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ABSTRACT 

Although multiplicative structures can be modeled by additive structures, they have their 

own characteristics inherent in their nature, which cannot be explained solely by referring to 

additive aspects. Thus, this study is about preservice teachers’ understanding and sense making 

of representational quantities generated by magnetic color cubes and algebra tiles, the 

quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative 

addition and multiplication operations − referent preserving vs. referent transforming 

compositions (Schwartz, 1988) − acting on these quantities. I devised a set of tasks focusing on 

identities of the form “Sum = Product,” which can also be thought of as summation formulas. 

Data came from videotaped individual interviews during which I asked five (2 middle school and 

3 high school mathematics) preservice teachers problems related to six main mathematical ideas: 

modeling prime and composite numbers; summation of counting numbers, odd numbers, even 

numbers; and multiplication and factorization of polynomial expressions in x and y. I base my 

analysis within a framework of unit−coordination with different levels of units (Steffe, 1988, 

1994) supported by a theory of quantitative reasoning (Schwartz, 1988; Thompson, 1988, 1993, 

1994, 1995). I used a simplified version of Behr, Harel, Post, & Lesh’s (1994) generalized 



 

notation for mathematics of a quantity and Vergnaud’s (1983, 1988, 1994) theorems and 

concepts in action formalisms, which helped me describe the preservice teachers’ understanding 

of linear and areal quantities and their units, and the quantitative operations taking place; and 

translate students’ mathematical performance into a series of terminology based on a simple 

notation: Relational notation and mapping structures duo (Caglayan, 2007b). There was a 

pattern, which showed itself in all my findings. Two students constantly relied on an additive 

interpretation of the context whereas three others were able to distinguish between and when to 

rely on an additive or a multiplicative interpretation of the context. My results indicate that the 

identification and coordination of the representational quantities and their units at different 

categories (multiplicative, additive, pseudo−multiplicative) are critical aspects of quantitative 

reasoning and need to be emphasized in the teaching−learning process. 
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CHAPTER I 

INTRODUCTION 

 

When the successive odd numbers are set forth indefinitely, beginning with 1, 
observe this: The first one makes the potential cube: the next two, added together, 
the second; the next three, the third; the four next following, the fourth; the 
succeeding five, the fifth; the next six, the sixth; and so on. (Nicomachus of 
Gerasa, Book II, Chapter XX). 

Mathematics manipulatives have always been amazing tools for me. It was just 

unbelievable that you could use physical objects and then try to see the mathematics 

behind those objects. I have been especially developing a fondness for representing 

various subsets of positive integers (e.g., prime and composite), figurate numbers (e.g., 

triangular numbers), growing patterns (e.g., sum of consecutive odd integers), and 

polynomials using color tiles and cubes. I used these tools in my own learning and 

teaching a lot. I got the impression that my students understood mathematics better when 

I used these and I received good reviews. 

What I like about these tools is in that they are very simple tools, yet they address 

a variety of mathematical objects such as square, area, cube, volume, polynomial 

identities, power sum formulas, prime vs. composite number, etc. I have found them 

useful and was therefore interested in investigating the potential they hold for eliciting 

students’ thinking. The purpose of this present study was to examine how mathematics 

preservice (middle and high school) teachers understand and make sense of “sum = 

product” identities on representational quantities with the help of color cubes and tiles as 

manipulatives. 
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Physical objects, also often referred to as manipulatives, can serve as essential 

representational models in the course of experiential learning. NCTM has consistently 

emphasized the use of physical objects as representational tools in its publications. The 

Principles and Standards for School Mathematics (NCTM, 2000) states that: 

“Representation is central to the study of mathematics. Students can develop and deepen 

their understanding of mathematical concepts and relationships as they create, compare, 

and use various representations. Representations—such as physical objects, drawings, 

charts, graphs, and symbols—also help students communicate their thinking.” (p. 280).  

Though I have advocated the use of manipulatives, research has shown that the 

use of physical objects can be an obstacle to mathematical progress in some cases. 

Howden (1986) showed that even though students were successful mathematically at the 

concrete level, that was not always the case in the abstract level. Research by Suydam 

and Higgins (1977) on the other hand, showed that students’ mathematics achievement 

increased through the use of mathematics manipulatives. Work by Sowell (1989) 

indicated that even though for K-16 students, manipulatives were effective ways of 

modeling and understanding mathematics, the teachers were not appreciative of their 

usage. As for the teachers, on the other hand, “inexperienced” ones favored their usage 

more often than experienced teachers (Gilbert & Bush, 1988). 

Uttal, Scudder, and DeLoache state that “part of the difficulty that children 

encounter when using manipulatives stems from the need to interpret the manipulative as 

a representation of something else.” (1997, p .38) I believe that a reference to any kind of 

physical object brings with itself the necessity to think about the object under 

consideration as some sort of quantity possessing a name, a value, and a measurement 
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unit (Schwartz 1988; Thompson 1993, 1995). Attending to the quantitative nature of 

manipulatives may be an asset for students' success in relating the manipulatives to their 

written symbolic referents. The physical object itself can not be a representation of a 

written symbol without “meanings” projected into these “concrete objects.” For instance, 

six 
6
1  fraction circle pieces together make a whole circle. One of those pieces standing 

alone cannot directly be mapped into the written symbol 
6
1 . A person has to think about 

each piece as a quantity on its own and in relation to every other 
6
1  piece as well as the 

whole circle standing for the unit whole (Olive & Vomvoridi, 2006). A successful 

mapping of the “concrete” to the “abstract” depends on the manipulative itself and a 

“family of meanings” attached to these objects. 

I used the color tiles and color cubes with my research participants to represent 

various figurate numbers and polynomial identities, where, we relied on measurement 

(area as a sum, area as a product) and geometry along with arithmetic of numbers. 

Figurate numbers, in particular, power sum identities such as 
2
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 (Figure 1.1), 
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 have been known to ancient Greeks in closed form, who derived 

such expressions based on unity without the presence of a known measurement unit 

(Gardner, 1973; NCTM, 1989; Nelsen, 1993). In fact, the geometrical and physical 

representation of figurate numbers (by points drawn on sand or pebbles) and the study of 

their properties were common in the early Pythagorean era (Heath, 1921; NCTM, 1989). 

Pythagoreans used a point or a dot to represent 1; two dots placed apart were to represent 
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2, and to define at the same time a line segment connecting these dots. They represented 

numbers as polygonal figures (triangles, squares, pentagons, etc.) made of dots or pebbles 

(Heath, 1921). Archimedes (third century B.C.) expressed sum of squares in closed form 

(Archimedes, 1897; Dijksterhuis, 1987; Kanim, 2001) and applied this discrete sum 

technique to find the areas and volumes of surfaces of revolution. Nicomachus of Gerasa 

(first century B.C.) is credited for the sum of odd integers formula , which 

he obtained via dot patterns forming symmetric L−shapes (Figure 1.2). Nicomachus (first 

century B.C.), Aryabhata (fifth century A.C.), and Al-Karaji (tenth century A.C.) are 

known for deriving the integral cubes summation expression 
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; and Al-

Haytham (tenth century A.C.) for the sum of the fourth 

powers
30
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i
. Algebraic proofs of such power sum 

identities are very complicated and difficult to follow; their visual representations based 

on drawings (NCTM, 1989; Nelsen, 1993, 2000) stand as a good place to start triggering 

students’ inductive reasoning, conjecturing, and generalizing. 
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Figure 1.1. Sum of integers (Nelsen, 1973, p. 69). 

 

 

Figure 1.2. Sum of odd integers (Nelsen, 1973, p. 71). 
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 The first complete investigation and the resulting properties of figurate numbers – 

also called polygonal numbers – were studied by Nicomachus of Gerasa (first century 

B.C.), which are given in the manuscript Introductio arithmetica. Though his work 

included few of his original ideas, it is commonly acknowledged that Introductio 

arithmetica stood as an artistic collection of well described, clearly presented and 

explained definitions and statements with a lot of illustrations based on physical forms 

and visual proofs (NCTM, 1989; Nicomachus of Gerasa, 1926). In our time, we make use 

of algebraic symbolism to represent such patterned numbers (e.g., square numbers are 

represented as 12, 22, 32, 42, … , or as 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, … , or as 1, 1 + 3, 

3 + 6, 6 + 10, … ; and triangular numbers are represented as 1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 

+ 4, … , or as 1 × 1, 1 × 3, 2 × 3, 3 × 4, … , etc.); however, properties of such polygonal 

numbers were treated by Nicomachus in words and by drawn or physical representations, 

not in algebraic symbolism: “If you add any two consecutive triangles that you please, 

you will always make a square, and hence, whatever square you resolve, you will be able 

to make two triangles of it.” (Nicomachus of Gerasa, 1926, p. 247). 

 Nicomachus of Geresa’s work contains today’s well–known “sum = product” 

identities arising from the geometry of the figures generated by dots and via line 

segments connecting these dots (Heath, 1921; NCTM, 1989, pp. 54-56; Nicomachus of 

Geresa, 1926, pp. 230-262): 

• The sum of the first n consecutive positive integers is the nth triangular number 

2
)1(321 +

=++++=
nnnTn L  

• The sum of the first n consecutive positive odd integers is a square number 

(Figure 1.2) 
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2)12(531 nn =−++++ L  

• The sum of any pair of consecutive triangular numbers is a square number 

2
1 nTT nn =+−  

• Eight times any triangular number plus 1 is the square of an odd number 

2)12(18 +=+ nTn  

• Pentagonal numbers P1 = 1, P2 = 5, P3 = 12, P4 = 22, P5 = 35, … , can be 

represented in basic pentagonal form (Figure 1.3) or in second pentagonal form 

(Figure 1.4).  

 

 

Figure 1.3. Basic pentagonal form (NCTM, 1989, p. 55) 

 

The first form yields a “sum = sum” identity and a “sum = product” identity 

2
)13(   ,3 1

−
=+= −

nnPnTP nnn  
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• The second pentagonal form produces only one identity of the form “sum = sum,” 

1
2

−+ , which is illustrated in Figure 1.4.  = nn TnP

 

 

Figure 1.4. Second pentagonal form (NCTM, 1989, p. 55) 

 

• The sum of the first consecutive positive even integers is an oblong number1 

)1(2642 +=++++ nnnL  

• The nth oblong number equals twice the nth triangular number 

nTnn 2)1( =+  

• The nth cube number can be written uniquely as the sum of exactly n consecutive 

positive odd integers 

L ,191715134   ,11973   ,532   ,11 3333 +++=++=+==  

• The sum of the first consecutive positive cube numbers is a square number, in 

particular, the square of the nth triangular number 
                                                 
1 Oblong numbers are the numbers of the form n(n + 1) such as 2, 6, 12, 20, 30, etc. Nicomachus used the 
adjective “heteromecic” for these numbers (NCTM, 1989, p. 56). 
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In general, mathematics gives rise to quantities that can be represented with 

symbols, drawings, or physical objects. When it comes to represent these quantities, both 

students and their teacher should be proficient in identifying the characteristics of those 

quantities. Whole numbers can be expressed in terms of units of 1. For instance, the 

number 3 can be thought of as the collection of three singleton units. In a tiled 

representational situation such as one the present study investigated, three little black 

square tiles can be used to model the representational quantity “3.” Odd integers and their 

summations can be represented as tiled L−shaped figures (Figure 1.5) – which, the 

ancient Greek named gnomons; and growing squares (Figure 1.6), respectively; while 

even integers and their summations can be represented as rectangles with dimensions 2 

by half the integer (Figure 1.7) and growing rectangles (Figure 1.8), respectively, made 

of one inch color tiles (Caglayan, 2006). In ancient Greek, the number that equals the 

sum of even integers was named a heteromecic number. Prime and composite numbers 

may have various tiled rectangular representations (Figure 1.9) as well (Caglayan, 

2007a). 

 

 

Figure 1.5. Symmetric L−shapes representing the numbers 1, 3, 5, 7, 9, 11, 13, and 15. 
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Figure 1.6. Using L−shapes to show that the sum of the first n positive odd integers is n2. 

 

 

Figure 1.7. Shapes representing the numbers 2, 4, 6, 8, 10, 12, 14, and 16. 

 

 

Figure 1.8. Summation representations of the first seven positive even integers. 
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Figure 1.9. Tiled representations of prime and composite numbers. 

   

 Modeling more complicated expressions such as 32 ++ yx  by using color tiles 

may not be as obvious. In the example of 32 ++ yx , the term 2x is a collection of two 

units of x (two purple bars with the model), the term y is 1 unit of y (1 blue bar with the 

model), and the term 3 is a collection of three units of 1 (three little black squares with 

the model). Therefore, the expression 32 ++ yx  is a collection of a collection of the 

individual irreducible representational units. One not only has to individually identify 

each representational unit (one purple bar for the x, one blue bar for the y, and one little 

black square for the 1), but one has to reconcile a collection of a collection of these 

irreducible representational units in order to demonstrate that 32 ++ yx  can not be 

simplified any further because 2x, y, and, 3 are unlike terms (representational quantities). 

Representation of irreducible quantities as well as “bigger” ones “made of” these 

quantities is reminiscent of the “unitizing” process (Behr, Harel, Post, and Lesh, 1994; 
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Lamon, 1994; Steffe, 1988, 1992, 1994). All the little pieces (e.g., each one inch color 

cube denoting a “1” of a special number, each different size tile piece denoting a “1”, an 

“x,” a “y,” an “ ”, an “xy,” or a “ ”) and their various combinations (e.g., a 4 by 2 

rectangle – made of 8 irreducible units of 1 –  conceptualized as the unitizing of the even 

number 8, a  by  rectangle – made of 2 irreducible units of , 5 

irreducible units of x, 3 irreducible units of 1, 1 irreducible unit of y, 1 irreducible unit of 

xy – conceptualized as the unitizing of the polynomial expression ) 

serve for an essential theoretical construct, which I define as Representational Unit 

Coordination (Caglayan, 2007c). 

2x 2y

32 ++ yx 1+x 2x

31512 2 ++++ yxxyx

 In its true nature, coordination is about “making various different things work 

effectively as a whole2.” In the context of my study, it refers to the conception of unit 

structures in relation to smaller embedded units within these unit structures, or, bigger 

units formed via iteration of these unit structures. In the multiplicative situation, for 

instance, the conception of 5 as 5 units of 1 is one way of coordinating units: 5 as a 

(composite) unit of 1. As another example, 35 can be coordinated multiplicatively as 5 

(composite) units of 7 (composite) units of 1. Power sum identities modeled by one inch 

color cubes require more sophisticated representational unit coordination strategies 

(additive and multiplicative) at the same time. In addition to these, polynomial rectangles 

are prone to a concatenated unit coordination type, which is called pseudo−multiplicative 

representational unit coordination. 

                                                 
2 Cambridge Advanced Learner's Dictionary online. Retrieved December 31, 2006 from 
dictionary.cambridge.org 
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CHAPTER TWO 

THEORETICAL PERSPECTIVES AND LITERATURE REVIEW 

 

2.1. Representational Unit Coordination  

Unit coordination has been previously studied by various researchers in the 

mathematics education field. Steffe, for instance, analyzed the coordination of different 

levels of units in whole number multiplication problems, which is reminiscent of a key 

concept in multiplication, i.e., the notion of composite units (1988). Research evidenced 

that the essence of multiplication lies in fact in distributive rather than repeated additive 

aspect (Confrey & Lachance, 2000; Steffe, 1992). In the example above, the 

multiplication of 5 by 7 can be thought as the injection of units of 7 (each being units of 

1) into the 5 slots of 5, each slot representing a 1. In this example, the conceptualization 

of each singleton unit describing a unity, i.e., 1, stands for a first level of unit 

coordination. Moreover, 5 and 7 can be conceptualized (as composite units of 1) as 5 × 1 

and 7 × 1, respectively, as a second level of unit coordination. The product 5 × 7, which 

denotes 5 (composite) units of 7 (composite) units of 1, can be conceptualized as a third 

level of unit coordination.  

Some other researchers also studied unit coordination in a fractional situation (e.g. 

Lamon, 1994; Olive, 1999; Olive & Steffe, 2002; Steffe, 2002). Additionally, work on 

intensive (e.g., miles per hour) and extensive quantities (e.g., number of hours) reflect 

unit coordination as well (Kaput, Schwartz, & Poholsky, 1985; Schwartz, 1988). Olive 
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and Caglayan’s (2006, 2007) work on quantitative unit coordination and conservation 

also takes the unit coordination issue into account. 

Steffe’s Unit–Coordination construct (1988, 1994), which constitutes the main 

theoretical framework of this present study, is strongly related to multiplicative 

structures, the study of which has been conducted by mathematics education researchers 

since the 1980s. In his 1983 article, Vergnaud defines the notion conceptual field as a 

“set of problems and situations for the treatment of which concepts, procedures, and 

representations of different but narrowly interconnected types are necessary.” (p. 128). In 

particular, he views the multiplicative structures, a conceptual field of multiplicative type, 

as a system of different but interrelated concepts, operations, and problems such as 

multiplication, division, fractions, ratios, similarity. Although multiplicative structures 

can to some extent be modeled by additive structures, they have their own characteristics 

inherent in their nature, which cannot be explained solely by referring to additive aspects. 

Behr, Harel, Post, and Lesh (1994) developed two representational systems – 

extremely generalized and abstract – in an attempt to transcribe students’ additive and 

multiplicative structures in which the notion “units of a quantity” plays the main role. 

Confrey provides splitting, “an action of creating simultaneously multiple versions of an 

original,” (1994, p. 292) as an explanatory model for children’s construction of 

multiplicative structures. Research on students’ reconciliation of additive and 

multiplicative structures based on “sum = product” identities is missing in the literature.  

Representational Unit Coordination, a new terminology in our field, can be 

defined as the different ways of categorizing units arising from the modeling of identities 

on representational quantities as the “area as a product” and “area as a sum” of the 
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corresponding special rectangles made of color cubes and tiles. All the cited work above, 

though interesting and appealing, seem to leave the representational unit coordination 

construct behind. It then remains to explain how my construct, Representational Unit 

Coordination (RUC) is different from unit coordination in the literature.  

 In my study, preservice teachers started with the “area as a product” concept. In 

its most basic sense, area of, e.g., a rectangle, is defined as the product of its two 

dimensions. I am talking about the area of a rectangle, and not any other geometric 

figure, because the identities on representational quantities students analyzed via color 

cubes or tiles were always about a rectangle – prime rectangle, composite rectangle, odd 

rectangle, even rectangle, addition of counting numbers, odd and even integers generated 

as a growing rectangle, and polynomial rectangle. Coordination of these two dimensions, 

i.e., the arrangement of these two linear units in a particular order as an ordered pair such 

as (a, b) or (b, a), defines the first part of my construct: Multiplicative Representational 

Unit Coordination (MRUC). 

The analysis of the other important concept, “area as a sum” (of a special number 

rectangle), is prone to several, not necessarily hierarchical levels of RUC. Additive 

Representational Unit Coordination (ARUC) stands for the coordination, the arrangement 

of (in general two or more) areal units as n−tuples such as [2, 2, 2] or [3, 3] for the 

composite rectangle of 6. For this RUC type, areal units being coordinated have 

something in common. For instance, for the composite rectangle of 6, the “2”s in [2, 2, 2] 

are interesting because 2 is a factor of 6, which is why this special additive type RUC is 

called Equal Addends Type RUC. Moreover, the coordination of less interesting 

(irreducible) areal units (of 1) as n−tuples such as [1, 1, 1, 1, 1, 1] for the same example, 
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composite rectangle of the special number 6, necessitates the existence of another 

additive type RUC which is called Irreducible Addends Type RUC. There arose actually 

many more additive type RUC, which will be explained in Chapter IV in much more 

detail. 

 There is one more RUC type, in between additive and multiplicative, which I 

named Pseudo Multiplicative type RUC. This occurred for the “Area of the boxes of the 

same color as a product” in dealing with polynomial rectangles made of color tiles. For 

instance, the  by  rectangle had 4 boxes (x by 2y, x by 3, 1 by 2y, 1 by 3) of 

the same color. Some of the preservice teachers’ products were x · 2y, x · 3, 1 · 2y, 1 · 3; 

i.e., of multiplicative nature. With the relational notaion, as I will explain in detail, these 

linear units, namely the length and the width of each “same−color−box” can be written as 

(x, 2y), (x, 3), (1, 2y), (1, 3). However, the remaining preservice teachers’ areas as a 

“product” for the same boxes were 2 · xy, 3 · y, 2 · y, 3 · 1. In other words, the first term 

of each “pseudo−product” was a coefficient serving as a counting number indicating how 

many there were of each irreducible areal unit. 

1+x 32 +y

 In other words, “area as a product,” and “area as a sum” concepts played a crucial 

role as I tried to establish the RUC construct meaningfully. RUC has more of a relational 

aspect, rather than the distributive aspect of unit coordination in the literature. The 

adjective “relational” refers to the ordering of the units as ordered pairs / n−tuples, for the 

case area as a product / sum. I have chosen this adjective because in mathematics, a 

binary / n−ary relation is defined to be a set of ordered pairs / n−tuples. However, as for 

the distributive aspect of multiplication, as Steffe describes, “for a situation to be 

established as multiplicative, it is always necessary at least to coordinate two composite 
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units in such a way that one of the composite units is distributed over the elements of the 

other composite unit.” (1992, p. 264). For instance, the coordination of 5 and 7 in “5 bags 

each containing 7 marbles” example has this distributive aspect. In that sense, I thought 

there was still so much missing that needs to be achieved, and I hoped my study would 

fill in that gap. 

 

2.2. Representational Quantities: Linear vs. Areal 

 Quantitative reasoning is a central issue in mathematics and science. We try to 

learn how to call and name things. We start learning and getting to know mathematics by 

counting, quantifying, and operating on objects. By quantifying them, we are also 

assigning numerical values to these objects. We also attribute units to these objects (e.g., 

an hour is not the same thing as a day). Quantitative reasoning and unit coordination 

explain well what is going on in seemingly different areas of mathematics. When you try 

to solve a word problem, represent quantities with various methods (e.g., manipulatives, 

graphs, tables, geoboards), solve linear equations, or play mathematical games, you 

embrace quantitative reasoning and coordinate units whether you realize it or not. This is 

not emphasized by teachers or by the curriculum, though. What units are we handling? 

Why are we using these units in the measurement process? What are the names of the 

things we measure? 

Thompson wrote many essays about his students’ making sense of additive and 

multiplicative structures via quantitative reasoning (1988, 1989, 1993, 1994, 1995) and 

with Smith in their 2008 book chapter. Schwartz (1988), Shalin (1987), and Nesher 

(1988) view quantities as some sort of mathematical objects as ordered pairs of the form 
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(number, measurement unit) whereas Thompson finds this characterization inconvenient, 

claiming it “confounds notions of number and quantity.” (1994, p. 197). Steffe’s 

characterization of quantity is based on unitizing or segmenting operations (1991). 

According to Thompson, “A quantity is not the same as a number. A person constitutes a 

quantity by conceiving of a quality of an object in such a way that he or she understands 

the possibility of measuring it.” (1993, p. 197). In another piece, he schematizes a 

quantity as composed of: 

• An object, 

• A quality of the object, 

• An appropriate unit or dimension, 

• A process by which to assign a numerical value to the quality (1994, p. 184). 

Although he is against an ordered pair characterization of the form (number, unit), his 

proposed schema above still calls for an ordered – not pair but – quadruple (object, name 

of the quantity, measurement unit of the quantity, process to assign a magnitude for the 

quantity). In other words, quantities do not have to be assigned numerical values; what 

really matters is that a person “understands the possibility of measuring it” (1993, p. 197) 

by which to assign a value.  

 Time is a quantity that has the possible units measured by number of hours, 

number of days, number of minutes, number of light−years, etc. Time and number of 

hours are not the same thing. As another example, when you represent a polynomial, say, 

, with tiles of different colors and sizes, you may choose to use 2 purple bars, 1 

blue bar, and 3 little black squares, respectively standing for your “x”s, “y”s, and “1”s, 

respectively. The irreducible representational units, namely “one purple bar,” “one blue 

32 ++ yx
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bar,” and “one little black square” can be thought of as the units for something. That 

something is nothing but what we call it; it can be named the variable x or the whole 

number 1. In this representation, we can describe 2x as the quantity with the name 

“purple bar(s),” the measurement unit “number of purple bars,” and – after a 

measurement process – an assigned numerical value (or magnitude) “2.” Naming, 

quantifying, attributing units for, and reasoning quantitatively about things are of 

paramount importance. “Quantitative reasoning is not reasoning about numbers; it is 

about reasoning about objects and their measurements and relationships among 

quantities.” (Thompson, 1995, p. 204). The table below summarizes the information 

about quantities 2x, y, and 3. 

 

Table 2.1 

Quantities Associated with Algebra Tiles 

Quantity Name 
(Referent) Measurement Unit Value 

(Magnitude) 
2x (2 purple bars) Purple bar Number of purple bars 2 

y (1 blue bar) Blue bar Number of blue bars 1 
3 (3 little black 

squares) 
Little black 

square 
Number of little black 

squares 3 

 

 Reasoning quantitatively about objects, things, brings with itself the notion of 

“quantitative operations” by which we make sense of these things and reason about 

relationships among them. In my study, “quantitative operations” are not the same as the 

well−known numerical operations (addition, multiplication, subtraction, division). 

Because “representational quantities,” which are quantities, play the main role in all the 

activities my students worked on, I defined the quantitative analogous of the basic 
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arithmetic operations as “representational quantitative addition operation,” and 

“representational quantitative multiplication operation.”  

Thompson thinks of quantitative operations as “conceptual operations one uses to 

imagine a situation and to reason about a situation−often independently of any numerical 

calculations.” (1995, p. 207). I consider the “reasoning about” part as a must, however, I 

do not find it necessary to “imagine” a situation, if the situation is already there, present 

in front of our eyes, as in my students’ work with representational quantities. The 

conceptual operations my students induced were both quantitative and representational.  

Quantitative operations can also be classified referent preserving compositions 

and referent transforming compositions (Schwartz, 1988, p. 41). Addition and subtraction 

operations are referent preserving compositions because they do not change, rather 

preserve the referents (names) of the quantities on which they act. Adding 3 apples and 5 

apples yields 8 apples. Subtracting 4 inches from 10 inches yields 6 inches. In other 

words, we are adding (subtracting) like−terms. Both quantities, being extensive when 

composed by addition (subtraction) operation, yield a quantity that has the same unit, i.e., 

number of apples (number of inches). In other words, through a referent preserving 

composition, both the referent and the measurement unit remain unchanged, and we 

reside in the same measure space.  

Multiplication and division operations, on the other hand, are referent 

transforming compositions because they change the referents (names) of the quantities on 

which they act. Two blouses can be paired with three skirts to form six different outfits: 2 

blouses × 3 skirts = 6 outfits. In this case, we are composing two extensive quantities by 

multiplication operation and this results in an extensive quantity (a product quantity) with 
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a totally different referent (outfit = blouse × skirt) and measurement unit (number of 

outfits). In other words, through a referent transforming composition, both the referent 

and the measurement unit as well as the measure space change. Product quantities such as 

“2 blouses × 3 skirts,” “5 cm × 7 cm,” “2 in × 4 in,” involve measurement units of 

product type “blouse × skirt,” “cm × cm,” “in × in,” that are not simply conceived by 

students as repeated addition (Behr et al., 1994). Schwartz considers the “repeated 

addition” model of multiplication as a procedural flaw (1988, p. 47).  

In my study with color cubes and tiles, the linear quantities associated with the 

sides of the growing rectangles can be categorized as extensive quantities with basic 

(linear) measurement unit type (e.g., centimeters, inches, units); however, the areal 

quantities emerge as extensive quantities possessing product−type−units (e.g., 

centimeters squares, inches squared, units squared) within the rectangle itself. As part of 

my study, I analyzed preservice teachers’ ability to make sense of the changes in referent 

and measurement units. Table 2.2 and Table 2.3 below summarize the quantities related 

with color cubes and tiles that generate growing rectangles. 

 

Table 2.2 

Representational Quantities Related with 1″  Color Cubes 

Quantity 
Linear 

vs. 
Areal 

Representational 
unit 

Extensive 
vs. 

Intensive 

Unit of 
measurement Measure Space 

1 Linear 1'' square tile of any 
color Extensive 1−unit 

Positive Integers 
(equivalently, positive 

multiples of linear unit 1) 

1 Areal 1'' square tile of any 
color Extensive (1−unit) × 

(1−unit) 

Any prime, composite, odd, 
even number rectangle & 

symmetric L−shaped figure 
a & b 

(factors of a 
composite 

Linear The a by b rectangle 
made of 1'' squares Extensive 

Product 

(a−unit) × 
(b−unit) 

Composite number c's 
rectangle 
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number c) with a⏐ c & b⏐ 
c 

n (counting 
number) Areal n 1'' square tile of any 

color Extensive 

For odd n: 

(1−unit) × 
(n−unit) 

For even n: 

(2−unit) × ((n ÷ 
2)−unit) 

Summation of Counting 
Numbers: 

For odd n, an n by (n+1) ÷ 
2 rectangle 

For even n, an n+1 by n ÷ 2  
rectangle 

2n − 1 (odd 
number) Areal Symmetric L−shaped Extensive (1−unit) × 

((2n−1) −unit) 

Summation of Odd 
Numbers: 

An n by n square 

2n (even 
number) Areal Rectangle with 

dimensions 2 by n Extensive (2−unit) × 
(n−unit) 

Summation of Even 
Numbers: 

An n by n+1 rectangle 
 

Table 2.3 

Representational Quantities Related with Different Size & Color Tiles 

Quantity Linear vs. 
Areal 

Representational 
unit 

Extensive vs. 
Intensive 

Unit of 
measurement Measure Space 

1 Linear Square Black Tile Extensive 1−unit Positive Integers (positive 
multiples of linear unit 1) 

x Linear Purple Bar Extensive x−unit Positive Multiples of x 
y Linear Blue Bar Extensive y−unit Positive Multiples of y 

1 Areal Square Black Tile Extensive (1−unit) × 
(1−unit) 

Positive Multiples of areal 
unit 1 

x Areal Purple Bar Extensive (1−unit) × 
(x−unit) 

Positive Multiples of areal 
unit x 

y Areal Blue Bar Extensive (1−unit) × 
(y−unit) 

Positive Multiples of areal 
unit y 

xy Areal Big Green 
Rectangle Extensive (x−unit) × 

(y−unit) 
Positive Multiples of areal 

unit xy 

x2 Areal Big Purple Square Extensive (x−unit) × 
(x−unit) 

Positive Multiples of areal 
unit x2 

y2 Areal Big Blue Square Extensive (y−unit) × 
(y−unit) 

Positive Multiples of areal 
unit y2 

 

 My work with color cubes and tiles relies heavily on the notion of area. In 

particular, area of a rectangle is defined as the sum of the irreducible areal units, which in 

this case is either the irreducible areal unit 1 (in the context of subsets of positive 

numbers) or the irreducible areal units 1, x, y, xy, x2, y2 (in the context of polynomial 

expressions). In particular, an irreducible areal unit 1 is defined as the product of the 

irreducible linear unit 1 by the same linear unit 1. Although they are both 1, i.e., they both 
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have the same value, these are different quantities because they possess different units: 

linear vs. areal. In Figure 1.2, for instance, each symmetric L–shape is a (areal) unit of 

irreducible areal units of 1. Similarly, in Figure 1.5, for instance, a composite number, 

e.g.,12, is a rectangular (areal) unit of irreducible areal units of 1. Moreover, it can be 

represented as the product of linear units 1 by 12, 2 by 6, and 3 by 4. All these 

dimensions have something in common: That something is nothing but these dimensions, 

namely the 1, the 12, the 2, the 6, the 3, and the 4 are all (linear) units of irreducible 

linear units of 1. In other words, 1 (12−unit) or 12 (1−unit)s, 2 (6−unit)s or 6 (2−unit)s, 3 

(4−unit)s or 4 (3−unit)s differ in our mental images. Verbally speaking, these expressions 

would barely make sense for children. However, instantiations for these expressions help 

them understand and make sense of the multiplicative situation. I hope that in the light of 

my research, we will be able to understand how preservice teachers identify and 

coordinate units arising from an instantiative situation, color cubes and tiles, which serve 

to model summation identities, prime and composite numbers, and products and factors 

of polynomial expressions. 

 

2.3. Rationale and Research Questions 

 I was eager to study preservice teachers’ sense making of linear and areal units 

appearing in the geometrical representations of various identities of representational 

quantities. I thought we need mathematics teachers in our classrooms that can identify, 

coordinate, and distinguish between linear and areal quantities/units associated with those 

identities. I thought this research was worth doing because there is a need to fill in the 

gap in the literature in terms of unit coordination – as outlined in the second paragraph of 
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the first section of this chapter – and I believed that the representational unit coordination 

construct I was trying to develop would fill in that gap. 

 “Area as a product” stands for the Multiplicative Type RUC whereas “area as a 

sum” concept is related to the Additive Type RUC, depending on the unitizing process. 

This is the essence of RUC. “Area as a product” gives birth to the coordination of the 

(two) linear units as an ordered pair, which stands for the Multiplicative Type RUC. On 

the other hand, “area as a sum” yields the coordination of (in general two or more) areal 

units as n−tuples, which stands for the Additive Type RUC. 

The study of multiplicative structures has been conducted by mathematics 

education researchers since the 1980s. In his 1983 article, Vergnaud viewed the 

multiplicative structures, a conceptual field of multiplicative type, as a system of different 

but interrelated concepts, operations, and problems such as multiplication, division, 

fractions, ratios, and similarity. Although multiplicative structures can to some extent be 

modeled by additive structures, they have their own characteristics inherent in their 

nature, which cannot be explained solely by referring to additive aspects. Steffe’s Unit–

Coordination construct (1988, 1994), the guiding theoretical framework for this study, 

though strongly related to multiplicative structures, encompasses only the repeated 

addition model and a distributive aspect for multiplication, which in my opinion are 

limited explanatory models for what multiplication is/could be. In fact, findings on 

students’ understanding of multiplication in the literature are limited to a premature 

interpretation, too, mostly relying on addition:  

• The conception of multiplication based on repeated addition (Empson, Junk, 

Dominguez, & Turner, 2005; Fishbein, Deri, Nello, & Marino, 1985) 
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• Students’ frequent use of additive reasoning in the course of tasks requiring 

multiplicative reasoning (Hart, 1981, 1988; Karplus, Pulos, & Stage,1983; 

Lamon, 1993; Noelting, 1980; Resnick & Singer, 1993; Vergnaud, 1988)  

• The distributive aspect argued by Steffe (1992) and Confrey and Lachance (2000)  

• The correspondence principle as the basis of multiplication (Nunes & Bryant, 

1996; Piaget, 1965; Vergnaud, 1983, 1988)  

• Splitting as an explanatory model for multiplication (Confrey, 1994; Confrey & 

Smith, 1995) 

Research on students’ reconciliation of additive and multiplicative structures based on 

“sum = product” identities is missing in the literature. 

 My study extends prior work done by Behr et al. (1994) because identities that 

equate summation and product expressions are not expressed using the generalized 

mathematics notations in their work. My research project is a theoretical extension of 

Behr et al.’s framework and introduces a simplified version of generalized mathematics 

notations for identities that equate summation and product expressions. To be more 

specific, I worked with the following quantities and their representations: 

• Prime & Composite Number Rectangles 

• Odd & Even Number Rectangles, Counting Number Rectangles & Rectangles 

Corresponding to Their Summations 

• Rectangles for Polynomial Expressions in x and y. 

 Coordination construct, though studied several times before, does not cover all 

possibilities. Levels of unit coordination have been used in additive, multiplicative, and 

fractional situations before. However, there is no prior work on unit coordination arising 
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from the geometry of the numbers, in the form of identities, where the left hand side of 

the identity stands for the additive situation (area as a sum, in the geometry of the 

context) and the right hand side of the identity stands for the multiplicative situation (area 

as a product, in the geometry of the context). Both phrases, “area as a product” and “area 

as a sum,” stand for the measure of the area of the rectangle enclosed by its sides. “Area 

as a product” is the conception of seeing the area as an ordered pair of linear units 

(Multiplicative Type RUC) whereas “area as a sum” is the conception of seeing the area 

as an ordered n−tuples of areal units (Additive Type RUC). This project, aimed at 

providing an extension for Behr et al.’s theory, will have a crucial impact in the 

mathematics education field, in that way. 

 All these representational quantities can be represented as the area of some 

rectangles. They can be written both as a sum and as a product, and even sometimes, as 

pseudo−products, as well3. In other words, the above representational quantities and 

expressions occupy an important place in the realm of mathematics. This is exactly where 

at least four different strands meet: Number Sense, Geometry, Algebra, and 

Measurement: A crucial domain of mathematics in which one can observe the 

connections. As PSSM’s Connections Standard points out,  

Instructional programs from prekindergarten through grade 12 should enable all 

students to recognize and use connections among mathematical ideas; understand 

how mathematical ideas interconnect and build on one another to produce a coherent 

whole; recognize and apply mathematics in contexts outside of mathematics (NCTM, 

p. 353).  

                                                 
3 See Chapter IV for details. 
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Let us assume for a moment that there is a secondary school mathematics teacher 

who is solely focusing on number sense. S/he believes and instructs his/her students that 

7 is a prime number because 7 is divisible by 1 and itself only. Let us also assume that the 

same teacher uses the well−known Gauss’ formula to teach the identity 

2
21 =+++ nK

)1( +nn . This teacher is addressing only part of the mathematics and 

appealing to a particular learning style, namely memorization. Students would like to be 

offered different ways of approaching problem situations and hence would embrace a 

model (or models) that help them become mathematically proficient (Rogers, Reynolds, 

Davidson, & Thomas, 2001). When you can touch, color, manipulate, play with formulas 

and identities, now that is a moment where mathematics comes to life. Mathematics 

comes to life through problems which are explored and/or solved in and out of the 

classroom (Adams, 1997). By experience, I know that those students of mine who solely 

memorize formulas seemed to behave like robots. When it came to debate on not 

previously discussed identities and formulas in class, they failed all the time. They 

needed to go back home, memorize the specific day’s formulas, and come back and get 

ready for discussing these same formulas they memorized. This is an obstacle for a 

person’s personal development, in my opinion. In real life, you don’t always face with 

previously experienced challenges. Providing various representations for a problem 

situation must be an important job of a mathematics teacher. My research project is 

unique in that way. As PSSM’s Representation Standard points out,  

Instructional programs from prekindergarten through grade 12 should enable all 

students to create and use representations to organize, record, and communicate 

mathematical ideas; select, apply, and translate among mathematical representations 
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to solve problems; use representations to model and interpret physical, social, and 

mathematical phenomena (NCTM, p. 359).  

With color cubes and tiles, all the numbers, prime or composite, even or odd, binomial or 

polynomial, and the related identities will be right there in front of our eyes. 7 will be a 

prime number because it will have a unique rectangle. 7 will be a prime number because 

its unique rectangle has dimensions 1 and 7, which are nothing but the only factors of 7. 7 

will be a prime number because it can be written uniquely as the product of linear units 1 

and 7. Once again, 7 will be a prime number because it can be written uniquely as the 

sum of the areal units of 1. In my opinion, a research study embracing NCTM’s 

Principles and Standards for School Mathematics, which emphasize connections along 

with representations and uses context where several strands of mathematics meet must be 

important and the context itself, therefore, must be a rationale for the research study on 

its own. 

 As a result of my own teaching and learning experiences, I was interested in 

studying how preservice secondary teachers make sense of linear and areal quantities 

units. Specifically, my research questions were: How do preservice secondary school 

teachers 

• identify, describe, and interpret linear and areal units? 

• represent linear and areal units? 

• distinguish between areal and linear units? 
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2.4. Data Analytical Framework 

 The (analytical) theoretical framework for this research is based on generalized 

notation for mathematics of a quantity aiming at theoretical analyses and communication 

within the research community, developed by Behr et al. (1994) who applied these 

systems in the analysis of additive and multiplicative situations. In the notation for the 

generalized mathematics of quantity,  

The size of a unit will be notated as a number hyphen unit and enclosed in grouping 

symbols, (2−unit). The number of units that one has will be denoted as n(b−unit)s or 

3(2−unit)s. Using this notation, symbols for units can be embedded within other 

symbols for units. (p. 127) 

 Unit coordination construct, which is the essence of the theoretical framework for 

my research, is strongly related to the generalized mathematics notation I introduced 

above. The last sentence of the above quotation reminds us of a key concept in 

multiplication, i.e., the notion of composite units (Steffe, 1988). The embedding of units 

within other units is also reminiscent of the distribution process. Given that I already 

explained the levels of unit coordination above, I just want to write these levels for the 

same example, multiplication of 5 by 7, with Behr et al.’s generalized mathematics 

notation in the table below. 

 

Table 2.4 

Levels of Unit Coordination vs. Generalized Mathematics Notation 

First Level (1−unit) 
Second Level 5(1−unit)s and 7(1−unit)s 
Third Level 5(7−unit)s or 5(7(1−unit))−unit)s
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 One can use Behr et al.’s notation for generalized mathematics of a quantity to 

represent linear equations as well. Research by Caglayan and Olive (2008, submitted) 

indicates that quantitative unit coordination and quantitative unit conservation are 

necessary constructs in dealing with a model, Cups and Tiles, representing a linear 

equation. In this representational model, each occurrence of the unknown in the linear 

equation is represented by a small circle (a cup), and the known quantities are represented 

by small squares (tiles). Each tile corresponds to one unit. Positive quantities are drawn in 

black and negative quantities (cups or tiles) in red. The unspecified rule is that the same 

number of tiles is hidden in each cup. The problem for the students is to solve the 

equation by determining how many tiles are in each cup. Cups and Tiles data can be 

looked at through the multiplicative unit coordination framework suggested by Behr et al. 

(1994). In this framework, one can think about a cup as one unit containing an unknown 

(to−be−found) amount of other units, tiles. In other words, one cup becomes nothing but 

a composite unit of the form 1(c−unit) or c(1−unit)s with the notation for the generalized 

mathematics of quantity. Moreover, if one has 3 cups, this can be written as 3(c−unit)s. 

Figure 2.1 below stands for an instantiation of the equation .6123 +=+ cc  With Behr et 

al.’s generalized mathematics notation, this equation takes the form 3(c−unit)s + 

2(1−unit)s = 1(c−unit) + 6(1−unit)s. 
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Figure 2.1. An instantiation of the equation 6123 +=+ cc  with cups and tiles. 

 

 Notational systems proposed by Behr et al. (1994) explain the products of 

quantities carrying the same units (e.g., 2−apple × 5−apple, 3−cm × 4−cm) as well as 

those with different units (e.g., 3−apple × 4−orange, a−cm × b−inch, 2−skirt × 3−blouse); 

however, there is no mention of products of the form ((a−unit) + [b−unit]) × ((c−unit) + 

[d−unit]), nor identities of the form (a−unit) + (b−unit) + ... = [α unit] × [β−unit]. The 

parentheses in (a−unit) and [b−unit] are used to distinguish between different units 

whereas the parentheses enclosing the sum ((a−unit) + [b−unit]) just serve for grouping. 

The left hand side of what we call as identity refers to the sum of the odd integers, or even 

integers, or counting numbers, depending on the context; whereas, the right hand side 

refers to the product that equals the sum. With the area model, the sum corresponds to the 

area of the growing rectangle as a sum; whereas, the product corresponds to the area of 

the same growing rectangle as a product. With my study, I hoped that the results of my 

research would provide insight on how preservice teachers make sense of this complex 

quantitative situation.  

The generalized mathematics notation corresponding to the identity 

 can be written as [1−unit] + [3−unit] + [5−unit] + ... + [(2n nnn ×=−++++ )12(531 K
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− 1)−unit] = (n−unit) × (n−unit). In other words, square brackets [ ] are used for the units 

of the sum. Parentheses ( ) on the other hand, are used for the units that give the product. 

The difference lies in that the units of the product are functions depending on the number 

of units used in the sum. That function is nothing but the number of terms being added. 

As another approach, one can think of [ ] quantities as areal units whereas ( ) quantities as 

linear units. Similar notations can be obtained for the summation of even integers and 

counting numbers and polynomial multiplication and factorization expressions.  

A prime number p can be written as the sum [1−unit] + [1−unit] + [1−unit] + ... + 

[1−unit] and as the product (1−unit) × (p−unit) or (p−unit) × (1−unit). This notation is 

unique for a prime number. However, for a composite number, we have more than one 

notation. The following table illustrates types of notations that can be used to describe the 

composite number 12. 

 

Table 2.5 

Generalized Mathematics Notation for Composite Number 12 

12 as a Sum 12 as a Product 

[1−unit] +  ... + [1−unit] (1−unit) × (12−unit)

1[2−unit] +  ... + 1[2−unit] (2−unit) × (6−unit) 

1[3−unit] +  ... + 1[3−unit] (3−unit) × (4−unit) 

1[4−unit] + 1[4−unit] + 1[4−unit] (4−unit) × (3−unit) 

1[6−unit] + 1[6−unit] (6−unit) × (2−unit) 

 

 I also made use of Vergnaud’s theorems−in−action, “mathematical relationships 

that are taken into account by students when they choose an operation or a sequence of 
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operations to solve a problem” (1988, p. 144) as a data analysis framework. Vergnaud 

goes on to state “To study children’s mathematical behavior it is necessary to express the 

theorems−in−action in mathematical terms.” (p. 144). Grounded in this theory, I 

developed a series of terminology serving as some sort of analytical tools in an attempt to 

translate my students’ concepts and theorems in action (e.g., mathematical behaviors, 

mathematical thinking, actions, statements, hand gestures, drawings, etc.). Equal 

Addends, Summed Addends, Representational Sets, Irreducible Linear/Areal Quantities, 

Representational Cartesian Products, Ordered Pair of Linear Units/Quantities, Ordered 

N−Tuple of Areal Units/Quantities, Filling in the Puzzle Strategy, Term−Wise 

Multiplication of Irreducible Linear Units/Quantities Strategy, Mapping Structures, 

Inverse Mapping Structures are examples of such terminology. In doing so, I often made 

use of a Relational Notation, a much more simplified and understandable version of the 

Generalized Notation for Mathematics of a Quantity (Behr et al., 1994). 

 Smith and Thompson state that “conceiving of and reasoning about quantities in 

situations does not require knowing their numerical value (e.g., how many there are, how 

long or wide they are, etc.). Quantities are attributes of objects or phenomena that are 

measurable; it is our capacity to measure them—whether we have carried out those 

measurements or not—that makes them quantities.” (2008, p. 101). In mathematics, we 

define the Cartesian product of two sets A and B as the set of all ordered pairs in which 

the first component is taken from the first set, and the second component is taken from 

the second set. Using this analogy, one can say that a product quantity can be coordinated 

(composed) as an ordered pair of the form (a, b), where a and b are understood to be 

coming from the first set and the second set, respectively. To help visualize the situation, 
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just as a point on the coordinate plane is associated with its x− and y−coordinates, which 

are coordinated as the ordered pair (x, y), a product quantity can be represented, hence 

coordinated, as the pair (multiplier, multiplicand). All possible orderings of the form 

(multiplier, multiplicand) with coordinates multiplier and multiplicand generate the 

binary relation under consideration. In the example of the polynomial product 

 for instance, the coordination (x, 2y) is not the same as (x, y) or (x, 3). 

There are various types of product quantities modeled with polynomial rectangles. In the 

example of  we have the following product quantities: (See Figure 2.2) 

),32)(1( ++ yx

),32)(1( ++ yx

i. The product quantity ),32)(1( ++ yx  which is mapped as the area of the whole 

rectangle (largest areal singleton) enclosed by its sides x + 1 and 2x + 3 

(Multiplicative Type RUC), 

ii. The product quantities x · 2y, x · 3, 1 · 2y, 1 · 3 each being mapped as the area of 

the corresponding boxes of the same color (This is also a Multiplicative Type 

RUC, however, some interview students treated these as “pseudo−products,” 

which necessitates a different RUC type in between Multiplicative and Additive: 

Pseudo−Multiplicative Type RUC), 

iii. The product quantities x · y  (there are two of them), x · 1 (there are three of 

them), 1 · y  (there are two of them), 1 · 1 (there are three of them) each being 

mapped as the area of  the corresponding irreducible areal unit (Multiplicative 

Type RUC). The total number of these irreducible areal units for this example is 

10. In general, for any polynomial product of the form ))(( fdyexcbyax ++++ , 

the total number of the irreducible areal units equals ).)(( fedcba ++++  
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 There are also Additive Type RUCs (Irreducible Addends, “Same−Color−Box” 

Addends, “Combined−Areal−Box” Addends4) arising from polynomial rectangles in x 

and y. In Chapter IV below, I describe all RUC types referred by students, using a 

simplified version of Behr’s generalized mathematics notation, which I named relational 

notation, in more detail. 

 

 

Figure 2.2. Polynomial rectangle of sides x + 1 by 2y + 3. 

                                                 
4 These are named as Irreducible Areal Quantities (IAQ), Same−Color−Box Areal Quantities (SCBAQ), 
and Combined−Areal−Quantities (CAQ), respectively, in Chapter IV. 
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CHAPTER THREE 

CONTEXT AND METHODOLOGY 

 

3.1. Research Design 

 I was interested in investigating preservice mathematics teachers’ sense making of 

different types of units and quantities arising from the use of color cubes and algebra 

tiles. I was hoping to reveal the foundations underpinning these students’ mathematics 

associated with the activities pertaining to these manipulatives. In that regard, I chose to 

use a qualitative design because I would have more opportunities to probe on these ideas 

in an attempt to reveal my research participants’ mathematics.  

 As the concepts of “units” and “quantities” were the essential ideas guiding this 

research study, I used unit coordination (Steffe, 1988, 1994) and quantitative reasoning 

(Thompson, 1988, 1989, 1993, 1994, 1995) as the main theoretical frameworks. I also 

made use of Schwartz’ adjectival quantities and referent preserving/transforming 

compositions (1988), which served as a meaningful perspective in looking at the 

interviews comparatively (e.g., students making use of a referent preserving composition 

vs. those making use of a referent transforming composition). My data analysis 

framework was inspired by a simplified version of Behr et al.'s (1994) generalized 

notation for mathematics of a quantity and Vergnaud's (1983, 1988, 1994) theorems and 

concepts−in−action formalisms, which helped me translate students’ mathematical 

performance into a series of terms based on a very simple notation: Relational notation 
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and mapping structures duo (Caglayan, 2007b). All these choices played a crucial role 

and stood as the essential rationale behind the idea of conducting multiple  interviews. 

 

3.2. Participants 

 I conducted my study with (2 middle and 3 high school mathematics) preservice 

teachers enrolled in the Mathematics Education Program in a university in the 

southeastern United States. I interviewed five people individually twice during Spring 

2007 semester. Duration of each session was about 75 minutes and each interview session 

was videotaped using one camera. 

 I selected my participants from two different undergraduate level mathematics 

education classes. Brad, Sarah and John came from the “Concepts in Secondary School 

Mathematics” class of 11 enrolled preservice high−school mathematics teachers while 

Nicole and Robert came from the “Teaching Geometry and Measurement in the Middle 

School” class of 22 enrolled preservice middle−school mathematics teachers. All these 

five students volunteered to participate in my study. Their decision to participate or not 

would not affect their grade or class standing. Each participant had the right to have all of 

the information about him/herself returned to him/herself, removed from the research 

records, or destroyed. Moreover, any information collected about these students was to be 

kept confidential. All proper names in this study, therefore, are pseudonyms.  

 

3.3. Data Collection 

 The focus of my research study is on problems on identities of the form Π=Σ  

for prime and composite numbers along with summation of counting numbers, odd and 
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even integers as well as products and factors of polynomials modeled with magnetic 

color cubes and algebra tiles. To be more specific, the 1'' magnetic color cubes were used 

to generate sequences of growing rectangles representing identities for prime and 

composite numbers as well as summation of counting numbers, odd and even integers. 

During the interviews, I asked preservice teachers to make rectangles representing prime 

and composite numbers first. We then focused on patterns that generate growing 

rectangles for the summation of counting numbers, odd, and even integers.  

 As for the products and factors of polynomial expressions, we used color tiles of 

different colors and sizes (algebra tiles). In this model, each little black square tile 

represents the number 1, long purple bars represent the x, long blue bars represent the y, 

big purple squares represent  big blue squares represent  and big green rectangles 

represent xy. The 1, the x, and the y are called Irreducible Linear (or Areal, depending on 

the context) Quantities (ILQ or IAQ); whereas the  the  and the xy are called 

Irreducible Areal Quantities (IAQ). Preservice teachers constructed rectangles with 

specified dimensions of the form 

,2x ,2y

,2x ,2y

),( cbyax ++  where a, b, and c were natural numbers. 

They were asked to write their answers for the area of the polynomial rectangle as a 

product and as a sum (See Figure 2.2 above for the construction of the polynomial 

rectangle of dimensions x + 1 by 2y + 3). 

 My rationale for collecting interview data with preservice teachers was mainly to 

understand how they establish Π=Σ  identities involving linear and areal quantities 

based on the color cubes and algebra tiles representational models. I also wanted to 

determine if they were able to reason at the different categories of linear or areal 

quantities (Multiplicative and Additive RUC Types) associated with growing rectangles 
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generated by color cubes and algebra tiles (See Table 3.1 below for the interview outline 

I used). Moreover, we do not know about preservice teachers’ mathematical knowledge 

on these issues. We would want to let them think about these issues before they start 

teaching. These are in the content of middle and high school mathematics. As 

researchers, we need to document information about preservice teachers’ identification, 

interpretation and coordination of different types of representational units arising from 

this mathematical content because such practices are highly likely to have strong 

implications (e.g., curriculum writing, teacher education), which mathematics education 

field will benefit from. 

 

Table 3.1 

Interview Outline 

Activity One – Prime and Composite Numbers 

Directions: 

• Represent prime numbers (e.g., 5, 7) and 

composite numbers (e.g., 15, 28) as rectangles 

using a different color for each new rectangle5. 

• Identify the area and the dimensions of the 

corresponding rectangle(s) for each number. 

• Use a table to organize information. 

Probing questions: 

• What are the units associated with each 

prime/composite number? 

• What is the area of each prime/composite rectangle as 

a sum? As a product? 

• What are the length and the width of each 

prime/composite rectangle?  

• Where are the linear units? Areal units of 

prime/composite rectangles? 

Activity Two – Summing Counting Numbers 

Directions: 

• Represent counting numbers 1, 2, 3, … using a 

different color for each number. 

• Add them so that they generate a rectangle. 

• Use a table to organize information. 

Probing questions: 

• What are the units associated with each counting 

number? Odd integer? Even integer? 

• What is the area of the growing rectangle at each step 

as a sum? As a product? 

• What are the length and the width of the growing 

                                                 
5 The activity I did with Nicole slightly differs from the other students in that in representing prime and 
composite numbers, I also used a multiplication mat, in addition to the cubes. The rest is the same for all 
students. 
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rectangle at each step? 

• Where are the linear units? Areal units of the growing 

rectangle? 

Activity Three – Summing Odd Integers 

Directions: 

• Represent odd integers 1, 3, 5, … using a 

different color for each number. 

• Add them so that they generate a rectangle. 

• Use a table to organize information. 

 

Probing questions: 

• What are the units associated with each odd integer? 

• What is the area of the growing rectangle at each step 

as a sum? As a product? 

• What are the length and the width of the growing 

rectangle at each step? 

• Where are the linear units? Areal units of the growing 

rectangle? 

Activity Four – Summing Even Integers 

Directions: 

• Represent even integers 2, 4, 6, ...  using a 

different color for each number. 

• Add them so that they generate a rectangle. 

• Use a table to organize information. 

 

Probing questions: 

• What are the units associated with each even integer? 

• What is the area of the growing rectangle at each step 

as a sum? As a product? 

• What are the length and the width of the growing 

rectangle at each step? 

• Where are the linear units? Areal units of the growing 

rectangle? 

Activity Five – Polynomial Multiplication 

Directions: 

• Multiply two polynomials using a generic 

rectangle by placing one of the polynomials at the 

top, and the other, on the side of the generic 

rectangle. 

• Identify the area and the dimensions of the 

rectangle for a polynomial product. 

 

Probing questions: 

• What is the area of each polynomial rectangle as a 

sum? As a product? 

• What are the length and the width of each polynomial 

rectangle? 

• What are the (linear) units associated with the 

dimensions of the polynomial rectangle? 

• What are the (areal) units associated with the area of 

the polynomial rectangle? 

Activity Six – Polynomial Factorization 

Directions: 

• Build a rectangle enclosing the tiles 

corresponding to the polynomial expression. 

• Identify the dimensions (length and width) of the 

polynomial rectangle. 

Probing questions: 

• What is the area of each polynomial rectangle as a 

sum? As a product? 

• What are the length and the width of each polynomial 

rectangle? 

• What are the (linear) units associated with the 

dimensions of the polynomial rectangle? 

• What are the (areal) units associated with the area of 

the polynomial rectangle? 
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 In Table 3.1 above, first four tasks were used during the first interview with each 

student whereas the fifth and the sixth tasks are used during the second interviews. 

During the interviews, I asked preservice teachers to make rectangles representing prime 

and composite numbers first. We then focused on patterns that generate growing 

rectangles for the summation of counting numbers, odd, and even integers. As for the 

products and factors of polynomial expressions, we used color tiles of different colors 

and sizes (algebra tiles). The figure below illustrates examples of materials described in 

Table 3.1. 

 

 
 

 
Prime and Composite Rectangles 

 
Counting Numbers Summation  

Odd Integers Summation 

 
 

 
Even Integers Summation 

 
Polynomial Multiplication 

 
Polynomial Factorization 

Figure 3.1. Six main activities on “sum = product” representational identities. 
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3.4. Analyzing Data: Relational Notation & Mapping Structures 

The interviews were consecutive; no analysis was done between interviews. After 

the end of data collection, I reviewed each interview in order to generate possible themes 

for a more detailed analysis. I first generated an outline for each interview, from which I 

obtained a summary for each student. These interview outlines helped me identify 

significant events for transcription. The final write-up is organized with sections based on 

activities, rather than students. As for the analysis methodology, I used thematic analysis 

supported by retrospective and constant comparison analyses of interviews. I also 

benefited from generalized notation for mathematics of a quantity (Behr et al., 1994) and 

theorems and concepts in action (Vergnaud, 1983, 1988, 1994) framework as data 

analysis tools from which I developed a data analysis framework of my own: Relational 

notation and mapping structures duo (Caglayan, 2007b). 

 I have decided to extend Behr et al.’s notation in such a way as to cover identities 

that equate summation and product expressions of representational quantities. The fact 

that commutativity is an evident property of multiplication operation may not be so 

obvious for every student. Yes, numbers6 commute when the binary operation under 

consideration is multiplication. However, though produce the same result, a × b and b × a 

may have different algebraic and geometric interpretations for students. In other words, 

although the commutative property states that order does not matter in multiplication, it 

may matter for some students. The relational notation I am proposing thus, naturally 

follows these ideas, as an ordered pair (a, b) is in general different from (b, a). They are 

the same only if a = b. Even though I use the notation (a, b) to denote an ordered pair of 

                                                 
6 Matrix multiplication is not commutative, though. 
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linear units, for the research participants (a, b) did not have a different meaning from (b, 

a), therefore, in the remaining part of this manuscript, the ordered pairs (a, b) and (b, a) 

are to be considered equivalent.  

