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CHAPTER 1 

INTRODUCTION

The reliability of a forest growth and yield prediction and projection system, with

response variables such as  dominant height, basal area, trees per acre and volume, has 

been based on estimator characteristics such as consistency, efficiency and sufficiency. 

Forest biometricians have been developing and adapting statistical techniques to improve

those characteristics and to provide such systems to meet particular objectives for forest 

management planning and decision making.

The multilevel model approach is a statistical technique that has been used in 

many fields of study, generating improvements in parameter estimation. Also referred to 

as multistage models, repeated measurements models, longitudinal data analysis, and 

mixed models, this type of approach has been developed intensively during the last 20 

years and has been applied to forestry, agriculture, ecology, biomedicine, sociology, 

economics, and other areas. Authors such as Corbeil and Searle (1976), Dempster et al. 

(1984), Stiratelli (1984), Ware (1985), Goldstein (1986 and 1991), Zeger (1986), Carter 

and Yang(1986), Chi and Reinsel (1989), Gumpertz (1989), Crowder (1990), Breslow

and Clayton (1993), Diggle et al. (1994), Davidian and Giltinan(1995), Burnett et al. 

(1995), Vonesh  and Chinchilli (1997), Wolfinger (1993), Littell et al. (1996), and others 

have been developing basic and applied  studies using  multilevel models.

 1
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In forestry,  studies using multilevel model approaches are relatively recent. As a 

pioneer study, Biging (1985) improved the estimates of site index curves using a varying-

parameter model. In another innovative approach, Lappi and Bailey (1988) described the 

use of  nonlinear  mixed-effects growth curve, based on the Richards model, which was 

fitted to predict dominant and codominant tree height, both at the plot level and at the 

individual tree level. More recently, other studies based on random effect models have 

been published in forestry. Studies such as the Kalman filter approach to localizing 

height-age equations (Walters et al., 1991); linear mixed-effects modeling of the 

covariance among repeated measurements  with random plot effects (Gregoire et al., 

1993);  bole-volume equations to spatially correlated within-tree data (Gregoire and 

Schabenberger, 1995);  estimating forest yield using functions with random effects 

(Candy, 1997); a simultaneous system of linear and nonlinear mixed models to predict 

forest growth and yield (Fang, 1999), and modeling forest growth and yield based on 

multilevel nonlinear mixed models (Hall and Bailey, 2001) can be cited as recent 

publications of multilevel models in forestry. 

Eucalyptus can be considered, in a worldwide panorama, one of the most 

important cultivated  forestry genra due to the large number of species,  adaptation to 

different edaphic-biologic-climatic situations, and fast growth. Additionally, with the 

development of silvicultural techniques, intensive management strategies, and genetic 

improvement, the productivity of these plantations has been improving significantly, 

leading to different types of products.  For modeling purposes, a wide range of studies 

have been developed to generate prediction and projection systems (Paula Neto, 1991; 

Campos, 1980 and 1983; Trevizol, 1985; Amaro, 1997; Diaz and Couto, 1999),  but there 
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is no information on applying  multilevel theory, including fixed and random effects in 

the previous studies. Most eucalypt plantations are from uniform genetic stock, having 

been propagated by asexual reproduction, so that the variation is generated primarily by 

environmental factors. In this situation, we have strong reasons to believe that by 

modeling longitudinal and spatial correlation structures, the parameter will have 

consistent estimates. Therefore,  based on the idea of modeling  time-within-individual 

correlation, spatial  inter-individual correlation, and  adding the fixed and random effects 

in the models we expect improvements in  the quality of the estimates from these linear 

and nonlinear models. 

The data set for this study is from clonal eucalyptus plantations located in the 

southeast Brazilian Atlantic Coastal Region with a high degree of variation in soil, 

precipitation, topographic characteristics, silvicultural treatment, and genetic material.  

The data set is from permanent plots with repeated measurement information from 2 

years to 10 years of age. The primary purpose of this work is to evaluate the performance 

of multilevel linear and nonlinear models relative to previous modeling strategies. These 

models will include both fixed and random variance effects and include methodology 

accounting for serial and spatial correlation. 



CHAPTER 2 

THE DEVELOPMENT OF A LINEAR MIXED-EFFECTS MODEL APPLIED TO 
Eucalyptus PLANTATIONS 

Introduction

Linear mixed-effects models have been used in different situations in recent years

to model longitudinal, spatial,  and spatio-temporal processes in several scientific fields, 

such as medicine (Verbeke and Lesaffre, 1977), biology (Christman and Jernigan, 1997), 

engineering (Pinheiro and Bates, 2000), agriculture (Littell et al., 1996), and others.

In forestry, Gregoire (1995) applied the linear mixed-effects model to model

eastern white pine (Pinus strobus L.) and douglas-fir (Pseudotsuga menziesii (Mirb.) 

Franco) basal area growth patterns from permanent plots of irregularly spaced trees from

an unbalanced and longitudinal data set. The model fitted shows marked improvement

compared with models that do not account for the error structure. In a more recent study, 

Fang and Bailey (2000) applied this approach to model Slash Pine (Pinus elliottii

Engelm.) basal area following intensive silvicultural treatments and tested 9 models with 

different variance and/or correlation structures. 

In eucalypt plantations there is no record of using linear mixed-effects to model

growth and yield patterns.  Due to the genetic and environmental variation in this 

4
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cultivation, improvement would be expected in the fitting process. The main purpose of 

this study is to model the linear tendency between the natural logarithm of basal area as a 

function of the inverse of age, by plot and clone. Also, distributional assumptions will be 

examined and, if necessary, the within-subject variance and/or correlation pattern will be 

included in the estimation process.       

Generalized Linear Mixed-Effects Model 

 The general parametric form presented here is based upon that in Laird and Ware 

(1982), cited by Davidian and Giltinan (1995), with some adaptations to forest growth 

and yield studies. 

  Suppose m plots are sampled from a forest population and these plots are 

measured repeatedly in time, for example, t times. If t is the same for each plot, we have a 

balanced data set, generating simple computational features and analysis, with t x m

available values. But unbalanced data sets are more common in forest growth and yield 

studies. Thus, the number of repeated measurements over time will vary and ti will 

represent the number of measurements for the ith plot. For example, if plot i is measured 

annually during j years, which is a classical situation in a eucalypts plantation,  the value 

of ti=j. In the case of a balanced data set, t1=t2=…=tm=j.  Let yi represents a response 

vector for the ith plot. So, yi has dimension of (j x 1) and this situation can be modeled 

using a linear mixed-effects model (2.1). 

yi =Xi  + Zibi + i                                                   (2.1) 
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 The response variable yi will be a vector with dimension  (ti x 1), the Xi will be a 

matrix (ti x p): ti rows with repeated measurements and p columns of covariates, 

including a column for the intercept. The  vector will have (p x 1) dimension 

representing the parameters of the p fixed effects. For random effects, Zi is an (ti x k)

design matrix linking yi to the random effects bi, which is up to  (p x 1) vector 

representing the random parameter estimated for plot i. The vector bi will have dimension 

up to (p x 1), representing the random effects of the parameter intercept and the X

variables. It is common in the mixed-effects literature to represent the fixed effects with a 

Greek letter and the random effects with a Latin letter. So, in this case, the plot number i

will have p fixed effects ( ) including the intercept and up to p mixed effects (b). If the 

total sample includes m plots, every plot will have the same values for fixed effects and 

possibly different values for the random effects. 

 In forest growth and yield, one classical linear model relates the logarithm of 

basal area (ln(BA)), as a response variable, to stand-level variables such as the  inverse of 

age(1/A), logarithm of dominant height (ln(HD)), logarithm of number of trees (ln(N)) 

and the interactions among these covariates (equation (2.4)).  If the  plot i, for example, is 

measured annually for 5 years, the dependent variable yi=ln(BA) will be a vector of 

dimension (5 x 1), the Xi will be a matrix of (5 x p), and the  vector will have (p x 1) 

dimension. The value of p depends on the number of the significant covariates of the 

right-hand side of the equation plus an intercept.

 In standard regression assumptions, i ~ N (0, i), where i is the within-plot 

covariance matrix. If the observations are independent, i= 2 Iti, where Iti is the (ti x ti)

identity matrix. In our example, if the 5 observations of the same plot through of time are 
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independent and with same variance, Iti will be (5 x 5) matrix and i will be a diagonal 

with 2 . In practice, i has many variations. Conditional on bi, (2.1) implies

E(yi|bi) = Xi  + Zibi                                                (2.2a) 

Cov(yi|bi) = i                                                             (2.2b) 

If the random effects vector bi comes from a normal distribution with mean zero, 

dispersion matrix  (k x k) and independent of each other and of i, the marginal mean

and covariance of yi is: 

E(yi) = E{E(yi|bi)} = Xi                                                             (2.2a) 

Cov(yi) = E{Cov(yi|bi)} + Cov{E(yi|bi)} = i + Zi ZTi = Vi         (2.3b) 

Expanding our example for two groups (clones=c),  we will have 10 plots (i) in 

each group with 5 observation (j) over time for each plot and assuming the following 

model,

cijcij
cij

icccijicc
cij

icccoicocij H
Age

bHb
Age

bbBA )ln(1)()ln()(1)()()ln( 332211        (2.4) 

with c=1…2; i=1…10; j=1…5, we can write the model in matrix form as follows: 

YT = (YT
1,1,… YT

1,10, YT
2,1, YT

2,10)

YT
c,i  =  (Yc,i,1, Yc,i,2, Yc,i,3, Yc,i,4, Yc,i,5).
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So, YT  will have dimension of (1 x 100). 

    XT = (XT
1,1| …|XT

1,10| XT
2,1| …|XT

2,10),

Where,

X1,i =

0))ln(H(1/Age0)ln(H01/Age01
0))ln(H(1/Age0)ln(H01/Age01
0))ln(H(1/Age0)ln(H01/Age01
0))ln(H(1/Age0)ln(H01/Age01
0))ln(H(1/Age0)ln(H01/Age01

i,11,i,51,i,51,i,51,

i,11,i,41,i,41,i,41,

i,11,i,31,i,31,i,31,

i,11,i,21,i,21,i,21,

i,11,i,11,i,11,i,11,

X2,i =

))ln(H(1/Age0)ln(H01/Age010
))ln(H(1/Age0)ln(H01/Age010
))ln(H(1/Age0)ln(H01/Age010
))ln(H(1/Age0)ln(H01/Age010
))ln(H(1/Age0)ln(H01/Age010

i,52,i,52,i,52,i,52,

i,42,i,42,i,42,i,42,

i,32,i,32,i,32,i,32,

i,22,i,22,i,22,i,22,

i,12,i,12,i,12,i,12,

= ( 10, 20, 11, 21, 12, 22, 13, 23);

                                         Z = I20 15,

Where In is the identity matrix of order n, is the Kronecker direct product and 1n

denotes (n x 1) vector with all entries equal to one. 

Further,

                                        b = (b1, b2, …, b10, b11, …, b20)T

and

T =  ( 1,1,1, 1,1,2, 1,1,3,…, 2,10,5)
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The errors are independent with variance 2  and variance-covariance matrix .

The random effects are independent  with variance 2
b  and representing its the 

variance-covariance matrix and V being the variance-covariance matrix for response 

variable Y. The following representations are useful for computational purposes: 

 = 2
bI20,

 = 2I100,

V = Z  ZT +  = 2
b(I20 J5) + 2 (I20 I5) = I20 ( 2

bJ5 + 2I5)

Estimation of Fixed and Random Effects

In the last section, we found that the marginal values for yi are normally

distributed with mean Xi and variance-covariance  matrix Vi= i + Zi ZTi. Following 

Verbeck and Molenberghs (1997), let  denote the vector of all variance and covariance 

components present in Vi, i.e., will have all different elements of and all parameters

of i. In our example, for the ith plot, is represented by 10 different parameters

(4*(4+1)/2) and i  by 5, taking into account a diagonal matrix. Letting  = ( T, T)T be

the vector of all parameters in the marginal model, the classical approach is to maximize

the marginal likelihood function with respect to .

