
 

 

 

 

LINKING UV OPTICAL PROPERTIES AND PHOTOCHEMICAL RATES USING 

REMOTELY SENSED OCEAN COLOR 

by 

FANG CAO 

(Under the Direction of William L. Miller) 

ABSTRACT 

Solar ultraviolet radiation (UVR) is a critical factor regulating photo processes in the 

ocean with the majority of UVR absorbed by chromophoric dissolved organic matter (CDOM). 

Accurate knowledge of UVR and CDOM distributions is desired to better model the UV–CDOM 

interactions that drive photochemistry. This dissertation contains four studies that develop optical 

techniques to model photochemistry and fluorescent components in the ocean. 

First, a composite set of remote sensing algorithms was developed to retrieve UV 

attenuation coefficients (Kd(UV)) from remote sensing reflectance (Rrs), allowing improved 

estimates of UVR penetration in a variety of water types (e.g. mean relative error of 13% for 

Kd(340)).  

Second, I used a suite of statistical approaches to develop a novel algorithm (SeaCDOM) 

for accurate, direct retrieval of fully resolved UV absorption spectra for CDOM, ag(275-450), 

from Rrs,  obtaining a mean relative error of ~25%. It has the advantage of being free of the 

assumed CDOM exponential extrapolations from modeled visible wavelengths that have 

hampered previous work. This advance should provide new insight about the chemical 



 

 

composition, origins, transformation, and cycling pathways of CDOM in the surface ocean with 

a synoptic view.  

Third, I introduced a new approach for calculating photochemical rates by blending the 

composite (Kd(UV) and SeaCDOM algorithms to examine carbon monoxide photoproduction 

using a single, high resolution coastal satellite image. This novel product demonstrates the 

complex spatial variability of depth-specific and depth-integrated photoproduction on an 

estuarine scale. This new capability for independent retrievals of ag and Kd allows quantitative 

partitioning of UV photons between CDOM and other optical constituents, producing greatly 

improved estimates for photochemistry in complex waters. 

Finally, I explored the spatial (0 to ~5000m) distribution and dynamics of DOM 

throughout the Gulf of Alaska using absorbance and fluorescence measurements. 

Biogeochemical and physical processes driving DOM optical property distributions are explored 

using multi-linear relationships, revealing significant control by both in situ production and 

mixing of water masses.  Strong relationships between dissolved organic carbon (DOC) and 

protein-like fluorescent components, suggests a new tool to trace bulk dissolved organic carbon 

in the deep ocean, especially within the bio-refractory pool.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1. Background and Motivation 

1.1.1. Why study photochemistry of CDOM? 

Solar ultraviolet radiation (UVR, with a wavelength range of 280–400 nm), is a critical 

factor regulating biogeochemical cycles in the ocean (Whitehead et al., 2000; Williamson et al., 

2014). Most of UVR in the ocean is absorbed by the optically active fraction, known as 

chromophoric dissolved organic matter (CDOM) within the larger pool of dissolved organic 

carbon, especially in coastal and estuarine waters. Upon exposure to high–energy UVR, CDOM 

undergoes a variety of photochemical reactions, including formation of short-lived transit 

radicals (e.g., ·HO, 
1
O2, O2

–
), as well as stable non-radical species that influence the global 

cycling of environmentally important trace gases (e.g., carbon monoxide (CO), carbon dioxide, 

etc.), the redox cycling of essential trace metals (e.g., Fe, Mn, Cu), and alter biological 

availability of organic carbon (Blough and Del Vecchio, 2002; Mopper and Kieber, 2000; Zepp 

et al., 2007). Photochemical breakdown of CDOM, on the other hand, controls the underwater 

radiation field by influencing UVR penetration depth in the water column, and in turn affects 

phytoplankton and microbial productivity in marine ecosystems (Kirk, 1994). Furthermore, 

photodegradation of CDOM provides biologically labile organic substrates, supporting 

heterotrophic community and subsequent microbial food webs (Moran and Zepp, 1997). Given 

these significant processes, accurate knowledge of CDOM photochemistry is desired to better 

quantify its role in the global carbon cycle. 
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1.1.2. How to quantify CDOM photochemistry from ocean color? 

The light-absorbing properties of CDOM allow a quantitative determination of its 

relevant photoprocesses in the surface ocean based on satellite ocean color observations, offering 

a synoptic view with high spatial and temporal coverage. Rigorous assessment of depth-specific 

photoproduction (Ψ(z), mol (photoproducts) m
–3 

s
–1

, z  = depth) with respect to CDOM requires 

accurate knowledge of three variables: 1) the photon flux available for CDOM at a specific depth 

z, represented by scalar irradiance (E0(, z), mol (photons) m
–2  

s
–1 

nm
–1

), 2) the fraction of 

photons available that is absorbed by CDOM, quantified as the CDOM absorption coefficient 

(ag, m
–1

), and 3) the efficiency with which each absorbed photon creates a photochemical 

reaction (product production or loss). In this dissertation, I incorporate the photochemical 

efficiency of CO production from CDOM, CO, mol (CO) mol (photons)
 –1

 in the general 

photochemical rate expression shown in Equation (1) (Toole et al., 2003) 

                        
  

   
 

 

                                                        

where ΨCO(t, z)) is CO photoproduction rate at time t and depth z; 1 and 2 represent the 

integration limits of the photoreactive wavelengths, E0(, z, t) denotes the irradiance at 

wavelength  at time t; ag() and CO() are the CDOM absorption coefficient and CO 

photoproduction efficiency at wavelength , respectively. A short discussion of each of these 

three components (as they relate to remote sensing ocean color where possible) is presented in 

the following text.  

Incident radiation in the water column and Diffuse attenuation coefficient 

Solar scalar irradiance just below the water surface (E0(, 0
–
)) is the radiant energy 

available for CDOM photochemistry and represents the integration of all radiant flux at a single 
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point incident over all directions (Kirk, 1994). In the simplified photochemical model described 

in Fichot and Miller (2010), E0(, 0
–
) can be estimated from observations of downwelling 

irradiance right beneath the water surface (Ed(, 0
–
)) by ignoring the upwelling irradiance which 

is minor and consequently negligible. In natural waters, the absorption and scattering of solar 

irradiation by seawater and optically active constituents therein (phytoplankton, CDOM, non-

algal particles, and detritus) affects the underwater radiation field, which in turn impacts 

photochemical reactions. The most commonly used parameter to describe the loss of radiation 

intensity in the water column is the downwelling diffuse attenuation coefficient (Kd()), defined 

as the fractional rate of decay of downwelling spectral irradiance (Ed(, z)) with depth z. Ed() 

diminishes in an exponential manner with physical depth and can be expressed as in Equation 

(2), 

                                                                                                    

With the knowledge of Kd() and surface irradiance, Ed(, 0
–
), we are able to describe the 

downwelling irradiance Ed(, z) at any desired depth z. Kd is typically measured with an optical 

profiling system that measures in-water downwelling irradiance continuously as it passes 

through the water column. Kd is subsequently calculated as shown below. 

      
        

   
  

 

  
  

   

  
                                                       

Kd not only depends on the inherent optical properties, but also varies as a function of the 

geometric structure of incident radiation (sun elevation, water surface and sky conditions, etc.) 

(Morel and Maritorena, 2001). It demonstrates great spatial variability with values ranging over 

three orders of magnitude from the clearest open ocean (e.g., Lee et al., 2013) to very dark 

oligotrophic lakes (e.g., Kjeldstad et al., 2003). A proven approach to estimate Kd over large 
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spatial scales is with satellite imagery of ocean color. A common Kd wavelength reported in the 

literature is 490 nm (Kd(490)) which has long been used to describe water clarity (Austin and 

Petzold, 1981; Wang et al., 2009) and has shaped standard NASA Kd(490) product (Werdell, 

2009).  

There have been far fewer studies on Kd(UV) retrieval from ocean color, especially in 

turbid estuaries and coastal oceans, probably due to technical challenges of accurately measuring 

UV attenuation in these waters and because the more common bio-optical research focuses on 

domains other than UV radiation. Johannessen et al. (2003) formulated an empirical linear 

relationship between Kd(UV) (=323, 338, and 380 nm) using a blue-green ratio of visible 

remote sensing reflectance (Rrs, Rrs(412)/Rrs(555)) to retrieve Kd(UV) from ocean color. Fichot et 

al. (2008) developed the SeaUV/SeaUVc algorithms using multivariate statistical approaches to 

estimate Kd in the UV and blue wavelengths directly from Rrs. These algorithms, developed and 

validated with a larger coastal and open ocean data set provided improved accuracy over a 

simple ratio approach of Johannessen et al. (2003). However, as shown later (Chapter 2) in this 

dissertation, when applied to optically complex inshore waters, the original SeaUV/SeaUVc 

algorithms severely underestimate Kd and refinements were required to retrieve accurate Kd 

estimates for inshore waters.  

CDOM absorption of UVR 

CDOM, also traditionally known as yellow substance or gelbstoff, contains the optically 

active fraction of the dissolved organic matter pool. CDOM absorbs light mainly in the UV and 

blue spectral domains and drives marine photochemistry, thereby playing an essential role in 

carbon biogeochemical cycling. CDOM in natural waters is an operational value defined by 

measuring the spectrally resolved absorption spectrum of 0.2 μm filtered water samples over UV 
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and visible wavelengths. Absorption spectra for CDOM typically exhibit a featureless, 

monotonically decreasing trend with increasing wavelength. For seawater samples, the measured 

CDOM spectrum obtained from a spectrophotometer must be corrected for refractive index 

effects between salt water and pure water when the later is used as a reference. CDOM in the 

ocean is described by its absorption coefficient at a specific wavelength, calculated as shown in 

Equation (4) 

                                                                                                                

where ag(λ) (m
–1

) is the Napierian absorption coefficient of CDOM at wavelength λ, A(λ) 

(unitless) is the blank corrected CDOM absorbance at λ, and L (m) is the path length of the 

spectrophotometric cell.  

The optical significance of CDOM allows its remote retrieval from satellite ocean color 

platforms. Prediction of ag from Rrs via a variety of algorithms, either semi-analytical or 

empirical, has been routinely made in the visible regime (typically at 412 and 443 nm) and 

mainly restricted to the determination of ag at individual wavelengths. Based on radiative transfer 

theory, semi-analytical algorithms relate the ratio between backscattering and absorption of 

constituents in the water to Rrs and simultaneously derive a suite of inherent optical properties 

(IOPs), including absorption by chlorophyll and colored detrital material (e.g., quantified using 

adg(443), for more details, see Chapter 3), as well as the backscattering coefficient of particles 

(bbp) (e.g., Garver and Siegel, 1997; Lee et al., 2002; Maritorena et al., 2002). Empirical 

algorithms have been used to statistically correlate various Rrs ratios to ag at specific visible 

wavelengths (e.g., ag(412)), obtained either from in situ IOP profile observations or 

spectrophotometric measurements (e.g., Del Castillo and Miller, 2008; Mannino et al., 2008). 

Additionally, ag has been estimated by relating Rrs to an intermediate parameter (i.e., Kd), and 
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subsequently using this to derive ag based on an empirical relation between Kd and ag (Fichot and 

Miller, 2010; Johannessen et al, 2003) Satellite derived estimates of adg(443) or ag(412) are in 

turn used to model the UV absorption of CDOM by assuming an exponential spectral slope 

coefficient (S, nm
–1

) modeled as 

                                                                                                                                  

where ag(λ) is the desired absorption coefficient (m
–1

) of CDOM at wavelength λ, and λo is the 

reference wavelength (nm) (e.g., Bricaud et al., 1981; Twardowski et al., 2004). Changes of S 

have been reported to provide information about CDOM characteristics (sources, molecular 

weight, etc.) and may be used to trace changes in the CDOM pool such as photobleaching 

(Twardowski et al., 2004). However, the values assigned to S are largely dependent on the 

wavelength interval chosen for fitting, making published spectral slope coefficients variable and 

often contradictory (Carder et al., 1989; Twardowski et al., 2004).  

To fully evaluate the critical role of UV wavelengths in CDOM photoprocesses, its full 

spectral absorbance in the UV is desired. However, most efforts have modeled ag at UV 

wavelengths by extrapolation from visible ag estimates either using a predefined S value 

(Stedmon et al., 2000), or based on the functional relationship between adg(443) and S (Swan et 

al., 2013). Unfortunately, field studies have shown that S varies significantly with CDOM source 

material and biogeochemical processes. In this sense, current algorithms for retrieving CDOM 

spectra from ocean color can suffer large errors arising from the assumption of a single 

exponential spectral slope and its extrapolation from visible to UV wavelengths. Also, there have 

been few studies attempting to retrieve S from remote sensing (Carder et al., 1989; Fichot et al., 

2013; Fichot et al., 2014; Vähätalo and Wetzel, 2004), which can potentially be used as a tracer 

for photochemical modification of terrestrial dissolved organic carbon in river-dominated coastal 
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margins (Fichot and Benner, 2012; Fichot et al., 2013). Other studies have also shown that the 

ratio between S values determined over different wavelength intervals (SR, calculated as the ratio 

of S275-295 to S350-400), is informative and may reveal additional DOM chemical characteristics. 

Helms et al. (2008) proposed SR as a proxy for DOM molecular weight (MW), with changes 

indicating photochemical MW alteration of the DOC pool. Although SR has been used to study 

the dynamics of DOM in samples taken from natural waters (Helms et al., 2013; Stubbins et al., 

2012; Yamashita et al., 2013), synoptic assessment of SR has not yet been made from remote 

sensing.  

 Photoproduction efficiency 

The efficiency of photochemical production for any product arising from photon 

absorption by CDOM is described using an apparent quantum yield (AQY), which equals the 

ratio of moles of desired photoproduct generated (in this dissertation, CO) and moles of photons 

absorbed by CDOM. The term “apparent” here accounts for the fact that the specific 

chromophores involved in the photochemical reactions leading to production are unknown, due 

to the complex nature of CDOM. Consequently, AQY is determined as a function of wavelength 

and the absorption coefficient of the entire CDOM pool. Determination of AQY spectra can only 

be done by laboratory measurements and are not directly related to ocean color.  

Compared to the open ocean where CO photochemical efficiencies are relatively well 

constrained (Zafiriou et al., 2003; Ziolkowski and Miller, 2007), AQY for CO in the coastal and 

inshore waters remain variable and difficult to assign (Powers and Miller, 2015). This is largely 

due to the complex nature of CDOM in terrestrially influenced areas and elusive mechanisms by 

which chromophores participate in photolysis reactions (Gao and Zepp, 1998). AQY 

uncertainties pose a considerable challenge when seeking a synoptic assessment of 
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photoproduction using traditional passive satellite observations with relatively coarse spatial 

resolution (e.g., ~1.1 km of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS).  

Modeling depth-specific photoproduction rates of CO   

Knowing the three critical components for photoproduction described above, depth-

specific photochemical production rates for CO generated by photons absorbed over the entire 

photoreactive spectrum can be modeled as shown in Equation (6) 

                                     
  

     
   

   
                                   

where        (mol (CO) m
–3 

s
–1

) is CO photoproduction rate at depth z (m), and min and max 

are the minimal and maximal wavelengths respectively that are considered significant in CO 

production. Assuming homogeneity within the photic zone for each ocean color pixel,        is 

fundamentally a function of optical (Kd, ag) and photochemical (CO) properties, with the first 

two variables being retrievable from remote sensing and the latter typically modeled based on 

laboratory determinations of field samples. Hence, a robust retrieval of these UV optical 

parameters is critical to obtain accurate quantification of marine photochemical fluxes based on 

ocean color.  

1.1.3. Fluorescent dissolved organic matter (FDOM) 

The absorption of photons by CDOM not only causes photochemical reactions, but also 

creates photophysical processes, including fluorescence. The fraction of fluorescent DOM within 

the CDOM pool is referred to as “FDOM”. Similar to CDOM, FDOM in the aquatic system is a 

complex mixture of fluorophores that originate from various sources and are subject to various 

degradation and removal processes. In natural waters, FDOM can be classified into two general 

categories: the humic-like components (hereafter FDOMH) and the protein-like components 

(hereafter FDOMP). FDOMH generally produces broad emission peaks at longer wavelength (> 
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400 nm) than FDOMP which is characterized by narrower fluorescence emission peak at 

wavelengths shorter than 400 nm. FDOMH is ubiquitous in aquatic environments and has long  

been used to trace terrestrial organic material (Coble, 1996) and describe the dynamics of DOM 

(Stedmon and Markager, 2005; Yamashita et al., 2008), to fingerprint water masses (Walker et 

al., 2009),  and to estimate DOC fluxes from land to the ocean (Amon et al., 2003). FDOMP is 

considered to be associated with in situ biological activities (Yamashita and Tanoue, 2003), and 

bound in protein molecular structure (Kowalczuk et al., 2009). In the open ocean, FDOMH shows 

reduced values in the surface water, resulting from photodegradation and gradually increases 

with depth as “humic” material is regenerated from sinking particles and accumulates in the 

remineralization zone (Chen and Bada, 1992; Yamashita et al., 2010). Conversely, FDOMP is 

found to be high in the surface ocean presumably related to biological production, and decreases 

with depth in the water column.  

In the past 20 years, 3D scanning of fluorescence from DOM has been widely used to 

distinguish different sources of DOM in the ocean. Excitation-emission matrix spectra (EEMs) 

are generated by acquiring the complete emission spectrum at a series of successively increasing 

excitation wavelengths. It provides a more complete picture of the excitation and emission 

properties of fluorophores within the sample (terrestrial, marine, microbial, etc.), with source 

material distinguished based on their different excitation/emission maxima (Coble, 1996). The 

early application of EEMs to discriminate sources of DOM was basically a “peak-picking” 

technique (e.g., Coble, 1996) and since the EEMs of DOM are composed of overlapping 

fluorophores, it was difficult to properly assess the specific dynamics of DOM based solely on 

the EEMs technique (Yamashita et al., 2008). 
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Resolving FDOM compositions has been greatly benefited from development of 

statistical methods. Stedmon et al. (2003) proposed a new statistical approach (parallel factor 

analysis; PARAFAC) to interpret the multi-dimensional nature of the EEMs data. The 

PARAFAC technique statistically decomposes the complicated 3D fluorescence data matrix into 

a set of three linear terms and a residual array as shown in Equation (7) (Stedmon et al., 2003),  

(7)                                             ;,,1;,,1;,,1,+
1

KkJjIiecbax ijkkf

F

f

jfifijk 


 

where xijk is the fluorescence intensity of the ith sample at emission wavelength j and excitation 

wavelength k; aif is directly proportional to the abundance of the fth analyte in the ith sample. bjf 

and ckf are linearly related to emission and excitation wavelength j and k of the fth analyte, 

respectively. Residual matrix eijk contains variability that cannot be explained by the trilinear 

model. F defines the number of components that can be resolved by the model. 

PARAFAC allows statistical identification and quantification of different fluorophores 

and helps to trace changes of relative concentrations of independent components in the 

environment (Jørgensen et al., 2011). The use of EEMs-PARAFAC techniques has shown great 

potential to distinguish DOM sources and to trace DOM dynamics in various aquatic 

environments, including rivers, estuarine systems, and open ocean.  

1.2. Objectives and Chapter Overview 

The main focus of this dissertation is to better estimate UV optical properties (Kd, ag) 

from remotely sensed ocean color (Rrs) in visible wavelengths and thereby potentially provide 

better models for photochemistry driven by UV–CDOM interactions. This dissertation work 

covers a broad spectrum of optics, from basic oceanographic survey sampling and laboratory 

photochemical analysis to ocean color algorithm development and remote sensing applications. 

In the chapters that follow, I aim to address each of the two optical variables described in 
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Equation (6) using remote sensing techniques and introduce a new approach to estimate 

photochemical fluxes in a dynamic near-shore environment from a high-resolution satellite 

image.  

The first data chapter (Chapter 2) is dedicated to improving performance for retrieval of 

Kd(UV) from Rrs. Previous SeaUV/SeaUVc algorithms (Fichot et al., 2008) have shown 

limitations in near-shore, optically complex environments due to a lack of darker inshore 

samples in its training data set. We collected field optical data in coastal Georgia, pooled it with 

the original training and external validation data sets to develop a composite product of 

SeaUV/SeaUVc algorithms that is universally applicable to a variety of water types. A detailed, 

step-by-step description of implementing the composite algorithms, including intermediate steps 

toward the final product are given in Appendix A and B respectively.  

In Chapter 3, I present a novel algorithm (SeaCDOM) that allows direct retrieval of a 

fully resolved CDOM absorption spectrum over UV wavelengths from visible Rrs. I developed 

this algorithm using a suite of statistical approaches and obtained good accuracy for ag retrieval, 

with a mean absolute percent difference for ag in the UV of ~25%. This new algorithm 

contributes to improved accuracy for photochemical and photobiological rate calculations from 

ocean color. One of its advantages is that no prior assumptions of CDOM absorption spectral 

shape is required, making it free of spectral slope extrapolations from visible wavelengths that 

have hampered previous models. This has potential to provide insights about the chemical 

composition (e.g., molecular weight and aromaticity), origins, transformation and cycling 

pathways of CDOM on global as well as regional scales.  I provide a description of 

implementing the SeaCDOM algorithms in Appendix C. 
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In Chapter 4, I introduce a new approach to the calculation of photochemical rates by 

blending the two distinct algorithms developed in Chapter 2 and 3 (composite SeaUV and 

SeaCDOM algorithms) and apply this to a single coastal HICO image centered on Sapelo Island, 

GA, USA, to estimate CO photoproduction as an example. I demonstrate the high spatial 

variability of depth-specific, as well as depth-integrated photoproduction rates of CO on a small 

estuarine scale. With the new capability of independent retrievals for ag and Kd, I am able to 

reveal the underlying optical principle that governs the distribution of depth-integrated 

photochemistry in the UV from ocean color.  

Finally, Chapter 5 explores the distribution and dynamics of DOM using absorbance and 

fluorescence techniques on samples collected in the Gulf of Alaska during a high resolution field 

campaign. I assess potential biogeochemical and physical processes driving the distributions of 

these optical properties and attempt to develop a multi-linear relationship between DOC and 

protein-like fluorescent components, exploring the potential of using fluorescent information to 

trace bulk DOC in the ocean, especially the refractory fraction of DOM.  
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CHAPTER 2 

IMPROVED ALGORITHMS FOR ACCURATE RETRIEVAL OF UV/VISIBLE DIFFUSE 

ATTENUATION COEFFICIENTS IN OPTICALLY COMPLEX, INSHORE WATERS
1,2
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Abstract 

Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, 

estuarine, and coastal waters play an important role in global biogeochemical cycles and 

biological systems. A key to modeling photochemical processes in these optically complex 

waters is an accurate description of the vertical distribution of UVR in the water column which 

can be obtained using the diffuse attenuation coefficients of downwelling irradiance (Kd(λ)). The 

SeaUV/SeaUVc algorithms (Fichot et al., 2008) can accurately retrieve Kd (λ = 320, 340, 380, 

412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing 

reflectances (Rrs(λ), SeaWiFS bands). However, SeaUV/SeaUVc algorithms are currently not 

optimized for use in optically complex, inshore waters, where they tend to severely 

underestimate Kd(λ). Here, a new training data set of optical properties collected in optically 

complex, inshore waters was used to re-parameterize the original SeaUV/SeaUVc algorithms, 

resulting in improved Kd(λ) retrievals for turbid, estuarine waters. Although the updated 

SeaUV/SeaUVc algorithms perform best in optically complex waters, the original 

SeaUV/SeaUVc models still perform well in most coastal and oceanic waters. Therefore, we 

propose a composite set of SeaUV/SeaUVc algorithms, optimized for Kd(λ) retrieval in almost all 

marine systems, ranging from oceanic to inshore waters. The composite algorithm set can 

retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., 

within a mean relative error of 13% for Kd(340)). A validation step using three independent, in 

situ data sets indicates that the composite SeaUV/SeaUVc can generate accurate Kd(λ) values at λ 

= 320 – 490 nm from ocean color on a global scale. Taking advantage of the inherent benefits of 

our statistical methods, we pooled the validation data with the training set, obtaining an 

optimized composite model for estimating Kd(λ) in UV wavelengths for almost all marine 
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waters. This “optimized composite” set of SeaUV/SeaUVc algorithms will provide the optical 

community with improved ability to quantify the role of solar UV radiation in photochemical and 

photobiological processes in the ocean. 

1. Introduction 

Solar ultraviolet radiation (UVR; 280-400 nm) is a critical factor in regulating the 

biogeochemical cycles in the ocean (Whitehead et al., 2000). High-energy UVR is the driving 

factor for the photooxidation of colored dissolved organic matter (CDOM), the dominant UVR-

absorbing component within the larger pool of dissolved organic carbon (DOC), especially in 

coastal areas and estuaries (Mopper and Kieber, 2000). The photochemical degradation and 

mineralization of CDOM can therefore have an important effect on biogeochemical carbon 

cycling in the ocean. UVR also impacts bacterial and photosynthetic activity through DNA 

damage and repair processes in natural waters (Sinha and Häder, 2002; Tedetti and Sempéré, 

2006).  

Quantitative assessment of in situ photochemical and photobiological processes can 

benefit from knowledge of the vertical distribution of UV and visible radiation in natural waters 

(Fichot and Miller, 2010). The diffuse attenuation coefficient, Kd(λ), is defined as the fractional 

rate of decay of downwelling spectral irradiance with depth and can be used to calculate vertical 

profiles of irradiance in the water column from measurements of surface irradiance (Kirk, 

1994a). The diffuse attenuation coefficient depends not only on the optically active water 

constituents, but also on the distribution of the ambient light field (solar zenith angle, surface and 

sky conditions, etc.) (Lee et al., 2005). Kd spans several orders of magnitude between the clearest 

oceanic waters (e.g., surface subtropical gyres, Kd(340) = 0.035 m
–1

) (Morel et al., 2007a, 2007b) 

and the darkest inshore waters (e.g., dark oligotrophic lakes, Kd(340) = 3.8 m
–1

) (Booth et al., 
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1997; Kjeldstad et al., 2003). Satellite imagery could therefore facilitate the quantification of Kd 

over large temporal and spatial scales. 

The determination of Kd is amenable to the remote sensing of ocean color.  Austin and 

Petzold (1981) first proposed an empirical relationship between Kd and a blue-green ratio of 

water-leaving radiance (Lw(443)/ Lw(555)) in order to facilitate the retrieval of Kd(490) from 

ocean-color remote sensing. Previous efforts of Kd retrieval for Case 1 and Case 2 waters 

generally included only visible bands, and were based on either empirical or semi-analytical 

methods (Kuhn et al., 1999; Jamet et al., 2012; Johannessen et al., 2003; Mueller, 2000). 