 It remains to describe a relational notation for addition, as well. In this case, once 

again I am not worrying about commutative property of addition for the same reason as 

stated for multiplication. However, I reserve square brackets [ ] for addition, which is 

different from the multiplicative situation. Moreover, for the multiplicative situation, we 

have ordered pairs while for the additive situation, we have ordered n–tuples where the 

integer n in general being greater than 2. For instance, the ordered n–tuple 

 denotes areal units ],,,,[ 121 nn aaaa −K ,1, niai ≤≤  generating the area of the growing 

rectangle under consideration. 

 There must be an agreement of the ordered pair (a, b) of linear units and the 

ordered n–tuple  of areal units. How can we reconcile these two? At 

this moment, it is mapping structures that come to rescue. This will become clearer with 

students’ work in Chapter IV, however, for the moment, I just want to describe mapping 

structures briefly. Without loss of generality, focusing on the x + 1 by 2y + 3 polynomial 

rectangle example I introduced above, the multiplication operation, which behaves as a 

function, as a mapping, can be represented using a functional notation as 

],,,,[ 121 nn aaaa −K

.3232)32 ,1(: +++→++ yxxyyxf  Here, f denotes the multiplication operation that 

maps the linear units, x + 1 and 2y + 3, which can be thought of as a combination of 

irreducible linear units, into the corresponding areal unit, namely 3232 +++ yxxy , 

which is also the same as the area of the polynomial rectangle itself. In other words, f acts 
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on the ordered pair  of linear units and maps it into the areal unit 

 This operation can also be written as an equality: 

)32 ,1( ++ yx

.3232 +++ yxxy

.3232)32 ,1( +++=++ yxxyyxf  

Similarly, the addition operation behaves like a function, like a mapping, acting 

on irreducible areal units or combinations of those. For instance, the function g, which 

represents the addition operation, acts on the ordered 10−tuple [xy, xy, x, x, x, y, y, 1, 1, 1] 

of areal units and maps it into the areal unit .3232 +++ yxxy  Using a functional 

notation, this can be written as ,3232] 1 ,1 ,1 , , , , , , ,[: +++→ yxxyyyxxxxyxyg  or with 

the equality: 

.3232] 1 ,1 ,1 , , , , , , ,[ +++= yxxyyyxxxxyxyg  

In other words, though they act on different types of representational quantities, the 

mappings f and g agree on one thing: That one thing is nothing but the fact that their 

images coincide (Figure 3.1). This is the essence of what is meant by Σ = Π identity in 

this research project. “Area as a product” coincides with “area as a sum” at the end, 

thanks to these mapping structures. 

 

 

Figure 3.2. Mapping structures.
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CHAPTER IV  

COLOR CUBES & TILES ANALYSIS RESULTS 

 

This chapter presents results arising from preservice teachers’ behaviors based on 

various tasks involving magnetic color cubes and algebra tiles. In the first section, I 

describe these students’ mathematical thinking and the strategies they used in the context 

of prime and composite numbers represented by rectangles made of one inch color cubes. 

In the second, the third, and the fourth sections, I describe their thinking for more 

challenging tasks: summation identities represented by one inch color cubes. The fifth 

and the sixth sections are about tasks requiring polynomial multiplication and 

factorization using algebra tiles. The seventh section is a summary of findings for each 

individual student. I conclude the chapter with a summary of additive and multiplicative 

structures. 

 

4.1. Prime & Composite Rectangles 

 I started the interviews with three of the students with an activity involving 

rectangles formed from prime and composite numbers because I thought this activity was 

easy compared to others so it would serve as a warm–up activity. With the other two 

students, I started with an activity involving rectangles formed from counting numbers. 

Both activities led to the construction of rectangles made from the same number of tiles 

(e.g., 15, 28), but the construction of the rectangles was different because the rectangles 
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arose from different numerical situations. This difference in initial interview tasks 

afforded me a good opportunity to compare the students' thinking in different yet similar 

contexts. After this initial activity, the remainder of the interview was the same for all six 

students. 

 My initial instruction to Brad, Nicole, Rob and Sarah was “Make a rectangle for 

15.” In the same vein, I asked John to “Make a rectangle for 28.” All interview students 

made a 3 by 5 rectangle (John made a 4 by 7 rectangle) using wooden cubes on the desk 

(See Figure 4.1). 

 

 

Figure 4.1. Composite rectangle representing 15. 

 

4.1.1. Multiplicative Representational Unit Coordination (MRUC) 

 I define a prime rectangle as a rectangle made of a prime number of color cubes. 

A prime number of cubes can be arranged into one unique rectangle (disregarding 

rotations). Composite rectangles, on the other hand, are made from a composite number 

of cubes. Since a composite number has three or more distinct divisors, a composite 
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number of cubes can be arranged into at least two different rectangles. In the context of 

prime and composite numbers, the multiplicative nature of representational unit 

coordination (RUC) appears as an ordered pair of linear units, namely, the length and 

width of the rectangle representing a prime or composite number. The following protocol 

illustrates this aspect. 

 

Protocol 4.1: Brad's description of composite rectangle's area as a product. 

B: From my perspective. Base is 3, height is 5. So it's 5 times 3... fifteen... 

Length is the base, width is the height. 

G: What is the area of this figure... as a product of what? 

B: Of 3 and 5, which is the length and the width. 

 

Nicole, on the other hand, defined the length to be 3 and the width to be 5. She saw this 

fifteen, while pointing to the rows, as “five rows of three.” In this warm–up activity, Brad 

and Nicole agreed on the multiplicative RUC arising from usages “So it's 5 times 3,” “So 

it'd be 3 times 5.” When I look at the other students' answers, I see similar usages. Rob, 

for instance, made the same 3 by 5 rectangle. I then probed by asking “What is it about 

fifteen?” He said “Just multiplication... three rows of five each... or three columns of five 

each...” As for Sarah, the area of the same rectangle as a product is “5 times 3.” Finally, 

John attached measurement units to his answer when I asked him about the area of the 4 

by 7 rectangle as a product: 4 inches by 7 inches. I will talk about the measurement units 

in a separate section below; however, at this elementary stage of formulating a 

multiplicative type RUC, I can say that all these students agreed on a standard definition 
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of area, which can be used to describe their answers. The table below summarizes each 

student's answer and a corresponding relational notation that describes multiplicative type 

RUC. 

 

Table 4.1.  

Relational Notation Describing Students' Answers 

Students Phrases Relational Notation 

Brad So it's 5 times 3 (5, 3) 

Nicole 
So it'd be 3 times 5 
Five rows of three 

Five columns with three in each one 

(3, 5) 

(5, 3) 

Rob Three rows of five each 
Three columns of five each 

(3, 5) 

Sarah 5 times 3 (5, 3) 

John 4 inches by 7 inches (4, 7) 

 

 Each student wrote his/her answer on an activity sheet related to each activity 

(See Appendix). Students' written answers were consistent with what they were saying 

during the interviews. The table below reflects students' written answers for the area as a 

product of their prime and composite rectangles. I am including once again a relational 

notation for each written answer for the purpose of analysis. 

 

Table 4.2  

Students' Written Work for Prime & Composite Rectangles' Areas as a Product 

Students 
Area of the 

Composite Rectangle 
as a Product 

Relational Notation 
Describing the 

Product 

Area of the Prime 
Rectangle as a 

Product 

Relational Notation 
Describing the 

Product 

Brad 3 · 5, 5 · 3 (3, 5), (5, 3) 3 · 1 (3, 1) 

Nicole 3 × 5, 5 × 3, 1 × 15, 15 (3, 5), (5, 3), (1, 15), 1 × 7, 7 × 1 (1, 7), (7, 1) 
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× 1 (15, 1) 

Rob 3in × 5in, 5in × 3in, 
1in × 15in, 15in × 1in 

(3, 5), (5, 3), (1, 15), 
(15, 1) 1in × 7in, 7in × 1in (1, 7), (7, 1) 

Sarah 3 × 5 (3, 5) NA NA 

John 4in × 7in (4, 7) 1in × 7in (1, 7) 

 

 As can be seen in the written work, some students (Rob and John) attached units 

to their answers. When area of a rectangle is expressed as a product of the form 4in × 7in 

or 3in × 5in, the unit of measurement needs to be specified. With the relational notation, 

however, one does not need to attach a measurement unit to the ordered pairs because 

each component of the ordered pair by itself is a linear unit. 

 

4.1.2. Additive Representational Unit Coordination (RUC) 

 In the context of prime and composite numbers, the additive nature of RUC 

appears as an ordered n–tuple of areal units. The areal–ness of the addends making up the 

total area of rectangle was spelled out by all these students either by the phrases they 

used, or by their written work during the interviews. A description of Brad's use of 

addends is found in Protocol 4.2. 

 

Protocol 4.2: Brad's description of composite rectangle's area as a sum. 

G: How about the area of this figure as a sum? 

B: You can count the blocks; it's 15 so... Or let's go with the threes... adding 

five times... it's 3 plus 3 plus 3 plus 3 plus 3. 

G: How about each one of those threes, is it a length or an area? 
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B: It can be both. I mean in this example, I'd say it's an area because they are 

cubes so it'd be like 3 by 1, 3 by 1, ... 

 

I can use a relational notation such as [1, 1, ..., 1] to describe Brad's statement that 

“You can count the blocks; it's 15.” In this notation, each “1” in the ordered 15–tuple is 

an areal unit. To be more specific, each areal “1” is an irreducible areal unit. I use the 

term Irreducible Addends of Type I for this type of additive RUC7. Brad's other usage 

“So it'd be like 3 by 1, 3 by 1, ...” in describing the addends is another type of additive 

RUC, which I call Equal Addends type RUC. In this model, the equal areal units “3

combined additively to make an areal 15, which is the area of the composite rectangle. 

Using a similar strategy, the relational notation [3, 3, 3, 3, 3], an ordered quintuple, can 

be used to describe these areal units of the Equal Addends type RUC. Nicole's 

explanations on the same matter can be modeled using an additive type relational 

notation, as well. 

” are 

                                                

 

Protocol 4.3: Nicole's description of composite rectangle's area as a sum. 

G: How would you write the area of this rectangle as a sum? Of what? 

N: It's the sum of each individual block [pointing to the blocks]... I would add 

up each individual square [Nicole is pointing to the blocks while speaking] 

or you could add 3 plus 3 plus 3 plus 3 plus 3 [She is pointing to the 

columns of “threes”] or even you know... 5 plus 5 plus 5 [She is pointing 

to the rows of “fives”] until you reach 15. 

 
7There is another type of irreducible addends for additive RUC that I will name Irreducible Addends of 
Type II. This will be explained in the fifth section of Chapter 4 that deals with the activities on polynomial 
rectangles. 
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Nicole's usage “It's the sum of each individual block... I would add up each 

individual square” could also be modeled as the ordered 15–tuple [1, 1, ..., 1] of 

irreducible areal units, i.e., of Irreducible Addends (Type I) type additive RUC. Her 

repeated addition language is of Equal Addends type and can be modeled as the ordered 

quintuple [3, 3, 3, 3, 3] and as the ordered triple [5, 5, 5], respectively. In the relational 

notation guided by ordered pairs or n–tuples, square brackets are used to describe the set 

of areal units whereas ordinary parentheses are used for the ordered pair of linear units. 

Next I will examine Sarah's description of the area of a rectangle as it is quite different 

from those offered by Nicole and Brad. 

 

Protocol 4.4: Sarah's description of composite rectangle's area as a sum. 

G: How do you write the area of this rectangle as a sum? 

S: Well there is many different ways... 

G: For instance? 

S: Like… 14 and 1... 

 

 The fact that 15 is a composite number does not seem to affect Sarah's thinking as 

she does not use factors at all. I was expecting an answer like 5 + 5 + 5 or 3 + 3 + 3 + 3 + 

3, i.e., area of the rectangle as the sum of “equal addends.” I define Sarah's description as 

Random Addends Type RUC. In this model, the addends, which are areal units, could be 

anything. In other words, the addends do not necessarily have to be of “Equal Addends” 

type RUC or “Irreducible Addends (Type I)” type RUC. In fact, Sarah was aware that 
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whatever the addends were, they had to be areal units. She specified that 14 and 1 both 

had the same units, i.e., inches squared. Her “random” example can be modeled as an 

ordered pair [14, 1] of areal units via the relational notation. One does not need to have 

an ordered pair of areal units in this model, though. One could have things like [5, 5, 4], 

[7, 2, 1, 1, 1, 2], [3, 3, 6, 2] as well. The number of addends and the numerical value of 

each addend are completely random. The only restriction in this model is that the areal 

units, namely the addends, have to add up to the area of the rectangle under 

consideration. 

 Sarah was also aware that when the area is written as a product, 3 × 5, the 3 and 

the 5 both have units of inches. She said “3 inches times 5 inches… which would yield 15 

inches squared, so they are different,” meaning the linear unit is different from the areal 

unit. I describe all students' comparison of linear and areal units in the next subsection in 

more detail. 

 

Protocol 4.5: John's description of composite rectangle's area as a sum. 

G: Could you suggest a way of writing 28 as a sum? 

J: You could add up the boxes [pointing to the unit cubes one by one. He then 

says “7 plus 7 plus 7 plus 7,” pointing to the rows, and puts his answer on 

the table]. You could do 4 plus 4 plus 4 plus 4 plus 4 plus 4 plus 4 

[pointing to the columns]... I guess there is multiple ways you could do... 

  

John's statement “You could add up the boxes” by pointing to the unit cubes one 

by one could warrant an Irreducible Addends (Type I) type RUC. With the relational 
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notation, this can be modeled as the ordered 28–tuple [1, 1, 1, ..., 1] of irreducible areal 

units. His subsequent usages “7 plus 7 plus 7 plus 7” and “4 plus 4 plus 4 plus 4 plus 4 

plus 4 plus 4” in the same conversation are of Equal Addends type RUC and can be 

modeled as the ordered quadruple [7, 7, 7, 7] and as the ordered heptuple [4, 4, 4, 4, 4, 4, 

4] of equal areal units, respectively. 

I conclude this subsection with three tables to summarize what has been discussed 

so far. The first table below tabulates students' language warranting additive type RUCs, 

the name of the corresponding additive type RUC, and a relational notation I infer from 

this language. The remaining two tables are slightly different from the first one in that 

they are based on students' written work on the activity sheet. 

 

Table 4.3.  

Relational Notation Describing Students' Answers 

Students Phrases Name of the Additive 
Type RUC 

Relational 
Notation 

You can count the blocks it's 15 Irreducible Addends 
(Type I) [1, 1, ..., 1] 

Brad 

So it'd be like 3 by 1, 3 by 1, ... Equal Addends [3, 3, 3, 3, 3] 

It's the sum of each individual block Irreducible Addends 
(Type I) [1, 1, ..., 1] 

I would add up each individual square Irreducible Addends 
(Type I) [1, 1, ..., 1] 

You could add 3 plus 3 plus 3 plus 3 plus 3 Equal Addends [3, 3, 3, 3, 3] 

Nicole 

or even you know... 5 plus 5 plus 5 Equal Addends [5, 5, 5] 

Rob 1 plus 1 plus 1 plus 1 plus 1 Irreducible Addends 
(Type I) [1, 1, 1, 1, 1] 

Sarah Well there is many different ways... Like 14 
and 1... Random Addends [14, 1] 
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You could add up the boxes Irreducible Addends 
(Type I) [1, 1, ..., 1] 

7 plus 7 plus 7 plus 7 [pointing to the rows] Equal Addends [7, 7, 7, 7] John 

4 plus 4 plus 4 plus 4 plus 4 plus 4 plus 4 
[pointing to the columns] Equal Addends [4, 4, 4, 4, 4, 4, 

4] 

 

Table 4.4 

Students' Written Work for Composite Rectangles' Areas as a Sum 

Students Area of the Composite 
Rectangle as a Sum 

Name of the Additive 
Type RUC 

Relational Notation 
Describing the Sum 

3 + 3 + 3 + 3 + 3 Equal Addends [3, 3, 3, 3, 3] 
Brad 

5 + 5 + 5 Equal Addends [5, 5, 5] 

3 + 3 + 3 + 3 + 3 Equal Addends [3, 3, 3, 3, 3] 

5 + 5 + 5 Equal Addends [5, 5, 5] Nicole 

1 + 1 + ... + 1 Irreducible Addends 
(Type I) [1, 1, ..., 1] 

3in2 + 3in2 + 3in2 + 3in2 + 3in2 Equal Addends [3, 3, 3, 3, 3] 

5in2 + 5in2 + 5in2 Equal Addends [5, 5, 5] Rob 

1in2 + 1in2 + ... + 1in2 Irreducible Addends 
(Type I) [1, 1, ..., 1] 

Sarah NA NA NA 

John 7in2 + 7in2 + 7in2 + 7in2 Equal Addends [7, 7, 7, 7] 

 

Table 4.5 

Students' Written Work for Prime Rectangles' Areas as a Sum 

Students Area of the Prime Rectangle 
as a Sum 

Name of the Additive 
Type RUC 

Relational Notation 
Describing the Sum 

Brad 1 + 1 + 1 Irreducible Addends 
(Type I) [1, 1, 1] 

Nicole 1 + 1 + 1 + 1 + 1 + 1 + 1 Irreducible Addends 
(Type I) [1, 1, 1, 1, 1, 1, 1] 

Rob 1in2 + 1in2 + 1in2 + 1in2 + 1in2 
+ 1in2 + 1in2 

Irreducible Addends 
(Type I) [1, 1, 1, 1, 1, 1, 1] 
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Sarah NA NA NA 

John 7in2 Singleton Addend [7] 

 

By looking at students' work on prime and composite rectangles, I deduced that 

Rob and John emphasized the areal units by attaching an “inches squared” symbol to 

each addend. John's answer for the “area of the prime rectangle as a sum” necessitates the 

existence of another additive type RUC, which I define as Singleton Addend. In this type, 

as suggested by John's answer 7in2, there is only one addend, which stands for the areal 

unit corresponding to the total area of the rectangle under consideration. A relational 

notation denoting this additive type RUC could therefore be written as a singleton, as a 

unique areal unit in between square brackets, namely as [7].  

 

4.1.3. Linear vs. Areal Units 

 In this subsection, I describe students' understanding and sense making of linear 

and areal quantities as well the meanings they project on same–valued linear and areal 

quantities. In our discussion about the 3 by 5 rectangle made of wooden cubes, Brad first 

described the area as a product and as a sum, as introduced by Protocol 4.2 above. The 

protocol below follows from the one above.  

 

Protocol 4.6: Brad compares the linear and areal threes. 

G: How about each one of those threes, is it a length or an area? 

B: It can be both. I mean in this example, I'd say it's an area because they are 

cubes so it'd be like 3 by 1, 3 by 1, ... 
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G: How about the width of this rectangle which is also 3. Now we are 

comparing the threes. 

B: It's more like a length. It's along a line. 

 

Brad interpreted the 3 equal addends as areal quantities, which I inferred from his 

statement “I'd say it's an area because they are cubes so it'd be like 3 by 1, 3 by 1, ...” In 

other words, the areal “3” has some meaning attached to it. He recognized that the areal 3 

is indeed an ordered pair (3, 1) of the linear units, i.e., the dimensions of the 3 by 1 

rectangle. He was also aware that the other 3, namely the length of the 3 by 1 rectangle 

had a different nature, as can be inferred from his statement “It's more like a length. It's 

along a line.” I then asked him to be more explicit in distinguishing between the areal and 

linear threes. Brad then used the known measurement unit “inch” to describe the 

perimeter of the rectangle. When I asked Brad to compare the threes, he described the 

areal unit 3 (the one enclosed in the rectangle) as a 3 by 1 rectangle. About the linear unit 

3, he said that if it (the rectangle) were drawn on a piece of paper, he would measure the 

perimeter as 1 inch, 2 inches, 3 inches, ... at the same time pointing to the perimeter line 

with his index finger. 

 Later on, I challenged him to make another rectangle for 15. He then made a 15 

by 1 rectangle with the wooden cubes, and upon my question “what about this one, is it a 

length or an area?” he said that kids would see it as a line. However, he added that he 

thinks of it as a 15 by 1 rectangle. He said he would write this 15 as a sum as 1 plus 1 

plus 1 ... I then asked him about each one of those “1”s. 
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Protocol 4.7: Brad unitizes the “1”s of the 15 by rectangle. 

G: If I want to attach a unit to each one of those “1”s, what unit would that 

be? 

B: It'd be an inch. 

 

His answer “It'd be an inch” is quite interesting because I was expecting an 

answer like “inches squared” or “square inches” as he just wrote “15 inches squared” on 

the activity sheet, for the “area of its rectangle” column. Later on, when I asked him to 

focus on one of the cubes only and describe it, he said that one of these would be an inch 

by an inch and deduced it would be 1 inch squared. He went on saying the total area then 

would be 15 inches squared because he would be adding 15 of these 1 inch squared units. 

Therefore, in spite of his comment that “It'd be an inch,” I can infer that Brad used help 

from known measurement units, inches and square inches, to describe the linearity and 

areal–ness of the representational quantities under consideration.  

 Nicole's interpretation of linear and areal quantities in the context of the prime 

and composite rectangles activity started when I asked her to use a multiplication mat8 

along with the wooden cubes to represent the 3 by 5 rectangle. Nicole placed the cubes 

representing the length and the width on the sides, and then made her 3 by 5 rectangle in 

the rectangular region (See Figure 4.2). 

 

                                                 
8 The use of a “multiplication mat” with Nicole renders this first task on prime and composite numbers to 
be a totally new one, as opposed to the other students with whom I did not use a multiplication mat in this 
activity. Other than this first task, a multiplication mat has not been used in any other task dealing with the 
cubes. With the algebra tiles, however, students ] used a multiplication mat consistently, 
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Figure 4.2. Nicole's representation of length, width, and area. 

 

Protocol 4.8: Nicole distinguishes between the linear and areal units. 

G: What do you like about this representation? I mean the representation of 

the length and the width on the multiplication mat using the cubes? What 

do you see? 

N: You could see like... the distinction of how it [meaning the length and 

width represented by the cubes] separates into the sum of the area and... 

even the product when you multiply this [pointing to the length] by this 

[pointing to the width]. That's very distinct. 

G: Distinct... So how do you distinguish between these quantities [pointing to 

the width and the length made of cubes] and this quantity [pointing to the 

area of the rectangle made of cubes]? 

N: This [pointing to the rectangle] is one solid rectangle so instead of trying to 

pull it apart to figure it [here “it” most likely refers to the area of the 

rectangle] out... using this… this [pointing to the length of the rectangle, 
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which is 3, by Nicole's definition] is equal to one of these [here “these” 

most likely refers to the group of five “areal threes”] ... so I can count 

these [she probably means “I can count the areal threes”] without having 

to messed up with my rectangle... so... come to the same answer [here, 

“answer” probably means “the area of the rectangle”]. 

 

I hypothesize that Nicole saw the 3 × 1 rectangle as a means of additively figuring 

out the area of the rectangle. When placed on the left as a dimension, it stands for a linear 

unit; however, in the process of “finding the area of the rectangle,” it behaves like an 

areal unit. In other words, depending on the context, the quantity with numerical value 

“3” could emerge as a linear unit or an areal unit for Nicole.  

Later on, Nicole referred to the known measurement units to demonstrate how she 

made the distinction linear vs. areal. In an attempt to find the area of the 3 by 5 rectangle, 

she said “When you multiply the inches by inches, you'd get inches squared. This would 

be 15 square inches;” i.e., she not only multiplied the values of linear quantities, she 

multiplied the measurement units attached to those quantities as well. Her following 

comment “The units are still different because it's [meaning, the area of the 1 by 15 

rectangle] still now inches squared” could be used to demonstrate the equivalence of 

areal units because both the 3 by 5 rectangle and the 1 by 15 rectangle have the same 

areal value “15,” and same areal unit “square inches.” In the same vein, Rob referred to 

the word “dimension” in an attempt to distinguish between linear and areal quantities 

based on his figure representing a 3 × 5 rectangle, as illustrated in the following protocol. 
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Protocol 4.9: Rob's usage of the word “dimension.” 

G: Can we say that they are different... I mean area and length? 

R: Yeah because area would be square inches as opposed to just inches... 'cuz 

it's a different dimension... 

G: How do you distinguish between these linear units you described, length 

and width, from the areal units, I mean the area? 

R: You're gonna look in a line for your width and your length whereas for area 

you'd [inaudible] two dimensional and you'd do [inaudible] them together. 

 

This is how Rob compared area and length. As can be inferred from his statement 

“Area would be square inches as opposed to just inches...'cuz it's a different dimension,” 

he not only attached the known measurement units inches and square inches, but he 

provided a reason of his own for doing so. His reasoning involved the usage of the word 

“dimension” in an attempt to explain that the linear and areal quantities are of different 

nature. In subsequent sections, I will describe a similar usage provided by Brad who often 

referred to this word “dimension” in his comparison of area and length. For both students, 

linear and areal quantities are of one–dimensional and two–dimensional nature, 

respectively. 

So far in this subsection, I have only talked about composite rectangles. Students 

dealt with areas of prime number rectangles and resulting areal units as well. Rob's 

description of the prime number 5 is one of those cases. Rob first made a rectangle for the 

number 5 (See Figure 4.3). 
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Figure 4.3. Prime rectangle representing 5. 

 

I then asked him whether what he did looked like a linear unit. 

 

Protocol 4.10: Rob's comparison of same–valued linear and areal quantities. 

R: It's kinda... it could be linear or areal 'cuz if you wanna do a rectangle with 

area 5 you could also do that [pointing to the 5 by 1 rectangle he just 

made]. 

G: Okay... how am I gonna distinguish between those two then?  

R: I guess... you just have to... it depends on what you are looking for... If a 

student was confused about it I guess you'd tell him this is just the length... 

you could just try to turn it to where you can only see the one dimension 

[See Figure 4.4] 

G: If it were an area? 

R: An area? Then you could just say... you could use one unit [See Figure 4.5] 

and say this is 1 by 1... this is 1 unit... what is the total area of all this if 

there is five of these all stuck together? It would be 5 by 1. [Rob fixes one 

dimension and iterates the other by adding ones]. 
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Figure 4.4. Rob's hand gesture showing where the linear units are. 

 

 

Figure 4.5. Rob's reference to the irreducible areal unit before iteration. 

 

Rob's behavior is consistent with what I previously said about his reference to one 

and two–dimensional characteristics of linear and areal units. In effect, the one–

dimensional character of the linear unit (the length of the rectangle) is evident in both his 

statement “just try to turn it to where you can only see the one dimension” and his hand 

gesture in Figure 4.4. Moreover, the two–dimensional nature of irreducible areal unit can 

be inferred from his usage “you could use one unit and say this is 1 by 1... this is 1 unit.” 

In fact, this is how Rob defined the area of one square as 1 by 1, i.e., as the ordered pair 

(1, 1) of linear units with the relational notation. The link between the irreducible areal 

unit and the total area of the rectangle is provided by Rob's iteration strategy. In other 
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words, Rob iterated his irreducible areal unit five times to obtain a 5 by 1 areal unit. This 

iteration strategy is reminiscent of quantitative reasoning skills of an individual who pays 

attention not just to the values and the units of the quantities being operated on, but to the 

arithmetic operation by which another quantity of the same structure is born. The 1 by 1 

irreducible unit can be iterated five times and added together because each individual 

irreducible unit as well as the resulting “born quantity” are of the same nature, namely 

like areal quantities.  

 There is one more significant episode from the interview with Rob in which he 

tentatively connects his ideas about one− and two–dimensional characteristics of linear 

and areal quantities to the known measurement units inches and square inches. These 

ideas came to life when I first asked Rob to make a rectangle for the number 7. He then 

wrote his answers on the activity sheet. On the “Area of its rectangles as a sum” column, 

he wrote “1in2 + 1in2 + 1in2 + 1in2 + 1in2 + 1in2 + 1in2”and I then asked him why he 

decided to write it that way. The following discussion took place. 

 

Protocol 4.11: Rob's association of dimensionalities to known measurement 

units. 

G: Why did you decide to write it that way?  

R: Because if you just did 1in + 1in + 1in + 1in + 1in + 1in + 1in it would just 

be like... the line... and since this is two−dimensional... rectangles are 

two−dimensional figures so you need to put the square on it [meaning on 

inches]. 
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Rob's ideas are more advanced than Nicole and Brad's in that he not only correctly 

uses the terminology related to dimensionalities and known units of measurement, but he 

explicitly shows how the phrases he choose to use are linked together. I term Rob's 

strategy as an Association of Dimensionalities to Known Measurement Units in an 

attempt to demonstrate the distinction between linear and areal quantities. 

 Sarah, too, started our discussion on prime and composite numbers by making a 3 

by 5 rectangle for 15. I then asked her whether the dimensions of this rectangle are 

lengths or areas. She said that they are lengths. She then added: 

  

Protocol 4.12: Sarah compares linear and areal fives. 

S: But if you were to split it [meaning the rectangle of 15] like that [See 

Figure 4.6], 5 would be the area of that [pointing to one of the areal five 

units] rectangle. 

G: How do you distinguish between this 5 [pointing the areal 5 in Figure 4.6] 

and the 5 which is one of the dimensions? 

S: Looking at the outside... [pointing to and counting the edges] one, two, 

three, four, five... that would be the length. 

G: Are you counting the cubes or... 

S: The sides of the cubes... 
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Figure 4.6. Sarah's splitting of areal 15 into areal fives. 

 

Sarah was the first one to be explicit by using the term “sides” to demonstrate the 

length is a linear unit. Her use of “outside” corroborates the one–dimensional 

characteristic of the length, as well. Her splitting of the areal 15 into three equal areal 

fives supports my hypothesis above on likeness of the quantities 15 and 5 both being of 

areal nature. In other words, 5, if areal, needs to be part of the area of the rectangle. On 

the other hand, 5, if linear, has to be along a line somewhere on the sides of the rectangle 

made of cubes.  

 I conclude this subsection with John's understanding and sense–making of linear 

and areal units. John, when asked to write his answers on the activity sheet pertaining to 

the 4 by 7 rectangle of wooden cubes he made, often referred to known measurement 

units to distinguish between same–valued linear and areal quantities. The following 

protocol in which I asked him to compare linear and areal “7”s illustrates this use of 

units.  

 

Protocol 4.13: John compares linear and areal sevens. 
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G: Are they the same “7”s? [pointing to dimension 7, and to “equal addend” 7 

on the activity sheet, respectively] 

J: Yeah... put inches here... [writes “in” next to dimension 7, and to each 

“equal addend” 7 on the activity sheet] They're both lengths... 

G: What is this 7 here... or this 7 here... an area or a length? [pointing to first 

and third row of the 4 by 7 rectangle on the desk] 

J: Um... These must be inches squared [and then changes the units of the 

“equal addend 7”s from in to in2 on the activity sheet]... So I guess they're 

different... 

G: So... where is the other 7? [meaning the dimension 7] Could you use your 

index finger and show me where it is? The other 7 I mean the dimension... 

J: So I guess the dimension would be [moving the pen along the top edge of 

the 4 by 7 rectangle. See Figure 4.7] right here... 

G: What do you mean... like... where is it? 

J: If you take a ruler then... you'd find... this is length of this side is 7 inches 

[once again moving the pen along the top edge of the 4 by 7 rectangle] 

whereas these blocks [pointing to the first row and moving the pen along 

the row. See Figure 4.8] have an area of 7 inches squared. 

G: So are they different? Or are they the same? How are they different and 

how are they the same? 

J: Well... they have the same number [realizes that both quantities have the 

same value]... they're different because... one is inches and one is inches 

squared... so... basically... this one is an area and this one is a length. 
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Figure 4.7. John's hand gesture indicating the one–dimensionality of linear seven. 

 

 

Figure 4.8. John's counting the square inch blocks adding up to areal seven. 

 

It appears that at the beginning of the protocol, John does not realize that the “7”s 

are different quantities, although they have the same value. I hypothesize that at that stage 

of the discussion, John was not reasoning quantitatively; as he was focusing on the 

“value” component of a quantity, rather than taking into account both elements, namely 

value and unit. This is not a surprising result because John was asked to compare two 
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“7”s, which seem like they should be the same. Upon my further probing, however, John 

relied on the known measurement unit “square inches” to deduce that the seven that is 

part of the area should be of areal nature. This realization allowed him to conclude that 

the linear and areal sevens should be of different types. He supported his ideas by his 

statement “if you take a ruler,” suggesting that he sees the linear 7 as some sort of 

measurement, which indicates the one–dimensional characteristic of the linear seven. The 

two–dimensionality of the areal seven was not made that explicit, though. 

His statement “they have the same number” indicates his realization that both 

quantities have the same value. From his final comment “they're different because... one 

is inches and one is inches squared... so... basically... this one is an area and this one is a 

length” I deduce that he is referring to known measurement units to distinguish between 

same–valued linear and areal quantities, which was the case for Brad and Nicole, as 

opposed to Rob and Sarah who focused on the dimensionalities. I complete this 

subsection by presenting a table of terminology that summarizes students' behaviors 

during their attempts to understand and make sense of linear and areal quantities as well 

as same–valued linear and areal quantities. 

 

Table 4.6 

Terminology Summarizing Students' Sense Making of Linear and Areal Units 

Terminology Summarizing Students' Behaviors Students Fitting the 
Terminology 

Reference to Known Units of Measurement Brad, Nicole, Rob, John 

Equivalence of Areal Units Nicole 

Conservation of Quantitative Units Nicole 

Quantitative Reasoning Nicole, Rob 

Dimensionalities Made Explicit for Both Linear and Areal Units Rob 
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Iteration Strategy Combined with the Two–Dimensional Nature of 
Irreducible Areal Unit Rob 

Association of Dimensionalities to Known Measurement Units Rob 

Dimensionality Made Explicit for Linear Units Sarah, John 

Splitting Strategy Combined with the Two–Dimensional Nature of Equal 
(Areal) Addends Sarah 

Interpretation of Linear Units as a Measurement John 

 

 

4.2. Summing Counting Numbers 

 I define a summed number to be the result of the summation of terms in a number 

sequence. Counting numbers, odd numbers, even numbers, triangular numbers, 

pentagonal numbers, and Fibonacci numbers constitute examples of such number 

sequences. Summed numbers can be represented by a sequence of growing rectangles, 

each made of a summed number of color cubes. The findings reported in this second 

section of Chapter 4 encompasses a wider range of Additive Representational Unit 

Coordination (ARUC) types, which are obtained from the representational subunits 

corresponding to each counting number as well as from those corresponding to bigger 

units made of these subunits. The bigger units are the growing rectangles, which 

represent the sum of the counting numbers. 

 The common direction for all the interview students was to represent the counting 

numbers 1, 2, 3, ...  using a different color for each number and add them so that they 

generate a rectangle. They were also asked to write their answers on the activity sheet, 

which was aiming at organizing information. All students paid attention to the “add them 

so that they generate a rectangle” direction and came up with a similar sequence of 
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growing rectangles. The 8th growing rectangle of the sequence, for instance, looked like 

this (Figure 4.9). 

 

 

Figure 4.9. The 8th growing rectangle of the sequence. 

 

4.2.1. Multiplicative Representational Unit Coordination (MRUC) 

 Brad made rectangles for the first 8 counting numbers using the color cubes on 

the white board. He used a different color for each counting number, as depicted in 

Figure 4.10 below. 

 

 

Figure 4.10. Brad's subunits representing counting numbers. 
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 Brad said that the figures he made are all areas, and not lengths. His subunits, 

therefore, could be represented via relational notation as (1, 1), (2, 1), (3, 1), (2, 2), (5, 1), 

(2, 3), (7, 1), (2, 4); which is the essence of multiplicative RUC. He said the odd integers 

1, 3, 5, 7 are prime and added “You could see that 'cuz they are straight up; they cannot 

make a rectangle.” He probably meant they cannot be made into a rectangle other than 

the 1 by n rectangle. When asked about the even numbers, he said that 2 is prime and 

added “For 4, you have a square, you stick 2 at top, you get a six, eventually you'll get a 

taller rectangle.” This language will be analyzed in more detail in the next subsection as it 

is of the additive type. However, for purposes of this section, I note he is relying on some 

sort of iteration by twos to obtain his sequence of even numbers. 

 I then asked him to add his counting numbers so that they generate a growing 

rectangle. He then produced a figure similar to the one depicted in Figure 4.9 above. His 

written expressions for the “area of the growing rectangle as a product” column on his 

recording sheet are all of multiplicative type and thus calls for the relational notations of 

ordered pairs (1, 1), (1, 3), (2, 3), (2, 5), (3, 5), (3, 7), (4, 7), and (4, 9) of linear units.  

 I asked Nicole to make her figures for the growing rectangle sequence, step by 

step, and at the same time write her answers on the activity sheet. I will describe the 

different stages of growing rectangle formation Nicole chose to use, including the figures 

she made, as there are some data corresponding to those stages which can be modeled 

using a multiplicative type RUC. At the third stage, namely when the numbers add to 6, 

Nicole realized there would be more than one rectangle. She decided then to go on with 

the “more interesting” formation, rather than the 1 × n representation. In fact, toward the 

end of the discussion on summing counting numbers, Nicole pointed out that all 
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rectangles representing summed numbers contain a number of cubes which is composite. 

Although the growing rectangles at the first and the second stages represent prime 

numbers, those after the third stage all represent composite numbers. I assume Nicole 

made a generalization based on the growing rectangle sequence after the third stage. The 

picture below shows Nicole’s growing rectangle sequence for the first 4 stages (Figure 

4.11). 

 

 

Figure 4.11. Nicole's growing rectangle corresponding to the 4th stage. 

 

She then said “We're gonna make this prettier... rearranging...” By “this,” she meant the 

growing rectangle at the 5th stage. In other words, she wanted to rearrange her previous 

figure at the 4th stage. Figure 4.12 below shows how she redesigned her previous figure 

and obtained her 5th growing rectangle in the sequence. 

 

 

Figure 4.12. Nicole's growing rectangle corresponding to the 5th stage. 
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The following protocol captures the conversation that followed. 

 

Protocol 4.14: Nicole's description of subunits and growing rectangles. 

N: Stage number 5... tiles added, 5. [When it comes to write an answer for the 

“Dimensions of the added rectangle” column on the activity sheet, she 

stops and says]. Oh... I did not actually add a rectangle... do I have to? 

G: Okay... Let's go on with this figure [I encourage her to continue with this 

formation]. What did you add? That's perfectly fine with me... What did 

you add and what did you change? 

N: I took the 4 from here [meaning from her previous figure] and moved them 

down here because with 15... [hesitant] I guess I could have... 

G: Let's continue with this. You changed the areal unit [meaning the 2 by 2 

white rectangle representing 4] right? It was a rectangle and you changed 

it to a what? You changed it to an L–shape right? 

N: Hm hm... 

G: This one is neither a rectangle, what is it? [pointing to the red figure 

representing 5. See Figure 4.12 above] 

N: I don't know the name for it. 

 

I intervened a lot, trying to help Nicole realize that the added subunits, namely the 

L–shapes could not be expressed as a product of two linear units. Nicole was unable to 

give a name for these subunits, either. 
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Protocol 4.15: Nicole's MRUC for a particular case. 

G: Okay, how about the white thing as a product? 

N: I mean... I know it's still 4 times 1. But you can't see that visually. 

G: Why is that? 

N: Because it's not a rectangle we don't have an easy formula for describing it. 

G: Okay... So... Can we say that if it's not a rectangle... if it's an irregular 

shape... could it still be expressed as a sum? 

N: Hm hm... 

G: As a product? 

N: Yeah. 

G: How? If it's not a rectangle, could it still be expressed as a product? 

N: Not easily.  

G: Tell me more about that. 

N: I mean... if I was trying to use a product to find this, I would think of it 

[meaning the white figure] just like that [changing the white figure into a 1 

by 4 rectangle. See Figure 4.13 below] and it would be 1 times 4. 

 

 

Figure 4.13. Nicole's MRUC for the 1 by 4 subunit. 
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In other words, the rectangle concept lies at the heart of MRUC, as can be inferred 

from Nicole's comment “I know it's still 4 times 1. But you can't see that visually,” which 

can be expressed as the relational notation of ordered pair (4, 1) of linear units. She then 

placed the white unit cube in its original position as in Figure 4.12 above. She seemed 

unhappy with these irregular figures and decided to go on with the pattern she was 

following before. She then made the pattern corresponding to the 5th and the 6th stages as 

depicted in Figure 4.14 below. 

 

 

Figure 4.14. Nicole's MRUC for all subunits at the 6th stage. 

 

I then invited Nicole to discuss the subunits corresponding to odd and even 

numbers on her growing rectangle. Nicole said that the odd numbers are all represented 

with straight lines. Later on, she added that the even numbers all have length greater than 

1, which made me think that she was beginning to think in a multiplicative way, as 

reflected in the following protocol. 

 

Protocol 4.16: Nicole's MRUC of even number subunits. 
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G: What is common about the even numbers? 

N: They are all by 2. Because in all even numbers 2 is a divisor or factor.  

G: How would you describe the area of this big rectangle as a product? 

N: I would say three [points to the same three cubes on the left] times seven 

[points to the same seven cubes at the bottom]. Three inches times seven 

inches would give me 21 inches squared. 

 

From this protocol, I deduce that the area of the growing rectangle, in the context 

of MRUC, can be expressed via the relational notation of ordered pair (3, 7) of linear 

units, as described by Nicole's usage of “three times seven.” Nicole was able to see the 

multiplicative nature of the area of the growing rectangle for the special case 

corresponding to the 6th stage; however, she could not generalize this for all growing 

rectangles of the sequence. As for the subunits, she specified only one of the dimensions, 

as can be noted from her comment “They are all by 2. Because in all even numbers 2 is a 

divisor or factor.” This language calls for a relational notation of the form (2, ·) where the 

dot “·” represents the missing unspecified linear unit with value “half the even number.”  

Similarly, Brad was not able to generalize the linear unit corresponding to “any 

even number.” Brad showed how he would obtain the even numbers by relying on an 

iteration technique as I described above. In the following paragraphs, I will show that 

some of the interview students were indeed able to generalize their conjectures about the 

dimensions for both subunits and the growing rectangles of the sequence. 

 As for Rob, I first asked him to make a rectangle for each counting number using 

a different color cube and then add them so that they generate a growing rectangle. I then 
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asked Rob about the pattern. He said that every time you get an odd number, you can put 

it below the growing rectangle. The following protocol illustrates this point. 

 

Protocol 4.17: Rob's description of the growing rectangle sequence: Bridge 

connection between consecutive subunits. 

R: The next even number will add two rows to what... see... when we had 

three... [meaning when he added the odd integer three]... it was three by 

two [meaning the growing rectangle]. So you add two by two which is 

four, you get two more rows [meaning, two more cubes right next to the 

odd integer three] and it makes it [inaudible] to get a five. Now you have 

five, and for the next odd number you are gonna need a seven, which is 

why you add a 2 by 3 rows [meaning the two extra cubes will come from 

the even number 6]. 

 

Rob realizes that each even number subunit of the sequence serves as a bridge that 

connects the two consecutive odd number subunits. I can also infer that, just by looking 

at his figure, Rob knows that the difference between any two consecutive odd integers is 

2, and that, “that 2” is provided by the even integer subunit that is placed between these 

consecutive odd integers. Rob was the only student to make use of this strategy, which I 

name Bridge Connection between Consecutive Subunits. In Thompson's words, “To 

reason quantitatively is to reason about quantities, their magnitudes, and their 

relationships with other quantities.” (Thompson, 1988, p. 164) Rob's Bridge Connection 

between Consecutive Subunits strategy has a strong indication of the quantitative 
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reasoning described by Thompson. Rob's subunits are of a multiplicative (and additive) 

nature and hence can be described via a multiplicative type relational notation. Rob was 

also very explicit about how these quantities exist on their own as well as in relation to 

their neighbors–or how they serve as a bridge at each step. It is because of these bridges 

that all subunits and the growing rectangle made of those subunits come to exist as 

quantities for Rob. 

 I then asked Rob what is common about odd numbers and their “area as a 

product” because I wanted him to make a generalization for the odd numbers. He said 

that all the odd numbers can be represented by a rectangle whose dimensions are 1 by the 

odd number itself. Rob's generalization about odd number subunits could be expressed as 

a relational notation of ordered pair (1, n) of linear units. Recall that Nicole described the 

odd integers simply as “long sticks,” which was lacking a multiplicative nature. Brad also 

did not make a generalization about the dimensions of odd numbers. Brad and Nicole 

were alike in that they were successful in providing a multiplicative type RUC for 

particular cases, though. In contrast, Rob recognized the MRUC for subunits standing for 

both odd and even numbers. In fact, when I asked him what is common about even 

numbers, he said that they are all split in two columns. The following protocol captures 

the conversation that followed. 

 

Protocol 4.18: Rob's MRUC concerning even number subunits. 

R: They all have a width of 2 and their length is half of their amount. 

G: So… how would you express all these even numbers as a product? 

R: Like… 2 by one half of the number... 
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G: How about the units? 

R: It'd be inches [meaning the dimensions would be in inches]. 

G: Their area as a product? 

R: The area would be 2 inches by half of it [meaning the even number itself]. 

 

Unlike Nicole and Brad, Rob was able to describe a MRUC not just for particular 

cases but for any subunit standing for an even number in the sequence. His language of 

“2 by one half of the number” calls for a relational notation of ordered pair ⎟
⎠
⎞

⎜
⎝
⎛

2
,2 n  of 

linear units where n stands for any even number of the sequence. Later on, Rob noted that 

the growing rectangle represents a composite number because it is not just one long line. 

He also said that if the pattern continued the number of cubes in the rectangle would 

always be a composite number. I then asked Rob to focus on the summation identity at 

each step and explain the pattern for the “area of the growing rectangle as a product” 

column on the activity sheet. Below I provide one more protocol in which Rob provides a 

general expression for the dimensions of the growing rectangle at any stage. 

  

Protocol 4.19: Rob's MRUC concerning the growing rectangles. 

R: These numbers are used twice. Your first number is gonna increase by 1 

every time... or every other time... and your second number is gonna 

increase by 2, every other time... [about his answers 2 × 3, 2 × 5, 3 × 5, 3 × 

7, 4 × 7, 4 × 9, on the activity sheet] 

G: How about these numbers [meaning the numbers in the list 2 × 3, 2 × 5, 3 × 

5, 3 × 7, 4 × 7, 4 × 9] are they in inches? 
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R: They are in inches. 

 

Rob's answers for the “area of the growing rectangle as a product” can be 

modeled with a relational notation of ordered pairs (2, 3), (2, 5), (3, 5), (3, 7), (4, 7), and 

(4, 9) of linear units, respectively. Rob emphasized the linearity of these units with his 

statement “They are in inches.” Rob's description of the linear units existing on their own 

as well as in relation to each other (Thompson, 1988) warrants once again my hypothesis 

about his quantitative reasoning. His language “These numbers are used twice” supports 

Thompson's description of quantities existing on their own. “Quantities existing in 

relation to each other” can be witnessed in his statement “Your first number is gonna 

increase by 1 every time....or every other time… and your second number is gonna 

increase by 2, every other time.” In the following paragraphs of this subsection, I will 

show how Sarah and Rob are alike and different. 

 Sarah first made the following patterns for the first eight counting numbers on the 

white board (Figure 4.15). She then described the areas of these subunits as a product, as 

depicted in the protocol below. 

 

 

Figure 4.15. Sarah's subunits representing counting numbers. 
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Protocol 4.20: Sarah's MRUC concerning subunits on their own. 

G: What are these? Could you describe these? Are they length or area? What 

do you think? 

S: You could look at them as rectangles and each square as 1 for unit. And 

then... This would be... the area would be 1 [pointing to the green cube] 

and then this would be 2 times 1 [pointing to the purple rectangle] and 3 

times 1 [pointing to the orange rectangle] 4 times 1 [pointing to the white 

rectangle] 5 times 1 [pointing to the yellow rectangle] and 6 [pointing to 

the wood rectangle] 7 [pointing to the red rectangle] and 8 [pointing to the 

blue rectangle] 

G: So... you are looking them as area? Am I right? 

S: Right. 

G: Are these rectangles? What are the dimensions? 

S: Length times width. 

G: Is there a general pattern for these numbers? 

S: It would just be the number of squares. 

G: Great! The next step is to add them so that they generate a rectangle. 

 

Every time she said the dimensions of a number rectangle, she pointed to both the 

length and the width of the rectangle with her index finger. Therefore, I infer that she is 

able to look at these numbers as “areas as products,” namely of MRUC type. A general 

relational notation expression for her description “length times width” could be written as 



 82

the ordered pair (length, width) of linear units. The multiplicative nature of her subunits 

could also be modeled via a relational notation of ordered pairs (1, 1), (2, 1), (3, 1), (4, 1), 

(5, 1), (6, 1), (7, 1), and (8, 1) of linear unit. As a brief summary, Sarah was able to 

identify the areas of these “long sticks” as a product, as opposed to Nicole who just 

described them as “long sticks,” which was lacking a multiplicative nature.  

In the process of adding the subunits to generate a rectangle, in particular at the 4th 

step, when adding the white cubes, Sarah changed the original 1 by 4 configuration to a 2 

by 2 formation (Figure 4.16). When I asked why she changed the configuration, she 

noted that she could not add the 1 by 4 stick to the existing rectangle and retain the new 

shape as a rectangle (Figure 4.17). 

 

 

Figure 4.16. Sarah's growing rectangle at the 4th stage. 

 

 

Figure 4.17. Sarah's visual proof by contradiction. 
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In other words, as warranted by both her statement and figure, the rectangle 

concept plays a crucial role in Sarah's MRUC. Nicole and Sarah are alike that way, in 

that both students relied on some sort of “visual proof by contradiction” to demonstrate 

how the multiplicativeness of the RUC and the rectangle concept necessitate each other. 

At the 6th step, a similar discussion took place, and Sarah relied on a similar 

contrapositive visual proof. I then let Sarah complete her figure (Figure 4.18). The 

following protocol picks up at this point. 

 

 

 

Figure 4.18. Sarah's complete figure. 

  

Protocol 4.21: Sarah's MRUC concerning subunits in relation to each other. 

G: It looks like you discovered a pattern. 

S: Every even number I added, I had to split it in two. 

G: And how about the odd numbers? 
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S: The odd numbers worked out… they were the same as the height... 

G: This six [pointing to the wood rectangle in Figure 4.18]... is this an area or 

a length? 

S: It's an area. 

G: What are its dimensions? 

S: 2 by 3. 

G: How about this one [pointing to yellow] is it an area or a length? 

S: An area. 

G: As a product? 

S: 5 times 1. 

G: For the wood? 

S: 3 times 2. 

G: For the white? 

S: 2 times 2. 

G: The blue? 

S: 4 times 2. 

G: The red? 

S: 7 times 1. 

G: This 5 [pointing to yellow] looks like a length. Does not that bother you? 

S: I see it as an area. The only reason is because of the blocks. 

 

As can be inferred from her statements, quantities standing for odd numbers 

conserved their dimensions as well as their shapes. However, Sarah had to split the 
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subunits standing for even numbers into two, which is to say that these even number 

subunits conserved neither their dimensions nor their shapes. Sarah was very clear in 

providing answers of a multiplicative nature for all these subunits. Her language maps to 

a relational notation of ordered pairs (2, 3), (5, 1), (2, 2), (4, 2), (7, 1) of linear units. 

Sarah and Rob are alike in that their RUC is of multiplicative type and in that these 

representational quantities are free to exist on their own. However, Sarah lacks an in–

depth analysis showing how these subunits are related to each other, as opposed to Rob 

who provided a clear description of even number subunits serving as a bridge linking any 

two consecutive odd number subunits. 

 Finally, I describe John's MRUC treatment of the subunits and the growing 

rectangles. I first asked him to make a rectangle using a different color for each counting 

number in the sequence 1, 2, 3, 4, 5, 6. Though I did not ask him to add them yet, he 

came up with the following long stick formation as depicted in Figure 4.19 below. The 

protocol below illustrates this point. 

 

 

Figure 4.19. John's subunits representing counting numbers. 

  

Protocol 4.22: John's MRUC and mapping structures concerning the subunit 

5. 

G: 5 for instance... is it a length or an area? 
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J: I guess area... 

G: How do you figure? 

J: Length of 1 and width of 5. 

G: Tell me more about that... 

J: I guess... Length of 5 and width of 1 in which case the area would be 5… 

 

 John's language “length of 1 and width of 5” could be described via a relational 

notation as an ordering of linear units of the form (1, 5). This usage is of multiplicative 

type and hence necessitates the multiplicative RUC construct. His latter comment “length 

of 5 and width of 1 in which case the area would be 5” calls for a slightly different 

analysis model, which I call “Mapping Structures.” For John, I infer that the ordered pair 

(1, 5) that consists of linear units, is being mapped into 5, which is an areal quantity. In 

other words, this strategy corresponds not only to a multiplicative type RUC, but it makes 

the operation under consideration, namely multiplication, behave as a mapping operating 

on linear quantities from which a quantity of a totally different nature comes to exist: an 

areal quantity. All these can be summarized with a functional notation9 such as f: (linear 

1, linear 5) → areal 5, or with the equality as f (linear 1, linear 5) = areal 5, where f stands 

for the multiplication operation that behaves like a function or a mapping.  

I then asked John to add his subunits so that they generate a rectangle. He added 

the first 8 counting numbers and completed his figure (See Figure 4.9 above). He said 

that he left 2, 3, 5, and 7 as they were before (e.g., long sticks in Figure 4.19) but changed 

4, 6, and 8 to rectangles with one dimension of 2. He noted that the even numbers are 

rectangles of length 2 and width that goes up as 1, 2, 3, 4..., i.e., half the even number. In 
                                                 
9 The equality notation will be omitted in the remainder of the manuscript. 
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that sense, John was the only interview student to make use of the sequence an = {n} ≡ 

{1, 2, 3, 4, ...} to describe the multiplicative nature of the even number subunits. John's 

even number subunits can be modeled sequentially via a relational notation of ordered 

pairs (2, an) of linear units. The following protocol captures the conversation that 

followed. 

 

Protocol 4.23: John's MRUC concerning even number subunits. 

G: Can you come up with a general formula for the even numbers on this 

growing rectangle... the length and the width of any even number? 

J: The length will always be 2... So 2 times n? [hesitant] 

G: What is that n? 

J: n is just the number going up... 1... 2... so... 

G: How about 6... is it area or length? How do you see it? 

J: An area. 

 

This is the first time a student used a variable, n, to describe a linear unit. Though 

unspecified, I believe that John would represent his even numbers as 2n. Once again, 

though unspecified, his statement “n is just the number going up... 1... 2... so...” causes 

me to believe that he thinks of these linear units with values of half the even numbers in 

the sequence. One could assign a relational notation of ordered pairs (2, n) of linear units 

standing for John's MRUC for any even number rectangle with the constraint that the 

“any even number” is of value 2n.  
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 Sarah, Rob and John are alike in that their RUC for the even number subunits are 

of multiplicative type and in that these representational quantities are free to exist on their 

own. Rob was able to go a step further in that he demonstrated how the representational 

quantities standing for odd and even number subunits exist on their own as well as in 

relation to each other. On the other hand, John was the only student to make use of a 

sequence to model the linear units describing an even number subunit. Also, John, was 

the only one to provide a variable, n, standing for his linear unit of his choice. The table 

below summarizes each student's answer and a corresponding relational notation that 

describes multiplicative type RUC. 

 

Table 4.7 

Relational Notation Describing Students' Answers 

Students Phrases Relational 
Notation 

Brad NA NA 

Nicole 
“...it would be 1 times 4” 

“I would say three times... Three inches times seven inches would give me 
21 inches squared” 

“They are all by 2. Because in all even numbers 2 is a divisor or factor” 

(1, 4) 
(3, 7) 
(2, ·) 

Rob 

“...it was three by two” 
“all the odd numbers are 1 by the odd number itself” 

“They all have a width of 2 and their length is half of their amount” 
“Like... 2 by one half of the number” 

“The area would be 2 inches by half of it” 

(3, 2) 
(1, n) 

(2, n / 2) 
(2, n / 2) 
(2, n / 2) 

Sarah 

“...and then this would be 2 times 1” 
“...and 3 times 1” 

“4 times 1” 
“5 times 1” 

“Length times width” 
“2 by 3” 

“5 times 1” 
“3 times 2” 
“2 times 2” 
“4 times 2” 
“7 times 1” 

(2, 1) 
(3, 1) 
(4, 1) 
(5, 1) 

(Length, Width) 
(2, 3) 
(5, 1) 
(3, 2) 
(2, 2) 
(4, 2) 
(7, 1) 

John 
“Length of 1 and width of 5” 

“Length of 5 and width of 1 in which case the area would be 5” 
“...even numbers are rectangles of length 2 and width that goes up as 1, 2, 

(1, 5) 
(5, 1) 
(2, an) 
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3, 4...” 
“The length will always be 2... So 2 times n?” 

(2, n) 

 

 Each student wrote his / her answer on an activity sheet related to each activity. 

Students' written answers were consistent with what they were saying during the 

interviews. The following two tables reflect students' written answers for the area as a 

product of the even and odd number subunits, and the growing rectangles, respectively. I 

am including once again a relational notation for each written answer for the purpose of 

analysis. 

 

Table 4.8 

Students' Written Work for the Area of the Odd/Even Number Subunits as a Product 

Students Area of the Odd/even Number Subunit as a 
Product 

Relational Notation Describing the 
Product 

Brad 2 × 1, 3 × 1 (2, 1), (3, 1) 

Nicole 1 × 1, 1 × 2, 1 × 3, 2 × 2, 1 × 5, 3 × 2 (1, 1), (1, 2), (1, 3), (2, 2), (1, 5), (3, 2) 

Rob 1in × 2in, 1in × 3in, 2in × 2in, 1in × 5in (1, 2), (1, 3), (2, 1), (1, 5) 

Sarah 5 × 1 (5, 1) 

John 
2 × 1, 3in × 1in, 2in × 2in, 5in × 1in, 

2in × 3in, 7in × 1in 
n odd: n in × 1 in 

n even: 2 in × (n / 2) in 

(2, 1), (3, 1), (2, 2), (5, 1) 
(2, 3), (7, 1) 

(n, 1) 
(2, n / 2) 

 

Table 4.9 

Students' Written Work for the Area of the Growing Rectangles as a Product 

Students Area of the Growing Rectangle as a 
Product Relational Notation Describing the Product 

Brad 1 × 1, 1 × 3, 2 × 3, 2 × 5, 3 × 5, 3 × 7, 4 × 7, 
4 × 9 

(1, 1), (1, 3), (2, 3), (2, 5), (3, 5), (3, 7), (4, 7), 
(4, 9) 

Nicole 1 × 3, 2 × 3, 2 × 5, 3 × 5, 3 × 7 (1, 3), (2, 3), (2, 5), (3, 5), (3, 7) 

Rob 1in × 3in, 2in × 3in, 2in × 5in, 3in × 5in (1, 3), (2, 3), (2, 5), (3, 5) 
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Sarah 3in × 5in (3, 5) 

John 
3in × 1in, 3in × 2in, 5in × 2in, 5in × 3in, 

7in × 3in, 7in × 4in 
n odd: n in  ×  · in 

n even: (n – 1) in  ×  (n / 2) in 

(3, 1), (3, 2), (5, 2), (5, 3) 
(7, 3), (7, 4) 

(n, ·) 
(n – 1, n / 2) 

 

 As can be seen in the written work, once again Rob and John were the ones who 

attached some sort of units to their answers. Sarah, too, wrote inches next to her single 

answer for the area of the growing rectangle as a product column. Rob and John attached 

these known measurement units to their answers to emphasize the linearity of the 

quantities involved. Reasoning quantitatively, one may feel the need to specify some sort 

of measurement unit as this is one of the three crucial components that makes quantities 

what they are (Schwartz, 1988). When it comes to using a relational notation, however, 

one does not need to attach a measurement unit to the ordered pairs of linear units 

because each component of the ordered pair by itself is a linear unit. 