N

i
iii

T
iii

ni
ML XYVXYVL

1

15.02/ ))(()(
2
1exp|)(|)2()(         (2.5) 
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 If  is known, the maximum likelihood estimator of , obtained from maximizing

(2.5) is given by 

N

i ii
T
i

N

i ii
T
i yVXXVX

1
11

1
1 )()(ˆ                                  (2.6) 

and its variance-covariance matrix is 

1

1

1 )()var(
N

i
ii

T
i XVX                                                                  (2.7) 

 When  is unknown, but an estimate of  is available, V can be substituted 

for V . For estimating , maximum likelihood (ML)  and restricted maximum

likelihood (REML) methods are used. Details about these methods can be find in Searle, 

Casella, and McCulloch(1992), Davidian and Giltinan (1995) and  Vonesh and 

Chinchilli(1997).

)ˆ(1
i

)(1
i

Using regression analysis when p=rank(X)  4, the maximum likelihood method

generates smaller mean squared error for 2 than restricted maximum likelihood. The 

opposite is true if p>4 and n-p is large (Verbeck and Molenberghs, 1997). Also,

restricted maximum likelihood estimation  adjusts for loss of degrees of freedom due to 

estimating fixed effects. REML estimation can be viewed as estimating variance 

components based on residuals calculated after fitting fixed effects only (Davidian and 

Giltinan, 1995). 

Since random effects are assumed to be random variables, it is common to 

estimate them by Bayesian techniques. The marginal distribution of bi is multivariate

normal with mean zero and covariance matrix  and this distribution is referred to as the 

prior distribution of bi. After observed values for yi have been collected, the posterior 

distribution of bi can be calculated as:
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iiii

iii
iiiii dbbfbyf

bfbyfyYbfybf
)()|(
)()|()|()|(                                    (2.8) 

The expression (2.8) is the density function of the multivariate normal distribution 

(Smith, 1973) and bi is estimated by the posterior mean of bi.

)ˆ)(()(|)(ˆ 11
iiiiiiiiiiii XyVZdbybfbyYbEb                         (2.9) 

This estimate is Best Linear Unbiased Predictor (BLUP) for bi ( Searle et al., 1992). The 

covariance matrix for bi is: 

i

N

i
i

T
iiiiiii

T
ii ZWXXWXXWWZb

1

1)()ˆcov( ,                              (2.10) 

and to assess the variation of the difference between the random effects estimate and 

observed (Laird and Ware,1982), the following expression is used. 

)ˆvar()ˆcov( iii bbb

Hypothesis Tests and Confidence Intervals 

Tests are useful to assess the precision of the estimates and the significance of the 

terms in the model. The first test discussed here is the  likelihood ratio test (LRT). 

Although called a likelihood test, this test can also be used to compare nested models

fitted by restricted maximum likelihood, but the models have to have the same fixed
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effects (Pinheiro and Bates, 2000). The nested model occurs when one model represents a 

special case of another. So, if L2 is the greater likelihood of the more general model and 

L1 is the smaller likelihood of the restricted model, the LRT will be: 

LRT = 2log(L2 / L1) = 2 [log(L2 ) – log(L1)]                                     (2.11) 

Since L2 > L1, the LRT will be positive and if ki is the number of parameters in 

model i, the distribution of the LRT is a 2  distribution with k2-k1 degrees of freedom. 

The LRT value is compared with a  2 (k2-k1, ) critical value and if LRT> 2 (k2-k1, ),

generating a significant p-value (<0.05), the more general model is preferred over of the 

restricted model.  

 The model precision also can be assessed by the information statistic. This 

statistic is represented by two methods: Akaike Information Criterion (AIC) (Sakamoto et 

al., 1986) and Bayesian Information  Criterion (BIC) (Schwarz, 1978). These criteria are 

evaluated as 

AIC = -2log(L) + 2npar                                                                                               (2.12a) 

BIC = -2log(L) + npar log(N)                                                       (2.12b) 

for each model, where L is the likelihood value and npar  is the number of parameters in 

the model. Smaller values for both AIC and BIC are better. Since these tests are 

conservative (Stram and Lee, 1994), generating p-values greater than they should be, it is 

appropriate to use an -value of 10% to select the best model.  
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Variance Functions and Correlation Structures 

Based on the assumptions of the mixed-effects model, the within-subject errors 

are independent and normally distributed with variance 2. The random effects are 

normally distributed with mean zero and covariance matrix  and are independent for 

different groups. When these assumptions are violated, we need to use techniques the

model the actual data structure.

The first technique to solve these problems is to model the variance structure of 

the within-group errors using covariates. Davidian and Giltinan(1995) gave the following 

expression to define the general variance function for the within-group errors: 

),,,()|var( 22
ijijiij gbe    i=1,…,M, j=1,…,ni                              (2.13) 

where M is a number of groups, ni  is the number of observations in the ith group, µij

=E(yij|bi), vij is a vector of variance covariates,  is a vector of variance parameters and 

g(.) is the variance function. In forestry it is quite common for the within-group 

variability to increase with  some power of the absolute value of a covariate. For 

example, the variability of the volume increases with diameter breast height. In this 

study, we will use the varFunc classes in S-Plus (Pinheiro and Bates, 2000) to specify 

within-group variance models. Among several classes of variance functions available, the 

most useful in this specific study case was the varIdent class.

sijiij be 22)|var(                                                             (2.14) 

The power of this class is based on its capability to model different variances for

each level of a stratification variable s. As we will see further, the analysis is based on 
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different genetic material (clones) with inconsistent variance patterns within-group. This 

kind of variance class was very useful for modeling such situations.

In correlation analysis, among several families of correlation structures, the 

autoregressive-moving average structure - ARMA (Box et al., 1994) is the most used and 

well- known. The general structure is given by: 

q

j
tjtjit

p

i
it aa

11
                                                 (2.15) 

 Where t refers to an observation taken at time t and at is the noise (error) term. The first 

part of the expression refers to an autoregressive model (AR(p)) and second part 

represents the moving average (MA(q)). If p=0 we have the MA(q) situation and, 

conversely, if q=0 we have the AR(p). In the AR(p) part,  represents the correlation 

parameters with order p and t-i is the lag, or distance, between two observations. The 

tendency is for the  values to decrease over time, indicating that observations close in 

time are more correlated than observations far apart, which is a common in longitudinal 

studies. In the moving-average part (MA(q)), the model assumes that the current 

observation is a linear function of the independent and identically distributed noise terms

(at). The value of q is the number of noise terms included in the model. So, there are q 

correlation parameters  in the model.

Data

The data sets are from commercial hybrid plantations of Eucalyptus genus from

the Brazilian coastal region, Bahia and Espírito Santo States, located between 17o 48’ S 

and 40 o 17’ W. In Figure 2.1, each clone is represented in one square and  plots are 

represented by each line. For example, the clone number 6039  is represented by 4 plots 
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in this analysis. Each plot was permanently sampled  from 3 to 10 times, with age varying 

from 2 to 10 years,  between 1992 and 2001, and its area varied from 131 to 200 m2.

Based on these variations,  the data base was longitudinal, irregularly spaced and 

unbalanced.

 Figure 2.1 shows the relationship between 1/age and ln(BA) for each plot within 

each clone. It shows a fairly consistent linear decrease in ln(BA) with the 1/age, but with 

variations in intercept and/or slope by plot/clone combinations.  Based upon this data set, 

one could group the clones based on their curve trend. For example, the clones 6039, 

6054, 3903, 2747 and 1030 could be grouped based on their growth trend. This was not 

done because each clone has different management and technological properties and it is 

important to analyze each one separately. We will see later that these variations are more 

due to site than to clonal characteristics, but some variation is credited to the clones’  

growth potential.

Fitting Linear Mixed-Effects Models 

 To fit the linear mixed-effects model we will follow the methods suggested by 

Pinheiro and Bates (2000). In this specific case,  the  response variable is ln(BA) and the 

fixed effect is represented by 1/age. The random effect will be the plots or sample units, 

which are  random units chosen from a population. So, in this case we will fit a single-

level model.  
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FIGURE 2.1. Linear relationship of the natural logarithm of Basal Area (m2/hectare)
measured over time (1/age), for 18 different clones. 

The first step is to fit a single linear regression model of ln(BA) on 1/age to the 

data from all the plots, ignoring the grouping structure. After the fit, there is  considerable 

variability, as shown in the residual plots on Figure 2.2. Another important point is the 

unusual influence on the fit by some observations, mainly observation number 229, 233 

and 502. In addition, the normal probability plot indicates that the error distribution has 
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heavier tails. The Cook’s Distance shows two more important observations which are not 

outliers but have significant influence in the fit results. These features indicate that the 

simple linear regression model does not represent the structure of the data.   

To check if there are differences among clones, we fitted a model which has 

specific intercept and slope for each clone. The results of the interaction effect  are shown 

in Table 2.1. All Clone:(1/age) interaction had a significant p-value, suggesting that 

growth patterns are different for different clones. Because the data are from repeated 

measures on each plot, the basic assumption of independence of linear models may be 

violated. Three clones are represented in Figure 2.3 for easy visualization of the subject 

effect.  When we plot the residual for each plot, the signal tended to be the same.  This 

characteristic is the motivation for using the linear mixed-effects models.    

 The next step is to perform a preliminary analysis to decide which random effects 

to include in the model and what covariance structure will be most appropriate. To 

eliminate the correlation between slopes and intercepts for each plot, the data were 

centered at 4 years (1/age=0.25). Figure  2.4 shows no correlations among the pairs of 

slope-intercept for centered data. Both intercept and slope appear to vary per plot. The 

estimated value and its interval were plotted for twelve plots representing three clones to 

visualize how the parameter estimates vary among individuals (Figure 2.5). The 

confidence intervals for each plot give a clear indication that it is necessary to estimate 

separate intercepts and,  in some cases, separate slopes to account for plot-to-plot 

variability. Because only 12 plots were represented, the confidence intervals for slope had 

a high overlap. If we had used all 115 plots, the overlap would be less frequent, 

indicating that both parameters could be considered as random effects. 
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TABLE 2.1. Significance of the Clones and interaction between Clone and 1/age 
representing the data set used in the analysis.

Coefficients: Value Std. Error t value Pr(>|t|)
(Intercept) 2.7628 0.0205 134.8305 < 0.0001 
Clone0014 -0.1425 0.0504 -2.8278 0.0057
Clone0034 -0.0715 0.0365 -1.9599 0.0529
Clone0331 -0.0706 0.0210 -3.3541 0.0011
Clone1030 0.0361 0.0124 2.9166 0.0044
Clone2747 0.0312 0.0111 2.8066 0.0061
Clone3901 -0.0235 0.0055 -4.2767 < 0.0001 
Clone3903 0.0212 0.0061 3.4765 0.0008
Clone3906 0.0162 0.0072 2.2644 0.0258
Clone3910 0.0306 0.0058 5.2548 < 0.0001 
Clone6039 -0.0165 0.0072 -2.2912 0.0241
Clone6054 -0.0035 0.0019 -1.7990 0.0751
InvAgeC -2.4075 0.0764 -31.5007 < 0.0001 
Clone0014:InvAge -1.8937 0.2103 -9.0046 < 0.0001 
Clone0034:InvAge -3.2333 0.1793 -18.0317 < 0.0001 
Clone0035:InvAge -3.2125 0.2125 -15.1206 < 0.0001 
Clone0331:InvAge -3.1377 0.1470 -21.3491 < 0.0001 
Clone1030:InvAge -4.3190 0.2659 -16.2444 < 0.0001 
Clone1044:InvAge -2.1929 0.1994 -10.9973 < 0.0001 
Clone1106:InvAge -3.0534 0.2345 -13.0193 < 0.0001 
Clone1189:InvAge -2.5108 0.2452 -10.2378 < 0.0001 
Clone1192:InvAge -3.3173 0.2140 -15.5048 < 0.0001 
Clone2747:InvAge -3.1551 0.2133 -14.7900 < 0.0001 
Clone3901:InvAge -1.2704 0.2689 -4.7238 < 0.0001 
Clone3903:InvAge -3.7837 0.1703 -22.2177 < 0.0001 
Clone3906:InvAge -1.5131 0.1877 -8.0601 < 0.0001 
Clone3910:InvAge -1.7063 0.2267 -7.5266 < 0.0001 
Clone3913:InvAge -0.6142 0.2027 -3.0296 0.0026
Clone6039:InvAge -2.7458 0.2284 -12.0233 < 0.0001 
Clone6054:InvAge -3.8854 0.3196 -12.1560 < 0.0001 
CloneMUL1:InvAge -2.9523 0.1002 -29.4767 < 0.0001 
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FIGURE 2.3. Residual plots of the linear model by subject.

