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ABSTRACT

Single and multilevel linear and nonlinear mixed-effects model approaches were
applied to model Eucalyptus stand growth. Most of the data set had a longitudinal,
unequally spaced and unbalanced structure. By modeling heteroscedasticity,
autocorrelation and correlation among random effects, the precision of these modelsin
explaining data variation was increased. This approach has flexibility in selecting fixed
effects which will be significantly associated with random effects, for both linear and
nonlinear cases. Inthelinear case, the logarithm of basal areawas linearly associated
with some stand covariates. In the nonlinear case the three parameter |ogistic equation
was used to explain dominant height variation over age.

A tree profile equation was devel oped based on afour parameter logistic
equation, including covariates associated with random and fixed effects. The solid of
revolution technique was applied to obtain individual tree volume having the individual
tree profile. The robustness property of the mixed-effects model was used to estimate tree
profiles with information on dbh and total height only. Using this technology, individual
tree volume can be estimated with high precision with minimal information.
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CHAPTER 1

INTRODUCTION

Thereliability of aforest growth and yield prediction and projection system, with
response variables such as dominant height, basal area, trees per acre and volume, has
been based on estimator characteristics such as consistency, efficiency and sufficiency.
Forest biometricians have been devel oping and adapting statistical techniques to improve
those characteristics and to provide such systems to meet particular objectives for forest
management planning and decision making.

The multilevel model approach is a statistical technique that has been used in
many fields of study, generating improvements in parameter estimation. Also referred to
as multistage models, repeated measurements models, longitudinal data analysis, and
mixed models, this type of approach has been developed intensively during the last 20
years and has been applied to forestry, agriculture, ecology, biomedicine, sociology,
economics, and other areas. Authors such as Corbeil and Searle (1976), Dempster et al.
(1984), Stiratelli (1984), Ware (1985), Goldstein (1986 and 1991), Zeger (1986), Carter
and Y ang(1986), Chi and Reinsel (1989), Gumpertz (1989), Crowder (1990), Breslow
and Clayton (1993), Diggle et a. (1994), Davidian and Giltinan(1995), Burnett et al.
(1995), Vonesh and Chinchilli (1997), Wolfinger (1993), Littell et al. (1996), and others

have been developing basic and applied studies using multilevel models.



In forestry, studiesusing multilevel model approaches are relatively recent. Asa
pioneer study, Biging (1985) improved the estimates of site index curves using a varying-
parameter model. In another innovative approach, Lappi and Bailey (1988) described the
use of nonlinear mixed-effects growth curve, based on the Richards model, which was
fitted to predict dominant and codominant tree height, both at the plot level and at the
individual tree level. More recently, other studies based on random effect models have
been published in forestry. Studies such as the Kalman filter approach to localizing
height-age equations (Walters et al., 1991); linear mixed-effects modeling of the
covariance among repeated measurements with random plot effects (Gregoire et al.,
1993); bole-volume equations to spatially correlated within-tree data (Gregoire and
Schabenberger, 1995); estimating forest yield using functions with random effects
(Candy, 1997); a simultaneous system of linear and nonlinear mixed models to predict
forest growth and yield (Fang, 1999), and modeling forest growth and yield based on
multilevel nonlinear mixed models (Hall and Bailey, 2001) can be cited as recent
publications of multilevel modelsin forestry.

Eucalyptus can be considered, in aworldwide panorama, one of the most
important cultivated forestry genra due to the large number of species, adaptation to
different edaphic-biologic-climatic situations, and fast growth. Additionally, with the
development of silvicultural techniques, intensive management strategies, and genetic
improvement, the productivity of these plantations has been improving significantly,
leading to different types of products. For modeling purposes, awide range of studies
have been developed to generate prediction and projection systems (Paula Neto, 1991,

Campos, 1980 and 1983; Trevizol, 1985; Amaro, 1997; Diaz and Couto, 1999), but there



isno information on applying multilevel theory, including fixed and random effectsin
the previous studies. Most eucalypt plantations are from uniform genetic stock, having
been propagated by asexual reproduction, so that the variation is generated primarily by
environmental factors. In this situation, we have strong reasons to believe that by
modeling longitudinal and spatial correlation structures, the parameter will have
consistent estimates. Therefore, based on the idea of modeling time-within-individual
correlation, spatial inter-individual correlation, and adding the fixed and random effects
in the models we expect improvementsin the quality of the estimates from these linear
and nonlinear models.

The data set for this study isfrom clonal eucalyptus plantations located in the
southeast Brazilian Atlantic Coastal Region with a high degree of variation in soil,
precipitation, topographic characteristics, silvicultural treatment, and genetic material.
The data set is from permanent plots with repeated measurement information from 2
yearsto 10 years of age. The primary purpose of thiswork isto evaluate the performance
of multilevel linear and nonlinear models relative to previous modeling strategies. These
models will include both fixed and random variance effects and include methodol ogy

accounting for serial and spatial correlation.



CHAPTER 2
THE DEVELOPMENT OF A LINEAR MIXED-EFFECTSMODEL APPLIED TO
Eucalyptus PLANTATIONS

I ntroduction

Linear mixed-effects models have been used in different situations in recent years
to model longitudinal, spatial, and spatio-temporal processes in several scientific fields,
such as medicine (Verbeke and Lesaffre, 1977), biology (Christman and Jernigan, 1997),
engineering (Pinheiro and Bates, 2000), agriculture (Littell et a., 1996), and others.

In forestry, Gregoire (1995) applied the linear mixed-effects model to model
eastern white pine (Pinus strobus L.) and douglas-fir (Pseudotsuga menziesii (Mirb.)
Franco) basal area growth patterns from permanent plots of irregularly spaced trees from
an unbalanced and longitudinal data set. The model fitted shows marked improvement
compared with models that do not account for the error structure. In amore recent study,
Fang and Bailey (2000) applied this approach to model Slash Pine (Pinus dlliottii
Engelm.) basal areafollowing intensive silvicultural treatments and tested 9 models with
different variance and/or correlation structures.

In eucalypt plantations there is no record of using linear mixed-effects to model

growth and yield patterns. Due to the genetic and environmental variation in this



cultivation, improvement would be expected in the fitting process. The main purpose of

this study isto model the linear tendency between the natural logarithm of basal areaas a
function of the inverse of age, by plot and clone. Also, distributional assumptions will be
examined and, if necessary, the within-subject variance and/or correlation pattern will be

included in the estimation process.

Generalized Linear Mixed-Effects M odel

The general parametric form presented here is based upon that in Laird and Ware
(1982), cited by Davidian and Giltinan (1995), with some adaptations to forest growth
and yield studies.

Suppose m plots are sampled from a forest population and these plots are
measured repeatedly in time, for example, t times. If t isthe same for each plot, we have a
balanced data set, generating simple computational features and analysis, witht x m
available values. But unbalanced data sets are more common in forest growth and yield
studies. Thus, the number of repeated measurements over time will vary and t; will
represent the number of measurements for the ith plot. For example, if plot i is measured
annually during j years, which isaclassical situation in a eucalypts plantation, the value
of ti=j. In the case of abalanced data set, t1=t,=...=t=j. Lety; represents aresponse
vector for theith plot. So, y; has dimension of (j x 1) and this situation can be modeled

using alinear mixed-effects model (2.1).

Vi ZXiB + Zibi + g (2.1)



The response variable y; will be a vector with dimension (t; x 1), the X; will be a
matrix (ti X p): ti rows with repeated measurements and p columns of covariates,
including a column for the intercept. The g vector will have (p x 1) dimension
representing the parameters of the p fixed effects. For random effects, Z; isan (t; x k)
design matrix linking y; to the random effects b;, whichisup to (p x 1) vector
representing the random parameter estimated for plot i. The vector b; will have dimension
up to (p x 1), representing the random effects of the parameter intercept and the X
variables. It is common in the mixed-effects literature to represent the fixed effects with a
Greek letter and the random effects with a Latin letter. So, in this case, the plot number i
will have p fixed effects (B) including the intercept and up to p mixed effects (b). If the
total sample includes m plots, every plot will have the same values for fixed effects and
possibly different values for the random effects.

In forest growth and yield, one classical linear model relates the logarithm of
basal area (In(BA)), as aresponse variable, to stand-level variables such asthe inverse of
age(1/A), logarithm of dominant height (In(HD)), logarithm of number of trees (IN(N))
and the interactions among these covariates (equation (2.4)). If the plot i, for example, is
measured annually for 5 years, the dependent variable y;=In(BA) will be avector of
dimension (5 x 1), the X; will be amatrix of (5 x p), and the p vector will have (p x 1)
dimension. The value of p depends on the number of the significant covariates of the
right-hand side of the equation plus an intercept.

In standard regression assumptions, & ~ N (0,Z;), where ¥ is the within-plot

covariance matrix. If the observations are independent, Xi= o° 1, where I isthe (t; x t;)

identity matrix. In our example, if the 5 observations of the same plot through of time are



independent and with same variance, I will be (5 x 5) matrix and X; will be a diagonal

with o®. In practice, X; has many variations. Conditional on bj, (2.1) implies

E(yilbi) = Xip + Zib; (2.29)

Cov(yilbi) = X (2.2b)

If the random effects vector b; comes from a normal distribution with mean zero,

dispersion matrix ¥ (k x k) and independent of each other and of &;, the marginal mean

and covariance of y; is:

E(yi) = E{E(yilo)} = Xip (2.22)

Cov(yi) = E{ Cov(yilbi)} + COV{ E(yi|bi)} =X, +Z¥YZi =V, (23b)

Expanding our example for two groups (clones=c), we will have 10 plots (i) in

each group with 5 observation (j) over time for each plot and assuming the following

model,

In(BAdj=(ﬂw+bwo+<ﬂd+bw)xA;%+ cz+bcz)x|n(de)+(ﬂcg+bca>xA;%xln(de)wdj (2.4)

ij ]

with c=1...2; i=1...10; j=1...5, we can write the model in matrix form as follows:
YT=(YTy1,... Y110, YT21, Y'210)

YTc,i = (Yc,i,ly Yei2 Yeia Ycis Yc,i,5)-



So, YT will have dimension of (1 x 100).

Where,

Xi=

Xai

N

© O O O O

o O O O O

L

1Age;;,
VAge,;,
VAge;;
1Age,;,
VAge,;s

o O O o o

VAge,;,
UAge,,;,
UAge,, ,
VAge,;,
1/Age,, ;

o O O o O

In(H,,,)
In(H,;)
In(H,;5)
In(H, )
In(Hy;5)

O O O o o

In(H;,)
In(H,; )
In(H,; ;)
In(H,4)
In(H,5)

o O ©O o o

XT=(XT1] ... IXT1,10] X2] ...[X"2,10),

(VAgey;,)In(Hy;,) O
(VAge,,)In(H,;;) O
(VAgey;5)In(H,;;) O
(VAgey;4)In(Hy;;) O
(VAge,;5)In(Hy;;) O

(/Age,;,)In(H,; 1)
(VAge,;)In(H,;,)
(VAge,;5)In(H,; 2)
(/Age,; 4)In(H,; ,)
(VAge,;5)In(H,; 5)

O o O o O

B = (B1o, B2o, P11, P21, P12, P22, P13, P23);

Z:|20® 15,

Where |, isthe identity matrix of order n, ® isthe Kronecker direct product and 1,

denotes (n x 1) vector with all entries equal to one.

Further,

and

b = (bl, b21 ey blOs bll1 LR b20)T

T —
€ = (e11,1, €1,12, €1,1,3s- -+, 82,10,5)




The errors are independent with variance 6® and variance-covariance matrix X.
The random effects are independent with variance 6%, and ¥ representing its the
variance-covariance matrix and V being the variance-covariance matrix for response

variable Y. The following representations are useful for computational purposes.

_ 2
_ 2
X = 6°l100,

V=ZW¥Z +X=06%(0®%) +6° (lo®I5) = l2p ® (6% + 6°15)

Estimation of Fixed and Random Effects

In the last section, we found that the marginal values for y; are normally
distributed with mean X and variance-covariance matrix V= X; + Z;¥Z";. Following
Verbeck and Molenberghs (1997), let a denote the vector of all variance and covariance
components present in Vi, i.e., o will have all different elements of ¥ and all parameters
of Xi. Inour example, for theith plot, ¥ isrepresented by 10 different parameters
(4*(4+1)/12) and X by 5, taking into account a diagonal matrix. Letting @ = (7, a")" be
the vector of all parametersin the marginal model, the classical approach isto maximize

the marginal likelihood function with respect to 6.