 Another point worth mentioning is John's use of a variable for a general case in 

his description of both even and odd number subunits and growing rectangles. His linear 

units for the subunits are correct; however, his linear units for the dimensions of the 

growing rectangles are not quite right. First of all, he specified only one of the linear units 

corresponding to the general case where n is an odd integer, which is equivalent to (n, ·) 

with the relational notation. And the correct expression for area as a product 

corresponding to the general case where n is even is (n + 1) in × (n / 2) in. In other words, 

he only had a plus/minus sign error. 

 I will end this subsection with a table of terminology that summarizes students' 

behaviors reflecting multiplicative type RUC. 
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Table 4.10  

Terminology Summarizing Students' Behaviors Reflecting MRUC 

Strategy / Terminology Students 

Multiplicative RUC for Special Cases of Odd/Even Number Subunits and Growing 
Rectangles. 

Brad, Nicole, Rob, 
Sarah, John 

Use of the phrase “more interesting.” Favoring for the “more interesting” formation 
representing a composite number over “long stick” formation. Nicole, Rob 

Realization of the fact that the added L–shape subunits could not be expressed as a 
product of two linear units. Nicole 

Inconclusiveness of MRUC from usages “long sticks,” “straight lines.” Nicole 

Mapping Structures arising from usages “Three inches times seven inches would 
give me 21 inches squared,” “Length of 5 and width of 1 in which case the area 

would be 5.” 
Nicole, John 

Only one of the linear units corresponding to an even number subunit is specified ≡ 
(2, ·) Brad, Nicole 

Both linear units corresponding to an even number subunit is specified. 
Rob ≡ (2, half the 

number) John ≡ (2, 
n) 

Both linear units corresponding to an odd number subunit is specified. Rob ≡ (1, the odd 
number itself) 

Bridge Connection between Consecutive Subunits. Reasoning about quantities, their 
magnitudes, and their relationships with other quantities. Rob 

“If the pattern continues it is always going to be a composite number.” (Rob) “They 
all make composite numbers.” (Nicole). At steps 1 and 2; the number is prime and 

after the third step, it is composite (Sarah). 
Rob, Nicole, Sarah 

Identify the areas of “long sticks” as a product. Sarah 

Visual Proof by Contradiction to demonstrate how the multiplicativeness of the RUC 
and the rectangle concept necessitate each other. Nicole, Sarah 

Reasoning about situations in terms of quantities and quantitative operations. John 

Uses a variable to describe a linear unit ≡ (2, n). John 

MRUC is specified for any even number subunit rectangle with the constraint that 
the “any even number” is of value 2n. John 

Their RUC for the even number subunits are of multiplicative type and these 
representational quantities are free to exist on their own. Rob, Sarah, John 

Representational quantities exist in relation to each other. Rob 

Sequential Description of Linear Units Corresponding to Even Number Subunits. John 
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4.2.2. Additive Representational Unit Coordination (ARUC) 

 In the context of summation of counting numbers, the additive nature of RUC 

appears as an ordered n–tuple of areal units, as was the case for the first activity on prime 

and composite rectangles. The slight modification in this section is that one has to know 

whether the additive RUC types corresponding to areal quantities arise from the growing 

rectangles or from the odd/even number subunits generating the growing rectangles. This 

was probably the main reason students revealed a variety of ARUC types in the context 

of summation formulas. 

 Brad's language corresponding to additive type RUC occurred when he was 

reasoning about the even numbers. He said that 2 is prime. He added “For 4, you have a 

square, you stick 2 at top, you get a six, eventually you'll get a taller rectangle.” This 

usage calls for an additive type of RUC in which even number subunits are generated by 

areal units of 2, namely Equal Addends. A relational notation of ordered pair [2, 2] and 

ordered triple [2, 2, 2] of areal units (equal addends) can be used to denote Brad's way of 

describing how the even number subunits are related to each other. Brad obtained his 

even number areal subunits by iterating areal units of “2”s every time. I hypothesize that 

he is reasoning quantitatively in that he not only explains how the areal quantities exist 

on their own but also how these areal quantities are related to each other. The concepts of 

quantities existing on their own and quantities existing in relation to each other lie in his 

iteration strategy. 

 Later on, we discussed the “Area of the growing rectangle as a sum” column of 

the activity sheet (See Appendix for the activity sheets). Brad did not rely on the 
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summation formula; rather, he preferred “equal addends,” similar to what he did for the 

composite numbers. In other words, the colors did not matter to him. This was a surprise 

to me because I initially designed this project guided by color cubes with the main 

purpose of helping students see the different color addends. As I will show in the 

following paragraphs, Rob did not care about the colors and continued to use “Equal 

Addends” type RUC. Rob and Brad are alike in that way. Brad was adept at using visual 

proofs to support his “Equal Addends” type RUC for the growing rectangles. The 

following figures show how he decomposed the 7th and the 8th growing rectangles into 

equal addends. In addition to his gestures, his explanations were very clear about his 

focus on equal addends (Figures 4.20, 4.21, 4.21). 

 

 

Figure 4.20. Brad's decomposition of the 7th growing rectangle into an ordered pair [14, 

14] of (equal addends type) areal units. 
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Figure 4.21. Brad's decomposition the 8th growing rectangle into an ordered triple [12, 

12, 12] of (equal addends type) areal units. 

 

 

Figure 4.22. Brad's decomposition of the 8th growing rectangle into an ordered hextuple 

[6, 6, 6, 6, 6, 6] of (equal addends type) areal units. 

  

Nicole's answer for the “Area of the growing rectangle as a sum” column of the 

activity sheet was interesting in that she treated the “growing number” as a “summed 

number” relying on the summation formula. In other words, Nicole presented a new 

additive type RUC, which I name Summed Addends type RUC. She also used another 

new additive type RUC, which I call Recursive Addends type RUC. She used both 

Summed Addends and Recursive Addends in the description of growing rectangles. As 

for the odd and even number areal subunits, the decomposition strategies she used are of 
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Irreducible Addends (Type I) and Equal Addends types. Nicole used a variety of ARUC 

types; she is unique that way. Brad and Rob, on the other hand, are alike in that they both 

relied solely on Irreducible Addends (Type I) and Equal Addends types in their 

description of both odd/even number areal subunits and the growing rectangles. Nicole 

used these aforementioned ARUC types only for the description of the odd/even number 

areal subunits.  

 I had interesting discussions with Sarah, too, concerning additive type RUCs. 

When I asked her to focus on the 5th growing rectangle she made of color cubes, for 

instance, she said “1 plus 2 plus 3 plus 4 plus 5” about the “area of the growing rectangle 

as a sum.” And this answer came from a student who was sticking to a unique ARUC 

type, namely Random Addends type, in the context of Prime and Composite Rectangles. 

She did not hesitate a second and put her answer of Summed Addends type on the activity 

sheet very quickly. I then asked her to compare this answer of Summed Addends type 

with her answer for the “other 15,” in the context of Prime and Composite Rectangles 

which was of Random Addends type. Recall that when we focused on the “composite 

number 15” for which she made a 3 by 5 rectangle made of a single color, she said that 

there are many different ways of expressing 15 as a sum. In particular, she provided the 

ordered pair [14, 1] of areal units. Now with the “summed 15,” she used Summed 

Addends type, as can be inferred from the following protocol. 

 

Protocol 4.24: Sarah's ARUC type concerning the subunits and the growing 

rectangle of the 5th stage. 



 96

S: Well... We created this rectangle [pointing to the 3 by 5 rectangle made of 

color cubes on the board] by adding different numbers [Figure 4.23]. The 

colors kinda show a way to count it. 

G: How about this one as a sum? [pointing to the white] 

S: 2 plus 2. 

G: And many other ways? 

S: Yeah. 

G: For this one, eight? [pointing to the blue] 

S: This is the same… four plus four... two plus two plus two plus two... one 

plus seven.  

G: Many different ways? 

S: Yeah. 

G: In each one of those different ways, the addends, what units do they have? 

S: Inch square. 

 

 

Figure 4.23. Sarah's growing rectangle of the 5th stage. 
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 Though she continued to use Random Addends in the description of areal 

subunits, Sarah embraced Summed Addends in her description of the areas of the 

growing rectangles. Her words “The colors kinda show a way to count it” demonstrates 

that the color concept played the main role in her choice of Summed Addends type RUC. 

Therefore, I can say that, for Sarah, in the context of “Summing Counting Numbers;” 15 

is made of “summed addends” whereas in the context of “Prime and Composite 

Numbers,” it is made of “random addends.”  

Overall, with all five students, I observed a variety of additive type RUCs that can 

be described using a functional notation  where areal subunits “ ” are 

being summed from 1 to n (number of addends) and i is the stage number (ordering 

number for the addends). Summed Addends type RUC can be described using a 

functional notation such as the following: The addends of the growing rectangle are areal 

subunits with different shapes made of color cubes representing the “area as a sum” part 

of the summation formula. In the context of “Summing Counting Numbers” activity, one 

can write  for the addends corresponding to odd/even number areal subunits. 

As I will show below in students' written work, John also used this approach. As a brief 

summary, three out of five preservice teachers, namely Sarah, Nicole and John, came up 

with Summed Addends type RUC. Rob and Brad, on the other hand, did not care about 

the color shapes generating the growing rectangles. Instead, they relied on Equal 

Addends in expressing the area of the growing rectangle as a sum. They treated the 

growing rectangle as a composite number rectangle. 
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 I will again complete this subsection with some summative tables. The first one 

below tabulates the additive type RUCs and a relational notation based on students' 

written work on areal subunits. The second table is based on the growing rectangles. 

 

Table 4.11 

Students' Written Work for the Area of the Odd/Even Number Subunits as a Sum 

Students Area of the Odd/even Number 
Subunits as a Sum 

Name of the Additive 
Type RUC 

Relational Notation 
Describing the Sum 

Brad 1 + 1 
1 + 1 + 1 

Irreducible Addends 
Irreducible Addends 

[1, 1] 
[1, 1, 1] 

Nicole 

1 
1 + 1 

1 + 1 + 1 
2 + 2 

or 1 + 1 + 1 + 1 
1 + 1 + 1 + 1 + 1 

2 + 2 + 2 
or 3 + 3 

or 1 + 1 + 1 + 1 + 1 + 1 

Singleton Addend 
Irreducible Addends 
Irreducible Addends 

Equal Addends 
Irreducible Addends 
Irreducible Addends 

Equal Addends 
Equal Addends 

Irreducible Addends 

[1] 
[1, 1] 

[1, 1, 1] 
[2, 2] 

[1, 1, 1, 1] 
[1, 1, 1, 1, 1] 

[2, 2, 2] 
[3, 3] 

[1, 1, 1, 1, 1, 1] 

Rob 
1in2 + 1in2 

1in2 + 1in2 + 1in2 

2in2 + 2in2 

1in2 + 1in2 + 1in2 + 1in2 

Irreducible Addends 
Irreducible Addends 

Equal Addends 
Irreducible Addends 

[1, 1] 
[1, 1, 1] 

[2, 2] 
[1, 1, 1, 1] 

Sarah NA NA NA 

John 

2 in2 

3 in2 

4 in2 

5 in2 

6 in2 

7 in2 

n in2 

Singleton Addend 
Singleton Addend 
Singleton Addend 
Singleton Addend 
Singleton Addend 
Singleton Addend 
Singleton Addend 

[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[n] 

 

Table 4.12 

Students' Written Work for the Area of the Growing Rectangles as a Sum 

Students Area of the Growing Rectangles as a Sum Name of the Additive 
Type RUC 

Relational Notation 
Describing the Sum 

Brad 

1 + 1 + 1 
2 + 2 + 2 

or 3 + 3 + 3 
or 1 + 1 + 1 + 1 + 1 + 1 

2 + 2 + 2 + 2 + 2 
or 5 + 5 

Irreducible Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 

[1, 1, 1] 
[2, 2, 2] 
[3, 3, 3] 

[1, 1, 1, 1, 1, 1] 
[2, 2, 2, 2, 2] 

[5, 5] 
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or 1 + 1 + ... 
3 + 3 + 3 + 3 + 3 

or 5 + 5 + 5 
or 1 + 1 + ... 

7 + 7 + 7 
or 3 + 3 + 3 + 3 + 3 + 3 + 3 

1 + 1 + ... 
2 + 2 + 2 + ... 

4 + 4 + 4 + 4 + 4 + 4 + 4 
7 + 7 + 7 + 7 

1 + 1 + ... 
4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 

9 + 9 + 9 + 9 
3 + 3 + ... 
2 + 2 + ... 
1 + 1 + ... 

Irreducible Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 

[1, 1, ..., 1] 
[3, 3, 3, 3, 3] 

[5, 5, 5] 
[1, 1, ..., 1] 

[7, 7, 7] 
[3, 3, 3, 3, 3, 3, 3] 

[1, 1, ..., 1] 
[2, 2, 2, ..., 2] 

[4, 4, 4, 4, 4, 4, 4] 
[7, 7, 7, 7] 
[1, 1, ..., 1] 

[4, 4, 4, 4, 4, 4, 4, 4, 4] 
[9, 9, 9, 9] 
[3, 3, ..., 3] 
[2, 2, ..., 2] 
[1, 1, ..., 1] 

Nicole 

1 + 1 + 1 
or 1 + 2 
1 + 2 + 3 
or 3 + 3 

or 1 + 1 + 1 + 1 + 1 + 1 
1 + 2 + 3 + 4 
or 3 + 3 + 4 

or 1 + 1 + 1 + ... + 1 
1 + 2 + 3 + 4 + 5 
or 3 + 3 + 4 + 5 

or 6 + 4 + 5 
or 10 + 5 

or 1 + 1 + 1 + ... + 1 
1 + 2 + 3 + 4 + 5 + 6 
or 3 + 3 + 4 + 5 + 6 

or 6 + 4 + 5 + 6 
or 10 + 5 + 6 

or 15 + 6 
or 1 + 1 + 1 + ... + 1 

Irreducible Addend 
Summed Addends 
Summed Addends 
Recursive Addends 
Irreducible Addends 
Summed Addends 
Recursive Addends 
Irreducible Addends 
Summed Addends 
Recursive Addends 
Recursive Addends 
Recursive Addends 
Irreducible Addends 
Summed Addends 
Recursive Addends 
Recursive Addends 
Recursive Addends 
Recursive Addends 
Irreducible Addends 

[1, 1, 1] 
[1, 2] 

[1, 2, 3] 
[3, 3] 

[1, 1, 1, 1, 1, 1] 
[1, 2, 3, 4] 
[3, 3, 4] 

[1, 1, 1, ..., 1] 
[1, 2, 3, 4, 5] 
[3, 3, 4, 5] 
[6, 4, 5] 
[10, 5] 

[1, 1, 1, ..., 1] 
[1, 2, 3, 4, 5, 6] 
[3, 3, 4, 5, 6] 
[6, 4, 5, 6] 
[10, 5, 6] 
[15, 6] 

[1, 1, 1, ..., 1] 

Rob 

1in2 + 1in2 + 1in2 

2in2 + 2in2 + 2in2 

or 3in2 + 3in2 

or 1in2 + 1in2 + ...1in2 + 1in2 

5in2 + 5in2 

or 2in2 + 2in2 + 2in2 + 2in2 + 2in2 

or 1in2 + 1in2 + ...1in2 + 1in2 

3in2 + 3in2 + 3in2 + 3in2 + 3in2 

or 5in2 + 5in2 + 5in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

Irreducible Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 

[1, 1, 1] 
[2, 2, 2] 
[3, 3] 

[1, 1, ..., 1] 
[5, 5] 

[2, 2, 2, 2, 2] 
[1, 1, ..., 1, 1] 
[3, 3, 3, 3, 3] 

[5, 5, 5] 
[1, 1, ..., 1] 

Sarah 1in2 + 2in2 + 3in2 + 4in2 + 5in2 Summed Addends [1, 2, 3, 4, 5] 

John 

1in2 + 2in2 

1in2 + 2in2 + 3in2 

1in2 + 2in2 + 3in2 + 4in2 

1in2 + 2in2 + 3in2 + 4in2 + 5in2 

1in2 + 2in2 + 3in2 + 4in2 + 5in2 + 6in2 

1in2 + 2in2 + 3in2 + 4in2 + 5in2 + 6in2 + 7in2 

1in2 + 2in2 + ... + n in2 

Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 

[1, 2] 
[1, 2, 3] 

[1, 2, 3, 4] 
[1, 2, 3, 4, 5] 

[1, 2, 3, 4, 5, 6] 
[1, 2, 3, 4, 5, 6, 7] 

[1, 2, ..., n] 
 

 By looking at students' written work on the summing counting numbers activity, I 

conclude that Rob, Sarah and John emphasized the areal units by attaching an “inches 
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squared” symbol to each addend. John, in the description of his areal subunits, relied on 

Singleton Addend type RUC. This is similar to what he did in the first activity in his 

expressions of prime rectangles. John is also the only one to use a variable in his general 

expression for both the areal subunits and the growing rectangles. 

 

4.2.3. Linear vs. Areal Units  

 When obtaining his growing rectangles, Brad emphasized that at each step, the 

dimensions will be in inches. He also verified that at each step, the area as a sum and the 

area as a product of the growing rectangle coincide. I asked him to compare the 7 in “1 + 

2 + 3 + 4 + 5 + 6 + 7” with the 7 in “4 × 7.” The following discussion picks up at this 

point. 

 

Protocol 4.25: Brad compares the linear and areal sevens. 

B: This one is 7 inches [about the 7 in 4 × 7] and this one is 7 inches squared 

[about the 7 in 1 + 2 + 3 + 4 + 5 + 6 + 7] because you are adding the 

blocks individually [at the same time pointing to the blocks]. 

G: Okay, so what is it about this 7 [about the 7 in 4 × 7], is it a length or an 

area? 

B: It's a length. 

G: This one [about the 7 in 1 + 2 + 3 + 4 + 5 + 6 + 7], is it a length or an area? 

B: It's an area. 

G: How can we convince someone or the students that this 7 [about the 7 in 1 

+ 2 + 3 + 4 + 5 + 6 + 7] is really an area? 
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B: Summations... Areas... You can add areas together to create a whole area. 

G: Can't you add an area to a length? 

B: No. 

G: But you say that you can add an area to another area? 

B: Hm hm... As long as they have the same dimensions. 

 

First of all, Brad relies on some known measurement units (inches and inches 

squared) to demonstrate the linearity and the areal–ness of same–valued linear and areal 

quantities, respectively. In fact, as can be warranted by his statement “...and this one is 7 

inches squared [about the 7 in “1 + 2 + 3 + 4 + 5 + 6 + 7”] because you are adding the 

blocks individually [at the same time pointing to the blocks],” he is charging the word 

“block” with an areal meaning. Brad and Sarah are alike that way. In a sense, Brad 

defined his “block” as a basic areal unit by which he obtained his areal subunit 7 as well 

as his bigger growing rectangle unit. His language “you are adding blocks individually” 

and “You can add areas together to create a whole area” indicate the areal nature of 7 in 

the summation 1 + 2 + 3 + 4 + 5 + 6 + 7. In fact, I have also described a similar iteration 

strategy used by Nicole and Rob in the first section of this chapter (See Protocols 4.3 and 

4.10, Figures 4.4 and 4.5). 

 As can be seen in the protocol above, Brad also emphasized that the areas can be 

added as long as they have the same dimensions. I think he probably meant that all added 

areas have to be of the same units, e.g., inches squared or centimeters squared. Quantities 

may have different names or values; however, if they were to be operated on additively, 

they have to be not just of the same nature, but of the same measurement units as well 
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(Olive & Caglayan, 2006, 2007). In that sense, I can say that Brad was aware of a 

referent preserving composition (Schwartz, 1988), the quantitative operation addition, 

which serves to yield a representational quantity of the same nature and measurement 

units: inches squared areal quantities. 

 In an attempt to understand her sense making of linear and areal units, I asked 

Nicole some questions based on her growing rectangle figure made of color cubes. The 

following discussion illustrates this point. 

 

Protocol 4.26: Nicole compares the linear and areal quantities. 

G: Where are the linear units? At each stage? 

N: What do you mean? 

G: How would you distinguish between the linear units and the areal units at 

each step? I mean, how do you distinguish the dimensions from the area 

itself? Let's just focus on the 6th stage [meaning the 3 × 7 growing 

rectangle]. Where are the dimensions? 

N: Here [points with her right index finger to the three cubes on the left, 

within the rectangle itself. Figure 4.24] and here [points to and carries 

away for a few seconds the seven cubes at the bottom, within the rectangle 

itself, using her both hands. Figure 4.25] 

G: So... you can also see them in the rectangle itself. 

N: Hm hm... 

G: Okay... so... what are the units for these dimensions? 
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N: So... the length would be in inches [points to the same three cubes on the 

left. Figure 4.26] the width would be in inches [points to the same seven 

cubes at the bottom] and the area of the rectangle [covers the whole 

rectangle in between her hands. Figure 4.27] would be in inches squared.  

 

 

Figure 4.24. Nicole's hand gesture showing where the linear 3 is. 

 

 

Figure 4.25. Nicole's hand gesture showing where the linear 7 is. 
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Figure 4.26. Nicole's hand gesture measuring the linear 3 as 3 inches. 

 

 

Figure 4.27. Nicole's hand gesture measuring whole area in inches squared. 

 

 Nicole's hand gestures in Figures 4.24, 4.25, and 4.26 indicate that for her, the 

linear dimensions can exist within the areal part of the rectangle itself, which is consistent 

with what she was doing in the first activity about prime and composite rectangles (See 

Protocol 4.8 and the paragraph that follows). Therefore, I conclude that she reasons about 
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these dimensions as quantities in relation to a particular areal quantity, namely the area of 

the rectangle itself. 

 She also interpreted the linear dimensional units as measurements, as warranted 

by Figure 4.26 and her statement “the length would be in inches… the width would be in 

inches.” Moreover, she relied on a measurement interpretation for the area of the growing 

rectangle, as can be warranted by Figure 4.27 and her statement “and the area of the 

rectangle would be in inches squared.” Nicole's strategy is reminiscent of what John was 

doing in the first activity on prime and composite rectangles in his description of linear 

and areal units. In that context, John supported his ideas by his statement “if you take a 

ruler” in an attempt to show that he interpreted the linear 7 as some sort of measurement 

(See Protocol 4.13 and the paragraph that follows).   

When I asked Sarah about the areal subunit 5 part of the area of her growing 

rectangle, she said that she saw it as an area. I then tried to trouble her by saying “It looks 

like a length. Does not that bother you?” She replied “I see it as an area. The only reason 

is because of the blocks.” I think she meant to say she is focusing on the upper faces of 

the color cubes, which is why she sees it as an area. This is reminiscent of Brad who 

referred to the areal–ness of the areal subunits as well as the growing rectangles using 

similar language “because you are adding the blocks individually.” In that sense, both 

Brad and Sarah charge their “block” with the meaning of a “1 inch by 1 inch irreducible 

areal unit” by which they generate their areal subunits as well as their growing rectangle 

areal units. 

 

Protocol 4.27: Sarah's projection strategy. 
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G: How do you distinguish between this 5 [pointing to the yellow rectangle in 

Figure 4.18] and the 5 which is the length of this rectangle? 

S: When you do the length, it's the sides of the cubes [pointing to the edges of 

the rectangle] not the cubes themselves. 

 

 In other words, for the area, Sarah focuses on the upper faces of the cubes, which 

are of two–dimensional nature. For the length, on the other hand, she just focuses on the 

sides of her three−dimensional growing figure. She is projecting those sides onto the 

plane – that would be the whiteboard – of the three dimensional growing figure itself, as 

warranted by her hand gestures outlining the perimeter of the figure. I can therefore 

conclude that for Sarah, length is a line resulting from the projection of a vertically 

standing two−dimensional figure (that would be the sides) onto a plane, i.e., of linear 

nature. This strategy of projection was not used by any interview student except Sarah.  

 Next, I focus on John's understanding and sense making of linear and areal units. 

The protocol below captures the discussion when I ask him questions based on the figure 

he made corresponding to the 7th stage, i.e., the 4 by 7 growing rectangle (Figure 4.28). 

 

Protocol 4.28: John compares same–valued linear and areal quantities. 

G: This 7... [pointing to the red] is it an area or a length? 

J: I guess it's an area... 

G: How do you figure that? 

J: I mean… Think of it as an area... It makes more sense to me. 
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G: The 7 which is one of the dimensions of the growing rectangle... How do 

you distinguish between that 7 [the dimension of the growing rectangle] and 

this 7 [pointing to the red rectangle]? Are they the same or different? 

J: I guess they are equal to each other... they have the same area... top line 7... 

bottom line 7... 

 

 

Figure 4.28. John's 7th growing rectangle of the sequence. 

 

 At first, John was a bit hesitant about whether the red rectangle at the bottom 

represents an area or a length, as can be inferred from his statement “Think of it as an 

area... It makes more sense to me.” When I further probed on whether the same–valued 

quantities, namely the dimension 7 of the growing rectangle and the red areal 7, which is 

part of the growing rectangle are the same or different, he inclined toward the same–ness 

of these quantities. In fact, his statement “I guess they are equal to each other... they have 

the same area... top line 7... bottom line 7” indicates that John saw the red rectangle as the 

length (or width) of the 4 by 7 growing rectangle. He used the phrase “bottom line” for 

that red rectangle, and I believe his usage of “top line” refers to the dimension of the 

growing rectangle itself. I can therefore deduce that Nicole and John are alike in that they 
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both saw the dimensions as some sort of representational quantities that could take part in 

the areal region of the growing rectangle. These representational quantities differ, 

however, when Nicole and John attached some known measurement units, as can be seen 

in these students' written work. Therefore, for Nicole and John, these same–valued linear 

and areal quantities were different algebraically and alike representationally. 

 I believe Nicole and John's failure in seeing the difference in these same–valued 

linear and areal representational quantities could be due to their not paying attention to 

the three main components (name, value, measurement unit) of the quantities under 

consideration. In his study with eighth graders Thompson showed that students failed to 

distinguish between the name and the value of specific quantities, which resulted in these 

students' inabilities to explain the relationships between these quantities (1988). Two 

quantities may be assigned the same value; however, this does not require that they be the 

same quantities. Two quantities are the same only if they have the same name, value, and 

measurement unit (Olive & Caglayan, 2006, 2007; Schwartz, 1988).  

 Again, I end this subsection with a table of terminology that summarizes students' 

behaviors in an attempt to understand and make sense of linear and areal quantities as 

well as same–valued linear and areal quantities. 

 

Table 4.13  

Terminology Summarizing Students' Sense Making Of Linear And Areal Representational 

Quantities 

Terminology Summarizing Students' Behaviors Students Fitting the 
Terminology 

Reference to Known Units of Measurement Brad, Nicole, Sarah, Rob, John 

Individual Blocks Representing “1 Inch by 1 Inch” Irreducible Areal Brad, Sarah 
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Quantity 

Projection Strategy Sarah 

In the process of finding the area of the rectangle, a linear unit could 
behave like an areal unit. Seeing the dimensions as both linear and areal 

quantities. 
Nicole, John 

Same–valued linear and areal representational quantities are different 
algebraically. Nicole, John 

Same–valued linear and areal representational quantities are alike 
representationally. Nicole, John 

Iteration Strategy Combined with the Two–Dimensional Nature of 
Irreducible Areal Unit. Quantitative Unit Conservation. 

Brad (“You can add areas 
together to create a whole 

area”) 

Interpretation of Linear and Areal Units as a Measurement Nicole (Figures 4.26 & 4.27) 

 

 

4.3. Summing Odd Integers 

 This third section of Chapter IV is similar to the previous one in that it 

encompasses many additive RUC types. The RUC types are obtained from the 

representational subunits corresponding to odd integers as well as from those 

corresponding to bigger units generated by these subunits via addition. Once again, as 

was the case in the previous section, the bigger representational units are the growing 

rectangles that represent the sum of the representational subunits, namely the odd 

integers. 

 Similar to the previous task with the summation of counting numbers, the 

common direction for all the interview students was to represent the odd integers (i.e., 1, 

3, 5) using a different color for each number and add them so that they generate a 

rectangle. They were also asked to write their answers on the activity sheet to help them 

organize information. All students paid attention to the “add them so that they generate a 

rectangle” direction and came up with a similar sequence of growing rectangles made of 
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symmetric L–shape odd integer representational subunits. John’s sixth growing rectangle 

of the sequence, for instance, can be seen in Figure 4.29, which he described as “Each 

one is gonna fit in this backwards L–shape... Not only stays as a rectangle... stays as 

square.” 

 

 

Figure 4.29. The 6th growing rectangle of the sequence. 

 

4.3.1. Multiplicative Representational Unit Coordination (MRUC) 

 Everyone initially made 1 × n rectangles to represent odd integers. These 

subunits, therefore, could be represented via relational notation as ordered pairs (1, 1), (1, 

3), (1, 5), (1, 7), (1, 9), (1, 11) of linear units. However, when faced with the request to 

make a growing rectangle to represent the sum, they did different things. Brad, for 

instance made this figure (Figure 4.30). 

 

 

Figure 4.30. Brad's 5th growing rectangle of the sequence. 
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 In other words, he used symmetric L–shape figures for each odd integer subunit. 

Though the subunits were not rectangles, he described these subunits multiplicatively, as 

the following protocol points out. 

 

Protocol 4.29: Brad's MRUC concerning the odd integer subunits in the 

growing rectangle. 

G: How about the yellow one, which represents 5, is it an area or a length? 

B: I'd say two dimensional. 

G: How do you figure? 

B: They have an area within themselves [at the same time pointing to the 

yellow squares]. It's two dimensional and each block represents an area, 

so... 

G: Okay, you are saying that it's an area, but does it bother you that it's not a 

rectangle, the yellow one? 

B: The odd ones themselves [meaning the odd numbers] can not make a 

rectangle individually, I mean [inaudible] it can, it'd just be 1 by whatever 

it is [meaning the long bar rectangles]. So... adding them [the L–shapes] 

together makes a rectangle... a square... 

 

 The non–rectangular L–shape formation does not prevent him from providing a 

multiplicative type RUC. His statement “It'd just be 1 by whatever it is [referring to his 

original long sticks]” calls for a relational notation of ordered pair (1, n) of linear units, 
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where n stands for the length of the odd integer. Brad and Nicole are alike in that they 

both were able to express the areas of such non–rectangular subunits as a product (See 

Figure 4.13 and Protocol 4.15 of the previous section for Nicole's descriptions). They 

both agree that even though both rectangular and L–shape formations have the same area, 

“area as a product” notion arises only within the rectangular formation. Nicole and Sarah, 

in the previous section, provided a visual proof by contradiction to demonstrate how the 

multiplicativeness of the RUC and the rectangle concept necessitate each other (See 

Figure 4.17 of the previous section for Sarah's Visual Proof by Contradiction). Brad, on 

the other hand, is different from Nicole and Sarah in that he was content with his verbal 

description “It'd be 1 by whatever it is” without reference to any visual demonstration. 

Another surprising remark is the fact that Brad did not consider that some of these odd 

integers can be represented by an a × b rectangle, where a and b are different from unity. 

For instance, he did not consider that 9 can be represented by a 3 × 3 rectangle. 

 Nicole and Brad showed similar thinking as described in the following protocol.  

 

Protocol 4.30: Nicole's MRUC concerning the odd integer subunits. 

G: What is common about these odd integers? 

N: They're all prime numbers. They only form one rectangle which is a 

straight line. 

G: How about their dimensions? What is the area as a product for each case? 

N: It's itself multiplied by 1. 

G: Now add them so that they generate a rectangle. 
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 Similar to Brad, she made an incorrect connection between odd and prime 

numbers. Nicole agreed with Brad about the multiplicative nature of the odd integer 

subunits via her statement “It's itself multiplied by 1,” which necessitates a relational 

notation of ordered pairs (n, 1) of linear units.  

 Rob's first representation of the growing rectangle at the third stage – as a 

growing long stick – can be modeled with a relational notation of ordered pair (1, 1 + 3 + 

5) of linear units, namely of multiplicative nature. His second attempt was the L–shape 

formation (Figure 4.31). 

 

 

Figure 4.31. Rob's odd integer subunits reorganized as L–Shapes. 

 

Protocol 4.31: Rob's MRUC concerning the odd integer subunits. 

G: How about that 5... Can you express it as a product? 

R: I mean... you could say 1 inch times 5 inch but it's not like a rectangle... but 

I mean you can still give the answer that way... 

G: But in this representation... what is this quantity... is it an area or a length? 

That 5... or 7... 
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R: It's an area... 

 

 Rob probably meant that the L–shapes, though not rectangles, still stand for areal 

units of 5 and 7, and hence can be expressed as products. A suitable relational notation 

for Rob's description is the ordered pairs (1, 5) and (1, 7) of linear units. Rob and Brad 

are therefore alike in that the non–rectangular formation of the subunits does not prevent 

them from concluding the multiplicative nature of these subunits, which was the case for 

Nicole and Sarah in the previous task on the summation of counting numbers. Rob, Brad, 

Nicole and Sarah are therefore, all alike in this aspect. 

 Stephenie said that she saw the long sticks representing odd integers as areas. 

Upon my request to add them so that they generate a rectangle, she first said it would not 

work. When I asked her to try it, she was very happy to see that it worked. She said that 

she had to change their shape as that would be the only way to make a rectangle. She 

added that she had not seen this pattern before (Figure 4.32). 

 

 

Figure 4.32. Sarah's growing rectangle at the 5th stage. 
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 She said that the red L–shape was an area, not a length. I then asked her how she 

could convince me that it is an area. She then made this figure (Figure 4.33). 

 

 

Figure 4.33. Sarah's reorganization of the red L–Shape into a rectangle. 

 

 I did not ask Sarah whether the red L–shape would be expressed as a product. I 

only asked her whether it is an area or not. In other words, to show that the red L–shape 

is an area, Sarah changed it into a well–known figure, namely a rectangle, which must be 

an area and not a length, as I deduced from her demonstration. Sarah established the 

areal–ness of the odd integer subunit as opposed to Brad, Rob, and Nicole who not only 

demonstrated the areal–ness but expressed the subunit's area as a product. This is a slight 

difference in these students' thinking. 

 The table below summarizes each student's answer and a corresponding relational 

notation that describes multiplicative type RUC. 

 

Table 4.14 

Relational Notation Describing Students' Answers 

Students Phrases Relational 
Notation 

Brad It'd just be 1 by whatever it is. (1, n) 
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Nicole It's itself multiplied by 1. (n, 1) 

Rob You could say 1 inch times 5 inch but it's not like a rectangle... but I 
mean you can still give the answer that way... (1, 5) 

Sarah NA NA 

John 1 times... 11 plus 9 plus 7 plus 5 plus 3 plus 1. (1, 11 + 9 + 7 + 5 + 
3 + 1) 

 

 The following table reflects students' written answers for the “area as a product” 

of the growing rectangles. I include a relational notation for each written answer for the 

purpose of analysis. 

 

Table 4.15  

Students' Written Work for the Area of the Growing Rectangles as a Product 

Students Area of the Growing Rectangle as a Product Relational Notation Describing the 
Product 

Brad 2in × 2in, 3in × 3in, 4in × 4in, 5in × 5in, 6in × 6in (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) 

Nicole 2 × 2, 3 × 3, 4 × 4, 5 × 5 (2, 2), (3, 3), (4, 4), (5, 5) 

Rob 3in × 3in, 4in × 4in, 5in × 5in (3, 3), (4, 4), (5, 5) 

Sarah 1 × 1, 2 × 2, 3in × 3in, 4 × 4, 5in × 5in (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) 

John 2in × 2in, 3in × 3in, 4in × 4in, 5in × 5in, 6in × 6in, n 
in × n in (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (n, n) 

 

 As can be seen in the written work, everybody except Nicole attached some sort 

of units to their answers to emphasize the linearity of the quantities involved. Another 

point worth mentioning is John's use of a variable, n, for a general case in his description 

of stage number as n, odd integer subunit as 2n – 1, and the area of the growing square as 

n in × n in. I will end this subsection with a table of terminology that summarizes 

students' behaviors reflecting multiplicative type RUC. 
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Table 4.16 

Terminology Summarizing Students' Behaviors Reflecting MRUC 

Strategy/Terminology Students 

Multiplicative RUC for Special Cases of Odd Number Subunits and Growing 
Rectangles 

Brad, Nicole, Rob, 
Sarah, John 

Generating Growing Squares via Symmetric L–Shape Odd Integer Subunits Brad, Nicole, Rob, 
Sarah, John 

At First Attempt, Generating Growing Long Sticks Made of 1 by n Odd Integer 
Subunits Rob, John 

Establishing the Areal–ness of the Odd Integer Subunits Sarah, Brad, Rob, 
Nicole 

Establishing both the Areal–ness and the Possibility to Express the Areas of Odd 
Integers Subunits as a Product Brad, Rob, Nicole 

Realization of the fact that the added L–shape subunits could not be expressed as 
a product of two linear units Nicole 

Uses a Variable to Describe Various Quantities John 

 

 

4.3.2. Additive Representational Unit Coordination (ARUC) 

 In the context of summation of odd integers, the additive nature of RUC appears 

as an ordered n–tuple of areal units, as was the case for the previous activities on 

prime/composite rectangles and summation of counting numbers. Similar to the 

summation of counting numbers activity, one has to know whether the additive RUC 

types corresponding to areal quantities arise from the growing rectangles, or from the odd 

number subunits generating those big rectangles. 

 Brad's reference to Additive RUC types concerning the odd integer subunits in 

general can be witnessed in the following discussion. 

 

Protocol 4.32: Brad's symmetric addends type ARUC concerning the 

symmetric L–Shapes in general. 
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G: What is common about each odd integer?  

B: What's common? 

G: Yeah... 

B: They are all odd... [laughing] And you have this diagonal that goes across 

[pointing to the main diagonal of the growing square] and you have this 

same number this way [pointing to the left] and this way [pointing down] 

(Figure 4.30). 

 

 I hypothesize that Brad unitized an odd integer L–shape subunit as 1 plus twice 

the same particular number (i.e., of Symmetric Addends type RUC). Referring back to the 

functional notation∑  I introduced in the previous section, where areal 

subunits “ ”s are being summed from 1 to n (number of addends) and i is the stage 

number (ordering number for the addends), Symmetric Addends in general can be 

described as follows. One has three distinct areal units pertaining to each odd integer 

subunit. In other words, for each symmetric L–shape, there are three addends only, i.e., 

 One of these addends is equal to 1, and the remaining two addends are equal to 

each other. In other words, with the functional notation, one can write, 

 Since Symmetric Addends type RUC is used to describe areal units 

generating the odd integer subunits, one can think of such areal units “ ”s as sub–

subunits. Later on in the same interview, Brad referred to Symmetric Addends type RUC 

concerning the odd integer subunits for a particular case as well. The following protocol 

picks up at this point. 
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Protocol 4.33: Brad's symmetric addends type ARUC concerning the 

symmetric L–Shapes for a particular case. 

G: Tell me more about that, in particular for the white one [the symmetric L–

shape representing 7 in Figure 4.30]. 

B: The white one? Okay... This has this 1 on the diagonal, and it has 3 down, 

and 3 across. It's the same [meaning the same 3]. And that's being odd... 

G: Does it tell you that they are odd? 

B: Yes. 

 

 Brad, therefore, first focused on the areal “1” sub–subunit on the main diagonal. 

He then decomposed the remaining areal “6” into two with–respect–to–the–main–

diagonal symmetric areal “3” sub–subunits. In other words, with the functional notation, 

one can describe these sub–subunits as .3)3()1(,1)2( === fff  An areal 7 subunit can 

be decomposed into Symmetric Addends areal 3, areal 1, and areal 3 sub–subunits. Note 

that ,7313)3()2()1( =++=++ fff  i.e., the odd integer subunit itself. One can use a 

relational notation of ordered triple [3, 1, 3] of areal sub–subunits to denote this additive 

type RUC. Brad then used an internal connection to support his ideas concerning the 

symmetric addends type RUC. 

 

Protocol 4.34: Brad's internal connection strategy: Reference to statistics. 

G: How do you figure [that they are odd]? 

B: 'Cuz... same thing we would have... mean or average... [trying to remember 
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a statistical term] if you have an odd number... I guess that would be the 

median... if you have an odd number you can always find that middle 

number because you have an unequal amount of numbers... but when you 

take the middle number out you have an even amount of number on each 

side... so it's the middle number... that's the median I guess... 

G: Oh I see... from statistics... 

B: Yeah statistics... When you take these [all the “1”s on the diagonal] you 

have the same amount on each side [meaning horizontally to the left and 

vertically down, with respect to the main diagonal in Figure 4.30]. 

 

 Brad referred to the “median” concept from statistics to explain his decomposition 

of the odd integer subunits into three sub–subunits. This is a very nice connection, which 

supports his Symmetric Addends type RUC. Any odd integer of the form 2n + 1 can be 

written as n + 1 + n as a sum, as if the “n”s are reflections of each other with respect to 1, 

which is the middle term. The odd integer 2n + 1 can be thought of as being mapped into 

a sample of size 2n + 1. In fact, the sub–subunit “1” on the main diagonal corresponds to 

the “median” from statistics, namely the middle term of the sample, from Brad's 

explanations. The remaining pair of “n”s, namely the “even amount of number on each 

side,” in Brad's words, correspond to two sub–samples of size n spread above and below 

the median. Brad used an internal connection strategy in an attempt to make sense of the 

sub–subunits generating an L–shape subunit. As pointed out in NCTM's Connection 

Standard, “Thinking mathematically involves looking for connections, and making 

connections builds mathematical understanding. Without connections, students must 
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learn and remember too many isolated concepts and skills. With connections, they can 

build new understandings on previous knowledge” (NCTM, 2000, p. 273). With 

reference to this quote, therefore, I infer that Brad was thinking mathematically and 

establishing his additive type RUC meaningfully. 

 Our discussion on the symmetric L–shape subunits led Brad to a discovery of a 

new additive type RUC concerning these subunits. The following protocol picks up at 

this point. 

 

Protocol 4.35: Brad's )1( −+ NN  Type ARUC concerning the symmetric L–

Shapes for a particular case. 

G: Okay but it [the area of L–shape representing 5] cannot be written as a 

product. So... 

B: Well... It might not be a rectangle but it's still a polygon. So it still can be 

written as an area (Figure 4.34) [Brad then decomposes the polygon into a 

3 × 1 and a 2 × 1 rectangle (Figure 4.35)]. 

G: Which polygon is that, the yellow one? 

B: [Counting the sides] I don't know what it's called... 

G: It's a hexagon. 

 

 

Figure 4.34. Brad's odd integer L–Shape subunit. 
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Figure 4.35. Brad's decomposition of his L–Shape subunit into two sub–subunits. 

 

 Though it cannot be written as a product, Brad established the areal–ness of the 

areal L–shape subunit via his decomposition strategy – by which he also establishes a 

“Rectangle Condition” for the sub–subunits. He said that he could do that because the L–

shape is still a polygon, so it is an areal quantity. I define Brad's additive type RUC as of 

 type for which one has two distinct areal sub–subunits pertaining to each odd 

integer subunit. In other words, for each symmetric L–shape, there are two addends only. 

With the functional notation, 

)1( −+ NN

Nf =)1(  and ,1)2( −= Nf  showing that the addends 

differ only by 1. Once again, one can think of the areal units “ ”s as sub–subunits 

generating odd integer subunits. Note that in general, 

)(if

,12)2()1( −=+ Nff  the odd 

integer subunit itself. In the particular case where the odd integer is 5, one can write 

 and  One can use a relational notation of ordered pairs [3, 2] and [N, 

N – 1] of areal units to denote this additive type RUC for the particular and the general 

cases, respectively. 

,3)1( =f .2)2( =f

 Finally, we discussed the areas of the growing rectangles. Once again, when we 

discussed the “Area of the growing rectangle as a sum” column on the activity sheet, it 

was interesting that Brad did not rely on the summation formula; he preferred Equal 
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Addends type RUC, as if he was describing composite numbers. In fact, this was the case 

in the previous task on the summation of counting numbers. I was expecting him to come 

up with Summed Addends type RUC in dealing with the bigger units. From his choice of 

Equal Addends rather than Summed Addends, I deduce that Brad did not care about the 

colors. The colors did not prevent him from seeing the bigger units made of subunits of 

Equal Addends type RUC. Rob did the same thing as Brad. Perhaps these two students 

wanted to focus on the “composite number” itself, rather than the growing rectangle 

(bigger unit) made of color shapes (subunits) representing a summed number (See Table 

4.19).  

Rob was reasoning quantitatively in that he was trying to make sense of the areal 

L–shape quantities on their own and in relation to each other. The following protocol 

captures his quantitative reasoning on the areal subunits and growing rectangles. 

 

Protocol 4.36: Rob's quantitative reasoning. 

R: Aha! I know what is going on here [He realizes the symmetric L–shape 

formation]. I got an aha... Okay... every time you add an odd number it's 

gonna make a square [He then completes his figure at the 5th step. Figure 

4.31] 

G: What is common about these odd integers? 

R: They are all odd... and you make a square every time... They all cross like 

that [hand gesture imitating the L–shape formation]. They make an L 

around it... 
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 This is reminiscent of Rob's Bridge Connection Strategy from the previous 

section. Once again Rob showed how the areal subunits exist on their own as well as in 

relation to each other. In fact, in his first description above in the protocol, in his 

statement he mentioned both the subunits and the growing square. Once again in his 

second statement, he talked about how each L–shape subunit comes to exist and builds a 

growing square. In Thompson's words, “To reason quantitatively is to reason about 

quantities, their magnitudes, and their relationships with other quantities” (Thompson, 

1988, page 164). Rob's iteration of the areal quantities too supports my hypothesis that 

Rob can reason about quantities, their magnitudes (values), and their relationships with 

other quantities. The following discussion picks up at this point. 

 

Protocol 4.37: Rob's iteration strategy. 

G: What about the “L”s in each case... Is it inch or inches squared... is it an 

area or a length? 

R: It's kinda a weird combination of both... because these don't make a 

rectangle [pointing to the yellow L–shape]... I mean their area will be five 

inches squared because there is five one inch squared cubes. 

G: About 5... for that one... can you express it as a sum... that area as a sum? 

[meaning the yellow L–shape in Figure 4.31]. 

R: Yeah... 1 inch plus 1 inch plus 1 inch plus 1 inch plus 1 inch... 

G: 1 inch or 1 inch squared? 

R: 1 inch squared... sorry... It [meaning the growing figure with L–shape 

formation] will keep going in that pattern... and... you're always gonna get 
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as your area a square number. 

 

 Rob’s statement about L–shapes “because these don't make a rectangle” upon my 

probing “is it an area or a length?” places the so–called “Rectangle Condition” at the 

heart of MRUC, as appeared before in Nicole and Brad’s cases. Because of the non–

rectangular formation of the L–shape subunits, Rob seems to favor an “area as a sum” 

rather than an “area as a product,” as can be warranted by his statement “...these don't 

make a rectangle... I mean their area will be five inches squared because there is five one 

inch squared cubes.” Rob iterated not only the irreducible areal sub–subunits to obtain his 

odd integer subunits, but he later on iterated his L–shape subunits toward the northeast 

direction to obtain his growing squares. Rob once again related these quantities and hence 

reasoned quantitatively. His first iteration can be formulated via a relational notation of 

ordered quintuple [1, 1, 1, 1, 1] of irreducible areal sub–subunits. This formulation is of 

Irreducible Addends type RUC. His representational iteration of the L–shape subunits 

yielded a sequence of growing squares; hence his growing squares are representationally 

of Summed Addends type RUC. However, algebraically, Rob favored Equal Addends 

type RUC; namely he treated the growing squares as composite numbers (See Table 4.19 

summarizing students' written work below). 

 Sarah, on the other hand, was firm about her descriptions of the areal–ness of the 

L–shape subunits. She said the L–shapes were areas and not lengths. She provided 

various answers for the “area of the growing rectangle as a sum” column on her activity 

sheet. For instance, for the third stage, she said “3 + 3 + 3 or 1 + 3 + 5 or 8 + 1” and 

added that there are many different ways of writing the sum. Her phrase “many different 
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ways” can be understood once again as her reference to Random Addends type RUC. And 

these are not based on the figure she made with the cubes; she was just working 

numerically. However, she did not find, nor did I probe her to find, an arrangement of 

cubes that matched her description as for 8 + 1 with the cubes.  I probed on her statement 

“3 + 3 + 3.” 

 

Protocol 4.38: Sarah's equal addends type RUC. 

G: What do you mean by 3 + 3 + 3? 

S: 'Cuz it's 3 + 3 + 3 [she splits the growing square into three parts. Figure 

4.36] 

G: So... the colors do not bother you, right? 

S: Right. 

 

 

Figure 4.36. Sarah's decomposition of the 3rd growing rectangle into an ordered triple [3, 

3, 3] of (equal addends type) areal units. 

 

 Although she provided Random Addends type RUC in the first two activities – 

and still stuck to that in a way, as the discussion above also shows, she decided to go on 

with Equal Addends as in “3 + 3 + 3” and with Summed Addends as in “1 + 3 + 5,” in her 
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written expressions. Her visual decomposition in Figure 4.36 reflects Equal Addends type 

RUC. 

 Sarah's additive type RUCs for this particular case at the third stage can be 

described using a functional notation  where areal subunits “ ”s are 

being summed from 1 to n (number of addends) and i is the stage number (ordering 

number for the addends) as follows. The three equal addends are all of areal nature and 

equal to each other, namely, 

∑
=

=

=
ni

i
ngif

1
)()( )(if

.3)3()2()1( === fff  They add up to the area of the 

growing square at the 3rd stage. In other words, .9333)3()2()1( =++=++ fff  One 

can use a relational notation of ordered triple [3, 3, 3] of areal subunits to denote Equal 

Addends type RUC. For the Summed Addends, once again .3=n  Each subunit  is 

defined based on a summation formula as 

)(if

12)( −= iif  where i denotes the stage number 

from 1 to  In other words, .3=n .5)3(,3)2(,1)1( === fff  The three summed addends 

are all of areal nature and add up to the area of the growing square at the 3rd stage. In 

other words, .9531)3()2()1( =++=++ fff  One can use a relational notation of 

ordered triple [1, 3, 5] of areal subunits to denote Summed Addends type RUC. Finally, as 

for the Random Addends, there are many possibilities. One does not need to have an 

ordered pair or an ordered triple of areal units in this model. In this current example, one 

could have things like [1, 1, 3, 4], [1, 2, 1, 2, 1, 2], [1, 3, 1, 3, 1] as well. In other words, 

both the number of addends and the numerical value of each addend are completely 

random. The only restriction is that the addends add up to the area of the growing square 

at the 3rd stage, which equals 9. One could also have things like [1, 1, 1, 1, 1, 1, 1, 1, 1], 

[3, 3, 3], [1, 3, 5] as Random Addends type RUC. In that sense, Irreducible Addends type 
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RUC, Equal Addends type RUC, and Summed Addends type RUC are all particular cases 

of Random Addends type RUC. In fact, all the additive type RUCs interview students 

established in my research are particular cases of Random Addends type RUC. 

Irreducible Addends type RUC is a special case of Equal Addends type RUC, as well. In 

other words, Sarah could see the area as a sum in many different ways, including the 

“equal addends” and the “summed addends” formations. Sarah, among all the interview 

students, is unique that way. 

 John introduced  Type Addends in his description of the odd integer 

subunits and supported his ideas by visually decomposing these L–shape subunits into 

pairs of sub–subunits. The following discussion picks up at this point. 

)1( −+ NN

 

Protocol 4.39: John's )1( −+ NN  type additive RUC concerning the 

symmetric L–Shapes for three particular cases. 

G: [pointing to the orange in Figure 4.29] Is it an area or a length? 

J: It's an area... 

G: How do you say that? 

J: [He then makes a red L–shape for 3 and says] you can visualize it as the 

area of this rectangle added to the area of this rectangle [pointing to the 1 

by 1 and the 1 by 2 rectangles, respectively. Figure 4.37] 

G: You see it as the area of two rectangles... am I right? 

J: Yeah... [and separates the rectangles. Figure 4.38] 

G: Okay... how about this 5? [pointing to the white L–shape figure] Is it an 

area or a length? 
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J: It would be the same... It'd be an area... 

G: And because? [He then makes the following figure. Figure 4.39] 

J: Because area is 3 here and 2 is here so you get 5 [pointing to the rectangles 

he just made]. 

 

 

Figure 4.37. John's red L–Shape subunit representing the odd integer 3. 

 

 

Figure 4.38. John's decomposition of his red L–Shape subunit into two sub–subunits. 
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Figure 4.39. John's decomposition of his white L–Shape subunit into two sub–subunits. 

 

 This looks like one of the RUC types I have seen before. It is actually exactly the 

same thing Brad did (See Protocol 4.35, Figures 4.34 and 4.35 above). Sarah also used 

this type twice in her written work. To demonstrate the areal–ness of the L–shape 

subunits, both John and Brad decomposed the subunits into two sub–subunits. These two 

students are alike in their thinking, as opposed to Rob, who referred to an iteration of 

irreducible areal units strategy. The difference in these students' thinking can be 

explained with the additive type RUCs under consideration (Irreducible Addends type 

RUC for Rob, and  type RUC for Brad and John). )1( −+ NN

 Both John and Brad decomposed the L–shape subunits into two rectangles, by 

which I offer a concept–in–action (Vergnaud, 1988), “Rectangle Condition for 

Arealness.” In fact, this appeared to be the case in all students’ work I analyzed so far. 

Why rectangles and not something else, in order to establish arealness? My explanation 

to this is that it’s simply because “Rectangle Condition” lies at the heart of MRUC. 

 I will end this subsection with three tables. The first one summarizes additive type 

RUCs concerning both the odd integer (L–shape) subunits and the growing rectangle 

units based on interview students' verbal descriptions and gestures. The following two 
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tables are based on these students' written work concerning the odd integer subunits and 

the growing rectangle units, respectively. 

 

Table 4.17  

Additive Type RUCs Concerning both the Odd Integer (L–Shape) Subunits and the 

Growing Rectangle Units Based on Interview Students' Verbal Descriptions and Gestures 

Students 
Additive Type RUC Used in the 

Decomposition of the Odd Integer (L–Shape) 
Subunits into Sub–Subunits 

Additive Type RUC Used in the 
Decomposition of the Growing 

Rectangles into Subunits 

Brad Symmetric Addends 
)1( −+ NN  Type Addends 

NA 

Nicole NA NA 

Rob Irreducible Addends Summed Addends 

Sarah Random Addends Equal Addends 
Random Addends 

John )1( −+ NN  type Addends NA 

 

Table 4.18  

Students' Written Work for the Areas of the Odd Integer Subunits as a Sum 

Students Area of the Odd Number 
Subunits as a Sum 

Name of the Additive Type 
RUC 

Relational Notation 
Describing the Sum 

Brad 

1 + 1 + 1 
or 2 + 1 

1 + 1 + 1 + 1 + 1 
or 3 + 2 

1 + 1 + ... + 1 + 1 
or 4 + 3 

1 + 1 + ... + 1 + 1 
or 5 + 4 

1 + 1 + ... + 1 + 1 
or 6 + 5 

Irreducible Addends 
N + (N – 1) Type Addends 

Irreducible Addends 
N + (N – 1) Type Addends 

Irreducible Addends 
N + (N – 1) Type Addends 

Irreducible Addends 
N + (N – 1) Type Addends 

Irreducible Addends 
N + (N – 1) Type Addends 

[1, 1, 1] 
[2, 1] 

[1, 1, 1, 1, 1] 
[3, 2] 

[1, 1, 1, 1, 1, 1, 1] 
[4, 3] 

[1, 1, 1, 1, 1, 1, 1, 1, 1] 
[5, 4] 

[1, 1, ..., 1, 1] 
[6, 5] 

Nicole 

1 + 1 + 1 
or 3 

1 + 1 + 1 + 1 + 1 
or 5 

1 + 1 + ... + 1 + 1 
or 7 

1 + 1 + ... + 1 + 1 
or 3 + 3 + 3 

Irreducible Addends 
Singleton Addend 

Irreducible Addends 
Singleton Addend 

Irreducible Addends 
Singleton Addend 

Irreducible Addends 
Equal Addends 

[1, 1, 1] 
[3] 

[1, 1, 1, 1, 1] 
[5] 

[1, 1, 1, 1, 1, 1, 1] 
[7] 

[1, 1, 1, 1, 1, 1, 1, 1, 1] 
[3, 3, 3] 
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or 9 Singleton Addend [9] 

Rob 
1in2 + 1in2 + 1in2 

1in2 + ... + 1in2 

1in2 + ... + 1in2 

or 3in2 + 3in2 + 3in2 

Irreducible Addends 
Irreducible Addends 
Irreducible Addends 

Equal Addends 

[1, 1, 1] 
[1, 1, 1, 1, 1] 

[1, 1, 1, 1, 1, 1, 1] 
[3, 3, 3] 

Sarah 3in2 + 2in2 

5in2 + 4in2 
N + (N – 1) Type Addends 
N + (N – 1) Type Addends 

[3, 2] 
[5, 4] 

John 

1in2 + 2in2 

2in2 + 3in2 

3in2 + 4in2 

4in2 + 5in2 

5in2 + 6in2 

(n – 1) in2 + n in2 

N + (N – 1) Type Addends 
N + (N – 1) Type Addends 
N + (N – 1) Type Addends 
N + (N – 1) Type Addends 
N + (N – 1) Type Addends 
N + (N – 1) Type Addends 

[1, 2] 
[2, 3] 
[3, 4] 
[4, 5] 
[5, 6] 

[n – 1, n] 
 

Table 4.19  

Students' Written Work for the Area of the Growing Rectangles as a Sum 

Students Area of the Growing Rectangle as a 
Sum 

Name of the Additive 
Type RUC 

Relational Notation 
Describing the Sum 

Brad 

2in2 + 2in2 

or 1in2 + 1in2 + 1in2 + 1in2 

3in2 + 3in2 + 3in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

8in2 + 8in2 

4in2 + 4in2 + 4in2 + 4in2 

or 2in2 + 2in2 + ... + 2in2 + 2in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

5in2 + 5in2 + 5in2 + 5in2 + 5in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

6in2 + 6in2 + ... + 6in2 + 6in2 

or 3in2 + 3in2 + ... + 3in2 + 3in2 

or 2in2 + 2in2 + ... + 2in2 + 2in2 

9in2 + 9in2 + 9in2 + 9in2 

or 4in2 + 4in2 + ... + 4in2 + 4in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

Equal Addends 
Irreducible Addends 

Equal Addends 
Irreducible Addends 

Equal Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 
Equal Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 

[2, 2] 
[1, 1, 1, 1] 

[3, 3, 3] 
[1, 1, ..., 1, 1] 

[8, 8] 
[4, 4, 4, 4] 

[2, 2, ..., 2, 2] 
[1, 1, ..., 1, 1] 
[5, 5, 5, 5, 5] 
[1, 1, ..., 1, 1] 

[6, 6, 6, 6, 6, 6] 
[3, 3, ..., 3, 3] 
[2, 2, ..., 2, 2] 

[9, 9, 9, 9] 
[4, 4, ..., 4, 4] 
[1, 1, ..., 1, 1] 

Nicole 

1 + 3 
or 2 + 2 

or 1 + 1 + 1 + 1 
1 + 3 + 5 
or 4 + 5 

or 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 
1 + 3 + 5 + 7 
or 4 + 5 + 7 

or 9 + 7 
or 1 + 1 + ... + 1 + 1 

1 + 3 + 5 + 7 + 9 
or 4 + 5 + 7 + 9 

or 9 + 7 + 9 
or 16 + 9 

or 1 + 1 + ... + 1 + 1 

Summed Addends 
Equal Addends 

Irreducible Addends 
Summed Addends 
Recursive Addends 
Irreducible Addends 
Summed Addends 
Recursive Addends 
Recursive Addends 
Irreducible Addends 
Summed Addends 
Recursive Addends 
Recursive Addends 
Recursive Addends 
Irreducible Addends 

[1, 3] 
[2, 2] 

[1, 1, 1, 1] 
[1, 3, 5] 
[4, 5] 

[1, 1, 1, 1, 1, 1, 1, 1, 1] 
[1, 3, 5, 7] 

[4, 5, 7] 
[9, 7] 

[1, 1, ..., 1, 1] 
[1, 3, 5, 7, 9] 
[4, 5, 7, 9] 

[9, 7, 9] 
[16, 9] 

[1, 1, ..., 1, 1] 
Rob 3in2 + 3in2 + 3in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 
Equal Addends 

Irreducible Addends 
[3, 3, 3] 

[1, 1, ..., 1, 1] 
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No Other Way 
8in2 + 8in2 

or 4in2 + 4in2 + 4in2 + 4in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

No Other Way 
5in2 + 5in2 + 5in2 + 5in2 + 5in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

No Other Way 

NA 
Equal Addends 
Equal Addends 

Irreducible Addends 
NA 

Equal Addends 
Irreducible Addends 

NA 

NA 
[8, 8] 

[4, 4, 4, 4] 
[1, 1, ..., 1, 1] 

NA 
[5, 5, 5, 5, 5] 
[1, 1, ..., 1, 1] 

NA 

Sarah 

1 
1 + 3 

3 + 3 + 3 
or 1 + 3 + 5 

or 8 + 1 
1 + 3 + 5 + 7 

1 + 3 + 5 + 7 + 9 

Singleton Addend 
Summed Addends 

Equal Addends 
Summed Addends 
Random Addends 
Summed Addends 
Summed Addends 

[1] 
[1, 3] 

[3, 3, 3] 
[1, 3, 5] 
[8, 1] 

[1, 3, 5, 7] 
[1, 3, 5, 7, 9] 

John 

1in2 + 1in2 + 2in2 

1in2 + 1in2 + 2in2 + 2in2 + 3in2 

1in2 + ... + 3in2 + 3in2 + 4in2 

1in2 + ... + 4in2 + 4in2 + 5in2 

1in2 + ... + 5in2 + 5in2 + 6in2 

1in2 + ... + (n – 1)in2 + (n – 1)in2 + n in2 

Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 

[1, 1, 2] 
[1, 1, 2, 2, 3] 

[1, 1, 2, 2, 3, 3, 4] 
[1, 1, 2, 2, 3, 3, 4, 4, 5] 

[1, 1, ..., 5, 5, 6] 
[1, 1, ..., n – 1, n – 1, n] 

 

 I will end this subsection by comparing the Summed Addends used by John and 

Nicole in their written answers for the “Area of the growing rectangle as a sum” column 

on the activity sheet. The slight difference lies in the functional dependence of the odd 

integer subunits “ ”s. For Nicole, )(if 12)( −= iif  whereas for John,  

Though the two “ ”s are identical algebraically, they seem to differ representationally 

as I described above. Nicole's “ ”s stand for the odd integer L–shape subunits 

whereas John's “ ”s are expressed as the sum of sub–subunits. In that sense, John 

carried his  Type Addends over and added them to obtain his growing square. 

