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ABSTRACT  

 This thesis presents an integrated, effective approach to understanding sinkhole 

formation dynamics and provides a decision-making tool to mitigate risks associated with 

sinkhole formation.  Comprehensive ordinary least squares (OLS) and geographically 

weighted regression (GWR) geostatistical models are developed for quantifying sinkhole 

formation mechanisms in the mantled karst terrain of Dougherty County, Georgia (area: 

183 km
2
). Sinkhole density was determined using a GIS-based sinkhole mapping 

procedure with ten-meter resolution digital elevation models (DEMs) from 1999 and 

2011 and a one-meter 2011 LiDAR DEM. Geostatistical models were performed on two 

sinkhole density datasets: 1) a spatiotemporal dataset representing newly formed and 

enlarged sinkholes between 1999 and 2011, and 2) LiDAR-derived sinkholes. 

Geostatistical results show that geologic, hydrologic, and hydrogeologic variables are 

most influential in sinkhole formation. Geostatistical prediction results were used with 

deterministic interpolators to assess the ability of statistically-based methods to predict 

sinkhole density.  
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CHAPTER 1 

PREFACE  

 

 The work presented hereafter has two components. The main component is 

contained within Chapters 2 – 5. Chapters 2 – 5 will be submitted for publication in the 

journal Earth Surface Processes and Landforms, and each chapter represents the sections 

of the manuscript (i.e., introduction, methodology, results, conclusion). Content and 

figures have been added in some areas for lengthened descriptions. The methodologies 

developed and results found in Chapters 2 – 5 are for a local study area. The secondary 

component, contained in chapter 6, demonstrates how the local model described in 

chapters 2 – 5 can be applied to a larger study area (area: 868 km
2
). Chapter 7 is an 

overall summary of the two components.   

 While the two components are consistent with respect to scientific questions 

addressed and methodologies applied, the two components differ in data source, data 

resolution (i.e., spatial and temporal), study area scale, and types of data utilized. 

Additionally, the secondary component (Chapter 6) is content I generated while leading a 

research team in the NASA DEVELOP Applied Sciences Program at the University of 

Georgia from June to August (2015). Dr. Adam Milewski and I wrote a successful 

proposal to the NASA DEVELOP Program that was derived from the methodologies and 

results described in Chapters 3 and 4, respectively.  
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CHAPTER 2 

INTRODUCTION  

 

Karst topography can be found at any latitude and elevation around the world, 

with rock units potentially containing karst features covering approximately 20% of the 

Earth’s land surface (Stokes et al., 2010; Ford and Williams, 1989). Karst landscapes are 

characterized by three primary morphological features: input landforms that direct 

surface water underground (i.e., sinkholes), subsurface conduit systems (i.e., fractures 

and caves enlarged by solution), and discharge areas (i.e., springs) (Ford et al., 1988). 

Karst features, specifically sinkholes, present hazards and engineering challenges to 

residential, commercial, industrial, and agricultural infrastructure, serve as entry points 

for groundwater contaminants, and cause vertical deformation (i.e., subsidence) by 

transporting sediment underground (Hyatt and Jacobs, 1996; Waltham et al., 2005; Galve 

et al., 2009a; Newton, 1987).   

Sinkhole formation is the result of complex interactions between hydrologic (e.g. 

flooding), geologic (e.g., overburden thickness), geomorphologic (e.g., elevation), 

anthropogenic (e.g. land use), climatic (e.g. precipitation), hydrogeologic (e.g. aquifer 

fluctuations), and other factors acting with fluctuating magnitudes over varying spatial 

and temporal scales. It is difficult to directly observe and quantify the influence of each 

factor responsible for sinkhole formation because the majority of the factors operate in 

the subsurface and over generally long time scales. Additionally, two or more of these 
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processes often operate in conjunction to form or enlarge an existing sinkhole (Ford et 

al., 1988). However, inferences about the controls on sinkhole formation can be made by 

measuring the relationships between sinkhole density and the spatial distribution of the 

factors that control sinkhole occurrence (Doctor and Doctor, 2012).   

 

Literature Review 

Although sinkhole formation is site-specific, relationships between sinkhole 

density and controlling factors can be determined in areas with historical data on sinkhole 

development and an abundance of ancillary datasets to accurately represent sinkhole 

formation controlling factors and mechanisms (Wilson and Beck, 1992). Panno et al. 

(2013) related sinkhole location and evolution to hydrogeologic (e.g., water table depth 

and storage coefficients), hydrologic (e.g., recharge rates), and geologic (e.g. bedrock 

topography) factors in the sinkhole plain of Illinois, USA. Hubbard (2001) analyzed 

sinkhole distribution in the Valley and Ridge Province, Virginia, USA, and correlated the 

highest sinkhole densities with lithology (e.g., bedding planes), geologic structures (e.g., 

fold and fault axes), and hydraulic gradients related to proximity to incised segments of 

rivers. Al-Kouri et al. (2013) found that sinkhole occurrence was most influenced by 

urban land use, fault distribution, and proximity to surface water features. In the Ebro 

Valley (Spain) evaporite karst setting, sinkhole susceptibility and hazard have been 

determined by quantifying the relationships between sinkhole type and distribution and 

different geomorphologic units, elevation, alluvium thickness, piezometric surface , land 

use, and electrical conductivity of the surficial aquifer (Galve et al., 2009a,b; Gutiérrez et 

al., 2007; Lamelas et al. 2008; Galve at al. 2008). Doctor and Doctor (2012) and Doctor 
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et al. (2008a,b) measured the influence of geologic (e.g., distance to fractures and fold 

axes) and hydrologic features (e.g., distance to streams and ponds) to sinkhole location 

Virginia, West Virginia, and Maryland, USA, karst regions. Gao and Alexander, Jr 

(2008) input bedrock type and overburden thickness to construct sinkhole probability 

maps in southeastern Minnesota and northwestern Iowa.  

This study focuses on the mantled karst terrain of Dougherty County, Georgia, 

USA (Figure 2.1), an area with well-documented sinkhole development (Brook and 

Allison, 1986; Hyatt and Jacobs, 1996; Warner Gordon et al., 2012; Hyatt et al., 2001). 

Brook and Allison (1986) used topographic maps and 1:24,000 scale, color infrared 

images to identify sinkholes based on the presence of surface water features, vegetation 

and soil moisture patterns, and topographic expression. The mapped sinkhole distribution 

and color infrared images were used to map fractures and compare the mapped fracture 

orientations with regional trends. Hyatt and Jacobs (1996) found that flooding of the Flint 

River in 1994 triggered the formation of at least 312 sinkholes in and around the Albany 

area of northern Dougherty County; 88% of which formed within flooding limits. The 

mechanisms involved in the formation of the 312 sinkholes were liquefaction of the 

unconsolidated overburden into bedrock cavities and loss of buoyant support as flood 

waters receded. Hyatt and Jacobs (1996) noted that the sinkholes followed a linear 

pattern, which suggests that joints and fractures influence sinkhole distribution. 