However, few studies have focused on the retrieval of Kd in the UV domain, especially in turbid 

estuaries. Fichot et al. (2008) recently developed the SeaUV and SeaUVc algorithms for the 

retrieval of Kd(λ) (λ = 320–490 nm) from multispectral remote-sensing reflectances (λ = 412–670 

nm) in the ocean. These algorithms were developed and validated for coastal and open ocean 

waters. However, these algorithms can severely underestimate Kd retrievals in the UV when 

applied to inshore waters (as shown later in Section 3.1). This clearly calls for a refined approach 

and tuning of the original model for improved accuracy of Kd(λ) retrievals in optically complex 

inshore waters. 

In this study, in situ measurements of optical properties collected in turbid, CDOM-rich 

coastal and inshore areas are used to enhance the applicability of SeaUV and SeaUVc algorithms 

in optically complex waters. This new data set is used along with the original training data set of 

Fichot et al. (2008) to develop and validate a “composite SeaUV and SeaUVc” algorithm set 

optimized for water types ranging from blue oceanic to highly productive, turbid inshore waters 

(see Table 2.1). This new algorithm set will enhance our capability to monitor the in situ 
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attenuation of solar radiation (UV-visible) and quantify photochemical and photobiological 

processes in most natural waters. 

2. Data and Approach 

2.1. Background of current SeaUV algorithms 

The SeaUV/SeaUVc algorithms can be used to retrieve Kd(λ) at λ = 320, 340, 380, 412, 

443 and 490 nm from spectral remote-sensing reflectance (Rrs(λ)) in the visible range. The basic 

approach uses a principal component analysis (PCA) to collapse Rrs(λ) spectra (λ = 412, 443, 

490, 510, 555 and 670 nm) into four principal components (PCs). Multi-linear regressions were 

then parameterized between measured in situ Kd(λ) and the four PCs, resulting in a model named 

SeaUV. In SeaUVc, a cluster analysis was applied to the first two PC scores in order to divide the 

ocean color data set into distinct ocean color domains based on the Rrs(λ) spectral characteristics. 

This classification allowed the derivation of ocean color domain-specific multi-linear 

parameters. The use of PCs in SeaUV and SeaUVc resulted in a more complete utilization of the 

multispectral information contained in Rrs(λ) spectra, and provided more accurate Kd(λ) retrievals 

compared to traditional band-ratio methods that only use Rrs at two wavelengths (Fichot et al., 

2008). In the rest of this manuscript, the Fichot et al. (2008) algorithms are referred to as the 

“original” SeaUV/SeaUVc model. 

2.2. Study area and data collection 

Sampling was conducted in three distinct estuarine systems along the Southeastern coast 

of the U.S. (Altamaha, Doboy and Sapelo sounds in Georgia) (Figure 2.1). A total set of 74 in 

situ, simultaneous measurements of Rrs(λ) and Kd(λ) were collected in June 2006, February 2007, 

August 2009, July 2010, March 2011, and June 2011. The three sampled estuarine systems had 

distinct hydrological settings. The Altamaha Sound is a river-dominated site and receives 
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freshwater inputs and large amounts of suspended particles from the Altamaha River. It is 

generally characterized by high loadings (~ 30 mg/l) of total suspend solids (TSS) (Witte et al., 

1982). The optical properties of the Altamaha Sound are further complicated by the organic 

matter accumulation promoted by freshwater input from the Altamaha River (Craft, 2007). 

Doboy Sound is located to the north of Altamaha Sound and is a tidal marsh-dominated site. It 

can receive significant riverine input from the Altamaha River during high flow seasons (usually 

February to April). Sapelo Sound is the northernmost site sampled and is a coastal, marine-

dominated site, comparatively more saline and experiencing less hydrological variation than its 

neighboring estuaries to the south (Richardson and LeDrew, 2006). The study area spanning the 

three estuarine systems is characterized as a CDOM-rich (aCDOM(300) up to 13 m
-1

) and highly 

dynamic system with periodic heavy loads of suspended particles. 

 Two optical instruments were deployed at each sampling station and all measurements 

were taken within 2 h of solar noon (solar zenith angle (SZA) varied in the range of 15º ~ 35º) in 

order to preserve the quasi-inherent property of the diffuse attenuation coefficient (Gordon, 

1989). A Satlantic
®
 multispectral profiling radiometer (MicroPRO, with wavebands centered at λ 

= 305, 325, 340, 380, 412, 443, 490, 555 nm) was deployed three or more times at each station to 

measure profiles of spectral downwelling irradiance (Ed(λ, z), µW cm
-2

 nm
-1

). The MicroPRO 

was either lowered slowly by hand on the sunny side of a small vessel or floated away and used 

in free-fall mode depending on data density and orientation requirements.  Data with instrument 

tilt greater than 5º was removed before algorithm development.  The optical depth, (, z), was 

calculated as in Eq. (1):  

                                                                                                           (1) 

where                       , (Austin, 1974; Kirk, 1994a). 
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The diffuse attenuation coefficient, Kd(λ), was calculated as in Eq. (2): 

                                                                                                                      (2) 

where z is the water depth at which the detection limit of the instrument is reached. Typical z 

values were < 0.5 m for Kd (340) and no optical stratification was noted over this depth. 

Paired Satlantic
®

 multispectral OCR507 radiometers mounted on a buoy were used to 

measure above-surface remote-sensing reflectance (Rrs(λ, 0
+
), sr

-1
)  at λ = 305, 325, 340, 380, 

412, 443, 490, 510, 555, 670, and 683 nm. The OCR system was deployed on the sunny side of 

the boat, and at the same time as the MicroPRO in order to obtain simultaneous measurements of 

Kd(λ) and Rrs(λ). The OCR system measured simultaneously above-surface downwelling 

irradiance (Ed(λ, 0
+
), µW cm

-2
 nm

-1
) and just-below-surface (~2–3 cm) upwelling radiance (Lu(λ, 

0
-
), µW cm

-2
 nm

-1 
sr

-1
). Water-leaving radiance, Lw(λ), was then derived from Lu(λ, 0

-
) using the 

approximation    λ                of Austin (1974). The Rrs(λ, 0
+
) was then calculated as 

the ratio of  Lw(λ) over Ed(λ, 0
+
) for the following wavelengths: λ = 412, 443, 490, 510, 555 and 

670 nm.  Due to high levels of CDOM and turbidity, the study area is considered to be optically 

deep and bottom effects on the determination on Rrs can be neglected. The MicroPRO and OCR 

were re-calibrated annually by Satlantic, Inc. Uncertainties (such as sun elevation, surface 

extrapolations, etc.) associated with Rrs and Kd measurements are detailed in Fichot et al. (2008).  

2.3. Optimization of original SeaUV algorithms for optically complex, inshore waters 

In a first attempt to optimize the algorithms, the inshore-water data set collected in this 

study (N = 74) was pooled into the original training data set of Fichot et al. (2008), and the 

models were re-parameterized using the exact same approach as the one used in Fichot et al. 

(2008). However, simple re-parameterization using this updated data set (N = 438) did not 

achieve better overall performance (see Appendix B). To better estimate Kd in inshore waters and 
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maintain the good performance of original algorithms of Kd retrieval in open ocean waters as 

well, the original approach used by Fichot et al. (2008) was therefore modified to optimize the 

performance of the algorithms from open ocean waters to optically complex inshore waters.  

2.3.1. Determination of the cutoff point for inshore waters 

The new approach to improve the performance of the original SeaUV/SeaUVc algorithms 

for inshore waters was developed by re-parameterizing the multi-linear equations with a re-

defined, inshore water training data set split from the complete data set. In the rest of this 

manuscript, the models developed with this new approach are referred to as “inshore-water 

optimized” SeaUV/SeaUVc. A cutoff value based on Kd(490) was defined to distinguish inshore 

waters for which SeaUV/SeaUVc should be optimized. Kd(490) was chosen to distinguish inshore 

waters from other water types for two reasons. First, Kd(490) gave the least accurate retrieval 

when the original SeaUV/SeaUVc was applied to our new inshore water data (as shown later in 

Section 3.2). Second, Kd(490) is a standard NASA product from SeaWiFS data that allows a 

determination of water type with AOP's external to the SeaUV/SeaUVc implementation. This 

eliminates potential internal bias when applying our new approach to remotely sensed ocean 

color.  

To determine the cutoff point, we first sorted the measured in situ Kd(490) in ascending 

order and then applied a five–point moving-average smoothing function to both the measured in 

situ Kd(490) and estimated Kd(490) values retrieved from the latest NASA Kd(490)  product 

(Werdell, 2009). Figure 2.2 (a) displays the performance of the Kd(490)  product on our complete 

data set. The cutoff point was chosen to be at the point where the measured Kd(490) began to 

diverge from the estimated values in the Kd(490) product. By examining the smoothed curve in 

Figure 2.2 (b), the cutoff point was determined to be 0.32 m
-1

 for Kd(490). Any measured 
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Kd(490) values in the combined data set which was greater than 0.32 m
-1

 was considered as 

optically complex inshore water, giving a total of 119 points to be included in the inshore water 

training data used to derive the new parameters for the inshore-water optimized SeaUV 

algorithms. 

2.3.2. Optimization of SeaUV/SeaUVc algorithms for inshore waters 

The inshore water training data set (N = 119) was first log-transformed and then re-

standardized following Equation (2) in Fichot et al. (2008). To optimize the SeaUV algorithms 

for inshore waters, the re-standardized Rrs(λ) data of the inshore water training data set (N = 119) 

were combined into four principal components, and regression coefficients were generated by 

fitting a multi-linear relationship between the four PC scores and the measured Kd values. A 

fuzzy c-means cluster analysis (FCM) was then applied to the two-dimensional (2-D) data set 

spanned by the first two PC scores generated in the inshore-water optimized SeaUV. We used the 

c-means function in the R software package (http://www.r-project.org/) to carry out the cluster 

analysis. The algorithms are based on minimizing the objective function defined as follows in 

Eq. (3):     

       
  
  

   
 
          

 
                                            (3) 

where m is the weighting component; xi is the ith observation in the 2D dataset spanned by the 

first two PCs; cj defines the cluster centers in the 2D dataset; µij is the degree of membership of 

xi to the cluster j, and         is the Euclidean norm which represents the similarity between 

the measured data and the cluster centers (Moore et al., 2009). Evaluated by multiple fuzzy 

cluster indexes (e.g. partition coefficient, partition entropy, etc.), four representative dark water 

ocean color domains (DWDs) were defined and the cluster centers were determined when the 

optimization criteria were satisfied (Moore et al., 2001). This use of FCM (also known as the soft 
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K-means clustering method) is the only difference between the current approach and the original 

Fichot et al. (2008) method, which applied a hard K-means clustering method. Through the 

membership assignment of every data point to different clusters, FCM provides more robust 

estimation of cluster centers than the hard K-means method, where cluster centers must be 

optimized through many trials. Another advantage of applying FCM over the conventional hard 

K-means method is that the number of clusters can be optimized and validated through multiple 

validity indexes, a more objective and convincing method than the pre-specified cluster numbers 

from hard K-means method. Figure 2.3 shows the Rrs(λ) spectra for the four dark water domains. 

The number of samples assigned to each of the four DWDs are 20, 31, 31 and 37, respectively. 

2.4. Development of composite SeaUV/SeaUVc algorithms 

The original SeaUV algorithms still performed best in open ocean and coastal waters, 

where Kd(490) < 0.32 m
-1

. In order to optimize the overall performance of the algorithms in the 

full range of natural water types, we assembled and tested a composite version of the algorithms. 

This composite algorithm uses the original SeaUV/SeaUVc for open ocean and coastal waters 

(where Kd(490) < 0.32 m
-1

), and the inshore-water optimized SeaUV/SeaUVc for optically 

complex waters (where Kd(490) ≥ 0.32 m
-1

). 

2.5. Accuracy assessment  

The mean relative error (MRE()) was calculated in order to evaluate the accuracy of 

Kd() retrievals and the overall performance of the original, inshore-water optimized, and 

composite SeaUV/SeaUVc algorithms. The MRE()) is defined in Eq. (4) as follows:  

            
 

 
     

 
                                                                              (4a) 

where        
                            

                                                            (4b) 
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and where i is the index number, and N is the number of observations. Note that Kd() values 

measured at  = 325 and  = 340 nm were linearly extrapolated to calculate the Kd() value at  

= 320 nm to allow direct accuracy comparison to the original SeaUV/SeaUVc results. 

3. Results and Discussion 

3.1. Evaluation of original SeaUV algorithms for inshore waters 

The original SeaUV algorithms were first implemented using the complete data set of 

Rrs(λ) spectra that includes our new inshore-water stations. As shown in Figures 2.4, 2.5 and 2.6, 

the Kd(λ) values derived in inshore waters using the original SeaUV algorithms are 

underestimated relative to the measured in situ Kd(λ). The bias increases as values for Kd(λ) 

increase and the underestimation is more distinct when the original SeaUVc was applied to the 

inshore water data set alone. For example, in Figure 2.6, the original SeaUVc generates higher 

biases and performs more poorly for Kd(320) than SeaUV. The accuracy of Kd(490) estimated in 

inshore waters using the original SeaUVc shows slightly better performance than SeaUV, but 

remains low. The severe underestimation of estimated Kd values in inshore waters reflects the 

fact that the original SeaUV/SeaUVc algorithms were parameterized for coastal and open ocean 

water. In optically complex inshore waters, Kd values are higher (e.g. at Altamaha Sound, with 

Kd(340) ~ 18.7 m
-1

) and extend out of the range for which the model was originally developed, 

most likely contributing to its inability to accurately predict Kd in the new inshore water data set. 

3.2. Performance assessment of inshore-water optimized SeaUV/SeaUVc algorithms 

Instead of simply re-parameterizing the original model with an expanded data set that 

included an extended Kd range, our cutoff point (Kd(490) = 0.32 m
-1

) was applied for the inshore-

water optimized algorithms to distinguish optically complex inshore waters from the other water 

types. Data with Kd(490) values above the cutoff point were classified as optically complex (N = 
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119) and were used as a separate training data set for parameterizing the inshore-water optimized 

algorithms. MRE values derived from the inshore-water optimized algorithms are significantly 

reduced compared to those derived using the original SeaUV algorithms (e.g. for Kd(380), MRE 

= 17.6% from inshore-water optimized algorithms, compared to MRE = 42.9% from original 

SeaUV, error distribution and fitting parameters as shown in the supplementary material). 

While Kd in inshore waters is generally retrieved with good accuracy at most wavelengths 

after optimization, retrieval of Kd(320) using the inshore-water optimized SeaUV algorithms 

yields higher errors compared to the Kd estimates at longer wavelengths (MRE for Kd(320) = 

21.4%, compared to MRE = 15% for Kd(412)). This higher error for Kd(320) could be related to 

the difficulty of measuring Kd at UV wavelengths in highly colored waters. Since most of the 

apparent optical properties (AOPs) in the optically complex water training data set used to 

parameterize the inshore-water optimized SeaUV algorithms were collected in coastal Georgia 

waters (high CDOM and particulate load), measurements of downward UV irradiance generally 

rapidly falls below the detection limits of the instrument during profiling. The measured in situ 

Kd(320) data likely contained more inaccuracy than longer wavelengths when parameterizing of 

the algorithms. In addition, the strong attenuation of UV radiation in dark water requires Kd 

measurements to be made very close to the water surface where wave-induced fluctuations may 

contribute larger variations to the spectral irradiance measurement (Markager and Vincent, 2000; 

Laurion et al., 1997; Tedetti et al., 2007). These challenges of Kd measurements at shorter UV 

wavelengths in optically complex waters could explain the increasing uncertainty of Kd values 

observed at shorter wavelengths. 

3.3. Evaluation of composite SeaUV algorithms  
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The composite SeaUV algorithms improved the accuracy of retrieved Kd in inshore 

waters. Figures 2.4, 2.5 and 2.6 display the Kd retrievals with their relative error distributions that 

result from use of the composite SeaUV/SeaUVc algorithms applied to the entire training data set 

(N = 438). The good agreement between measured and retrieved Kd values demonstrates the 

improved overall performance of the composite SeaUV/SeaUVc algorithms (e.g. for Kd(380), 

MRE = 16% from composite SeaUV, compared with MRE = 21% from original SeaUV). 

The approach used in the composite SeaUV algorithms is similar to the merged Kd(490) 

product for Chesapeake Bay developed by Wang et al. (2009), which combines two separate 

empirical algorithms for Kd(490) retrieval of open ocean and turbid coastal waters to derive 

Kd(490) from satellite measurements. Good results for Kd retrieval using our composite 

algorithms result partly from accurate determination of the cutoff point (Kd (490) = 0.32 m
-1

) 

used to separate the fitting parameters for the composite algorithms. In the merged Kd(490) 

product generated by Wang et al. (2009), using a completely separate data set, the same cutoff 

point of Kd(490) = 0.3 m
-1

 was proposed to distinguish the open ocean water with turbid coastal 

water. The combination of the two individual parts in the composite algorithms, with each part 

applicable to different water types, maximizes our ability to accurately predict Kd through the 

UV wavelength range in both open ocean and turbid inshore waters. 

3.4. Sensitivity analysis of the cutoff point 

By using the latest NASA Kd(490) product to determine the switch point between 

different parts in the composite SeaUV/SeaUVc algorithms,  it is possible that the error (~25%) 

in determining Kd(490) for our training dataset, particularly for open ocean water (Kd(490) < 0.32 

m
-1

), could translate to increased error in our ability to choose the Kd(490) value that will prompt 

a switch between algorithms. We investigated the sensitivity of our retrieval accuracy using the 
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composite SeaUV algorithms, by varying the cutoff point over the range between 0.16 and 0.36 

m
-1

 for Kd(490), corresponding to the 25% error limits of the cutoff point derived from the 

Kd(490) product.  The estimated Kd (λ, λ = 320, 340, 380, 412, 443 and 490 nm) for our training 

dataset obtained by varying the cutoff point 25% showed no statistically significant differences 

from the calculated Kd(λ) values obtained with the cutoff point value set at Kd(490) = 0.32 m
-1 

(t-

tests, with p-value > 0. 05 for Kd(λ) at each wavelength, N = 438).  Hence, the use of our Kd(490) 

= 0.32 m
-1 

switch point between clear and dark algorithms is not sensitive to the error associated 

implicitly with retrieval of the Kd(490) product. 

3.5. Validation of the composite SeaUV algorithms 

Three independent sets of in situ AOPs were used to test the applicability of the 

composite SeaUV/SeaUVc algorithms. Paired measurements of Rrs(λ) and Kd(λ) were collected 

seasonally in the northern Gulf of Mexico (GulfCarbon cruises, 2009–2010), around the 

Mackenzie River outflow (MALINA cruise, August 2009), and the Gulf of Maine in 2008 

(Figure 2.7). The measured in situ Kd(λ) in the validation data set cover different water types and 

span almost the same wide range as the data used to parameterize the composite algorithms (e.g. 

for Kd(380), the measured values span from 0.04 m
-1

 to 11.22 m
-1

).  

The validation procedure for the composite algorithms was carried out in two steps. First, 

the original SeaUV/SeaUVc set was implemented on the Rrs(λ) of samples with in situ Kd(490) < 

0.32 m
-1

. The inshore-water optimized SeaUV/SeaUVc set was then implemented on the Rrs(λ) of 

waters defined as optically complex, that is with in situ Kd(490) > 0.32 m
-1

. The Rrs(λ) data were 

used as input for the composite SeaUV/SeaUVc algorithms and the calculated Kd values were 

then compared with measured Kd values for performance assessment.  
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Figure 2.8 shows the results for comparisons between calculated Kd derived from the 

composite SeaUV/SeaUVc algorithms and measured in situ Kd at λ = 340, 380 and 412 nm for 

the validation data set. Figure 2.9 shows the error analysis for our Kd retrievals associated with 

the composite SeaUV/SeaUVc algorithms, indicating good performance at all wavelengths for 

the validation data set. For Kd(412), the mean relative error derived from the composite SeaUVc 

model is 16% for the validation data set, compared with 16.4% for our complete training data 

set. The consistent error distribution between the validation and training data set further confirms 

that the inshore-water optimized SeaUV/SeaUVc algorithms were well parameterized for higher 

Kd retrieval in optically complex inshore waters. It is important to note that while the inshore-

water optimized SeaUV/SeaUVc model was developed using AOPs collected along coastal 

Georgia, these calculations also performed well for Kd retrieval in other inshore waters from 

diverse locations. The results from the independent in situ validation data set demonstrate that 

inshore-water optimized SeaUV/SeaUVc may be relatively insensitive to the spatial variation of 

optical properties. It should also be noted here that the attenuation values for the validation data 

fall within the range used to parameterize the inshore-water optimized SeaUV/SeaUVc 

algorithms (e.g. the western branch of the Mackenzie River and Gulf of Maine, with Kd(340) ~ 

17.0 m
-1

). The good performance for calculations of optically complex water Kd, together with 

the fact that composite algorithms were parameterized based on a complete training data set that 

covered an extremely wide range of Kd values, indicate the potential for use of the composite 

algorithms in Kd retrieval varying from open ocean waters to optically complex inshore waters 

on a global scale.   

3.6. Optimized composite SeaUV algorithms 



 

33 

In light of the empirical nature of the composite SeaUV/SeaUVc algorithms, the 

composite algorithms can always be updated using additional data in order to further improve the 

accuracy of Kd retrievals. Here, the original training and in situ validation data sets used by 

Fichot et al. (2008), and the inshore-water and in situ validation data sets compiled for this study 

were pooled together and used to parameterize a final set of SeaUV/SeaUVc algorithms. This 

final set of SeaUV algorithms is referred to here as the “optimized composite SeaUV 

algorithms”. The parameters associated with this set of algorithms were derived from a data set 

that covers water types ranging from very oligotrophic open ocean water to optically complex 

inshore locations (N = 563). As shown in Figures 2.10 and 2.11, the optimized composite 

algorithms performed very well at all wavelengths and performed even better than the algorithms 

derived from the smaller training data set (N = 438). The optimized result obtained by adding the 

validation data set to the final pool used to derive the composite algorithms also eliminated the 

biases that occurred in the earlier validation step.  Thus, this final optimization of the composite 

SeaUV/SeaUVc model parameters is the best product we can provide for the optical community 

using this approach.  A complete scheme of how the optimized composite algorithms should be 

implemented is provided in Appendix A.  

3.7. Application to SeaWiFS satellite imagery 

The optimized composite SeaUV algorithm was implemented using SeaWiFS Rrs in order 

to test its applicability with satellite imagery. The monthly climatology of SeaWiFS Rrs over the 

Northern Gulf of Mexico (nGoM) for April 1998-2010 (Level-3, binned 9 x9 km spatial 

resolution) were acquired from the NASA ocean color project website 

(http://oceancolor.gsfc.nasa.gov) and used in this application. The nGoM was chosen because it 

encompasses oligotrophic waters as well as turbid, high CDOM waters influenced by the 

http://oceancolor.gsfc.nasa.gov/
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Mississippi/Atchafalaya River plumes (Lohrenz et al., 1999), thus making it a suitable area to 

demonstrate the overall performance of the optimized composite SeaUV algorithms over a wide 

range of Kd values.  Both the original and final optimized composite SeaUV algorithms were 

applied to the SeaWiFS climatological Rrs data to derive Kd (noted as   
        

 and   
         

 

respectively in the following text).  For additional comparison, we applied the Jamet et al. (2012) 

neural network inversion algorithms (hereafter   
  ), also tuned for retrieving Kd (  

  ) in both 

open ocean and optically complex waters, to the same SeaWiFS Rrs.  

Figure 2.12 shows the climatology images for comparison. As expected, Kd derived with 

the original SeaUV algorithm (Figures 2.12 (a) & (d)) displays less variability between the clear 

offshore Gulf water and waters near the river mouth.  However, the images derived using the 

optimized composite SeaUV algorithm (Figures 2.12 (b) & (e)) show distinct Kd characteristics 

when applied to different water types, especially in nearshore areas.  For Kd(320), the difference 

in the images derived using original and optimized composite SeaUV algorithms can be as large 

as 100% (Figure 2.12 (c)).  Because   
  can only be retrieved at visible wavelengths, we 

generated images at Kd(412) for   
         

 and   
   (Figure 2.12 (f)) for comparison.  

  
        showed similar patterns overall, but generated slightly higher values than 

  
               for nearshore waters.  While Kd(412) is somewhat useful for examining waters 

with high CDOM content, the distinct advantage of our composite SeaUV algorithms is its ability 

to retrieve Kd in the UV directly from Rrs, and in doing so provide essential data for evaluating 

photochemical production and photobiological reactions in the surface ocean.  

4. Summary and Conclusions 

This study makes two contributions to the ocean optical community with by providing 

improved capacity to retrieve Kd from the most oligotrophic open ocean waters to dynamic 
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inshore systems. First, it re-parameterized the original SeaUV/SeaUVc algorithms by pooling a 

new training data set collected in optically complex waters to achieve greatly improved accuracy 

of Kd(λ) retrieval at λ = 320, 340, 380, 412, 443 and 490 nm for turbid coastal waters from ocean 

color (Rrs(λ) at SeaWiFS bands, with wavebands centered at λ = 412, 443, 490, 510, 555 and 670 

nm). Second, it updated the parameters defined and reported in the original SeaUV/SeaUVc by 

using an expanded training data set. The optimization of the original algorithm further enhanced 

the Kd retrieval accuracy in almost all oceanic and coastal waters. The utilization of such a large 

training data set that includes an extensive range of Kd values, together with the inherent 

advantage of the statistical methods employed in developing these algorithms, results in a final 

SeaUV/SeaUVc product (namely, the “optimized composite SeaUV/SeaUVc algorithms”) that is 

suitable for retrieval of Kd over large spatial scales, and in almost any water type.  