Following from these analyses, we have arguments to fit the model as a mixed-

effects model, considering plots as a random unit.

The mixed-effects model was first fitted considering just 1/age as a fixed

covariate. The AIC, BIC and REML were -747.3824, -721.0611, and 379.6912, 

respectively. To make sure if the basal area growth patterns are different among clones, a 

new model was fitted including the categorical variable Clone and the interaction 
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FIGURE 2.4. Pairs plot relationship between intercept and slope fitted by plot.

Clone*(1/age). The new values for AIC, BIC and REML were -644.8446, -471.7272, 

and 362.4223. Based on these estimated parameters, the first model had better 

performance. But, when we check the p-values for each clone and for the interaction we 

found that 10 clones of 18 had significant p-value < 0.05, indicating different growth 

patterns among clones. So, we decided to maintain the variables Clone and Clone*(1/age) 

in the model. Further, our final purpose is to develop a model that accounts for the 

variability among clones. 
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FIGURE 2.5. Ninety-five percent confidence intervals on intercept and slope for each 
plot.

To verify the effect of using mixed-effect techniques in fitting the model, the 

values of the parameters estimated using just fixed effects were plotted against 

parameters estimated by the mixed-effect model (Figure 2.6). It can be seen that the 

individual estimates from the linear mixed-effect model, represented by “+”, tend to be 

“pulled toward” the fixed-effects estimates, represented by “o”, mainly in larger 
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residuals. This occurs for the reason that mixed-effects estimations represent the effect of 

the individual fits and the fixed-effects estimates, associated with the population 

averages. These are often referred to as “shrinkage estimates”. In plots with an outlying 

basal area growth pattern, the shrinkage is more evident. This characteristic gives a 

certain robustness to outlying plot behavior. When we compare the lines fitted by the 

fixed-effect and mixed-effect models (Figure 2.7; representing 36 plots of a total of 115),

this attribute is better visualized. In some plots, like 7:3903 and 1:0331, we can verify the 

greater sensibility of the fixed-effect in fitting individual plots.   In every plot, the 

distances from observed and estimated values are smaller when the plot effect is included 

in the model, generating smaller residual mean squares.   

Checking Distributional Assumptions 

   Two basic distributional assumptions will be checked: within groups and random 

effects.   Within-group errors are considered independent and identically normally 

distributed, with mean zero and variance 2 and independent of the random effects. The 

random effects will be verified if they are normally distributed with mean zero and 

variance-covariance matrix , which do not depend on the group and are independent for 

different groups. As pointed out by Pinheiro and Bates (2000), the most useful of the 

methods for assessing the validity of these assumptions are based on plots of the 

residuals, the fitted values, and the estimated random effects. Also, the tests  could be 

performed by using hypothesis tests, but the conclusions rarely contradict the information 

displayed in the plots. 
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 As we can see on Figure 2.8, in 12 plots representing 3 of the 18 clones in the 

analysis, the residuals are distributed around zero, confirming the assumption that E[ ]=0.

In residual analysis, it is apparent that the variability is among plots. So, the within-plot 

constant variance assumption was violated and it will be necessary to model this 

variability to improve the model. If we use all 17 clones in the analysis, the residual 

distribution becomes more clustered. Also, Figure 2.8 shows some outlier observations in 

plot clone 1:3913 and 2:2747 and larger residuals for clone 1030. The box plots indicate 

that the variability is greater among plots representing the clone 1030. If the standard 

residuals versus fitted values for all 18 clones were plotted (Figure 2.9),  it is clear that 

the variability among plots from some clones are greater than plot from others. 

 Based on observations of Figures 2.8 and 2.9, the first idea was to model the 

variance by clone for the within-group error. It is possible to do this by using the S-plus 

varIdent function, from varFunc Classes in the nlme  library. This procedure allows a 

variance model with different variances for each level or  clone (Pinheiro and Bates, 

2000). Table 2.2 represents the different values estimated for homoscedastic and   

heteroscedastic models. The smaller values of AIC and BIC, the greater value of log-

likelihood and the very small p-value of the likelihood ratio statistic confirm that the 

heteroscedastic model improved on adjusting and explaining the data over the 

homoscedastic model. Graphics based on residuals and quantiles of standard normal are 

presented to confirm the improvement (Figures 2.10 and 2.11). 
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FIGURE 2.8. Boxplots of the residuals for linear mixed-effects model.
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TABLE 2.2. Comparing Akaike Information Criterion (AIC), Bayesian Information
Criterion(BIC) and LogLikelihood (logLik) for homoscedastic and heteroscedastic 
models.

Model DF AIC BIC LogLik Test LogLik Ratio P-Value
1 - Homoscedastic 6 -747.38 -721.06 379.69  - -
2 - Heteroscedastic 70 -901.24 -798.28 520.62 1 vs 2 281.86 <0.0001

The next step is to asses the assumptions on the random effects. Figure 2.10 

represents the normal plot of estimated random effects for the heteroscedastic model. The 

assumption of normality appears  reasonable for random effects, despite the fact that 

there are two outliers: one for intercept (1:0034) and one for slope(8:0331). Considering 

the variability of the data set, representing different clones in distinct regions, the 

presence of just two outliers is not a concern.   The second assumption related to random

effects can be checked in Figure 2.11. It can be seen that the pairs slope-intercept for all 

plot:clone combinations have mean close to zero and constant variance. 
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FIGURE 2.10. Normal plot of estimated random effect for heteroscedastic fitted model.
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FIGURE 2.11. Boxplots of the residuals for heteroscedastic linear mixed-effects model.

Since the data sets are from longitudinal information, with repeated measurements

by plots and/or spatial data, with observations indexed by spatial location, the next step is 

to verify the correlation structures for modeling possible correlation dependencies. 

Because these data are not equally spaced in time, we used the spatial correlation to fit 

continuous-time correlation models. Figure 2.12 is a graphical representation of sample

semivariogram. The semivariogram values appear to increase up to 0.10 and then 

decrease. We tried to model this pattern using five spatial correlation models:

Exponential, Gaussian, Linear, Rational quadratic, and Spherical. The Spherical spatial 

model had better fit in this specific situation.  The resulting plot, shown in Figure 2.13, 
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appears to vary randomly around y=0.5, with no observed patterns. This suggests that the 

spherical model is adequate. The AIC and BIC values are smaller indicating that  

heteroscedastic-autocorrelation model  had an improvement in representing these data. 

Also, the large value of the likelihood ratio test indicate the evidence of dependence, 

generating a p-value=0.0004.

TABLE 2.3. Comparing Akaike Information Criterion (AIC), Bayesian Information 
Criterion(BIC) and LogLikelihood (logLik) for homoscedastic, heteroscedastic and 
heteroscedastic-autocorrelation models. 

Model DF AIC BIC LogLik Test LogLik 
Ratio P-Value

1- Homoscedastic 6 -747.38 -721.06 379.69  - - -
2- Heteroscedastic 70 -901.24 -798.28 520.62 1 vs 2 281.86 < 0.0001 
3- Heteroscedastic/
Autocorrelation 37 -1034.72 -872.41 554.36 2 vs 3 67.49 0.0004

The assumption of normalized residuals for each clone can be confirmed by 

Figure 2.14. With some exceptions, the residuals have fairly normal distribution, 

confirming the normality assumption after the modeling heteroscedastic and 

autocorrelation.

 The final parameters estimated for fixed and random effects can be seen on Table 

2.4. Considering all 115 plots, both random intercept and slope had positive or negative 

values. The parameter estimates for each plot are generated by adding the fixed and 

random effects. So, considering the parameter values, the curves for each plot had 

different intercepts and slopes. 
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FIGURE 2.12. Sample semivariogram estimates for linear mixed-effects model before 
modeling the spatial autocorrelation.
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FIGURE 2.14. Normal plots of residuals for each clone.
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TABLE 2.4. Fixed and mixed parameters estimates for the final model, with 
heteroscedastic and autocorrelation modeled, representing 44 plots in a total of the 115. 

Plot:Clone Fixed Intercept -
o

Random
Intercept-  boi

Fixed Slope - 
1

Random
Slope- b1i

1:0331 2.7505 0.173135 -2.494754 -0.602890
2:0331 2.7505 -0.326031 -2.494754 -0.820808
3:0331 2.7505 0.086599 -2.494754 -0.437708
4:0331 2.7505 -0.112138 -2.494754 -0.759980
5:0331 2.7505 0.003331 -2.494754 -1.161210
6:0331 2.7505 -0.468503 -2.494754 -0.934774
7:0331 2.7505 -0.339641 -2.494754 -1.133078
8:0331 2.7505 0.303319 -2.494754 0.701643
1:1030 2.7505 -0.153020 -2.494754 0.456104
1:1044 2.7505 -0.062380 -2.494754 -0.320059
2:1030 2.7505 -0.300282 -2.494754 0.375090
2:1044 2.7505 0.037841 -2.494754 -0.644155
1:1106 2.7505 -0.172280 -2.494754 0.907539
3:1030 2.7505 -0.279085 -2.494754 0.517948
3:1044 2.7505 0.113330 -2.494754 0.077612
2:1106 2.7505 0.075706 -2.494754 0.766970
1:1189 2.7505 0.031074 -2.494754 0.462230
1:1192 2.7505 -0.135062 -2.494754 -0.746007
4:1044 2.7505 0.273362 -2.494754 0.690275
3:1106 2.7505 0.001544 -2.494754 0.186253
2:1189 2.7505 0.054275 -2.494754 -0.143285
2:1192 2.7505 -0.166382 -2.494754 -0.713032
5:1044 2.7505 0.343911 -2.494754 0.488235
4:1106 2.7505 -0.043321 -2.494754 0.330997
3:1192 2.7505 -0.227671 -2.494754 0.774958
6:1044 2.7505 0.137643 -2.494754 0.491384
7:1044 2.7505 0.273095 -2.494754 -0.186133
1:2747 2.7505 -0.125751 -2.494754 0.242588
2:2747 2.7505 -0.007582 -2.494754 -0.292900
3:2747 2.7505 -0.054132 -2.494754 0.383382
4:2747 2.7505 0.095186 -2.494754 0.686109
5:2747 2.7505 0.073741 -2.494754 0.340994
1:3901 2.7505 0.330668 -2.494754 -1.054732
1:3903 2.7505 -0.079383 -2.494754 0.504073
1:3906 2.7505 0.098306 -2.494754 -1.391277
1:3910 2.7505 0.168650 -2.494754 -0.603410
1:3913 2.7505 0.496449 -2.494754 -1.043936
2:3901 2.7505 0.244551 -2.494754 -0.847973
2:3903 2.7505 -0.108126 -2.494754 0.385165
2:3906 2.7505 0.168061 -2.494754 -0.724138
2:3910 2.7505 0.234550 -2.494754 -0.388806
2:3913 2.7505 0.419233 -2.494754 -0.204785
3:3903 2.7505 -0.015414 -2.494754 0.491923
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Relating the Random Parameters with Plot Characteristics. 

 The focal point here is to relate the random intercept and slope estimates to plot 

characteristics. This method is similar to parameter prediction by Clutter(1983), that 

related  fixed parameters of the fitted curves to site index and other variables through 

linear or nonlinear regression procedures. The crucial difference is that the parameters 

used are random, representing each plot sampled. The application of this method is to 

estimate the random-effect parameters for other plots, which represent a specific stand, 

based upon plot properties, such as site index and trees per hectare. In Figures 2.15 and 

2.16 it can be seen that the random intercept is linear-positively related to site index 

(base-age = 7 years) and the random slope is linear-negatively related to site index. This 

suggests a linear model to represent this relationship. The variable N (number tree per 

hectare) does not have a significant effect in explaining the variation.

 The results of the simple linear regression between site index and random 

parameters are presented on Figures 2.17 and 2.18. We had a better fit for the intercept 

variable with good residual distribution and relatively high R-squared (0.63). Even 

though the R-square for slope was not strong (0.12), the important result was the residual 

distribution, which had uniform distribution around zero.   

