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ABSTRACT 

In this dissertation, two different areas of statistical genetics are explored.  The first is a 

analysis of genotyping errors in microsatellite data and their effect on population differentiation 

statistics.  Although, genotyping errors in microsatellite data have been explored for their effects 

on parentage assessment, especially with exclusion and on population size estimates of mark and 

recapture studies.  This research is the result of need to understand the effects of inevitable errors 

within microsatellite data on conclusions about population differentiation.  Chapter 2 illustrates 

the statistically significant effects that three common genotyping errors (allelic dropout, binning 

error, and null alleles) have on the population differentiation statistic FST.  These errors however, 

produce no change in the overall conclusions about the differences between populations.   

 The second is a method for improving gene mapping of complex diseases.  Chapter 3 

describes a process using genetical genomics methods to cluster expression level genes by their 



 

causative locus and then inferring the genotype structure of these causative loci for each 

individual.  General association studies of a particular locus have reduced power due to 

individuals present whose disease is not influenced by that locus.  Our inferred genotype 

structure is used to eliminate individuals where this is the case to increase the power of gene 

mapping.   
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

  

1.1 – MICROSATELLITE PROJECT 

Microsatellites are genetic markers often used for population genetics analyses.  They are 

short sequences of DNA usually two to nine base pairs long that are tandem repeats at more than 

one location.  These genetic markers are found in many types of organisms from yeast to 

humans.   

Mononucleotide – AAAAAA 
Dinucleotide – CACACACACACA 

Trinucleotide – ATCATCATCATCATC 
Tetranucleotide - ACTCACTCACTCACTCACTC 

 
The locus of the microsatellite is the position of the gene on its chromosome, in other words its 

location.  For microsatellite data each location or locus in a chromosome that contains core 

repeats may have a different number (n) of copies of the repeat.  This means that for any locus a 

microsatellite can have multiple allele possibilities in each population.  The allele possibilities 

are the possible allele sizes that each individual can have at a particular locus.  The allele sizes 

are the number of base pairs within each microsatellite.  Each possible allele has a frequency 

associated with it known as the allele frequency.  For each individual, each locus has two alleles, 

one paternal and one maternal, the locus is homozygote if the alleles are the same, heterozygote 

if they differ.   

Microsatellites are used to answer questions about relationships among individuals, 

populations, and closely related species (BRUFORD and WAYNE 1993; QUELLER et al. 1993; 
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SELKOE and TOONEN 2006).  The challenges associated with obtaining correct microsatellite-

genotypes are most clear in the fields of forensics, ancient/old/museum DNA, and non-invasive 

sampling.  It is from these fields that the most egregious errors were made, but also the most 

progress in establishing laboratory standards (see POMPANON et al. 2005 for a review).  Most 

researchers have likewise focused on laboratory protocols and practices to reduce errors in 

microsatellite datasets. 

When answering fundamental questions in population genetics the ideal situation is to 

obtain a large number of DNA samples that are able to be fully analyzed from an experimental 

procedure that has little to no variation (i.e., same researcher, lab, instruments, chemicals, etc.) 

then conclusions will be made from this data.  If this ideal situation is achieved there is a high 

probability that the statistics obtained will be correct.  However, in many to most situations 

geneticists have limitations on the number of DNA samples collected due to money or resources 

and a limited number of markers/loci are available (KALINOWSKI et al. 2006; SELKOE and 

TOONEN 2006).  The amount of previous experience by researchers and the use of good 

laboratory practices also contribute to producing consistently correct data (PAETKAU 2003). 

However, even if a large number of DNA samples are able to be obtained, the large datasets 

make it difficult to perform experimental designs without changes in lab temperature, and/or 

differences in experimenter and therefore mistakes in genotyping will be made.  Indeed, in large 

datasets mistakes are a statistical certainty (HOFFMAN and AMOS 2005). 

Although genotyping errors from a variety of sources have long been recognized (see 

POMPANON et al. 2005 and references therein), few studies reported error rates until recent 

publications noted the value in knowing the frequency of such errors (BONIN et al. 2004; 

BROQUET and PETIT 2004; HOFFMAN and AMOS 2005).  Indeed attempts to publish error rates in 



 3

the 1990’s and early 2000’s were nearly certain to draw criticism from reviewers.  Attitudes were 

often expressed that allowing genotyping errors to remain in a dataset was sloppy science and a 

result of poor markers/methods/training/etc.  Thus, huge amounts of resources were devoted to 

achieving an impossible goal (error-free datasets), or at least driving the error rate to some 

perceived level of insignificance where it would be ignored (see DAKIN and AVISE 2004; MILLER 

et al. 2002; SEFC et al. 2003; WAITS and PAETKAU 2005).  Attitudes about genotyping errors 

have changed remarkably in the past four years. 

Although the taboo of acknowledging the presence of genotyping errors has been broken, 

questions remain about the effects of these errors.  Genotyping errors can clearly affect the 

estimated values of parameters of interest, and much work has been done recently to determine 

how much these errors change the conclusions drawn from the values obtained.  For example, in 

genetic mark and recapture studies using non-invasive sampling, genotyping errors cause a 

systematic upward bias in population size estimates that can exceed 200% (ROON et al. 2005).  

In addition, for mark and recapture estimates a Windows based program DROPOUT has been 

developed to determine if a data-set is error free or if not which loci are producing the most 

errors (MCKELVEY and SCHWARTZ 2005).  Genotyping errors also have significant effects on 

parentage assessment, particularly when using parental exclusion (ARAKI and BLOUIN 2005; 

DAKIN and AVISE 2004; VANDEPUTTE et al. 2006).  Many methods that incorporate genotyping 

errors into parentage assessment have been proposed (e.g., (KALINOWSKI et al. 2007; MORRISSEY 

and WILSON 2005)) and a DOS based program FAP has been developed to aid in problematic loci 

for parentage assessment, when parental genotypes are known (TAGGART 2007).  Alternatively, 

few studies have been conducted to determine the effects of genotyping errors on estimates of 
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population differentiation, and more work in this area is needed (BONIN et al. 2004; HOFFMAN 

and AMOS 2005; POMPANON et al. 2005). 

We seek to understand better the effects of common genotyping errors (see below) on 

measures of population differentiation.  Our goal for this project is both retrospective (i.e., to 

help interpret and apply an appropriate amount of skepticism to previous studies) and 

prospective (i.e., to provide tools for future researchers to better interpret their data).  We are 

particularly interested in determining the effects of genotyping errors when small numbers of 

individuals and loci have been sampled. 

In this study, we focus on a commonly used estimator/parameter of population 

differentiation FST (WRIGHT 1951; WRIGHT 1965).  Herein we use the term FST to indicate the 

generic metric of population differentiation calculated in any of several ways (FST - (WRIGHT 

1951); GST - Nei 197x (NEI 1973); ŜTθ - (WEIR and COCKERHAM 1984); PhiST - Rousset et al. 

199x (ROUSSET 1996)), the term STθ for the statistic calculated from a complete dataset (using 

the formulas for ŜTθ ), and we use ŜTθ  to indicate the statistic calculated from a sample of the 

complete dataset.  FST is a standard statistic based on allele frequencies used to determine the 

amount of genetic variation among populations by measuring the proportion of genetic variance 

in a subpopulation (S) to the total genetic variance (T).  (GAGGIOTTI et al. 1999) demonstrated 

that FST is more consistent than RST (a similar measure based on variance of allele sizes; 

(SLATKIN 1995) when the numbers of individuals and loci sampled were small.  (BALLOUX and 

GOUDET 2002) compared FST and RST for a fixed number of individuals, arranged in different 

population sizes, a variable number of migrants, a variable number of loci, and a variable number 

of mutation rates.  (BALLOUX and GOUDET 2002) found that RST performed better when the 

populations are highly structured, but FST does better when the populations are weakly 
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structured.  They also confirmed that FST is more accurate than RST when small numbers of 

individuals are sampled.  Based on the results of these two studies and because we are using 

small numbers of loci and individuals in several of our simulations, we decided to use FST.   

To test the effect of genotyping errors on FST we generated simulated data using EASYPOP 

(BALLOUX 2001).  EASYPOP generates data according to input parameters on: ploidy (haploid, 

diploid, haplodiploids), number of populations, number of individuals, migration type and rate, 

linkage of loci, number of allelic states, and variability.  This program is helpful because it 

simulates both migration and mutation in the data.  The output from this program was then used 

as input for the program we developed.  Our program incorporates the three of the most common 

types of genotyping errors (allelic dropout, binning error, and null alleles), and then calculates 

FST on the data with these errors. 

Allelic dropout is the creation of “false homozygotes”, and usually occurs from limited 

amounts of poor quality DNA, such as museum samples or hair samples.  A false homozygote is 

created when one of the alleles of a particular locus is not expressed due to the software not 

recognizing the allele or an amplification bias in the DNA mixture and a locus which was 

previously heterozygous is now homozygous.  Allelic dropout is typically a random effect on 

FST.   

Binning error is one cause of the incorrect assignment of allele size and usually occurs 

from inconsistencies in laboratory procedures.  The tools used for the analysis of microsatellite 

data consider allele sizes to be continuous values rather than discrete.  Therefore, allele sizes for 

trinucleotide data could be rounded by the researcher or software to be three nucleotides more or 

less than it should be (if considering tri-nucleotide data).  Binning errors can have a systematic or 

random effect on FST.  In our project we are looking at the random effects.  
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Null Alleles occur when an allele is present in an individual, but is not assayed.  For 

example, suppose three individuals have alleles A1A4 , B1A4, and A4A4 at a particular locus.  If 

A4 is not assayed within the entire experiment then the individuals are read in as A1Ø, B1Ø, and 

ØØ and therefore become A1A1, B1B1, and ØØ, where ØØ is missing data.  Null Alleles are 

different from Allelic Dropout because a particular allele is not expressed throughout the entire 

dataset instead of randomly deleting alleles.  This is more of a systematic deletion rather than the 

random deletion of allelic dropout.   

In general, we were motivated to find error rates where the conclusions drawn from the 

data would be erroneous (i.e., determining how bad the data can be and still yield the correct 

conclusion).  For this reason, we tested a variety of dataset with small sample-sizes of 

individuals and loci, and extremely high levels of genotyping errors.    

 

1.2 – GENE MAPPING FOR COMPLEX TRAITS  

Gene mapping is the process of identifying the location of genes on chromosomes. In 

particular gene mapping of diseases is the process of finding the location of the genes that cause 

the disease. Complex diseases are diseases that are influenced by multiple genes. It has been 

found that the mapping of genetically complex diseases such as schizophrenia, bipolar disorder, 

and diabetes, is a much more difficult task than it was once thought to be.  However, single locus 

traits, such as cystic fibrosis, and Huntington's disease, have proven to be easier to map (RISCH 

and MERIKANGAS 1996). For single locus diseases, if an individual has a certain single locus 

disease it is highly likely that the individual has a certain genotype at a particular locus that 

caused that disease as well as if that certain genotype is found at that particular locus then the 

individual is likely to have the disease. That is to say, single locus traits have a strong correlation 
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between genotype at the causative locus and the trait.  In multiple locus traits it is not necessarily 

true that a certain genotype is present when a trait is expressed nor is it true that if the certain 

genotype is present that the trait will be expressed. With complex diseases, the multiple genes 

can interact with each other or environmental factors. Because of this, there has been little 

success in mapping complex trait loci. Unfortunately, a majority of genetically based diseases 

that affect humans are complex. Therefore, there is a great need for better ways to map these 

complex diseases. 

Some traits in observation are binary traits that do not have simple Mendelian (simple 

trait) inheritance patterns.  These traits such as, affected versus unaffected to a complex disease 

have underlying quantitative attributes.  Usually these binary traits are treated as threshold 

variables, meaning the underlying continuous variable, known as the liability, has a point which 

separates the two phenotypic traits. (XU and ATCHLEY 1996; YI and XU 1999)    These binary 

traits are difficult to map because of the complexity between phenotype and the liability variable 

(YI and XU 2000).   

In addition to binary phenotypes, complex traits may also result in continuous outcomes, 

these are known as quantitative traits.  For example, body mass is considered a complex 

quantitative trait.  There are many genes and environmental factors that contribute to determining  

body mass. Therefore, modification of only one of these genes would usually change body mass 

only slightly.  Body mass can be considered a quantitative trait because its phenotypes are on a 

continuous scale.  Quantitative traits can be mapped using standard methods (LYNCH and WALSH 

1998) to quantitative trait loci (QTL), regions of the DNA that are associated with the phenotypic 

trait in question.  These QTLs are genomic regions that may contain tens or hundreds of genes.  

If so there are fine mapping methods that are used to narrow down the region and positional 
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cloning (sequencing the region) is used to identify the precise genes that are associated with that 

phenotypic trait, if the gene sequences are known.  There have been cases where mapping QTLs 

have been successful for diseases (GLAZIER et al. 2002) however, that seems to be the exception 

rather than the rule.     

Gene mapping methods without any previous knowledge on the location of these 

complex traits require a genome-wide study, a method for searching the entire genome for 

association to the trait.  There are two common genetic analysis approaches for genome scans, 

linkage mapping and association studies. 

Linkage mapping is the detection of trait markers within families whose trait genotype is 

more common among individuals with the trait than would happen by chance.  (HIRSCHHORN 

and DALY 2005)  This method has proven to be very successful for locating genes associated 

with Mendelian traits.  Linkage analysis has not been as successful with complex traits.  A 

review study was done to look at over 100 whole-genome scan studies of complex diseases 

(ALTMULLER et al. 2001).  Of these studies only a third produced significant linkages and of 

those few have been found to be significant if repeated.  There are many factors that can attribute 

to the low success rate of linkage analysis including but not limited to the low heritability of 

complex traits, and low power due to insufficient sample sizes (RISCH and MERIKANGAS 1996).  

Because of the use of family data for linkage, and within families the number of recombination 

events is small, it is possible that the smallest DNA region of interest detected may still contain 

hundreds of genes (CARLSON et al. 2004). Linkage mapping is a good tool for identifying rare 

alleles that contribute to the disease however it not as good in  detecting common variants that 

also have been shown to contribute greatly to common diseases (LOHMUELLER et al. 2003).     
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Association studies are better at detecting these common variants but are not good at 

detecting rare alleles (HIRSCHHORN and DALY 2005).  Genome-wide association studies are the 

process of surveying most of the genome to determine casual genetic variants, usually by 

comparing affected individuals versus unaffected individuals within a genetic marker.  With the 

completion of the human genome project and the HapMap Project (see below) it has become 

increasingly popular to use single nucleotide polymorphisms (SNPs) as markers to determine 

association with a trait.  SNPs are single nucleotide variations within DNA that can be used as 

genetic markers.  Association is usually determined using case-control studies.  In order for 

associations to be found the most useful genetic markers  are either the causal allele or ones that 

are highly correlated (in linkage disequilibrium) with the casual allele.  This will be a smaller 

region of DNA than those found in linkage analysis.  Association studies develop a loss of power 

when more than one disease causing allele is present.  This is because there will be less contrast 

between genotypes.  This is not a problem in linkage analysis because specific alleles are not 

observed.  One popular method for association studies in humans is transmission equilibrium 

tests.  However, it has been shown (SLAGER et al. 2000) that in order to achieve reasonable 

statistical power for mapping using this test, tens of thousands or even millions of families may 

be needed.   

The concept of linkage disequilibrium is important to the power of genome-wide 

association studies (CARDON and BELL 2001).  Linkage disequilibrium is the concept that makers 

that are near each other within the chromosome tend to be inherited together and therefore have 

high correlation with each other.  It has been discovered that these correlation in humans occur in 

a block structure within the genome, the HapMap Project is a catalog of these linked locations 

(ALTSHULER et al. 2005).  To perform genome-wide association studies on SNPs (or whichever 
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genetic marker is chosen), in order to span the entire genome, millions of makers may be tested 

for association.  This proposes the problem of loss of power due to multiple testing.  The 

development of the HapMap has proposed a reduction in the number of tests needed for 

association analysis.  Instead of testing all 10 million SNPs, only a few of the SNPs that are 

closely related will have to be tested.  Some of the recent genome-wide association studies using 

HapMap data have found loci associated with type 2 diabetes (SLADEK et al. 2007), 

inflammatory bowel disease (DUERR et al. 2006), breast cancer (HUNTER et al. 2007) and 

prostate cancer (YEAGER et al. 2007).   

As an alternative approach to linkage or association studies there have been a number of 

studies recently that examine the use of microarray expression data and have found significant 

genetic variation in expression levels.  Gene expression is a term used for the quantitative value 

that describes the information that is transcribed from within the DNA into messenger RNA.  

Microarrays are tools for being able to see the expression levels of multiple genes at a time.  The 

outcome of a microarray experiment is an array of spots on a slide.  Each spot represents a gene, 

and will be colored yellow, red, green, or black according to that gene’s expression.  For 

microarray expression analysis, for a study of disease versus non-diseased genes, if a gene is 

overexpressed in a disease state (as compared to non-disease state) those genes will appear more 

red than green.   

Microarrays can be used for sequencing, detection of SNPS, or genetic mechanisms in 

living cells (DRAGHICI 2003).  The most widely used method is expression analysis.  Microarrays 

have been proven to be a reliable gene expression tool .  Microarray expression data can be 

gathered for one sample, or multiple samples.  In general for one sample the goal is to determine 

mean and variance of expression levels within the sample.  For two sample expression analysis 
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the goal is to determine genes that are differentially expressed between the two samples.  An 

example of this would examine tissue from breast cancer patients versus the same tissue from 

healthy individuals, to determine the genes that are differentially expressed between the two and 

may point to genes useful in further breast cancer studies.  Usually multiple t-tests are performed 

on the expression levels to determine differential expression.   

Over the past several years there has been an increasing interest in combining microarray 

expression analysis with molecular marker data.   This is a strategy known as “genetical 

genomics” (JANSEN and NAP 2001).  The idea behind genetical genomics is that one can treat 

microarray gene expression levels as different quantitative phenotypic traits then use linkage or 

association methods to determine significant quantitative trait loci.  Such QTLs are known as 

expression QTLS (eQTLs).   

This method of genetical genomics has been successful at showing high heritability (see 

below) of eQTLs in yeast (Brem and Kruglyak 2005; Brem et al. 2002), plants, and humans 

(MONKS et al. 2004; MORLEY et al. 2004; SCHADT et al. 2003).  These studies have been 

reviewed (LI and BURMEISTER 2005; STAMATOYANNOPOULOS 2004) and have shown that 

microarray data may be extremely useful in mapping loci associated with complex traits.  There 

have also been studies using genetical genomics methods that found causative genes related to 

weight in mice (GHAZALPOUR et al. 2006; SCHADT et al. 2003).   

For example, Schadt et al. performed an F2 cross (creation of a generation where both 

parental phenotypes occur) between two inbred mouse strains and performed a genome-wide 

scan for linkage of expression levels of 23,574 genes.  These mice were placed on a high-fat diet 

and therefore a wide array of obesity occurred among them.  The mice were classified according 

to their fat pad mass (FPM) trait.  The expression levels for the 25% of the mice with the highest 
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FPM were compared to those expression levels for the 25% of the mice with the lowest FPM.  

280 genes were identified to be differentially expressed between these two groups.  It was found 

that clustering the mice on this set of genes divided the mice into two high-FPM groups (high 

FPM group-1 and high FPM group-2) and one-low FPM group.  A genome scan was then 

performed for those mice classified as high FPM group-1 or low FPM group and another scan on 

those classified as high FPM group-2 or low FPM group.  They found the association log-odd 

scores of eQTLs for FPM were substantially increased when only one high FPM group was 

included.  They also showed that a number of the genes found from the reduce scan had 

expression levels mapping to the same region as a QTL for the FPM trait prior to reduction, just 

with higher correlation.  The idea is if there are expression levels that are highly heritable (see 

below), there is evidence that several of these expression levels map to the same chromosomal 

region and possibly the same locus.  It is possible that causative loci (loci that are responsible for 

variation in disease or trait) affect expression levels of other genes; these expression levels would 

then have high power for mapping the causative loci.   

The goal of gene mapping studies is to demonstrate that a phenotypic trait is influenced 

by inherited factors.  Heritability is the percentage of the phenotypic variation among individuals 

that is affected by genotypic variation (GIBSON and WEIR 2005).  The papers mentioned above, 

that have used genetical genomics methods, show high levels of heritability of expression levels 

with respect to mapped QTLs.  Although due to the large number of genes studied it would not 

be surprising to see high levels of heritability by chance.  For example, Monk et al (2004) found 

very high QTL heritability values for their 55 significant eQTLs.  However, these were selected 

from 24,000 genes.  While these heritability values were shown to be significant, because of the 

large number of genes they may not actually be as high as estimated.  BREM and KRUGLYAK 
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(2005) found a way to partially avoid this problem.  They mapped QTLs for the expression 

levels of roughly 6,000 genes in a cross between two yeast strains.  They found that 3,546 

expression levels had significant heritability values.  They then used half of their data as a QTL 

detection set and the other half of the data to estimate the proportion of variance explained by the 

QTLs that were detected.  This gave an independent estimate of the proportion of variance 

explained.  They found a median of 27% of variance explained by QTLs with 16% of QTLS 

explaining more than 60% of the variance.  They also estimated bounds on the number of 

expression levels controlled by a given number of loci.   They concluded that 3% (106) of genes 

were consistent with 1 locus control, 17-18% (620) were consistent with 1-2 locus control, and 

50% required more than 5 loci.  This still proposes a multiple testing issue because they 

estimated variance on 3546 genes.  However, due to the fact that they found heritability levels of 

over 69% for all 3546 of those genes, there is little doubt that there were hundreds (over 600) of 

expression levels with simple (1-2 loci) inheritance and high heritability.   

There is a potential problem with this genetical genomics method.  A hypothetical 

pathway for complex genetic traits is shown in Figure 1.1.  Ovals represent disease causative loci 

– that is, loci with genotype variation that leads to variation in disease risk. Rectangles represent 

genes in a network, whose transcript variation between individuals leads to variation in disease 

risk between individuals. Arrows between loci and genes in the network represent an impact of 

genotypic variation at the locus on the gene’s transcript level. Arrows between genes in the 

network represent control of transcription. Arrows between genes and the disease represent an 

impact of the genes transcription on disease probability.  This figure is not meant to be taken 

literally.  Realistically things are probably much more complicated than Figure 1.1 implies.   
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Figure 1.1 - Hypothetical Schematic of Disease Genetic Pathway 

 

The ideal expression level for mapping a causative locus would be one whose variation is 

entirely determined by the genotype at a single causative locus.  However, such an expression 

level will have poor correlation with the disease and may be difficult to detect as differentially 

expressed.  Expression levels that are highly correlated with the disease would be easy to 

determine as differentially expressed, but would not be any better than the disease itself for 

mapping.  Schadt et al. found a large number of eQTLs mapping to locations throughout the 

genome, regardless of trait status.  To determine which of these eQTLs are relevant requires 

determining a correlation between the expression level and the trait of interests, which may be 

weakly correlated with causative loci.  Therefore we may be exchanging the low power due to 

establishing a correlation between trait and genotype to a low power due to establishing a 

correlation between trait and expression level.  It has been shown (SCHLIEKELMAN 2008) that 
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there is a tradeoff between the power to show an association between expression level and 

disease and the power to map eQTLs for those expression levels.  Schliekelman also determined 

that power to map eQTLs under an additive penetrance model is significantly worse than with a 

multiplicative model.   