John's areas of growing squares are sums of these sub–subunits, whereas Nicole's areas of 

the growing squares are sums of the odd integer subunits. John's summation formula 

based on these sub–subunits can be found in some books on visual proofs – See, for 

instance, Nelson (1993, p.74). Brad and Rob, on the other hand, simply relied on the fact 

).1()( −+= iiif

)(if

)(if

)(if

)1( −+ NN
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that the areas of the growing rectangles represent composite numbers, and so they stuck 

to Equal Addends and Irreducible Addends type RUC only.  

 

4.3.3. Linear vs. Areal Units 

 Brad paid attention to dimensionalities of areal units to establish the areal–ness of 

these units (See Protocol 4.28). In order to show that the L–shape subunit standing for the 

odd integer 5 was two dimensional, or of areal nature, he used the fact that “each block 

represents an area.” This is similar to Rob's iteration strategy, which I introduced above 

in Protocol 4.37. Brad was able to iterate his irreducible areal unit to obtain a polygon, as 

indicated by his statement “It might not be a rectangle but it's still a polygon. So it still 

can be written as an area.” Moreover, Brad used his decomposition strategy to obtain his 

two sub–subunits, which are of )1( −+ NN  type RUC. 

 Nicole's growing square patterns for the fourth and the fifth stages were different 

from what I was expecting. As depicted in figures below, she rearranged her previous 

figure (Figure 4.40) when she was at the 4th stage (Figure 4.41). When she was at the 5th 

stage, she embraced her original L–shape formation (Figure 4.42). 

 

 

Figure 4.40. Nicole's growing square at the 3rd stage. 
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Figure 4.41. Nicole's growing square at the 4th stage. 

 

 

Figure 4.42. Nicole's growing square at the 5th stage. 

 

 Nicole assigned known measurement units to linear and areal quantities, as 

depicted in the protocol below. 

 

Protocol 4.40: Nicole's assignment of known measurement units to quantities. 

G: What are the units associated with each odd integer? 

N: Inches for the length and the width; and inches squared for the area. 

G: So, for each odd integer, what are the units then? 

N: Each one is an inch [points to the white cube on the upper left corner in 
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Figure 4.42] 

G: What is its unit? [About number 9 which is represented as the white L–

shape] 

N: 9 inches. 

G: 9 inches or 9 inches squared? 

N: Yeah 9 inches squared. 

 

 The white figure representing the odd integer 9 makes an L around the growing 

figure, which is a square. Nicole did not see this white L as part of the area of the square, 

as warranted by her assignment of inches as the unit of measurement. This corroborates 

my theory about her thinking about dimensions as behaving as both linear and areal units. 

In fact, the white L shape at the 5th stage may be representing the dimensions of the 

growing square for Nicole, which caused her to favor inches instead of inches squared as 

a unit of measurement. She then switched to inches squared upon my probing “9 inches 

or 9 inches squared?” In fact, after her realization of the areal–ness of the white L–shape, 

she assigned an inches squared measurement unit to every other L–shape in her sequence 

of growing figures (7 inches squared, 5 inches squared, etc.). Her answers on the “Total 

Area” column of the activity sheet helped her realize that the growing figures were square 

numbers. The following protocol picks up at this point. 

  

Protocol 4.41: Nicole's realization of the growing square sequence. 

G: What is common about these numbers? [pointing to the “Total Area” 

column of the table] 
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N: They're all squares. And now I realize it would look a lot prettier if I had 

done this. You could see it better. Now you could see like... cascading... 

[She is rearranging her figure. She is changing her figure so that all the 

odd integers are represented as symmetric L–shapes. Figure 4.43] 

 

 

Figure 4.43. Nicole's “prettier” looking growing figure. 

 

 Nicole realized that in the “cascading” formation the odd integers follow the same 

pattern, symmetric L–shapes. She may have preferred this symmetry, this “commonness” 

of the odd integers, and that may explain why she thought of this formation as “prettier.” 

I think this was an “Aha!” moment for her when she realized this pattern on her own, as 

was the case for Rob (See Protocol 4.36 above and the paragraph that follows). The 

difference between these two students' thinking lies in the fact that Nicole had to refer to 

her written answers on the activity sheet, whereas Rob realized this formation while 

making his growing patterns. They are alike, on the other hand, in that they both started 

with non L–shape subunits generating their growing squares. The fact that the 

expressions on the “Total Area” column of the activity sheet were all square numbers 



 138

made Nicole switch to a cascading L–shape formation is also evidence for her ability to 

successfully “map” algebraic symbols into a suitable representation. 

 Nicole then used her idea of dimensions behaving as both linear and areal 

quantities to develop a strategy of her own in which she reasoned quantitatively. The 

following discussion picks up at this point. 

 

Protocol 4.42: Nicole's quantitative operation. 

G: What is common about the odd integers in this representation now (Figure 

4.43)? 

N: It's like increasing the length and the width by 1 each time. 

G: Where are the linear units and the areal units of the growing square in each 

case? 

N: This is the length [points to the five cubes on the left] and this is the width 

[points to the five cubes at the bottom] and they are gonna be the same 

[Another instance for “dimensions behaving as both linear and areal 

units”]. 

G: Okay... Where are the areal units? 

N: Areal units... is everything... the whole... inches squared. 

G: How about this 7? What is the unit for that? [pointing to the “7” in Nicole's 

expression “1 + 3 + 5 + 7 + 9” on the “Area of the growing rectangle as a 

sum” column on the activity sheet] 

N: I guess it would be inches squared. 

G: How about this 5 and this 5? [pointing to Nicole's expression “W–5, L–5” 
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on the “Dimensions of the growing rectangle” column on the activity 

sheet] 

N: They are inches. 

 

 Nicole was thinking about the odd integers as areal quantities generating same–

type quantities (growing squares) additively. Although each L–shape behaves as a linear 

quantity on its own (Protocol 4.40), in the process of a quantitative operation, which is 

addition, it behaves as an areal quantity. Nicole was aware that L–shape quantities exist 

on their own as well as in relation to each other via the addition operation, as suggested 

by her statement “It's like increasing the length and the width by 1 each time.” In 

Thompson's words, “A quantitative operation is a mental operation by which one 

conceives a new quantity in relation to one or more already–conceived quantities... It is 

important to distinguish between constituting a quantity by way of a quantitative 

operation and evaluating the constituted quantity.” (Thompson, 1994, p. 9) In other 

words, Nicole realized that the difference between any two consecutive odd integer is 2 = 

1 + 1, where the first “1” is due to the increase in length, and the second “1” is due to the 

increase in width of the growing square sequence, respectively. In this way, she generated 

a recursively defined sequence of consecutive odd integers  with general 

term  Nicole’s reference to recursion indicates how she “conceives” the new 

quantity  in relation to the other “already–conceived” quantities (i.e., the 

preceding terms of the consecutive odd integer sequence). 

⎩
⎨
⎧
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 Rob, like Nicole, hesitated for a while at the beginning and assigned inches to the 

irreducible areal quantities (IAQ) generating the odd integer L–shape subunit as can be 

warranted by his statement “1 inch plus 1 inch plus 1 inch plus 1 inch plus 1 inch.” (See 

Protocol 4.37 and the paragraph that follows) I believe this is due to the fact that Rob did 

not realize that the L–shape is an areal quantity on its own. However, Rob was aware of 

the fact that the L–shape, if resulting from the iteration of irreducible areal units 

additively via a quantitative operation, is of areal nature. My hypotheses are warranted by 

his statements “but it's not like a rectangle,” “it's an area... but it's area in a different way 

than it was before.” Later on, Rob seemed to be more firm in his assignment of the 

known measurement units to the linear and areal quantities. The following discussion 

picks up at this point. 

 

Protocol 4.43: Rob's association of dimensionalities to known measurement 

units. 

G: Each added L–shape... is it a linear unit or an areal unit? 

R: It's an areal unit... sure... because it's a cube... 

G: At each step, the growing rectangle you obtain... is it a linear unit or an 

areal unit? 

R: Areal. 

G: Can it be expressed, at each step, the area, as a product? 

R: Yes... it will always be the product of the same number. 6 inches by 6 

inches...7 inches by 7 inches... 8 inches by 8 inches... 

G: Do you feel the need to include a unit to distinguish between the areal and 



 141

the linear units? 

R: Um... I don't... but if you're trying to teach somebody you'd have to... 'cuz 

anytime it's two dimensional it'll be inches squared... anytime it's just a 

linear unit, which would be width and length, it would be just inches.  

 

 Rob not only distinguished between linear and areal quantities by assigning 

appropriate known measurement units, but he also referred to dimensionalities and 

associated those to the measurement units of his choice. Rob used this strategy in his 

description of linear and areal units pertaining to the first activity on prime and composite 

rectangles (See Protocol 4.11 and the paragraph that follows). For Rob, the linear 

quantities length and width are measured in inches because these quantities are of one 

dimensional nature. Similarly, the areal quantities are measured in square inches because 

of their two-dimensional nature.  

 Sarah, as was the case for the other interview students, was able to characterize 

the linear and areal quantities by reference to inches and inches squared. She also 

described the “area as a sum” as unit−wise equivalent to the “area as a product.” The 

protocol below captures the relevant discussion. 

 

Protocol 4.44: Sarah establishes the unitwise equivalence of the RHS and the 

LHS. 

G: How about each of these? Are they inches or inches squared? [about the 

terms on the LHS of the identity 447531 ×=+++ ] 

S: Inches squared. 
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G: How about this 4 and this 4? [about the terms on the RHS of the identity 

] 447531 ×=+++

S: They are inches. 

G: Is it consistent? Are they equal... the LHS and the RHS? 

S: When you actually do the adding or the multiplying yeah... 

 

 Sarah's words “adding” and “multiplying” refer to the quantitative operations she 

was performing, namely an addition on the LHS and a multiplication on the RHS. These 

are not the ordinary additions and multiplications, though. In Smith & Thompson's 

words,  

Quantitative operations (e.g., multiplicative comparison) are not the same as 

numerical operations (e.g., multiplication) despite the frequent similarity in 

terminology. Quantities that result from quantitative operations exist in two different 

senses, as quantities in their own right and as relationships between the two 

quantities. It can be conceptually demanding to reason and communicate about such 

quantities because we must distinguish and coordinate these two senses, and, when 

necessary, shift between them (2008, page 112). 

If the terms on the LHS and the RHS were just numbers, then the sum on the LHS would 

still equal the product on the RHS. However, these are expressions Sarah obtained based 

on her representations. In that sense, these numbers must have some meaning, and those 

meanings will come from the corresponding measurement units under consideration. 

Because she projected those meanings to these “numbers,” these “numbers” exist as 

quantities for her. She was able to operate on the quantities on the LHS additively 
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because they have the same meaning; in other words, they are like terms. Eventually, the 

expression on the LHS equals the expression on the RHS both numerically and unitwise. 

The awareness of unitwise equivalence of expressions is named quantitative unit 

conservation (Olive & Caglayan, 2006, 2007). At any stage of obtaining a sequence of 

equivalent expressions, the simplified units on both sides must be equivalent. “The 

simplified unit throughout the process of obtaining equivalent equations must be 

conserved.” (Olive & Caglayan, 2007, p. 22) 

 With John, I played a matching game. I asked him where the “5” of the identity 

“ ” was on the figure he made on the whiteboard. The following 

discussion picks up at this point. 

447531 ×=+++

 

Protocol 4.45: John's comparison of linear vs. areal quantities. 

G: Where is that 5? 

J: This is the 5 [pointing to white L shape in Figure 4.29]. 

G: Where is the 3? 

J: [points to orange L shape] 

G: Where is the 4? 

J: This is the 4 [moving the pen along the edges of the 4 by 4 square]...  

G: Is it clear? 

J: It seems clear... the area would be 4 times 4 [He then separates the 4 by 4 

square from the bigger square and writes the dimensions on the board. 

Figure 4.44] 

G: What is 4? is it a length or area? 
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J: Length... Length and width [pointing to the length and width] 

G: How about this 4 right here [pointing to the vertical part of the red L–shape 

representing number 7]? 

J: That would be an area... 

G: How about the 5? Is it an area or a length? 

J: It's an area... yeah... 

G: Do you have anything more to say on this activity? Anything to add? 

J: Um... Well... I would say... I mean... If I got it right... Now it became more 

clear to me that this was an area rather than a length... this 4 [pointing to 

the vertical part of the red L–shape representing number 7]... I was not 

sure before... It seems more clear now... I am right! Yeah... that's it... 

 

 

Figure 4.44. John's 4 by 4 Square Separated from the 6 by 6 Square. 

 

 In the second activity on the summation of counting numbers, John's preference 

often switched back and forth between same–ness and difference of same–valued linear 

and areal quantities. In that activity, he was hesitant as to whether the red rectangle at the 
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bottom (Figure 4.28) stood for a linear or an areal quantity. I deduced that Nicole and 

John were alike in that they both saw the dimensions as some sort of representational 

quantities that can be part of the areal region of the growing rectangle. However, after 

playing the matching game as depicted in the protocol above, John did not feel any 

hesitation. In fact, he was firm, took a stand, and pointed out that the vertical part of the 

red L–shape representing the number 7 is an areal unit. He was probably remembering 

our comparison game where I asked him to compare the linear and areal “7”s when we 

were working on the growing rectangle representing the summed number 28 during the 

second activity. In that sense, after what happened during this interview, I infer that John 

was able to establish the areal–ness of the L–shape subunits on their own, as opposed to 

Rob and Nicole for whom these same subunits were of a linear nature on their own. Rob 

and Nicole established the areal–ness of these subunits by a quantitative operation. This 

is the slight difference between these students' thinking about L–shape subunits. 

 I will end this subsection on summation of odd numbers with a table of 

terminology that summarizes students' behaviors as they attempted to understand and 

make sense of linear and areal quantities as well as same–valued linear and areal 

quantities. 

 

Table 4.20 

Terminology Summarizing Students' Sense Making of Linear and Areal Representational 

Quantities 

Terminology Summarizing Students' Behaviors Students Fitting the 
Terminology 

Reference to Known Units of Measurement Brad, Nicole, Sarah, 
Rob, John 



 146

Iteration Strategy Combined with the Two–Dimensional Nature of Irreducible 
Areal Unit Generating L–Shape Subunits. Brad, Rob 

Attending to Dimensionalities of Irreducible Areal Sub–Subunits to Establish the 
Areal–ness of L–Shape Subunits. Brad 

Dimensions Behaving as both Linear and Areal Quantities. Seeing the Dimensions 
as both Linear and Areal Quantities. Nicole 

L–shapes Behave as Linear Quantities (Length and Width of the Growing Square) 
On Their Own. L–shapes Behave as Areal Quantities in the Process of a 

Quantitative (Addition) Operation. 
Nicole, Rob 

Assigning Inches Measurement Unit to L–Shapes in Their First Attempt. Nicole, Rob 

Association of Dimensionalities to Known Measurement Units Rob 

Establishing the Unitwise Equivalence of the RHS and the LHS of Summation 
Identities. Sarah 

Quantitative Reasoning Nicole, Rob, Sarah 

Quantitative Unit Conservation Sarah 

Establishing the Areal–ness of L–Shape Subunits on Their Own. John 

 

 

4.4. Summing Even Integers 

 When dealing with the addition of odd integers using color cubes, all interview 

students came up with the L–shape subunits generating growing squares. In fact, that was 

the only way of obtaining a sequence of growing squares representing the summation of 

odd integers based on the “Add them so that they generate a rectangle” direction. The 

rectangle condition was pertaining to the growing figures representing the summation. 

The uniqueness of the growing rectangle was the case for the summation of counting 

numbers activity, too. 

 The summation of even integers activity was different from the summation of 

counting numbers and the summation of odd integers activities in that there was not a 

unique growing rectangle pattern representing the summed number. As will become 

clearer below, students preferred either an L–shape formation (Figure 4.45), or a 
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rectangular formation (Figure 4.46) for the even number subunits generating a growing 

rectangle sequence. Nicole was the only student to demonstrate both formations. Some 

students indicated that they remembered the L–shape formation they produced in the 

previous activity on the summation of odd integers. However, Sarah, who was the only 

student to relate the two summation formulas, provided a visual proof demonstrating how 

the summation identity  resulted from the summation identity 

 

∑ += nni 22

.)12( 2∑ =− ni

 

 

Figure 4.45. Growing rectangle sequence generated via L–Shape subunits. 

 

 

Figure 4.46. Growing rectangle sequence generated via rectangular subunits. 
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4.4.1. Multiplicative Representational Unit Coordination (MRUC) 

 Brad made even number rectangles 2, 4, 6, 8, 10, 12 as long sticks (Figure 4.47). 

 

 

Figure 4.47. Brad's even integer subunits. 

 

 His subunits could be represented via relational notation as ordered pairs (1, 2), 

(1, 4), (1, 6), (1, 8), (1, 10), (1, 12) of linear units. Nicole produced the same long stick 

formation as Brad. As for the growing rectangle sequence, both Brad and Nicole came up 

with an L–shape formation. When I asked Nicole to write her answers on the activity 

sheet, an interesting discussion took place. 

 

Protocol 4.46: Nicole's rectangle condition for MRUC. 

N: [writes her answer “1 + 1 + 1 + 1” on the “Area of the added figure as a 

sum” column on the activity sheet at the second stage] 

G: As a product? Is it possible to write it as a product? 

N: No... Not the way I added it... 
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 Nicole added her even integer subunits as non–symmetric L–shapes, which is why 

there was no way of writing their areas as a product. An L–shape to rectangle 

transformation is necessary to meaningfully establish MRUC. In fact, when filling in the 

same column on the activity sheet for the third stage, she said “I did not add it as a 

rectangle” while writing her answer “1 + 1 + 1 + 1 + 1 + 1.” I deduce, therefore, that for 

Nicole, the areas of the figures representing even number subunits could be expressed as 

products only if they were of rectangular formation. This hypothesis is also warranted by 

my previous results concerning Nicole (See for instance Protocol 4.15, Figure 4.13, and 

the paragraph that follows). 

 Nicole produced another growing rectangle sequence generated via rectangular 

subunits, as well. John also represented the even numbers as long sticks (1 by n 

rectangles), which he then added as L–shapes as in Figure 4.45. The following table 

reflects students' written answers for the area as a product of the growing rectangles. I 

include a relational notation for each written answer for the purpose of analysis. 

 

Table 4.21  

Students' Written Work for the Area of the Growing Rectangles as a Product 

Students Area of the Growing Rectangle as a Product Relational Notation Describing the Product 

Brad 2 × 3, 3 × 4, 4 × 5, 5 × 6, 6 × 7, 7 × 8, n × (n + 1) (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (n, n + 1) 

Nicole 2 × 1, 2 × 3, 3 × 4, 4 × 5, 5 × 6 (2, 1), (2, 3), (3, 4), (4, 5), (5, 6) 

Rob 2in × 3in, 3in × 4in, 4in × 5in (2, 3), (3, 4), (4, 5) 

Sarah 4in × 5in, 5in × 6in, 6 × 7, 7 × 8, 8 × 9, n × (n + 1) (4, 5), (5, 6), (6, 7), (7, 8), (n, n + 1) 

John 2 × 3, 3 × 4, 4 × 5, 5 × 6, 6 × 7, 7 × 8, n × (n + 1) (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (n, n + 1) 
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 Rob and Sarah were the only ones to attach measurement unit “inches” to their 

linear quantities. Brad, Sarah, and John generalized their conjectures about their area as a 

product expressions as a function of stage number n. Though there was not an “area of 

the added figure as a product” column on the activity sheet, Rob was the only student to 

express the areas of his even number L–shape subunits as the products 2in × 2in, 2in × 

3in, 2in × 4in. These expressions can be modeled via a relational notation of ordered 

pairs (2, 2), (2, 3), (2, 4) of linear units. Nicole, the only student to produce both patterns 

(L–shape and rectangular) on subunits generating growing rectangles, expressed the areas 

of her rectangular subunits as the products 2 × 1, 2 × 2, 2 × 3, 2 × 4, 2 × 5, 2 × 6. Like 

Rob, her expressions also can be modeled via a relational notation of ordered pairs (2, 1), 

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6) of linear units. 

 

4.4.2. Additive Representational Unit Coordination (ARUC) 

 Students struggled in assigning a multiplicative nature to their even integer 

subunits generating growing rectangles, yet they were most of the time confident in 

establishing an areal nature to both subunits and bigger units. They all provided a 

corresponding additive type RUC of their choice meaningfully for both subunits (made of 

sub–subunits) and bigger units (made of subunits). 

 At the elementary stage of formulating additivity for the even number subunits 

represented as long sticks (Figure 4.47), Brad relied on a splitting strategy and an 

iteration strategy. The following protocol reflects this point. 

 

Protocol 4.47: Brad's splitting and iteration strategies. 
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G: What is common in these shapes? Does it tell you these are even numbers? 

How? 

B: 'Cuz they have even amount of blocks. 

G: Are these areas or lengths? Take this blue [long bar representing 8] for 

instance, is it an area or a length? 

B: We'll go with area. 

G: How do you convince me or yourself that it's an area? 

B: 'Cuz we're dealing with blocks, each one has an area so what we're dealing 

with here is an area. 

G: What are the dimensions? 

B: It's 8 by 1. 

 

 Brad showed the commonness of his long stick configurations standing for even 

number subunits by referring to a splitting strategy. The commonness was not the fact 

that these subunits were all of the same form, namely the long stick formation. But it 

rather was in the fact that all of them could be decomposed into two equal parts. What 

Brad suggested by his statement “they have even amount of blocks” is a particular case of 

Equal Addends type RUC. In this formation, his even number subunits were split into 

equal addends (sub–subunits) as denoted by a relational notation of ordered pairs [1, 1], 

[2, 2], [3, 3], [4, 4], [5, 5], [6, 6] of areal sub–subunits. The areal–ness of these quantities 

was due to Brad's langauge “blocks” which was also used by other students many times 

in this analysis Chapter IV (See for instance Protocol 4.3 for Nicole, Protocol 4.21 for 

Sarah, Protocols 4.25 & 4.28 for Brad, and the following paragraphs). Brad combined his 
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iteration strategy with the areal nature of the irreducible areal unit to establish the fact 

that areas can be added together to make other areas. His iteration strategy can be 

explained by Irreducible Addends type RUC denoted via a relational notation of ordered 

octuple [1, 1, 1, 1, 1, 1, 1, 1] of irreducible areal sub–subunits. 

 Brad was very quick in adding the even number subunits to generate a growing 

rectangle. His coordination is the L–shape formation. In this case, the L–shapes are not 

symmetric, though (Figure 4.48). 

 

 

Figure 4.48. Brad's growing rectangle sequence. 

 

 Brad admitted that he based his response on what he did with the odd numbers in 

the previous task. Then we discussed the items on the activity sheet. Unlike what he did 

with the previous summation formula patterns, this time Brad relied on a different 

representational unit coordination type when he discussed “the area of the growing 

rectangle as a sum” column on the activity sheet. In this type, the addends are the terms 

being added: the even number subunits themselves (i.e., of Summed Addends Type RUC). 

Remember, for the previous cases, his coordination was of Equal Addends Type RUC. 

Summed Addends Type RUC for this particular case where the addends are even number 
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subunits could be described as follows. Referring to functional notation  

where areal even number subunits “ ”s are being summed from 1 to n (number of 

addends) and i is the stage number (ordering number for the addends); one can write 
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 His answers for the “area of the added figure as a sum” were 4in2, 6in2, 8in2, 

10in2, 12in2, which are not quite interesting as these are just singletons. With the 

relational notation, these Singleton Addends can be written as [4], [6], [8], [10], [12]. 

 Nicole again exhibited her “dimensions behaving as both linear and areal units” 

behavior in discussing the summation of even integers context. The protocol below 

illustrates how Nicole's behavior results in her definitions of additive type RUCs. 

 

Protocol 4.48: Nicole's additive type RUCs. 

G: Each time the growing rectangle is an area or a length? (Figure 4.49) 

N: It's an area. 

G: How about this [pointing to yellow], this [pointing to orange] and this 

[pointing to purple]... can you describe it as a sum... of what? 

N: It's the sum of the yellow plus the orange plus the purple. 

G: How about this orange? Is it an area as well? 

N: Yes... but it'd be harder to describe it as a rectangle. 

G: Are you sure that it's an area? 

N: I mean... you can find the area of it. 

G: Is it a length? 

N: No. 'cuz it's not straight. 
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G: So… what tells you that it's an area. 

N: You can use the sum… 1, 2, 3, 4, counting... area of 4. 

G: How about this little one thing [pointing to the orange cube at the 

bottom]... is it an area or a length? 

N: Um... It depends on how you want to define an area… 'cuz it has an area of 

1 square inch... whatever... but it also has just a length of 1 inch. 

G: In this context? 

N: I would say it's an area because it's part of the area of the whole big 

rectangle [covering the rectangle on the white board with her right hand]. 

 

 

Figure 4.49. Nicole's growing rectangle sequence based on L–Shapes. 

 

 Nicole was aware that at each stage the growing rectangle is of areal nature. She 

had some doubts concerning the L–shape subunits, though. The non–rectangularity of 

these subunits prevented her from establishing their areal–ness. She did not think of the 

L–shape subunits as areas; however, she thought that their areas could be found by 
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counting the cubes. She did not think they were lengths as they were not of long stick 

formation. Her last comment about the irreducible orange unit in the discussion above 

combined with my previous results concerning Nicole led me to believe that not only 

dimensions and L–shapes, but also each irreducible unit block can behave as both an 

areal and a linear quantity. Finally, in her last comment, she established the areal–ness of 

these irreducible areal units supported with her hand gestures. The only additive RUC 

type arising from the above discussion is therefore the Irreducible Addends Type RUC 

describing the L–shaped even number subunits. Her written answers to “Area of the 

growing rectangle as a sum” column on the activity sheet, on the other hand, are of 

Summed Addends type RUC, similar to the previous two activities. 

 Nicole’s statement “it’s the sum of the yellow plus the orange plus the purple” 

indicates that she is able to decompose the biggest areal (the growing rectangle) unit into 

same−color−subregions. With Steffe’s (1988) usage, Nicole is able to see the growing 

rectangle as a composite unit of L−shape composite units. In fact, as I will describe in the 

next section on the polynomial rectangles, her verbal expressions related to her 

decomposition of the polynomial rectangles into similar same−color−subregions 

(same−color−boxes) resulted in her successful interpretation of MRUC induced in such 

same−color−boxes. 

 Rob used the “2 by half the even integer” formation and based his growing 

rectangle sequence on it (Figure 4.46). Rob's written answers for the “area of the growing 

rectangle as a sum” are of Equal Addends Type RUC, once again. Besides their own 

additive RUC types, Nicole, Sarah and John were in agreement with each other in 

Summed Addends type in their description of the growing rectangle units when working 
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on the “Summation of Counting Numbers,” “Summation of Odd Numbers,” and 

“Summation of Even Numbers” activities. Brad's Equal Addends type RUC agrees with 

Rob's RUC for “Summation of Counting Numbers” and “Summation of Odd Numbers” 

activities. Brad used Summed Addends type RUC in his assignment of an additive type 

RUC for the growing rectangle units made of even number subunits. 

 Equal Addends type RUC for Rob can be warranted by his statements during the 

interview as well. For instance, he says “2 inches squared, 10 times” while pointing to the 

“2”s of the growing rectangle of the 4th stage. He also says “10 inches squared 2 times,” 

“4 inches squared 5 times,” etc. And every time, he is pointing to these equal addends. I 

rely on Rob's statements as well as hand gestures to infer Equal Addends type RUC 

(Figure 4.59). With relational notation, these addends can be described as the ordered 10–

tuple [2, 2, 2, 2, 2, 2, 2, 2, 2, 2], the ordered pair [10, 10], and the ordered quintuple [4, 4, 

4, 4, 4] of areal subunits. In other words, Rob treats these growing rectangles as 

representations of composite numbers, rather than summed numbers. 
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Figure 4.50. Rob's hand gestures describing the equal addends. 

 

 John provided Equal Addends Type RUC as well as a new additive type RUC of 

his own in his description of the L–shape subunits (Figure 4.45). The protocol below 

illustrates this point. 

 

Protocol 4.49: John's additive type RUCs concerning even number subunits. 

G: How do you express that 8 [the red L−shape in Figure 4.45] as a sum? 

J: 4 + 4... I'd say it could be 5 and 3... 

G: How about the white? 

J: 3 and 3... and... 4 and 2... 

G: How about the green? 

J: 5 and 5... and... 6 and 4... 

G: How about the 6 and the 4 in the green... are they areas or lengths? 
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J: Areas. 

 

 I assert that for a decomposition technique to be claimed as an additive type RUC, 

the following conditions must be satisfied. 

i. The (sub)unit under consideration is expressed as a sum of the (sub–)subunits. 

ii. The arealness of the (sub–)subunits is established. 

iii. When added together, the (sub–)subunits produce the original (sub)unit. 

 As warranted by Protocol 4.49, therefore, John makes use of Equal Addends Type 

RUC. His subunits are decomposed into sub–subunits as denoted by a relational notation 

of ordered pairs [4, 4], [5, 5], and [3, 3] of areal sub–subunits. John also introduces a new 

additive RUC of  Addends type in his description of the even integer 

subunits and supported his ideas by decomposing these L–shape subunits into pairs of 

sub–subunits “5 and 3,” “4 and 2,” and “6 and 4.” In this type of RUC, for each L–shape 

subunit, there are two addends (sub–subunits) only, i.e., 

)1()1( −++ NN

.2=n  With the functional 

notation,  and ,1)1( += Nf ,1)2( −= Nf  i.e., the addends differ by 2. Once again, one 

can think of the areal units “ ”s as sub–subunits generating even integer subunits. 

Note that in general, 

)(if

,2)2()1( Nff =+  i.e., the even integer subunit itself. One can use a 

relational notation of ordered pair [N + 1, N – 1] of areal units to denote this additive type 

RUC for the general case. For the particular examples John refers in the protocol above 

where the even integers are 8, 6, and 10; one can write f (1) = 5 and f (2) = 3, f (1) = 4 and 

f (2) = 2, f (1) = 6 and f (2) = 4, respectively. One can use a relational notation of ordered 

pairs [5, 3], [4, 2], and [6, 4] of areal units to denote this additive type RUC for the 

corresponding particular examples, respectively. 
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 I end this subsection with two tables based on interview students' written work 

concerning the even integer subunits and the growing rectangle units. 

 

Table 4.22 

Students' Written Work for the Areas of the Odd Integer Subunits as a Sum 

Students Area of the Even Number 
Subunits as a Sum Name of the Additive Type RUC Relational Notation 

Describing the Sum 

Brad 

4in2 

6in2 

8in2 

10in2 

12in2 

Singleton Addend 
Singleton Addend 
Singleton Addend 
Singleton Addend 
Singleton Addend 

[4] 
[6] 
[8] 
[10] 
[12] 

Nicole 

1 + 1 
1 + 1 + 1 + 1 

1 + 1 + 1 + 1 + 1 + 1 
1 + 1 + ... + 1 + 1 
1 + 1 + ... + 1 + 1 

Irreducible Addends 
Irreducible Addends 
Irreducible Addends 
Irreducible Addends 
Irreducible Addends 

[1, 1] 
[1, 1, 1, 1] 

[1, 1, 1, 1, 1, 1] 
[1, 1, 1, 1, 1, 1, 1, 1] 

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 

Rob 

2in2 + 2in2 

or 1in2 + 1in2 + 1in2 + 1in2 

3in2 + 3in2 

or 2in2 + 2in2 + 2in2 

or 1in2 + ... + 1in2 

2in2 + 2in2 + 2in2 + 2in2 

or 4in2 + 4in2 

or 1in2 + ... + 1in2 

Equal Addends 
Irreducible Addends 

Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 

[2, 2] 
[1, 1, 1, 1] 

[3, 3] 
[2, 2, 2] 

[1, 1, 1, 1, 1, 1] 
[2, 2, 2, 2] 

[4, 4] 
[1, 1, 1, 1, 1, 1, 1, 1] 

Sarah 4in2 + 4in2 

Many different ways 
Equal Addends 

Random Addends 
[4, 4] 

Many different ways 

John 

2 + 2 
or 3 + 1 

3 + 3 
or 4 + 2 

4 + 4 
or 5 + 3 

5 + 5 
or 6 + 4 

6 + 6 
or 7 + 5 

n + n 
or (n + 1) + (n – 1) 

Equal Addends 
(N + 1) + (N – 1) Type Addends 

Equal Addends 
(N + 1) + (N – 1) Type Addends 

Equal Addends 
(N + 1) + (N – 1) Type Addends 

Equal Addends 
(N + 1) + (N – 1) Type Addends 

Equal Addends 
(N + 1) + (N – 1) Type Addends 

Equal Addends 
(N + 1) + (N – 1) Type Addends 

[2, 2] 
[3, 1] 
[3, 3] 
[4, 2] 
[4, 4] 
[5, 3] 
[5, 5] 
[6, 4] 
[6, 6] 
[7, 5] 
[n, n] 

[n + 1, n – 1] 
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Table 4.23  

Students' Written Work for the Area of the Growing Rectangles as a Sum 

Students Area of the Growing Rectangle as a 
Sum 

Name of the Additive 
Type RUC 

Relational Notation 
Describing the Sum 

Brad 

4in2 + 2in2 

6in2 + 4in2 + 2in2 

8in2 + 6in2 + 4in2 + 2in2 

10in2 + 8in2 + 6in2 + 4in2 + 2in2 

12in2 + 10in2 + 8in2 + 6in2 + 4in2 + 2in2 

Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 

[4, 2] 
[6, 4, 2] 

[8, 6, 4, 2] 
[10, 8, 6, 4, 2] 

[12, 10, 8, 6, 4, 2] 

Nicole 

1 + 1 
2 + 4 

or 1 + 1 + 1 + 1 + 1 + 1 
2 + 4 + 6 
or 6 + 6 

or 1 + 1 + ... + 1 + 1 
2 + 4 + 6 + 8 
or 6 + 6 + 8 

or 12 + 8 
or 1 + 1 + ... + 1 + 1 
2 + 4 + 6 + 8 + 10 
or 6 + 6 + 8 + 10 

or 12 + 8 + 10 
or 20 + 10 

or 1 + 1 + ... + 1 + 1 

Irreducible Addends 
Summed Addends 

Irreducible Addends 
Summed Addends 
Recursive Addends 
Irreducible Addends 
Summed Addends 
Recursive Addends 
Recursive Addends 
Irreducible Addends 
Summed Addends 
Recursive Addends 
Recursive Addends 
Recursive Addends 
Irreducible Addends 

[1, 1] 
[2, 4] 

[1, 1, 1, 1, 1, 1] 
[2, 4, 6] 
[6, 6] 

[1, 1, ..., 1, 1] 
[2, 4, 6, 8] 

[6, 6, 8] 
[12, 8] 

[1, 1, ..., 1, 1] 
[2, 4, 6, 8, 10] 

[6, 6, 8, 10] 
[12, 8, 10] 

[20, 10] 
[1, 1, ..., 1, 1] 

Rob 

2in2 + 2in2 + 2in2 

or 3in2 + 3in2 

or 1in2 + 1in2 + 1in2 + 1in2 + 1in2 + 1in2 

4in2 + 4in2 

or 2in2 + 2in2 + 2in2 + 2in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

5in2 + 5in2 + 5in2 + 5in2 

or 4in2 + 4in2 + 4in2 + 4in2 + 4in2 

or 2in2 + 2in2 + ... + 2in2 + 2in2 

or 10in2 + 10in2 

or 1in2 + 1in2 + ... + 1in2 + 1in2 

Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 
Equal Addends 
Equal Addends 
Equal Addends 
Equal Addends 

Irreducible Addends 

[2, 2, 2] 
[3, 3] 

[1, 1, ..., 1, 1] 
[4, 4] 

[2, 2, 2, 2] 
[1, 1, ..., 1, 1] 

[5, 5, 5, 5] 
[4, 4, 4, 4, 4] 
[2, 2, ..., 2, 2] 

[10, 10] 
[1, 1, ..., 1, 1] 

Sarah 

2in2 + 4in2 + 6in2 + 8in2 

2 + 4 + ... + 10 
2 + 4 + ... + 12 
2 + 4 + ... + 14 
2 + 4 + ... + 16 
2 + 4 + ... + 2n 

n2 + n 

Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 

N2 + N Type Addends 

[2, 4, 6, 8] 
[2, 4, 6, 8, 10] 

[2, 4, 6, 8, 10, 12] 
[2, 4, 6, ..., 12, 14] 
[2, 4, 6, ..., 14, 16] 

[2, 4, 6, ..., 2n] 
[n2, n] 

John 

2 + 4 
2 + 4 + 6 

2 + 4 + 6 + 8 
2 + 4 + 6 + 8 + 10 

2 + 4 + 6 + 8 + 10 + 12 
2 + 4 + ... + 2n 

Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 
Summed Addends 

[2, 4] 
[2, 4, 6] 

[2, 4, 6, 8] 
[2, 4, 6, 8, 10] 

[2, 4, 6, 8, 10, 12] 
[2, 4, ..., 2n] 
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 Information pertaining to Table 4.22 reveals that Sarah is the only student to 

decompose even number subunits into random addends (sub–subunits). Sarah, John and 

Rob are the only students to make use of equal addends. Though the L–shape subunits 

stand for even numbers, Nicole favors for irreducible addends, rather than equal addends, 

which backs up my belief that for her, “Rectangle Condition” and MRUC necessitate 

each other. Put simply, this reveals a concept−in−action (Vergnaud, 1988) of the form 

“Rectangle Condition ⇔ MRUC.” John provides a new additive type RUC which has not 

been used by anyone else. Brad does not decompose his even number subunits, which he 

treats as singletons. 

 A new additive type of RUC arises due to Sarah's expression , which she 

obtained just by looking at her growing figure generated via even number L–shape 

subunits with reference to her growing figure from the previous task on the addition of 

odd integers (Table 4.23). She reflected on what she did with the odd integers, 

remembered that the odd integers were building a growing square each time, and 

suggested [n2, n] besides the subunits [2, 4, 6, ..., 2n] of Summed Addends Type RUC, for 

the general case. I name this formation [n2, n] as Addends of  Type.  

nn +2

NN +2

Rob is the only student to refer to Equal Addends type RUC in his decomposition 

of the growing rectangle units, which he treats as composite numbers rather than summed 

numbers. Brad, who agreed with Rob in the previous two tasks on summations, favors the 

Summed Addends type RUC in the decomposition of the growing rectangle units. Nicole, 

Sarah, and John also favor the Summed Addends type RUC for these units. Nicole refers 

to Recursive Addends type RUC besides Summed Addends type RUC. Note that I 

classified Nicole's expression “6 + 6” in Table 4.23 as of Recursive Addends type and not 
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of Equal Addends type RUC because in all other cases, she referred to Recursive Addends 

type RUC. The recursiveness of “6 + 6” lies in that the first “6” is the same as the sum “2 

+ 4” of the previous stage. 

  

4.4.3. Linear vs. Areal Units 

 After he builds his growing rectangle sequence as in Figure 4.48, I ask Brad the 

sum at the nth step in an attempt to make him generalize his results. By reference to his 

figure, he conjectures “So it'd be N plus N minus 2, plus...” without explaining what n 

stands for. I then ask him to visually prove the summation formula by referring to both 

his figure and written answers. The only help I provided was the fact that n stood for the 

general stage number. He gave up his initial conjecture and obtained the equality 

 on the white board. I then asked him to verify whether this 

formula holds for the case  He verified both the product and the sum and obtained 

30 = 30. He thinks that the yellow L–shape representing 6 is an area and that it is in 

inches squared. He explains the equality 3 × 4 = 2 + 4 + 6 by referring to the growing 

rectangle (Figure 4.51). He distinguishes between linear and areal quantities by assigning 

known measurement units inches and inches squared with reference to his edge/block 

iteration technique. 

nnn 2...42)1( +++=+

.5=n
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Figure 4.51. Brad's growing rectangle at the 3rd stage. 

 

 Nicole makes even number rectangles (2, 4, 6, 8, 10, 12) as long sticks (Figure 

4.52). She thinks of these as linear quantities. The following protocol picks up at this 

point. 

 

 

Figure 4.52. Nicole's even integer subunits. 
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Protocol 4.50: Nicole's even number subunits on their own. 

G: Are these areas or lengths? 

N: These are lengths... These are linear... 

G: You made lengths right? Okay... 

N: Do you want me to make areas? 

G: What are the dimensions of this one [pointing to the yellow bar], for 

instance? 

N: This is 1 by 2. 

G: Okay... How about this one [pointing to the orange bar]? 

N: 1 by 4. 

G: You are saying 1 by 4... so it looks like it's also an area? 

N: Yeah... But these are 3 dimensional shapes so...  

G: Okay… 

N: …but we are talking about the two dimensions of it [pointing to length and 

width of the orange stick] you can say the length is two [pointing to 

yellow stick] the length is four [pointing to orange stick] the length is six 

[pointing to purple stick]  

G: So with these representations, these look like linear unit? 

N: Hm hm [approving] 

 

 I deduce that subunits on their own stand for linear quantities for Nicole. Her 

question “Do you want me to make areas?” causes me to believe that if I let her continue, 

she was probably going to replace the n×1  long sticks by 
2

2 n
×  rectangles. 



 165

 The fact that Nicole thinks of these on–their–own subunits as linear quantities 

prevented me from assigning a relational notation of multiplicative nature, which is why I 

carried this protocol over to this subsection. Her answers “1 by 2” and “1 by 4” refer just 

to the dimensions, and not to the areal–ness of these quantities. Nicole is aware that these 

are three–dimensional shapes, but at the same time she is also aware that we are talking 

about the two dimensions of them only. Therefore, areal−ness stands out as irrelevant in 

this discussion about long stick representation of even numbers. Yes the long sticks have 

two dimensions, length and width, however, that does not imply that these be areal 

quantities; they rather are linear quantities for Nicole. This line of thinking is in contrast 

to Sarah's thinking in which length is a line resulting from the projection of a vertically 

standing two dimensional figure (the sides of the cubes) onto the plane of the three 

dimensional figure (See Protocol 4.27 and the paragraph that follows). On their own, 

therefore, these even number subunits are non–areal quantities for Nicole because she 

focuses on their “lengths.” 

 I then asked Nicole to add her subunits so that they would generate a rectangle. 

She created an L–shape formation (Figure 4.49). The even number subunits, though of 

linear nature, generate areal quantities for Nicole as reflected in the following discussion. 

 

Protocol 4.51: Nicole's subunits generating areal quantities. 

G: How about this shape, the yellow and the orange together, is it an area or a 

length? 

N: It's an area... 'cuz it's 2 by 3... area of 6. 

G: How about yellow orange wood purple together? 
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N: It's 4 by 5. 

G: Are these in inches or inches squared? [pointing to the “Area of the 

growing rectangle as a sum” column on the activity sheet] 

N: These are in inches [writes “in” to each term under “Area of the growing 

rectangle as a sum”] and these are in inches squared [writes “in2” under 

“Total area”]. 

G: You are saying these are in inches... is it because of these L–shapes? 

N: Yeah. 

G: You don't want to define it as in2... 

N: I wouldn't because it's pieces of it... it's not like... the whole thing yet... 

 

 I infer that for Nicole, the L–shape subunits stand for linear quantities. I expect 

that these L–shape subunits must generate growing rectangles of linear nature (for 

Nicole) because like–terms, when added together, must produce like quantities of the 

same nature. Therefore, I deduce that, though linear on their own, these L–shapes behave 

as areal quantities in the process of building a growing rectangle. In a sense, in the 

process of the addition operation, these L–shapes change their identity as these are linear 

quantities on their own (for Nicole), yet capable to generate areal quantities (growing 

rectangles). These hypotheses are warranted by Nicole's assignment of the measurement 

unit inches to her written expressions standing for the L–shape subunits in the “Area of 

the growing rectangle as a sum” column on the activity sheet. Nicole also described one 

of the growing rectangles she made both dimensionally and area–wise: “It's an area… 

'cuz it's 2 by 3... area of 6.” Nicole did not reason quantitatively in the sense that she did 



 167

not think about the even number subunits as quantities on their own and in relation to 

each other (Thompson, 1988) with the requirement that the quantitative units associated 

with these even number subunits in the process of the quantitative (addition) operation 

must be conserved at all times (Olive & Caglayan, 2006, 2007). 

 The following protocol illustrates a scene where Nicole came to a point where she 

changed her mind about the nature of the L–shape subunits. 

 

Protocol 4.52: Nicole's change of mind about the nature of the even number 

L–shape subunits. 

G: How about this... 5 × 6 here... this 5 here is it in inches or in2? 

N: Inches... 

G: 6 and 5, are they both inches? 

N: They're both inches. 

G: How about these ones here... [pointing to her expression “1 + 1 + 1 + 1 + 1 

+ 1 + 1 + 1 + 1 + 1” on the “area of the added figure as a sum” column of 

the activity sheet] are they inches or in2? 

N: I would say just... [hesitant] as a sum... I would say they are just inches 

because it's not really... [intending to say “it's not really an area”] 

G: It's not really? 

N: Well... it's not really a length either... I guess it would be an area because 

you are counting the blocks [changes her mind] 
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 For the first time, Nicole paid attention to the irreducible areal characteristics of 

the blocks, which generate not only the even number subunits, but everything of areal 

nature pertaining to the growing rectangles made of color cubes, as well. The discussion 

came to a turning point where Nicole felt the need to embrace linearity or arealness (but 

not both) of L–shape subunits. She finally put an end to the dilemma and favored 

arealness as she obtained her L–shapes (and eventually her growing figures) by iterating 

inch squared unit irreducible areal blocks. The following protocol clarifies how Nicole 

made sense of her preference for the arealness of these L–shape subunits. 

 

Protocol 4.53: Nicole's sense making of areal L–Shape subunits. 

G: Can we attach a unit to that? [pointing to her expression “1 + 1 + 1 + 1 + 1 

+ 1 + 1 + 1 + 1 + 1” on the “area of the added figure as a sum” column of 

the recording sheet]  

N: Inches squared. 

G: So you are changing your mind? 

N: Yeah. 

G: Tell me more about that... what made you change your mind? 

N: It's because... We're talking about the actual area here [pointing to the “area 

of the added figure as a sum” column of the recording sheet]... So it can't 

be the length 'cuz it's curved [meaning the blue L–Shape standing for the 

even number subunit 10. See Figure 4.49] and so... we are talking about 

the area… So it would be in inches squared. 
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 Though she had the same number of cubes standing for her even number subunits 

in both Figure 4.49 and Figure 4.52, there is no direct unit–wise equivalence of these 

same–valued quantities. For instance, for Nicole, the blue long stick 10 and the blue L–

shape 10 are different quantities, in that sense. In addition, her irreducible areal unit 

(block) iteration strategy was valid only for the blue L–shape 10 and not for the long stick 

10. Even though it looks like Nicole put an end to her dilemma, a couple of times during 

the interview while writing her answers on the activity sheet, Nicole said, “I did not make 

rectangles” about her L–shape added figures. So despite the “change of mind” turning 

point, she still had some concerns about the “already established arealness” of these L–

shape quantities. I probed on that and asked her what she meant by “I did not make 

rectangles.” She then came up with a visual demonstration. The protocol below illustrates 

her new idea. 

 

Protocol 4.54: Nicole's growing rectangle sequence generated via rectangular 

subunits. 

N: If I added rectangles, it would have been like this [pointing to her new 

demonstration. See Figure 4.53]. But I chose not to. I chose to add them as 

L–shapes. 

G: Let's compare this 4 [meaning the orange rectangle in Figure 4.53] with the 

L–shape 4 [from her previous demonstration, Figure 4.49]. How about this 

one [meaning the orange rectangle in Figure 4.53]... Is it an area as a 

product of what? 

N: As a product of 2 and 2 inches. 
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G: As a sum of what? 

N: As a sum of 1, 1, 1, 1. 

G: And the L–shape 4, is it an area as a sum of what? 

N: 1, 1, 1, 1. 

G: As a product of what? 

N: You can't do it as a product. 

G: Which one looks more like areal unit... this one [meaning the orange 

rectangle in Figure 4.53] or the L one [from her previous demonstration, 

Figure 4.49]? 

N: This one [meaning the orange rectangle in Figure 4.53] 'cuz these are 

rectangles. 

 

 

Figure 4.53. Nicole's growing rectangle sequence generated via rectangular subunits. 

 

 In the paragraph following Protocol 4.46, I hypothesized that the rectangle 

condition was a necessary condition for a figure to be established “of areal nature” for 
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Nicole. Based on this new data coming from Protocol 4.54, I must revise my previous 

hypothesis. Because Nicole defined linearity for the long sticks, I have to exclude the 

long sticks from the analysis of the current situation. The rectangle condition is therefore 

necessary but not sufficient. For Nicole, a figure made of cubes is of areal nature only if 

the figure makes a special rectangle such that both the length and the width of this special 

rectangle must be greater than or equal to 2. Nicole creates a concept−in−action 

(Vergnaud, 1988) of the form “a × b Rectangle ( )2 ,2such that ≥≥ ba  Condition ⇔ 

MRUC.” 

 Because Nicole was the only student to provide both formations (Figure 4.49 and 

Figure 4.53), I wanted her to write her answers for this new demonstration, so I asked her 

to write her answers for the “Area of the added figure as a product” column on the 

recording sheet. Her written answers  2 × 1, 2 × 2, 2 × 3, 2 × 4, 2 × 5, 2 × 6 caused her to 

realize that each even number has a factor of 2 and that the other factor coincides with the 

stage number. The following protocol elaborates on these issues. 

 

Protocol 4.55: Nicole's incomplete mapping structures.  

G: How about these numbers, are they lengths or areas? [pointing to 2 × 1] 

N: They're lengths. 

G: How do you recognize that they're lengths? Where are they? 

N: Because what I am talking about is just the length of it and the width of it... 

not the whole entire area of it. I am talking about just the outer edges. 

G: Purple one? 

N: Purple one would have a width of 2, and a length of 3.  
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 Nicole's statement “What I am talking about is just the length of it and the width 

of it... not the whole entire area of it. I am talking about just the outer edges” calls for a 

multiplicative type RUC, which can be denoted via a relational notation of ordered pair 

(length, width) of linear units. I deduce that a reference to Mapping Structures is still 

missing (incomplete) as Nicole does not establish the existence of an areal quantity 

resulting from the mapping of these linear units through the multiplication operation. 

Compare this thinking with Protocol 4.16 where Nicole actually referred to Mapping 

Structures by saying “I would say three [pointing to the three cubes on the left] times 

seven [pointing to the seven cubes at the bottom]. Three inches times seven inches would 

give me 21 inches squared.” John was the other interview student to make use of 

Mapping Structures via his statement “Length of 5 and width of 1 in which case the area 

would be 5.” (See Protocol 4.22 and the paragraph which follows) Nicole, Sarah, and 

John were the only interview students to map their ordered pairs of linear quantities into 

the appropriate areal quantity through the multiplication operation in their work with the 

magnetic color cubes. Though the existence of Mapping Structures is not completely 

established, Nicole was able to distinguish between the linear and areal quantities by 

reference to dimensionalities and known measurement units as illustrated in the following 

protocol. 

 

Protocol 4.56: Nicole's association of dimensionalities to known measurement 

units. 

G: Okay... How do you distinguish between the dimensions and the area? 
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N: Length... just the edges and area everything inside... so it's kinda like 

perimeter it's just outside... the length and the width are part of the 

perimeter and the area is everything within the perimeter. 

G: So... the area and the perimeter... How are they different? In what ways? 

N: Perimeter is in inches. It's one dimensional... Length is 1 dimensional and 

area is 2 dimensional... I would attach inches to perimeter, and inches 

squared to area. 

 

 Nicole distinguished between linear and areal quantities by assigning known 

measurement units inches and inches squared. She also related these measurement units 

to dimensionalistic properties of the corresponding linear and areal quantities. Nicole's 

interest in a particular linear quantity, perimeter, is worth mentioning as she is the only 

student to mention perimeter in a discussion. Rob used a similar strategy (without 

reference to perimeter) in his description of linear and areal quantities pertaining to the 

first activity on prime and composite rectangles and the third activity on the summation 

of odd integers (See Protocol 4.11, Protocol 4.43 and the paragraphs that follow). Linear 

quantities are on the “edges” and the areal quantities are “everything within the 

perimeter,” according to Nicole. 

 Rob was the only other student to generate a sequence of growing rectangles 

based on rectangular subunits (Figure 4.50). The following discussion picks up at the 

point where Rob revealed the dimensionalistic properties of the linear and areal quantities 

with reference to his even number subunits and the growing rectangles. 
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Protocol 4.57: Rob's reference to rectangle condition and dimensionalities. 

G: Now each even integer... can it be written as a sum? How? Can it be 

written as a product? How? For instance, this 8 [pointing to the white in 

Figure 4.50] Is it an area or a length? 

R: Area. 

G: How do you figure? 

R: Because it makes a rectangle by itself... and it's two dimensional. 

G: What is the length and the width? [about the 4 by 5 rectangle. Figure 4.54] 

R: 4 inches by 5 inches. 

G: Are they linear or areal units? 

R: Linear. 

G: But 4 is also in here [pointing to the red rectangle in Figure 4.54] 

R: Yes... but that would be an area. But the length of the entire square 

[meaning rectangle] is 4 linear inches... length of the rectangle sorry... 

G: Each separate even integer... you're saying that... is an area? 

R: Yes. 

G: How about their combination when they are added together? 

R: These are all inches squared and when you put them together... still an 

area... 
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Figure 4.54. Rob's growing rectangle sequence of the 4th stage. 

 

 Rob's compound proposition “it makes a rectangle by itself... and it's two 

dimensional” can be thought of as two distinct statements connected via the conjunction 

“and.” For Rob, the arealness of the rectangular even number subunits is established only 

if the following conditions are satisfied: 

i. Each even number subunit must be represented as a rectangle made of color cubes 

(Rectangle Condition) 

ii. Two–dimensional characteristic of these even number subunits must be 

mentioned (Dimensionalities) 

 Rob also distinguished between same–valued linear and areal quantities by 

reference to the known measurement units inches and square inches. He was aware that 

the addition of of–the–same–nature even number subunits yields another of–the–same–

nature bigger unit, namely the growing rectangle. Rob made sense of his areal quantities 

by attending to quantitative unit conservation (Olive & Caglayan, 2006, 2007) as opposed 

to Nicole who assigned different measurement units to her subunits and growing 
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rectangles despite the fact that she obtained the latter ones by operating on the former 

ones additively (See Protocol 4.51 and the paragraph that follows). 

 Sarah started by making long bars for the even numbers 2, 4, 6, 8, and 10. She 

then added them to generate a growing rectangle sequence based on L–Shape subunits 

(Figure 4.55) similar to Brad, Nicole, and John. 

 

 

Figure 4.55. Sarah's growing rectangle sequence based on L–shapes. 

 

 She said that this pattern was similar to the odd integers. The protocol below 

illustrates this point. 

 

Protocol 4.58: Sarah's visual proof relating two summation formulas. 

S: The only difference is that we have an extra row [She splits the extra row as 

in Figure 4.56] 

G: So you discovered the formula I guess... 

S: Yeah... It would be n squared plus whatever that is [pointing to the extra 
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row she just split]... n [very excited]… n squared plus n yeah! [very 

excited] 

 

 

Figure 4.56. Sarah's decomposition of her growing rectangle sequence into a square and a 

long stick. 

