to state Γ6 = Γ(Vorg, null). Suppose the video, which has a 

total running time of Tv seconds, has been playing for t seconds and the current video 

state is Γcurrent-state. Three situations may arise: 

Battery-Time(Γcurrent-state, t) > (Tv - t): This means that if the current state of the video is 

maintained, it can be viewed comfortably with current battery drainage rate computed by 

the system. In this case, a higher video state could be chosen to improve the visual 

experience of the end user. 

 
Figure 4.15. State diagram depicting the state transition rules. The current state 
transitions to a higher state if the available battery time (Tbattery) is greater than the 
remaining running time of the video (Tvideo). Similarly, the current state transitions to 
a lower state if Tbattery < Tvideo. 
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Figure 4.16. The effect of video state transitions on the remaining battery time. The 
video playback starts with Г(Vorg, no-sketch), changes state to Г(Vmid, no-sketch) then 
to Г(Vbase, spline-fit) and finally to Г(0, spline-fit). It is apparent that there is an 
improvement in remaining battery time every time a lower state is chosen. 

Battery-Time(Γcurrent-state, t)  ≈ (Tv - t): This means that the remaining battery time is 

approximately equal to the remaining video duration. In this case, the current state of the 

video is maintained. 

Battery-Time(Γcurrent-state, t) < (Tv - t): This means that the current state of the video is too 

power intensive for the system to handle and continued video playback in the current 

state runs the risk of draining the battery completely before the entire video can be 

viewed. In this case, the system transitions to a lower video state for the purpose of video 

playback, with the expectation the battery power usage rate will slow down. Figure 4.15 

depicts the rules that govern the change in video states.  

As an additional example, consider another sample video Two persons walking. 

Figure 4.16 shows how the remaining battery time changes dynamically with changing 

video states. From Figure 4.16, it is clear that the remaining life of a battery can be 

dynamically varied by transitioning between various video states during video playback. 
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From above results and analysis, we can derive the general relationship between 

the aforementioned video states: 

Γ1
train ≤p Γ2

train ≤p …. Γ5
train≤p Γ6

train  (4.9) 

Likewise, we can conclude that the proposed Hybrid Layered Video (HLV) 

representation can be used to deliver different “styles” of video with varying power 

consumption characteristics, to a heterogeneous ensemble of mobile devices with 

different power resource constraints.  

 

4.6. Conclusions and future directions 

We have proposed a novel layered video representation scheme, termed as Hybrid 

Layered Video (HLV), where distinct video layers display different battery power 

consumption profiles during video playback on a mobile device operating in battery 

mode. The video is divided into two components – a texture-based component and a 

sketch-based component. The texture component of the video is further divided into three 

sub-components. The first sub-component is the original video that is encoded efficiently 

using a state-of-the-art MPEG H.264 encoder. The second sub-component, which is of 

lower visual quality, and consumes less power, is visually enhanced using a Features, 

Motion and Object Enhanced Multi Resolution (FMOE-MR) video encoding scheme. 

The third sub-component is of very low visual quality, containing enough information to 

barely display the various colors and textures in the video, but devoid of the shapes of the 

object outlines. This sub-component is visually enhanced by artificially overlaying 

outlines of the objects within the video to add further definition to the object boundaries. 

A novel Generative Sketch-based Video (GSV) representation scheme has been 
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implemented to encode the object outlines while reducing the spatial and temporal 

redundancy for maximum efficiency. The GSV encoding scheme provides the sketch 

component of the proposed HLV encoding scheme. Objective evaluation measurements 

have revealed that it is possible to increase the battery life of a laptop computer by 

approximately 45 minutes by using the lower-most layer of the video. The experimental 

results have led to the conclusion that the proposed HLV encoding scheme is indeed well 

suited to disseminate video to mobile devices, with different power resource constraints 

(i.e., battery life specifications).  

 A very important future research direction is to create the different components 

such that they are incremental in nature; i.e., a higher level can be derived the previous 

lower level by a process of incremental enhancement. Further, since the proposed HLV 

scheme is inherently content-aware, more sophisticated MPEG-7 or MPEG-21 encoding 

paradigms can potentially be used. Integration of the proposed HLV scheme with the 

well-established MPEG standard is a challenging future task. Finally, due to the layered 

nature of HLV, efficient caching schemes can be developed to disseminate the video 

efficiently such that the latency experienced by the user end requesting the video is 

minimized. 
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CHAPTER 5 

VIDEO CACHING FOR POWER CONSTRAINED DEVICES 

 

5.1 Introduction 

In order to improve performance of servers hosting video files, caching portions of server 

video data near the client end is a popular method. The proximity of the cache, compared 

to the server, results in lower latency of file download/streaming observed by the client. 

Using a cache also offloads computational and network load from the server, which is 

typically inundated with thousands of requests for video files. Each cache handles request 

for several clients, thus acting as a buffer between the client and the server.  

 In chapters 3 and 4, various multilayered, content aware, resource constraint 

adaptive video transcoding methods have been described. These transcoded video files 

are typically hosted in a video server. In order to reduce server load, as discussed above, 

it is required to cache these transcoded video files. Due to the layered nature of these 

transcoded video files, smart caching schemes can be developed, which exploit the 

inherent layered structure of the transcoded video files in order to efficiently cache the 

files.  

 In the next two sections, two novel video caching techniques have been discussed 

in details. 
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5.2. A Framework for Encoding and Caching of Video for Quality Adaptive 

Progressive Download 

Progressive download of video over the Internet has become an increasingly popular 

alternative to multimedia streaming [Youtube]. Progressive download of video is similar 

to standard HTTP download of web content, except for the fact that video playback starts 

the moment a sufficient amount of video content has been downloaded. Most streaming 

servers can dynamically adapt the video bitrate to allow for continuous streaming in 

environments characterized by dynamically changing bandwidth. However, progressive 

download schemes often lack this bitrate adaptation capability since the video is typically 

encoded at a single bitrate. Moreover, caching of video for progressive download 

typically involves caching of the entire video such that the entire video is replaced during 

cache replacement. Thus, when the replaced video is requested by the client again, the 

entire video has to be fetched from the server, resulting in inefficient utilization of server 

and network resources. Although there is considerable published literature on caching of 

adaptive multimedia streams [Rejaie, 2000], [Kangasharju, 2001], the techniques 

described therein cannot be directly applied to progressive download of video  

In this chapter, a framework for quality adaptive progressive download (QAPD) 

of video has been proposed. The proposed framework makes two major contributions: 

- A novel layered video representation scheme, inspired by the MPEG Fine Grained 

Scalability (FGS) profile, which can be hosted simply on a standard HTTP web server. 

- An efficient caching mechanism to significantly reduce the client-observed 

latency. In the proposed scheme, a simple proxy web server can perform the role of a 

proxy video server. Appropriate, quality metrics, that are specific to layered multimedia 
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representation, are proposed to assess the performance of the proposed QAPD caching 

framework.  

The proposed QAPD framework, with caching, provides considerable advantage 

over quality adaptive FGS (QAFGS) streaming. First, QAPD files can be hosted simply 

on a cost-effective web server with fewer CPU and memory requirements than those of a 

streaming server in case of QAFGS files. Second, the load on the simple web server in 

case of QAPD files is considerably lower than that on a dedicated streaming server in the 

case of QAFGS files. This is so because QAPD is driven mainly by simultaneous client 

requests for downloading various multimedia files. Finally, the QAPD proxy cache can 

also be hosted on a simple web server, whereas QAFGS requires the proxies to also have 

streaming capabilities. 

 

5.2.1. QAPD 

The proposed Quality Adaptive Progressive Download (QAPD) of video can be achieved 

by designing a layered representation of the video, which can be hosted on a HTTP 

server, followed by a method to enable variable bitrate progressive download. 