 In order to check the precision of relating random parameters with plot 

characteristics, we compare estimated and observed basal-area for some plots which were 

not included in the analysis (Table 2.4). The percentage difference between observed and 

estimated basal-area varies from 0% to 31.6% and most of them were less than 10 

percent. In view of the fact that the clones in this analysis are different from those used to 

estimate the mixed-effect model for basal area, this result can be considered 
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FIGURE 2.16. Relationship between Site Index and the random effect b1(slope)
estimated based on mixed-effect model.
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FIGURE 2.18. Parameters estimated, statistics and residual distribution of linear 
relationship between Site Index and the random effect b1.
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precise in terms of projection. The signals of the difference had greater variation in 

positive and negative values, demonstrating a compensation in overestimation and 

underestimation of basal area, decreasing the final error of estimate for the population.        

Discussion

The linear mixed-effects model generated precise estimates for both fixed 

(1/Age), and random effects (plot). More variability was found among different clones 

than among plots of the same clone, meaning it  was necessary to include the clone effect 

in the analysis. The individual estimates from the linear mixed-effect model tended to be 

“pulled toward” ( “shrinkage estimates”) the fixed-effects estimates because mixed-

effects estimates represent the effect of the individual fits and the fixed-effects estimates, 

associated with the population averages, giving a certain robustness to outlying plot

behavior.

Although it was not verified that there were problems with residual distribution 

within plots, the heteroscedasticity among plots was modeled and the information criteria 

statistics and likelihood values had a significant improvement. Moreover, because the 

plots are from different locations with environmental variations, the spatial correlation 

pattern was modeled. Once more the information criteria statistic and likelihood values 

showed significant improvement. Semivariogram and normal plots by sample unit 

showed the superiority of the heteroscedastic-autocorrelation model. 

 The random parameters estimated in the mixed-effects model were related to site 

index of each plot, and two linear regression equations were generated to estimate these 
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TABLE 2.5. Basal-area estimated for new plots using mixed-effects model. 

Clone Age(years)
Dominant

Height
(meters)

Basal Area 
(m2/hectare)

Dominant
Height in Age 

7 (meters) 

Predicted
Basal Area 

(m2/hectare) 

%
Difference

HUGA45 2.50 17.50 11.0900 29.24 11.6738 -5.3
HUGA45 2.50 18.50 13.7600 30.24 12.1142 12.0
HUGA45 2.50 15.50 12.2000 27.24 10.8405 11.1
EGRBS1 2.50 16.75 9.1500 28.49 11.3541 -24.1
EGRBS1 2.50 18.75 12.3200 30.49 12.2269 0.8
EGRBS1 2.50 18.75 12.4900 30.49 12.2269 2.1
EGRBS1 2.50 21.25 12.8200 32.99 13.4128 -4.6
EGRBS1 2.50 18.00 14.0500 29.74 11.8920 15.4
EGRBS1 2.50 15.50 11.6000 27.24 10.8405 6.5
EGRBS1 2.50 19.25 12.9900 30.99 12.4554 4.1

1172 2.17 13.00 8.4900 26.37 8.9981 -6.0
1172 2.17 15.25 13.0100 28.62 9.7002 25.4
1172 2.17 14.75 10.1400 28.12 9.5396 5.9
1172 2.17 14.25 8.9800 27.62 9.3817 -4.5
1172 2.17 12.75 8.0600 26.12 8.9233 -10.7
6024 2.17 13.50 8.0100 26.87 9.1496 -14.2
6024 2.17 13.00 6.8400 26.37 8.9981 -31.6
6024 2.17 14.75 8.7500 28.12 9.5396 -9.0
6024 2.17 14.00 8.3200 27.37 9.3037 -11.8
3902 2.67 14.75 9.1300 25.76 10.9359 -19.8
1052 2.67 18.25 14.4600 29.26 12.5158 13.4
1052 2.67 18.25 16.6000 29.26 12.5158 24.6
1052 2.67 18.00 13.2600 29.01 12.3957 6.5
1052 2.67 18.00 14.7500 29.01 12.3957 16.0
1052 2.67 18.50 15.1200 29.51 12.6370 16.4
1052 2.67 17.00 13.4000 28.01 11.9269 11.0
1052 2.67 16.25 10.9800 27.26 11.5870 -5.5
3902 2.67 17.25 13.3200 28.26 12.0424 9.6
3902 2.67 15.00 10.2500 26.01 11.0419 -7.7
3902 2.67 14.25 8.8800 25.26 10.7272 -20.8
0010 2.67 16.50 12.7100 27.51 11.6992 8.0
3902 2.67 14.50 8.3600 25.51 10.8310 -29.6
3902 2.67 18.00 15.5600 29.01 12.3957 20.3
0010 2.67 17.00 11.7600 28.01 11.9269 -1.4
0010 2.67 18.00 13.1100 29.01 12.3957 5.4
0010 2.67 16.50 12.6600 27.51 11.6992 7.6
0010 2.67 16.25 14.6400 27.26 11.5870 20.9

MISTSE 2.00 14.00 8.7400 28.29 8.6489 1.0
MISTSE 2.00 13.25 8.7200 27.54 8.4498 3.1
MISTSE 2.00 12.75 9.7900 27.04 8.3196 15.0
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TABLE 2.5. Continued. 

MISTSE 2.00 13.00 8.0200 27.29 8.3845 -4.5
EURCHM 2.00 12.75 8.4000 27.04 8.3196 1.0
EURCHM 2.00 13.50 8.9600 27.79 8.5156 5.0
EGRANH 2.00 14.00 9.2100 28.29 8.6489 6.1
EGRBS1 2.00 14.00 8.9400 28.29 8.6489 3.3
EGRBS1 2.00 14.50 9.3800 28.79 8.7842 6.4
EGRBS1 2.00 13.50 7.2800 27.79 8.5156 -17.0
EGRBS1 2.00 13.75 7.2200 28.04 8.5820 -18.9

3908 2.83 20.00 16.6600 30.33 13.8306 17.0
3908 4.08 27.75 20.5300 33.91 22.0304 -7.3
3908 4.92 28.75 23.5800 32.77 23.6094 -0.1
3908 5.83 31.75 24.8300 33.84 27.3406 -10.1
3908 7.00 33.50 28.1800 33.50 29.2526 -3.8
3908 8.08 34.75 28.4800 33.11 30.3133 -6.4
3908 8.92 36.25 29.2800 33.49 32.0217 -9.4
3908 9.83 36.75 30.9300 32.87 31.9157 -3.2
3908 10.67 37.25 31.3700 32.45 31.9205 -1.8
1255 3.50 16.50 11.9900 24.40 12.8597 -7.3
1255 4.33 22.25 15.4500 27.73 17.1727 -11.2
1255 5.42 24.50 19.1000 27.42 19.0916 0.0
1255 7.50 26.50 18.7500 25.71 19.9148 -6.2
1255 8.42 27.50 19.7600 25.40 20.3095 -2.8
1255 9.17 29.00 21.2300 25.92 21.4008 -0.8
1165 3.50 24.00 17.1000 31.90 17.8692 -4.5
1165 4.33 24.75 19.0000 30.23 19.3206 -1.7
1165 5.42 25.50 21.5100 28.42 20.0688 6.7
1165 7.50 27.00 22.4400 26.21 20.4493 8.9
1165 8.42 28.00 23.2900 25.90 20.8638 10.4
1165 9.17 30.00 23.9600 26.92 22.5979 5.7

209 3.50 20.50 13.1800 28.40 15.3261 -16.3
209 4.33 22.25 16.0300 27.73 17.1727 -7.1
209 5.42 23.00 18.0500 25.92 17.7144 1.9
209 7.50 24.50 19.5800 23.71 17.9127 8.5
209 8.42 25.25 20.1700 23.15 17.9921 10.8
209 9.17 27.00 21.6800 23.92 19.1935 11.5
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parameters based upon site information. The fitted equations were tested in various new 

plots representing different clones. The method generated precise results with prediction 

error in general of less than 10 percent.   



CHAPTER 3 

NONLINEAR MIXED-EFFECTS MODEL APPLIED TO CLONAL Eucalyptus
PLANTATIONS

Introduction

Similar to the linear case, nonlinear mixed-effects models also have been applied 

in modeling an assortment of situations in recent years. Due to the nonlinear 

characteristics of growth curves and the variation among  random subjects, the nonlinear 

mixed-effects model approach is a rich tool for modeling such curves. In addition, the 

biological interpretability of both the fixed and random parameters make this approach 

directly connected with population feature.

In forestry, the application of the nonlinear mixed-effect theory has been 

increasing in recent years. In one of the pioneer studies, Lappi and Bailey (1988) used the 

nonlinear Richards equation to model tree height with random stand and tree parameters.

Also, Walters et al. (1991), Gregoire and Schabenberger (1995), Fang (1999) and Hall 

and Bailey (2001) have published studies based on this approach.

The main purpose of this study is to fit the logistic equation to model height 

growth of eucalypt plantations using random and fixed parameters, accounting for

variation within plots and by clone and modeling the autocorrelation within subject.

41
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Generalized Nonlinear Mixed-Effects Models 

As in linear case, we will follow the methodology presented by Davidian and 

Giltinan (1995) and Lindstrom and Bates (1990) to present the basic framework features 

about nonlinear mixed-effect models. Again, we will consider the response variable yij

representing the group i (or plot i in our case) measured over time j. So, i=1,…,m,

j=1,…,ni, m is the total number of plots and ni is the number of repeated measurents of 

the response variable. In a balanced data set, n1=n2=…=nm. We can use the nonlinear 

function ijijijij fy ),(  to represent the relationship between the response variable 

and the covariates within the ith group, where is a general, real-valued, differentiable 

function of a group specific parameter vector 

f

ij  and a covariate vector ij , and ij  is a 

normally distributed within-group error term. The function  has to be nonlinear in at 

least one component of the group-specific parameter vector 

f

ij , which has the form

),(b, iiijijij bBA ,                                                  (3.1) 

where  is a (p x 1) vector of fixed effects, bi is a (q x 1) vector of random effects 

associated with the ith group, and Aij and Bij are incidence matrices . The assumptions are 

the same as those in the  linear case. The within-group errors are independently 

distributed with mean zero and variance 2 and independent of the random effects.

Further we will use the logistic equation with three parameters to model the 

dominant height growth pattern as a function of age. If we assume that the final model

will have three fixed and three random effects, the model and the matrices of the 

expression iijijij bBA will have the following format:
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ij ~ N (0, 2 ). 

Where HD represents Dominant Height, which is the mean of the 100 trees of 

largest diameter per hectare, aij is the age of plot i in time j and kj are parameters to be 

estimated.

The approach in modeling variance and correlation structures is basically the 

same as for the linear mixed-effects model. Details can be find in Pinheiro and 

Bates(2000), Davidian and Giltinan(1995) and Littell et al. (1999).

Data

The data set, the same used for the  basal-area study, is from permanent plots of

Eucalyptus hybrid, propagated as clones, cultivated in the Brazilian Coastal Region, in 

Bahia and Espírito Santo states. Each plot was measured from 3 to 10 times, between 

1992 and 2001. So, the data set is represented by longitudinal, irregularly spaced and 

unbalanced plots.

The response variable for each plot will be Dominant Height (HD) and the 

covariate associated with the response variable will be the Age(A). In Figure 3.1 we can 

see a distinct nonlinear increase of HD with Age. Also, this trend has different patterns 
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for different Plot x Clone combinations, including the situation in which the number of 

measurements was not sufficient for HD to approach an asymptote. We will further 

examine the robustness of the mixed-effects model for modeling this situation by using 

auxiliary information from other plots to model insufficient repeated measurements.  

 Some variation between Plot x Clone combinations are due to site quality and/or 

genetic differences between clones, leading to different curve shapes (polymorphism).  In 

Figure 3.1 it is clear that some plots  have lower asymptotes and/or early inflection 

points, representing a polymorphic system of site equations. Therefore, the focus is to 

model the fixed and random parameters to generate a family of polymorphic site 

equations, that will represent the site and clone variations.

Fitting Nonlinear Mixed-Effects Models 

 As seen in Figure 3.1, nonlinear trends and the variation among plots is the 

primary motivation to consider a nonlinear model. Similar to the linear mixed-effects 

model, we will use a single level mixed-effects model where the response variable is 

dominant height (HD). 