Following Tihansky (1999), Warner Gordon et al. (2012) suggested that rapid 

fluctuations of the Upper Floridan aquifer and overburden removal (2.5 - 4.5m) for 

construction caused localized sinkhole formation in a municipal well field. In the covered 

karst region of Lowndes County, Georgia, Hyatt et al. (2001) suggested that several 
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factors had an influence on sinkhole locations, including elevation, soil type, overburden 

thickness, and potentiometric head levels.  

Of the many approaches used to understand and/or predict sinkhole formation, 

Galve et al., (2009b) found that nearest neighbor and sinkhole density methods perform 

better than other techniques when identifying areas of sinkhole susceptibility, but those 

methods do not include sinkhole formation explanatory variables. Thus, their ability to 

measure the influence of various factors on sinkhole development is limited (Doctor and 

Doctor, 2012). Geographically weighted regression (GWR) is a technique used to 

measure spatially varying relationships, such as the influence of controlling factors on 

sinkhole formation (ESRI 2012). GWR models a dependent variable by building a unique 

regression equation for individual points (e.g. sinkholes) and weighting the influence of 

each independent variable based on distance from the position of the dependent variable. 

GWR analysis results can be used to measure the overall fit of a model and quantify the 

degree of influence of each independent variable on a given dependent variable value. 

 

Objectives 

Previous studies have not quantified the relationships between sinkhole 

occurrence and a multitude of sinkhole formation factors in the study area. The goal of 

the present work was to evaluate the influence of controlling factors on sinkhole 

distribution in the mantled karst environment of southern Dougherty County, Georgia. 

The first objective was to produce sinkhole inventory maps for 10m resolution Digital 

Elevation Models (DEMs) from 1999 and 2011. Sinkholes that formed or enlarged 

between 1999 and 2011 were identified, hereafter referred to as temporal-difference (TD) 
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sinkholes, for a spatiotemporal analysis of sinkhole formation. The second objective was 

to create a high-resolution sinkhole inventory map from a 1m resolution LiDAR (Light 

Detection and Ranging) DEM. Spatial statistical techniques were utilized on these two 

sinkhole inventory datasets (TD and LiDAR) to fulfill the third objective of measuring 

the influence of controlling factors on sinkhole formation. Finally, sinkhole prediction 

maps were produced from spatial statistics results. 

 

Study Area 

The study area, covering 183 km
2
, is located in southern Dougherty County, 

Georgia, and is part of the Dougherty Plain region of the Coastal Plains Physiographic 

Province in southwest Georgia (Figure 2.1). Precipitation averages 1270 mm/year but has 

high annual variability (Stewart et al., 1999). Long-term precipitation patterns 

determined from a 12-month Standardized Precipitation Index show drought conditions 

occurred three separate times during the study period: 1998 – 2002, 2006 – 2008, and 

2011 – 2013.  

The karst topography is characterized as flat to gently sloping with land-surface 

altitudes ranging from 42 – 97 m within the study area (Stewart et al., 1999). The lowest 

elevations are in the Flint River valley, and the land surface gains elevation as it slopes 

towards the Solution Escarpment along the eastern and southeastern portions of the study 

area (Figure 3.2). The karst topography of the Solution Escarpment, described by 

MacNeil (1947), differs from lower-lying areas due to greater overburden thicknesses (up 

to 45m) and relatively infrequent sinkhole formation (Hicks et al., 1987).  
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Land use is primarily forested (43.7%), cultivated crops (23.4%), and grassland 

(15.6%) (Homer et al., 2015) (Figure 3.9). Central pivot irrigation systems are used for 

many cultivated crops (e.g. cotton and peanuts), and this agricultural practice may 

enhance sinkhole formation by increasing infiltration processes and accelerating erosion 

of incohesive unconsolidated materials into preexisting, solution-enlarged subsurface 

cavities (Ford and Williams, 1989). Minor roads are located in developed locations, but 

several major roads and highways cross the study area. Proximity to roads was a factor 

considered in the sinkhole formation analysis, as human activities that alter the physical 

environment (e.g., construction and groundwater extraction) may act as mechanisms that 

trigger sinkhole formation (Rose et al., 2004; Galve et al., 2009a; Waltham et al., 2005; 

White et al., 1986).  

The surface hydrologic features considered include streams, ponds, and wetlands 

(Figure 3.7). Internal drainage due to active limestone dissolution has limited surface 

drainage in the study area (Hicks et al., 1987; Warner Gordon et al., 2012). The main 

surface drainage feature is the Flint River, which forms a terraced valley with a 

floodplain ranging from 1 – 4 km wide in the study area. The primary tributary to the 

Flint River in the study area is Dry Creek, an intermittent stream flowing from the 

highlands of the Solution Escarpment. Man-made ponds and intermittent ponds, which 

form from surface runoff depositing clay and other fine-grained material into paleo-

sinkholes to create an impermeable base layer, occur throughout the study area (Ford and 

Williams, 1989). The majority of floodplains of the Flint River and Dry Creek are 

classified as wetlands (USFWS, 2002). Other wetlands are primarily east of the Flint 

River and north of Dry Creek.  
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The geology of southern Dougherty County is characterized by alternating units 

of Cretaceous to Quaternary age sandstone, dolomite, limestone, shale, and siltstone 

(Hicks et al., 1987). In this study, the Ocala Limestone was the only geologic unit 

considered due to its influence on sinkhole formation. The Ocala Limestone of late 

Eocene age underlies the unconsolidated overburden, is densely fractured in areas (up to 

5.5 fractures / km
2
), and has well-developed secondary permeability along the fractures, 

joints, and bedding planes due to solution enlargement (Brook and Allison, 1986; Hicks 

et al., 1987). The unconsolidated overburden (i.e., soil) ranges from 0 – 40 m thick in the 

study area (Figure 3.6) and is primarily made up of fine, well-drained to poorly drained 

loamy sands, sandy loams, clays, and weathered bedrock material. The thinnest layer of 

overburden thickness is along the Flint River where the Ocala Limestone outcrops due to 

erosional downcutting. The unconsolidated overburden is thinner west of the Flint River 

(< 25m) and progressively thickens toward the southeast of the study area to 40m of 

unconsolidated overburden (Brook and Allison, 1986; Parker and Hawman, 2012).  