As mentioned above, there have been several studies that use microarrays to identify 

causative loci, all of which have some prior knowledge of the location of the causative loci.  Our 

goal is to develop a method that incorporates genome-wide microarray expression data as 

quantitative traits to map causative loci for a complex trait without any prior knowledge of locus 

location.   
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CHAPTER 2 

EFFECTS OF COMMON ERRORS IN MICROSATELLITE DATA ON ESTIMATES OF POPULATION 

DIFFERENTIATION1
 

                                                 
1 Breazel, E.H. and T. C. Glenn.  To be submitted to Molecular Ecology. 
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ABSTRACT  

Microsatellite DNA loci are commonly used in population genetic studies.  Many researchers use 

good lab practices to minimize genotyping errors, but it is statistically impossible to eliminate all 

genotyping errors in large datasets.  Most researchers have thus focused on reducing errors to 

levels where they believe the errors won’t cause erroneous conclusions to be drawn from the 

data.  Unfortunately, answers to basic questions regarding the numbers of loci and individuals 

needed to estimate population differentiation and the effects of genotyping errors rely on limited 

numbers of simulation-based studies.  Thus, the amount of effort that should be expended on 

reducing errors and the effects of well-known errors that occur in almost every dataset (allelic 

dropout, binning errors, and null alleles) remain in the realm of intuition and rules of thumb.  We 

systematically tested the effects of these common genotyping errors on a common measure of 

population differentiation, FST.  Allelic dropout had no effect on the average value of FST, but 

large amounts of dropout increase the variance of FST calculated from any particular dataset and 

this variance increases with decreasing sample sizes of individuals or loci.  Incorrectly binning 

alleles and the presence of null alleles had a potentially large and statistically significant effect 

on the value of FST.  Binning errors bias estimates of FST downward (i.e., making populations 

appear less different than they actually are) whereas null alleles biased estimates of FST upward 

(i.e., making populations appear more different than they actually are).  However, despite the 

statistically significant bias on the estimate of FST the conclusions about population 

differentiation would most likely remain the same, even at unrealistically high percentages of 

genotyping errors.   
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2.1 – INTRODUCTION 

Microsatellite DNA loci (known by many other names and acronyms, but simply called 

microsatellites hereafter) are small repetitive elements common in eukaryotic genomes (TAUTZ 

and RENZ 1984) that have been used as single-locus markers in genetic studies since 1989 

(TAUTZ 1989; WEBER and MAY 1989).  Microsatellites are used to answer questions about 

relationships among individuals, populations, and closely related species (BRUFORD and WAYNE 

1993; QUELLER et al. 1993; SELKOE and TOONEN 2006).  The challenges associated with 

obtaining correct microsatellite-genotypes are most clear in the fields of forensics, 

ancient/old/museum DNA, and non-invasive sampling.  It is from these fields that the most 

egregious errors were made, but also the most progress in establishing laboratory standards (see 

POMPANON et al. 2005 for a review).  Most researchers have likewise focused on laboratory 

protocols and practices to reduce errors in microsatellite datasets. 

Ideally, a large number of DNA samples are fully analyzed at large numbers of loci using 

experimental procedures with little variation (i.e., same researcher, lab, instruments, chemicals, 

etc.), yielding consistently correct data.  Unfortunately, in most studies the experimental 

conditions and thus, resulting data are less than ideal.  Numbers of loci and DNA samples 

available are generally limited by money, time, or other resources (KALINOWSKI et al. 2006; 

SELKOE and TOONEN 2006).  The amount of previous experience by researchers and the use of 

good laboratory practices also contribute to producing consistently correct data (PAETKAU 2003).  

However, even if a large number of DNA samples are obtained, large numbers of loci available, 

and all genotyping is done by experienced researchers using good laboratory practices, then the 

time needed to accumulate large datasets make it difficult to perform experimental designs 

without changes over time (e.g., lab temperature or humidity, chemicals, instruments, etc.).  
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Therefore, mistakes in genotyping will be made.  Indeed, in large datasets mistakes are a 

statistical certainty (HOFFMAN and AMOS 2005). 

Although genotyping errors from a variety of sources have long been recognized (see 

POMPANON et al. 2005 and references therein), few studies reported error rates until recent 

publications noted the value in knowing the frequency of such errors (BONIN et al. 2004; 

BROQUET and PETIT 2004; HOFFMAN and AMOS 2005).  Indeed attempts to publish error rates in 

the 1990’s and early 2000’s were nearly certain to draw criticism from reviewers.  Attitudes were 

often expressed that allowing genotyping errors to remain in a dataset was sloppy science and a 

result of poor markers/methods/training/etc.  Thus, huge amounts of resources were devoted to 

achieving an impossible goal (error-free data sets), or at least driving the error rate to some 

perceived level of insignificance where it would be ignored (see DAKIN and AVISE 2004; MILLER 

et al. 2002; SEFC et al. 2003; WAITS and PAETKAU 2005).  Attitudes about genotyping errors 

have changed remarkably in the past four years. 

Although the taboo of acknowledging the presence of genotyping errors has been broken, 

questions remain about the effects of these errors.  Genotyping errors can clearly affect the 

estimated values of parameters of interest, and much work has been done recently to determine 

how much these errors change the conclusions drawn from the values obtained.  For example, in 

genetic mark and recapture studies using non-invasive sampling, genotyping errors cause a 

systematic upward bias in population size estimates that can exceed 200% (ROON et al. 2005).  

In addition, for mark and recapture estimates a Windows based program DROPOUT has been 

developed to determine if a dataset is “error free” or if not which loci are producing the most 

errors (MCKELVEY and SCHWARTZ 2005).  Genotyping errors also have significant effects on 

parentage assessment, particularly when using parental exclusion (ARAKI and BLOUIN 2005; 
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DAKIN and AVISE 2004; VANDEPUTTE et al. 2006).  Many methods that incorporate genotyping 

errors into parentage assessment have been proposed (e.g., KALINOWSKI et al. 2007; MORRISSEY 

and WILSON 2005) and a DOS based program FAP has been developed to aid in problematic loci 

for parentage assessment, when parental genotypes are known (TAGGART 2007).  Alternatively, 

few studies have been conducted to determine the effects of genotyping errors on estimates of 

population differentiation, and more work in this area is needed (BONIN et al. 2004; HOFFMAN 

and AMOS 2005; POMPANON et al. 2005). 

Study Goals and General Design  

We seek to understand better the effects of common genotyping errors (Table 2.1) on 

measures of population differentiation.  Our goal for this project is both retrospective (i.e., to 

help interpret and apply an appropriate amount of skepticism to previous studies) and 

prospective (i.e., to provide tools for future researchers to better interpret their data).  We are 

particularly interested in determining the effects of genotyping errors when small numbers of 

individuals and loci have been sampled. 

Table 2.1 – Summary of Genotyping Errors.  We use the term pseudo-
random to mean causes that are systematic in nature, but are expressed 
variably under typical experimental conditions so that the effect appears 
random.  An example of this would be a single nucleotide polymorphism 
in the primer-binding region of a locus.  Minor differences in PCR 
conditions (due to variance in pipetting, DNA concentrations, thermal 
cyclers, etc.) may cause some alleles to be null (unscorable) in some 
experiments, but scored in other (replicate) experiments.  Pseudo-random 
processes were approximated in simulations with the same algorithms 
used for random processes. 
 

Error Error Type Cause
Allelic Dropout *Random Bad DNA, limited DNA, PCR inhibitor

Systematic Large allele size differences

Binning Error *Pseudo-random Undetected variance in chemicals, equipment,
Systematic variance chemicals, equipment, researchers

Null Alleles Pseudo-random Minor primer mismatches, non-optimal PCR, PCR inhibitors
*Systematic Primer mismatches

*Modeled and tested
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In this study, we focus on a commonly used estimator/parameter of population 

differentiation FST (WRIGHT 1951; WRIGHT 1965).  Herein we use the term FST to indicate the 

generic metric of population differentiation calculated in any of several ways (FST - WRIGHT 

1951; GST - NEI 1973; ŜTθ - WEIR and COCKERHAM 1984; PhiST - ROUSSET 1996), the term 

STθ for the statistic calculated from a complete dataset (using the formulas for ŜTθ ), and we use 

ŜTθ  to indicate the statistic calculated from a sample of the complete dataset.  FST is a standard 

statistic based on allele frequencies used to determine the amount of genetic variation among 

populations by measuring the proportion of genetic variance in a subpopulation (S) to the total 

genetic variance (T).  GAGGIOTTI et al. (1999) demonstrated that FST is more consistent than RST 

(a similar measure based on variance of allele sizes; SLATKIN (1995) when the numbers of 

individuals and loci sampled were small.  BALLOUX and GOUDET (2002) compared FST and RST 

for a fixed number of individuals, arranged in different population sizes, a variable number of 

migrants, a variable number of loci, and a variable number of mutation rates.  BALLOUX and 

GOUDET (2002) found that RST performed better when the populations are highly structured, but 

FST does better when the populations are weakly structured.  They also confirmed that FST is 

more accurate than RST when small numbers of individuals are sampled.  Based on the results of 

these two studies and because we are using small numbers of loci and individuals in several of 

our simulations, we decided to use FST.   

To test the effect of genotyping errors on FST we generated simulated data using 

EASYPOP (BALLOUX 2001).  EASYPOP generates data according to input parameters on: 

ploidy (haploid, diploid, haplodiploids), number of populations, number of individuals, 

migration type and rate, linkage of loci, number of allelic states, and variability.  This program is 

helpful because it simulates both migration and mutation in the data.  The output from this 
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program was then used as input for the program we developed.  Our program incorporates the 

three types of genotyping errors (see below), and then calculates FST on the data with these 

errors.   

We investigate the effects of three of the most common types of genotyping errors in 

microsatellite datasets (mathematical nature of error):  

allelic dropout: an allele is missed due to amplification bias in favor of another allele 
(systematic) or because it is not included in the aliquot of DNA amplified (random),  
binning error: an allele is misassigned due to a sizing error (pseudo-random or 
systematic), and  
null allele: an allele is missed because the primer binding site(s) is/are variable (pseudo-
random or systematic).   
 
Specific examples leading to the different types of errors are summarized in Table 2.1.  In 

general, we were motivated to find error rates where the conclusions drawn from the data would 

be erroneous (i.e., determining how bad the data can be and still yield the correct conclusion).  

For this reason, we tested a variety of dataset with small sample-sizes of individuals and loci, and 

extremely high levels of genotyping errors.    

 

2.2 – METHODS 

To test the effect of genotyping errors in microsatellite data on FST, we first generated 

data that have no genotyping errors.  We used EASYPOP (BALLOUX 2001) to create 

microsatellite data according to specific parameters.  EASYPOP generates populations using a 

Markov Chain.  A new dataset has matrix t which is full (the variability in the original matrix t 

can be set by the user) and matrix t+1 which is empty.  If the user specified two populations with 

two sexes and random mating, a female and her mate are chosen from the same population and a 

new individual is then created.  This new offspring has a 1-m chance of staying in the same 

population or m chance of switching populations (i.e., m = migration rate).  This process is 
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repeated until both populations are filled, then matrix t+1 becomes matrix t.  In all of our 

simulated files we use diploid data (containing one allele from each parent), with two sexes, 

random mating, at least 10,000 generations, and 99 different replicates.  

These simulations yield 99 different simulated files.  For now we will concentrate on 

only one simulated file, as the 99 different simulated files will act as replicates to our 

experiment.  We performed our experiment on two different datasets (Dataset A and Dataset B).  

We considered that the effects of genotyping errors on FST may depend on the value of FST 

without genotyping errors.  Therefore, we chose a dataset with a relatively large STθ  (0.22) and 

one with a relatively small STθ  (0.08).  The parameters of our two datasets are listed in Table 2.2.  

Within the parameters a mixed mutation model is a Single-Stepwise Mutation Model (SSM) with 

a proportion of K-allele model (Kam) mutation events.  SSM is a mutation model that increases 

the number of repeats by one repeat unit (either increasing or decreasing), in EASYPOP each 

new allele size has a 50% probability of being larger or smaller than the original allele.  A user 

defined proportion of Kam mutation events create new alleles of random size (e.g., 20% of 

mutations are Kam events).  Both SSM and Kam are constrained to the number of allelic states 

specified by the user.  We treated the EASYPOP datasets as if that is the data from all 

individuals from 2 overall populations.  Knowing that it is generally unrealistic to have a sample 

dataset with 1000 individuals and 20 loci, we created “sub-datasets” that are more consistent 

with real datasets.  The sub-datasets had a number of individuals for each population (N) equal to 

10, 20, 50, or 200 and the number of loci equal to 2 through 20 thus creating 76 different sub-

datasets.  For each of these sub-datasets we incorporated (using our program written in C#) 

allelic dropout and binning genotypic errors.  
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0.7718
(0.4030 – 0.9134)

0.7198
(0.0929 – 0.8963)

Average Exp
Heterozygosity Pop1 

(Range)

16.7
(6-32)

17.4
(6-31)

Average # Alleles 
(Range)

0.0787
(0.0577 – 0.0985)

0.2179 
(0.1612 – 0.2715)

Average FST 
(Range)

9999# of replicates

2000010000# of generations

MinimalMinimal
Variability of initial population
(Minimal means 

all start with same allele)

9999# of possible allelic states

0.10.1Proportion of Kam mutation events

MixedMixedMutation model

.001.001Mutation rate

YesYesAll loci have same mutation scheme?

YesYesFree recombination between loci?

2020# of loci

.001.0001Proportion of male migration

.001.0001Proportion of female migration

YesYesSame migration scheme 
over all simulation

500500# of males
in each population

500500# of females
in each population

YesYesSame # of individuals 
in each population

22# of populations

Random Random Mating system

22# of sexes

DiploidDiploidPloidy level

Dataset BDataset A

Table 2.2 – EASYPOP Parameters and Statistics for Experiment Datasets

 

To simulate allelic dropout a given percentage (d) of alleles were randomly deleted from 

both populations.  Randomness was determined by uniform distribution from 1 to total number  
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of individuals, within each locus separately (using C# random number generator).  Considering 

that each locus has a maternal and a paternal allele, if the maternal allele was deleted it was 

replaced by the paternal allele (creating a false homozygous) and vice versa (Figure 2.1).   
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Figure 2.1 – Illustration of Allelic Dropout 

 
If both alleles were deleted then the locus was considered missing data.  Missing data is a 

realistic occurrence when analyzing microsatellite data.  We performed these deletions using d = 

(0.01, 0.05, 0.1, and 0.5).  In addition to observing the effect on the average over all 99 

replications we also observed the effects on each individual replication as this may be more 

applicable for researchers with only one dataset.   

To simulate binning error we assumed that the random errors of the allele sizing are 

normally distributed with mean 0.  The standard deviation (or variance) of these random errors 

determines the probability of the allele being binned to another allele size.  We simulated binning 

errors by setting a standard deviation (σ) of the random errors of the allele sizes and calculated 

the percentage of alleles that needed to be binned to the next allele size, that percentage of the 

alleles at a locus were then binned up and down (see Figure 2.2).   
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Allele Size

X1 X1 + 3

 
Figure 2.2 – Illustration of Binning Error 

 
For convenience (see discussion) we assumed tri-nucleotide data and therefore binning up added 

3 to the allele size, binning down subtracted 3.  We performed the binning errors using σ = 1 

(6.68%), 2 (22.66%), and 3 (30.85%).  In other words, if the standard deviation is set to 1 then 

6.68% of the allele sizes are randomly chosen and increased by 3 and 6.68% of the allele sizes 

are randomly chosen and decreased by 3 (i.e., a total of 13.36% of all alleles at a locus were 

binned/scored incorrectly).  This is done likewise, for standard deviation of 2 and 3.   

Allelic dropout and binning were done simultaneously using every possible combination 

of the values of d and σ as specified above.  Thus, 12 different random genotyping errors were 

simulated for all 76 sub-datasets from each Dataset A and B, and all 99 replicates of each. 

Null Alleles were simulated by deleting a particular allele size within an entire locus for 

both populations.  For these genotypic errors, we did not use the sub-datasets used for allelic 

dropout and binning.  Instead we created datasets from the overall populations deleting the allele 

or combination of alleles closest to our target null frequency (y).  The allele or combination of 

alleles (up to three) in the first population whose allele frequency(s) were closest to y was deleted 

from the entire locus.  This was done for x% of the loci. 
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Each error was incorporated in the sub-datasets or datasets 100 times, to account for 

randomness of the simulated errors.  After genotyping errors are incorporated we calculated the 

value of ŜTθ  (WEIR and COCKERHAM 1984) for the data with and without incorporated errors.   

ŜT
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We took an average of the 100 different ŜTθ  values as the ŜTθ  value for a particular 

genotypic error combination.  Using the FSTAT (GOUDET 1995) program, to find bootstrap 
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values of FST 95% and 99% confidence intervals for the overall dataset without genotyping error, 

we compared the sub-dataset FST to the confidence interval of the overall dataset and compared 

the FST of the sub-dataset without errors to the FST of the sub-dataset with errors.  This entire 

process after simulation was repeated 98 more times, using the additional 98 replicates from the 

EASYPOP program. 

 

2.3 – RESULTS 

Because different sub-datasets were created, we could determine the effect of sampling 

effort by comparing the FST values of the sub-datasets with the full dataset.  We compared the 

FST values for each sub-dataset to the 95% and 99% bootstrap confidence intervals to determine 

if the ŜTθ  values were significantly different from the STθ of the original dataset.   
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Figure 2.3 – Effect of Sample Size and Number of Loci.  Graph shows 
number of ŜTθ  values (estimated from sub-datasets; out of 99) that differ 
significantly from STθ  (calculated from the entire dataset) vs. number of 
loci and four different individual sampling intensities.  The number of 
individuals, N=10 are shown with solid diamonds, N=20 solid squares, 
N=50 solid triangles, and N=200 open squares.  Dataset A is represented 
in panels (a) and (c), whereas Dataset B is presented in panels (b) and (d). 
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The number of ŜTθ  values out of the 99 replicates that were significantly different at the 

alpha = 0.05 level for Datasets A and B are pictured in Figure 2.3(a) and (b) respectively, for 

alpha = 0.01 level Datasets A and B are pictured in Figure 2.3 (c) and (d) respectively.  In Figure 

2.4 we have smoothed the lines presented in Figure 2.3.   
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Figure 2.4 – Effect of Sample Size and Number of Loci – Smoothed.  
Smoothed lines representing the number of ŜTθ  values (estimated from 
sub-datasets; out of 99) that differ significantly from STθ  (calculated from 
the entire dataset) versus number of loci and four different individual 
sampling intensities. N=10 individuals is represented by the solid black 
line, N=20 is the solid grey line, N=50 is the dashed line and N=200 is the 
dotted line. 
 

From these graphs we can see that to achieve an accurate estimate of FST it is generally better to 

sacrifice genotyping more individuals in each population rather than the number of loci.  This 

agrees with the findings from all previous simulation and theoretical studies, indicating that our 

simulations are behaving appropriately. 

 After incorporating allelic dropout to the sub-datasets we took the difference between the 

average FST with the allelic dropout errors ( _ŜT dropθ ) and the average FST without the errors 
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( _ST subθ ).  We found that no matter what the value of the randomly deleted percentage 0.01, 0.05, 

0.1 or 0.5, there is no effect on the FST value due to allelic dropout; as expected, it is truly just a 

random error that does not influence the results.  The results of the differences between the 

_ŜT dropθ values and _ST subθ  values recorded for Dataset A and Dataset B are displayed in Figure 

2.5 (a) and (b) respectively.   
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Figure 2.5 – Effect of Allelic Dropout - _ŜT dropθ  - _ST subθ versus number of 
loci.  The number of individuals are as given in Figure 2.4. Datasets A and 
B are presented in panels (a) and (b) respectively.  
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Looking at one replication at a time, however, we see that the variance for FST with allelic 

dropout for one replication ( _ _1ŜT drop repθ ) is large for smaller sample sizes (see Figure 2.6).  Thus, 

allelic dropout errors increase stochastically in estimates of FST with decreasing sample sizes of 

individuals or loci.   
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Figure 2.6 – Effect of Allelic Dropout on One Replication.  Graph of the 
values of FST versus number of loci.  _ _1ŜT drop repθ values are shown in 
black, 95% confidence interval for d = 0.05 in black dashed lines, 95% 
confidence interval for d = 0.1 in green dashed lines, 95% confidence 
interval for d = 0.5 in blue dashed lines, and value of  STθ  for replication 
in red line.  Dataset set A (rep. 9) and Dataset B (rep. 24) are presented in 
panels (a) and (b) respectively.   
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Alternatively, Binning Error had a significant effect on the value of FST.  For example, 

taking the standard deviation of the allele size errors to be 1 for N=20 and L=9 (for Dataset A), 

resulted in an average decrease in _ŜT binθ  of 0.0561.  This average decrease (average over all 100 

pseudo-replicated sub-datasets of 99 replicated datasets) has a standard deviation of 0.0097 and a 

99% confidence interval of (0.0536, 0.0586).  This shows that for N=20 and L=9 that there is a 

significant difference between the error _ŜT binθ  and the actual _ST subθ for allele size standard 

deviation equal to 1.  We have similar results for N=10, N=20, N=50, and N=200 at 2-20 number 

of loci.  Each difference is significant at the alpha = 0.01 level.  

Figure 2.7 (b) demonstrates that the difference between _ŜT binθ  and _ST subθ for Dataset B, 

is less than that of Dataset A.  This is because the values of STθ  in Dataset B are about one third 

of the values of STθ in Dataset A.  Notice that for σ=1 Dataset A has a difference of about 0.05 

which is approximately 25% of the original STθ  of 0.2179 and σ=1 for Dataset B has a difference 

of about 0.02 which is also approximately 25% of the original STθ  of 0.0787.  For σ=2 the 

difference is approximately 55% of the original and σ=3 is approximately 60% of the original 

STθ  value.  
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Figure 2.7 – Effect of Binning Error - _ŜT binθ  - _ST subθ versus number of 
loci.  The number of individuals are as given in Figure 2.4.  Datasets A 
and B are presented in panels (a) and (b) respectively.  
 