While good accuracy in retrieving Kd was obtained using optimized composite 

algorithms, several cautionary notes regarding the shortcomings associated with the 

methodologies should be made for readers who wish to apply these algorithms on ocean color 

data. First, as mentioned earlier, PCA and cluster analysis are purely statistical (empirical) 

approaches, thus, neither categorizes water types beforehand nor excludes samples from non-

ideal situations (i.e. bottom reflectance, turbidity, algal blooms, etc.), SeaUV/SeaUVc is designed 

only to retrieve Kd in the UV based on PCA and cluster analysis.  Neither of these statistical 

approaches requires or, in fact allows underlying assumptions on the spectral data used for the 

analysis.  Interpreting the resulting PC curves or optical domains beyond the design of the model 

requires speculation that we do not always have auxiliary data to support. Although the training 

data set (N = 563) used to derive the algorithm parameters accommodated as much spatial and 

temporal variations, in waters where ocean color variability had not been incorporated yet, 
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uncertainties may likely increase. For example, without including data in our training model such 

as that from the Biogeochemistry and Optics South Pacific Experiment (BIOSOPE) which 

described the clearest oceanic water in the South Pacific subtropical gyre (Morel et al., 2007a, 

2007b), our model may underperform in this specific area. Second, it should be noted that the 

PCs, although together can best describe the original data, each PC may not necessarily be 

linearly correlated to one specific inherent optical property (IOP), as pointed out by Toole and 

Siegel (2001). In the framework of linear algebra, PCA per se, only retains the linearity in the 

training data set, and may not rigorously describe the physical relationship between Rrs and IOPs 

(Morel, 1998; Mueller, 1976). It remains unknown on the predictability of SeaUV/SeaUVc 

algorithms of non-linearities between ocean color and IOPs. Third, readers should be aware that 

Kd is one of the AOPs and varies with sun elevation, and this variation was captured implicitly 

by PCA. Most of the data in the training data set were collected with SZA between 0º and 45º, 

with a few cases occurred with SZA greater than 60º. SeaUV/SeaUVc should be used with 

caution when SZA falls beyond this range. 

With the advent of new remote-sensing technologies and the focus on coastal ocean 

processes, the composite SeaUV/SeaUVc algorithms will find applicability for the retrieval of Kd 

in turbid coastal waters using instruments such as the Hyperspectral Imager for the Coastal 

Ocean (HICO) (Gitelson et al., 2011; Lucke et al., 2011), the Visible Infrared Imager Radiometer 

Suite (VIIRS), or the Portable Remote Image Spectrometer (PRISM). Accurate Kd estimates 

from ocean color can provide better UV data for calculation of photochemical fluxes in coastal 

waters and address the role of estuarine and coastal waters in photochemical and biogeochemical 

processes. In addition, spectral UV distribution in the water column can also be modeled using 

accurate values of Kd by assuming an exponential decrease of Kd values over increasing 
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wavelengths if surface downwelling irradiance is known (Markager et al., 2000; Kjeldstad et al., 

2003). These depth profiles are important for quantitative evaluation of UVR inhibition of 

photosynthesis, bacterial production (Ogbebo and Ochs, 2008) and viral growth (Fuhrman and 

Noble, 1995) in ecological studies. These algorithms can help to clarify and assess possible 

effects of UVR in different trophic levels (Yuan et al., 2011) and in important biogeochemical 

processes occurring in optically complex waters. 
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Table 2.1: Sampling information of the data used in this study (N=438) 

Location Date No. of samples 

UCSB/Dalhousie dataset 

South Atlantic Bight (SAB) 

SOLAS Autumn Cruise (SABINA) 

Mid-Atlantic Bight (MAB)/Gulf of Maine 

coastal Georgia 

1996-2002 

May 2006 

2003 

July 2002 

2006-2011 

333 

15 

4 

12 

74 
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Figure 2.1: Map of optically complex inshore waters sampled along coastal Georgia during  

2006 - 2011. The coastline data was downloaded from the NOAA National Geophysical Data 

Center (http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html).  

http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html
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Figure 2.2: Determination of the cutoff point for the inshore water optimized SeaUV/SeaUVc 

algorithms. (a) Performance of the latest NASA Kd(490) product on the complete training data 

set. Filled red circles mark Kd collected along coastal Georgia and gray circles represent Kd 

published by Fichot et al. (2008). (b) Smoothed results from the five-point moving-average 

function applied to measured in situ Kd data (filled green circles) and modeled Kd derived from 

the latest NASA Kd(490) product (filled blue circles), respectively. The x-axis represents the data 

points sorted in ascending order (N = 438) based on measured in situ Kd(490). The y-axis 

represents corresponding smoothed Kd(490) values.  
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Figure 2.3: Remote sensing reflectance spectra (Rrs) in the four statistically determined dark 

water domains (DWDs). The spectra in black represents the mean Rrs values for each dark water 

domain.  
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Figure 2.4: Comparisons of measured in situ Kd with calculated Kd derived from original SeaUV 

and composite SeaUV algorithms at λ = 340, 380 and 412 nm. In the panels at the left, filled red 

circles (N = 74) mark Kd collected along the Georgia coast and gray circles (N = 364) denote Kd 

published in Fichot et al (2008). In the panels on the right, filled red circles (N = 119) represent 

the inshore water training data set (N = 119) split from the complete training data set and gray 

circles represent all data collected not in the inshore water training data set.  
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Figure 2.5: Comparisons of measured in situ Kd with calculated Kd derived from original SeaUVc 

and composite SeaUVc algorithms at λ = 340, 380 and 412 nm.  
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Figure 2.6: Box and whisker plots of relative error distribution of Kd derived from the original 

and composite SeaUV/SeaUVc algorithms at λ = 320, 340, 380, 412, 443 and 490 nm for the 

inshore data set collected in this study (N = 74) and complete training data set (N = 438). The 

circle plus symbol in each boxplot represents the mean relative error (MRE,     ).  
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Figure 2.7: Locations of stations for in situ paired AOP data used as the validation data set (N = 

125): (a) Mackenzie River outflow during the MALINA cruise, (b) Gulf of Maine, and (c) 

Northern Gulf of Mexico (collected during five GulfCarbon cruises). 
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Figure 2.8: Comparisons of measured in situ Kd with calculated Kd derived from the composite 

SeaUV/SeaUVc algorithms at λ = 340, 380 and 412 nm for the in situ validation data set (N = 

125).  
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Figure 2.9: Box and whisker plots of relative error distribution of Kd derived from the composite 

SeaUV/SeaUVc at λ = 320, 340, 380, 412, 443 and 490 nm for the in situ validation data set (N = 

125). Symbols are the same as in Figure 2.6. 
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Figure 2.10: Comparisons of measured in situ Kd with calculated Kd derived from the optimized 

composite SeaUV/SeaUVc algorithms at λ = 340, 380 and 412 nm for the large training data set 

(N = 563). 
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Figure 2.11: Box and whisker plots of relative error distribution of Kd derived from the optimized 

composite SeaUV/SeaUVc at λ = 320, 340, 380, 412, 443 and 490 nm for the large training data 

set (N = 563). Symbols are the same as in Figure 2.6. 
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Figure 2.12: April climatology (in the period from 1998 to 2010) of Kd(320) and Kd(412)  (m
-1

) 

derived from SeaWiFS satellite images for the northern Gulf of Mexico using (a) the original 

SeaUV algorithm as published by Fichot et al. (2008) for Kd(320), (b) the optimized composite 

SeaUV algorithm developed in this study for Kd(320), (c) the difference between the optimized 

composite SeaUV and the original SeaUV algorithms for Kd(320), the difference was calculated 

as 
   

              
   

             
 

  
 
              

  
 
             

   
 , (d) the original SeaUV algorithm as published by Fichot et 

al. (2008) for Kd(412),  (e) the optimized composite SeaUV algorithm developed in this study for 

Kd(412) and (f) the neural network inversion method developed by Jamet et al. (2012) for 

Kd(412). The bathymetry and coastline data was downloaded from the NOAA National 

Geophysical Data Center (http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html and  

http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html). 

 

http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html
http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html
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CHAPTER 3 

A NEW ALGORITHM TO RETRIEVE CHROMOPHORIC DISSOLVED ORGANIC 

MATTER (CDOM) ABSORPTION SPECTRA IN THE UV FROM OCEAN COLOR
3
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3
 Cao, F., and W. L. Miller (2014). Journal of Geophysical Research: Oceans, 120, 496–516, 

doi:10.1002/2014JC010241; Reprinted here with the permission of the publisher. 
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Abstract 

Accurate estimation of the absorption coefficient (ag) for chromophoric dissolved organic 

matter (CDOM) over ultraviolet (UV) and short visible radiation wavelengths (with λ = 275-450 

nm) is crucial to provide a robust assessment of the biogeochemical significance of UV in the 

global ocean. Using a training data set spanning a variety of water types from the clearest open 

ocean to dynamic inshore waters, a novel algorithm to accurately resolve CDOM absorption 

spectra from ocean color is presented. Employing a suite of multivariate statistical approaches 

(principal component analysis, cluster analysis, and multiple linear regression), this new 

algorithm was developed with matched field data for CDOM spectra and remote sensing 

reflectance (Rrs) at Sea-viewing Wide Field-of-view Sensor (SeaWiFS) bands. Freed from any 

presupposition about CDOM spectral shape or conventional spectral extrapolations from visible 

data, our algorithm allows direct retrieval of a fully resolved CDOM absorption spectrum over 

UV wavelengths from visible Rrs, and further enables a global scale view of the dynamics of 

CDOM over different water types. Accuracy of ag retrieval is good, with a mean absolute percent 

difference for ag in the UV of ~25%. With fully resolved spectra, maps of calculated CDOM 

spectral slopes (S275-295, S350-400) and slope ratios (SR) are presented with the potential to provide 

new information about the chemical composition (e.g., molecular weight, aromaticity), sources, 

transformation, and cycling pathways of CDOM on global as well as regional scales. The new 

algorithm will contribute to improved accuracy for photochemical and photobiological rate 

calculations from ocean color. 

1. Introduction 

Chromophoric dissolved organic matter (CDOM), the colored fraction in the total 

dissolved organic matter (DOM; < 0.2 μm) pool, plays the dominant role in regulating photo-
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processes that influence the biogeochemical cycling of DOM in the ocean (Nelson and Siegel 

2013; Tedetti and Sempere 2006). Initiated by the absorption of solar ultraviolet radiation (UVR; 

280-400 nm), CDOM undergoes a variety of photochemical reactions, including formation of 

short-lived transit radicals (e.g., ·HO, 
1
O2, O2

–
), as well as stable non-radical species that 

influence the global cycling of trace gases (e.g., CO, CO2), the redox cycling of essential trace 

metals (e.g., Fe, Mn, Cu), and production of biologically labile substrates (Blough and Del 

Vecchio 2002b; Mopper and Kieber 2000b; Zepp et al. 2007a). Photobiological and ecological 

processes are also directly affected by CDOM and photobleaching reactions which in turn 

control ultraviolet (UV) penetration depth in the water column, influencing phytoplankton and 

microbial productivity in marine ecosystems (Del Vecchio and Blough 2006; Kirk 1994). Given 

its importance, accurate knowledge of the CDOM absorption spectrum throughout the UV 

wavelengths is a critical determinant for assessing photochemical and photobiological processes 

in global biogeochemical cycles (Reader and Miller 2011, Swan et al. 2013).
 

Satellite ocean color algorithms have proven beneficial for retrieving absorption 

coefficients for CDOM (ag, Table 3.1) on a synoptic scale. Prediction of ag from remote sensing 

reflectance (Rrs) via a variety of algorithms, either semi-analytical or empirical, has been 

routinely made in the visible regime. Based on radiative transfer theory, semi-analytical 

algorithms relate the ratio between backscattering and absorption of constituents in the water to 

Rrs and simultaneously derive a suite of inherent optical properties (IOPs), including chlorophyll, 

absorption of colored detrital material (e.g., adg(443)), and the backscattering coefficient of 

particles (bbp) (e.g., Garver and Siegel 1997; Lee et al. 2002; Maritorena et al. 2002). Empirical 

algorithms have been used to statistically correlate ag at specific visible wavelengths (e.g., 

ag(412)), obtained either from in situ IOP profile observations or spectrophotometric 
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measurements, to various Rrs ratios (e.g., Del Castillo and Miller 2008; Mannino et al. 2008). 

Additionally, ag has been estimated by relating Rrs to an intermediate parameter (i.e., the diffuse 

attenuation coefficient, Kd), and subsequently using this to derive ag based on an empirical 

relation between Kd and ag (Fichot and Miller 2010; Johannessen et al. 2003b). The satellite 

derived estimates of adg(443) or ag(412), are in turn used to model UV absorption of CDOM by 

assuming a single spectral slope (S) coefficient in an exponentially decreasing manner over 

increasing wavelengths modeled as 

                                                                                                                       

where ag(λ) is the desired absorption coefficient (m
–1

) of CDOM at wavelength λ, λo is the 

reference wavelength (nm), S (nm
–1

) is the spectral slope coefficient for the CDOM (CDM) 

spectrum that describes the shape of the exponential curve (e.g., Bricaud et al. 1981; Twardowski 

et al. 2004).  

Most efforts have modeled ag at UV wavelengths by extrapolation from visible ag 

estimates either using a predefined S value (Stedmon et al. 2000), or based on the functional 

relationship between adg(443) and S (Swan et al. 2013). Unfortunately, field studies have shown 

that S varies significantly with source material and biogeochemical processes that alter CDOM. 

Also, there have been few studies attempting to retrieve S from remote sensing (Carder et al. 

1989; Fichot et al. 2013; Fichot et al. 2014; Vähätalo and Wetzel 2004). Recently, studies have 

proposed that S in the UV (e.g., S275-295), can be used as a tracer for photochemical modification 

of terrestrial dissolved organic carbon in river-dominated coastal margins (Fichot and Benner 

2012; Fichot et al. 2013). Other studies have also shown that the ratio between S values 

determined over different wavelength intervals (SR), may reveal additional DOM chemical 

characteristics. Helms et al. (2008) proposed SR, calculated as the ratio of S275-295 to S350-400, as a 
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proxy for DOM molecular weight (MW), with changes indicating photochemical alteration of 

MW. Although SR has been used to study the dynamics of DOM in samples taken from natural 

waters (Helms et al. 2013; Stubbins et al. 2012; Yamashita et al. 2013), synoptic assessment of 

SR has not yet been made from remote sensing.  

Since CDOM photoactive wavelengths are in the UV and blue spectral range, an accurate 

derivation of ag at all UV wavelengths from remotely sensed data will prove to be indispensible 

for large scale spatio-temporal studies of DOM dynamics in the ocean. Based on work published 

by Fichot et al. (2008c) and Cao et al. (2014), we propose a new algorithm for retrieving the 

CDOM absorption spectrum over UV and short visible wavelengths (λ = 275-450 nm) from 

ocean color. This model, referred to hereafter as SeaCDOM, is primarily designed for 

determining UV absorption by CDOM in the ocean using the data from the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) mission. As far as we know, this algorithm is the 

first model that retrieves spectrally resolved CDOM absorption in the UV from visible ocean 

color, free of prior assumptions of the exponential shape of CDOM spectrum. Unlike previous 

algorithms with a defined S, the derivation of CDOM absorption spectra from SeaCDOM allows 

direct calculation of S over any wavelength range from ocean color. The remainder of this 

manuscript is structured as follows. In section 2, we describe the training dataset, mathematical 

principles behind the algorithm, and briefly describe three other published ocean color 

algorithms for model performance comparison. In section 3, we present the results of SeaCDOM 

and performance for each of the four algorithms using our training dataset. Section 4 contains 

results for the validation process and a discussion of advantages and limitations associated with 

the algorithm, as well as a sample application of the algorithm to SeaWiFS imagery with 

derivation of ag, S, and SR.  



 

60 

2. Data and Approach 

2.1. Data acquisition and preparation for the training data set 

The training data set, including Rrs and spectrally resolved ag(λ) data, was compiled from 

two subsets; one from coastal Georgia and one with more extensive geographic coverage 

acquired from the SeaWiFS Bio-optical Archive and Storage System (SeaBASS, available from 

http://seabass.gsfc.nasa.gov/). For the coastal Georgia data set, multiple sampling expeditions 

were conducted along the southeastern US coast, spanning three estuarine systems (Altamaha, 

Doboy, and Sapelo sounds in the state of Georgia) during 2007 to 2011. A complete description 

of the hydrological characteristics for the sampling area is given in Cao et al. (2014). These sites 

are considered highly dynamic, optically deep systems. A total of 97 in situ measurements of 

Rrs(λ, 0
+
) were made at wavelengths coincident with SeaWiFS bands, centered at λ = 412, 443, 

490, 510, 555, and 670 nm using a Satlantic® OCR507. Details on radiometric data collection 

can also be found in Cao et al. (2014). Discrete water samples were taken concurrently with 

radiometric measurements at each station. Surface water for CDOM analysis was collected using 

a clean plastic container and immediately filtered into precombusted glass bottles under low 

vacuum via a 0.2 μm Whatman Polycap AS 75 nylon cartridge filter, with samples subsequently 

stored at 4°C in the dark until further analysis. Absorbance spectra of CDOM were measured on 

a Perkin-Elmer Lambda-40 spectrophotometer using a 1-cm quartz cuvette over the range of 

250-800 nm. Baseline corrections were made by subtracting an offset value from the absorbance 

spectra, according to Green and Blough (1994). The offset-corrected absorbance of CDOM was 

then converted into an absorption coefficient following Eq. (2) 

                                                                                                               

http://seabass.gsfc.nasa.gov/
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where ag(λ) (m
–1

) is the Napierian absorption coefficient of CDOM at wavelength λ, A(λ) 

(unitless) is the measured CDOM absorbance at λ, and L (m) is the path length of the 

spectrophotometric cell.  

In addition to the coastal Georgia data set, in situ radiometric data covering a wide spatial 

and temporal scale were queried from SeaBASS. These included Rrs or other apparent optical 

properties (AOPs), such as downward irradiance (Ed(λ, 0
–
)), upwelling radiance (Lu(λ, 0

–
)) just 

beneath the sea surface, along with fully resolved ag(λ) spectra with λ = 275-750 nm at 1 nm 

intervals. Only matched AOP and IOP observations identified as “coincident measurements in 

time and space” were included, according to Werdell and Bailey (2005). In light of the great 

variability in the data sources from various contributors, quality control was performed to rule 

out potentially problematic data points. In cases where Rrs was reported at non-SeaWiFS 

wavelengths, Rrs at corresponding SeaWiFS bands were estimated using a cubic spline 

interpolation method (Butler et al. 2003). For observations where radiometric results are 

described by AOPs other than remote sensing reflectance, Rrs was obtained according to the 

following equation 

                                                                                                                  

where water-leaving radiance Lw(λ) and downwelling irradiance right above the sea surface Ed(λ, 

0
+
) were calculated using the approximations  Lw(λ) = 0.54   Lu(λ, 0

–
) and Ed(λ, 0

+
) = 1.04  

Ed(λ, 0
–
), respectively (Austin 1974).  

For acceptable IOP data reported in SeaBASS, because the purpose of our algorithm was 

to retrieve ag from remote sensing, we limited the ag measurement depth to the surface layer (less 

than 5 m). In samples from the African Monsoon Multidisciplinary Analysis (AMMA) cruises, 

where the surface data was not available, the acceptable measurement depth was extended to the 
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upper 15 m, assuming that ag in the mixed layer is homogeneous (Montegut et al. 2004). CDOM 

absorption spectra were visually inspected and those that plotted as jagged or erratic curves were 

rejected from further compilation, according to the measurement protocol from International 

Ocean Colour Coordinating Group (IOCCG, available from 

http://www.ioccg.org/training/pogo_ioccg/beagle/protocols/cdom_protocols.doc). Prior to final 

compilation, baseline correction to CDOM spectra was either made by initial data contributors 

prior to submission (as obtained from comments in each data file or by visually examining the 

absorption spectra), or performed in the same manner as the coastal Georgia IOP data. The 

quality data set from SeaBASS, once queried and screened, was considered accurate, yielding 

377 observations. This SeaBASS data set was merged with the coastal Georgia data and a total 

of 474 observations were prepared as the training data set for developing the algorithm (Figure 

3.1 and Table 3.2). The training data set is largely obtained from SeaBASS and consequently 

includes an aggregation of multiple data sets obtained from various geographic locations, optical 

instruments, and sampling protocols during different field campaigns. All this introduces a 

variety of uncertainty sources. It is therefore not practical to quantify the uncertainty level in 

processing Rrs and CDOM spectral data from all these campaigns.  

2.2. Algorithm development 

The SeaCDOM algorithm was developed in three stages using statistical relationships 

between ocean color (Rrs at SeaWiFS bands) and CDOM absorption coefficients. We first 

applied principal component analysis (PCA) to collapse the multispectral visible Rrs data into 

several representative principal components (PCs). We then classified the ocean color data set, 

spanned by the first three PCs, into distinct clusters. Finally, a multiple linear regression (MLR) 

analysis was performed between measured ag at each wavelength individually to the PCs. The 
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details of this procedure are described in the following section. A complete flow chart for 

implementing the algorithm is provided in Appendix A. 

2.2.1. Stage 1: Principal component analysis of remote-sensing reflectance 

To utilize as much AOP multispectral information as possible, we applied PCA to reduce 

the dimension of the dataset to several principal components that can best recreate the original 

data (Garver et al. 1994; Johnson and Wichern 2002; Mueller 1976; Toole and Siegel 2001). 

Since PCA is built on a framework of linear algebra, prior to performing PCA on the AOP 

dataset, Rrs data at each SeaWiFS band (centered at λ = 412, 443, 490, 510, 555, and 670 nm) 

were log-transformed [Sathyendranath et al., 1994] and standardized according to the following 

equation:             

                                    λ                                                                                    

where       is the log-transformed Rrs at wavelength  for the ith observation,      and      

stand for the mean and standard deviation of the log-transformed Rrs at wavelength , 

respectively, and       is the standardized Rrs at wavelength  for the ith observation, which was 

used as the input for PCA in the following step.  

The standardized Rrs data, consisting of 474 in situ observations of Rrs at 6 visible 

SeaWiFS bands, with a dimension of         (denoted here as data matrix A), was subjected 

to PCA using the open source statistical computing software “R” (http://www.r-project.org/). It 

should be noted that PCA encapsulates the variability of Rrs, by including a range of illumination 

conditions. PC extraction first involves an eigen-decomposition of the correlation matrix ρ 

      of A as shown in Eq. (5): 
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where   is a       matrix containing loadings of linearly independent eigenvectors, with each 

column corresponding to one eigenvector of  ;   is a       diagonal matrix of eigenvalues 

associated with each eigenvector, by which the degree of variance for each eigenvector was 

explained. Superscript (–1) denotes the pseudo-inverse of a matrix. Because eigenvectors are 

orthogonal to each other, the score on each PC was calculated by projecting the original data set 

(matrix A) onto a newly formed coordinate system spanned by eigenvectors U. Thus, the matrix 

of PC scores (hereafter designated as T) was derived as the linear combination of Rrs and U in the 

form of  

                                                                                                 

where T is a         matrix containing scores on each PC for each observation.  

2.2.2. Stage 2: Classification into ocean color clusters 

Since the first three PCs account for the majority of the total variance in Rrs (as shown 

later in section 3.1.1, >99% of total variance, (North et al. 1982)), it is reasonable to perform 

cluster analysis (CA) on only the first three PCs (denoted as PC1, PC2, and PC3 in the following 

text) to classify the Rrs features into different ocean color clusters. Therefore, a fuzzy c-means 

clustering method was applied to the 3D space spanned by PC1, PC2, and PC3. The rational and 

procedure for this stage is given in Cao et al. (2014) and references therein. A detailed 

description of the clustering results is presented in section 3.1.2.  

2.2.3. Stage 3: Retrieving spectrally resolved ag(λ) from remote sensing reflectance using 

the ordinary least squares (OLS) method 

Considering that total UV light attenuation can be successfully described as Kd from 

ocean color, and that CDOM is the major absorber of UV in natural waters (Tedetti and Sempere 

2006), we chose to correlate ag in the UV domain directly to visible Rrs. Theoretically, to 
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reproduce the total variance that is contained in the original Rrs data, all six PCs should be used. 

However, since the first three PCs describe more than 99% of the variance (Figure  3.2 (b)), and 

adding the forth through the sixth PCs to the model did not significantly improve the overall 

performance (North et al. 1982), we retained the first three principal components as predictor 

variables for subsequent algorithm development. Also, because the purpose of our effort was to 

retrieve ag in the UV and short visible wavelengths, we focused on an ag spectral range of λ = 

275-450 nm.  

In each ocean color cluster, ag at a given wavelength λ, ag(λ), can be formulated to the 

three PCs in a MLR form (judged by Akaike information criterion, or AIC) as: 

                 ln(ag()i) = β0() + β1()×PC1i + β2()×PC2i + β3()×PC3i              (7) 

where i is the index number of the ith observation; β0(), β1(), β2(), and β3() are regression 

coefficients for the MLR at wavelength  (more details can be found in the auxiliary material 

section 2). For the fully resolved CDOM spectra, the MLR can be further developed in a matrix 

form as:   

                                                                                      

where   is a column vector with a dimension of       and 

                                                          with superscript T denoting 

the matrix transpose, and i and n are the index number of the ith observation and the total 

number of observations in the cluster, respectively. The matrix          

denotes the PC scores extracted from Rrs and     
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The column vector of parameters            is the solution to Eq. (8) and      

                              . Column vector            represents the residuals for each 

observation that cannot be explained by the linear combination of three PCs and      

                                  . Assuming a Gaussian distribution of the error term ( ), the 

ordinary least squares solution (Johnson and Wichern 2002) to Eq. (8) is given by 

                                                                                                                      

Thus by fitting the MLR models between ag measured at each wavelength and three PCs 

individually, the final product of the SeaCDOM algorithm returns a matrix composed of various 

column vectors     , with each column corresponding to one wavelength (λ = 275-450 nm at 1 

nm increments), for each ocean color cluster.                        

2.3. Algorithm Performance Assessment 

Three previously published ocean color algorithms were used to compare the relative 

accuracy of the SeaCDOM algorithm for retrieving ag from remote sensing. These include: (i) 

the empirical ocean color band-ratio algorithm from Mannino et al. (2008), (ii) the SeaUV 

algorithm developed with a MLR approach similar to SeaCDOM, but estimating Kd as an 

intermediate step (Fichot and Miller 2010), and (iii) the algorithm proposed by Swan et al. 

(2013). In this section, we briefly describe these three algorithms (section 2.3.1-2.3.3) and the 

statistics used for algorithm performance assessment (section 2.3.4). 

2.3.1. Empirical band-ratio based algorithm 

Widely used Rrs spectral band-ratio based algorithms for estimating ag have been 

developed in the framework of linear, or exponential relationships between ag and Rrs (e.g., Del 

Castillo and Miller 2008; Mannino et al. 2008). First, this approach correlates ag at a visible 

wavelength (typically at λ = 412) to various Rrs band ratios, and then extrapolates to the UV 
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domain either by assuming an exponential CDOM absorption spectra (Eq. (1)) with a predefined 

S value (typically 0.014 nm
–1

) (Stedmon et al. 2000 and references therein) or, alternatively, 

through a hyperbolic equation between ag(412) and ag at other wavelengths (ag(λ)), as suggested 

by Twardowski et al. (2004). Considering that band-ratio algorithms are usually developed for 

specific regions, we have not tested a specific published model, but rather have tested the 

approach by optimizing the formulation between ag(412) and Rrs band ratios to our training data 

set. A linear least squares fitting technique was employed with various Rrs band ratios 

(Rrs(412)/Rrs(555), Rrs(412)/Rrs(510), Rrs(443)/Rrs(510), Rrs(490)/Rrs(555), etc.) as predictor 

variables and with measured, in situ ag(412) as the response variable. The best linear regression 

(with r
 
> 0.90) derived for our training data set resulted in the following relationship 

                                                                            

ag values in the UV can be computed with the hyperbolic equation from Twardowski et al. 