The hydrogeology is comprised of the surficial aquifer and the Upper Floridan 

aquifer (UFA). The surficial aquifer has an intermittent areal extent and, where it exists, 

is classified as a perched water table on shallow clay lenses (Torak et al., 1993). The 

Ocala Limestone comprises the upper hydrostratigraphic unit of the UFA. In the northern 

region of the study area, transmissivity values derived from diffusivity analyses and 

multiwell aquifer performance tests range from 65 to 26,300 m
2
 per day (Torak and 

Painter, 2006). Specific capacities, storage coefficients, and transmissivity values vary 

substantially due to limestone dissolution and fractured bedrock (Brook and Sun, 1982; 

Hicks et al., 1987). Aquifer levels exhibit annual fluctuations up to 14m (Figure 3.8), but 
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are generally highest throughout the winter season into spring months and lowest during 

summer and fall months due to precipitation patterns and increased groundwater 

extraction for agricultural purposes.  
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Figure 2.1: Dougherty County is located in southwest Georgia. The 183 km
2
 study area is 

outlined in southeast Dougherty County.  
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CHAPTER 3 

METHODOLOGY 

 

The integrated approach towards identifying and analyzing sinkhole formation 

involved three steps. First, we identified and mapped sinkholes using three DEMs with 

varying horizontal resolutions: 1999 (10 m), 2011 (10 m), and 2011 LiDAR (1 m). Two 

sinkhole inventory datasets were extracted from the sinkhole mapping procedure: 1) 

temporal-difference (TD) and 2) LiDAR. The TD map represents sinkholes that formed 

or enlarged between 1999 and 2011 and were identified by comparing the 1999 (10 m) 

and 2011 (10 m) sinkhole mapping results. A higher-resolution sinkhole inventory was 

derived from the 1 m LiDAR DEM. Filter mechanisms and validation measures were 

applied to improve the accuracy of the sinkhole maps. Secondly, a sinkhole formation 

model was developed for southern Dougherty County by measuring the relationships 

between the previously mapped sinkhole distributions and a variety of sinkhole formation 

factors. Ordinary least squares (OLS) and geographically weighted regression (GWR) 

spatial statistical techniques were utilized to identify overall model performance and 

determine the most influential factors responsible for the TD and LiDAR sinkhole 

distributions. Thirdly, the GWR results were tested for their predictive capability by 

using the GWR sinkhole density estimates in the study area in a deterministic interpolator 

(e.g. Inverse Distance Weighting). The resulting TD and LiDAR predictive maps were 

compared to the TD and LiDAR measured maps. 
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Sinkhole Mapping 

A complete sinkhole inventory is essential for accurately analyzing the factors 

influencing sinkhole development (Gutiérrez et al., 2011). However, it is time and 

money-intensive to map sinkholes using traditional methods (e.g., aerial imagery 

interpretation, field observation, and topographic maps), but the availability of DEM 

products have allowed for improved efficiency and accuracy of sinkhole inventories, 

especially at larger scales. Additionally, this work utilizes the availability of current and 

historical DEMs, which allows for a spatiotemporal analysis of sinkhole formation. We 

present a sinkhole mapping methodology adapted from Rahimi and Alexander, Jr. (2013), 

Shaw Faulkner et al. (2013), and Doctor and Young (2013) to produce reliable sinkhole 

inventories from which sinkhole density measurements were derived (Figure 3.1). 

Evaluations of the adopted sinkhole mapping methodology show that 80 – 90% of 

sinkholes are correctly identified (Rahimi and Alexander, Jr., 2013). Sinkhole mapping 

and subsequent analyses were performed within ArcGIS 10.1 (ESRI 2012).  

DEMs from 1999 and 2011 were utilized for sinkhole inventory production. The 1999 

DEM (10m horizontal resolution) was obtained from the U.S. Geological Survey 

National Elevation Dataset (Gesch et al., 2002). The 2011 LiDAR DEM (1m horizontal 

resolution) was gathered from the geographic information system (GIS) division of the 

City of Albany and Dougherty County Engineering Department. The 2011 LiDAR DEM 

was resampled to a 10m horizontal resolution DEM using a cubic interpolation algorithm 

(Kidner et al., 1999). The stream and road buffer polygon layers, which were used as 

filtering mechanisms to minimize falsely identified sinkholes (i.e., false positives), were 

derived from the USGS National Hydrography Dataset 



 

13 

(http://datagateway.nrcs.usda.gov) and the Georgia GIS Clearinghouse 

(https://data.georgiaspatial.org), respectively. High-resolution aerial imagery (1-2m) from 

2005-2013 was used to validate sinkhole mapping results. These data were gathered by 

the US Department of Agriculture (USDA) National Agricultural Imagery Program 

(NAIP) available at http://datagateway.nrcs.usda.gov. Additionally, historical Google 

Earth imagery for 1999, provided by the U.S. Geological Survey, and historical sinkhole 

maps from Brook and Allison (1986), Hyatt and Jacobs (1996), and Warner Gordon et al. 

(2012) were used during the sinkhole inventory validation procedure.  

The first step to produce a sinkhole inventory map using GIS is to fill DEM 

depressions to their spill level, or height where a drainage direction can be defined (ESRI 

2012). The original DEMs were then subtracted from the filled DEMs. These differenced 

data effectively identify each depression (i.e., potential sinkhole) in the original DEM and 

provide important geometric characteristics (e.g., depth) of the depressions (Doctor and 

Young, 2013).  

Filter mechanisms were applied to improve the accuracy of the sinkhole 

inventories by removing falsely identified sinkholes initially recognized from the 

differenced data. Geometric characteristics, including depth, eccentricity, and area, were 

calculated and attributed to each sinkhole polygon. The depth filter was based on the 

vertical accuracies of the DEMs, which are 1.55 m root-mean-square error (RMSE) for 

the 1999 DEM and 20cm RMSE for the 2011 LiDAR DEM. The 2011 10 m DEM was 

conservatively assigned a 1.55 m RMSE vertical accuracy to remain consistent with the 

1999 sinkhole inventory production. Application of the depth filter results in a 95% 

confidence level that an identified depression is a true depression in the DEM (Doctor 

http://datagateway.nrcs.usda.gov/
https://data.georgiaspatial.org/
http://datagateway.nrcs.usda.gov/
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and Young, 2013). The second geometric filter applied to the sinkhole inventory datasets 

was based on the eccentricity of an ellipse (𝑒), which is calculated as: 

𝑒 =  √1 −
𝑏2

𝑎2
        Equation 1 

where a and b are one-half of the depression’s major and minor axes, respectively. The 

geometry of the depression diverts farther from a perfect circle as eccentricity values 

approach 1 and becomes more compressed due to greater differences between the major 

and minor axes lengths.  Based on aerial imagery and visual analysis of the sinkhole 

datasets, an eccentricity threshold of 0.96 was applied to remove elongated depressions 

that were unlikely to be true sinkholes. Lastly, an area filter mechanism was applied to 

the LiDAR sinkhole dataset. Hyatt and Jacobs (1996) measured 53 sinkholes immediately 

north of the study area and found they had an average area of 11.48m
2
. Due to the small 

sample size of the those results and high horizontal resolution (1m) of the LiDAR DEM, 

we chose an area threshold of 3m
2
 to eliminate any falsely identified sinkholes that could 

be the result of horizontal accuracy errors. 

