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ABSTRACT 

The dissertation is concerned with comparing the effects of climate change on agricultural 

production and profitability, across alternative climate change scenarios. The research objectives 

include estimating the effects of climate change on crop yields and simulating the effects of 

climate change on farm profit. 

In the first major step of this dissertation, a historical relationship between weather and crop 

yields was estimated using a principal components regression (PCR) model. Long-run climate 

change predictions generated from three climate change scenarios were incorporated into the 

estimated PCR model to predict crop yields through 2050. The PCR model was estimated for 

several northern and southern U.S. states at the county level. This result is consistent with the 

expectation that a probable impact of global climate change, should it occur as predicted, would 

be to shift some cropping patterns from the southern U.S. to the northern U.S..  

In the second major step of this dissertation, predicted crop yields were used to generate 

farm profits in several northern and southern U.S. states using a dynamic simulation approach. 

Farm profits were generated by allowing acreage response with the consideration of crop rotation. 

By incorporating the Bellman equation in the crop rotation model, optimized acreage responses 



among multiple crops were determined based on their relative profitability. The results showed 

that acreage response alone is not able to eliminate the differences in production and profitability 

effects between warm and cold climate scenarios. 

INDEX WORDS: Climate change, Agricultural production and profitability, Principal 

component regression, Bellman equation, Acreage response, Crop rotation, Simulation model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ASSESSING THE EFFECTS OF CLIMATE CHANGE ON  

AGRICULTURAL PRODUCTION AND PROFITABILITY 

 

by 

 

RUOHONG CAI 

B.S., Zhejiang University, China, 2003 

M.S., The University of Georgia, 2007 

M.S., The University of Georgia, 2010 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

 

 

ATHENS, GA 

2011 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2011 

Ruohong Cai 

All Rights Reserved 



 

 

ASSESSING THE EFFECTS OF CLIMATE CHANGE  

ON AGRICULTURAL PRODUCTION AND PROFITABILITY 

 

by 

 

RUOHONG CAI 

 

 

 

                                                                Major Professor:           John C. Bergstrom 

                                                                                

                                                               Committee:                   Jeffrey D. Mullen 

                                                                                                  W. Don Shurley 

                                                                                                          Michael E. Wetzstein 

 

 

 

Electronic Version Approved: 

 

Maureen Grasso  

Dean of the Graduate School  

The University of Georgia  
August 2011



IV 
 

 

 

 

ACKNOWLEDGEMENTS 

First, I want to express my deep appreciation to my advisor, Dr. Bergstrom for 

overwhelming generosity of time and advice throughout my PhD program. His guidance has 

been an essential part of my professional development. 

I am also very thankful for Dr. Mullen, Dr. Wetzstein and Dr. Shurley for serving in my 

dissertation committee. A special thank goes for their critical support and advice to improve the 

quality of my work.  

To my colleagues in the Department of Agricultural and Applied Economics, I am 

thankful for friendship, moral support, and many stimulating conversations over the years. 

Finally, I will give my gratitude to my family, my parents, my loving wife Yinzhi, and 

daughter Erinn for their support that has proven so valuable in all aspects of my life. It is your 

love and endless supports that makes all this possible. 

 

 

 

 

 

 

 

 



V 
 

 

                                                          

 

TABLE OF CONTENTS 

                                                                                                                                                    Page 

ACKNOWLEDGEMENTS .......................................................................................................... IV 

LIST OF FIGURES ................................................................................................................... VIII 

LIST OF TABLES ........................................................................................................................ IX 

CHAPTER 

1     INTRODUCTION AND LITERATURE REVIEW ............................................................... 1 

1.1 Background and Literature Review .............................................................................. 1 

1.2 Objective ....................................................................................................................... 3 

1.3 Outline of Dissertation.................................................................................................. 3 

2     STATIC MODEL 

PRINCIPAL COMPONENT ANALYSIS OF CROP YIELD RESPONSE TO CLIMATE 

CHANGE ........................................................................................................................................ 5 

2.1 Abstract ......................................................................................................................... 6 

2.2 Introduction .................................................................................................................. 7 

2.3 Methodology ............................................................................................................... 12 

2.4 Data ............................................................................................................................. 17 

2.5 Results ........................................................................................................................ 19 

2.6 Conclusions ................................................................................................................ 30 

2.7 References .................................................................................................................. 32 

Appendix A............................................................................................................................ 36 



VI 
 

 

3     CROP ROTATION MODEL 

YIELD AND PRICE VOLATILITY IMPACTS ON PRODUCERS‟ CROPPING PATTERNS: 

A DYNAMIC OPTIMAL CROP ROTATION MODEL ............................................................. 38 

3. 1 Abstract ....................................................................................................................... 39 

3.2 Introduction ................................................................................................................ 40 

3.3 Literature Review ....................................................................................................... 41 

3.4 Methodology ............................................................................................................... 45 

3.5 Assumptions ............................................................................................................... 54 

3.6 Simulation ................................................................................................................... 56 

3.7 Conclusions ................................................................................................................ 59 

3.8 References .................................................................................................................. 60 

Appendix B ............................................................................................................................ 62 

4     DYNAMIC MODEL 

ECONOMIC CONSEQUENCES OF CLIMATE CHANGE EFFECTS ON AGRICULTURE: A 

DYNAMIC SIMULATION.......................................................................................................... 64 

4.1 Abstract ....................................................................................................................... 65 

4.2 Introduction ................................................................................................................ 66 

4.3 Literature Review ....................................................................................................... 66 

4.4 Methodology ............................................................................................................... 72 

4.5 Data ............................................................................................................................. 82 

4.6 Results and Discussion ............................................................................................... 85 

4.7 Conclusions .............................................................................................................. 105 

4.8 References ................................................................................................................ 107 



VII 
 

 

Appendix C .......................................................................................................................... 111 

5     SUMMARY AND CONCLUSIONS .................................................................................. 113 

5.1 Summary and Conclusions ....................................................................................... 113 

5.2 Limitation and Future Research ............................................................................... 115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

 

 

 

LIST OF FIGURES 

                                                                                                                                                                                  Page 

Figure 2.1. Forecasted corn yields in Mitchell County, Georgia from 2010 to 2050 ............... 21 

Figure 2.2. Forecasted corn yields in Hancock County, Illinois from 2010 to 2050 ................ 22 

Figure 3.1.     Two current planting scenarios based on previous crops planted ........................... 47 

Figure 3.2. Illustration of the transition function of A-B rotation ............................................. 50 

Figure 3.3. A-B rotation with two-season effects ..................................................................... 53 

Figure 4.1.     The relationship between the loan rate, LDP and effective support price…….......70 

Figure 4.2. A basic dynamic simulation process ....................................................................... 73 

Figure 4.3. The dynamic simulation process illustrated with specific years ............................. 75 

Figure 4.4. A 10% partial adjustment in A-B rotation .............................................................. 77 

Figure 4.5. The overall algorithms for the dynamic simulation process ................................... 80 

Figure 4.6. Revenue per acre for Corn, Bulloch County, Georgia ............................................ 94 

Figure 4.7. Revenue per acre for Corn, Benton County, Iowa .................................................. 94 

Figure 4.8. Revenue per acre for Cotton, Worth county, Georgia ............................................ 95 

Figure 4.9. Revenue per acre for Peanuts, Decatur county, Georgia ........................................ 95 

Figure 4.10. Revenue per acre for Soybeans, Yellow Medicine county, Minnesota .............. 96 

Figure 4.11. Revenue per acre for Soybeans, Appling county, Georgia ................................. 96 

 

 

 



IX 
 

 

 

 

LIST OF TABLES 

                                                                                                                                                                                  Page  

Table 2.1. Climate Change Impact Index (by states, by crops) ............................................... 23 

Table 2.2. Average Yields for Corn, Soybeans, Peanuts, and Cotton in Georgia ................... 24 

Table 2.3. Average Yields for Corn and Soybeans in Iowa ..................................................... 25 

Table 2.4. Average Yields for Corn and Soybeans in Illinois ................................................. 26 

Table 2.5. Average Yields for Corn and Soybeans in Indiana ................................................. 27 

Table 2.6. Average Yields for Corn and Soybeans in Nebraska .............................................. 28 

Table 2.7. Average Yields for Corn and Soybeans in Minnesota ............................................ 29 

Table 3.1. The Number of Elements in the State Spaces for Different Rotations ................... 54 

Table 4.1. Usual Planting and Harvesting Dates – Georgia..................................................... 83 

Table 4.2. Historical and Current National Loan Rates ........................................................... 84 

Table 4.3. Price flexibilities (by crops, by states) .................................................................... 86 

Table 4.4. Crop Production with Three Climate Models-Partial Adjustment=0 ..................... 87 

Table 4.5. Crop Production with Three Climate Models-Partial Adjustment=0.1 .................. 88 

Table 4.6. Crop Production with Three Climate Models-Partial Adjustment=0.2 .................. 89 

Table 4.7. Crop Production with Three Climate Models-Partial Adjustment=0.5 .................. 90 

Table 4.8. Crop Production with Three Climate Models-Partial Adjustment=1 ..................... 91 

Table 4.9. Climate Change Impact Index for Profitability (by states, by crops) ..................... 98 

Table 4.10. Climate Change Impact Index for Total Revenue with Yield Penalty =0.025 (by 

states, by crops) ............................................................................................................................. 99 



X 
 

 

Table 4.11. Climate Change Impact Index for Total Revenue with Yield Penalty =0.05 (by 

states, by crops) ........................................................................................................................... 100 

Table 4.12. Climate Change Impact Index for Total Revenue with Yield Penalty =0.10 (by 

states, by crops) ........................................................................................................................... 101 

Table 4.13. Difference in Total Revenue between MIROC 3.2 (Warmest) and CSIRO 3.5 

(Coolest) Climate Change Scenarios with Yield Penalty = 0.025 (by states, by crops) ............. 102 

Table 4.14. Difference in Total Revenue between MIROC 3.2 (Warmest) and CSIRO 3.5 

(Coolest) Climate Change Scenarios with Yield Penalty = 0.05 (by states, by crops) ............... 103 

Table 4.15. Difference in Total Revenue between MIROC 3.2 (Warmest) and CSIRO 3.5 

(Coolest) Climate Change Scenarios with Yield Penalty = 0.10 (by states, by crops) ............... 104 

Table C.1. Regression Results for Production Elasticities of Price (by states, by crops) ...... 111 

Table C.2. Comparing Total Acres and Acres Used in Simulation (by states, by crops)....... 112 



1 
 

 

 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Background and Literature Review 

Climate change is the long-run change in weather patterns. It is commonly agreed that climate 

change is one of the greatest threats to human society, especially to many economic sectors. 

Among them, agriculture is believed to be affected more directly and therefore one of the most 

vulnerable economic sectors under the threat of climate change. Most scientists believe that 

increased greenhouse gas concentration in the atmosphere contributes to global warming (IPCC, 

2007). In recent years, many studies have focused on the impact of climate change in the 

agriculture and natural resources sectors since these sectors are directly impacted by climate 

change. Contemporary, state-of-the art general circulation models (GCM) including the 

Australian CSIRO 3.5, Canadian CGCM 3.1 and Japanese MIROC 3.2 models all predict that 

average temperature will keep rising and precipitation will have a mild change for most states in 

the continental United States for the rest of the century assuming greenhouse gas emissions 

follow the IPCC SRA1B scenario
1
. Many researchers believe that these projected changes in 

temperature and precipitation will directly impact crop yields in many regions and therefore farm 

profitability. Because agricultural production is a significant part of the U.S. economy 

                                                           
1
 A future world of very rapid growth, low population growth, and rapid introduction of new and more efficient 

technology. Major underlying themes are economic and cultural convergence and capacity building, with a 

substantial reduction in regional differences in per capita income. In this world, people pursue personal wealth rather 

than environmental quality (IPCC 2007). 
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contributing $132 billion to national GDP in 2008 (BEA), we cannot afford to ignore the 

potential effects of global climate change on agricultural production and profitability. 

A direct impact of climate change on agriculture is through its impact on crop yields. 

Yield weather models are therefore usually the first step in a climate change impact study. There 

have been many studies about the relationship between weather and crop yields in the last 

several decades. In recent years, many researchers have become interested in the economic 

effects of climate change. However, most climate change impact studies on agriculture were 

conducted without considering farmers‟ adaptation behavior (Singh and Stewart 1991; Brklacich 

and Smit 1992). Farmers‟ adaptation practices to climate change could reduce the negative 

effects, or take advantage of positive effects of global climate change. Therefore, farmers‟ 

adaptation practice is essential for the study of economic impacts of climate change to 

agriculture. 

Crop growth models consider impact of climate change in a purely agronomic way, and 

therefore do not include adaptation considerations. The Ricardian approach attempts to directly 

measure the effect of climate on land values and incorporate farmers‟ adaptations in response to 

climate change (Mendelsohn and Dinar 1999). However, this approach unrealistically assumes a 

full range of immediate response from farmers. Weersink et al. (2009) studied how acreage 

responds to weather, yield and price. However, yield and price were assumed to be independent 

in their research.  

Farmers could have many adaptation practices such as acreage response, shifts in 

planting dates, changed fertilizer application, development of new varieties, and installation of 

irrigation systems. In this research, we assume acreage response is the only adaptation option for 

farmers for possible climate change. 
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Overall, in this study, we estimated the historical relationship between weather and crop 

yields and then simulated the effects of future climate change on agricultural production and 

profitability by analyzing the interrelationships between different agricultural production factors 

using a dynamic approach. 

 

1.2 Objective 

Although climate change impacts have been intensively studied in recent decades, a 

comprehensive study of its impact on agricultural production and profitability is still rare. By 

conducting analysis in several northern and southern U.S. states, this dissertation tries to provide 

an alternative simulation approach to current literature. 

The overall objective of this dissertation is to evaluate the effects of climate change on 

agricultural production and profitability. This objective is achieved by comparing the relative 

effects of alternative climate change scenarios on agricultural production and profitability. The 

specific research objectives include: 

1. Static Model (weather-yield model): Estimate an econometric model for determining the 

effects of climate change on crop yields.  

2. Dynamic Model (acreage response simulation model): Estimate a crop rotation model for 

simulating the effects of climate change on farm profitability.  

 

1.3 Outline of Dissertation 

In what follows, a weather-yield model is introduced and analyzed in Chapter 2. Specifically, a 

historical relationship between weather and crop yields is estimated using a principal 
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components regression (PCR) model. Next, long-run climate change predictions generated from 

the three GCM models mentioned above under the SRA1B emissions scenario, are incorporated 

into the estimated PCR model to predict future crop yields through 2050.  

In Chapter 3, an economic model of crop rotation is developed as a modified version of 

the Bellman equation. This crop rotation allows inputs of crop profit and is able to generate 

acreage response in a dynamic optimization framework. 

In Chapter 4, predicted changes in crop yields are used with a simulation process to 

derive predicted changes in farm profits in several northern and southern U.S. counties. 

Compared to the empirical estimation approach employed in the first step (Chapter 2), the 

second step represents a dynamic simulation approach.  

In Chapter 5, a summary of the dissertation research, and as well as implications, 

limitations and future research are discussed.  
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CHAPTER 2 

STATIC MODEL 

PRINCIPAL COMPONENT ANALYSIS OF CROP YIELD RESPONSE TO CLIMATE 

CHANGE
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2
  Cai, R., J. Bergstrom, J. Mullen, and M. Wetzstein. To be submitted to Journal of Agricultural and Applied 

Economics.  
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2.1 Abstract 

A climate change index is developed based on principal component analysis to estimate the 

relationships between climate change and crop yield for corn, cotton, soybeans, and peanuts. The 

climate change index is then projected into the future based on three climate models and applied 

to forecast future crop yield response. The key contribution of our study is identifying different 

climate change indexes across U.S. states. Specifically, our results indicate that future warmer 

weather will have a negative impact for southern U.S. states, while it has insignificant impact for 

northern U.S. states.   

Key words: Climate change index, Crop yield response 
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2.2 Introduction  

Current general circulation models (GCM) including the Australian CSIRO 3.5, Canadian 

CGCM 3.1, and Japanese MIROC 3.2 models all predict that average global temperature will 

keep rising and precipitation will have a mild change for most U.S. states over the rest of the 

century. This is assuming greenhouse gas emissions follow the IPCC SRA1B scenario of rapid 

economic growth, low population growth, and introduction of new and more efficient technology. 

Variations in climatic conditions such as a late spring, a rainy planting season, or a hot and dry 

growing season could all directly affect agricultural crop yields. Although agricultural 

technologies have been greatly improved in recent decades, research indicates that variations in 

temperature and precipitation induced by global climate change will a have significant impact on 

crop yield (Tao et al. 2006; Schelenker and Roberts 2006; Lobell, Cahill, and Field 2007; 

Almaraz et al. 2008).  

 We hypothesize that climate change crop-yield effects are not homogeneous across 

regions. Heterogeneous regional environmental conditions including soil properties and weather 

will likely yield varying climate change effects. While research generally indicates that a warmer 

climate can reduce U.S. crop yields, only limited studies directly compare the effects of climate 

change on crop yields across regions. One test of this hypothesis is to compare results from a 

number of regional studies. However, comparison is difficult when studies differ in scope, 

variable selection, and methodology. As an attempt to test this hypothesis, this study avoids these 

difficulties by developing a consistent climate change index for crop yield response across 

regions. 

Two major methodologies are employed to study the relationship between weather and 

crop yield: a crop growth model and production function analysis. Crop growth modeling is a 
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computer-based simulation approach based on a mathematical integration of biology, physics, 

and chemistry (Jones 1993; Hoogenboom 2000; Jones et al. 2003). With agronomic 

characteristics of a crop‟s growth and development, a computer-based model incorporates 

weather information−temperature, precipitation, solar radiation, and humidity−with other 

factors−fertilizer applications and soil properties to simulate crop yield. Crop yield distributions 

are then generated based on alternative weather scenarios. The Decision Support System for 

Agrotechnology Transfer (DSSAT) is a popular software package using this method 

(Hoogenboom 2000).  

A disadvantage of crop-growth modeling is its data demands and complexity requiring 

extensive information on weather, soil, and management options. Such data is usually 

incomplete and sometimes unavailable (Walker 1989). A production function analysis is then an 

alternative method for predicting yield (Horie, Yajima, and Nakagawa 1992; Kandiannan et al. 

2002; Tannura, Irwin, and Good 2008). Compared to the crop-growth modeling approach, data 

limitations in production function analysis are less restrictive. Furthermore, Tannura, Irwin, and 

Good (2008) found that production functions have high explanatory power. For testing the 

hypothesis of heterogeneous regional climate change crop yield effects, production functions 

also have the advantage of not requiring a consistent crop-growth model unique to each region.    

Developing a production function requires determining the appropriate set of weather 

factors affecting crop growth and yield. Temperature and precipitation are the major weather 

variables impacting crop yields. High temperature affects soil moisture which negatively impacts 

crop yields if precipitation is not sufficient to maintain crop growth and supplemental irrigation 

is not sufficient (Mitchell et al. 1990). On the other hand, supplemental irrigation can offset 

inadequate precipitation. Temperatures can also affect growing season lengths inducing crop-
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yield variation. High temperature tends to shorten crop growing seasons, which exposes crops to 

less solar radiation required for photosynthesis. In the long run, climate change impacts on 

temperature and precipitation could alter cropping patterns in many regions (Lotsch et al. 2007). 

Therefore, monthly temperature and precipitation during the growing season are employed for 

constructing a weather index.  

With a typical growing season of at least seven to eight months, this results in over 14 

monthly weather variables for both temperature and precipitation, which leads to unstable 

estimation results. Previous studies reduced the number of weather variables by dividing the 

growing season into crop growth stages (Dixon et al. 1994; Kafumann and Snell 1997). However, 

it is difficult to specify the exact boundary between two crop growing stages. Also, crop growing 

stages vary from year to year, and by region.  