N

Ly (0) = H{(Zn)_mlz |V () |7 x eXp[_%(Yi - XiB)T Viil(a)(Yi - X.B))} (2.5)

i=1
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If a is known, the maximum likelihood estimator of B, obtained from maximizing

(2.5) isgiven by

B =" XV A@x, ] S XV @)y, (2.6)

and its variance-covariance matrix is
N -1
VH&) -~ [Z XV ()X, j (2.7)
i=1

When a is unknown, but an estimate of a is available, V, (&) can be substituted

for V" («) . For estimating e, maximum likelihood (ML) and restricted maximum

likelihood (REML) methods are used. Details about these methods can be find in Searle,
Casdlla, and McCulloch(1992), Davidian and Giltinan (1995) and Vonesh and
Chinchilli(1997).

Using regression analysis when p=rank(X) < 4, the maximum likelihood method
generates smaller mean squared error for ¢ than restricted maximum likelihood. The
oppositeistrueif p>4 and n-p islarge (Verbeck and Molenberghs, 1997). Also,
restricted maximum likelihood estimation adjusts for loss of degrees of freedom due to
estimating fixed effects. REML estimation can be viewed as estimating variance
components based on residuals calculated after fitting fixed effects only (Davidian and
Giltinan, 1995).

Since random effects are assumed to be random variables, it is common to
estimate them by Bayesian techniques. The marginal distribution of b; is multivariate
normal with mean zero and covariance matrix ¥ and this distribution is referred to asthe
prior distribution of b;. After observed values for y; have been collected, the posterior

distribution of b; can be calculated as;



11

f(b; [y;)=f(b; Y, =y;)= J-f];)(/yl| tl)b)lf)];éb)l()jb (2.8)

The expression (2.8) is the density function of the multivariate normal distribution

(Smith, 1973) and b; is estimated by the posterior mean of b;.
b,(0) =Elb, | Y, =y,]= [b/f(by,)db, =¥ZV (), - X,B) (2.9)

Thisestimateis Best Linear Unbiased Predictor (BLUP) for b; ( Searle et al., 1992). The

covariance matrix for b; is:

cov(b,) :\Pzﬁ{wi —Wixi(ZN:xiwixi)*lxiTwi }zi\{', (2.10)

i=1

and to assess the variation of the difference between the random effects estimate and

observed (Laird and Ware,1982), the following expression is used.
cov(b, —b,) =¥ —var(b,)

Hypothesis Tests and Confidence Intervals

Tests are useful to assess the precision of the estimates and the significance of the
termsin the model. The first test discussed hereisthe likelihood ratio test (LRT).
Although called alikelihood test, this test can also be used to compare nested models

fitted by restricted maximum likelihood, but the models have to have the same fixed
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effects (Pinheiro and Bates, 2000). The nested model occurs when one model represents a
special case of another. So, if L, isthe greater likelihood of the more general model and

L, isthe smaller likelihood of the restricted moddl, the LRT will be;

LRT =2log(L2/ L;) =2[log(L2 ) —log(L1)] (2.11)

Since L, > Ly, the LRT will be positive and if k; is the number of parametersin
model i, the distribution of the LRT isay? distribution with k,-k; degrees of freedom.
The LRT value is compared with a y? (ko-k1,0) critical value and if LRT> x? (Ko-ky,),
generating a significant p-value (<0.05), the more general model is preferred over of the
restricted model.

The model precision aso can be assessed by the information statistic. This
statistic is represented by two methods: Akaike Information Criterion (Al C) (Sakamoto et
al., 1986) and Bayesian Information Criterion (BIC) (Schwarz, 1978). These criteriaare
evaluated as

AIC =-2log(L) + 2nga (2.129)

BIC =-2log(L) + nea l0g(N) (2.12b)
for each model, where L isthe likelihood value and npa is the number of parametersin
the model. Smaller values for both AIC and BIC are better. Since these tests are
conservative (Stram and Lee, 1994), generating p-values greater than they should be, itis

appropriate to use an a-value of 10% to select the best model.
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Variance Functions and Correlation Structures

Based on the assumptions of the mixed-effects model, the within-subject errors
are independent and normally distributed with variance 2. The random effects are
normally distributed with mean zero and covariance matrix ¥ and are independent for
different groups. When these assumptions are violated, we need to use techniques the
model the actual data structure.

The first technigue to solve these problems is to model the variance structure of
the within-group errors using covariates. Davidian and Giltinan(1995) gave the following
expression to define the general variance function for the within-group errors:

var(e; |b) =o?9%(u; v, 6), i=1,...M,j=1,....n; (2.13)
where M isanumber of groups, n; isthe number of observationsin theith group, ;;
=E(yij|by), vij isavector of variance covariates, § is avector of variance parameters and
g(.) isthe variance function. In forestry it is quite common for the within-group
variability to increase with some power of the absolute value of a covariate. For
example, the variability of the volume increases with diameter breast height. In this
study, we will use the varFunc classes in S-Plus (Pinheiro and Bates, 2000) to specify
within-group variance models. Among several classes of variance functions available, the

most useful in this specific study case was the varldent class.

var(e, |b,) =o%8% (2.14)

The power of this classis based on its capability to model different variances for

each level of adtratification variable s. Aswe will see further, the analysisis based on
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different genetic material (clones) with inconsistent variance patterns within-group. This
kind of variance class was very useful for modeling such situations.

In correlation analysis, among several families of correlation structures, the
autoregressive-moving average structure - ARMA (Box et a., 1994) is the most used and

well- known. The general structureis given by:
p q
& = Z(éigm + Z(gja(—j +8, (2.15)
i=1 j=1

Where ¢; refers to an observation taken at timet and & is the noise (error) term. The first
part of the expression refers to an autoregressive model (AR(p)) and second part
represents the moving average (MA(Q)). If p=0 we have the MA(Q) situation and,

conversaly, if g=0 we have the AR(p). In the AR(p) part, ¢ represents the correlation

parameters with order p and t-i isthe lag, or distance, between two observations. The

tendency isfor theg valuesto decrease over time, indicating that observations closein

time are more correlated than observations far apart, which is a common in longitudinal
studies. In the moving-average part (MA(Q)), the model assumes that the current
observation isalinear function of the independent and identically distributed noise terms
(a). Thevaue of qisthe number of noise termsincluded in the model. So, there are g

correlation parameters 0 in the model.

Data

The data sets are from commercial hybrid plantations of Eucalyptus genus from
the Brazilian coastal region, Bahia and Espirito Santo States, located between 17°48' S
and 40° 17° W. In Figure 2.1, each cloneis represented in one square and plots are

represented by each line. For example, the clone number 6039 is represented by 4 plots
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in this analysis. Each plot was permanently sampled from 3 to 10 times, with age varying
from 2 to 10 years, between 1992 and 2001, and its area varied from 131 to 200 m?.
Based on these variations, the data base was longitudinal, irregularly spaced and
unbalanced.

Figure 2.1 shows the relationship between 1/age and In(BA) for each plot within
each clone. It shows afairly consistent linear decreasein In(BA) with the 1/age, but with
variations in intercept and/or slope by plot/clone combinations. Based upon this data set,
one could group the clones based on their curve trend. For example, the clones 6039,
6054, 3903, 2747 and 1030 could be grouped based on their growth trend. This was not
done because each clone has different management and technological propertiesand it is
important to analyze each one separately. We will see later that these variations are more
due to site than to clonal characteristics, but some variation is credited to the clones

growth potential.

Fitting Linear Mixed-Effects Models

To fit the linear mixed-effects model we will follow the methods suggested by
Pinheiro and Bates (2000). In this specific case, the response variable isIn(BA) and the
fixed effect is represented by 1/age. The random effect will be the plots or sample units,
which are random units chosen from a population. So, in this case we will fit asingle-

level modd!.
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FIGURE 2.1. Linear relationship of the natural logarithm of Basal Area (m2/hectare)
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Thefirst stepisto fit asingle linear regression model of In(BA) on 1/age to the

data from all the plots, ignoring the grouping structure. After the fit, thereis considerable

variability, as shown in the residual plots on Figure 2.2. Another important point is the

unusual influence on the fit by some observations, mainly observation number 229, 233

and 502. In addition, the normal probability plot indicates that the error distribution has
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heavier tails. The Cook’s Distance shows two more important observations which are not
outliers but have significant influence in the fit results. These features indicate that the
simple linear regression model does not represent the structure of the data.

To check if there are differences among clones, we fitted a model which has
specific intercept and slope for each clone. The results of the interaction effect are shown
in Table 2.1. All Clone:(1/age) interaction had a significant p-value, suggesting that
growth patterns are different for different clones. Because the data are from repeated
measures on each plot, the basic assumption of independence of linear models may be
violated. Three clones are represented in Figure 2.3 for easy visualization of the subject
effect. When we plot the residual for each plot, the signal tended to be the same. This
characteristic is the motivation for using the linear mixed-effects models.

The next step isto perform a preliminary analysis to decide which random effects
to include in the model and what covariance structure will be most appropriate. To
eliminate the correlation between slopes and intercepts for each plot, the datawere
centered at 4 years (1/age=0.25). Figure 2.4 shows no correlations among the pairs of
slope-intercept for centered data. Both intercept and slope appear to vary per plot. The
estimated value and itsinterval were plotted for twelve plots representing three clones to
visualize how the parameter estimates vary among individuals (Figure 2.5). The
confidence intervals for each plot give aclear indication that it is necessary to estimate
separate intercepts and, in some cases, separate slopes to account for plot-to-plot
variability. Because only 12 plots were represented, the confidence intervals for slope had
ahigh overlap. If we had used all 115 plots, the overlap would be less frequent,

indicating that both parameters could be considered as random effects.
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TABLE 2.1. Significance of the Clones and interaction between Clone and 1/age
representing the data set used in the analysis.

Coefficients: value Std. Error t value PrizleD)
(Intercept) 2.7628 0.0205 134.8305 < 0.0001
Clone0014 -0.1425 0.0504 -2.8278 0.0057
Clone0034 -0.0715 0.0365 -1.9599 0.0529
Clone0331 -0.0706 0.0210 -3.3541 0.0011
Clone1030 0.0361 0.0124 2.9166 0.0044
Clone2747 0.0312 0.0111 2.8066 0.0061
Clone3901 -0.0235 0.0055 -4.2767 < 0.0001
Clone3903 0.0212 0.0061 3.4765 0.0008
Clone3906 0.0162 0.0072 2.2644 0.0258
Clone3910 0.0306 0.0058 5.2548 < 0.0001
Clone6039 -0.0165 0.0072 -2.2912 0.0241
Clone6054 -0.0035 0.0019 -1.7990 0.0751
InvAgeC -2.4075 0.0764 -31.5007 < 0.0001
Clone0014:InvAge -1.8937 0.2103 -9.0046 < 0.0001
Clone0034:InvAge -3.2333 0.1793 -18.0317 < 0.0001
Clone0035:InvAge -3.2125 0.2125 -15.1206 <0.0001
Clone0331:InvAge -3.1377 0.1470 -21.3491 < 0.0001
Clone1030:InvAge -4.3190 0.2659 -16.2444 < 0.0001
Clone1044:InvAge -2.1929 0.1994 -10.9973 < 0.0001
Clone1106:InvAge -3.0534 0.2345 -13.0193 < 0.0001
Clone1189:InvAge -2.5108 0.2452 -10.2378 < 0.0001
Clone1192:InvAge -3.3173 0.2140 -15.5048 < 0.0001
Clone2747:InvAge -3.1551 0.2133 -14.7900 < 0.0001
Clone3901:InvAge -1.2704 0.2689 -4.7238 < 0.0001
Clone3903:InvAge -3.7837 0.1703 -22.2177 < 0.0001
Clone3906:InvAge -1.5131 0.1877 -8.0601 < 0.0001
Clone3910:InvAge -1.7063 0.2267 -7.5266 <0.0001
Clone3913:InvAge -0.6142 0.2027 -3.0296 0.0026
Clone6039:InvAge -2.7458 0.2284 -12.0233 <0.0001
Clone6054:InvAge -3.8854 0.3196 -12.1560 <0.0001

CloneMUL1:InvAge -2.9523 0.1002 -29.4767 < 0.0001
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FIGURE 2.3. Residual plots of the linear model by subject.