 

5.2.1.1. Layered Representation of video 

Layered encoding for quality adaptive streaming is achieved by using the MPEG-FGS 

profile [Li, 2001], [Radha, 2001], which partitions the video file into two layers; the base 

layer and the enhancement layer. The proposed layered representation scheme is an 

adaptation of the MPEG-FGS profile. Layered encoding of a video file V is achieved by 

first dividing V temporally into Groups of Pictures (GOPs). For each GOP, the first frame 
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is the I-frame; and the remaining frames are encoded as P-frames or B-frames using 

motion prediction [Richardson, 2004]. Next, the DCT coefficients are computed for 8×8 

blocks of the motion-predicted frames, followed by quantization of the coefficients, such 

that the quantized DCT coefficients can be represented using 8 bits. The base layer for 

the layered video representation can be generated by smoothing the frames in their 

respective color spaces, or equivalently, truncating the corresponding DCT coefficients 

[Gonzalez, 1992]. The DCT-residue layer is computed by subtracting the truncated and 

quantized DCT coefficients of the base layer from the quantized DCT coefficients of the 

original frame. The DCT-residue layer is used to generate the enhancement layers. The 

first enhancement layer is generated by taking the most significant bit of the quantized 

residue of each DCT coefficient from the DCT-residue layer; the second layer generated 

by taking the second-most significant bit, and so on. In all, 8 enhancement layers can be 

generated from the DCT-residue layer, which, in conjunction with the base layer, 

constitute the best quality image. Finally, the base layer and the 8 enhancement layers are 

subject to lossless entropy coding (run length coding followed by arithmetic coding 

[Richardson, 2004]) to generate the final, compressed set of 9 files, corresponding to a 

single multimedia file, as shown in Figure 5.2.1. 

 

 
 
Figure 5.2.1. Quality adaptive Layered video creation  



 137

5.2.1.2 Layered multimedia-enabled QAPD 

Using the above layered representation technique, a video file f is represented by 9 files, 

f.0, f.1, f.2,…, f.8. When a client sends a request for file f to the server, it essentially sends 

a request for the nine files f.0,…, f.8. The moment a GOP of the base layer is received, the 

client can commence video playback at the base quality. If the GOPs corresponding to 

the higher enhancement layers are also received, then a correspondingly higher quality 

video can be displayed simultaneously. Note that the proposed QAPD scheme entails 

parallel requests from the client which is in contrast to server-initiated variable bitrate 

streaming via dynamic rate adaptation, as is typically done in the case of MPEG-FGS. 

QAPD is thus essentially a client initiated technique. 

 

5.2.2. Layered video caching 

The success of progressive download is heavily dependent on ensuring low client-

experienced latency. Thus it is desirable to cache portions of these files in the proximity 

of the client, so that the client can access the files quickly without waiting for the remote 

server. Note that traditional caching schemes cannot be used readily for QAPD as they 

are designed primarily for flat files. Consequently, we have designed a novel caching 

scheme for QAPD, termed as the Layered Multimedia Cache (LMC). The LMC acts as a 

proxy for the original server which hosts the media file denoted by V.  

We assume that the LMC has a maximum storage capacity of G and is initially 

empty. A client request for the media file V is tantamount to a request for the base layer 

V0 followed by a request for each of the enhancement layers Vi 1 ≤ i ≤ 8. Since none of 

these layers are in the LMC, the LMC requests the corresponding files from the main 
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server, and caches them while relaying them to the client. We assume that, at a given 

point in time, the LMC at full capacity contains M media files, each consisting of a base 

layer file and 8 enhancement layer files. When trying to cache media file VM+1, the LMC 

observes that the cache capacity G is exceeded. Obviously, some layers of some of the 

existing media files in the LMC need to be deleted in order to make space for the new 

media file VM+1. This calls for an efficient cache replacement policy.  

We propose an improvised version of the state-of-the-art Greedy Dual Size (GDS) 

cache replacement policy [Jin, 2000], [Cao, 1997] used commonly in web proxy caches. 

The improvised cache replacement scheme is termed as the Layered GDS (LGDS) cache 

replacement algorithm. The standard GDS algorithm is ineffective since it does not 

exploit the dependencies between the various layers of a media file. The proposed LGDS 

algorithm is described as follows. Each media file cached in the LMC can be viewed as a 

bin which contains the base layer and one or more enhancement layers corresponding to 

the media file. Each media file or bin is associated with a retention-value which 

quantifies the loss incurred by the LMC if some layers of that media file are deleted from 

the LMC. The lower the retention-value, the more dispensable the media file or its 

constituent layers. Since each media file consists of multiple layers, the retention-value of 

a media file (or bin) is that of its topmost layer which can be removed immediately. The 

retention-value of the jth layer, (0 ≤ j ≤ 8) of the ith media file Vi,j depends on three 

parameters: Latency(i, j), Size(i, j) and δPSNR(i, j). Latency(i, j) is the time taken to get 

Vi,j  from the server; Size(i, j) is the size (in bytes) of. Vi,j and δPSNR(i, j) is the resulting 

change in PSNR when Vi,j is added to the exisiting layers of the media file. Note that 
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PSNR is a commonly used metric of visual quality of a video frame [Davies, 1990]. The 

retention-value of Vi,j  is denoted by RV(i, j) and is given by: 

RV(i, j) = K×δPSNR(i, j)×Latency(i, j)/Size(i, j) 

where K is a constant. The retention-value of a bin i, denoted by retention-value(i),  is 

computed as  

retention-value(i) = RV(i, TopLayer(i))  (5.2.1) 

where 0 ≤ TopLayer(i) ≤ 8 is the topmost cached layer of the media file Vi. Note that the 

retention-value as computed in equation (5.2.1) is different from that used in the 

standard GDS algorithm, since the standard GDS algorithm does not consider the δPSNR 

value in its computation of the retention-value. Also note that the proposed LGDS 

algorithm, unlike the standard GDS algorithm, results in a caching scheme that is aware 

of the structural relationships amongst the various layers of a media file. The proposed 

LGDS algorithm uses the retention-value(i) of  each bin i to decide which layer to cache 

and which layer to delete from the cache. When a media file or bin in the LMC scores a 

hit, its retention-value reverts to its original value, i.e., the retention-value assigned when 

the media was first saved in the cache.  

Having described the working of the LMC, we now describe the methods used to 

evaluate its performance. It must be noted that layered multimedia caching differs from 

standard flat file caching, since each layer in the LMC is associated with a different 

visual quality enhancement factor. Thus, any scheme for LMC performance evaluation 

has to take this factor into account. In the following section, we describe the methodology 

and experiments for performance evaluation of the proposed LGDS algorithm in the 

context of the LMC followed by a discussion of the results. 
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5.2.3 Experiments and results 

In this section, we present the experimental results of the evaluation of the efficiency of 

the proposed LMC, and the gains obtained by using the proposed LGDS cache 

replacement scheme. 

 

5.2.3.1. LMC: Evaluation Methodology 

In order to demonstrate the effectiveness of the proposed LGDS cache replacement 

policy for the LMC, we have compared the LGDS algorithm with two other popular 

cache replacement policies: Least Recently Used (LRU) and Least Frequently Used 

(LFU). Both, the LRU and LFU schemes were improvised to account for the structural 

dependency between the layers in the LMC. The LRU scheme is implemented as follows. 

For each bin, the time when the file was last accessed is recorded as the retention-value 

for that bin. When a layer is removed to make space for the new layer to be cached, the 

topmost layer is removed from the bin and the retention-value of the bin is left 

unchanged. When a video file (or bin) is accessed, the retention-value of the file (bin) is 

reassigned to the latest time of access (hit time). The LFU scheme is implemented in a 

similar manner by deleting the topmost layer from the selected bin based on the number 

of accesses recorded for that bin (media/video file). 