Alternatively, statistical techniques such as T-statistics and R-square are used to select 

significant weather variables. A disadvantage of statistical variable selection methods is they 

exclusively lean on data while ignoring agronomic implications of different growing season 

months. This results in statistical methods alone leading to agronomic mistakes by dropping 

important months and retaining unimportant months. In addition, the weather variables are 

collinearly related so a variable selection approach will lead to unstable estimated coefficients.  

Research indicates that the effects of weather conditions on crop yields are not linear 

relationships (Deschenes and Greenstone 2007; Schlenker and Roberts 2009). For example, the 

response of crop yields to a one degree Celsius increase in temperature depends on the baseline 

temperature. Therefore, quadratic weather variables are used to consider nonlinearity. The effects 

of climate variability on crop yields are also likely to decrease crops yields (Porter et al. 2005), 

such as increased extreme weather events. Therefore, we also include the difference between 
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monthly mean maximum and minimum temperature to account for the effects of extreme 

temperature events on crop yields. However, the issue of too many weather variables becomes 

even more severe when quadratic terms for weather variables are introduced into regression 

models. 

Agronomically speaking, crop growth is a cumulative dynamic process. Weather 

conditions in any growing month would affect final realized crop yields; suggesting retaining all 

months in the production function. This suggests the development of a climate change index 

which accounts for the variation in weather variables across months. Such an index will retain 

the influence of all months without losing degrees of freedom. Principal component analysis 

(PCA) can be used to construct such an index. Specifically, using PCA eliminates possible 

severe multicollinearity issues in multiple regression models (Dixon et al. 1994). Instead of using 

original weather variables as predictor variables, PCA constructs an index of climate change. 

PCA is a variable compression technique, which transforms a large number of interrelated 

variables to a new set of uncorrelated variables that are linear combinations of the original 

variables (Jolliffe 2002). The index is then a weight combination of all weather variables. Many 

studies have employed PCA in regression analysis (Pandzic and Tminic 1992; Yu, Chu, and 

Schroeder 1997; Hansen, Jorgensen, and Thomsen 2002; Martinez, Baigorria, and Jones 2009).   

PCA generates the same number of weather indices as the original weather variables and 

orders them by the magnitude of variances. In order to reduce the number of indices, previous 

studies only consider the first several indices with large variances (Martinez et al., 2009). An 

eigenvalue greater than or equal to 1 indicating relatively large variances are usually considered 

to be significant for retaining an index. However, as addressed by Jolliffe 1982 and Jolliffe 2002, 

it is generally not appropriate to use only the indices with large variances. Hadi and Ling (1998) 
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demonstrate it is possible for the index with the smallest variance to be the only index correlated 

to a response variable. Weather variables with larger variance are not necessary more important 

than weather variables with smaller variance for crop growth. Therefore, a statistical variable 

selection technique is used to select an appropriate subset of indices.  

In previous studies, application of PCA in climatic data modeling has concentrated on 

investigating geographic patterns of temperature and precipitation. The constraints and 

interdependency of spatiotemporal climate data can be identified by the use of PCA 

(Preisendorfer 1988). Since different units and magnitudes could dominate the grouping of 

principal components, temperature and precipitation variables should be standardized before 

PCA is employed (Jolliffe 2002). 

The study conducted by Kantanantha, Serban and Griffin (2010) is one of few to use 

PCA to study the relationships between crop yields and weather indicators. However, in their 

study, temperature and precipitation variables were processed under PCA separately, which 

leaves multicollinearity issues between precipitation and temperature unsolved. Also, they only 

use original terms for temperature and precipitation variables. In this study, we include quadratic 

terms for temperature and precipitation to account for the nonlinear relationships between crop 

yields and weather. Besides the mean value of weather indicators, the effects of weather 

variability on crop yields are also likely to decrease crop yields (Porter et al. 2005), such as 

increased extreme weather events. For this reason, we include the difference of mean daily 

maximum and minimum temperatures of the month to account for the effects of extreme 

temperature events on crop yields. 

Technology change has an important role in long-run crop yield changes since it 

improves the crop yields over time. Previous studies generally include an additional predictor to 
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represent technology change. Possible candidates for this predictor include GDP and a linear or 

nonlinear time trend (Buller 1972; Choi and Helmberger 1993; McCarl, Villavicencio and Wu 

2008). Nonlinear time trends were used since yield improvement is not necessary linear which 

could happen when improved crop varieties are adopted.    

In this study, the primary purpose of the production function is to investigate the 

relationship between crop yields and the climate change index. By adding GDP or a time trend to 

represent technology change, the significance of the model will be mostly explained by this 

technology trend removal instead of weather variables. Although it is statistical appropriate to 

add GDP or a time trend to the regression model, it is better to use de-trended yield to investigate 

the connections between weather variables and crop yields. Another issue related to using GDP 

or a time trend variable is spatial difference. Assuming a linear technology trend, some places 

could benefit from larger technology advances. By using a technology trend predictor, spatial 

differences in technology will determine the main trend when forecasting changes in crop yields. 

 

2.3 Methodology 

In this study, a weather-crop yield principal components regression (PCR) model is developed to 

study the response of crop yields to weather changes. Before presenting the PCR model, it is 

necessary to show how the Principal Components (PCs) are generated. The following is a 

generalized expression of the crop yield regression model. It is a statistical function that 

demonstrates the historical relationship between weather variables and crop yields. After holding 

all other inputs such as fertilizers and insect infestations constant, equation (2.1) estimates the 

connections between crop yields and weather conditions: 

 (2.1)                                                                        
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where   is a matrix of p random variables of weather indicators with dimension    ,   is a 

vector of crop yields with   observations,   is a vector of p regression coefficients and   is a 

vector of error terms. The weather vectors within X matrix include monthly mean temperature, a 

square term of monthly mean temperature, total monthly precipitation, a square term of total 

monthly precipitation, and the difference between monthly mean maximum and minimum 

temperatures. 

As previously mentioned, the PCR model uses PCs of weather indicators as explanatory 

variables. The first step of the PCR model is generating PCs of the original variables. PCA 

derives the same number of PCs as the original variables. These PCs are ranked by the 

magnitude of their variances. The first PC of weather indicators with the largest variance could 

be represented as a linear combination of original variables: 

(2.2)       
     

                            
 
    

where   is an eigenvector of covariance matrix    of   corresponding to its 1st largest 

eigenvalue   . The second and following PCs could be generated in a similar way. A list of PCs 

of weather indicators is: 

(2.3)    
     

   
     

  
     

                                                                                      

where any PC is uncorrelated with the rest of the PCs. 

Since   is orthogonal, we can rewrite equation (2.1) as: 

(2.4)    
     

                  
     

  
     

                                                               

Equation (2.4) is a general expression of the PCR model. The PCs matrix   replaces the 

original weather variables matrix  .    has exactly the same dimension     as  . Since a key 

advantage of the PCR model compared to a standard regression model is reducing the number of 
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explanatory variables, it is preferable to select a subset of principal components to use as 

explanatory variables in the PCR. As mentioned previously, most early related studies only 

selected the first several principal components claiming that these components explain most of 

the variance in the data. However, this component selection process is not appropriate since even 

if a particular principal component explains only a small variance in the weather variables, this 

does not necessarily mean it has weak power in explaining the variance in crop yields. Out of the 

several variable selection techniques discussed by Jolliffe (2002), we chose to use p-value 

criterion where the coefficients with a p-value less than 10% be kept in the model.           

An applicable expression of PCR model is: 

(2.5)    
     

     
     

   
     

                                                                                                     

where  
 
is a vector of   elements that are a subset of elements of  ,    is an       matrix 

whose columns are the corresponding subset of columns of  , and    is the appropriate error 

term. These k PCs that remained in the model of equation (2.5) are not necessarily the first k PCs. 

Compared to many other research areas, climate change study is special in that future 

observations (climate change projection data) are usually already available before conducting the 

research. This also requires a different approach in PCR forecasting. To predict future crop 

yields with estimated PCR model, a direct approach is to generate a new set of PCs by directly 

transforming future weather variables. However, a new set of PCs would have completely 

different eigenvectors from those transformed from historical weather variables. Therefore, this 

approach is not appropriate. An alternative approach (Approach 1) is to use eigenvectors 

associated with historical weather variables to construct PCs for future weather variables. 

However, using eigenvectors based on historical data to generate PCs for future data is 

inappropriate, since previous eigenvectors are uniquely selected for historical data. 
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To solve the above issue of utilizing a PCR model for forecasting purposes, we propose 

to transform weather variables into PCs using both historical climate data and future climate 

change data simultaneously (Approach 2). One set of future climate change data is specifically 

related to a particular estimated PCR model. Thus, although we only have one set of historical 

weather data, there will be three different PCR models for forecasting based on three climate 

change projection data sets. Approach 2 avoids applying historical eigenvectors to future data 

sets. Meanwhile, a concern about its prediction performance is raised since the estimated 

coefficient is a function of future observations, which is different from traditional econometric 

approaches. To test the prediction performance for Approach 1 and Approach 2, a Monte Carlo 

experiment is designed to compare their mean squared errors (Monte Carlo experiment 

procedure and results are showed in the Appendix A). After running the Monte Carlo experiment 

for 1,000 times, it is observed that the differences between the averages mean squared error for 

both approaches are insignificant. Therefore, Approach 2 is chosen for its advantage mentioned 

earlier. To the best of our knowledge, this approach has never been conducted in previous 

literature. 

Based on the above discussion, we modify equation (2.5) to a PCR model that is 

applicable to forecasting purpose. Suppose we have three sets of climate change data        

and    each with dimension of      . Each of them is combined with historical weather data 

  to generate three sets of weather data   ,    and    as follows: 

(2.6a)        
                      

     
     

   
 

 
     

 

 

                       

(2.6b)                                  
  

 
 

(2.6c)                                   
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   ,    and    were then transformed into PCs matrices   ,    and   : 

(2.7a)                           
         

    
         

   
     

                       

(2.7b)                                                            

(2.7c)                                                                         

The PCR model will result in the following equations, where each equation has a unique  

PCs matrix    ,     and    , depending on the climate change data that will be used for yield 

forecasting:  

(2.8a)        
     

      
     

   
     

                                                

(2.8b)                   

(2.8c)                   

Although the PCs used in the PCR model are still based on historical weather data, they 

are different since future weather data are combined to generate PCs.  After estimation, these 

three climate models were then used to predict crop yields based on the estimated PCR models 

(see equations 2.8a, 2.8b, and 2.8c).  

The predicted yields from the PCR model using future climate change data were used to 

generate a Climate Change Impact Index (CCII). Forty one predicted yields for certain crops in 

selected counties were compared between three climate change models. The number of years for 

which MIROC 3.2 (warmest climate scenario) generates lower crop yields as compared to the 

CSIRO 3.5 (coldest climate scenario) was recorded. The CCII is generated by dividing the 

number of these particular years by total years.  

(2.9)        
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where s denotes specific states, c denotes number of counties in specific states,   denotes the 

number of years for which MIROC 3.2 (warmest) generates lower crop yields as compared to 

CSIRO 3.5 (coldest). Each county has different crop acreage; CCII for a county with higher crop 

acreage should have more weight than a county with lower crop acreage in equation (2.9). 

Therefore, weighted state-level CCII was generated. The CCII was generated by using the above 

formula for several northern and southern U.S. states. A high value of CCII indicates that global 

warming is a serious influence on crop yields, while a low value of CCII indicates that global 

warming is less of a concern.  

 

2.4 Data 

Climate represents long-run weather patterns. Therefore, to study the historic effects of climate 

on agriculture, the longest possible period is preferred. Due to data availability, 1960 is the 

earliest year with both of the required crop yield and weather data available. Thus, our study 

observes the period 1960-2009. 

Because they are the top producing states for corn, soybeans, cotton and peanuts, we 

selected the northern  U.S. states of Minnesota, Nebraska, Indiana, Illinois, Iowa, and the 

southern U.S. states of Georgia and Texas for our empirical application. County-level crop yields 

and weather data in these states were analyzed using the PCR model. Although CCII were 

generated for all available counties in these states, the last five years (2006-2009) were omitted 

from the model in order to test for model robustness for two specific counties: Mitchell County 

located in the southwestern Georgia, and Hancock County, Illinois located in the traditional U.S. 

Corn Belt region.  
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The historical weather data which includes monthly average temperature, monthly 

average temperature difference and monthly total precipitation were retrieved from the National 

Climate Data Center (NCDC)
3
. We selected monthly temperature and precipitation as weather 

variables because of the availability of these variables in the climate data for our time period of 

analysis. Data was retrieved only for months during which crops are grown. The following table 

summarizes planting months used in the PCR model associated with specific crops and states.  

Monthly average temperatures used in this study were the difference between monthly 

mean maximum temperature and monthly mean minimum temperature. It is also preferable to 

include some predictors to account for variations in precipitation. Although daily precipitation 

data is available to calculate precipitation variation within a month, it is not available in the 

NCDC data. Thus, for the purpose of forecasting yield response under climate change, we did 

not account for precipitation variation.  

To project future climate change with alternative greenhouse gas scenarios, many climate 

change models have been developed by atmospheric scientists. Different climate change models 

provide different climate change projections based on different approaches and underlying 

scenarios. In this study, three climate change projections were developed by the USDA Forest 

Service as part of the 2010 Renewable Resources Planning (RPA) Act assessment of natural 

resource demand and supply in the U.S.  The projections were derived from global climate 

models: CGCM 3.1, CSIRO 3.5 and MIROC 3.2 and the SRA1B socioeconomic scenario from 

the Special Report on Emission Scenarios (SRES) of IPCC (Nakicenovic et al. 2000; IPCC 2007; 

Coulson et al. 2010). Climate change projections from these three climate models provide 

monthly projection of temperature and precipitation up to the year 2100. In general, as the time 

                                                           
3
 Historical weather data were retrieved from:  

http://gis.ncdc.noaa.gov/map/monthly/    (last accessed on May, 2011) 

http://gis.ncdc.noaa.gov/map/monthly/
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horizon increases, crop yield response forecasting will become more unreliable. Therefore, we 

only use the climate change data up to the year 2050. The following weather indicator 

projections were used for crop yield forecasting: total annual precipitation, monthly mean 

maximum temperature and monthly mean minimum temperature.   

A large amount of data including historical weather and crop yield data and climate 

change projection data are needed for crop yield response estimation. However, most of original 

data are not in the correct form; therefore, a statistical software package was used to reconstruct 

the original data in a manner compatible with estimating the relationships between climate 

change and crop yields. 

Annual corn yield data was obtained from USDA-National Agricultural Statistical 

Service (NASS)
4
 for the past 50 years for Mitchell County, Georgia and Hancock County, 

Illinois. Corn was chosen as the study crop since it is one of the most weather sensitive crops. 

Corn yield data were de-trended to a 2009 technology level. 

 

2.5 Results  

We used the estimated coefficients from our estimated PCR model to predict future crop yields, 

incorporating predicted changes in temperature and rainfall based on the US Forest Service 

climate change predictions. The corn yield response to climate change projected by three climate 

change models: CSIRO 3.5 (coldest scenario), CGCM 3.1 (middle scenario), MIROC 3.2 

(warmest scenario) under the SRA1B socioeconomic scenario were forecasted and compared for 

both counties. 

                                                           
4
 Crop yield data were retrieved from: 

http://quickstats.nass.usda.gov/    (last accessed on May, 2011) 

http://quickstats.nass.usda.gov/
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For Mitchell County, Georgia (see figure 2.1), 31 out of 41 forecast years showed lower 

predicted corn yields under MIROC32 (warmest scenario) compared to predicted corn yields 

under CSIRO35 (coldest scenario). Consistent with previous studies, this result indicates that 

warming temperatures under future climate change scenarios will tend to reduce corn yields. For 

Hancock County, Illinois (see figure 2.2), 18 out of 41 forecast years showed lower corn yields 

under MIROC32 (warmest scenario) compared to predicted corn yields under CSIRO35 (coldest 

scenario). This result for Hancock County is different from Mitchell County which indicates the 

existence of different effects of climate change on different regions. Farms in the northern U.S. 

may actually benefit from warming temperatures compared to farms in the southern U.S. where 

temperatures are already comparatively higher. 
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Figure 2.1. Forecasted corn yields in Mitchell County, Georgia from 2010 to 2050 
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Figure 2.2. Forecasted corn yields in Hancock County, Illinois from 2010 to 2050 

 
To provide stronger evidence for the above hypothesis, county level studies were 

conducted for all available counties in the eight specified states. Generated CCIIs are presented 

in Table 2.1. It is observed that northern states have a lower CCII value compared to southern 

states in terms of corn and soybeans. The results indicate that corn and soybeans‟ yields 

generally have a mild decrease due to predicted global climate change in the northern U.S. states 

studied, and a relatively more pronounced negative effect in the southern U.S. states studies 

where warm temperatures and periodic drought already pose significant constraints to crop 

production. This result is consistent with the expectation that a probable impact of global climate 
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change, should it occur as predicted, would be to shift some cropping patterns from the southern 

U.S. to the northern U.S.. 

 

Table 2.1. Climate Change Impact Index (by states, by crops) 

  Corn Soybeans                   Cotton                        Peanuts 

MN 0.528 0.421 

 

 

IA 0.561 0.445 

 

 

NE 0.488 0.516 

 

 

IL 0.526 0.505 

 

 

IN 0.532 0.520 

 

 

TX 0.598 0.626 0.542 0.534 

AL 0.706 0.590 

 

 

GA 0.687 0.630 0.633 0.489 

    

 

Table 2.2-2.7 list the average yields by crops and by states. These tables provide extra 

information by comparing historical yields with future yields. The tables indicate that corn and 

soybeans have decreasing trends for the state of Georgia, while for the northern states, no 

significant trend could be observed for both corn and soybeans.  
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Table 2.2. Average Yields for Corn, Soybeans, Peanuts, and Cotton in Georgia 

State Crop Years Scenarios Average Yield Percentage Change 

GA Corn 1960-2009 Historical         126.86    0.00% 

  

2010-2019 CSIRO 3.5         127.79 0.73% 

   

CGCM 3.1 118.67 -6.46% 

  

  MIROC 3.2 114.66 -9.62% 

  

2020-2029 CSIRO 3.5 121.21    -4.45% 

   

CGCM 3.1 120.93 -4.67% 

  

  MIROC 3.2 110.16 -13.16% 

  

2030-2039 CSIRO 3.5 118.49 -6.60% 

   

CGCM 3.1 118.26 -6.78% 

 

    MIROC 3.2 106.05 -16.40% 

 

Soybeans 1960-2009 Historical   28.44 0.00% 

  

2010-2019 CSIRO 3.5   27.91 -1.86% 

   

CGCM 3.1   26.26 -7.67% 

  

  MIROC 3.2   26.05 -8.40% 

  

2020-2029 CSIRO 3.5   26.99 -5.10% 

   

CGCM 3.1   25.94 -8.79% 

  

  MIROC 3.2   24.19 -14.94% 

  

2030-2039 CSIRO 3.5   26.41 -7.14% 

   

CGCM 3.1   26.10 -8.23% 

 

    MIROC 3.2   23.04 -18.99% 

 

Peanuts 1960-2009 Historical           3235.14 0.00% 

  

2010-2019 CSIRO 3.5           3041.90 -5.97% 

   

CGCM 3.1           2897.79 -10.43% 

  

  MIROC 3.2           2994.39 -7.44% 

  

2020-2029 CSIRO 3.5           3135.02 -3.09% 

   

CGCM 3.1           2984.43 -7.75% 

  

  MIROC 3.2           3037.70 -6.10% 

  

2030-2039 CSIRO 3.5           3061.46 -5.37% 

   

CGCM 3.1           3051.12 -5.69% 

 

    MIROC 3.2           2949.49 -8.83% 

 

Cotton 1960-2009 Historical    1.70 0.00% 

  

2010-2019 CSIRO 3.5    1.79 5.29% 

   

CGCM 3.1    1.63 -4.12% 

  

  MIROC 3.2    1.64 -3.53% 

  

2010-2019 CSIRO 3.5    1.73 1.76% 

   

CGCM 3.1    1.59 -6.47% 

  