Following from these analyses, we have arguments to fit the model as a mixed-

effects model, considering plots as a random unit.

The mixed-effects model was first fitted considering just 1/age as afixed

covariate. The AIC, BIC and REML were -747.3824, -721.0611, and 379.6912,

20

respectively. To make sureif the basal area growth patterns are different among clones, a

new model was fitted including the categorical variable Clone and the interaction
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FIGURE 2.4. Pairs plot relationship between intercept and slope fitted by plot.

Clone* (1/age). The new valuesfor AIC, BIC and REML were -644.8446, -471.7272,
and 362.4223. Based on these estimated parameters, the first model had better
performance. But, when we check the p-values for each clone and for the interaction we
found that 10 clones of 18 had significant p-value < 0.05, indicating different growth
patterns among clones. So, we decided to maintain the variables Clone and Clone* (1/age)
in the model. Further, our final purposeisto develop a model that accounts for the

variability among clones.
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To verify the effect of using mixed-effect techniques in fitting the model, the
values of the parameters estimated using just fixed effects were plotted against

parameters estimated by the mixed-effect model (Figure 2.6). It can be seen that the

22

individual estimates from the linear mixed-effect model, represented by “+”, tend to be

“pulled toward” the fixed-effects estimates, represented by “0”, mainly in larger
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residuals. This occurs for the reason that mixed-effects estimations represent the effect of
the individual fits and the fixed-effects estimates, associated with the population
averages. These are often referred to as “ shrinkage estimates’. In plots with an outlying
basal area growth pattern, the shrinkage is more evident. This characteristic gives a
certain robustness to outlying plot behavior. When we compare the lines fitted by the
fixed-effect and mixed-effect models (Figure 2.7; representing 36 plots of atotal of 115),
this attribute is better visualized. In some plots, like 7:3903 and 1:0331, we can verify the
greater sensibility of the fixed-effect in fitting individual plots. Inevery plot, the
distances from observed and estimated values are smaller when the plot effect isincluded

in the model, generating smaller residual mean squares.

Checking Distributional Assumptions

Two basic distributional assumptions will be checked: within groups and random
effects. Within-group errors are considered independent and identically normally
distributed, with mean zero and variance ¢ and independent of the random effects. The
random effects will be verified if they are normally distributed with mean zero and
variance-covariance matrix y, which do not depend on the group and are independent for
different groups. As pointed out by Pinheiro and Bates (2000), the most useful of the
methods for ng the validity of these assumptions are based on plots of the
residuals, the fitted values, and the estimated random effects. Also, the tests could be
performed by using hypothesis tests, but the conclusions rarely contradict the information

displayed in the plots.
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Aswe can see on Figure 2.8, in 12 plots representing 3 of the 18 clonesin the
analysis, the residuals are distributed around zero, confirming the assumption that E[£]=0.
Inresidual analysis, it is apparent that the variability is among plots. So, the within-plot
constant variance assumption was violated and it will be necessary to model this
variability to improve the model. If we use all 17 clonesin the analysis, the residual
distribution becomes more clustered. Also, Figure 2.8 shows some outlier observationsin
plot clone 1:3913 and 2:2747 and larger residuals for clone 1030. The box plotsindicate
that the variability is greater among plots representing the clone 1030. If the standard
residuals versus fitted values for all 18 clones were plotted (Figure 2.9), itisclear that
the variability among plots from some clones are greater than plot from others.

Based on observations of Figures 2.8 and 2.9, the first idea was to model the
variance by clone for the within-group error. It is possible to do this by using the S-plus
varldent function, from varFunc Classesin the nime library. This procedure allows a
variance model with different variances for each level or clone (Pinheiro and Bates,
2000). Table 2.2 represents the different values estimated for homoscedastic and
heteroscedastic models. The smaller values of AIC and BIC, the greater value of log-
likelihood and the very small p-value of the likelihood ratio statistic confirm that the
heteroscedastic model improved on adjusting and explaining the data over the
homoscedastic model. Graphics based on residuals and quantiles of standard normal are

presented to confirm the improvement (Figures 2.10 and 2.11).
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TABLE 2.2. Comparing Akaike Information Criterion (AIC), Bayesian Information
Criterion(BIC) and LogLikelihood (logLik) for homoscedastic and heteroscedastic

28

models.
Model DF AIC BIC LogLik | Test LogLik Ratio P-Value
1 - Homoscedastic 6 |-747.38 | -721.06 | 379.69 - -
2 - Heteroscedastic | 70 | -901.24 | -798.28 | 520.62 lvs?2 281.86 <0.0001

The next step isto asses the assumptions on the random effects. Figure 2.10

represents the normal plot of estimated random effects for the heteroscedastic model. The

assumption of normality appears reasonable for random effects, despite the fact that

there are two outliers. one for intercept (1:0034) and one for slope(8:0331). Considering

the variability of the data set, representing different clones in distinct regions, the

presence of just two outliersis not aconcern. The second assumption related to random

effects can be checked in Figure 2.11. It can be seen that the pairs slope-intercept for all

plot:clone combinations have mean close to zero and constant variance.

FIGURE 2.10. Normal plot of estimated random effect for heteroscedastic fitted model.
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FIGURE 2.11. Boxplots of the residuals for heteroscedastic linear mixed-effects model.

Since the data sets are from longitudinal information, with repeated measurements

by plots and/or spatial data, with observations indexed by spatial location, the next step is

to verify the correlation structures for modeling possible correlation dependencies.

Because these data are not equally spaced in time, we used the spatial correlation to fit

continuous-time correlation models. Figure 2.12 is a graphical representation of sample

semivariogram. The semivariogram values appear to increase up to 0.10 and then

decrease. We tried to model this pattern using five spatial correlation models:

Exponential, Gaussian, Linear, Rational quadratic, and Spherical. The Spherical spatial

model had better fit in this specific situation. The resulting plot, shown in Figure 2.13,
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appearsto vary randomly around y=0.5, with no observed patterns. This suggests that the
spherical model is adequate. The AIC and BIC values are smaller indicating that
heteroscedastic-autocorrelation model had an improvement in representing these data.
Also, the large value of the likelihood ratio test indicate the evidence of dependence,

generating a p-value=0.0004.

TABLE 2.3. Comparing Akaike Information Criterion (AIC), Bayesian Information
Criterion(BIC) and LogLikelihood (logLik) for homoscedastic, heteroscedastic and
heteroscedasti c-autocorrel ation models.

Test LogLik

Ratio P-Value

Model DF AIC BIC LogLik

1- Homoscedastic 6 -747.38 -721.06 379.69 - - -
2- Heteroscedastic | 70 -901.24 | -798.28 | 520.62 l1vs2 |281.86 | <0.0001

3- Heteroscedastic/ | 4, | 143475 | .872.41 | 55436 | 2vs3 | 67.49 | 0.0004
Autocorrelation

The assumption of normalized residuals for each clone can be confirmed by
Figure 2.14. With some exceptions, the residuals have fairly normal distribution,
confirming the normality assumption after the modeling heteroscedastic and
autocorrelation.

The final parameters estimated for fixed and random effects can be seen on Table
2.4. Considering all 115 plots, both random intercept and slope had positive or negative
values. The parameter estimates for each plot are generated by adding the fixed and
random effects. So, considering the parameter values, the curves for each plot had

different intercepts and slopes.
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TABLE 2.4. Fixed and mixed parameters estimates for the final model, with
heteroscedastic and autocorrelation modeled, representing 44 plotsin atotal of the 115.

) Fixed Intercept - Random Fixed Slope - Random
Plot:Clone B P Intercept- by, B, P Slope- by,
1:0331 2.7505 0.173135 -2.494754 -0.602890
2:0331 2.7505 -0.326031 -2.494754 -0.820808
3:0331 2.7505 0.086599 -2.494754 -0.437708
4:0331 2.7505 -0.112138 -2.494754 -0.759980
5:0331 2.7505 0.003331 -2.494754 -1.161210
6:0331 2.7505 -0.468503 -2.494754 -0.934774
7:0331 2.7505 -0.339641 -2.494754 -1.133078
8:0331 2.7505 0.303319 -2.494754 0.701643
1:1030 2.7505 -0.153020 -2.494754 0.456104
1:1044 2.7505 -0.062380 -2.494754 -0.320059
2:1030 2.7505 -0.300282 -2.494754 0.375090
2:1044 2.7505 0.037841 -2.494754 -0.644155
1:1106 2.7505 -0.172280 -2.494754 0.907539
3:1030 2.7505 -0.279085 -2.494754 0.517948
3:1044 2.7505 0.113330 -2.494754 0.077612
2:1106 2.7505 0.075706 -2.494754 0.766970
1:1189 2.7505 0.031074 -2.494754 0.462230
1:1192 2.7505 -0.135062 -2.494754 -0.746007
4:1044 2.7505 0.273362 -2.494754 0.690275
3:1106 2.7505 0.001544 -2.494754 0.186253
2:1189 2.7505 0.054275 -2.494754 -0.143285
2:1192 2.7505 -0.166382 -2.494754 -0.713032
5:1044 2.7505 0.343911 -2.494754 0.488235
4:1106 2.7505 -0.043321 -2.494754 0.330997
3:1192 2.7505 -0.227671 -2.494754 0.774958
6:1044 2.7505 0.137643 -2.494754 0.491384
7:1044 2.7505 0.273095 -2.494754 -0.186133
1:2747 2.7505 -0.125751 -2.494754 0.242588
2:2747 2.7505 -0.007582 -2.494754 -0.292900
3:2747 2.7505 -0.054132 -2.494754 0.383382
4:2747 2.7505 0.095186 -2.494754 0.686109
5:2747 2.7505 0.073741 -2.494754 0.340994
1:3901 2.7505 0.330668 -2.494754 -1.054732
1:3903 2.7505 -0.079383 -2.494754 0.504073
1:3906 2.7505 0.098306 -2.494754 -1.391277
1:3910 2.7505 0.168650 -2.494754 -0.603410
1:3913 2.7505 0.496449 -2.494754 -1.043936
2:3901 2.7505 0.244551 -2.494754 -0.847973
2:3903 2.7505 -0.108126 -2.494754 0.385165
2:3906 2.7505 0.168061 -2.494754 -0.724138
2:3910 2.7505 0.234550 -2.494754 -0.388806
2:3913 2.7505 0.419233 -2.494754 -0.204785

3:3903 2.7505 -0.015414 -2.494754 0.491923




Relating the Random Parameter swith Plot Characteristics.

The focal point here is to relate the random intercept and slope estimates to plot
characteristics. This method is similar to parameter prediction by Clutter(1983), that
related fixed parameters of the fitted curvesto site index and other variables through
linear or nonlinear regression procedures. The crucial difference isthat the parameters
used are random, representing each plot sampled. The application of this method isto
estimate the random-effect parameters for other plots, which represent a specific stand,
based upon plot properties, such as site index and trees per hectare. In Figures 2.15 and
2.16 it can be seen that the random intercept is linear-positively related to site index
(base-age = 7 years) and the random slope is linear-negatively related to site index. This
suggests alinear model to represent this relationship. The variable N (number tree per
hectare) does not have a significant effect in explaining the variation.

The results of the simple linear regression between site index and random
parameters are presented on Figures 2.17 and 2.18. We had a better fit for the intercept
variable with good residual distribution and relatively high R-squared (0.63). Even
though the R-square for slope was not strong (0.12), the important result was the residual
distribution, which had uniform distribution around zero.

In order to check the precision of relating random parameters with plot
characteristics, we compare estimated and observed basal-area for some plots which were
not included in the analysis (Table 2.4). The percentage difference between observed and
estimated basal-area varies from 0% to 31.6% and most of them were |ess than 10
percent. In view of the fact that the clones in this analysis are different from those used to

estimate the mixed-effect model for basal area, this result can be considered
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precise in terms of projection. The signals of the difference had greater variation in
positive and negative values, demonstrating a compensation in overestimation and

underestimation of basal area, decreasing the final error of estimate for the population.

