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ABSTRACT 

The Scaling Individuals and Classifying Misconceptions (SICM) model is presented as a 

combination of an item response theory (IRT) model and a diagnostic classification model 

(DCM). Common modeling and testing procedures utilize unidimensional IRT to provide an 

estimate of a student‘s overall ability. Recent advances in psychometrics have focused on 

measuring multiple dimensions to provide more detailed feedback for students, teachers, and 

other stakeholders.  DCMs provide multidimensional feedback by using multiple categorical 

variables that represent skills underlying a test that students may or may not have mastered. The 

SICM model combines an IRT model with a DCM model that uses categorical variables that 

represent misconceptions instead of skills. In addition to the type of information common testing 

procedures provide about an examinee — an overall continuous ability, the SICM model also is 

able to provide multidimensional, diagnostic feedback in the form of statistical estimates of 

misconceptions. This additional feedback can be used by stakeholders to tailor instruction for 

students‘ needs. Results of a simulation study demonstrate that the SICM MCMC estimation 

algorithm yields reasonably accurate estimates under large-scale testing conditions. Results of an 



 

 

 

 

empirical data analysis highlight the need to address statistical considerations of the model from 

the onset of the assessment development process.  
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CHAPTER 1 

INTRODUCTION 

Although often considered stagnant or slow to change (Buros, 1977), over the past 30 

years the field of psychometrics has undergone radical changes in the way mental traits are 

represented and estimated from test data. Recent advances have put multidimensional 

measurement models at the forefront of psychometric research because they promise detailed 

feedback for students, teachers, and other stake holders. Diagnostic classification models 

(DCMs; e.g., Rupp, Templin, & Henson, 2010) provide one approach to the measurement of 

multiple dimensions. DCMs use categorical latent attributes to represent skills underlying a test 

that students may or may not have mastered. Given the current reliance of testing on measuring 

an overall ability, DCMs, while useful for providing detailed feedback, may not fulfill all the 

needs of policy-driven assessment systems. The methods developed in this dissertation are 

designed to combine two different psychometric approaches for the purposes of garnering 

information about a student‘s overall ability and detailing the areas where a student might need 

more help. This chapter motivates combining these two approaches with a real-world perspective 

that balances the demands of educational policy and the utility of improving instruction. 

The standards-based movement in education was initiated by the National Council of 

Teachers of Mathematics (NCTM) with the release of the Curriculum and Evaluation Standards 

for School Mathematics (1989). The use of standards then spread to other content areas, and 

standards are now the focus of K-12 teaching and learning. Changes in teachers‘ instructional 
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and pedagogical practices were necessarily an early initiative for standards-based curriculum 

implementation. More recently, an emphasis has been upon creating multidimensional tests (also 

called assessments throughout) to complement the alignment of instruction with standards. 

Stakeholders at the state, district, school and classroom levels need feedback from tests 

that provides information about students‘ performance with respect to these multidimensional 

performance standards. Presently, most tests provide overall measures of students‘ achievement 

levels with respect to general content areas (e.g., math or science), not at the performance 

standard level. The dominance of composite (or unidimensional) test scores in educational 

assessment can be seen as a reflection of traditions in psychometric theory.  These traditions, 

coupled with the perception of stagnation in psychometric research and practice (Buros, 1977), 

seem to have influenced current educational policy centered on accountability to the point where 

such composite scores are the focal point of assessment and accountability.  

The No Child Left Behind Act emphasized the need for more fine-grained information 

from tests that can be used to understand students‘ strengths and weakness with respect to 

performance standards (2001, Section 111 [b][3][c][xiii]). Specifically, the act mandated that 

state governments provide diagnostic score reports that highlight students‘ weaknesses. 

Furthermore, the Common Core Standards, a set of national standards presently adopted by 41 

states, provided a further emphasis on the need for assessments that provide diagnostic 

information (National Research Council, 2010). In spite of the need for multidimensional 

diagnostic feedback, most state-level tests have been (and continue to be) built to provide an 

overall composite score. Consequentially, state-level tests have been used to provide such 

―diagnostic‖ information only from post-hoc analyses, often using summed subscores on sections 
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of a test. Subscores often lack of reliability and do not provide an added-value over a total score 

(Haberman, Sinharay, & Puhan, 2009; Sinharay & Haberman, 2007). Haberman et al. (2009) and 

Sinharay and Haberman (2007) caution the use of subscores at the examinee or school level. 

Huff and Goodman (2007) report that at the classroom level United States teachers welcome 

feedback from assessments other than an overall measure of achievement. Furthermore, these 

results revealed teachers‘ desires to receive diagnostic feedback from large-scale tests at the 

classroom and student levels. In all levels of education, from policy and modern curriculum 

development to the classroom, diagnostic feedback is essential to educational progress. 

The purpose of this dissertation is to develop a new psychometric model that, when 

coupled with feasible test design refinements, can enable more statistically optimal diagnostic 

score reports in addition to providing an overall measure of ability. The diagnostic reports reflect 

statistical estimates of student misconceptions. The model therefore bridges the overall measure 

of student ability that is predominant in educational measurement with efficient statistical 

measures for providing the diagnostic feedback called for by policy and stakeholders. The 

remainder of this chapter synthesizes the dual approaches of psychometrics: the traditional focus 

on unidimensional scoring and the newer focus on multidimensional methods. 

Traditional Approach to the Modeling of Item Responses 

The psychometric model used for test analysis drives decisions made during the test 

development process. Educational assessments are not typically designed to provide 

multidimensional feedback with respect to components of a content domain; rather they are 

designed to determine the overall ability of a student across that domain. In education, 

unidimensional item response theory models (IRT; e.g., Hambleton, Swaminathan, & Rogers, 
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1991) arguably represent the dominant statistical modeling approach. All models within the 

unidimensional IRT framework locate a student‘s ability along a single latent continuum 

representing overall ability. IRT models estimate the probability of an item response as a 

function of a student‘s ability. Items are screened in a way that those providing the most 

information about a student‘s ability are selected and those not providing as much information 

are dropped from a test (regardless of the content or quality of these items). When 

unidimensional IRT is used, items that are multidimensional (i.e., measure more than just a 

single ability) often show misfit because they violate the statistical assumptions underlying the 

unidimensional model. Because of this assumption, these items are often excluded from a test.  

IRT methods were developed to extend Classical Test Theory (CTT; e.g., Crocker & 

Algina, 1986). IRT models shifted the focus of the analysis from the test-level (under CTT) to 

the item-level (under IRT). Under CTT, the total score of a test represents the estimate of a 

student‘s ability, with all items of the test contributing equally to the total score. In contrast, for 

IRT models other than the Rasch model, the estimate of a student‘s ability depends on which 

items they answer correctly as items contribute differentially to the ability estimate (i.e., measure 

the trait with differential precision). Thus when creating a test using IRT models, items that are 

strongly related to the continuous trait are said to have more information and are preferred to 

items less strongly related to the continuous trait. These items can better distinguish among 

students at different levels of the trait.  

Additionally, unlike CTT scores, a student‘s ability estimate from a test calibrated with 

an IRT model is independent of the set of items answered by the student.  The characteristics of 

the items themselves (i.e., item parameters such as difficulty and discrimination) can be equated 
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to allow a student‘s ability to be estimated with different sets of items, enabling testing programs 

to use different forms of a test across or within administrations (e.g., Kolen & Brennan, 2009).  

The unidimensional estimates of student ability provided by IRT models allow 

stakeholders to rank students with respect to their composite ability. Ranking students informs 

decision-making processes regarding which students have a higher ability and should thus be 

preferentially selected for admissions, awards, or leadership and employment positions. Because 

composite ability is measured along a single continuum, differences in ability can be examined 

with respect to students, schools or districts for comparative purposes and for accountability 

purposes. Differences can be examined both cross-sectionally and longitudinally.  

Although IRT methods provide information about a student‘s ability, the score provides 

no diagnostic information regarding the concepts that a student has mastered or has yet to master. 