  MIROC 3.2    1.53 -10.00% 

  

2010-2019 CSIRO 3.5    1.79 5.29% 

   

CGCM 3.1    1.62 -4.71% 

  

  MIROC 3.2    1.53 -10.00% 
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Table 2.3. Average Yields for Corn and Soybeans in Iowa 

State Crop Years               Scenarios Average Yield Percentage Change 

IA Corn 1960-2009 Historical 170.12 0.00% 

  

2010-2019 CSIRO 3.5 169.73 -0.23% 

   

CGCM 3.1 165.66 -2.62% 

   

MIROC 3.2 168.95 -0.69% 

  

2020-2029 CSIRO 3.5 166.09 -2.37% 

   

CGCM 3.1 165.17 -2.91% 

   

MIROC 3.2 166.77 -1.97% 

  

2030-2039 CSIRO 3.5 170.52 0.24% 

   

CGCM 3.1 169.64 -0.28% 

   

MIROC 3.2 165.84 -2.52% 

 

Soybeans 1960-2009 Historical 50.28 0.00% 

  

2010-2019 CSIRO 3.5 50.24 -0.08% 

   

CGCM 3.1 49.52 -1.51% 

   

MIROC 3.2 50.66 0.76% 

  

2020-2029 CSIRO 3.5 49.29 -1.97% 

   

CGCM 3.1 49.64 -1.27% 

   

MIROC 3.2 50.88 1.19% 

  

2030-2039 CSIRO 3.5 50.83 1.09% 

   

CGCM 3.1 50.79 1.01% 

  

  MIROC 3.2 51.61 2.65% 
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Table 2.4. Average Yields for Corn and Soybeans in Illinois 

State Crop Years               Scenarios Average Yield Percentage Change 

IL Corn 1960-2009 Historical 167.78 0.00% 

  

2010-2019 CSIRO 3.5 162.31 -3.26% 

   

CGCM 3.1 162.42 -3.19% 

   

MIROC 3.2 167.49 -0.17% 

  

2020-2029 CSIRO 3.5 160.46 -4.36% 

   

CGCM 3.1 166.08 -1.01% 

   

MIROC 3.2 163.12 -2.78% 

  

2030-2039 CSIRO 3.5 164.37 -2.03% 

   

CGCM 3.1 164.59 -1.90% 

   

MIROC 3.2 158.24 -5.69% 

 

Soybeans 1960-2009 Historical 47.35 0.00% 

  

2010-2019 CSIRO 3.5 46.79 -1.18% 

   

CGCM 3.1 46.09 -2.66% 

   

MIROC 3.2 46.21 -2.41% 

  

2020-2029 CSIRO 3.5 45.08 -4.79% 

   

CGCM 3.1 46.68 -1.41% 

   

MIROC 3.2 44.64 -5.72% 

  

2030-2039 CSIRO 3.5 46.47 -1.86% 

   

CGCM 3.1 46.40 -2.01% 

  

  MIROC 3.2 43.88 -7.33% 
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Table 2.5. Average Yields for Corn and Soybeans in Indiana 

 

State Crop Years               Scenarios Average Yield  Percentage Change 

 

IN Corn 1960-2009 Historical 158.54 0.00% 

   

2010-2019 CSIRO 3.5 154.61 -2.48% 

    

CGCM 3.1 149.36 -5.79% 

    

MIROC 3.2 156.26 -1.44% 

   

2020-2029 CSIRO 3.5 148.50 -6.33% 

    

CGCM 3.1 152.45 -3.84% 

    

MIROC 3.2 148.44 -6.37% 

   

2030-2039 CSIRO 3.5 155.95 -1.63% 

    

CGCM 3.1 153.41 -3.24% 

    

MIROC 3.2 145.64 -8.14% 

  

Soybeans 1960-2009 Historical 48.68 0.00% 

   

2010-2019 CSIRO 3.5 49.30 1.27% 

    

CGCM 3.1 48.69 0.02% 

    

MIROC 3.2 49.30 1.27% 

   

2020-2029 CSIRO 3.5 48.23 -0.92% 

    

CGCM 3.1 48.87 0.39% 

    

MIROC 3.2 48.44 -0.49% 

   

2030-2039 CSIRO 3.5 49.56 1.81% 

    

CGCM 3.1 49.11 0.88% 

   

  MIROC 3.2 47.76 -1.89% 
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Table 2.6. Average Yields for Corn and Soybeans in Nebraska 

 

State Crop Years               Scenarios Average Yield  Percentage Change 

 

NE Corn 1960-2009 Historical 172.13 0.00% 

   

2010-2019 CSIRO 3.5 172.71 0.34% 

    

CGCM 3.1 167.31 -2.80% 

    

MIROC 3.2 171.80 -0.19% 

   

2020-2029 CSIRO 3.5 163.19 -5.19% 

    

CGCM 3.1 169.72 -1.40% 

    

MIROC 3.2 168.70 -1.99% 

   

2030-2039 CSIRO 3.5 168.79 -1.94% 

    

CGCM 3.1 170.76 -0.80% 

    

MIROC 3.2 166.66 -3.18% 

  

Soybeans 1960-2009 Historical 48.41 0.00% 

   

2010-2019 CSIRO 3.5 47.81 -1.24% 

    

CGCM 3.1 47.30 -2.29% 

    

MIROC 3.2 47.92 -1.01% 

   

2020-2029 CSIRO 3.5 45.34 -6.34% 

    

CGCM 3.1 48.05 -0.74% 

    

MIROC 3.2 47.10 -2.71% 

   

2030-2039 CSIRO 3.5 49.45 2.15% 

    

CGCM 3.1 49.12 1.47% 

   

  MIROC 3.2 47.38 -2.13% 
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Table 2.7. Average Yields for Corn and Soybeans in Minnesota 

State Crop Years               Scenarios Average Yield Percentage Change 

MN Corn 1960-2009 Historical 166.36 0.00% 

  

2010-2019 CSIRO 3.5 169.02 1.60% 

   

CGCM 3.1 168.62 1.36% 

  

  MIROC 3.2 170.63 2.57% 

  

2020-2029 CSIRO 3.5 168.62 1.36% 

   

CGCM 3.1 167.02 0.40% 

  

  MIROC 3.2 171.58 3.14% 

  

2030-2039 CSIRO 3.5 171.49 3.08% 

   

CGCM 3.1 173.19 4.11% 

 

    MIROC 3.2 170.24 2.33% 

 

Soybeans 1960-2009 Historical 45.45 0.00% 

  

2010-2019 CSIRO 3.5 46.26 1.78% 

   

CGCM 3.1 47.42 4.33% 

  

  MIROC 3.2 48.91 7.61% 

  

2020-2029 CSIRO 3.5 47.35 4.18% 

   

CGCM 3.1 47.65 4.84% 

  

  MIROC 3.2 49.21 8.27% 

  

2030-2039 CSIRO 3.5 46.71 2.77% 

   

CGCM 3.1 49.10 8.03% 

  

  MIROC 3.2 49.06 7.94% 
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2.6 Conclusions 

In this research, we conducted an econometric analysis of weather factors influencing crop yields 

using county level data from major producing states for corn, soybeans, cotton and peanuts. 

Specifically, a principal component regression (PCR) model was developed with weather indices 

for monthly temperature and precipitation and their quadratic terms. We used an estimated PCR 

model to forecast the future crop yields in response to weather  change projections based on three 

climate change models: CSIRO 3.5 (coldest), CGCM 3.1 (middle), and MIROC 3.2 (warmest). 

 The southern U.S. counties generally displayed lower predicted corn yields associated 

with warming temperature climate change projections, while the coldest climate change 

projections tended to result in higher predicted corn yields. This indicates that global warming 

could have a negative impact on southern counties. In the northern U.S. counties studied, the 

warmest climate change projections resulted in slightly higher predicted corn yields compared to 

predicted corn yields under the coldest climate change projections. This demonstrates that global 

warming trends may benefit corn production in the northern U.S., while negatively impacting 

corn production in the southern U.S. Furthermore, we compare historical yields with future 

yields. The results indicate that corn and soybeans yields would keep decreasing for the southern 

states, while no significant trend could be observed for either corn or soybeans yields for the 

northern states. 

Overall, this research contributes to the literature in a number of ways. First, it is one of the 

first applications of PCA to estimate the relationships between weather and crop yields. We 

improve upon previous PCR models by adding quadratic terms for weather variables and 

temperature variations. Although these terms have been considered in traditional regression 

models, they have never been applied in principal components regression models. We also argue 
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that previous related studies made mistakes by generating separate PCs for temperature and 

precipitation. To the best of our knowledge, this research is the first to note that it is impossible 

to apply different future data sets (for example, climate change data under different scenarios) to 

the same estimated PCR model. This is because future data is a determinant in estimating the 

PCR model (e.g., future data affects the PCR model by influencing how PCs are standardized 

and transformed).We also contribute to the literature by demonstrating different effects of 

climate change in northern and southern U.S. regions, while most previous climate change 

impact studies focused only in one region.  

Crop yield response modeling is complex due to the growth process of crops; therefore, it is 

hard to implement a comprehensive model that considers all the influential factors. The results 

reported in this study are subject to several limitations. First, we assumed that there is no CO2 

fertilization effect for crop growth. Although numerous previous studies have demonstrated 

improvements in crop yields with CO2 fertilization, most of these studies are based on crop 

simulation models. Some actual field research indicates a much smaller increase in crop yields 

under a higher CO2 concentration environment (Long et al. 2006). In order to focus our study on 

weather and crop yield connections, we decided to exclude increased CO2 effects not just to 

simplify the model, but also because of the inability to specify these effects.  

Agronomically, the timing of precipitation is relatively more important than the amount of 

precipitation. Due to the availability of climate change data, we did not include the distribution 

of precipitation in the model. Therefore, extreme precipitation events such as drought or flood 

were not considered in this study. In future climate change studies where adequate climate 

change data is available, we recommend considering such extreme precipitation events. 
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Appendix A 

Monte Carlo Experiment 

1. Obtain data set (      ), i= 1, …, 50. 

2. Bootstrap     from data set in step 1, i= 1, …, 130. 

3. Generate     =       +    , where    is estimated from (      ),     is random normal error 

4. Separate (       ) into three groups: 

  (        ), i= 1,…, 50,  

(        ), i= 1,…, 40,  

            (        ), i= 1,…, 40,  

5. Generate Principal Components for     (    ) based on PCA method 

6. Estimate     using (    ,    ) 

7. Generate Principal Components for             based on mean, standard deviation, and 

eigenvectors from PC1 

8. Forecast      =          

9. Generate Principal Components for             based on mean, standard deviation, and 

eigenvectors from PC1 

10. Forecast      =          

11. Generate Principal Components for            (     ) based on PCA method 

12. Estimate      using (     ,    ) 

13. Forecast       =           

14. Generate Principal Components for            (     ) based on PCA method 

15. Estimate      using (     ,    ) 

16. Forecast       =           
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17.  Compare Mean Squared Error (MSE) in step (8), (10), (12), and (16) 

 

Monte Carlo simulation results (average MSE based on 1,000 times of experiments) 

 

Mean Squared Error 

 

Approach 1 Approach 2 

Y2 378.77 379.81 

Y3 384.56 383.29 
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CHAPTER 3 

CROP ROTATION MODEL 

YIELD AND PRICE VOLATILITY IMPACTS ON PRODUCERS’ CROPPING 

PATTERNS: A DYNAMIC OPTIMAL CROP ROTATION MODEL
5
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 Cai, R., J. Bergstrom, and M. Wetzstein. To be submitted to Journal of Agribusiness. 
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3. 1 Abstract  

This chapter presents a dynamic crop rotation model that shows how crop yield and price 

volatility could impact crop mix and acreage response under crop rotation considerations. 

Specifically, a discrete Markov decision model is utilized to optimize producers‟ crop rotation 

decision within a finite horizon. By maximizing net present value of expected current and future 

profits, a modified Bellman equation helps develop optimum planting decisions. This model is 

capable of simulating crop rotations with different lengths and structures. Specifically, the corn-

soybeans rotations were simulated using the crop rotation model.   

Key words: Crop rotation, Acreage response, Bellman equation.  
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3.2 Introduction 

In the United States, crop rotation has been a very popular agricultural practice for many decades. 

Crop rotation is a practice of planting different crops on the same farm land for sequential 

seasons. Agronomically speaking, crop rotation could reduce the risk of disease and pest damage 

while maintaining soil quality for crop growth. In other words, crop rotation is a substitute to 

some external inputs such as fertilizers or pesticides. For economic considerations, crop rotation 

helps reduce input costs and improve soil productivity, therefore increasing expected profit 

which dominates acreage response. Crop rotation benefit is believed to be induced by the 

agronomic interrelationship between different field crops. A prevalent example is the corn-

soybeans rotation, where soybeans provide a key nutrient for corn growth. Furthermore, crop 

rotation also helps reduce greenhouse gas emissions, since it is a substitute for nitrogen fertilizer. 

Overall, crop rotation can maintain or improve crop yield by controlling for disease and pests 

and promoting soil nutrients.  

Agricultural producers‟ acreage response is an important determinant of agricultural 

supply. Acreage response is largely constrained by crop rotation considerations. Switching from 

a crop rotation scheme to continuous cropping to take advantage of high crop prices could make 

farmers worse off in the long run since yield loss due to continuous cropping could decrease 

profit. For example, in recent years many producers have allocated more acreage to corn planting 

in response to the corn price boom due to ethanol demand. Even though an immediate short run 

profit could be gained in some cases, the gain in corn price might not be able to offset the yield 

loss from continuous cropping in the long run. Therefore, crop choice and acreage response are 

complex decisions with both agronomic and economic considerations. Without considering the 

effects of crop rotations on long-term crop yields and profit, producers‟ planting decision models 
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may be misspecified and misinformed. An interesting research question is: Considering crop 

rotation effects, how will a profit-maximizing producer‟s acreage response be altered by crop 

price volatility? This research question is expected to be of current interest because of increased 

crop price volatility in recent years.  

 

3.3 Literature Review 

Crop rotation has been of great interests to both agricultural producers and policy makers for 

many decades. This topic has also been intensively investigated by researchers. Crop rotation 

studies generally focus on two major categories: agronomic and economic modeling.  

Agronomists concentrate on estimating yield response to crop rotation, and sometimes, 

the tradeoff between yield response and external inputs. Agronomists conduct these studies by 

controlling external factors such as soil type, fertilizer level and some other agronomic factors. 

The agronomic literature generally indicates that crop rotation practices could enhance crop yield 

while reducing input demand. Therefore, crops grown during last season could alter this season‟s 

crop yield and input demand depending on if producers decide to stay with a rotation scheme or 

skip it. Johnson et al. (1998) estimated that cotton and peanut yields from the cotton-peanut 

rotation were 26% and 10% greater, respectively, than those from monoculture over a 7-year 

study in Georgia. In an agronomic study based in Michigan, Roberts and Swinton (1995) 

demonstrated that crop rotation could increase corn yields by 16 percent comparing to 

continuous cropping. Vyn (2006) reported that in Indiana, corn-soybeans rotation enhanced corn 

yields by about 6%. Overall, yield response results vary across almost all agronomic studies. 

Disagreement of agronomic results indicates that crop rotation is largely affected by various 
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external factors such as soil type and fertilizer input, therefore increasing the difficulty of 

developing an economic crop rotation model.  

Acreage response is largely constrained by crop rotation considerations. Expected 

profitability will be altered by crop rotation effects of reducing input demand and improving 

productivity. However, crop rotation effects were surprisingly omitted by most previous acreage 

response studies.  

Even for acreage response models considering crop rotation, crop rotation was usually 

used as an additional variable to help estimate acreage response. For example, many researchers 

incorporate a lagged acreage variable in the econometric acreage response model trying to 

represent the effects of crop rotation (Bewley, Young, and Colman 1987; Weersink, Cabas, and 

Olale 2010). This lagged acreage variable only captures rotational constraints, while the 

mechanism of the crop rotation effects to acreage response behavior was not represented, such as 

how producers‟ acreage responses were dynamically altered by price and yield volatility under 

crop rotation considerations. The reason for this inactive incorporation of crop rotation into 

acreage response studies is believed to be the lack of a mature economic structural model of crop 

rotation. Without a usable and correct crop rotation model, it is hard for researchers to 

incorporate these effects into an acreage response study correctly.   

Some researchers have incorporated dynamic considerations into crop rotation and 

acreage response models. Orazem and Miranowski (1994) estimated a dynamic model to study 

price effects on acreage response. The effects of current crop choice on future soil productivity 

were also considered. However, this research focused on how future prices affected current 

acreage allocations. Dynamically speaking, there is indeed a connection between future prices 

and current acreage allocations. However, following most economic models of crop rotation in 
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the literature, we argue that previous acreage allocations and current prices should dominate 

current acreage allocations.   

In general, previous studies have not adequately incorporated crop rotation into acreage 

response models. The reason for this gap in the literature, we believe, is that previous studies 

have lacked a structural model of crop rotation based on economic theory. Without a usable and 

theoretically-correct crop rotation model, it is hard for researchers to effectively incorporate crop 

rotation into acreage response models. 

Economic studies of crop rotation are relatively limited compared to agronomic studies. 

Economic studies may be more limited because of the complexity of crop rotation effects which 

include interconnections between various factors. Furthermore, many effects of rotations are not 

completely understood by agronomists. Many economic techniques have been applied for crop 

rotation modeling. Among various economic modeling approached for crop rotation, linear 

programming has been one of the most prevalent approaches.  

An early study of crop rotation using linear programming was conducted by El-Naze and 

McCarl (1986). The major contribution of their research is allowing the model to determine 

freely the optimal long run rotation while most other researchers modeled predetermined 

rotations. Multiple year crop rotations were modeled using an annual equilibrium linear 

programming. It assumes sequential crops planting on the same land for continuous seasons. 

However, most producers actually plant all crops in crop rotation simultaneously in the same 

season with the purpose of reducing production risk and balancing labor load. 

Detlefsen (2004) modeled crop rotation with network modeling. Detlefsen‟s model 

provides a visual representation of the crop rotation problem. While it shows an alternative to 
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previous linear programming approaches with certain advantages, it is still limited in only 

optimizing a one year return.  

Hennessy (2006) developed a crop rotation economic model to analyze and separate the 

interconnected crop rotation effects of yield-enhancement and input-saving carry-over effects. 

The model was developed by considering both one-year rotation effects and multi-year rotation 

effects. However, this model does not consider how producers‟ sequential decision making will 

be altered by crop rotation effects.  Also, Hennessy‟s model focuses on choosing among 

rotations instead of allocating acreage to crops within one rotation. Switching between rotations 

has higher input costs; therefore it is unrealistic for most small producers. 

Livingston, Roberts and Rust (2009) examined crop choice as a dynamic optimization 

problem over an infinite time horizon. Their work is believed to be the first in the literature to 

consider crop rotations in a dynamic optimization framework. A simple crop rotation model was 

developed to analyze farmers‟ response to expected revenue given crop rotation considerations. 

However, only the simple corn-soybeans rotation was modeled. The whole model was based on 

one field grown either in corn or soybeans for sequential seasons. In a real farm, producers 

would prefer to grow all crops in rotation simultaneously which helps to reduce production risk. 

The situation with both crops planted is more complicated. Another limitation of their model is 

that it is calibrated by specific agronomic data from Northeast Iowa. The model they develop is 

most salient to that region of the country and nearby regions with similar soils and climate. It is 

not apparent that their model could be easily applied to other regions with different external 

environments. The final results were the optimal choice of crops given previous crops grown and 

current fertilizer use. This result provides useful decision rules for corn-belt farmers trying to 
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decide between planting corn or soybeans in any given year, however, a multi-period decision 

analysis was not delivered. 

  

3.4 Methodology 

Economic analysis of crop rotation schemes plays a dominant role in acreage response studies. 