Discussion

The linear mixed-effects model generated precise estimates for both fixed
(/Age), and random effects (plot). More variability was found among different clones
than among plots of the same clone, meaning it was necessary to include the clone effect
in the analysis. Theindividual estimates from the linear mixed-effect model tended to be
“pulled toward” ( “shrinkage estimates’) the fixed-effects estimates because mixed-
effects estimates represent the effect of the individual fits and the fixed-effects estimates,
associated with the population averages, giving a certain robustness to outlying plot
behavior.

Although it was not verified that there were problems with residual distribution
within plots, the heteroscedasticity among plots was modeled and the information criteria
statistics and likelihood values had a significant improvement. Moreover, because the
plots are from different locations with environmental variations, the spatial correlation
pattern was modeled. Once more the information criteria statistic and likelihood values
showed significant improvement. Semivariogram and normal plots by sample unit
showed the superiority of the heteroscedasti c-autocorrelation model.

The random parameters estimated in the mixed-effects model were related to site

index of each plot, and two linear regression equations were generated to estimate these



TABLE 2.5. Basal-area estimated for new plots using mixed-effects model.
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Dominant Basal Area Dominant Predicted o

Clone Age(years) Height (m2/hectare) Height in Age Basal Area Differ(:ence
(meters) 7 (meters) (m2/hectare)

HUGA45 2.50 17.50 11.0900 29.24 11.6738 -5.3
HUGA45 2.50 18.50 13.7600 30.24 12.1142 12.0
HUGA45 2.50 15.50 12.2000 27.24 10.8405 111
EGRBS1 2.50 16.75 9.1500 28.49 11.3541 -24.1
EGRBS1 2.50 18.75 12.3200 30.49 12.2269 0.8
EGRBS1 2.50 18.75 12.4900 30.49 12.2269 2.1
EGRBS1 2.50 21.25 12.8200 32.99 13.4128 -4.6
EGRBS1 2.50 18.00 14.0500 29.74 11.8920 15.4
EGRBS1 2.50 15.50 11.6000 27.24 10.8405 6.5
EGRBS1 2.50 19.25 12.9900 30.99 12.4554 4.1
1172 2.17 13.00 8.4900 26.37 8.9981 -6.0
1172 2.17 15.25 13.0100 28.62 9.7002 25.4
1172 2.17 14.75 10.1400 28.12 9.5396 5.9
1172 2.17 14.25 8.9800 27.62 9.3817 -4.5
1172 2.17 12.75 8.0600 26.12 8.9233 -10.7
6024 2.17 13.50 8.0100 26.87 9.1496 -14.2
6024 2.17 13.00 6.8400 26.37 8.9981 -31.6
6024 2.17 14.75 8.7500 28.12 9.5396 -9.0
6024 2.17 14.00 8.3200 27.37 9.3037 -11.8
3902 2.67 14.75 9.1300 25.76 10.9359 -19.8
1052 2.67 18.25 14.4600 29.26 12.5158 134
1052 2.67 18.25 16.6000 29.26 12.5158 24.6
1052 2.67 18.00 13.2600 29.01 12.3957 6.5
1052 2.67 18.00 14.7500 29.01 12.3957 16.0
1052 2.67 18.50 15.1200 29.51 12.6370 16.4
1052 2.67 17.00 13.4000 28.01 11.9269 11.0
1052 2.67 16.25 10.9800 27.26 11.5870 -5.5
3902 2.67 17.25 13.3200 28.26 12.0424 9.6
3902 2.67 15.00 10.2500 26.01 11.0419 7.7
3902 2.67 14.25 8.8800 25.26 10.7272 -20.8
0010 2.67 16.50 12.7100 27.51 11.6992 8.0
3902 2.67 14.50 8.3600 25.51 10.8310 -29.6
3902 2.67 18.00 15.5600 29.01 12.3957 20.3
0010 2.67 17.00 11.7600 28.01 11.9269 -1.4
0010 2.67 18.00 13.1100 29.01 12.3957 5.4
0010 2.67 16.50 12.6600 27.51 11.6992 7.6
0010 2.67 16.25 14.6400 27.26 11.5870 20.9
MISTSE 2.00 14.00 8.7400 28.29 8.6489 1.0
MISTSE 2.00 13.25 8.7200 27.54 8.4498 3.1
MISTSE 2.00 12.75 9.7900 27.04 8.3196 15.0




TABLE 2.5. Continued.
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MISTSE
EURCHM
EURCHM
EGRANH
EGRBS1
EGRBS1
EGRBS1
EGRBS1
3908
3908
3908
3908
3908
3908
3908
3908
3908
1255
1255
1255
1255
1255
1255
1165
1165
1165
1165
1165
1165
209

209

209

209

209

209

2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.83
4.08
4.92
5.83
7.00
8.08
8.92
9.83
10.67
3.50
4.33
5.42
7.50
8.42
9.17
3.50
4.33
5.42
7.50
8.42
9.17
3.50
4.33
5.42
7.50
8.42
9.17

13.00
12.75
13.50
14.00
14.00
14.50
13.50
13.75
20.00
27.75
28.75
31.75
33.50
34.75
36.25
36.75
37.25
16.50
22.25
24.50
26.50
27.50
29.00
24.00
24.75
25.50
27.00
28.00
30.00
20.50
22.25
23.00
24.50
25.25
27.00

8.0200

8.4000

8.9600

9.2100

8.9400

9.3800

7.2800

7.2200
16.6600
20.5300
23.5800
24.8300
28.1800
28.4800
29.2800
30.9300
31.3700
11.9900
15.4500
19.1000
18.7500
19.7600
21.2300
17.1000
19.0000
21.5100
22.4400
23.2900
23.9600
13.1800
16.0300
18.0500
19.5800
20.1700
21.6800

27.29
27.04
27.79
28.29
28.29
28.79
27.79
28.04
30.33
33.91
32.77
33.84
33.50
33.11
33.49
32.87
32.45
24.40
27.73
27.42
25.71
25.40
25.92
31.90
30.23
28.42
26.21
25.90
26.92
28.40
27.73
25.92
23.71
23.15
23.92

8.3845

8.3196

8.5156

8.6489

8.6489

8.7842

8.5156

8.5820
13.8306
22.0304
23.6094
27.3406
29.2526
30.3133
32.0217
31.9157
31.9205
12.8597
17.1727
19.0916
19.9148
20.3095
21.4008
17.8692
19.3206
20.0688
20.4493
20.8638
22.5979
15.3261
17.1727
17.7144
17.9127
17.9921
19.1935

-4.5
1.0
5.0
6.1
3.3
6.4

17.0
18.9
17.0
-7.3
-0.1
10.1

-3.8

-6.4

-9.4

-3.2

-1.8

-7.3

11.2
0.0

-6.2

-2.8

-0.8

-4.5

-1.7
6.7
8.9

10.4
5.7
16.3

-7.1
1.9
8.5

10.8
115
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parameters based upon site information. The fitted equations were tested in various new
plots representing different clones. The method generated precise results with prediction

error in general of less than 10 percent.



CHAPTER 3

NONLINEAR MIXED-EFFECTSMODEL APPLIED TO CLONAL Eucalyptus
PLANTATIONS

Introduction

Similar to the linear case, nonlinear mixed-effects models also have been applied
in modeling an assortment of situationsin recent years. Due to the nonlinear
characteristics of growth curves and the variation among random subjects, the nonlinear
mixed-effects model approach isarich tool for modeling such curves. In addition, the
biological interpretability of both the fixed and random parameters make this approach
directly connected with population feature.

In forestry, the application of the nonlinear mixed-effect theory has been
increasing in recent years. In one of the pioneer studies, Lappi and Bailey (1988) used the
nonlinear Richards equation to model tree height with random stand and tree parameters.
Also, Walters et al. (1991), Gregoire and Schabenberger (1995), Fang (1999) and Hall
and Bailey (2001) have published studies based on this approach.

The main purpose of this study isto fit the logistic equation to model height
growth of eucalypt plantations using random and fixed parameters, accounting for

variation within plots and by clone and modeling the autocorrelation within subject.

41
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Generalized Nonlinear Mixed-Effects M odels

Asin linear case, we will follow the methodology presented by Davidian and
Giltinan (1995) and Lindstrom and Bates (1990) to present the basic framework features
about nonlinear mixed-effect models. Again, we will consider the response variable y;
representing the group i (or plot i in our case) measured over timej. So, i=1,...,m,
j=1,...,n;, misthe total number of plots and n; is the number of repeated measurents of
the response variable. In a balanced data set, n;=n,=...=ny. We can use the nonlinear

function y; = f(g;,v;) +¢; to represent the relationship between the response variable

ij?
and the covariates within the ith group, where f isageneral, real-valued, differentiable

function of a group specific parameter vector ¢, and acovariate vector v

i and g isa

normally distributed within-group error term. The function f hasto be nonlinear in at

least one component of the group-specific parameter vector ¢. , which has the form

i

4,=AB+Bb, b ~N(0,¥), (32)
where B isa(p x 1) vector of fixed effects, by isa (q x 1) vector of random effects
associated with the ith group, and Aj; and B;; are incidence matrices . The assumptions are
the same asthose in the linear case. The within-group errors are independently
distributed with mean zero and variance o2 and independent of the random effects.

Further we will use the logistic equation with three parameters to model the

dominant height growth pattern as afunction of age. If we assume that the final model
will have three fixed and three random effects, the model and the matrices of the

expression ¢, = A5+ B, will have the following format:
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D, - by +e, (32)
1+expl—(a; —¢2)/ 5]

¢, [1 0 0] [B, 10 0f|by
¢, [=/01 0| [B,|+|0 1 0]|b,
¢5 | [0 0 1] B, 0 01f|by

Vi Vo Vi
bi~N |0y, Wy Wiy ,&j ~N (0,0).
Vi Vi Va3

Where HD represents Dominant Height, which is the mean of the 100 trees of
largest diameter per hectare, a; isthe age of plotiintimej and ¢ ; are parametersto be
estimated.

The approach in modeling variance and correlation structuresis basically the
same as for the linear mixed-effects model. Details can be find in Pinheiro and

Bates(2000), Davidian and Giltinan(1995) and Littell et al. (1999).

Data

The data set, the same used for the basal-area study, is from permanent plots of
Eucalyptus hybrid, propagated as clones, cultivated in the Brazilian Coastal Region, in
Bahia and Espirito Santo states. Each plot was measured from 3 to 10 times, between
1992 and 2001. So, the data set is represented by longitudinal, irregularly spaced and
unbal anced plots.

The response variable for each plot will be Dominant Height (HD) and the
covariate associated with the response variable will be the Age(A). In Figure 3.1 we can

see adistinct nonlinear increase of HD with Age. Also, thistrend has different patterns



for different Plot x Clone combinations, including the situation in which the number of
measurements was not sufficient for HD to approach an asymptote. We will further
examine the robustness of the mixed-effects model for modeling this situation by using
auxiliary information from other plots to model insufficient repeated measurements.

Some variation between Plot x Clone combinations are due to site quality and/or
genetic differences between clones, leading to different curve shapes (polymorphism). In
Figure 3.1 it is clear that some plots have lower asymptotes and/or early inflection
points, representing a polymorphic system of site equations. Therefore, the focusisto
model the fixed and random parameters to generate afamily of polymorphic site

eguations, that will represent the site and clone variations.

Fitting Nonlinear Mixed-Effects Models

Asseenin Figure 3.1, nonlinear trends and the variation among plotsisthe
primary motivation to consider a nonlinear model. Similar to the linear mixed-effects
model, we will use asingle level mixed-effects model where the response variableis
dominant height (HD).