This single score indicates who knows more or who is performing at a higher level. The use of 

CTT or IRT methods to provide a single composite score where higher is better molds our 

language about educational performance, achievement, and success. The meaning of higher or 

better is implicit and often not scrutinized. For instance, Parks (2011) describes hierarchical 

metaphors that are dominant in discourse surrounding students‘ abilities in mathematics. These 

metaphors ―draw on a notion of children ordered in physical space, whether horizontally (‗far 

ahead‘) or vertically (‗low‘)‖ and are so common they are not typically regarded as metaphors in 

conversations (p. 85). Central to Parks‘ observations is that the metaphors portray mathematics 

achievement as a rigid, linear path along which students can only move in one direction, an 

action indicated with discourse such as getting ―ahead‖, keeping ―up‖, and progressing 
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―forward.‖  These descriptions mirror the types of feedback offered by traditional assessment 

practices and provide the lens through which ability is seen.  

In light of the prevailing psychometric methodology, remembering what composes ability 

is important, for the components of ability are what teachers teach and students learn. In practice, 

mastery of different sets of these components can lead to the same IRT score, so the 

interpretation of a score with respect to these multiple components of ability can vary by student. 

Two students with the same score may have learned widely different sets of components. 

Because learning and instruction are component-driven, composite scores of ability play an 

inconsequential role in molding instruction or in improving student achievement. 

In contrast, diagnostic classification models (DCMs) provide an alternative framework 

with which to conceptualize and assess ability. Under DCMs, ability is characterized by 

understanding multiple components that compose a given content domain. The focus of the 

analysis is shifted to identify which content components each student understands, thereby 

providing insight into why a student may not be performing well instead of identifying which 

students are performing well. Single-word summaries of overall student achievement such as 

high or low are not meaningful in this context. The DCM framework provides a new language to 

describe student achievement and to communicate feedback from assessments.   

Diagnostic Approach to the Modeling of Item Responses 

The purpose of a test designed to be modeled with a DCM differs greatly from one 

designed to be modeled with unidimensional IRT. DCMs measure a student‘s mastery status on 

multiple skills (or components of ability) as represented by categorical latent variables referred 

to as attributes. This approach is in contrast to unidimensional IRT or CTT where the ability of a 
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student is measured by a single continuous latent variable. Under the DCM framework test 

developers write items to measure these attributes. Items that are highly discriminating between 

mastery statuses of students are preferred. Further, test developers seek to build a collection of 

items that measures or captures the multidimensionality of the test. This practice is in contrast to 

the item screening process of test construction under IRT which commonly discards items 

measuring multiple dimensions. The goal of a DCM is to statistically classify students according 

to the combination of attributes they have mastered, so tests are developed to maximize 

information to correctly make these classifications (Henson & Douglas, 2005).  

 The utility of a student‘s estimated multidimensional mastery status from a DCM is that 

attributes students have mastered can be viewed as strengths or areas in which students do not 

need further instruction. Similarly, if not more importantly, attributes that students have not 

mastered indicate areas in which instruction or remediation should be focused. Thus, the attribute 

mastery status can provide feedback with respect to the more fine-grained components of a 

content area, which then can be used to tailor instruction to students‘ specific needs.  

A Blended Approach to the Modeling of Item Responses 

IRT models and DCMs each have distinct purposes; however, a problem in choosing 

between the methods arises when both types of information are needed. Each method makes an 

assumption with questionable tenability in exchange for desired information. Commonly used 

IRT models estimate a student‘s composite continuous ability, requiring a strong assumption of 

unidimensionality of the construct. If ability is thought of as lying on a continuum, then it is a 

simple extension to expect that multiple continuous abilities can be estimated from a single test. 

In practice, however, estimating multiple continuous abilities for a student under IRT is not 
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common because it is a task requiring impractical data demands and yielding unreliable ability 

estimates (Templin & Bradshaw, in press). In contrast to IRT models, DCMs are able to provide 

reliable classifications with respect to these multiple dimensions within the construct. The trade-

off of using the DCM instead of an IRT approach is that the DCM makes coarse approximations 

of each dimension, treating each dimension as categorical (and often dichotomous). In reality, a 

given construct is likely to be multidimensional (e.g., the components of mathematics as 

compared to overall math ability), yet each dimension likely exists to some degree, as opposed to 

being present or absent. In comparison, IRT makes more fine-grained measurements with respect 

to a coarser construct whereas DCMs make more coarse measurements with respect to more 

fine-grained constructs. The continuous trait estimated by IRT models is desired to scale a 

student‘s ability for comparative or accountability purposes, yet the multiple traits estimated with 

DCMs provide useful information in guiding decision-making with respect to instruction.  

Overview of Dissertation and Chapters 

This dissertation formulates, examines, and tests the performance of a nominal response 

psychometric model combining the functionalities of the IRT and DCM frameworks. The 

Scaling Individuals and Classifying Misconceptions (SICM) model measures a student‘s 

continuous ability using the correct/incorrect nature of his or her responses to multiple-choice 

items, while simultaneously classifying the student according to dichotomous attributes, defined 

as errors or misconceptions. In the SICM model, the misconceptions (attributes) are indicated by 

the nature of which incorrect alternative is selected, assuming a test is constructed with 

misconceptions playing into each response alternative. The SICM model yields the traditional 

IRT ability score, but it also provides multidimensional feedback using DCM estimates of errors.  
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The SICM model combines the IRT and DCM frameworks to capitalize on the salient 

features of each. The IRT and DCM frameworks can complement each other because each can 

provide a type of information that the other cannot. IRT models can describe a student‘s overall 

ability in a content area, yet cannot offer information that provides insights into what makes a 

student‘s ability high or low (i.e., where the student is lacking in understanding).  IRT models 

identify which students are performing well. In contrast, DCMs are designed to measure skills or 

attributes composing ability but provide no information about the overall composite ability level 

of the student. DCMs identify why a student is not performing well. Coupled together through 

the SICM model, the IRT and DCM components can provide a more thorough description of 

traits affecting students‘ item responses on an assessment. The model describes a measure of 

composite ability impacting the correctness of the response and identifies distinct errors in 

understanding that yield specific incorrect responses, thus providing both which students are 

performing well and why students are not performing well. 

This introductory chapter provided the rationale and motivation for developing the SICM 

model. Chapter 2 provides a review of existing psychometric models that embody the 

foundations of the proposed SICM model. Chapter 3 specifies and describes the SICM model 

and how it can be estimated. Chapter 4 describes the design and results of a simulation study 

conducted to assess the performance of the new model. Chapter 5 describes an empirical study 

conducted to illustrate the model‘s practical utility through an application to an operational 

assessment created for the purpose of diagnosing misconceptions. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 This chapter describes relevant models from the item response theory (IRT) and 

diagnostic classification model (DCM) frameworks that provide the foundation for a new 

psychometric model that combines these two frameworks: the Scaling Individuals and 

Classifying Misconceptions (SICM) model. The purpose of this chapter is to explain the 

formulations and foundations of a set of latent variable models that are relevant to and 

instrumental in developing the SICM model. Therefore, this chapter serves the purposes of (a) 

comparing and contrasting features of these models, and (b) explaining IRT models and DCMs 

separately before combining them in the next chapter through the SICM model. 

To acknowledge that the psychometric models discussed in this dissertation (including 

the SICM model) can be applied in a variety of contexts, the term examinee will be used from 

this point forward to more generally describe the individual taking the test. Although examinees 

commonly are students in an educational setting, examinees may also be, for example, teachers 

in an educational setting, or test takers from other settings, such as patients in psychology.  

Latent Variable Modeling 

Latent variable measurement models examine the relationship between an underlying 

construct or set of constructs (the latent variable(s)) and a set of measured variables (the 

observed variables). A common assumption in latent variable models is that differences in the 

quality or magnitude of the latent trait(s) are manifested in observed differences in the measured 

variables. By quantifying these observations, we are able to posit and test the existence and 

nature of the relationships between latent and measured variables via statistical models. 
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Although conceptually akin, IRT models and DCMS have been developed separately and 

thought of rather distinctly. The remainder of this chapter explains the structure and assumptions 

of a selection of models from the IRT and DCM frameworks. Understanding the differences in 

the models helps one select the appropriate model for the type of data to be analyzed and the type 

of conclusions to be made. 