Various approaches developed in recent decades have broadly expanded people‟s knowledge 

about economic modeling of crop rotation. However, due to the complexity of crop rotation 

systems, economic models generally have various limitations, and therefore it is difficult to 

utilize these models in actual case studies. This study attempts to contribute to the literature by 

providing a dynamic optimization crop rotation model with a general structure. This model was 

designed to have minimum agronomic restrictions, such as soil type, yield response, and 

previous crops grown so that future research could easily adjust the model for use on any crop 

rotation system with various external environments. It also considers multi-year rotation carry-

over effects which were barely addressed in previous studies.  

To our knowledge, no literature exists pertaining to crop rotation structural modeling 

incorporating a Bellman equation to maximize net present value of returns. Therefore, in this 

study, we focus on the overall research question: What is the optimal cropping plan over multiple 

periods considering the economics of crop rotation in a dynamic framework?   

In the remainder of this chapter, we will first develop a dynamic theoretical model with 

one-year carry-over effects.  This model will then be extended to include two-year carry-over 

effects, followed by a case study with application to the corn-soybeans rotation. 

 In our model, we study three types of rotation systems. A-B denotes the rotation with 

crop A and crop B repeatedly planted after each other on the same farm land for sequential 
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seasons. A-A-B denotes the rotation with repeated schemes of crop A planted for two seasons 

and crop B planted for one season on the same farm land. A-B-C denotes the rotation with 

repeated schemes of crop A planted during the first season, crop B planted during the second 

season, crop C planted during the third season on the same farm land. Agricultural producers are 

assumed to be price-takers and profit-maximizers. Considering crop rotation effects on yield 

response, producers intend to maximize net present value of returns for an infinite horizon by 

allocating crop acreage for each season. 

In this study, the discrete time and discrete state Markov decision model is modified to 

simulate the crop rotation optimization process. The original Markov decision model has the 

following structure: in every period t, an agent observes an economic state   , takes an action   , 

and earns a reward          which depends on both the state of the system and the action 

(Miranda and Fackler 2002). This process could be converted into the crop rotation process as 

follows. In the beginning of a planting season, a producer observes the crops planted on the land 

during last season and decides which crops to plant on the same land for the current season. 

Producers are making discrete decisions assuming that each field could only plant one type of 

crop. The expected crop yield depends on both the previous planting state and current planting 

decision. For example, if corn and soybeans were each planted on two equally sized farm land 

tracts during last season, and a producer decides to follow the corn-soybeans rotation by flipping 

the crop planted on the two tracts, then expected corn yields could be maintained at the original 

level. However, if the producer decides to plant corn on both tracts due to increased corn price, 

one of the expected corn yields will be reduced due to continuous cropping (see figure 3.1).  
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Figure 3.1. Two current planting scenarios based on previous crops planted 

 

Expected input and output prices are assumed to be exogenous. Even expected yields are 

assumed to be exogenous; only the yield response level (the yield under continuous cropping 

compared to the yield under rotation) is assumed endogenous to current and previous crop 

choices. Since crop rotation practices are adopted by most producers, we assume that exogenous 

expected yields are the yield under rotation. The yield under continuous cropping will depend on 

the yield response level.  

The discrete Markov decision model used in this study is analyzed using the dynamic 

programming methods developed by Richard Bellman (Bellman 1957). The Bellman equation 

helps to optimize sequential decisions to balance an immediate reward against expected future 

rewards. With a finite horizon, the Bellman equation is written as: 

(3.1)                                          
                      

where,       is the maximum attainable sum of current and expected future rewards, given that 

the system is in state    in period  , x is the control variable.         is the immediate reward: 

(3.2)                   
       

is the expected future reward.   is the discount factor,           represents the distribution of 

next period‟s state. 
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 The objective function for the producer is maximizing the sum of current and expected 

future farm returns considering the crop rotation for T years. It is also assumed that the current 

season‟s crop yield will be known with certainty once both the last and current season‟s planting 

decisions are known. Therefore, the crop rotation is considered to be a finite horizon, 

deterministic problem in this study.  

The producer makes planting decisions by looking at the crops planted during last season; 

therefore, we take crop yield at time t-1 as the state variable at time t. This state variable includes 

both the crop choice and crop yield. We assume that the yield response level during last season 

has no impact on this season‟s yield response level, only the crop choice matters. To be specific, 

the actual state variable in this model is the profit where exogenous input and output prices are 

included. To simplify the notation, we say that the combined crop choice and the yield response 

level is our state variable: 

(3.3)              

where   denotes the yield of crop y under crop rotation, and    denotes the yield of crop y 

reduced yield under continuous cropping.  

We assume that the producer plants alternative crops simultaneously during the same 

season and switch crops for the next season. Therefore, the size of state space varies according to 

rotation length. For a rotation with two crops such as A-B, the number of elements in the state 

space is nine which includes all possible combinations of yield and reduced yield for crop A and 

crop B. AM-BM is not considered as an element of the state space for rotation A-B. AM-BM 

indicates that both A and B are harvested with reduced yield due to continuous cropping, so the 

crops planted for the last season must be A and B. While both crop A and crop B were planted 

for two sequential seasons, a rational producer will switch the lands for A and B and obtain crop 
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rotation yield A-B, but not continuous cropping yield AM-BM. Therefore, AM-BM is not a 

possible yield scenario, thus: 

(3.4)                                                   . 

For crop rotations with longer length or more crops, the number of elements in the state 

space will be more. A-A-B has 16 elements and A-B-C has 100 elements in their state spaces. 

The control variable is: 

(3.5)              

where         denotes alternative crops in a crop rotation scheme.  

Based on the state variable and the control variable denoted above, the modified Bellman 

equation for crop rotation could be written as: 

(3.6)                                                                       

where          is the maximum attainable sum of current and expected futures farm returns, 

given that system is in state     in period t, x is the crop choice for the current season, 

          is the current season farm return, and                  is the expected future farm 

returns.  

The state transition function           denotes how the current state      transits in the 

state space based on the current season crop choice               in this model could be better 

understood by visually inspecting figure 3.2. Again, the simplest crop rotation A-B was chosen 

to demonstrate the state transition process for this model. 
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Figure 3.2. Illustration of the transition function of A-B rotation 
 

Each of the two crops is planted on two tracts denoted by cells. The left column denotes 

the current state, which is the crop choice and yield response level during the last season. The 

right column denotes the next state depending on the current planting decision. Lines connecting 

the two columns denote planting decisions. Solid lines denote crop rotations, long dash lines 

denote growing crop A on both tracts, long dash dot-dot lines represent growing crop B on both 

tracts. This figure illustrates how the state variables (crop choice and yield response level during 

last season) transit with the control variables (planting decisions). 

Figure 3.2 visually demonstrates the state transition function for the simplest crop 

rotation A-B. The previous crop choice and yield response level transits to the specific current 

yield response level, depending on the current planting decision.  At the beginning of the current 

season, a producer considers crops planted during the last season, making the choice between 
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three alternative planting decisions: planting A on both tracts, planting B on both tracts or 

planting both A and B on both tracts. 

In order to maximize the net present value of the return, the producer optimizes his or her 

planting decision based on the crop planted during last season and this season‟s expected yield. 

For example, row 2 of the left column means both A and B were planted during the last season, 

while A was harvested with rotational yield, and B was harvested with continuous yield. If the 

producer decides to plant A on both tracts during the current season, the expected current yield 

level will transit to row 5 on the right column where A was harvested with rotational yield on 

one tract and continuous yield on the other tract.  

The state transition function, the reward function and the Bellman equation for the A-B 

rotation are listed in the Appendix B (take Corn-Soybeans rotation as an example). The above 

illustration of state transition could also extend to other crop rotation types such as A-A-B and 

A-B-C. As alternative crops in the crop rotation increases, the number of elements in the state 

space also largely increases. Compared to nine elements for the A-B rotation, the A-A-B rotation 

has 16 elements and the A-B-C rotation has 40 elements in their state spaces. Their structure 

figure, the state transition function, the reward function and the Bellman equations are listed in 

the Appendix as well.  

It should be noted that the above dynamic optimization models derived for A-B, A-A-B 

and A-B-C rotations have one strong assumption: the crop yield response level at time t only 

depends on the crop planted at time t-1 and the planting decision at time t. However, this 

assumption is unlikely to be valid for some crops, for which the crop yield response level 

depends on crops planted at both time t-1 and time t-2 and the planting decision at time t. 
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Therefore, we extend the previous model by considering the last two crops grown instead of just 

the last crop grown.  

The control variable for the new model is still the current crop choice. The state variable 

now changes from last season‟s crop choice and yield response level to the same two variables 

for the last two seasons. As mentioned earlier, the yield response level is still not completely 

understood by agronomists. Although agronomic yield response level results are available in 

many previous studies, their values vary by area, by crop and some other unknown agronomic 

factors. In the model only considering last season‟s impact, the crop planted in the same land for 

two sequential seasons could be categorized into either the same crop or a different crop for the 

A-B rotation. 

For the model considering the last two seasons‟ impact, the crop on the same land for 

three sequential seasons could be categorized into four scenarios: A-B-A, B-A-A, A-A-A, B-B-A 

(assuming crop A will be planted for the current season).  The yield response level for A is 

believed to be different for all these four scenarios. However, we are not able to value these four 

yield response levels due to the lack of agronomic evidence. We will assign different appropriate 

values to these yield response levels for the model simulation.  

Since the state variable is now more complicated, the number of elements in the state 

space also greatly increased. Take the A-B rotation as an example.  There were nine elements in 

the state space for the old model only, while there will be 27 elements in the state space for the 

new model. Specifically, there are nine different states by crops, and each crop has three yield 

response level scenarios, combining into a total of 27 states. For example, the crop state A-B|A-

B could come from three possible previous states: A-B|A-B, A-A|A-B, and B-B|A-B. Therefore, 

given the fact that A and B are planted during this season, there are three possible yield response 
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level scenarios depending on previous states. The state transition figure for the A-B rotation with 

two-season effects is illustrated in figure 3.3. 

 

 

Figure 3.3. A-B rotation with two-season effects 
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Furthermore, the same approach can be applied to other crops rotation types such as A-A-

B and A-B-C to extend the model. The number of elements in the state space also greatly 

increases. It could be summarized that for each rotation type, the number of elements in the state 

space for the last season is the square of their possible crop combinations, for the last two 

seasons it is the cubic of their possible crop combinations. A-B has three crop combinations: A-B, 

A-A and B-B. A-A-B has four combinations: A-A-B, B-B-A, A-A-A and B-B-B. A-B-C has ten 

combinations: A-B-C, A-A-B, B-B-A, A-A-C, C-C-A, B-B-C, C-C-B, A-A-A, B-B-B and C-C-

C. Compared to 27 elements for the A-B rotation, the A-A-B rotation has 64 elements and the A-

B-C rotation has 1,000 elements in their state spaces (see Table 3.1). For simplicity, their 

transition functions, reward functions, and modified Bellman equations will not be demonstrated.  

  

Table 3.1. The Number of Elements in the State Spaces for Different Rotations 

  

Rotation Type 

Last Season Last two seasons 

A-B A-A-B A-B-C A-B A-A-B A-B-C 

No. of elements in the state 

space 
9 16 100 27 64 1000 

 

We extend the crop rotation model with one-season effects to two-season effects (if 

desired, we also could extend the model to three-season effects or even longer). However, we 

argue that the crops planted at three seasons earlier have insignificant effects on current crop 

yields. Thus, we only derive the model considering two-season effects in this study.  

 

3.5 Assumptions 

As an initial assessment to apply the Bellman equation on acreage response considering crop 

rotation, several major assumptions have been made in the economic models derived in this 

study. 
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This model does not presume any soil types or natural factors that could affect yield 

response levels. It is designed to be able to apply to various external conditions. Expected yield 

and expected input and output prices are all exogenous, while yield response levels are 

endogenous. We assume producers to be price takers. Therefore, their response in acreage will 

not cause dynamic price responses.  

It is assumed that each phase of a rotation system is grown every year. For example, the 

A-B rotation means producers grows both crop A and crop B in the same season. If the rotation 

continues the following season, a producer will flip the farm land tracts planted for crop A and 

crop B. Also, A-A-B means the producer plants crop A on two tracts and crop B on one tract. A-

B-C means the producer simultaneously plants crop A, B and C on three different tracts in the 

same season.  This assumption simulates the real situation on most farms. Also, this assumption 

helps separate the effects of the rotation system on yields from that of variable weather factors. 

Two types of dynamic crop rotation models were developed with each assuming the 

number of previous seasons that could affect this season‟s yield response level. For the first 

model, we assume that only last season‟s crop could impact this season‟s yield response. As 

mentioned earlier, that could be false for some crops. Therefore, we develop the second model 

where we assume that last two seasons‟ crop could impact this season‟s yield response. 

We assume that the producer uses constant external inputs such as fertilizer and 

pesticides for different seasons. In reality, farmers could do crop rotations while adjusting 

external inputs simultaneously in order to maximize returns. Continuous cropping yields could 

be made similar to yields of rotational crops if producers upgrade inputs such as fertilizer. Crop 

rotations could thus either improve yields with fixed input, or save inputs with fixed yields. 

However, the interconnections between fertilizer inputs and yields with crop rotation are 
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relatively complex. As a first attempt to incorporate crop rotation process into the Bellman 

equation, external inputs were fixed for simplicity. That is, the producer will not change inputs 

after switching from rotating crops to continuous cropping. 

It is assumed that certain tracts of farm land are only used to plant certain crop rotations 

or continuous crops for that particular rotation. Other crops will not be planted on these tracts. 

We also assume there is no land use change and producers will not introduce new crop varieties 

into the system. It is not necessary to use percentage share to represents a producer's acreage 

response, since his or her response occurs plot by plot. 

 

3.6 Simulation 

MATLAB was used to simulate the dynamic crop rotation model developed in this study. 

MATLAB utilizes the CompEcon toolbox to solve for discrete time/discrete variable dynamic 

programming problem (Fackler 2010).  Given the terminal value of                , the 

decision is solved recursively by repeated application of the Bellman equation. MATLAB 

compares the value of                  for each time t, and provides the optimal decision for 

each period. 

The value for each                 includes current and discounted future rewards. The 

current reward for each period is a producers‟ immediate profit: 

(3.7)                         
 
    

The above profit function is the profit summation for crops planted under planting 

decision d. Take a corn-soybeans rotation as an example. We assume previous crops planted on 

two farm land tracts were corn and soybeans. There will be three possible decisions d for the 

current season: keeping a rotation system, planting all corn or planting all soybeans. If keeping a 
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rotation system is decided, the current expected profit will be corn profit and soybeans profit, 

both with rotation yields. If growing all corn is decided, the current expected profit will be corn 

profit with rotation yields and corn profit with continuous yields. If planting all soybeans is 

decided, the current expected profit will be soybean profit with rotation yields and soybeans 

profit with continuous yields. MATLAB will then compare three profit bundles and pick the one 

with the highest value as the optimal decision for period t. However, this will be true only for the 

last period T where there is no future reward. For any other period t, MATLAB compares three 

profit bundles with each adding their future rewards given by the Bellman equation value at 

period t. 

The models developed above were simulated on corn-soybeans for the A-B structure. 

Specifically, both the one-season effects and two-season effects models were simulated. Yield 

response levels are summarized from previous empirical studies. The corn-soybeans rotation 

yield response level is retrieved from a compilation of all known published data comparing corn 

after corn to a corn-soybeans rotation in the U.S. by Erickson (2008). We simply take the 

average of all data compiled by Erickson (2008) which is 7.8%, meaning that the continuous 

corn yield is on average 7.8% lower than the corn rotation yield. The continuous soybeans yield 

response is 14.5 % lower than the soybeans rotation yield. Since most producers use crop 

rotation systems, we assume that expected yields are the equal to the rotation yields. Continuous 

yields are discounted based on this assumption.  

The expected input and output prices and expected yields are all retrieved from USDA 

ten-year agricultural projections. We simulated the individual producers‟ planting decisions 

under USDA projections of prices and yields. The producers are assumed to be profit-

maximizers and price-takers. It is assumed that the producer owns two equally sized farm land 
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tracts. At the beginning of each period, the producer decides which crop to plant on each 

cropland based on price expectations, the crop planted last season and related yield expectations.  

Based on current USDA projections for the next five years, the producers will plant corn 

for all tracts. As long as the USDA corn price projections are higher than 98% of the current 

level, producers produce all corn. The upper and lower bound of corn price percentage changes 

for all crop rotations are -12% and -16%. If corn prices decreased by over 30%, then producers 

will not rotate crops and instead grow all soybeans. 

Now we run another A-B model simulation with two previous crops considered. 

Compared to the A-B model only considering the last crop, the yield response level is more 

complicated. We need to decide the yield response of crop A after A-B for last two periods, or 

after B-A, A-A, B-B. There are four yield response levels for crop A given different crops 

combinations for the last two periods which is the same for crop B. To the best of our knowledge, 

agronomic results for these complicated yield response levels are not available. We therefore 

make several assumptions. We assume crop A after B-B has the full yield, crop A after A-B has 

a 5% reduction in yield, crop A after B-A has a 10% reduction in yield, crop A after A-A has a 

15% reduction in yield. The same assumption was made for crop B. We use USDA yield 

projections for the next five years again. As long as USDA corn price projections are higher than 

108% of current level, producers produce all corn. If corn prices decreased by over 30%, then 

producers will not rotate crops and instead grow all soybeans. No level of corn price change can 

be found for pure crop rotation practices. It should be noted that the above two case studies were 

only used to test the performance of the derived rotation model, and it has nothing to do with the 

analysis in the rest of this dissertation. 
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3.7 Conclusions  

In this chapter, a dynamic crop rotation model was developed to connect expected profit to 

acreage response. Specifically, a modified Bellman equation was used for dynamic optimization, 

and the crop rotation model is actually a part of its transition function.   

The crop rotation model was developed for both the one-season effects and two-season 

effects. The simulation results indicate that by considering the one-season effects, continuous 

corn cropping is the optimized choice. For the two-season effects, corn-soybeans rotation is the 

optimized choice. These results indicate that two-season effects are more stable and producers 

should prefer to choose a mixed cropping scheme. 

The complexity of interactions is inherent in a crop rotation system. This crop rotation 

ignored the interactions between crop yield and fertilizer usage by using empirical yield 

responses. Future research could improve this model by including fertilizer usage. Furthermore, 

while it is commonly agreed that rotational effects varied by region, the effect of differences in 

soil types and other natural factors were not considered. Again, an improvement of this crop 

rotation model should allow the input of soil types and other natural factors.  
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CHAPTER 4 

DYNAMIC MODEL 

ECONOMIC CONSEQUENCES OF CLIMATE CHANGE EFFECTS ON 

AGRICULTURE: A DYNAMIC SIMULATION
6
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
6
 Cai, R., J. Bergstrom, J. Mullen, and M. Wetzstein. To be submitted to American Journal of Agricultural 

Economics. 
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4.1 Abstract 

A dynamic optimization model was developed to simulate how farm-level realized price and 

profitability respond to yield change induced by climate change. A modified Bellman equation 

was used to dynamically optimize the net present value of farm profit for a five-year interval. 

This process was then repeated through the year 2050. Results indicate that reduction in crop 

yields due to climate change results in reduced farm profitability. At the state level, predicted 

climate change is likely to pose a problem for agricultural production and profitability in the 

southern U.S. states as compared to the northern U.S.. Our results also suggest that acreage 

response alone is not sufficient to ameliorate the potential negative effects of global climate 

change on agricultural production and profitability.  

Key words: Acreage response, Crop rotation Dynamic simulation model, Expected price, 

Realized price. 
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4.2 Introduction 

Studies addressing the effects of climate change on acreage response are scarce in the literature.  

Kurukulasuriya and Mendelsohn (2006) directly studied the relationship between crop choice 

and climatic variables.  A multinomial logit framework was used in their research to analyze 

crop selection. However, this model was not built in a dynamic optimization framework; limiting 

its ability to address the essential role of crop rotation in crop selection. Weersink, Cabas and 

Olale (2010) studied the effect of weather on the distribution of yield and its subsequent impact 

on the acreage allocation decisions of crop producers in Ontario. While a contribution was made 

by the decomposition of price and yields into mean and variance revenue impacts on crop area 

allocation, yield and price were assumed to be independent.  