We have noted the variations among plots to justify the use of the mixed-effects
model. After trying some modelsto fit the data set, such as Gompertz, Richards and
Weibull-type models, we chose the logistic model, which proved to be precise and

flexible in this case:
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o - b, v,
! 1+ eXp[—(ai,- _¢2i)/¢3i]

Where:
HD;; = Dominant Height (meters) for i-th plot on timej;
a; = Age(years) for i-th plot on time j;

&jj = Random error;

¢li Bl bli
@i = |, [=[B,|+|by |=8+D
by Bs by

bi ~N (O,\P) and &j~ N (0,(52)
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Here, # isavector of fixed effects and b; represents the vector of random effects.

g; and bj are independents. ¢, isthe horizontal asymptote as age goesto infinity. ¢, is
the age value at which the response is ¢, /2. It is the inflection point of the curve. ¢, is

the scale parameter, which represents the distance on the x-axis between the inflection

point and the point where the response is ¢, /(1+e) =0.73 @, . In the basic assumptions,

the random effects are normally distributed and independent for different groups and the
within-group errors are independent and identically normally distributed and independent
of the random effects.

Ignoring the grouping of the dominant height measurements and the random
effect, the model (3.1) was fitted using the entire data set, using standard nonlinear least
sguares methodology. The boxplots in Figure 3.2 show that the residuals tend to be
mostly negative for some plots, positive for others, and the plots have different variations.
If the model (3.1) is adjusted for each plot separately (Figure 3.3), the pattern for each
plot is evident. Some gaps in Figure 3.3 are because the plot does not have enough
observationsto fit the model. When the model was fitted as a fixed effect model for all
plots together, the residual standard error was 4.38646. In contrast, the residual standard
error had value 1.565119 when the model was adjusted for each plot separately,
indicating that adjustment for each plot accounted for the Plot x Clone effect.

The drawback in fitting each plot separately is that we had an over-parameterized
model. In our case, we have 596 plots with 3 parameters per plot and the model does not

take into account similarities among plots and variability among and within individuals.
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The mixed-effects models were designed to consider these and other characteristics of
the group analysis.

The mixed-effects model (3.1) was fitted using our data set (Table 3.1). The large
estimate for the standard deviation for the three random effects suggests that they are
needed in the model. The AIC, BIC and LogLikelihood values were 2467.838, 2511.740

and -1223.919, respectively. Based on the relatively high correlation between the ¢,
and ¢,, parameter estimates, we tried to eliminate the ¢,, random parameter, keeping it

just as afixed effect to avoid ill-conditioning problems associated with the variance-
covariance matrix and over-parameterized random-effects. The AIC, BIC and
LogLikelihood values were 2470.304, 2518.597 and -1224.152, indicating that the

random effect is needed in the model.
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FIGURE 3.4. Scatter plots of standardized residuals versus fitted values
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TABLE 3.1. Information of fixed and random effects and correlation

Fixed Effect Random Effect Correlation
Parameter Value Stand. Error Stand. Error ¢ b3
P1 28.62547 0.4511514 4.157212 0.807 0.017
b2 2.12669 0.0521297 0.362975 X 0.604
$3 1.82543 0.0714603 0.337231 X X
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Checking Distributional Assumptions

Similar to the linear mixed-effects model, the nonlinear distributional
assumptions require that the random effects are independent and normally distributed
with mean zero and variance-covariance matrix ¥. The within-group errorse;; are
independent normally distributed with mean zero and variance o and independent of the
random effects.

The plot of the standardized residuals versus the fitted values, presented in Figure
3.4, shows that the residual s are distributed symmetrically around zero, with
approximately constant variance. This does not indicate any departure from the
assumptions for within-group error. With the exception of some possible outliers, the
homoscedastic model provides a good representation of the data. Some heteroscedastic
models were fit with variable variance-covariance structure but the values of AIC, BIC
and LogLikelihood did not show significant improvements.

The distribution of the random effects can be examined in Figure 3.5. The result
does not indicate any serious violation of the assumption of normality for random effects,

with some outliers present on the ¢, and ¢, parameters.

The adequacy of the fitted model can be visualized in Figure 3.6, representing 36
plots from atotal of 115. Both the population predictions, with random effects set to zero,
and the within-group predictions can be compared. The plot-specific estimates are close
to the observed values, indicating that the logistic mixed-effects model adequately

represents the dominant height growth data.
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Plotslike 4:1044 and 5:1044, for example, reach the asymptote early. Such trends

were described only by the mixed-effects model.
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FIGURE 3.7. Observed values of dominant height by age and plot

Figures 3.7 and 3.8 show the observed and estimated curves for different

combinations of clone/plot. Figure 3.8 represents an assortment of shapes for dominant

height growth, including anamorphic and polymorphic curves. Thus, we had strong

variations in both fixed and random effects for the three parameters of the logistic

equation. This suggests a biological interpretation for the parameters.
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Biological I nterpretation to Fixed and Random Effects

Age (Years)
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Biological interpretations can be given to the parameters of the logistic equation

(3.3), where ¢ 1 isthe asymptote parameter (maximum height), ¢, istheinflection point

(age at which %2 of maximum height occurs) and ¢ 5 isthe scale parameter (distancein

years from the inflection point to the point where the height is 73% of the maximum
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height). The intention here is to provide abiological interpretation for fixed and random
effects which generate these parameters. Figure 3.9 represents the dominant height
growth curves for the clones labeled 0014, 1044, and 3903. The classification of the
curves are either anamorphic or polymorphic and, sometimes, “quasi-anamorphic”. In
clone 3903, the different curves have nearly the same pattern and the curves with a
greater asymptote parameter have smaller middle response and scale parameters. Thereis
a high correlation between the asymptote and the other two parameters. In this case, for a
new observation representing this clone, we could estimate the asymptote parameter

based on an early inventory which will give usinformation about ¢, and ¢ 3. The same

situation is not clear when we analyze the height growth profiles for clones 0014 and
1044. Due to nondisjoint polymorphism of these curves, sometimes a curve with smaller

¢ and ¢ 3 parameters, which indicate good site, does not have alarger value for the ¢ ;

parameter. Thus, if a new observation, with height/age information for an early age, is
projected in thistype of curve, the curve generated could have two or more different
shapes, generating a projection problem. Here, the problem is more evident because the
analyses were carried out based on plots with subjects (trees) with the same genotype and
the variations are due to environment only.

Clutter (1983) commented that the solution to this problem is to include other
variable(s) than height and age in the site index system. Studies such as Zahner (1962)
and Newberry and Pienaar (1978) include soil categories as a discrete variable to explain
the polymorphism of the curves. However, as pointed out by Clutter (1983), when the
additional variables are quantitative and continuous, there is no alternative to viewing the

curve system as being polymorphic-nondigoint. Thus, one could include quantitative
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soil chemical and physical information as covariates and fit a systemm more precisely.
Other information, such as precipitation, site preparation, fertilization, and other
silvicultural treatments would be useful as covariates to explain the

anamor phism/polymorphism behavior of the dominant height growth curves.

Dominant Height (nmeters)

Age(years)

FIGURE 3.9. Dominant height growth for three different clones

Discussion

The nonlinear mixed-effects model, represented here by the logistic equation with
three parameters, has considerable flexibility in represent the dominant height growth
pattern for eucalypt clones, generating either an anamorphic (or “ quasi-anamorphic”) or
polymorphic sets of site index curves, depending on the combination of clone and
environment.

Using information statistics (A1C and BIC), logLikelihood and correlation

analysis, we conclude that the logistic model with three fixed and three random effects
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does not generate an ill-conditioned variance-covariance matrix and, consequently, that
the model is not over-parameterized.

The analysis of the scatter plot of the standard within-group residuals shows a
uniform distribution around zero with approximately constant variance, indicating that
the homoscedastic model provides a good representation of the data. Also, the
assumptions related to random effects was examined and it was concluded that the three
parameters are approximately normally distributed, with no serious violation of this
assumption.

The fitted values representing 115 plots confirmed the adequacy of the model to
represent the data set, with strong variation among the three random parameters,
indicating that the plots have different asymptotes, inflection points and scale.

Due to the differences among the random parameters of the logistic model, within
plots and among plots, the system of site curves generated varied substantially across
location and clones, with anamorphism or polymorphism, depending on the site/clone

combination.



CHAPTER 4

LINEAR AND NONLINEAR MULTILEVEL MIXED-EFFECTS MODEL
APPLIED TO Eucalyptus PLANTATIONS

I ntroduction

Multilevel mixed-effects models are based on nested classification factors. In
Chapters 2 and 3, the mixed effects model was devel oped with just one level, which was
plot. Here, supported by the availability of the individual tree data set, the focus will be
on modeling two levels: plot (level 1) and trees within plot (level 2). Based on definitions
by Daniels and Burkhart (1988), this situation would have an intermediate level of
resol ution between distance-independent and distance-dependent individual -tree models.
Although the data sets have a distance-independent level of resolution, the modelling
approach including random effects and spatio-temporal process could be considered a
superior level of resolution compared to distance-independent level without these

approaches.
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In forestry, multilevel mixed-effects model, taking in to account the linear and the
nonlinear multilevel approach, was fitted by Fang(1999) to model the growth of slash
pine with different cultural treatments.

Again, we do not have information about applying multilevel mixed-effects
approach to model Eucalyptus stand growth. The general purpose of this study isto
assess linear and nonlinear two-level (plot and tree within plot) mixed-effects approach to

model basal area and dominant height growth.

Generalized Multilevel Linear Mixed-Effects M odels

The formulation presented in chapter 2 for single-level linear mixed-effects
models can be extended to the two nested levels case. The response variable yij will be
measured for the first level i, second level j and occasion (time) k. The general model
has the follow formulation:

Yii =XiiB + Zijbi + Zijbij + g (4.2)

Where Xj; are matrices of fixed effects with dimension (nj; x p); p isavector of the fixed
parameters with dimension (p x 1); Z;; are matrices with dimension (n; X g,) associated
with the first level random effects b;; Z;; are matrices of dimension (n; X ) associated
with the second level random effects bj;. and g;; are the error terms. The assumptions are

the same as those for single level model.

Generalized Multilevel Nonlinear Mixed-Effects Models
In the single level nonlinear approach we had two random components in the
model which were represented by the random error within group () and the subject

effect (b;). In the multilevel nonlinear approach the model is extended including more
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than one level of random subject effects and these effects are nested. For example, plots
are random and trees are random and nested within plots, providing a case of two-level
random effects model. The model will be represented by yijx which is the response
variable of the kth observation in time on the jth second-level group (tree) and ith first-

level group(plot). The expression representing this situation is

Yik =F(dy 05 )+ &5 - (4.2)

Wherei=1,...,m, j=1,...,n;, and k=1,...,n;. Again, f isageneral, real-valued,
differentiable function of a group specific parameter vector ¢, and a covariate vector

Uy, ad g isanormally distributed within-group error term. The function f must be

nonlinear in at least one component of the group-specific parameter vector ¢, , which has
the form
¢; =AuB+B; b, +Byby, b, ~N(0,¥;) and b; =N(0,¥,) 4.3)

where B isa(p x 1) vector of fixed effects and b; isa (g; x 1) vector of random effects
associated with the ith group, bj; isa (o2 x 1) vector associated with the second level
random effects and assumed to be independent of the first-level random effects, and Aij
and B;jx are incidence matrices. The assumptions are the same as those in the linear case.
The within-group errors are independently distributed with mean zero and variance ¢*

and are independent of the random effects.
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The logistic equation with three fixed parameters will be used to model dominant
height growth pattern as afunction of age. Suppose that the final model will have three
fixed and three random effects, the model and the matrices of the expression
¢; =AuB+B, b, + By b, will have the following format:

D, - Oy
J 1+ exp[_(aijk _¢2ij)/¢3ij]

+&;, (4.9)

0y | [L0 O] [B,| [10O0][b,] [10 0]|by
¢ [=|0 10| |B,|+|0 10| [by|+/0 1 0]|by
b 0 01 |B; 0 01]|by, 001 by
(Wi Wi Wi

bi~N |0,/ Wi, Wi Wix ,

| Vizt Viz Wiss

_\V 21 Vo Woiz
Dij ~N | 0| Wo, Wom W '
| Wost Vo Woss

&ij ~ N (0,02 )

Extensions to more than two levels are straightforward. The approach to modeling

variance and correlation structures is basically the same given in the linear mixed-effects

model.