 We have noted the variations among plots to justify the use of the mixed-effects 

model. After trying some models to fit the data set, such as Gompertz, Richards and 

Weibull-type models,  we chose the logistic model,  which proved to be precise and 

flexible in this case: 
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FIGURE 3.1. Dominant height (HD) growth for different plots and clones 
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Where:

 HDij = Dominant Height (meters) for i-th plot on time j; 

 = Age(years) for i-th plot on time j; ija

ij = Random error; 
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 bi ~ N (0, ) and ij ~ N (0, 2)
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Here,  is a vector of fixed effects and bi represents the vector of random effects. 

 and bij i are independents. i1  is the horizontal asymptote as age goes to infinity. i2  is 

the age value at which the response is i1 /2. It is the inflection point of the curve. i3  is 

the scale parameter, which represents the distance on the x-axis between the inflection 

point and the point where the response is i1 /(1+e-1) =0.73 i1 . In the basic assumptions,

the random effects are normally distributed and independent for different groups and the 

within-group errors are independent and identically normally distributed and independent 

of  the  random effects. 

Ignoring the grouping of the dominant height measurements and the random

effect, the model (3.1) was fitted using the entire data set, using standard nonlinear least 

squares methodology. The boxplots in Figure 3.2 show that the residuals tend to be 

mostly negative for some plots, positive for others, and the plots have different variations. 

If the model (3.1) is adjusted for each plot separately (Figure 3.3), the pattern for each 

plot is evident. Some gaps in Figure 3.3 are because the plot does not have enough 

observations to fit the model. When the model was fitted as a fixed effect model for all 

plots together, the residual standard error was 4.38646. In contrast, the  residual standard 

error had value 1.565119 when the model was adjusted for each plot separately, 

indicating that adjustment for each plot accounted for the Plot x Clone effect.

The drawback in fitting each plot separately is that we had an over-parameterized

model. In our case, we have 596 plots with 3 parameters per plot and the model does not 

take into account similarities among plots and variability among and  within individuals. 
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The mixed-effects models  were designed to consider these and other  characteristics of 

the group analysis.

The mixed-effects model (3.1) was fitted using our data set (Table 3.1). The large 

estimate for the  standard deviation for the three random effects suggests that they  are 

needed in the model. The AIC, BIC and LogLikelihood values were 2467.838, 2511.740 

and -1223.919, respectively. Based on the relatively high  correlation between the i1

and i2  parameter estimates, we tried to eliminate the i2  random parameter, keeping it 

just as a fixed effect to avoid ill-conditioning problems associated with the variance-

covariance matrix and over-parameterized random-effects. The AIC, BIC and 

LogLikelihood values were 2470.304, 2518.597 and  -1224.152, indicating that the 

random effect is needed in the model.
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FIGURE 3.4.  Scatter plots of standardized residuals versus fitted values 
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TABLE 3.1. Information of fixed and random effects and correlation

Fixed Effect Random Effect Correlation
Parameter Value Stand. Error Stand. Error 2 3

1 28.62547 0.4511514 4.157212 0.807 0.017

2 2.12669 0.0521297 0.362975 x 0.604

3 1.82543 0.0714603 0.337231 x X
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Checking Distributional Assumptions 

Similar to  the linear mixed-effects model, the nonlinear distributional 

assumptions require that the random effects are independent and normally distributed 

with mean zero and variance-covariance matrix . The within-group errors ij  are 

independent normally  distributed with mean zero and variance 2 and independent of the 

random effects.

The plot of the standardized residuals versus the fitted values, presented in  Figure 

3.4, shows that the residuals are distributed symmetrically around zero, with 

approximately constant variance. This does not indicate any departure from the 

assumptions for within-group error. With the exception of some possible outliers, the 

homoscedastic model provides a good representation of the data. Some heteroscedastic 

models were fit with variable variance-covariance structure but the values of AIC, BIC 

and LogLikelihood did not show significant improvements.

The distribution of the random effects can be examined in Figure 3.5. The result 

does not indicate any serious violation of the assumption of normality for random effects, 

with some outliers present on the i1   and i3  parameters.

The adequacy of the fitted model can be visualized in Figure 3.6, representing 36 

plots from a total of 115. Both the population predictions, with random effects set to zero, 

and the within-group predictions can be compared.  The plot-specific estimates are close 

to the observed values, indicating that the logistic mixed-effects model adequately 

represents the dominant height growth data. 
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FIGURE 3.6.  Observed and fitted dominant height (HD) as a function of age for fixed
and random (plot) effects

Plots like 4:1044 and 5:1044, for example, reach the asymptote early. Such trends 

were described only by the mixed-effects model.
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FIGURE 3.7. Observed values of dominant height by age and plot 

Figures 3.7 and 3.8 show the observed and estimated curves for different 

combinations of clone/plot. Figure 3.8 represents an assortment of shapes for dominant

height growth, including anamorphic and polymorphic curves. Thus, we had strong 

variations in both fixed and random effects for the three parameters of the logistic 

equation. This suggests a biological interpretation for the parameters.
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FIGURE 3.8. Fitted profile for dominant height as a function of age 

Biological Interpretation to Fixed and Random Effects 

Biological interpretations can be given to the parameters of the logistic equation 

(3.3), where 1 is the asymptote parameter (maximum height), 2  is the inflection point 

(age at which ½ of maximum height occurs) and 3  is the scale parameter (distance in 

years from the inflection point to the point where the height is 73% of the maximum
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height). The intention here is to provide a biological interpretation for fixed and random

effects which generate these parameters. Figure 3.9 represents the dominant height 

growth curves for the clones labeled 0014, 1044, and 3903. The classification of the 

curves are either anamorphic or polymorphic and, sometimes, “quasi-anamorphic”. In 

clone 3903, the different curves have nearly the same pattern and the curves with a 

greater asymptote parameter have smaller middle response and scale parameters. There is 

a high correlation between the asymptote and the other two parameters. In this case, for a 

new observation representing this clone, we could estimate the asymptote parameter

based on an early inventory which will give us information about 2 and 3. The same

situation is not clear when we analyze the height growth profiles for clones 0014 and 

1044. Due to nondisjoint polymorphism of these curves, sometimes a curve with smaller

2 and 3 parameters, which indicate good site, does not have a larger value for the 1

parameter. Thus, if a new observation, with height/age information for an early age, is 

projected in this type of curve, the curve generated could have two or more different 

shapes, generating a projection problem. Here, the problem is more evident because the 

analyses were carried out based on plots with subjects (trees) with the same genotype and 

the variations are due to environment only. 

Clutter (1983) commented that the solution to this problem is to include other 

variable(s) than height and age in the site index system. Studies such as Zahner (1962) 

and Newberry and Pienaar (1978) include soil categories as a discrete variable to explain 

the polymorphism of the curves. However, as pointed out by Clutter (1983),  when the 

additional variables are quantitative and continuous, there is no alternative to viewing the 

curve system as being polymorphic-nondisjoint. Thus, one could include  quantitative 
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soil chemical and physical information as covariates and fit a system more precisely. 

Other information, such as precipitation, site preparation, fertilization, and other 

silvicultural treatments would be useful as covariates to explain the 

anamorphism/polymorphism behavior of the dominant height growth curves.
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FIGURE 3.9. Dominant height growth for three different clones 

Discussion

The nonlinear mixed-effects model, represented here by the logistic equation with 

three parameters, has considerable flexibility in represent the dominant height growth 

pattern for eucalypt clones, generating either an anamorphic (or “quasi-anamorphic”) or 

polymorphic sets of site index curves, depending on the combination of clone and 

environment.

Using information statistics (AIC and BIC), logLikelihood and correlation 

analysis, we conclude that the logistic model with three fixed and three random effects 
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does not generate an ill-conditioned variance-covariance matrix and, consequently, that 

the model is not over-parameterized. 

 The analysis of the scatter plot of the standard within-group residuals shows a 

uniform distribution around zero with approximately constant variance, indicating that 

the homoscedastic model provides a good representation of the data. Also, the 

assumptions related to random effects was examined and it was concluded that the three 

parameters are approximately normally distributed, with no serious violation of this 

assumption.  

 The fitted values representing 115 plots confirmed the adequacy of the model to 

represent the data set, with strong variation among the three random parameters, 

indicating that the plots have different asymptotes, inflection points and scale. 

 Due to the differences among the random parameters of the logistic model, within 

plots and among plots, the system of site curves generated varied substantially across 

location and clones, with anamorphism or polymorphism, depending on the site/clone 

combination. 



CHAPTER 4 

LINEAR AND NONLINEAR MULTILEVEL MIXED-EFFECTS MODEL 
APPLIED TO Eucalyptus PLANTATIONS

Introduction

Multilevel mixed-effects models are based on nested classification factors. In 

Chapters 2 and 3, the mixed effects model was developed with just one level, which was 

plot. Here, supported by the availability of the individual tree data set, the focus will be 

on modeling two levels: plot (level 1) and trees within plot (level 2). Based on definitions 

by Daniels and Burkhart (1988), this situation would have an intermediate level of 

resolution between distance-independent and distance-dependent individual-tree models.

Although the data sets have a distance-independent level of resolution, the modelling

approach including random effects and spatio-temporal process could be considered a 

superior level of resolution compared to distance-independent level without these 

approaches.

57
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In forestry, multilevel mixed-effects model, taking in to account the linear and the 

nonlinear multilevel approach, was fitted by Fang(1999) to model the growth of slash 

pine with different cultural treatments.  

 Again, we do not have information about applying multilevel mixed-effects 

approach to model Eucalyptus stand growth. The general purpose of this study is to 

assess linear and nonlinear two-level (plot and tree within plot) mixed-effects approach to 

model basal area and dominant height growth.  

Generalized Multilevel Linear Mixed-Effects Models 

 The formulation presented in chapter 2 for single-level linear mixed-effects 

models can be extended to the two nested levels case. The response variable yijk will be 

measured for the first level i, second level j and occasion (time) k.  The general model 

has the follow formulation: 

yij =Xij  + Zi,jbi + Zijbij + ij                                                (4.1) 

Where Xij are matrices of fixed effects with dimension (nij x p); is a vector of the fixed 

parameters with dimension (p x 1); Zi,j are matrices with dimension (ni x q1) associated 

with the first level random effects bi; Zij  are matrices of dimension (ni x q2) associated 

with the second level random effects bij; and ij are the error terms. The assumptions are 

the same as those for single level model.                                                  

Generalized Multilevel Nonlinear Mixed-Effects Models 

 In the single level nonlinear approach we had two random components in the 

model which were represented by the random error within group (eij) and the subject 

effect (bi). In the multilevel nonlinear approach the model is extended including more 
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than one level of random subject effects and these effects are nested. For example, plots 

are random and trees are random and nested within plots, providing a case of two-level 

random effects model. The model will be represented by yijk which is the response 

variable of the kth observation in time on the jth second-level group (tree) and ith first-

level group(plot). The expression representing this situation is 

ijkijkijijk ),(fy .                                                     (4.2 ) 

Where i=1,…,m, j=1,…,ni, and k=1,…,nij. Again, is a general, real-valued, 

differentiable function of a group specific parameter vector 

f

ij  and a covariate vector 

ijk , and ijk  is a normally distributed within-group error term. The function  must be 

nonlinear in at least one component of the group-specific parameter vector 

f

ij , which has 

the form

,, ijijkijkiijkij bBbBA ),(band),(b iji 21 00                       (4.3)

where  is a (p x 1) vector of fixed effects and bi is a (q1 x 1) vector of random effects 

associated with the ith group, bij is a (q2 x 1) vector associated with the second level 

random effects and assumed to be independent of the first-level random effects, and Aijk

and Bijk are incidence matrices. The assumptions are the same as those in the linear case. 

The within-group errors are independently distributed with mean zero and variance 2

and are independent of the random effects.
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The logistic equation with three fixed parameters will be used to model dominant

height growth pattern as a function of age. Suppose that the final model will have three 

fixed and three random effects, the model and the matrices of the expression 

 will have the following format:ijijkijkiijkij bBbBA ,

ijk
ijijijk

ij
ijk a

HD
]/)(exp[1 32

1                                 (4.4) 
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223222212

213212211

ij ~ N (0, 2 ). 

Extensions to more than two levels are straightforward. The approach to modeling

variance and correlation structures is basically the same given in the linear mixed-effects

model.