Filtering mechanisms related to natural and anthropogenic artifacts must be 

applied to sinkhole inventory datasets to exclude falsely identified sinkholes that are, for 

example, a result of misinterpretation of shallow or intermittent stream channel features 

or road construction (e.g., ditches) (Shaw Faulkner et al., 2013). A buffered polygon file 

was created that represents the area 5m from either side of the middle of the stream 

channel and its intermittent tributaries to address natural artifacts related to intermittent 

stream channels in the study area (i.e., Dry Creek).  Similarly, a road buffer was 

generated that represents the area 15 m from either side of the central road line to 

eliminate falsely identified sinkholes in constructed road ditches. Proximity filters were 
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applied that eliminated sinkholes with greater than 50% of their area within the stream 

and road buffers.  

A two-fold manual validation process was implemented to verify the accuracy of 

the sinkhole inventories and eliminate any falsely identified sinkholes that remained after 

the filter mechanisms were applied. First, georeferenced, high-resolution (1-2 m) aerial 

imagery was used to verify sinkhole locations. This process was primarily focused on 

urban areas and anthropogenic structures. For example, sinkholes that fell within 3m of 

building footprints were eliminated. Secondly, previous sinkhole maps from Brook and 

Allison (1986), Hyatt and Jacobs (1996), and Warner Gordon et al. (2012) were 

compared with the results of the applied sinkhole mapping methodology. One issue with 

this approach is the local land use practice of filling in sinkholes, especially in urban 

areas or near roads, thus excluding them from being identified with our mapping 

procedure. However, large-scale sinkholes and areas of high sinkhole density identified 

by previous studies matched well with our sinkhole mapping results. Despite the 

thorough manual validation procedures, sinkhole mapping results should be considered as 

minimum sinkhole inventories due to DEM resolutions and methodology constraints 

(Galve et al., 2008; Rahimi and Alexander, Jr., 2013). 

 The results of the 1999 (10 m) sinkhole map were subtracted from the 2011 (10 

m) sinkhole map to produce the temporal-difference (TD) sinkhole dataset, which 

represents sinkholes that formed or were enlarged between 1999 and 2011 (Figure 3.2). 

The two sinkhole polygon datasets (i.e., TD and LiDAR) were prepared for further 

analyses upon completion of the validation procedure.  
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Cluster analyses were performed on the sinkhole datasets to quantify spatial 

distribution patterns and provide empirical distance inputs for GWR bandwidths. Figure 

3.3 shows the sinkhole distribution pattern results for the TD and LiDAR datasets. The 

bandwidth applied to the GWR analyses was the distance of maximum clustering derived 

from the cluster analysis and differed from the bandwidth used to measure sinkhole 

density to avoid presenting dependence into the GWR model (Doctor and Doctor, 2012). 

Sinkhole density was measured at each sinkhole point location using GIS. A 1 km 

radius was used to calculate sinkhole densities for both sinkhole datasets to allow for 

proper spatial variance of density values for the purposes of GWR calculations. Figures 

3.4 and 3.5 show the TD and LiDAR sinkhole density results, respectively, expressed as 

the number of sinkholes per km
2
. The sinkhole density value was spatially assigned to 

each sinkhole point as the dependent variable to be modeled in the OLS and GWR 

analysis.  

 

Sinkhole Formation Mechanisms 

Five separate categories of independent variables (i.e., predictor or explanatory 

variables) were implemented into the spatial statistical models that represent the 

processes deemed to be governing the spatial distribution of sinkhole formation in the 

study area. The processes (e.g., geologic, hydrologic), specific variables, data sources, 

and method of production are presented in Table 3.1. GIS was used to import and 

georeference variable layers that were acquired from aforementioned sources (e.g., 

hydrography, wetlands, roads, etc.). Interpolated variable layers (e.g., aquifer fluctuations 

and overburden thickness) were produced within GIS. Independent variables that 



 

17 

represent pedologic, geochemical, and climatic processes could not be included in our 

sinkhole formation model due to paucity of data, insufficient data form (i.e., low 

horizontal resolution), and/or inability to properly represent the sinkhole formation 

mechanism (e.g., individual high-precipitation events). However, qualitative analyses can 

be made regarding the unrepresented processes and is discussed later. A description of 

each independent variable is included below: 

- Proximity to fracture (geologic): Distance to nearest bedrock fracture (i.e., joint or 

lineament). Bedrock fracture data from Brook and Allison (1986) were 

georeferenced to the study area and used to find the distance from each sinkhole 

to the closest fracture (Figure 3.6). As noted by Brook and Allison (1986) and 

Hyatt and Jacobs (1996), sinkholes tend to follow fracture-controlled linear trends 

in Dougherty County. Fractures allow for high secondary permeability, which 

increases dissolution potential of the Ocala Limestone and creates subsurface 

voids for overburden material to be transported and deposited; thus forming a 

sinkhole. 

- Overburden thickness (geologic): Residuum thickness (i.e., depth to bedrock) 

overlying the Ocala Limestone (Figure 3.6). Borehole and cross-section point data 

(n = 48) were gathered from Hicks et al., 1987; Torak et al., 1993; Torak and 

Painter, 2006; McSwain, 1998; Warner, 1997; McFadden and Perriello, 1983; 

Clarke et al., 1984. This variable layer was generated using the Empirical 

Bayesian Kriging geostatistical interpolator (RMS = 2.42). This method 

constructs local models on subsets of the data, thus accounting for some of the 
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local heterogeneity of bedrock topography and residuum thickness in the mantled 

karst terrain.  

- Proximity to stream (hydrologic): Distance to nearest perennial (Flint River) and 

intermittent (Dry Creek) stream channels (Figure 3.7). This variable reflects areas 

prone to flooding, which can initiate sinkhole formation by saturating and 

liquefying the unconsolidated overburden, reducing soil stability, and accelerating 

soil transportation into bedrock cavities (Hyatt and Jacobs, 1996).  

- Proximity to wetland (hydrologic): Distance to the nearest swamps and marshes 

identified from the USFWS National Wetland Inventory (Figure 3.7). Wetlands 

are thought to influence sinkhole formation in the study area due to soil moisture 

conditions and infiltration processes that may lead to increased dissolution rates, 

bedrock weathering, and increased transport of residuum materials into subsurface 

voids. 

- Proximity to pond (hydrologic): Distance to the nearest pond (Figure 3.7). 

Leakage from unlined ponds supports subsurface erosion and dissolution 

processes (Galve et al., 2008). Ponds have been shown to drain due to sinkhole 

formation within or in the immediate vicinity of ponds in the study area (J. Stolze, 

Albany Utilities, personal communication, June 26, 2015).  

- Aquifer fluctuations (hydrogeologic): Average UFA oscillations from 1999 – 

2011 using USGS National Water Information System well data (Figure 3.8). 

Warner Gordon et al. (2012) has shown that sinkhole formation correlates with 

rapid water level fluctuations in the study area. The maximum and minimum well 

level differences for each year from 1999 to 2011 were averaged (n = 12). The 
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georeferenced point data were input into a kriging interpolator to produce a 

smooth surface (RMS = 3.22).   