(2004) as follows 

                                                                                                                                                                                 

This Rrs band-ratio algorithm with a hyperbolic ag(λ) model is referred to as “    
   -HM” in the 

following text. 

2.3.2. SeaUV based empirical algorithm 

The SeaUV algorithm (Fichot and Miller 2010; Fichot et al. 2008c) first retrieves Kd in 

the UV (e.g., Kd at λ = 320 nm) from visible Rrs bands using PCA and MLR and then estimates 

ag(320) using the relation 

                                                                                                     

Once ag(320) is obtained, ag at other wavelengths is calculated assuming an exponential 

function with S = 0.0194 nm
–1

. Cao et al. (2014) extended the original SeaUV model for 
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improved performance in darker, optically complex coastal waters with a composite set of 

algorithms that accurately retrieve Kd in the UV for almost all types of marine waters. We 

applied these composite algorithms, along with Eq. (12) to predict ag in the UV. This algorithm 

is hereafter referred to as “C-SeaUV”. 

2.3.3. Spectral slope based semi-analytical algorithm 

The model published by Swan et al. (2013) was also applied to our training data set for 

inter-comparison. This approach retrieves ag in the UV and near-UV visible using an exponential 

relationship between the spectral slope coefficient (S320-400) and ag(443) derived from an 

extensive field IOP data set obtained mostly in Case 1 waters. The original exponential function 

was then optimized using adg(443) as input that can be inverted from the semi-analytical Garver-

Siegel-Maritorena (GSM 01) algorithm, making it possible to estimate ag in the UV (with λ = 

325-412 nm) from ocean color. We refer to this slope extrapolation method of Swan et al. (2013) 

as “GSM-SE” in the following text. 

2.3.4. Accuracy Assessment 

To evaluate performance, CDOM absorption spectra (λ = 275-450 nm, 1 nm resolution) 

were derived from each of the four algorithms using identical measured in situ Rrs as input. These 

estimates were compared to the matching in situ ag(λ) spectra in the training data set. The mean 

absolute percent difference (mean APD) and root-mean-square-error (RMSE) were used to judge 

performance. Mean APD and RMSE are defined as follows: 
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where       
          and       

         are ag values from each algorithm and measured in situ 

at wavelength λ for the ith observation, respectively. N is the number of observations.   

2.4. Algorithm Validation and Spectral Slope Determination 

To examine a broad range of optical diversity, we applied our algorithm to 86 matched 

measurements of Rrs and ag from three independent data sets: (1) seasonal data from the northern 

Gulf of Mexico, (2) waters around the Mackenzie River outflow in the Arctic Ocean, (3) South 

Pacific subtropical gyre samples that include the ocean’s clearest oligotrophic water (Table 3.3). 

For validation and performance evaluation, the SeaCDOM algorithm was implemented on the Rrs 

spectra and spectrally resolved ag estimates were compared with the in situ measured ag.  

To demonstrate the capacity for predicting S in the UV from visible ocean color with the 

SeaCDOM model, S was determined over the spectral range of 275-295 nm (S275-295) for all 

observed and estimated ag(λ) in the training data set. ag(λ) spectra were fit to Eq. (1) using the 

“nlinfit” routine in the Statistics Toolbox for MATLAB
®
 (2011, MathWorks, Natick, 

Massachusetts). Subsequent calculations of S350-400 in section 4 below were carried out in the 

same way over the spectral range of 350-400 nm. One previously developed algorithm to 

estimate S275-295 from multispectral ocean color by Fichot et al. (2013) was used to compare 

estimation accuracy for S275-295. Since this algorithm is proposed with the Moderate-Resolution 

Imaging Spectroradiometer (MODIS) Aqua ocean color data, Rrs in our training data set was 

interpolated to corresponding MODIS Aqua wavelengths (Butler et al. 2003) to make it 

compatible with the algorithm application. To further test the MLR approach used in Fichot et 

al. (2013), as we did with the band ratio algorithm to retrieve ag, we derived multi-linear 
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regression coefficients with their model that best predict S275-295 from ocean color using our 

training data set, resulting in the following: 

ln[S275-295]=  + ×ln[Rrs(443)] + ×ln[Rrs(488)] + ×ln[Rrs(531)] +  ×ln[Rrs(555)] + 

×ln[Rrs(667)].                                                                           (15) 

where the derived fitting parameters are  = –3.0230,  = 0.3101,  = 0.0732,  = –0.4528,  = 

0.2078, and  =  –0.0309.  

3. Results 

3.1. Statistical analysis of the AOP data set 

3.1.1. Output of principal component analysis  

The eigen-analysis of   generated six eigenvectors and their corresponding eigenvalues. 

Figure 3.2 shows the first two dominant eigenvectors (Figure 3.2 (a)) and a scree plot with the 

contribution of each PC to the total variance in A (Figure 3.2 (b)). Because of the relatively small 

contribution of the third through sixth PC values to the total variance, we focus on the physical 

interpretation for the first two PCs.  

A significant portion (~62%) of the total variance is explained by PC1 (Figure 3.2 (a)), 

which varies from -0.5 to 0.4 across the spectrum, demonstrating the complexity of optically 

significant constituents across the various water types in our training data set. PC1’s spectral 

shape has a maximum at 670 nm, a feature common to sediment-laden waters, then declines 

toward shorter wavelengths. This resembles Rrs spectra we collected from the mouth of the 

Altamaha River with heavy particle loadings in our coastal GA data set (shown later in section 

3.1.2). This suggests the importance of particulate backscattering in shaping the observed PC1 

spectra. On the other hand, the PC1 score is significantly positively correlated with measured 

ag(320) (r
 
= 0.8,  p-value < 0.001), giving highest scores in CDOM-rich, inshore waters, 
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indicating that absorption is also a critical factor explaining the variability of Rrs for PC1. 

Accordingly, the optically significant constituents described by PC1 are consistent with a 

combination of absorption and backscattering.  

Compared to PC1, the second principal component (PC2) explains less variance (~21%). 

The spectral shape of PC2 decreases over the blue-green wavelengths, similar to the absorption 

spectrum of colored detrital material (Morel 1988). There is a significantly negative correlation 

between PC2 scores and measured ag(320) (r
 
= 0.5, p-value < 0.001), further supporting the point 

that CDOM may be controlling the eigenvector pattern for PC2 as well. It remains challenging, 

however, to understand the possible contribution of particle backscattering to this PC due to the 

scarcity of available bbp data.  

The relationships described by each of the PCs for Rrs and ag, corroborate the fact that 

they may not be linearly correlated to one specific optically active component, as noted by 

Mueller (1976) and Toole and Siegel (2001). The aim, however, of the SeaCDOM approach is to 

capture as much of the Rrs variability as possible in this first step of algorithm development and it 

is clear that the PCA approach succeeds in this regard, with results applicable to our ocean color 

data set. 

3.1.2. Result of cluster analysis 

The cluster analysis performed on the first three PCs resulted in nine distinct ocean color 

clusters (Figures 3.3 (a-b)). The clustering results of our training data set demonstrate different 

observed Rrs spectral characteristics over a comprehensive scale, and to some degree, are 

consistent with varying contributions of different optically active constituents across various 

water types. 
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Most of the Rrs spectra in cluster 1 (N = 27, Figure 3.3 (c)) were collected from the Gulf 

of Mexico along the western Florida shelf (northwest big bend region and southwest shelf). 

Compared to the other 8 clusters, the general spectral shape for this cluster is characterized by 

high broad reflectance in visible wavelengths. A similar spectral shape has been attributed to the 

presence of mineral particles (Lubac and Loisel 2007).  

Cluster 2, 3, 4, 5, and 6 (N = 61, 68, 84, 46, and 39, respectively, Figures 3.3 (d-h)) cover 

most of the optically complex, nearshore waters sampled from areas like the Tampa Bay, coastal 

Georgia and the Chesapeake Bay. The mean Rrs spectra from these five clusters are similar in 

shape but different in magnitude. The overall trend for the five mean Rrs spectra can be described 

as low reflectance with limited variability at 412 nm, likely due to high CDOM and detrital 

particle absorption, with a gradual increase to higher wavelengths as scattering (backscattering) 

of particles and phytoplankton becomes dominant in the green (555 nm) (Gould and Arnone 

1997; Lubac and Loisel 2007). Cluster 5 (Figure 3.3 (g)) contains samples with the highest 

CDOM absorbance (mean ag(320) ~ 13 m
–1

) among the five clusters. Note that although clusters 

2, 3, and 4 (Figures 3.3 (d-f)) have similar ag values (mean ag(320) ~ 5.4, 5.8, and 6.8 m
–1

, 

respectively), Rrs spectra were discriminated into three distinct clusters, indicating that the 

relative contribution of other water constitutes driving observed Rrs were not correlated and 

varied independently among these water types.  

Clusters 7 and 8 (N = 31 and 66, respectively, Figures 3.3 (i-j)) include samples that are 

typically classified as Case 1 waters, containing most samples from CLIVAR and offshore areas 

(i.e., CCE-LTER data set from the California coast). In contrast to clusters 2-6, these two clusters 

have relatively high Rrs(412) values that decrease as wavelength increases, consistent with Rrs 

spectra reported for typical Case 1 waters (Werdell and Bailey 2005 and references therein). 
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Cluster 9 (N = 52, Figure 3.3 (k)) shows a fairly uniform mean Rrs spectra in the 

blue/green wavelengths but substantial variability within the cluster. Interestingly, most of the 

waters in this group were high latitude waters from the Beaufort/Chukchi Sea and the Southern 

Ocean near the Antarctic Peninsula. While a large solar zenith angle exists in polar regimes, a 

more significant influence could result from the peculiar IOPs assemblage at high latitudes, 

including elevated levels of CDOM at coastal margins from river discharge (Bélanger et al. 

2008), densely packaged phytoplankton pigments in response to reduced solar radiation (Arrigo 

et al. 2011; Matsuoka et al. 2011; Matsuoka et al. 2007; Mitchell and Holmhansen 1991), and 

high particulate backscattering background (Reynolds et al. 2001). This may at least partially 

explain these waters being classified as a unique cluster (Szeto et al. 2011).  

3.2. Performance of SeaCDOM algorithm on the training data set 

The retrieval performances from different algorithms at short UV and visible 

wavelengths are given in Figure 3.4. Statistics for GSM-SE and C-SeaUV are comparable, with a 

mean APD of ~38% and a RMSE of ~0.5 for ag(350) for example. These are slightly better than 

the     
   -HM algorithm with its mean APD exceeding 50%. SeaCDOM, however, provides 

improved accuracy for ag estimates with a mean APD of ~25% and a RMSE of ~0.3 for ag(350). 

Discussion of factors that may contribute to this result is provided in section 4.1. 

By correlating three PCs to measured ag at every wavelength independently, SeaCDOM 

can reconstruct each CDOM absorption spectrum (λ = 275-450 nm; 1 nm resolution) for our 

entire training data set. As shown in Figure 3.5, modeled ag from the SeaCDOM algorithm is in 

excellent agreement with measured ag. Figure 3.5 further highlights the improved performance of 

the SeaCDOM algorithm over the short UV spectral region. In the UVB (280-320 nm),     
   -HM 

and C-SeaUV yield large errors relative to measured ag. Figure 3.6 presents the spectrally 
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resolved mean APD and RMSE associated with all four algorithms tested. A significant 

improvement in retrieving ag(λ) (λ = 275-450 nm) is achieved with the SeaCDOM algorithm 

over our modeled wavelength range (e.g., for ag(350), mean APD is ~25% for SeaCDOM 

compared to ~38% for GSM-SE). Also note that SeaCDOM demonstrates a consistent retrieval 

performance over the entire spectral range (Figure 3.6), particularly in the UV domain. Errors 

produced by other algorithms tested generally increase towards short UV wavelengths (e.g., at 

ag(275), SeaCDOM achieves a mean APD of ~24%, compared to ~56% and ~45%, respectively 

for     
   -HM and C-SeaUV). Note that the GSM-SE model was optimized over the 325-412 nm 

range and thus we did not test its performance for λ < 325 nm. SeaCDOM actually performs 

slightly better in the UV relative to the short visible wavelengths beyond 400 nm (e.g., mean 

APD ~24% at ag(275) and ~32% at ag(440); Figure 3.6). This trend may result from the stronger 

light absorption of CDOM in lower UV wavelengths, thus allowing better measurement accuracy 

and less variability in our training data set.  

3.3. Performance of the SeaCDOM algorithm on validation data sets  

Validation results confirm robust performance of the SeaCDOM algorithm, with errors 

comparable to those for the training data set. For example, ag(350) in the validation test has a 

mean APD and RMSE of ~28% and ~0.3 respectively, compared with a mean APD of ~25% and 

RMSE of ~0.3 for the training data set (Figure 3.7). These results indicate that SeaCDOM should 

provide generally good results when estimating ag at UV wavelengths in marine waters not 

directly included in our training data set.  

3.4. Deriving CDOM spectral slope from ocean color 

The SeaCDOM algorithm also allows estimates of S using the fully-resolved ag spectra 

derived from ocean color. It is encouraging to observe the excellent agreement for S275-295 
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calculated using measured and estimated ag spectra (with r = 0.94, slope = 0.88, and intercept = 

0.003; Figure 3.8 (a)), and the retrieval accuracy was significantly improved compared to the 

algorithm/approach proposed by Fichot et al. (2013) (with r = 0.85 and  slope = 0.58 from the 

algorithm in Fichot et al. (2013), and r = 0.87, slope = 0.65 using the approach developed by 

Fichot et al. (2013) but tuned for our training data set, respectively, Figure 3.8 (b)) (t-tests, p < 

0.05, N = 474). This further highlights the potential of our algorithm to remotely calculate S over 

any desired wavelength range, which may provide new applications in tracing CDOM dynamics 

and provide insights into CDOM-related biogeochemical cycles (Helms et al. 2013; Helms et al. 

2008).   

4. Discussion 

4.1. Merits and Limitations of SeaCDOM algorithm 

Throughout the course of algorithm development, and with the validation process, the 

SeaCDOM algorithm displayed promising advantages over other models tested. There are, of 

course, limitations associated with its merits, both of which must be considered when applying it 

to ocean color data. First, the SeaCDOM algorithm is trained with a wide variety of water types 

using statistical approaches (PCA, CA, and MLR) that likely account for improved performance 

in ag retrieval when compared to existing models tested. Rather than relying on Rrs at two 

wavebands like conventional band-ratio ocean color algorithms (e.g.,     
   -HM), PCA retains Rrs 

features from all six visible SeaWiFS wavebands. Using this multispectral information, together 

with a further classification of reflectance spectra according to its spectral shape and magnitude, 

enables a more complete capture of Rrs variability in our training data set. In the C-SeaUV 

algorithm, ag(320) is retrieved using its relation to Kd. Uncertainties associated with Kd estimates 

are propagated directly into the estimation of ag(320) and into ag at other wavelengths through 
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extrapolation. In the SeaCDOM algorithm, however, direct parameterization of ag(λ) with Rrs by 

MLR eliminates error introduced by intermediate steps, allowing a more accurate and 

straightforward estimation of ag at all wavelengths. Based on this alone, it is understandable that 

SeaCDOM gave improved retrieval accuracy for estimates of ag(λ).  

It should be pointed out, however, that algorithms of this type have limitations. The OLS 

coefficients derived for MLR are purely empirical, and as such, do not necessarily represent a 

unique solution to the relation between ag and Rrs. This is because the variability of Rrs is driven 

by various IOPs and not simply ag. Our algorithm performed very well in Case 1 waters, as 

clearly shown in the training and validation steps. Good retrieval accuracy was also made in 

Case 2 waters where the model was initially trained. Applying the SeaCDOM algorithm in 

marine waters with optical characteristics included in our training data set should yield accurate 

ag(λ) estimates. However, readers should be aware that for instance, in coastal zones, waters with 

identical remote sensing reflectance profile could have different ag absorbance (Defoin‐Platel 

and Chami 2007). Consequently, as is the case for all empirical models, application of 

SeaCDOM in water types not captured in the training data set should proceed with some caution.  

Additional validation with data from the Gulf of Maine (Figure 3.7) demonstrates these 

potential limitations. Although ag(300) in this test fell within the range for which the algorithm 

was developed (ag(300) from 1.5 to 31.4 m
–1

), SeaCDOM performed poorly (mean APD ~ 

140%). The Rrs spectra collected for this test were from far up the rivers and tributaries of the 

Gulf of Maine watershed in as little as 1.5 m of water and characterized by high values in the red 

and near-infrared portion of the spectrum, reflectance usually associated with sediment-rich 

waters (S. Hooker, personal communication, 2013). Failure to predict ag in this region is likely 

attributed to (1) the Rrs spectral shape not being captured in our initial training data with Rrs 
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magnitudes that were systematically lower than those for the same classifications in the training 

data set (see supporting information Figure S 3.1 (a) in Appendix D) and a resulting 

misclassification of these Rrs spectrum into clusters 4 and 5, thereby resulting in poor estimates; 

and (2) strong contributions from other optically active constitutes such as suspended particles, 

phytoplankton pigments that do not conform to the linear relationships between AOPs and ag in 

the MLR derived from our training data set. While SeaCDOM attempts to capture as much 

variability as possible from the different optical constitutes as they relate to AOPs by 

classification, it is understandable that confidence will decrease in cases with a strong difference 

in optical composition from those used in any empirical algorithm. In such cases, other optical 

models may fare better or regional algorithms with specific parameters must be derived to 

correctly estimate ag. 

Since the variability of ocean color largely reflects changes of IOPs that are subject to 

physical and biogeochemical processes in the ocean, predictions of ag may not be satisfactory 

during extreme mixing events such as upwelling or strong vertical diffusion. For instance, the 

mean APD for SeaCDOM is ~26% at 300 nm when applied to the BIOSOPE data set alone (N = 

24). This initially appears disappointing for Case 1 water (e.g., mean APD of cluster 8 in our 

training data set is ~15%) but on closer examination, the increased errors are seen to arise mainly 

from only four data points with elevated ag collected within the Peru-Chile upwelling area. More 

specifically, although the Rrs of these four samples lined up with Rrs in our training data set 

representative of open ocean waters (supporting information Figure S3.1 (b) in Appendix D), and 

were successfully classified into the proper theoretical clusters (clusters 8 and 9), ag estimates 

from the SeaCDOM algorithm were not predicted well (mean APD = 43% for these four 

samples). This may be, in part, ascribed to the distinct intrinsic particulate assemblages and 
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particles levels associated with this upwelling zone relative to those in the central part of the 

South Pacific Gyre (Stramski et al. 2008). Absorption by particles in these four sample points 

close to the Peruvian coast was considerably higher than offshore samples (see supporting 

information Figure S 3.1 (c) in Appendix D and Bricaud et al. (2010, Figure 9)). This, together 

with the effect of particle backscattering, could potentially result in a similar Rrs spectrum that 

did not have the same Rrs to ag relationship as found in our initial  model parameterization, thus 

explaining the large uncertainties in ag estimates and under-performance of our algorithm on 

these four outlier locations. If these four points are excluded from the validation, the mean APD 

is reduced to ~19% and becomes comparable to that of Case 1 water in the training data set. 

Elevated ag values for these four samples were observed by Bricaud et al. (2010), along with 

reduced S values within a prominent salinity gradient, suggesting a complexity in these 

upwelling areas that may not be completely captured by our algorithm. Such situations call for 

the SeaCDOM algorithm to be applied in conjunction with hydrographic information of different 

water masses encountered in the target area. 

Another factor that could affect the performance of the SeaCDOM algorithm when 

applied to satellite data involves known atmospheric correction issues. Current methods can 

overcorrect aerosol effects in the blue portion of the Rrs spectrum, in particular for coastal zones, 

resulting in large errors in satellite observations (e.g., Rrs(412)) (Siegel et al. 2000).  These 

uncertainties in Rrs(412) can subsequently translate onto uncertain ag estimates (Fichot et al. 

2014).  SeaCDOM was developed using in situ Rrs(412) as part of its spectral algorithm, and 

consequently uses satellite estimates of Rrs(412) in its retrieval of ag from remotely sensed ocean 

color.  Therefore, retrieval of ag, particularly in coastal waters, will potentially include added 
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uncertainties stemming from atmospheric correction issues and should be carefully considered 

when assessing satellite-based results. 

A second issue for remote predictions of ag is that with the     
   -HM, C-SeaUV, and 

GSM-SE algorithms, implicit assumptions are made in modeling spectrally resolved ag. These 

algorithms generally assume that ag is distributed exponentially over UV wavelengths, whereas 

in fact, this is not always the case (Nelson and Siegel 2013) and CDOM absorption spectral 

shapes vary with geo-locations. In coastal waters that experience terrestrial runoff, CDOM 

spectra can be best described with an exponential function. However, a strong deviation from the 

exponential spectral assumption can occur in open ocean waters such as the North Atlantic 

subtropical gyre, especially in the UV wavelengths. Nelson and Siegel (2002b) noted that at 

wavelengths < 320 nm, ag has features that can no longer be modeled exponentially, with 

potentially large errors resulting from this faulty assumption. Accordingly, the GSE-SE model 

prudently does not attempt to predict values for ag at wavelengths < 325 nm using an exponential 

description of S. Unlike existing models, the SeaCDOM algorithm is independent of any 

underlying assumptions about spectral shape, resulting in improved prediction of ag over a broad 

geographic range and through the UVB. To our knowledge, the SeaCDOM algorithm is the only 

approach to date that models the CDOM UV absorption spectra from visible remote sensed 

ocean color data free of assumptions about its spectral shape. 

Third, while current semi-analytical algorithms predict adg remotely, it remains 

challenging to further separate adg into ag and aNAP, since ag and adg are similar in spectral shape 

(Siegel et al. 2002). Nelson et al. (1998) noted that in Case 1 waters, where CDOM and NAP co-

vary with chlorophyll, the contribution of NAP to the total absorption is ~9% at 443 nm and 

therefore negligible. This approximation is quite reasonable for chlorophyll estimates since 
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CDOM and NAP are both considered by-products of phytoplankton and there is no need to 

further discriminate between the two. With respect to photochemistry, however, CDOM likely 

dominates UV driven photoreactions in the ocean and photochemical efficiency is almost always 

defined as a function of the rate of CDOM photon absorbance. Therefore, ag, rather than adg, is 

ultimately needed for accurate modeling of photochemical processes (Bélanger et al. 2008; 

Fichot and Miller 2010). Using the direct link between ag in the UV and Rrs, the SeaCDOM 

algorithm makes ag retrievable from ocean color and facilitates further evaluation of 

photochemical reactions in the surface ocean.  

Finally, direct prediction of S and SR can be achieved from ocean color using the 

SeaCDOM algorithm. As stated previously, most if not all published remote sensing algorithms 

generally extrapolate using an unvaried S to calculate ag in the UV but the validity of this 

approach has long been challenged along two lines of reasoning: (1) If S reflects the composition 

of CDOM, then it should be variable with different water types and can be altered by physical 

mixing and biogeochemical processes, and (2) if S describes the rate at which absorption 

decreases over wavelengths, then it will largely depend on the spectral range selected and the 

curve fitting techniques applied (Blough and Del Vecchio 2002b; Twardowski et al. 2004). As 

expected, measured S values reported in the literature are highly variable. Nevertheless, to 

facilitate ag estimation in the UV via an extrapolation method, existing algorithms reconcile this 

discrepancy by simplifying S into one “average” value which varies slightly among different 

algorithms (e.g., S = 0.0194 nm
–1

 in C-SeaUV, while S = 0.0206 nm
–1

 in GSM01). While this 

approach may capture the average CDOM spectra, it imparts error in the estimate and has no 

capacity to examine the variations in S that are known to exist. Moreover, most of the published 

S values do not involve the UV domain, either because the authors’ concern was in the visible or 
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due to instrument limitations (Reader and Miller 2011b and references therein). Large errors 

could arise from extrapolation into the UVB, as supported by the fact that S values obtained from 

different UV ranges on the same sample can be very different (Twardowski et al. 2004 and 

references therein). As discussed earlier in section 3.4, by reconstructing CDOM absorption 

spectra at individual wavelengths directly from ocean color, SeaCDOM allows calculation of S 

and SR remotely. 

4.2. Application to Satellite Imagery 

To demonstrate the capability for SeaCDOM to predict ag in the UV, and to allow the 

direct calculation of S (S275-295, S350-400) and SR (S275-295 : S350-400) on a synoptic scale, we applied 

the algorithm to SeaWiFS imagery centered over the Equatorial and North Atlantic Ocean 

(90°W-10°E, 15°S-45°N). The scene was chosen to provide a wide range of oceanographic and 

optical scenarios for examination of SeaCDOM’s performance. Ten-year monthly climatology 

data (Level-3, binned 9 9 km
2
 spatial resolution) from 2001 to 2010 for Rrs in February and 

August was acquired from the NASA ocean color website (http://oceancolor.gsfc.nasa.gov). This 

application, based on climatological data, is obviously not meant to assess the absolute accuracy 

for predicting specific in situ observations for CDOM and/or S, but rather to show the ability of 

the SeaCDOM algorithm to address CDOM-related distributions and processes in the ocean from 

satellite imagery. 

Overall, the climatology of ag(320) captures its main features in the ocean over the 

seasons. Figures 3.9 (a) and (b) show the expected increased ag(320) values in coastal waters 

subjected to terrestrial impact. For example, ag(320) values at the Amazon River mouth are 

elevated due to input of terrestrially derived CDOM with strong UV absorption, relative to its 

adjacent western tropical Atlantic Ocean water. Higher ag(320) values can also be found in areas 

http://oceancolor.gsfc.nasa.gov/
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that experience upwelling, possibly representing CDOM-rich deeper waters brought to the 

surface (e.g., seasonal upwelling peaking during winter and early spring off Cape Blanc). On the 

other hand, reduced ag(320) values are observed in regions prone to downwelling such as that 

found in the North Atlantic subtropical gyre. Superimposed on this spatial mapping of ag(320), 

temporal variations of CDOM can also be seen with the ocean color climatology. For instance, 

the Amazon River plume is clearly seen flowing northward during wintertime (February, Figure 

3.9 (a)), as compared to an eastward flow toward Africa, retroflexed by the North Equatorial 

Counter Current in the summer (August, Figure 3.9 (b)) (Coles et al. 2013 and references 

therein). Reduced ag(320), possibly indicating CDOM photobleaching from enhanced solar 

radiation during boreal summer (Swan et al. 2009b), is also observed in the North Atlantic 

subtropical gyre and in Mediterranean waters (Figure 3.9 (b)), as compared to relatively higher 

values in the winter (Figure 3.9 (a)) at the same locations. Further, higher winter CDOM levels 

in the Sargasso Sea are consistent with strong convective mixing and weaker surface irradiance 

(Figure 3.9 (a)), similar to field observation made by Nelson et al. (1998). These same 

oceanographically consistent ag observations are likely seen with all of the CDOM models tested, 

but based on error analysis from validations and our training data set, any quantitative 

comparison of the ag variability using the SeaCDOM algorithms should be more highly 

constrained than previous estimates. 