For performance evaluation of the LMC we devise a metric which accounts for 

the change in visual quality of the media file as well as the latency incurred at the client 

end to receive a media file of that quality. First, we compute the layered representation of 

N media files. The N media files are assigned an arbitrary rank between 1 and N. The mth 

layer of the nth media file is denoted by f(n, m), where 1 ≤ n ≤ N, and 0 ≤ m ≤ 8. R 
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requests are made to the LMC using a Zipf distribution, which is known to emulate the 

access pattern for ranked files [Baldi, 2003]. Requesting a file with rank k, from the 

client’s point of view, is tantamount to requesting all the files f(k, i), 0 ≤ i ≤ 8 from the 

LMC. After each client request, the time taken to receive the ith layer of the kth file, T’(k, 

i), 0 ≤ i ≤ 8, and the resulting change in the PSNR value, δPSNR(k, i), 0 ≤ i ≤ 8, are 

noted. The mean of all the T’(k, i) values, where 1 ≤ k ≤ N and 0 ≤ i ≤ 8, is computed over 

all the R requests. After the R client requests have been serviced, the mean latency for 

layer j of the file with rank i is denoted by T(i, j), 1 ≤ i ≤ N, and 0 ≤ j ≤ 8. Note that each 

of these layers corresponds to a physical file on the disc with size given by Size(i, j). We 

normalize these latencies using the size information to get a metric P’(i, j) given by  

P’(i, j) = T(i, j)/Size(i, j) 

P’(i, j) is essentially the latency per byte of information for each layer of each file. 

Finally, the mean of P’(i, j) is computed over all the N files, for each layer. The resulting 

metric P(j), 0 ≤ j ≤ 8, represents the average latency per byte for the jth layer of the LMC. 

Similarly, the values of δPSNR(i, j), 1 ≤ i ≤ N, and 0 ≤ j ≤ 8 are used to compute the 

mean cumulative PSNR, PSNR(j), 0 ≤ j ≤ 8, for each layer. PSNR(j) serves as an 

objective evaluation of the visual quality of the files after the layer j is added to the layers 

0, 1,.., j - 1. A plot of P(j) versus PSNR(j), 0 ≤ j ≤ 8, is used to assess the performance of 

the LMC.  

The second performance metric is based on the cumulative sum S of the number 

of bytes transferred from the server during a cache miss, and the time T taken to send the 

media file to the client. The ratio, S/T, denotes the bandwidth efficiency of the server for 
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a given cache replacement policy. A 

detailed discussion on the two metrics 

based on experimental results is given 

in the next subsection. 

 

5.2.3.2. LMC: Evaluation 

Methodology 

Since trace data are not available for 

the proposed technique, we simulate 

network behavior using well known 

distributions. We create 20 layered 

video files (N = 20), each with one 

base layer and 8 enhancement layers. 

Each video is of 5 seconds duration, 

and with a GOP size of 15 and 

encoding efficiency of 1 frame per 

second. We simulate server latency by 

introducing a random delay modeled 

by a Gaussian distribution N(µ, σ), 

where µ = 200 milliseconds, and σ = 

50 milliseconds, in response to a 

request. We use cache sizes that are 

22%, 55% and 88% of the sum of all 

 
Figure 5.2.2. Latency (in milliseconds) per KB 
of each layer vs average PSNR increase after 
each layer is added. Three cache sizes have 
been used: 22%, 55% and 88% of the total size 
of all the layers of all the files hosted in the 
server. The three lines correspond to three 
cache replacement policies implemented at the 
Layered-Multimedia-Cache.  
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the media file sizes to observe the effects of change in cache size. We send R = 1000 

requests to the LMC, using a Zipf distribution with α = 0.9. For each value of cache size, 

we compute P(j) and PSNR(j) as explained in the previous subsection.  

Plots of P(j) versus PSNR(j) for the three cache sizes are given in Figure 5.2.2. 

The plot essentially shows the latency per byte incurred while improving the quality of 

the media files. The lower the latency per byte incurred to improve the quality (i.e., 

increase PSNR value), the faster the client gets to view the better quality media file. In 

other words, lower latency per byte value for a given PSNR value signifies that better 

quality media can be progressively downloaded at a lower latency. From the plot, it is 

clear that the LMC using the proposed LGDS cache replacement policy outperforms 

both, the LFU and LRU cache replacement policies.  

Figure 5.2.3 plots the second metric, i.e., server bandwidth efficiency, versus the 

cache size. The larger the server bandwidth efficiency, the better the server performance, 

and hence more efficient the cache is, in utilizing the server. From Figure 5.2.3, it is 

 
Figure 5.2.3. The server bandwidth efficiency (KB/s) versus the cache size after 1000 
client requests. 
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evident that the proposed LGDS cache replacement policy results in comparable, if not 

greater, server efficiency, and hence, a lighter server load, compared to the LFU and LRU 

cache replacement policies. Thus, with similar or lighter server load compared to the 

standard LFU and LRU cache replacement policies, the proposed LGDS cache 

replacement policy results in a significant reduction in the client-experienced latency 

during progressive download of the layered video. 

 

5.2.4. Conclusions 

In this chapter, we have proposed a novel framework for quality adaptive progressive 

download (QAPD) of multimedia files. The proposed QAPD framework incorporates an 

efficient multi-layered video representation that is suitable for progressive video 

download at varying bitrates, an efficient Layered Multimedia Cache (LMC) in 

conjunction with a novel Layered Greedy Dual Size (LGDS) replacement policy, and 

novel evaluation metrics to quantify the performance of the QAPD system. Experimental 

comparisons with two other popular cache replacement policies, i.e., LRU and LFU, 

show that the proposed QAPD scheme, using the proposed LGDS cache replacement 

policy, significantly outperforms the conventional LFU and LRU replacement policies. 

 

5.3. Video Caching for Video Personalization Servers 

The current proliferation of mobile computing devices and networking technologies has 

created enormous opportunities for mobile device users to communicate with multimedia 

servers. As handheld mobile computing and communication devices such as personal 

digital assistants (PDAs), pocket-PCs and cellular devices have become increasingly 
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capable of storing, rendering and display of multimedia data, the user demand for being 

able to view streaming video on such devices has increased several-fold. For example, a 

mobile handheld client may be interested in viewing a video showing traffic conditions 

on the road and browsing the weather forecast for his/her travel destination. One of the 

natural limitations of typical handheld mobile devices is that they are resource 

constrained, i.e., constrained by their battery capacity, screen resolution, video decoding 

and rendering capability, and, in many situations, by the available network bandwidth 

connecting them with video servers. Thus, the original video content often needs to be 

personalized in order to fulfill the client’s request while simultaneously satisfying various 

client-side and system-level resource constraints. Numerous video personalization 

strategies have been developed [Merialdo, 1999],[ Tseng, 2003],[ Tseng, 2004] in order 

to provide these resource-constrained devices with personalized video content that is 

most relevant to the client’s request and the available client-side and network resources.  

Since mobile clients are typically not within network proximity of the 

personalizing server, it is often desirable to intelligently cache portions of the video files 

in order to reduce the client-observed latency and also offload the data load on the server 

to local caches. For the work proposed in this chapter, the design and implementation of a 

video personalization server (VPS) [Wei, 2007c] [ Wei, 2007a] which performs 

automatic video segmentation and video indexing based on semantic video content, and 

generates personalized video content based on the client’s content preferences and 

resource constraints using a Multiple-Choice Multi-Dimensional Knapsack Problem 

[Hernandez, 2005],[ Vanderbei, 1997] (MMKP)-based video personalization strategy, has 

been used. 
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A novel cache design, accompanied by a novel cache replacement algorithm, 

which is specifically suited for caching video files generated by the proposed VPS, has 

been proposed and implemented in this section. In the proposed cache, different versions 

of the cached video files are created using state-of-art content-based video encoding 

techniques. The proposed cache replacement algorithm performs significantly better than 

several state-of-the-art cache replacement policies. 

Communication between clients and the VPS typically occurs in a two phases, 

wherein the client first asks for the content to be generated and then downloads the 

contents. Since the actual download occurs in the second phase of communication, the 

cache, which serves as an intermediary between the client and the VPS, can learn 

important statistical facts about the requests in order to pre-customize the video to be 

disseminated based on the download pattern that is to follow the first phase of 

communications. 