 

 Sarah introduced n right after pointing to the extra row she just split. She 

therefore first visually located both the growing square and the long stick, and later on 

connected these objects to their dimensionalistic properties. This answer came from her, 

this was Sarah's idea; I did not say anything at all. In fact, I never thought about Sarah's 

“extra row” formulation serving as a bridge between the two summation formulas before; 

this was something new to me. She made the figure above and generalized it. She saw the 

square as an n by n square, and the bar as n (  Type Addends). Her algebraic 

generalization was based on a representation, Figure 4.56, which was a particular case for 

n = 5. Sarah was reasoning quantitatively by not only relating each L–shape even number 

NN +2
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subunit to the corresponding L–shape odd number component, but by connecting the two 

separate sequences of growing figures, as well. 

 Sarah's discovery of the literal expression n2 + n arising from the particular case n 

= 5 showed that she was able to make a conjecture and a generalization. I wanted to learn 

more about the meanings she would give to these quantities, as illustrated in the protocol 

below. 

 

Protocol 4.59: The meanings charged into the  addends and mapping 

structures. 

NN +2

G: Okay... n squared plus n... tell me more about that... What units have n 

squared and n? 

S: Well... n squared is n times n... so inch times inch it would be inches 

squared.  

G: How about the extra n... is it an area or a length? 

S: I don't know... 

G: Is it in the area... that n? 

S: Yeah... so it would be inches squared... by itself... 

G: Does it make sense? 

S: Yeah... well added together that has to equal an area so... since you are 

adding them together they have to have the same units... so it would be 

inches squared. 

G: Okay... Where is the inches squared in n? In that n? [meaning the extra 

row] 
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S: It has to be in inches squared... 

G: Okay... How do you say that? How do you figure? 

S: It's just that it's n times 1... n inch and 1 inch... and then when you multiply 

them it'd be inches squared.  

 

 Sarah established arealness for the addend n2 by multiplying the corresponding 

same–valued linear quantities. She demonstrated how the value–wise multiplication of n 

and n yielded “value” n2 and the “unit–wise” multiplication of inches and inches yielded 

the measurement unit inches squared. When working on the first activity on prime and 

composite rectangles, Nicole showed a similar thinking. She multiplied the values of 

linear quantities as well as the measurement units attached to those quantities to produce 

a quantity of−a−new−kind (Schwartz, 1988). I infer a 2–fold Mapping Structure 

(concept−in−action) for Sarah's representationally coordinated quantities. Both the 

ordered pair of values (n, n) and the measurement units (inches, inches) are mapped into 

the corresponding value n2 and the measurement unit in2 with the multiplication operation 

behaving as a mapping.  

A 2–fold Mapping Structure is slightly different from the ordinary Mapping 

Structure in that the multiplication mapping operates on both values and measurement 

units separately as in Sarah's statement “n squared is n times n... so inch times inch it 

would be inches squared.” The ordinary Mapping Structures can be witnessed in Nicole 

and John's statements (“three inches times seven inches would give me 21 inches 

squared,” “Length of 5 and width of 1 in which case the area would be 5”) in the previous 

sections (cf. Protocol 4.16 & 4.25 and the paragraphs that follow). Because the relational 
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notation of ordered pairs (or n–tuples in general) already possesses the measurement 

units, both types of Mapping Structures have equivalent relational notations, such as (n, 

1) and (n, n) for the example above. A functional notation that describes both types of 

Mapping Structures Sarah refers in the protocol above can be written as 

, where, f stands for the multiplication operation 

behaving as a mapping. 

2) ,(: and 1)1 ,(: nnnfnf aa

 Sarah hesitated for a very short time in her sense making of the “extra row” when 

trying to determine whether it was a linear or an areal quantity. By her statement “since 

you are adding them together they have to have the same units... so it would be inches 

squared,” I hypothesize that she established the arealness of this quantity by deductive 

reasoning. The steps Sarah followed in her deductive reasoning can be outlined as 

follows: 

i. The big n2 + n rectangle is an areal quantity. 

ii. The addend n2 is an areal quantity. 

iii. Therefore, the “other” addend n must be an areal quantity, as well. 

 And finally, once she established the arealness of the “extra row” quantity via 

deductive reasoning, Sarah validated her judgment via inductive reasoning with reference 

to 2–fold Mapping Structures: She mapped both the values and measurement units 

associated with the linear quantities into their areal counterparts as evidenced by her 

statement “It's just that it's n times 1... n inch and 1 inch... and then when you multiply 

them it'd be inches squared.” 

 Note that Sarah's comments and actions in Protocol 4.59 above pertained to the 

addends n2 and n generating the growing rectangle. As described in the previous 
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subsection, these addends can be modeled via a relational notation of ordered pairs [n2, n] 

of areal subunits. Besides, Sarah established multiplicative structures (MRUC) embedded 

within additive structures (ARUC), which can be notated as ( ) ( )[ ]1 , , , nnn . Although the 

n2 was a growing rectangle in the context of the previous task on the summation of odd 

integers, Sarah interpreted it as a subunit in the context of the summation of even integers 

activity. Note that what Sarah established was the formation [n2, n] – equivalently, the 

formation  – and not the formation (n, n + 1), denoting equivalent quantities. 

In fact, when she was working with the “area of the growing rectangle as a product” 

column on the activity sheet, after providing the answers 4 × 5, 5 × 5, 6 × 7, 7 × 8, 8 × 9, 

I asked her whether these looked like the expression n2 + n she discovered above. Sarah 

established the equivalence of these two formations as illustrated in the protocol below. 

( ) ( )[ 1 , , , nnn ]

 

Protocol 4.60: Equivalence of [n2, n] and (n, n + 1) formations. 

G: Does this look like n2 + n? [pointing to Sarah's written expressions on the 

“area of the growing rectangle as a product” column on the activity sheet] 

S: No. Does it? I don't think so... 

G: Okay... Now I am gonna ask you to factorize it... 

S: Oh... n times n + 1! [She writes  n2 + n = n(n + 1) and very excited] It 

works... 

G: Does it make sense? 

S: Hm hm... 

G: What units would you attach to n and n + 1? 

S: The n and the n + 1 are both in inches. 
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G: What do you think about these as teaching tools? 

S: It's cool... I think it would work with summations. I did not learn the 

summations in high school though... I guess if you are teaching 

summations it should work... 

 

 Sarah's statements from Protocol 4.59 and Protocol 4.60 necessitate the existence 

of a theoretical construct that I name Equivalence of Mapping Structures. There must be 

an agreement of the ordered pair (n, n + 1) of linear units and the ordered pair [n2, n] of 

areal units. These two formations can be reconciled via the equivalence of mapping 

structures. The multiplication operation, which behaves like a function or mapping, can 

be represented using a functional notation such as  Here, f denotes 

the multiplication operation mapping the linear units n and n + 1 into the corresponding 

areal unit n2 + n that is also the same as the area of the growing rectangle. 

.)1,(: 2 nnnnf ++ a

 Similarly, the addition operation behaves like a function or mapping, acting on 

irreducible areal quantities (unit blocks) or combinations of those. For instance, the 

function g, which represents the addition operation, acts on the ordered pair [n2, n] of 

areal units and maps it into the areal unit n2 + n. Using a functional notation this can be 

written as . In other words, though they act on different types of 

representational quantities, the images of the mappings f and g coincide (Figure 4.57). 

This is the essence of what is meant by “identity” in this research project. “Area as a 

product” coincides with “area as a sum” eventually because of these mapping structures. 

nnnng +22 ] ,[: a
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Figure 4.57. Equivalence of mapping structures. 

 

 John wrote the identities corresponding to each stage on the board. He also 

suggested a general formula (Figure 4.58). 

 

 

Figure 4.58. John's summation identities. 

 

 The following protocol illustrates John's conjecture in an attempt to make a 

generalization. 

 

Protocol 4.61: John's conjecture. 

G: This is great! You are suggesting a formula... Let's try that formula to see if 

it works for... for example, for n = 4... Let's try that... 

J: n equals 4 would be this one right here [pointing to the identity 2 + 4 + 6 + 

8 = 4 × 4] 
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G: This is your conjecture right? [pointing to the identity 2 + 4 + ... + 2n = (n 

– l ) × n] Now let's see if it'll work for n = 4. Now I want you to rewrite it 

for n = 4. 

[John realizes that his conjecture is false. Figure 4.59] 

J: Well... that's not gonna work... The right hand side should be n times n + 1 

(Figure 4.60). 

 

 

Figure 4.59. John falsifies his conjecture. 
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Figure 4.60. John's corrected summation identities. 

 

 We then played a comparison game. I first asked him to compare the linear and 

areal “n”s in his identity ).1(2...42 +=+++ nnn  The protocol below elaborates on that 

conversation. 

 

Protocol 4.62: John's comparison of linear and areal quantities and mapping 

structures. 

G: How about this n... is it an area or a length? [pointing to the first n on the 

RHS of John’s identity )1(2...42 +=+++ nnn ] 

J: This n is a length. [pointing to the first n on the RHS] 

G: How about this n? [pointing to the n on the LHS] 

J: It's an area. 

G: How about the 2n? 

J: It's an area. 

G: How about this 8 here... [pointing to the “8” of the identity 2 + 4 + 6 + 8 =  
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4 × 4] is it an area or a length? 

J: It's an area. 

G: Where is it on the figure? 

J: Right here... [pointing to the red L−shape in Figure 4.45] 

G: How about the 6 and the 4 in the green (Figure 4.45)... are they areas or 

lengths? 

J: Areas. 

G: But this 6 is also the length of this rectangle [pointing to the 6 by 7 

rectangle in Figure 4.45]. Are they the same or different? 

J: Different. 

G: How are they different? 

J: These 6 cubes by itself represent an area [pointing to the horizontal part of 

the green L–shape in Figure 4.45] So this is... It's not just 6... It's 6 and 1. 

 

 John compared the linear and the areal quantities (as well as the same–valued 

linear and areal quantities) without reference to known measurement units. He simply 

used the phrases “lengths” or “areas” to establish the linearity or the arealness of the 

representational quantities under consideration. 

 John's language “It's not just 6... It's 6 and 1” can be explained using the Mapping 

Structures analysis model. The 2–foldness in these structures is missing as John did not 

mention unit–wise mapping. John only mapped the values of the linear quantities into the 

value of an areal quantity. Multiplicative RUC arises from his language “It's 6 and 1;” 

however, that is not the whole story. Multiplicative RUC is only a prerequisite for the 
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construction of a Mapping Structure. In fact, John built on the Multiplicative RUC by his 

statement “It's not just 6,” which indicates the value of the areal quantity under 

consideration that exists because of the multiplication operation that behaves as a 

mapping acting on the ordered pair (6, 1) of linear units. I assert that for a Mapping 

Structure of multiplicative type to exist, therefore, one needs to establish the following 

conditions:  

1. A pair ordering of the values of the linear quantities is mentioned. 

2. The multiplication operation behaving as a mapping is acting on the ordered pair 

of these linear quantities. 

3. The value of the areal quantity resulting from the mapping is indicated. 

 For a 2–fold Mapping Structure to exist, on the other hand, the conditions above 

must hold as well as the following: 

1'. A pair ordering of the measurement units of the linear quantities is mentioned. 

2'. The multiplication operation behaving as a mapping is acting on the ordered pair 

of these linear measurement units. 

3'. The measurement unit of the areal quantity resulting from the mapping is 

indicated. 

 In all the activities on color cubes, Nicole and John were the only students to 

make use of (ordinary) Mapping Structures, and Sarah was the only one to make  

reference to 2–fold Mapping Structures. Conditions necessitating the existence of 

ordinary and 2–fold Mapping Structures of additive type can be established in a similar 

manner as in 1, 2, 3, and 1', 2', 3' above. 

4. An n–tuple ordering of the values of the areal quantities is mentioned. 



 188

5. The addition operation behaving as a mapping is acting on the ordered n–tuple of 

these areal quantities. 

6. The value of the areal quantity resulting from the mapping is indicated. 

4'. An n–tuple ordering of the measurement units of the areal quantities is mentioned. 

5'. The addition operation behaving as a mapping is acting on the ordered n–tuple of 

these areal measurement units. 

6'. The measurement unit of the areal quantity resulting from the mapping is 

indicated. 

 I end this section on summation of even numbers with a table of terminology that 

summarizes students' behaviors in an attempt to understand and make sense of linear and 

areal quantities as well as same–valued linear and areal quantities. 

 

Table 4.24  

Terminology Summarizing Students' Sense Making of Linear and Areal Representational 

Quantities 

Terminology Summarizing Students' Behaviors Students Fitting the 
Terminology 

Reference to Known Units of Measurement Brad, Nicole, Sarah, 
Rob, John 

Iteration Strategy Combined with the One–Dimensional Nature of Irreducible 
Linear Unit (unit edge) Generating the Length of the Rectangle. Brad 

Iteration Strategy Combined with the Two–Dimensional Nature of Irreducible 
Areal Unit Generating Even Number Rectangle Subunits. Brad 

Long Sticks Behave as Linear Quantities On Their Own. Nicole 

Quantitative Units Not Conserved. Nicole 

Same–Valued Long Stick and L–Shape Quantities Possess Different Units, hence 
Are Different Quantities. Nicole 

A figure made of cubes is of areal nature only if the figure makes a special 
rectangle such that both the length and the width of this special rectangle must be 

greater than or equal to 2. 
Nicole 
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Mapping Structures Incomplete. Nicole 

Association of Dimensionalities to Known Measurement Units Nicole 

Linear quantities are on the “edges” and the areal quantities are “everything within 
the perimeter.” Nicole 

Arealness Resulting from Rectangle Condition and Dimensionalities. Rob 

Quantitative Unit Conservation Rob, Sarah 

“Extra Row” Formulation Serving as a Bridge between the Two Summation 
Formulas. Sarah 

Quantitative Reasoning Sarah 

Quick Generalization of the Summation Formula During Conjectural Process. Sarah 

Establishing the Unitwise Equivalence of the RHS and the LHS of Summation 
Identities. Sarah 

2–Fold Mapping Structures. Sarah 

Arealness of “Extra Row” Established by Deductive Reasoning. Sarah 

Equivalence of Mapping Structures. Sarah 

Mapping Structures. John 

 

 

4.5. Multiplication of Polynomial Expressions 

 In this section, I will analyze data related to three multiplication types: 

i. Multiplication of polynomials of the form )(xp  and ),(xq  where both 

polynomials are elements of the set ].[XZ  To be more specific, 1)  and 

 

( += xxp

.32)( += xxq

ii. Multiplication of polynomials of the form )(xp  and ),(yq  where ][  

and ].[  To be more specific, 1)

)( XZxp ∈

)( YZyq ∈ ( += xxp  and + .32)( = y  yq

iii. Multiplication of polynomials of the form ),( yxp  and ),,( yxq  where both 

polynomials are elements of the set ].,[ YXZ  To be more specific, 

yx  and yxp += 2),( .12),( ++= yxyxq  
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 I define a polynomial rectangle as a rectangle representing a specific polynomial 

made of different sized color tiles. Representationally speaking, various integer number 

combinations of irreducible quantities 1, x, y, xy, x2, y2 that are represented by different 

sized color tiles – also referred as algebra tiles or algebra models in the literature – are 

used to generate polynomial rectangles (Figure 4.61). For instance, it is not possible to 

represent the real coefficient polynomial 212
3
225.0 yyx

π
+++  by using these tiles. 

To be more specific, in my study with preservice teachers, we focused on integer 

coefficient polynomials in one variable  as well as integer coefficient polynomials 

in two variables   and  can be thought of as sets of integer 

coefficient polynomials in one variable and in two variables, respectively. Although I use 

the notations  and , we only focused on polynomials with positive integer 

coefficients (The back sides of the algebra tiles are all red representing negative 

coefficients). 

][XZ

].,[ YXZ ][XZ ],[ YXZ

][XZ ],[ YXZ

 

 

Figure 4.61. Irreducible algebra tiles. 

 

 In all student interviews, I started the discussion on polynomial rectangles by 

introducing the “basic” tiles. By basic tiles, I mean the purple bar representing x, the blue 
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bar representing y, and the little black square representing 1. Then I asked the students to 

define the products x times x, y times y, and x times y, respectively, on the multiplication 

mat in order to familiarize them with all the different sized color tiles. They all came up 

with similar answers without my assistance. In this introductory part, therefore, I only 

write about Brad's definitions of the product tiles. 

To define the product “x times x” on the multiplication mat, Brad first placed one 

purple bar on the left and one at the top and then located a big purple square among the 

algebra tiles and placed it in between them (Figures 4.62 & 4.63). Brad defined the big 

purple square as “x squared.” 

 

 

Figure 4.62. Algebra tiles representing x. 

 

 

Figure 4.63. Algebra tiles representing x and x squared. 
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Similar to what he did with purple bars, he then placed one blue bar on the left, and one 

blue bar at the top; and then located a big blue square among the algebra tiles and placed 

them in between them (Figures 4.64 & 4.65), which he defined as “y squared.” 

 

 

Figure 4.64. Algebra tiles representing y. 

 

 

Figure 4.65. Algebra tiles representing y and y squared. 

 

Finally, using a similar strategy, Brad defined the product tile representing xy, as in 

Figures 4.66 and 4.67 below. 
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Figure 4.66. Algebra tiles representing x and y. 

 

 

Figure 4.67. Algebra tiles representing x, y, and xy. 

 

All interview students produced the same product tiles x squared, y squared, and xy. 

 

4.5.1. Multiplicative Representational Unit Coordination (MRUC) 

 I asked students to make an x + 1 by 2x + 3 rectangle using the algebra tiles. 

Brad's ordering of the tiles representing the x + 1 is interesting in that he first placed the 

“1” tile, and then below the “x” tile (Figure 4.68). 
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Figure 4.68. Brad's dimension tiles representing x + 1 and 2x + 3. 

 

 I waited to see what Brad would do, and he seemed to be “filling in” the rectangle 

like a puzzle rather than doing term wise multiplication because he first placed the big 

purple square representing “x squared” at the upper left corner (Figure 4.69). If he had 

been thinking of term wise multiplication, then he would have placed a purple bar in the 

upper left corner (Figure 4.70). 

 

 

Figure 4.69. Brad's areal tiles “filled in” the rectangle. 
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Figure 4.70. What term wise multiplication would produce. 

 

 At this elementary stage of generating a polynomial rectangle, Brad failed to think 

in a multiplicative way. His interpretation of “area as a product” terminology was lacking 

the multiplicative aspect, as illustrated in the following discussion. 

 

Protocol 4.63: Brad's interpretation of “area as a product.” 

G: What is the area of the polynomial rectangle as a product? [Brad writes 2x2 

+ 5x + 3 on the activity sheet] What did you do? How did you get that? 

B: I had to multiply them [meaning x + 1 and 2x + 3] together... just like 

making a rectangle. 

G: You multiplied them algebraically in there [meaning on the activity sheet]? 

B: Hm hm... 

G: So, I want to... Where is the product in that case? 

B: Where is the product? 

G: I mean, area as a product... Where is that product? 

B: The length times the width. 

G: So... Does this [meaning his expression 2x2 + 5x + 3 he wrote on the 
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activity sheet] look like the length times the width? 

B: It's what happens when you multiply them together, yes. 

 

 There seems to be an “algebra– geometry” disconnect here as Brad was unable to 

locate the elements 2x2, 5x, and 3 in the set of tiles he had just arranged. I infer that Brad 

did not see the areal tiles as quantities in this situation. He saw the area as a sum, 

algebraically; however, representationally, he failed to see the area as a sum or as a 

product. In fact, what Brad understands from “product” is the “result” of the 

multiplication.  

Similarly, Rob disregarded term wise multiplication and was unable to relate the 

“resulting” areal tiles to the dimension tiles in the process of constructing the polynomial 

rectangle. Rob placed the dimension tiles and started by filling in his puzzle with two big 

purple squares (Figure 4.71). 

 

 

Figure 4.71. Rob's puzzle at the beginning. 
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 After seeing that the purple squares fit well, Rob tried to place a green tile 

representing “xy” next to the second big purple square (Figure 4.72) while commenting 

“Any chance of fitting this there?” 

 

 

Figure 4.72. Rob's attempt on fitting the green tile. 

 

 Neither Rob nor Brad used the linear quantities on the perimeter of the figure to 

determine the resulting areal quantities. However, Rob was able to interpret the resulting 

areal tiles on their own as well as with reference to dimension tiles, in a multiplicative 

way, which was missing in Brad's case. The following protocol clarifies Rob's 

interpretation of the resulting areal tiles. 

 

Protocol 4.64: Rob's MRUC concerning the “resulting” areal tiles. 

R: This one has length [about the areal 1] but it also has width. This one 

[about linear 1] just has length. Length is on this edge of it... [Figure 4.73] 

When you put this length [pointing to the linear 1 at the top] and that 

length [pointing to the linear 1 on the side] together, it makes a two 

dimensional shape, which is this... length and width. 
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G: Is it how you multiply? Are you talking about the multiplication? 

R: Yes. 

G: What did you multiply? 

R: This edge right here and this edge right here [pointing to the edges of the 

linear 1s at the top and on the side, respectively] 

G: For these “x”s... [pointing to the linear “x”s at the top and on the side, 

respectively] What did you do? 

R: This edge by this edge [pointing to the edges of the linear “x”s on the side 

at the top, respectively. Figures 4.74 & 4.75] 

 

 

Figure 4.73. Rob's hand gesture pointing to the linear 1 at the top. 

 

 

Figure 4.74. Rob's hand gesture pointing to the linear x on the side. 
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Figure 4.75. Rob's hand gesture pointing to the linear x at the top. 

 

 Rob's statement at the beginning, supported by his hand gestures, is the most 

abstract way of establishing a multiplicative RUC, as I define multiplicative RUC. In this 

study, I base multiplicative RUC on the “relational” aspect which is very abstract, and 

seemingly different from an ordinary multiplication, such as length × width. Rob's first 

statement “when you put this length and that length together” can be modeled with the 

ordering (1, 1) that corresponds to the multiplicative nature of the resulting “areal 1 unit.” 

Rob's second statement “it makes a two dimensional shape, which is this and this... length 

and width” shows that he not only was aware of the resulting areal tile as suggested by 

the words “two dimensional shape,” but he also saw the resulting areal tile as an ordered 

pair, as suggested by his language “which is this and this... length and width.” In fact, in 

the notation (1, 1); the linear 1 and the linear 1 are sort of “put together,” in a specific 

order, which calls for an ordered pair notation.  

 The multiplicative nature of unit coordination in this context is much different 

from the unit coordination described in the literature. Rob's phrase “put this length and 

that length together” is really about an ordering; it is like an ordered pair. RUC in my 
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study is more of a “relational” type as opposed to the unit coordination in the literature, 

which is of “distributive” type (Steffe, 1992). 

 John, too, disregarded multiplicative thinking in his first attempt at generating a 

polynomial rectangle. The following protocol illustrates John's strategy. 

 

Protocol 4.65: John fills the pieces in the rectangle. 

G: Could you explain what you are doing? [About the areal tiles he is placing] 

J: I am fitting... I am just trying to fill in the puzzle I guess [He then finishes 

his figure with the “filling in the puzzle” strategy. Figure 4.76]. So... I just 

filled them in... 

G: Are you sure that this is the correct rectangle? 

J: Yeah... 

 

 

Figure 4.76. John's rectangle based on fitting. 
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 John's behavior was similar to that of Brad and Rob in his “filling in the puzzle” 

strategy during the elementary stage of constructing the x + 1 by 2x + 3 polynomial 

rectangle. In contrast, Nicole and Sarah used term wise multiplication. Obtaining the 

polynomial rectangle via multiplication of the irreducible linear quantities is a more 

meaningful and mature way than simply trying to see if the pieces will fit because the 

former one has the flavor of quantitative reasoning. The table below summarizes 

interview students' strategies on their first attempt. 

 

Table 4.25 

Strategies Used by Students in Their First Attempt 

Students Strategy used in their first attempt 

Brad Filling in the puzzle 

Nicole Multiplication of irreducible linear units 

Sarah Multiplication of irreducible linear units 

Rob Filling in the puzzle 

John Filling in the puzzle 

 

 John's written answers for the “Areas of the boxes of the same color as a product” 

column were of (almost) multiplicative nature. His answer for the 2x by 1 box was “2 · 

x,” which is of additive nature. When I look at all his answers in the same column for all 

the activities concerning polynomial rectangles, I see that this was the only exception. 

Therefore, I assume that that was just a typo and hypothesize that for John the “Areas of 

the boxes of the same color as a product” column are of multiplicative nature, as was the 

case for Nicole and Sarah. The table below illustrates students' written answers for the 

aforementioned column and the nature of their answers. 
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Table 4.26 

Areas of the Same Color Boxes as a Product for the x + 1 by 2x + 3 Rectangle 

Students Students' Answers The nature of their answer 

Brad 2 · x2, 5 · x, 3 · 1 Additive 

Nicole x · 2x, x · 3, 1 · 2x, 1 · 3 Multiplicative 

Sarah 2x · x,  3 · x, 1 · 2x,  3 · 1 Multiplicative 

Rob 2 · x2, 5 · x, 3 · 1 Additive 

John 2x · x,  x · 3, 2 · x,  3 · 1 (Almost) Multiplicative 

 

 I probed Sarah to make sure that she was thinking multiplicatively in her work 

with the “Boxes of the same color as a product,” as the following protocol describes. 

 

Protocol 4.66: Sarah's MRUC concerning the boxes of the same color. 

G: You wrote 1 times 2x and not 2 times x. I just want to know why... 

S: Well... the way I was doing is... basing on lengths and... this particular 

length is 2x and this one is 1 [pointing to the linear units 2x at the top and 

1 on the side, respectively. Figure 4.77]... so... that's why I did it that way. 

G: So... 2 times x... would it be meaningful? Or irrelevant? What do you 

think? 

S: Well that could give you the length of the side [pointing to the length of the 

areal 2x tile]... but it really has nothing to do with... [meaning area as a 

result of multiplication]. 
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Figure 4.77. Sarah's rectangle resulting from term wise multiplication. 

 

 Sarah realized that both “1 times 2x” and “2 times x” have the same resulting 

value but differ in multiplicands. Because she constructed her rectangle by term wise 

multiplication of the irreducible linear units, she used “1 times 2x” – instead of “2 times 

x” which is lacking multiplicative nature. Moreover, her last comment indicates that she 

projected the multiplicative meaning onto the “1 by 2x” box, as she was unwilling to 

“decompose” the corresponding linear quantity “2x” into “2 times x.” This is a mature 

strategy because she was able to see the irreducible (linear and areal) quantities on their 

own as well as seeing the combined like termed (linear and areal) quantities 

representationally. My last findings based on Protocol 4.66 combined with Nicole and 

Sarah's written answers can be generalized as follows: 

i. Irreducible areal quantities (IAQ) result from term wise multiplication of the 

corresponding irreducible linear quantities (ILQ). 

ii. Term wise multiplication of the combined linear quantities (CLQ) produce 

corresponding areal quantities, which are also identical to the same−color−box 

areal quantitites (SCBAQ). 



 204

 In order to explain Nicole and Sarah's concepts−in−action (Vergnaud, 1988) 

concerning the multiplicative nature of the areal quantities I developed new terminology 

based on set theory and Cartesian products. 

● Representational Set of Irreducible Linear Quantities (RSILQ): A representational 

set of irreducible linear quantities (RSILQ) is the set of irreducible linear quantities such 

as 1, x, y in the context of different size color tiles (algebra tiles). The difference between 

a representational set of irreducible linear quantities (RSILQ) and an ordinary set is in 

that in a representational set of irreducible linear quantities, the irreducible linear 

quantities may appear as elements of the set more than once. For instance, the 

representational sets I1 and I2 of irreducible linear quantities corresponding to the x + 1 by 

2x + 3 polynomial rectangle can be defined as I1 = {x, 1} and I2 = {x, x, 1, 1, 1}. 

● Representational Set of Combined Linear Quantities (RSCLQ): A representational 

set of combined linear quantities (RSCLQ) is the set of combined irreducible linear 

quantities (RSCLQ) such as 5 (5 combined linear ones), 3x (3 combined linear “x”s), 2y 

(2 combined linear “y”s), etc. in the context of different size color tiles. In the context of 

the x + 1 by 2x + 3 polynomial rectangle above, for instance, the representational sets C1 

and C2 of combined linear quantities can be defined as C1 = {x, 1} and C2 = {2x, 3}. 

● Representational Cartesian Product (RCP): The (ordinary) Cartesian product of two 

sets A and B is the set of all ordered pairs in which the first component is taken from the 

first set and the second component is taken from the second set. Representational 

Cartesian Product (RCP) is therefore the ordinary Cartesian product defined on 

representational sets RSILQ and RSCLQ. For the example above, Nicole and Sarah's 

answers can be modeled as follows. 



 205

• RCP defined on RSILQs = RCP RSILQ = I1 × I2 = {x, 1} × {x, x, 1, 1, 1} = {(x, x), 

(x, x), (x, 1), (x, 1), (x, 1), (1, x), (1, x), (1, 1), (1, 1), (1, 1)}. 

• RCP defined on RSCLQs = RCP RSCLQ = C1 × C2 = {x, 1} × {2x, 3} = {(x, 2x), (x, 

3), (1, 2x), (1, 3)}. 

With the introduction of this new terminology on RSILQ, RSCLQ, and RCP based on 

Nicole and Sarah’s concepts–in–action; a more robust definition of Mapping Structures 

will be given in the next section on Factorization of Polynomials. 

 Brad's lack of thinking multiplicatively and lack of operating on the RSILQ, 

RSCLQ, RCP levels in the process of constructing the polynomial rectangle can be 

explained by his filling in the puzzle strategy. Rob and John, too, made their rectangles 

using the same strategy. However, Rob later referred to term wise multiplication based on 

the complete polynomial rectangle with dimension tiles placed around, as opposed to 

John who failed to verbally describe the multiplicative RUC but yet succeeded in 

providing (almost) multiplicative type written answers for the “boxes of the same color as 

a product” column on the activity sheet. Brad's verbal description of his filling in the 

puzzle strategy in his construction of the x + 1 by 2y + 3 (next task below) was very 

similar – almost identical – to John's construction of x + 1 by 2x + 3 (Protocol 4.65). Brad 

first placed the dimension tiles on the multiplication mat (Figure 4.78) and thought out 

loud: “Well... I am just trying to figure out which figures go in here... I am just taking 

these [the two big green rectangles] 'cuz they fit in here.” (Figure 4.79) 
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Figure 4.78. Algebra tiles representing dimensions “1 + x” and “2y + 3.” 

 

 

Figure 4.79. Algebra tiles filled in the puzzle. 

 

 In other words, similar to what he did above with the x + 1 by 2x + 3 rectangle, 

this time Brad placed two big green rectangles each standing for “xy” at the top left 

corner (Compare with Figure 4.69), which is a strong indication that he was not using 

term wise multiplication – because if he was, then he should have first placed two blue 

(areal) bars right below the two (linear) blue bars resulting from the multiplication of 

linear 1 by linear 2y. The table below summarizes the phrases used by Brad, John, and 

Rob indicating filling in the puzzle strategy. 
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Table 4.27  

Phrases Supporting Filling in the Puzzle Strategy 

Students Phrases 

Brad Well... I am just trying to figure out which figures go in here... I am just taking these [the two 
big green rectangle] 'cuz they fit in here. 

Rob Any chance of fitting this [the green tile] there? 

John I am fitting... I am just trying to fill in the puzzle I guess. So... I just filled them in... 

 

 Brad's first row seemed to “fit” well; however, the second row did not quite fit 

well (Figure 4.79). This created a perturbation for Brad, and he began to use (almost) 

term–wise multiplication. He changed his figure accordingly and concluded “That fills it 

in” (Figure 4.80). Note that the rows still need be interchanged to correspond to the linear 

units on the edges of the mat. 

 

 

Figure 4.80. Brad's “revised” rectangle based on term wise multiplication. 

 

 It seems that something happened as Brad started to act on and think about the 

algebra tiles and the meanings projected onto them. “To know an object is to act on it.” 

(Piaget, 1972, p. 8) While doing “term wise multiplication,” he pointed to both the 
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dimension tiles and the resulting areal tile. I infer that his learning resulted from his 

actions, combined with a desire for reasoning quantitatively. Bert van Oers defined action 

as “an attempt to change some object from its initial form into another form.” (1996, 

p.97) I infer that in Brad's interpretation, the dimension tiles transformed into something 

more meaningful from some sort of organizers. They were no longer purposelessly 

standing color figures anymore. I infer that the “action” was Brad's willingness to project 

some meanings onto the “previously useless” dimension tiles.  

 In John's work with the x + 1 by 2y + 3 rectangle, something similar happened: He 

produced a polynomial rectangle with blue squares, blue bars, and black squares only 

(i.e., the polynomial rectangle was independent of x). Brad's first row was misplaced, and 

his second row was based on random fitting (Figure 4.79). John first placed the 

dimension tiles on the multiplication mat. Filling in the puzzle strategy appeared in that 

John started with blue squares instead of green rectangles, which indicated that what he 

was doing was definitely not term wise multiplication (Figure 4.81). 

 

 

Figure 4.81. John's fitted “y squared” areal tiles. 
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Below the two blue squares, he placed 3 blue bars (Figure 4.82). 

 

 

Figure 4.82. John's fitted “y” areal tiles below. 

 

Right next to the blue square at the top, he placed 3 blue bars (Figure 4.83). 

 

 

Figure 4.83. John's fitted “y” areal tiles on the second column. 
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Figure 4.83 stands as visual evidence that John was not using multiplication. In 

fact, John said “I am making the rectangle by parts.” Therefore, John's statement 

validates my previous hypothesis that the “Filling in the Puzzle” strategy seems to be 

related to an “area as a sum” strategy, namely calling for an additive nature. This 

contrasts with the “Term Wise Multiplication of Irreducible Units” strategy, which 

naturally defines the irreducible areal quantities (IAQ) as products, namely of 

multiplicative nature (See Tables 4.25 & 4.26 above and the paragraph that follows). 

John was aware that there was something wrong. He decided to revise his figure 

by removing the three blue bars in the second column and suggested replacing them with 

a blue square. The following protocol illustrates this point. 

 

Protocol 4.67: John's struggle with the puzzle. 

J: These two [blue squares] fit here but this one [he locates another blue 

square among the tiles and tries to fit it right next to the blue square at the 

top] is too long for here [Figure 4.84]. Likewise can't put another one of 

these [he then removes the same blue square and tries to fit it right below 

the blue squares on the first column] here [Figure 4.85] it's too long... So... 

I'll use as many of these [blue squares] as I can to simplify... 
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Figure 4.84. John's attempt to fit the “y squared” areal tile. 

 

 

Figure 4.85. John's attempt to fit the “y squared” areal tile below. 

 

He did not like his last attempts and shifted back to his previous figure (Figure 4.83). He 

then went on with the “Filling in the puzzle strategy” again by placing three more blue 

bars right below the three blue bars at the top (Figure 4.86). 
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Figure 4.86. John fitted three more “y” areal tiles in the second column. 

 

Finally, he placed 9 black squares right below the previous three blue bars hence 

completing his puzzle (Figure 4.87). 

 

 

Figure 4.87. John's complete rectangle made of blue and black tiles only. 
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John disregarded the term–wise multiplication of the irreducible dimension tiles, 

which is why he obtained a different rectangle. The area of the correct rectangle is 2xy + 

3x + 2y + 3 whereas John's rectangle had an area of 2y2 + 9y + 9. I then asked him to 

write his answers in the table. Although he wrote (x + 1)(2y + 3) for the “Area of the 

polynomial rectangle as a product” on the activity sheet, the dimensions of his rectangle 

actually were y + 3 and 2y + 3. And in fact, John relied on the dimensions of his rectangle 

when answering the “Area of the boxes of the same color as a product” column of the 

activity sheet. He also relied on the properties of his rectangle when answering all the 

columns except the “Area of the polynomial rectangle as a product” column on the 

activity sheet. I infer that there was some kind of a disconnect here, perhaps caused by his 

“Filling in the Puzzle” strategy. By “disconnect,” I mean John did not attend to the 

“irreducible linear units” of the dimensions. He rather saw the dimensions as some kind 

of “organizers” that traced the borders of his puzzle, which is the essence of this 

disconnect. 

 Even though his figures were lacking a multiplicative character, John's written 

answers for the “Area of the boxes of the same color as a product” column on the activity 

sheet were products of the corresponding linear quantities based on his rectangle with 

dimensions y + 3 by 2y + 3. His answers 2y · y, 3 · y, 3 · 2y, 3 · 3 can be modeled with a 

relational notation of ordered pairs (2y, y), (3, y), (3, 2y), (3, 3) of linear units, 

respectively. The following protocol demonstrates how John was able to refer to the 

dimensions y + 3 and 2y + 3 of his rectangle while totally disregarding the dimension 

tiles placed around representing x + 1 and 2y + 3. 
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Protocol 4.68: John's successful description of MRUC based on his rectangle. 

G: How about that... why is it 2y times y... and not 2 times y2? 

J: Because I am doing the areas of the smaller boxes [meaning, same–color–

box subunits] by length times width. 

G: You see that product as length times width? 

J: Yeah... If you take this rectangle, it would be y times 2y [moving his index 

finger along the dimensions of the 2y by y “same–color–box”] 

G: How about this... The same? [About his answer “3 · y” on the table] 

J: Yeah... [pointing to the dimensions of the 3 by y “same–color–box”] 

G: How about this 3 times 2y... The same? [About his answer “3 · 2y” on the 

table] 

J: Yes. 

 

This exchange is a reminiscent of Rob, who also disregarded the dimension tiles placed 

around the polynomial rectangle with dimensions x + 1 by 2x + 3 in the process of 

constructing the polynomial rectangle. In the process of obtaining their polynomial 

rectangles, although both John and Rob relied on the filling in the puzzle strategy while 

disregarding the existence of the dimension tiles placed around, they were both 

successful in projecting a multiplicative meaning onto the resulting areal tiles. John was 

able to think in a multiplicative way in his descriptions of the areas of the boxes of the 

same color, as opposed to Rob who revealed a multiplicative RUC only for the 

irreducible areal tiles. After the completion of the polynomial rectangle, John was able to 

see the areas of the boxes as products based on the areal tiles only without reference to 
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the dimension tiles, as opposed to Rob who could do both with the irreducible areal tiles. 

He emphasized the arealness of these irreducible quantities with reference to the 

dimension tiles placed around.  

Nicole and Sarah were successful in projecting the multiplicative meanings onto 

both irreducible areal tiles and boxes of the same color both in the process of and after 

the completion of their polynomial rectangles with reference to the dimension tiles placed 

around and in their ability to operate on the RSILQ, RSCLQ, RCP levels. In fact, upon 

my instruction “Make an x + 1 by 2y + 3 rectangle using the algebra tiles,” Nicole and 

Sarah used term wise multiplication of irreducible linear quantities. These two students 

spoke aloud while placing each areal tile resulting from term wise multiplication, which 

indicates that an RSILQ was available to them. Nicole and Sarah's induction of RCP on 

the two RSILQs via sense–making resulted in meaningfully organized polynomial 

rectangles (Figure 4.88). 

 

 

Figure 4.88. Nicole and Sarah's complete rectangle via RCP defined on RSILQ. 
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Nicole and Sarah's written answers for the “area of the boxes of the same color as a 

product” column on the activity sheet were areas defined as the product of the 

corresponding combined linear quantities (CLQ) (i.e., multiplicative in nature). In other 

words, these students are able to operate on the (RCP defined on) RSCLQ levels as well. 

With relational notation, therefore, Nicole and Sarah's answers can be modeled as 

follows. 

• RCP defined on RSILQs = RCP RSILQ = I1 × I2 = {x, 1} × {y, y, 1, 1, 1} = {(x, y), 

(x, y), (x, 1), (x, 1), (x, 1), (1, y), (1, y), (1, 1), (1, 1), (1, 1)}. 

• RCP defined on RSCLQs = RCP RSCLQ = C1 × C2 = {x, 1} × {2y, 3} = {(x, 2y), (x, 

3), (1, 2y), (1, 3)}. 

 The table below illustrates students' written answers for the “area of the boxes of 

the same color as a product” column for the x + 1 by 2y + 3 polynomial rectangle and the 

nature of their answers. 

 

Table 4.28  

Areas of the Boxes of the Same Color as a Product for the  x + 1 by 2y + 3 Polynomial 

Rectangle 

Students Students' Answers The nature of their answer 

Brad 3 · x, 2 · y, 2 · xy, 3 · 1 Additive 

Nicole x · 2y, x · 3, 1 · 2y, 1 · 3 Multiplicative 

Sarah 2y · x,  3 · x, 1 · 2y, 1 · 3 Multiplicative 

Rob 2 · xy, 3 · x, 2 · y, 1 · 3 Additive 

John (Based on His Rectangle) 2y · y,  3 · y, 3 · 2y, 3 · 3 Multiplicative 
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 On the third and final task on the multiplication of polynomials 2x + y and x + 2y 

+ 1, all the students who previously used the filling in the puzzle strategy in the process 

of constructing the polynomial rectangle shifted to term wise multiplication of irreducible 

units. Brad did not say anything about fitting or filling. He did term wise multiplication 

of irreducible linear quantities (ILQ) carefully and placed the resulting irreducible areal 

quantities (IAQ) in their correct locations. He knew what he was doing and finished the 

whole rectangle in less than a minute (Figure 4.89). Rob's filling in the puzzle strategy 

evolved: Rob still used phrases “fitting” and “filling;” however, this time, his “filling in 

the puzzle” was based on the term wise multiplication of irreducible units, and he paid 

attention to dimension tiles. He said he already knew which one was going to “fit” where. 

Rob was “fitting” with reference to the dimension tiles. Brad and Rob's complete 

rectangles were identical (Figure 4.89). 

 

 

Figure 4.89. Brad's complete rectangle based on term wise multiplication. 

 

John first made his polynomial rectangle solely based on filling in the puzzle 

strategy; however at some point he gave up, similar to Brad in the previous activity. In 
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that sense, his thinking eventually evolved and led him to the RSILQ level. I include 

John's first attempt based on filling in the puzzle strategy for analysis purposes. 

 

Protocol 4.69: John's filling in the puzzle strategy & change of mind. 

J: First, I am going to put two x2 rectangles down because they fit here... I can 

see (Figure 4.90) ... And then next I am gonna put as many of these down 

as I can [he locates six blue squares among the tiles and tries to fit them 

right below the two purple squares. Figure 4.91] and it so just happens to 

fit [i.e., still working with the “filling the puzzle” strategy. But then 

suddenly he gives up this strategy] Well actually... it'd make more sense... 

[he first removes the six blue squares from the figure. He then locates four 

green rectangles among the tiles and places them right below the two 

purple squares. Figure 4.92] Put one of these [green rectangles] here since 

this is y times x... [Figure 4.93] And this will be y squared... and then y 

squared [Figure 4.94] And then x times 1 plus x times 1... y times 1... 

[places the areal tiles on the last row. Figure 4.95] 

 

 

Figure 4.90. John's “fitted” purple squares. 
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Figure 4.91. John's “fitted” blue squares. 

 

 

Figure 4.92. Turning point. 

 

 

Figure 4.93. Term wise multiplication of linear x by linear y. 
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Figure 4.94. Term wise multiplication of linear y by linear “y”s. 

 

 

Figure 4.95. John's completion of the last row via term wise multiplication. 

 

 At that “change of mind” turning point where he said “Put one of these [green 

rectangles] here since this is y times x,” John gave up the “filling in the puzzle” strategy 

and decided to go on with “multiplication of irreducible linear units” strategy. This was a 

crucial moment for me because John learned this by himself. I think he realized that the 

irreducible areal quantities (IAQ) somehow had to be a product, a result, of the 

irreducible linear quantities (ILQ). John was keeping track of the mathematical practices 

he experienced in the previous two tasks on the multiplication of polynomials. His 
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“actions” combined with his previous experience carried John to that “turning point.” 

John's learning occurred because he assumed the situation was supposed to "make sense" 

in terms of the relationship between the dimension tiles and the resulting areal tiles. In 

Bert van Oers' words, “the learning of mathematics as a meaningful activity refers both to 

the process of technically mastering mathematics as a historically developed activity and 

to the process of attaching personal meaning to the actions, methods, and results 

involved.” (1996, p.94)  

John's answers for the “Areas of the boxes of the same color as a product” were of 

multiplicative nature. Therefore, I can infer that both RSILQ and RSCLQ levels were 

available to John, and he was able to induce a RCP on these representational sets. With 

relational notation, therefore, John's verbal descriptions after the turning point and his 

written answers can be modeled via representational Cartesian products (RCP) as 

follows. 

• RCP defined on RSILQs = RCP RSILQ = I1 × I2 = {x, x, y} × {x, y, y, 1} = {(x, x), 

(x, y), (x, y), (x, 1), (x, x), (x, y), (x, y), (x, 1), (y, x), (y, y), (y, y), (y, 1)}. 

• RCP defined on RSCLQs = RCP RSCLQ = C1 × C2 = {2x, y} × {x, 2y, 1} = {(2x, x), 

(2x, 2y), (2x, 1), (y, x), (y, 2y), (y, 1)}. 

 Because John gave up on his filling in the puzzle strategy at the turning point, I 

wanted to test what he would do with the previous task (the x + 1 by 2y + 3 rectangle) for 

which he obtained a totally different y–dependent–only polynomial rectangle. He re–

worked that problem and came up with the correct rectangle. The following protocol 

illustrates his reference to term wise multiplication of irreducible linear dimension tiles.  
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Protocol 4.70: John is reworking the x + 1 by 2y + 3 rectangle (Figure 4.96). 

G: Why did you place the greens now? 

J: I placed the greens because I know the green is x times y [pointing to the 

linear x at the top and linear y on the side, respectively]... and this area 

right here [pointing to the green rectangle at the top] is x times y... as is 

this one [pointing to the green rectangle at the bottom] 

G: So... are you actually doing multiplication? 

J: Yeah... to find that specific spot [pointing to the areal tiles in his last figure] 

G: Which one makes more sense? This one? Or what you did previously? 

J: This one... 

 

 

Figure 4.96. John's x + 1 by 2y + 3 rectangle via term wise multiplication. 

 

John's statements corroborate that RSILQ levels were available to him and that he was 

able to operate on these RSILQs with a RCP by which he obtained irreducible areal tiles. 

John's language “to find that specific spot” validates my previous theories about the 



 223

multiplication operation behaving as a “mapping.” In other words, the ordered pair of 

irreducible linear units (x, y) from the dimensions were being mapped into the area of the 

rectangle as an irreducible areal unit: the xy “spot.” John's behavior can be modeled with 

reference to Mapping Structures. In fact, this is not something new for him. John was one 

the few students to make use of Mapping Structures in his work with the summation 

activities modeled with color cubes. 

 I end this subsection on Multiplicative RUC with a description of Nicole and 

Sarah's work on the multiplication of polynomials 2x + y and x + 2y + 1. Nicole, when 

placing the dimension tiles, followed the “x tile followed by the y tile followed by the 1 

tile” ordering. As was the case with all the previous problems concerning algebra tiles, 

she actually did each term wise multiplication carefully by pointing to the corresponding 

irreducible linear tiles, and placed the resulting irreducible areal tile accordingly. RSILQ 

levels were available to her and she was able to map the RCP defined on the RSILQs as 

in the following rectangle (Figure 4.97). 

 

 

Figure 4.97. Nicole's 2x + y by x + 2y + 1 rectangle via term wise multiplication. 
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Then we discussed the “area of the boxes of the same color as a product” column 

on the activity sheet. Her answers, once again, were areas defined as the product of two 

quantities, i.e., multiplicative in nature. This is in contrast to Rob and Brad's written 

answers for the same problem, which are additive in nature. Nicole was very clear in her 

descriptions of the RSILQs and RCP generated via the ordered pairs of elements from 

RSILQs. The following protocol illustrates this point. 

 

Protocol 4.71: Nicole's reference to RCP defined on RSCLQs. 

G: You are saying 2x times x [About Nicole's expression (2x) · (x), which she 

wrote on the table]. And why not 2 times x2? [Trying to challenge her] 

N: Because I just saw these as a pair together... [pointing to the linear 2x] 

same things you can group them together. So it's just A [pointing to the 

linear 2x at the top] times B [pointing to the linear x on the side]. Because 

when you look at this whole thing, this whole purple area [pointing to the 

2x by x “same−color−box”] as one area... so you look the length as one 

number, 2x, instead of 2 times x. 

G: So what is the difference between this and the other way [I am asking her 

to compare the expressions (2x) · (x) and (2) · (x2)] representationally? 

N: I did it [About her expression (2x) · (x), which she wrote on the table] in 

terms of the length times the width. Now it [About the expression (2) · (x2) 

via which I am trying to challenge her] would be... talking about... how 

many of these [pointing to the purple squares] you have. [inaudible] other 

case, length times width gives the area of the whole thing [pointing to the 
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2x by x “same−color−box”]. 

G: So, that's the difference? 

N: Yeah. 

G: Please do the same for this one... [pointing to her expression (2x) · (2y), 

which she wrote on the table] why not 4 times xy? 

N: Again I did this [pointing to the 2x by 2y “same−color−box”] as one area... 

I did it as length times width. Now this [about the expression 4 times xy I 

am trying to challenge her with] means I have 4 of them [meaning 4 green 

rectangles] and each one is an xy. 

 

Nicole showed a mathematically fruitful performance in creating a Representational 

Cartesian Product, in her comparison of “2x times x” vs. “2 times x2.” I did not have any 

contribution, nor intervention during her performance. The “pair” in Nicole's statement “I 

just saw these as a pair together” refers to the pair of linear “x”s in “2x” and not to the 

ordered pair (x, 2x) of linear quantities. In other words, at the initial stage of defining an 

RCP, she first identified the elements of the RSCLQs. Her later usage “So it's just A 

[pointing to the linear 2x at the top] times B [pointing to the linear x on the side]” 

signaled signaled the onset of a Representational Cartesian Product (RCP), another 

concept−(or definition−)in−action (Vergnaud, 1988). In this way, she established the 

existence of her concept−in−actiont: Nicole first picked an element, “A” from the first 

RSCLQ and then picked another element, “B” from the other RSCLQ. She then formed 

pairs (A, B) − another concept−in−action − of combined linear quantities (CLQ) by which 

she generated her RCP. In fact, what she referred to is an abstract definition of a 
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Representational Cartesian Product (RCP) as },|),{( 21 CBCABA ∈∈  where C1 = {2x, 

y}, C2 = {x, 2y, 1} with the set builder notation. A and B can be anything as long as they 

are coming from the first set C1 and the second set C2, respectively. Nicole did not 

describe the expressions (2) · (x2) and (4) · (xy) as representationally multiplicative, as 

opposed to Brad and Rob. Although (2) · (x2) and (4) · (xy) are representationally 

additive, as Nicole explains in Protocol 4.71 above, for Brad and Rob these expressions 

are of multiplicative nature. The algebraic symbols (2) · (x2) and (4) · (xy) can be deduced 

only within an additive context, according to Nicole and Sarah, representationally.  

 Like Nicole, Sarah used the “x tile followed by the y tile followed by the 1 tile” 

ordering when placing the dimension tiles. She then used component wise multiplication 

and placed the resulting areal tile accordingly (Figure 4.98). She thought aloud and 

pointed to the irreducible linear tiles at the top and on the side for each multiplication. 

She also said the name of the resulting areal tile, e.g., "this is x times x, this is x times y." 

The “multiplicative nature” of the “areal tiles” seems once again to be warranted by her 

statements in the following protocol. 

 

 

Figure 4.98. Sarah's 2x + y by x + 2y + 1 rectangle via term wise multiplication. 
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Protocol 4.72: Sarah's reference to RCP defined on RSILQs. 

S: This is [pointing to and placing the areal x squared tile] x [pointing to the 

linear x tile on the side] times x [pointing to the linear x tile at the top]. 

This one is also x times x [in a similar manner]. This one is x times y 

[pointing to and placing the green tile representing the areal unit xy]. And 

x times y [in a similar manner]. 

G: Where is the x times y? 

S: y [pointing to the linear y tile at the top] and x [pointing to the linear x tile 

on the side]. And x times y [in a similar manner]. And x times y [in a 

similar manner]. And this is x times y [in a similar manner]. And then this 

is y [pointing to the linear y tile at the top] times y [pointing to the linear y 

tile on the side]. And y times y [in a similar manner]. This is x [pointing to 

the linear x tile on the side] times 1 [pointing to the linear 1 at the top]. 

And x times 1 [in a similar manner]. And y [pointing to the linear y tile on 

the side] times 1 [pointing to the linear 1 at the top]. 

 

 She did not say “x squared,” nor “y squared.” She rather said “this is x times x,” 

“and then this is y times y,” i.e., multiplicative in nature. Her language “y and x” is also 

indicative of an ordered pair (y, x) of linear units. Like Nicole, therefore, RSILQ levels 

were available to Sarah, and she was able to define a RCP on these representational sets. 

With relational notation, therefore, Sarah's verbal descriptions can be modeled via a 

representational Cartesian product (RCP) defined on RSILQs as follows. 

• RCP defined on RSILQs = RCP RSILQ = I1 × I2 = {x, x, y} × {x, y, y, 1} = {(x, x), 
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(x, y), (x, y), (x, 1), (x, x), (x, y), (x, y), (x, 1), (y, x), (y, y), (y, y), (y, 1)}. 

 I then asked her to outline the boxes of the same color with her finger. The 

multiplicative nature of the areas of these “boxes” was prevalent, as reflected in the 

protocol below. 

 

Protocol 4.73: Sarah's reference to RCP defined on RSCLQs. 

S: This one is 2x [pointing to the linear 2x on the side] times x [pointing to the 

linear x on the top]. This one is 2y times 2x [pointing to the corresponding 

linear tiles in a similar manner]. This one is 2x times 1 [pointing to the 

corresponding linear tiles in a similar manner]. This one is x times y 

[pointing to the corresponding linear tiles in a similar manner]. This would 

be y times 2y [pointing to the corresponding linear tiles in a similar 

manner]. And this would be y times 1 [pointing to the corresponding linear 

tiles in a similar manner]. 

G: So the product... each time you were doing the same thing... tell me more 

about that... I just want to make sure that I understand that... 

S: I was using the area as a length times width where... this is a length or... 

and this would be the width... and basing it of like that... otherwise I could 

have added the insides [pointing to the areal tiles]... the way I did it was 

length times width.  

 

In other words, Sarah was aware that what she was doing was term wise multiplication of 

the combined linear quantities (CLQ) and not addition. Her statement “otherwise I could 
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have added the insides” combined with her gestures indicate that there are only two 

possibilities. The areas of the “same−color−boxes” could be modeled either via 

multiplication, or addition, representationally. But since she was asked about the areas of 

these boxes as products, the other option, namely additive RUC is irrelevant as she 

responded “the way I did it was length times width.” This is in contrast to Brad and Rob's 

written answers and verbal descriptions of these “boxes” indicating an additive nature. 

Like Nicole, therefore, RSCLQ levels were available to Sarah, and she was able to define 

a RCP on these representational sets. With relational notation, therefore, Sarah's verbal 

descriptions can be modeled via a representational Cartesian product (RCP) defined on 

RSCLQs as follows. 

• RCP defined on RSCLQs = RCP RSCLQ = C1 × C2 = {2x, y} × {x, 2y, 1} = {(2x, x), 

(2x, 2y), (2x, 1), (y, x), (y, 2y), (y, 1)}. 

 The table below illustrates students' written answers for the “area of the boxes of 

the same color as a product” column for the 2x + y by x + 2y + 1 polynomial rectangle 

and the nature of their answers. 

 

Table 4.29  

Areas of the Boxes of the Same Color as a Product for the 2x + y by x + 2y + 1 rectangle 

Students Students' Answers The nature of their answer 

Brad 2 · x2, 5 · xy, 2 · y2, 2 · x, 1 · y Additive 

Nicole 2x · x, y · x, 2x · 2y, y · 2y, 2x · 1, y · 1 Multiplicative 

Sarah 2x · x, 2y · 2x, 2x · 1, x · y, y · 2y, y · 1 Multiplicative 

Rob 2 · x2, 5 · xy, 2 · y2, 2 · x, 1 · y Additive 

John 2x · x, 2x · 2y, 2x · 1, y · x, y · 2y, y · 1 Multiplicative 
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4.5.2. Additive Representational Unit Coordination (ARUC) 

 ARUC types arising from the data are essentially derived from two main 

components: 1) Students' written expressions, 2) Hand gestures combined with verbal 

descriptions in the process of constructing the rectangle representing the multiplication of 

the polynomials. Once again, as was the case for the activities involving color cubes, I 

will categorize ARUC types into two main categories: 1) Addends (Areal subunits) 

describing the polynomial rectangle unit, 2) Addends (Areal sub–subunits) describing the 

areal subunits. To be more specific, the area of the polynomial rectangle itself can be 

thought of as the biggest areal unit composed of areal sub–units. Similarly, each areal 

sub–unit can be decomposed into areal sub–subunits. Since the areal subunits serve as a 

bridge in between the biggest areal unit and the areal sub–subunits, I start the discussion 

on ARUC types by defining these areal subunits. 

• Boxes of the Same Color Type Addends (Subunits): Also called 

Same−Color−Box Areal Quantities (SCBAQ), these are rectangular subregions of 

the same color within the polynomial rectangle itself. Though of multiplicative 

nature, these areal subunits are prone to be interpreted as of pseudo–multiplicative 

type (See the next subsection). The rectangularity is the essence of these 

“same−color−boxes.” These are rectangles, not L–shapes or hexagons; in other 

words, they are multiplicative in nature. For instance, in Sarah's x + 1 by 2x + 3 

polynomial rectangle (Figure 4.77), there are four “same−color−boxes:” First, the 

x by 2x purple box; second, the x by 3 purple box; third, the 1 by 2x purple box; 

and fourth, the 1 by 3 black box. As is the case for all ARUC type addends, the 

sum of the “same−color−box” addends (subunits) equals the area of the 
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polynomial rectangle under consideration. One can use the following relational 

notations of ordered n–tuples of “same−color−box” type addends to generate the 

corresponding polynomial rectangle: 

 The quadruple [2x2, 3x, 2x, 3] generating the x + 1 by 2x + 3 

polynomial rectangle (Figure 4.77). 

 The quadruple [2xy, 3x, 2y, 3] generating the x + 1 by 2y + 3 

polynomial rectangle (Figure 4.88). 

 The hextuple [2x2, 4xy, 2x, yx, 2y2, y] generating the 2x + y by x + 

2y + 1 polynomial rectangle (Figure 4.98). 

• Like Areal Tiles Combined Type Addends (Subunits): Also called Combined 

Areal Quantities (CAQ), these are not necessarily closed subregions of the same 

color within the polynomial rectangle itself. Though of additive nature, these areal 

subunits are prone to cause confusion and to be mistaken for the Boxes of the 

Same Color Type Addends. For instance, when they were asked about the “boxes 

of the same color as a product,” Brad and Rob produced Like Areal Tiles 

Combined Type Addends instead of Boxes of the Same Color Type Addends at 

least once in each task (See the next subsection). There is no rectangularity 

requirement, nor closed figure condition. Representationally speaking, 

disconnected areal subunits can be added together to form one Like Areal Tiles 

Combined Type Addend as well. Once again, with reference to Sarah's figures, 

these addends can be observed to exist as follows: 

 In the x + 1 by 2x + 3 polynomial rectangle (Figure 4.77), there are 

three Like Areal Tiles Combined Type Addends: First, the purple 
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subunit with an area of 2x2; second, the combined disconnected 

purple subunits with an area of 5x; and third, the black subunit 

with an area of 3. With the relational notation, the quadruple [2x2, 

5x, 3] generates the x + 1 by 2x + 3 polynomial rectangle. 