- Land use (anthropogenic): Land use and land cover type ascribed by the USGS 

National Land Cover Database (Figure 3.9). Human activities that modify the 

physical environment (e.g., construction, groundwater extraction, irrigation, etc.) 

have been shown to influence sinkhole distribution (Rose et al., 2004; Galve et 

al., 2009a; Waltham et al., 2005; White et al., 1986). This variable was not 

included in GWR analysis due to the data type (categorical).  

- Proximity to road (anthropogenic): Distance to nearest road identified in the U.S. 

Census Bureau roads and highways inventory (Figure 3.9). Road excavations 

decrease overburden thickness and change local drainage directions and 

infiltration rates due to ditch construction.  

- Elevation (geomorphologic): Ground surface altitude in meters a.s.l. derived from 

the LiDAR DEM representing the geomorphology of the study area (Figure 3.2). 

This variable was not included in GWR analysis due to non-stationarity, which is 

most likely the result of the gently sloping land surface where elevation values 

have low variance. 

- Aspect (geomorphologic): Direction of the steepest land surface slope gradient 

obtained from the LiDAR DEM. This layer represents topographic controls on 

dominant local drainage directions which may influence subsurface infiltration 

and erosion processes. Similar to elevation, this variable was not included in 

GWR analysis due to non-stationarity. 
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Spatial Statistics 

Following the processing of the aforementioned variables, ordinary least squares 

(OLS) regression was used to evaluate the performance of each sinkhole formation model 

(e.g., TD and LiDAR) and verify the models do not violate common regression model 

assumptions through diagnostic statistics assessments. OLS applies a global linear 

regression model for the entire study area to measure the overall fit of the data and 

produce predictions for a dependent variable (i.e., sinkhole density) based on 

relationships to assigned independent variables (i.e., geologic, hydrologic, anthropogenic, 

etc.). The diagnostic statistics showed that neither sinkhole formation models violated 

these important assumptions: the modeled relationships were consistent (Koenker (BP) 

statistic), model predictions were normally distributed and not biased (Jarque-Bera 

statistic), and redundancy among explanatory variables was not an issue (low variance 

inflation factors < 7.5).  

OLS assumes variable relationships are constant in space, which prohibits 

regression coefficients to vary over space. Due to the spatial heterogeneity of sinkhole 

density and individual sinkhole formation factors, a local spatial statistics technique that 

allows regression coefficients to vary, such as GWR (Brunsdon et al., 1998), is better 

suited for quantifying the influence of sinkhole formation controls and producing more 

accurate predictions of sinkhole density. GWR provides a direct method of testing 

hypotheses that are the subject of spatial varying relationships by computing a unique 

regression equation for each point in a dataset using an assigned kernel type, bandwidth 

method, and optional weighting factors for individual features.  
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 GWR investigations are influenced by the size of the study area and the 

regression analysis bandwidth (Doctor and Doctor, 2012). The selected bandwidth 

defines the area around each sinkhole that the regression equation considers; that is, what 

value(s) for each sinkhole formation factor (e.g. independent variable) to consider for 

modeling sinkhole density. In this study, the GWR bandwidth selection is a fixed 

distance based on cluster measurements. Utilizing a fixed bandwidth has been shown to 

produce useful model results when the regression model primarily considers proximity 

data (Doctor and Doctor, 2012). However, sinkholes located in low sinkhole density 

areas did not receive a regression prediction due to low data availability.  

In addition to measuring the influence of controlling factors on sinkhole 

formation, GWR sinkhole density prediction results are input into geostatistical 

interpolators to test the ability of GWR to predict sinkhole density. The TD and LiDAR 

measured sinkhole density results were compared to the GWR-derived predicted sinkhole 

density results to identify trends and limitations of GWR as a predictive tool.  
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Table 3.1: Summary of variables used in the OLS global sinkhole formation model. The 

variables used in the GWR local model are indicated in bold. 

 Variable Source Production Method 

Geologic 

Proximity to 

fracture 

Brook and Allison, 

1986 
ArcMap near tool 

Overburden 

thickness 
USGS borehole data 

Empirical Bayesian 

Kriging interpolation 

Hydrologic 

Proximity to stream 
USGS National 

Hydrography Dataset 
ArcMap near tool 

Proximity to 

wetland 

USFWS National 

Wetland Inventory 
ArcMap near tool 

Proximity to pond 
USGS National 

Hydrography Dataset 
ArcMap near tool 

Hydrogeologic Aquifer fluctuations 

USGS National Water 

Information System 

groundwater data 

Inverse Distance 

Weighting 

interpolation 

Anthropogenic 

Land use 
USGS National Land 

Cover Dataset 
- 

Proximity to road U.S. Census Bureau ArcMap near tool 

Geomorphologic 

Elevation 
LiDAR and USGS 

NED 
- 

Aspect 
LiDAR and USGS 

NED 
ArcMap aspect tool 
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Figure 3.1: Generalized flow chart delineating the methodology to produce accurate 

sinkhole inventory maps and sinkhole density measurements.  
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Figure 3.2: Map showing the results of the newly formed and enlarged sinkholes from the 

temporal-difference (TD) analysis.   
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Figure 3.3: Multi-distance spatial cluster analysis plot specifying sinkhole distribution 

patterns for the mapped TD and LiDAR sinkholes. The vertical lines indicate the distance 

of maximum clustering for the two sinkhole datasets.  
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Figure 3.4: Sinkhole density map derived from the temporal-difference (TD) 

spatiotemporal analysis. 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

 

Figure 3.5: Sinkhole density map derived from the high-resolution LiDAR analysis.  
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Figure 3.6: Geologic independent variables: proximity to bedrock fractures and 

overburden thickness (i.e., depth to bedrock).  
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Figure 3.7: Hydrologic independent variables: proximity to streams, ponds, and wetlands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 

 

Figure 3.8: Hydrogeologic independent variable: Upper Floridan Aquifer fluctuations. 
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Figure 3.9:  Anthropogenic independent variables: land use and proximity to roads. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

Sinkhole Mapping and Spatiotemporal Evolution 

The initial number of identified depressions from the three differenced sinkhole 

polygon layers were 1,273 (1999 10 m), 7,793 (2011 10 m), and 631,243 (LiDAR 1 m).  

Table 4.1 summarizes the results of the geometric and proximity filtering mechanisms 

applied to the initial sinkhole datasets. The depth filter mechanism allowed for a high 

percentage of possible false-positive depressions (78-86%) to be removed. 275 and 3,412 

sinkholes were identified in the final TD and LiDAR datasets, respectively (figure 3.4 

and 3.5).   

Cluster analysis (i.e., nearest neighbor) results are summarized in table 4.2. Both 

datasets show statistically significant clustering at shorter distances and statistically 

significant dispersion at longer distances. Considering all distances, the TD sinkholes 

exhibit a randomly distributed pattern (p = 0.86, z = 0.18), and the LiDAR sinkholes 

showed a significantly clustered distribution (p < 0.00, z = -6.27). The random 

distribution of the TD sinkhole dataset is influenced by a smaller sample size in a large 

study area. 