The proposed cache uses a content-aware video re-encoding algorithm termed as 

Features, Motion and Object Enhanced Multi-Resolution FMOE-MR video encoding 

[Chattopadhyay, 2007a], in order to create two versions of the original video file of lower 

visual quality and correspondingly lower file size. These versions are useful in delivering 

videos of different visual quality to different clients depending on their levels of 

“membership”, defined as “paying” and “non-paying”. 

Since the proposed cache is aware of the two-phase communication between the 

clients and the VPS, and has the ability to generate videos of different visual quality to  

serve multiple clients with different levels of membership, it is observed to perform 

significantly better than standard caching techniques. 



 147

In the following sections, we describe the proposed VPS, which hosts and serves 

newscast videos from various sources. Next I describe the video personalization cache in 

detail, followed by results and conclusions. 

 

5.3.1 Video Personalization Server 

The videos hosted by the video personalization server (VPS) are first segmented and 

indexed. The videos are then transcoded at multiple levels of abstraction based on their 

content. This allows for video personalization based on clients’ preferences and resource 

constraints. 

 

5.3.1.1. Video Segmentation and Indexing 

A stochastic multi-level Hidden Markov Model (HMM)-based algorithm is used for 

video segmentation and indexing wherein the input video stream is classified frame by 

frame into semantic units [Wei, 2007b]. A semantic unit within a video stream is a video 

segment that can be associated with a clear semantic meaning or concept, and consists of 

a concatenation of semantically and temporally related video shots or video scenes. 

Instead of detecting video shots or scenes, it is often much more useful to recognize 

semantic units within a video stream to be able to support video retrieval based on high-

level semantic content. Note that visually similar video shots or video scenes may be 

contained within unrelated semantic units. Thus, video retrieval based purely on detection 

of video shots or video scenes will not necessarily reflect the semantic content of the 

video stream. 



 148

The semantic units within a video stream can be spliced together to form a logical 

video sequence that the viewer can understand. In well organized videos, such as TV 

broadcast news and sports programs, the video can be viewed as a sequence of semantic 

units that are concatenated based on predefined video program syntax. Parsing a video 

file into semantic units enables video retrieval based on high-level semantic content and 

playback of logically coherent blocks within a video stream. Automatic indexing of 

semantic components within a video stream can enable a viewer to jump straight to points 

of interest within the indexed video stream, or even skip advertisement breaks during 

video playback. 

In the proposed scheme, a video stream is modeled at both, the semantic unit level 

and the program model level. For each video semantic unit, an HMM is generated to 

model the stochastic behavior of the sequence of feature emissions from the image 

frames. Each image frame in a video stream is characterized by a multi-dimensional 

feature vector. A video stream is considered to generate a sequence of these feature 

vectors based on an underlying stochastic process that is modeled by a multi-level HMM.  

Two categories of features from each image frame in the video stream are 

extracted. The first category includes a set of simple features. The dynamic 

characteristics of the image frames comprising the video stream are captured by the 

differences of successive image frames at both, the pixel level and the histogram level. 

Various motion-based measures describing the movement of the objects in the image 

frames are used, including the motion centroid of the image, and intensity of motion. 

Measures of illumination change at both, the pixel level and the histogram level are also 

included in the multi-dimensional feature vector. Definitions of these features are given 
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in [Eickeler, 1999]. In the second feature category, Tamura features [Flickner, 1995] are 

used to capture the textural characteristics of the image frames at the level of human 

perception. Tamura contrast, Tamura coarseness and Tamura directionality have been 

used successfully in content-based image retrieval [Flickner, 1995]. In our work, 

inclusion of these features is observed to improve the accuracy of temporal video 

segmentation and video indexing.  

In the proposed video segmentation and video indexing scheme based on 

semantic video content, six semantic concepts for TV broadcast news video, i.e. News 

Anchor, News, Sports News, Commercial, Weather Forecast and Program Header, and 

three semantic concepts for Major League Soccer (MLS) video, i.e. Zoom Out, Close Up 

and Replay, are used. An HMM is formulated for each individual semantic concept. The 

optimal HMM parameters for each semantic unit are learned from the feature vector 

sequences obtained from the training video data. In the proposed scheme, the HMMs for 

individual semantic units are trained separately using the training feature vector 

sequences. This allows for modularity in the learning procedure and flexibility in terms of 

being able to accommodate various types of video data. In our work, we adopt a universal 

left-to-right HMM topology, i.e., an HMM topology where no backward state transitions 

are allowed, with continuous observations of the feature vector emissions. The 

distribution of the feature vector emissions in the HMM is approximated by a mixture of 

Gaussian distributions. 

The search space for the proposed single-pass video segmentation and video 

indexing procedure is characterized by the concatenation of the HMMs corresponding to 

the individual semantic units. The HMM corresponding to an individual semantic unit 
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essentially models the stochastic behavior of the sequence of image features within the 

scope of that semantic unit. Transitions amongst these semantic unit HMMs are regulated 

by a pre-specified video program model. The Viterbi algorithm is used to determine the 

optimal path in the concatenation of the HMMs in order to segment and index video 

stream in a single pass [Wei, 2007b]. 

 

5.3.1.2 Video Personalization 

The objective of video personalization is to present a customized or personalized video 

summary that retains as much of the semantic content desired by the client as possible, 

but within the resource constraints imposed by the client. 

 

5.3.1.2.1. Relevance Value of a Video Segment and its Summary 

Video segments are indexed using semantic terms. Each video segment is assigned a 

relevance value based on the client’s preference with regard to video content. Assume 

video segment iS is indexed by a semantic term iT . In its request, the client specifies a 

preference for video content using a descriptive term labeled as P. The relevance value 

iV assigned to the video segment iS is then given by:  

10),,( ≤≤= iii VPTsimilarityV                   (5.3.1) 

In the current implementation the similarity is evaluated using the lch semantic similarity 

measurement algorithm [Leacock, 1998].  

Each indexed video segment is summarized at multiple levels of abstraction using 

content-aware key frame selection and motion panorama computation algorithms [Wei, 
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2007c]. Each video summary consists of a set of key frames and motion panoramas. For 

each video segment, its original version is assumed to contain the greatest amount of 

detail; whereas its summary at the highest level of abstraction is assumed to contain the 

least amount of detail. It is reasonable to assume that the amount of information 

contained within a video summary (relative to original version) is related to its duration, 

i.e. 

)/( 00 LLfvv iii ⋅=                         (5.3.2) 

where 0iv is the relevance value of the original video segment, and 0L and iL are the time 

durations of the original video segment and the video summary respectively. Typically, 

the amount of information contained within a video summary (relative to original 

version) does not necessarily increase linearly with its relative duration. The empirical 

Zipf’s law to quantify )/( 0LLf i [ Wei, 2007c] has been used. 

 

5.3.1.2.2. MMKP-based Video Personalization 

The objective of video personalization is to present a customized or personalized video 

summary that retains as much of the semantic content desired by the client as possible, 

but within the resource constraints imposed by the client. The client typically wants to 

retrieve and view only the contents that match his/her content preferences. In order to 

generate the personalized video summary, the client preferences, the client usage 

environment and client-side and system-level resource constraints need to be considered. 

The personalization engine selects the optimal set of video contents (i.e., the most 

relevant set of video summaries) for the client within the resource constraints imposed by 
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the client. This chapter presents the design and implementation of an MMKP-based video 

personalization strategy to generate a customized response to the client’s request while 

satisfying multiple client-side and system-level resource constraints. Compared to the 0/1 

Knapsack Problem (KP)-based and the Fractional Knapsack Problem (FKP)-based video 

personalization strategies presented in [Merialdo, 1999], [Tseng, 2003] and [Tseng, 

2004], the proposed MMKP-based video personalization strategy is shown to include 

more relevant information in its response to the client’s request. The MMKP-based 

personalization strategy is also shown to support multiple client-side constraints, in 

contrast to the 0/1KP-based and the FKP-based personalization strategies which can 

support only a single client-side resource constraint at a time. 