The objective is to extend this previous agricultural climate change research by 

developing a dynamic crop acreage response model considering both crop rotation and the 

interdependence between yields and prices. The fundamental idea of dynamic optimization  is 

that the multiple period maximization problem is reduced to a sequence of two-period problems, 

in which the producer balances an immediate reward with expected future returns.  

 

4.3 Literature Review 

Previous studies have developed alternative acreage response models. In a basic empirical 

acreage response model, planted acreage is viewed as a function of expected prices (Nerlove 

1958). Several other exogenous variables were commonly incorporated into previous acreage 

response models as well including producer‟s initial wealth, proxies for risk, lagged acreage, and 

commodity policies (Chavas and Holt 1990; Park and Garcia 1994; Lin and Dismukes 2007).  



67 
 

 

The acreage response models developed in previous studies generally rely on estimation 

of empirical models from historical data.  However, when evaluating the effects of climate 

change on agriculture, empirical analysis based on historical data may not be an appropriate 

approach since historical data do not indicate future climate change effects. Thus, a numerical 

simulation approach is used in this study. Compared to empirical acreage response models, 

relatively limited work exists using a simulation approach. Our model focuses on how acreage 

allocation responds to profit expectations given climate change affects on yields and prices.  

In previous studies, various approaches were employed to construct expected prices.  

Researchers used the simple cobweb theorem where lagged prices were used as proxies for 

expected price (Ezekiel 1938; Nerlove 1958). Nerlove (1958) used a weighted sum of past prices 

to develop expected prices. A limitation with using lagged prices is missing current market 

information. Gardner (1976) used futures prices to develop expected prices. Futures prices are 

determined by the interaction of the expected supply and demand for a commodity. Futures 

prices acres the market‟s expectation of actual price. Many researchers believe that futures prices 

are an appropriate proxy for price expectation, since an efficient futures market should provide 

an unbiased estimate of the actual prices at contract maturity (Just and Rausser 1981; Thomson, 

McNeill, and Eales 1990; Kastens, Jones, and Schroeder 1998).  

However, futures prices are a national-based price, and local information is missing. As a 

result, researchers have used basis to adjust futures prices to incorporate local conditions (Peck 

1976; Garbade and Sibler 1983; Moschini and Myers 2002).  Basis is the difference between 

local cash price and futures price for the month closest to the delivery date.  Basis tends to be 

more stable or predictable than either current price or futures price.  Lin et al. (2000) derived 

expected prices from the December corn futures price and the November soybean futures price at 
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the Chicago Board of Trade in mid-March, the time when planting decisions are made for corn. 

Expected prices were then adjusted by a state-specific, 5-year average basis. Tronstad and Bool 

(2010) calculated expected prices using the December futures price in February with the 

November state basis to incorporate state level supply and demand conditions. They also 

incorporated the expected loan deficiency payment into the basis value to capture the effect of 

government price support programs on expected prices for the producer. However, the 

relationship between the national and a local area prices along with the basis could change with 

future climate change. Thus, using a constant basis in climate change studies is questionable, so a 

basis correction is not employed in the analysis. 

Another limitation of using futures prices as an agricultural price expectation is the 

timing issue. Futures prices are a good surrogate for expected harvest prices during planting 

seasons. However, futures prices could change dramatically in three or four months. Producers 

usually build their price expectations during the beginning of the planting season when futures 

prices are relatively uncertain and imprecise. Significant differences between planting month 

futures prices and harvest month realized price could be observed.  

Alternatively, price expectations can be developed using a rational expectations model. 

This model represents mathematical expectations conditional on all relevant information. Chavas, 

Pope and Kao (1983) recognized the possibility that information from both cash and futures 

markets might prove useful in understanding the formulation of producer price expectations. 

Therefore, in their research, expected cash prices, government program payments, and futures 

prices were used as the components of price expectations used by producers. Their research also 

aims at estimating the relative importance of these factors. Chavas and Holt (1990) estimated the 

weights of these prices in forming expected prices.  
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Producers have diverse price expectations and researchers have not discovered a single 

dominant specification for price expectations (Pope 1981; Orazem et al. 1986). It is unrealistic to 

develop a comprehensive price expectation model due to the complexity of market price system. 

Based on previous literature a rational expectations model was used by assuming producers 

adjust their price expectations according to changes in relevant information. Base expected 

prices were determined as the weighted average between lagged prices and futures prices. In a 

dynamic model, this base price will be adjusted by considering yield change induced by climate 

change.  

Researchers have also considered government policies as constraints for price 

expectations. Government programs set a minimum guaranteed price for producers and have 

major impacts on producers‟ acreage response when market prices are low. Therefore, 

government programs should not be excluded from any acreage response studies. Among various 

government commodity programs, commodity loans are considered which are expected to have 

direct impacts on producers expected prices. Producers may receive a government commodity 

loan at a loan rate by pledging their crops as collateral. They can obtain a loan gain by repaying 

the loan at a lower repayment rate during the loan period whenever market prices are below the 

loan rate. Alternatively, producers can choose to receive a direct loan deficiency payment, which 

is the difference between the loan rate and the repayment rate. The program makes direct 

payments, equivalent to marketing loan gains, to producers who agree not to obtain nonrecourse 

loans, even though they are eligible. The deficiency payments encourage producers to sell their 

crops on the market (Westcott and Price 2001). Overall, the commodity loan program provides 

benefits to producers through deficiency payments or loan gains, when the loan repayment rate is 

less than the loan rate. Therefore, effective expected prices are simply the loan rate if expected 
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prices are lower than the loan rate.  The assumption is the loan rates are the effective support 

prices for corn, soybeans, cotton and peanuts.  Behavioral researches indicate that producers‟ 

responses to planting decisions are greatly influenced by risk perceptions (Xu et al. 2005). 

Previous acreage response studies include risk effects (Just 1975; Thompson and Abbott 1982; 

Holt and Chavas 2002).  Actual risk effects should be considered as the joint effects of both risk 

and risk perceptions. In previous research variance of profit is employed as a proxy for risk 

(Ref.).  A profit distribution may be valued differently due to producer‟s risk perception. 

Therefore, risk aversion coefficients were introduced to represents producer‟s risk perceptions 

(Arrow 1965).   For the analysis it is assumed that individual producers' risk aversion coefficient 

is exogenous in the dynamic model. Furthermore, producers identify diversification as an 

effective strategy to reduce production risks (Knutson et al., 1998).  

 

Figure 4.1. The relationship between the loan rate, LDP and effective support price 

 

The perception of risk does not directly relate to actions. Smit, Mcnabb and Smithers 

(1996) found that, while most producers reported being significantly affected by abnormal 

weather conditions over a 6-year period, only 20% of producers responded to climate change. 
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Brklacich et al. (1997) found that, while 90% of producers have noticed climate change for the 

past two decades, only 18% of producers have adopted practices to adapt to climate change. 

Therefore, in this study, producers' ability and response speed will be represented by a partial 

adjustment coefficient.  

Since using realized prices in this study which is affected by acreage response, a 

relationship between realized price and acreage response is required. Most past studies have 

focused on how supply or production responds to price changes, while little has been contributed 

to the opposite relationship; i.e., how prices respond to changes in supply or production. In 

climate change studies, it is important to consider how changes in production (supply) impact 

prices, since climate change mostly affects supply rather than demand.  Edwards (1985) 

investigated how Georgia crop prices are affected by Georgia crop yields through the covariance 

between Georgia crop yields and Georgia output prices.  He determined that prices of corn, 

cotton, soybeans and peanuts respond to changes in crop yield.  Georgia crop prices are affected 

by overall crop production instead of just crop yields.  Furthermore, Georgia prices of crops are 

determined globally, not locally, so the key is the effect of climate on global production. Thus, 

consideration is given to the major U.S. production states.  

The approach used in this research is similar to the simulation process of POLYSYS
7
  

(Ray et al. 1998). Regional acreage was obtained from expected price, and then regional 

production was aggregated to national production to obtain the market clearing prices. However, 

our study differs in that we relate expected price to acreage via a crop rotation model instead of 

acreage-price elasticities and estimate the market-clearing prices from price flexibilities.  

 

                                                           
7
 POLYSYS simulates the impacts of policy, economic or environmental change on the agricultural sector 

POLYSYS uses farm prices lagged by 1 year as expected prices for the current year, and determines planted acreage 

for the current year by the change in expected prices and acreage price elasticities. 
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4.4 Methodology  

Equation (4.1) presents a basic farm-level profit function which includes input and output prices, 

crop yields and crop acreage.  

(4.1)    PAY CA 

where P denotes output price, A denotes acreage, Y denotes yield, and C denotes input price.  

We assume that producers use relative expected profitability between crops as decision 

criteria for acreage response. Suppose a representative producer has N alternative crops, indexed 

by N= 1, 2, …,N. Producers maximize net present value of total expected profits by selecting 

crops and deciding crop acreage for a certain period. Equation (4.2) represents an objective 

function considering only one year, and we will extend it to a multi-year form later. 

(4.2)  Max  ai
N
i 1    

i
   V  i      

ai

A
 2N

i 1   

where ai denotes acres of crop i,  i denotes profit per acre of crop i,   denotes the risk aversion 

coefficient, V  i  denotes the variance of total profit of crop i, and   is a coefficient to penalize 

the situation with fewer crops planted. This equation was incorporated into the Bellman equation 

to optimize the present value of total farm profit balancing current and future rewards. We 

assume producers maximize discounted expected profit for T years. Equation (4.3) represents the 

overall objective function for maximizing present value of profit for period T:  

(4.3)            
   

   
   

   

      
  

     

(4.4)        
 
                    

  

 
   

    

The detail formula for parameters in equation (4.4) is as follows: 

(4.5)                           

(4.6)                     
           

      )+             
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(4.7)                                 
 
                        

 
+                       

 . 

Figure 4.2 illustrates the basic structure of the dynamic model. At the beginning of the 

growing season, a representative producer is assumed to have crop yield expectations. Based on 

the expected relationships between crop yields (e.g., supply) and exogenous demand factors, the 

representative producer then develops price expectations based on yield expectations and lagged 

prices. Next, the producer determines acreage response from profit expectations based on yield 

and price expectations of multiple crops. At the end of growing season, realized prices are 

determined by crop yields and acreage responses. A producer‟s profit calculation then uses this 

realized price instead of the price expectation. 

 

Figure 4.2. A basic dynamic simulation process 

 

Suppose producers develop current expected price at time t based on a lagged price. With 

predicted yield for the current season, we used the above Bellman equation to simulate acreage 

response using a crop rotation model. Aggregate crop production was then estimated, and then 

realized price was estimated based on the elasticity of price with respect to production. This 

realized price was then be used as the lagged price for the next year. 
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The unique, dynamic process illustrated in figure 4.2 was applied to corn, soybeans, cotton, 

and peanuts at the county-level in eight northern and southern U.S. states which are major 

producers of these crops. Five years was selected as a planning period for profit optimization, 

which we denote as “round” for the rest of this chapter. Years 2005-2009 were selected as the 

baseline years. We assumed that a representative producer has yield expectations for the five 

year period 2005-2009. The average value of lagged price and future prices was used to calculate 

the base price expectations. Next, price expectations were adjusted by the percentage change in 

crop yields and the elasticity of price changes to production changes. 

By using a Bellman equation in the crop rotation model, optimized acreage responses 

among multiple crops were determined based on their relative profitability. Then, in each state, 

county-level expected production levels for the current season were estimated based on expected 

yields and acreage responses for each county. State-level expected production levels then 

determined realized prices which were different from expected prices derived earlier.  

Using realized price instead of expected price has the advantage of accounting for the 

effects of adaptation. We used realized prices, expected yields and acreage responses to calculate 

farm profits for 2011-2015. We assumed that expected yields were the same as realized yields. 

We also considered input prices to be exogenous. Producers usually decide the planting plan for 

the next few growing seasons. For each new season, producers adjust the previous planting plan 

based on updated expectations. Motivated by this fact, we only recorded 2011 profit derived 

from estimated 2011-2015 profits. Similarly, 2012 profit was derived by repeating the above 

process for the 2012-2016 data. Realized prices for 2011-2015 were used as lagged prices for 

2012-2016. The same dynamic process was repeated through 2050. This process is illustrated in 

figure 4.3. 
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Figure 4.3. The dynamic simulation process illustrated with specific years 
 

The crop rotation model developed in Chapter 3 was incorporated into this dynamic 

simulation model to simulate acreage response. MATLAB was used to build the above dynamic 

model and run simulations. Although the basic structure of dynamic process could be described 

in short, the detail of the model will not be fully revealed without discussing algorithms used in 

MATLAB. When putting a theoretical model into MATLAB for simulation, we came across 

multiple issues in the details. One contribution of this study is accomplishing the dynamic 

acreage response simulation using MATLAB. Therefore, the rest of the methodology section will 

focus on our algorithms used in MATLAB.  

The algorithms used for MATLAB in the dynamic simulation process were based on the 

crop rotation model developed in Chapter 3. The crop rotation model was programmed in 
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MATLAB using the CompEcon toolbox which can solve for discrete time/discrete variable 

dynamic programming problems (Fackler 2010). For the Bellman equation, the state variable is 

the current and previous year‟s crop yield while the control variable is producer's action. Each 

year, the producer faces the possible previous year‟s yields combinations and current price 

expectations. 

By having both expected prices and yields, producers respond by allocating acreage with 

the purpose of maximizing the present value of expected profit for the following five years. The 

previous year‟s yield and current year‟s expected profit jointly influence a producers' current 

acreage response decision. The MATLAB algorithms designed in Chapter 3 transferred the input 

of expected profits to the output acreage response. Therefore, in this chapter, algorithms should 

be designed to use the expected price as an input and then estimate the realized price from the 

acreage response output.  

Producers take into account the previous year‟s realized price and this year‟s futures price 

to develop their base price expectations, and finalize these expectations according to the 

predicted change in annual yield. Programming expected price into MATLAB is straightforward; 

therefore, its algorithms will not be described here. Instead, we focus on algorithms of estimating 

realized price from the acreage response output. The acreage response output from a basic crop 

rotation model has certain limitations. First, it assumes that producers take advantage of the full 

range of adaptation; in other words, partial adjustment is not allowed. Second, the model only 

allows for the acreage allocation across the crops within the original rotation; therefore, new 

crops are not allowed to be introduced. Algorithms were designed to relax the above two major 

limitations.  
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Partial adjustment is realized by the following algorithm. For example, to allow partial 

adjustment of 0.1, we assume that producers only switch 10% of acres according to what the 

crop rotation model suggests. For example, if the crop rotation model shows that it is better to 

assign crop A to both plots for the next season for dynamic optimization, our new algorithms 

will only allow 10% of the original acres to be reallocated as shown in figure 4.4. It is apparent 

that the new algorithm breaks the previous season‟s acres into two parts: one part keeps the 

original planting pattern, the other part goes to a new planting pattern as suggested by the model. 

One dilemma could be caused by the above algorithm; for example, suppose we have a plot at 

season 1, this plot will be divided into two parts during season 2, and will further be divided into 

four parts; thus, there will be 16 parts at season 5. Obviously, this could make the model 

extremely complicated when we need to increase the optimization period to 10 or more seasons. 

The above issue could be solved by adjusting the algorithm.  

 

Figure 4.4. A 10% partial adjustment in A-B rotation 
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As indicated in Chapter 3, a crop rotation with two crops considering two-season effects 

has 27 scenarios (i.e., the state space has 27 elements). No matter how many parts the original 

plot is divided into, each part will still be one of 27 scenarios. Therefore, instead of continuing to 

divide the original plot and increase the number of plots from year to year, we will assign a fixed 

number of 27 possible plots for each season, and acres will be allocated between these 27 plots. 

By using this adjusted algorithm, the crop rotation model designed in Chapter 3 is now improved 

to be able to solve partial adjustment. This adjustment in theoretical design is motivated by the 

reality that producers are usually not able to conduct perfect adaptation according to constraints 

such as capital, machinery, or labor.   

The crop rotation model developed in Chapter 3 was based on one rotation. Acres could 

only be allocated between the crops within a rotation. In reality, for a corn-soybeans rotation, 

producers could introduce cotton in the next year to switch the rotation from corn-soybeans to 

corn-cotton. Therefore, this design deviates from reality. To enable the crop rotation model to be 

able to switch between rotations, another adjustment in the algorithm was made. Suppose county 

i has two possible crop rotations A-B and C-D. Crop rotation A-B has 27 possible states from 

state ab1 to state ab27, while rotation C-D has 27 possible states from state cd1 to state cd27. 

From season t to season t+1, the crop rotation model results indicate that the state variable should 

jump from ab1 to ab10 for profit optimization. To allow acres to switch across rotations, profit 

for state ab10 will be compared to profit for state cd1 from rotation C-D. If state cd1 is more 

profitable than state ab10, acres will be allocated to state cd1 instead of ab10. This results in 

acres switching from rotation A-B to rotation C-D. We assume that a new rotation always has 

full yield without yield penalties. 
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County level acreage responses were obtained after simulation using crop rotation with 

the two improvements made above. Then aggregate acres for each crop are calculated. By 

combining realized acreage response with expected yield, realized total production can be 

generated. With an elasticity obtained from the historical relationship between crop production 

and crop price, realized price could be estimated. Expected yield is assumed to be the same as 

realized yield in this chapter. Using the above algorithms, we are able to simulate realized crop 

price from the acreage response results. Realized crop price was used to generate price 

expectations for the next season. Overall, the value for expected price, realized price and acreage 

response are interactively affecting each other. 
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Figure 4.5. The overall algorithms for the dynamic simulation process 
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In this dissertation, producers‟ price expectations are defined as producers‟ expectations 

of realized price. We argue that producers‟ expectation is not equivalent to the term “expected 

value” in statistics. Expected value is based on a predetermined random variable. Producers‟ 

expected price is a random variable; however, it is not predetermined. It should be noted that we 

are not attempting to develop the price expectation model that has the best forecasting of realized 

price; instead, we are trying to develop producers‟ price expectations. 

Expected price was developed as a rational expectation. Specifically, futures price and 

lagged cash price constitute the baseline price. Expected price could be formed as the weighted 

average between lagged price and futures price. This baseline price is then adjusted by yield 

change to reflect producers‟ price expectations: 

(4.8)  Pit    P
i t 1 

  1   Fit  1 
Yit Yi t 1 

Yi t 1 

 P

 Y

Y

P
 . 

Since no peanut futures price is available, baseline expected peanut price will only be 

constructed by lagged price and the constraint from the loan rate. We use the loan rate as a 

support price. If expected price is larger than the loan rate, expected price has the formula shown 

by equation (4.8). If expected price is smaller than the loan rate, expected price will equal the 

loan rate. 

Changes in crop prices result from multiple factors. One substantial factor is ending stock. 

Since demand is assumed to be constant, supply changes are equivalent to production change. 

Therefore, in this research, we use production as an indicator for crop output price. A standard 

multiple linear regression model is used where state level de-trended crop price is the dependent 

variable and total crop production from major producing states are the independent variables. To 

account for the effect of the farm bill in 1996 and 2002, we create dummy variables for all 

regression models. A log-log form of the regression model is used and elasticity is derived for 
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each crop in each state. The estimated coefficients of the above model are denoted as price 

flexibilities. Price flexibilities measure the percentage change in realized price caused by a 

percentage change in production. Price flexibilities are used to predict realized price based on 

production change. 

Another important part of the profit function is cost. Here, we only study variable cost 

and assume fixed costs do not exist. Costs are assumed to be exogenous.  

 

4.5 Data  

Price, cost, and planted acreage for corn, soybeans, cotton and peanuts were retrieved from the 

USDA-National Agricultural Statistical Service (NASS)
8
 for the past 50 years for Minnesota, 

Nebraska, Illinois, Indiana, Iowa, Texas and Georgia at the county level. Crop price is the annual 

average price received by producers. Crop prices were deflated using the CPI for all goods and 

are in 2009 dollars. We assumed that harvested acreage is equal to planted acreage.  