 In the x + 1 by 2y + 3 polynomial rectangle (Figure 4.88), there are 

four Like Areal Tiles Combined Type Addends: First, the green 

subunit with an area of 2xy; second, the purple subunit with an area 

of 3x; third, the blue subunit with an area of 2y; and fourth, the 

black subunit with an area of 3. With the relational notation, the 

quadruple [2xy, 3x, 2y, 3] generates the x + 1 by 2y + 3 polynomial 

rectangle [Note: One gets the impression that this coincides with 

the Boxes of the Same Color Type Addends; however, the 

difference lies in the multiplicative versus additive interpretation].  

 In the 2x + y by x + 2y + 1 polynomial rectangle (Figure 4.98), 

there are five Like Areal Tiles Combined Type Addends: First, the 

purple subunit with an area of 2x2; second, the combined 

disconnected green subunits with an area of 5xy; third, the purple 

subunit with an area of 2x; fourth, the blue subunit with an area of 

y; fifth, the blue subunit with an area of 2y2. Once again, as is the 

case for all ARUC type addends, the sum of the Like Areal Tiles 

Combined Addends (subunits) equals the area of the polynomial 

rectangle under consideration. With the relational notation, the 

quintuple [2x2, 5xy, 2x, 2y2, y] generates the 2x + y by x + 2y + 1 
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polynomial rectangle. 

 When decomposing each areal subunit into areal sub–subunits, all interview 

students preferred the Irreducible Addends Type ARUC, which I was expecting. 

• Irreducible Addends Type ARUC (Sub–subunits): These are the smallest 

possible areal quantities (sub–subunits) that generate either areal subunits 

described above. For instance, each one of the “boxes of the same color” type 

addends in the hextuple [2x2, 4xy, 2x, yx, 2y2, y] can be decomposed into 

irreducible addends as follows (Figure 4.98): 

 The ordered pair [x2, x2] of irreducible areal sub–subunits generating the 

[2x2] purple box. 

 The quadruple [xy, xy, xy, xy] of irreducible areal sub–subunits generating 

the [4xy] green box. 

 The ordered pair [x, x] of irreducible areal sub–subunits generating the 

[2x] purple box. 

 The areal singleton [yx]. 

 The ordered pair [y2, y2] of irreducible areal sub–subunits generating the 

[2y2] blue box. 

 The areal singleton [y]. 

 As another example, each one of the “Like Areal Tiles Combined” type addends 

in the quintuple [2x2, 5xy, 2x, 2y2, y] can be decomposed into irreducible addends as 

follows (Figure 4.98): 

 The ordered pair [x2, x2] of irreducible areal sub–subunits generating the 

[2x2] purple subunit. 
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 The quintuple [xy, xy, xy, xy, xy] of irreducible areal sub–subunits 

generating the green [5xy] combined disconnected subunits. 

 The ordered pair [x, x] of irreducible areal sub–subunits generating the 

[2x] purple subunit. 

 The ordered pair [y2, y2] of irreducible areal sub–subunits generating the 

[2y2] blue subunit. 

 The singleton [y]. 

 The table below summarizes the ARUC types used by the interview students in 

the multiplication of polynomials activities. 

 

Table 4.30  

ARUC Types Used by Interview Students 

Students Subunits Generating the Polynomial Rectangle Sub–Subunits Generating the Subunits 

Brad Like Areal Tiles Combined Type Addends Irreducible Addends 
Nicole Boxes of the Same Color Type Addends Irreducible Addends 
Rob Like Areal Tiles Combined Type Addends Irreducible Addends 

Sarah Boxes of the Same Color Type Addends Irreducible Addends 
John Boxes of the Same Color Type Addends Irreducible Addends 

 

 

4.5.3. Pseudo – Multiplicative Representational Unit Coordination (PMRUC) 

 The name I chose for this RUC type may seem to be misleading at first. One 

could ask “Why Pseudo–Multiplicative and not Pseudo–Additive?” The reason behind 

this choice is the following. I asked the interview students their understanding and 

interpretation of the phrase “Area of the Boxes of the Same Color as a Product.” If one 

solely focuses on the “same color,” then one may end up providing multiple answers for 
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this phrase. However, the key aspect of my question was not only the “Same Color” part 

but also the phrase “As a Product.” In that sense, students had to pay attention to this 

whole phrase and to what it would mean representationally, based on the figures they 

were generating. Brad and Rob interpreted this phrase as referring to “Like Areal Tiles 

Combined Type Addends.” But then this is something hard to reconcile with the “As a 

Product” part of the instruction, because not all “Like Areal Tiles Combined Type 

Addends” can be expressed as products. In other words, not all “Like Areal Tiles 

Combined Type Addends” are of multiplicative nature. Besides, Brad and Rob's answers 

were of additive nature, although the initial instruction “area as a product” asked them to 

think in a multiplicative way. This dilemma necessitated the existence of a new RUC 

type in between additive and multiplicative, not quite additive nor quite multiplicative, 

totally based on students' (mis)interpretation, which I named Pseudo–Multiplicative type 

RUC (PMRUC)10. 

 Students' answers for the “Area of the boxes of the same color as a product” 

instruction can be classified into two main categories (See Tables 4.26, 4.28, and 4.29 

above): Multiplicative (Nicole, Sarah, John) and Additive (Brad, Rob). 

Representationally speaking, I define Brad and Rob's answers “3 · x, 2 · y, 2 · xy, 3 · 1” in 

Table 4.28, for instance, as pseudo–products, rather than products because the first term 

of each “pseudo–product” is a coefficient serving as a counting number indicating how 

many there are of each irreducible areal quantity (IAQ). Though written as a “product,” 

Brad and Rob's expressions are of additive nature. The additive nature of these answers 

                                                 
10 PMRUC arises to be the main issue in the present study. In another study dealing with 8th grade students’ 
understanding of polynomial multiplication modeled by algebra tiles, students had a problem interpreting 
the missing square at the most left corner where the dimension tiles meet (Caglayan & Olive, manuscript in 
preparation). 
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becomes apparent via the relational notation of ordered triples and ordered pairs [x, x, x], 

[y, y], [xy, xy], [1, 1, 1] of irreducible areal quantities (IAQ). The “3” in Brad and Rob's 

expression “3 · x” is a unit–less constant which can be thought of as the cardinality of the 

set of the ordered triple [x, x, x]. 

 Let A be any set. The symbol  denotes the number of elements, i.e., the 

cardinality of the set A. In particular, in the context of my dissertation, the function card 

acts on representational sets of areal quantities. For the ordered triples and ordered pairs 

given by Brad and Rob for instance, one can write the following: card ( [x, x, x] ) = 3, 

card ( [y, y] ) = 2, card ( [xy, xy] ) = 2, card ( [1, 1, 1] ) = 3. In other words, Rob and 

Brad's pseudo–products corresponding to the areas of the “boxes of the same color” were 

guided by cardinal numbers defined by the cardinality function. The table below 

summarizes cardinalities and relational notation describing Brad and Rob's pseudo–

products for the three tasks on the multiplication of polynomials. 

)(Acard

 

Table 4.31  

Pseudo–Products and Cardinalities Based on Brad and Rob's Answers for the “Area of 

the Boxes of the Same Color as a Product” Instruction 

Pseudo–Products Relational Notation Cardinalities 

2·x2 

5·x 
3·1 

[x2, x2] 
[x, x, x, x, x] 

[1, 1, 1] 

card ( [x2, x2] ) = 2 
card ( [x, x, x, x, x] ) = 5 

card ( [1, 1, 1] ) = 3 
2·xy 
3·x 
2·y 
3·1 

[xy, xy] 
[x, x, x] 
[y, y] 

[1, 1, 1] 

card ( [xy, xy] ) = 2 
card ( [x, x, x] ) = 3 
card ( [y, y] ) = 2 

card ( [1, 1, 1] ) = 3 
2·x2 
5·xy 
2·y2 

2·x 
1·y 

[x2, x2] 
[xy, xy, xy, xy, xy] 

[y2, y2] 
[x, x] 
[y] 

card ( [x2, x2] ) = 2 
card ( [xy, xy, xy, xy, xy] ) = 5 

card ( [y2, y2] ) = 2 
card ( [x, x] ) = 2 
card ( [y] ) = 1 
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 Note that the “cardinality function” card maps a representational set of areal 

quantities into its cardinal number. Each ordered n–tuple (based on Brad and Rob's 

pseudo–products) in Table 4.31 can be thought of as disjoint subsets of a particular 

Representational Set of Irreducible Areal Quantities (RSIAQ).   

• Representational Set of Irreducible Areal Quantities (RSIAQ): A 

representational set of irreducible areal quantities (RSIAQ) is the set of 

irreducible areal quantities (IAQ) such as 1, x, y, x2, y2, xy in the context of 

different size color tiles (algebra tiles). The difference between a representational 

set of irreducible areal quantities (RSIAQ) and an ordinary set is in that in a 

representational set of irreducible areal quantities, the irreducible areal quantities 

may appear as an element of the set more than once. For instance, for the x + 1 by 

2x + 3 polynomial rectangle, Brad and Rob's RSIAQ can be written as the disjoint 

union of the three representational subsets of RSIAQ as follows: 

 RSIAQ x + 1 by 2x + 3 = {x2, x2} ∪ {x, x, x, x, x} ∪ {1, 1, 1}. 

Brad and Rob's RSIAQs for the other two polynomial rectangles can be written as 

disjoint unions as follows: 

 RSIAQ x + 1 by 2y + 3 = {xy, xy} ∪ {x, x, x} ∪ {y, y} ∪ {1, 1, 1}. 

 RSIAQ 2x + y by x + 2y + 1 = {x2, x2} ∪ {xy, xy, xy, xy, xy} ∪ {y2, y2} ∪ {x, x} 

∪ {1}. 

 As for Nicole, Sarah, and John's answers, one can imitate a table similar to Table 

4.31 as follows. 
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Table 4.32  

Products and Cardinalities Based on Nicole, Sarah, and John's Answers for the “Area of 

the Boxes of the Same Color as a Product” Instruction 

Products Relational Notation Cardinalities 

2x · x 
3 · x 

1 · 2x 
3 · 1 

(2x, x) 
(3, x) 
(1, 2x) 
(3, 1) 

card ( (2x, x) ) = 1 
card ( (3, x) ) = 1 
card ( (1, 2x) ) = 1 
card ( (3, 1) ) = 1 

x · 2y 
x · 3 

1 · 2y 
1 · 3 

(x, 2y) 
(x, 3) 
(1, 2y) 
(1, 3) 

card ( (x, 2y) ) = 1 
card ( (x, 3) ) = 1 
card ( (1, 2y) ) = 1 
card ( (1, 3) ) = 1 

2x · x 
2y · 2x 
2x · 1 
x · y 
y · 2y 
y · 1 

(2x, x) 
(2y, 2x) 
(2x, 1) 
(x, y) 

(y, 2y) 
(y, 1) 

card ( (2x, x) ) = 1 
card ( (2y, 2x) ) = 1 
card ( (2x, 1) ) = 1 
card ( (x, y) ) = 1 

card ( (y, 2y) ) = 1 
card ( (y, 1) ) = 1 

 

 Compare the third columns of Table 4.31 and Table 4.32. The cardinality function 

is well–defined only when there is a representational set of areal quantities with at least 

one element to act on. In fact, in Nicole, Sarah, and John's cases, all such representational 

sets are areal–singletons in the context of the “Area of the Boxes of the Same Color as a 

Product.” This makes sense because this is how Nicole, Sarah, and John define each 

“same−color−box” via a “single” product, as opposed to Brad and Rob who failed to 

provide “single” products. Nicole, Sarah, and John's “single” products (2x, x), (3, x), (1, 

2x), (3, 1); (x, 2y), (x, 3), (1, 2y), (1, 3); (2x, x), (2y, 2x), (2x, 1), (x, y), (y, 2y), (y, 1) each 

define a “single” box of the same color, namely a “single” areal quantity, i.e., an areal–

singleton. And in fact, it is because of this singularity that the card function maps each 

areal–singleton into the number “1.” Nicole, Sarah, and John's answers call for the 

definition of a new representational set, analogous to Brad and Rob's RSIAQ. 
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• Representational Set of Same–Color–Box Areal Quantities (RSSCBAQ): A 

representational set of same–color–box areal quantities (RSSCBAQ) is the set of 

same–color–box areal quantities defined by the “Area of the Boxes of the Same 

Color as a Product” of the polynomial rectangle resulting from the multiplication 

of polynomials. The difference between a RSSCBAQ and a RSIAQ is in that 

repetition of “elements” is not allowed in a RSSCBAQ. RSSCBAQ for each 

polynomial multiplication example above can be written uniquely as disjoint 

unions of areal–singletons as follows: 

 RSSCBAQ x + 1 by 2x + 3 = { (2x, x) } ∪ { (3, x) } ∪ { (1, 2x) } ∪ { (3, 1) }. 

 RSSCBAQ x + 1 by 2y + 3 = { (x, 2y) } ∪ { (x, 3) } ∪ { (1, 2y) } ∪ { (1, 3) }. 

 RSSCBAQ 2x + y by x + 2y + 1 = { (2x, x) } ∪ { (2y, 2x) } ∪ { (2x, 1) } ∪ { (x, 

y) } ∪ { (y, 2y) } ∪ { (y, 1) }. 

One could argue that the areal–singletons { (2y, 2x) } and { (x, y) } in the third 

RSSCBAQ are of the same color; so in fact repetition of elements is allowed in a 

RSSCBAQ. However, the areal–singletons { (2y, 2x) } and { (x, y) } are different 

“elements” because they define two distinct “same–color–box” products. Note that 

Nicole, Sarah and John constructed these “same–color–box” products via reference to 

different pairs of combined linear quantities (CLQ) as can be observed in the 

multiplicative nature of the relational notation of ordered pairs (2y, 2x) and (x, y) of 

combined linear quantities. 

 I complete this subsection with a table listing phrases used by Brad and Rob 

related to PMRUC in their verbal descriptions for the “Area of the Boxes of the Same 

Color as a Product” instruction; and Sarah's proof by contradiction invalidating PMRUC. 
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Table 4.33 

Brad and Rob's PMRUC Type Phrases 

Students Phrases Ordered n–
Tuples 

Brad 
xy plus xy... 

x plus x plus x... 
y plus y... 

1 plus 1 plus 1... 

[xy, xy] 
[x, x, x] 
[y, y] 

[1, 1, 1] 

Rob 
This is an xy [pointing to the green rectangle] thing... rectangle... and you 

have two of them... so 2 times xy” 
There is three of them [about his written expression “3 · x”] 

[xy, xy] 
 

[x, x, x] 
 

Protocol 4.74: Sarah's comparison of “2y · x” vs. “2 · yx” 

G: Why did you write 2y times x, and not, 2 times yx? [About her answer 2y · 

x on the “Area of the Boxes of the Same Color as a Product” column on 

the recording sheet] 

S: The same as before... side times side gives the area. This side is 2y 

[pointing to the linear unit 2y at the top], and this side is x [pointing to the 

linear unit x on the side]. But if I were basing it of the inside [pointing to 

the green rectangles] that would be xy plus xy... which would be the next 

question... or 2 times xy. 

G: OK so... What does the “2” in “2 times xy” refer to? 

S: Well this is one xy [pointing to the green rectangle] and because there's two 

of them... so it would be the quantity of... 

G: So... Are they different? I mean the 2y times x, and the 2 times yx? 

Representationally, are they different? 

S: Yes. 

G: Because of what you said? 
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S: Yeah. The way that I write it [she wrote (2y) · (x) on the table] would be 

this is all one [pointing and outlining the “green box” made of two green 

rectangles]. And if you were to do 2 times xy, you are looking at the two 

separate tiles [pointing to the green rectangles]. 

 

 Sarah was aware that the 2y by x “same−color−box” was an areal–singleton. In 

fact her statement “The way that I write it [she wrote (2y) · (x) on the table] would be this 

is all one” and her hand gestures pointing and outlining the “green box” made of two 

green rectangles indicate an areal–singleton of cardinality of 1. To be more specific, her 

language “this is all one” describes the subset { (x, 2y) } of RSSCBAQ x + 1 by 2y + 3 of 

singular character, namely the fact that card ( (x, 2y) ) equals 1. In other words, her last 

comment clearly shows the meaning of 2 times xy. For Sarah, “2 times xy” is “additive” 

in nature, i.e., she was aware that “2 times xy” is different from “2y times x” with the 

latter one being multiplicative in nature. She was also able to “see” the green “box” as the 

subset {xy, xy} of RSIAQx + 1 by 2y + 3. She was aware that the subset {xy, xy} is a 

representational set of irreducible areal quantities with cardinality 2. In summary, Sarah 

was able to interpret the green “box” in two different ways, relying on nothing but her 

interpretation, which is reminiscent of Gestalt Psychology Principle Figure and Ground. 

 Gestalt is a German word meaning a unified or meaningful whole. Gestalt 

psychologists are interested in discovering meanings projected in objects – figure – in 

relation to the surroundings – ground (Koffka, 1935; Köhler, 1947; Wertheimer, 1920). A 

classical example reflecting figure–ground visual perception is Rubin's Vase, devised by 

Danish psychologist Edgar Rubin who pioneered the seminal work on the figure–ground 
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principle (Rubin, 1915). According to the figure–ground principle, “the human perceptual 

system separates stimuli into either figure elements, or ground elements. Figure elements 

are the objects of focus, and ground elements compose an undifferentiated background.” 

(Lidwell, Holden, & Butler, 2003, p.80) 

 

 

Figure 4.99. Rubin's Vase11. 

 

 Rubin's Vase presents a dilemma as to which part of the “single picture” 

corresponds to the main figure and which part corresponds to the (back)ground (Figure 

4.99). Lidwell et al. (2003) outlined a set of visual cues that serve to separate figure from 

background: 

• The figure has a definite shape whereas the ground is shapeless. 

• The ground continues behind the figure. 

• The figure seems closer with a clear location in space, whereas the ground seems 

farther away and has no clear location in space. 

                                                 
11Rubin's Vase. Retrieved September 7, 2007 from 
www.inkycircus.com/photos/uncategorized/turn_your_head.jpg 
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• Elements in the lower regions of a design are more likely to be perceived as 

figures whereas elements in the upper regions are more likely to be perceived as 

ground (p.80). 

 Gestalt psychologists believe that we do not learn from the objects themselves but 

rather the relations between those objects (Wertheimer, 1982). In his book “Productive 

Thinking,” Max Wertheimer described a learning strategy developed by a five–year old 

girl who was asked how she would find the area of a parallelogram. The girl then cut the 

right triangle from one side and carried it over to the other side and came up with a 

rectangle whose area could easily be found. Max Wertheimer called this learning strategy 

based on the little girl's reasoning about the geometric figures in relation to each other 

productive thinking. In that sense, Sarah was able to think productively in her successful 

figure–to–ground transitions. Sarah's statement “Side times side gives the area... This side 

is 2y [pointing to the linear unit 2y at the top], and this side is x [pointing to the linear unit 

x on the side]” as an explanation for the “Area of the boxes of the same color as a 

product” indicates that Sarah was paying attention to the combined linear quantities 

(CLQ) and defining the area of the “same−color−box” multiplicatively as an ordered pair 

of these linear quantities. In other words, in the context guided by the instruction “Area 

of the boxes of the same color as a product,” the dimension tiles multiplicatively defining 

the “same−color−box” stand as the figure whereas the areal–singleton (the 

“same−color−box”) behaves as the (back)ground.  

 In an attempt to answer my question “Why did you write 2y times x, and not, 2 

times yx?” she provided a verbal proof by contradiction. She very quickly interchanged 

the functions of the dimension tiles and the “same−color−box.” In other words, figure 
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became ground, and ground became figure, as indicated by her statement “But if I were 

basing it of the inside [pointing to the green rectangles].” She started with the “inside” 

assumption, namely she focused on the “areal quantities,” which became figure by her 

assumption in an attempt to lead her to a contradiction. She then noted “that would be xy 

plus xy... which would be the next question... or 2 times xy.” That would be xy plus xy 

which is not a multiplication. What she needed was the area of the “same−color−box” as 

a product; in other words, her assumption led her to a contradiction. Sarah was able to see 

both the figure (the areal–singleton inside) and the ground (the dimension tiles outside) in 

relation to each other via her productive thinking. Nicole also can be described as 

thinking productively, for the same reason (cf. Protocol 4.71 above). In Rob and Brad's 

cases, on the other hand, the areal tiles were standing for figure, and there was no 

(back)ground. 

 

4.5.4. Linear vs. Areal Units 

 Brad reasoned quantitatively in distinguishing linear quantities from areal 

quantities in the context of polynomial multiplication. He paid close attention to the 

measurement units and referents (Schwartz, 1988) of same–valued linear and areal 

quantities to demonstrate that they stand for different quantities, as reflected in the 

protocol below: 

 

Protocol 4.75: Brad's reference to measurement units and referents of the 

same–valued quantities. 

G: Is this a y, this thing? [pointing to the blue tile (linear unit y) from the top 
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dimension. See Figure 4.80] 

B: Hm hm. 

G: How about this one? [pointing to the blue tile (areal unit y) enclosed in the 

rectangle] 

B: Yes. 

G: Are they the same? Or different? How are they the same? How are they 

different? 

B: They're the same... This is part of the width [about the blue tile standing for 

linear unit y] and this is part of the area [about the blue tile standing for 

areal unit y]. So... If I were to attach units I guess they would not be the 

same. If this was inches [about the blue tile standing for linear unit y], this 

would be inches squared [about the blue tile standing for areal unit y]. 'cuz 

what we are putting here [meaning inside the rectangle] is an area now, 

not just a line. 

G: Oh... tell me more about that. Do you see this [pointing to the dimension 

tiles at the top] just as a line? What do you mean? 

B: You are only looking at the edge [pointing to the y side of the blue 

dimension tile at the top]. 

G: So... How about this x [pointing to the purple tile (linear unit x) from the 

left dimension] and this x [pointing to the purple tile (areal unit x) inside 

the rectangle], are they the same or different? 

B: That's a line [pointing to the purple tile (linear unit x) from the left 

dimension] and that's an area [pointing to the purple tile (areal unit x) 
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inside the rectangle]. They are the same, they are both “x”s. But they are 

different as in the dimensional part. 

... 

G: Is this x the same as this x? [I am asking him to compare the linear unit x 

with the areal unit x. See Figure 4.89] 

B: They're different 'cuz this one is one dimensional and this one is two 

dimensional. When I look at this [the linear unit x], it's actually a line; and 

when I look at that [the areal unit x], it's actually a rectangle. [He is using 

the word “rectangle” for the areal unit x, and that was quite interesting]. 

G: And the “y”s? 

B: Same as the “x”s. 

 

 According to Brad, the two “y”s are the same in that they are both y and they are 

both part of “something.” In other words, they both represent something (Figure 4.80). 

However, at some point, Brad felt the need to attach measurement units to these same–

valued quantities. In fact, at that point, he realized that the two quantities have the same 

“value” but different units, which was enough for him to claim that they stand for 

different quantities. He referred to dimensionalities to distinguish between these same–

valued quantities. For Brad, the linear x and the linear y quantities were represented by 

the “edges” of the corresponding dimension tiles, whereas the areal counterparts were 

“actually rectangles.” Remember, neither in the process of constructing his polynomial 

rectangles nor in his descriptions of “Area of the boxes of the same color as a product” 

did Brad care about the dimension tiles. For the first time in the context of polynomial 
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multiplication by algebra tiles, the dimension tiles captured his attention, and Brad was 

successful in projecting a one–dimensional meaning to these quantities in comparison 

with their two–dimensional counterparts. I am therefore still doubtful whether the linear 

quantities on their own existed in Brad's world. Brad came up with a strategy he 

discovered on his own, in an effort to establish the one–dimensionality of the dimension 

tiles. 

 

Protocol 4.79: Brad's “standing–up positioned” linear quantities strategy and 

dimensionalistic mapping structures. 

G: How about this thing, is it a length or an area? [pointing to the green tiles 

(the areal units each representing xy). See Figure 4.80]. 

B: It's an area. 

G: How about this 1? [pointing to black square (the areal unit representing 1)]. 

I want you to compare this “1” [pointing to black square (the linear unit 

representing 1)] and this “1” [pointing to black square (the areal unit 

representing 1)]. Are they the same or different? 

B: This is a one–dimensional thing [He is now trying to place the dimension 

tile in a “standing–up position” in order to convince me that it really is a 

one–dimensional thing (i.e., a linear unit). Figure 4.100]. When you 

multiply them [meaning the linear unit 1 on the top and the linear unit 1 on 

the side] together, they become two dimensional [i.e., the areal unit 1]. 

G: Could you do the same demonstration for the y please? That was quite 

interesting, nobody did that before... 
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B: It'd be just a line across [Figure 4.101] you'd see that it's still a y, but it's a 

line. When you multiply it out here, it becomes flat, and then it's an area... 

'cuz it came from one dimensional to two dimensional. 

G: I never thought about that... great strategy! 

 

 

Figure 4.100. Brad's “standing–up positioned” linear 1. 

 

 

Figure 4.101. Brad's “standing–up positioned” linear 2y. 
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 Brad's statements “This is a one–dimensional thing,” “It'd be just a line across 

you'd see that it's still a y, but it's a line” while trying to place the dimension tiles in a 

“standing–up position” indicate that he emphasized the one–dimensional character of 

these things (i.e., linear quantities). In particular, his statement “you'd see that it's still a y, 

but it's a line” indicates that he was able to “read” through the picture and deduce that the 

“standing–up positioned” thing still stands for the “linear” quantity with referent “y.” He 

did not refer to the known measurement unit “inches” to do so, though. He rather worked 

at a more abstract level of dimensionalities. 

 Students often referred to dimensionalities in their sense making of linear and 

areal units as well as in the comparison of the same–valued linear and areal quantities. 

Brad and Rob were the only students to act on dimensionalities via Mapping Structures. 

It is interesting to note that Brad had not previously referred to Mapping Structures, but 

in his first experience with Mapping Structures he worked on the very abstract 

dimensionality level. Although in his first statement “When you multiply them [the linear 

unit 1 on the top and the linear unit 1 on the side] together, they become two 

dimensional” the abstract one–dimensionalities were not made explicit, he was very 

explicit in his statement “When you multiply it out here, it becomes flat, and then it's an 

area... 'cuz it came from one dimensional to two dimensional.” I assert that for a 

Dimensionalistic Mapping Structure of multiplicative type to exist, therefore, one needs 

to establish the following conditions:  

i. A pair of the abstract one–dimensionalities is mentioned. 

ii. The multiplication operation behaving as a mapping is acting on the ordered pair 

of these abstractified one–dimensionalities. 
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iii. The two–dimensionality resulting from the mapping is indicated. 

I ask the reader to compare Dimensionalistic Mapping Structures with the 

definitions of ordinary and 2–Fold Mapping Structures given in the fourth section of this 

chapter. A functional notation describing Brad's statements can be written as f: (one–

dimensional, one–dimensional) → two–dimensional, where, f stands for the 

multiplication operation behaving as a mapping. Dimensionalistic mapping f of 

multiplicative type maps the abstract pair of one–dimensionalities onto the abstract two–

dimensionality. Besides an association of units (at a more abstract level) to 

dimensionalities, Rob also made use of dimensionalistic mapping structures in his sense 

making of linear and areal quantities, as the following protocol illustrates. 

 

Protocol 4.77: Rob's association of dimensionalities to units and 

dimensionalistic mapping structures. 

G: So what is a unit for this term and this term? [pointing to the terms (x + 1) 

and (2x + 3) Rob wrote under the “Area of the polynomial rectangle as a 

product” column of the recording sheet for the x + 1 by 2x + 3 polynomial 

rectangle.] 

R: Just unit [writes “unit” under (x + 1)] 

G: And how about 2x + 3? 

R: [writes “unit” under (2x + 3)] and then unit times unit equals unit squared 

[writes “unit2” below] 

G: Why did you do that? 

R: 'cuz whenever you multiply these [pointing to x + 1 and 2x + 3] out you'll 
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get this [pointing to 2x2 + 5x + 3] that's square units... It'll be like... A 

line... That line [pointing to one of the edges of the rectangle] together 

with that line [pointing to the other edge of the rectangle] makes that 

[pointing to the rectangular region]. One dimensional times one 

dimensional makes two dimensional. 

… 

[Rob compares the linear y with the areal y in the 2x + y by x + 2y + 1 

polynomial rectangle. Figure 4.102] 

R: Like we said earlier, this is [about the areal y] the product of this edge 

[pointing to the edge of the linear y on the side] times this [pointing to the 

edge of the linear 1 at the top] one unit edge. 

G: Are you saying that it's a product? 

R: Product of two one−dimensional lines. 

G: Very clear! 

 

 

Figure 4.102. Rob's x + 2y + 1 by 2x + y polynomial rectangle. 
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 Rob's assignment of “unit” for the linear quantities x + 1 and 2x + 3 may be 

thought of as an indication of a level of abstraction. He then attached “unit2” to the 

product (x + 1)(2x + 3) in a consistent manner. Rob and Sarah were the only students to 

work on such a level of abstraction (cf. Protocol 4.80 for Sarah's reference to phrases 

“unit” and “unit2”). Rob then connected these abstract “units” to the dimensionalities. 

Moreover, MRUC is evident in his language “That line together with that line” which can 

be denoted as the relational notation of ordered pair (that line, that line) of linear 

quantities x + 1 and 2x + 3. “That” in Rob's phrase “makes that” corresponds to the areal 

quantity (x + 1)(2x + 3). In that sense, Rob constructed a Mapping Structure, which can 

be modeled with the functional notation f: (that line, that line) → that, where, f stands for 

the multiplication operation behaving as a mapping. Besides his Mapping Structure at an 

abstract level solely based on phrases “that line” and “that,” Rob also referred to a 

Dimensionalistic Mapping f of multiplicative type that maps the ordered pair (one–

dimensional, one–dimensional) onto “two–dimensional.” Rob's statement “One 

dimensional times one dimensional makes two dimensional” can be written as f: (one–

dimensional, one–dimensional) → two–dimensional, where, f once again stands for the 

multiplication operation behaving as a mapping. All these Mapping Structures arise very 

naturally and are based on relational type phrases in Rob and Brad's case above. 

 Rob was also very successful in distinguishing between same–valued linear and 

areal quantities as well as in providing an iteration strategy on his abstract “units” as 

illustrated in the following protocol. 

 

Protocol 4.78: Rob's iteration of abstract “units” (Figure 4.103) 
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G: For this problem, what is this and this? [pointing to the linear and areal 

“x”s respectively] 

R: This is x, areal x... [pointing to the areal x]. 1 by x... It's 1 times x area... so 

it would be... it has an area of x square units. 

G: What do you mean by x square units? 

R: Like... this is a square unit [pointing to a black square]... This is [pointing 

to the areal x] made up of x square units... whatever the number x is. 

G: How about this one? [pointing to the linear x] 

R: That's just length x. 

G: It's not x by 1? 

R: No... It's just length... we could draw it with a pencil if we needed to... 

um... there is no... you don't need this area value... you just need its 

length... you just need this edge [pointing to the edge of the linear x] as 

opposed to like... I can take these away... and this away... [taking the 

dimension tiles away from the rectangle] we know... we just need to know 

the length... so this would be x, 1, 2, 3... [pointing to the dimension tiles at 

the top] and this would be x, 1... [pointing to the dimension tiles on the 

side] 

R: This is 1 unit length [about the linear 1] and this is 1 square unit [about 

areal 1] just because of what it's being used for. 

G: How are they the same? How are they different? 

R: They are the same piece of plastic. This one has length [about the areal 1] 

but it also has width... This one [about linear 1] just has length. Length is 
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on this edge of it [pointing] When you put this length [pointing to the 

linear 1 at the top] and that length [pointing to the linear 1 on the side] 

together, it makes a two dimensional shape, which is this... length and 

width. 

 

 

Figure 4.103. Rob's x + 1 by 2x + 3 polynomial rectangle. 

 

 Rob's statement “it has an area of x square units” indicates that Rob's areal units 

are “square units” or “unit2” with the exponential notation. He used an iteration strategy 

to explain what “x square units” mean. He went back to the basics, attending to the 

irreducible areal unit from which he deduced that “the quantity x square units” is made of 

x “square units.” With reference to Schwartz’s (1988) referent–value–unit trinity, I infer 

that Rob's areal “measurement unit” is the abstract notion of “square units” and x stands 

for the value of his areal quantity. His referent, namely the name of his areal quantity is 

the “areal x.” The following table summarizes Rob's referent–value–unit trinity for the 

areal x. 
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Table 4.34 

Rob's Quantitative Reasoning (Referent–Value–Unit Trinity) 

Referent (Name) Value Measurement Unit 

Areal x x Square Units (unit2) 

 

 Rob's statement “When you put this length [pointing to the linear 1 at the top] and 

that length [pointing to the linear 1 on the side] together, it makes a two dimensional 

shape, which is this... length and width” calls for a Mapping Structure, which can be 

modeled with the functional notation f: (this length, that length) → two–dimensional 

shape, where, f  stands for the multiplication operation behaving as a mapping as before. 

 Rob often referred to his iteration strategy in the x + 1 times 2y + 3 polynomial 

multiplication problem in much more detail. 

 

Protocol 4.79: Rob's iteration strategy in more details. 

G: What do you mean by 2 times xy? 

R: This is an xy [pointing to the green rectangle. Figure 4.104] thing... 

rectangle... and you have two of them... so 2 times xy. 

G: How about the ones in here... are they areas or lengths? [pointing to Rob's 

expression “1 + 1 + 1” on the “area of the boxes of the same color as a 

sum” column on the recording sheet] 

R: They have one unit square of area. 

G: How about the “x”s in here? [pointing to Rob's expression “x + x” on the 

“area of the boxes of the same color as a sum” column on the recording 

sheet] 
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R: They have x unit square of area. 

G: How about this x in here? [pointing to “x” in Rob's expression “3 · x” on 

the “area of the boxes of the same color as a product” column on the 

recording sheet] 

R: This has x unit square of area but there is three of them. 

 

 

Figure 4.104. Rob's x + 1 by 2y + 3 polynomial rectangle. 

 

 Rob used an iteration strategy for representational quantities of PMRUC type (2 · 

xy and 3 · x) and ARUC type (1 + 1 + 1 and x + x), as indicated in the protocol above. 

The basic irreducible areal units he induced in his iteration are the areal–singletons [xy], 

[1], [x], and [x], generating the areal quantities 2 · xy, 1 + 1 + 1, x + x, and 3 · x, 

respectively. He explicitly stated his abstract areal unit “square units” for the areal–

singletons [1], [x], and [x] respectively. For Rob, 3 · x stands for “3 of them [areal “x”s],” 

i.e., additive in nature. Similarly, his statement “you have two of them... so 2 times xy” 

indicates the additive meaning Rob projects onto his written expression 2 · xy. Even 

though Rob was able to “map” the irreducible linear units onto the corresponding 

irreducible areal unit in the rectangular region, when he focused on the 

“same−color−boxes” (the areal units, which are not irreducible) his answers were of an 
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additive nature. I therefore deduce that Rob's iteration strategy played the main role in 

preventing him from deducing a multiplicative character (MRUC) for the “same–color–

boxes” and in leading him to favor additivity (PMRUC) whenever possible.  

Sarah also used the same abstract units “unit” and “unit2.” In fact, referring to the 

“linear units” column on the activity sheet, she said “these are units unless otherwise 

specified” and put “unit2” on the areal units column on the recording sheet. She even 

demonstrated that these are iterable; however, she did not assign an additive character to 

the “same–color–boxes” when she was asked to describe their area as a “product.” In 

other words, Sarah knew what she was doing as to when to use an iteration strategy 

(ARUC) or when to express the same–color–boxes as products (MRUC). 

 Sarah used unique language in her comparison of and distinction between linear 

and areal quantities, as reflected in the following protocol. 

 

Protocol 4.80: “Using As” & “Basing As” vs. “Would Be” & “Is.” 

G: Let's first look at this y [pointing to the linear y] and this y [pointing to the 

areal y]. Are they the same “y”s? (Figure 4.88) 

S: Yes. 

G: How about this [pointing to the linear x] x and this [pointing to the areal x] 

x? How are they the same? How are they different? 

S: They're the same. 

G: How about this [pointing to the linear 3] 3 and this [pointing to the areal 3] 

3? How are they the same? How are they different? 

S: They're the same. Are they not the same? Yeah... I guess we are basing this 
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as a length and this is the area [pointing to the linear and areal 3, 

respectively] 

G: Tell me more about that... what do you mean? 

S: We are using these [pointing to the dimension tiles at the top] as a length... 

and these [pointing to the dimension tiles on the side] as a length... and 

these [pointing to the areal tiles enclosed in the rectangle] would be the 

area inside here... 

G: This 2y [pointing to the linear 2y] and this 2y [pointing to the areal 2y]... 

are they the same or different? How are they the same? How are they 

different? 

S: I have been basing these [pointing to the dimension tiles at the top] outside 

tiles as my length... So this [pointing to the linear 2y at the top] I have 

been using as length and this [pointing to the areal 2y] is actually an area. 

This area [pointing to the areal 2y] has this particular [pointing to the 

linear 2y] length... or width... [inaudible] 

G: How about this [pointing to the linear x + 1] and this [pointing to the areal 

x + 1]? 

S: The same thing [meaning, her previous answer is still valid]. I was basing 

this [pointing to the linear x + 1] as the length and this is an [pointing to 

the areal x + 1] area. 

 

 Sarah's italicized phrases “using this/these as” and “basing this/these as” above 

indicate that she thought of the “dimension tiles” as some sort of instruments that serve to 
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represent the length and the width. These dimension tiles are not the length and the width 

itself; rather, Sarah was “using these as” length and width. I define these linear 

representational quantities based on Sarah's phrases as Instrumentalized Linear 

Quantities (ILS) as these do not stand for the length or the width; they rather stand for 

instruments by which Sarah established linearity. I also hypothesize that, since she did 

not say “We are using these as area” about the areal tiles, she thought that the areal tiles 

that are enclosed in the rectangle are actually the areal parts of the rectangle itself. 

According to Sarah, the “collection” [2 green rectangles, 3 purple bars, 2 blue bars, and 3 

black squares] is actually the area of the polynomial rectangle itself, which leads us 

naturally to the famous principle of identity “A is A”. Whitehead and Russell defined a 

relation to be reflexive “when it holds between a term and itself.” (1912, p. 22) In that 

sense, Sarah established Areal Reflexivity for the areas, namely a relation that holds 

between an element (the areas) and itself (the areal tiles). 

 According to Spradley, “Relational theory of meaning is based on the premise 

that the meaning of any symbol is its relationship to other symbols.” (1979, p.97). In a 

relational type analysis such as domain analysis, a semantic relation serves for linking 

two symbols (folk terms). For instance, “is a kind of” is a semantic relation that connects 

the two symbols “Oak” and “Tree” via the proposition “Oak is a kind of tree.” In general, 

for any pair (X, Y) of symbols, an open proposition based on the “is a kind of” semantic 

relationship can be written as  “X is a kind of Y.” In this example, “tree” stands 

for the general folk term, which Spradley calls “cover term” and the special type of tree, 

namely “oak” stands for “included term.” In this way, a domain based on the “is a kind 

of” semantic relationship is generated via the cover term “tree” along with the included 

:),( YXP
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terms such as “oak,” “pine,” “palm,” etc. According to Spradley, there are nine universal 

type semantic relationships (Table 4.35). 

 

Table 4.35 

Universal Semantic Relationships (Spradley, 1979, pp.110–111) 

1– Strict Inclusion X is a kind of Y 

2– Spatial X is a place in Y, X is a part of Y 

3– Cause – Effect X is a result of Y, X is a cause of Y 

4– Rationale X is a reason for doing Y 

5– Location for Action X is a place for doing Y 

6– Function X is used for Y 

7– Means – End X is a way to do Y 

8– Sequence X is a step (stage) in Y 

9– Attribution X is an attribute (characteristic) of Y 

 

 An informant expressed semantic relationship, on the other hand, is a semantic 

relationship serving to generate cover terms and included terms (hence a domain) 

provided by the research participants, other than universal types. Based on Spradley's 

definitions, Sarah's semantic relationship phrases can be categorized as follows: 

 

Table 4.36 

Sarah's Universal and Informant Expressed Semantic Relationships 

Phrases Semantic Relationship 

Using ... As ... Universal 
Basing ... As ... Universal 

... Is ... Informant Expressed 

... Would Be ... Informant Expressed 
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 Spradley named the universal type open proposition “X is used for Y” in Table 

4.35 above as a Function. In fact, that is the only semantic relation given in that table of 

the passive voice type. Sarah's phrases “Using/Basing As” can be categorized as in the 

active voice. Therefore, before generating a domain based on Sarah's cover terms and 

included terms, it will be useful to convert Sarah's phrases in active voice into open 

propositions in passive voice, including the cover terms Y and the included terms X. 

Table 4.37 below lists Sarah's converted propositions as well as the ones based on “is” 

and “would be,” which do not need conversion. 

 

Table 4.37 

Open Propositions Based on Sarah's Phrases 

Sarah's Original Phrases Open Propositions 

Basing this as a length. X based as Y. (Passive Voice) 

This is the area. X is Y. 

Using these as a length. X used as Y. (Passive Voice) 

And [using] these as a length. X used as Y. (Passive Voice) 

These would be the area inside here. X would be Y. 

Basing these outside tiles as my length. X based as Y. (Passive Voice) 

This I have been using as length. X used as Y. (Passive Voice) 

And this is actually area. X is Y. 

I was basing this as the length. X based as Y. (Passive Voice) 

And this is an area. X is Y. 

 

 Sarah referred to four open propositions, two of which can be categorized as 

Universal semantic relations and two as Informant Expressed semantic relations. I want 

to give names to these open propositions before generating a domain. 

• P(X,Y): “X used as Y.” 
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• Q(X,Y): “X based as Y.” 

• R(X,Y): “X is Y.” 

• S(X,Y): “X would be Y.” 

In this propositional notation, Y denotes the cover term, and X denotes the included term. 

For Sarah's open propositions P and Q, the cover term is always “length” whereas for the 

open propositions R and S, the cover term is always “area.” Sarah made reference to three 

distinct included terms “this,” “these,” and “these outside tiles” (Table 4.37). However, 

because these included terms are possessive pronouns, it would make more sense to work 

with the actual representational quantities to which she makes reference via her hand 

gestures. The table below contains Sarah's cover terms and included terms for each open 

proposition and the terminology describing Sarah's behavior. 

 

Table 4.38 

Included Terms as Representational Quantities 

Propositional 
Notation 

Open 
Proposition 

Included Term 
(X) 

Cover 
Term (Y) Terminology 

Q(X, Y) X based as Y. Linear 3 Length Instrumentalized Linear 
Quantities (ILQ) 

R(X, Y) X is Y. Areal 3 Area Areal Reflexivity (AR) 

P(X, Y) X used as Y. Linear 2y + 3 Length Instrumentalized Linear 
Quantities (ILQ) 

P(X, Y) X used as Y. Linear x + 1 Length Instrumentalized Linear 
Quantities (ILQ) 

S(X, Y) X would be Y. Areal 2xy + 2y + 
3x + 3 Area Areal Reflexivity (AR) 

Q(X, Y) X based as Y. Linear 2y + 3 Length Instrumentalized Linear 
Quantities (ILQ) 

P(X, Y) X used as Y. Linear 2y Length Instrumentalized Linear 
Quantities (ILQ) 

R(X, Y) X is Y. Areal 2y Area Areal Reflexivity (AR) 
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Q(X, Y) X based as Y. Linear x + 1 Length Instrumentalized Linear 
Quantities (ILQ) 

R(X, Y) X is Y. Areal x + 1 Area Areal Reflexivity (AR) 

 

 A domain based on Sarah's open propositions P, Q, R, S with cover terms and 

included terms can be generated as in the table below (Table 4.39). 

 

Table 4.39 

Sarah's Domain Analysis Table 

Linear 3 (Included Term) 

Linear 2y + 3 (Included Term) 

Linear x + 1 (Included Term) 
Length (Cover Term) 

Linear 2y (Included Term) 

Areal 3 (Included Term) 

Areal 2xy + 2y + 3x + 3 (Included Term) 

Areal 2y (Included Term) 

Instrumentalized Linear Quantities 

(ILQ) 

& 

Areal Reflexivity 

(AR) 

Domain Area (Cover Term) 

Areal x + 1 (Included Term) 

 

 Data from Tables 4.38 and 4.39 based on Spradley's Domain Analysis support my 

previous results on ILQ and AR. Sarah used the semantic relations “is,” and “would be” 

in relating the representational areal quantities to “area” (Areal Reflexivity) as opposed to 

the semantic relations “used as,” and “based as,” in relating the dimension tiles to 

“length” (Instrumentalized Linear Quantities). Usage of some phrases may be an 

indication of what people actually mean, especially when they describe a situation with 

manipulatives. I infer that for Sarah, the two–dimensional tiles representing the length or 

the width do not stand for the actual length or the width as supported by Sarah's choice of 

the phrases “using as,” “basing as.” The two–dimensional tiles representing the area, on 
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the other hand, do stand for the actual area of the corresponding box, as can be inferred 

from Sarah's phrases “is,” and “would be” (Principle of Identity). 

 Both Nicole and Sarah established the multiplicative nature of both the irreducible 

areal quantities (IAQ) and the same–color–box areal quantities (SCBAQ) via verbal 

descriptions. Nicole and Sarah (and John in some cases) first defined their areal 

representational sets RSIAQ and RSSCBAQ via Mapping Structures of multiplicative 

type acting on the corresponding linear representational sets RSILQ and RSCLQ, 

respectively. They then acted on these areal representational sets via Mapping Structures 

of additive type to obtain expressions for “area as a sum.” The following excerpt 

illustrates Nicole's reference to additive type Mapping Structures acting on these areal 

type representational sets. 

 

Protocol 4.81: Nicole's reference to mapping structures of additive type. 

G: How do you describe this [pointing to the 2x2 “box”] as a sum? (Figure 

4.105) 

N: This is [pointing to the 2x2 “box”] x2 + x2. And this is [pointing to the 2x 

“box”] x plus x. This is [pointing to the 3x “box”] x plus x plus x... And 

[pointing to the 3 “box”] 1 plus 1 plus 1. 

G: Is the 2x2 an area or a length? 

N: It's an area. 

G: How about this 2x [pointing to the areal 2x “box”]? Is it an area or a 

length? 

N: It's an area because it's part of the rectangle. It has a length of 1, and a 
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width of 2x. 

G: How about x? Is it an area or a length? [pointing to one of the areal “x”s of 

the same 2x “box”] 

N: The x is an area. 

G: The other x? 

N: It's also an area. 

G: Why? 

N: Because this [pointing to one of the areal “x”s of the same 2x “box”] x 

itself is a product of x times 1. It has a length of 1, and a width of x. 

G: How about this 3 [pointing to the 3 “box” inside the rectangle] now... Is it 

an area or a length? 

N: It's an area... It's an area because it's a part of the whole rectangle. Each one 

has a length of 1 and a width of 1 [On the last column of the activity sheet, 

she writes (x + 1)(2x + 3) =  2x2 + 5x + 3, without doing any 

computation]. 

G: How about this thing on the right hand side... is it an area or a length? 

N: It's an area. 

G: How about the first term in parentheses on the left hand side... is it an area 

or a length? 

N: x + 1? It's a length. 

G: How about the other one? 

N: It's also a length. 

G: Is it consistent in terms of units... I mean... are the units equal? 
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N: Hm hm... Length times width is area... you know... inches times inches is 

inches squared... that makes sense... 

 

 

Figure 4.105. Nicole's complete rectangle resulting from RCP defined on RSILQs. 

 

 Every time she described a same–color–box (areal singleton) as a sum, Nicole not 

only made reference to an additive type Mapping Structure, but she also touched upon 

her previous experience with the irreducible areal quantities (IAQ) of these areal 

singletons. In other words, Nicole kept track of what she has done previously. Her 

statement “It's an area [the 2x by 1 box] because it's part of the rectangle. It has a length 

of 1, and a width of 2x” indicates that she saw the box as a product, modeled as (1, 2x) 

with the relational notation. But she was also aware that the same “box” can be written as 

a sum, as can be warranted by her statement “And this is [pointing to the 2x “box”] x plus 

x.” In addition, she referred to her previous experience by saying “Because this [pointing 

to one of the areal “x”s of the same 2x “box”] x itself is a product of x times 1. It has a 

length of 1, and a width of x.” In other words, she “remembered” that each areal x in fact 

is resulting from a multiplication. I can therefore schematize Nicole's thinking as follows: 

• On one hand we have: 
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 MRUC principle: The 1 by 2x purple same–color–box can be expressed 

multiplicatively as (1, 2x). 

 Mapping Structures (multiplicative): When the multiplication operation 

behaving as a function f acts on the ordered pair (1, 2x) of combined linear 

quantities, one obtains an areal singleton [2x]. 

 Functional Notation: One can write f: (1, 2x) → 1 × 2x. 

• On the other hand, we have: 

 MRUC principle: Each 1 by x irreducible areal quantity (there are two of 

them) can be expressed multiplicatively as (1, x). 

 Mapping Structures (multiplicative): When the multiplication operation 

behaving as a function f acts on each ordered pair (1, x) of irreducible 

linear quantities (there are two of them), one obtains the irreducible areal 

singleton [x]. 

 Mapping Structures (additive): When the addition operation behaving as a 

function g acts on the representational set of irreducible areal quantities 

{x, x}, one obtains an areal value x + x. 

 Functional Notations: One can write f: (1, x) → x. Then the function g acts 

on the resulting areal quantities which can be denoted as g: [x, x] → x + x. 

 A function followed by another function as above (Nicole's History Keeping 

Strategy) is reminiscent of the composition of functions concept, whose representational 

version can be described as follows. Consider the last equality g [x, x] = x + x. The right 

hand side is the final value; one does not worry about that for the moment. Instead, when 

one substitutes f (1, x) for each “areal x” in square brackets, one obtains g [f (1, x), f (1, 
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x)] = x + x. Using the representational composition symbol “◦” one obtains g ◦ f ( (1, x), 

(1, x) ) = x + x. In fact, in Protocol 4.81 above, Nicole established the equivalence of f (1, 

2x) = 1 × 2x and g ◦ f ( (1, x), (1, x) ) = x + x. I define these functions f and g as 

Representational Mappings, which are illustrated in the figure below (Figure 4.106). 

 

 

Figure 4.106. Nicole's representational mappings. 

 

 The multiplicative representational mapping f acts on the ordered pair (1, x) of 

linear quantities and sends it to the areal quantity [x]. The additive representational 

mapping g, on the other hand, acts on the “representational set” of areal quantities and 

sends this “set” to the value x + x. In that sense, f can be thought of acting on ordered 

pairs (domain elements) whereas g acts on representational sets (i.e., a set behaves like a 

domain element for the representational mapping g). The domain of f is a representational 

set of ordered pairs whereas the domain of g is a set of representational sets. More robust 

definitions of these representational mappings based on RCP, RSILQ, RSCLQ, RSIAQ, 

RSSCBAQ will be given in the next section on Factorization of Polynomials. 

 In her work with the polynomial rectangles, Nicole constantly referred to mapping 

structures, and she knew which RUC type (MRUC of ARUC) made more sense, as 

illustrated in the following protocol. 
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Protocol 4.82: Nicole's sense making of the same–valued linear and areal 

quantities with reference to MRUC, ARUC, and mapping structures. 

G: How are they different, this 2y [pointing to linear 2y] and this 2y [pointing 

to areal 2y] here? (Figure 4.107) 

N: Here [pointing to linear 2y] we are just focusing on one aspect of the y... 

just the width... Here [pointing to areal 2y] we are focusing on both 

aspects of the y... the length and the width... 

G: Great explanations! I am gonna ask you the same thing about this 3 in here 

[pointing to linear 3] and this 3 in here [pointing to areal 3]. 

N: Here [pointing to linear 3] again we are focusing only on one aspect of 

these squares... just the length... The length is along the bottom line of all 

three of them. Here [pointing to areal 3] we are focusing on two aspects of 

the squares... just the length and the width... 

... 

N: Here we have a linear unit, the length [pointing to her expression in 

parenthesis on the LHS, x + 1]; and here we have a linear unit, the width 

[pointing to her expression in parenthesis on the LHS, 2y + 3]; when you 

multiply them you get an areal unit [pointing to her expression in 

parenthesis on the RHS, 2xy + 3x + 2y + 3] which is the whole rectangle. 

Every term here [pointing to her expression “2xy + 3x + 2y + 3”] is an 

area. 
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Figure 4.107. Nicole's x + 1 by 2y + 3 rectangle. 

 

 Nicole distinguished between the same–valued (2y) linear and areal quantities via 

the “aspects” inherent in the nature of these objects. Number of Aspects, a 

concept−in−action, can be thought of as an index assigned to these same–valued 

quantities. If this index is 1, then the object represents a linear quantity; and if the index 

is 2, then the object represents an areal quantity. Nicole's “Number of Aspects” index can 

be modeled via a Bi–valued Function consisting of two range elements only. The domain 

of such a function comprises the following: 

• Irreducible Linear Quantities (ILQ) 

• Combined Linear Quantities (CLQ) 

• Irreducible Areal Quantities (IAQ) 

• Same–Color–Box Areal Quantities (SCBAQ) 

 Note that a Bi–valued Function is not defined on Combined Areal Quantities 

(CAQ) in the context of polynomial rectangles as there is no rectangularity requirement 

nor close figure condition for these quantities (Disconnected areal subunits can be added 

together to form Combined Areal Quantities as well). A Bi–valued Function maps the 

quantities ILQ, CLQ, IAQ, and SCBAQ to either 1, or 2, as depicted in figure below 

(Figure 4.108). 
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Figure 4.108. Nicole's Number of Aspects assignment via Bi–valued Function. 

 

 Finally, Nicole made use of a multiplicative mapping structure as indicated in her 

last statement. Her representational mapping f can be thought of as acting on the ordered 

pair (x + 1, 2y + 3) of combined linear quantities (CLQ) that is mapped onto the “biggest” 

areal singleton [2xy + 3x + 2y + 3]. With the functional notation, this process can be 

notated as f: (x + 1, 2y + 3) → [2xy + 3x + 2y + 3]. 

 Nicole constantly referred to Bi–valued Functions in her comparison of same–

valued linear and areal quantities. When I asked her to compare the linear units with their 

areal counterparts [linear x vs. areal x, linear 2x + y vs. areal 2x + y] in the next problem, 

she said that for the linear units she was looking at the one dimension only, and for the 

areal units she was looking at the two dimensions, the length and the width (Figure 

4.109). She then wrote an identity on the last column of the activity sheet: 

 

Protocol 4.83: Nicole's reference to cardinalities in CAQs. 

G: Is the right hand side equal to the left hand side? [about her identity (2x + 
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y)(x + 2y + 1) = 2x2 + 5xy + 2y2 + 2x + y] 

N: Yes. 

G: How about in terms of units... is the right hand side equivalent to the left 

hand side? 

N: Yes, both would be cm2. 

G: How about the 5xy here... what unit does that have? 

N: cm2. 

G: How about the x in 5xy? The x of 5xy? what unit... 

N: It's just cm. 

G: How about y? 

N: Just cm. 

G: How about 5? 

N: It does not have a unit... It's just how many of the xy you have. 

G: How about the 2y2 there, does it also have cm2 as unit? 

N: Hm hm... 

G: How about the 2 in there? 

N: It does not have a unit... It's just how many you have... 

G: How do you know that the left hand side has the unit of cm2? 

N: Because this is the length which is cm, this is the width which is cm, and 

when you multiply them together that gives cm2. 
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Figure 4.109. Nicole's 2x + y by x + 2y + 1 rectangle. 

 

 Nicole established the fact that the coefficient “5” of the combined areal quantity 

(CAQ) 5xy is of dimensionless nature. For Nicole, “5” is a unit–less constant that can be 

thought of as the cardinality of the set of ordered quintuple [xy, xy, xy, xy, xy]. Moreover, 

because Nicole established the areal–ness of each [xy] singleton by assigning the 

measurement unit cm to both linear x and linear y, Nicole's ordered quintuple can be 

notated as [(x, y), (x, y), (x, y), (x, y), (x, y)] as well. She established the dimensionless–

ness of the “2” in the combined areal quantity (CAQ) “2y2” in a similar manner. In other 

words, “2” is a unit–less constant that is the same as the cardinality of the set of ordered 

pair [y2, y2]. Finally, Nicole made use of a multiplicative representational mapping f 

acting on the ordered pair (cm, cm) of linear measurement units. With the functional 

notation, this can be notated as f: (cm, cm) → cm2. 

 Though he obtained a totally different polynomial rectangle for the second task, 

John's written answers and verbal descriptions were consistent in that he was always 

referring to his y–dependent–only polynomial rectangle. Because the initial instruction 

was to make a polynomial rectangle with length x + 1 and width 2y + 3, at some point he 

had to write an identity in the last column of the activity sheet. In fact, he wrote the 
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identity “(x + 1)(2y + 3) = 2y2 + 3y + 6y + 9” as his answer. John's written answer 

warrants the disconnect theory as well, in that John was unable to write an area as a 

product expression (LHS) based on his rectangle. If he was able to refer to his rectangle, 

then the correct identity would be “(y + 1)(2y + 3) = 2y2 + 3y + 6y + 9” instead of “(x + 

1)(2y + 3) = 2y2 + 3y + 6y + 9.” The following protocol takes this issue into account and 

reflects how John reconciled the equivalence of x– and y–dependent LHS with the y–

dependent–only RHS. 

 

Protocol 4.84: John establishes LHS–RHS equivalence. 

G: Are they equal? [about the LHS and the RHS of his identity “(x + 1)(2y + 

3) = 2y2 + 3y + 6y + 9”] 

J: I mean... they're equal... they have to be equal... 

G: Do you want to verify? 

J: Do you want me to multiply that [the LHS] out? [I then ask him to do it on 

the board. Here is the first step of his verification. Figure 4.110] 

G: Is there something wrong? 

J: No... It's just that... we don't know what x is... so... if you knew what x was 

you'd probably... x probably equals... [He looks at his figure] It looks like 

x equals y plus 2 [He then substitutes x = y + 2 and completes his 

verification. Figure 4.111]  

G: So it works with the condition that... 

J: With the condition that x equals y plus 2. 
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Figure 4.110. John's first step of verification. 

 

 

Figure 4.111. John's second step of verification. 