Data
The data sets are from the same regions as those used in modeling basal area and
dominant height. Here, we have data on individual trees, measured in plots, representing

seven different genetic materials (clones). The total was 4289 observations, representing
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254 trees and 8 plots. The ages ranged from 1.8 to 7.5 years with variations by plot
(Figure 4.1). For example, the trees on plot 18764, representing the clone AR4, were
measured monthly from 3.2 to 4.8 years, with atotal of 18 repeated measurements. This
research data set is atypical, compared with those generated by ordinary forest inventory

in eucalypts plantations.

3 4 5 6 7 3 4 5 6 7
1 1

1 1 1 | 1 1
18771/AR4 18772/2271 18774/9999

25

=

© 15

18764/AR4 18765/2225 18766/1248 18770/0847

30 -

10 I~

Age (Years)

FIGURE 4.1. Nonlinear relationship of dominant height measured over time for
individual trees, representing different combinations plot:clone.
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Fitting A Linear Two Levels Mixed-Effect Model.

Based on the data set presented in first section and previous studies of modeling
basal areayield, we used the In(BA) as response variable and 1/age, In(H) and their
interaction as covariates. Where BA represents the basal areain square meters, ageisin
years and H istotal height in meters. First, we considered a full mixed-effects model,
with al terms having random effects at plot and tree within plot levels. We had 12362
observations, j=8 plots and number of treesi varying by plot. The two level model is

presented in (4.1).

1 1
In(BA)ijk =B, +by + boij)+(B1+b1i +b1ij)r+(B2 +by +b2ij)|n(H)ijk +(Bs+by + b3ij)r|n(H)ijk +&

ijk ijk

b, by;
bi=|b; | ~N (0¥, by=|by | ~N (0,¥2) and &j~N (0,69).
b, b,;

(4.5)

The parameters o, p1 , and B, arefixed effects and b; isthe plot-level random-
effects vector, bjj is the tree within plot-level random-effects vector, and ik is the within-
group error. The b; are assumed to be independent for different plots, the b;j are assumed
to be independent for different trees, different plots and independent of the b & are
assumed to be independent for different plots, trees and observations, and independent of
the random effects.

Due to the great number of observations, trees within plot and 20 variance-

covariance components, the first mixed-effects model (4.1) was fitted assuming that ¥,
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and ¥, are diagonal matrices, which makes the optimization of the profiled log-
restricted-likelihood more stable. The estimated parameters and standard deviations are
presented in Table 4.1. The fixed effect had significant p-value (<0.05) with the
exception of B2, which had a p-value=0.0603. The variable In(H) was kept in the model
because the interaction had significant p-value. The covariance components among
random effects are assumed to be zero in adiagona structure. The estimate for standard
deviations for both levels were not small, meaning that these random effects should not

be dropped from the model.

Table 4.1. Parameter estimates for fixed effects, random effects and standard deviations
for multilevel linear mixed-effects model

Random Effect Std.
Fixed Effects Deviations
Parameter Tree within
Estimated Value Std. Error DF t-value p-value Plot Plot
Bo -4.1151 0.084581 4032 -48.65 <0.0001 | 0.16484 0.45943
B1 -19.3416 3.713849 4032 -5.20 <0.0001 | 10.40285 1.12316
B2 -0.0442 0.023544 4032 -1.87 0.0603 | 0.03953 | 0.129426
B3 5.5481 1.260866 4032 440 <0.0001 | 3.53865 | 0.318676
Residual - - - - - - 0.013350

Checking Distributional Assumptions
Again, the distributional assumptions are based on within-group errors (sijk) and
random effects (b; and bj;). The within-group errors are independent and normally
distributed with mean zero and variance o2 and the random effects are normally
distributed with mean zero and covariance ¥ and are independent for different groups.
We can check these assumptions graphically with residual analysis. Figure 4.2

shows the within-group residual distribution, which indicates that the residuals are



approximately symmetrically distributed around zero, but may not have constant
variance. Some outlying and/or influential observations are present. The same pattern can
be seen for the standardized residual distribution by plot (Figure 4.3). Even though the
total residuals are symmetrically distributed, the residuals by plot have different patterns,
which violates the assumption of homoscedasticity. So, it was necessary to model this

pattern.

Standardized residuals

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5

Fitted values

FIGURE 4.2. Standardized residuals versus fitted values for the linear multilevel model
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FIGURE 4.3. Standard residual by plot for linear multilevel model
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Theresidual distributions of the heteroscedastic model are showed in Figure 4.4.
The distribution among plots are more similar and have about the same variability. The
logLikelihood value increased from 10,261 to 10,362, generating a Ratio-Likelihood
value of 203.15 with p-value < 0.0001, indicating that the heteroscedastic model explains
the data significantly better than the homoscedastic model.

Next we assess the assumptions on the random effects. Model (4.1) was initialy
fitted using the diagonal structure for variance-covariance matrix, assuming that the
random effects are independent. We can seein Figure 4.5 that the random effects for

level 1 (plot) are not independent, with strong correlation between b; (1/Age) and b
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FIGURE 4.5. Pairs plot with correlation for the random-effects of first level estimated for
linear multilevel effect model.
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FIGURE 4.6. Pairs plot with correlation for the random-effects of second level estimated
for linear multilevel effect model.

TABLE 4.2. Information statistics and loglikelihood for 6 different linear multilevel

models.

Model df AIC BIC logLik Test L.Ratio p-value
Heteroscedastic/Positive Definite
Levell/Block Level 2 28 -20125 -19947 10090 - i )
Homocedastic/Diagonal 13 20496 -20413 10261 1vs2 340.56 <0.0001
Levelsl,2
Heteroscedastic/Positive 32 -20596 -20392 10330 2vs3 137.93 <0.0001
Definite Levels 1 and 2
Heteroscedastic./Diagonal 20 -20685 -20557 10362 3vs4  64.99  <0.0001
Levels 1,2
Heteroscedastic./Positive 26 -20707 -20541 10379 4vs5 30.08 <0.0001
Definite Level 1
Heteroscedastic./Positive 27 -21851 -21680 10952 5vs6 1146.70 <0.0001

Definite Level/AR(1)
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(Interaction). The model with a genera positive-definite structure for level 1 wasfitted to
check the independence assumptions. The results are showed in Table 4.2.

The Table 4.2 present the logLikelihood values in ascending order. Based on
information about correlation within-group errors and random effect variance-covariance,
we tried to model these characteristics taking into account the levels 1 (plot) and 2 (tree
within plot). The best model was generated by modeling the heteroscedastic pattern
among plots and accounting for the correlation among random effects for level 1, which
had alogLikelihood value of 10379 and a significant p-value (<0.0001) when compared
with the heteroscedastic model, which has diagonal structure for both levels 1 and 2.

The empirical correlation structure was modeled based on the visualization
showed in Figure 4.7. The values are positive in the first two lags, suggesting that an
AR(1) model may be suitable for modeling the within-group correlation. An initial value
of 0.26 as used for the AR(1) parameter, which is the value of the empirical
autocorrelation at lag-1. The result is represented in Table 4.2. The logLikelihood values
increased from 10359 to 10952, when compared heteroscedastic with positive definite
structure without and with modeling correlation structure, respectively. The likelihood
ratio test was 1146.70, with a significant p-value (<0.0001), indicating that the AR(1)
represents within-subject dependence.

The final curve estimates for both level 1 (plot) and level 2 (tree) are presented in

Figures 4.8 and 4.9. For level 1, even though the fitted curve passes through the center of
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FIGURE 4.7. Empirical autocorrelation corresponding to the normalized residuals with 4
lags
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the observed data for each plot, the variability around the lineislarger and different

among plots. In the level 2, represented by Figure 4.9 for the first 25 trees, we can verify

that the two level model generated predictions that follow the observed values closely,

70

indicating that the model explains the basal area growth very accurately. Moreover, when

we compare the slope between level 1 and level 2, the variation in the pattern is strong,

having parallel or non-parallel lines with different distances between them. The greater

the distance and/or slope between these lines, the worse the predictions will be.
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Fitting A Nonlinear Two-L evels Mixed-Effects Model.

The data set used here was the same presented to fit two levels linear mixed-
effects models, with some random reduction in number of trees by plot to alowed faster
convergence. The response variable will be Height (H) in meters and the covariateis
represented by Age(years). The Figure 4.10 shows the relationship between these two
variables for Plot/Tree levels. Aswith single level (plot) model presented previously, we
can notice a clear nonlinear relation with possible different parameters among both tree
and plot. The logistic model with three parameters was used here due to the easy
interpretation of its parameters and capability to generate good adjustments in this

situation (4.6).

3 by
1+ expl—(a; — ;) / ¢s]

+ & (4.6)

ijk

Where:
Hijx = Height (meters) for i-th plot, j-th tree and timek;
ajk = Age(years) for i-th plot, j-the treeand timek;

&ijk = Random error;

by Byl [by by,
®ij = ¢2ij =|B, [+|by |+ b2ij =8+ Db + by
¢3ij B3 b3i b3ij

bi ~N (0,%,), by ~N (0,%,) and s;jx ~ N (0,6%)
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Here, # isavector of fixed effects and b; represents the vector of random effects
for level 1(plot) and by is the vector of random effects of level 2 (tree). The interpretation

of the parameter are the same as that for one level: @4; (asymptote) is the horizontal
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FIGURE 4.10. Observed total height for individual trees within plots

asymptote as age goes to infinity. @»; (middle response) is the age value which the
response is @y /2, representing the inflection point of the curve. @3; (scale) isthe scale
parameter, which represents the distance on the x-axis between the inflection point and
the point where the response is asymptote/(1+e™) =0.73 of the asymptote. Also, the basic
assumptions are: the random effects are normally distributed and independent for

different groups and the within-group errors are independent and identically, normally
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distributed and independent of random effects. We will check the assumptions that ¥,
and ¥, are normally distributed and are diagonal matrices, i.e., the random effects are
independent.

The nonlinear mixed-effects model, with two levels, was fitted considering the
variance-covariance matrix for both levels as diagonal, meaning that the random effects
for both levels are independent. The results are presented in Table 4.3. The three fixed

parameters had significant p-values (<0.0001), indicating their importance in the model.

TABLE 4.3. Fixed parameters estimated and random standard deviations for model (4.6)

Random Effect Std.
Fixed Effect Deviations
Parameter Tree within
Estimated Value Std. Error DF t-value p-value Plot Plot
D, 21.69225 0.509483 684 4257 <0.0001 | 0.22063 3.28324
D, 2.67183 0.033037 684 80.87 <0.0001 | 0.08285 0.04256
D; 0.37902 0.012367 684 30.64 <0.0001 | 0.02788 6.82e-7
Residual - - - - - - 0.29723

An important observation is the very small value of the standard error for the
scale parameter on level 2 (Tree within Plot). This value probably indicates that this
parameter might be dropped from thislevel. Thiswill be checked later, when we will try
to model the level 2 with two random parameters.

Initialy, the correlation among the random effects was checked. The Figure 4.11
shows a positive correlation between middle response and scale parameters for level 2.
To account for this correlation, variance-covariance matrix for level 2 was modeled as a
block diagonal matrix, having Asym as the first block and xMid and Scal as the second

block. The results for diagonal and block diagonal models are presented in Table 4.3.



TABLE 4.4. Information statistics and likelihood for 6 different models.
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Model df AIC BIC logLik Test L.Ratio p-value
Homoscedastic/Diagonal Levels1,2 10 746 791 -363 - - -
Homosc./Diag. Lev.1 and Block 2 11 745 795 -361 1vs2 2.602 <0.1067
Heteroscedastic./Diag. Levels 1and 2 16 721 794 -344 2vs3 34.086 <0.0001
Heter./Diag. Lev. 1,2/AR(1) 17 562 640 -264 3vs4 161.178 <0.0001
Heter./Diag. Lev. 1,2/ARMA(1,1) 18 550 632 -257 4vs5 13.967 <0.0002
Heter./Diag. Lev 1,2/ARMA(2,1) 19 547 634 -254  5vs6 4.8190 <0.0281
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The gain in modeling the variance-covariance as block diagonal was not
significant (p-value=0.1067), indicating that the diagonal structure is the better model.