In the video content database, each video segment and summary is assigned a 

relevance value based on the client’s content preferences, as computed in equations 

(5.3.1) and (5.3.2) respectively. In many applications, it is desirable to provide the client 

with as much information as possible. In such cases it may be preferable to include two 

shorter video summaries in the response rather than a single video segment of longer 

duration that contains more details. For example, if a client needs to browse the sports 

news of the day, it might be helpful to provide him/her with multiple, though short, sports 

news summaries rather than a single long and detailed video segment containing news of 

a specific sport. We propose a Multiple-Choice Multi-Dimensional Knapsack Problem 

(MMKP)-based video personalization strategy [Akbar, 2001], [Hernandez, 2005]. 

Let ijv be the relevance value of the jth summary of the video segment iS , 

),...,,( 21 ijmijijij rrrr =ϖ be the required resource vector for the jth summary of the video 
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segment iS and ),...,,( 21 mRRRR =
ϖ

be the resource bound on the client side. The problem is 
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The above MMKP can be solved using the branch and bound integer programming 

(BBIP) algorithm described in [Vanderbei, 1997]. 

When the VPS receives multiple client requests within a predefined time window 

(i.e., batching window), it clusters these requests based on the clients' content preferences 

and client-side resource constraints. The two-phase clustering algorithm described in 

[Wei, 2007a] is employed for this purpose. In the first phase, clustering is performed 

based on the clients' content preferences. This is followed by the second phase where 

clustering is performed on the results of the first phase, based on the client-side resource 

constraints. The goal of the two-phase clustering procedure is to reduce the computation 

burden on the VPS, since the video personalization is done on a per-cluster basis rather 

than a per-client request basis. 
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5.3.2. Video personalization cache 

In the previous section, we have detailed the design of a video personalization server 

(VPS) that receives requests from multiple clients, and creates personalized videos for 

them. The cache serves as an intermediary between the clients and the VPS (Figure 

5.3.1). In the following subsections, we first detail the design of the proposed cache. 

Next, we describe how the proposed cache creates different versions of the video files 

using content-aware video processing. Finally, we describe in detail the protocol 

followed by the cache and clients in order to synchronize with the VPS. 

 

5.3.2.1 Cache design 

The proposed cache serves the following two purposes: 

(a) It acts as a buffer between the VPS and multiple clients, in order to reduce the overall 

latency observed by the clients. 

(b) It acts as a generative proxy video server that generates videos of different visual 

quality in order to increase cache efficiency. 

From each video segment that the cache receives for storage, two additional 

versions, or layers, of the same video are created. The original video segment, or layer, is 

 
 
Figure 5.3.1: Multi-client Cache and Video Personalization Server architecture 
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designated as Vorg. Vmid is an intermediate layer video of lower visual quality (and 

smaller file size) than Vorg whereas Vbase is the base layer video of lowest visual quality 

and smallest file size. As will be seen in Section 5.3.3.3, the lower quality video layers 

Vmid and Vbase are used to design an efficient cache replacement policy. In the next 

section, we describe in detail the process by which Vmid and Vbase are created. Figure 

5.3.2 depicts the proposed multi-client video personalization and caching system. 

 

5.3.2.2. Creating different layers of the video 

The different video layers are essentially transcoded versions of the original video at 

different levels of visual quality with file sizes that are significantly smaller than the file 

 
Figure 5.3.2. The client-cache-server communication protocol. The protocol is to be 
read from top to bottom. NCC stands for number of common clients. Vmid and Vorg 
are lower quality videos generated at the cache from each original video segment. 



 156

size of the original video. We have experimented with novel transcoding methods such as 

Features, Motion and Object Enhanced Multi Resolution (FMOE-MR) video encoding 

[Chattopadhyay, 2007a] and Ligne-Claire video encoding [Chattopadhyay, 2007b]. Due 

to its relative simplicity in terms of implementation for the purpose of caching, we have 

chosen FMOE-MR as the trancoding technique for this chapter. In the following 

subsections, we describe in detail how the two layers, Vmid and Vbase, are created from the 

original video segment, Vorg.  

 

5.3.2.2.1. Creating Vmid 

The video layer Vmid represents an intermediate-level video which has a more compact 

representation than the original video Vorg, albeit at the cost of lower visual quality. The 

video layer Vmid is generated using a novel multi-resolution video encoding technique 

termed as Features, Motion and Object-Enhanced Multi-Resolution (FMOE-MR) video 

encoding [Chattopadhyay, 2007a]. The FMOE-MR video encoding scheme is based on 

the fundamental observation that applying a low pass filter in the image color space is 

equivalent to DCT coefficient truncation in the corresponding DCT (frequency) space 

[Geusebroek, 2001].  

The FMOE-MR video encoding scheme is a two step process as described below. 

First, instances of Features, Motion and Objects (FMOs) are detected in the video 

sequence using state-of-the-art computer vision algorithms. A corresponding mask 

(FMO-Mask) is created to mark the regions corresponding to the presence of the FMOs. 

The mask contains floating point values between (and inclusive of) 0 and 1, where 0 
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represents a completely uninteresting region and 1 represents a region that is vital for 

visual and semantic understanding of the image.  

After the FMO-mask is created, the original frames of the video are re-encoded as 

a multi-resolution (MR) representation, guided by the FMO-mask such that regions 

corresponding to mask values close to 1 are at higher resolution than regions 

corresponding to mask values close to 0. The original video frame VO is used to render 

two video frames, VH and VL, such that VH is a high-resolution rendering and VL is a 

low-resolution rendering of VO. The video frames VL and VH are obtained by convolving 

VO with Gaussian filters characterized by the smoothing parameters σL and σH 

respectively. Maintaining σL > σH ensures that VL is smoother than VH, i.e., VL is a lower 

resolution rendering of VO than VH. If the FMO mask is represented as a matrix W whose 

elements lie in the range [0, 1], then the MR frame VMR is obtained via a linear 

combination of the two frames VH and VL as follows:  

VMR = W•VH + (I -W)•VL 

where I is a matrix all of whose elements are 1. 

The values of σL and σH used to generate Vmid = VMR are selected empirically by 

the user. Empirical observations have revealed that σL = 9 or 11, and σH = 3, can be used, 

in most cases, to yield videos of reasonable visual quality with significantly smaller file 

sizes than the original video. 

Since an exhaustive treatment of the FMOE-MR video encoding schemes is 

beyond the scope of this chapter, the interested reader is referred to [Chattopadhyay, 

2007a] for further details. It must be noted that finally, Vmid is encoded using the MPEG 
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H.264 standard, after preprocessing using FMOE-MR, in a manner similar to the original 

video segment. An example video frame of a Vmid video layer is given in Figure 5.3.3. 

 

5.3.2.2.2. Generating Vbase 

The base video layer Vbase is generated by first blurring each frame of the video using a 

Gaussian filter with smoothing parameter σbase prior to MPEG H.264 encoding. Note that 

this is similar to the Gaussian smoothing performed in the case of FMOE-MR video 

encoding. The primary difference is that, in the case of the Vbase video layer, the 

smoothing operation is performed uniformly over the entire video frame in contrast to 

FMOE-MR video encoding where the extent of smoothing can vary within a video frame 

based on the perceptual significance of the region under consideration. This results in 

further dramatic decrease in the file size upon MPEG H.264 encoding, albeit at the loss 

of video quality. Note that Vbase is of much lower visual quality than Vmid since object-

based enhancement is not used.  

 

 

   
  (a)    (b)    (c) 
Figure 5.3.3.  A Vmid frame using Features, Motion and Object-enhanced Multi-
Resolution (FMOE-MR) video encoding. (a) The original frame; (b) The FMO mask 
frame; (c) The frame re-rendered using FMOE-MR video encoding. The moving objects 
are rendered at high resolution whereas the background is rendered at low resolution. 
The obtained PSNR is 24.94  
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Figure 5.3.4. The effect of blurring parameter σ on the file-size, and quality 
(measured by PSNR) of a Vbase video. 