FST is a statistic that is a function of the number of alleles at each locus and the expected 

heterozygosity at each locus.  Therefore, when applying binning errors we used the sub-datasets 

that have randomly chosen loci.  Researchers, however, will rarely have the luxury of choosing 

loci at random, and indeed will likely choose loci in a biased way (e.g., choosing loci that are 

highly polymorphic and/or easy to score).  It is therefore possible that the effect on any specific 

_ŜT binθ  may vary significantly if the loci with the highest or lowest number of alleles were chosen 

or the loci with the highest or lowest expected heterozygosity were chosen.  We examined the 

five loci within each replicate dataset with the lowest number of alleles for N=20 and N=50, then 

the five loci with the highest number of alleles for N=20 and N=50.  Also, we looked at the five 



 39

loci with the lowest expected heterozygosity and the five loci with the highest expected 

heterozygosity (Table 2.3).   

0.8521
(0.7877 – 0.9134)

0.8236
(0.7320 – 0.8963)

Most Heterozygous
(Range)

0.6651
(0.4030 – 0.8018)

0.5798
(0.0929 – 0.7276)

Least Heterozygous
(Range)

21.8
(17 – 32)

22.4
(18 – 31)

Most Alleles
(Range)

12.0
(6 – 17)

12.6
(6 – 17)

Least Alleles
(Range)

Dataset BDataset A

Table 2.3 – 5 Loci with Least/Most Alleles and Heterozygosity

 

We can see in Dataset A that heterozygosity has a greater effect on the difference than the 

number of alleles (Figure 2.8). 
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Figure 2.8 – Effect of Binning Error on Selected Loci - _ŜT binθ  - 

_ST subθ sub-datasets with Most/Least Alleles and Heterozygosity.  Datasets 
A and B are presented in panels (a) and (b) respectively.  
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When testing the effect of Null Alleles on FST, instead of dividing the datasets into sub-

datasets we manipulated the overall dataset with N=1000 and L=20.  We determined the effect of 

null alleles on θST by deleting alleles from all 20 loci to achieve null allele frequencies of 0.05 to 

0.50.  The percentage of significantly different values from the original 99 values has a curved 

shape (Figure 2.9).   
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Figure 2.9 – Effect of Null Alleles (% Significantly Different) Graphs of 
% of Significant _ŜT nullθ  values (out of 99) versus number of loci once 
Null Alleles are present.  Dataset A is represented in panels (a) and (b), 
whereas Dataset B is presented in panels (c) and (d).    
 

In addition, null alleles seem to increase the value of _ŜT nullθ , which is contrary to binning error.  

The differences between _ST subθ and _ŜT nullθ  have a similar curved shape.  This suggests that there 

is a point when the effect becomes less as the allele frequency gets larger (Figure 2.10).   
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Figure 2.10 – Effect of null alleles - _ŜT nullθ - STθ versus allele frequency of 
null allele.  The dashed lines are the 95% confidence interval lines for 
these values.  Dataset A and B are presented in panels (a) and (b) 
respectively. 

 

2.4 – DISCUSSION 

Overall, we found that ŜTθ  was quite robust to even ridiculously high genotyping error 

rates. Allelic dropout had no effect on the average estimated FST.  For binning errors and null 

alleles, although there were statistically significant differences in the values of ŜTθ , the 

conclusions about the data (i.e., differentiation of populations) would remain the same with or 

without genotyping errors.  We found this to be true with both large and small values of STθ , the 

overall population FST without genotyping errors.    

Number of Individuals and Loci 

If populations are strongly differentiated (i.e., FST ≥0.2), then sampling ≥20 individuals at 

≥10 loci provides ~90% probability of being within the 95% confidence interval of STθ .  For 

pilot studies, however, even genotyping ≥20 individuals at as few as ≥6 loci gives ≥80% 

probability of being within the 99% confidence interval of STθ . 

If populations are less differentiated, then more loci and individuals will be needed to 

achieve similar levels of confidence in the FST value obtained.  For example, if populations are 

modestly differentiated (i.e., FST ≥0.08), then sampling ≥20 individuals at ≥15 loci will provide 
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~90% probability of being within the 95% confidence interval of STθ .  For pilot studies, 

however, even genotyping ≥20 individuals at as few as ≥9 loci gives a ≥80% probability of being 

within the 99% confidence interval of STθ .  Similar to previous studies, our results indicate that 

to achieve an accurate estimate of FST it is generally better to sacrifice genotyping more 

individuals in each population rather than the number of loci.  Genotyping ≥20 individuals at ≥10 

loci is a reasonable initial target to determine population differentiation.  If differentiation is 

substantial, then the estimate achieved from this effort may be sufficient.  If differentiation is 

modest or low, then researchers will need to survey additional loci to have confidence in their 

estimate of FST. 

Allele Dropout 

We found that allelic dropout behaved as a random error and had no statistically 

significant effect on the average value of FST.  However, researchers don’t generally collect 

multiple replicated datasets.  We found that for any particular replication there may be a 

significant effect on the conclusions drawn from datasets with small sample sizes of individuals 

and loci.  That is, for dataset sets where only a small or modest number of individuals (N≤20) are 

genotyped at small or modest numbers of loci (N<10) and have lower values of actual FST, (such 

as our Dataset B) allelic dropout may cause the 95% confidence interval of sample FST to overlap 

with zero.  This would cause a conclusion of no difference between populations when in reality 

there is a difference.  It should be noted that we applied allelic dropout equally on both 

populations however, allelic dropout can occur stochastically (we have shown this in observation 

of one replication) and differently between populations (POMPANON et al. 2005).  Because alleles 

are distributed differently among populations not having equal error rates may have a significant 

effect on FST and possibly the conclusions about the data as a result. 
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It has been found that allelic dropout may have an effect on population differentiation 

statistics such FIS more so than FST (BJORKLUND 2005).  Future work may want to explore the 

effect on FIS.   

Allele size may have an influence on amplification (SEFC et al. 2003).  Large-sized 

alleles are especially vulnerable to such genotyping errors.  Although this phenomena is known 

as large allele dropout, it would be more similar to the null allele simulations we conducted than 

the allelic dropout simulations.  

Binning Errors (& False Alleles) 

As much as 82% of the genotyping errors within previous studies are due to binning 

errors (AMOS et al. 2007).  Previous studies report that estimated allele sizes are within 5% of 

actual allele size only 68% of the time when using automated allele calling software (AMOS et al. 

2007).  We simulated percentages of binning error that begin with realistic, but high, error 

percentages (i.e., d=1) and go up from there.  

Binning errors seem to have the most consistently statistically significant effect on the 

value of FST.  When the standard deviation is 1 for either dataset the reduction of FST is 

approximately 25% of the original FST.  For standard deviation of 2 the difference is 

approximately 55% of the original and standard deviation of 3 is approximately 60% of the 

original FST value.  This is true whether the alleles chosen for binning errors are randomly 

selected, or if we choose alleles at loci with the most/least heterozygosity or allelic diversity.  

Yet even with statistically significant differences in FST the conclusion about the statistical 

support of differentiation populations will likely stay the same.  Because the 95% confidence 

intervals of FST with binning errors for all 99 replicates do not include 0 the conclusions for both 
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of the sample datasets and all 99 replications we tested will be that there is differentiation 

between the two species populations.   

Although the conclusion of statistically supported differentiation between populations 

remains, it is important to note that the level of differentiation can be biased dramatically.  Thus, 

research that depends on accurate estimates of differentiation, such as determining the 

conservation status of the populations, should consider the effects of binning errors.  For 

example, datasets yielding FST values only slightly below the minimum value needed to 

recommend conservation actions for the populations as independent units should be viewed 

carefully.  Resolution of binning errors in such datasets will increase the estimated FST values 

and thus change the management decisions about those populations.  It is unlikely, however, that 

high quality data collected by experienced researchers will contain binning errors that will 

change the estimated FST values by more than ~25%.  

Although tri-nucleotide data are assumed, this was done for mathematical convenience.  

One could easily scale the results obtained to di- or tetra-nucleotide loci.  For example, if a real 

dataset of di-nucleotide loci had a variance of 0.67 bp, then the results of σ = 1 would apply.   

Note that binning error as we implemented in our program is similar to the “false allele” 

genotyping error category of (HOFFMAN and AMOS 2005).  False alleles observed by Hoffman & 

Amos (2005) were generally scoring errors due to strong stutter bands in some PCR products, 

and were thus, a single repeat unit above or below the real allele.  False alleles in other studies 

often correspond to PCR contamination events and thus may contain alleles of substantially 

different size.  Because we are using FST as our measure of genetic differentiation, the distinction 

between these two types of false alleles is unimportant, but the distinction would be important 

for RST.  It should also be noted that because alleles are only binned +1 or -1 from a known 
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allelic state, high levels of binning error will lead to multiple alleles binned to the same incorrect 

state.  

A possible implementation of our method would be to run the PEDANT computer program 

(JOHNSON and HAYDON 2007) to estimate the maximum likelihood for allelic dropout and 

binning errors for your datasets.  Then these error probabilities can be used through our software 

program to determine if these errors will effect the conclusions drawn from the data.   

Null Alleles 

We found a curved shape for the effect of null alleles versus the allele frequency that is 

deleted for both of our datasets.  Null allele errors increase the value of FST as much as 30% of 

the original FST value.  That peak occurs when the allele frequency chosen for deletion is 

between 0.3 and 0.4.  For larger allele frequencies the difference between the FST without errors 

and the FST with errors decreases.  Dakin & Avise (2004) observed a similar curved shape for the 

probability of falsely excluding a parental allele when offspring should be heterozygous for that 

allele.  This is a similar simulation to our null allele simulation.  This indicates that this curve 

may be applicable to other statistics besides FST.  We believe the curve shape in our results is 

because as the null frequency increases, more individuals are homozygous null (i.e., missing 

data) thus the less the null alleles affect the value of FST.  Because FST is highly influenced by 

heterozygosity the alleles that have the largest allele frequency affect the FST value the least.  It 

would be interesting to see if this curve shape is also true for other statistics used in population 

genetics (RST, linkage disequilibrium, distance, etc.).  Another interesting approach would be to 

target the loci with the larger allele sizes or loci that are most heterozygous as the alleles/loci 

with null alleles (as we did with binning error) to see if there is any change in conclusion. 
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(AMOS 2006) suggested that null alleles may have significant effects on values of FST 

because accurate account of heterozygosity is critical.  However we found even with null alleles 

occurring at all loci (a highly unlikely scenario, usually it would only be a few loci) although the 

values of FST are significantly larger the conclusion about the differentiation of our two 

populations will remain that there is a difference.  The degree of the differentiation may increase 

but the conclusion is still the same.  

 

2.5 – CONCLUSIONS 

We found that although the presence of genotyping errors (specifically allelic dropout, 

binning error, and null alleles) may cause statistically significantly different FST values the 

overall conclusion about the relationship between populations will most likely not change.  

Therefore, although genotyping errors in microsatellite data are inevitable, the effect of these 

errors on population differentiation statistics seems to be limited.   

This is study is only a first step toward determining the effects of genotyping errors on 

differentiation statistics.  ŜTθ  is only one measure of population differentiation.  Many 

researchers use RST in addition to or instead of FST.  As mentioned above estimates of FIS may 

have varying results for smaller datasets (BJORKLUND 2005).  It is important to study other 

statistics to see if the same conclusions apply.  It will also be important to contrast effects of 

errors in different types of markers [e.g., microsatellite data versus single nucleotide 

polymorphisms, cf. WELLER et al. (2006)].   
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CHAPTER 3 

INFERRING GENOTYPIC STRUCTURE OF COMPLEX DISEASE LOCI USING GENOME-WIDE 

EXPRESSION DATA2 

 
 

                                                 
2 Breazel, E.H. and P.D. Schliekelman.  To be submitted to Genetics. 
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ABSTRACT 

 Recent studies have found that genome-wide expression data may be a useful tool in the 

difficult task of mapping complex traits. We have developed a method using expression level 

information to cluster individuals by their genotype on disease causative loci. Standard clustering 

methods are not well suited to identify genotypic structure because they tend to be overwhelmed 

by variation that is unrelated to disease genetic variation. We propose an EM algorithm-based 

method that targets the disease genetic variation and will thus identify disease genotypic 

variation via the correlation structure in differences in gene expression between disease affected 

and unaffected individuals. Identifying genotypic structure in a population will allow gene 

mapping studies to take into account heterogeneity in disease genotype and will improve 

mapping power.   

 

3.1 – INTRODUCTION 

Gene mapping is the process of identifying the location of genes on chromosomes. In 

particular gene mapping of diseases is the process of finding the location of the genes that cause 

the disease. Complex diseases are diseases that are influenced by multiple genes and/or 

environmental factors. It has been found that the mapping of genetically complex diseases such 

as schizophrenia, bipolar disorder, and diabetes, is a much more difficult task than it was once 

thought to be.  However, single locus traits, such as cystic fibrosis, and Huntington's disease, 

have proven to be easier to map. For single locus diseases, if an individual has a certain single 

locus disease it is highly likely that the individual has a certain genotype at a particular locus that 

caused that disease as well as if that certain genotype is found at that particular locus then the 

individual is likely to have the disease. That is to say, single locus traits have a strong correlation 
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between genotype at the causative locus and the trait.  In multiple locus traits it is not necessarily 

true that a certain genotype is present when a trait is expressed nor is it true that if the certain 

genotype is present that the trait will be expressed. With complex diseases, the multiple genes 

can interact with each other or environmental factors. Because of this, there has been little 

success in mapping complex trait loci. Unfortunately, a majority of genetically based diseases 

that affect many people are complex. Therefore, there is a great need for better ways to map 

these complex diseases. 

Over the past several years there has been an increasing interest in combining microarray 

expression analysis with molecular marker data.   This is a strategy known as “genetical 

genomics” (JANSEN and NAP 2001).  The idea behind genetical genomics is that one can treat 

microarray gene expression levels as different quantitative phenotypic traits then use linkage or 

association methods to determine significant quantitative trait loci.  Such QTLs are known as 

expression QTLS (eQTLs).   

This method of genetical genomics has been successful at showing high heritability (see 

below) of eQTLs in yeast (Brem and Kruglyak 2005; Brem et al. 2002), plants, and humans 

(MONKS et al. 2004; MORLEY et al. 2004; SCHADT et al. 2003).  These studies have been 

reviewed (LI and BURMEISTER 2005; STAMATOYANNOPOULOS 2004) and have shown that 

microarray data may be extremely useful in mapping loci associated with complex traits.  There 

have also been studies using genetical genomics methods that found causative genes related to 

weight in mice (GHAZALPOUR et al. 2006; SCHADT et al. 2003).   

For example, Schadt et al. performed an F2 cross (creation of a generation where both 

parental phenotypes occur) between two inbred mouse strains and performed a genome-wide 

scan for linkage of expression levels of 23,574 genes.  These mice were placed on a high-fat diet 
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and therefore a wide array of obesity occurred among them.  The mice were classified according 

to their fat pad mass (FPM) trait.  The expression levels for the 25% of the mice with the highest 

FPM were compared to those expression levels for the 25% of the mice with the lowest FPM.  

280 genes were identified to be differentially expressed between these two groups.  It was found 

that clustering the mice on this set of genes divided the mice into two high-FPM groups (high 

FPM group-1 and high FPM group-2) and one-low FPM group.  A genome scan was then 

performed for those mice classified as high FPM group-1 or low FPM group and another scan on 

those classified as high FPM group-2 or low FPM group.  They found the association log-odd 

scores of eQTLs for FPM were substantially increased when only one high FPM group was 

included.  They also showed that a number of the genes found from the reduce scan had 

expression levels mapping to the same region as a QTL for the FPM trait prior to reduction, just 

with higher correlation.  The idea is if there are expression levels that are highly heritable (see 

below), there is evidence that several of these expression levels map to the same chromosomal 

region and possibly the same locus.  It is possible that causative loci (loci that are responsible for 

variation in disease or trait) affect expression levels of other genes; these expression levels would 

then have high power for mapping the causative loci.   

The goal of gene mapping studies is to demonstrate that a phenotypic trait is influenced 

by inherited factors.  Heritability is the percentage of the phenotypic variation among individuals 

that is affected by genotypic variation (GIBSON and WEIR 2005).  The papers mentioned above, 

that have used genetical genomics methods, show high levels of heritability of expression levels 

with respect to mapped QTLs.  Although due to the large number of genes studied it would not 

be surprising to see high levels of heritability by chance.  For example, Monk et al (2004) found 

very high QTL heritability values for their 55 significant eQTLs.  However, these were selected 
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from 24,000 genes.  While these heritability values were shown to be significant, because of the 

large number of genes they may not actually be as high as estimated.  BREM and KRUGLYAK 

(2005) found a way to partially avoid this problem.  They mapped QTLs for the expression 

levels of roughly 6,000 genes in a cross between two yeast strains.  They found that 3,546 

expression levels had significant heritability values.  They then used half of their data as a QTL 

detection set and the other half of the data to estimate the proportion of variance explained by the 

QTLs that were detected.  This gave an independent estimate of the proportion of variance 

explained.  They found a median of 27% of variance explained by QTLs with 16% of QTLS 

explaining more than 60% of the variance.  They also estimated bounds on the number of 

expression levels controlled by a given number of loci.   They concluded that 3% (106) of genes 

were consistent with 1 locus control, 17-18% (620) were consistent with 1-2 locus control, and 

50% required more than 5 loci.  This still proposes a multiple testing issue because they 

estimated variance on 3546 genes.  However, due to the fact that they found heritability levels of 

over 69% for all 3546 of those genes, there is little doubt that there were hundreds (over 600) of 

expression levels with simple (1-2 loci) inheritance and high heritability.   

There is a potential problem with this genetical genomics method.  A hypothetical 

pathway for complex genetic traits is shown in Figure 3.1.  Ovals represent disease causative loci 

– that is, loci with genotype variation that leads to variation in disease risk. Rectangles represent 

genes in a network, whose transcript variation between individuals leads to variation in disease 

risk between individuals. Arrows between loci and genes in the network represent an impact of 

genotypic variation at the locus on the gene’s transcript level. Arrows between genes in the 

network represent control of transcription. Arrows between genes and the disease represent an 
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impact of the genes transcription on disease probability.  This figure is not meant to be taken 

literally.  Realistically things are probably much more complicated than Figure 3.1 implies.   

Disease

Causative 
Loci

Gene
Network

 
Figure 3.1 - Hypothetical Schematic of Disease Genetic Pathway 

 

The ideal expression level for mapping a causative locus would be one whose variation is 

entirely determined by the genotype at a single causative locus.  However, such an expression 

level will have poor correlation with the disease and may be difficult to detect as differentially 

expressed.  Expression levels that are highly correlated with the disease would be easy to 

determine as differentially expressed, but would not be any better than the disease itself for 

mapping.  Schadt et al. found a large number of eQTLs mapping to locations throughout the 

genome, regardless of trait status.  To determine which of these eQTLs are relevant requires 

determining a correlation between the expression level and the trait of interests, which may be 

weakly correlated with causative loci.  Therefore we may be exchanging the low power due to 
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establishing a correlation between trait and genotype to a low power due to establishing a 

correlation between trait and expression level.  It has been shown (SCHLIEKELMAN 2008) that 

there is a tradeoff between the power to show an association between expression level and 

disease and the power to map eQTLs for those expression levels.  Schliekelman also determined 

that power to map eQTLs under an additive penetrance model is significantly worse than with a 

multiplicative model.   

As mentioned above, there have been several studies that use microarrays to identify 

causative loci, all of which have some prior knowledge of the location of the causative loci.  Our 

goal is to develop a method that incorporates genome-wide microarray expression data as 

quantitative traits to map causative loci for a complex trait without any prior knowledge of locus 

location.   

The purpose of this project is to develop methodology for integrating genome-wide 

expression data with gene mapping for complex traits.  Our approach involves a two step 

process. First, a method is implemented to cluster individuals according to genotype on L 

causative loci. Assuming there is a finite set of loci that could affect the complex trait; the 

affected or unaffected individuals are clustered according to the genotype on these loci. These 

clusters are then used to allow traditional gene mapping approaches to take account of this new 

data structure. The thought is the power will be greater if when mapping the data the clusters are 

considered individually. 

  

3.2 – METHODS AND RESULTS 

Genetic Heterogeneity and Optimal Samples 

Consider a disease caused by a single locus.  If we were to conduct a case-control study 

testing alleles at this locus, we might get a contingency table like Table 3.1:  
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Table 3.1 – Sample Contingency Table: Fully Penetrant, Single Locus 
 

 Case Control  
dd 0 49 49 
Dd 60 26 26 
DD 40 0 100

 100 75 175
 

Only individuals with at least one D allele get the disease.  All DD individuals get it, while only 

some Dd ones do.  In this case there is a very strong contrast between case and control because 

all disease affected individuals have a D allele.  The p-value for association for this table is 

2.2x10-16.  

Unfortunately, with most real traits of interest, things are not this easy. If the disease has 

multiple causative loci, then it is possible to exhibit the disease without having a disease 

genotype on a particular disease causative locus or to have a disease genotype on a particular 

disease locus without exhibiting the disease.  This dramatically reduces the power to detect 

disease loci because there is not a consistent genotypic difference between cases and controls.  

Consider, for example, a situation where mutations at any one of multiple loci can cause the 

disease.  In this case we might get a contingency table like Table 3.2:   

Table 3.2: Sample Contingency Table: Complex Disease 
 

 Case Control  
dd 84 56 49 
Dd 14 19 26 
DD 2 0 100

 100 75 175
 

Out of 100 cases, only 16 are caused by this locus.  The remaining cases are caused by mutations 

at other loci.  The p-value for association in this case is 0.087 (which would be far from 

significant in the case of a genome scan where there would be a large multiple testing 

correction).  There is a major loss in power because now most affected individuals are not 



 58

affected due to this locus and thus there is no longer a consistent genotypic difference at this 

locus between affected and unaffected.  However, if we could limit our sample of cases to only 

those individuals with a disease genotype at the D locus, then we could greatly improve the 

power to detect an association between D and the disease.  

 The goal of this project is to use genome-wide expression information to do exactly this.  

We use the expression information to infer the existence of disease loci and to infer individual 

genotype at those loci, without using any marker genotype information.  We then use these 

inferred genotypes to construct an optimal sample for detecting association between the inferred 

disease locus and the disease.  If we are conducting a genome scan with many markers, we will 

not know in advance which (if any) markers correspond to the inferred locus.  However, if there 

is a marker locus that is closely linked to the inferred disease locus, then the optimal sample will 

give improved power to detect it.  Suppose that we correctly inferred the existence of the locus D 

in table 2 and genotypes at this locus are correctly inferred for each sample individual.  Then, an 

improved sample for this locus is created by dropping all dd individuals from the cases.  Thus, 

the table becomes  

Table 3.3 – Sample Contingency Table: Improved Sample for Complex Disease 
 

 Case Control  
dd 0 56 49 
Dd 14 19 26 
DD 2 0 100

 16 75 175
 
The p-value for association from this table is 2.0x10-8.  The power from this “optimal” sample 

will be lower for markers linked to other disease loci, because we have reduced the sample size.  