Next, the heteroscedasticity was evaluated. The first important characteristic of
the residuals shown in Figure 4.12 is that, for each plot, the distribution around zero is
uniform, indicating no violation of the homoscedasticity assumption by plot. However,
comparing the distribution among plots, the pattern is different. Some plots have greater
variability than others. Based on this pattern, the strategy was to model the within-plot

variance (heteroscedastic model).

10 15 20 25 30 35 10 15 20 25 30 35
1 L L L L L

L L L L I L L L 1 1 L L L L L
18774/9999 18771/AR4. 18764/AR4. 18781/1501

18781/1501/7p9

3
8
8

18771/AR4/308 >
18772/227" 18765/2225 18766/1248

18770/0847

Residuals

18772/2237/502

Fitted values

FIGURE 4.12. Scatter plot of standardized residuals distribution by plot

Table 4.3 shows the differences between the two models. The smaller value for

AIC and greater LogLikelihood indicates that the heteroscedastic model explains the data
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better than the homoscedastic model. Thisis confirmed by the very small p-value
(<0.0001).

After defining the variance-covariance as a diagonal structure and assuming a
heteroscedastic model, the next step was to model the correlation. The characteristic of
the data set as longitudinal repeated measurements is a good reason to expect serial
correlation within the subjects (Tree). Thus, several models were tested, with variations
of autoregressive (AR(.)), moving average (MA(.)) and the combination of them
(ARMAC(.,.)). Theresults are presented in Table 4.3. The greater LogLikelihood value
associated with the model ARMA(2,1), generating a likelihood ration test of 4.81 when
compared with the model ARMA(1,1) and the significant p-value of 0.0281, indicates
that this model is preferred. For further analysis, the ARMA(2,1) model will be used.

A general assessment of the capability of the model (4.1) is provided by plotting
both estimated plot and tree levels against the observed values of trees (Figure 4.13). The
figure indicates that the heteroscedastic model, with diagonal correlation among random
effects, for both levels, and with autoregressive and moving average correlation structure
describes the individual tree height growth patterns most precisely. In addition, we
observe that the tree-level model has the ability to represent with great flexibility evenin
radical situations when the treeisfar from the plot average. For example, even though the
profilel8771/AR4/406 and 18774/9999/302 are different when compared with the plot
profile, the model captured this variation and generated precise estimates (The values

X/Y1Z represent the plot number, the clone number and the tree number, respectively).
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Discussion

In linear multilevel mixed-effects approach, we used the logarithm of basal area

as aresponse variable associated with inverse of age, logarithm of height and the
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interaction between these two covariates. As the residuals by plot had different variances,

the heteroscedastic model was used to model this situation and avoid a violation of the

assumption that there was the same variance among plots. Also, the normality assumption

of the random effects was assessed and a positive-definite structure for level 1 was used.
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After modeling heteroscedasticity and autocorrelation using AR(1) structure, the
loglikelihood value increased from 10090 to 10952, with p-value <0.0001 for the
likelihood ratio test.

In the nonlinear multilevel mixed-effects approach, the three parameter logistic
equation was used to model the variation of the tree height as afunction of tree age. After
modeling heteroscedasticity, random effects correlation and autocorrelation, using
ARMA(2,1) structure, the loglikelihood value increased from -363 to -254, with a
significant p-value of the 0.0281.

Based on these results, we can conclude that it is necessary to model
heteroscedasticity, autocorrelation and correlation and the distribution of the random
effects in mixed-effects model approach to obtain models that better explain data

variations.



CHAPTER 5

MODELING INDIVIDUAL TREE PROFILE BASED ON A NONLINEAR
MIXED EFFECT MODEL: AN APPLICATION IN Eucalyptus STANDS

Introduction

Tree profile functions, also cited as taper relationships, have been investigated
intensively in past century (Behre, 1923; Bruce, 1968; Kozak et a., 1969; Demaerschalk,
1972; Max and Burkhart, 1976; Clutter, 1980; McTague, 1986; Bailey, 1994 and 1995).

A function that can describe the tree profile precisely can also be used to obtain
precise estimates of total or merchantable tree volume by integration. The focus hereis
not limited to selecting or to developing ataper relationship, but to interpret the estimated
parameters of such functions and to use a mixed-models approach to capture and explain
the variability among trees included in the analysis.

Based on visual analysis of stem profiles and previous data processing, a
nonlinear four-parameter logistic model was selected for use in this analysis. One of the
many qualities of thismodel isthe biological interpretability of its parameters. The fact
that the parameters can be interpreted to match the tree profile characteristics facilitates

the estimation analysis.
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The main purpose of this study isto use the nonlinear mixed-effects model
approach, based on the four-parameter logistic model, to describe individual tree profile;
to relate these profiles with population characteristics; to obtain individual tree volumes;
and to predict tree profiles, exploring the robustness proprieties of the mixed-effects

model approach.

Data

The data are from the same regions of those used in previous chapters,
representing upper-stem diameter measurements of 133 trees, 10 different eucalypt
clones and atotal of 2494 observations (Table 5.1). The intention was to locate the
sample trees strategically to capture the site variation. Also, a 300 square meter sample
plot was located close to each sample tree and dbh, height and soil variables were
recorded. Figure 5.1 shows the profile of 16 trees randomly sampled from the data set.
We can see nonlinearity between height and diameter representing tree profile and some
variations among tree profiles. These variations are more evident when the total data base
isvisualized. In these different profiles, we can recognize that upper-asymptotes for the
curves may be different and that inflection points may occur at different heights on the

tree stem.

Model

The model used in this analysis will be the nonlinear four-parameter logistic,
which is an extension of the three-parameter logistic model used in previous chapters.
The inclusion of the fourth parameter was motivated by the fact that the tree profiles,

represented in Figure 5.1, have some evidence of upper and lower asymptotes. Other
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Table 5.1 — Number of trees by diameter classes and clones used in the analysis.

Diameter Classes (Cm)
Clone |5—{8|811|1114 | 1417 | 17—{20 | 20—{ 23 | Total Trees
0204 2 2 5 2 3 1 15
1205 3 4 3 3 2 15
1248 3 4 3 3 1 14
1501 2 3 3 3 2 13
2225 2 3 3 3 1 12
2277 2 2 2 2 2 10
3918 3 3 3 3 2 14
4619 3 3 3 2 2 13
AR4 2 2 3 3 2 2 14
AR9 2 3 2 2 2 2 13
Total 24 29 30 26 19 5 133
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FIGURE 5.1 — Profiles representing upper-stem radius of 16 sample trees
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advantages of using this model were pointed out by Ratkowsky and Reedy (1986), who
describe that this model scarcely increases the nonlinearity when the fourth parameter is
included. The authors compare the logistic model with Richards model (logistic model
with an exponent parameter) and conclude that the Richards model is an unfortunate
model because not only isits parameter-effects nonlinearity high but also itsintrinsic
nonlinearity. We tested the close-to-linear property of the model by fitting about 100
random samples taken from the data set (Figure 5.2). Except for the lower asymptote
parameter, the parameter distributions had normal shape confirming the close-to-linear
property found by Ratkowsky and Reedy (1986). Aswe will see further, the lower
asymptote parameter was kept in the model to facilitate the convergence process. The

final nonlinear four-parameter mixed-effects logistic model had the following form:

— ¢2i _¢1i .
M T el 1) 0] &

Where:
hij = Height of the ith tree in jth stem position;

r; = Radiusof theith treein jth stem position;

&; = Random error;

S | |P] | by

&= Pa _ B, n b, —B+b
$s | |Ps| |bs
o B by

bi ~N (0,%) and &; ~N (0,69



The B isavector of fixed effects and b; represents the vector of random effects.

The parameter ¢, isthe upper horizontal asymptote as tree radius goes to zero. The
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FIGURE 5.2. Distribution of the four-parameter logistic equation
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parameter ¢,; isthe lower horizontal asymptote as tree radius goes to positive infinity.
The parameter ¢,; isthe middle response parameter, which represents the radius value at
the inflection point, when the response is (¢, - ¢,, )/2, i.e. hafway between the upper and
lower asymptote. The parameter ¢,, is the scale parameter or, whenr=¢, +4,; , the
responseis ¢, +( ¢y - ¢, )(1+€™) =0.75( 4, - ¢, ). Again, as basic assumptions, the

random effects are normally distributed and independent for different groups and the
within-group errors are independent and identically normally distributed and independent

of therandom effects.

Fitting the Four-Parameter L ogistic Mixed-Effects M odel

The four-parameter logistic model was fitted and the results are presented in
Table 5.2. The significant p-value for fixed effects indicates that the four-parameter
logistic model represents these datawell. The small values for the correlations between

random effects indicate that the variance-covariance matrix is not ill-conditioned and that

TABLE 5.2 — Parameter estimates, statistics, random effects and correl ation

Random
Effect Std.
Fixed Effect Deviations Correlations

Parameter Std.
Estimated Value Error DF t-value p-value Tree Dy D3 Dy

D, 20.23546 0.357992 2335 56.5249 <0.0001 4.361702 -0.14 -0.014 0.075

()2 -1.13249 0.055895 2335 -20.2610 <0.0001 0.087209 X -0.019 -0.363

D3 4.80151 0.125702 2335 38.1975 <0.0001 1.561621 0.019 X -0.011

Dy 1.15481 0.025969 2335 44.4678 <0.0001 0.288901 0.363 -0.011 X
Residual 0.711355
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FIGURE 5.3. Normal probability plot of the standardized residuals from the four-
parameter logistic model.
the random-effects structure is not over-parameterized. Based on this information, we
kept the four parameters as both fixed and random in the model. Figure 5.3, with
exception of some outliers, does not indicate violations of the normality assumption for
the within-tree errors.

Based on information from plot samples located close to the tree sample, we tried
to include some covariates in the model, such as age, dominant height, trees per hectare,
basal area, soil characteristics (class, percentage of sand, silt and clay). The new

formulation for model parametersis:

b =B +yuXy HYaXy + oYX 0 (5.2)

Where i represents the ith parameters, varying from 1 to 4; j represents the

random tree number; B represents the average of the ith parameter; i represents the
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effect of the covariates x jj; and bj; is the ith random effect associated with jth tree. Table
5.3 indicates that the covariates for dominant height and clone had significant influence
on the parameter estimates. The covariate dominant height had significant influence on
the upper asymptote, middle response and scale parameters, while the covariate clone had
significant influence only on the scale parameter.

Figure 5.4 provides the plot of the augmented predictions, which is the final
assessment of the quality of the fitted model of the 16 randomly selected trees from a
total of 133 trees. The fitted curves representing the four-parameter logistic mixed-effects
model generated precise estimates attesting to the adequacy of the model. Also, this
adequacy can be seen in Figure 5.5. The variation in the fixed effects among treesis due
to including dominant height and clone effect in the model. Also, there are strong
variations in the random effect among trees. These variations are because the curves have

different values for upper asymptote, middle response and scale parameters.