Sinkholes were classified into three categories based on area (measured as an 

ellipse): small = < 250 m
2
; medium = 250 - 1,000 m

2
; and large = > 1,000 m

2
. The 

average sinkhole area was 10,208 m
2 

and 6,947 m
2
 for the TD and LiDAR datasets, 
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respectively. The spatial resolution differences largely influence the dissimilarity in 

average sinkhole size between the two datasets. For example, the smallest sinkhole that 

could be detected in the TD dataset was ~100m due to the 10m resolution DEMs used to 

derive that dataset. Additionally, the effect of the broad distribution of sinkhole areas in 

Dougherty County (Brook and Allison, 1986; Hyatt and Jacobs, 1996) was taken into 

account when classifying sinkholes. Large sinkholes (> 5,000 m
2
) were excluded during 

classification due to their impact on average area despite their relatively low abundance. 

Instead, the average sinkhole area and standard deviation for sinkholes less than 1,000 m
2
 

were calculated and used for classification purposes (TD: 266 m
2
 avg., 234 m

2
 SD; 

LiDAR: 100 m
2
 avg, 179 m

2
 SD). 

The spatiotemporal TD mapping results show small sinkholes (n = 151) formed 

within close proximity to streams in areas of shallow to intermediate overburden 

thickness. Medium sinkholes (n = 54) were mostly randomly dispersed across the study 

area, though several formed along the margins of the Flint River floodplain and in areas 

of high UFA fluctuations. No large sinkholes formed during the study period (e.g., 1999 

– 2011), but pre-existing large sinkholes enlarged during the study period (n = 70) due to 

erosional processes. 

The spatially-detailed LiDAR-derived sinkhole inventory exhibited similar spatial 

patterns to the TD sinkhole dataset. Small sinkholes (n = 2,394) cluster near streams in 

areas of shallow to intermediate overburden thickness primarily west of the Flint River. 

Medium sinkholes (n = 312) are found along floodplain margins in areas of intermediate 

overburden thickness. Large sinkholes (n = 706) were mainly distributed in areas 
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characterized by intermediate to deep overburden thickness. Large sinkholes were not 

present within floodplains. 

 

Sinkhole Formation Model and Individual Factor Influence 

Firstly, the GWR sinkhole formation models were assessed for overall goodness 

of fit between observed and predicted sinkhole density values using adjusted coefficient 

of determination values (adj. R
2
). 94% and 92% of sinkhole density variability were 

explained in the TD and LiDAR sinkhole datasets, respectively (Table 4.3). The 

improvement from the global OLS to local GWR results reflects the capability of GWR 

to model variation inherent in the explanatory variables.  

Once the overall model results were evaluated, the factors with the strongest 

explanatory capabilities for sinkhole distribution were identified by GWR p-value results 

(Table 4.4).  Overburden thickness, aquifer fluctuations, and proximity to fractures, 

streams, and wetlands exhibited statistically significant explanatory power for both 

sinkhole datasets. Distance to roads was statistically significant for only the LiDAR-

derived sinkhole dataset. Distance to ponds proved to not have a strong influence on 

sinkhole distribution. These results are consistent with previous studies in the area (Brook 

and Allison, 1986; Warner Gordon et al., 2012; Hyatt and Jacobs, 1996) and are similar 

to results from other karst areas (Table 4.5).  

The addition of explanatory variables related to pedologic (e.g., clay content of 

soil), geochemical (e.g., calcium carbonate saturation), and climatic (e.g., precipitation) 

factors would most likely improve the overall model results but could not be explicitly 

included in the sinkhole formation models due to data paucity or model criteria (i.e., data 
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type or non-stationarity). Regardless, data were analyzed to contribute to the 

understanding of sinkhole formation in Dougherty County. Figure 4.3 shows a time-

series of Flint River discharge, daily precipitation, and groundwater levels. High 

precipitation events and flooding accelerate sinkhole formation through liquefaction 

processes (Hyatt and Jacobs, 1996). Sharp decreases in groundwater levels, a likely result 

of groundwater extraction, contribute to sinkhole formation by reducing groundwater’s 

hydrostatic support of overlying unconsolidated materials, thus allowing for accelerated 

sediment transport into subsurface voids. Figure 4.4 and 4.5 depict rainfall and drought 

conditions, respectively, that occurred in the study area throughout the study period. 

PRISM (Parameter-elevation Relationships on Independent Slopes Model) annual 

precipitation amounts from each year during the study period were averaged to produce 

figure 4.4. Precipitation varies only slightly across the study area. Thus, no relationship 

was identified between the spatial distribution of rainfall and sinkhole development. Wet 

and dry periods were identified by calculating the Standardized Precipitation Index (1998 

– 2002, 2006 – 2008, and 2011 – 2013) for the study area. Similar to aquifer fluctuations, 

oscillations between wet and dry periods may have also contributed to sinkhole formation 

due to variance in hydrostatic support. 

 

Geostatistical Prediction Interpolation 

Figures 4.1 and 4.2 compare the measured and predicted sinkhole density maps 

for the TD and LiDAR datasets, respectively. The results show general similarity, where 

areas of high and low sinkhole density compare well as a first-order estimate. The TD 

sinkhole density estimates over-predict in areas of high density, while the LiDAR-
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measured high sinkhole density areas are under-predicted, specifically in areas with > 80 

sinkholes/km
2
. Areas that had poor predictions are attributed to the spatial autocorrelation 

of regression residuals in areas of high spatial variability in sinkhole density 

measurements. These results show that, although robust, the GWR technique may not be 

the best method for predicting sinkhole distribution patterns. Rather, GWR is best suited 

for delivering a quantitative understanding of independent variable influences on sinkhole 

distribution patterns. 
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Table 4.1: Results of sinkhole mapping filter mechanisms. Values represent number of 

sinkhole points in the datasets.  

Filter 

Mechanism 

1999 

(10m) 

2011 

(10m) 

LiDAR 

(1m) 

Depth  183 1,583 134,571 

Eccentricity 179 1,493 119,159 

Area - - 21,294 

Stream buffer 173 1,255 17,967 

Anthropogenic buffer 160 497 3,412 

Final number of 

sinkholes 
160 497 3,412 
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Table 4.2: Nearest neighbor and spatial cluster analysis results. 

 
Temporal 

Difference  
LiDAR 

Number of observations 275 3,412 

Nearest neighbor classification Random Clustered 

Nearest neighbor z-score 0.18 -6.27 

Distance of maximum clustering 2,350 m 1,780 m 

Distance to dispersed pattern 3,880 m 3,560 m 
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Table 4.3: Results summary of the OLS and GWR models. AICc values account for 

model complexity and goodness of fit. The results from the sinkhole formation models 

with the lowest AICc values were used to produce the prediction maps.  

 
Temporal 

Difference 
LiDAR 

OLS Adj. R
2 0.69 0.69 

OLS AICc 795 27,310 

GWR Adj. R
2
 0.94 0.92 

GWR AICc 174 5,125 
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Table 4.4: GWR independent variable p-value results for the sinkhole datasets. 