However, for markers linked to the inferred locus, the power is greatly improved.  
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Determining Effect of Incorrectly Inferred Genotype on Power 

When inferring the genotypic structure of individuals for each diseased locus, it is likely 

there will be some errors.  The question is how many individuals can be incorrectly genotyped 

on a particular locus and still increase the power?  We will focus on case-control tests because of 

their simplicity. However, similar principles will apply for any gene mapping method.  We can 

find the power of a case-control study using a non-centrality parameter of the chi-squared test.  

According to Lachin (LACHIN 1977), the non-centrality parameter λ for an rxc chi-square test 

can be calculated as λ=Nτ, where N is the sample size and  

( )21 0

0

c
j j

j j

π π
τ

π

−
=∑  

where 0
jπ and 1

jπ are the sets of multinomial parameters specified under the null and alternative 

hypotheses, respectively.  The null hypothesis for a case control study is that there is no 

association between the genotypes at the given locus and the disease status.  The alternative is 

that there is association.  For the contingency table with 2 treatment groups (disease and non-

diseased) and 3 classes (genotypes aa, Aa, and AA), the non-centrality parameter becomes 

( )21disease status genotype
i ij i j

i j i j

Q p Q

Q

α
τ

α

−
= ∑ ∑  

where 0Q , 1Q  are the relative frequencies of non diseased and diseased individuals in the sample 

respectively, jα  is the relative frequency of genotype j in the sample and 1
ijp  is the conditional 

probability that the genotype is j given treatment i (disease/non-disease) under the alternative 

hypothesis.  That is,  
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where sampleD  is the disease status in the sample.  Now the non-centrality parameter becomes,  

( )( ) ( )( )2 2
( | ) ( | )genotype case j control j

j j j

Q P g j case Q P g j controlα α
τ

α α

⎡ ⎤= − = −⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

∑  

if we let, 

( )1 |j i ij i
i i

Q p Q P g j iα = = =∑ ∑  

after some manipulation the non-centrality parameter becomes 

( ) ( )( )( )

( ) ( )( )( )

2

2

1 ( | ) |

1 ( | ) |

case case control

genotype
j

j
control control case

j

Q Q P g j case Q P g j control

Q Q P g j control Q P g j case

α
τ

α

⎡ ⎤− = − =⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥− = − =⎢ ⎥+⎢ ⎥
⎣ ⎦

∑  

Take ( , , 1)oP G j G g D= = = to be the probability that a randomly selected individual has an 

inferred genotype oG  of j, a true genotype G of g, and disease status D of affected (case).    

Next, we define variables A, B, C, E, F, and H to be the probabilities of the possible 

errors in the inferred genotype that may occur within the contingency table and express the non-

centrality parameter in terms of these variables.  We can then find the values of these parameters 

that will still increase the power.   
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For simplicity, we assume that if the inferred genotype is incorrect, then it has an equal 

probability of being the other two genotypes.  For example, if an individual has true genotype aa 

then if the inferred genotype is incorrect there is an equal chance that it is AA or Aa.  Therefore, 

let 

( )
( )

( )

( )

incorrectly identified in case

1 | , 1

| , 1
2

| , 1
2

O

O

O

A P G aa

A P G aa G aa D
A P G Aa G aa D

A P G AA G aa D

= =

− = = = =

= = = =

= = = =

 

Similar relationships hold for other genotypes.  

Table 3.4 - Probabilities of The Inferred Genotype Is Incorrect 

 
G = ‘aa’ 

incorrectly identified 
G = ‘Aa’ 

incorrectly identified 
G = ‘AA’ 

incorrectly identified 
Case A B C 

Control E F H 
 

Where, ( )0 | ,P G j G g D= = is the probability of the inferred genotype is equal to j given the true 

genotype is g and disease status.   

In order to construct optimal samples for mapping a given inferred disease locus, we will 

eliminate all individuals with inferred genotype aa from among the diseased individuals and all 

individuals with inferred genotype AA from among the non-diseased individuals.  Note that this 

is not necessarily the best possible sample. That is, depending on the form of the relationship 

between genotype and disease, it might be beneficial to delete other genotypes (e.g. if the disease 

allele is recessive then it might be beneficial to delete heterozygotes from among disease 

individuals). This issue will be addressed in future work.  
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Let 

( ) ( ) ( ) ( )
( ) ( )

, , 1 , , 1
|

( ) 1 , 1
d del O

del del
del O

P G j D status P G j D P G aa G j D
P G j D status

P D status P D P G aa D
= = = = − = = =

= = = =
= = − = =  

be the probability that the genotype of an individual in the sample after deletion is j given their 

disease status.  A similar relationship applies for unaffected individuals. We want to know what 

happens to the power after these deletions therefore, our non-centrality parameter becomes 

( ) ( )( )( )

( ) ( )( )( )

2

2

1 ( | ) |

1 ( | ) |

case case del control del

genotype
j

j
control control del case del

j

Q Q P G j case Q P G j control

Q Q P G j control Q P G j case

α
τ

α

⎡ ⎤− = − =⎢ ⎥
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⎣ ⎦

∑  

The probability of the deleted genotypes are a function of the true genotype given the status 

P(G=j|status) and the error rate.   
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Similarly,  

( )
( ) ( )

( ) ( ) ( ) ( )

| 0 1 | , 0
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2 2
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Note that,  

( )
( ) ( ) ( ) ( ) ( )

1 | 0

1 | 0 | 0 1 | 0
2 2

OP G AA D

E FP G aa D P G Aa D H P G AA D
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and 
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( ) ( ) ( ) ( )

1 | 1
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2 2

OP G aa D

B CA P G aa D P G aa D P G aa D
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⎡ ⎤⎛ ⎞ ⎛ ⎞= − − = = + = = + = =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

The probability of the true genotype given the disease status ( )|P G g status= can be set 

as constants using disease penetrance model and genotype probabilities.  We are assuming a 

multiplicative model where the disease probability is 1 1 2 2( ) ( ) ( ) ( )L Lu G u g u g u g= …  for multi-

locus genotype G and ( )j ju g is the contribution to the penetrance from the one-locus genotype g 

on locus j.  Take K as the probability of having the disease within the overall population. It can 

be shown that 1 2... LK K K K= , where ( ) ( )
3

1
i i i

g
K u g P g

=

=∑  would be the population disease 

prevalence if locus i were the only disease locus. Pi(g) is the probability of genotype g at locus i.  

We can now find the genotype probabilities given the disease status from the overall population 

(see SCHLIEKELMAN (2008) for details): 

( ) ( ) ( )
( )

( )

( ) ( ) ( )
( )

( )

1 1 1

1

1 1 1
1

1| ( )
| 1

1

1 ( )
0 |

| 0
0 1

P D G aa P G aa u g P g
P G aa D

P D K

Ku g P g
P D G aa P G aa K

P G aa D
P D K

= = =
= = = =

=

⎛ ⎞
− ⎜ ⎟= = = ⎝ ⎠= = = =

= −

 

Default parameter values will be as in Table 3.5. 
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Table 3.5 - Default Parameter Values of Overall Population 

Parameter Value 
K 0.01 
K1 0.01^1/L 
L 9 

u1(aa)= π 0 
u1(AA)= δ 1 

h 0.5 
u1(Aa)= ψ= 
π+ h(δ- π) 

0.5 

p 0.5995323 
 
where p is the frequency of the disease allele A at the target locus, solved from the relationship 

that disease prevalence K=K1K2…KL, assuming that the locus contributes disease risk K1/L. L is 

the number of causative loci, π is the contribution to disease risk for genotype aa, ψ is the 

contribution to disease risk for genotype Aa, and δ is the contribution to disease risk for genotype 

AA.   

Recall that Qi is the relative frequency of disease status i in the sample.  Prior to deleting 

any individuals, we take Q0 and Q1 as equal to 0.5.  However, once individuals are deleted from 

the sample, the values of Q0 and Q1 become functions of the deletion probabilities.  If we delete 

all affected individuals with inferred genotype aa and delete all unaffected individuals with 

inferred genotype AA, then we have 

( ) ( )| 11 aff Odel
case

del del

N Freq G aa DFreq D
Q

N N
− = ==

= =  

where ( )1delFreq D =  is the number of affected individuals in the sample after deletion.  If we 

assume that ( )| 1OFreq G aa D= =  takes its expected value, then we have 

( )1 | 1aff O
case

del

N P G aa D
Q

N
⎡ ⎤− = =⎣ ⎦=  
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where Naff is the number of individuals affected by the disease, Nunaff is the number of 

individuals not affected by the disease, and Ndel is the number of individuals after deletion.  

Similarly, 

( )1 | 0unaff O
control

del

N P G AA D
Q

N
⎡ ⎤− = =⎣ ⎦=  

All that is left to calculate is the value of N after the deletions.   

( ) ( )
( ) ( )

, 1 , 0

, 1 , 0
del O O

aff unaff O O

N N Freq G aa D Freq G AA D

N N Freq G aa D Freq G AA D

= − = = − = =

= + − = = − = =
 

If we again assume that the counts take their expected values, we have 

( ) ( )1 | 1 1 | 0del aff O unaff ON N P G aa D N P G AA D⎡ ⎤ ⎡ ⎤= − = = + − = =⎣ ⎦ ⎣ ⎦  

Now we can see how changing the values of the error rates A, B, C, E, F, and H affects the 

power.  Prior to any deletions the genotype probabilities are: 

Table 3.6 – Genotype Probabilities Without Incorrectly Inferring Genotype and Prior To 
Deletions 

 
 P(G=0|D) P(G=1|D) P(G=2|D)
Disease 0 .40 .60 
Non-Disease .16 .48 .36 

 
for L=9, N=200, and other parameter values as in Table 3.5. If we assume that a case-control 

study is being conducted with 100,000 markers such that we compare to alpha = .05/100,000, the 

power is 0.3014583.   

Assuming that an error in the inferred genotype has a 50% chance of becoming either of 

the other two genotypes, the following graphs show the power with increasing values of B, C, E, 

F, and H respectively.  Note that, because the ( )| 1 0P G aa D= = =  for the parameters that we 

have chosen, then the error A does not occur,    
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 F = P(G=Aa incorrectly identified at D=0) 
All other errors = 0 

C = P(G=AA incorrectly identified at D=1)  
All other errors = 0 

 B = P(G=Aa incorrectly identified at D=1) 
All other errors = 0 

E = P(G=aa incorrectly identified at D=0) 
All other errors = 0 
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Figure 3.2 - Graphs of Error Rates of Incorrectly Inferring Genotype vs. Power 
 
 

First of all, we see that power is near one when the error rate is low. That is, if we can 

correctly infer the genotypes, then removing genotype AA from among unaffected individuals 

increases the power from about 30% to near 100%. This shows that the idea of constructing 

optimal samples for mapping a locus can be very powerful if it is possible to infer genotypes 

well. The question then is how well this works when the genotypes are not inferred perfectly. 

The error rate that has the most effect on power is H, the probability that a genotype of AA is 

identified incorrectly for unaffected individuals.  This seems logical; as H goes to 1 the 

probability of having a genotype with two disease alleles for an unaffected individual becomes 

larger.  When there is no genotyping error, AA individuals will be deleted.  As H gets larger, 

more AA individuals will remain in the dataset as incorrect genotypes.  The values of B, C, E, 

and F do not affect the power that much. These errors each involve genotypes that should remain 

in the data set.  If these errors occur, then half of the time there is no effect because the error is to 

H = P(G=AA incorrectly identified at D=0) 
All other errors = 0 
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other genotypes (AA and Aa in affecteds and Aa and aa in unaffecteds) that remain in the dataset. 

The other half of the time, the error is to a genotype that is removed. In this case, the effect is to 

reduce the sample size.  For example, if error C occurs then AA case individuals will either be 

incorrectly classified as Aa genotype and remain in the study (which has no effect) or be 

classified as aa individuals and mistakenly be removed.  Errors C, E, and F all decrease the 

power as the error rates get larger, while B increases the power.  This is an indication that it may 

be best to also delete disease individuals with genotype Aa from the case-control study.   

The assumption of equal error to other genotypes will often be untrue.  This is shown 

with simulated data in Appendix C and in the “Overall Example”. Furthermore, it will not be the 

case that only a single type of error will occur at a time. Thus, these results are only intended as a 

general indication of the affect of error.  

EM Algorithm for Inferring Genotypic Structure 

 The above results show that if we can infer genotype with good accuracy in a manner 

independent from the marker data, then we can use this to construct a sample with greatly 

improved power for detecting a specific disease locus. We next discuss how we will go about 

inferring the genotype. We do this using genome-wide expression data.  

(SCHADT et al. 2003) used simple hierarchical clustering to identify the genetic structure 

in their data.  Although this method was successful, it may not be so with a more complicated 

genetic structure.  As an example, we generated simulated data from a model with eight genetic 

loci interacting multiplicatively to determine disease risk.  The sample sizes were 100 disease 

affected and 100 unaffected individuals. The genotype at each disease locus determined the mean 

for four genes (for a total of 32 genes controlled by disease loci). In addition, there were 100 

genes with means determined directly by disease status. Finally, there were 1000 non-disease 
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loci whose genotypes each determine the mean for four genes (for a total of 4000 genes). Other 

parameter values and assumptions are as in the example in the previous section. We applied 

hierarchical clustering to this simulated data set. Although it did correctly cluster the genes with 

shared controlling loci, these clusters were indistinguishable from the many clusters formed by 

non-disease controlling loci.  There is little question that hierarchical clustering was successful at 

revealing diseased genetic structure with the data of SCHADT et al (2003). However, this structure 

was likely very simple, with expression level changes in many genes resulting from genotypic 

change at a single obesity locus. Now, it may turn out this simple structure exists for most 

complex traits and hierarchical clustering will be adequate. However, if the structure is often 

more complicated, our results show that hierarchical clustering is not adequate because the 

expression variation due to disease loci is overwhelmed by the variation unrelated to disease.  

The goal of this project is to infer the genotypic structure of affected and unaffected 

individuals.  Suppose we have Naff affected individuals and Nunaff = N-Naff unaffected individuals.  

Xij is the expression level for the ith individual for gene j.  The disease status of individual i will 

be denoted as Yi, where Yi = 1 for affected individuals and Yi = 0 for unaffected individuals.  We 

assume that there are a finite number, L, of disease-causative loci.  We assume that each 

expression level is affected by only one locus.  The locus could be the gene itself or another gene 

and could be one of the L causative loci or one of many "null loci", which we define as loci that 

do not affect the disease status. The variable, Zj, is the controlling locus for gene j.  

We cluster the genes by controlling locus using an approach similar to the K-means 

algorithm.  Each cluster corresponds to a genetic locus (which may be disease causative or not). 

Initially, we randomly assign genes to clusters. We then use an EM algorithm (described later) to 

estimate the parameters for the cluster: jgkµ is the mean of gene j genotype g and controlling 



 70

locus k; 2
jgkσ is the variance of gene j genotype g and controlling locus k, and kgλ is the probability 

that controlling locus k has genotype g.  We estimate these parameters for each locus cluster.  

Then, using these parameter estimates we calculate a likelihood-like quantity for each gene for 

membership in each cluster. Each gene is then assigned to the cluster which maximizes this 

likelihood. The process is continued iteratively until convergence.  

Assume that the controlling locus (correct cluster) is known for every gene except the 

target gene r. Then, take ( )0, | ,r rf X X Z q θ=
K K

 as the probability density for the expression data 

given that the controlling locus for gene r is q and given the current set of parameter estimates 

0θ . The expression data are separated into rX
K

, the vector of expression values for gene r, and 

X
K

the set of expression values for all other genes.  

Then we have 

( ) ( )0 0
1

, | , , | ,
N

r r i ir r
i

f X X Z q f X X Z qθ θ
=

= = =∏
K KK K K

 

, where irX is the expression value for gene r individual i and iX
K

is the set of other expression 

values for this individual. Now, take gk to be the genotype for locus k, Xijk as the expression 

value for the ith individual of the jth gene that is in cluster k, and Xi.k as the set of expression 

values in individual i for all genes controlled by locus k. Then, expanding on genotype on the 

controlling loci indexed 1 to L, we have 
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It is worth noting that ( ) ( ). 0 . 0| , , | ,i k r i kf X Z q g f X gθ θ= =
K KK K .  That is, knowing the genotype 

gives full knowledge of the expression distribution and knowing the controlling locus for another 

gene gives no additional information.  Next we take ( ) ( ) ( ) ( )1 2 ... LP g P g P g P g≈K . Note that 

even if this is true in the natural population, it will not be true in the sample. That is, the process 

of creating the sample will introduce correlations because affected individuals have more 

genotypic similarity than do randomly chosen ones. However, our calculations (SCHLIEKELMAN, 

unpublished) show these correlations will not usually be large..  Then we have, 
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where jgkµ is the mean of gene j genotype g and controlling locus k, 2
jgkσ is the variance of gene j 

genotype g and controlling locus k, and kgλ is the probability that controlling locus k has 

genotype g. Then we have ( )0log , | ,r rf X X Z q A B Cθ= = + −
KK K

. 

Estimating the parameter 

We need to estimate the parameter values for each locus cluster.   We use an EM 

algorithm as developed in SUN and SCHLIEKELMAN (2008), applied to each cluster separately.  In 

this study the likelihood equation is  

( ) ( )
0 0

0 0
1

( | , , ) ( , , | )

, | , |
N

i i i i
i

L X Y G f X Y G

f X Y G f G

θ θ

θ θ
=

=

⎡ ⎤= ⎣ ⎦∏

K K K KK K K K

K KK  

  For each cluster (i.e., k) we will consider X
K

as the expression information for the genes within 

cluster k, and G
K

to be the vector of genotypes of each individual for locus k.  This likelihood 

equation is maximized by find estimates for abµ , the mean of gene a for genotype b, 2
abσ , the 

variance for gene a genotype b, ( )0|iP G g θ=
K

, the probability individual i has genotype g, and 

( | )i iP Y G , the probability of disease status of individual i given genotype for individual i. The 

genotype G
K

is unobserved and thus the EM algorithm is used to maximize the likelihood (see 

SUN and SCHLIEKELMAN (2008) for more details). The EM algorithm is performed separately on 

each cluster (k) of genes and the resulting parameters are used to calculate the value 

of ( )0, | ,r rf X X Z q θ=
KK K

.  The values of abµ are used directly as the mean of gene a for genotype 

b for locus k, and 2
abσ the variance for gene a genotype b for locus k.  ( )0|iP G g θ=

K
 for each 

individual cluster is used to determine the value of kgλ , the probability that controlling locus k 

has genotype g 
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( )0
0

| , ,
N

i i i
i
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P G g X Y

N

θ
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=
=
∑

K

. 

( | )i iP Y G is not directly used in the calculation of ( )0, | ,r rf X X Z q θ=
KK K

,but will be used when 

inferring genotypic structure (see below).  Once ( )0, | ,r rf X X Z q θ=
KK K

for every gene in every 

locus cluster is calculated the cluster (q) with the highest likelihood for gene r is the new cluster 

for gene r.  The EM algorithm is then performed on these new clusters separately.  Again, this 

process is repeated until convergence (i.e., there is no difference between the previous clusters 

and current clusters for several iterations.) 

Implementation of Algorithm  

This algorithm was implemented as a C++ program. To begin the EM algorithm each 

parameter had initial values.  For the initial locus clusters each gene was randomly assigned to 

one of W loci clusters.  The initial values for abcµ were chosen by sorting the expression levels 

for gene ‘a’ and finding the quartiles.  Then the initial value for 1aµ iwas a chosen value from the 

zero to the first quartile, the initial value for 2aµ i was a chosen value between the first and third 

quartile, and the initial value for 3aµ iwas a chosen value from the third quartile to N.  The initial 

values for 2
acσ were set to the sample variance of the expression levels for gene a.  The initial 

values of ( )|P Y V were set to ( )1| 0P Y V= = =0.1, ( )1| 1P Y V= = =0.3, and 

( )1| 2P Y V= = =0.6.  These are chosen as plausible values, based on a multiplicative disease 

model.  The initial values of cbλ were set to 0cλ =0.25, 1cλ =0.5, and 2cλ =0.25. 
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Avoiding local maxima  

Like many clustering methods, this procedure is not guaranteed to find a globally best set of 

clusters and is quite dependent on the initial clusters.  In order to avoid local maximums the 

entire process (i.e., calculating abcµ , 2
acσ , P(Y|V), cbλ , and ( )0, | ,r rf X X Z q θ=

KK K
) is performed 

with 30 different sets of initial cluster assignments.  A log likelihood value was calculated for 

each using  

( )( )2

0 00 0

log likelihood log | ,
kMgenotypeLN

ij jgk jk kg
i gk j

f X µ σ λ
= == =

⎛ ⎞⎛ ⎞⎡ ⎤
⎜ ⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑ ∑∏ ∏  

This likelihood is the probability density for the expression data assuming that the clusters and 

their corresponding parameter values are correct.  The cluster producing the highest likelihood 

value was chosen as the optimal one out of the 30.  To illustrate how this method works we will 

do a simulated example.  For our simulations we take L, the number of loci associated with the 

disease (causative loci), equal to 9; M, the number of genes per causative locus, equal to 6; LND, 

the number of loci not associated with disease, equal to 9; MND, the number of genes per non-

causative locus, equal to 6; and sample size as 400 (200 affected and 200 unaffected individuals).  

We take W, the number of initial clusters, to be the correct value of 18 (see the next section).  

The method runs 30 times in parallel and the run with the highest likelihood is chosen as the best 

clusters.  This iteration produces the maximum number of clusters with all genes that are 

controlled by the same locus clustered together.  This is shown for our example in Figure 3.3. 
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Figure 3.3 - Graph of Likelihood for Each of 30 Runs and # of Perfect Clusters 

A perfectly clustered locus is defined as one with all genes controlled by the locus assigned to 

the cluster.  The bars in the figure represent the number of perfectly clustered loci and the lines 

are the values of the likelihood.  As seen from the figure, run 15 was chosen as the best cluster 

set.  The clusters for this example result as follows: 

Table 3.7 – Gene Clusters for L=9, M=6, LND=9, MND=6, N=400 

[0] 55 64 69 73 82 91 100
[1] 6 15 24 33
[2] 42 66 75 84 87 93 102
[3] 7 16 25 34 43 52 57
[4] 3 12 21 30 39 48
[5] 54 63 72 76 81 86 90 99 103 106
[6] 0 9 18 27 36 45 78
[7] 4 13 22 31 49 60
[8] 51
[9] 56 59 74 83 92 101 105
[10] 62 71 80 89 94 98 107
[11] 8 17 26 35 44 53 65
[12] 1 10 19 28 37 46 96
[13] 68 77 95 104
[14] 2 11 20 29 38 47 85 88
[15] 5 14 23
[16] 61 67 70 79 97
[17] 32 40 41 50 58  

Each number in Table 3.7 represents a gene and each row is a locus cluster.  The sample data in 

Table 3.6 and 3.7 is simulated (using an R program) so that the first LxM=54 genes are 

associated with the disease, with every Mth gene associated with the same locus.  Thus, for 

example, genes 1, 10, 19, 28, 37, and 46 are controlled by locus 1.  The next LNDxMND genes 
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are all not associated with the disease.  The bolded clusters are the clusters chosen as causative 

loci (See below).  Notice that clusters 3, 4, 6, 11, 12, and 14 are the six clusters that have all 

genes controlled by the same locus clustered together. Six of the nine loci are clustered perfectly 

and the other three have 3-4 correctly clustered genes.    