Item Response Theory Models 

In education, where binary data in the form of scored responses (i.e., correct or incorrect) 

to test items are prevalent, a common statistical modeling approach utilizes IRT models. The IRT 

perspective models the linear relationship of the log-odds of the expected value of a response and 

a continuous latent trait. Put differently, the relationship between an underlying trait and the 

probability of observed item responses is modeled using a non-linear generalized linear mixed 

models (GLMM) approach. The parameters of the model describing the items form the fixed 

effects, and the parameters of the model describing the examinees form the random effects. For 

binary items (e.g., items scored correct or incorrect), a logistic link function relates the 

conditional probability an examinee answers an item correctly given their level of the latent trait 

(i.e., ability level) to a linear predictor or kernel of the GLMM.  

For the one parameter logistic (1-PL) IRT model, the kernel quantifies the distance 

between an examinee‘s ability and the item‘s difficulty on a continuum. Specifically, the model 

predicts the logit (or log-odds) of a correct response to an item, as expressed by:  

                        , (1) 

where the expected value of             is the conditional probability examinee   provides a 

correct response to item i (     ) given examinee e‘s latent ability level     . This conditional 
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probability is denoted      
, and the log-odds of a correct response is equivalently expressed as 

  (
     

       

)   The parameter    is interpreted as a difficulty parameter. As    increases, the 

probability of a correct response decreases when holding ability constant. Thus, the greater the 

value of   , the more difficult the item is to answer correctly. 

The conditional probability of a correct response in Equation (1) can be re-expressed as 

the one-parameter logistic (1-PL or Rasch) model (Rasch, 1960): 

     
             

           

             
 (2) 

where      
is the probability an examinee   provides a correct response (       to item   given 

his or her ability level     , and exp (∙) denotes the exponential function where e ≈ 2.718 is 

raised to the power (∙). When an examinee‘s ability is equivalent to the item‘s difficulty, the 

conditional probability of a correct response is .50.  

 The functional relationship between the probability an examinee provides the correct 

response and the latent ability is assumed to follow the shape of the item characteristic curve 

(ICC) or trace line (Lazarsfeld, 1950) as specified by the model in Equation (2). The ICC is a 

smooth S-shaped curve that displays the assumed monotonically increasing relationship between 

ability and the probability of a correct response. For the Rasch model this functional form 

assumption requires that the lower asymptote of each ICC equals 0 and that the slope of the ICC 

at any point along the ability continuum is equivalent for each item. 

This IRT model also makes other assumptions. The response variable is assumed to 

follow a Bernoulli distribution and the continuous trait is assumed be normally distributed. 

Responses to items are assumed to be conditionally independent given an examinee‘s location 
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along the ability continuum. The model relies on the assumption of unidimensionality which 

states that a single latent trait, as opposed to multiple latent traits, causes differences in responses 

to the items. These assumptions are illustrated using a conventional path diagram for a 

unidimensional IRT model in Figure 1. In this figure, the single-headed arrows point from a 

single, continuous latent variable (   towards each observed item (             to indicate that 

the response to each item is due to presence of the latent variable. Responses to items are only 

related to each other through indirect paths through the latent variable. Because responses to 

items are conditionally independent, the probability of an examinee‘s response pattern can be 

expressed as the product of conditional item response probabilities: 

            = ∏       
     

           
       (3) 

where    is vector of examinee  ‘s observed responses to all   items.  

The Rasch model can be extended to additionally make the response probability a 

function of the item‘s ability to discriminate among examinees with different levels of ability. 

This model is referred to as the two-parameter logistic (2-PL) model (Birnbaum, 1968). 

Essentially the 2-PL IRT model adds a weight for the latent trait (or factor,  )  This weight is 

called the discrimination parameter in an IRT context and is referred to as a factor loading in 

other contexts. The 2-PL IRT model is expressed as: 

                 
 

               

                 
  (4) 

The intercept, or difficulty, of the item is       . The discrimination of the item, or the loading 

for ability, is   . The 2-PL IRT model has the same assumptions as the Rasch model, but the 

model allows ICCs for different items to have different slopes at given ability levels. 
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A Model for Nominal Responses in Item Response Theory 

Variations of IRT models have been developed for analyzing nominal response data. 

Nominal response options consist of categories with no inherent order, in contrast to ordinal 

response options in which responses exist in some relative degree to each other. An example of a 

nominal response type of item is to ask an examinee which baseball team, given three choices: a) 

Atlanta Braves, b) Oakland Athletics, or c) Boston Red Sox, won the World Series in 1995. The 

options are unrelated categories. In contrast, if you asked an examinee to choose a category 

indicating how much he or she likes the Braves (e.g., not at all, somewhat, or very much), those 

responses have an inherent order and are thus ordinal-type responses. 

Multiple-choice tests in education provide nominal response data. However, in practice 

nominal responses are commonly scored as correct or incorrect, and the resulting binary data are 

analyzed. Instead of scoring item responses, the nominal item response can be modeled directly. 

Dichotomizing the responses into two categories—correct or incorrect—collapses all of the 

incorrect alternatives into one category and fails to preserve the uniqueness of each incorrect 

alternative. Such a dichotomization can be viewed as an incomplete modeling of the item 

response (Thissen & Steinberg, 1984). If the characteristics of the incorrect alternatives present 

variations in the item response, then those characteristics should be modeled in the item response 

function (van der Linden & Hambleton, 1997). Modeling responses to the alternatives directly, in 

addition to providing a more complete model, can also provide a means of evaluating item 

alternatives in the test-development process.  

A nominal response type of model provides a conditional probability that an examinee 

will select alternative     among the set of    alternatives for item   given his or her ability level 
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(  ). A multinomial logit parameterization can be used to model this conditional probability and 

can be expressed as (Bock, 1972) 

       
  (          )  

         
     

     

∑          
     

     
  

   

  (5) 

The term     
 is an alternative-specific loading (or discrimination parameter) for   , and     

 is 

an alternative-specific intercept. To identify the model either (a) the sum of the discrimination 

parameters and the sum of the intercept parameters across alternatives within an item must be set 

to equal zero, or (b) the parameters corresponding the baseline option must all be set to equal 

zero. For dichotomous items with only two alternatives, this nominal response IRT (NR IRT) 

model is equivalent to the 2-PL IRT model.  

As in the 2-PL IRT model, the probability of selecting the correct response monotonically 

increases as    increases, assuming the largest positive discrimination parameter is for the 

correct alternative. The probability of selecting the alternative with the largest negative 

discrimination parameter will monotonically decrease as    increases. Thus the probability of 

selecting this alternative as    approaches negative infinity goes to one; in turn, the probability of 

selecting any other alternative is zero. Thissen & Steinberg (1984) noted this feature of Bock‘s 

NR IRT model is not plausible and extended the model to yield the Multiple-choice (MC) model. 

This model adds a parameter to the model that represents an examinee‘s propensity to guess on a 

given item. Accounting for guessing in the MC model, however, results in a different 

implausible feature: the probability of selecting a correct response is not always monotonically 

increasing with   .  
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Multidimensional Item Response Theory Model 

The IRT models presented up to this point have been unidimensional IRT models. 

Although IRT is commonly used to model a unidimensional latent space, multidimensional IRT 

(MIRT) models estimate multiple continuous latent variables instead of one. If there are 

inherently multiple dimensions underlying the construct of interest, the unidimensional 

assumption—and, in turn, the local independence assumption—used for unidimensional IRT is 

violated. If an IRT model is used when the assumption of local independence is violated, 

parameter estimates may be biased, resulting in standard errors that are too small (Ackerman, 

1992). Under these circumstances, a MIRT models are more appropriate. They provide a means 

to model multiple continuous dimensions and yield an estimate of an examinee‘s location on 

each dimension.   

 The multidimensional 2-PL IRT model, shown here measuring f = 1,…, F dimensions (or 

abilities), can be expressed as (Reckase, 1997) 

            
             

               
 (6) 

such that    represents a row vector of   ability parameters associated with each examinee. 

Similar to unidimensional IRT where    is assumed to be normally distributed, for MIRT 

models,    has a multivariate normal distribution. The term    represents a column vector of   

discrimination parameters for item  . The parameter    represents an item‘s threshold (-1 times 

an intercept). When    equals the sum of the linear combination of ability parameters and item 

discriminations, the item has a 50% chance of being answered correctly. Because this MIRT 

model is compensatory, there are many ways the linear combination of      can be equal to   .  
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Equation (6) specifies the measurement component of the MIRT model: the relationships 

between the observed items and the latent abilities. The structural component of the model 

describes the relationships, or correlations, between the abilities. The distribution of ability is 

multivariate standard normal (         ), where μ is the vector of   ability means, each 

equal to zero, and Σ is the ability variance/covariance matrix whose diagonal entries equal one. 