The climatology of S275-295 derived by SeaCDOM from ocean color shows patterns that 

are largely correlated to ag(320) (Figures 3.9 (c) and (d)), an expected result given that higher 

and lower ag are usually accompanied by smaller and larger S values respectively (Nelson and 

Siegel 2002b). For example, the elevated ag(320) is observed in the Amazon River plume due to 

large amounts of terrestrially derived CDOM input are mapped as reduced S275-295 values. 
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Conversely, low ag(320) in the North Atlantic subtropical gyre are coincident with elevated S275-

295. Seasonal variability of S275-295 also mirrors ag, capturing the variability of the Amazon River 

plume (Figures 3.9 (c) and (d)) and S275-295 variations consistent with CDOM photobleaching 

offshore. S275-295 is reported to be more sensitive to photo-alteration processes than ag alone, and 

can be used as a tracer for photochemical history of CDOM in both coastal waters (Fichot and 

Benner 2012) and the open ocean (Yamashita et al. 2013). Increased S275-295 values associated 

with CDOM photobleaching are thought to reflect shifts from high to low MW within the 

CDOM pool (Helms et al. 2013; Helms et al. 2008). S275-295 may also contain information on 

source material and the molecular composition of CDOM, however, investigations of 

photochemical processes on S275-295 from ocean color are rare (Fichot et al. 2013). With its 

unique ability to estimate S275-295 directly from Rrs, the SeaCDOM algorithms provide a new and 

promising remote sensing tool for tracing oceanic changes in S, potentially providing MW 

information for the surface DOC pool during the course of exposure to sunlight.  

Unlike the climatology of ag(320) and S275-295, the map of S350-400 does not reflect 

recognizable oceanic patterns. This is not surprising since Fichot and Benner (2012) and Helms 

et al. (2008) both found that S350-400 is less sensitive than S275-295 to photochemically influenced 

changes and lacks a correlation to either salinity or photochemical history, findings consistent 

with SeaCDOM results. Figure 3.9 (e) does not show as clear a signature for S350-400 in the 

Amazon River outflow where increased ag and reduced S275-295 have been observed. Yamashita et 

al. (2013) found a similar result with no noticeable difference of S350-400 between subtropical and 

subarctic Pacific waters, thus inferring that S350-400 in the open ocean is likely governed by factors 

other than photobleaching. 
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Finally, we generated a map of slope ratio, SR, (Figures 3.9 (g-h)) and this distribution 

generally matches those of ag(320) and S275-295. In the subtropical North Atlantic, elevated SR is 

observed coincidentally with increased S275-295, a result consistent with CDOM photobleaching. 

At present, the chemical interpretation of SR is debated, with some studies showing changes of SR 

for terrestrial and coastal DOM during photo-exposure (Helms et al. 2008) while others claim 

this index does not change with CDOM photochemical bleaching (Yamashita et al. 2013). Helms 

et al. (2008) suggested that variability of SR along an estuarine gradient results from the 

combined effect of photochemical and microbial alternations, with increased SR associated with 

photochemistry and reduced SR resulted from microbial activity. An argument for the 

photochemical impact on SR can be made by comparing Figures 3.9 (c-d) and (g-h) in the 

Mediterranean Sea. Both elevated SR and S275-295 are observed in summertime compared with 

relatively low values for both in the winter. Using climatologies, however, to examine the 

balance between photochemical and microbial influences on SR will not resolve the issue and 

further field measurements are needed to clarify the possible links between these processes and 

the optical characteristics of CDOM. SeaCDOM, with its unique ability to examine these CDOM 

UV optical relationships directly over large spatial and temporal scales, should provide new 

capacity to extrapolate field results to quantitative models. 

5. Summary and Conclusions 

Developed using an extensive training data set covering various water types with 

contemporaneous collection of in situ Rrs at SeaWiFS bands, centered at  = 412, 443, 490, 510, 

555, and 670 nm, with ag(275-450 nm) in the surface ocean, a new algorithm has been developed 

to estimate CDOM absorption spectra in the UV from ocean color remote sensing in the global 

ocean. It provides improved retrieval accuracy compared to existing algorithms, having an 
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overall mean APD of ~25% for ag(350). The inherent benefits offered by the statistical 

approaches used in our algorithm development allow a spectrally resolved CDOM absorption 

spectrum to be reconstructed from remotely sensed visible reflectance, free of any presupposition 

about the spectral shape for CDOM absorption (i.e., there is no assumed exponential shape or 

slope coefficient). Furthermore, the ability to recreate a fully resolved CDOM absorption 

spectrum in this way allows the calculation of spectral slope (S) over any wavelength range and 

the “slope ratio” (SR), potential proxies for MW and CDOM source material. Therefore, the 

methodologies developed in this manuscript provide the oceanographic community an exciting 

new tool to investigate the dynamics of CDOM in response to changing physical and 

biogeochemical processes, potentially tracking the origin, transformation, and 

chemical/molecular evolution of CDOM in the context of global ocean carbon cycles. 

As an empirical model, there are certain limitations to the algorithm that may result in 

sub-par performance in its ag retrieval for optical cases or study areas outside the training data 

set. This could result from possible bias or invalidity of the linear regression relationship 

between CDOM and reflectance. Nevertheless, this approach provides a novel means to 

accurately retrieve CDOM absorption in the UV from ocean color in a very broad spectrum of 

oceanic waters. Given its empirical nature, the algorithm can be updated and expanded with 

additional data sets containing additional bio-optical diversity, filling gaps in areas not currently 

included. By leveraging the approach in this study, regional tuning of the model for specific 

areas, especially in optically complex waters heavily impacted by terrestrial runoff, could help 

overcome existing deficiencies in the algorithm and rectify prediction errors (e.g., our Gulf of 

Maine validation). 



 

86 

Even though the SeaCDOM algorithm is initially developed using SeaWiFS wavelengths, 

data that does not extend beyond 2011, the methodological details offered by this study can 

easily be applied to current and forthcoming satellite missions, such as the MODIS, the Medium 

Resolution Imaging Spectrometer (MERIS), the Ocean and Land Colour Instrument (OLCI), the 

Pre-Aerosol, Clouds, and ocean Ecosystem (PACE), and the GEOstationary Coastal and Air 

Pollution Events (GEO-CAPE) missions, etc, being developed to remotely address 

biogeochemical issues in the ocean. 

While the development of our SeaCDOM algorithm was originally motivated by a need 

for accurate UV estimates for calculating marine photochemical processes related to organic 

carbon cycling, the algorithm should find applications in other photo-related oceanographic 

fields. For instance, accurate understanding of UV light attenuation due to CDOM in the aquatic 

ecosystem can be beneficial to evaluation of the effect of UVB-induced photoinhibition and 

DNA damage on marine biota (Lindell et al. 1995 and references therein). In addition, organic 

breakdown products from DOM photolysis represent a transfer of carbon into the microbial loop, 

stimulating heterotrophic bacterial respiration. Consequently, quantifying CDOM absorptivity in 

the DOM pool will help clarify interactions between photochemical and microbial processes and 

resolve the complexity of DOM liability in the marine systems (Miller and Moran 1997; Reader 

and Miller 2014).  
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Table 3.1: List of Abbreviations and Acronyms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol Description  Unit 

ag absorption coefficient of chromophoric dissolved organic matter (m
–1

) 

adg absorption coefficient of non-algal particles and chromophoric dissolved organic 

matter 

(m
–1

) 

aNAP absorption coefficient of non-algal particles (m
–1

) 

A absorbance (optical density) of CDOM   

AOPs apparent optical properties  

bbp backscattering coefficient of particles (m
–1

) 

CDM colored detrital material (non-algal particles + chromophoric dissolved organic 

matter) 

 

CDOM chromophoric dissolved organic matter  

Ed(λ, 0
–
) downwelling irradiance just beneath the sea surface μW/cm

2
/nm 

Ed(λ, 0
+
) downwelling (incident) irradiance just above the sea surface μW/cm

2
/nm 

IOPs inherent optical properties  

Kd diffuse attenuation coefficient (m
–1

) 

Lu(λ, 0
–
) upwelling radiance just beneath the sea surface μW/cm

2
/nm/sr

-1
 

Lw(λ)  water-leaving radiance μW/cm
2
/nm/sr

-1
 

NAP non-algal particles  

Rrs remote sensing reflectance (sr
–1

) 

Sλ1- λ2 exponential slope parameter for CDOM absorption over the spectral range of λ1- λ2 (nm
–1

) 
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Table 3.2: Training Data Sets used to develop the SeaCDOM algorithm
a
. 

Index Experiments Locations No. of 
Sampl

es 

Date ag(300) (m–1) 
[min, max] 

References or PIs 

1 AMMA Equatorial Atlantic near 23° W 4 Jun-July, 2006 [0.18, 0.26] N. Nelson & D. Siegel 

2 AMLR Southern Drake Passage near Antarctic Peninsula 45 2004; 2006-2008 [0.22, 0.97] G. Mitchell 

3 Big_Bend Big bend region in Florida 82 2011 [16.7, 0.9] C. Hu 

4 CCE-LTER Upwelling regime off California 20 Apr, 2007; Oct, 

2008 

[0.37, 1.07] G. Mitchell 

5 

 

 

CLIVAR - A20 

                  A22 

                  

I8SI9N 

                  P16S 

                  P18 

North Atlantic Ocean along 52 °W 

North Atlantic Ocean along 66 °W 

Indian Ocean and Southern Ocean 

Meridional South Pacific along 150 °W 

Eastern Pacific and Southern Ocean 

4 Oct, 2003 [0.11, 0.83] N. Nelson & D. Siegel 

[Nelson et al., 2010] 

 

 

 

6 Oct-Nov, 2003 [0.12, 0.77] 

28 Feb-Apr, 2007 [0.09, 0.21] 

3 Jan, 2005 [0.07, 0.15] 

36 2007-2008 [0.08, 0.36] 

6 coastal_GA Estuaries along Georgia coast 97 2007-2011 [0.73, 30.4] W. Miller 

7 GEOCAPE -

CBODAQ 

Chesapeake Bay 45 July, 2011 [4.9, 7.0] A. Mannino & C. Hu 

8 ICESCAPE Beaufort and Chukchi Sea 20 Jun-July, 2010 [0.56, 11.9] S. Hooker & G. Mitchell 

9 SWFL Southwest Florida shelf 17 2010; 2011 [0.9, 18.3] C. Hu 

10 Tampa_Bay Tampa Bay in Florida 68 2010-2012 [4.8, 38.2] C. Hu 
 

a 
Abbreviations for Experiments: AMMA = African Monsoon Multidisciplinary Analyses; 

AMLR = Antarctic Marine Living Resources; Big Bend = cruises in the big bend region in 

Northwest Florida, US; CCE-LTER = California Current Ecosystem LTER; CLIVAR = Climate 

Variability and Predictability; ICESCAPE = Impacts of Climate on the Eco-Systems 

and Chemistry of the Arctic Pacific Environment; coastal_GA = cruises along the coast of 

Georgia, US; Tampa_Bay = experiments conducted in Tampa Bay, FL, US; SWFL = Southwest 

Florida shelf, FL, US; GEOCAPE-CBODAQ = GEOstationary Coastal and Air Pollution Events 

- Chesapeake Bay Oceanographic Campaign with Discover AQ;  
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Table 3.3: Data Sets used in validation of the SeaCDOM algorithm
b
. 

 

Index Experiments Locations No. of 

Samples 

Date ag(300) (m–1) 

[min, max] 

References or PIs 

1 GulfCarbon Northern Gulf of 

Mexico (NGoM) 

42 Jan 2009-Mar 2010 [0.22, 4.1] [Fichot and 

Benner, 2011, 

2012] 

2 MALINA Arctic Ocean 20 Aug 2009 [0.51, 13] S. Hooker 

3 BIOSOPE Southeast Pacific  24 Oct-Dec, 2004 [0.06, 0.27] [Bricaud et al., 

2010] 
 

b 
Abbreviations for Experiments: GulfCarbon = cruises conducted during the GuflCarbon 

project, northern Gulf of Mexico; MALINA = the R/V CCGS Amundsen expedition to the 

southern Beaufort Sea and shelf adjacent to the Mackenzie River outlet (available from 

http://malina.obs-vlfr.fr/index.html); BIOSOPE = BIogeochemistry and Optics South Pacific 

Experiment (available from http://www.obs-vlfr.fr/proof/vt/op/ec/biosope/bio.htm).  
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Figure 3.1: Sampling locations of in situ Rrs and CDOM absorption spectra in the training data 

set (N = 474). Colors on the location represent the assignments of sample points into distinct 

ocean color clusters as indicated with the color bar on the right.  
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Figure 3.2: Results of (a) the first two eigenvectors of the correlation matrix   derived from 

multispectral Rrs; (b) contribution of each eigenvector to the total variance in A. 
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Figure 3.3: (a) Nine clusters of Rrs spectra derived from fuzzy c-means cluster analysis, black 

circles denote cluster centers; (b) Mean Rrs spectra in each cluster; (c)-(k) Respective Rrs spectra 

classified in each ocean color cluster. 
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Figure 3.4: Comparison of measured in situ ag(λ) with estimated ag(λ) derived from the four 

algorithms at λ = 280, 350, and 412 nm. Note that the GSM-SE algorithm was developed for 

wavelengths beyond 325 nm and thus we did not test its performance for λ = 280 nm.  
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Figure 3.5: Comparison of the mean fully-resolved CDOM absorption spectra derived from the 

four algorithms in the range of 275-450 nm for each cluster. 
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Figure 3.6: Statistical results of (a) mean APD and (b) RMSE for the retrieval of ag(λ) from the 

four algorithms in the range of 275-450 nm. Note that anomalies at 404 and 430 nm are not a 

function of algorithms but rather result from original spectrophotometer spectra contained in the 

database used for training.  
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Figure 3.7: Performance evaluation of the SeaCDOM algorithm in estimating ag at λ = 300, 350, 

and 412 nm for the three independent validation data sets in Table 3, with mean APD and RMSE 

(N = 86) were reported in black. Color-coded symbols mark the assignments of samples to each 

of the nine clusters and are the same as in Figure 3.4. The grey asterisks denote the poor 

performance in retrieving ag for waters in the Gulf of Maine (N = 25), and discussions were 

included in section 4.1. 
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Figure 3.8: Scatter plots of the calculated S275-295 of measured ag verses calculated S275-295 derived 

from (a) the SeaCDOM algorithm; symbols and legends are the same as in Figure 4; (b) the 

algorithm (lightgreen) published in Fichot et al. (2013) (with fitting parameters as:  = –3.4567, 

 = 0.4299,  = 0.0924,  = –1.2649,  = 0.8885, and  =  –0.1025 in Eq. (15)) and the approach 

(red) proposed in Fichot et al. (2013) (with fitting parameters tuned for our training data set 

resulted as:  = –3.0230,  = 0.3101,  = 0.0732,  = –0.4528,  = 0.2078, and  =  –0.0309 in 

Eq. (15)). Solid gray line represents the 1:1 correlation. 
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Figure 3.9: Ten-year (2001-2010) monthly climatologies derived from SeaCDOM application to 

SeaWiFS data. ag(320) in (a) February and (b) August; S275-295 for (c) February and (d) August; 

S350-400 for (e) February and (f) August; SR for (g) February and (h) August. 
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CHAPTER 4 

BLENDING TWO OCEAN COLOR ALGORITHMS TO EVALUATE ULTRAVIOLET (UV) 

OPTICS AND PHOTOCHEMISTRY USING THE HYPERSPECTRAL IMAGER FOR THE 

COASTAL OCEAN (HICO)
4
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 Cao, F., and W. L. Miller. To be submitted to Remote Sensing of Environment. 
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Abstract 

Knowledge of light partition into different optically active constituents particularly 

chromophoric dissolved organic matter (CDOM) in the ultraviolet (UV) is indispensible for 

understanding UV dependent biogeochemical issues including photochemical processes in 

optically complex waters. Herein a new approach is presented to investigate photochemistry by 

blending two ocean color algorithms, namely the composite SeaUV [Cao et al., 2014] and the 

SeaCDOM [Cao and Miller, 2014] algorithms, to visible remote sensing reflectance measured 

using the Hyperspectral Imager for the Coastal Ocean (HICO). As exemplified with 

photoproduced carbon monoxide (CO) from CDOM photodegradation, we model CO 

photoproduction at specific depth as well as integrating over the water column and elucidate the 

mechanism regulating the depth-integrated photoproduction rates in the UV in a dynamic coastal 

environment. Decoupled retrieval of bio-optical properties such as the diffuse attenuation 

coefficient (Kd) and CDOM absorption coefficient (ag) in the UV from ocean color observations 

allows a synoptically dynamic view of CDOM contribution to total light attenuation (ag/Kd) and 

will have potential to probe UV processes on regional as well as global scales using remote 

sensing of ocean color.  

1. Introduction  

Estuarine and coastal waters function as critical interfaces between terrestrial and marine 

systems. Despite covering a small area compared to the global ocean, coastal waters play an 

active role in regulating carbon (C) fluxes and transformations [Bauer et al., 2013]. Dissolved 

organic matter (DOM) delivered by rivers is estimated to be ~0.25 Gt C per year and a large 

fraction of this riverine DOM must be remineralized during transport to the open ocean via 

multiple physical and biogeochemical processes [Cauwet, 2002]. Among these, ultraviolet (UV) 
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photochemistry is a crucial sink for photo-labile chromophoric dissolved organic matter 

(CDOM), producing new bioavailable organic materials and environmentally important 

inorganic and organic carbon species (e.g., carbon monoxide (CO), carbon dioxide, carbonyl 

sulfide, etc.) [Blough and Del Vecchio, 2002; Mopper and Kieber, 2002]. On the other hand, 

photochemical breakdown of CDOM, by influencing underwater UV irradiance, could have 

ecological consequences, affecting phytoplankton assemblages [Domingues et al., 2014], 

resulting in photoacclimation and adaption [Neale et al., 1998]. Since UV light is responsible for 

CDOM photochemistry, understanding the coastal carbon cycle requires a detailed knowledge of 

UV processes and related biogeochemical modifications of CDOM in coastal waters.  

Progress in satellite sensor development such as the Hyperspectral Imager for the Coastal 

Ocean (HICO) provides a unique opportunity to assess coastal processes [Lucke et al., 2011]. Its 

enhanced spatial resolution (~ 96 meters at nadir) makes it well suited for providing spatial 

details of coastal features and studies have begun to demonstrate its potential for examining 

phytoplankton ecology [Ryan et al., 2014], chlorophyll relevant index [Mishra et al., 2014], and 

coastal bathymetry [Garcia et al., 2014]. While this powerful tool creates opportunity to 

understand fine-scale processes with explicit descriptions of spatial complexity, to our 

knowledge, application of HICO imagery has not been used to model photochemical processes in 

near–shore environments.  

Modeling photochemistry driven by UV–CDOM interactions in highly dynamic coastal 

waters has been challenging yet potentially retrievable from ocean color. Herein we introduce a 

new approach that employs two distinct ocean color algorithms that retrieve UV attenuation 

(SeaUV ; [Cao et al., 2014]) and CDOM absorbance (SeaCDOM; [Cao and Miller, 2014]) from 

a single coastal HICO image centered on Sapelo Island, GA, USA, to estimate photochemical 
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fluxes using CO photoproduction as an example. We demonstrate HICO’s potential to address 

both biogeochemical processes and mechanisms regulating UV–dependent photochemistry in a 

highly dynamic estuarine system by modeling depth–specific and depth–integrated CO 

photoproduction from one HICO scene.  

2. Background 

Quantitative modeling of depth-specific CO photoproduction rates (hereafter ΨCO(z), 

where z denotes depth) from ocean color, requires knowledge of four parameters [Fichot and 

Miller, 2010]. They are (1) the incident radiant energy as spectral downwelling scalar irradiance 

just below the sea surface (Eod(,0
–
), mol (photons) m

–2  
s

–1 
nm

–1
), (2) the diffuse attenuation 

coefficient of downward irradiance (Kd, m
–1

), (3) the absorption coefficient of CDOM (ag, m
–1

), 

and (4) the photochemical efficiency of the reaction in question. As in Fichot and Miller [2010], 

the reaction considered here is CO production via CDOM photolysis. Efficiency is described 

using an apparent quantum yield (AQY, hereafter CO, mol (CO) mol (photons)
 –1

), calculated as 

moles of CO formed per mole photons absorbed by CDOM. CO photoproduction rates can 

therefore be calculated over the entire photoreactive spectrum as in equation (1),  

                                     
  

     
   

   
                                   

 

where        (mol (CO) m
–3 

s
–1

) is the CO photoproduction rate at depth z (m), and min and 

max are the minimal and maximal wavelength (nm) respectively over which the production is 

integrated. Assuming vertical homogeneity in each ocean color pixel,        is fundamentally a 

function of two optical (Kd, ag) and one photochemical (CO) properties, with optical terms 

retrievable from remote sensing and the photochemical term typically based on laboratory 

determinations. Hence, robust retrieval of these optical parameters in the wavelength range of 
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photochemical production (i.e., UV) is essential for accurate quantification of marine 

photochemical fluxes based on ocean color.  

Even though photochemical reactions are acknowledged as important in many marine 

chemical cycles, few studies have made synoptic estimates of marine photochemistry using 

remote sensing [e.g., Bélanger et al., 2008; Xie et al., 2012]. Notably, Fichot and Miller [2010] 

proposed a “practical” model (using equation (1)) to quantify depth–specific photochemical 

fluxes with the SeaUV algorithms [Fichot et al., 2008] and ocean color climatology to give a 

global estimate of CO photoproduction. This approach, hereafter referred to as the “FM” 

approach”, is highly idealized, but nonetheless serves as a good starting point for understanding 

photochemical processes occurring in the water column. There are, however, several significant 

limitations when applying the FM approach to coastal waters. The Fichot et al. [2008] SeaUV 

algorithms, developed with few high CDOM samples, significantly underestimates Kd(UV) for 

darker inshore waters (see Figure 4 in Cao et al. [2014]). Also the FM approach retrieved 

CDOM absorption coefficients at 320 nm (ag(320)) from modeled Kd using a fixed 

ag(320)/Kd(320) ratio of 0.68 (equation (2)) derived from limited marine samples and this could 

be very different for near–shore waters 

                                                                                                                  

Further, modeling ag at other wavelengths required use of a pre-defined CDOM spectral slope 

coefficient (S) that is known to vary, especially in terrestrial–influenced coastal waters. These 

assumptions create uncertainties leading to erroneous results in estimating the UV optical 

properties required for photochemical calculations.  

Improved performance over the FM approach is now possible as ocean color algorithms 

that retrieve UV optical properties have matured. Cao et al. [2014] extended the original SeaUV 
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algorithms to better characterize complex coastal/inshore waters, and presented a composite set 

of SeaUV algorithms that apply universally to all water types. Cao and Miller [2014] further 

improved algorithms to allow direct estimates of spectrally–resolved CDOM spectra (275-450 

nm) from ocean color. Together, these improvements allow an estimation of Kd(340) and ag(340) 

with uncertainties of ±15% and ±25%, respectively. Our modeling approach for the HICO image 

here is similar to the FM approach, but with UV optical properties retrieved using improved 

ocean color algorithms that allow emphasis on dynamic coastal areas.     

3. Methods 

3.1. Study area and HICO data 

This study was focused on the Georgia coast (Figure 4.1 (a)), USA, spanning roughly 

from -81.7°E to -80.6°E and from 30.8°N to 31.9°N encompassing three distinct estuarine 

systems (Altamaha, Doboy, and Sapelo Sounds). A detailed description of hydrological patterns 

in these three adjacent estuaries can be found in Cao et al. [2014]. Overall, this coastal estuarine 

system is optically deep, landward edged with extensive intertidal marsh habitats that export 

substantial amounts of organic matter to the coastal ocean.  

One HICO image (scene ID: 12459, Figure 4.1 (b)) was acquired on January 18th, 2013, 

under mostly clear sky conditions (http://hico.coas.oregonstate.edu/). Atmospheric correction 

was made by applying the ATmosphere REMoval algorithm developed by the Naval Research 

Laboratory, followed by an empirical sun glint and cloud removal [B-C Gao and Davis, 1997]. 

Because the optical algorithms applied thereafter are initially developed with the multispectral 

Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) platform, we obtained Rrs at SeaWiFS 

wavebands centered at  = 412, 443, 490, 510, 555, and 670 nm by interpolating Rrs at 

corresponding atmospherically corrected HICO wavelengths. 

http://hico.coas.oregonstate.edu/
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3.2. Modeling procedures 

Our model incorporated several assumptions from the FM approach, including (1) UV 

wavelengths from 290–490 nm are responsible for photochemical reactions involving CDOM, 

(2) total solar scalar irradiance is approximated by solar downwelling scalar irradiance (Eod(,0
–

)) and upwelling irradiance is negligible, and (3) attenuation of downwelling scalar irradiance 

can be approximated with Kd(). Derivations of input parameters and analysis of the resulting 

uncertainty (section 5.1) are discussed below. 

3.2.1. Spectral solar downwelling scalar irradiance (E0d(,0
–
)) 

E0d(,0
–
) is derived from spectral solar downwelling irradiance (Ed(,0

+
)), which was 

modeled using the Simple Model of the Atmospheric Radiative Transfer of Sunshine model 

(SMARTS, version 2.9.2; http://www.nrel.gov/rredc/smarts/), considered to be a robust 

prediction of solar spectral irradiance, especially in the UV wavelengths [Stubbins et al., 2006]. 

SMARTS outputs both direct and diffuse components of global solar spectral irradiance with a 

0.5 nm spectral resolution over the photoreactive wavelength range of 290-400 nm and a 1.0 nm 

resolution between 401-480 nm. We limited our use of SMATRS output to the photoreactive 

wavelength range in 290–450 nm, calculating spectral solar downwelling irradiance just below 

the sea surface with the approximation:                       .  E0d(,0
–
) was then 

calculated by applying a conversion factor (  d) to modeled Ed(,0
–
).   d accounts for the cosine 

effect of the downwelling irradiance fields and can be estimated as in equation (3) according to 

Prieur and Sathyendranath [1981]: 

 

   
 

   

         
 

   

     
                                                                                                         

http://www.nrel.gov/rredc/smarts/
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where   d is the mean cosine for Ed(,0
–
) in the surface ocean and cos(θ(t)) is the cosine of the 

solar zenith angle θ at time t. The desired E0d(,0
–
) (Figure 4.2 (a)) can be obtained as: 

                    . 