How many clusters?  

Ideally, we should have one cluster for each locus that is producing significant variation 

in the data. Of course, we have no priori information about the number of segregating loci in the 

data. We can again use a log likelihood function to choose the best cluster number, W.  We vary 

the number of initial clusters over a plausible range, and calculate a log-likelihood for the 

resulting locus clusters. . The value of W producing the highest log likelihood is designated as 

the optimal value. This log likelihood equation is the same as the one used previously:   

( )( )** 2 *

0 00 0

log likelihood log | ,
kMgenotypeLN

ij jgk jk kg
i gk j

P X µ σ λ
= == =

⎛ ⎞⎛ ⎞⎡ ⎤
⎜ ⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑ ∑∏ ∏  

When applied to the previous example the log likelihood had its maximum at W=18, the true 

value.  See Figure 3.4.   
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Figure 3.4 - Graph of Log-Likelihoods of Varying Values of W  
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From these clusters and the values of abcµ , 2
acσ , P(Y|V), cbλ we can infer the genotypic structure 

for each cluster.   

 Our example shows a typical outcome for our clustering method.  When the percentage 

of disease genes is 50% or more the clustering methods seems to work very well.  At 25% 

disease loci it works well but not on a consistent basis.  This method also works well when N is 

smaller (i.e., 200) or larger (i.e., 600).  See Figure 3.5 and Appendix B for results from other 

simulations.   
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Figure 3.5 - Performance of Clustering Method.   

Figure 3.5 is a graph of the # of simulated causative loci versus the percentage of “perfect” 

clusters produced by the clustering method.  Black bars indicate datasets with 25% disease loci, 

dark grey is 50% disease loci, light grey is 75% disease loci and white bars are datasets with 

100% disease loci present.  This graph shows that the clustering method perfectly clusters at least 

50% of causative loci for datasets with 50% or more disease genes present for values of L less 

than 10.  These simulations are performed on sample sizes of 200, 400, or 600.  It is worth noting 

that the clusters for L=10, 12, and 15 were calculated only for W = 10, 12, and 15 total gene 
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clusters respectively.  The outcomes may have been different had the value of W been increased 

(to determine the maximum value of likelihood – see above).   

It is worth noting that the purpose of this “EM clustering method” is to infer genotype for 

individuals on a particular locus.  It may be true that other clustering methods do as well or better 

at clustering genes into locus clusters.  However, this method allows for not only clustering 

genes into locus clusters but also finding probability of disease given genotype and probability of 

genotypes that are necessary to infer genotypic structure.    

Assigning Genotypes to Individuals.   

If the algorithm performs well, the gene clusters produced correspond to genetic loci. The 

next step is to assign individual genotypes at those loci. Define 

( )| ,ijk ij i ijf V k Y Rψ = =  

where ijR  is a vector containing the values of expression levels in individual i that are controlled 

by locus j and Vij is the genotype of individual i at locus j..  Assuming again that expression 

levels are independent of disease status if genotype is known we can see that  

( ) ( ) ( )| |ijk i ij ij ij ijf Y V k f R V k f V kψ = = = =  

Each individual i is assigned the genotype k at locus j that maximizes ijkψ .The three component 

probabilities are calculated using the parameters estimated for the locus cluster j, That is,  

( ) ( )

( ) ( )
( )

2

0

| |

| | ,
j

i ij i ij

M

ij ij ir rkj rj
r

ij jk

f Y V k P Y V k

f R V k f X

f V k

µ σ

λ
=
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⎡ ⎤= = ⎣ ⎦
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Determining which clusters correspond to genetic loci.   
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Not all calculated gene locus clusters are clusters of disease genes and therefore do not all 

correspond to disease causative loci.  In order to determine the best clusters we 

calculate ( )|P Y G
KK

.  That is, the probability of the disease status vector given the vector of 

genotypes calculated from above at each individual.   

( ) ( ) ( )( )1
1

| 1| 1 1| ii
N YY

i i i i
i

P Y G P Y G g P Y G g
−

=

⎡ ⎤= = = − = =⎢ ⎥⎣ ⎦∏
KK

 

The locus clusters with the highest ( )|P Y G
KK

 are the ones that are well clustered and have the 

strongest association with the disease.  For our example we calculate the values of ( )|P Y G
KK

.   

Table 3.8 – Values of ( )|P Y G
KK

 For Each Locus Cluster in Descending Order 

 

The locus with the highest value of ( )|P Y G
KK

 is a cluster with only one gene that is not controlled 

by a disease locus.  The next ten highest values were produced by disease loci.   We note a 

substantial drop-off in the probability to the next locus (5), which is not a disease locus. We have 

Gene Cluster ( )|P Y G
KK

 

8 1.38E-38 
6 3.54E-106 
3 6.68E-107 

12 2.52E-107 
17 5.51E-108 
15 4.93E-108 
7 5.18E-110 
1 1.88E-110 

11 1.93E-111 
14 8.75E-112 
4 4.87E-112 
5 4.39E-120 
2 3.94E-120 
9 1.06E-120 

10 8.01E-121 
13 6.54E-121 
16 5.54E-121 
0 4.03E-121 
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not devised a formal rule for selecting the disease loci. However, the following ad hoc approach 

works reliably: 1) eliminate any loci at the top of the list with probability much higher than the 

rest and 2) cut off the list at the point where the probability drops by more than 2-3 orders of 

magnitude.  Under this approach we could eliminate locus 8 but we will continue with it in our 

example.    

The loci chosen are bolded in Table 3.7 and Table 3.8.  To show how well the method 

performs at genotyping we compare the genotypes of these calculated locus clusters to the true 

(simulated) genotypes:  

Table 3.9 – Number of Individuals With Correct Genotype Out of N=400 for Each Locus 
Cluster 

 

# of Individuals Correct 212 385 387 380 347 349 366 373 376 379 381
Gene Cluster/Locus [8] [6] [3] [12] [17] [15] [7] [1] [11] [14] [4]

 

Table 3.9 shows the number of individuals out of the sample size (N=400) for that are correctly 

genotyped, for each of the chosen loci.  None of the loci are genotyped perfectly, but the method 

does very well. We showed earlier in this paper that there is a major increase in power even with 

substantial error in inferred genotypes.  Table 3.9 shows a typical outcome for our genotyping 

method.  Figure 3.6 shows the performance of this genotyping method for various datasets and 

values of L.   
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Figure 3.6 – Performance of Inferring Genotype 

Figure 3.6 is a graph of the number of simulated causative loci versus the percentage of average 

over the correct loci of individuals correctly genotyped by inferred genotyping method.  These 

bars represent the same simulations as those in Figure 3.5.  Black bars indicate datasets with 25% 

disease loci, dark grey is 50% disease loci, light grey is 75% disease loci and white bars are 

datasets with 100% disease loci present.  When comparing Figure 3.5 to Figure 3.6 it is easy to 

see that even though the clustering method may have resulted in only a few “perfect” clusters 

those that are clustered well perform well in the genotyping method.  Notice, even though only a 

few gene clusters were “perfect” for L =10, 12, and 15, these few have at least 60% of the 

genotypes inferred correctly.  Note that some of the individuals that are incorrectly genotyped 

may be deleted when performing the case-control study for association (see below).    

Using the inferred genotypes   

Now that we have a group of causative loci and the genotypic structure has been inferred 

for each causative locus, we can use this to construct optimal samples for gene mapping. We will 

demonstrate this with mapping via case-control test, but it will work similarly with any gene 

mapping method.  
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In a typical gene mapping study, we will have genotype data for hundreds or thousands of 

markers for each sample individual. We will not have any a priori information about the genomic 

location of our inferred loci. Therefore, we will not have information about which markers may 

correspond to these loci. If the method has performed well, then each inferred locus will 

correspond to some real locus. We will construct separate samples for each inferred disease locus 

and the sample will give improved power for detecting the corresponding true locus and lesser 

power for all other loci because of reduced sample size.  If the method has performed poorly, 

then the inferred genotypes will not correspond to any true locus. This could occur either because 

the inferred locus is not a true locus (meaning the clustered genes do not share a controlling 

locus) or the inferred genotypes at a true locus are not accurate.  

If an inferred locus corresponds to some true non-disease locus and if the error rate is 

substantially different between cases and controls for some genotype, then false positives could 

result. However, our simulation results do not show any evidence of such differences in error 

rate. Excepting this possibility, our approach should not produce excess false positives. If the 

method has performed poorly, then inferred genotypes will not correspond to any real genotypes 

and we will be in effect reducing sample size by removing randomly chosen individuals.  

It should be noted that there will be a multiple testing correction and subsequent loss of 

power because we will be repeating the full genome scan for the reduced data set corresponding 

to each inferred disease locus. However, this loss of power will be greatly exceeded by the gain 

in power from the optimal data sets if the method performs well.    

For our example, we performed an association test individually on our 10 chosen gene 

clusters.  In each case the p-value of the chi-squared association test was calculated for what the 

case-control study would be in a true association test.  For us that is the contingency table of 
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genotypes by disease status for the simulated genotypes.  Note that in a true association study 

these genotypes are not known.  For our example we will look at gene cluster 14.  The genotypes 

at the corresponding simulated loci are as follows: 

Table 3.10 - Simulated Genotypes for Gene Cluster 14 in Example 
 

 G=aa G=Aa G=AA 
Disease 0 83 117 
Non-Disease 31 91 78 

 
The p-value for the chi-squared test for this contingency-table is 3.124761e-09.  That p-value is 

compared to the p-value of the chi-squared test for our genotyping method.  That is, the 

contingency table of the inferred genotypes with the observed diseased individuals with genotype 

a and observed non-diseased individuals with genotype AA deleted.  The non-diseased 

individuals that were incorrectly inferred as aa or Aa but were actually AA genotype were moved 

in the contingency table as non-diseased individuals with AA genotype.  This is because the true 

power is affected by these AA individuals remaining in the contingency table.  (See discussion 

about incorrect inferred genotype effect on power).  To understand which individuals are moved 

to Non-Diseased Individuals with genotype AA the following table (Table 3.11) shows the errors 

in inferred genotypes for this gene cluster.   

Table 3.11 - Incorrectly Inferred Genotypes for Example 

Disease 0 1 2  Non-Disease 0 1 2 
0-> 0 0 0  0-> 0 6 0 
1-> 0 0 2  1-> 0 0 4 
2-> 0 4 0  2-> 0 5 0 

 
In Table 3.11 only the individuals that are incorrectly inferred are present, the rows represent the 

true genotype, the columns represent the inferred genotype.  Notice that for non-diseased 

individuals 5 individuals were inferred to be genotype Aa (or 1) that should have been genotype 

AA (or 2).  These individuals will be removed from the Aa genotype and moved to the AA 
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genotype for non-diseased individuals.  Our contingency table under these conditions is as 

follows: 

Table 3.12:  Contingency Table for Inferred Genotypes for Example 
 

 G=aa G=Aa G=AA 
Disease 0 85 115 
Non-Disease 25 93 5 

 
The p-value for this contingency table (Table 3.12) is 1.487951e-25.  This is a big improvement 

on the association for this locus.   

What happens if genes directly influenced by disease are included?   

Most of the discussion above use examples of how the clustering method and inferring 

genotypic structure works for genes whose expression level is directly influence by disease loci 

or non-disease loci.  What happens if genes whose expression levels are directly associated with 

the disease are included in the analysis?  The clustering method and method of inferring 

genotypic structure is the same.  As a result, the genes influenced directly with the disease are 

clustered with genes influenced by disease-loci (See Appendix C).  This does seem to influence 

the inferred genotype of those causative loci.  However, those clusters where genes influenced by 

causative loci are not clustered with genes directly associated with disease the inferred genotypes 

perform as before.  Because some of the genes in the clusters are genes directly associated with 

the disease the value of ( )|P Y G
KK

 for these clusters is 1.  For example, we repeated the same 

example as above but added in 10 disease associated directly with the disease.  We varied W 

from 3 to 22 and using the likelihood equation found W = 13 to be the largest value.  We found 7 

gene clusters that grouped all the genes influenced by the same causative loci together.  These 

are clusters 0, 1, 3,6, 8, 9, and 11 in Table 3.13.   

 



 85

Table 3.13 - Gene Clusters for L=9, M=6, LND=9, MND=6, N=400 and 10 Genes 
Influenced Directly by Disease 

 
[0] 6 15 24 33 42 51
[1] 0 9 18 27 36 45 67 70 114
[2] 7 43 61 62 79 88 97 106 115
[3] 5 14 23 32 41 50 72 103 117
[4] 37 71 80 81 89 90 98 102 107 108 112

116
[5] 1 19 28 46 73 91 94 100 109
[6] 4 13 22 31 40 49 69 105
[7] 65 74 76 78 83 92 101 110
[8] 2 11 20 29 38 47 96
[9] 3 12 21 30 39 48 111
[10] 10 52 68 77 84 86 87 95 104 113
[11] 8 17 25 26 35 44 53 64 82 99
[12] 16 34 54 55 56 57 58 59 60 63 66

75 85 93
 

Again, each row represents a gene cluster and each number is a gene.  The genes were simulated 

as before where the first LxM (0-53) genes are associated with the disease loci, with every Mth 

gene influenced by the same loci.  The next 10 genes (54-63) are influenced directly by disease.  

The next LNDxMND (64-107) genes are influenced by non-disease loci with every MND gene 

influenced by the same loci.  The clusters in bold are the clusters that are taken to be influenced 

by causative loci, by the values of ( )|P Y G
KK

.  Those values for this example see Table 3.14. 

Table 3.14 - Values of ( )|P Y G
KK

 for L=9, M=6, LND=9, MND=6, N=400 and 10 Genes 
Influenced Directly by Disease 

 

Gene Cluster ( )|P Y G
KK

 

Locus 2 1
Locus 12 1
Locus 11 1.23E-103
Locus 1 5.22E-106
Locus 8 2.13E-107
Locus 0 3.23E-108
Locus 6 1.46E-108
Locus 3 8.40E-110
Locus 9 8.13E-112
Locus 5 3.32E-113
Locus 4 3.47E-120
Locus 10 4.62E-121
Locus 7 4.35E-121
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The clusters with the value of ( )|P Y G

KK
 equal to 1 are chosen as causative loci.  We chose the 

gene clusters that have the largest values of ( )|P Y G
KK

 until what appears to be a reasonable cut 

off.  The number of individuals, out of 400, that are genotyped correctly in these 10 clusters are 

shown in the table below.   

Table 3.15 - Number of Individuals Genotyped Correctly When Genes Directly Influenced By 
Disease Are Included 

 

# of Individuals Correct 126 118 372 383 379 387 380 385 384 203
Gene Cluster/Locus [2] [12] [11] [1] [8] [0] [6] [3] [9] [5]

 

The genotyping method performs not as well when genes influenced directly by disease are 

included but exactly as good, as previous example, for clusters where these genes are not 

included.   

  

3.3 – OVERALL EXAMPLE 

 To illustrate the entire process from microarray data to contingency table we will show an 

overall example.  This example would be a typical experiment using our methods.  The data we 

use is a combination of simulation data (created from an R program exactly as above examples) 

and real prostate cancer data.  The cancer data was obtained from the National Center for 

Biotechnology Information (NCBI) database (YU et al. 2004).  Series GSE6919 is expression 

data from both individuals with and without prostate cancer.  This data has 171 individuals with 

expression levels at 12625 genes.  There were 25 individuals that had some missing data so those 

individuals were deleted from the dataset leaving 146 individuals.  This dataset is used to create 

a background set of genes with realistic correlation structure.   
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 Using our R program we simulated 400 individuals (200 disease affected and 200 

unaffected) each with 54 genes from 9 loci (L) with 6 genes associated with each locus (M).  

These genes are treated as genes influenced by disease loci.  For each one of these 400 

individuals we randomly chose (with replacement) an individual from the prostate cancer data 

and the 12625 expression levels were added to the 54 for genes for that individual.  The 

individuals from the real data set were chosen without regard to their prostate cancer status and 

disease status was determined randomly from the simulated genotype. The genes from the 

prostate cancer data set were used only to create a realistic background set of genes. A small 

amount of random noise was added to the genes from the prostate cancer dataset so that there 

would not be multiple individuals with exactly the same expression values, which was found to 

cause problems in some cases.   

From these 12679 genes we must reduce the number of genes a much smaller set of those 

genes most likely controlled by disease loci.  We perform a t-test for each gene between the 200 

affected and 200 unaffected individuals.  Using the Benjamini method (BENJAMINI and 

HOCHBERG 1995) for false discovery rate we created a set of genes with 50% FDR.  We chose 

50% because we know from simulation that our method works well with 50% genes influenced 

by disease loci and 50% genes influenced by non-disease loci.  As a result the following genes 

were selected to be used in our dataset.  These genes are listed in order of selection.  

Table 3.16 - Genes Selected for Overall Example, False Discovery Rate = 50% 

37, 32, 27, 38, 19, 2, 4, 26, 9, 36, 18, 16, 21, 30, 3, 47, 46, 28, 12, 39, 43, 51, 10, 14, 29, 49, 
23, 48, 8, 20, 41, 15, 0, 35, 44, 7, 13, 50, 52, 22, 5, 17, 34, 11, 1, 11816, 45, 31, 24, 33, 4754, 
3887, 5973, 653, 3383, 42, 2375, 9798, 1295, 6, 2755, 7030, 53, 9012, 9950, 1065, 2029, 
3419, 2281, 10034, 7883, 1697, 5573, 8709, 4156, 7639
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Recall that the first LxM (0-53) genes are from the simulated program.  These are the genes that 

are controlled by disease loci.  The other 12625 were from the prostate cancer dataset.  All but 

two (25 and 40) of the 54 simulated genes are selected and the prostate cancer genes comprised 

only 31.6% of the data.   

 Because the prostate cancer data is rather variable we excluded any outliers from those 

genes and replaced those values with the lower or upper bound (depending on direction of 

outlier).  Gene 2375 was deleted from the dataset because over 10% of the data was outliers.  We 

also took the natural log of the remaining prostate cancer data.   

 As stated before our clustering method may not be the best possible clustering method.  

Its main purpose is to calculate the values needed to infer genotype.  Because this is true prior to 

implementing our clustering method we clustered the genes using k-means.  This will help 

eliminate any extremely wrong clusters that may result in an underflow problem with the 

program (clusters with extremely low probabilities of being clustered together can cause all 

values to go to zero).  The clusters from the k-means are used as initial clusters in our clustering 

method rather than randomly assigning genes to a cluster.  Now we can use these clusters and the 

reduced dataset as the input into our clustering method and inference of genotypic structure.   

 We ran the clustering method for values of W= 3 to 25.  The maximum value of the log 

equation determines the best value for W as 22.  (See Figure 3.7) 
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Figure 3.7 – Graph of Log-Likelihood of Varying Values of W for Overall Example 

The genes are clusters as follows: 

Table 3.17 – Gene Clusters for Overall Example 

[0] 5573
[1] 13
[2] 1 10 19 28 37 46
[3] 6 15 33 42 51
[4] 9798
[5] 1697 3419
[6] 4754 7030
[7] 0 9 18 27 36 45
[8] 5 14 23 32 41 50
[9] 3383
[10] 2 11 20 29 38 47
[11] 8 35 44
[12] 24
[13] 5973 9012 8709
[14] 7 16 34 43 52
[15] 2029
[16] 1295 2281 3887 7639
[17] 653
[18] 3 12 21 30 39 48
[19] 4 22 31 49
[20] 1065
[21] 17 26 53

 

From simulation we know that gene clusters 2, 7, 8, 10, 14, and 18 are all clustered perfectly.  

Cluster 14 only has 5 genes because gene 25 was not included in the dataset (due to FDR 
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selection).  However, if this information is not known we look at the values of ( )|P Y G
KK

 (See 

Table 3.18).  Since we do not have a concrete way of selecting these gene clusters we will select 

the first several until a reasonable cut-off.  The gene clusters selected are bolded in Table 3.17 

and Table 3.18.  Notice that gene clusters 16 and 6 are not clusters of genes associated with 

causative loci.  Those gene clusters that are influenced by causative loci are compared to the 

genotypes of the simulated data to determine how many individuals (out of 400) our method 

correctly inferred.  (See Table 3.19) 

Table 3.18 – Values of ( )|P Y G
KK

 for Overall Example 

Gene Cluster ( )|P Y G
KK

 

1 3.54E-35
16 6.00E-101
2 9.79E-105

11 7.29E-107
18 4.18E-107
10 2.45E-107
7 1.55E-107
3 1.54E-107
8 1.03E-108

19 4.39E-109
21 3.02E-110
14 6.64E-111
6 2.11E-111

12 3.21E-115
5 4.48E-116

17 7.06E-117
13 5.13E-117
20 4.81E-118
9 3.70E-118
0 2.69E-119
4 6.25E-120

15 8.54E-121
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Table 3.19 – Number of Individuals Genotyped Correctly for Overall Example 

# of Individuals Correct 222 384 343 383 389 384 380 382 366 350 362
Gene Cluster/Locus [1] [2] [11] [18] [10] [7] [3] [8] [19] [21] [14]

 

Now we can compare the contingency tables of the simulated data (what the data would be in 

regular association study without our method) and the inferred data with deletions (see Methods).  

All 11 gene clusters associated with causative loci showed drastically smaller p-values for the 

chi-squared tests.   

Table 3.20 – P-values for Chi-Squared Test for Association (without method vs. with method) 

Locus without method with method 
1 1.593644x10-9 1.542096x10-54 
2 3.222184x10-13 1.507401x10-34 
11 1.412036x10-9 4.512904x10-21 
18 2.214003 x10-11 2.33019 x10-30 
10 5.113686x10-21 6.4445291 x10-31 
7 9.114662 x10-13 4.686652 x10-30 
3 2.722611 x10-10 4.763017x10-21 
8 1.871605 x10-10 9.130038 x10-27 
19 1.593644 x10-9 7.772012 x10-27 
21 1.412036 x10-9 4.454229 x10-26 
14 9.956697 x10-11 2.49172x10-30 

 

    3.4 – DISCUSSION 

The purpose of this method is to use gene expression information to identify 

heterogeneity in disease-causative genotypes and allow genome scans to take account of that 

heterogeneity. We do this by clustering genome-wide expression data into possible genetic 

causative loci clusters whose inferred genotype will determine which individuals should be 

deleted from the association study in order to increase the power of the association. Our 

procedure is a multi-step process: 1) Use a t-test with a liberal FDR to identify genes with 

expression patterns most strongly associated with the disease;  2) Cluster those genes to identify 
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groups that share a putative controlling factor assumed to be a genetic locus (either by method 

presented here or some other clustering method); 3) Use the method of SUN and SCHLIEKLEMAN 

(2008) to estimate the parameters of each locus cluster, including genotype probabilities, 

genotype-specific disease probabilities, and genotype-specific expression means and variances; 

4) Using these parameter fits and associated models,  assign genotype at each inferred locus for 

each sample individual; 5) Assuming that these genotype assignments are right, rank the inferred 

loci by their ability to predict disease status and select a set of putative disease loci from this list; 

6) For each such inferred locus, construct an optimal sample by removing all disease-affected 

individuals whose inferred genotype has no disease alleles and removing all unaffected 

individuals whose inferred genotype has two disease alleles. Conduct a full genome scan 

separately for each such data set. 