Figure 2 illustrates a MIRT model where two dimensions are measured by a set of eight items. 

The figure shows an example of a MIRT model with simple structure, which means each item 

measures a single ability. However, MIRT models do not restrict items to only measure one 

dimension. The measurement components of the model are depicted by the single-headed arrows 

relating the latent abilities to the observed variables, and the model‘s structural components 

include the variances and covariances of the latent abilities. 

Because they model multiple continuous latent variables, MIRT models provide a parallel 

approach to DCMs within the IRT framework. Estimating multiple abilities yields more detailed, 

multidimensional feedback for stakeholders, as preferred (NCLB, 2001; Huff & Goodman, 

2007). However, reliably estimating multiple continuous abilities, the goal of a MIRT model, 

requires a large number of items (e.g., Templin & Bradshaw, in press). The large number of 

items needed may render the MIRT model difficult to use in practice because time is limited 

when it comes to how long an examinee can concentrate on a given test or how many days a 

school is willing to sacrifice instructional time for testing.  

IRT Summary 

The primary outcome of either uni- or multi- dimensional IRT is the location of an 

examinee along a continuum of a latent ability or along multiple continua for a set of abilities. 
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One can use this type of information to rank examinees according to the measured trait, which, 

among other things, may be useful in selecting among candidates for awards, scholarships, 

promotions, or admissions. However, examinee estimates from IRT provide limited information 

for other decision-making common in educational and psychological settings. For example, in 

education, teachers must decide whether a student has mastered a content objective or needs to 

show improvement with respect to the objective. These types of diagnoses shape how to 

differentiate instruction for students. In clinical diagnoses, decisions are required regarding 

whether or not a patient or client has a psychological disorder before treatment strategies can be 

tailored for the patient or client. 

Diagnostic Classification Models 

Diagnostic classification models (DCMs) can help statistically make diagnoses frequently 

encountered in educational and psychological settings. DCMs classify examinees according to 

sets of latent attributes that examinees have or have not mastered. In education, where a latent 

trait may be a skill or the understanding of a concept, an examinee who has the trait is said to 

have mastery of the skill or concept. DCMs can be used, for example, to classify examinees 

according to the set of content objectives they have mastered. In psychology, where a trait may 

be a characteristic of a disorder, an examinee who has the trait is said to possess the 

characteristic. DCMs can be used to classify examinees according to the set of characteristics 

they possess. For DCMs, latent traits are referred to as attributes. In this dissertation, mastery of 

an attribute and possession of an attribute have the same meaning. 

 Instead of locating an examinee along a latent continuum as in IRT, DCMs seek to place 

an examinee into a latent group. IRT models assume traits are continuous and focus on 
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determining ―how much‖ of a trait an examinee has. DCMs commonly assume traits are 

dichotomous and focus on determining whether or not the examinee has the trait. DCMs 

typically measure multiple traits, and the pattern of traits an examinee possesses determines the 

latent group into which an examinee is classified: each pattern of traits creates a latent group.  

Because IRT estimates do not classify examinees into groups, when classifications are 

needed, they must be provided by subsequent analyses. For example, federally-mandated end-of-

course educational tests administered by states often use IRT to provide an examinee‘s ability 

estimate on a continuum. However, to evaluate Adequate Yearly Progress (AYP; NCLB, 2001), 

examinees need to be classified into proficiency categories (e.g., below basic, basic, proficient, 

above proficient). The score yielded by the IRT model does not provide sufficient information to 

make a decision about which proficiency level a student is performing, nor do IRT methods seek 

to optimally, or statistically, separate students into groups. Classifications of students are 

typically products of cut scores made along the continuum. The cut scores are established via 

standard setting methods that use expert human judgment to determine points along the 

continuum that represent boundaries of proficiency categories. Therefore, when using IRT, the 

examinee‘s score is determined by optimal statistical methods, but the examinee‘s classification 

is not. 

As providing classifications are DCMs primary purpose, the models seek to statistically 

separate students into a small number of groups with respect to each latent trait. Often DCMs use 

two groups: masters and non-masters of a skill. However, more groups could be used, such as 

four groups representing the proficiency categories described above. IRT focuses on locating a 

person on a fine continuum instead of classifying a person into a coarse group.  DCMs can more 
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reliability place examinees into groups than IRT models can locate an examinee along a 

continuum (Templin & Bradshaw, in press). If classification is the purpose of the assessment, 

much of the information garnered from IRT is not necessary or useful for classifying examinees. 

DCMs may be more appropriate models to use in cases where classification is the purpose, or 

when multidimensional feedback is desired. DCMs sacrifice fine-grained measurement to 

provide multidimensional measurements. Instead of finely locating each examinee along a set of 

continuous traits as a MIRT model does, DCMs coarsely classify each examinee with respect to 

each trait. This trade-off enables DCMs to provide diagnostic, multidimensional feedback in 

practical testing settings. The number of items needed to reliability estimate a single dimension 

in an IRT model, which is common practice for large-scale educational assessments, is sufficient 

for estimating multiple dimensions in a DCM (Templin & Bradshaw, in press).  

Because DCMs can measure more dimensions with reasonable data demands, researchers 

using DCMs have treated multiple components of a trait as the latent variables to estimate. For 

example, constituents of operating with fractions, reasoning multiplicatively with rational 

numbers, and exhibiting behaviors of pathological gamblers have been defined as latent variables 

to be estimated with DCMs (Izsák, Lobato, Orrill, Cohen, & Templin, 2009; Tatsuoka, 1990; 

Templin & Henson, 2006). It seems fitting that latent traits for DCMs are referred to as attributes 

as the term attribute connotes a part or characteristic of the whole, rather than the whole itself.  

DCMs require considerable knowledge of the attributes being measured to correctly 

specify the model. This a priori knowledge makes DCMs confirmatory models in two respects. 

Prior to any statistical analysis, empirical justifications are used to (a) define and delineate the 

attribute or set of attributes that are measured by the assessment, and (b) specify the attribute or 
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set of attributes that are measured by each item. The specifications in (b) are described in an 

item-by-attribute Q-matrix (e.g., Tatsuoka, 1990). The entries in the Q-matrix are denoted by 

   , where       if item   measures attribute   and       otherwise. However, the Q-matrix 

may be specified using ordinal or continuous values if needed (Templin, 2004). Correct 

specification of the Q-matrix ensures the measurement component of the DCM is correct and is 

imperative to valid interpretations of estimated parameters (Rupp & Templin, 2007). As a result, 

the classifications produced by DCMs are dependent upon the successful coordination of 

psychometrics and empirical theories in domain-specific content areas.  

Regarding diagnostic assessment, literature has focused on the intersection of cognitive 

sciences with psychometrics (e.g., Nichols, 1994), although DCMs are no less applicable in other 

areas, such as behavioral or social sciences (e.g., Templin & Henson, 2006). Connoting this 

generality in application contexts is the impetus for using the term diagnostic classification 

model (Rupp & Templin, 2008; Rupp, Templin, & Henson, 2010), instead of cognitive diagnosis 

model (e.g., Leighton & Gierl, 2007), although the two terms refer to the same class of models.  

Rupp and Templin (2008) describe the aforementioned characteristics of DCMs, as well 

as others that will be addressed in ensuing sections, in their definition of a diagnostic 

classification model: 

Diagnostic classification models (DCMs) are probabilistic, confirmatory multidimensional 

latent-variable models with a simple or complex loading structure. They are suitable 

for modelling observable categorical response variables and contain unobservable 

(i.e., latent) categorical predictor variables. The predictor variables are combined in 

compensatory and noncompensatory ways to generate latent classes. DCM enable 

multiple criterion-referenced interpretations and associated feedback for diagnostic 

purposes, which is typically provided at a relatively fine-grain size. This feedback can 

be, but does not have to be, based on a theory of response processing grounded in 

applied cognitive psychology. Some DCMs are further able to handle complex sampling 

designs for items and examinees, as well as heterogeneity due to strategy use (p. 226).  