Significant at *** 0.1% level; ** 1% level; * 5% level.  

Explanatory 

Variable 

Temporal 

Difference 
LiDAR 

Proximity to fracture 0.00*** 0.00** 

Overburden thickness 0.00** 0.00** 

Proximity to stream 0.02* 0.00** 

Proximity to wetland 0.03* 0.00** 

Proximity to pond 0.06 0.07 

Aquifer fluctuations 0.03* 0.01* 

Proximity to road 0.06 0.04* 
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Table 4.5: Results summary of influential sinkhole formation variables in other karst 

regions. Doctor and Doctor, 2012 (a): West Virginia; Galve et al., 2008 (b): Spain; 

Doctor et al., 2008 (c): Maryland; Lamelas et al., 2008 (d): Spain; this study (e): Georgia.  

Category Influential Variables 

Geologic 

Lithologic gradient (b), overburden thickness (b, e), Quaternary 

deposit thickness >30m (d), low percent of Quaternary impermeable 

layers (d), and distance to nearest: fault (a,c), fold axes (a,c), fracture 

(a,e) 

Hydrologic 
Distance to nearest: stream (a,e), spring (a), pond (c), 

endorheic/wetland area (d,e) 

Anthropogenic 
Irrigation location, distance to nearest: quarry (a,c), canal (b), and road 

(e)  

Hydrogeologic 

Water table elevation (b,c,d), water table gradient (b,d), electrical 

conductivity (b), sulphate content (b,d), total dissolved solids (b), 

gysum saturation (b), aquifer fluctuations (e)  

Geomorphologic 
Elevation (b), slope (b), aspect (b), geomorphologic unit (b), distance 

to paleochannels (b), terrace levels (d) 
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Figure 4.1: Measured (top) versus predicted (bottom) TD sinkhole density measurements. 

GWR prediction results were interpolated using the kriging method (RMS = 0.39). 
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Figure 4.2: Measured (top) versus predicted (bottom) LiDAR sinkhole density 

measurements. GWR prediction results were interpolated using the kriging method (RMS 

= 1.79).  
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Figure 4.3: Time-series analysis of Flint River discharge, precipitation, and groundwater 

levels from 1999 – 2011.  
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Figure 4.4: PRISM averaged annual precipitation for the period 1999 – 2011. The study 

area is outlined in southeast Dougherty County.  

 

 

 

 

 

 

 

 

 



 

46 

 

Figure 4.5: 1-month Standardized Precipitation Index derived from a National Oceanic 

and Atmospheric Administration (NOAA) gage located in central Dougherty County, 

Georgia.  
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CHAPTER 5 

CONCLUSIONS 

 

This paper integrated a GIS-based sinkhole mapping methodology with 

geostatistical techniques to analyze the primary factors and mechanisms influencing 

sinkhole formation within the mantled karst terrain of Dougherty County, Georgia. The 

results of our sinkhole formation models, including geologic, hydrologic, 

geomorphologic, hydrogeologic, and anthropogenic factors, show that hydrogeologic, 

hydrologic, and geologic variables are the most influential factors controlling sinkhole 

formation in both sinkhole datasets (i.e., TD and LiDAR). Specifically, areas with the 

following characteristics have a higher sinkhole formation probability within the study 

area: high aquifer fluctuations (12 – 14m), shallow overburden thickness (<7.5m), and 

close proximity to streams, wetlands, and bedrock fractures. These results were used to 

produce prediction maps for both sinkhole datasets.  

The investigations of the present paper resemble aspects of previous work (Doctor 

and Doctor, 2012; Doctor et al.,2008b), in which geographically weighted regression was 

used to evaluate factors influencing sinkhole formation. This contribution examines a 

larger study area with multiple dependent variable datasets and independent variables that 

encompass many categories of sinkhole formation factors. 

This study demonstrated that the application of spatial statistical techniques to 

multiple sinkhole inventory datasets (i.e., spatiotemporal and high-resolution) is an 
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effective approach to understanding sinkhole development. Applications of the 

demonstrated methodologies may be used by land use planners, water resource managers, 

and infrastructure developers to provide first-order estimates of future sinkhole 

occurrence to mitigate risks associated with sinkhole formation.  
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CHAPTER 6 

DOUGHERTY COUNTY ASSESSMENT 

 

The application of the methodologies employed in the southern Dougherty 

County study area was evaluated by implementing the sinkhole mapping and 

geostatistical-based sinkhole formation model across the entire extent of Dougherty 

County. This additional study provided a broader understanding of sinkhole formation in 

Dougherty County.  

Beyond the different scale in the subsequent analysis, different data were utilized 

for the Dougherty County assessment. A Category-1 proposal approved by the European 

Space Agency (ESA) permitted European Remote Sensing (ERS) 1 and 2 satellite 

aperture radar (SAR) data to be utilized for a time-series of elevation data. Five high-

resolution (5m) DEMs were generated from SAR data using the DEM extraction tool in 

ENVI’s SARscape program. The 5m DEM’s were from 1999, 2002, 2004, 2005, and 

2009. Although they were analyzed separately from the SAR-generated DEMs due to 

spatial resolution differences, 30m DEM data from NASA’s Terra satellite (ASTER 

sensor) and the SRTM were utilized to measure sinkhole development. These seven 

DEM’s were acquired to analyze the spatiotemporal distribution of cover-subsidence 

(large-scale) and cover-collapse (small-scale) sinkhole development. The ancillary 

datasets utilized in the geostatistical-based sinkhole formation models were the same as 

the local study area, with the addition of the PRISM annual precipitation and a land cover 
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change product from the 2006 National Land Cover Database (NLCD). PRISM data 

could be included in the county-wide assessment due to a higher amount of variance over 

the larger study area.  

Sinkhole inventory maps were created from each DEM. Temporal-difference 

(TD) point maps and subsequent density maps were generated by comparing the five 5m 

DEMs for cover-collapse sinkhole formation analysis and two 30m DEMs for cover-

subsidence sinkhole formation analysis. The TD maps represented newly formed or 

enlarged sinkholes throughout the study period (e.g., 1999 – 2011). In total, 2,913 TD 

cover-collapse and 579 TD cover-subsidence sinkholes were identified in Dougherty 

County. In the local, southern Dougherty County study, 275 sinkholes were identified in 

the TD dataset. The difference in the number of mapped sinkholes between the local 

study and county-wide study is a result of three aspects: 1) the study area size, 2) the 

spatial resolution differences in the DEMs used to map sinkholes, and 3) the temporal 

resolution of the DEM data. 5m DEM data from 1999, 2002, 2004, 2005, and 2009 and 

30m DEM data from 2000 and 2011 were used to produce the county-wide TD sinkhole 

dataset, while 10m data from only 1999 and 2011 were used to generate the local study 

area TD sinkhole dataset. This illustrates that the sinkhole maps should be treated as 

minimum sinkhole inventories due to spatial and temporal data resolution constraints. 