Data

The data sets are from the same regions as those used in modeling basal area and 

dominant height. Here, we have data on individual trees, measured in plots,  representing 

seven different genetic materials (clones). The total was 4289 observations, representing 
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254 trees and 8 plots. The ages ranged from 1.8 to 7.5 years with variations by plot 

(Figure 4.1). For example, the trees on plot 18764, representing the clone AR4, were 

measured monthly from 3.2 to 4.8 years, with a total of 18 repeated measurements. This 

research data set is atypical, compared with those generated by ordinary forest inventory 

in eucalypts plantations.
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FIGURE 4.1. Nonlinear relationship of  dominant height measured over time for 
individual trees, representing different combinations plot:clone. 
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Fitting A Linear Two Levels Mixed-Effect Model. 

Based on the data set presented in first section and previous studies of modeling

basal area yield, we used the ln(BA) as response variable and 1/age, ln(H) and their 

interaction as covariates. Where BA represents the basal area in square meters, age is in 

years and H is total height in meters. First, we considered a full mixed-effects model,

with all terms having random effects at plot and tree within plot levels. We had 12362

observations, j=8 plots and number of trees i varying by plot. The two level model is 

presented in (4.1). 

ijkijk
ijk

ijiijkiji
ijk

ijioijoioijk )Hln(
A

)bb()Hln()bb(
A

)bb()bb()BAln( 11
333222111

bi =  ~ N (0,
i

i

oi

b

b

b

2

1 1), bij =  ~ N (0,
ij

ij

oij

b

b

b

2

1 2) and ijk ~ N (0, 2).

        (4.5) 

 The parameters o , 1 , and 2  are fixed effects and bi is the plot-level random-

effects vector, bij is the tree within plot-level random-effects vector, and ijk is the within-

group error. The bi are assumed to be independent for different plots, the bij are assumed

to be independent for different trees, different plots and independent of the bi. ijk are

assumed to be independent for different plots, trees and observations, and independent of 

the random effects. 

Due to the great number of observations, trees within plot and 20 variance-

covariance components, the first mixed-effects model (4.1) was fitted assuming that 1
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and 2 are diagonal matrices, which makes the optimization of the profiled log-

restricted-likelihood more stable. The estimated parameters and standard deviations are 

presented in Table 4.1.  The fixed effect had significant p-value (<0.05) with the 

exception of 2,  which had a p-value=0.0603. The variable ln(H) was kept in the model 

because the interaction had significant p-value. The covariance components among 

random effects are assumed to be zero in a diagonal structure. The estimate for standard 

deviations for both levels were not small, meaning that these random effects should not 

be dropped from the model.     

Table 4.1. Parameter estimates for fixed effects, random effects and standard deviations 
for multilevel linear mixed-effects model 

Fixed Effects 
Random Effect Std. 

Deviations
Parameter
Estimated Value Std. Error DF t-value p-value Plot 

Tree within 
Plot

o -4.1151 0.084581 4032 -48.65 <0.0001 0.16484 0.45943
1 -19.3416 3.713849 4032 -5.20 <0.0001 10.40285 1.12316
2 -0.0442 0.023544 4032 -1.87 0.0603 0.03953 0.129426
3 5.5481 1.260866 4032 4.40 <0.0001 3.53865 0.318676

Residual - - - - - - 0.013350

Checking Distributional Assumptions

 Again, the distributional assumptions are based on within-group errors ( ijk) and 

random effects (bi and bij). The within-group errors are independent and normally 

distributed with mean zero and variance 2 and the random effects are normally 

distributed with mean zero and covariance   and are independent for different groups. 

 We can check these assumptions graphically with residual analysis. Figure 4.2 

shows the  within-group residual distribution, which indicates that the residuals are 
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approximately symmetrically distributed around zero, but may not have constant 

variance. Some outlying and/or influential observations are present. The same pattern can 

be seen for the standardized residual distribution by plot (Figure 4.3). Even though the 

total residuals are symmetrically distributed, the residuals by plot have different patterns, 

which violates the assumption of homoscedasticity. So, it was necessary to model this 

pattern.
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FIGURE 4.2. Standardized residuals versus fitted values for the linear multilevel model
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FIGURE 4.3. Standard residual by plot for linear multilevel model
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FIGURE 4.4. Standard residuals by plot for linear multilevel model after modeling
variance among plots (heteroscedastic model)
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The residual distributions of the heteroscedastic model are showed in Figure 4.4. 

The distribution among plots are more similar and have about the same variability. The 

logLikelihood value increased from 10,261 to 10,362, generating a Ratio-Likelihood 

value of 203.15 with p-value < 0.0001, indicating that the heteroscedastic model explains 

the data significantly better than the homoscedastic model.

Next we assess the assumptions on the random effects. Model (4.1) was initially 

fitted using the diagonal structure for variance-covariance matrix, assuming that the 

random effects are independent. We can see in Figure 4.5 that the random effects for 

level 1 (plot) are not independent, with strong correlation between b1i (1/Age)  and b3i
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FIGURE 4.5. Pairs plot with correlation for the random-effects of first level estimated for 
linear multilevel  effect model.
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TABLE 4.2. Information statistics and loglikelihood for 6 different linear multilevel
models.

Model df AIC BIC logLik Test L.Ratio p-value
Heteroscedastic/Positive Definite
Level1/Block Level 2 28 -20125 -19947 10090 - - -

Homocedastic/Diagonal
Levels1,2 13 -20496 -20413 10261 1vs2 340.56 <0.0001

Heteroscedastic/Positive
Definite Levels 1 and 2 32 -20596 -20392 10330 2vs3 137.93 <0.0001

Heteroscedastic./Diagonal
Levels 1,2 20 -20685 -20557 10362 3vs4 64.99 <0.0001

Heteroscedastic./Positive
Definite Level 1 26 -20707 -20541 10379 4vs5 30.08 <0.0001

Heteroscedastic./Positive
Definite Leve1/AR(1) 27 -21851 -21680 10952 5vs6 1146.70 <0.0001
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(Interaction). The model with a general positive-definite structure for level 1 was fitted to 

check the independence assumptions. The results are showed in Table 4.2.  

 The Table 4.2 present the logLikelihood values in ascending order. Based on 

information about correlation within-group errors and random effect variance-covariance, 

we tried to model these characteristics taking into account the levels 1 (plot) and 2 (tree 

within plot). The best model was generated by modeling the heteroscedastic pattern 

among plots and accounting for  the correlation among random effects for level 1, which 

had a logLikelihood value of 10379 and a significant p-value (<0.0001) when compared 

with the heteroscedastic model, which has diagonal structure for both levels 1 and 2.  

 The empirical correlation structure was modeled based on the visualization 

showed in Figure 4.7.  The values are positive in the first two lags, suggesting that an 

AR(1) model may be suitable for modeling the within-group correlation. An initial value 

of 0.26 as used for the AR(1) parameter, which is the value of the empirical 

autocorrelation at lag-1. The result is represented in Table 4.2. The logLikelihood values 

increased from 10359 to 10952, when compared heteroscedastic with positive definite 

structure without and with modeling correlation structure, respectively. The likelihood 

ratio test was 1146.70, with a significant p-value (<0.0001), indicating that the AR(1) 

represents within-subject dependence. 

 The final curve estimates for both level 1 (plot) and level 2 (tree) are presented in 

Figures 4.8 and 4.9. For level 1, even though the fitted curve passes through the center of 
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FIGURE 4.9. Estimated values of ln(BA) for the first and second levels

the observed data for each plot, the variability around the line is larger and different 

among plots. In the level 2, represented by Figure 4.9 for the first 25 trees, we can verify 

that the two level model generated predictions that follow the observed values closely, 

indicating that the model explains the basal area growth very accurately. Moreover, when 

we compare the slope between level 1 and level 2, the variation in the pattern is strong, 

having parallel or non-parallel lines with different distances between them. The greater 

the distance and/or slope between these lines, the worse the predictions will be.
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Fitting A Nonlinear Two-Levels Mixed-Effects Model. 

The data set used here was the same presented to fit two levels linear mixed-

effects models, with some random reduction in number of trees by plot to allowed faster 

convergence. The response variable will be Height (H) in meters and the covariate is 

represented by Age(years). The Figure 4.10 shows the relationship between these two 

variables for Plot/Tree levels. As with single level (plot) model presented previously, we 

can notice a clear nonlinear relation with possible different parameters among both tree 

and plot. The logistic model with three parameters was used here due to the easy 

interpretation of its parameters and capability to generate good adjustments  in this 

situation (4.6).

ijk
ijijijk

ij
ijk a

H
]/)(exp[1 32

1                                      (4.6) 

Where:

 Hijk = Height (meters) for i-th plot, j-th tree and time k; 

aijk = Age(years) for i-th plot, j-the tree and  time k; 

ijk = Random error; 

ij  =  + b
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i + bij

 bi ~ N (0, 1), bij ~ N (0, 2)  and ijk ~ N (0, 2)
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Here,  is a vector of fixed effects and bi represents the vector of random effects 

for level 1(plot) and bij is the vector of random effects of level 2 (tree).  The interpretation 

of the parameter are the same as that for one level: 1ij (asymptote) is the horizontal
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FIGURE 4.10. Observed total height for individual trees within plots 

asymptote as age goes to infinity. 2ij (middle response) is the age value which the 

response is 1ij /2, representing the inflection point of the curve. 3ij (scale) is the scale 

parameter, which represents the distance on the x-axis between the inflection point and 

the point where the response is asymptote/(1+e-1) =0.73 of the asymptote. Also, the basic 

assumptions are: the random effects are normally distributed and independent for 

different groups and the within-group errors are independent and identically, normally
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distributed and independent of    random effects. We will check the assumptions that 1

and 2 are normally distributed and are diagonal matrices, i.e., the random effects are 

independent.

 The nonlinear mixed-effects model, with two levels, was fitted considering the 

variance-covariance matrix for both levels as diagonal, meaning that the random effects 

for both levels are independent. The results are presented in Table 4.3.  The three fixed 

parameters had significant p-values (<0.0001), indicating their importance in the model. 

TABLE 4.3. Fixed parameters estimated and random standard deviations for model (4.6)  

Fixed Effect 
Random Effect Std. 

Deviations
Parameter
Estimated Value Std. Error DF t-value p-value Plot 

Tree within 
Plot

1 21.69225 0.509483 684 42.57 <0.0001 0.22063 3.28324
2 2.67183 0.033037 684 80.87 <0.0001 0.08285 0.04256
3 0.37902 0.012367 684 30.64 <0.0001 0.02788 6.82e-7

Residual - - - - - - 0.29723

An important observation is the very small value of  the standard error for the 

scale parameter on level 2 (Tree within Plot). This value probably indicates that this 

parameter might be dropped from this level. This will be checked later, when we will try 

to model the level 2 with two random parameters.     

 Initially, the correlation among the random effects was checked. The Figure 4.11 

shows a positive correlation between middle response and scale parameters for level 2. 

To account for this correlation, variance-covariance matrix for level 2 was modeled as a 

block diagonal matrix, having Asym as the first block and xMid and Scal as the second 

block. The results for diagonal and block diagonal models are presented in Table 4.3.  
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TABLE 4.4.  Information statistics and likelihood for 6 different models.

Model df AIC BIC logLik Test L.Ratio p-value
Homoscedastic/Diagonal Levels1,2 10 746 791 -363     - -       - 
Homosc./Diag. Lev.1 and Block 2 11 745 795 -361 1vs2     2.602 <0.1067
Heteroscedastic./Diag. Levels 1 and 2 16 721 794 -344 2vs3 34.086 <0.0001
Heter./Diag. Lev. 1,2/AR(1) 17 562 640 -264 3vs4 161.178 <0.0001
Heter./Diag. Lev. 1,2/ARMA(1,1) 18 550 632 -257 4vs5 13.967 <0.0002
Heter./Diag. Lev 1,2/ARMA(2,1) 19 547 634 -254 5vs6 4.8190 <0.0281
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FIGURE 4.11. Pairs plot showing correlation for the random effects for level 2 
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The gain in modeling the variance-covariance as block diagonal was not 

 significant (p-value=0.1067), indicating that the diagonal structure is the better model.