5.3.2.2.3. Visual quality of Vmid and Vbase 

The visual quality of Vmid and Vbase can be assessed in terms of PSNR values, as well as 

via subjective visual evaluation. A quantitative evaluation of the average PSNR and file 

size, of a sample video, with respect to value of the Gaussian blurring parameter is 

depicted in Figure 5.3.4. It is apparent that the video size can be decreased significantly 

by using a high value of σbase, albeit with a loss in video quality. We have observed 

empirically that values of σbase in the range {19, 25} can be used to generate the base 

video layer Vbase, resulting in a very small file size albeit at the cost low visual quality 

and low resolution.  

 

5.3.2.2.4. File Size overhead 

Vmid and Vbase are additional files stored in the cache. For empirically derived encoding 

parameter values for σL, σH and σbase, the total sum of all the files, Vorg, Vmid and Vbase is 

around 1.5 times that of Vorg; i.e., the combined size of Vbase and Vmid adds ≈ 50% 

overhead to storage space required for storing the video segment.  
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Thus ensuring reasonably good visual quality for Vmid and Vbase makes it possible 

to discard Vorg to allow for extra space in the cache, and yet have videos of reasonable 

visual quality reside in the cache, during a cache replacement. 

Having discussed methods to create additional videos from the original videos in 

the cache, and the cache design in general, we now discuss the client-cache protocol in 

the next section. 

 

5.3.2.3. Client-Cache-Server communication 

We have considered a setup involving a single VPS, a single cache, and multiple clients. 

The client-cache-server communication is done in two phases: 

 

Phase 1: 

Multiple clients send their queries or requests to the cache, which relays the requests to 

the VPS. Each client request essentially consist of one category out of six possible 

categories (News Anchor, News, Sports News, Commercial, Weather Forecast and 

Program Header), and the available battery time in the client device as a resource 

constraint. The VPS generates a list of video segments based on the client requests and 

resource constraints, and sends the names of the video segments to be downloaded (in a 

specified order), as metadata back to cache. The cache relays this metadata information 

back to each client. 
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Phase 2: 

Each client now makes a series of requests to the cache to fetch the files belonging to one 

of the four categories.  The files can be streamed, or can be progressively downloaded, 

depending on the type of service available at the cache and the VPS. In either case, recall 

that the names of the files, and the order they appear in, have been specified in the 

metadata obtained in Phase 1 of the communication. When a client requests a video 

segment file from the cache, it is scored as either a hit or a miss. Figure 5.3.2 depicts the 

two phases of communication described above. 

A novelty in the proposed cache design is that fact that a hit or a miss score 

depends on the client-type. A client-type defines the membership status of the client with 

regard to the video personalization service. Without loss of generality, we have used two 

categories of clients - either they are paying or subscribing clients, who are paying for the 

best quality of service, or they are non-paying clients who receive videos of varying 

quality depending on the availability of the videos in the cache. For non-paying clients, 

the best quality video is not guaranteed; however the best quality video is guaranteed for 

the paying client.  

If the requesting client is non-paying, then the cache checks if the requested file 

Vorg is present in the cache. If it does not exist in the cache, it checks whether a lower 

quality version of the file, i.e., Vmid, is present in the cache. If Vmid is absent, then it 

checks whether Vbase is present in the cache. If neither Vmid nor Vbase are present in the 

cache the client request is treated as a cache miss. In contrast, if the requesting client is 

paying then the client request is treated as a cache miss if the requested file Vorg is absent 

in the cache. Thus, for a paying client, the best quality video is provided, whereas for the 
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non-paying client, the quality of video which is present in the cache is present; it might 

not be the best quality one. 

In the event of a cache miss, whether the client type is a paying or non-paying, the 

requested file is relayed from the VPS, and also stored in the cache simultaneously.  If 

there is not enough space available in the cache, a cache replacement policy is enforced 

to replace existing file(s) in the cache in order to make space for the requested file. If the 

cache cannot accommodate the requested file, an existing file with the minimum 

retention-value (RV) is discarded. The retention-value is essentially a number associated 

with each file in the cache; the lower the retention-value, the less valuable is the file to 

the cache. Thus, if an existing file is to be discarded from the cache in order to make 

space in the cache, the one with the lowest retention-value is removed.  

The computation of the retention-value is specific to a cache replacement policy. 

For the proposed cache, we compute the retention-value as follows:  

retention-value = NCC/fileSize 

where NCC is the number of common clients requesting that particular file, and fileSize is 

the size of the file. This cache replacement policy has been termed NCCS (Number of 

Common Clients - Size) algorithm. NCCS essentially denotes the number of client 

requests for this particular file normalized by the file size. In order to assign higher 

priority to files which are requested by paying clients, the number of clients (NCC) is 

incremented by 10, instead of 1, for paying clients as opposed to non-paying clients. This 

information is obtained during the first phase of the communication between the cache 

and the VPS.  
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As will be seen in the following experimental results section, the proposed NCCS 

cache replacement policy that uses the proposed retention-value as the replacement 

criterion is better suited for caching of personalized video than other standard cache 

replacement algorithms. 

Recall that in the case of a miss, the file with the least retention-value in that 

category is discarded. The file replacement process is as follows. First, the video file with 

the minimum retention-value is identified. After that, an attempt is made to remove the 

original video segment; i.e., Vorg corresponding to that video file. If Vorg had already been 

removed previously, then Vmid is removed; if Vmid has also been removed, then Vbase is 

removed. This top down approach ensures that the layer which takes up the largest 

amount of space in the cache is removed, so that space for more popular video segments, 

can be made. 

 

5.3.3. Results and discussions 

In section, a comparison is made of the proposed NCCS cache replacement policy with 

several existing cache replacement policies. First, we describe the experimental setup. 

Next, we describe the performance of the cache in terms of two existing cache 

performance metrics. Finally, we discuss the effect of real time creation of multiple 

alternative versions or layers of the original video. 

 

5.3.3.1. Experiment setup 

In order to simulate multiple clients, we have considered 100 clients which send their 

requests to the VPS with time lag determined by the following equation: 
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TimeLag(clientID) = K*(1 + rand*clientID) 

where K is a constant, typically depicting several seconds, 0 ≤ clientID < 100, and rand is 

a random number between 0 and 1. It is assumed that around 40% of the clients are 

paying clients; the rest are non-paying. 

At the VPS, the video segments and their abstractions are stored as independent 

video files, which can be independently downloaded/streamed from the VPS as desired. 

The combined size of the video segments in VPS is 140 MB. 

The space available at the cache is typically considerably less than that available 

at the VPS.  We chose two cache sizes; one that is one-third the space capacity of the 

VPS (33%), and the other that is half the space capacity of the VPS (50%), in order to 

note the effects of changing cache size. 

 

5.3.3.2. Cache efficiency: hit ratio 

In order to come up with a comprehensive study of the cache behavior, we have 

compared several types of cache replacement policies – each with its own method of 

deriving the retention-value. At any time in its life in the cache, for the cache 

replacement policies considered, the retention-value of each video segment depends on 

the following parameters: 

- nClients: The number of clients which are requesting this file. This information is 

derived during Phase 1 of the communication when the clients make initial requests for 

the files to the cache. If a requesting client type for a file is non-paying, nClients is 

incremented by 1. If the client is a paying client, then nClients is incremented by 10 (the 

value 10 is empirically chosen). This scheme can accommodate multiple grades of 
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service; for example, for even more special clients, the value of nClients can be 

incremented by 20, and so on. 

-  nMisses: The number of misses that a video segment has experienced so far. The first 

time a video file is requested is obviously scored as a miss; as a result, the minimum 

value of nMisses is 1. 

-  nHits: The number of hits that a video segment has experienced so far. 