22 

 

 

 

 

Diagnostic Classification Models: Types of Latent Class Models 

DCMs are able to classify examinees as they are a type of latent class model. As a latent 

class model, DCMs rely on the premise that, ―there exists a set of latent classes, such that the 

manifest relationship between any two or more items on a test can be accounted for by the 

existence of these basic classes and by these classes alone‖ (Stouffer, 1950 as quoted in de 

Ayala, 2009). As described above, the latent classes or groups for DCMs are defined by patterns 

of attributes that examinees possess. DCMs are multiple classification latent class models 

(Maris, 1999); they determine whether or not an examinee possesses each individual attribute in 

order to ultimately classify an examinee by the pattern of attributes they do or do not possess (or 

have and have not mastered). A pattern of mastered attributes will classify examinees into one 

class among a set of mutually exclusive set of latent classes that are hypothesized through 

empirical theory to be an exhaustive set.  

The possible patterns are predetermined by the specification of the attributes in the DCM.  

Given an assessment with   attributes,    possible attribute patterns or distinct latent classes 

exist, where the latent class or attribute pattern is denoted as   such that          ). An 

attribute pattern   represents the knowledge state of an examinee. For examinee  , the attribute 

pattern is denoted by a vector of binary indicators;                , where each element, or 

attribute   , is either present/mastered (      or absent/not mastered       . Unlike    in 

the MIRT model which has a multivariate normal distribution, an examinee‘s attribute pattern    

has a multivariate Bernoulli distribution (Maydeu-Olivares & Joe, 2005). The parameters of the 

multivariate Bernoulli distribution are the       probabilities that an examinee possesses each 
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of       patterns (the probability of possessing the last attribute pattern is determined, due to 

the unit sum of the probabilities of possession of all    patterns).  

When the number and characteristics of the latent classes are known and defined before 

the analysis is conducted (as is the case in DCMs), the latent class analysis is labeled as being 

restricted or confirmatory. The alternative is an unrestricted or exploratory latent class model 

where researchers seek to empirically find the number of latent classes that exist and 

subsequently hypothesize theoretical justifications for their existence; similar post hoc 

interpretation are made in exploratory factor analysis to explain the latent factors uncovered by a 

factor analysis model. In such instances, interpretations of the resulting classes or factors may be 

without clarity and, as such, may be statistical artifacts rather than meaningful substantive 

entities (Alexeev, Templin, & Cohen, in press; Bauer & Curran, 2003).  

Assuming responses to items are conditionally independent given an examinee‘s class 

membership, the latent class model defines the probability of observing the vector of examinee 

 ‘s scored item responses to all items (denoted   ) as a function of the attribute pattern   of  

examinee   (  ) as  

         ∑   

  

   

∏     

           
      

 

   

  (7) 

The term    represents the proportion of examinees that have attribute pattern  , where in DCMs 

each latent class represents an attribute pattern . The    parameters are probabilities and sum to 

one (∑   
  

    = 1). These parameters describe the relationships among the attributes (i.e., the 

correlations) and are thus the structural components of the DCM. The model item parameter,  
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 denotes the conditional probability that the examinee provides the correct response for 

item   given his or her attribute pattern (   , and     is a Bernoulli variable indicating the 

dichotomous item response (      or        of examinee   to item      

 The product term specifies the relationship between the observed data and the latent 

variable and is thus the measurement component of the model. This term expresses the joint 

probability of the observed responses as the product of the conditional probabilities of each item 

response, as was the same in Equation (3) for the IRT model. As in IRT, the probabilities can be 

expressed as a product due to the assumption of conditional independence of item responses 

given an examinee‘s measure of the latent variable. In unidimensional IRT that variable is a 

continuous ability and in DCMs that variable is a latent class.  

Log-linear Cognitive Diagnosis Model 

The Log-linear Cognitive Diagnosis model (LCDM; Henson, Templin, & Willse, 2009) 

parameterizes the conditional probability      
 in Equation (7) through a logistic link function, as 

in IRT. However, for the LCDM the latent predictors are binary instead of continuous, resulting 

in the analysis being closely related to analysis of variance (ANOVA) methods.  Binary 

indicators designate the presence or absence of the latent predictors, or the attributes. Effects of 

individual attributes (main effects) and effects of combinations of attributes (interaction effects) 

are modeled in the item response. The LCDM is specified as  

     
             

            
          

              
          

  (8) 

The term      is the intercept that quantifies the log-odds (logit) of a correct response if 

examinee   has not mastered any of the attributes measured by item  . The term   
          is a 
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linear combination of ANOVA-like main and interaction effects of the model. The main effects 

and interactions are given in the row vector   
 , where T represents the transpose. The term 

         is a column vector of indicators used to specify whether the main effects and 

interactions are present for the examinee and item. The term                    and denotes 

the Q-matrix entries for item  , and                    , the attribute pattern for examinee e. 

Thus, an element of          equals one if and only if (a) the item measures the attribute(s) 

corresponding to the effect          and (b) the examinee possesses the attribute(s) 

corresponding to the effect        . Otherwise the element equals zero, which discounts any 

main effect or interaction effect parameter associated with unmeasured attributes for this item or 

unmastered attributes in an examinee‘s attribute pattern. Specifically,  

  
           ∑        

 

   

          ∑ ∑         

 

      

   

   

                    (9) 

where         is the main effect for attribute   for item             is the two-way interaction effect 

between attributes   and    for item  , and the ellipses denotes the third through    higher-order 

interactions where      is the  -way interaction effect between all attributes  As in IRT, the linear 

predictor (       
           contains a difficulty parameter in the form of an intercept (    ) 

and discrimination parameters in the form of attribute-specific loadings, which are referred to as 

main effects in the ANOVA literature.  A main effect for an attribute provides a measure of 

discrimination between attribute patterns that do or do not have that attribute.   

Unlike IRT, the linear predictor also contains discrimination parameters in the form of 

interactions between attributes when more than one attribute is measured by an item. A two-way 

interaction term provides an additional measure of discrimination between attribute patterns that 
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have only one attribute and attribute patterns that have both attributes. For example, consider an 

item that measures two attributes. As a positive interaction between these two attributes becomes 

larger, differences in the item response probability between examinees who possess only one 

attribute and examinees who possess both attributes become larger. Conversely, the larger a 

negative interaction, the less the discriminating ability the item has because the item response 

probabilities would be more similar for examinees with one versus both attributes.  

To demonstrate the LCDM, consider the DCM depicted in Figure 3. Item 3 is measured 

by two attributes, Attribute 1 and Attribute 2. For example, Item 3 may be the mathematics 

problem found in Figure 4. Attribute 1 is the ability to find the area of a rectangle and Attribute 2 

is the ability to make conversions among units. An examinee is expected to answer the item 

correctly (to select Alternative A) if he or she possess both of these attributes. After substituting 

the Q-matrix entries into the kernel of the LDCM for Item 3, Equation (9) becomes 

  
                         +                               .  An examinee may possess both 

attributes, only Attribute 1, only Attribute 2, or neither attribute; each of these possibilities yields 

a different value for the kernel of the LCDM. For example, if an examinee has mastered the first 

two attributes (attribute pattern     [110]) or has mastered all three attributes (    [111]), 

then   
                                     . The response probability is a function of the 

main effects for Attribute 1 and 2 and the interaction effect between Attributes 1 and 2. The 

remaining possible values of   
          are given in Table 1 with the corresponding attribute 

pattern.  

This general expression of the LCDM provides a consolidated expression for the family 

of DCMs. The parameters in the LCDM can be constrained in a number of different ways to 
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yield other DCMs that are either non-compensatory or compensatory with respect to the 

attributes, as demonstrated by Henson, Templin, & Willse (2009). Non-compensatory models do 

not allow for mastered attributes to compensate for unmastered attributes. Examples of these 

models include the Deterministic Inputs Noisy And Gate model (DINA; Haertel, 1989; Junker & 

Sjitsma, 2001), the Noisy Inputs Deterministic And Gate model (NIDA; Maris, 1999), or the 

Non-Compensatory Reparameterized Unified Model (NC-RUM; e.g., Hartz, 2002). 