Historical futures prices were obtained from the DATASTREAM software. They are 

observations of the New York Mercantile Exchange (NYMEX). Futures prices for corn, cotton 

and soybeans were available from February 1979. Each year, the planting month‟s average price 

for the harvest month‟s contract was used. Futures contracts may not coincide with the timing of 

planting or harvest. Futures contracts for corn are available for September and December, futures 

contracts for soybeans are available for September and November, and futures contracts for 

cotton are available for October and December. The following table shows usual planting and 

harvesting dates for corn, soybeans, cotton and peanuts in Georgia. Based on the dates in the 

table and availability of futures contracts, the following futures contracts were used: average 

                                                           
8
 Price, cost, and planted data were retrieved from: 

http://quickstats.nass.usda.gov/   (last accessed on May, 2011) 

http://quickstats.nass.usda.gov/
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price between the September contract for corn, November contract for soybeans, and December 

contract for cotton. Specifically, for the September corn futures contract, we used its futures 

price in March. For the December cotton futures contract, we used its futures price in April. For 

the November soybeans futures contract, we used its futures price in May. 

 

Table 4.1. Usual Planting and Harvesting Dates – Georgia
9
 

 Usual planting dates Usual harvesting dates 

Begin Most active End Begin Most active End 

Corn Mar 14 Mar 22 - Apr 21 May 4 Aug 6 Aug 16 - Sep 22 Oct 7 

Soybeans May 5 May 17 – Jun 26 Jul 5 Oct 11 Oct 25 - Dec 8 Dec 17 

Cotton Apr 23 May 2 - May 31 Jun 11 Sep 23 Oct 10 - Dec 2 Dec 18 

Peanuts Apr 27 May 6 – May31 Jun 7 Sep 15 Sep 25 - Oct 31 Nov 11 

 

It should be noted that there is no futures contract for peanuts; therefore, we only use 

lagged cash price as the baseline expected price for peanuts. Also, because there is no forecasted 

futures price projection data available, future futures price were estimated by ARIMA. 

Crop loan rates may change from one U.S. Farm Bill to another U.S. Farm Bill. Loan rates used 

in this research are based on the 2008 U.S. Farm Bill. In contrast to previous legislation, 

commodity loan rates for each year are specified in the 2008 Farm Act. The 2008 Farm Act 

governs U.S. agricultural programs through 2012. Table 4.2 lists national loan rates for corn, 

cotton, soybeans and peanuts. We noticed that loan rates from 2008 to 2012 stayed constant for 

all above crops. We assume that loan rates after 2012 are the same as 2012 loan rates. 

                                                           
9
 Data source: Usual planting and harvesting dates for U.S. field crops 
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Table 4.2. Historical and Current National Loan Rates 

  National Loan Rates 

Previous Farm Bill  2008 Farm Bill 

CY 2002-03 CYs 2004-07 CY 2008 CY 2009 CYs 2010-12 

Corn $1.98/bu $1.95/bu $1.95/bu $1.95/bu $1.95/bu 

Soybeans $5.00/bu $5.00/bu $5.00/bu $5.00/bu $5.00/bu 

Upland cotton $0.52/lb $0.52/lb $0.52/lb $0.52/lb $0.52/lb 

Peanuts $355/ton $355/ton $355/ton $355/ton $355/ton 

 

 Acreage share data for crop rotations are not available. Suppose planted acreage for corn 

in a specific county is 10,000 acres; we will not be able to find out how many acres are in which 

rotation unless we conducted a survey. Therefore, we make certain assumptions about rotation 

acres for the baseline year.  

 The yield difference between rotational cropping and continuous cropping is also not 

available for most rotations. A corn-soybeans rotation is extremely prevalent in the Corn Belt 

states; therefore, we retrieve yield differences for corn-soybeans from previous empirical studies 

(Erickson 2008). For other less prevalent rotations, say A-B, we use the yield response level 

assumed as follows. There are four yield response levels for crop A given different crops 

combinations for the last two periods which is the same for crop B. To the best of our knowledge, 

agronomic results for these complicated yield response levels are not available. We therefore 

make several assumptions. We assume crop A after B-B has the full yield, crop A after A-B has 

a 5% reduction in yield, crop A after B-A has a 10% reduction in yield, crop A after A-A has a 

15% reduction in yield. The same assumption was made for crop B.  
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We applied the dynamic model described above to assess agricultural production and 

profitability under three climate change scenarios developed by the USDA Forest Service 

(Coulson et al. 2010).  These climate change scenarios were based on general circulation models 

driven by greenhouse gas emission scenarios documented in the Special Report on Emissions 

Scenarios (SRES) of the Intergovernmental Panel on Climate Change (Nakicenovic et al. 2000; 

IPCC 2007; Coulson et al. 2010).
 
 For our analysis, we used climate projections based on the 

CGCM 3.1, CSIRO 3.5, and MIROC 3.2 general circulation models and the A1B socio-

economic scenario. 

All three general circulation models project a warming future global climate. The 

MIROC 3.2 model predicts the relatively warmest future climate and the CSIRO 3.5 model 

predicts the relatively coolest future climate (but still warmer than the present). The CGCM 3.1 

model predicts moderate warming in-between the MIROC 3.2 and CSIRO 3.5 models.  The A1B 

scenario assumes a growing world population that peaks in the mid-century and a global 

economy supported by introduction of new and more efficient technologies. This scenario 

emphasizes balanced technological growth, which does not rely too heavily on one particular 

energy source (Nakicenovic et al. 2000; IPCC 2007; Coulson et al. 2010). 

 

4.6 Results and Discussion 

Price flexibilities are obtained by relating historical crop price to crop production. Flexibilities 

are reported in Table 4.3. As expected, crop prices have a negative response to crop production 

(e.g., assuming competitive markets, an increase in supply depresses market price). These 

generated flexibilities are then used in the dynamic simulation process to estimate realized crop 

prices.  
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Table 4.3. Price flexibilities (by crops, by states)
10

 

 
Corn Soybeans Cotton Peanuts 

MN -0.58737 -0.92857 
  

IA -0.57285 -0.91381 
  

NE -0.59466 -0.92617 
  

IL -0.61159 -0.90937 
  

IN -0.61167 -0.91762 
  

GA -0.67622 -0.88607 -0.65791 -1.09119 

TX -0.52308 -0.90069 -0.5887 -1.11486 

 

Dynamic simulation results are reported in this section. Partial adjustment factors are 

varied to check the sensitivity of the simulation results. The three climate models are compared 

at the different partial adjustment levels: 0.0, 0.1, 0.2, 0.5, and 1.0. As noted earlier, a high level 

for the partial adjustment factor denotes a quicker and higher acreage response, while a low level 

for the partial adjustment factor denotes a slower and lower acreage response. Specific 

production projections for crops are reported in tables 4.4-8.8.  

 

 

 

 

 

 

 

 

 

 

 

                                                           
10

 See Table C.1 for regression statistics 
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Table 4.4. Crop Production with Three Climate Models-Partial Adjustment=0 

                                                           
11

 The Units for corn, soybeans, peanuts and cotton are billion bushels, hundred million bushels, billion pounds, and 

million pounds 
12

 H, M, and C denote MIROC 3.2, CGCM 3.1 and CSIRO 3.5 

 Corn
11

 Soybeans Peanuts Cotton 

 H
12

 M C H M C H M C H M C 

2011 4.17 4.04 3.98 8.35 8.35 8.56 0.86 0.87 1.02 2.13 1.8 2.3 

2012 4.11 4.01 4.09 8.35 8.3 8.24 0.93 0.82 0.87 2.23 1.61 2.17 

2013 4.23 4.19 4.2 8.45 8.49 7.96 0.88 1.01 0.94 1.66 2.16 1.97 

2014 3.9 4.04 4.38 8.01 7.96 8.2 0.87 0.72 0.8 1.82 1.97 2.33 

2015 3.99 3.92 4.11 8.06 8.29 8.2 1.03 0.84 0.95 1.44 1.56 2.64 

2016 4.29 3.99 4.26 8.71 8.18 8.23 0.87 0.92 0.92 2.46 1.85 2.18 

2017 4.18 3.79 4.09 8.45 7.79 8.5 0.84 0.79 0.99 1.58 2.08 1.76 

2018 4.04 3.99 3.83 8.53 8.08 8.08 0.83 0.92 1.04 1.58 1.78 1.67 

2019 3.93 4.12 4.03 7.89 8.5 8.15 0.88 0.94 0.84 1.55 1.87 2.23 

2020 4.05 3.98 3.96 8.24 8.13 7.98 0.93 0.9 0.98 2.15 1.87 2.45 

2021 4.19 4.05 3.75 8.46 8.4 7.99 0.94 0.98 1.01 2.21 2.23 2.1 

2022 4.22 4.12 3.94 8.71 8.27 7.94 0.91 0.78 0.95 1.63 1.83 1.82 

2023 3.92 4.14 4.17 8.26 8.33 8.12 0.93 0.93 0.94 1.61 1.86 1.83 

2024 3.94 4.09 3.88 8.27 8.29 8.07 0.91 0.84 0.98 1.81 2.05 1.94 

2025 3.77 4.08 4.27 8.17 8.48 8.39 0.83 0.86 0.88 1.94 1.58 1.91 

2026 4.01 4.1 3.96 8.24 8.52 8.09 0.82 0.94 1 1.55 1.93 2.1 

2027 4.02 3.95 3.93 8.19 8.03 8.14 0.9 0.88 0.9 1.42 1.61 1.92 

2028 4.02 3.85 4.1 7.94 7.85 8.19 0.91 0.88 1 1.77 1.93 1.99 

2029 4.1 4.09 3.98 8.14 8.41 8.24 0.97 0.94 0.88 1.58 2.07 1.89 

2030 4.03 4.2 4.31 8.34 8.5 8.66 0.84 0.9 0.88 1.68 1.87 1.8 

2031 4.06 4.15 3.95 8.48 8.43 7.92 0.94 0.82 0.92 1.23 1.98 1.84 

2032 3.85 4.01 4.04 8.12 8.41 8.1 0.85 0.93 0.88 1.7 2.33 2.19 

2033 3.81 4.23 4.32 8.17 8.56 8.43 0.98 0.82 0.89 1.41 2.9 2.41 

2034 3.95 4.07 4.44 8.22 8.28 8.3 0.81 0.84 0.91 1.89 2.07 2.04 

2035 4.09 4.07 3.82 8.45 8.31 8.12 0.93 0.86 1.02 1.63 2.54 1.99 

2036 3.89 3.98 4.04 8.12 8.08 8.2 0.83 0.82 0.9 2.28 2.08 1.9 

2037 4.12 4.11 4.42 8.68 8.38 8.51 0.97 0.93 0.9 1.66 1.78 2.54 

2038 3.9 3.99 3.91 8.17 8.26 8.44 0.83 0.93 0.97 1.85 1.5 1.84 

2039 3.89 4.13 4.03 7.86 8.47 8.08 0.97 0.92 0.96 1.41 1.71 1.66 

2040 4.03 4.16 3.95 8.37 8.37 8.17 0.99 0.72 0.89 1.13 2.14 2.02 

2041 3.99 4.11 4.19 8.49 8.45 8.3 0.88 0.86 0.86 1.44 2.49 1.92 

2042 3.92 3.95 3.97 8.2 7.82 8.02 0.85 0.93 0.9 1.87 1.5 2.17 

2043 4.03 4.18 3.83 8.38 8.29 7.88 1.06 0.85 0.87 1.7 1.61 2.06 

2044 3.97 3.97 4.06 8.43 8.05 8.35 0.79 0.85 0.92 1.41 1.97 2.16 

2045 4.02 4.19 4.37 8.4 8.49 8.38 0.87 0.78 0.9 1.68 1.78 1.67 

2046 3.87 4.04 4.41 8.32 8.35 8.8 0.82 0.85 0.86 1.01 1.8 1.83 
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Table 4.5. Crop Production with Three Climate Models-Partial Adjustment=0.1 

 

 

 Corn Soybeans Peanuts Cotton 

 H M C H M C H M C H M C 

2011 3.08 2.96 3.02 1.15 1.16 1.15 2.19 2.08 2.52 1.63 1.34 1.64 

2012 3.03 2.91 3.02 1.16 1.16 1.13 2.56 2.32 2.47 1.62 1.1 1.44 

2013 3.13 3.02 3.06 1.17 1.19 1.11 2.78 3.16 2.97 1.08 1.36 1.2 

2014 2.78 2.83 3.19 1.14 1.15 1.15 2.4 2.08 2.19 1.24 1.33 1.49 

2015 2.75 2.77 3.01 1.17 1.18 1.14 3.05 2.57 2.66 0.97 0.96 1.64 

2016 2.99 2.8 3.13 1.25 1.18 1.14 2.97 2.94 2.88 1.47 1.06 1.23 

2017 2.95 2.63 3.05 1.21 1.13 1.17 2.88 3.01 3.42 0.91 1.08 0.95 

2018 2.88 2.75 2.77 1.21 1.19 1.13 3.01 3.41 3.86 0.81 0.87 0.84 

2019 2.72 2.87 2.84 1.14 1.22 1.17 3.58 3.74 3.32 0.72 0.87 1.08 

2020 2.81 2.77 2.82 1.2 1.17 1.14 3.73 3.71 3.86 0.95 0.79 1.09 

2021 2.91 2.84 2.63 1.22 1.21 1.14 3.89 4.15 4.13 0.97 0.85 0.89 

2022 3.01 2.89 2.72 1.24 1.19 1.15 3.99 3.75 4.23 0.66 0.67 0.72 

2023 2.79 2.97 2.93 1.18 1.19 1.16 4.35 4.22 4.2 0.58 0.66 0.64 

2024 2.79 2.92 2.76 1.18 1.19 1.16 4.24 4.11 4.59 0.62 0.62 0.62 

2025 2.63 2.93 3.01 1.18 1.21 1.19 4.2 4.16 4.06 0.66 0.46 0.59 

2026 2.78 2.95 2.88 1.2 1.21 1.15 4.24 4.52 4.69 0.53 0.58 0.55 

2027 2.81 2.8 2.83 1.19 1.14 1.15 4.34 4.54 4.46 0.52 0.45 0.53 

2028 2.8 2.72 2.92 1.16 1.13 1.17 4.68 4.44 4.7 0.56 0.52 0.52 

2029 2.89 2.89 2.84 1.18 1.21 1.18 4.46 4.75 4.36 0.5 0.5 0.47 

2030 2.87 2.97 3.06 1.19 1.22 1.23 4.65 4.53 4.59 0.58 0.46 0.49 

2031 2.92 2.99 2.85 1.21 1.19 1.13 4.44 4.38 4.51 0.49 0.46 0.46 

2032 2.75 2.89 2.86 1.16 1.2 1.16 4.61 4.82 4.51 0.57 0.5 0.47 

2033 2.67 3.02 3.03 1.19 1.23 1.21 5.17 4.23 4.49 0.52 0.54 0.5 

2034 2.74 2.91 3.2 1.21 1.19 1.18 4.38 4.56 4.72 0.65 0.4 0.42 

2035 2.79 2.91 2.82 1.24 1.2 1.13 4.67 4.53 5.08 0.58 0.42 0.41 

2036 2.7 2.83 2.9 1.19 1.17 1.17 4.69 4.45 4.7 0.54 0.38 0.35 

2037 2.87 2.92 3.14 1.26 1.21 1.21 4.98 5.06 4.76 0.44 0.32 0.47 

2038 2.72 2.85 2.85 1.19 1.18 1.18 4.56 4.49 5.02 0.49 0.3 0.35 

2039 2.71 2.94 2.87 1.17 1.21 1.16 4.99 4.73 5.2 0.44 0.36 0.33 

2040 2.85 2.97 2.8 1.21 1.2 1.18 5.15 4.36 4.65 0.41 0.4 0.29 

2041 2.81 2.96 2.96 1.22 1.21 1.19 4.76 4.59 4.52 0.48 0.43 0.34 

2042 2.77 2.82 2.83 1.19 1.13 1.15 4.67 4.82 4.63 0.54 0.29 0.36 

2043 2.84 3.01 2.74 1.21 1.18 1.14 5.22 4.68 4.62 0.45 0.33 0.33 

2044 2.8 2.9 2.83 1.22 1.15 1.21 4.68 4.9 4.92 0.56 0.32 0.33 

2045 2.8 3.01 3.08 1.22 1.21 1.21 4.52 4.49 4.83 0.42 0.33 0.25 

2046 2.72 2.93 3.21 1.21 1.2 1.24 4.7 4.76 4.97 0.48 0.38 0.25 
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Table 4.6. Crop Production with Three Climate Models-Partial Adjustment=0.2 

 

 

 Corn Soybeans Peanuts Cotton 

 H M C H M C H M C H M C 

2011 2.72 2.6 2.75 1.25 1.27 1.24 2.83 2.66 3.16 1.39 1.12 1.34 

2012 2.83 2.7 2.79 1.22 1.23 1.2 3.37 3.08 3.24 1.32 0.85 1.08 

2013 3.04 2.91 2.88 1.2 1.23 1.17 3.7 4.18 3.89 0.78 0.96 0.82 

2014 2.67 2.75 3.14 1.17 1.17 1.16 2.83 2.46 2.55 1.04 1.11 1.23 

2015 2.59 2.75 3.01 1.22 1.19 1.15 3.72 3.07 3.04 0.81 0.74 1.36 

2016 2.9 2.78 3.13 1.28 1.19 1.15 3.68 3.59 3.42 1.1 0.79 0.93 

2017 2.97 2.59 3.07 1.21 1.15 1.17 3.57 3.74 4.15 0.65 0.75 0.71 

2018 2.91 2.71 2.69 1.21 1.2 1.16 3.71 4.17 4.71 0.54 0.59 0.59 

2019 2.66 2.85 2.69 1.16 1.23 1.21 4.29 4.54 4.04 0.49 0.58 0.78 

2020 2.72 2.76 2.74 1.22 1.18 1.17 4.44 4.47 4.56 0.59 0.48 0.76 

2021 2.84 2.85 2.56 1.24 1.21 1.16 4.58 4.94 4.85 0.64 0.49 0.6 

2022 3 2.86 2.62 1.24 1.2 1.18 4.66 4.42 4.94 0.46 0.39 0.46 

2023 2.75 2.99 2.92 1.19 1.18 1.17 5.01 4.77 4.87 0.35 0.42 0.37 

2024 2.7 2.91 2.75 1.21 1.19 1.16 4.81 4.6 5.25 0.41 0.36 0.35 

2025 2.5 2.87 3.01 1.23 1.23 1.19 4.72 4.62 4.57 0.43 0.28 0.32 

2026 2.65 2.89 2.92 1.24 1.23 1.14 4.7 4.97 5.17 0.4 0.42 0.28 

2027 2.73 2.74 2.78 1.21 1.16 1.17 4.71 4.96 4.89 0.44 0.31 0.31 

2028 2.74 2.61 2.84 1.18 1.16 1.19 5.03 4.81 5.07 0.43 0.36 0.33 

2029 2.87 2.81 2.74 1.18 1.23 1.2 4.71 5.04 4.6 0.41 0.35 0.33 

2030 2.86 2.91 3 1.19 1.24 1.25 4.93 4.78 4.83 0.49 0.32 0.38 

2031 2.9 3 2.79 1.21 1.19 1.14 4.61 4.6 4.71 0.49 0.31 0.33 

2032 2.68 2.85 2.79 1.19 1.21 1.18 4.82 4.94 4.69 0.53 0.35 0.33 

2033 2.5 2.95 2.92 1.23 1.25 1.24 5.34 4.35 4.63 0.51 0.36 0.37 

2034 2.55 2.83 3.25 1.26 1.21 1.16 4.47 4.7 4.86 0.62 0.29 0.31 

2035 2.68 2.82 2.82 1.27 1.22 1.13 4.74 4.63 5.16 0.53 0.27 0.34 

2036 2.62 2.74 2.77 1.21 1.2 1.21 4.79 4.55 4.8 0.41 0.28 0.27 

2037 2.87 2.86 3.05 1.25 1.23 1.23 4.99 5.17 4.86 0.4 0.24 0.39 

2038 2.67 2.79 2.75 1.2 1.2 1.21 4.59 4.56 5.11 0.44 0.24 0.3 

2039 2.61 2.9 2.75 1.19 1.23 1.19 5.05 4.7 5.29 0.41 0.37 0.28 

2040 2.81 2.92 2.72 1.21 1.21 1.2 5.17 4.37 4.71 0.44 0.36 0.21 

2041 2.77 2.92 2.88 1.23 1.22 1.21 4.79 4.63 4.55 0.52 0.36 0.28 

2042 2.65 2.7 2.78 1.22 1.17 1.17 4.68 4.88 4.65 0.57 0.26 0.29 

2043 2.76 2.96 2.68 1.23 1.2 1.16 5.15 4.74 4.62 0.48 0.31 0.27 

2044 2.71 2.86 2.74 1.24 1.16 1.23 4.67 4.94 4.92 0.6 0.3 0.27 

2045 2.71 2.96 3.01 1.24 1.22 1.23 4.49 4.45 4.83 0.4 0.34 0.2 

2046 2.62 2.87 3.26 1.24 1.21 1.22 4.59 4.73 4.98 0.5 0.41 0.19 
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Table 4.7. Crop Production with Three Climate Models-Partial Adjustment=0.5 