Overall, the county-wide sinkhole formation models did not perform as well as 

the local models. Respectively, 79% and 64% of cover-collapse and cover-subsidence 

sinkhole distributions were explained by the sinkhole formation models, as measured by 

the GWR adjusted R
2
 values. Similar to the local model, the addition of geochemical, 

pedologic, and other variables would improve the explanatory power of the sinkhole 



 

51 

formation model. When compared to the local sinkhole formation model, the lower 

adjusted R
2
 values of the county-wide sinkhole formation model may reflect different 

sinkhole formation processes, mechanisms, and environmental conditions operating in 

the areas of Dougherty County not covered by the local model (e.g., western and 

northeastern Dougherty County). For example, clayey soils are more predominant and 

urban influences are minimal in western Dougherty County. Additionally, geostatistical 

methods are largely affected by the size of the study area, and it is more difficult to fit a 

model to a larger study area. 

The GWR-prediction results for sinkhole density were input into deterministic 

interpolators and compared to the measured sinkhole density to test the ability of GWR to 

predict sinkhole distribution (Figures 6.1 and 6.2). The comparisons between the two 

sinkhole datasets yielded similar conclusions as the local study area sinkhole datasets. 

Though not as close as the local predictions, the county-wide results compare well as a 

first-order estimate. However, they tend to over-estimate sinkhole density, particularly in 

areas of high-sinkhole density and are not able to capture local heterogeneity.    
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Figure 6.1: Measured (top) versus predicted (bottom) cover-collapse sinkhole density 

measurements. GWR prediction results were interpolated using a combination of inverse 

distance weighting and kriging methods (average RMS = 0.27). 
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Figure 6.2: Measured (top) versus predicted (bottom) cover-subsidence sinkhole density 

measurements. GWR prediction results were interpolated using a combination of inverse 

distance weighting and kriging methods (average RMS = 0.36). 
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CHAPTER 7 

SUMMARY 

 

This thesis demonstrates the effectiveness of combining a GIS-based sinkhole 

mapping procedure with geostatistical techniques to understand spatiotemporal sinkhole 

development at varying scales in a mantled karst setting. The results provide insight into 

the specific factors and mechanisms most influential in sinkhole formation in Dougherty 

County, Georgia. The geostatistical prediction results have been shown to provide first-

order estimates of sinkhole distribution based on the comparisons between the measured 

and predicted sinkhole density maps. Although local heterogeneity was not fully captured 

in all areas by the geostatistical prediction results, areas of high and low sinkhole density 

were successfully located.  

The sinkhole formation analysis is presented by describing and comparing two 

components. In the first component, the sinkhole mapping, geostatistical, and prediction 

methodologies were developed in a local area within Dougherty County to quantify the 

effect of geologic, hydrologic, anthropogenic, hydrogeologic, and geomorphologic 

variables on sinkhole formation using spatiotemporal and high-resolution, primarily 

satellite-based datasets. The second component utilized the tested methodologies to 

understand and predict sinkhole development on a larger scale with different datasets.  

The local and county-wide study were compared to further our understanding of 

sinkhole formation dynamics in Dougherty County. The variables with the greatest 
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explanatory power for county-wide sinkhole formation were similar to the southern 

Dougherty County sinkhole datasets (e.g., TD and LiDAR). Distance to wetlands, 

overburden thickness, and aquifer fluctuations were statistically significant in all sinkhole 

datasets. Distance to fractures and rivers were statistically significant in all but one 

sinkhole dataset (cover-subsidence). These results are consistent with previous sinkhole 

studies conducted in Dougherty County. Hyatt and Jacobs (1996) found that small-scale 

(cover-collapse) sinkholes primarily formed within the Flint River floodplain along 

bedrock fractures. This research agreed with Warner Gordon’s (2012) findings that 

groundwater fluctuations in the Upper Floridan Aquifer are linked to sinkhole formation. 

These results also agree with observations from Tihansky (1999) and Hicks et al. (1987) 

regarding higher sinkhole occurrence in areas of lower overburden thickness. Brook and 

Allison (1986) described many large-scale sinkholes forming in wetland areas, 

specifically wetland areas west of the Flint River. Correspondingly, this research found 

the highest density of large-scale sinkholes to be in wetland areas west of the Flint River. 

Wetland areas in the eastern portion of the county also contained higher sinkhole 

densities.  

The sinkhole mapping methodology described coupled with the recent increase in 

data availability (e.g., LiDAR) across the United States allows for the sinkhole mapping, 

geostatistical, and prediction methodologies to be applied to other karst regions that 

experience active sinkhole development in an effort to better understand karst hydrology 

and geology. The broader impacts of these results potentially improve land use, water 

resources, and infrastructure development decision-making.  
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The sinkhole mapping procedure, adapted from previously published work, 

performed well when compared to previously mapped sinkhole distributions in 

Dougherty County, especially when considering the vertical and horizontal accuracy 

errors in the DEMs. Nevertheless, the mapping methodology and geostatistical 

techniques could be applied in other karst regions with current, field-derived sinkhole 

inventories to test their accuracies. Additionally, other methods for predicting sinkhole 

distribution should be explored that might provide the ability to account for local 

heterogeneity.  
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APPENDIX A 

SINKHOLE FORMATION FACTOR PRODUCTION 

 

This appendix details the production of the interpolated independent variables 

used in the sinkhole formation geostatistical models. The Geostatistical Analyst toolbar 

within ESRI’s ArcGIS 10.1 was used for interpolating the point data. 

 

Upper Floridan Aquifer Fluctuations 

 Daily data for 12 USGS observation wells installed in the Upper Floridan Aquifer 

and actively operated during the study period were downloaded. The difference between 

the maximum and minimum well level during each year between 1999 and 2011 was 

computed. Then the average of those values was found and assigned to the georeferenced 

point used for interpolation. Figure A.1 shows locations of the wells used to produce the 

interpolated surface. Figure A.2 displays the relationship between Upper Floridan 

Aquifer fluctuations and proximity to bedrock fractures. It is known that specific yields 

of groundwater wells increase greatly within approximately 30m of a fracture in the study 

area. However, these data do not show a strong correlation between fluctuation level and 

proximity to fractures like specific yield and proximity to fractures do.  
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Figure A.1: Upper Floridan Aquifer fluctuation map calculated using groundwater level 

data from USGS wells covering the entire study period.  

 

 

Figure A.2: Scatterplot showing the relationship between Upper Floridan Aquifer 

fluctuations and proximity to bedrock fractures.  
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Overburden Thickness 

Overburden thickness (i.e., depth to bedrock) measurements were gathered from 

geophysical data, borehole analysis, and subsurface cross sections for 33 locations. 15 

more locations were added along the Flint River based on knowledge of the Ocala 

Limestone exposure along the Flint River due to erosional processes. The georeferenced 

point data were input into an Empirical Bayesian Kriging interpolator to produce a 

smooth surface clipped to the study area (RMS = 2.42).   

 

 

 
 

Figure A.3: Overburden thickness (i.e., depth to bedrock) map calculated using borehole 

data from USGS studies.  