 

 At the beginning of the conversation, John was so certain about his equality that 

he did not feel the need to question it. Upon my request to verify his findings, he obtained 

“2yx + 3x + 2y + 3 = 2y2 + 9y + 9.” At this point, he realized that the RHS is y–

dependent–only whereas the LHS has “x”s and “y”s, and deduced that he somehow had 

to get rid of the “x” on the LHS. He then referred to his figure made of tiles. He actually 

measured the x at the top of his figure using the “y” and the “1” tiles. In order to get rid of 

the “x” on the LHS, he substituted x = y + 2, based on his measurements. In other words, 

John made sense of the dimension tiles for the first time12. The dimension tiles do not 

stand as irreducible quantities whose term wise multiplication yields the corresponding 

irreducible areal quantity, though. They rather stand as some sort of measurement tools 

helping John establish the LHS–RHS equivalence of his written identity. Note that all this 
                                                 
12 I carried this protocol over this section for analysis purposes. I must remind the reader that John made 
sense of the dimension tiles when working on the third polynomial multiplication task. See Protocol 4.69 
and Figures 4.90–95 above.  
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is happened before the “Change of Mind” turning point (See Protocol 4.69). I 

hypothesize that John's sense making of the dimension tiles as some sort of measurement 

tools prepared the way for him to give up the Filling in the Puzzle Strategy and to 

embrace Term Wise Multiplication of Irreducible Linear Tiles in the third task on the 

multiplication of 2x + y by x + 2y + 1. The following protocol picks up at the point where 

John made sense of the product quantities (Behr et al., 1994) with reference to mapping 

structures and his comparison of the same–valued linear and areal quantities. 

 

Protocol 4.85: John's comparison of the same–valued linear and areal 

quantities. 

G: What is this? [pointing to the areal x at the bottom in Figure 4.95] 

J: Just this one? That's x... 

G: What is this one? [pointing to the linear x at the top] 

J: It's the length of x... 

G: Are they the same or different? How are they the same... how are they 

different? [about the linear x at the top and the areal x at the bottom. 

J: Well... This [pointing to the linear x at the top] just represents the length of 

x whereas this [pointing to the areal x at the bottom] represents the area of 

x... so... this [pointing to the linear x at the top] would be x centimeters 

whereas this [pointing to the areal x at the bottom] would be x centimeters 

squared... they are different... one is an area one is a length... 

G: How about this y here [pointing to the linear y at the top] and this y here 

[pointing to the areal y at the bottom]...  
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J: Same thing... I mean... same thing as this one... [meaning what he said for 

the previous comparison question holds]... this is length of y [pointing to 

the linear y at the top] and this is area of y [pointing to the areal y at the 

bottom]... 

G: What do you mean by area of y? 

J: Well it's not just... this [pointing to the linear y at the top] represents the 

length whereas this [pointing to the areal y at the bottom] represents the 

area... you gotta look at this [pointing to the linear y at the top] and this 

[pointing to the linear 1 on the side] to find this one (Figure 4.112).  

G: Tell me more about that... You are pointing to those two... 

J: This right here [pointing to the areal y] is 1 [pointing to the linear 1 on the 

side] times y [pointing to the linear y at the top]. So we get y centimeter 

squared whereas this is just representing the length of y [pointing to the 

linear y at the top] 

G: How about this 2x + y and this 2x + y... [pointing to the linear 2x + y at the 

top and areal 2x + y at the bottom, respectively] Are they the same or 

different? How are they the same... how are they different? 

J: They're different... for the same reason as before... This is a length [pointing 

to the linear 2x + y at the top] so it's represented by centimeters if these are 

centimeters... and this is an area... this [pointing to the areal 2x + y at the 

bottom] is represented by this [pointing to the linear 2x + y at the top] 

times this [pointing to the linear 1 on the side]... I mean... Well... If this 

was taken away [removing the black tile from the corner] this would just 
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be the other length [pointing to the areal 2x + y]... like... representing a 

length as well... whereas... yeah I guess that is the difference [placing the 

black tile back at the corner] yeah it is... 'cuz this [pointing to the areal 2x 

+ y at the bottom] is this [pointing to the linear 2x + y at the top] times this 

[pointing to the linear 1 on the side] 

 

 

Figure 4.112. John's hand gestures indicating mapping structures. 

 

 In his comparison of the same–valued linear and areal quantities, John constantly 

used the word “represents” for both linear and areal tiles. This is in contrast to Sarah who 

thought that the dimension tiles “are used as” length and the areal tiles “are” the areas 

(See Protocol 4.80 and the following paragraphs). John and Sarah are therefore alike in 

that they both agree that the dimension tiles do not stand for the “actual” linear quantities 

and that these rather “represent” or “are used as” length (Instrumentalized Linear 

Quantities). John thought the same for the areal tiles as opposed to Sarah for whom the 

areal tiles actually “are” areas (Areal Reflexivity). 

 As warranted both by Figure 4.112 and his statement “you gotta look at this 

[pointing to the linear y at the top] and this [pointing to the linear 1 on the side] to find 

this one,” John made use of multiplicative type mapping structures, which can be 

modeled via the functional notation f: (y, 1) → y. John's language “this and this to find 
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this one” is reminiscent of Rob's language “when you put this length and that length 

together it makes a two dimensional shape, which is this... length and width.” (See 

Protocol 4.64) Both statements stand as a strong indication of both multiplicative type 

RUC as well as multiplicative type mapping structures. 

 John's comparison of the (2x + y)−valued linear and areal quantities is interesting 

in that he makes use of some sort of visual proof by contradiction. Sarah also frequently 

made use of this strategy (cf. Protocol 4.74). John said that if the black square on the side 

was not there, then the “2x + y”s at the top and the bottom would be the same; they would 

just be lengths. In other words, it is the “black square” that causes the difference. John's 

reasoning could be explained as follows. The quantity (2x + y, 1) is of multiplicative 

nature. If he removes the black square, he is left with (2x + y, ...)–just one term, instead of 

an ordered pair. Once he removes one of the terms of the ordered pair, the ordered pair 

becomes a linear unit, just a number. In other words, while (2x + y, 1) is of multiplicative 

nature, when 1 is removed, he is left with the scalar (2x + y). John's statement “If this 

was taken away [removing the black tile from the corner] this would just be the other 

length” is reminiscent of the difference between a vector and a scalar. The quantity (2x + 

y, 1) can be thought as an ordered pair as well as a vector on the plane, whereas 2x + y 

alone describes a scalar, a number on the real number line. 

 

4.6. Factorization of Polynomial Expressions 

 In this section, I analyze data related to two factorization problems: 

• Factorization of a polynomial of the form )(xp  over the set ).(XZ  To be more 

specific, the students factored  .65 ++ x)( 2= xxp
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• Factorization of a polynomial of the form ),( yxq  over the set ).,( YXZ  To be 

more specific, the students were asked to factor 

 .255372),( 22 +++++= yxyxyxyxq

 

4.6.1. Multiplicative Representational Unit Coordination (MRUC) 

 In the polynomial multiplication task analyzed in the previous section, the 

dimension tiles were always placed on two sides of the rectangle, and in both cases 

students either relied on an additive approach (filling in the puzzle strategy) or on a 

multiplicative approach (term–wise multiplication of the irreducible linear tiles). I added 

this task on the factorization of polynomials to the interview outline because I was trying 

to understand whether students would be able to realize the multiplicative nature of the 

irreducible areal tiles as well as the boxes of the same color without the presence of the 

dimension tiles initially. In that sense, this task required quantitative reasoning at a more 

advanced level. Some students were simultaneously placing the irreducible linear tiles 

corresponding to the irreducible areal tiles generating the polynomial rectangle, which 

was an indication of reverse reasoning. Other students preferred first completing their 

rectangles, then placing the dimension tiles around the edges. 

 The common direction for the first problem was “Make a rectangle for the 

expression , then factor the expression using the algebra tiles.” In less than a 

minute all students produced the correct rectangle (Figure 4.113).  

652 ++ xx
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Figure 4.113. Rectangle representing polynomial . 652 ++ xx

 

However in this first problem, none of the students relied on the Term Wise Factorization 

of Irreducible Areal Quantities into Irreducible Linear Quantities strategy. All students 

rather first completed their rectangle and then placed the dimension tiles representing 

 and  around two adjacent edges. This behavior involves some reverse 

reasoning to factor the polynomial rectangle unit into combined linear quantities (CLQ), 

which are the dimensions of the rectangle itself. I name this Term Wise Factorization of 

Polynomial Rectangle Areal – Singleton into Combined Linear Quantities strategy. 

Relying on this strategy, all students generated their rectangle first, as in Figure 4.113 

above, and then “representationally factored” their rectangle (the 

2+x 3+x

2+x  by  areal 

singleton) into two representational sets of combined linear quantities (RSCLQ) as in 

Figure 4.114. 

3+x
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Figure 4.114. Representationally factored polynomial into RSCLQs. 

 

 After making similar figures as above, all students established the dimension tiles 

(RSCLQs) as the factors of the polynomial under consideration. The following discussion 

with Nicole illustrates this point. 

 

Protocol 4.86: Nicole's MRUC concerning the RSCLQs. 

N: This expression here  [pointing to the expression  

written on the activity sheet] has two factors which are x + 2 [pointing to 

the corresponding dimension tiles on the side] and x + 3 [pointing to the 

corresponding dimension tiles at the top] 

652 ++ xx 652 ++ xx

G: How about x + 2, is it a length or an area? 

N: x + 2 is a length. 

G: How about x + 3, is it a length or an area? 

N: x + 3 is a length. When you multiply them together you get an area. 
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Referring to a Term Wise Factorization of Polynomial Rectangle Areal – 

Singleton into Combined Linear Quantities Strategy, Nicole decomposed the biggest 

areal singleton, namely the polynomial rectangle x2 + 5x + 6, into the ordered pair (x + 2, 

x + 3) of combined linear quantities (CLQ). Moreover, MRUC is evident in the relational 

representation (x + 2, x + 3). The ordered pair (x + 2, x + 3) of combined linear quantities 

can be thought of as the elements of the two RSCLQs combined via the addition 

operation, where, RSCLQ1 = {x, 2} and RSCLQ2 = {x, 3}. Compare this with the 

RSILQs, which can be notated as RSILQ1 = {x, 1, 1}, and RSILQ2 = {x, 1, 1, 1}. To be 

more specific, the addition operation “+” first acts on both sets to yield the combined 

linear quantities (CLQ) x + 2 and x + 3. Juxtaposition then “acts” on this pair of CLQs to 

form the ordered pair (x + 2, x + 3) of combined linear quantities. Juxtaposition, in that 

sense, can be thought of as a synonym for a Representational Cartesian Product (RCP) 

acting on the pair of linear singletons {x + 2} and {x + 3}. This results in the 

Representational Cartesian Product {x + 2} × {x + 3}, equivalently, the ordered pair (x + 

2, x + 3) of combined linear quantities. 

 In the second task on the factorization of the polynomial 2x2 + 7xy + 3y2 + 5x + 5y 

+ 2, all students exhibited the same strategy (Term Wise Factorization of Polynomial 

Rectangle Areal – Singleton into Combined Linear Quantities). In other words, they were 

all able to representationally factor the expression 2x2 + 7xy + 3y2 + 5x + 5y + 2 as the 

product of 2x + y + 1 and x + 3y + 2 (Figure 4.115).  
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Figure 4.115. Representationally factored polynomial into RSCLQs. 

 

Equivalently, these students were able to decompose the biggest areal singleton, the 

rectangle itself, into the ordered pair (2x + y + 1, x + 3y + 2) of combined linear quantities 

(CLQ). In a sense, students were able to define the inverse of an RCP on the biggest areal 

singleton to obtain the ordered pair (2x + y + 1, x + 3y + 2) of combined linear quantities 

(CLQ), which can be thought of as a juxtaposition of the RSCLQ levels. To be more 

specific, the RSCLQ levels for this task are RSCLQ1 = {2x, y, 1} and RSCLQ2 = {x, 3y, 

2}. Compare this with the RSILQs, which can be notated as RSILQ1 = {x, x, y, 1} and 

RSILQ2 = {x, y, y, y, 1, 1}. In the Linear vs. Areal Units subsection below, I will show 

that Sarah established the reversibility notion not just with the RSCLQ levels, but with 

the RSILQ levels as well. 

 

4.6.2. Additive Representational Unit Coordination (ARUC) 

 Once again, ARUC types arising from the data are essentially derived from two 

main components: 1) Students' written expressions, 2) Hand gestures combined with 

verbal descriptions in the process of constructing the rectangle representing the 

multiplication of the polynomials. 
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• Boxes of the Same Color Type Addends (Subunits): In Rob's polynomial 

rectangle representing x2 + 5x + 6, there are four “boxes” of the same color: First, 

the x by x purple box; second, the x by 2 purple box; third, the 3 by x purple box; 

and fourth, the 3 by 2 black box (Figure 4.114). In the polynomial rectangle 

representing 2x2 + 7xy + 3y2 + 5x + 5y + 2, on the other hand, there are nine 

“boxes” of the same color: First, the 2x by x purple box; second, the y by x green 

box; third, the 1 by x purple box; fourth, the 2x by 3y green box; fifth, the y by 3y 

blue box; sixth, the 1 by 3y blue box; seventh, the 2x by 2 purple box; eighth, the 

y by 2 blue box; and ninth, the 1 by 2 black box (Figure 4.115). The sum of the 

“boxes of the same color” addends (subunits) equals the area of the polynomial 

rectangle (unit) under consideration. The following relational notations of ordered 

n–tuples of “boxes of the same color” type addends generate the corresponding 

polynomial rectangle: 

 The quadruple [x2, 2x, 3x, 6] generating the polynomial rectangle 

representing x2 + 5x + 6 (Figure 4.114). 

 The 9–tuple [2x2, yx, x, 6xy, 3y2, 3y, 4x, 2y, 2] generating the polynomial 

rectangle representing 2x2 + 7xy + 3y2 + 5x + 5y + 2 (Figure 4.115). 

• Like Areal Tiles Combined Type Addends (Subunits): With reference to Rob's 

figures, the following addends are used. In the polynomial rectangle representing 

x2 + 5x + 6 (Figure 4.114), there are three Like Areal Tiles Combined Type 

Addends: First, the purple subunit with an area of x2; second, the combined 

disconnected purple subunits with an area of 5x; and third, the black subunit with 

an area of 6. In the polynomial rectangle representing 2x2 + 7xy + 3y2 + 5x + 5y + 
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2 (Figure 4.115), there are six Like Areal Tiles Combined Type Addends: First, 

the purple subunit with an area of 2x2; second, the combined disconnected green 

subunits with an area of 7xy; third, the blue subunit with an area of 3y2; fourth, the 

combined disconnected purple subunits with an area of 5x; fifth, the combined 

disconnected blue subunits with an area of 5y; and sixth, the black subunit with an 

area of 2. With the relational notation, the above addends can be modeled as 

follows: 

 The triple [x2, 5x, 6] generating the polynomial rectangle representing x2 + 

5x + 6 (Figure 4.114). 

 The hextuple [2x2, 7xy, 3y2, 5x, 5y, 2] generating the polynomial rectangle 

representing 2x2 + 7xy + 3y2 + 5x + 5y + 2 (Figure 4.115). 

 When decomposing each areal sub–unit into areal sub–subunits, all interview 

students preferred the Irreducible Addends Type ARUC, which was also the case for the 

polynomial multiplication task analyzed in the previous section. The notation is 

straightforward and similar to the one I used in the previous section; therefore, I omit it 

here. 

 The table below summarizes the ARUC types used by the interview students in 

the factorization of polynomials activities. 

 

Table 4.40 

ARUC Types Used by Interview Students 

Students Subunits Generating the Polynomial Rectangle Sub–Subunits Generating the Subunits 

Brad Like Areal Tiles Combined Type Addends Irreducible Addends 
Nicole Boxes of the Same Color Type Addends Irreducible Addends 
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Rob Like Areal Tiles Combined Type Addends Irreducible Addends 
Sarah Boxes of the Same Color Type Addends Irreducible Addends 
John Boxes of the Same Color Type Addends Irreducible Addends 

 

 

4.6.3. Pseudo – Multiplicative Representational Unit Coordination (PMRUC) 

 In the first task on the polynomial factorization, Brad and Rob provided pseudo–

products “1 · x2, 5 · x, 6 · 1” for the “Area of the boxes of the same color as a product,” 

whereas Nicole, Sarah, and John came up with products “x · x, x · 3, x · 2, 3 · 2.” Brad and 

Rob's pseudo–products are of additive nature, which becomes apparent via the relational 

notation of singletons and ordered n–tuples [x2], [x, x, x, x, x], [1, 1, 1, 1, 1, 1] of 

irreducible areal quantities (IAQ). The cardinality function card maps Brad and Rob's 

pseudo–products onto the cardinalities of these representational sets of areal quantities. 

One can notate these as card ( [x2] ) = 1, card ( [x, x, x, x, x] ) = 5, card ( [1, 1, 1, 1, 1, 1] 

) = 6. The table below summarizes cardinalities and relational notation describing Brad 

and Rob's pseudo–products for the two tasks on the factorization of polynomials. 

 

Table 4.41 

Pseudo–Products and Cardinalities Based on Brad and Rob's Answers for the “Area of 

the Boxes of the Same Color as a Product” 

Pseudo–Products Relational Notation Cardinalities 

1 · x2 

5 · x 
6 · 1 

[x2] 
[x, x, x, x, x] 

[1, 1, 1, 1, 1, 1] 

card ( [x2] ) = 1 
card ( [x, x, x, x, x] ) = 5 

card ( [1, 1, 1, 1, 1, 1] ) = 6 
2 · x2 
7 · xy 
3 · y2 

5 · x 
5 · y 
2 · 1 

[x2, x2] 
[xy, xy, xy, xy, xy, xy, xy] 

[y2, y2, y2] 
[x, x, x, x, x ] 
[y, y, y, y, y] 

[1, 1] 

card ( [x2, x2] ) = 2 
card ( [xy, xy, xy, xy, xy, xy, xy] ) = 7 

card ( [y2, y2, y2] ) = 3 
card ( [x, x, x, x, x] ) = 5 
card ( [y, y, y, y, y] ) = 5 

card ( [1, 1] ) = 2 
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As was the case in the previous section, Brad and Rob's pseudo–products can be 

modeled as the disjoint subsets of a particular Representational Set of Irreducible Areal 

Quantities (RSIAQ). The following disjoint unions describe these students' behaviors. 

• RSIAQ x + 2 by x + 3 = {x2} ∪  {x, x, x, x, x} ∪ {1, 1, 1, 1, 1, 1}. 

• RSIAQ 2x + y + 1 by x + 3y + 2 = {x2, x2} ∪ {xy, xy, xy, xy, xy, xy, xy} ∪ {y2, y2, y2} ∪ 

{x, x, x, x, x} ∪ {y, y, y, y, y} ∪ {1, 1}. 

 Nicole, Sarah, and John, on the other hand, provided products that can be 

modeled as areal singletons whose disjoint union generates a Representational Set of 

Same–Color–Box Areal Quantities (RSSCBAQ) for each task: 

• RSSCBAQ x + 2 by x + 3 = { (x, x) } ∪ { (2, x) } ∪ { (x, 3) } ∪ { (2, 3) }. 

• RSSCBAQ 2x + y + 1 by x + 3y + 2 = { (2x, x) } ∪ { (y, x) } ∪ { (1, x) } ∪ { (2x, 3y) } ∪ 

{ (y, 3y) } ∪ { (1, 3y) } ∪ { (2x, 2) } ∪ { (y, 2) } ∪ { (1, 2) }. 

 The disjoint subsets that model Brad and Rob’s pseudo–products are shown in the 

following diagrams. 
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Figure 4.116. Disjoint subsets of RSIAQ x + 2 by x + 3 for Rob and Brad. 

 

 

Figure 4.117. Disjoint subsets of RSIAQ 2x + y + 1 by x + 3y + 2 for Rob and Brad. 

 

Figures 4.116 and 4.117 above reveals the following: 

• card ( RSIAQ x + 2 by x + 3 ) = 1 + 5 + 6 = 12. 

• card ( RSIAQ 2x + y + 1 by x + 3y + 2 ) = 2 + 7 + 3 + 5 + 5 + 2 = 24. 



 290

The disjoint subsets that model Sarah, Nicole, and John’s products (areal singletons) are 

shown in the following diagrams. 

 

 

Figure 4.118. Disjoint subsets of RSSCBAQ x + 2 by x + 3 for Sarah, Nicole, and John. 

 

 

Figure 4.119. Disjoint subsets of RSSCBAQ 2x + y + 1 by x + 3y + 2 for Sarah, Nicole, and 

John. 
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Figures 4.118 and 4.119 above reveals the following: 

• card ( RSSCBAQ x + 2 by x + 3 ) = 1 + 1 + 1 + 1 = 4.  

• card ( RSSCBAQ 2x + y + 1 by x + 3y + 2 ) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9. 

In all derivations above, I used the additive property of the cardinality function. When we 

compare the diagrams in Figures 4.116 and 4.117 with those in Figures 4.118 and 4.119, 

we see that, not just the cardinalities of disjoint subsets, but the cardinalities of the union 

sets are different for the two groups of students, as well. 

 I complete this subsection with Sarah's proof by contradiction invalidating 

PMRUC. 

 

Protocol 4.87: Sarah's proof by contradiction invalidating PMRUC. 

G: How about this 7xy... [this is one of the terms on the LHS of the identity on 

the last column of the activity sheet] now... y is a unit... x is another unit... 

7 is another unit... it must be units cube... 

S: Well... It's more like if you were to take seven of them [meaning, seven 

green rectangles] and stick them... [We were out of green rectangles, but 

we had many purple bars. Sarah then wanted to demonstrate her idea with 

purple bars. She placed 7 purple bars below her polynomial rectangle and 

did a little demonstration. Figure 4.120] It would be 7x [pointing to the 

length] times y [pointing to the width]. It's more like 7 times... like... if you 

were to split it up... 7x times y.  

G: So... that does not bother you, right? You are sure that the whole thing is in 

units squared? 
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S: Right. 

G: How about for 3y2? [this is one of the terms on the LHS of the identity on 

the last column of the activity sheet. I am trying to trouble her once again]. 

y2 is units squared and 3 is a unit, so, 3y2 must be units cube... 

S:  y2 is a square but inside [she is referring and pointing to the 3y2 “box”] you 

are adding three of them [i.e., the 3 here behaves as a coefficient, it's 

unitless] 3 is not necessarily a length... it's more of a quantity. 

G: 3 is more of a quantity... tell me more about that... 

S: It's the same with the 7xy... 'cuz it's more like you are adding xy plus xy plus 

xy... 7 times... [i.e., the 7 in 7xy is additive in nature] whereas xy is units 

squared and you add them all... you get 7xy [which is also in units 

squared]. 

 

 

Figure 4.120. Sarah's demonstration. 

 

 Sarah originally defined the purple bar as the representation of an x by 1 

rectangle. Later she redefined this purple bar as an x by y rectangle, where the x became 

the shorter side, and the y became the longer side. She did this, and she did it very 



 293

quickly, for the purpose of demonstrating that “7xy” must have units squared as units, and 

that the “7” stands for a coefficient serving to count how many there are of each 

irreducible “xy” areal quantity. In a similar way she verbally explained that the “3” of 

“3y2” is a unitless constant behaving the same as the “7” of the “7xy.” 

 

4.6.4. Linear vs. Areal Units 

 As was the case for the polynomial multiplication tasks analyzed in the previous 

section, Nicole made reference to a Bi–Valued Function in her sense–making of the 

same–valued linear and areal quantities. Rob and Sarah, on the other hand, operated on 

an abstract level of assigning measurement units to the same–valued linear and areal 

quantities, namely by referring to “units” and “units squared” rather than inches or 

centimeters, as in the previous tasks. Brad, once again, referred to his “Dimension Tiles 

in a Standing–Up Position Strategy” in his comparison of the same–valued linear and 

areal quantities (Figure 4.121). 

 

 

Figure 4.121. Brad's “standing–up positioned” linear x. 
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 On the second task on polynomial factorization, my instruction was “Make a 

rectangle for the expression 2x2 + 7xy + 3y2 + 5x + 5y + 2 first, then factor the expression 

2x2 + 7xy + 3y2 + 5x + 5y + 2 using the algebra tiles.” Sarah was the only student to 

simultaneously place the pair of irreducible linear tiles corresponding to each irreducible 

areal tile generating the polynomial rectangle, which was an indication of reverse 

reasoning. In contrast, Nicole, John, Rob, and Brad first completed the rectangle and then 

placed the dimension tiles around it. Sarah first collected all the pieces she thought she 

would need. At the first stage, she placed the purple square representing the x squared on 

the upper left corner. She then placed the pair of irreducible dimension tiles accordingly. 

She said “We start with that... [about the purple box] the x times x.” (Figure 4.122) 

 

 

Figure 4.122. First stage of Sarah's reverse reasoning. 

 

 In a similar manner, she placed the second x squared areal tile, and then one linear 

x tile at the top, right next to the previous linear x tile (Figure 4.123). 
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Figure 4.123. Second stage of Sarah's reverse reasoning. 

 

 She then placed two green rectangles below the purple squares, and at the same 

time, she placed one blue bar right below the x tile on the side (Figure 4.124). 

 

 

Figure 4.124. Third and fourth stages of Sarah's reverse reasoning. 

 

 She continued this pattern, making sure that each time she placed a box in the 

area, she also placed the relevant irreducible linear tile(s) on the side and/or at the top. In 

that sense, Sarah worked with both the irreducible areal quantities (IAQ) and irreducible 

linear quantities (ILQ) at the same time. Sarah was the only student to associate each 

irreducible areal quantity (IAQ) with its dimensions, namely the corresponding pair of 

irreducible linear quantities (ILQ), in a polynomial factorization problem, in the process 

of generating the polynomial rectangle under consideration. In this way, Sarah 

established the multiplicative nature of the irreducible areal quantities (IAQ). She was 

able both to generate the correct polynomial rectangle (Figure 4.125) and to induce a 
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Representational Cartesian Product (RCP) of Representational Set of Irreducible Linear 

Quantities (RSILQ) via reverse reasoning. As before, I denote this Representational 

Cartesian Product as RCP RSILQ.  

 

 

Figure 4.125. Sarah's complete rectangle via reversively induced RCP RSILQ. 

 

 Sarah's behavior concerning her reverse reasoning and her induction of a RCP 

RSILQ calls for the notion of Invertible Mapping Structures (IMS). Starting from the 

beginning, Sarah's first action (Figure 4.122) can be notated with the functional notation 

as : [x2] → (x, x). Her second action (Figure 4.123) can be modeled with the same 

functional notation. Her third and fourth actions (Figure 4.124) are notated as : [xy] 

→ (x, y). The table below lists the inverse functional notation and equality for Sarah's 

actions on each irreducible areal quantity (IAQ). 

1−f

1−f

 

Table 4.42 

Sarah's Inverse Mapping Structures and Induced RCPRSILQ 

IAQ Total Number 
of IAQ Functional Notation Functional Equality Resulting 

Pair of ILQ 
Induced 

RCP 

[x2] 2 1−f : [x2] → (x, x) 1−f  [x2] = (x, x) (x, x) {x} × {x} 

[xy] 6 1−f : [xy] → (x, y) 1−f  [xy] = (x, y) (x, y) {x} × {y} 
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[x] 4 1−f : [x] → (x, 1) 1−f  [x] = (x, 1) (x, 1) {x} × {1} 

[yx] 1 1−f : [yx] → (y, x) 1−f  [yx] = (y, x) (y, x) {y} × {x} 

[y2] 3 1−f : [y2] → (y, y) 1−f  [y2] = (y, y) (y, y) {y} × {y} 
[y] 2 1−f : [y] → (y, 1) 1−f  [y] = (y, 1) (y, 1) {y} × {1} 
[x] 1 1−f : [x] → (1, x) 1−f  [x] = (1, x) (1, x) {1} × {x} 
[y] 3 1−f : [y] → (1, y) 1−f  [y] = (1, y) (1, y) {1} × {y} 
[1] 2 1−f : [y] → (1, 1) 1−f  [y] = (1, 1) (1, 1) {1} × {1} 

 

 Now based on Sarah's actions, I give a more robust definition of the Mapping 

Structures involving the Representational Sets of Irreducible Linear Quantities (RSILQ), 

the Representational Sets of Combined Linear Quantities (RSCLQ), the Representational 

Sets of Irreducible Areal Quantities (RSALQ), the Representational Sets of Same–Color–

Box Areal Quantities (RSSCBAQ), and the induced Representational Cartesian Products 

(RCP). The notations RCPRSILQ and RCPRSCLQ will be reserved for the Representational 

Cartesian Products (RCP) defined on the pair of Representational Sets of Irreducible 

Linear Quantities (RSILQ) and the pair of Representational Sets of Combined Linear 

Quantities (RSCLQ), respectively. 

 Because I already introduced the multiplication operation behaving as a function 

f, which is the essence of the Mapping Structures concept, in the previous sections, I want 

to start the discussion with the inverse of f, namely the function . As can be 

warranted by Sarah's actions and descriptions above,  acts on the Representational 

Set of Irreducible Areal Quantities (RSIAQ) and maps this set onto the Representational 

Cartesian Product defined on two Representational Sets of Irreducible Linear Quantities 

(RCPRSILQ) in a one–to–one correspondence (Figure 4.126). 

1−f

1−f
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Figure 4.126. Sarah's inverse mapping structures. 

 

 Figure 4.126 above is only a representative of the true RSIAQ and RCPRSILQ as 

both sets are of cardinality 24. Remember, the repetition of elements in a representational 

set is allowed in my work. To be more specific, 

• RSIAQ = { [x2], [x2], [xy], [xy], [xy], [xy], [xy], [xy], [x], [x], [x], [x], [y2], [y2], 

[y2], [y], [y], [x], [y], [y], [y], [1], [1] } 

• RCPRSILQ = { (x, x), (x, x), (x, y), (x, y), (x, y), (x, y), (x, y), (x, y), (x, 1), (x, 1), (x, 

1), (x, 1), (y, y), (y, y), (y, y), (y, 1), (y, 1), (1, x), (1, y), (1, y), (1, y), (1, 1), (1, 1) } 

• card (RSIAQ) = card (RCPRSILQ) = 24. 

• 1−f : RSIAQ → RCPRSILQ. 

 The function  is onto (surjective) and one–to–one (injective); therefore, it is 

also a bijective mapping, namely invertible. Its inverse, , is f itself, which I 

1−f

11 )( −−f
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defined in the previous section. The induced Representational Cartesian Product defined 

on two Representational Sets of Irreducible Linear Quantities (RCPRSILQ) can be observed 

to exist as follows: 

• RCPRSILQ = RSILQ1 × RSILQ2 where “×” denotes the Cartesian Product.  

• RSILQ1 = {x, x, y, 1} and RSILQ2 = {x, y, y, y, 1, 1}. 

• RCPRSILQ = {x, x, y, y, 1} × {x, y, y, y, 1, 1}.  

The decomposition of the induced RCPRSILQ into RSILQs can be observed in the 

following figure. 

 

 

Figure 4.127. Sarah's decomposition of the RCP into RSILQs. 

 

 For a polynomial multiplication problem, on the other hand, everything stays the 

same except that one uses the function f instead of the function  and the arrows 

become inverted in Figure 4.127 above. In the previous section, I showed that students 

1−f
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constructing their rectangle via Term Wise Multiplication of Irreducible Linear 

Quantities (ILQ) Strategy made use of this function f. Both f and  are bijective 

mappings and are therefore invertible. 

1−f

 Sarah was the only student to refer to both types of Mapping Structures associated 

with f and . In fact, after constructing her polynomial rectangle via reverse reasoning 

as I described above, Sarah then made use of Mapping Structures associated with the 

function f in her description of the Same–Color–Box Areal Quantities (SCBAQ). The 

following discussion illustrates this point. 

1−f

 

Protocol 4.88: Sarah's reference to mapping structures defined on the 

representational sets of combined linear quantities (RSCLQ). 

G: How many different boxes of the same color do you see this time? 

S: [counting and at the same time pointing to the same–color–boxes] One, 

two, three, four, five, six, seven, eight, nine. 

G: Now let's write the products again... [meaning the areas of the same–color–

boxes as a product] 

S: Well this is gonna be 2x times x [pointing to the corresponding dimension 

tiles]. This one's gonna be x times y [pointing to the corresponding 

dimension tiles]. This is 1 times x [pointing to the dimensions of the box]. 

This is 2x times 3y [pointing to the corresponding dimension tiles]. This 

one is y times 3y [pointing to the dimensions of the box]. This one is 3y 

times 1 [pointing to the corresponding dimension tiles]. This one is 2x 

times 2 [pointing to the corresponding dimension tiles]. This one is y times 
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2 [pointing to the corresponding dimension tiles]. And this is 2 times 1 

[pointing to the dimensions of the box]. 

  

In this discussion, Sarah started by first inducing a Representational Cartesian 

Product (RCP) on the two Representational Sets of Combined Linear Quantities 

(RSCLQ). To be more specific, 

• RSCLQ1 = {2x, y, 1} and RSCLQ2 = {x, 3y, 2}. Applying the Cartesian Product 

“×” she obtained: 

• RSCLQ1 × RSCLQ2 = {2x, y, 1} × {x, 3y, 2} = { (2x, x), (2x, 3y), (2x, 2), (y, x), 

(y, 3y), (y, 2), (1, x), (1, 3y), (1, 2) } =  RCPRSCLQ. She then defined a 

multiplication operation behaving as a bijective mapping from RCPRSCLQ onto 

and into RSSCBAQ as follows: 

• f: RCPRSCLQ → RSSCBAQ.  

The table below lists the functional notation and equality for Sarah's actions on 

each ordered pair of Combined Linear Quantities (CLQ) that is mapped onto and into the 

corresponding Same–Color–Box Areal Quantity (SCBAQ). 

 

Table 4.43 

Sarah's Mapping Structures Acting on RCPRSCLQ 

CLQ 
Pairs 

Total Number of 
CLQ Pairs Functional Notation Functional Equality Resulting 

SCBAQ 

(2x, x) 1 f: (2x, x) → [x2] f (2x, x) = [x2] [x2] 
(2x, 3y) 1 f: (2x, 3y) → [6xy] f (2x, 3y) = [6xy] [6xy] 
(2x, 2) 1 f: (2x, 2) → [4x] f (2x, 2) = [4x] [4x] 
(y, x) 1 f: (y, x) → [yx] f (y, x) = [yx] [yx] 

(y, 3y) 1 f: (y, 3y) → [3y2] f (y, 3y) = [3y2] [3y2] 
(y, 2) 1 f: (y, 2) → [2y] f (y, 2) = [2y] [2y] 



 302

(1, x) 1 f: (1, x) → [x] f (1, x) = [x] [x] 

(1, 3y) 1 f: (1, 3y) → [3y] f (1, 3y) = [3y] [3y] 

(1, 2) 1 f: (1, 2) → [2] f (1, 2) = [2] [2] 

 

 The diagrams below show Sarah's construction of RCPRSCLQ by applying a 

Cartesian Product “×” on the two Representational Sets of Combined Linear Quantities 

RSCLQ1 and RSCLQ2. 

 

 

Figure 4.128. Sarah's definition of the RCP on the RSCLQs. 

 

 Finally, bijectivity of the mapping f becomes clearer with the following diagram. 
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Figure 4.129. Sarah's bijective mapping structures. 

 

 Note that whereas Figures 4.126 and 4.127 were just representatives of the “true” 

RCPRSILQ and RSIAQ, Figures 4.128 and 4.129 above show the true RSSCBAQ and 

RCPRSCLQ. In fact, card (RSSCBAQ) = card (RCPRSCLQ) = 9 both pictorially and 

algebraically. This is not surprising as repetition of elements is allowed in RCPRSILQ and 

RSIAQ, and not allowed in RSSCBAQ and RCPRSCLQ as established in the previous 

section. 

 I end this subsection with John's reference to Mapping Structures in his work with 

the factorization problem 2xy + 10x + 4y + 20. Note that this is an extra problem I posed 

only to John in an attempt to make sure that he saw the Same–Color–Box Areal 

Quantities (SCBAQ) as products, like Nicole and Sarah, rather than pseudo–products, 

like Brad and Rob. My instruction for John was “Make a rectangle for the expression 2xy 

+ 10x + 4y + 20 first, then factor the expression 2xy + 10x + 4y + 20 using the algebra 

tiles.” He very quickly produced the correct polynomial rectangle (Figure 4.130). 
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Figure 4.130. John's rectangle representing the polynomial 2xy + 10x + 4y + 20. 

 

 I then asked him to focus on the boxes of the same color. The following protocol 

picks up at this point. 

 

Protocol 4.89: John's reference to mapping structures. 

J: Green box as a product is 2x times y... this purple one is 2x times 5... this 

blue one is 4 times y... and the last one is 4 times 5... 

G: Why is it 2x times 5... and not 10x times 1... or 10 times x? 

J: Because I am taking the product length times width... so... the length for the 

purple box is 2x and the width is 5... so that's why I do 2x times 5... [He 

then writes the identity (2x + 4)(y + 5) = 2xy + 10x + 4y + 20 on the last 

column of the activity sheet] 

G: Are they consistent in units? [the LHS and the RHS of the identity] 

J: Yeah... centimeters times centimeters is centimeters squared... so... yeah... 

G: How about 4y... what units does it have? 

J: Centimeters squared. 
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G: How about the 4 of 4y? 

J: 4 is centimeters. 

G: Why? 

J: Because that is the length. Length is represented by centimeters [He means 

the length of the blue box]. 

G: And what units does y have... y of 4y? 

J: It's also centimeters... that's the width... [He means the width of the blue 

box] 

G: How about 20... what units does it have? 

J: Centimeters squared. 

G: How do you say that? 

J: Because 20 is... I got 20 by the length times the width... so... that's an area... 

centimeters squared... 

G: How about this 2xy in here [pointing to the 2xy in John's expression (2x + 

4)(y + 5) = 2xy + 10x + 4y + 20]... What units does each one have... 2 and 

x and y separately... what is 2... what is x... what is y? 

J: I guess... y is definitely centimeters... 2x is represented by x plus x... I guess 

you could put a centimeters on x... not on 2... that's kinda tricky... 

G: Tell me more about that... 

J: Well... 2x is the sum of the length... so... i can't do... 2 times x... i can't put a 

unit on both of those [meaning 2 and x]... it'd be 2x centimeters squared... 

there is only 2x centimeters. So you need to think of 2x as x + x [In other 

words, the 2 is additive] not 2 times x [In other words, John uses the word 
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“times” only when two quantities are multiplied]. 2 is just a constant [In 

other words, a unitless quantity, in our context] 

G: Your explanation is very good...  

  

John made his rectangle without the presence of the dimension tiles. However, 

this did not prevent him from inducing a Representational Cartesian Product (RCP) 

defined on the two Representational Sets of Combined Linear Quantities (RSCLQ). His 

first sentence “Green box as a product is 2x times y... this purple one is 2x times 5... this 

blue one is 4 times y... and the last one is 4 times 5” necessitates a bijective function  

of multiplicative type mapping the Representational Set of Same–Color–Box Areal 

Quantities (RSSCBAQ) onto and into and induced Representational Cartesian Product 

defined on the two Representational Sets of Combined Linear Quantities (RCPRSCLQ). His 

first statement “Green box as a product is 2x times y” can be notated with the functional 

notation as : [2xy] → (2x, y). His second statement “this purple one is 2x times 5” can 

be modeled with the functional notation as : [10x] → (2x, 5). His third statement “this 

blue one is 4 times y” can be notated as : [4y] → (4, y). Finally, his fourth statement 

“and the last one is 4 times 5” can be notated as : [20] → (4, 5). The table below lists 

the inverse functional notation and equality for John's statements about each same–color–

box areal quantity (SCBAQ). 

1−f

1−f

1−f

1−f

1−f
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Table 4.44 

John's Inverse Mapping Structures and Induced RCPRSCLQ 

SCBAQ Total Number 
of SCBAQ Functional Notation Functional Equality Resulting 

CLQ Pair 
Induced 

RCP 

[2xy] 1 1−f : [2xy] → (2x, y) 1−f  [2xy] = (2x, y) (2x, y) {2x} × {y} 

[10x] 1 1−f : [10x] → (2x, 5) 1−f  [10x] = (2x, 5) (2x, 5) {2x} × {5} 
[4y] 1 1−f : [4y] → (4, y) 1−f  [4y] = (4, y) (4, y) {4} × {y} 

[20] 1 1−f : [20] → (4, 5) 1−f  [20] = (4, 5) (4, 5) {4} × {5} 

 

 The diagrams below illustrate John's four statements, which call for a bijective 

function , mapping the Representational Set of Same–Color–Box Areal Quantities 

(RSSCBAQ) onto and into an induced Representational Cartesian Product defined on two 

Representational Sets of Combined Linear Quantities (RCPRSCLQ). 

1−f

 

 

Figure 4.131. John's inverse mapping structures. 
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 Figure 4.131 above shows the true RSSCBAQ and RCPRSCLQ as both sets are of 

cardinality 4. Remember, the representational sets RSSCBAQ, RSCLQ, and RCPRSCLQ 

are uniquely defined; therefore, one does not have to worry about whether the repetition 

of elements is allowed or not. To be more specific, 

• RSSCBAQ = { [2xy], [10x], [4y], [20] }. 

• RCPRSCLQ = { (2x, y), (2x, 5), (4, y), (4, 5) }. 

• card (RSSCBAQ) = card (RCPRSCLQ) = 4. 

• 1−f : RSSCBAQ → RCPRSCLQ. 

 Note that when one makes reference to inverse Mapping Structures, one has to 

induce a RCP. In fact, this is the case with the tasks on polynomial factorization. 

Compare with the RCP one naturally defines with reference to the ordinary Mapping 

Structures when working on the tasks on polynomial multiplication. This is the slight 

difference between the two RCPs, which depends on whether one uses the bijective 

mapping  or f. In John's work above, the induced Representational Cartesian Product 

defined on two Representational Sets of Combined Linear Quantities (RCPRSCLQ) can be 

observed to exist as follows: 

1−f

• RCPRSCLQ = RSCLQ1 × RSCLQ2 where “×” denotes the Cartesian Product. 

• RSCLQ1 = {2x, 4} and RSCLQ2 = {y, 5}. The induced RCPRSCLQ can be 

decomposed more explicitly as follows: 

• RCPRSCLQ = {2x, 4} × {y, 5}.  

The decomposition of the induced RCPRSCLQ into RSCLQs is illustrated in the following 

diagrams. 
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Figure 4.132. John's decomposition of the induced RCP into RSCLQs. 

 

 

4.7. Summary of Findings for Each Individual Student 

4.7.1. Brad 

 Brad’s interpretation of prime–composite rectangles and growing rectangles 

representing summed (counting, odd, even) numbers made of one inch color cubes was 

multiplicative (MRUC), upon the “Area as a Product” instruction. As for the “Area as a 

Sum” instruction, on the other hand, he provided Equal Addends and Irreducible 

Addends (ARUC). The fact that he decomposed the growing rectangles representing 

summed numbers into Equal Addends (rather than Summed Addends) was indicative of 

the fact that he saw these counting numbers as composite numbers (and not as summed 

numbers, despite he obtained his growing rectangle sequence by adding different color 

counting number subunits). Brad’s additive decomposition of the subunits was slightly 
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different, though. For instance, he decomposed the odd integer L–shape subunits into 

Symmetric Addends (sub–subunits). 

 During the polynomial multiplication tasks, he preferred the Filling in the Puzzle 

strategy in the process of constructing his polynomial rectangles, which was the 

indication that what he was doing was addition, and not multiplication. Since a Term–

Wise Multiplication of Irreducible Areal Quantities strategy was non–existent for him, 

representational Cartesian products (RCP) were not available, either. In fact, his additive 

thinking caused him to (mis)interpret the structure inherent in the Same–Color–Box 

Areal Quantities (SCBAQ) when he was asked to express the area of these areal 

quantities as products. His answers were of the form (a coefficient) times (an irreducible 

areal quantity) instead of the form (a combined linear quantity) times (a combined linear 

quantity), the former indicating a pseudo–product, a concatenation of multiplicative 

meaning (PMRUC). For Brad, the cardinality function card has a value equal to the 

coefficient (dimensionless constant) of the pseudo–products, which corroborates the 

additivity of the situation. 

 Brad was the only student to come up with Standing–Up Positioned Dimension 

Tiles strategy in an effort to emphasize the one–dimensionality associated with the 

dimension tiles (Figures 4.100, 4.101, 4.121). He often touched upon both one– and two–

dimensionalities in his sense making of the linear and areal quantities. He was one of the 

few students to act on dimensionalities via mapping structures, by which to construct 

Dimensionalistic Mapping Structures (DMS). He acted on these very abstract 

dimensionality levels by indicating the pair of abstract one–dimensionalities, the 
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multiplication operation behaving as a mapping acting on the ordered pair of abstract 

one–dimensionalities, and the two–dimensionality resulting from the mapping. 

 

4.7.2. Rob 

 Rob, a very strong algebra student, had no problem in switching back and forth 

the linearity and the arealness of the quantities (in all tasks, guided by cubes or tiles) 

under consideration. In the case of the activities modeled with color cubes, the areas of 

the growing rectangles as products were true products (and not pseudo – products) for 

Rob. As for the expressions of the areas of the growing rectangles as sums for the same 

activities, on the other hand, he made use of a limited ARUC types (Equal Addends and 

Irreducible Addends only). Though he generated his growing rectangle sequence for the 

summation activities by relying on the instruction “Add them so that they (counting, odd, 

even number subunits, respectively) generate a rectangle at each step,” he failed to realize 

the summed numbers at each stage, and to produce Summed Addends. Rob still was able 

to express the areas of such rectangles as products (MRUC), however, his treatment of 

the growing rectangles as representations of composite numbers rather than summed 

numbers prevented him from establishing the summation formulas  for the 

particular examples we studied. Like Brad, he made use of Equal Addends and 

Irreducible Addends. 

)()(
1

ngif
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 Rob’s Bridge Connection between Consecutive (Areal) Subunits strategy was 

indicative of the fact that he was able to reason about these areal quantities (and their 

magnitudes) on their own and their relationships with each other. In that sense, he was 

able to reason quantitatively (cf. Protocols 4.17 & 4.36). In the case of summing odd 
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integers activity, in particular, his quantitative reasoning led him to realize that every 

added L–shape subunit built on a growing square sequence. Rob was the only student to 

associate dimensionalities to known measurement units.  

In Rob’s work on polynomial multiplication activities, representational Cartesian 

products (RCP) [acting on the representational sets of irreducible linear quantities 

(RSILQ), or the representational sets of combined linear quantities (RSCLQ)] were non–

existent, which is indicative of the fact that this student was not reasoning 

multiplicatively. He constantly stuck to the Filling in the Puzzle strategy, an additive 

scheme, by which he generated the representational (areal) quantities of his polynomial 

rectangles. It was then of no surprise that his interpretation of the areas of the 

representational sets of same –color–box areal quantities (RSSCBAQ) as products was 

lacking a multiplicative flavor; his expressions were pseuo–products. The first term of 

each pseudo–product for Rob were some sort of coefficients behaving like counting 

numbers that show how many there are of each irreducible areal quantitiy (IAQ). In other 

words, cardinality function card manifested itself (with values different from 1) in Rob’s 

case in agreement with his additive thinking (in the polynomial multiplication and 

factorization tasks requiring a multiplicative approach). 

 

4.7.3. Nicole 

 One of the most important results concerning Nicole was her indecisiveness about 

the (linear–areal) character of the odd/even L–shape subunits generating the growing 

rectangle sequence. Despite that fact that these odd/even number L–shape subunits 

represent areal subregions of the growing rectangle sequence – hence areal in reality – 
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that was not the case for Nicole; her concept of area was computation rather than 

measure. In fact, she necessitated a Rectangle Condition to establish the arealness of 

these quantities. In fact, in her work with the summing even integers activity, after 

representing even number L–shape subunits generating the growing rectangle sequence; 

she provided a different formalism in which all even number subunits were 
2

2 n
×  

rectangles. This is another important result concerning Nicole, because she was the only 

student to represent even integer subunits in both ways, as L–shapes and as rectangles, 

respectively. Her comparison of the two formations led her to conclude that the even 

number subunits in the latter ones looked “more areal because they were rectangles.” One 

other important result pertaining to Nicole’s work with the summation activities is the 

variety of additive type RUCs by which she established the “Area as a sum equals Area 

as a Product” identities. Besides the Summed Addends, in particular, she was the only 

student to produce Recursive Addends. 

 Unlike Rob and Brad who constantly stuck to the Filling in the Puzzle strategy, 

which indicates these students’ additive reasoning; Nicole relied on the Term–Wise 

Multiplication of the Irreducible Areal Quantities strategy by which she established the 

MRUC. Her proficiency in MRUC resulted in a RCP defined on pairs of RSILQs and 

pairs of RSCLQs, respectively. She was very careful, and successful, in the process of 

identifying the elements of the pairs of RSILQs (and RSCLQs). In particular, her 

statements in Protocol 4.71 were pure mathematical, establishing the existence of the 

RCP. She did not make any mistake in her expressions of the “Area as a Product of the 

Boxes of the Same Color.” Her expressions were products – and not pseudo products – of 

the form (a combined linear quantity) times (another combined linear quantity). For 
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Nicole, each Same–Color–Box (SCB) was an areal singleton of cardinality 1, unlike Rob 

and Brad for whom the cardinality function was taking values (equal to the coefficient of 

the pseudo–product representing the area of the SCB) different from 1. Nicole was 

unique in her ability to distinguish between same–valued linear and areal quantities with 

reference to a Bi–Valued Function, an index taking values 1 and 2 as for the Number of 

Aspects, respectively (cf. Protocol 4.82 & Figure 4.108). 

 

4.7.4. John 

 John was the only student to emphasize the mapping structures from the 

beginning, starting from the task on prime and composite rectangles all the way through 

the end, polynomial factorization. The following table illustrates his statements involving 

the linear quantities juxtaposed by the connective “and,” the strongest indicator of 

MRUC and mapping structures. Other than the ones in the table below, his statements 

“To find that specific spot” and “I got 20 by the length times the width” necessitate 

mapping structures. His consistent reference to the mapping structures in the comparison 

of the same–valued linear and areal quantities stood as an evidence for his multiplicative 

reasoning. John also came up with a vectorial approach to distinguish between same–

valued linear and areal quantities. In this approach, the −+ )2( yx valued areal quantity 

corresponds to the plane vector )1 ,2( yx +  whereas the −+ )2( yx valued linear quantity 

corresponds to the scalar  on the real number line. yx +2
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Table 4.45 

John’s Reference to Connective “And” & Mapping Structures 

Statements MRUC Mapping 
Structures 

Length of five and width of one in which case the area 
would be 5. (5, 1) 5)1 ,5(: af  

It’s not just 6… It’s 6 and 1. (6, 1) 6)1 ,6(: af  
You gotta look at this [pointing to the linear y at the top] 

and this [pointing to the linear 1 on the side] to find this one 
(See Figure 4. 112). 

(y, 1) yyf a)1 ,(:  

 

 Unlike Nicole, John had no problem in establishing the arealness of the 

(symmetric or nonsymmetric) L–shape (odd or even number) subunits. For this purpose, 

he used a wide range of ARUC types, which are summarized in the table below. 

 

Table 4.46 

John’s Decomposition of the Subunits into Sub – Subunits 

Context Decomposition into Sub–
Subunits 

Relational Notation for the 
Sub–Subunits 

Symmetric L–Shapes (Odd Number 
Subunits) )1( −+ NN  (N, 1) & (N – 1, 1) 

Nonsymmetric L–Shapes (Even 
Number Subunits) NN +  (N, 1) & (N, 1) 

Nonsymmetric L–Shapes (Even 
Number Subunits) )1()1( −++ NN  (N + 1, 1) & (N – 1, 1) 

 

As suggested by the third column of Table 4.46, John was able to establish a rectangle 

condition for the sub–subunits, indicating their areal character. John was the only student 

to make use of the ARUC type )1( −+ NN  in his derivation of the odd integers’ 

summation identity  which can be found in some textbooks on visual 

proofs (Figure 4.133). 
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Figure 4.133. Sums of odd integers (Nelsen, 1993, p. 74). 

 

 In the process of constructing polynomial rectangles via algebra tiles, John was 

reasoning additively in the first two tasks (Filling in the Puzzle strategy). In his work with 

the  polynomial rectangle, spontaneous learning occurred and he shifted 

from Filling in the Puzzle (FIP) strategy to Term–Wise Multiplication of Irreducible 

Linear Quantities (TWMILQ) strategy. John was unique in that he was the only student 

to use both strategies (Figure 4.134). At times, he was also able to make sense of the 

)32()1( +×+ yx
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dimension tiles as some sort of measurement tools (e.g., he provided the  

relation for his “false” identity  in an attempt to reconcile 

the LHS and the RHS). 

2+= yx

992)32)(1( 2 ++=++ yyyx

 

  
Figure 4.134. Strategies used by the preservice teachers. 

 

 Like Nicole and Sarah, John interpreted the same–color–box areal quantities 

(SCBAQ) as “areal” in nature by providing true products of the form (a combined linear 

quantity) times (another combined linear quantity) contrary to Brad and Rob who failed 

to assign this multiplicative interpretation. The cardinality function card, therefore, was 

taking the same value “1” for each SCBAQ in John, Sarah, and Nicole’s case. For these 

three students, therefore, SCBAQs can be thought as 1–valued areal–singletons under the 

cardinality function card. All these three students came up with contradictory verbal 

proofs invalidating PMRUC for the SCBAQs. 
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4.7.5. Sarah 

 Sarah was very consistent in processing her ideas, especially when making 

internal connections. For instance, she was able to provide a summation formula for the 

even numbers relating her growing rectangle sequences for odd integers and even 

integers, respectively. She obtained her formula  in the 

conjectural process, from her figure representing the 5th stage (n = 5), indicating an 

advanced level of thinking. She was able to see that both  and on the RHS were to 

represent areal quantities. MRUC was evident from her statements necessitating 

relational notations (n, n) and (n, 1) for these quantities. As described in Chapter 4 in 

details, Sarah established LHS–RHS equivalence in various tasks with reference to such 

ARUC and MRUC interpretation, as above.  

nnn +=+++ 2242 K

2n n

 In regard to algebra tile models, Sarah was the only student to exhibit a complete 

multiplicative understanding in the process of constructing a polynomial rectangle for the 

polynomial factorization tasks. The difference between Sarah and John is that John 

induced the RCP after completing his rectangle (without the dimension tiles placed 

around) whereas Sarah induced her RCP in the process of generating the polynomial 

rectangle (by placing the dimension tiles around), indicating a reference to Inverse 

Mapping Structures (IMS). In that sense, Sarah relied on the Decomposition of 

Irreducible Areal Quantitites into Pairs of Irreducible Linear Quantities (DIAQPILQ) 

strategy, which can be thought as the inverse of the Term–Wise Multiplication of 

Irreducible Linear Quantities (TWMILQ) strategy. Both strategies corroborate Sarah’s 

multiplicative understanding at a sophisticated level. These strategies require that 

multiplication operation behave as invertible functions (bijections)  which are , and 1−ff
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inverse function of each other  In this notation,  go 

with the Term–Wise Multiplication of Irreducible Linear Quantities (TWMILQ) strategy 

and the Decomposition of Irreducible Areal Quantitites into Pairs of Irreducible Linear 

Quantities (DIAQPILQ) strategy, respectively. Table below summarizes the meanings 

(multiplicative vs. additive) projected on the irreducible (IAQ) and same–color–box areal 

quantities (SCBAQ) by the interview students for the cases “in the process of” and “after 

the completion of” the polynomial rectangles in the polynomial multiplication and 

factorization tasks. 

).( 11 Iffff == −− oo 1 and −ff

 

Table 4.47 

Preservice Teachers’ Multiplicative (⊗) vs. Additive (⊕) Interpretation of the Areal 

Quantities 

Task During vs. After AQ Type Brad Rob John Nicole Sarah
IAQ ⊕ ⊕ ⊗ ⊗ ⊗ In the Process of 

Constructing the 
Polynomial Rectangle SCBAQ NA NA NA NA NA 

IAQ ⊕ ⊕ ⊗ ⊗ ⊗ 

Polynomial 
Multiplication After the Completion of 

the Polynomial Rectangle SCBAQ ⊕ ⊕ ⊗ ⊗ ⊗ 
IAQ ⊕ ⊕ NA NA ⊗ In the Process of 

Constructing the 
Polynomial Rectangle SCBAQ NA NA NA NA NA 

IAQ ⊕ ⊕ ⊗ ⊗ ⊗ 

Polynomial 
Factorization After the Completion of 

the Polynomial Rectangle SCBAQ ⊕ ⊕ ⊗ ⊗ ⊗ 
 

 Spradley’s relational type Domain Analysis arose as a powerful data analysis tool 

in the investigation of one of the protocols regarding Sarah. I was able to code Sarah’s 

phrases via Universal (Table 4.35) and Informant Expressed Semantic Relationships. 

Sarah’s semantic relations “is” and “would be” were indicative of the areal–ness of the 

representational areal quantities (Areal Reflexivity) whereas the semantic relations (of 
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passive voice) “used as” and “based as” served for linking the dimension tiles to length 

(Instrumentalized Linear Quantities). There was a one–to–one correspondence between 

Sarah’s semantic relations and the (linear or areal) character of the representational 

quantities. 

 As described before, in their comparison of the same–valued linear and areal 

quantities, Nicole and Sarah often referred to verbal contradictory proofs in an attempt to 

invalidate the PMRUC approach, which was spelled out by some students (Brad and 

Rob). Besides these verbal proofs by contradiction, just as Nicole provided a pure 

mathematical approach involving Cartesian products (Protocol 4. 71), Sarah relied on 

productive thinking (Protocol 4. 74) by which she established a figure (the 

valued areal–singleton inside) and a ground (the −+ )2( yx −+ )2( yx valued dimension 

tiles outside). For Rob and Brad, in contrast, the areal tiles representing the 

valued areal–singleton inside were standing for figure, and there was no such 

thing as ground.

−+ )2( yx
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CHAPTER V 

DISCUSSION: MAPPING STRUCTURES CONCEPTUAL FIELD 

 

 The discussion in the previous chapter revealed how the mathematical concepts 

arising from students' work on color cubes and tiles are intricate and inseparable from 

each other. Conceptual Field Theory (CFT) (Vergnaud, 1983; 1988, 1994) aims to 

present the complexity inherent in the nature of “simple” tasks on additive and 

multiplicative reasoning. Research indicates that the Multiplicative Conceptual Field 

(MCF) is very complex and has many concepts of mathematics in its structure, other than 

multiplication itself (Behr, Harel, Post, & Lesh, 1992; Harel & Behr, 1989; Harel, Behr, 

Post, & Lesh, 1992). “Additive reasoning develops quite naturally and intuitively through 

encounters with many situations that are primarily additive in nature” (Sowder, 

Armstrong, Lamon, Simon, Sowder, & Thompson, 1988, p. 128). Building up 

multiplicative reasoning skills, on the other hand, is not obvious; schooling and teacher 

guidance are essential to acquire a profound understanding and familiarization with 

multiplicative situations (Hiebert & Behr, 1988; Resnick & Singer, 1993). 

 According to Steffe (1988), children who are on a unit coordination pathway start 

by constructing singletons representing unities from which they achieve more 

sophisticated unit coordination schemes (e.g., composite units, iterable units). “As an 

adult, I can say that multiplication of whole numbers is an operation that is based on 

repeated addition” (Steffe, 1988, p. 128). “It is the shift from operating with singleton 



 322

units to coordinating composite units that signals the onset of multiplication” (Singh, 

2000, p. 273). In all activities concerning cubes and tiles, my preservice teachers were 

able to refer to singleton units − irreducible areal quantities (IAQ) − in their expressions 

of the area of the rectangle. In particular, as for the prime rectangles, the area as a sum 

was solely based on the sum of such singleton units (represented by wooden color inch 

cubes). As for the area of the composite rectangles as a sum, on the other hand, they were 

successful in referring to both singleton units − irreducible areal quantities (IAQ) − and 

composite units  − combined areal quantities (CAQ).  