3.2.2. Derivation of optical properties 

Downward diffuse attenuation coefficients Kd() at discrete UV and visible wavelengths 

(i.e.,  = 320, 340, 380, 412, 443, and 490 nm) were estimated from visible Rrs using the 

composite SeaUV algorithms as detailed in Cao et al. [2014]. Kd () from 320 to 450 nm was 

subsequently derived at 5 nm intervals with a cubic interpolation and extrapolated into the UV-B 

( = 290–320 nm) assuming an exponential increase of Kd over decreasing wavelengths and a 

spectral slope value calculated using Kd(320) and Kd(340). Spectrally resolved CDOM 

absorption coefficients ag(290–450 nm; 5 nm resolution) were modeled using the SeaCDOM 

algorithm [Cao and Miller, 2014].  

3.2.3. Determination of AQY spectra for CO (CO()) 

Previous seasonal studies have shown the photochemical efficiency of CO production in 

coastal Georgia estuarine waters to be fairly well constrained [Reader and Miller, 2012]. Here 

we add four more CO AQY spectra to the Reader and Miller [2012] data set from samples 

collected within the study area in May 2013. All laboratory irradiations, optical measurements, 

and modeling of CO AQY were performed as described in Reader and Miller [2012]. New CO 

AQY determined here compare well with prior measurements (Figure 4.2 (d)) and argues that 

coastal Georgia waters can likely be modeled with a single CO AQY spectrum, representative 

for our small-scale study area within observed error. The single CO AQY spectra used to model 

CO photochemistry obtained from the total 41 spectra is displayed in equation (4): 

                                                                                                  
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To compare results in this study to those of previous work, CO photoproduction rate 

(nmol (CO) m
–3 

s
–1

) was upscaled to hourly production (nmol (CO) m
–3 

h
–1

), assuming that 

irradiance intensity and optical properties remain constant within a one hour time window over 

the entire study area. 

3.2.4. Computation of depth-integrated CO photoproduction rate (PCO) and Calculation of 

differences in PCO using two different approaches 

Depth-integrated CO photoproduction rates using the approach described for this study 

(hereafter    
  , nmol (CO) m

–2 
h

–1
) was calculated with a trapezoidal integral method, assuming a 

homogeneous distribution of CDOM throughout the photic zone for each pixel. The effects of 

using the composite SeaUV and SeaCDOM algorithms to estimate PCO relative to those in the 

FM approach and its subsequent derivation of ag (hereafter    
  , nmol (CO) m

–2 
h

–1
), were 

examined by calculating PCO using both approaches. For this, we implemented the SeaUV 

algorithms exactly as described by Fichot et al. [2008] to the same HICO scene and derived Kd 

and ag(320) as calculated using equation (2). To obtain the entire CDOM spectra, ag at other 

wavelengths was estimated according to                                   , 

where 0.0175 is S calculated from CDOM samples collected in the study area [Cao and Miller, 

2014]. The CO AQY spectrum in equation (4) was used for both PCO calculations and the 

differences between models was calculated with equation (5) as follows:  

                                     
      

        
      

                                               

4. Results 

4.1. Depth-specific distribution of CO photoproduction  

The spatial distribution of depth-specific CO photoproduction rates (ΨCO, nmol (CO) m
–3 

h
–1

) varies partially as a function of different depths considered. The rates calculated at the sea 
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surface (z = 0
–
) demonstrate remarkable spatial variation, ranging from 50 nmol m

-3 
h

-1
 in the 

intracoastal waterway to 0.2 nmol m
-3 

h
-1

 offshore, with a mean of 9.2 nmol m
-3 

h
-1

 (Figure 4.3 

(a)). These values are comparable with coastal waters reported elsewhere in the Gulf of Maine 

[Ziolkowski and Miller, 2007], the Canada Basin [Song et al., 2013]. ΨCO at z = 1 m is generally 

one to two orders of magnitude lower than that just at the surface, ranging from
 
1×10

–4
 to 3.8 

nmol m
-3 

h
-1

, with a mean of 1.2 nmol m
-3 

h
-1 

(Figure 4.3 (b)). Comparison of the spatial Ψ at 

these two different depths shows a striking difference behind barrier islands where the lowest 

rates were observed at z = 1 m while Ψ remains highest just below the surface. This is 

understandable given the high abundances of optically active constituents in estuaries including 

CDOM (Figure 4.2 (c)) and particles, both contributing to the high Kd observations (Figure 4.2 

(b)). Rapid attenuation of UV irradiation results in little light energy for photochemistry at z = 1 

m, creating low photoproduction rates within estuaries at the 1 m isobaths. ΨCO at z = 1 m is 

higher in coastal areas due to reduced UV attenuation, at least partly from lower CDOM values. 

This gradual reduction in CDOM seaward, on the other hand, results in Ψ at 1 m decreasing 

overall towards the inner shelf.  

4.2. Depth-integrated CO photoproduction 

The spatial detail of depth-integrated photochemistry obtained with our model obtained 

with our approach (   
  ) ranges over an order of magnitude with the scene, varying from 0.13 to 

12 nmol m
-2 

h
-1

, with a mean of 4.3 nmol m
-2 

h
-1

 (Figure 4.4). A seemingly surprising result is 

that the lowest    
   values occur in the most inshore estuarine waters, exactly where CDOM and 

surface rates (ΨCO(z = 0
–
)) are the highest. In other words, the most photochemically productive 

waters, in terms of PCO, are decoupled from their source material (CDOM) in these estuaries. 
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Seaward transects for    
   shows decreasing values and is similar to ΨCO in the surface and at one 

meter depth.  

Distributions of depth-integrated rates using the FM approach (   
  , Figure 4.5 (a)), 

however, bear little resemblance to    
   (Figure 4.4). Compared to    

  ,     
   exhibits far less 

spatial variability and the difference between    
   and    

   
can be quite striking, especially for 

inshore waters and downstream of the Altamaha River outflow which differ by as much as as 

±100% (Figure 4.5 (b)). A detailed discussion on these discrepancies is provided in section 5.2. 

5. Discussion 

Based on the optical and photochemical parameters, approaches, and assumptions 

involved in producing the results above, the following discussion explores three issues: (1) 

uncertainties in estimating photoproduction from ocean color; (2) potential causes of differences 

between the depth-integrated CO photoproduction results in this study (i.e.,    
  ) and values 

calculated using the FM approach (i.e.,    
  ); and (3) implications for UV-dependent processes 

in the ocean derived from using two, independent ocean color algorithms to retrieve decoupled 

Kd and ag. 

5.1. Uncertainties in CO photoproduction estimation from ocean color 

The derivation of UV optical parameters and the characterization of spectral 

photochemical efficiency both introduced uncertainties into our ultimate calculation of P or Ψ. 

For example, even assuming Rrs is accurate, the best UV optical models introduce uncertainties 

of 15% and 25% when deriving Kd(340) and ag(340) using the composite SeaUV and SeaCDOM 

algorithms, respectively.  

A second source of uncertainty stems from the variability of laboratory derived 

photochemical quantum yield spectra. Numerous studies have shown that AQY for several 
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photoproducts critically depends on CDOM characteristics [Stubbins et al., 2011] and therefore 

AQY spatial distribution can vary appreciably [e.g., Bélanger et al., 2008; Bélanger et al., 2006; 

Johannessen and Miller, 2001]. CO AQY spectra, however, remain relatively constant in 

oligotrophic open ocean waters [Zafiriou et al., 2003] and so reasonably allow the usage of one 

average AQYCO spectrum in global studies such as Fichot and Miller [2010].  Estuarine and 

coastal areas, on the other hand, are subjected to variable terrestrial influence and AQY 

variations can span several orders of magnitude [Powers and Miller, 2015] due to increased 

complexity of CDOM sources and photochemical mechanisms by which CDOM produces CO 

[H Gao and Zepp, 1998]. This natural variability of CDOM complicates efforts to constrain 

photochemical rates in coastal waters.   

This difficulty is partly overcome in our coastal study area in two ways. First, the area 

within our HICO image is relatively small and represents only a small subset of possible CDOM 

sources that create variability in AQY. Second, AQY spectra for this area have been determined 

with a field sampling program covering 3 years of seasonal study, allowing us to capture the 

AQY variability and define a single AQYCO spectra that is representative of our specific study 

area. We caution, therefore, that, photochemical modeling results from this study cannot simply 

be generalized to other estuaries or the entire coastal ocean with the same confidence. Although 

significant improvements in the accuracy of retrieving Kd and ag in a wide variety of coastal 

waters have been achieved ([Cao and Miller, 2014; Cao et al., 2014]), they may be largely 

overshadowed by the great uncertainties resulting from varied AQY spectra over larger and more 

diverse geographic areas. In light of this, to apply the approach proposed in this study elsewhere, 

rigorous modeling and precise knowledge of regional AQY spectra is essential for improved 

estimates of photoproduction rates from satellite data.  
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In addition, ocean color algorithms in coastal waters that rely on satellite platforms are 

often subjected to errors resulting from the imperfect atmospheric correction of blue wavebands, 

in particular the 412 nm waveband. It is worth noting that both the composite SeaUV and 

SeaCDOM algorithms were developed from optical buoy data that included Rrs(412) and the 

inclusion of uncertainties due to atmospheric correction can lead to biased optical property  

estimates when applied to satellite data. Unfortunately, there is no robust ground-truth data 

included in this study, preventing direct determination of the exact uncertainty associated with 

this recognized issue. Nevertheless, this potential source of error cannot be neglected and future 

ocean color algorithms for coastal waters may benefit from approaches that do not require 

Rrs(412) for their implementation.  

5.2. Interpretation of depth-integrated CO photoproduction 

The large differences between PCO in this study (   
  ) and results obtained using the FM 

approach (   
  ), can be explained by differences in modeling procedures. Factors driving PCO 

are threefold: (1) the incident downwelling irradiance below the sea surface (Ed(, 0
–
)); (2) the 

spectral fraction of that irradiation absorbed by CDOM; and (3) the photochemical efficiency of 

CO production from CDOM, namelyCO() [Bélanger et al., 2006]. Because in applying both 

models, we used the same CO() and irradiance data, the spectral contribution of CDOM 

absorbance to total light attenuation, ag()/Kd(), or the ratio of ag()/atotal() as in Bélanger et 

al. [2006], becomes the largest driver behind PCO variations. It is known that the value of 

ag()/Kd() not only varies with wavelength [Johannessen et al., 2003] but depends on water 

optical properties [Tedetti et al., 2007; Zepp et al., 2008]. Lacking options, the FM approach uses 

a field-derived constant of 0.68 for ag(320)/Kd(320) and thus cannot accommodate its known  

spatial heterogeneity in complex systems. This faulty assumption leads to the homogeneous 
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distribution of    
   seen in Figure 4.5(a), and fails to capture the true PCO in the coastal 

environment where various optically active materials occur independently. Comparatively, 

decoupled retrievals of Kd and ag from two separate algorithms that are applied independently to 

each pixel, can account for this variance and seem to recover more reasonable spatial details for 

these optically complex waters. 

To help with the interpretation, we examined the spatial distribution of the fraction of UV 

radiation absorbed by CDOM relative to total attenuation at  = 340 nm (i.e., ag(340)/Kd(340)) 

estimated from the HICO image. As shown in Figure 4.6, ag(340)/Kd(340) varied markedly, with 

inshore waters generally having lower ag(340)/Kd(340) values than coastal and offshore waters, 

suggesting a dynamic partitioning of light into different optically active components. Waters 

from the Altamaha River have very heavy particle loadings which absorb and scatter light and 

show the lowest ag(340)/Kd(340) (~ 0.1–0.2) in the study area. The attenuation of irradiance by 

particles diminishes during estuarine mixing processes as particles are removed from the water 

column due to flocculation, resulting in higher values (~0.9) of ag(340)/Kd(340) in nearshore  

coastal areas where CDOM remains high. Further offshore, the ratio becomes slightly lower, 

perhaps representing the dilution of CDOM away from shore. This dynamic range of 

ag(340)/Kd(340) observed from ocean color agrees reasonably well with prior field observations 

within the study area ranging from 0.33 to 1. While direct field verification is warranted, these 

results confirm the potential of this blended approach to quantify the contribution of CDOM 

absorbance to the total attenuation of photons in surface waters using remote sensing. 

Our modeling results provide insight into the underlying optical principle that governs 

observed spatial distributions of the depth-integrated photoproduction rate P. The close coupling 

of patterns in ag/Kd (Figure 4.6) with    
   (Figure 4.4) is clearly seen, with lower P associated 
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with lower ag/Kd values that very likely track particle concentrations within estuarine waters and 

increased P in coastal waters where elevated ag/Kd is observed. Similar correlations have been 

observed in other optically complex waters [Bélanger et al., 2008; Xie et al., 2012]. Unlike 

modeling depth-specific photoproduction rates that requires explicit knowledge of both Kd and 

ag, estimation of CDOM-driven photochemical processes integrated over the entire water column 

is primarily a function of the proportion of the spectral radiation absorbed by CDOM to the total 

loss of photons to other mechanisms, namely ag/Kd. Whereas this partitioning of photons has 

been noted previously in the visible regime [Bélanger et al., 2008; Bélanger et al., 2006], to the 

best of our knowledge, our study provides the first synoptic estimate of this optical phenomenon 

in the UV. Revealing these spatial patterns from satellite-derived ocean color underscores the 

value of our new ability to blend two disparate ocean color algorithms to probe UV processes in 

the marine environment. 

5.3. Implications of decoupled retrievals of optical properties 

In addition to the substantial benefits inherent in the independent retrievals of two optical 

parameters by different ocean color algorithms in estimating CDOM photochemistry, novel 

insights should be obtainable for estimating photochemistry occurring in the particulate phase. 

Recent studies have noted a significant photoreactivity involving suspended particles [Xie and 

Zafiriou, 2009 and references therein]. Notably, Song et al. [2013] demonstrate that particulate 

organic matter, regardless of its origins, could be more susceptible to photo alteration than 

CDOM in terms of CO photoproduction. More generally, Estapa and Mayer [2010] conclude 

that quantitative knowledge of light absorption partitioning into different photochemically active 

materials is indispensible to clarify the photoredox mechanisms of particulate organic matter. 

Hence, spectral partitioning of the CDOM absorption in the UV relative to the total attenuated 
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photon budget, as described in this study, could help describe variability in the UV light 

allocation among materials in different phases (dissolved vs. particulate) and further aid in 

disentangling metal redox (e.g., iron) effects on the photochemistry of particulate organic matter 

in the ocean.  

Implications for the capability to quantify the relative contribution of CDOM to UV 

attenuation using remote sensing could go well beyond photochemistry. Since CDOM serves as a 

“sunscreen” from destructive UV radiation for marine biota, spectral knowledge of CDOM 

absorption relative to photon interaction with particles is desirable to evaluate biological effects 

on marine ecosystems including direct DNA damage [Zepp et al., 2008] and coral reef health 

[Barnes et al., 2014] on a spatially synoptic scale from ocean color. Additionally, it is widely 

acknowledged that different biological responses to UV radiation vary with wavelength [Neale, 

2000]. Hence, knowledge of the spectrally resolved UV light flux partitioned to CDOM may 

allow remote sensing data to inform biological weighting functions and further describe the 

spectrally dependent biologically effective radiance in the water column [Cullen et al., 1992; 

Williamson et al., 2001].  

6. Concluding remarks and Outlook 

This work has shown the potential of blending two different ocean color algorithms to 

address UV dependent processes in a coastal environment from high resolution satellite 

observations. Two main contributions are (1) the successful demonstration of both depth–

specific and depth–integrated photochemical production of CO on a small estuarine scale, and 

(2) the use of decoupled retrievals of Kd and ag for the appraisal of optical dynamics that estimate 

the percentage of light attenuated by CDOM at high spatial resolution through the UV 

wavelengths using remote sensing. This later contribution appears to overcome a persistent 
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challenge in remote sensing applications predicting marine photochemistry and could provide 

opportunities to quantify diverse UV-dependent processes in the ocean. With good estimates of 

CDOM absorbance contribution to total UV attenuation, important biogeochemical issues like 

the impact of photochemical reactions on carbon cycling, redox chemistry, and marine 

ecosystem responses to UV radiation can be more accurately addressed. 

While this “snapshot” assessment of UV–driven photochemistry from HICO ocean color 

appears to have succeeded, it should be noted again that the AQY for CO (or for any other 

photoproduct) in coastal and inshore systems is most likely regional and exerts a predominant 

control on photochemical calculations. Upscaling CO production values obtained in this study to 

other coastal waters is not recommended without fully understanding that AQY is variable and 

must be constrained for the location under study. A particular challenge is to quantify the natural 

variability of AQY for high resolution applications since it is known to be dynamic and remains 

highly field/laboratory measurement dependent. Consequently, our study is somewhat more 

tentative with regards to absolute values of CO photochemical production than it is as a 

demonstration of the use of remote sensing to address biogeochemical issues at a fine scale in 

optically dynamic inshore systems. Accurate seasonal and yearly quantification of 

photochemical fluxes on a coastal scale requires long term, systematic ocean color climatology 

as well as rigorous modeling of regional AQY for any photoproduct in question. Photochemical 

fluxes dependent on UV CDOM photolysis can easily be pursued for photoproducts other than 

CO. For instance, the photoproduction of hydrogen peroxide has been mapped  on a global scale 

using remote sensing [Powers and Miller, 2014] and may potentially serve as a proxy to allow 

estimates of the photoproduction of carbon dioxide [Powers, 2014], which is of great interest 

from a climate change and carbon cycling perspective. In this respect, future work may benefit 
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from our two algorithm blended approach to better understand the contribution of 

photochemistry to total carbon inventories. 

On the other hand, with regard to remotely sensed optical variables (i.e., Kd and ag), 

uncertainties stemming from the inclusion of Rrs in the blue wavelengths, namely Rrs(412), in 

satellite ocean color algorithms are clearly recognized. Further refinements of Cao et al. [2014] 

and Cao and Miller [2014], algorithms for Kd and ag respectively, may reduce errors by omitting 

Rrs(412), thereby improving optical retrievals from ocean color in a synoptic view, particularly 

for coastal waters. In addition, evaluation of UV light partitioning into different optically active 

constituents at present, can only be made for the dissolved phase. Nevertheless, this 

determination is informative. Within the context of current satellite mission planning, such as the 

PACE (Pre-Aerosol, Clouds, and ocean Ecosystems) that includes UV measurements of ocean 

color, one potential application of our approach would be to explore UV-affected ocean ecology 

and carbon chemistry by assessing relative contributions of photo-sensitive materials affecting 

the ocean color observations.   
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Figure 4.1: (a) Map of coastal Georgia with coastline (white) marked; (b) true color HICO image 

over coastal Georgia on January 18
th

, 2013. 
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Figure 4.2: Input parameters for the calculation of depth-specific CO photoproduction rate with 

(a) Ed(0
+
, ), with simulation condition as: latitude = 32.31°N, longitude = 81.76 °W, clear sky 

with ozone concentration of 340 DU on January 18th, 2013; (b) Kd(340) derived from the 

composite SeaUV algorithms; (c) ag(340) derived from the SeaCDOM algorithms; and (d) 

Apparent quantum yield spectra of CO, with grey background lines denote data published in 

Reader and Miller (2012) (N = 37), black lines represent our data set sampled in year of 2013 (N 

= 4), and blue line stands for the spectra used for modeling in this study by taking average of the 

total 41 measurements.  
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Figure 4.3: Model output of depth-specific CO photoproduction rate (ΨCO(z), nmol (CO) m
–3 

h
–1

) 

at (a) z = 0
–
 m; and (b) z = 1 m isodepths. 
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Figure 4.4: Model output of depth-integrated CO photoproduction rate (   
  , nmol (CO) m

–2 
h

–1
). 
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Figure 4.5: (a) Modeled depth-integrated CO photoproduction rate using the approach in Fichot 

and Miller (2010)     
   ; and (b) difference between    

   and    
  . 
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Figure 4.6: Distribution of spectral contribution of CDOM to total light attenuation at 340 nm 

(ag(340)/ Kd(340)). 
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CHAPTER 5 

DISTRIBUTION OF CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC 

MATTER COMPONENTS IN THE NORTHEASTERN NORTH PACIFIC OCEAN
5
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Abstract 

This study surveys optical properties of dissolved organic carbon (DOC) in the Gulf of 

Alaska (GoA) in the Northeastern North Pacific Ocean which contains the oldest carbon in the 

ocean. High resolution vertical distributions of chromophoric dissolved organic matter (CDOM) 

and fluorescent DOM (FDOM) were measured using ultraviolet/visible (UV/Vis) absorbance 

spectra and excitation-emission matrix spectra (EEMs) coupled with parallel factor analysis 

(PARAFAC). Four humic-like and two protein-like fluorescent components were identified in 

the GoA and processes responsible for the observed profiles were examined. Humic-like 

components demonstrated lower abundance in the surface, mainly resulting from 

photobleaching, and increased in the subsurface and remained constant in the deep. In contrast, 

protein-like components had higher levels in the surface due to biological production and 

decrease with depth, implying the consumption of these protein-like substances. Findings 

suggest vertical profiles of CDOM and protein-like components in the dark ocean (below 200 m) 

is largely controlled by microbial remineralization while physical mixing in this slowly upwelled 

water cannot be neglected. In an attempt to trace bulk DOC, especially the refractory DOC in the 

deep, we further adopt protein-like components as a proxy to formulate a multiple linear 

regression between observed DOC and two protein-like components. Results show that protein-

like fluorescent components are quite promising to trace refractory DOC in the deep ocean.  

1. Introduction 

Marine dissolved organic carbon (DOC) constitutes one of the most abundant active 

carbon reservoirs, holding 662±32 Pg C in a global inventory. As a substrate source for 

heterotrophic bacteria and a sink for autotrophically fixed carbon, DOC plays a significant role 

in the global ocean carbon cycle (Hansell, 2002; Hansell et al., 2009). It is largely produced in 
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the euphotic zone, exported into ocean interior via mixing into the main thermocline, and 

eventually transported to the deep North Pacific Ocean via the “global ocean conveyor belt”. As 

a consequence, the deep waters in the Northeastern North Pacific Ocean contains the most aged 

deep water, isolating the ocean’s most biologically refractory DOC, a pool that is of paramount 

importance in terms of long term carbon sequestration over centennial to millennial time scales 

due to its slow turnover rate. Interestingly, this area of deep water remains under-investigated.  

A portion (20-70%) in the bulk DOC pool is optically active, referred to as chromophoric 

dissolved organic matter (CDOM) (Blough and Del Vecchio, 2002), and plays a critical role in 

regulating photo-relevant processes via absorption of light and influences the biogeochemistry of 

DOC. In situ production through bacterial transformation of organic matter is thought to be the 

primary source of CDOM in the open ocean where terrestrial influence is minor (Nelson et al., 

2004). CDOM is removed via photochemical degradation when exposed to light (Del Vecchio 

and Blough, 2002) and via microbial breakdown in the aphotic zone of the ocean (Nelson and 

Siegel, 2002). A fraction of CDOM fluoresces after absorbing light, and is referred to as 

fluorescent DOM (FDOM). FDOM is generally grouped into two types, the humic-like and 

protein-like components, based on the positions of their emission maxima in the excitation-

emission matrix spectra (EEMs) (Coble, 1996). Humic-like FDOM is traditionally defined for 

fluorophores with emission peaks at longer wavelengths (> 400 nm) and protein-like FDOM is 

considered to be produced by biological processes with emission peaks at wavelengths shorter 

than 400 nm. By measuring seawater absorbance and fluorescence spectra, optical signatures of 

CDOM and FDOM can reveal information pertaining to DOM source materials as well as 

possible transformation processes. Therefore, to better explore the chemical nature of DOM in 
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the Northeastern North Pacific Ocean, we have examined the optical characteristics of these two 

components of the DOM pool in the Gulf of Alaska (hereafter GoA).  

In this work, we present spectrophotometric measurements coupled with parallel factor 

analysis (PARAFAC) and assess potential biogeochemical and physical processes driving 

distributions of these optical properties. Moreover, in examining this deep DOC pool, we 

develop a multi-linear relationship between DOC and protein-like fluorescent components to 

explore the potential for fluorescent information to trace bulk DOC in the ocean and provide 

information about the refractory fraction of DOM.  

2. Materials and Methods 

2.1. Field sampling and Water mass structure in the GoA 

As part of the Deep Ocean Refractory Carbon (DORC) field campaign during August 4–

21, 2013, high resolution surveys of DOM optical properties were performed onboard the R/V 

Melville in the GoA (Figure 5.1). Full-depth water samples were collected using a rosette 

equipped with 24 Niskin bottles and a conductivity-temperature-depth profiling sensor (Sea-Bird 

Electronics). All labware was either acid soaked (polycarbonate) or precombusted (glass, 450 

°C), and rinsed thoroughly prior to sampling using Milli-Q water (>18 mΩ; Millipore) freshly 

produced daily onboard. Seawater samples were gravity filtered inline using a 0.2 μm Whatman 

Polycap AS 75 nylon cartridge linked directly from Niskin bottles with silicon tubing  and 

analyzed for optical properties within four hours after sampling to avoid any possible storage 

artifacts (Spencer et al., 2007). 

Our study area encompassed four distinct water masses (Figure 5.2). A well mixed, 

relatively fresh (salinity (S) < 32) and warm (potential temperature (θ) >10 °C) layer extending 

through a summer mixed layer of ~50 m (Peterson et al., 2005) comprises the North Pacific 
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Surface Water (NPSW). The NPSW is part of the subarctic gyre and is bound eastward by the 

northward flowing Alaskan Current. The Pacific Halocline Water (PHW) dominates a layer from 

roughly 50 to 150 m with a rapid salinity increase from 32 to 33.5 (Steele et al., 2004). Beneath 

the PHW, the North Pacific Intermediate Water (NPIW) is delineated by water with a potential 

density anomaly (σθ) of 26.6-27.4 kg/m
3
 (Hansell et al., 2002), occupying the depth between 

200–1000 m. The more saline (salinity > 34) Pacific Common Water (PCW), relative to the other 

three stratified water masses mentioned above, makes up a fairly uniform, well-mixed physical 

feature with elevated density (σθ of 27~28.1 kg/m
3
).  