If the method has performed well and the genotypes at an inferred disease locus match 

well with genotype at some true disease locus, then the corresponding optimal sample will give 

greatly improved power for detecting that disease locus. Our simulations show that this 

procedure gives excellent results under many circumstances.  

We performed our method on a variety of datasets.  If only genes associated with the 

disease locus are considered in the dataset the method perfectly clusters all genes almost 100% 

of the time, this true for values of N from 200 to 600 for values of L ranging from 3 to 9.  These 

perfect clusters also genotype well, having >90% of the individuals have correctly inferred 

genotype.  When datasets contain 50% and 75% genes influenced by disease loci (50% and 25% 

genes influenced by non-disease genes) the clustering method and the genotyping method 

continue to result in 65% of causative loci perfectly clustered.  These clusters result in around 

80% of their individuals having correctly inferred genotypes.  The methods do not work as 
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consistently or as well when there are only 25% of dataset consisting of genes influenced by 

causative loci.  Both the clustering and the genotyping methods perform well for lower values of 

L.  It would be interesting to explore these methods for values beyond 9. 

If genes that are directly associated with the disease are included in the dataset the 

methods still produce useful information for a handful of loci but are not as successful at 

inferring genotype.  This is mostly due to genes directly associated with disease being clustered 

with genes influenced by disease-loci.   

Our method produces information for a large number of loci for various values of L 

causative loci, with 50%, 75%, and 100% of the data influenced by disease-loci, and even if 

genes directly influenced by the disease are included.   

Traditionally genome-wide studies have used linkage analysis or association studies.  

Linkage analysis requires large samples of family data and has been shown to have low power in 

identifying common variants that may contribute greatly to common complex diseases 

(LOHMUELLER ET AL. 2003).  The results in this paper from our method were obtained with 

sample sizes of 200, 400 or 600.  Although these sample sizes are rather large relative to 

previous genetical genomics studies, they are reasonable sample sizes for a genome scan, and 

quite low relative to sample sizes required for linkage studies to give good power for a disease 

with the level of genetic complexity that we have assumed here.   

It has been shown that association studies have much better power than linkage studies to 

detect common variants in a genome-wide scan when the number of alleles is small 

(HIRSCHHORN and DALY 2005).  We use expression data to assign genotype at inferred loci and 

then rank these inferred loci by their ability to predict disease risk. Why should this procedure 

have better power to detect association to disease than does the association study? That is, in 



 94

order for our method to work we must be able to tell which inferred loci are disease loci. Why 

does a method that infers genotype indirectly via expression data do better than an association 

study that looks at genotype directly?  There are several reasons.   First of all, in the stage at 

which we do the ranking, we are not actually doing a hypothesis test. Thus, while it is required 

that some of the disease loci fall near the top of the list, it is not required they meet any threshold 

for significance. Second, our method infers genotype of the actual locus - not a marker linked to 

that locus.  In many cases, this will greatly increase the power because there is not recombination 

between marker and locus. Of course, we are trading uncertainty resulting from recombination 

for uncertainty resulting from variance in gene expression. However, results of SUN and 

SCHLIEKELMAN (2008) show that the effect of this variation is greatly reduced when there are 

multiple transcripts controlled by a locus. Of course, the exact balance between the effects of 

expression variation and the effect of recombination depends on the specific genes and the 

specific markers. The third major benefit results from the fact that power in association studies  

can be greatly reduced when more than one disease causing allele is present (SLAGER et al. 

2000).  Our method effectively reduces all alleles into two types; those that increase the 

expression and those that decrease the expression.  Therefore, regardless of the actual number of 

alleles present the power to detect association between inferred loci and disease will be similar to 

that of an association study with two alleles.  

Our method will work with any method for doing genome scans, whether association or 

linkage based. Recent successes in genome-wide association studies in humans (DUERR et al. 

2006; HUNTER et al. 2007; SLADEK et al. 2007; YEAGER et al. 2007) are dependent on the 

haplotype block structure found in humans and on the existence of the Human Haplotype Map 

(ALTSHULER et al. 2005). The approach developed here can be adapted for genome scans in any 
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species, and may be particularly useful in species where a haplotype block structure does not 

exist and multiple alleles will be a major problem for association mapping.   

This method depends fundamentally on our assumption that the basic structure of the 

relationship between genetic loci, gene expression levels, and disease is similar to that depicted 

in Figure 3.1. Most importantly, genotype at some disease loci must affect the expression of 

multiple other genes. Furthermore, these genes must be reasonably close to the loci in the genetic 

pathway and not far downstream where the statistical link will be small. Our simulations showed 

that genes that respond directly to disease (as opposed to disease loci) tend to cause problems in 

the assignment of genotypes. This is because these genes will tend to be clustered with some 

disease locus, but have little correlation with that locus. It may be beneficial to simply eliminate 

genes with very high correlation to the trait because it is not likely that they will give much 

information about any disease locus.  

Our simulations have assumed a multiplicative disease model. Although such a model is 

consistent with family history data for many human diseases (RISCH 1990; SCHLIEKELMAN and 

SLATKIN 2002), it is completely unknown how well it represents the true relationship between 

disease genotype for any disease. Furthermore, the simulations depend on many assumptions 

about parameter values and specific details of the relationship between genotype, expression, and 

disease. Thus, it is difficult to say how the performance of our method in simulations will 

compare with the performance with real data.  See SCHLIEKELMAN (2008) for further discussion 

of these issues.  

Currently, we do not have well-developed method for choosing which inferred loci 

should be considered as disease causative. We have found that an experienced person can pick 

the correct disease loci with near perfect accuracy by looking at the ranked list of disease 



 96

prediction probabilities (e.g. Table 3.8). This suggests that an objective rule is possible, but we 

have not determined what it is. Our current method is an ad hoc one of simply choosing by sight. 

We then conduct a separate genome scan for each inferred disease locus and apply a Bonferonni 

correction to the case-control p-values to account for the multiple testing. There will be a loss of 

power resulting from this multiple testing. If the genotypes at even one inferred disease locus 

match a true disease locus well, this loss in power will be far outweighed by the gain in power 

from the optimal sample. However, if no true disease loci are matched well, then our procedure 

will result in an overall loss of power.  

 There will clearly be a large amount of correlation between genome scans using different 

optimal data sets and hence a Bonferonni correction will likely be highly conservative. A 

randomization based procedure would produce better p-values, but may be infeasible because of 

the large computational time each run requires. An adaptive procedure for determining the 

number of loci to test could also offer some benefits. 

It will be important to explore the outcomes of this method on data where expression 

levels are linked to more than one causative locus (i.e., c>1).  It is possible that c is greater than 

one in real datasets.  It would also be beneficial to develop a better method for determining 

which gene clusters are causative loci.  Currently our approach is very ad hoc.   

We make no claim that our method for clustering is superior to any other. Our method is 

very similar to the k-means algorithm, which is well known to have poor performance relative to 

other methods. The main advance here is a method for using clusters to infer genotype at 

unobserved disease loci. It may well be optimal to use a procedure similar to the example: First, 

filter the data for genes most likely to be associated with disease loci; second, use some other 

clustering method to produce the gene clusters; third, use our method to estimate parameters for 
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those clusters and assign genotypes at the their controlling loci. Future work will explore this 

issue.  
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CHAPTER 4 

CONCLUSIONS 

 

In this chapter we give a brief overview of both statistical genetic methods developed in 

this dissertation.  In Chapter 2 we explored the effects of three types of genotyping errors on the 

population differentiation statistic FST and the conclusions made from these statistics.  This 

research is motivated by the recent understanding that although eliminating genotyping errors 

from microsatellite data would be ideal this is not statistically possible.  The effects of 

genotyping errors have been developed for parentage assessment and population estimation but 

few studies have been done to determine the effects on population differentiation.  Our research 

explored the effects of allelic dropout, binning errors, and null alleles on FST.  We performed our 

analysis over multiple datasets of varying sizes at large percentages of genotyping error.  We 

found that allelic dropout has no statistically significant effect on the values of FST.  Binning 

error has a statistically significant effect on the FST values however; the overall conclusion that 

the populations are different remains the same.  Null Alleles also have a significant effect on FST 

but again the conclusions remain the same.  As a result of our multiple simulations we were also 

able to illustrate the effects of sample size and number of loci on the population differentiation 

statistic.   Future methods should see if these same results occur with different population 

differentiation statistics.   

In Chapter 3 we develop a method for improving gene mapping of complex diseases.  

Our goal was to perform a genome-wide study, with no prior knowledge of location of disease 
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genes, to identify disease causative loci.  In general, genome-wide studies are analyzed using 

linkage or association studies.  Linkage analysis, although useful for single locus disease and 

identifying rare variants in complex diseases, requires extremely large datasets of family data 

and is has been proven to be ineffective at finding common variants of complex diseases.  

Association studies, although good at identifying common variants, can have a significant loss of 

power due the fact that all individuals’ disease status is not determined by the same causative 

loci.  That is, there may be some individuals who disease status is not determined by the 

particular locus in question.  Our method uses genome-wide expression data to identify these 

individuals for a particular causative locus and eliminate them, creating increase power of 

association.  We use microarray expression data and disease status of individuals to cluster the 

expression levels into locus clusters.  These gene clusters ideally correspond to genetic loci.  

Using our clustered information and likelihood parameters we infer genotype structure of the 

causative locus clusters for each individual.  This information is used to eliminate the individuals 

whose disease status in not determined by that particular causative locus.  Through examples of 

case-control studies we show that our method does increase the power of association to the 

disease.   

In conclusion, useful statistical genetic results were produced from our research efforts.   
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RESULTS OF ALL 74 SUB-DATASETS FOR ALL 99 REPLICATIONS – DATASET A 

 
Because of its length this appendix is in electronic form attached to this dissertation. 
 
 
 
 
 
 

APPENDIX B 

RESULTS OF ALL 74 SUB-DATASETS FOR ALL 99 REPLICATIONS – DATASET B. 

 
Because of its length this appendix is in electronic form attached to this dissertation. 
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APPENDIX C 

SUMMARY OF SIMULATIONS FOR CLUSTERING METHOD AND INFERRING GENOTYPE 

 
1.   

 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
 

W Likelihood 
3 -24592.2 
4 -23862.6 
5 -23349.5 
6 -22412.9 
7 -21995.6 
8 -20225.7 
9 -20208.1 
10 -21064.5 
11 -20889.2 
12 -20184.7 
13 -20285.7 
14 -20127.5 
15 -20007.2 
16 -20089.7 
17 -20188.7 
18 -20167.4 
19 -20058.1 
20 -20227.8 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus.  

 
[0] 13 16 27 34 40 43 80 89 107 116 125 134
 152 161 170 173 175 188 189 206   
[1] 7 21 59 64 73 82 91 100 127 136 145 163
 190 199 207 208   
[2] 56 65 74 83 98 110 119 146 155 182 200 215  
[3] 29 31 52 77 86 95 104 113 122 131 140 149
 158 167 176 194 203 212   
[4] 2 4 25 60 71 87 96 195   
[5] 69 114 132 141 150 159 168 177 213   
[6] 1 3 10 19 28 30 37 39 46 47 48 55
 109 154 172 
[7] 18 61 70 88 106 115 118 124 133 142 151 160
 169 178 181 187 196 205 214  
[8] 5 6 14 15 23 24 32 33 36 41 42 50
 51 180  

L=9 M=6 LND=9 MND=18 N=200 25% disease genes 
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[9] 8 9 17 20 26 35 38 44 45 53 68 79
 111 156 162 185 210  
[10] 12 57 66 75 84 93 102 120 129 138 147 165
 174 183 192 201   
[11] 0 22 92 101 128 137 164 191 209 
[12] 78 105 123 179 186 197 204  
[13] 11 49 54 63 72 81 90 97 99 117 126 135
 144 153 171 198   
[14] 58 62 67 76 85 94 103 108 112 121 130 139
 143 148 157 166 184 193 202 211 
 

- Number of individuals out of N that are correctly genotyped 
 

# of Correct Individuals 78 136 
Locus [6]  [9] 

 
- values of ( )|P Y G  to determine which locus clusters are associated with disease and 

genes are well clustered 
 

LOCUS P(Y|G) 
6 6.61E-53 
9 1.27E-55 
11 8.55E-59 
14 2.91E-59 
8 2.43E-59 
0 8.75E-60 
2 8.31E-60 
13 5.91E-60 
7 2.39E-60 
5 1.72E-60 
4 1.57E-60 
1 1.24E-60 
10 1.20E-60 
12 8.91E-61 
3 7.75E-61 

 
- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 

 
 Simulated  Calculated 

Locus 6  0 1 2   0 1 2 
 Disease 0 39 61  Disease 18 48 34
 Non-Disease 22 45 33  Non-Disease 59 26 15
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 18 0 9  1-> 37 0 2 
 2-> 0 36 0  2-> 0 20 0 
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Locus 9  0 1 2   0 1 2 
 Disease 0 38 62  Disease 29 9 62
 Non-Disease 11 50 39  Non-Disease 33 34 33
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 2 0 
 1-> 28 0 2  1-> 22 0 1 
 2-> 1 1 0  2-> 2 5 0 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 

Individuals] 
- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 

 
 

Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 6 0 0 0.18 0.09 0 0.36 
Locus 9 0 0 0.28 0.02 0.01 0.01 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 6 0 0 0.37 0.02 0 0.2 
Locus 9 0.02 0 0.22 0.01 0.02 0.05 
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2.   
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
W Likelihood 
3 -50456.9 
4 -49044.7 
5 -47874.5 
6 -45944 
7 -43461.8 
8 -42019.4 
9 -42678.6 
10 -42184.8 
11 -41356.8 
12 -42029.2 
13 -40395.1 
14 -40255.5 
15 -40910.2 
16 -41570.5 
17 -41197.7 
18 -40918.6 
19 -40222.9 
20 -41247.8 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus.   

 
[0] 24 35 62 71 80 89 98 107 116 125 143 159
 161 170 179 188 197 215   
[1] 33 54 61 79 88 97 106 108 115 124 133 160
 169 178 187 196 214   
[2] 56 74 84 134 137 151 182 191 200  
[3] 2 11 29 38 42   
[4] 16 77 122 131 158 167 177 185 194 203 212  
[5] 4 5 13 14 22 23 31 32 40 41 49 50
 157    
[6] 7 25 34 43 52 94 130 184 193 206 211  
[7] 15 65 83 92 101 110 119 146 155 164 209  
[8] 75 93 129 138 147 152 174   
[9] 0 9 18 20 36 45 47 128   
[10] 57 59 66 111 120 156 165 183 192 201 210  
[11] 8 58 67 76 85 103 112 121 139 148 166 175
 202   
[12] 63 72 81 90 99 117 126 135 144 145 153 162
 171 180 189 207  
[13] 26 68 86 95 104 113 149 176  
[14] 3 12 21 30 39 48 53 205   
[15] 6 27 44 55 64 70 73 82 91 100 109 118
 127 154 163 172 190 198 199 208   
[16] 17 69 102 114 140 142 173 213  
[17] 60 78 87 96 105 123 132 141 150 168 186 195
 204 
[18] 1 10 19 28 37 46 51 136 181  

L=9 M=6 LND=9 MND=18 N=400 25% disease genes 
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- Number of individuals out of N that are correctly genotyped 

# of Correct Individuals 191 388 367 378 191 
Locus [5] [18] [3] [14] [5] 

 
- - values of ( )|P Y G  to determine which locus clusters are associated with disease and 

genes are well clustered. 
 

LOCUS P(Y|G) 
5 1.76E-107 
18 1.12E-108 
3 2.68E-109 
14 1.87E-109 
9 2.78E-112 
6 3.11E-119 
15 3.49E-120 
11 3.27E-120 
13 1.78E-120 
2 1.40E-120 
4 1.27E-120 
8 9.48E-121 
10 9.07E-121 
17 5.01E-121 
12 4.95E-121 
16 4.81E-121 
0 4.58E-121 
1 4.23E-121 
7 4.18E-121 

 
- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 

 
 

 Simulated  Calculated 
Locus 5  0 1 2   0 1 2 

 Disease 0 85 115  Disease 36 116 48 
 Non-Disease 34 98 68  Non-Disease 106 50 44 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 8 0 
 1-> 33 0 0  1-> 75 0 1 
 2-> 3 64 0  2-> 5 20 0 
          

Locus 18  0 1 2   0 1 2 
 Disease 0 79 121  Disease 0 79 121 
 Non-Disease 32 97 71  Non-Disease 31 97 72 
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 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 3  1-> 0 0 3 
 2-> 0 3 0  2-> 0 2 0 
          
          

Locus 3  0 1 2   0 1 2 
 Disease 0 83 117  Disease 3 74 123 
 Non-Disease 39 90 71  Non-Disease 43 86 71 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 3 0 11  1-> 4 0 5 
 2-> 0 5 0  2-> 0 5 0 
          
          

Locus 14  0 1 2   0 1 2 
 Disease 0 88 112  Disease 0 86 114 
 Non-Disease 24 104 72  Non-Disease 31 98 71 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 2 0 
 1-> 0 0 4  1-> 9 0 2 
 2-> 0 2 0  2-> 0 3 0 
          
          

Locus 9  0 1 2   0 1 2 
 Disease 0 69 131  Disease 60 47 93 
 Non-Disease 24 83 93  Non-Disease 103 62 35 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 59 0 8  1-> 77 0 3 
 2-> 1 45 0  2-> 2 59 0 

 
 

- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 
Individuals] 

- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 

 
Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 5 0 0 0.165 0 0.015 0.32 
Locus 18 0 0 0 0.015 0 0.015 
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Locus 3 0 0 0.015 0.055 0 0.025 
Locus 14 0 0 0 0.02 0 0.01 
Locus 9 0 0 0.295 0.04 0.005 0.225 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 5 0.04 0 0.375 0.005 0.025 0.1 
Locus 18 0.005 0 0 0.015 0 0.01 
Locus 3 0 0 0.02 0.025 0 0.025 
Locus 14 0.01 0 0.045 0.01 0 0.015 
Locus 9 0 0 0.385 0.015 0.01 0.295 
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3.   
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
 

W Likelihood 
3 -76979.4 
4 -74169.8 
5  
6 -69689.1 
7 -69030.5 
8 -65883.7 
9 -64405.7 
10 -64147.3 
11 -64433.2 
12 -65466.8 
13 -62764.5 
14 -63470.6 
15 -64975.9 
16 -62688.7 
17 -62953.8 
18 -62634.3 
19 -63476.3 
20 -63577.4 

 
 

- Genes clustered into loci.  Each number is a gene and each row is a locus.   
 
[0] 77 131 149 158 167 185 194 212   
[1] 55 73 91 100 109 127 136 145 163 172 192 208  
[2] 3 7 12 16 21 30 32 39 48  
[3] 41 56 74 83 92 101 110 119 146 155 164 173
 182 191 200 209 213   
[4] 8 17 26 35 43 44 53 65 76 85 94 139
 148 156 157  
[5] 14 20 22 51 59 68 86 95 113 122 140 203  
[6] 60 69 96 128 137 150 159 186 204   
[7] 0 9 18 27 31 36 40 45  
[8] 67 112 165 166 175 202   
[9] 2 11 38 47 49 63 64 70 82 99 106 117
 118 135 154 181 190   
[10] 6 13 15 23 24 33 42 108   
[11] 25 34 54 72 81 90 126 143 144 153 162 176
 180 189 197 198 207   
[12] 50 78 87 105 114 123 132 141 168 177 195  
[13] 1 4 5 10 19 28 29 37 46 52 66 84
 93 104 134 138 147 174 201  
[14] 61 79 88 97 124 133 142 151 160 169 178 187
 196 205 214   
[15] 58 103 116 121 171 184 193 199 211   

L=9 M=6 LND=9 MND=18 N=600 25% disease genes 
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[16] 62 71 80 89 98 107 115 125 130 152 161 170
 179 188 206 215   
[17] 57 75 102 111 120 129 183 210 
 

- Number of individuals out of N that are correctly genotyped 
# of Correct Individuals 579 566 576 199 178 

Locus [7]  [10] [2] [13] [4] 
 

- - values of ( )|P Y G  to determine which locus clusters are associated with disease and 
genes are well clustered. 

 
LOCUS P(Y|G) 

7 3.64E-156 
10 2.74E-160 
2 5.35E-164 
13 1.58E-165 
4 2.06E-176 
8 5.39E-180 
17 5.04E-180 
15 4.92E-180 
14 1.27E-180 
16 1.08E-180 
0 6.52E-181 
12 4.72E-181 
5 4.45E-181 
6 4.26E-181 
9 3.72E-181 
3 3.59E-181 
11 3.02E-181 
1 2.95E-181 

 
- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 

 
 

 Simulated  Calculated 
Locus 7  0 1 2   0 1 2 

 Disease 0 128 172  Disease 0 132 168 
 Non-Disease 66 139 95  Non-Disease 66 144 90 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 3  1-> 1 0 2 
 2-> 0 7 0  2-> 0 7 0 
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Locus 10  0 1 2   0 1 2 
 Disease 0 128 172  Disease 0 129 171 
 Non-Disease 46 156 98  Non-Disease 49 161 90 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 2 0 
 1-> 0 0 8  1-> 5 0 1 
 2-> 0 9 0  2-> 0 9 0 
          
          

Locus 2  0 1 2   0 1 2 
 Disease 0 125 175  Disease 1 129 170 
 Non-Disease 49 152 99  Non-Disease 48 154 98 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 4 0 
 1-> 1 0 2  1-> 3 0 3 
 2-> 0 7 0  2-> 0 4 0 
          
          

Locus 13  0 1 2   0 1 2 
 Disease 0 111 189  Disease 49 121 130 
 Non-Disease 54 150 96  Non-Disease 145 69 86 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 2 
 1-> 49 0 46  1-> 91 0 48 
 2-> 0 105 0  2-> 2 58 0 
          
          

Locus 4  0 1 2   0 1 2 
 Disease 0 124 176  Disease 71 110 119 
 Non-Disease 42 138 120  Non-Disease 120 68 112 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 4 
 1-> 71 0 45  1-> 82 0 53 
 2-> 0 102 0  2-> 0 65 0 

 
 

- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 
Individuals] 

- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 
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Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 7 0 0 0 0.01 0 0.023333
Locus 10 0 0 0 0.026667 0 0.03 
Locus 2 0 0 0.003333 0.006667 0 0.023333
Locus 13 0 0 0.163333 0.153333 0 0.35 
Locus 4 0 0 0.236667 0.15 0 0.34 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 7 0.003333 0 0.003333 0.006667 0 0.023333
Locus 10 0.006667 0 0.016667 0.003333 0 0.03 
Locus 2 0.013333 0 0.01 0.01 0 0.013333
Locus 13 0 0.006667 0.303333 0.16 0.006667 0.193333
Locus 4 0 0.013333 0.273333 0.176667 0 0.216667
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4.   
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
 

W Likelihood 
3 -12906.3 
4 -12594.7 
5 -12451.9 
6 -12238.6 
7 -12075.9 
8 -11989.6 
9 -11902 
10 -11656.9 
11 -11488.4 
12 -11465.5 
13 -11411.5 
14 -11322.3 
15 -11303.8 
16 -10851.9 
17 -11063.4 
18 -11436.7 
19 -11066.6 
20 -10861.9 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus.  