Next, the heteroscedasticity was evaluated. The first important characteristic of

the residuals shown in Figure 4.12 is that, for each plot, the distribution around zero is 

uniform, indicating no violation of the homoscedasticity assumption by plot. However, 

comparing the distribution among plots, the pattern is different. Some plots have greater 

variability than others. Based on this pattern, the strategy  was to model the within-plot 

variance (heteroscedastic model).
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FIGURE 4.12.  Scatter plot of standardized residuals distribution by plot 

Table 4.3 shows the differences between the two models.  The smaller value for 

AIC and greater LogLikelihood indicates that the heteroscedastic model explains the data 
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better than the homoscedastic model. This is confirmed by the very small p-value 

(<0.0001).

 After defining the variance-covariance as a diagonal structure and assuming a 

heteroscedastic model, the next step was to model the correlation. The characteristic of 

the data set as longitudinal repeated measurements is a good reason  to expect serial 

correlation within the subjects (Tree).  Thus, several models were tested, with variations 

of autoregressive (AR(.)), moving average (MA(.)) and the combination of them 

(ARMA(.,.)). The results are presented in Table 4.3. The greater LogLikelihood value 

associated with the model ARMA(2,1), generating a likelihood ration test of 4.81 when 

compared with the model ARMA(1,1) and the significant p-value of 0.0281, indicates 

that this model is preferred. For further analysis, the ARMA(2,1) model will be used. 

 A general assessment of the capability of the model (4.1) is provided by plotting 

both estimated plot and tree levels against the observed values of trees (Figure 4.13). The 

figure indicates that the heteroscedastic model, with diagonal correlation among random 

effects, for both levels, and with autoregressive and moving average correlation structure 

describes the individual tree height growth patterns most precisely.  In addition, we  

observe that the tree-level model has the ability to represent with great flexibility even in 

radical situations when the tree is far from the plot average. For example, even though the 

profile18771/AR4/406 and 18774/9999/302 are different when compared with the plot 

profile, the model captured this variation and generated precise estimates (The values 

X/Y/Z represent the plot number, the clone number and the tree number, respectively).   
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FIGURE 4.13. Fitted values for height (H) by plot (level 1) and by tree (level 2) 

Discussion

In linear multilevel mixed-effects approach, we used the logarithm of basal area 

as a response variable associated with inverse of age, logarithm of height and the 

interaction between these two covariates. As the residuals by plot had different variances, 

the heteroscedastic model was used to model this situation and avoid a  violation of the 

assumption that there was the same variance among plots. Also, the normality assumption

of the random effects was assessed and a positive-definite structure for level 1 was used. 
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After modeling heteroscedasticity and autocorrelation using AR(1) structure, the 

loglikelihood value increased from 10090 to 10952, with p-value <0.0001 for the 

likelihood ratio test.

 In the nonlinear multilevel mixed-effects approach, the three parameter logistic 

equation was used to model the variation of the tree height as a function of tree age. After 

modeling heteroscedasticity, random effects correlation and autocorrelation, using 

ARMA(2,1) structure, the loglikelihood value increased from -363 to -254, with a 

significant p-value of the 0.0281. 

 Based on these results, we can conclude that it is necessary to model  

heteroscedasticity, autocorrelation and correlation and the distribution of the random 

effects in mixed-effects model approach to obtain models that better explain data 

variations.



CHAPTER 5 

MODELING INDIVIDUAL TREE PROFILE BASED ON A NONLINEAR 
MIXED EFFECT MODEL: AN APPLICATION IN Eucalyptus STANDS

Introduction

Tree profile functions, also cited as taper relationships, have been investigated 

intensively in past century (Behre, 1923; Bruce, 1968; Kozak et al., 1969; Demaerschalk,

1972; Max and Burkhart, 1976; Clutter, 1980; McTague, 1986; Bailey, 1994 and 1995).

A function that can describe the tree profile precisely can also be used to obtain 

precise estimates of total or merchantable tree volume by integration.  The focus here is 

not limited to selecting or to developing a taper relationship, but to interpret the estimated

parameters of such functions and to use a mixed-models approach to capture and  explain 

the variability among trees included in the analysis.

Based on visual analysis of stem profiles and previous data processing, a 

nonlinear four-parameter logistic model was selected for use in this analysis. One of the 

many qualities of this model is the biological interpretability of its parameters. The fact

that the parameters can be interpreted to match the tree profile characteristics facilitates

the estimation analysis.

79
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 The main purpose of this study is to use the nonlinear mixed-effects model 

approach, based on the four-parameter logistic model, to describe individual tree profile; 

to relate these profiles with population characteristics; to obtain individual tree volumes; 

and to predict tree profiles, exploring the robustness proprieties of the mixed-effects 

model approach. 

Data

The data are from the same regions of those used in previous chapters, 

representing upper-stem diameter measurements of 133 trees, 10 different eucalypt 

clones and a total of  2494 observations (Table 5.1). The intention was to locate the 

sample trees strategically to capture the site variation. Also, a 300 square meter sample 

plot was located close to each sample tree and dbh, height and soil variables were 

recorded. Figure 5.1 shows the profile of 16 trees randomly sampled from the data set. 

We can see nonlinearity between height and diameter representing tree profile and some 

variations among tree profiles. These variations are more evident when the total data base 

is visualized. In these different profiles, we can recognize that upper-asymptotes for the 

curves may be different and that inflection points may occur at different heights on the 

tree stem.    

Model

 The model used in this analysis will be the nonlinear four-parameter logistic, 

which is an extension of the three-parameter logistic model used in previous chapters. 

The inclusion of the fourth parameter was motivated by the fact that the tree profiles, 

represented in Figure 5.1, have some evidence of upper and lower asymptotes. Other  
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Table 5.1 – Number of trees by diameter classes and clones used in the analysis. 

Diameter Classes (Cm) 
Clone 5 8 8 11 11 14 14 17 17 20 20 23 Total Trees 
0204 2 2 5 2 3 1 15
1205 3 4 3 3 2 15
1248 3 4 3 3 1 14
1501    2 3 3 3 2 13
2225 2 3 3 3 1 12
2277 2 2 2 2 2 10
3918 3 3 3 3 2 14
4619 3 3 3 2 2 13
AR4 2 2 3 3 2 2 14
AR9 2 3 2 2 2 2 13
Total 24 29 30 26 19 5 133
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FIGURE 5.1 – Profiles representing upper-stem radius of 16 sample trees
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advantages of using this model were pointed out by Ratkowsky and Reedy (1986),  who 

describe that this model scarcely increases the nonlinearity when the fourth parameter is 

included. The authors compare the logistic model with Richards model (logistic model

with an exponent parameter) and conclude that the Richards model is an unfortunate 

model because not only is its parameter-effects nonlinearity high but also  its intrinsic 

nonlinearity. We tested the close-to-linear property of the model by fitting about 100 

random samples taken from the data set (Figure 5.2). Except for the lower asymptote

parameter, the parameter distributions had normal shape confirming the close-to-linear 

property found by Ratkowsky and Reedy (1986). As we will see further, the lower 

asymptote parameter was kept in the model to facilitate the convergence process. The 

final nonlinear four-parameter mixed-effects logistic model had the following form:

;
]/)exp[(1 43

12
1 ij

iiji

ii
iij r

h                                       (5.1) 

Where:

  hij = Height of the ith tree in jth stem position; 

 = Radius of the ith tree in jth stem position; ijr

ij = Random error; 

i=  + b
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 The  is a vector of fixed effects and bi represents the vector of random effects. 

The parameter i1  is the upper horizontal asymptote as tree radius goes to zero. The
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parameter i2  is the lower horizontal asymptote as tree radius goes to positive infinity.

The parameter i3  is the middle response parameter, which represents the radius value at 

the inflection point, when the response is ( i1 - i2 )/2, i.e.  halfway between the upper and 

lower asymptote. The parameter i4 is the scale parameter  or, when r= i3 + i4 , the 

response is i1  +( i2 - i1 )/(1+e-1) 0.75( i1 - i2 ). Again, as basic assumptions, the 

random effects are normally distributed and independent for different groups and the 

within-group errors are independent and identically normally distributed and independent 

of  the random effects. 

Fitting the Four-Parameter Logistic Mixed-Effects Model 

The four-parameter logistic model was fitted and the results are presented in 

Table 5.2. The significant p-value for fixed effects indicates that the four-parameter

logistic model represents these data well.  The small values for the correlations between 

random effects indicate that the variance-covariance matrix is not ill-conditioned and that

TABLE 5.2 – Parameter estimates, statistics, random effects and correlation 

Fixed Effect 

Random
Effect Std. 
Deviations Correlations

Parameter
Estimated Value

Std.
Error DF t-value p-value Tree 2 3 4

1 20.23546 0.357992 2335 56.5249 <0.0001 4.361702 -0.14 -0.014 0.075

2 -1.13249 0.055895 2335 -20.2610 <0.0001 0.087209 X -0.019 -0.363

3 4.80151 0.125702 2335 38.1975 <0.0001 1.561621
-

0.019 X -0.011

4 1.15481 0.025969 2335 44.4678 <0.0001 0.288901
-

0.363 -0.011 X
Residual - - - - - 0.711355
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FIGURE 5.3. Normal probability plot of the standardized residuals from the four-
parameter logistic model.

the random-effects structure is not over-parameterized. Based on this information, we 

kept the four parameters as both fixed and random in the model. Figure 5.3, with 

exception of some outliers, does not indicate violations of the normality assumption for

the within-tree errors. 

Based on information from plot samples located close to the tree sample, we tried 

to include some covariates in the model, such as age, dominant height, trees per hectare, 

basal area, soil characteristics (class, percentage of sand, silt and clay). The new 

formulation for model parameters is: 

ijkikiiiiiiij bx...xx 2211                            (5.2) 

Where i represents the ith parameters, varying from 1 to 4; j represents the 

random tree number; i represents the average of the ith parameter; ki represents the 
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effect of the covariates x ij; and bij is the ith random effect associated with jth tree. Table 

5.3 indicates that the covariates for dominant height and clone had significant influence 

on the parameter estimates. The covariate dominant height had significant influence on 

the upper asymptote, middle response and scale parameters, while the covariate clone had 

significant influence only on the scale parameter.

Figure 5.4 provides the plot of the augmented predictions, which is the final 

assessment of the quality of the fitted model of the 16 randomly selected trees from a 

total of 133 trees. The fitted curves representing the four-parameter logistic mixed-effects

model generated precise estimates attesting to the adequacy of the model. Also, this 

adequacy can be seen in Figure 5.5. The variation in the fixed effects among trees is due 

to including dominant height and clone effect in the model. Also, there are strong 

variations in the random effect among trees. These variations are because the curves have 

different values for upper asymptote, middle response and scale parameters.

TABLE 5.3 – ANOVA table representing the significance for intercept and covariates 
effects in the logistic equation 

Parameter Variable DF1 DF2 F-value p-value
1 - 1 1976 2803.15 <.0001

11 HD 1 1976 35.27 <.0001
2 - 1 1976 1.93 0.1647
3 - 1 1976 1360.84 <.0001

31 HD 1 1976 14.58 0.0001
4 - 1 1976 2104.38 <.0001

41 HD 1 1976 12.15 0.0005
42 Clone 9 1976 2.87 0.0023
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Estimating Individual Tree Volumes Using Random Parameters and Solid of 
Revolution Technique

The objective here is to take the tree profiles generated with the four-parameter

logistic equation with fixed and random effects and rotate them around the y-axis to 

derive an estimation equation for volume of individual trees with different profiles. As 

the logistic equation has the response variable represented by tree height and tree radius 

representing the covariate, the method of cylindrical shells will be used for computing

tree volumes. In general, the interval between radius minimum and maximum is 

partitioned into n subintervals, all of the same length. If R*
i denotes the midpoint of the 

ith subinterval, a rectangle in the x-y plane with base [Ri-1,Ri] and height f(R*
i ) will be 

formed. The cylindrical shell will be obtained by revolving the region under y=f(x) and 

over [Ri-1,Ri] with volume Vi . The expression that gives the volume is 

                                                       (5.2a) RRfRV iii )(2 **

n

i
ii

n

i
i RRfRVV

1

**

1
)(2 .                                              (5.2b) 

This approximation is a Riemann sum that approaches the integral, which gives 

the volume of the solid of revolution. We can generate the merchantable volume by 

integrating from radius minimum to radius maximum, or vice-versa, using the following 

expression:

max

min
)(2

R

R
dRRRfV .                                                    (5.2c) 
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In our specific case, the f(x) function is the logistic with four parameters,

represented by the fixed and random effects. Rmin represents the tree radius (inside or 

outside-bark) at height f(Rmin) and Rmax the tree radius at height f(Rmax). V is the volume

(inside or outside-bark, depending on whether R is specified IB or OB) of the section 

between Rmin and Rmax. Substituting the logistic function, we have the following

expression:

max

min
43

12
1 ]/)exp[(1

2
R

R
i

dR
R

RV                                (5.2d) 

In reality, the logistic equation in this situation is a taper function, which gives the 

estimated height of the determined radius in the tree. If the equation is solved for  the 

variable radius, we can estimate the radius as a function of height.  The expression is: 

i
iij

iij
iijij h

h
hr 4

1

2
3 ln)(                                         (5.3) 

 Where rij represents the radius of the ith tree at the jth height and the 

parameters are as defined earlier.To check the precision of equation (5.3),  the dbh values 

for each tree at height of 1.3 meters were estimated (Figure 5.6).  The estimated values 

are concentrated around the absolute line implying reasonably precise estimates.