2.3. Optical measurements and calculation of optical proxies 

2.3.1. CDOM measurements and derivation of optical indexes 

Samples were brought to room temperature before spectral measurements. CDOM 

absorption spectra were obtained using a single-beam 100 cm liquid waveguide capillary flow 

cell (World Precision Instruments Inc.), coupled with quartz fiber optics cables to a deuterium-

tungsten light source (DT-mini GS; Ocean Optics) and a MAYA2000 PRO spectrophotometer. 

Milli-Q water was used as a blank reference, accounting for instrument drift. Baseline 

corrections for CDOM absorbance spectra were made by subtracting an offset value that corrects 

for scattering and refractive index differences between seawater and the blank. To obtain the 

offset value, raw absorbance spectra were fit over the wavelength range of 660-700 nm by 

applying a nonlinear fitting routine (“nlinfit” function in Matlab 2014) over the wavelength range 

of 660-700 nm to equation (1) (Reader and Miller, 2011) : 

                                                                     

where A is the absorbance of CDOM, F is a fitting parameter, S is the spectral slope coefficient, 

and O is the desired offset value.   
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We calculated a corrected absorbance spectra by subtracting this offset value from the 

raw absorbance and the Napierian absorption coefficient spectrum was then created according to 

equation (2): 

                                                                                                               

where ag(λ) (m
-1

) is the Napierian absorption coefficient of CDOM at wavelength λ, A(λ) 

(unitless) is the offset-corrected CDOM absorbance at λ, and L (m) is the path length. 

2.3.2. Fluorescent measurement of DOM and PARAFAC analysis 

Fluorescent excitation-emission matrix spectra (EEMs) were obtained for each sample 

with an Aqualog spectrofluorometer (HORIBA Jobin Yvon Inc., NJ) using a 1-cm quartz cell 

with Milli-Q as the blank. EEMs fluorescence intensities were measured by scanning across an 

excitation range of 240–450 nm (5 nm intervals) and capturing emission spectra over a 

wavelengths range of 280–500 nm (3.2 nm intervals). We optimized data quality by determining 

the optimal integration time for each sample that maximized emission intensity detection at low 

excitation wavelength without saturating CCD at high excitation wavelength (Gentry-Shields et 

al., 2013). Inner filter corrections were not required due to extremely low CDOM absorbance 

(with ag(320) at ~ 0.25 m
-1

 typically). Post-processing of  EEMs to correct and calibrate the 

fluorescence spectra following Murphy et al. (2010) included three steps: (1) Manufacturer 

provided spectral correction parameters were applied to each EEM spectra, (2) Spectra were 

normalized to the daily determined Milli-Q Raman peak area at excitation wavelength 350 nm, 

and (3)Milli-Q Raman and Rayleigh scatter signals were removed using an interpolation method 

following protocol developed by Bahram et al. (2006). Fluorescence intensities (FI) are herein 

reported in Raman Units (R.U.). 
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The PARAFAC model was run for 597 full-depth profile samples using the DOMFluor 

toolbox in MATLAB (Stedmon and Bro, 2008). Due to the higher fluorescent intensities of 

surface waters relative to deep samples, EEMs were first scaled to unit intensity by normalizing 

to individual fluorescence intensity maxima (Murphy et al., 2008) prior to the modeling process. 

PARAFAC was then applied to these scaled EEMs and the model was constructed and further 

validated using split-half analysis. Once the modeling process was complete, fluorescence 

intensities were multiplied by their maximum intensities to obtain real fluorescence intensities of 

each component in a given sample. 

2.4. Auxiliary data 

Apparent oxygen utilization (AOU) for each bottle sample was calculated with the 

difference between the calculated atmospheric equilibrium oxygen concentration following 

Garcia and Gordon (1992) and measured sample concentrations (Matlab seawater library , 

version 3.3.1, obtained via http://www.cmar.csiro.au/datacentre/ext_docs/seawater.htm).  

3. Results and Discussion 

3.1. Optical properties of DOM in the GoA 

3.1.1. Spectral characteristics of fluorescent DOM 

Six fluorescent components (C1 to C6 hereafter) were identified and validated by 

PARAFAC modeling (Figure 5.3). C1, C3, and C4 are similar to reported humic-like 

components having broad emission maxima at wavelengths >400 nm (Jørgensen et al., 2011), 

typically indicative of a terrestrial humic-like or ubiquitous feature that has been widely 

observed in aquatic environments, including the open ocean waters (Jørgensen et al., 2011; 

Kowalczuk et al., 2013; Yamashita et al., 2010). C2 is reported to be produced during organic 

matter breakdown by bacteria, and assigned as a marine humic-like component. Two protein-like 
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components (C5 and C6) were identified in the GoA that demonstrate maxima at emission 

wavelengths shorter than 400 nm and are characteristic of autochthonous and bacterially 

produced amino acids. Consistent with other oceanic surveys, C5 and C6 are assigned as tyrosine 

(Ex./Em: 255 nm/300 nm) and tryptophan-like (Ex./Em: 280 nm/345 nm) components, 

respectively (Jørgensen et al., 2011; Yamashita and Tanoue, 2003). In the text that follows, we 

refer to the humic-like (C1–C4) and protein-like (C5 and C6) components to as “FDOMH” and 

“FDOMP”, respectively. 

3.1.2. Vertical profiles of CDOM and FDOM 

Distribution of CDOM in the water column exhibits high spatial variability in the surface 

mixed layer (range 0.13 to 0.49 m
–1

 for ag(320)), enrichment in the subsurface and upper 

mesopelagic layer (~ 150-500 m) and is slightly lower with limited variance at depth (mean 

ag(320) from 0.24 m
–1 

at 500 m to 0.18 m
–1 

at 4500 m) (Figure 5.4(a)). Variability in the surface 

water is attributable to the balance between CDOM addition (input processes and local 

production (Nelson et al., 2004)) and removal (photolysis) in the GoA. Elevated ag(320) in the 

surface water associated with lower salinity (e.g., at station 15 with ag(320) = 0.49 m
–1

, salinity = 

31.5) was occasionally observed in coastal areas and could reflect terrestrial materials discharged 

from glacial runoff and Alaskan rivers (Hood et al., 2009; Neal et al., 2010). Terrestrial inputs 

could partly explain the surface layer differences between the vertical variability of ag(320) at 

more coastal stations and the uniform CDOM profiles maintained at more remote stations that 

are considered to be less influenced by coastal runoff as in Yamashita and Tanoue (2009). A 

smooth ag(320) increase between ~150 and -500 m is also observed, presumably resulting from 

CDOM release accompanied with degradation of sinking biogenic particles (Nelson et al., 2010; 

Swan et al., 2009) and the absence of photodegradation. The slight decrease of CDOM with 
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depth in the deep ocean may, at least in part, result from slower in situ CDOM production 

compared to that in shallower waters. 

Vertical profiles of fluorescent components generally follow two distinct patterns (Figure 

5.4(b) and (c)). Surface waters have low abundances of FDOMH (fluorescence intensity (FI) of 

0.018, 0.008, 0.012, and 0.003 R. U. for C1, C2, C3, and C4, respectively) which gradually 

increases with depth exhibiting maximum values at ~ 1000 m for C1, C3, and C4 (FI of 0.033, 

0.024, and 0.01 R. U. for C1, C3, and C4, respectively) and at ~ 250 m for C2 (with FI of ~ 

0.017 R. U.). Below this depth, FDOMH remains fairly constant in the deep ocean. Similar to 

CDOM, the FI of FDOMH in the sea surface is a net result of production and loss mechanisms 

(Jørgensen et al., 2011; Mopper and Schultz, 1993), while the increased FDOMH at depth and 

constant values in deep waters are attributable to in situ production. Profiles of FDOMP, 

however, contrast markedly with those for FDOMH, having elevated abundance in surface waters 

resulting from in situ biological activity,  that decline with depth. This is similar to the profile for 

bulk DOC in the ocean and suggests a fraction of FDOMP is labile or semi-labile and could 

potentially be a proxy for bioavailable material (Mopper and Schultz, 1993). Our depth profiles 

for the two categories of FDOM are in good agreement with the Northwestern North Pacific data 

of Yamashita et al. (2010) and the extensive open ocean survey of Jørgensen et al. (2011) for 

waters other than the North Pacific. Taken together, the less variable FDOMP observed at depths 

in the global ocean may indicate its refractory nature, similar to the majority of DOC in the deep 

ocean, and therefore less likely to be altered by biogeochemical processes.  

3.2. Processes influencing the distribution of DOM optical properties  

3.2.1. Correlations between DOM optical properties, AOU, and DOC 



 

143 

To better understand potential oceanic processes that may regulate observed vertical 

profiles of CDOM and FDOM, we examined the correlations between AOU and DOM optical 

properties. We found that CDOM and FDOMH are generally positively correlated with AOU in 

the ocean interior (r = 0.46 for CDOM and r = 0.62 for C2 to AOU, respectively; e.g., 

depths>100 m, p=0.00, Figure 5.5(A) and (B)), suggesting that CDOM (FDOMH) is formed in 

situ from microbial oxidation of organic matter. This agrees with previous observations from the 

Pacific Ocean (Kim and Kim, 2015; Swan et al., 2009; Yamashita et al., 2010; Yamashita and 

Tanoue, 2009). In addition, Jørgensen et al. (2014) found that production of FDOMH heavily 

depends on the lability of organic matter with more refractory substrates having larger  FDOMH 

production relative to oxygen consumption. Considering that refractory carbon is thought to 

make up the majority of the deep DOM pool contained in our study area, it is not surprising to 

observe the correlations between FDOMH and AOU.    

AOU and FDOMP show a weak negative correlation (r = –0.31, p<0.001, depth > 100 m, 

Figure 5.5(C)), suggesting a loss of FDOMP as organic matter is respired. In the remineralization 

zone (depth ~ 200–1000 m) where labile DOM is usually depleted, FDOMP may be an important 

substrate for bacteria (Stedmon and Markager, 2005) and can be consumed for bacterial 

respiration (Cammack et al., 2004). For depths greater than 1000 m, this relationship was 

missing (r = –0.11, p>0.05), implying FDOMP cycling processes do not contribute to AOU, 

potentially due to bacterial anaerobic respiration (Barker, 1981).  

3.2.2. Influence of physical processes  

We have observed positive linear relations for AOU to both CDOM and FDOMH in the 

intermediate and deep layers in the GoA (r = 0.81 for AOU and CDOM, and r = 0.65 between 

700 to 5000 m for example, p = 0.00), and can attribute this largely to biological processes that 
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produce CDOM (FDOMH) during organic matter remineralization.  This reasoning, however, 

does not rule out the possibility of other processes (i.e., physical mixing from known sluggish 

vertical flow) may also contribute to this correlation. We therefore also must examine the 

potential physical processes such as convection that can contribute to DOM optical distributions. 

Our high resolution survey in the GoA deep waters allow a two end-member mixing analysis that 

uses salinity as a conservative tracer on waters from 700 m to the bottom. following the methods 

in Swan et al. (2009) and described below. 

Each water sample collected from 700 m (upper end-member) to the deepest (lower end-

member) has properties (e.g., AOU, ag(320), FI for each fluorescent component, etc.) that consist 

of a preformed conservative component (Ccon) distributed solely by mixing, thereby independent 

of biogeochemical modifications. Considering a simple two component model, the fractional 

contributions of the upper (mU) and lower (mL) end-members to the observed property can be 

obtained as follows (Equation 3 (a) and (b)), if using salinity as the tracer:  

                                                                                       

                                                                                                                                   

where Sobs stands for observed salinity for the given sample; and SU and SL represent salinity of 

the upper and lower end-members, respectively. Equation 3(b) holds for a mass balance 

constraint that the two fractional contributions must add up to 1.  

Once mU and mL are obtained, the preformed component of the desired property due to mixing, 

using AOU as an example, can be calculated following Equation 4: 

                                                                                                           

where AOUmixing is the sample AOU that would result solely from mixing. AOUU and AOUL are 

the AOU of the water at the upper and lower end-members, respectively.  
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Changes in the observed property due to processes other than mixing can then be 

obtained as in Equation 5,  

                                                        

where △AOU is the change resulting from non-mixing processes, and AOUobs is the  observed 

AOU of the sample. 

We performed this two end-member mixing analysis on AOU, CDOM, and C2. Results 

show that the correlation noted above between AOU and CDOM is greatly weakened, but 

remains statistically significant after removing physical mixing (e.g., r = 0.47 for AOU and 

ag(320) compared to r = 0.81, p = 0.00). This implies that physical mixing has a substantial 

influence on the distribution of AOU and CDOM (FDOMH) in the deep waters in the 

Northeastern North Pacific Ocean. Our conclusions are similar to those of Swan et al. (2009) 

where correlations between AOU and CDOM were also less strong once values were corrected 

for lateral isopycnal mixing across the Pacific Basin. This is understandable given that biological 

respiration is very slow below 1000 m and so contributes less CDOM to the deep water at the 

North Pacific Ocean than in other places, explaining the smaller variability of CDOM in deep 

waters.   

3.3. Can FDOMP be a tracer for DOC in the ocean? 

It has long been proposed that protein-like fluorescent components could potentially be a 

tracer for bio-reactive DOC since they are both enriched in the sea surface. In light of similar 

vertical profiles for DOC and FDOMP (Figure 5.4c) and the correlations between bulk DOC and 

FDOMP (0.71 and 0.76 for C5 and C6, respectively (p<0.001)), we attempted to build a simple 

multiple linear regression using measured bulk DOC and protein-like components C5 and C6 for 

the waters in the GoA with a resulting relationship (Equation (6)) of 
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Results from multi-linear regression (MLR) indicate that DOC overall can be described 

with moderate accuracy as a function of C5 and C6, with a slope of ~1.035, an intercept of ~ –

1.311 (r = 0.83 (Figure 5.6)). Closer examination shows that for DOC concentrations < 45 

μmol/kg which correspond to depths below 200 m (the bottom of halocline), DOC can be 

estimated more accurately, constrained to within +/– 10%, as a function of FDOMP. This also 

suggests a strong co-variance of this refractory DOC with FDOMP which is presumably also 

largely resistant to bio-degradation given the oldest water that is depleted with labile organic 

matter, despite their smaller percent contribution to the refractory DOC compared to that of 

FDOMH. Yamashita and Tanoue (2004) speculate that amino-acid containing materials in the 

high molecular mass DOM which dominates deep water (Medeiros et al., 2015) result from 

refractory bacterial membranes and bio-polymers that are bio-resistant in nature, allowing 

preservation in the deep oceans. Another mechanism that may lead to the co-varying of 

refractory DOC and FDOMP could be ascribed to abiotic transformations of labile protein into 

recalcitrant DOM via complexation with existing DOM (Keil and Kirchman, 1994) during the 

long dark transport to the deep GoA.  

Good estimations of bulk DOC from knowledge of FDOMP appear only to occur in the 

deep ocean. Errors are evident for waters above the NPIW and make our estimates less robust. 

This suggests decoupled processes between bulk DOC dynamics and FDOMP in waters within 

and above the halocline. Also, FDOMP content in the bulk DOC pool appears more variable, or 

at least different, from that in the deep ocean. FDOMp above the halocline is assumed to be 

largely authochthonous and more recently produced, as supported by the elevated abundance in 

the surface and upper halocline waters observed in this study and in Jørgensen et al. (2011). The 
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authochthonous protein-like organic matter, though also usually of low molecular weight (Cuss 

and Guéguen, 2015), contributes to bulk DOC in a variable fashion in these shallower waters due 

to the dominance of labile and semi-labile organic matter.  This results in a less than satisfactory 

prediction when using our multiple regression method. FDOMP may not be a good proxy for 

bulk DOC in the surface ocean, or at least within our study area, and more work is needed to 

further clarify contribution of FDOMP in total DOC pools in shallower waters where FDOMP 

and DOC appear to vary independently. 

4. Conclusions 

We surveyed distributions of optical properties from surface to the deep, mostly 

refractory DOC pool in the GoA using absorbance measurement and fluorescent component 

analysis. PARAFAC modeling identified four humic-like, and two protein-like fluorescent 

components. Variability of CDOM and humic-like components in the surface ocean is a net 

balance between production (in situ and terrestrial inputs) and loss (microbial consumption, 

photobleaching) processes. Biological remineralization appears to largely control the generation 

of CDOM and humic-like components in subsurface waters to 1000 m. Physical processes, 

however, play a substantial role in modulating observed distributions of CDOM and humic-like 

components. On the other hand, the protein-like FDOM components have higher abundances in 

surface waters and decrease in deeper layers, in good agreement with previous studies and in 

fact, match a general profile found for protein-like components on a global scale. Using a 

multiple linear regression between DOC and protein-like fluorescent components, we suggest 

that protein-like components might be used as a potential tracer for refractory DOC in the deep 

ocean. The refractory fraction of FDOMP in the surface ocean DOC pool appears to be much 
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more variable where multiple addition and loss processes co-exist, and further investigation of 

these differences is required before similar multi-linear correlations become useful. 
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Figure 5.1: Map of study area in the Gulf of Alaska (GoA) with bathymetry denoted with the 

color bar on the right. Red circles indicate the sampling stations. 
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Figure 5.2: Potential temperature-salinity (T-S) diagram of the study area, superimposed with 

potential density anomaly (σθ) contour lines (isopycnals) in gray.  
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Figure 5.3: Contour plots (left column) and spectral characteristics (right column) for the six 

fluorescent components revealed and validated using PARAFAC modeling.  
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Figure 5.4: Vertical profiles of (a) CDOM (defined using ag(320)); (b) humic-like fluorescent 

components of C1 (gray), C2 (red), C3 (blue) and C4 (black); and (c) protein-like fluorescent 

components of C5 (gray) and C6(blue).  
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Figure 5.5: Correlations between AOU to (A) CDOM; (B) humic-like component C2; and (C) 

protein-like component C6. Sampling depth is denoted with color bar on the right. Data within 

depth < 100 m were not included.  
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Figure 5.6: Estimating DOC as a function of protein-like fluorescent components. Red line 

represents the regression relation between estimated DOC and measured DOC.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

Modeling UV photochemistry from space has been and remains a critical and challenging 

endeavor. Building upon the work of Fichot et al. (2008) and Fichot and Miller (2010), this 

dissertation developed new optical techniques and approaches (remote sensing, fluorescence) to 

explore UV optical properties and fluorescent components in the ocean making several new and 

unique contributions. 

1) I optimized the original SeaUV/SeaUVc algorithms (Fichot et al., 2008) for inshore, optically 

complex surface waters and developed a composite set of algorithms that can retrieve the diffuse 

attenuation coefficient, Kd, over the UV spectral range from visible ocean color with good 

accuracy almost all water types found in the ocean, obtaining a mean relative error of 13% for 

Kd(340) for example. This composite set of algorithms provide significantly improved accuracy 

for describing UV penetration into surface waters, a critical element for quantifying the role of 

solar UV radiation in photo-dependent processes in the ocean.  

2) I developed a new optical algorithm (labeled SeaCDOM) that accurately resolves the CDOM 

absorption spectra in the UV and blue visible wavelengths (275-450nm) directly from ocean 

color, with a mean absolute percent difference for ag in the UV of ~25% across the spectrum. 

This is a novel contribution to the oceanographic remote sensing community. One of its 

advantages is that no a priori assumptions of the CDOM absorption spectral shape is required, 

making the retrieved spectrum free of the known errors arising from selection of a single 

exponential slope coefficient for extrapolation from visible wavelengths that have hampered 
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previous models. My new approach should provide new synoptic insight about the chemical 

composition (e.g. molecular weight and aromaticity), origins, transformation and cycling 

pathways of CDOM. 

3) I introduced a new approach for retrieving the in situ UV radiation field required for 

calculating photochemical rates by blending our two distinct algorithms (i.e. composite SeaUV 

and SeaCDOM) for application to a single high-resolution coastal satellite image and estimating 

CO photoproduction in a Georgia coastal estuarine setting. I demonstrated the strong spatial 

variability of depth-specific and depth-integrated photoproduction rates for CO on a small 

estuarine scale. This new capability for independent retrievals of ag and Kd allows quantitative 

partitioning of UV photons between CDOM and other optical constituents, producing greatly 

improved estimates for photochemistry in complex waters.  

4) I investigated the optical properties (absorption and fluorescence) of the waters in the 

Northeastern North Pacific Ocean where deep ocean circulation has isolated predominantly old 

and bio-refractory DOM. Four humic-like and two protein-like fluorescent components were 

identified from synoptic sampling throughout the Gulf of Alaska. Variability of CDOM and 

humic-like components in the surface ocean result from a balance between production (in situ 

additions, terrestrial input) and loss (microbial consumption, photobleaching) processes. Further, 

by setting up a multiple linear regression between DOC concentrations and the protein-like 

component flourescence, I demonstrate that protein-like components may serve as a tracer for 

refractory DOC in the deep ocean.  Further research is needed to fully constrain the variability of 

this protein-like refractory component within the entire DOC pool, potentially extending the 

applicability of this correlation to the surface ocean where multiple addition and loss processes 

co-exist.  
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Several issues regarding the estimation of oceanic UV properties from satellite platforms 

are worthy of noting, although they remain beyond the scope of this dissertation work. First, it 

should be noted that the two ocean color algorithms developed and presented herein rely heavily 

on statistical approaches and consequently, may give erroneous estimates when applied to waters 

that were not included in the training processes. Moreover, since a classification method was 

involved in the algorithm development and accurate estimates are critically dependent on correct 

classification of ocean color pixels, especially for the SeaCDOM algorithm where cluster 

analysis is an indispensible step, high quality ocean color data is optimal. It is also important to 

note that our algorithms were developed from in situ buoy derived ocean color data, correlation 

to data obtained from satellite platforms can be fraught with possible errors. The very best 

validation for retrieving optical properties using satellite ocean color observations cannot reach 

its full potential until a solid atmospheric correction procedure is established, especially for 

dynamic coastal waters where an imperfect atmospheric correction is often present. 

Nevertheless, for open ocean waters where atmospheric correction procedures are mature, a 

match-up analysis between in situ data and matched satellite Rrs (satellite overpass within a ± 3 

hr time window and a 5×5 pixel size (~5 × 5 km)) (Harding et al., 2005) can be pursued to 

evaluate the capability of the algorithms in estimating UV properties regarding satellite ocean 

color.   

Another direction of particular interest is the quantification of CO2 photoproduction 

fluxes in the surface waters from ocean color. Blending the two independent ocean color 

algorithms presented in this dissertation, with appropriate photochemical parameters (AQY for 

CO2) is currently a work in progress. The ability to better quantify the photochemical production 
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of CO2 and more fully constrain the role of photochemistry within the global carbon cycle scale 

using ocean color will be a major advance. 

A third promising direction will be to extend the methodology presented in this 

dissertation to emerging satellite missions, especially hyperspectral remote sensing techniques 

with enhanced spatial and spectral resolutions. The idea of estimating ag(UV) properties from 

visible ocean color is greatly benefited from multivariate statistical methods such as data 

dimension reduction (i.e., PCA) techniques. With increased interest in coastal waters, the 

dimension reduction technique presented in this dissertation can potentially be easily adapted to 

hyperspectral ocean color data by applying an empirical orthogonal function analysis (for 

example) and provide critical information on the magnitude of the UV effect on dynamic 

nearshore ecosystems. 
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Introduction: 

This appendix is to provide a step-by-step implementation tutorial for the composite 

SeaUV/SeaUVc algorithms presented in Chapter 2. Included are the implementation schemes 

(Figure A.1) and parameters (Table A.1-A.13) 

 

A.1. Required inputs 

The remote-sensing reflectance, Rrs (,0
+
), measured at  = 412, 443, 490, 510, 555 and 

670 nm (SeaWiFS wavebands) is required for initial input to the algorithms. Normalized water-

leaving radiance nLw() can be converted into Rrs (,0
+
) as follows:                 

       

where the values for the mean extraterrestrial solar flux,   
     , are provided in Thuillier et al. 

(2003). 

A.2. Retrieving Kd(490) using the NASA Kd(490) algorithm. 

The measured remote-sensing reflectance Rrs (,0
+
) data are first processed through the 

NASA Kd(490) algorithm (Werdell, 2009) to determine the appropriate set of composite 

algorithms for use. If the calculated Kd(490) value is lower than 0.32 m
-1

, the water is classified 

as “clear” and the first part in the new composite set of SeaUV algorithms is used for Kd() 

retrieval. If the calculated Kd(490) is greater than or equal to 0.32 m
-1

, the water is classified as 

optically complex inshore water and the inshore-water optimized SeaUV  (i.e the second part in 

the new composite set of SeaUV algorithms) is applied for Kd() retrieval.  

A.3. Retrieving Kd() using original SeaUV. 

For “clear” water, the original SeaUV/SeaUVc model is implementated on the Rrs (,0
+
) 

values using the same procedure as described in Appendix C.1. and C. 2. in Fichot et al. (2008). 

As stated in the text, we have taken advantage of the empirical nature of the SeaUV algorithms 



 

164 

and updated all parameters used in the original SeaUV algorithm with the exception of the cluster 

centers coordinates, which proved robust, with relocation giving no significant improvement to 

the statistical fit for the training data. The values of       and      calculated for 

standardization from our largest training data set (N = 563) are given in Table A. 1. The resulting 

standardized log-linearized remote-sensing reflectances, X(), can then be used in linear 

combinations to calculate the scores of the first four principal components. The eigenvectors 

derived from our large training data set through PCA are used as the correlation coefficients for 

the multi-linear combinations. The PC scores are updated ((Table A.2.) and calculated as in Eq. 

(1) in Fichot et al. (2008) (e.g. PC score on the first principal component is computed as  

[PC1]i = e11Xi(412)+ e12Xi(443)+ e13Xi(490)+ e14Xi(510)+ e15Xi(555)+ e16Xi(670)),  

where  

e11= -0.3976, e12= -0.4237, e13= -0.4521, e14= -0.4540, e15= -0.4159, e16= -0.2809. Scores on 

PC2, PC3 and PC4 are calculated similarly and are then used as the independent variables in the 

multi-linear regressions to predict Kd. The correlation coefficients (parameters , , , , ) have 

been updated and are provided in Table A.3. For the clear water SeaUVc model, the cluster 

centers in the updated SeaUVc are the same as published in Fichot et al. (2008). The observations 

are assigned to their optical domains using the first two PC scores and log-linearized Kd() is 

calculated by using Eq. (4) in Fichot et al. (2008) with the updated parameters corresponding to 

the identified optical domains provided in here Tables A.4, A.5 and A.6. 

A.4. Retrieving Kd() using inshore-water optimized SeaUV/SeaUVc. 