- Size: The file size on hard disk of the video segment. Typically, larger files are not 

preferred in the cache because the general philosophy is to have more, smaller-size files, 

instead of one, large file. 

- Latency: Latency incurred while fetching the video segment file. If the video segment 

files are distributed over multiple video personalizing servers, the latency is an important 

criterion since it is typically not desirable to fetch files that are far away in terms of 

network distance. 

- hitTime: The time (in nanoseconds) at which the latest hit to the video segment was 

made. 

An important fact to note is that the retention-value is computed for a video 

segment file V which contains three components: Vorg, Vmid and Vbase. It can be said that 

the three video layers together form a video bin; the retention-value is computed for the 

Vorg component of the video bin. 

We have considered four other standard cache replacement policies in order to do 

a performance comparison with the proposed NCCS cache replacement algorithm. The 

replacement algorithms, with their corresponding retention-values, are as follows: 
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GDS (Greedy-Dual-Size): The GDSF cache replacement algorithm [Jin, 2000] uses a 

retention value given by. 

retention_value = Latency/ Size 

In addition to removing files with the minimum retention value during a cache 

replacement, the GDS algorithm also subtracts this minimum retention-value from the 

retention-value for each of the other files in the cache. When a file is scored as a hit, the 

original retention-value of the file is recomputed. 

GDSF (Greedy-Dual-Size-Frequency): The GDSF cache replacement algorithm 

[Cherkasova, 1998] uses a retention value given by. 

retention_value = nHits × Latency/ Size 

Similar to GDS, GDSF subtracts this minimum retention-value from all the retention-

value in each of the other files in the cache. When a file is hit, the original retention-value 

of the file is recomputed. 

LRU (least Recently Used): The retention value is given by: 

retention-value = hitTime 

This simple retention value is used to replace files that were accessed farthest in the past.  

LFU (Least Frequently Used): The retention value is given by: 

retention-value = nHits + nMisses 

In other words, the retention-value is the number of accesses to the file, which can be 

simply used as a measure of the frequency of access. 

We computed the standard metrics Hit Ratio and Byte Hit Ratio, in order to 

measure cache efficiency. They are defined as follows: 
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Figure 5.3.5. The hit ratio and the byte hit ratio for cache size = 33% of that of the server. 
 

 
 
Figure 5.3.6. The byte hit ratio and the hit ratio for cache size = 50% of that of the server. 
 

Hit Ratio: The number of requests satisfied by the proxy cache as a percentage of total 

requests. 

Byte Hit Ratio: The number of bytes that transferred from the proxy cache as a 

percentage of total number of bytes transferred for all the requests. 

Figure 5.3.5 shows the Hit Ratio and Byte Hit Ratio for a cache size that is one 

third that of the VPS storage capacity. Figure 5.3.6 shows the same for cache size that is 
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half the size of the VPS storage capacity. As is apparent from Figures 5.3.5 and 5.3.6, the 

proposed NCCS cache replacement policy outperforms significantly the other cache 

replacement policies. 

We surmise that the reason proposed NCCS cache replacement policy 

outperforms other cache replacement schemes is because of the fact that, in this particular 

case, due to the two-phase communication initiated between the clients and VPS, the 

NCCS scheme knows in advance which files will be asked for by the clients. Note that 

this is a special situation that can arise only in the case of the above two-phase 

communication. Thus, the cache captures the popularity of a file by computing the 

commonality of that particular file (video segment) amongst all the clients who will 

request the file in the near future. This fact is captured by the NCC statistics (number of 

common clients). In addition, the Size factor in the NCCS cache replacement policy 

makes NCCS prefer more, smaller files, compared to fewer, larger files, which should be 

the case for a good caching scheme. As a result, the proposed NCCS cache replacement 

policy is observed to be the most successful. 

 

5.3.3.3. Cache efficiency: generating video layers 

Experimental results show that the cache, running on a 2.0 GHz Pentium Processor with 

2 GB RAM and 2 MB L2 cache, could create Vmid and Vbase in real time; i.e., around 30 

frames per second. The file access for each client is, in a simplistic case where the client 

requests the series of video segments one by one without buffering, where the requests 

are spaced by the time needed to view the file. Since most video segments are typically in 

the order of magnitude of a minute or shorter, the creation of both, the Vmid and the Vbase 
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layer, for each video segment, is around that order. While Vmid or Vbase is being created, it 

is not present in the cache. Thus, the cache replacement policy sees the extra video layers 

created only after a certain time lag. 

 

5.3.4. Conclusions 

A server-cache architecture has been proposed and implemented, which can disseminate 

personalized video contents to resource-constrained devices. A novel caching 

mechanism, dedicated to cache video segments generated by a video personalization 

server (VPS), has been proposed. The proposed caching mechanism exploits the 

commonality of files across clients to use a novel cache replacement mechanism termed 

as NCCS (Number of Common Clients Size). In addition to caching video files, the cache 

also generates two lower quality versions of each video file. These versions aid in the 

dissemination of video files to multiple clients entitled to different levels of service based 

on whether they are paying for the video service or not. Results show that the proposed 

cache, in conjunction with the proposed NCCS cache replacement policy, outperforms 

standard cache replacement policies such as GDS, GDSF, LRU and LFU. Thus, the 

video-cache architecture is suitable for personalized video dissemination to resource-

constrained mobile devices such as mobile phones, PDAs, Pocket PCS and laptop 

computers operating in battery mode. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Contributions 

In the first chapter of this dissertation, I gave an overview of the challenges associated 

with the development of novel methods for multimedia transcoding for resource 

constrained environments. In the subsequent four chapters that followed, I had elucidated 

various novel algorithms and techniques for multimedia transcoding, and architecture 

designs for multimedia caches, that I had developed over my PhD research. In the 

following sections, I will highlight my contributions to the field of multimedia 

transcoding, with a more philosophical and aesthetic point of view. 

 

6.1.1. Contribution to Computer Animation 

The reader must now be familiar with the various MoCap data compression algorithms 

that I discussed in the second chapter, i.e. BAP-Sparsing, BAP-Indexing, BAP-Sparse-

Indexing, and weighted PCA. These novel algorithms, besides being efficient, 

demonstrate, for the first time, that MoCap data is more than just a matrix of numbers; it 

is, in fact, the reflection of an underlying structure in the data, which has been driven by 

the hierarchical structure of the model for which the data is. The fact that errors for 

different joints count for different overall error in the virtual human pose, has been one of 

my major observations. Harnessing this observation to develop efficient compression 

algorithms was another major contribution to the field of Motion capture data 

compression. While pondering over possible data loss associated with lossy MoCap data 
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compression, I realized that the ultimate goal was that the pose, as observed by the 

viewer using the virtual human model, should not have strange, unnatural artifacts such 

as body parts intersecting into each other. The developed algorithms are sensitive to these 

constraints, thus giving a lot of importance to the ultimate displacement of the body joints 

as a result of lossy MoCap compression.  

 The developed algorithms contributed to the state-of-art of power and network 

resource constrained MoCap compression. BAP-Sparsing has been shown to be useful for 

low bitrate MoCap data streaming; BAP-Sparse-Indexing has shown to be effective for 

MoCap data use in power constrained devices.  

 

6.1.2. Contribution to Layered video encoding 

The developed content aware multi-resolution algorithms, FMOE-MR (Features, Motion 

and Object Enhanced Multi Resolution) video encoding, and MMR (Masked based Multi 

Resolution) image encoding technique, have been strongly driven by my aim to preserve 

the aesthetic value of a video or image sequence. There is, of course, no objective manner 

to describe aesthetics. Personally, I feel aesthetics in an image, or image sequence 

(video), lies in the details preserved for visually important regions of the video/image. 

The natural question is the following: what are the visually important regions for, say, a 

video sequence? I have observed that, if objects are in motion in a video, they capture the 

maximum attention of the viewer; the surrounding gets less attention. Similarly, for a 

more still setting, viewers tend to decipher objects contents in the scene (image/video) by 

the outlines, and basic texture of the object. Details are important to preserve more 

information, but can often be removed if the corresponding transcoding benefits are 
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significant. The algorithms, FMOE-MR and MMR, are essentially based on these 

observations. 