Compensatory models allow mastered attributes to compensate for unmastered attributes. 

Examples of compensatory models are the Deterministic Inputs Noisy Or Gate model (DINO; 

Templin & Henson, 2006), the Noisy Inputs Deterministic Or Gate model (NIDO; Templin, 

2006), and the Compensatory Reparameterized Unified Model (C-RUM; Hartz, 2002).  

For compensatory models, mastering additional attributes increases the probability of a 

correct response. One such compensatory model is the C-RUM (Hartz, 2002) presented here to 

highlight the distinction and parallels between DCMs and MIRT models. In the log-linear 

framework, the C-RUM is be expressed as 

     
             

          ∑        
 
            

            ∑        
 
            

  (10) 

There are extensive similarities between Equations (6) (the two-parameter MIRT model) 

and (10). For both there are no interactions between the latent traits; the kernel is simply a linear 

combination of an intercept and all relevant traits which are weighted with a discrimination 

parameter. However, for the C-RUM the latent variable is categorical, whereas in the MIRT 

model it is continuous. This is also seen in comparing Figure 3 with Figure 2; the difference in 
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the LCDM and the MIRT model is the categorical nature of the traits or attributes in the LCDM, 

which are depicted by the differential shading of the attributes.   

Structural Model for the LCDM 

The structural model for the LCDM describes the relationships among the latent 

attributes and can be specified in a number of different ways. The structural parameter    from 

Equation (7) expresses the marginal distribution for the attribute pattern (i.e., the probability an 

examinee has any attribute pattern). The structural model can be parameterized using a log-linear 

framework, similar to how the conditional probability of an item response was parameterized in 

Equation (8). Using the log-linear parameterization, the probability an examinee will have 

attribute pattern   is a function of main effects corresponding to individual attributes mastered in 

pattern   and interactions corresponding to combinations of attributes mastered in pattern  . This 

probability is expressed as (Henson & Templin, 2005; Rupp, Templin, & Henson, 2010) 

   
   (  )

          
 (11) 

where  

      ∑      
 
       ∑ ∑       

 
     

   
            +… 

+           (∏    
 
   )  

(12) 

The term    is the intercept, the value of the kernel for the attribute pattern with no mastered 

attributes. The term        is the main effect for attribute   for attribute pattern           is the 

interaction effect between attributes   and   for pattern    and the ellipses denote the third 
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through     higher-order interactions where    is the  -way interaction effect between all 

attributes   A reduced version of this saturated model can also be used to limit the higher-order 

interactions that are insignificant (Rupp, Templin, & Henson, 2010). 

 A different structural model may be employed to describe the pairwise associations 

among attributes by using a high-order factor model that imposes an underlying latent continuum 

for the attributes to describe their associations with tetrachoric correlations; the structural model 

defining the tetrachoric correlations is conceptually equivalent to the structural model used in 

confirmatory factor analysis (Templin & Henson, 2006). This structural approach is useful when 

associations between attributes are of interest to the researcher. Other specifications of structural 

models that can be used are described by Rupp, Templin and Henson (2010).   

Nominal Response Log-linear Cognitive Diagnosis Model 

As the NR IRT model extend the 2-PL IRT model, the LCDM can also be extended to 

model nominal responses. The latent class model, where    is now examinee  ‘s nominal 

response pattern to all   items on a test, is expressed as 

         ∑   

 

   

∏∏ 
      

[       ]

  

   

 

   

 (13) 

where [∙] are Iverson brackets indicating that if        ,           =1; otherwise,           

= 0. The nominal response LCDM (NR LCDM; Templin & Bradshaw, under review) defines the 

conditional probability that an examinee will provide a nominal response of     among the set of 

   response alternatives for item  , given his or her attribute pattern  , as 
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where 
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   (15) 

Interpretations of the parameters are analogous to the LCDM with a few distinctions. The NR 

LCDM has alternative-specific, as opposed to item-specific, Q-matrix entries. The vector 

    
                        and denotes the Q-matrix entries for alternative     as an       

column vector. The NR LCDM also has alternative-specific intercepts, main effects and 

interactions; the effect of the attribute is measured at the alternative level instead of at the item 

level. The NR LCDM can be identified by constraining the sum of each type of model parameter 

to be zero. More explicitly, the alternative-specific intercepts within an item sum to zero (i.e., 

∑          
  
   for each item), the sum of the alternative-specific main effects for each attribute 

within an item sum to zero (i.e., ∑             
  
   for each attribute and item), and the sum of 

the alternative-specific interaction effects for each set of interacting attributes within an item sum 

to zero (e.g., two way interactions for pair of attributes within an item: ∑               
  
   ). 

Alternately, the NR LCDM can be identified by setting all item parameters equal to zero for a 

given alternative. This alternative is then referred to as the baseline alternative, where the kernel 

for this alternative             
          

   equals zero.  

The LCDM estimates a conditional probability each examinee will answer the item 

correctly, whereas the NR LCDM estimates the conditional probability an examinee will select 
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each alternative. Different alternatives may measure different sets of attributes. The NR LCDM 

can preserve the diagnostic information provided by unique Q-matrix entries for each alternative. 

When sample sizes are large, the NR LCDM was found to capitalize on information in the 

incorrect alternatives as demonstrated by greater classification accuracy when compared to the 

LCDM for dichotomous responses (Templin & Bradshaw, under review). 

For example, consider again the item in Figure 4, which was Item 3 for the DCM pictured 

in Figure 3. The Q-matrix entries for this item, if estimated with the LCDM, are   = [1,1,0]; the 

item measures Attributes 1 and 2 but not Attribute 3. The Q-matrix for this item, if estimated 

with the NR-LCDM, can be found in the first four columns of Table 2.  For example, consider 

Alternative B where only Attribute 1 is measured. An examinee who selects Alternative B 

incorrectly converts feet to inches (has not mastered Attribute 2), but demonstrates an ability to 

find the area of a rectangle by applying the operation of multiplication to the dimensions given 

(has mastered Attribute 1). Thus, a response of B indicates the absence of Attribute 2, yet the 

presence of Attribute 1. Conversely, an examinee who selects Alternative C correctly converted 

feet to inches (mastered Attribute 2), but found the perimeter of the rectangle instead of the area 

(has not mastered Attribute 1). Thus, a response of C indicates the absence of Attribute 1, yet the 

presence of Attribute 2. Under the LCDM, a response of B is not unique from a response of C; 

both responses are evidence for a lack of mastery of Attribute 1 and 2. 
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CHAPTER 3 

THE SCALING INDIVIDUALS AND CLASSIFYING MISCONCEPTIONS MODEL 

 The previous chapter presented a selection of models from the IRT and DCM 

psychometric frameworks. The chapter drew parallels and highlighted distinctions between the 

models to provide the background requisite for understanding components of the new model 

introduced in the present chapter. This chapter will begin by providing examples of previous 

assessments that acknowledged errors or misconceptions in the test development process. It will 

conclude by introducing the Scaling Individuals and Classifying Misconceptions (SICM) model, 

a new model that provides a means to measure misconceptions. The goal of this chapter is to 

illustrate the potential advantages and to delineate the structure of the SICM model by 

juxtaposing its nature and statistical properties with other existing latent variable models that are 

commonly applied to estimate latent traits in educational and psychological realms.   

Previous Assessments Explicitly Mindful of Misconceptions 

 As previewed in Chapter 1, the SICM model seeks to provide more detailed, 

multidimensional feedback to stakeholders by identifying students‘ misconceptions. The SICM 

model identifies misconceptions by students‘ incorrect responses. Therefore, the SICM model 

hinges on a key feature of a test: the incorrect alternatives for items must reflect common 

misconceptions students have or typical errors students may make. The following sections 

highlight six assessments — four from science and two from statistics — that have this feature 

required by the SICM model. These sections demonstrate that empirical theories exist about 

students‘ misconceptions in various content domains, that the desire to capture them through an 
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assessment is not uncommon, and that a psychometric model tailored to these types of empirical 

theories is needed. Each section will briefly describe the format and purpose of the assessment 

and also highlight the sub-optimal alignment of the test design and psychometric method used.  