      If the calculated Kd(490) is greater than or equal to 0.32 m
-1

 and the water is classified as 

optically complex, inshore water, the new inshore-water optimized SeaUV/SeaUVc model 

provides a much more accurate retrieval of Kd(). The inshore-water optimized SeaUV model is 
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then used with similar logic to that used for implementation of the original SeaUV (as described 

in Fichot et al. (2008)). The parameters for standardization, calculation of PC scores and multi-

linear coefficients are provided in Tables A.7, A.8 and A.9.  For the inshore-water optimized 

SeaUVc algorithms, four dark water domains (DWDs) are defined for retrieving Kd(). The 

coordinates of the four cluster centers in inshore-water optimized SeaUVc are provided in Table 

A.10. Each observation is assigned to the appropriate DWD by using the first two PC scores, 

allowing the log-linearized Kd() value to be calculated using Eq. (4) in Fichot et al.  (2008) 

using the updated parameters for use in corresponding to the dark water domain provided here in 

Tables A.11, A.12 and A.13. 
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Table A.1  

Updated mean and standard deviations to center and standardize ln(Rrs (,0
+
)) for the original 

SeaUV/SeaUVc algorithms. 

  = 412  = 443  = 490  = 510  = 555  = 670 

 

     

     

-5.3340 

0.8637 

-5.2589 

0.7808 

-5.0970 

0.7268 

-5.2474 

0.7483 

-5.5939 

0.8208 

-7.9649 

0.8836 

 

 

 

 

Table A.2 

Updated first four eigenvectors for use in calculating the PC scores for the “original” 

SeaUV/SeaUVc algorithms. 

  = 412  = 443  = 490  = 510  = 555  = 670 

e1 

e2 

e3 

e4 

-0.3976 

0.4481 

0.3990 

0.5829 

-0.4237 

0.3497 

0.2370 

-0.2240 

-0.4521 

0.1303 

-0.1326 

-0.5733 

-0.4540 

-0.0670 

-0.3724 

-0.1354 

-0.4159 

-0.3652 

-0.4920 

0.5045 

-0.2809 

-0.7226 

0.6215 

-0.0928 
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Table A.3  

Updated parameters for retrieval of ln(Kd()) from the PC scores in the original SeaUV  

algorithms. 

      

ln(Kd(320)) 

ln(Kd(340)) 

ln(Kd(380)) 

ln(Kd(412)) 

ln(Kd(443)) 

ln(Kd(490)) 

-0.7327 

-1.0625 

-1.6508 

-1.9638 

-2.1846 

-2.4894 

0.0980 

0.0855 

0.0485 

0.0240 

0.0088 

-0.0025 

-0.5928 

-0.6301 

-0.6565 

-0.6550 

-0.6256 

-0.5574 

-0.5230 

-0.4996 

-0.4154 

-0.3240 

-0.2368 

-0.0733 

-1.1130 

-0.8653 

-0.4186 

0.1644 

0.6171 

0.6902 
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Table A.4  

Updated parameters for retrieval of ln[Kd()] ( = 320 and 340 nm) from the PC scores in the 

original SeaUVc algorithms. 

      

ln[Kd(320)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

ln[Kd(340)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

 

-0.7880 

-0.8138 

-0.6073 

-0.7821 

-0.4816 

-0.8359 

-0.7764 

 

-1.0733 

-1.1055 

-0.8734 

-1.1280 

-0.9525 

-1.1507 

-1.0968 

 

0.0555 

0.1098 

0.1372 

0.1357 

-0.0044 

0.1386 

0.1411 

 

0.0588 

0.0981 

0.1260 

0.1202 

0.0376 

0.1015 

0.1140 

 

-0.6148 

-0.6411 

-0.5505 

-0.5775 

-0.5721 

-0.4460 

-0.5378 

 

-0.6328 

-0.6514 

-0.5453 

-0.6284 

-0.6103 

-0.5148 

-0.5800 

 

-0.3852 

0.6162 

-0.1169 

-0.4700 

-0.6300 

-0.6736 

-0.6900 

 

-0.3243 

-0.5232 

-0.1725 

-0.5058 

-0.5717 

-0.5969 

-0.7075 

 

-0.7067 

-0.9544 

-1.7478 

-0.5023 

-1.1761 

-0.9057 

-0.8205 

 

-0.6286 

-0.7947 

-1.7031 

-0.4116 

-1.0074 

-0.6982 

-0.6110 
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Table A.5  

Updated parameters for retrieval of ln[Kd()] ( = 380 and 412 nm) from the PC scores in the 

original SeaUVc algorithms. 

      

ln[Kd(380)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

ln[Kd(412)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

 

-1.6649 

-1.6453 

-1.2807 

-1.8815 

-1.5699 

-1.7408 

-1.7133 

 

-2.066 

-1.9402 

-1.5982 

-2.1512 

-1.9057 

-2.0421 

-2.0247 

 

0.0356 

0.0542 

0.1287 

0.0860 

0.0055 

0.0601 

0.0770 

 

-0.0117 

0.0273 

0.1176 

0.0492 

-0.0093 

0.0255 

0.0667 

 

-0.6626 

-0.6710 

-0.5558 

-0.7529 

-0.5469 

-0.5786 

-0.5789 

 

-0.5788 

-0.6691 

-0.5712 

-0.7311 

-0.5560 

-0.6314 

-0.5683 

 

-0.1942 

-0.3232 

-0.2712 

-0.4659 

-0.6102 

-0.6292 

-0.6661 

 

-0.0081 

-0.1097 

-0.0780 

-0.2785 

-0.6052 

-0.5377 

-0.6719 

 

-0.2820 

-0.5304 

-1.9238 

0.4369 

-0.7134 

-0.2607 

-0.2665 

 

0.1561 

-0.0423 

-1.3923 

0.4277 

-0.1428 

0.4598 

0.0959 
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Table A.6  

Updated parameters for retrieval of ln[Kd()] ( = 443 and 490 nm) from the PC scores in the 

original SeaUVc algorithms. 

      

ln[Kd(443)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

ln[Kd(490)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

 

-2.4117 

-2.1752 

-1.7932 

-2.4883 

-2.1744 

-2.2708 

-2.2943 

 

-3.0337 

-2.5423 

-2.1348 

-2.6192 

-2.5263 

-2.5759 

-2.6486 

 

-0.0551 

0.0009 

0.1273 

0.1158 

-0.0030 

-0.0002 

0.0654 

 

-0.1438 

-0.0575 

0.1232 

0.0104 

0.0150 

-0.0115 

0.0952 

 

-0.5317 

-0.6672 

-0.5862 

-0.6174 

-0.5205 

-0.6345 

-0.4923 

 

-0.5119 

-0.6011 

-0.5911 

-0.5910 

-0.3711 

-0.6348 

-0.3854 

 

0.0673 

0.0970 

0.0473 

-0.3085 

-0.5934 

-0.4557 

-0.6039 

 

0.0357 

0.3010 

0.2175 

-0.3303 

-0.4385 

-0.2714 

-0.4047 

 

0.6669 

0.2309 

-1.0485 

0.9051 

0.4998 

1.0245 

0.4254 

 

1.7743 

0.3775 

-1.0509 

0.8374 

0.8056 

1.0642 

0.5484 
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Table A.7  

Updated mean and standard deviations to center and standardize ln(Rrs (,0
+
)) for the inshore-

water optimized SeaUV/SeaUVc algorithms. 

  = 412  = 443  = 490  = 510  = 555  = 670 

     

 

     

-6.8156 

1.0703 

-6.3098 

0.9956 

-5.6367 

0.8839 

-5.4596 

0.8599 

-5.0692 

0.7490 

-5.9379 

0.7485 

 

Table A.8 

Updated first four eigenvectors for use in calculating the PC scores for the inshore-water 

optimized SeaUV/SeaUVc algorithms. 

  = 412  = 443  = 490  = 510  = 555  = 670 

e1 

e2 

e3 

e4 

-0.4019 

-0.4536 

0.5303 

-0.4941 

-0.4224 

-0.2541 

0.2160 

0.2907 

-0.4295 

-0.0825 

-0.1431 

0.4526 

-0.4297 

-0.0403 

-0.3003 

0.3252 

-0.4240 

0.1504 

-0.6103 

-0.6005 

-0.3333 

0.8358 

0.4337 

-0.0113 

 

 

 

 

 

 

 

 

 



 

172 

 

Table A.9  

Updated parameters for retrieval of ln(Kd()) from the PC scores in the inshore-water optimized 

SeaUV algorithm. 

      

ln(Kd(320)) 

ln(Kd(340)) 

ln(Kd(380)) 

ln(Kd(412)) 

ln(Kd(443)) 

ln(Kd(490)) 

1.7574 

1.4696 

0.9983 

0.6930 

0.4314 

0.0530 

0.1253 

0.1181 

0.1117 

0.1200 

0.1130 

0.0927 

1.0342 

0.9701 

0.9816 

0.9512 

0.9268 

0.9158 

-0.3073 

-0.1030 

0.1098 

0.3410 

0.4504 

0.5754 

0.8648 

0.6973 

0.5601 

0.0220 

-0.2891 

-0.3118 

 

 

Table A.10  

Coordinates of the cluster centers corresponding to the four dark water domains defined in this 

study for the inshore-water optimized SeaUVc algorithms. 

n Xn (PC1) Yn (PC2) 

DWD1 

DWD2 

DWD3 

DWD4 

-4.4836 

0.8671 

2.2617 

-0.0862 

-0.2043 

-0.3379 

-0.0836 

0.6324 
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Table A.11  

Updated parameters for retrieval of ln[Kd()] ( = 320 and 340 nm) from the PC scores in the 

inshore-water optimized SeaUVc algorithms. 

      

ln[Kd(320)] 

DWD1 

DWD2 

DWD3 

DWD4 

ln[Kd(340)] 

DWD1 

DWD2 

DWD3 

DWD4 

 

1.8181 

1.4925 

1.8445 

1.8433 

 

1.4029 

1.2840 

1.4194 

1.5157 

 

0.1394 

0.4003 

0.0797 

0.2955 

 

0.0950 

0.3588 

0.1288 

0.2423 

 

0.9296 

1.1138 

0.8835 

0.9879 

 

0.9244 

1.0551 

0.8501 

0.9216 

 

0.0974 

-0.5654 

-0.9424 

0.0173 

 

0.2621 

-0.2270 

-0.6873 

0.1778 

 

0.1340 

0.9708 

0.9792 

0.4808 

 

-0.1177 

0.9539 

0.7522 

0.2762 
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Table A.12  

Updated parameters for retrieval of ln[Kd()] ( = 380 and 412 nm) from the PC scores in the 

inshore-water optimized SeaUVc algorithms. 

      

ln[Kd(380)] 

DWD1 

DWD2 

DWD3 

DWD4 

ln[Kd(412)] 

DWD1 

DWD2 

DWD3 

DWD4 

 

0.8770 

0.9102 

0.8756 

1.0861 

 

0.8069 

0.6699 

0.6022 

0.8078 

 

0.0888 

0.2414 

0.1416 

0.2472 

 

0.1642 

0.1845 

0.1261 

0.2412 

 

0.8222 

1.0345 

0.8838 

0.8983 

 

0.7620 

0.9643 

0.8923 

0.8606 

 

0.5918 

-0.0173 

-0.5368 

0.5389 

 

0.5546 

0.2231 

-0.1241 

0.8385 

 

-0.7150 

0.7401 

0.6536 

0.3796 

 

-1.2081 

0.2031 

0.1357 

-0.0013 
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Table A.13  

Updated parameters for retrieval of ln[Kd()] ( = 443 and 490 nm) from the PC scores in the 

inshore-water optimized SeaUVc algorithms 

      

ln[Kd(443)] 

DWD1 

DWD2 

DWD3 

DWD4 

ln[Kd(490)] 

DWD1 

DWD2 

DWD3 

DWD4 

 

0.5266 

0.4115 

0.3490 

0.5585 

 

0.0891 

0.0144 

-0.0369 

0.1827 

 

0.1574 

0.1525 

0.1162 

0.2460 

 

0.1175 

0.1224 

0.1051 

0.2437 

 

0.6767 

0.9055 

0.8966 

0.8400 

 

0.6923 

0.8882 

0.8915 

0.8325 

 

0.6478 

0.3685 

0.0601 

0.9705 

 

0.5053 

0.4612 

0.1950 

1.1980 

 

-1.5230 

-0.1893 

-0.1541 

-0.1524 

 

-1.6898 

-0.2901 

-0.1502 

-0.1505 
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Figure A.1: Flow chart diagram for implementation of optimized composite SeaUV/SeaUVc 

algorithms. 
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APPENDIX B 

ONLINE SUPPLEMENTARY MATERIAL FOR CHAPTER 2
7
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
7
 Online supporting material for: 

Cao, F., Fichot, C. G., Hooker, S. B., & Miller, W. L. (2014). Remote Sensing of 

Environment, 144, 11-27, doi:10.1016/j.rse.2014.01.003; Reprinted here with permission of the 

publisher. 

http://dx.doi.org/10.1016/j.rse.2014.01.003
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Introduction: 

This appendix includes performances and fitting parameters of re-parameterization of the 

original algorithms through retraining the complete data set (N = 438), as briefly described in 

section 3.2 in Chapter 2 (Table S 2.1-S 2.6, Figure S 2.1); and dark-water optimized 

SeaUV/SeaUVc algorithms (derived from N = 119, Table S 2.7-S 2.13, Figure S 2.2) as 

intermediate step toward the final “optimized composite SeaUV/SeaUVc algorithm” product.  

Fitting parameters for reparameterized original SeaUV/SeaUVc algorithms: 

 

Table S 2.1: Mean and standard deviations to center and standardize ln(Rrs (,0+)) for 

reparameterized original SeaUV/SeaUVc algorithms. 

 

  = 412  = 443  = 490  = 510  = 555  = 670 

     

     

-5.6342 

1.1652 

-5.4550 

0.9852 

-5.1500 

0.8143 

-5.2036 

0.7850 

-5.3490 

0.8208 

-7.3595 

1.2517 

 

Table S 2.2: First four eigenvectors to use to calculate the PC scores for reparameterized original 

SeaUV/SeaUVc algorithms. 

 

  = 412  = 443  = 490  = 510  = 555  = 670 

e1 

e2 

e3 

e4 

-0.4253 

0.3630 

0.3471 

0.6297 

-0.4586 

0.2566 

0.2999 

-0.1125 

-0.4866 

0.0485 

-0.0111 

-0.5318 

-0.4801 

-0.1282 

-0.2879 

-0.2755 

-0.3688 

-0.4863 

-0.5166 

0.4806 

-0.0740 

-0.7397 

0.6632 

-0.0329 
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Table S 2.3: Parameters for retrieval of ln(Kd()) from the PC scores in reparameterized original 

SeaUV. 

      

ln(Kd(320)) 

ln(Kd(340)) 

ln(Kd(380)) 

ln(Kd(412)) 

ln(Kd(443)) 

ln(Kd(490)) 

-0.1077 

-0.4201 

-0.9657 

-1.2548 

-1.4712 

-1.7921 

0.3010 

0.2916 

0.2740 

0.2677 

0.2576 

0.2398 

-0.9269 

-0.9466 

-0.9984 

-0.9988 

-0.9785 

-0.9439 

-0.1557 

-0.1340 

-0.0338 

0.0520 

0.1465 

0.3222 

-1.7915 

-1.4141 

-0.9991 

-0.3960 

-0.0371 

0.0048 
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Table S 2.4: Parameters for retrieval of ln[Kd()] ( = 320 and 340 nm) from the PC scores in 

reparameterized original SeaUV. 

 

      

ln[Kd(320)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

ln[Kd(340)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

 

-0.4139 

-0.7492 

-0.1983 

-0.6510 

-0.2953 

-0.4899 

-0.3242 

 

-0.6746 

-0.8730 

-0.4912 

-0.6572 

-0.6413 

-0.7158 

-0.6465 

 

0.1800 

0.1748 

0.3699 

0.3051 

0.2593 

0.1902 

0.2879 

 

0.1947 

0.2088 

0.3369 

0.2988 

0.2890 

0.2082 

0.2549 

 

-0.6818 

-1.3012 

-1.0110 

-1.3179 

-0.7103 

-0.6711 

-0.6657 

 

-0.7221 

-1.2149 

-0.9705 

-0.1402 

-0.7820 

-0.7492 

-0.6947 

 

-0.2689 

-0.2106 

0.5994 

0.2447 

-0.3203 

-0.6677 

-0.6365 

 

-0.2158 

-0.0134 

0.7341 

0.4399 

-0.1532 

-0.5438 

-0.6968 

 

-0.7837 

-1.6625 

-2.7084 

-1.2746 

-0.7047 

-1.0340 

-1.1154 

 

-0.6928 

-1.5260 

-2.7229 

-0.9804 

-0.5271 

-0.8674 

-0.9075 
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Table S 2.5: Parameters for retrieval of ln[Kd()] ( = 380 and 412 nm) from the PC scores in 

reparameterized original SeaUV. 

 

      

ln[Kd(380)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

ln[Kd(412)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

 

-1.2217 

-1.2272 

-0.8579 

-1.1403 

-1.2114 

-1.2455 

-1.2534 

 

-1.7876 

-1.4196 

-1.1186 

-1.5585 

-1.4739 

-1.4788 

-1.5979 

 

0.1858 

0.2098 

0.2760 

0.2938 

0.2458 

0.1809 

0.2360 

 

0.0866 

0.2304 

0.2532 

0.3150 

0.2170 

0.2059 

0.2452 

 

-0.7745 

-1.1446 

-0.7948 

-1.1530 

-0.7891 

-0.8251 

-0.6872 

 

-0.6636 

-1.1086 

-0.7298 

-1.2024 

-0.8403 

-0.8218 

-0.6370 

 

-0.0879 

0.4063 

0.7782 

0.8470 

-0.1177 

-0.5554 

-0.6994 

 

0.0985 

0.6681 

0.5602 

1.2585 

-0.1140 

-0.4645 

-0.6863 

 

-0.2971 

-1.3060 

-2.4234 

-0.9017 

0.3527 

-0.4262 

-0.4918 

 

0.3059 

-0.8136 

-1.5218 

-0.2797 

0.6014 

0.2365 

0.1409 
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Table S 2.6: Parameters for retrieval of ln[Kd()] ( = 443 and 490 nm) from the PC scores in 

reparameterized original SeaUV. 

 

      

ln[Kd(443)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

ln[Kd(490)] 

OCD1 

OCD2 

OCD3 

OCD4 

OCD5 

OCD6 

OCD7 

 

-2.2066 

-1.6014 

-1.3676 

-2.1060 

-1.8612 

-1.6684 

-1.8911 

 

-2.9844 

-2.0572 

-1.9996 

-2.3101 

-2.1861 

-1.9753 

-2.3296 

 

0.0156 

0.2229 

0.2321 

0.3407 

0.2556 

0.2229 

0.2447 

 

-0.1219 

0.1255 

0.1680 

0.3096 

0.2000 

0.2339 

0.2713 

 

-0.5784 

-1.0648 

-0.7068 

-1.3342 

-0.8031 

-0.7812 

-0.5521 

 

-0.4842 

-1.0791 

-0.8.64 

-1.2606 

-0.6518 

-0.7334 

-0.4165 

 

0.1859 

0.8079 

0.5759 

1.5197 

-0.2636 

-0.3578 

-0.6241 

 

0.0640 

1.1181 

0.4028 

1.5211 

-0.2999 

-0.1401 

-0.4974 

 

0.9119 

-0.4814 

-1.1212 

0.1379 

0.8703 

0.6685 

0.6845 

 

2.2329 

-0.4627 

-0.8511 

-0.0667 

1.3206 

0.7013 

0.8936 
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Fitting parameters for inshore-water optimized SeaUV/SeaUVc algorithms: 

 

Table S 2.7: Mean and standard deviations to center and standardize ln(Rrs (,0
+
)) for inshore-

water optimized SeaUV/SeaUVc algorithms (derived from N = 119). 

 

  = 412  = 443  = 490  = 510  = 555  = 670 

     

 

     

-6.8047 

1.0950 

-6.2909 

1.0015 

-5.5858 

0.8633 

-5.4039 

0.8364 

-4.9791 

0.6710 

-5.8109 

0.5895 

 

Table S 2.8: First four eigenvectors to use to calculate the PC scores for inshore-water optimized 

SeaUV/SeaUVc algorithms (derived from N = 119). 

 

  = 412  = 443  = 490  = 510  = 555  = 670 

e1 

e2 

e3 

e4 

-0.4072 

-0.4035 

0.5864 

-0.4438 

-0.4254 

-0.2074 

0.2300 

0.2288 

-0.4301 

-0.0739 

-0.1026 

0.5091 

-0.4300 

-0.0438 

-0.3096 

0.3342 

-0.4271 

0.0515 

-0.6211 

-0.6139 

-0.3175 

0.8855 

0.3333 

-0.0538 
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Table S 2.9: Parameters for retrieval of ln(Kd()) from the PC scores in inshore-water optimized 

SeaUV (derived from N = 119). 

 

      

ln(Kd(320)) 

ln(Kd(340)) 

ln(Kd(380)) 

ln(Kd(412)) 

ln(Kd(443)) 

ln(Kd(490)) 

1.8559 

1.5603 

1.1009 

0.8116 

0.5629 

0.1920 

0.1969 

0.1841 

0.1831 

0.2003 

0.1962 

0.1743 

0.9903 

     0.9034 

     0.8973 

0.8309 

0.7945 

0.7932 

-0.6901 

-0.4325 

-0.1392 

0.2024 

0.3406 

0.4087 

0.7626 

0.5640 

0.5266 

0.0954 

-0.1626 

-0.1901 

 

 

Table S 2.10: Coordinates of the cluster centers corresponding to the four dark water domains 

defined in this study for inshore-water optimized SeaUVc (derived from N = 119). 

 

n Xn (PC1) Yn (PC2) 

DWD1 

DWD2 

DWD3 

DWD4 

-4.4836 

0.8671 

2.2617 

-0.0862 

-0.2043 

-0.3379 

-0.0836 

0.6324 
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Table S 2.11: Parameters for retrieval of ln[Kd()] ( = 320 and 340 nm) from the PC scores 

using inshore-water optimized SeaUVc algorithm (derived from N = 119). 

 

      

ln[Kd(320)] 

DWD1 

DWD2 

DWD3 

DWD4 

ln[Kd(340)] 

DWD1 

DWD2 

DWD3 

DWD4 

 

1.6813 

1.9161 

1.9194 

1.9259 

 

1.1870 

1.5810 

1.6333 

1.5987 

 

0.1537 

0.2134 

0.1246 

0.4115 

 

0.0931 

0.2470 

0.1236 

0.3839 

 

0.8013 

1.2361 

0.7697 

0.9184 

 

0.7546 

1.0965 

0.7547 

0.8347 

 

0.1765 

-1.0752 

-1.5190 

-0.3809 

 

0.4312 

-0.7010 

-1.0086 

-0.0937 

 

-0.4176 

1.2954 

0.6293 

0.4606 

 

-0.7157 

0.9912 

0.4981 

0.1138 

 

Table S 2.12: Parameters for retrieval of ln[Kd()] ( = 380 and 412 nm) from the PC scores 

using inshore-water optimized SeaUVc algorithm (derived from N = 119). 

      

ln[Kd(380)] 

DWD1 

DWD2 

DWD3 

DWD4 

ln[Kd(412)] 

DWD1 

 

0.2522 

1.1497 

1.0783 

1.1999 

 

0.0281 

 

0.0047 

0.2126 

0.1477 

0.3897 

 

0.0550 

 

0.5273 

1.0661 

0.7622 

0.7742 

 

0.3835 

 

0.7247 

-0.4476 

-0.8242 

0.3241 

 

0.5027 

 

-1.0622 

0.9243 

0.3563 

0.2196 

 

-1.1103 
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DWD2 

DWD3 

DWD4 

0.8867 

0.8200 

0.9300 

0.1701 

0.1507 

0.3779 

0.9254 

0.7696 

0.7224 

-0.2316 

-0.1859 

0.6709 

0.3261 

-0.1658 

-0.2136 

Table S 2.13: Parameters for retrieval of ln[Kd()] ( = 443 and 490 nm) from the PC scores 

using inshore-water optimized SeaUVc algorithm (derived from N = 119). 

 

      

ln[Kd(443)] 

DWD1 

DWD2 

DWD3 

DWD4 

ln[Kd(490)] 

DWD1 

DWD2 

DWD3 

DWD4 

 

-0.3852 

0.6433 

0.5321 

0.6953 

 

-0.9983 

0.2955 

0.0834 

0.3143 

 

0.0202 

0.1286 

0.1655 

0.4021 

 

     -0.0533 

     0.0618 

     0.1809 

     0.4160 

 

0.2538 

0.8554 

0.7410 

0.6909 

 

0.2249 

0.8647 

0.7113 

0.6970 

 

0.6002 

-0.1522 

-0.0221 

0.8319 

 

0.5128 

-0.1419 

-0.0268 

1.0661 

 

-1.2899 

-0.0429 

-0.4114 

-0.4765 

 

-1.5672 

-0.0014 

-0.3008 

-0.6296 
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Figure S 2.1: Performances of re-parameterization of the original algorithms through retraining 

the complete data set (N = 438) 
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Figure S 2.2: Performances of dark-water optimized SeaUV/SeaUVc algorithms (derived from N 

= 119) 
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APPENDIX C 

IMPLEMENTATION SCHEMES FOR SEACDOM ALGORITHM
8
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Introduction: 

This appendix contains a flow chart of step-by-step implementation schemes for the SeaCDOM 

algorithm presented in Chapter 3. All the parameters needed for retrieving spectrally resolved 

CDOM spectra are provided via online resources.  

 

Figure C. 1: Flow chart diagram for implementation of the SeaCDOM algorithm.  
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APPENDIX D 

SUPPLEMENTARY INFORMATION FOR CHAPTER 3
9
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Introduction: 

This appendix contains supplementary information for Chapter 3. Figure S 3.1 shows why the 

SeaCDOM algorithms failed in giving good estimates of ag for the waters in the Gulf of Maine 

and the upwelling Chile area in BIOSOPE data set.  

 

Figure S 3.1: (a) Rrs spectrum of cluster 4 and 5 in the training data set (grey) and Rrs of waters in 

the Gulf of Maine (green) (N = 25). Note that neither the magnitude nor the spectral shape of 

reflectance in the Gulf of Maine was captured by our algorithm, while performing the algorithm 

on this data set, the SeaCDOM mistakenly classified them into clusters 4 and 5 defined by the 

training exercise. (b) Rrs spectrum for clusters 8 and 9 in the training data set (grey) and the four 

outlier samples (blue) in the BIOSOPE data set collected from the Peru-Chile upwelling zone. 

Note that our algorithm succeeds in capturing the spectral shape and magnitude of Rr in this first 

step. (c) Absorption coefficients of particles in the BIOSOPE data set. Note that the four outlier 

samples (red) that collected from upwelling area are considerably higher than those sampled 

from more offshore region (gray) which were associated with good ag estimates. 