 Another fundamental contribution is the use of the observation that it is possible 

to truncate DCT coefficients (in its frequency space) for the compressed version of a 

video/image by blurring the image in its color space. Although this observation had been 

known, its use had, to the best of my knowledge, never been done before for multi-

resolution image/video re-rendering. My major contributions to the proposed novel 

algorithms are the use of strong content awareness, coupled with this fact, which led to a 

new direction of video super-compression, without having to change existing codecs. 

These algorithms have proven to be very effective for network bandwidth adaptive video 

encoding for resource constrained environments. 

 

6.1.3. Contribution to generative layered video encoding 

Hybrid Layered Video (HLV) has been one of my most significant contributions to the 

field of power-adaptive generative video encoding for resource constrained 

environments. One of the novel contributions of the research work for this dissertation is 

the Generative Sketch Video (GSV). The use of a sparse set of curve, compactly 

represented by their break points, and temporally evolved to exploit temporal coherency 

dramatically, has been quite a breakthrough. The motivation for developing GSV 

technique has been the fact that outlines of the objects in a video sequence are very 

important features that are naturally tracked by the human eye in order to get information 

about the object and its activities. A certain aesthetic perspective had allowed me to think 

of the boundaries as a sparse set of curves, instead of necessarily closed contours, and 
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their complex evolving mechanism, as was popular in literature. GSV was further 

enhanced by adding a layer of very low quality version of the original video, which does 

the work of adding approximate color information, which, to most observers, is 

surprisingly effective, yet at a much less computation decoding price compared to other 

standard video encoding techniques. This technique was termed by me as Ligne-Claire 

video, inspired from the works of Herge, in “The Adventure of Tintin”. The HLV 

encoding combines GSV, Ligne-Claire and FMOE-MR, to form an effective layered 

video encoding scheme, suitable for power adaptive video playback. HLV has been a 

unique contribution to the area of power adaptive layered video encoding.  

 

6.1.4 Contribution to layered video dissemination 

The algorithms developed for MoCap, video and image transcoding, have benefits for 

both power constrained, and network bandwidth constrained, environments. The 

dissertation title of multimedia transcoding for resource constrained (power and network 

bandwidth) environments, is thus shown to be well justified. For completion, I have 

contributed to the state-of-art in Internet dissemination of the developed layered video 

techniques, such as FMOE-MR combined with MPEG FGS (Fine Grained Scalability) 

profile, HLV and video personalization services. The novel cache replacement policies, 

LGDS (Layered Greedy Dual Size), and NCCS (Number of Common Clients Size), are 

well suited for caches specializing in caching layered videos. The caches show 

improvement over existing standard cache replacement policies, which again is a 

significant contribution in the state-of-art of cache replacement policies used in the 

Internet today. 
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6.1.5. Overall: contribution to multiple domains 

Overall, my contribution to the field of multimedia transcoding has been broad, ranging 

from computer graphics, video, images, and also dissemination of multimedia over the 

Internet. Each sub-domain, by itself, has a formidable amount of existing work in 

transcoding, compression and dissemination. My contributions to these multiple sub-

domains have put light on the possible use of content-aware themes in to multimedia 

encoding of any type. I have contributed to a complete spectrum of multimedia data 

usage; from the creation of compressed multimedia content ready for use, to its 

dissemination. I have contributed to a new, rising school of thought, where the “meaning” 

of the digital data is analyzed and utilized for compaction, as opposed to statistical data 

compaction, which is not typically aware of the “meaning” of the data.  

In a broader sense, my contribution in this dissertation is a small step towards 

making computers intelligent, by processing data by their contents, rather that their form, 

similar to what humans do. 

 

6.2 Dissertation Conclusions 

This dissertation reports several novel algorithms and transcoding methods for compact 

representation of multimedia data suitable for power -and -network constrained 

environments. Special emphasis on content-aware techniques has been given. Multimedia 

sub domains of computer animation, videos and images have been considered. The first 

sub-domain considered is motion capture (MoCap) data used for computer animation of 

virtual human life characters. Several novel compression methods have been reported. 

Results show that the proposed algorithms lead to more compact file representations 
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compared to existing standard MoCap compression algorithms, with the same amount of 

data loss, and also consume less battery power compared to MoCap data compressed at 

similar bitrates by other standard MoCap compression algorithms. Several image and 

video transcoding algorithms have been proposed, which transcode video as layers in 

order to allow power - and - network bandwidth adaptive video playback and 

dissemination. Typical to the overall theme of the dissertation, strong power-aware 

concepts have been utilized to create novel, creative methods to transcode video. Results 

have shown remarkable power - and network bandwidth - adaptive capabilities of the 

videos, which surpass performance of existing standards of layered video encoding. 

Finally, efficient caching schemes have been proposed and implemented in order to 

efficiently disseminate layered video, created using the proposed technologies to power -

and network bandwidth - constrained clients, over the Internet. Thus, a complete 

spectrum, starting from multimedia data transcoding, to multimedia dissemination over 

the Internet, has been addressed.  

The knowledge and techniques from a wide range of techniques from the domains 

of computer vision, image processing, data compression, distributed computing, 

computer networks and power aware concepts of system architectures, have been used. 

Finally, I believe that the proposed technologies addressed in this dissertation have 

benefited the field of computer science, in its understanding of using content information 

for multimedia transcoding. The novel algorithms reported in this dissertation are small 

steps towards making multimedia processing in computers intelligent, by processing data 

by their contents rather that their form, similar to what humans do. 
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6.3. Future directions 

The work in this dissertation has, to my belief, opened the door for a wide range of 

exciting projects which can be based on, or be extensions of, the reported technologies. I 

will now mention possible extensions to the work described in this report. Each sub-

section is dedicated to possible future work based on my current work. 

 

6.3.1. Future work on MoCap compression 

The algorithms presented in this report for MoCap compression are based on structural 

hierarchy in the model. I believe that it is also possible to take into account more 

advanced form of information, such as motion between the joints. This might be useful 

content information, as high speed motions might require lower accuracy, and may 

sustain more loss in data, compared to lowed speed motion, as high speed motion is 

difficult to see by the common human observer; hence, errors can be detected less. 

Another useful research direction is the integration of multiple motion capture data as a 

single data unit, and processing the entire unit together for compaction. This might lead 

to smarter compaction methods.  

 

6.3.2. Future work on content-aware multi-resolution layered video 

The layered video concepts used in chapter three are based on the standard MPEG Fine 

Grained Scalability (FGS) profile. A good future direction is to adapt the technologies 

reported for other scalable video encoding techniques, such as those based on wavelet 

transformations. Another research direction is to improve the encoding speed of layered 
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video using FMOE-MR (one of the technologies reported here) such that FMOE-MR 

based layered video can be generated in near real time. 

 

6.3.3. Future work on HLV 

An important area of content-aware video encoding can be the integration of the 

proposed Ligne-Claire video encoding into mainstream MPEG encoding. I believe this is 

a non-trivial task, and would require smart use of existing MPEG parameters to smartly 

replace the Ligne-Claire parameters. This would ensure that Ligne-Claire can be used by 

standard mainstream media players. An important future work on the hybrid layered 

video (HLV) technique that has been proposed in this report will be to make the layers of 

HLV additive, so that one layer can be derived form a lower layer. This will improve the 

cache performance of the caches which are used to cache HLV for Internet dissemination. 

 

6.3.4 Future work on layered video caching 

The reported layered video caching techniques have been designed to work on single 

server, single cache and multiple client scenarios. A natural extension to these works is to 

consider multiple servers, and multiple caches distributed over the Internet. Cache 

replacement policies for layered video caching have been proposed; in addition, other 

important aspects such as cache coherency protocols for layered video caching can also 

be addressed as an extension to these works. 
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