By integrating the expression (5.2d), including fixed and random effects in the 

logistic equation, we can generate stem profiles such as those shown in Figure 5.7. The 

variations among trees are due to the inclusion of the random parameters, which capture 

the individual tree profile variations. Also, the integration technique gives us the ability 

to obtain merchantable volumes to a specific upper-stem radius (or diameter). If we 

constrain the Rmin  in (5.2d) as a minimum merchantable radius, the volume generated 
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will be merchantable volume with minimum radius specified. Another flexible feature of

the integration process is the ability to generate multiple products from a single tree 

(Figure 5.8). Figure 5.9 shows the precision of using this integration technique. We can 

integrate the same tree again at a different merchantability position and obtain volumes

for different products. 

6 11 16 21
dbh measured (cm)

5

10

15

20

25

db
h 

es
tim

at
ed

 (c
m

)

FIGURE 5.6 – Diameter at breast height estimated by mixed-effects model and observed 
for each tree
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FIGURE 5.7. Variations in stem form generated by integrating the four parameter logistic 
equation.

.

FIGURE 5.8. Partial integration representing two sub-products of a 20 cm-radius tree. 
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FIGURE 5.9. Comparing real volumes with those obtained by integration technique 

Using the Robustness of the Mixed-Effects Model to Predict Height Based on Upper-
Stem Diameter of Partially Observed Tree

In practice, the data gathered in typical inventory methods do not have complete

upper-stem diameter measurements of the trees. Normally, we have a relatively small

data base with complete measurements and a more representative data base with 

restricted information of the stem, such as dbh and total height. Hence, the focus here is 

to use the mixed-model theory to estimate the tree profile (upper-stem diameter or radius) 

of trees with restricted information, based on a data set from trees with complete upper-

stem diameter measurements.

In the data set used in this analysis, the average number of observations per tree is 

approximately 15. Here the observations are represented by height above of the ground 
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associated with some upper-stem radius, which will represent the covariate. Let yi denote 

the vector of observations for the ith tree. In our prior analysis, the data set was composed

of 133 trees with complete measurements of the upper-stem height and diameter.

Suppose a new tree yk is included in the data base, but we have limited information about 

this tree, say dbh and total height. In this situation, the observation vector 

is . Where T represents the transpose of the associated vector. The first 

element (y

TT
uk

T
okk yyy ),( )()(

k(o)) represents the vector of observed values for the kth tree and the second 

(yk(u)) represents the vector of the values of unobserved data. If we consider 15 

measurements for each tree, for example, and we have available 2 values for the kth tree, 

diameter at breast height and diameter (zero) at total height, the first vector will have two 

components and the second one 13 components.

In the linear case, the prediction process is performed by using Estimation and 

Maximization (EM) or Newton-Raphson algorithms, considering the vector of the 

unobserved data as a incomplete data (Rao ,1973; Dempster et al.,1977; Laird et al., 

1987; Lindstrom and Bates, 1988; Liski, 1985, 1990, and 1996) .

In the nonlinear case, Lindstrom and Bates (1990) presented a two-step iterative 

procedure to estimate the parameters of the general nonlinear model (3.1). The first step, 

called the pseudo-data step, uses an iterative process to obtain the estimate of fixed 

effects , random effects b, variance and covariance components , covariates X and the 

matrix associated with random effects Z. These estimates are based on Cholesky factors. 

The second step, called the linear mixed effects step, uses the estimate obtained in first 

step and, also using an iterative process, generates the desired estimate of ,  and .
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 To perform the prediction analysis, we eliminated the the upper-stem height-

diameter measurements of some trees, leaving only measures of the dbh and total height. 

So, the data set used to perform this analysis is a mixture of trees with complete and  

restricted information. This procedure allows us to compare the estimated with the real 

tree profile. 

 Figure 5.7 shows that the method is adequate to estimate both tree profiles with 

complete upper-stem diameter information and tree profiles with limited information. 

Again, the mixed-effects model expressed a strong degree of robustness, using 

information from trees with complete data and estimating the parameters, fixed and 

random, for trees with limited information. This feature is especially useful in the forest 

estimation process, in which a monumented data set with measurements of dbh and total 

height is available.

 The precision of the estimate can be seen in Figure 5.8. The estimated curve fitted 

with both the complete and restricted data set for each tree had a sigmoid shape with one 

inflection point and upper and lower asymptotes. For every tree with restricted data (just 

dbh and total height measurements) the curve crossed the two sample points. This occurs 

due to the robustness of the mixed-effects approach. In another approach, such as 

ordinary least squares, this situation would be a problem because this approach fits either 

a mean curve for the population or one curve independently for each tree. In the first 

case, the missing observations could strongly affect the estimation of the population 

mean value. In the second situation, the adjustment for an individual tree with missing 

observations, in this specific case, would generate a straight line, which does not 

represent the tree profile.
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FIGURE 5.10. Random estimate profile for 16 trees, with 5 trees with restricted 
information.

When the tree profiles estimated by mixed-effects model are compared with the 

real values (Figure 5.9), we can see that the model generates a sigmoid curve close to the 

observed trend. This situation has a strong practical application in forest prediction 

studies. With a reliable data set, which represents some forest population and describes 

the variability in tree profiles represented in the population, we can generate precise 

estimates for individual trees, using minimal tree information, such as dbh and total 

height. The more complete the data base, the more reliable the predictions. 
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restricted information

Discussion

The logistic four-parameter equation was fitted based on the nonlinear mixed-

effects model approach to represent the individual tree profiles. The four parameters,

represented by upper asymptote, lower asymptote, inflection point and middle response, 

in both fixed and random effects, had a significant contribution in explaining the 

variation of the tree height as a function of the upper-stem radius. The less significant 

parameter was the lower asymptote, but it was kept in the model to improve the 
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convergence process. One could set the parameter value to zero, based on the logic that 

for large diameters the height values approach to zero.  It was verified that strong 

variability exists in the parameter values among trees.  

 Variables such as clone type, dominant height (HD),  soil characteristics, age, 

basal area, and others were used as covariates to explain the variation among trees. After 

selection based on analysis of variance procedures, the variables HD and clone type were 

included in the model. HD was associated with the parameters upper asymptote, 

inflection point and middle response, and the clone type was associated with the middle 

response only.

 The solid of revolution technique was used to obtain the individual tree volumes 

for both total tree and merchantable volumes. Although this technique is flexible and 

relatively simple, the precision of the result is directly related to the quality of the fitted 

function to describe the tree profile.

 Using an iterative prediction technique, the robustness of the nonlinear mixed-

effect was used to estimate the profile for trees with restricted observations, in this case 

represented by dbh and total height. When we compared the profiles generated with the 

prediction process to real profiles, the estimates were very close and the profiles 

estimated had parameters approximating those of the real profiles. This technique, 

compared with generalized nonlinear least squares estimate, has the advantage in 

capturing individual tree variations, translating them into parameter estimates and, 

through integration, generating the individual tree volume estimates. One practical 

application of this methodology would be to estimate plot volume based upon  
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information on the dbh and total of height the trees in the plots. In application, it would 

be necessary to have available a data set with complete information about tree profiles 

representing the population.



CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The linear and nonlinear multilevel mixed-effects model approach has been used 

in many fields of study. In this study, this approach was used to model Eucalyptus clonal 

stand growth, considering plots and/or tree within plots as the random effects, using a

data set with longitudinal, irregularly spaced and unbalanced information. The following 

conclusions were generated from this study: 

1. Modeling basal area using single level linear mixed-effects approach: 

- The logarithm of basal area as a response variable was associated with the 

inverse of age as a covariate. Both slope and intercept random effects had 

significant differences when plot was included in the model as a random

subject. Other fixed covariates were included in the model, such as 

logarithm of dominant height, logarithm of the number of trees per hectare 

and some interaction among them. The clone effect as a covariate also had 

a significant effect in explaining variation in basal area;

 99
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- Estimates from the mixed-effects model tended to be pulled toward those 

of the fixed effects (shrinkage estimates), giving a certain robustness, an 

important characteristic of the mixed-effects approach; 

- In examining distributional assumptions, the within-plot constant variance 

assumption was violated and it was necessary to model it. After modeling 

this assumption, the loglikelihood value had a significant increment.  The 

normality of random effects was considered reasonable. Also the 

correlation structure was modeled and the loglikelihood increased 

significantly again;

- The random parameters representing the slope and intercept were related 

to and could be predicted from the site index value for each plot. With this 

method, it was possible to estimate basal area for different plots, not 

included in the analysis;

2. Modeling dominant height growth using a single level nonlinear mixed-effects 

approach:

- Dominant height growth was modeled as a function of time (years) using a 

three parameter logistic equation (upper asymptote, scale and middle 

response). All three parameters had significant fixed and random effects, 

with no indication of an over-parameterized model;  

- Neither homoscedasticity within-plot nor normality of the random effects 

were violated and the homoscedastic model provided a good 

representation of the data; 



101

- As result of modeling dominant height growth, sets of anamorphic, 

polymorphic and “quasi-anamorphic” height average curves were 

developed;

3. Modeling basal area and dominant height based on multilevel linear and nonlinear 

mixed-effects approach: 

- In studying basal area, fixed and random effects related to inverse of age, 

logarithm of dominant height and the interaction of logarithm of dominant 

height and inverse of age had significance influences in explaining 

logarithm of basal area variation; 

- Checking distributional assumptions, it was found that the residuals within 

plot had different patterns, and it was necessary to model this pattern. 

After modeling these different patterns, the logLikelihood  value had 

significant increment, indicating that the heteroscedastic model explains  

the data better than the homoscedastic model. Also, modeled were the 

variance-covariance structure representing the random effects and the 

empirical correlation structure of within group. Due to the high correlation 

between two random effects in level 1, the general positive-definite 

structure was used. In the empirical correlation modeling, the 

autoregressive structure had a better improvement in the model. After 

modeling the variance-covariance of random effects and empirical 

autocorrelation, the loglikelihood again increased significantly; 



102

- In studying nonlinear two level mixed-effects, where the tree height 

growth was modeled, the three parameter logistic-equation was used. 

Again, there were three significant fixed and random parameters for the 

model. Better improvement was reached when we modeled the within-plot 

variance and the autocorrelation were modeled. For autocorrelation, the 

better model was ARMA(2,1);  

4. Modeling individual tree profiles based on a nonlinear mixed-effects model: 

- The four parameter logistic equation was used to estimate tree height as 

function of tree radius. As a first result, the model had significant fixed 

and random effects to represent the data set. In a simulation study, the four 

parameter model had a close-to-linear behavior, confirming the adequacy 

of this equation; 

- Using information from plot samples located close to the tree sample, 

some new covariates were included in the model to improve the 

representation of the data. The plot-level dominant height had significant 

influence in the model when associated with upper asymptote, middle 

response and scale parameters. The variable representing the tree’s clone 

had a significant effect on the scale parameter; 

- Using the random parameters and solid of revolution technique, volumes 

were generated for each tree providing values close to actual  tree 

volumes, confirming the precision of the nonlinear mixed-effects model in 

estimating the tree profile; 
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- The robustness of the mixed-effects model was used to estimate the profile 

for trees with only dbh and height measurements. The method generated 

precise estimation of the tree profile, as an alternative to estimating 

individual tree and plot volumes; 
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