 

 

 Corn Soybeans Peanuts Cotton 

 H M C H M C H M C H M C 

2011 2.23 2.02 2.54 1.38 1.42 1.29 3.59 3.32 4.12 1.19 0.98 0.98 

2012 3.05 2.85 2.5 1.16 1.18 1.27 4.51 4.16 4.37 0.97 0.54 0.56 

2013 2.92 3 2.55 1.24 1.21 1.25 4.79 5.34 5.04 0.43 0.57 0.33 

2014 1.77 1.99 2.91 1.43 1.37 1.22 2.3 1.97 2.08 1.23 1.27 1.54 

2015 1.57 2.2 2.65 1.49 1.34 1.24 4.12 3.09 2.75 0.82 0.58 1.6 

2016 2.62 2.07 2.58 1.34 1.38 1.28 4.37 4.15 3.88 0.87 0.62 0.77 

2017 3.03 2.05 2.87 1.18 1.3 1.22 4.2 4.46 4.96 0.37 0.66 0.74 

2018 2.45 2.2 1.96 1.34 1.33 1.37 4.27 4.81 5.63 0.37 0.55 0.55 

2019 1.54 2.43 2.04 1.45 1.34 1.4 4.46 5.13 4.62 0.57 0.49 0.74 

2020 1.79 2.32 2.49 1.46 1.29 1.23 4.77 4.96 4.74 0.47 0.38 0.74 

2021 2.26 2.42 2.17 1.39 1.32 1.28 4.87 5.34 5.17 0.63 0.36 0.52 

2022 2.77 2.07 2.09 1.29 1.4 1.32 4.96 4.67 5.31 0.53 0.28 0.26 

2023 1.85 2.49 2.51 1.43 1.32 1.27 5.26 4.51 5.17 0.36 0.4 0.27 

2024 1.52 2.31 2.31 1.53 1.36 1.28 4.92 4.53 5.46 0.48 0.39 0.25 

2025 1.42 2.25 2.55 1.52 1.39 1.3 4.84 4.68 4.65 0.41 0.27 0.22 

2026 1.81 2.25 2.45 1.45 1.4 1.26 4.71 5.07 5.1 0.48 0.56 0.3 

2027 1.99 2.17 1.99 1.39 1.32 1.39 4.6 5.02 4.93 0.64 0.32 0.43 

2028 2.04 1.95 2.22 1.35 1.33 1.35 5.01 4.9 5.01 0.58 0.36 0.52 

2029 2.05 2.39 2.31 1.38 1.33 1.31 4.57 4.93 4.38 0.56 0.35 0.49 

2030 1.86 2.41 2.74 1.45 1.37 1.31 4.96 4.73 4.77 0.66 0.28 0.46 

2031 1.78 2.5 2.23 1.52 1.33 1.28 4.56 4.61 4.64 0.71 0.26 0.33 

2032 1.56 2.08 2 1.48 1.43 1.4 4.87 4.62 4.65 0.65 0.42 0.42 

2033 1.29 2.2 2.2 1.55 1.45 1.42 5.31 4.33 4.62 0.7 0.38 0.57 

2034 1.71 2.2 3.39 1.48 1.38 1.12 4.38 4.78 4.88 0.81 0.33 0.36 

2035 2.13 2.25 2.39 1.39 1.38 1.26 4.7 4.64 5 0.65 0.27 0.44 

2036 1.82 2.07 1.74 1.41 1.37 1.49 4.84 4.52 4.86 0.59 0.4 0.32 

2037 1.86 2.33 2.24 1.52 1.36 1.44 4.83 5.15 4.94 0.71 0.32 0.5 

2038 1.25 2.08 1.97 1.57 1.39 1.42 4.67 4.52 5.12 0.6 0.42 0.33 

2039 1.33 2.32 2.07 1.5 1.38 1.38 5.18 4.45 5.32 0.56 0.62 0.27 

2040 2.11 2.35 1.92 1.38 1.36 1.42 5.14 4.38 4.74 0.69 0.41 0.31 

2041 1.83 2.36 2.05 1.47 1.37 1.41 4.84 4.79 4.46 0.74 0.27 0.43 

2042 1.41 1.78 1.95 1.52 1.4 1.38 4.68 5.05 4.57 0.68 0.22 0.38 

2043 1.43 2.45 1.83 1.58 1.33 1.38 4.99 4.84 4.58 0.62 0.32 0.43 

2044 1.38 2.28 2.05 1.59 1.3 1.4 4.69 4.95 4.95 0.83 0.36 0.31 

2045 1.41 2.38 2.18 1.57 1.36 1.42 4.5 4.24 4.85 0.56 0.52 0.33 

2046 1.47 1.97 3.15 1.54 1.46 1.25 4.28 4.63 5.02 0.66 0.56 0.3 
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Table 4.8. Crop Production with Three Climate Models-Partial Adjustment=1 

 

 Corn Soybeans Peanuts Cotton 

 H M C H M C H M C H M C 

2011 3.35 2.37 3.62 1.05 1.32 0.94 5.76 5.37 6.07 0.42 0.41 0.2 

2012 4.07 4.18 2.72 0.89 0.81 1.26 5.13 4.86 4.95 0.62 0.19 0.14 

2013 4.77 3.98 4.6 0.68 0.92 0.69 4.89 5.27 5.01 0.14 0.45 0.17 

2014 2.84 2.69 5.23 1.17 1.24 0.57 0 0 0 1.94 2 2.86 

2015 3.49 3.78 3.51 0.97 0.88 1.03 5.85 4.03 3.16 0.64 0.09 1.28 

2016 5.08 2.94 3.88 0.62 1.16 0.93 5.09 5.05 5.11 0.54 0.47 0.29 

2017 4.08 3.06 4.77 0.91 1.05 0.68 4.33 4.7 5.48 0.06 0.67 0.75 

2018 3.32 3.06 2.15 1.09 1.1 1.37 4.31 4.87 5.9 0.64 0.4 0.51 

2019 2.3 3.77 3.62 1.29 0.96 0.96 3.85 5.25 4.56 0.87 0.36 0.41 

2020 4.85 3.22 4.37 0.59 1.08 0.72 5.09 5.02 4.13 0.13 0.26 0.91 

2021 3.9 3.14 2.05 0.98 1.12 1.37 4.92 5.27 5.53 0.72 0.35 0.45 

2022 4.07 2.86 2.47 0.91 1.2 1.22 5.04 4.72 5.53 0.57 0.05 0 

2023 3.16 4.47 4.56 1.11 0.8 0.73 5.27 3.68 5.21 0.18 0.46 0.34 

2024 3.51 2.87 2.61 0.99 1.2 1.21 4.77 4.99 5.35 0.67 0.49 0.23 

2025 3.29 2.67 2.37 1.05 1.31 1.39 4.91 4.93 4.58 0.21 0.24 0.07 

2026 3.18 3.41 3.65 1.09 1.11 0.91 4.6 5.1 4.87 0.47 0.69 0.44 

2027 4.16 2.77 2.61 0.81 1.19 1.27 4.49 5.03 5.13 0.85 0.3 0.71 

2028 3.64 2.6 2.85 0.96 1.19 1.22 5.12 4.95 4.86 0.48 0.34 0.68 

2029 3.51 3.41 2.71 1 1.06 1.21 4.37 4.65 4.15 0.59 0.37 0.51 

2030 3.74 3.22 3.02 0.95 1.18 1.26 5.13 4.8 4.96 0.51 0.18 0.63 

2031 3.79 3.21 2.5 0.96 1.16 1.25 4.45 4.73 4.65 0.89 0.44 0.17 

2032 2.84 2.59 2.23 1.16 1.31 1.36 4.96 4.07 4.64 0.62 0.42 0.57 

2033 2.7 3.07 2.75 1.18 1.21 1.28 5.4 4.58 4.66 0.72 0.34 0.64 

2034 3.63 2.87 5.26 1.04 1.2 0.64 4.21 4.91 4.91 0.89 0.34 0.36 

2035 3.98 3.06 1.68 0.87 1.18 1.53 4.78 4.52 4.68 0.57 0.21 0.54 

2036 2.66 2 1.39 1.21 1.41 1.6 5.01 4.62 5.14 0.31 0.44 0.32 

2037 3.56 3.72 4.06 1.04 0.95 0.97 4.94 5 4.89 0.7 0.31 0.56 

2038 2.92 2.75 2.02 1.13 1.26 1.42 4.88 4.37 5.02 0.43 0.55 0.28 

2039 3.02 2.45 2.1 1.1 1.34 1.42 5.28 4.24 5.36 0.64 0.82 0.19 

2040 3.47 3.34 2.8 1 1.11 1.2 4.89 4.73 4.76 0.85 0.3 0.47 

2041 3.14 3.22 2.13 1.14 1.14 1.4 4.84 5.04 4.27 0.8 0.28 0.5 

2042 2.34 1.62 2.4 1.32 1.48 1.28 4.68 5.04 4.43 0.53 0.23 0.33 

2043 3.82 3.98 2.05 0.95 0.94 1.35 4.74 4.78 4.79 0.77 0.68 0.32 

2044 2.76 2.85 2.5 1.22 1.15 1.28 4.83 4.86 5.05 0.62 0.43 0.16 

2045 2.82 2.85 2.08 1.24 1.25 1.45 4.48 3.88 4.86 0.47 0.67 0.46 

2046 2.69 2.48 4.21 1.23 1.37 0.98 3.7 4.88 5.06 0.78 0.48 0.24 
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Major observations with respect to the dynamic simulation results are discussed in this 

section. At the partial adjustment level of zero, no significant production trend could be observed 

for all four crops, since production is exclusively driven by crop yields. Under any nonzero 

partial adjustment levels, aggregate corn production decreased over the next 40 years, while 

aggregate soybeans production increased over the next 40 years. Aggregate peanuts production 

increased over the next 40 years, while aggregate cotton production decreased over the next 40 

years under all three climate scenarios. 

Due to the negative effect of increases crop production (e.g., supply) on prices, the 

realized prices have the opposite trend for each crop. Increased production induces decreased 

realized prices, while decreased crop production induces increased realized prices. However, the 

changes in production and prices are in fact mostly caused by an initial difference of profitability 

between the crops in the baseline year, which is considerably larger than the effects of climate 

change. Therefore, the effects of climate change are investigated by comparing three future 

climate scenarios instead of comparing past and future. Specifically, we compare the results 

between the warmest scenario (MIROC 3.2) and the coldest scenario (CSIRO 3.5).  We also 

compare the results under different partial adjustment levels in order to investigate the role of 

farm adaptation.  

Compared to CSIRO 3.5, the warmer MIROC 3.2 scenario predicts low corn production, 

while it predicts high soybean production under low partial adjustment levels for the most of 

next 40 years. These results are expected since corn and soybeans are strong substitute crops for 

the Corn Belt states. These results also indicate that the MIROC 3.2 scenario is likely to decrease 

corn production more than soybeans production in the future. 
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Compared to the relatively cooler CSIRO 3.5 scenario, the warmer MIROC 3.2 scenario 

predicts lower production for both cotton and peanuts at the zero partial adjustment level, 

indicating the adverse effects of global warming. However, at the partial adjustment levels of 0.1 

and 0.2 where farm adaptations are allowed, the MIROC 3.2 scenario predicts higher production 

for both cotton and peanuts. This result can be explained as follows. Due to the decreased corn 

and soybean yields in the southern states and the no agricultural land use change assumption, 

producers switch land from corn and soybeans to cotton and peanuts which raises cotton and 

peanuts production under the MIROC 3.2 scenario. 

High partial adjustment level results in extremely unstable crop production, while a low 

partial adjustment level results in relatively stable crop production. It could be explained that a 

producer with a quicker and higher acreage response will switch more acres from year to year in 

order to optimize overall profits, thus creating unstable production from year to year. All crops 

have the characteristic that production increases or decreases for the first several years, and then 

gets to a relatively stable state. It is also observed that a high partial adjustment factor makes 

crop production go to this relatively stable state more quickly. 

Revenue per acre from several representative counties are reported in figures 4.6-4.11: 

revenue per acre for corn from a northern county and a southern county; revenue per acre for 

soybeans from a northern county and a southern county; revenue per acre for cotton from a 

southern county; and revenue per acre for peanuts from a southern county. Furthermore, we 

construct Climate Change Impact Index (CCII) for revenue per acre which is similar to the one 

used in Chapter 2, but using revenue per acre instead of yields. Table 4.9 shows the results of 

CCII for revenue per acre for selected northern and southern states. The results show that the 

northern states have a lower CCII value compared to the southern states in terms of corn and 
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soybeans. The results also indicate that corn and soybeans‟ revenue per acre generally display a 

mild decrease due to predicted global climate change in the northern U.S. states studied, and a 

relatively more pronounced negative effect in the southern U.S. states studied. These results are 

very similar to the yield results using a static model reported in Chapter 2. 

 

 

Figure 4.6. Revenue per acre for Corn, Bulloch County, Georgia 

 

 

Figure 4.7. Revenue per acre for Corn, Benton County, Iowa 
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Figure 4.8. Revenue per acre for Cotton, Worth county, Georgia 

 

 

Figure 4.9. Revenue per acre for Peanuts, Decatur county, Georgia 
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Figure 4.10. Revenue per acre for Soybeans, Yellow Medicine county, Minnesota 
 

 

Figure 4.11. Revenue per acre for Soybeans, Appling county, Georgia 

 

The results reported in Table 4.9 also show the unresponsiveness of the CCII to a change 

in the partial adjustment level. The results indicate that, although producers respond by 

reallocating acreage, a warmer climate scenario still generates lower profitability compared to a 

cooler climate scenario for Georgia. In this research, acreage response is assumed to be the only 
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adaptation practice employed by farmers. Therefore, based on our simulation results, acreage 

response alone is not able to fully offset the adverse effects of climate change. Other adaptation 

options such as fertilizer adjustments and changing planting dates should be considered by 

farmers in order to better adapt to possible future climate change scenarios.  

Tables 4.10-4.12 show the CCII derived by comparing total revenues for which varied 

yield penalties are considered. The results indicate that the CCII are not sensitive to the change 

of yield penalty. The CCII increase with the increasing partial adjustment factors for most of the 

states, which indicates that CSIRO 3.5 outperforms MIROC 3.2 more when producers increase 

acreage response. Tables 4.13-4.15 show the differences for total revenues between CSIRO 3.5 

and MIROC 3.2. The results indicate that average total revenues over next 40 years for MIROC 

3.2 are higher than that of CSIRO 3.5 for the southern states, while the same relationships are not 

observed for the northern states.  
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Table 4.9. Climate Change Impact Index for Profitability (by states, by crops) 

Crops   Corn Soybeans Cotton Peanuts 

State Partial Adjustment         

            

  0 0.42 0.43     

MN 0.1 0.42 0.44     

  0.2 0.42 0.44     

  0.5 0.79 0.91     

            

  0 0.50 0.48     

IA 0.1 0.49 0.51     

  0.2 0.48 0.50     

  0.5 0.04 0.94     

            

  0 0.46 0.52     

NE 0.1 0.45 0.54     

  0.2 0.44 0.54     

  0.5 0.81 0.89     

            

  0 0.49 0.56     

IL 0.1 0.49 0.58     

  0.2 0.49 0.58     

  0.5 0.77 0.92     

            

  0 0.50 0.54     

IN 0.1 0.49 0.56     

  0.2 0.50 0.56     

  0.5 0.77 0.92     

            

  0 0.55 0.58 0.68 0.49 

TX 0.1 0.54 0.60 0.74 0.44 

  0.2 0.56 0.59 0.63 0.58 

  0.5 0.75 0.88 0.80 0.88 

            

  0 0.58 0.63 0.80 0.47 

GA 0.1 0.57 0.66 0.73 0.44 

  0.2 0.57 0.64 0.80 0.57 

  0.5 0.78 0.90 0.83 0.83 
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Table 4.10. Climate Change Impact Index
13

 for Total Revenue with Yield Penalty =0.025 

(by states, by crops) 

Crops 
 

Corn Soybeans Cotton Peanuts Overall 

State 
Partial 

Adjustment 
          

 
0 0.39 0.29 

  
0.32 

MN 0.1 0.56 0.15 
  

0.44 

 
0.2 0.59 0.10 

  
0.46 

 
0.5 0.68 0.85 

  
0.78 

       

 
0 0.56 0.37 

  
0.51 

IA 0.1 0.83 0.20 
  

0.68 

 
0.2 0.80 0.17 

  
0.59 

 
0.5 0.63 0.90 

  
0.80 

       

 
0 0.39 0.66 

  
0.39 

NE 0.1 0.49 0.46 
  

0.59 

 
0.2 0.44 0.49 

  
0.51 

 
0.5 0.51 0.90 

  
0.80 

       

 
0 0.56 0.78 

  
0.68 

IL 0.1 0.41 0.93 
  

0.63 

 
0.2 0.46 0.93 

  
0.56 

 
0.5 0.51 0.95 

  
0.76 

       

 
0 0.49 0.66 

  
0.51 

IN 0.1 0.61 0.61 
  

0.59 

 
0.2 0.54 0.51 

  
0.51 

 
0.5 0.41 0.93 

  
0.80 

       

 
0 0.56 0.71 0.98 0.49 0.56 

TX 0.1 0.73 0.24 0.73 0.10 0.73 

 
0.2 0.71 0.32 0.44 0.07 0.71 

 
0.5 0.83 0.56 0.66 0.17 0.83 

       

 
0 0.83 0.71 0.95 0.51 0.78 

GA 0.1 0.98 0.83 0.98 0.24 1.00 

 
0.2 0.98 0.80 0.56 0.17 1.00 

  0.5 0.95 0.93 0.78 0.17 0.93 

 

                                                           
13

 Climate Change Impact Index represents the percentage of the number of years for which MIROC 3.2 generates 

lower revenue compared to CSIRO 3.5 over 40 years. 
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Table 4.11. Climate Change Impact Index for Total Revenue with Yield Penalty =0.05 

(by states, by crops) 

Crops 
 

Corn Soybeans Cotton Peanuts Overall 

State 
Partial 

Adjustment 
          

 
0 0.39 0.29 

  
0.32 

MN 0.1 0.39 0.24 
  

0.39 

 
0.2 0.46 0.22 

  
0.37 

 
0.5 0.85 0.88 

  
0.90 

       

 
0 0.56 0.37 

  
0.51 

IA 0.1 0.80 0.17 
  

0.68 

 
0.2 0.80 0.15 

  
0.61 

 
0.5 0.80 0.95 

  
0.93 

       