TABLE 5.3 - ANOVA table representing the significance for intercept and covariates
effects in the logistic equation

Parameter Variable DF1 DF2 F-value p-value
B1 1 1976 2803.15 <.0001
Y11 HD 1 1976 35.27 <.0001
D, - 1 1976 1.93 0.1647
B3 1 1976 1360.84  <.0001
V31 HD 1 1976 1458  0.0001
Ba 1 1976 2104.38  <.0001
Y41 HD 1 1976 12.15 0.0005
Y42 Clone 9 1976 2.87 0.0023
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Estimating Individual Tree Volumes Using Random Parameters and Solid of
Revolution Technique

The objective here is to take the tree profiles generated with the four-parameter
logistic equation with fixed and random effects and rotate them around the y-axis to
derive an estimation equation for volume of individual trees with different profiles. As
the logistic equation has the response variable represented by tree height and tree radius
representing the covariate, the method of cylindrical shellswill be used for computing
tree volumes. In general, the interval between radius minimum and maximum is
partitioned into n subintervals, al of the same length. If R'; denotes the midpoint of the
ith subinterval, arectangle in the x-y plane with base [Ri.1,R]] and height f(R; ) will be
formed. The cylindrical shell will be obtained by revolving the region under y=f(x) and

over [Ri.1,Ri] with volume AV; . The expression that gives the volumeis

AV, = 27R f(R)AR (5.2q)
V= iAvi ~ ZZ/Z‘Rl f(R)AR. (5.2b)

This approximation is a Riemann sum that approaches the integral, which gives
the volume of the solid of revolution. We can generate the merchantable volume by
integrating from radius minimum to radius maximum, or vice-versa, using the following

expression:

V= [ ™ 22Rf (R)OR . (5.20)

R=min
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In our specific case, the f(x) function is the logistic with four parameters,
represented by the fixed and random effects. Rmin represents the tree radius (inside or
outside-bark) at height f(Rnin) and Rnyax the tree radius at height f(Rmax). V isthe volume
(inside or outside-bark, depending on whether R is specified IB or OB) of the section
between Rmin and Rmax. Substituting the logistic function, we have the following
expression:

R=max

v=|[ 2;zR{¢1 + b~ }dR (5.2d)
=min 1+ eXp[( ¢3 - R|)/¢4]

In reality, the logistic equation in this situation is ataper function, which gives the
estimated height of the determined radiusin the tree. If the equation is solved for the

variable radius, we can estimate the radius as a function of height. The expressionis:

hj _¢2i
rij (hj):¢3i —In - hj _¢]j ¢44 (5.3

Where r;; represents the radius of the ith tree at the jth height and the @
parameters are as defined earlier.To check the precision of equation (5.3), the dbh values
for each tree at height of 1.3 meters were estimated (Figure 5.6). The estimated values
are concentrated around the absolute line implying reasonably precise estimates.

By integrating the expression (5.2d), including fixed and random effects in the
logistic equation, we can generate stem profiles such as those shown in Figure 5.7. The
variations among trees are due to the inclusion of the random parameters, which capture
the individual tree profile variations. Also, the integration technigue gives us the ability
to obtain merchantable volumes to a specific upper-stem radius (or diameter). If we

constrain the Ry in (5.2d) as a minimum merchantabl e radius, the volume generated
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will be merchantable volume with minimum radius specified. Another flexible feature of
the integration process is the ability to generate multiple products from a single tree
(Figure 5.8). Figure 5.9 shows the precision of using this integration technique. We can
integrate the same tree again at a different merchantability position and obtain volumes

for different products.
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FIGURE 5.6 — Diameter at breast height estimated by mixed-effects model and observed
for each tree
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FIGURE 5.7. Variations in stem form generated by integrating the four parameter logistic

equation.
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FIGURE 5.9. Comparing real volumes with those obtained by integration technique

Using the Robustness of the Mixed-Effects Model to Predict Height Based on Upper -
Stem Diameter of Partially Observed Tree

In practice, the data gathered in typical inventory methods do not have complete
upper-stem diameter measurements of the trees. Normally, we have arelatively small
data base with complete measurements and a more representative data base with
restricted information of the stem, such as dbh and total height. Hence, the focus hereis
to use the mixed-model theory to estimate the tree profile (upper-stem diameter or radius)
of trees with restricted information, based on a data set from trees with complete upper-
stem diameter measurements.

In the data set used in this analysis, the average number of observations per treeis

approximately 15. Here the observations are represented by height above of the ground
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associated with some upper-stem radius, which will represent the covariate. Let y; denote
the vector of observations for the ith tree. In our prior analysis, the data set was composed
of 133 trees with complete measurements of the upper-stem height and diameter.

Suppose a new tree yy isincluded in the data base, but we have limited information about

thistree, say dbh and total height. In this situation, the observation vector

ISy, = (yl(o) ) yl(u) )" . Where T represents the transpose of the associated vector. The first

element (yi() representsthe vector of observed valuesfor the kth tree and the second
(Vi) represents the vector of the values of unobserved data. If we consider 15
measurements for each tree, for example, and we have available 2 values for the kth tree,
diameter at breast height and diameter (zero) at total height, the first vector will have two
components and the second one 13 components.

In the linear case, the prediction processis performed by using Estimation and
Maximization (EM) or Newton-Raphson algorithms, considering the vector of the
unobserved data as aincomplete data (Rao ,1973; Dempster et al.,1977; Laird et al.,
1987; Lindstrom and Bates, 1988; Liski, 1985, 1990, and 1996) .

In the nonlinear case, Lindstrom and Bates (1990) presented atwo-step iterative
procedure to estimate the parameters of the general nonlinear model (3.1). The first step,
called the pseudo-data step, uses an iterative process to obtain the estimate of fixed
effects #, random effects b, variance and covariance components @, covariates X and the
matrix associated with random effects Z. These estimates are based on Cholesky factors.
The second step, called the linear mixed effects step, uses the estimate obtained in first

step and, also using an iterative process, generates the desired estimate of 4, ¢ and 8.
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To perform the prediction analysis, we eliminated the the upper-stem height-
diameter measurements of some trees, leaving only measures of the dbh and total height.
S0, the data set used to perform this analysisis a mixture of trees with complete and
restricted information. This procedure allows us to compare the estimated with the real
tree profile.

Figure 5.7 shows that the method is adequate to estimate both tree profiles with
complete upper-stem diameter information and tree profiles with limited information.
Again, the mixed-effects model expressed a strong degree of robustness, using
information from trees with compl ete data and estimating the parameters, fixed and
random, for trees with limited information. This feature is especialy useful in the forest
estimation process, in which a monumented data set with measurements of dbh and total
height isavailable.

The precision of the estimate can be seen in Figure 5.8. The estimated curve fitted
with both the complete and restricted data set for each tree had a sigmoid shape with one
inflection point and upper and lower asymptotes. For every tree with restricted data (just
dbh and total height measurements) the curve crossed the two sample points. This occurs
due to the robustness of the mixed-effects approach. In another approach, such as
ordinary least squares, this situation would be a problem because this approach fits either
amean curve for the population or one curve independently for each tree. In the first
case, the missing observations could strongly affect the estimation of the population
mean value. In the second situation, the adjustment for an individual tree with missing
observations, in this specific case, would generate a straight line, which does not

represent the tree profile.
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When the tree profiles estimated by mixed-effects model are compared with the

real values (Figure 5.9), we can see that the model generates a sigmoid curve close to the

observed trend. This situation has a strong practical application in forest prediction

studies. With areliable data set, which represents some forest population and describes

the variability in tree profiles represented in the population, we can generate precise

estimates for individual trees, using minimal tree information, such as dbh and total

height. The more compl ete the data base, the more reliable the predictions.
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FIGURE 5.11. Observed (solid) and estimated (dashed) height values for eight trees with
restricted information

Discussion

The logistic four-parameter equation was fitted based on the nonlinear mixed-
effects model approach to represent the individual tree profiles. The four parameters,
represented by upper asymptote, lower asymptote, inflection point and middle response,
in both fixed and random effects, had a significant contribution in explaining the
variation of the tree height as afunction of the upper-stem radius. The less significant

parameter was the lower asymptote, but it was kept in the model to improve the
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convergence process. One could set the parameter value to zero, based on the logic that
for large diameters the height values approach to zero. It was verified that strong
variability exists in the parameter values among trees.

Variables such as clone type, dominant height (HD), soil characteristics, age,
basal area, and others were used as covariates to explain the variation among trees. After
selection based on analysis of variance procedures, the variables HD and clone type were
included in the model. HD was associated with the parameters upper asymptote,
inflection point and middle response, and the clone type was associated with the middle
response only.

The solid of revolution technique was used to obtain the individual tree volumes
for both total tree and merchantable volumes. Although this technique is flexible and
relatively simple, the precision of the result is directly related to the quality of the fitted
function to describe the tree profile.

Using an iterative prediction technique, the robustness of the nonlinear mixed-
effect was used to estimate the profile for trees with restricted observations, in this case
represented by dbh and total height. When we compared the profiles generated with the
prediction process to real profiles, the estimates were very close and the profiles
estimated had parameters approximating those of the real profiles. This technique,
compared with generalized nonlinear least squares estimate, has the advantage in
capturing individual tree variations, translating them into parameter estimates and,
through integration, generating the individual tree volume estimates. One practical

application of this methodology would be to estimate plot volume based upon
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information on the dbh and total of height the treesin the plots. In application, it would
be necessary to have available a data set with complete information about tree profiles

representing the population.



CHAPTER 6

SUMMARY AND CONCLUSIONS

The linear and nonlinear multilevel mixed-effects model approach has been used
in many fields of study. In this study, this approach was used to model Eucalyptus clonal
stand growth, considering plots and/or tree within plots as the random effects, using a
data set with longitudinal, irregularly spaced and unbalanced information. The following

conclusions were generated from this study:

1. Modeling basal area using single level linear mixed-effects approach:

- Thelogarithm of basal area as aresponse variable was associated with the
inverse of age as a covariate. Both slope and intercept random effects had
significant differences when plot was included in the model as arandom
subject. Other fixed covariates were included in the model, such as
logarithm of dominant height, logarithm of the number of trees per hectare
and some interaction among them. The clone effect as a covariate also had

asignificant effect in explaining variation in basal ares;
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Estimates from the mixed-effects model tended to be pulled toward those
of the fixed effects (shrinkage estimates), giving a certain robustness, an
important characteristic of the mixed-effects approach;

In examining distributional assumptions, the within-plot constant variance
assumption was violated and it was necessary to model it. After modeling
this assumption, the loglikelihood value had a significant increment. The
normality of random effects was considered reasonable. Also the
correlation structure was modeled and the loglikelihood increased
significantly again;

The random parameters representing the slope and intercept were related
to and could be predicted from the site index value for each plot. With this
method, it was possible to estimate basal areafor different plots, not

included in the analysis;

2. Modeling dominant height growth using asingle level nonlinear mixed-effects

approach:

Dominant height growth was modeled as a function of time (years) using a
three parameter logistic equation (upper asymptote, scale and middle
response). All three parameters had significant fixed and random effects,
with no indication of an over-parameterized model;

Neither homoscedasticity within-plot nor normality of the random effects
were violated and the homoscedastic model provided a good

representation of the data;
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As result of modeling dominant height growth, sets of anamorphic,
polymorphic and “quasi-anamorphic” height average curves were

developed;

3. Modeling basal area and dominant height based on multilevel linear and nonlinear

mixed-effects approach:

In studying basal area, fixed and random effects related to inverse of age,
logarithm of dominant height and the interaction of logarithm of dominant
height and inverse of age had significance influences in explaining
logarithm of basal areavariation;

Checking distributional assumptions, it was found that the residuals within
plot had different patterns, and it was necessary to model this pattern.
After modeling these different patterns, the logLikelihood value had
significant increment, indicating that the heteroscedastic model explains
the data better than the homoscedastic model. Also, modeled were the
variance-covariance structure representing the random effects and the
empirical correlation structure of within group. Due to the high correlation
between two random effectsin level 1, the general positive-definite
structure was used. In the empirical correlation modeling, the
autoregressive structure had a better improvement in the model. After
modeling the variance-covariance of random effects and empirical

autocorrelation, the loglikelihood again increased significantly;
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In studying nonlinear two level mixed-effects, where the tree height
growth was modeled, the three parameter |ogistic-equation was used.
Again, there were three significant fixed and random parameters for the
model. Better improvement was reached when we modeled the within-plot
variance and the autocorrel ation were modeled. For autocorrelation, the

better model was ARMA(2,1);

4. Modeling individual tree profiles based on a nonlinear mixed-effects model:

The four parameter logistic equation was used to estimate tree height as
function of tree radius. As afirst result, the model had significant fixed
and random effects to represent the data set. In a simulation study, the four
parameter model had a close-to-linear behavior, confirming the adequacy
of this equation;

Using information from plot samples located close to the tree sample,
some new covariates were included in the model to improve the
representation of the data. The plot-level dominant height had significant
influence in the model when associated with upper asymptote, middle
response and scale parameters. The variable representing the tree’ s clone
had a significant effect on the scale parameter;

Using the random parameters and solid of revolution technique, volumes
were generated for each tree providing values close to actual tree
volumes, confirming the precision of the nonlinear mixed-effects model in

estimating the tree profile;
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- Therobustness of the mixed-effects model was used to estimate the profile
for trees with only dbh and height measurements. The method generated
precise estimation of the tree profile, as an aternative to estimating

individual tree and plot volumes,
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