 
[0] 0 9 27 36 55 64 91 100   
[1] 26 57 71 75 84   
[2] 2 20 29 38 47  
[3] 3 12 18 21 30 39 48   
[4] 6 15 33 51 79   
[5] 54 63 80 81 90 99   
[6] 59 62 68 77 86 89 95 98 104   
[7] 16 25 34 42 43 52 102  
[8] 7 32 61 70 88 97 106   
[9] 58 67 72 85 94 103   
[10] 11 24 60 69 78 87 96 105   
[11] 1 10 19 28 37 46 73 76   
[12] 4 13 22 31 40 45 49 83  
[13] 8 17 35 44 53 107   
[14] 56 65 74 92 93 101   
[15] 5 14 23 41 50 66 82  
 

- Number of individuals out of N that are correctly genotyped 
 

# of Correct Individuals 185 188 195 179 196 186 
Locus [13] [7] [12] [15] [11] [2] 

 

L=9 M=6 LND=9 MND=6 N=200 50% disease genes 
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- - values of ( )|P Y G  to determine which locus clusters are associated with disease and 
genes are well clustered. 

 
LOCUS P(Y|G) 

13 2.76E-52 
7 3.14E-53 
12 8.29E-54 
15 1.40E-54 
11 2.71E-55 
2 2.10E-55 
3 9.11E-57 
4 1.42E-57 
0 8.66E-58 
10 1.30E-58 
8 9.76E-60 
9 4.59E-60 
14 2.44E-60 
1 1.92E-60 
5 1.64E-60 
6 5.86E-61 

 
- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 

 
 

 Simulated  Calculated 
Locus 13  0 1 2   0 1 2 

 Disease 0 43 57  Disease 0 49 51
 Non-Disease 23 45 32  Non-Disease 25 44 31
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 1  1-> 3 0 1 
 2-> 0 7 0  2-> 0 2 0 
          
          

Locus 7  0 1 2   0 1 2 
 Disease 0 32 68  Disease 0 35 65
 Non-Disease 19 45 36  Non-Disease 20 42 38
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 1  1-> 2 0 3 
 2-> 0 4 0  2-> 0 1 0 
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Locus 12  0 1 2   0 1 2 
 Disease 0 41 59  Disease 0 41 59
 Non-Disease 21 45 34  Non-Disease 19 46 35
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 3 0 
 1-> 0 0 0  1-> 1 0 1 
 2-> 0 0 0  2-> 0 0 0 
          
          

Locus 15  0 1 2   0 1 2 
 Disease 0 37 63  Disease 1 38 61
 Non-Disease 10 59 31  Non-Disease 11 63 26
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 2 0 
 1-> 1 0 3  1-> 3 0 1 
 2-> 0 5 0  2-> 0 6 0 
          
          
          
          

Locus 11  0 1 2   0 1 2 
 Disease 0 43 57  Disease 0 43 57
 Non-Disease 14 49 37  Non-Disease 15 49 36
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 0 0 0  1-> 1 0 1 
 2-> 0 0 0  2-> 0 2 0 
          
          

Locus 2  0 1 2   0 1 2 
 Disease 0 37 63  Disease 0 36 64
 Non-Disease 15 46 39  Non-Disease 16 39 45
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 0 0 3  1-> 1 0 7 
 2-> 0 2 0  2-> 0 1 0 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 

Individuals] 
- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 
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Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 13 0 0 0 0.01 0 0.07 
Locus 7 0 0 0 0.01 0 0.04 
Locus 12 0 0 0 0 0 0 
Locus 15 0 0 0.01 0.03 0 0.05 
Locus 11 0 0 0 0 0 0 
Locus 2 0 0 0 0.03 0 0.02 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 13 0.01 0 0.03 0.01 0 0.02 
Locus 7 0.01 0 0.02 0.03 0 0.01 
Locus 12 0.03 0 0.01 0.01 0 0 
Locus 15 0.02 0 0.03 0.01 0 0.06 
Locus 11 0 0 0.01 0.01 0 0.02 
Locus 2 0 0 0.01 0.07 0 0.01 
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5.   
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
 

W Likelihood 
3 -26300.9 
4 -25691.9 
5 -25278.4 
6 -24964.7 
7 -24453.3 
8 -24132.2 
9 -23656.3 
10 -23278.7 
11 -22783.2 
12 -23110.8 
13 -22881.1 
14 -22543.1 
15 -22694.6 
16 -22602.1 
17 -21973.7 
18 -21725.8 
19 -22467.3 
20 -21870.5 
21 -22196.8 
22 -22387.8 
23 -22130.3 
24 -22264.1 
25 -22619.5 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus.  

 
[0] 55 64 69 73 82 91 100   
[1] 6 15 24 33   
[2] 42 66 75 84 87 93 102   
[3] 7 16 25 34 43 52 57   
[4] 3 12 21 30 39 48   
[5] 54 63 72 76 81 86 90 99 103 106   
[6] 0 9 18 27 36 45 78   
[7] 4 13 22 31 49 60  
[8] 51   
[9] 56 59 74 83 92 101 105   
[10] 62 71 80 89 94 98 107   
[11] 8 17 26 35 44 53 65   
[12] 1 10 19 28 37 46 96   
[13] 68 77 95 104   
[14] 2 11 20 29 38 47 85 88   
[15] 5 14 23  
[16] 61 67 70 79 97   
[17] 32 40 41 50 58  

L=9 M=6 LND=9 MND=6 N=400 50% disease genes 
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- Number of individuals out of N that are correctly genotyped 
 

# of Correct Individuals 385 387 380 347 349 366 373 376 379 381 
Locus [6] [3] [12] [17] [15] [7] [1] [11] [14] [4] 

- values of ( )|P Y G  to determine which locus clusters are associated with disease and genes 
are well clustered. 

 
LOCUS P(Y|G) 

8 1.38E-38 
6 3.54E-106 
3 6.68E-107 
12 2.52E-107 
17 5.51E-108 
15 4.93E-108 
7 5.18E-110 
1 1.88E-110 
11 1.93E-111 
14 8.75E-112 
4 4.87E-112 
5 4.39E-120 
2 3.94E-120 
9 1.06E-120 
10 8.01E-121 
13 6.54E-121 
16 5.54E-121 
0 4.03E-121 

 
 

- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 

 
 Simulated  Calculated 
Locus 6  0 1 2   0 1 2 
 Disease 0 75 125  Disease 0 80 120 
 Non-Disease 32 108 60  Non-Disease 32 108 60 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 2  1-> 1 0 2 
 2-> 0 7 0  2-> 0 2 0 
          
          
Locus 3  0 1 2   0 1 2
 Disease 0 77 123  Disease 0 77 123
 Non-Disease 37 87 76  Non-Disease 38 88 74
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 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 2 0
 1-> 0 0 1  1-> 3 0 2
 2-> 0 1 0  2-> 0 4 0
          
          
Locus 12  0 1 2   0 1 2
 Disease 0 82 118  Disease 0 87 113
 Non-Disease 34 101 65  Non-Disease 37 96 67
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 0 0
 1-> 0 0 2  1-> 3 0 5
 2-> 0 7 0  2-> 0 3 0
          
          
Locus 17  0 1 2   0 1 2 
 Disease 0 75 125  Disease 0 85 115 
 Non-Disease 30 101 69  Non-Disease 34 100 66 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 3 0 
 1-> 0 0 7  1-> 7 0 8 
 2-> 0 17 0  2-> 0 11 0 
          
          
Locus 15  0 1 2   0 1 2 
 Disease 0 75 125  Disease 1 58 141 
 Non-Disease 30 101 69  Non-Disease 22 107 71 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 10 0 
 1-> 1 0 20  1-> 2 0 8 
 2-> 0 4 0  2-> 0 6 0 
          
          
Locus 7  0 1 2   0 1 2
 Disease 0 83 117  Disease 1 85 114
 Non-Disease 29 102 69  Non-Disease 30 110 60
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 3 0
 1-> 1 0 6  1-> 4 0 1
 2-> 0 9 0  2-> 0 10 0
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Locus 1  0 1 2   0 1 2 
 Disease 0 82 118  Disease 0 79 121 
 Non-Disease 28 98 74  Non-Disease 24 104 72 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 4 0 
 1-> 0 0 9  1-> 0 0 3 
 2-> 0 6 0  2-> 0 5 0 
          
          
Locus 11  0 1 2   0 1 2 
 Disease 0 74 126  Disease 0 74 126 
 Non-Disease 27 88 85  Non-Disease 29 82 89 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 4  1-> 3 0 8 
 2-> 0 4 0  2-> 0 4 0 
          
          
Locus 14  0 1 2   0 1 2
 Disease 0 83 117  Disease 0 85 115
 Non-Disease 31 91 78  Non-Disease 25 98 77
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 6 0
 1-> 0 0 2  1-> 0 0 4
 2-> 0 4 0  2-> 0 5 0
          
          
Locus 4  0 1 2   0 1 2
 Disease 0 83 117  Disease 0 86 114
 Non-Disease 29 89 82  Non-Disease 26 93 81
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 3 0
 1-> 0 0 3  1-> 0 0 3
 2-> 0 6 0  2-> 0 4 0

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 

Individuals] 
- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 

 
 



 134

Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 6 0 0 0 0.01 0 0.035 
Locus 3 0 0 0 0.005 0 0.005 
Locus 12 0 0 0 0.01 0 0.035 
Locus 17 0 0 0 0.035 0 0.085 
Locus 15 0 0 0.005 0.1 0 0.02 
Locus 7 0 0 0.005 0.03 0 0.045 
Locus 1 0 0 0 0.045 0 0.03 
Locus 11 0 0 0 0.02 0 0.02 
Locus 14 0 0 0 0.01 0 0.02 
Locus 4 0 0 0 0.015 0 0.03 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 6 0.005 0 0.005 0.01 0 0.01 
Locus 3 0.01 0 0.015 0.01 0 0.02 
Locus 12 0 0 0.015 0.025 0 0.015 
Locus 17 0.015 0 0.035 0.04 0 0.055 
Locus 15 0.05 0 0.01 0.04 0 0.03 
Locus 15 0.05 0 0.01 0.04 0 0.03 
Locus 7 0.015 0 0.02 0.005 0 0.05 
Locus 1 0.02 0 0 0.015 0 0.025 
Locus 11 0.005 0 0.015 0.04 0 0.02 
Locus 14 0.03 0 0 0.02 0 0.025 
Locus 4 0.015 0 0 0.015 0 0.02 
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6.   
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
 

W Likelihood 
3 -8171.41 
4 -7967.31 
5 -7900.37 
6 -7711.14 
7 -7606.42 
8 -7480.71 
9 -7362.81 
10 -7415.68 
11 -7513.18 
12 -7368.7 
13 -7463.97 
14 -7301.46 
15 -7500.35 
16 -7365.33 
17 -7307.82 
18 -7369.06 
19 -7544.85 
20 -7645.54 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus.  

 
[0] 17 55 61 62 67 68   
[1] 57 63 69   
[2] 2 11 20 29 38 47   
[3] 0 18 27 36 45 58 64 70  
[4] 19 37   
[5] 6 8 26 35 44 53  
[6] 1 10 28 46 59 71  
[7] 15 24 33 42   
[8] 4 13 22 31 40 49 56 
[9] 30  
[10] 3 12 21 39 48 65 
[11] 7 16 25 34 43 52  
[12] 9 51 54 60 66   
[13] 5 14 23 32 41 50  
  
 

- Number of individuals out of N that are correctly genotyped 
 

# of Correct Individuals 188 190 193 79 189 189 149 94 195 188 
Locus [8] [13] [10] [6] [5] [2] [4] [3] [11] [8] 

 

L=9 M=6 LND=6 MND=3 N=200 75% disease genes 
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- values of ( )|P Y G  to determine which locus clusters are associated with disease and genes 
are well clustered. 

 
LOCUS P(Y|G) 

9 1.46E-17 
12 1.33E-38 
8 1.07E-53 
13 6.06E-54 
10 2.49E-55 
6 2.47E-55 
5 1.97E-55 
2 1.22E-55 
4 7.24E-56 
3 4.58E-56 
11 1.72E-56 
7 3.65E-58 
0 6.84E-60 
1 1.01E-60 

 
 

- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 

 
 Simulated  Calculated 
Locus 8  0 1 2   0 1 2 
 Disease 0 41 59  Disease 0 45 55 
 Non-Disease 18 47 35  Non-Disease 20 47 33 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 0 0 2  1-> 2 0 0 
 2-> 0 6 0  2-> 0 2 0 
          
          
Locus 13  0 1 2   0 1 2 
 Disease 0 43 57  Disease 0 45 55 
 Non-Disease 18 49 33  Non-Disease 20 45 35 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 0  1-> 3 0 3 
 2-> 0 2 0  2-> 0 1 0 
          
          
Locus 10  0 1 2   0 1 2 
 Disease 0 40 60  Disease 1 40 59 
 Non-Disease 19 50 31  Non-Disease 19 49 32 
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 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 1 0 0  1-> 1 0 2 
 2-> 0 1 0  2-> 0 1 0 
          
          
Locus 6  0 1 2   0 1 2 
 Disease 0 38 62  Disease 17 57 26 
 Non-Disease 14 48 38  Non-Disease 49 41 10 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 17 0 2  1-> 34 0 1 
 2-> 0 38 0  2-> 1 28 0 
          
          
Locus 5  0 1 2   0 1 2 
 Disease 0 40 60  Disease 0 37 63 
 Non-Disease 14 52 34  Non-Disease 11 54 35 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 3 0 
 1-> 0 0 4  1-> 0 0 2 
 2-> 0 1 0  2-> 0 1 0 
          
          
Locus 2  0 1 2   0 1 2 
 Disease 0 45 55  Disease 1 46 53 
 Non-Disease 17 48 35  Non-Disease 20 44 36 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 1 0 1  1-> 3 0 2 
 2-> 0 3 0  2-> 0 1 0 
          
          
Locus 4  0 1 2   0 1 2 
 Disease 0 38 62  Disease 0 49 51 
 Non-Disease 14 48 38  Non-Disease 17 54 29 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 3 0 
 1-> 0 0 8  1-> 6 0 3 
 2-> 0 19 0  2-> 0 12 0 
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Locus 3  0 1 2   0 1 2 
 Disease 0 34 66  Disease 20 42 38 
 Non-Disease 19 40 41  Non-Disease 51 30 19 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 20 0 1  1-> 32 0 1 
 2-> 0 29 0  2-> 0 23 0 
          
          
Locus 11  0 1 2   0 1 2 
 Disease 0 43 57  Disease 0 44 56 
 Non-Disease 11 55 34  Non-Disease 11 53 36 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 0  1-> 1 0 2 
 2-> 0 1 0  2-> 0 0 0 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 

Individuals] 
- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 

 
Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 8 0 0 0 0.02 0 0.06 
Locus 13 0 0 0 0 0 0.02 
Locus 10 0 0 0.01 0 0 0.01 
Locus 6 0 0 0.17 0.02 0 0.38 
Locus 5 0 0 0 0.04 0 0.01 
Locus 2 0 0 0.01 0.01 0 0.03 
Locus 4 0 0 0 0.08 0 0.19 
Locus 3 0 0 0.2 0.01 0 0.29 
Locus 11 0 0 0 0 0 0.01 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
 

Non-Disease E(0) E(1) F(0) F(2) H(0) H(1) 
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Locus 8 0 0 0.02 0 0 0.02 
Locus 13 0 0.01 0.03 0.03 0 0.01 
Locus 10 0 0.01 0.01 0.02 0 0.01 
Locus 6 0 0 0.34 0.01 0.01 0.28 
Locus 5 0 0.03 0 0.02 0 0.01 
Locus 2 0 0 0.03 0.02 0 0.01 
Locus 1 0 0.03 0.06 0.03 0 0.12 
Locus 3 0 0 0.32 0.01 0 0.23 
Locus 11 0 0.01 0.01 0.02 0 0 
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7.   
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
W Likelihood 
3 -5821.78 
4 -5567.75 
5 -5399.38 
6 -5318.98 
7 -5209.67 
8 -5092.39 
9 -5040.07 
10 -5290.21 
11 -5113.74 
12 -5194.67 
13 -5333.27 
14 -5336.43 
15 -5383.7 
16 -5399.93 
17 -5436.46 
18 -5524.4 
19 -5349.71 
20 -5389.94 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus.  

 
[0] 0 9 18 27 36 45  
[1] 19 28 37 
[2] 2 11 20 29 38 47 
[3] 1 3 10 12 21 30 39 46 48 
[4] 4 13 22 31 40 49   
[5] 5 14 23 50 
[6] 6 15 24 32 33 41 42 51  
[7] 7 16 25 34 43 52  
[8] 8 17 26 35 44 53 
 

- Number of individuals out of N that are correctly genotyped 
 
# of Correct Individuals 192 153 185 73 192 139 191 189 193 

Locus [0] [1] [2] [3] [4] [5] [6] [7] [8] 
 

- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 
 

 Simulated  Calculated 
Locus 0  0 1 2   0 1 2 
 Disease 0 46 54  Disease 0 45 55 
 Non-Disease 19 41 40  Non-Disease 23 36 41 

L=9 M=6 LND=0 MND=0 N=200 100% disease genes
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 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 0 0 2  1-> 4 0 1 
 2-> 0 1 0  2-> 0 0 0 
          
          
Locus 1  0 1 2   0 1 2 
 Disease 0 35 65  Disease 6 26 68 
 Non-Disease 17 52 31  Non-Disease 32 40 28 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 6 0 8  1-> 15 0 5 
 2-> 0 5 0  2-> 0 8 0 
          
          
Locus 2  0 1 2   0 1 2 
 Disease 0 41 59  Disease 0 38 62 
 Non-Disease 22 39 39  Non-Disease 28 35 37 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 0 0 4  1-> 6 0 1 
 2-> 0 1 0  2-> 0 3 0 
          
          
Locus 3  0 1 2   0 1 2 
 Disease 0 38 62  Disease 35 17 48 
 Non-Disease 11 43 46  Non-Disease 46 36 18 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 34 0 4  1-> 35 0 4 
 2-> 1 17 0  2-> 0 32 0 
          
          
Locus 4  0 1 2   0 1 2 
 Disease 0 45 55  Disease 0 45 55 
 Non-Disease 16 41 43  Non-Disease 16 43 41 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 1  1-> 1 0 1 
 2-> 0 1 0  2-> 0 3 0 
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Locus 5  0 1 2   0 1 2 
 Disease 0 42 58  Disease 25 16 59 
 Non-Disease 9 49 42  Non-Disease 29 31 40 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 25 0 4  1-> 19 0 4 
 2-> 0 3 0  2-> 1 5 0 
          
          
Locus 6  0 1 2   0 1 2 
 Disease 0 43 57  Disease 0 41 59 
 Non-Disease 14 57 29  Non-Disease 17 56 27 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 0 0 3  1-> 3 0 0 
 2-> 0 1 0  2-> 0 2 0 
          
          
Locus 7  0 1 2   0 1 2 
 Disease 0 47 53  Disease 0 46 54 
 Non-Disease 15 49 36  Non-Disease 16 51 33 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 3  1-> 2 0 0 
 2-> 0 2 0  2-> 0 3 0 
          
          
Locus 8  0 1 2   0 1 2 
 Disease 0 44 56  Disease 0 44 56 
 Non-Disease 18 50 32  Non-Disease 19 47 34 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 0 0 2  1-> 1 0 2 
 2-> 0 2 0  2-> 0 0 0 

 
 

- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 
Individuals] 

- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 
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Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 0 0 0 0 0.02 0 0.01 
Locus 1 0 0 0.06 0.08 0 0.05 
Locus 2 0 0 0 0.04 0 0.01 
Locus 3 0 0 0.34 0.04 0.01 0.17 
Locus 4 0 0 0 0.01 0 0.01 
Locus 5 0 0 0.25 0.04 0 0.03 
Locus 6 0 0 0 0.03 0 0.01 
Locus 7 0 0 0 0.03 0 0.02 
Locus 8 0 0 0 0.02 0 0.02 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 0 0 0 0.04 0.01 0 0 
Locus 1 0 0 0.15 0.05 0 0.08 
Locus 2 0 0 0.06 0.01 0 0.03 
Locus 3 0 0 0.35 0.04 0 0.32 
Locus 4 0.01 0 0.01 0.01 0 0.03 
Locus 5 0 0 0.19 0.04 0.01 0.05 
Locus 6 0 0 0.03 0 0 0.02 
Locus 7 0.01 0 0.02 0 0 0.03 
Locus 8 0 0 0.01 0.02 0 0 
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8.   
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
 

W Likelihood 
3 -11692.5 
4 -11151.6 
5 -10910 
6 -10335.1 
7 -10061.5 
8 -9789.86 
9 -9774.42 
10 -9695.73 
11 -9786.47 
12 -10016.6 
13 -10180.4 
14 -9993 
15 -10374.6 
16 -10410.6 
17 -10439.1 
18 -10597.1 
19 -10758.7 
20 -10839.3 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus. 