 
0 0.39 0.66 

  
0.39 

NE 0.1 0.46 0.54 
  

0.56 

 
0.2 0.46 0.63 

  
0.56 

 
0.5 0.83 0.95 

  
0.85 

       

 
0 0.56 0.78 

  
0.68 

IL 0.1 0.44 0.90 
  

0.68 

 
0.2 0.46 0.88 

  
0.66 

 
0.5 0.73 0.95 

  
0.88 

       

 
0 0.49 0.66 

  
0.51 

IN 0.1 0.56 0.63 
  

0.56 

 
0.2 0.54 0.54 

  
0.51 

 
0.5 0.73 0.93 

  
0.90 

       

 
0 0.56 0.71 0.98 0.49 0.56 

TX 0.1 0.73 0.39 0.73 0.15 0.76 

 
0.2 0.76 0.29 0.44 0.10 0.73 

 
0.5 0.83 0.63 0.54 0.17 0.85 

       

 
0 0.83 0.71 0.95 0.51 0.78 

GA 0.1 1.00 0.80 0.95 0.12 0.98 

 
0.2 1.00 0.78 0.56 0.07 1.00 

  0.5 0.95 0.98 0.46 0.20 0.90 
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Table 4.12. Climate Change Impact Index for Total Revenue with Yield Penalty =0.10 

(by states, by crops) 

Crops 
 

Corn Soybeans Cotton Peanuts Overall 

State 
Partial 

Adjustment 
          

 
0 0.39 0.29 

  
0.32 

MN 0.1 0.51 0.17 
  

0.39 

 
0.2 0.54 0.24 

  
0.41 

 
0.5 0.93 0.76 

  
0.90 

       

 
0 0.56 0.37 

  
0.51 

IA 0.1 0.80 0.17 
  

0.66 

 
0.2 0.73 0.12 

  
0.63 

 
0.5 0.93 0.90 

 
 

0.93 

       

 
0 0.39 0.68 

  
0.39 

NE 0.1 0.49 0.59 
  

0.61 

 
0.2 0.54 0.56 

  
0.66 

 
0.5 0.93 0.95 

 
 

0.95 

       

 
0 0.56 0.78 

  
0.68 

IL 0.1 0.37 0.90 
  

0.63 

 
0.2 0.37 0.88 

  
0.61 

 
0.5 0.88 0.93 

  
0.98 

       

 
0 0.49 0.66 

  
0.51 

IN 0.1 0.51 0.68 
  

0.51 

 
0.2 0.46 0.73 

  
0.56 

 
0.5 0.85 0.95 

  
0.95 

       

 
0 0.56 0.71 0.98 0.49 0.56 

TX 0.1 0.73 0.46 0.88 0.34 0.76 

 
0.2 0.73 0.49 0.68 0.73 0.73 

 
0.5 0.98 0.78 0.27 0.12 0.98 

       

 
0 0.83 0.71 0.95 0.51 0.78 

GA 0.1 0.98 0.80 0.95 0.32 1.00 

 
0.2 0.98 0.85 0.71 0.41 1.00 

  0.5 1.00 0.90 0.39 0.17 1.00 
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Table 4.13. Difference
14

 in Total Revenue between MIROC 3.2 (Warmest) and CSIRO 

3.5 (Coolest) Climate Change Scenarios with Yield Penalty = 0.025 (by states, by crops) 

Crops 
 

Corn Soybeans Cotton Peanuts Overall 

State 
Partial 

Adjustment 

Billion 

Dollars 

Billion 

Dollars 

Hundred 

Thousand 

Dollars 

Ten Million 

Dollars 

 Billion 

Dollars 

 
0 -0.034 -0.041 

  
-0.076 

MN 0.1 0.015 -0.061 
  

-0.047 

 
0.2 0.029 -0.078 

  
-0.050 

 
0.5 0.061 0.317 

  
0.378 

       

 
0 0.013 -0.020 

  
-0.007 

IA 0.1 0.128 -0.060 
  

0.068 

 
0.2 0.143 -0.086 

  
0.057 

 
0.5 0.192 0.552 

  
0.744 

       

 
0 -0.020 0.027 

  
-0.019 

NE 0.1 0.004 -0.036 
  

0.000 

 
0.2 -0.008 -0.007 

  
-0.009 

 
0.5 0.002 0.203 

  
0.201 

       

 
0 0.007 0.051 

  
0.067 

IL 0.1 -0.065 0.098 
  

0.033 

 
0.2 -0.049 0.080 

  
0.031 

 
0.5 -0.031 0.443 

  
0.412 

       

 
0 0.018 0.026 

  
0.045 

IN 0.1 0.041 0.011 
  

0.052 

 
0.2 0.039 0.002 

  
0.042 

 
0.5 -0.043 0.395 

  
0.352 

  
  

  
  

 
0 0.003 0.000 1.976 0.023 0.004 

TX 0.1 0.045 -0.002 0.617 -0.063 0.043 

 
0.2 0.053 -0.001 -0.040 -0.080 0.052 

  0.5 0.050 0.001 0.097 -0.069 0.051 

  
     

 
0 0.003 0.001 0.762 0.053 0.005 

GA 0.1 0.029 0.001 0.196 -0.312 0.027 

 
0.2 0.032 0.001 0.012 -0.476 0.028 

  0.5 0.011 0.002 0.075 -0.304 0.010 

 

                                                           
14

 Difference is the revenue for CSIRO 3.5 minus the revenue for MIROC 3.2.  
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Table 4.14. Difference in Total Revenue between MIROC 3.2 (Warmest) and CSIRO 3.5 

(Coolest) Climate Change Scenarios with Yield Penalty = 0.05 (by states, by crops) 

Crops 
 

Corn Soybeans Cotton Peanuts Overall 

State 
Partial 

Adjustment 

Billion 

Dollars 

Billion 

Dollars 

Hundred 

Thousand 

Dollars 

Ten Million 

Dollars 

 Billion 

Dollars 

 
0 -0.034 -0.041 

  
-0.075 

MN 0.1 -0.026 -0.042 
  

-0.068 

 
0.2 -0.017 -0.049 

  
-0.066 

 
0.5 0.200 0.273 

 
 

0.473 

       

 
0 0.012 -0.019 

  
-0.007 

IA 0.1 0.130 -0.066 
  

0.064 

 
0.2 0.121 -0.067 

  
0.054 

 
0.5 0.451 0.498 

  
0.950 

       

 
0 -0.019 0.027 

  
-0.019 

NE 0.1 -0.005 0.035 
  

-0.002 

 
0.2 -0.009 0.071 

  
-0.002 

 
0.5 0.978 1.699 

  
0.268 

       

 
0 0.006 0.050 

  
0.056 

IL 0.1 -0.032 0.077 
  

0.049 

 
0.2 -0.014 0.067 

  
0.047 

 
0.5 0.159 0.369 

  
0.528 

       

 
0 0.018 0.026 

  
0.044 

IN 0.1 0.041 0.087 
  

0.045 

 
0.2 0.037 0.098 

  
0.053 

 
0.5 0.103 0.327 

  
0.430 

       

 
0 0.056 0.001 0.601 -0.580 0.057 

TX 0.1 0.049 -0.001 0.597 -0.576 0.047 

 
0.2 0.059 -0.002 0.029 -0.780 0.057 

  0.5 0.056 0.001 0.601 -0.580 0.057 

  
     

 
0 0.003 0.001 0.754 0.051 0.005 

GA 0.1 0.003 0.001 0.184 -0.328 0.022 

 
0.2 0.003 0.001 0.010 -0.443 0.024 

  0.5 0.002 0.002 0.000 -0.390 0.017 
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Table 4.15. Difference in Total Revenue between MIROC 3.2 (Warmest) and CSIRO 3.5 

(Coolest) Climate Change Scenarios with Yield Penalty = 0.10 (by states, by crops) 

Crops 
 

Corn Soybeans Cotton Peanuts Overall 

State 
Partial 

Adjustment 

Billion 

Dollars 

Billion 

Dollars 

Hundred 

Thousand 

Dollars 

Ten Million 

Dollars 

 Billion 

Dollars 

  
  

  
 

 
0 -0.033 -0.039 

  
-0.073 

MN 0.1 -0.012 -0.049 
  

-0.061 

 
0.2 -0.002 -0.055 

  
-0.057 

 
0.5 0.204 0.052 

 
 

0.255 

       

 
0 0.011 -0.019 

  
-0.008 

IA 0.1 0.119 -0.060 
  

0.059 

 
0.2 0.117 -0.062 

  
0.054 

 
0.5 0.436 0.119 

  
0.555 

       

 
0 -0.019 0.026 

  
-0.018 

NE 0.1 -0.007 0.077 
  

0.001 

 
0.2 -0.001 0.064 

  
0.005 

 
0.5 0.107 0.052 

  
0.158 

       

 
0 0.005 0.049 

  
0.054 

IL 0.1 -0.040 0.078 
  

0.038 

 
0.2 -0.039 0.080 

  
0.040 

 
0.5 0.199 0.132 

  
0.331 

       

 
0 0.017 0.026 

  
0.042 

IN 0.1 0.008 0.026 
  

0.034 

 
0.2 0.002 0.029 

  
0.031 

 
0.5 0.149 0.099 

  
0.247 

       

 
0 0.003 0.000 0.187 0.019 0.004 

TX 0.1 0.041 0.000 0.918 -0.149 0.041 

 
0.2 0.044 0.000 0.456 0.126 0.044 

 
0.5 0.078 0.001 -0.036 -0.316 0.078 

 
      

 
0 0.003 0.001 0.732 0.045 0.005 

GA 0.1 0.002 0.001 0.150 -0.094 0.024 

 
0.2 0.003 0.001 0.015 -0.002 0.028 

  0.5 0.003 0.001 -0.028 -0.194 0.024 
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4.7 Conclusions 

This Chapter assesses the effects of climate change on agricultural profitability. A basic farm-

level profit function includes input and output prices, crop yields, and crop acreage. Crop yields 

directly impact profit. Crop yields also indirectly influence profit by influencing crop prices and 

acreage. The yields from multiple crops grown were expected to show a combined effect on a 

farmer‟s acreage response. Motivated by these connections, a dynamic simulation approach was 

developed in this chapter 

To apply the crop rotation model developed in Chapter 3, two improvements were made. 

First, partial adjustment is allowed; second, acreage switching between rotations is allowed. 

These two improvements greatly improved the crop rotation model and allowed it to be able to 

address more practical issues. A dynamic approach, motivated by POLYSYS, was used to 

simulate agricultural profitability in several northern and southern U.S. states. Realized prices for 

crops were generated under crop yield shocks derived from the three climate models. This 

realized price was used to calculate a producer‟s profitability instead of price expectations. The 

results indicate that global warming will generate lower profitability in the southern U.S. states 

even when producers‟ adaptation practices such as acreage response is considered. Thus, our 

results suggest that acreage response alone is not sufficient to ameliorate the potential negative 

effects of global climate change on agricultural production and profitability. Predicted climate 

change is more likely to pose a problem for agricultural production and profitability in southern 

U.S. states as compared to northern U.S. states. This result is consistent with the expectation that 

a probable impact of global climate change, should it occur as predicted, would be to shift some 

cropping patterns from the southern U.S. to the northern U.S. 
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 Our model and results provide farmers in different regions of the country with useful 

guidance for future planting decisions under uncertain weather and economic conditions. Our 

results also suggest that federal and state governments can help reduce the potential negative 

effects of predicted climate change on agricultural production and profitability by facilitating 

farmer response to changing weather patterns; for example, by providing up-to-date, localized 

climate change predictions that farmers can use to develop crop yield, price and acreage 

expectations.  
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Appendix C 

 

Table C.1. Regression Results for Production Elasticities of Price (by states, by crops) 

    Corn   Soybeans   Cotton   Peanuts 

 

elasticity -0.58737 

 

-0.92857 

    MN standard error 0.20149 

 

0.16481 

    

 

p-value 0.0069 

 

 <.0001 

    

 

adjusted R-square 0.2054 

 

0.5146 

    

         

 

elasticity -0.57285 

 

-0.91381 

    IA standard error 0.20156 

 

0.16506 

    

 

p-value 0.0083 

 

 <.0001 

    

 

adjusted R-square 0.1962 

 

0.5055 

    

         

 

elasticity -0.59466 

 

-0.92617 

    NE standard error 0.19648 

 

0.16144 

    

 

p-value 0.0053 

 

 <.0001 

    

 

adjusted R-square 0.2196 

 

0.5239 

    

         

 

elasticity -0.61159 

 

-0.90937 

    IL standard error 0.18283 

 

0.15894 

    

 

p-value 0.0024 

 

 <.0001 

    

 

adjusted R-square 0.26 

 

0.5225 

    

         

 

elasticity -0.61167 

 

-0.91762 

    IN standard error 0.18682 

 

0.15921 

    

 

p-value 0.0028 

 

 <.0001 

    

 

adjusted R-square 0.251 

 

0.5263 

    

         

 

elasticity -0.52308 

 

-0.90069 

 

-0.5887 

 

-1.11486 

TX standard error 0.18364 

 

0.17525 

 

0.13773 

 

0.30691 

 

p-value 0.0081 

 

 <.0001 

 

0.0002 

 

0.0011 

 

adjusted R-square 0.197 

 

0.467 

 

0.3732 

 

0.296 

         

 

elasticity -0.67622 

 

-0.88607 

 

-0.65791 

 

-1.09119 

GA standard error 0.17572 

 

0.1676 

 

0.13078 

 

0.3262 

 

p-value 0.0006 

 

 <.0001 

 

 <.0001 

 

0.0024 

  adjusted R-square 0.3226   0.4817   0.456   0.26 
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Table C.2. Comparing Total Acres and Acres Used in Simulation (by states, by crops)
15

 

    Corn   Soybeans   Cotton   Peanuts 

         MN Total Acres 7300000 

 

6900000 

    

 

Used Acres 4475000 

 

3777200 

    

 

Used/Total Ratio 61.30% 

 

54.74% 

    

         IA Total Acres 12800000 

 

10050000 

    

 

Used Acres 8180800 

 

6549500 

    

 

Used/Total Ratio 63.91% 

 

65.17% 

    

         NE Total Acres 8500000 

 

4700000 

    

 

Used Acres 4559000 

 

3154000 

    

 

Used/Total Ratio 53.64% 

 

67.11% 

    

         IL Total Acres 12100000 

 

9500000 

    

 

Used Acres 4917000 

 

3613000 

    

 

Used/Total Ratio 40.64% 

 

38.03% 

    

         IN Total Acres 5900000 

 

5400000 

    

 

Used Acres 3982600 

 

3591500 

    

 

Used/Total Ratio 67.50% 

 

66.51% 

    

         TX Total Acres 2030900 

 

258100 

 

5950000 

 

262700 

 

Used Acres 389600 

 

41800 

 

2365500 

 

180800 

 

Used/Total Ratio 19.18% 

 

16.20% 

 

39.76% 

 

68.82% 

         GA Total Acres 270000 

 

176400 

 

1216600 

 

755000 

 

Used Acres 144000 

 

87150 

 

849900 

 

454800 

  Used/Total Ratio 53.33%   49.40%   69.86%   60.24% 

 

 

 

 

 

 

                                                           
15

  This table demonstrates that the portion of acres that actually used in the analysis compared to the total acres. The 

unit is Acres. These are acres in the year 2005 which is the baseline year of the analysis. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

5.1 Summary and Conclusions 

This dissertation assesses the effects of climate change on agricultural production and 

profitability. A basic farm-level profit function includes input and output prices, crop yields, and 

crop acreage. Crop yields directly impact profit. Crop yields also indirectly influence profit by 

influencing crop prices and acreage. The yields from multiple crops grown were expected to 

show a combined effect on a farmer‟s acreage response. Motivated by these connections, a 

dynamic simulation approach was developed in this dissertation.  

In Chapter 2, a historical relationship between weather and crop yields was estimated using 

a Principal Components Regression (PCR) model. Three General Circulation Models (GCMs) 

under the IPCC SRA1B emissions scenario were incorporated into the estimated PCR model to 

predict crop yields through 2050. The PCR model were applied to corn, cotton, peanuts and 

soybeans at the county-level in eight northern and southern U.S. states who are major producers 

of these crops. Predicted yield results indicated that future climate change is likely to shift corn 

and soybeans pattern northwards.  

In Chapter 3, a crop rotation model was developed as the transition function of a modified 

Bellman Equation. MATLAB was used to program the model. The rotation model dynamically 

connects expected profits with acreage response, and it became an essential part for the dynamic 

simulation approach in Chapter 4.  
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In Chapter 4, to apply the crop rotation model developed in Chapter 3, two improvements 

were made. First, partial adjustment is allowed; second, acreage switching between rotations is 

allowed. These two improvements greatly improved the crop rotation model and allowed it to be 

able to address more practical issues. A dynamic approach, motivated by POLYSYS, was used 

to simulate profits in several northern and southern U.S. states. Realized prices for crops were 

generated under crop yield shocks derived from the three general circulation climate models. A 

farmer‟s profitability calculation should use this realized price instead of price expectations. The 

results indicate that global warming would generate lower profitability in the southern U.S. states 

even when producers‟ acreage response is considered. Thus, our results suggest that acreage 

response alone is not efficient to ameliorate the potential negative effects of global climate 

change on agricultural production and profitability. These results support our assertion that 

previous climate change studies which do not include farmer adaptation likely overestimate the 

potential negative effects of global climate change on the agricultural sector.  

Our results indicate that crop yields generally show a mild decrease due to predicted global 

climate change in the northern U.S. states studied, and a relatively more pronounced negative 

effect in the southern U.S. states studied, where warm temperatures and periodic drought already 

pose significant constraints to crop production. For most of the states studied, the reduction in 

crop yields due to climate change resulted in reduced farm profitability. 

Predicted climate change is more likely to pose a problem for agricultural production and 

profitability in southern U.S. states as compared to northern U.S. states. This result is consistent 

with the expectation that a probable impact of global climate change, should it occur as predicted, 

would be to shift some cropping patterns from the southern U.S. to the northern U.S. 
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 Our model and results provide farmers in different regions of the country with useful 

guidance for future planting decisions under uncertain weather and economic conditions. Our 

results also suggest that federal and state governments can help reduce the potential negative 

effects of predicted climate change on agricultural production and profitability by facilitating 

farmer response to changing weather patterns; for example, by providing up-to-date, localized 

climate change predictions that farmers can use to develop crop yield, price and acreage 

expectations.  

 

5.2 Limitation and Future Research 

The approaches used in this dissertation research do have certain limitations. Climate change 

projections include an increased likelihood of both floods and droughts which will make U.S. 

agriculture increasingly unstable and make it difficult for U.S. agricultural producers to make a 

profit. For the PCR model, only temperature and precipitation were included as weather 

conditions, while these extreme events which could have huge impacts on agriculture were 

ignored.  

Because extreme weather events do not have a monthly value, it is difficult to combine 

extreme weather events with temperature and precipitation into the PCR model. For future 

research, a PCR model correctly including extreme weather events would be a great 

improvement.  

For the crop rotation model, the interaction between fertilizer input and crop yields were 

not included.  We assumed producers' only response option is crop rotation. However, in actual 

crop planting decisions, producers could change the input of fertilizer and pesticide, while 

simultaneously making a change in crop rotations. In future research, the crop rotation model 
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could be modified by adding in fertilizer and pesticide input assumptions and responses. 

Although the crop rotation model was improved to allow switching between rotations, no new 

crop varieties are allowed in the acreage response. This limitation is not due to the constraints of 

the crop rotation model; rather, we did not allow new crop varieties since we did not have values 

for their respectable crop yields.  

Because climate change may affect various sectors of the economy directly or indirectly, 

interactions between different sectors should be included in future studies to assess the entire 

effects of climate change on agriculture. However, the dynamic simulation process in Chapter 4 

only addresses the direct effects of climate change. 

This dissertation research also greatly depends on current government programs. For 

future research, if there are changes in government programs, the approach developed in this 

dissertation may have to be revised. 