Force Concepts Inventory 

The Force Concepts Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) is an 

assessment of the Newtonian concept of force, which is an important concept taught in 

introductory physics. The FCI is a revision of the Mechanics Diagnostic, an assessment 

developed by Halloun & Hestenes (1985). The assessment consists of 30 multiple-choice items. 

The authors define 30 misconceptions that describe students‘ beliefs about the concept of force 

that theoretically exist before a student has been exposed to instruction on the concept. For 

example, a misconception regarding gravity is the belief that heavier objects fall faster. Incorrect 

alternatives for the items are written to reflect these misconceptions, and on average an 

individual misconception appears in approximately 2.7 items and 3.7 alternatives. Researchers 

interviewed students about their responses to ensure that the selection of an incorrect response 

was an indicator of the presence of the misconception.  

Hestenes et al. (1992) suggest use of the FCI as a diagnostic tool to ―identify and classify 

misconceptions‖ (p.13); however, the results from the assessment focus on the total percentage 

of items answered correctly on the assessment, a score that reflects what the authors referred to 

as a student‘s ―Newtonian understanding‖ (p. 11). Although the Hestenes et al. (1992) note that, 

―as a rule, ‗errors‘ on the FCI are more informative than ‗correct‘ choices‖ (p. 2), a summary or 

measure of the presence or absence of misconceptions was not discussed.  Inconsistencies exist 

with respect to the type of information the authors are seeking to collect with their test design 
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(i.e., the errors are students making), and the type of information the scoring of the assessment is 

providing (i.e., a composite score representing percentage correct).  

Astronomy Concept Inventory 

The Astronomy Concept Inventory (ACI; Sadler (1998)) is an assessment of introductory 

astronomical concepts. Referred to as a distractor driven assessment, like the FCI, the ACI is a 

multiple-choice assessment in which the incorrect alternatives reflect common incorrect 

conceptions that students may have. Researchers identified these misconceptions through 

qualitative research that studied developing or incorrect conceptions students hold. 

The ACI is a 47-item inventory created to assess curriculum materials that explicitly 

target popular student misconceptions by measuring the students‘ growth in their understanding 

of astronomical concepts between 8
th

 and 12
th

 grade. The item responses were modeled by the 

multiple-choice model (MC; Thissen & Steinburg, 1984). The MC model provides the 

probability an examinee selects each alternative (correct and incorrect alternatives), and also the 

probability that an examinee ―does not know‖ the answer and simply provided a guess by 

randomly selecting amongst the provided alternatives. Sadler (1998) interpreted trace lines for 

incorrect alternatives that do not monotonically decrease as a function of ability as indications 

that misconceptions may be ―markers of progress toward scientific understanding and are not 

impediments to learning‖ (p. 265). This conclusion is made because the probability an alternative 

that measures a misconception is selected is not necessarily higher for examinees with lower 

abilities, suggesting that misconceptions are sometimes manifested in students who are 

progressing towards higher level of understandings.    
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Sadler (1998) suggests the use of this type of assessment to ―aid teachers in diagnosing 

student conceptions and to easily measure conceptual change‖ (p. 290). Although changes in 

overall ability can be quantified using the MC model, the only way to assess or ―diagnose‖ the 

misconceptions is to study the trace lines corresponding to measured misconceptions on an 

individual item and student basis, or to tally the number of times an alternative that measures a 

given misconception is selected by the student. However, this practice of post-hoc analysis is 

time consuming and tedious, particularly is if it delegated to teachers who may teach large 

numbers of students over a set of classes. As for the FCI, the researcher expended effort to 

carefully create alternatives that aligned to misconceptions and highlighted providing 

information about student‘s misconceptions an important utility of the assessment. However, the 

psychometric method used did not measure these misconceptions; instead, the method focused 

on measuring an overall continuous ability. 

Astronomy and Space Science Concepts Inventory  

Building upon the ACI, Sadler, Coyle, Miller, Cook-Smith, Dussault, and Gould (2010) 

created the Astronomy and Space Science Concepts Inventory (ASSCI). A bank of 211 items 

were written to measure astronomical concepts for three grade bands spanning from kindergarten 

through 12
th

 grade (K-4, 5-8, 9-12). For these grade bands, respectively, sets of items measure 4, 

9, and 7 standards and address 9, 8, and 7 misconceptions through incorrect alternatives. From 

these items, shorter final versions of an assessment to measure astronomical concepts were 

created for each grade band; amongst selection criteria for items on the final form were the 

misconception strengths in the incorrect alternatives for the items. Misconception strength of an 

incorrect alternative was defined as the proportion of examinees selecting the incorrect 
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alternative. Higher misconception strengths were preferred because the researchers sought items 

that strongly elicited students‘ misconceptions.  

Measures of ability were given by overall percentage correct and measures of growth 

were given by increases in scores using the metric of the standard deviation. As in the ACI, 

Sadler et al. (2010) used distractor driven multiple-choice items to compose a test that has ―the 

capability to identify both examples of student misconceptions as well as their 

prevalence/frequency within a population‖ (p.3). As with the FCI and ACI, the number of times 

a student selects an alternative consistent with a given misconception is the measure that the 

student holds that misconception. This is a very coarse and unreliable measure considering as 

few as one item may be indicating whether or not a student has a misconception.  

Ordered Multiple-choice Item Format 

Briggs, Alonzo, Schwab, & Wilson (2006) developed an item format called the ordered 

multiple-choice format. Student understanding of the science content area ―Earth in the Solar 

System‖ was described using five sequential levels of understanding. Key understandings 

indicative of each level were delineated to create what was referred to as a concept map. A 

concept map defines the distinct levels that a given unidimensional construct is assumed to have.  

Misconceptions, or common errors, were not the focus of the assessment, but played a 

unique role in the test development process. Determining a student‘s level of understanding for 

the Earth and Science concept was the focus of the assessment, but misconceptions were used as 

key indicators of different levels of understanding. The items were written in a somewhat similar 

fashion as items on the FCI, ACI, and ASSCI. Each possible alternative was linked to a student 

level of understanding by reflecting a misconception that corresponded to that level. 



37 

 

 

 

Interestingly, this practice explicitly defines a linear relationship between misconceptions and 

overall ability for this concept. Pinpointing where misconceptions appear along this continuum 

implies a hierarchical relationship among the misconceptions, meaning some misconceptions do 

not exist simultaneously with others.  

The goal of this assessment was not to measure misconceptions, but Briggs et al. (2006) 

have difficulties in capitalizing on the information embedded in their items, similar to the 

researchers mentioned above. The number of items on the assessment was small, so a total score 

from Classical Test Theory was provided to measure an overall ability. Given the availability of 

a larger sample, Briggs et al. (2006) suggest using an IRT model called the Ordered Partial 

Credit model (Wilson, 1992). In this model, the information about the levels of the alternatives 

would contribute to estimating a continuous overall ability. With respect to information 

regarding the level at which a student performs, test results can be analyzed using a CTT 

subscore approach to provide numerical summaries of the proportion of items that an examinee 

answers correctly at each level. However, neither the CTT total score nor the IRT score describes 

the level along the continuum at which a student is performing. This is noted here to reiterate that 

CTT and IRT methods are ubiquitously used, even when the design of the assessment includes 

intricate, unique features and the purpose of the assessment has other goals besides measuring an 

overall ability. Furthermore, in a variety of situations where an assessment has a purpose other 

than measuring an overall ability, researchers are left to count, to revert back to the early 

psychometric methods of CTT. 
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Statistical Reasoning Assessment 

The Statistical Reasoning Assessment (SRA) is a 20 item test with alternatives that 

measure both correct and incorrect reasoning (Garfield, 1998). Unique to this test is the feature 

that each item does not have a single correct answer, rather multiple correct (and incorrect) 

answers exist. Every correct answer aligns to a correct line of reasoning and every incorrect 

answer aligns to an incorrect line of reasoning. Eight types of correct reasoning were defined and 

measured, and eight categories of incorrect reasoning were defined. Total scores on the 

assessment were not the focus of the analysis, but rather subscores for correct and incorrect types 

of reasoning were emphasized. Garfield and Chance (2000) noted that ―although individual items 

could be scored as correct or incorrect and  total correct scores could be obtained, this single 

numerical summary seemed uninformative and did not adequately identify students‘ reasoning 

abilities‖ (p. 117). This observation reflects an emphasis on the specific components of correct 

and incorrect reasoning. CTT subscores reflected the number of times a line of correct or 

incorrect reasoning was supplied for the 16 categories of reasoning. The range of these raw 

scores was from two to eight. Thus, even though the focus of the assessment was on the 

individual components of reasoning, a statistical means other than CTT for determining whether 

or not a student possesses the ability to reason correctly or possesses an understanding that 

reflects incorrect reasoning was not used.  