 
[0] 0 9 18 27 36 45 
[1] 1 10 19 28 37 46 
[2] 2 11 20 29 38 47 
[3] 3 12 21 30 39 48 
[4] 4 13 22 31 40 49 
[5] 5 14 23 32 41 50  
[6] 6 15 24 33 42 51 
[7] 7 16 25 34 43 52 
[8] 8 26 53   
[9] 17 35 44  
 
 

- Number of individuals out of N that are correctly genotyped 
 
# of Correct Individuals 383 385 381 385 381 389 383 388 363 

Locus [0] [1] [2] [3] [4] [5] [6] [7] [8] 
 
 

- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 

 
 

L=9 M=6 LND=0 MND=0 N=400 100% disease genes 



 145

 Simulated  Calculated 
Locus 0  0 1 2   0 1 2 
 Disease 0 86 114  Disease 0 84 116 
 Non-Disease 32 91 77  Non-Disease 25 96 79 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 7 0 
 1-> 0 0 3  1-> 0 0 4 
 2-> 0 1 0  2-> 0 2 0 
          
          
Locus 1  0 1 2   0 1 2 
 Disease 0 82 118  Disease 0 86 114 
 Non-Disease 34 101 65  Non-Disease 35 104 61 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 0 0 2  1-> 1 0 1 
 2-> 0 6 0  2-> 0 5 0 
          
          
Locus 2  0 1 2   0 1 2 
 Disease 0 71 129  Disease 1 72 127 
 Non-Disease 23 102 75  Non-Disease 27 98 75 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 0 0 
 1-> 1 0 3  1-> 4 0 3 
 2-> 0 5 0  2-> 0 3 0 
          
          
Locus 3  0 1 2   0 1 2 
 Disease 0 85 115  Disease 0 86 114 
 Non-Disease 37 95 68  Non-Disease 39 93 68 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 2 0 
 1-> 0 0 2  1-> 4 0 2 
 2-> 0 3 0  2-> 0 2 0 
          
          
          
Locus 4  0 1 2   0 1 2 
 Disease 0 82 118  Disease 0 82 118 
 Non-Disease 29 93 78  Non-Disease 29 92 79 
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 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 3 0 
 1-> 0 0 4  1-> 3 0 3 
 2-> 0 4 0  2-> 0 2 0 
          
Locus 5  0 1 2   0 1 2 
 Disease 0 82 118  Disease 0 81 119 
 Non-Disease 39 102 59  Non-Disease 40 98 62 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 2  1-> 2 0 4 
 2-> 0 1 0  2-> 0 1 0 
          
          
Locus 6  0 1 2   0 1 2 
 Disease 0 93 107  Disease 0 93 107 
 Non-Disease 31 99 70  Non-Disease 30 102 68 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 2 0 
 1-> 0 0 5  1-> 1 0 1 
 2-> 0 5 0  2-> 0 3 0 
          
          
Locus 7  0 1 2   0 1 2 
 Disease 0 87 113  Disease 0 87 113 
 Non-Disease 30 90 80  Non-Disease 31 88 81 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 1 0 
 1-> 0 0 2  1-> 2 0 3 
 2-> 0 2 0  2-> 0 2 0 
          
Locus 8  0 1 2   0 1 2 
 Disease 0 74 126  Disease 0 65 135 
 Non-Disease 39 101 60  Non-Disease 36 105 59 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 5 0 
 1-> 0 0 14  1-> 2 0 5 
 2-> 0 5 0  2-> 0 6 0 
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- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 
Individuals] 

- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 

 
Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 0 0 0 0 0.026667 0 0.02 
Locus 1 0 0 0 0.01 0 0.01 
Locus 2 0 0 0 0.016667 0 0.01 
Locus 3 0 0 0.003333 0.026667 0 0.02 
Locus 4 0 0 0.003333 0.003333 0 0.016667
Locus 5 0 0 0 0.026667 0 0.023333
Locus 6 0 0 0 0.016667 0 0.01 
Locus 7 0 0 0 0.02 0 0.023333
Locus 8 0 0 0 0.023333 0 0.02 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 0 0.046667 0 0.003333 0.01 0 0.006667
Locus 1 0.013333 0 0.013333 0.016667 0 0.01 
Locus 2 0.013333 0 0.013333 0.01 0 0.003333
Locus 3 0.006667 0 0.01 0.02 0 0.006667
Locus 4 0.01 0 0.01 0.01 0 0.003333
Locus 5 0.006667 0 0.013333 0.016667 0 0.016667
Locus 6 0.01 0 0.016667 0.02 0 0.01 
Locus 7 0.01 0 0 0.016667 0 0.013333
Locus 8 0.013333 0 0 0.023333 0 0.016667
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9.   
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
W Likelihood 
3 -17776.7 
4 -17051.8 
5 -16475.2 
6 -16141.3 
7 -15585.2 
8 -14990.9 
9 -14605.4 
10 -14869.5 
11 -15009.8 
12 -14830.9 
13 -15318.1 
14 -15448.8 
15 -15725.4 
16 -15851 
17 -15710.6 
18 -16158.8 
19 -15883.9 
20 -16024.6 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus 

 
[0] 0 9 18 27 36 45  
[1] 1 10 19 28 37 46  
[2] 2 11 20 29 38 47  
[3] 3 12 21 30 39 48 
[4] 4 13 22 31 40 49  
[5] 5 14 23 32 41 50  
[6] 6 15 24 33 42 51  
[7] 7 16 25 34 43 52  
[8] 8 17 26 35 44 53  
 

- Number of individuals out of N that are correctly genotyped 
 
# of Correct Individuals 566 578 580 572 583 569 575 575 571 

Locus [0] [1] [2] [3] [4] [5] [6] [7] [8] 
 

- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 
 
 Simulated  Calculated 
Locus 0  0 1 2   0 1 2 
 Disease 0 124 176  Disease 0 122 178 
 Non-Disease 59 136 105  Non-Disease 46 148 106 
          

L=9 M=6 LND=0 MND=0 N=600 100% disease genes 



 149

 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 14 0 
 1-> 0 0 8  1-> 1 0 3 
 2-> 0 6 0  2-> 0 2 0 
          
          
Locus 1  0 1 2   0 1 2 
 Disease 0 130 170  Disease 0 130 170 
 Non-Disease 54 144 102  Non-Disease 54 142 104 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 4 0 
 1-> 0 0 3  1-> 4 0 5 
 2-> 0 3 0  2-> 0 3 0 
          
          
Locus 2  0 1 2   0 1 2 
 Disease 0 131 169  Disease 0 129 171 
 Non-Disease 43 138 119  Non-Disease 43 136 121 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 4 0 
 1-> 0 0 5  1-> 4 0 3 
 2-> 0 3 0  2-> 0 1 0 
          
          
Locus 3  0 1 2   0 1 2 
 Disease 0 108 192  Disease 1 105 194 
 Non-Disease 47 145 108  Non-Disease 48 140 112 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 2 0 
 1-> 1 0 8  1-> 3 0 6 
 2-> 0 6 0  2-> 0 2 0 
          
          
Locus 4  0 1 2   0 1 2 
 Disease 0 128 172  Disease 1 131 168 
 Non-Disease 53 136 111  Non-Disease 53 134 113 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 3 0 
 1-> 1 0 1  1-> 3 0 3 
 2-> 0 5 0  2-> 0 1 0 
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Locus 5  0 1 2   0 1 2 
 Disease 0 119 181  Disease 0 118 182 
 Non-Disease 58 140 102  Non-Disease 60 138 102 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 2 0 
 1-> 0 0 8  1-> 4 0 5 
 2-> 0 7 0  2-> 0 5 0 
          
          
Locus 6  0 1 2   0 1 2 
 Disease 0 107 193  Disease 0 105 195 
 Non-Disease 60 136 104  Non-Disease 62 131 107 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 3 0 
 1-> 0 0 5  1-> 5 0 6 
 2-> 0 3 0  2-> 0 3 0 
          
          
Locus 7  0 1 2   0 1 2 
 Disease 0 109 191  Disease 0 110 190 
 Non-Disease 43 146 111  Non-Disease 40 148 112 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 3 0 
 1-> 0 0 6  1-> 0 0 5 
 2-> 0 7 0  2-> 0 4 0 
          
          
Locus 8  0 1 2   0 1 2 
 Disease 0 129 171  Disease 0 128 172 
 Non-Disease 39 142 119  Non-Disease 35 144 121 
          
 Disease 0 1 2  Non-Disease 0 1 2 
 0-> 0 0 0  0-> 0 4 0 
 1-> 0 0 7  1-> 0 0 7 
 2-> 0 6 0  2-> 0 5 0 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 

Individuals] 
- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 

 
Disease A(1) A(2) B(0) B(2) C(0) C(1) 
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Locus 0 0 0 0 0.026667 0 0.02 
Locus 1 0 0 0 0.01 0 0.01 
Locus 2 0 0 0 0.016667 0 0.01 
Locus 3 0 0 0.003333 0.026667 0 0.02 
Locus 4 0 0 0.003333 0.003333 0 0.016667
Locus 5 0 0 0 0.026667 0 0.023333
Locus 6 0 0 0 0.016667 0 0.01 
Locus 7 0 0 0 0.02 0 0.023333
Locus 8 0 0 0 0.023333 0 0.02 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 0 0.046667 0 0.003333 0.01 0 0.006667
Locus 1 0.013333 0 0.013333 0.016667 0 0.01 
Locus 2 0.013333 0 0.013333 0.01 0 0.003333
Locus 3 0.006667 0 0.01 0.02 0 0.006667
Locus 4 0.01 0 0.01 0.01 0 0.003333
Locus 5 0.006667 0 0.013333 0.016667 0 0.016667
Locus 6 0.01 0 0.016667 0.02 0 0.01 
Locus 7 0.01 0 0 0.016667 0 0.013333
Locus 8 0.013333 0 0 0.023333 0 0.016667
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10.   

 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
W Likelihood 
3 -28017.5 
4 -27892.7 
5 -27477.6 
6 -27122.4 
7 -26958.1 
8 -26423.7 
9 -26652.7 
10 -25884.6 
11 -26057.8 
12 -25815.6 
13 -24748.9 
14 -24762 
15 -24970.1 
16 -24911.7 
17 -24983.7 
18 -25322.4 
19 -24848.4 
20 -24773.7 
21 -25249.2 
22 -25504.1 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus 

 
[0] 6 15 24 33 42 51   
[1] 0 9 18 27 36 45 67 70 114  
[2] 7 43 61 62 79 88 97 106 115  
[3] 5 14 23 32 41 50 72 103 117 
[4] 37 71 80 81 89 90 98 102 107 108 112 116  
[5] 1 19 28 46 73 91 94 100 109 
[6] 4 13 22 31 40 49 69 105   
[7] 65 74 76 78 83 92 101 110   
[8] 2 11 20 29 38 47 96  
[9] 3 12 21 30 39 48 111  
[10] 10 52 68 77 84 86 87 95 104 113  
[11] 8 17 25 26 35 44 53 64 82 99 
[12] 16 34 54 55 56 57 58 59 60 63 66 75
 85 93  
  
  
 
 
 
 
 

- Number of individuals out of N that are correctly genotyped 

L=9 M=6 LND=9 MND=6 NDE=10 N=400  
Genes directly associated with disease added. 
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# of Correct Individuals 126 118 372 383 379 387 380 385 384 203 

Locus [2] [12] [11] [1] [8] [0] [6] [3] [9] [5] 
 

- values of ( )|P Y G  to determine which locus clusters are associated with disease and genes 
are well clustered. 

 
LOCUS P(Y|G) 

2 1 
12 1 
11 1.23E-103 
1 5.22E-106 
8 2.13E-107 
0 3.23E-108 
6 1.46E-108 
3 8.40E-110 
9 8.13E-112 
5 3.32E-113 
4 3.47E-120 
10 4.62E-121 
7 4.35E-121 

 
- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 
 

 Simulated  Calculated 
Locus 2  0 1 2   0 1 2
 Disease 0 77 123  Disease 0 121 79
 Non-Disease 24 86 90  Non-Disease 200 0 0
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 0 0
 1-> 0 0 27  1-> 86 0 0
 2-> 0 71 0  2-> 90 0 0
          
          
Locus 12  0 1 2   0 1 2
 Disease 0 77 123  Disease 0 117 83
 Non-Disease 24 86 90  Non-Disease 200 0 0
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 0 0
 1-> 0 0 33  1-> 86 0 0
 2-> 0 73 0  2-> 90 0 0
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Locus 11  0 1 2   0 1 2
 Disease 0 84 116  Disease 0 78 122
 Non-Disease 37 111 52  Non-Disease 36 109 55
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 3 0
 1-> 0 0 10  1-> 2 0 6
 2-> 0 4 0  2-> 0 3 0
          
          
Locus 1  0 1 2   0 1 2
 Disease 0 81 119  Disease 0 77 123
 Non-Disease 39 89 72  Non-Disease 40 88 72
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 1 0
 1-> 0 0 7  1-> 2 0 2
 2-> 0 3 0  2-> 0 2 0
          
          
Locus 8  0 1 2   0 1 2
 Disease 0 78 122  Disease 0 78 122
 Non-Disease 28 96 76  Non-Disease 36 91 73
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 0 0
 1-> 0 0 2  1-> 8 0 3
 2-> 0 2 0  2-> 0 6 0
          
          
Locus 0  0 1 2   0 1 2
 Disease 0 69 131  Disease 0 68 132
 Non-Disease 29 94 77  Non-Disease 31 90 79
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 1 0
 1-> 0 0 2  1-> 3 0 4
 2-> 0 1 0  2-> 0 2 0
          
          
Locus 6  0 1 2   0 1 2
 Disease 0 85 115  Disease 0 83 117
 Non-Disease 31 97 72  Non-Disease 34 93 73
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 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 3 0
 1-> 0 0 4  1-> 6 0 3
 2-> 0 2 0  2-> 0 2 0
          
          
Locus 3  0 1 2   0 1 2
 Disease 0 85 115  Disease 1 84 115
 Non-Disease 37 92 71  Non-Disease 36 92 72
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 2 0
 1-> 1 0 3  1-> 1 0 3
 2-> 0 3 0  2-> 0 2 0
          
          
Locus 9  0 1 2   0 1 2
 Disease 0 87 113  Disease 1 85 114
 Non-Disease 25 107 68  Non-Disease 24 111 65
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 3 0
 1-> 1 0 2  1-> 2 0 2
 2-> 0 1 0  2-> 0 5 0
          
          
Locus 5  0 1 2   0 1 2
 Disease 0 71 129  Disease 27 89 84
 Non-Disease 36 83 81  Non-Disease 78 52 70
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 0 0
 1-> 27 0 20  1-> 42 0 16
 2-> 0 65 0  2-> 0 27 0

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 

Individuals] 
- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 

 
Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 2 0 0 0 0.135 0 0.355 
Locus 12 0 0 0 0.165 0 0.365 
Locus 11 0 0 0 0.05 0 0.02 
Locus 1 0 0 0 0.035 0 0.015 
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Locus 8 0 0 0 0.01 0 0.01 
Locus 0 0 0 0 0.01 0 0.005 
Locus 6 0 0 0 0.02 0 0.01 
Locus 3 0 0 0.005 0.015 0 0.015 
Locus 9 0 0 0.005 0.01 0 0.005 
Locus 5 0 0 0.135 0.1 0 0.325 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 2 0 0 0.43 0 0.45 0 
Locus 12 0 0 0.43 0 0.45 0 
Locus 11 0.015 0 0.01 0.03 0 0.015 
Locus 1 0.005 0 0.01 0.01 0 0.01 
Locus 8 0 0 0.04 0.015 0 0.03 
Locus 0 0.005 0 0.015 0.02 0 0.01 
Locus 6 0.015 0 0.03 0.015 0 0.01 
Locus 3 0.01 0 0.005 0.015 0 0.01 
Locus 9 0.015 0 0.01 0.01 0 0.025 
Locus 5 0 0 0.21 0.08 0 0.135 
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11.  Overall Example 
 

 
 
- Vary number of initial clusters (W) to determine best number of locus clusters (bold is W 

chosen) 
W Likelihood 
3 -18888.5 
4 -18626.4 
5 -18424.2 
6 -18506.1 
7 -18534.1 
8 -18506.8 
9 -18497.4 
10 -18508.8 
11 -18486.1 
12 -18505.4 
13 -18523.2 
14 -18444.7 
15 -18454.1 
16 -18427.4 
17 -17625.2 
18 -18888.5 
19 -16777.7 
20 -16254.4 
21 -15965.7 
22 -15613.7 
23 -16341.9 
24 -16552.1 
25 -16440.4 

 
- Genes clustered into loci.  Each number is a gene and each row is a locus 

 
[0] 5573      
[1] 13       
[2] 1 10 19 28 37 46  
[3] 6 15 33 42 51   
[4] 9798      
[5] 1697 3419     
[6] 4754 7030     
[7] 0 9 18 27 36 45  
[8] 5 14 23 32 41 50  
[9] 3383      
[10] 2 11 20 29 38 47  
[11] 8 35 44     
[12] 24      
[13] 5973 9012 8709    
[14] 7 16 34 43 52   

L=9 M=6 genes from cancer dataset 
= 12624 

MND=0 N=400 <50% disease genes 
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[15] 2029      
[16] 1295 2281 3887 7639    
[17] 653      
[18] 3 12 21 30 39 48  
[19] 4 22 31 49    
[20] 1065      
[21] 17 26 53     
  
 

- Number of individuals out of N that are correctly genotyped 
 

# of Correct Individuals 222 384 343 383 389 384 380 382 366 350 362 
Locus [1] [2] [11] [18] [10] [7] [3] [8] [19] [21] [14] 

 
- values of ( )|P Y G  to determine which locus clusters are associated with disease and genes 
are well clustered. 

 
LOCUS P(Y|G) 

1 3.54E-35
16 6.00E-101
2 9.79E-105
11 7.29E-107
18 4.18E-107
10 2.45E-107
7 1.55E-107
3 1.54E-107
8 1.03E-108
19 4.39E-109
21 3.02E-110
14 6.64E-111
6 2.11E-111
12 3.21E-115
5 4.48E-116
17 7.06E-117
13 5.13E-117
20 4.81E-118
9 3.70E-118
0 2.69E-119
4 6.25E-120
15 8.54E-121

 
- Contingency Tables of Simulated data and Calculated data 
- Tables of Genotyping Errors (i.e., 1->2 means 1 in simulated moves to 2 in calculated) 
 
 Simulated  Calculated 
Locus 1  0 1 2   0 1 2
 Disease 0 96 104  Disease 0 122 78
 Non-Disease 35 92 73  Non-Disease 157 0 43
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 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 0 0
 1-> 0 0 12  1-> 86 0 6
 2-> 0 38 0  2-> 36 0 0
          
          
Locus 2  0 1 2   0 1 2
 Disease 0 66 134  Disease 0 68 132
 Non-Disease 29 102 69  Non-Disease 36 96 68
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 0 0
 1-> 0 0 1  1-> 7 0 2
 2-> 0 3 0  2-> 0 3 0
          
          
Locus 11  0 1 2   0 1 2
 Disease 0 91 109  Disease 0 93 107
 Non-Disease 32 98 70  Non-Disease 35 109 56
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 5 0
 1-> 0 0 11  1-> 8 0 3
 2-> 0 13 0  2-> 0 17 0
          
          
Locus 18  0 1 2   0 1 2
 Disease 0 83 117  Disease 0 84 116
 Non-Disease 35 97 68  Non-Disease 37 95 68
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 1 0
 1-> 0 0 3  1-> 3 0 3
 2-> 0 4 0  2-> 0 3 0
          
          
Locus 10  0 1 2   0 1 2
 Disease 0 81 119  Disease 0 80 120
 Non-Disease 35 93 72  Non-Disease 36 93 71
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 1 0
 1-> 0 0 2  1-> 2 0 2
 2-> 0 1 0  2-> 0 3 0
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Locus 7  0 1 2   0 1 2
 Disease 0 79 121  Disease 1 80 119
 Non-Disease 34 103 63  Non-Disease 34 106 60
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 1 0
 1-> 1 0 2  1-> 1 0 2
 2-> 0 4 0  2-> 0 5 0
          
          
Locus 3  0 1 2   0 1 2
 Disease 0 82 118  Disease 0 79 121
 Non-Disease 34 91 75  Non-Disease 37 88 75
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 1 0
 1-> 0 0 6  1-> 4 0 3
 2-> 0 3 0  2-> 0 3 0
          
          
Locus 8  0 1 2   0 1 2
 Disease 0 87 113  Disease 0 90 110
 Non-Disease 32 101 67  Non-Disease 31 106 63
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 1 0
 1-> 0 0 4  1-> 0 0 1
 2-> 0 7 0  2-> 0 5 0
          
          
Locus 19  0 1 2   0 1 2
 Disease 0 96 104  Disease 0 92 108
 Non-Disease 35 92 73  Non-Disease 37 90 73
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 4 0
 1-> 0 0 7  1-> 6 0 7
 2-> 0 3 0  2-> 0 7 0
          
          
Locus 21  0 1 2   0 1 2
 Disease 0 91 109  Disease 2 88 110
 Non-Disease 32 98 70  Non-Disease 39 95 66
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 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 3 0
 1-> 2 0 11  1-> 10 0 5
 2-> 0 10 0  2-> 0 9 0
          
          
Locus 14  0 1 2   0 1 2
 Disease 0 79 121  Disease 4 74 122
 Non-Disease 31 98 71  Non-Disease 40 93 67
          
 Disease 0 1 2  Non-Disease 0 1 2
 0-> 0 0 0  0-> 0 3 0
 1-> 4 0 5  1-> 12 0 3
 2-> 0 4 0  2-> 0 7 0

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Diseased 

Individuals] 
- A = genotyping error at genotype 0 diseased for diseased individuals  
- B = genotyping error at genotype 1 diseased for diseased individuals (B(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- C = genotyping error at genotype 2 diseased for diseased individuals 

 
Disease A(1) A(2) B(0) B(2) C(0) C(1) 
Locus 1 0 0 0 0.06 0 0.19 
Locus 2 0 0 0 0.005 0 0.015 
Locus 11 0 0 0 0.055 0 0.065 
Locus 18 0 0 0 0.015 0 0.02 
Locus 10 0 0 0 0.01 0 0.005 
Locus 7 0 0 0.005 0.01 0 0.02 
Locus 3 0 0 0 0.03 0 0.015 
Locus 8 0 0 0 0.02 0 0.035 
Locus 19 0 0 0 0.035 0 0.015 
Locus 21 0 0 0.01 0.055 0 0.05 
Locus 14 0 0 0.02 0.025 0 0.02 

 
- Table of Percentage of Genotyping Errors [# of Genotyping Errors/# of Non-Diseased 

Individuals] 
- E = genotyping error at genotype 0 non-diseased for diseased individuals  
- F = genotyping error at genotype 1 non-diseased for diseased individuals (F(2) is % of 

genotyping errors that move to genotype 2 from genotype 1, etc.   
- H = genotyping error at genotype 2 non-diseased for diseased individuals 

 
Non-Disease E(1) E(2) F(0) F(2) H(0) H(1) 
Locus 1 0 0 0.43 0.03 0.18 0 
Locus 2 0 0 0.035 0.01 0 0.015 
Locus 11 0.025 0 0.04 0.015 0 0.085 
Locus 18 0.005 0 0.015 0.015 0 0.015 
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Locus 10 0.005 0 0.01 0.01 0 0.015 
Locus 7 0.005 0 0.005 0.01 0 0.025 
Locus 3 0.005 0 0.02 0.015 0 0.015 
Locus 8 0.005 0 0 0.005 0 0.025 
Locus 19 0.02 0 0.03 0.035 0 0.035 
Locus 21 0.015 0 0.05 0.025 0 0.045 
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