As for the summation activities, students still established the “onset of 

multiplication” (Singh, 2000, p. 273) in quite different formalisms. Everybody obtained 

the area of the growing rectangles with reference to the number n of various figures13 

(subunits) of different colors for each situation. The area of the growing rectangle is 

expressed as repeated quantitative additions (e.g., Irreducible Addends, Equal Addends) 

and as other functional type quantitative additions (e.g., Summed Addends, Recursive 

Addends, Random Addends). In all such cases, students referred to name–unit–value 

trinity. In the functional type in particular, students relied on the number n of Summed 

Addends to establish a multiplicative formalism. For instance, the n in the product 

expression  is the number of different color even integer subunits being added. 

With the relational notation, this corresponds to the ordered pair (n, n + 1) of linear 

quantities, which is equivalent to the ordered n–tuple [2, 4, …, 2n] of areal quantities. 

)1( +× nn

                                                 
13 Summing Counting Numbers:  and n×1

2
2 n
×  rectangle subunits for odd and even integer subunits, 

respectively. 
Summing Odd Integers: Symmetric L–shape subunits (irregular hexagons). 
Summing Even Integers: Non–symmetric L–Shapes (Nicole, Brad, John, Sarah) and  rectangle 
subunits (Nicole, Rob). 

n×2
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This was quite different from the conception of multiplication based on repeated addition 

(Fishbein et al., 1985). In that sense, my students establishing the onset of the 

multiplication based on functional type quantitative additions looked quite different from 

the distributive aspect argued by Steffe (1992), and Confrey and Lachance (2000) as 

well. 

Steffe (1994) found that “For a situation to be established as multiplicative, it is 

necessary to at least coordinate two composite units in such a way that one of the 

composite units is distributed over the elements of the other composite units” (p.19). My 

results in the previous chapter indicate that this definition is inadequate to reflect what 

multiplication is/could be. For instance, in the polynomial multiplication tasks, Sarah, 

Nicole and John, who relied on the “Term Wise Multiplication of Irreducible Linear 

Quantities” Strategy, referred to Mapping Structures in generating their polynomial 

rectangle. The dimensions of the polynomial rectangle, namely the Combined Linear 

Quantities (CLQ), still possessed some sort of composite units (namely the Irreducible 

Linear Quantities) inherent in their structure; however, in the process of “multiplication,” 

a relational aspect was evident, rather than distributive aspect argued by Steffe. 

I want to illustrate the inadequacy of Steffe’s (1994) distributive aspect for 

multiplication with my preservice teachers’ work with the color cube activities as well. In 

my study, students established the existence of areal units, areal subunits, and areal sub–

subunits, which is in agreement with Steffe’s three levels of unit–coordination. However, 

the structure of these units is different in that students emphasized the arealness and the 

quantitative character in an attempt to launch identities of the form “Area as a Sum = 
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Area as a Product” based on the growing rectangles they created. In nearly all activities, 

students used the following three level structure: 

• Singleton areal sub–subunits,  

• Composite areal subunit of areal sub–subunits,  

• Composite areal unit of composite areal subunits of areal sub–subunits. 

When one refers back to the 5 × 7 multiplication example in the introduction of Steffe’s 

Unit–Coordination framework in the first chapter, one can deduce the following. 

On the 1st level of unit–coordination (Steffe, 1994), students make sense of unity 

as singleton units, each singleton unit corresponding to the number “1.” This corresponds 

to the areal sub–subunits in the present study. As for the color cube activities, areal sub–

subunits were most of the time (irreducible) areal singletons except some particular cases. 

For instance, Brad’s areal sub–subunits for the Summation of Odd Integers Activity were 

of the form N + 1 + N, by which I established the terminology Symmetric Addends. As 

another example, John’s decomposition yielded an N + (N – 1) structure. As for the 

algebra tiles activities, on the other hand, there were three different singleton unit types: 

An x–singleton, a y–singleton, and a 1–singleton. These can be thought as the singleton 

(irreducible) members of the Representational Set of Irreducible Areal Quantities 

(RSIAQ). 

On the 2nd level of unit–coordination, students make sense of 7 or 5 as 7 

composite unit of singleton units, and 5 composite unit of singleton units, respectively, 

each singleton unit once again corresponding to the number “1.” The “composite unit” 

notion corresponds to the areal subunits in my study. The 1 × n rectangles representing 

the odd integers (in the Summation of Counting Numbers Activity), the 
2

2 n
×  rectangles 
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representing the even integers (in the Summation of Counting Numbers Activity), the 

symmetric L–shapes representing odd integers (in the Summation of Odd Integers 

Activity), the nonsymmetric L–shapes representing even integers (in the Summation of 

Even Integers Activity), the  rectangles representing the even integers (in the 

Summation of Even Numbers Activity) are established as “composite” areal subunits 

(quantities) of areal sub–subunits (quantities) by the preservice teachers. As for the 

polynomial rectangles activities, on the other hand, same–color–boxes stood as the 

subunits. As described before, these subunits are the members of the Representational Set 

of Same−Color−Box Areal Quantities (RSSCBAQ). Students interpreted these areal 

quantities in two different fashions, though. I made use of the cardinality function and 

dimensional analysis in an attempt to establish which students reasoned about these 

quantities additively and which students multiplicatively. Sarah, Nicole, and John were 

able to think about these quantities both additively and multiplicatively whereas Rob and 

Brad only came up with additive reasoning. Pseudo–Multiplicative Representational Unit 

Coordination (PMRUC) is the name I assigned for the exhibition of additive reasoning 

with these boxes, which was lacking a multiplicative flavor. In fact, PMRUC is the exact 

same thing as Steffe’s 2nd level unit–coordination. I must also indicate that it took John 

quite some time to realize that it was possible to express the area of a same–color–box as 

a product of two (combined) linear quantities. 

n×2

On the 3rd level of unit–coordination, students make sense of 5 as the 5 composite 

unit of 7 composite unit of singleton units, each singleton unit once again corresponding 

to the number “1.” The “composite unit of composite unit of singleton units” notion 

corresponds to the biggest areal units in my study. By “biggest areal units,” I mean the 
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growing rectangle sequence in the summation activities, and the polynomial rectangle 

itself in the algebra tiles activities. In Steffe’s 3rd level of unit–coordination, the 

composite units (addends) are all “7”s, namely equal addends, whereas in my study, 

students provided a variety of addends. In their work with summation activities, students 

came up with Equal Addends as well as Summed Addends, Recursive Addends, and 

Random Addends. However, once again the same students, Brad and Rob, were the ones 

to provide Equal Addends in their expression of the area of the growing rectangle in the 

summation activities. As an example, the area of the growing square at the 5th stage in the 

Summation of Odd Integers Activity, can be thought as 5 composite unit of 5 composite 

unit of 1, for Rob and Brad (Equal Addends). For Sarah, Nicole, and John who all 

provided Summed Addends, this can be written as 5 composite unit of 5 non−equal 

L−shape unit of 1 (Summed Addends). 

I also want to illustrate how my students’ RUC was different from Steffe’s 3rd 

level UC for the algebra tiles activities with a specific example they studied during the 

interviews. The task was to multiply yx +2  by 12 ++ yx  using algebra tiles. All 

students produced the same rectangle (Figure 5.1) but their interpretation of the 

same−color−box areal quantities (SCBAQ) differed. 

  



 327

 

Figure 5.1. The yx +2  by 12 ++ yx  polynomial rectangle. 

 

For Brad and Rob, the area of the polynomial rectangle was 5 SCBAQ composite unit of 

irreducible singletons, where each SCBAQ was interpreted additively whereas for Nicole, 

Sarah, and John, it was 6 SCBAQ areal singleton units, where each SCBAQ was 

interpreted multiplicatively. The table below illustrates the difference in these students’ 

thinking. 

 

Table 5.1 

Preservice Teachers’ Multiplicative vs. Additive Interpretation of the Same−Color−Box 

Areal Quantities (SCBAQ) 

Color of the 
SCBAQ 

Dimensions of the 
SCBAQ Brad, Rob Nicole, Sarah, John

Purple xx×2  2 composite unit of areal 
x2−singletons 

1 unit of xx×2  
areal singleton 

Green xy ×  1 unit of xy ×  areal 
singleton 

Green yx 22 ×  

5 composite unit of areal 
xy−singletons 1 unit of  

areal singleton 
yx 22 ×

Blue yy 2×  2 composite unit of areal 1 unit of  yy 2×
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y2−singletons areal singleton 

Purple 12 ×x  2 composite unit of areal 
x−singletons 

1 unit of  areal 
singleton 

12 ×x

Blue 1×y  1 composite unit of areal 
y−singleton 

1 unit of  areal 
singleton 

1×y

 

 Though Steffe’s Unit−Coordination was the essential theoretical framework, I 

also felt the need to use sub−frameworks in order to respond to my research questions.  

Only the names, or only the measurement units, or only the values of quantities involved 

in a mathematical situation do not suffice to adequately reflect the nature of those 

quantities. My research participants and I delved further into the nature of the linear and 

areal quantities involved in the color cubes and algebra tiles activities in order to expose 

the units associated with them. Just as a point on an xyz −space is associated with its x−, 

y−, and z−coordinates, that is, coordinated as an ordered triple , a quantity is born 

only when it is correctly represented as the triple (name, unit, value), thus coordinated 

properly. For instance, in a mathematical situation involving a pile of oranges, the 

coordination (oranges, weight of oranges in lb, 12) is not the same as (oranges, cost of 

oranges in $, 24) or (oranges, number of oranges, 36). Schwartz (1988) used the term 

referent in a way similar to how I used name and called such quantities adjectival 

quantities (p. 41). He stated that all quantities have referents and that the “composing of 

two mathematical quantities to yield a third derived quantity can take either of two forms, 

referent preserving composition or referent transforming composition.” (p. 41). Referent 

preserving compositions (e.g., addition and subtraction) yield quantities of the same kind 

whereas referent transforming compositions (e.g., multiplication and division) yield 

quantities of a new kind. 

),,( zyx
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 The fact that some students (Brad and Rob) relied on the Filling in the Puzzle 

Strategy and some others (Nicole, Sarah, John) relied on the Term−Wise Multiplication of 

Irreducible Linear Quantities Strategy in the process of constructing polynomial 

rectangles suggest that all these students were aware that they were dealing with areal 

quantities, however, the latter students were able to operate with both referent preserving 

and transforming compositions whereas the former ones took the referent preserving 

composition into account only. Brad and Rob were generating their polynomial 

rectangles by adding the irreducible areal quantities (IAQ), which were already areas; 

there was no such thing as the creation of a quantity of a new kind. Nicole, Sarah, and 

John, on the other hand, first multiplied the corresponding pair of irreducible linear 

quantities (ILQ), wherefrom obtained the corresponding irreducible areal of−a−new−kind 

quantities (IAQ). They then added these new quantities. For these students, each 

quantitative multiplication operation (referent transforming composition) was 

immediately followed by a quantitative addition operation (referent preserving 

composition). 

 The findings in the paragraph above can be slightly modified for my research 

participants’ sense making of the Same−Color−Box Areal Quantities (SCBAQ). When I 

asked them to express the area of these SCBAQ as products, Brad and Rob provided 

pseudo−products, which possessed an additive character in their structure. In that sense, 

once again I can conclude that these two students were referring to a referent preserving 

composition, the quantitative addition operation, operating on the irreducible areal 

singleton constituents of the SCBAQ. As for John, Sarah, and Nicole, on the other hand, I 

can conclude that, because their (both written and verbal) expressions were products of 
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the corresponding pairs of combined linear quantities (CLQ), they were making use of a 

referent transforming composition: the quantitative multiplication operation. I name this 

strategy as Term−Wise Multiplication of Combined Linear Quantities Strategy. Each pair 

of combined linear quantities (CLQ), possessing a linear character, is being transformed 

into a quantity (Same−Color−Box Areal Quantity) of a totally new (areal) kind via a 

referent transforming composition. 

 Besides the writings of Schwartz, I made use of Thompson’s work on quantitative 

reasoning (Thompson, 1988, 1989, 1993, 1994, 1995) as a theoretical sub−framework, in 

order to explain my students’ sense making of the linear and areal quantities. According 

to Thompson, “to reason quantitatively is to reason about quantities, their magnitudes, 

and their relationships with other quantities.” (1988, p. 164). As described in the previous 

chapter in detail, there were instances where all students were reasoning quantitatively, 

with Thompson’s point of view. In particular, Rob exhibited a quantitative reasoning in 

his work with the summation of odd integers activity where he established the existence 

of the (areal L−shape) subunits as quantities on their own and as quantities in relation to 

each other by which he made sense of his growing square sequence. Brad, in a similar 

pathway, was able to demonstrate his quantitative reasoning in providing a link between 

each L−shape areal subunit and the corresponding Symmetric Addends (areal 

sub−subunits). Moreover, he provided a beautiful internal connection by referring to 

statistical concepts of mathematics in doing so. Sarah’s quantitative reasoning showed 

itself in her visual proof connecting the two summation formulas  and 

 where she obtained the latter one with reference to the former 
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one in the conjectural process at the 5th stage. She was able to apply the quantitative 

addition operation on the areal quantities  and n from which she obtained an (areal) 

of−the−same−kind quantity. In the meantime, she was aware that the areal quantities  

and n resulted (were born) from a quantitative multiplication operation acting on the 

ordered pair (n, n) and the ordered pair (n, 1) of linear quantities, respectively. She was 

also able to establish a LHS−RHS equivalence meaningfully by demonstrating how the 

summed quantity  and the product quantity 

2n
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1
2 )1( +× nn  stood for the same 

areal quantity. I used a relational notation )1,()]1,(),,[( +≡ nnnnn describing this 

equivalence. 

Thompson (1988) established several “cognitive obstacles” (p. 167) to students’ 

quantitative reasoning. The most important cognitive obstacle was that students’ “failure 

to distinguish between a quantity and its measure hindered their ability to explicate 

relationships.” (p. 168). Another cognitive obstacle was that “Multiplicative quantities of 

any sort (products, ratios, rates) were commonly misidentified or given an inappropriate 

unit.” (p. 168). Olive and Caglayan (2006, 2007) found that “quantitative unit 

coordination” and “quantitative unit conservation” are essential constructs for 

overcoming these cognitive obstacles when students reason quantitatively about word 

problem situations. The present study established “mapping structures” as one such 

crucial construct to overcome cognitive obstacles to students’ quantitative reasoning in a 

representational situation (e.g., in comparing same−valued linear and areal quantities, in 

expressing the area of a same−color−box as a product). 
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In contrast to the view of “multiplication as a repeated addition,” there is research 

advocating the “correspondence principle” as the basis of multiplication (Nunes & 

Bryant, 1996; Piaget, 1965; Vergnaud, 1983, 1988). According to this principle, 

multiplication is the conception of determining how many in total of certain objects (e.g., 

oranges) exist if there corresponds a fixed number of these objects per each counterpart 

object (e.g., picnic basket) with a certain number. Vergnaud (1983) defined an invariant 

relation  to represent the correspondence principle, where the invariance lies in 

the “fixed number of oranges per each picnic basket.” Park and Nunes (2001) found that 

children make sense of multiplication problems via the correspondence principle, not as a 

repeated addition (p. 771). My study shows that in the context of prime and composite 

rectangles, preservice teachers’ multiplicative reasoning was based on both the 

correspondence principle and multiplicative representational unit coordination along with 

mapping structures. They were also able to form product quantities (e.g., 3 inches × 5 

inches) reflecting their quantitative reasoning. Preservice teachers also were able to 

employ a more sophisticated version of repeated addition (quantitative addition 

operation), a referent preserving composition (Schwartz, 1988), that involves an iteration 

of quantitative composite units (e.g., 5 inches squared + 5 inches squared + 5 inches 

squared) or quantitative irreducible units (e.g., 1 inch squared + 1 inch squared + … + 1 

inch squared) by which they deduced the identity “area as a sum = area as a product.”     

)( yfx =

 Goodrow and Schliemann14 found that “working with multiplicative 

functions on the coordinate grid can support students in their transition from additive to 

                                                 
14 Retrieved August 12, 2007 from 
http://www.earlyalgebra.terc.edu/our_papers/2003/goodrow_schliemann_pme2003.pdf 
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multiplicative reasoning.” In fact in my research, this was the case for John who shifted 

from “Filling in the Puzzle Strategy” to the “Term Wise Multiplication of Irreducible 

Linear Quantities Strategy” in the second task on polynomial multiplication. From 

Goodrow and Schliemann's point of view, the polynomial rectangle John generated can 

be thought of as a coordinate grid where a point would correspond to an irreducible areal 

quantity (IAQ). Just as a point on the coordinate system is made of an ordering of two 

values (the x and the y values), an irreducible areal quantity (IAQ) becomes to exist as an 

ordered pair of the corresponding irreducible linear quantities (ILQ). John's constant 

reference to “multiplication operation behaving as a mapping” corresponds to the phrase 

“multiplicative function” in Goodrow and Schliemann's findings. In that sense, my 

findings are in agreement with theirs. 

 Many research studies show that children do not use multiplication in 

multiplicative tasks or word problems; they rather refer to repeated addition (Fishbein et 

al., 1985; Kouba, 1989; Mitchelmore & Mulligan 1996; Peled, Levenberg, 

Mekhmandarov, Meron, & Ulitsin, 1999). Some other researchers claim that the essence 

of multiplication lies in the distributive rather than repeated additive aspect (Confrey & 

Lachance, 2000; Steffe, 1992). My research indicates that students' additive approach in a 

multiplication task concatenates multiplicative meaning and it becomes something else–

neither addition, nor multiplication. In the polynomial multiplication tasks, for instance, 

although my instruction was “Express the area of the boxes of the same color as a 

product,” Brad and Rob constantly referred to pseudo–products, as opposed to Nicole, 

Sarah, and John who provided Same–Color–Box Areal Quantities (SCBAQ) as products 

of the corresponding pairs of Combined Linear Quantities (CLQ). I believe that the latter 
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students' successful answers were mainly due to the fact that they were able to reason 

quantitatively (Thompson, 1988, 1989, 1993, 1994, 1995), paying attention to the 

referent–value–unit trinity (Schwartz, 1998), and attending to the mapping structures 

involved in these multiplication tasks. My research, therefore, suggests “Mapping 

Structures” and “Relational Aspect” duo as the main extension to multiplicative 

reasoning. 

 Pseudo–Multiplicative Representational Unit Coordination (PMRUC), which I 

established to be of additive nature, is categorized as a multiplicative approach by many 

researchers. Empson, Junk, Dominguez, and Turner, for instance, concentrated on the 

“relationship between two sharing quantities as an index of the development of fractions 

as multiplicative structures” (2005, p. 23). Although they claim to “distinguish between 

children’s use of multiplication in strategies that involved coordinating quantities that 

were more additive in nature, and the multiplicative coordination of quantities,” I do not 

see a “multiplicative sense” in either strategy; they both represent additive reasoning 

(Empson et al., 2005, pp. 24–25). I agree with them in their categorization of the 

expression “
nnn
111

L++  (T times)” as an additive coordination strategy; however, I am 

not convinced that the expression “ )1)((
n

T ” represents a multiplicative coordination (See 

Table 5, p. 25). My research indicated that both of these expressions are of additive 

nature; they both stand for repeated (quantitative) additions.  

The English National Numeracy Strategy (DfEE, 1999) advocated teaching the 

multiplication concept as repeated addition to foster students' understanding. The 

Japanese Association of Mathematical Instruction (JAMI), on the other hand, claimed 
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that “repeated addition is a way to calculate multiplication, not a meaning of it” 

(Yamonoshita & Matsushita, 1996, p. 291). Confrey and Smith (1995) showed the 

inadequacy of repeated addition for describing multiplicative situations. In another piece, 

Confrey also introduced an alternative model, splitting, which is “an action of creating 

simultaneously multiple versions of an original” (Confrey, 1994, p. 292), as more suitable 

than repeated addition as an explanatory formalism for multiplication. According to 

Vergnaud, “multiplicative structures rely partly on additive structures; but they also have 

their own intrinsic organization which is not reducible to additive aspects” (Vergnaud, 

1983, p. 128). In this sense, my findings on Brad and Rob’s PMRUC are in agreement 

with Yamonoshita & Matsushita (1996), Confrey & Smith (1995), Vergnaud (1983), and 

many other research studies demonstrating students’ frequent use of additive reasoning in 

the course of tasks requiring multiplicative reasoning (Hart, 1981, 1988; Karplus et 

al.,1983; Lamon 1993; Noelting, 1980; Resnick & Singer, 1993; Vergnaud, 1988). At a 

primitive level where there is no multiplicative sense making at all, the expression 5x is 

nothing but an abbreviation, a shortcut for the repeated addition expression x + x + x + x 

+ x. Even the whole number multiplication notation 6 × 5 represents 6 fives; i.e., “add 

five repeatedly six times.” When there is a lack of quantitative reasoning, the “operation” 

we call “multiplication” does not possess a multiplicative meaning; that is not 

multiplication. A name–value–unit trinity has to be invoked in order to make sense of 

multiplication or to call what we are doing multiplication. Representations play a critical 

role, in that sense. 
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Through drawings or interesting stories children at all levels (elementary, middle, 

high school) may be taught the multiplicative meaning rooted in quantitative reasoning. 

The following is an example.  

• Angela receives invitation from six different guys (Bob, Carlos, Dan, Elliot, 

Federico, Greg) for her high school graduation prom. She does not immediately 

say yes because she has a condition. Her condition is that each prom–partner 

candidate should try each one of the 5 different color (Orange, Pink, Red, White, 

and Yellow) prom outfits Angela picks (All six guys should try the same 5 

outfits). Angela also wants to take their pictures wearing these outfits (1 photo for 

each outfit for each guy). How many photos will Angela have to shoot before her 

prom–partner decision? 

The teacher could assign this problem as a homework assignment for a future class 

discussion. As a hint, s/he could guide the students by asking them to draw pictures, or 

take actual photos perhaps. Via drawings with different colors for instance students could 

generate 30 different (boy, outfit) pairs, where each “pair” could be “matched with” or 

“mapped as” a photo. In other words, each “photo” corresponds to a boy × outfit 

“product–quantity.” (Table 4. 49) 

 

Table 5.2 

Boy × Outfit Product Quantities 

× Orange Pink Red White Yellow
Bob (B, O) (B, P) (B, R) (B, W) (B, Y) 

Carlos (C, O) (C, P) (C, R) (C, W) (C, Y) 
Dan (D, O) (D, P) (D, R) (D, W) (D, Y) 

Elliot (E, O) (E, P) (E, R) (E, W) (E, Y) 
Federico (F, O) (F, P) (F, R) (F, W) (F, Y) 
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Greg (G, O) (G, P) (G, R) (G, W) (G, Y) 
 

Research shows that multiplicative reasoning is indispensable for proportional 

reasoning, and in particular, in the context of fractional situations, decimal, ratio, rate, 

proportion, and percent problems (Kieren, 1995; Lamon, 1994; Thompson, 1994). 

According to Vergnaud, “understanding multiplicative structures does not rely upon 

rational numbers only, but upon linear and n–linear functions, and vector spaces too” 

(Vergnaud, 1983, p. 172). Confrey’s explanatory model for multiplication is based on the 

idea of splitting. “Splitting can be defined as an action of creating simultaneously 

multiple versions of an original, an action often represented by a tree diagram” (Confrey, 

1994, p. 292). In this model, multiplication and division manifest themselves as inverse 

operations. The figure below represents the splitting structure of “3” in which movement 

to the right means “multiply by 3” and movement to the left means “divide by 3.” 

 

 

Figure 5.2. Splitting structures (Confrey & Smith, 1995, p. 70). 

 

In my study, multiplicative reasoning in the context of polynomial factorization manifests 

itself as a reversible reasoning with reference to (multiplication operation behaving as) a 

function or a mapping rather than division. Although polynomial factorization is 
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intuitively thought to be an inverse operation for polynomial multiplication, my students 

did not refer to ideas of division; they rather worked with mapping structures. To be more 

specific, on the second task on the factorization of the polynomial “2x2 + 7xy + 3y2 + 5x + 

5y + 2” using algebra tiles, Sarah was the only student to simultaneously place the pair of 

irreducible linear tiles corresponding to each irreducible areal tile generating the 

polynomial rectangle, which was an indication of reverse reasoning. In contrast, Nicole, 

John, Rob, and Brad first completed their rectangle, then placed the dimension tiles 

around it. Though she was reasoning reversibly with reference to Inverse Mapping 

Structures, Sarah was not doing division. Sarah was the only student to associate each 

irreducible areal quantity (IAQ) with its dimensions, namely the corresponding pair of 

irreducible linear quantities (ILQ), in a polynomial factorization problem, in the process 

of generating the polynomial rectangle under consideration. In this way, Sarah 

established the multiplicative nature of the irreducible areal quantities (IAQ). She was 

able both to generate the correct polynomial rectangle (Figure 4.125) and to induce a 

Representational Cartesian Product (RCP) of Representational Set of Irreducible Linear 

Quantities (RSILQ) via reverse reasoning. In other words, she was referring to 

mappings, namely invertible functions represented as sets of ordered pairs of some linear 

quantities.
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

I divide this final chapter into four sections. The first one is an overview of the 

entire study, which consists of my rationale, research questions, how this study is situated 

in the literature, a brief summary of research methodology, and a brief summary of 

findings. In the second section, I present a set of conclusions that derive from the 

findings. In the third section, I reflect on this study as a whole in an effort to offer 

implications for curriculum development and teacher education. Finally, I complete this 

chapter with suggestions for future research in this area. 

 

6.1. Summary 

 I have been very interested in conducting a research study solely based on 

preservice teachers’ understanding of representational quantities modeled with magnetic 

color cubes and algebra tiles. I was interested in knowing about how they make sense of 

such representational quantities, the quantitative units (linear vs. areal) inherent in the 

nature of these quantities, and how they reconcile the quantitative addition and 

multiplication operations (referent preserving vs. referent transforming compositions) 

acting on these quantities. For that purpose, I devised a set of tasks focusing on identities 

of the form “Sum = Product.” 
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 My work drew upon a unit–coordination (Steffe, 1988, 1994) theoretical 

framework, in an attempt to understand how preservice teachers coordinate, identify, and 

describe quantitative (linear and areal) units arising from summation expressions and 

polynomial rectangles. I also made use of Thompson's (1988, 1989, 1993, 1994, 1995) 

quantitative reasoning and Schwartz’s (1988) adjectival quantities and referent 

preserving vs. transforming compositions as subframeworks in an effort to explain my 

preservice teachers’ understanding of representational quantities. My data analysis 

framework has been inspired by a simplified version of Behr et al.'s (1994) generalized 

notation for mathematics of a quantity and Vergnaud's (1983, 1988, 1994) theorems and 

concepts−in−action formalisms, which helped me translate students’ mathematical 

performance into a series of terminology based on a very simple notation: Relational 

notation and mapping structures duo (Caglayan, 2007b). 

 My rationale for attempting such a study has several reasons. The study of 

multiplicative structures has been conducted by mathematics education researchers since 

the 1980s. In his 1983 article, Vergnaud viewed the multiplicative structures, a 

conceptual field of multiplicative type, as a system of different but interrelated concepts, 

operations, and problems such as multiplication, division, fractions, ratios, and similarity. 

Although multiplicative structures can to some extent be modeled by additive structures, 

they have their own characteristics inherent in their nature, which cannot be explained 

solely by referring to additive aspects. Steffe’s Unit–Coordination construct (1988, 

1994), the guiding theoretical framework for this study, though strongly related to 

multiplicative structures, encompasses only the repeated addition model and a 

distributive aspect for multiplication, which in my opinion are limited explanatory 
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models for what multiplication is/could be. In fact, findings on students’ understanding of 

multiplication in the literature are limited to a premature interpretation, too, mostly 

relying on addition:  

• The conception of multiplication based on repeated addition (Empson et al., 2005; 

Fishbein et al., 1985) 

• Students’ frequent use of additive reasoning in the course of tasks requiring 

multiplicative reasoning (Hart, 1981, 1988; Karplus et al.,1983; Lamon 1993; 

Noelting, 1980; Resnick & Singer, 1993; Vergnaud, 1988)  

• The distributive aspect argued by Steffe (1992) and Confrey and Lachance (2000)  

• The correspondence principle as the basis of multiplication (Nunes & Bryant, 

1996; Piaget, 1965; Vergnaud, 1983, 1988)  

• Splitting as an explanatory model for multiplication (Confrey, 1994; Confrey & 

Smith, 1995) 

Research on students’ reconciliation of additive and multiplicative structures based on 

“sum = product” identities is missing in the literature. 

 Second, the coordination construct, though studied several times before, does not 

cover all possibilities. Levels of unit coordination have been used in additive, 

multiplicative, and fractional situations before (Behr et al., 1994, Lamon, 1994; Olive, 

1999; Olive & Steffe, 2002; Steffe, 1988, 1994, 2002). However, there is no prior work 

on unit coordination arising from the geometry of the numbers, in the form of identities, 

where the left hand side of the identity stands for the additive situation (area as a sum, in 

the geometry of the context) and the right hand side of the identity stands for the 

multiplicative situation (area as a product, in the geometry of the context). Both phrases, 
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“area as a product” and “area as a sum,” stand for the measure of the area of the rectangle 

enclosed by its sides. “Area as a product” is the conception of seeing the area as an 

ordered pair of linear units (Multiplicative Type Representational Unit Coordination) 

whereas “area as a sum” is the conception of seeing the area as an ordered n−tuple of 

areal units (Additive Type Representational Unit Coordination). 

Third, my study extends prior work done by Behr et al. (1994) because identities 

that equate summation and product expressions are not expressed using generalized 

mathematical notation in their work. My research project is a theoretical extension of 

Behr et al.’s framework and introduces a simplified version of generalized mathematical 

notation for identities that equate summation and product expressions. 

 The fourth rationale for collecting interview data with preservice teachers was 

mainly to understand how they establish Σ = Π identities involving linear and areal 

quantities based on the color cubes and algebra tiles representational models. I also 

wanted to determine how they were able to reason in the different categories of linear or 

areal quantities (Multiplicative and Additive Representational Unit Coordination) 

associated with growing rectangles generated by color cubes and algebra tiles. Moreover, 

we do not know much about preservice teachers’ mathematical knowledge on these 

issues–their identification, interpretation and coordination of different types of 

representational units arising from this mathematical content. 

The present study investigated three main research questions: How do preservice 

secondary school teachers 

• identify, describe, and interpret linear and areal units? 

• represent linear and areal units? 
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• distinguish between areal and linear units? 

Data came from individual interviews during which I asked five (2 middle and 3 

high school mathematics) PSTs problems related to six main mathematical ideas: 

modeling prime and composite numbers; summation of counting numbers, odd numbers, 

even numbers; and multiplication and factorization of polynomial expressions in x and y. 

I selected my participants from two different undergraduate level mathematics education 

classes.  

 Magnetic color cubes were used to generate sequences of growing rectangles 

representing identities for prime and composite numbers as well as summation of 

counting numbers, odd and even integers. During the interviews, I asked preservice 

teachers to make rectangles representing prime and composite numbers first. We then 

focused on patterns that generate growing rectangles for the summation of counting 

numbers, odd, and even integers. As for the products and factors of polynomial 

expressions, we used color tiles of different colors and sizes (algebra tiles). 

After the end of data collection, I reviewed each interview in order to generate 

possible themes for a more detailed analysis. I transcribed significant events of these 

interviews. As for the analysis methodology, I embraced thematic analysis supported by 

retrospective as well as constant comparison analyses of interviews. I also made use of 

Verganud’s theorems−in−action and concepts−in−action models (1983, 1988, 1994) as 

an (explanatory) analytical theory to explain students’ sense making of the linear and 

areal quantities involved in the color cubes and algebra tiles activities. Vergnaud’s 

conceptual field theory asserts that “one needs mathematics to characterize with 

minimum ambiguity the knowledge contained in ordinary mathematical competences.” 
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(1994, p. 44) He claimed that one has to make use of mathematics itself (e.g., 

mathematical concepts, definitions, theorems) to analyze students’ understanding of 

mathematical situations. Grounded in this theory, I developed a series of terminology to 

serve as analytical tools in an attempt to describe my students’ concepts− and 

theorems−in−action (e.g., mathematical behaviors, actions, operations, hand gestures, 

etc.). In doing so, I often made use of a Relational Notation, a simplified version of the 

Generalized Notation for Mathematics of a Quantity (Behr et al., 1994). 

In their work with the summation activities, PSTs established the arealness of the 

subunits with reference to the reference preserving composition (Schwartz, 1988), which 

was the quantitative addition operation. They often provided arguments such as “areas, 

when added together, produce areas.” They established the arealness of the subunits 

under consideration by reference to known measurement units (e.g., inches squared, 

centimeters squared) as well as abstracted units (e.g., units squared) both in their written 

work and verbal descriptions as well. As for the linear and areal quantities in general, two 

students were able to operate with referent preserving compositions only, whereas the 

other three students were able to operate with both referent preserving and referent 

transforming compositions (Schwartz, 1988). PSTs also treated the quantitative 

multiplication and addition operations as functions or mappings when expressing the area 

of their growing rectangles made of magnetic color cubes and algebra tiles as sums and 

products. Their behavior necessitated the existence of a conceptual field of relational 

type, which I called “Mapping Structures.” 

Three main types of Representational Unit Coordination (RUC) arose as the PSTs 

made growing rectangles for special numbers such as prime and composite numbers, 
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summation expressions for odd, even, and counting numbers as well as polynomials in x 

and y using magnetic color cubes and algebra tiles. In a Multiplicative type RUC, I used a 

relational notation of the form (a, b) where a and b stood for the corresponding linear 

units of the growing rectangle represented by the dimension tiles. I also observed more 

than one additive type of RUC that can be described using a functional notation 

 where the areal quantities “ ”  are being summed from 1 to n (number 

of addends) and i is the stage number (ordering number for the addends). There is one 

more RUC type, in between additive and multiplicative, which I named Pseudo 

Multiplicative type RUC. There was a pattern, which showed itself in all my findings. 

The same group of students constantly relied on an additive interpretation of the context 

whereas the other students  were able to distinguish between and when to rely on an 

additive or a multiplicative interpretation of the context. 
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6.2. Conclusions 

 Unit–Coordination (Steffe, 1988, 1994) theory serves as an eminent framework 

describing students’ understanding and making sense of linear and areal quantities arising 

from prime–composite rectangles, summation activities, and polynomial multiplication 

and factorization problems. My participants coordinated linear and areal quantities in a 

somewhat different fashion than described by Steffe, whose scope is limited and can be 

applied to numbers only. In my study, students established the existence of linear units, 

areal units, areal subunits, and areal sub–subunits, which is in agreement with Steffe’s 

three levels of unit–coordination. However, the structure of these units is different in that 

students emphasized the different dimensions (linearity and arealness), the quantitative 
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character, and the quantitative operations taking place, in an attempt to establish identities 

of the form “Area as a Sum = Area as a Product” based on the growing rectangles they 

created. 

 Unit−coordination, though not offered as a component of the definition of a 

quantity before (Schwartz, 198815; Thompson, 199416), stands out as a fundamental 

dimension for a quantity. Representational Unit Coordination is a reconciliatory act 

unifying quantitative reasoning and unit−coordination and plays an essential role in 

students’ making sense of the mathematics arising from their performance with the 

representational quantities. 

 Quantitative addition and quantitative multiplication operations stand out as the 

most relevant compositions of referent preserving and referent transforming type, 

respectively, when representing mathematics with physical objects. Being able to 

establish the existence of representational quantities on their own as well as in relation to 

each other brings with it the notion of “quantitative operation,” which is the origin of a 

successful comprehension of the representational quantities. Such an understanding 

necessitates also students’ awareness of when a given referent is preserved, or when a 

quantity of a new kind is born. The quantities on the left−hand−side of the identity “Area 

as a Sum = Area as a Product” have to be of the same (areal) character, must be 

composed solely by the quantitative addition operation (i.e., a referent preserving 

composition), and the “summed quantity” at each stage has to be of the same (areal) 

character as well. Similarly, the quantities on the right−hand side have to be of the same 

(linear) character, and must be composed solely by the quantitative multiplication 

                                                 
15 A quantity is an ordered pair of the form (number, unit). 
16 A quantity is an ordered quadruple of the form (object, quality, unit, process to assign a value). 
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operation (i.e., a referent transforming composition). Though a “product quantity” comes 

to exist at each stage on the right−hand−side, yet this new type of quantity has to be of 

the same (areal) character as the “summed quantity” on the left−hand side. A 

coordination of quantities as well as a coordination of coordinated quantities, and an 

awareness of the types of quantitative operations (referent preserving or referent 

transforming compositions) taking place are necessary when reasoning quantitatively 

about a situation. 

 Big concepts of discrete mathematics such as set theory, relations17, functions, 

graphs18 of equations and functions, along with analytic geometry, probability, logic, and 

algebra of propositions are based on this powerful connective word “and,” which also 

frequently appears as its orthographic synonym comma “,”. The mapping structures 

conceptual field, as developed by the participants of this research study, is grounded in 

the usage of “and” and its symbolic representation comma “,”. “And” requires the 

quantitative multiplication operation to behave as a function, a mapping acting on linear 

quantities, by which such quantities are transformed into an areal quantity. In another 

context, “and” manifests itself in the juxtaposition of the areal quantities in an additive 

manner, by which such quantities are preserved in referent, thanks to the quantitative 

addition operation behaving as a function. Through these mapping structures eventually, 

the left−hand side and right−hand side of the representational identities equal each other. 

They do not necessarily have to be equal to each other, yet they equal each other thanks 

to these mapping structures grounded in “and.” 

                                                 
17 In particular, ordered pairs or n–tuples. 
18 In particular, points on plane or space. 
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 “And” also emerges as a helpful asset in comparing and distinguishing between 

same−valued linear and areal quantities. In a mathematical situation involving 

representational quantities such as in figure below, the length of the whole rectangle has a 

value (or magnitude) of 6, which is the same as the value (magnitude) of the area of the 

horizontal part of the green L–shape (Figure 6.1). They both have the same value, 

wherefrom they stand as same–valued linear and areal quantities. The linear quantity, 

however, is simply 6, whereas the areal quantity is “not just 6… it’s 6 and 1.” The “it’s 6 

and 1” part of “it’s not just 6… it’s 6 and 1” establishes the existence of an areal quantity 

as well as a multiplicative representational unit coordination (MRUC). The “it’s not just 

6” part of  “it’s not just 6… it’s 6 and 1,” on the other hand, indicates the value of the 

areal quantity under consideration that exists because of the multiplication operation that 

behaves as a mapping acting on “6 and 1,” namely the ordered pair (6, 1) of linear 

quantities. For a mapping structure of multiplicative type to exist, one needs to establish 

the following conditions:  

4. The “and” condition: A juxtaposed pair ordering of the values of the linear 

quantities is mentioned. 

5. The MRUC condition: The multiplication operation behaving as a mapping is 

acting on the ordered pair of these linear quantities.  

6. Existence of a mapping structure: The value of the areal quantity resulting from 

the mapping is indicated. 
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Figure 6.1. Linear and areal representational quantities. 

 

 Concepts–in– action and theorems–in–action are powerful instruments to 

illustrate and explain the continuing progress of students’ mathematical proficiency in a 

certain conceptual field (e.g., multiplicative structures, relational structures, mapping 

structures, quantitative structures). They also present a way to analyze, compare, and 

transform students’ knowledge intrinsic in their mathematical performance (e.g., hand 

gestures, actions, operations) into the actual known and written algebraic identities and 

mathematical theorems. In that sense, these tools help teachers and researchers get a 

better sense of how students make sense of, reconcile, and shift among physical 

observables at different cognitive levels (e.g., algebraic expressions, their various 

representations, etc.). Using concepts– and theorems–in–action, teachers and researchers 

can come up with better strategies to diagnose what students do understand or fail to 

understand, to reveal the source of their misconceptions and conceptual flaws, and to help 

them see the internal and external connections. In this way, students are provided with a 

set of more interesting, better prepared activities, and mathematically fruitful situations, 
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which help them strengthen their knowledge, and increase their mathematical 

proficiency. 

 Vergnaud (1988) claimed that “a single concept does not refer to only one type of 

situation, and a single situation cannot be analyzed with only one concept” (p. 141). He 

argued that teachers and researchers should study conceptual fields rather than isolated 

concepts. He then went on to define a conceptual field as “a set of situations, the 

mastering of which requires mastery of several concepts of different natures” (p. 141). In 

the same vein, the participants of this present study gave birth to the conceptual field of 

mapping structures (CFMS), which can be described as 

• A set of representational quantities (and relationships) whose existence are to be 

established as quantities on their own, and as quantities in relation to each other. 

• A set of mathematical situations involving different kinds of representational 

quantities, which require referent preserving and referent transforming 

compositions (i.e., quantitative addition operation and quantitative multiplication 

operation) acting on these representational quantities. 

• A set of (multiplicative and additive representational) unit–coordination strategies 

in establishing the existence of quantitative units, subunits, and sub–subunits. 

• A set of explicit knowledge based on students’ written symbols, algebraic 

expressions, drawings, figures.  

• A set of implicit (intuitive) knowledge (concepts and theorems in action) based on 

students’ actions, operations, hand gestures, and verbal expressions. 
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6.3. Implications 

6.3.1. Curriculum Development 

 The phrase “Summation Formulas” is ambiguous and somewhat misleading 

because although it stands for an identity of the form “Sum = Product,” one gets the 

impression that one deals with a summation only. The main implication arising from my 

study is to replace this terminology with “Sum–Product Identities.” In this way, students 

will first start by focusing on the words constituting this phrase, namely the fact that they 

are dealing with identities based on sums and products. Moreover, “summation 

formulas” in current textbooks focus only on subsets of integers. As the participants in 

this research demonstrated, identities based on polynomial expressions too stand as sum–

product identities. A general and more meaningful statement “Sum–Product Identities” 

makes more sense, and is more suitable in addressing subsets of Z as well as polynomial 

expressions defined on Z. 

The curriculum materials (e.g., textbooks, activity books, online modules, 

manipulatives, teacher guides) should emphasize the necessity of attending to the nature 

of the quantities, their units, and the quantitative operations taking place on each side of 

the sum–product identities. 

Under the direction “Students will use sequences and series,” Georgia 

Performance Standards state 

a. Use and find recursive and explicit formulas for the terms of sequences. 

b. Recognize and use simple arithmetic and geometric sequences. 

c. Find and apply the sums of finite and, where appropriate, infinite arithmetic and 

geometric series. 
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d. Use summation notation to explore finite series (Georgia Performance Standards 

Mathematics 4, p. 4)19. 

GPS has reference to the summation notation, however, there is no mention of the 

existence of an identity, nor the parameters involved, nor how the parameters are related 

to each other. Students should be helped to make sense of a sum–product identity such as 

 by asking the meaningful questions such as the following: )(
1

nfa
n

i
i =∑

=

• What does i represent?  

• What does n represent?  

• What does ai represent?  

• What does ∑  represent?  
=

n

i
ia

1

• What does the expression )(nf  on the RHS represent?  

• Is it a product of two numbers?  

• Is it a product of two quantities?  

• Does it depend on n or i?  

• What are the units associated with ai, ∑ , and )(nf ?  
=

n

i
ia

1

None of the participants of this present study were introduced to sum–product identities 

in high school. Another important implication of my study, therefore, is in that the use of 

magnetic color cubes, algebra tiles, color tiles (or paper cutouts perhaps) as 

representational tools in teaching summation formulas and polynomial multiplication and 

factorization provides students with opportunities to make better sense of and to explore 

                                                 
19 Retrieved March 8, 2008 from http://www.georgiastandards.org 
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and discover algebraic connections between the sum–product identities and concrete 

operations. Activities that incorporate such manipulatives provide teachers with an easily 

accessible concept−building activity for developing sum–product identities for the 

summation of consecutive positive counting, even, and odd integers, and polynomial 

multiplication and factorization. These representations could also be used to model 

consecutive square numbers, cube numbers, triangular numbers, pentagonal numbers, 

Fibonacci numbers, as well as polynomials of higher degree. 

Sum–Product Identities do not solely apply to the mathematics context my 

research participants and I investigated. Focusing on the big picture, one can find Sum–

Product Identities (or LHS–RHS Identities in general) in various contexts such as linear 

or quadratic equations based on word problems (Caglayan & Olive, 2008; Olive & 

Caglayan, 2006, 2007), identities based on derivatives of functions )()( xfxf
dx
d ′=  or 

integral expressions of the form ∫ = )( )( xFdxxf . The findings of my study imply that 

such content be written and guided by a framework based on Representational Unit 

Coordination, which pushes students to reason quantitatively, at the same time paying 

attention to the relevant mappings and quantitative operations taking place. 

Finally, one of the PST in my study chose to stand the algebra tiles on edge, rather 

than laying them flat on the desk. This "misuse" of the tool may have some implications 

in the design of new tools accompanying the algebra tiles. Instead of using a flat 

multiplication mat, one could develop a three dimensional rectangular box shaped 

multiplication mat having sliders on the side and at the top, which will allow the 

dimension tiles only in a standing up position. In this way students and teachers will be 

able to make sense of the linearity of the dimension tiles. Moreover, they will be able to 
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easily distinguish between the same valued linear and areal quantities that are represented 

by the same color algebra tiles. 

 

Figure 6.2. Standing up positioned )523()42( ++×++ yxyx  dimension tiles. 

 

6.3.2. Teacher Education 

 Vergnaud defined theorems−in−action as “mathematical relationships that are 

taken into account by students when they choose an operation or a sequence of operations 

to solve a problem. To study children’s mathematical behavior it is necessary to express 

the theorems−in−action in mathematical terms” (1988, p. 144). Concepts− and 

theorems−in−action framework in this present study helped me produce a set of 

terminology closely related to mathematical terms (e.g., Representational Cartesian 

Products, Representational Sets, Summed Addends, Polynomial Rectangles, etc.) to 

describe what my participants were doing. These notions, as a mathematics teacher, 

helped me make sense of what my students were doing and delve into their understanding 

of the mathematical situations. There were many instances from the protocols analyzed in 

the previous chapter in which my students were “performing mathematically.” This 
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mathematical performance included − but was not limited to − verbal descriptions, hand 

gestures, color cube and tile generated figures.  

Teacher education programs should provide opportunities for students to 

explicitly engage in quantitative reasoning in a manner that leads to using all three levels 

of unit coordination. This necessitates a focus on discrete mathematics content with a 

particular emphasis on sets, relations, Cartesian products, mapping structures, which by 

definition encompass levels of unit coordination and quantitative reasoning in their 

structure. In particular, at first, summation activities and polynomial multiplication and 

factorization can be thought of as totally irrelevant to set theoretical aspects, quantitative 

reasoning, or unit coordination. However, when preservice teachers want to make sense 

of what they are doing, they will naturally end up performing mathematically, and face 

set theoretical aspects. Such courses could benefit from my findings on students’ 

mathematical performance on the irreducible/combined linear and areal quantities, the 

operations taking place, and their interpretation of the areas of areal quantities 

(multiplicative vs. additive) as well. 

 

6.4. Suggestions for Future Research 

In 2006, at the preliminary stage of my dissertation research process, in 

implementing summation of odd integers and even integers activities with high school 

students, it was established that most students prefer to manipulate the colored tiles or 

paper cutouts first, before transferring the representation to the 1−inch grid paper 

(Caglayan, 2006). Some students found that placing the cutouts directly onto 1−inch grid 

paper also aided in keeping the visual patterns intact. Possible extensions to these 
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activities include altering the placement of the rectangular counting integer or even 

integer representations, L−shaped odd integer (or even integer) representations onto the 

previous figures. However, alternate arrangements, although yielding the same results, 

are more difficult for students to interpret. In summation of odd integers and even 

integers activities, for instance, extension questions can include the development of 

alternate geometrical interpretations of both n2 and n(n + 1) and their significance in the 

visualization of sum–product identities. 

Research by Caglayan and Olive (2008) explored the writing and solving of 

equations in one unknown – involving both positive and negative quantities – using a 

representational metaphor of cups (that hold an unknown number of tiles) and tiles. They 

found that addition and multiplication operations are the most meaningful and relevant 

operations when using drawn representations of cups and tiles − there is no way to 

represent subtraction. The participants of this present study, on the other hand, 

established that the only relevant operations taking place are addition, multiplication, and 

inverse multiplication. Subtraction was irrelevant since they worked with positive 

quantities only, and they were asked to add or multiply these quantities. There was no 

way to represent division; yet, they established an operation, which can be thought as 

“inverse multiplication,” with reference to mapping structures. Possible extensions to this 

present study, therefore, could be to include both positive and negative quantities – the 

back sides of the algebra tiles are all red and stand for the negative quantities. Possible 

research questions would be: What operations will exist for the students? Will addition, 

multiplication, inverse addition, and inverse multiplication be the only relevant 
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quantitative operations? Or will it be possible to represent subtraction and division 

operations as well? 

 I am suggesting the study of students’ sense making of linear and areal quantities 

(or quantities in general) in different mathematical situations. Such mathematical 

situations could include visual proofs of more challenging summation formulas such as 

sum of consecutive squares, sum of triangular numbers, sum of consecutive cubes 

represented as growing rectangles; or identities based on pattern blocks. Unit–

coordination theory may stand as a suitable perspective in studying these different 

contexts, too. One may have to take into consideration volumic units/quantities as well. 

 A research study guided by a possible research question such as “How do college 

students/preservice teachers understand and make sense of different types of quantities 

involved in integral expressions?” could shed some light on teacher education and 

curriculum development. We should get students’ attention to what integral expressions 

such as ∫  or  stand for. The symbols and tell us to “add,” 

which can be viewed as a quantitative operation of referent preserving type (Schwartz, 

1988). We could gather information from students via interviews during which we can 

ask them questions such as 

b

a

dxxf  )( ∫∫
A

dxdyyxf ),( ∫
b

a
∫∫
A

• What does )(xf  stand for? What does ),( yxf  stand for?  

• What does dx mean? What does dxdy mean? 

• Is it an extensive or intensive quantity? Is it a linear quantity? Is it an areal 

quantity? Is it a volumic quantity? 

• What does dxxf  )(  mean? What does dxdyy  mean? xf  ),(
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• Is it a product of two numbers? A product of two quantities? 

• What is the nature of the resulting quantity? Is it an extensive or intensive 

quantity? Is it a linear quantity? Is it an areal quantity? Is it a volumic quantity? 

• What do the symbols ∫ and ∫∫ do? 
b

a A

• How are they related to dxxf  )(  and dxdyy ? xf  ),(

We could also work with Riemann Sums and Areas in order to get their attention to the 

“representational quantities” involved in such contexts. 

 Any study guided by representational models invites students to produce some 

connections between such representations (e.g., manipulatives, drawings, algebraic 

symbols, graphs, tables, etc.) A study attempting to understand how students interpret and 

connect the quantities (existing on their own and in relation to each other) in different 

levels of such representations could be useful. Quantities will be the same; however, will 

the students’ or preservice teachers’ understanding of them stay the same? What do we 

mean by “same” or “different?” How successful will our students be in reconciling such 

“same” quantities represented via different models? How will our students make sense of 

quantitative operations (e.g., referent preserving, referent transforming compositions) in 

multiple representational models? 

 Other than the idea of studying connections among representational models, one 

could also benefit from studying connections between mathematics and another branch of 

science such as physics or chemistry. Physics and chemistry stand as rich contexts with 

underlying concepts such as extensive vs. intensive quantities, unit structures, referent 

preserving vs. transforming compositions (quantitative operations), etc. We could benefit 



 359

from research on students’ interpretation and comparison of the quantities manifested in 

experiments, and quantities recorded in graphs, datasheets, or tables. 
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APPENDIX B: RECORDING SHEETS SHOWING NICOLE’S WRITTEN ANSWERS 
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APPENDIX C: RECORDING SHEETS SHOWING ROB’S WRITTEN ANSWERS 
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APPENDIX D: RECORDING SHEETS SHOWING SARAH’S WRITTEN ANSWERS 
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APPENDIX E: RECORDING SHEETS SHOWING JOHN’S WRITTEN ANSWERS 
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APPENDIX F: GLOSSARY OF TERMINOLOGY 

• Additive Type Representational Unit Coordination (RUC): An additive type RUC 

is used by a person when dealing with the “area as a sum” part of an identity 

describing growing rectangles made of color cubes or algebra tiles. 

• Boxes of the Same Color (or Same−Color−Boxes): These are rectangular 

subregions of the same color within the polynomial rectangle itself. Though of 

multiplicative nature, these areal quantities are prone to be interpreted as of 

pseudo−multiplicative type. 

• Cartesian Product: The Cartesian product of two sets A and B is the set of all 

ordered pairs in which the first component is taken from the first set and the 

second component is taken from the second set. 

• Color Cubes: These are one−inch color cubes students used in the investigation of 

prime & composite rectangles, along with summed counting, odd, and even 

numbers. 

• Color Tiles: These are different size color tiles students used in the investigation 

of polynomial rectangles in x and y.  

• Composite Rectangle: A rectangle made from a composite number of cubes. 

Since a composite number has three or more distinct divisors, a composite 

number of cubes can be arranged into at least two different rectangles. 
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• Extensive quantity: An extensive quantity is a quantity that can be measured 

directly. Lengths, areas, volumes, cardinalities, and ordinalities are examples of 

extensive quantities (Thompson, 1988, p. 164). 

• Growing Rectangle: In the context of prime and composite numbers, this 

represents a rectangle that is generated either by irreducible addends, or by equal 

addends. In the context of summation identities, it is generated via various types 

of addends such as symmetric or nonsymmetric L–shape subunits, rectangular 

subunits, equal addend subunits, and irreducible addend subunits. As for the 

polynomial expressions, a growing rectangle is generated by algebra tiles via 

irreducible areal quantities, same–color–box areal quantities, or combined areal 

quantities. 

• Intensive Quantity: An intensive quantity is a quantity that is the ratio of two 

extensive quantities, which can not be directly measured. Speeds, densities, 

temperatures, pressures, and pitches are examples of intensive quantities, as is a 

multiplicative comparison (ratio) of two quantities (Thompson, 1988, p. 164). 

• Irreducible Areal Quantities (IAQ): These are the most basic area type units 

generating subsets of positive integers in the context of color cubes, and 

combined areal quantities (CAQ) or same−color−box areal quantities (SCBAQ) in 

the context of polynomial expressions in x and y. 

• Irreducible Linear Quantities (ILQ): These are the most basic length type units 

generating subsets of positive integers (in the context of color cubes) and 

combined linear units (in the context of polynomial expressions in x and y). 
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• Measure Space: The set of all possible quantities that can be generated by 

iterating the measure – unit of measurement – under consideration. 

• Multiplication Mat: This is an organizer that helps separate the linear quantities 

(dimension tiles) from the areal quantities within the rectangular region. 

• Multiplicative Type RUC: A multiplicative type RUC is used when dealing with 

the “area as a product” part of an identity describing growing rectangles made of 

color cubes or tiles. 

• Prime Rectangle: A rectangle made of a prime number of color cubes. A prime 

number of cubes can be arranged into one unique rectangle (disregarding 

rotations). 

• Pseudo−Multiplicative Type RUC: This is an RUC type somewhere in between 

additive and multiplicative, which occurred for the “Area of the Boxes of the 

Same Color as a Product” in dealing with polynomial rectangles made of color 

tiles. The first term of each “pseudo−product” is a coefficient serving as a 

counting number indicating how many there are of each irreducible areal 

quantities (IAQ). 

• Quantitative Reasoning: To reason quantitatively is to reason about quantities, 

their magnitudes, and their relationships with other quantities. Quantitative 

reasoning is to reason about situations in terms of quantities and quantitative 

operations (Thompson, 1988, p.164). 

• Referent Preserving Composition: Through a referent preserving composition, 

both the referent and the measurement unit remain unchanged. 
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• Referent Transforming Composition: Through a referent transforming 

composition, the referent and the measurement unit as well as the measure space 

change. 

• Relation: A binary relation is any set of ordered pairs. In general, an n−ary 

relation is a set of ordered n−tuples. 

• Relational Notation: Relational notation is used to describe linear units as ordered 

pairs in ordinary parentheses (  ) and areal units as n−tuples in square brackets [ ]. 

• Representational Cartesian Product: This is the ordinary Cartesian product 

defined on representational sets (See the definition of representational sets 

below). 

• Representational Quantities: Quantities arising from generating rectangles via 

color cubes and tiles in the context of subsets of positive integers (prime, 

composite, odd, even) as well as summation formulas (e.g., counting numbers, 

odd and even numbers) along with polynomial expressions in x and y. 

• Representational Set of Combined Linear Quantities (RSCLQ): A representational 

set of combined linear quantities is the set of combined linear quantities (CLQ) 

such as 5 (5 combined linear ones), 3x (3 combined linear “x”s), 2y (2 combined 

linear “y”), in the context of different size color tiles. For instance, the 

representational sets A and B of combined linear quantities (CLQ) corresponding 

to the x + 1 by 2y + 3 polynomial rectangle can be defined as A = {x, 1} and B = 

{2y, 3}. 

• Representational Set of Irreducible Areal Quantities (RSIAQ): A representational 

set of irreducible areal quantities (RSIAQ) is the set of irreducible areal quantities 
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(IAQ) such as 1, x, y, x2, y2, xy in the context of different size color tiles (algebra 

tiles). The difference between a representational set of irreducible areal quantities 

(RSIAQ) and an ordinary set is in that in a representational set of irreducible areal 

quantities, the irreducible areal quantities may appear as an element of the set 

more than once. 

• Representational Set of Irreducible Linear Quantities (RSILQ): A representational 

set of irreducible linear quantities is the set of irreducible linear quantities such as 

1, x, y in the context of different size color tiles. The difference between a 

representational set of irreducible linear quantities (RSILQ) and an ordinary set is 

in that in a representational set of irreducible linear quantities (RSILQ), the 

irreducible linear quantities (ILQ) may appear as an element of the set more than 

once. For instance, the representational sets A and B of irreducible linear 

quantities (ILQ) corresponding to the x + 1 by 2y + 3 polynomial rectangle can be 

defined as A = {x, 1} and B = {y, y, 1, 1, 1}. 

• Representational Set of Same–Color–Box Areal Quantities (RSSCBAQ): A 

representational set of same–color–box areal quantities (RSSCBAQ) is the set of 

same–color–box areal quantities defined by the “Area of the Boxes of the Same 

Color as a Product” of the polynomial rectangle resulting from the multiplication 

of polynomials. The difference between a RSSCBAQ and a RSIAQ is in that 

repetition of “elements” is not allowed in a RSSCBAQ. 

• Representational Unit Coordination (RUC): Representational Unit Coordination 

can be defined as the different ways of categorizing units arising from the 

modeling of identities on representational quantities as the “area as a product” and 
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“area as a sum” of the corresponding special rectangles made of color cubes or 

tiles. 

• Singleton: A set with one element. 

• Summed Number: I define a summed number to be the result of the summation of 

terms in a number sequence. Counting numbers, odd numbers, and even numbers 

constitute examples of such number sequences. Summed numbers can be 

represented by a sequence of growing rectangles, each made of a summed number 

of color cubes. 

• Theorems−in−Action: “Mathematical relationships that are taken into account by 

students when they choose an operation or a sequence of operations to solve a 

problem. To study children’s mathematical behavior it is necessary to express the 

theorems−in−action in mathematical terms.” (Vergnaud, 1988, p. 144). 
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