Probability Reasoning Questionnaire 

Khazanov (2009) developed an assessment to measure misconceptions that students 

display when reasoning about statistical probability. The assessment was a 16 item two-tiered 

multiple-choice assessment. The stem of the item was followed by the first tier question. 
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Alternatives in the first tier provided answers to the question. The second tier involved a second 

question probing for the reasoning behind why students selected the answer in the first tier. 

Combinations of answers in the first and second tier reflected various misconceptions about 

probability, and for each item, one answer combination was considered accepted or accurate 

probabilistic reasoning. The number of alternatives for a question in either tier ranged from three 

to five. Each alternative on the assessment reflected answers students gave to open-ended 

versions of the items or types of reasoning they provided during interviews.  

This assessment had a greater focus on trying to diagnose whether the student had the 

misconception, evidenced by the large number of items and alternatives that targeted each 

misconception. Three misconceptions that are well-documented in literature about statistical 

reasoning were the focus of the assessment: representative bias, equiprobability bias, and 

outcome orientation misconception (e.g., Khazanov, 2008). Respectively, the misconceptions 

were measured by 11, 14, and 15 items and by 19, 14, and 26 combinations of responses to the 

first and second tiers. 

Despite the careful crafting of an exam to measure the misconceptions, the analysis of the 

results was simply counting the number of times a student provided an answer combination that 

aligned with a given misconception, similar to previous assessments discussed that used CTT 

total or subscores. A cut-off of two was assigned to designate whether or not a student had a 

misconception and would benefit from learning activities created to replace the misconception 

with correct understanding. This practice is akin to classifying examinees into proficiency 

categories according to a continuous score. The score does not classify examinees; a non-

statistically grounded cut-off score results in a subjective dichotomization.   
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Diagnostic Information versus a Diagnosis 

Salient similarities in the six assessment projects presented in the previous sections are 

(a) the presence of highly developed and empirically supported understandings of 

misconceptions that students possess while learning about a given domain, (b) careful 

construction of items whose incorrect alternatives elicit these misconceptions, and (c) a lack of a 

psychometric model consistent with the design of the items.   

Researchers developing these assessments have theorized that misconceptions exist, and 

that they manifest themselves in incorrect alternatives selected by students. Making this theory 

explicit is a significant contribution that researchers such as these have provided for assessment 

development. Additionally, establishing the validity of these items (and alternatives) through 

rigorous interviews and one-on-one interactions with students demonstrates model validity 

studies that should be included in the assessment development process. However, the careful 

attentiveness to the validity of the misconceptions being measured is undermined by the 

omission of the reliability of scores or subscores implicitly used as measures of these constructs.  

An incorrect response to an individual item or the percentage of incorrect responses to a very few 

number of items do not provide reliable or objective measures of a misconception. Although 

none of the researchers who developed the six assessments described above are denying this 

claim, they do suggest or demonstrate the use of this information to make subsequent, subjective 

decisions about whether or not an examinee has a misconception, implicitly putting forth a 

simplistic psychometric model for measuring misconceptions. This simple model relies on the 

assumption, which cannot be tested, that each alternative contributes equally to the measure of 

the misconception.  
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In the light of the gap in psychometric theory and practice for providing reliable measures 

of misconceptions, using a simple model seems intuitive and reasonable, although far from 

fulfilling when the intent of the assessment and effort of the researchers is considered. Often in 

addition to seeking information about the level or degree of a student‘s overall ability, these 

researchers sought information about the student‘s misconception and how prevalent a given 

misconception is among a sample or population of students. They sought a diagnosis (e.g., does 

this student have this misconception?), and although they have gathered some diagnostic 

information using the assessment, a diagnosis is not made from the analysis of the assessment.  

A distinction Rupp, Templin and Henson (2010) make about the definition of a diagnosis 

is that a diagnosis is a decision. Given this denotation of diagnosis, assessments described above 

do not provide diagnoses with respect to possession of each misconception. However, they can 

be considered to provide diagnostic information, information that can contribute to a subsequent 

decision, albeit a non-statistical decision. For example, the assessments provide frequencies that 

teachers or other interested stakeholders may consider and, perhaps combined with their own 

experiences with students, use to decide whether or not the student has the misconception. The 

assessments also provide a total score that can be subjectively dichotomized through human 

judgment to decide how to classify students.  

The SICM model is a psychometric model that seeks to statistically diagnose students‘ 

possessions of misconceptions. The SICM model reflects empirical theories of the assessment 

development projects previously described. The model acknowledges that an overall ability lies 

on a continuum, but assumes that misconceptions also exist and can be measured with 

assessments created in the same vein as these projects. Using the SICM model, misconceptions 
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can be treated as variables to be measured and included in the model of the item response. By 

attending to statistical considerations of the model during the test construction process, the SICM 

model can measure misconceptions more reliably.  

By statistically modeling these theories, the SICM model provides a means to 

quantitatively evaluate existing empirical theories about misconceptions and their effects in a 

testing situation. Testing these theories helps strengthen them and also improves the assessment. 

The SICM model does not assume that each alternative contributes equally to the measure of a 

misconception. Instead it quantifies how strongly an alternative is related to a misconception, 

permitting a statistical test of whether or not an alternative is, indeed, measuring a 

misconception. Results from the model may be used to (a) improve the design of the item and/or 

alternative, or (b) shape theories. For example, if analyses indicate an alternative is not 

measuring a misconception, then test developers can revise the item to more validly measure a 

misconception, or researchers can view this result as evidence that questions the theory that the 

misconception exists.  

Theories about the relationships among misconceptions can also be molded using results 

of analyses from the SICM model. The model estimates how correlated misconceptions are, 

contributing to theories by statistically describing how strongly related pairs of misconceptions 

are. The model can provide insights for other relationships among misconceptions by 

determining within a student which combinations of misconceptions are possible for a student to 

have. Some misconceptions may not simultaneously exist with or without other misconceptions. 

The previous section explained a gap in psychometric theory that the SICM model seeks 

to fill by measuring an overall ability along with misconceptions. By doing so, the SICM model 
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also offers a means to provide multidimensional feedback within the framework of prevailing 

IRT methods.  The next sections provide the statistical details of the SICM model. 

The Scaling Individual and Classifying Misconceptions Model 

The SICM model is a new psychometric model unique from other psychometric models 

in two ways. First, the SICM model treats a misconception as a latent variable or construct of 

interest to be measured and estimated. The SICM model also makes assumptions about the 

nature of a misconception‘s existence. The model assumes that misconceptions are categorical 

latent variables that are dichotomous. The two levels are characterized by the presence or 

absence of a misconception. Presence of a misconception will also sometimes be referred to as 

possession of a misconception. Second, following empirical theories driving the assessments 

discussed in the previous section, the SICM model acknowledges that there is a larger construct 

to be measured on a continuum that exists in addition to misconceptions that are present or not. 

Thus, the model uniquely estimates a continuous ability in addition to a set of categorical 

misconceptions.  

Like the NR LCDM, the SICM model is a nominal response model that capitalizes on the 

diagnostic information found in the incorrect alternatives on a multiple-choice test. However, the 

SICM model not only measures a set of categorical variables as the NR LCDM does, but also 

estimates a single continuous variable that represents an overall ability as a unidimensional IRT 

model does. Instead of modeling attributes that represent skills or abilities as DCMs commonly 

do, attributes in the SICM model represent misconceptions. To model an item response, these 

misconceptions are specified as latent predictors for the incorrect alternatives, and a continuous 

overall ability is specified as the latent predictor for the correct alternative. Before proceeding 
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with the explanation of the SICM model, a brief discussion of the use of the term misconception 

to describe categorical latent traits for the SICM model will be provided.   

Meaning of Misconception 

The term misconception will be used to describe the latent traits estimated in the SICM 

model, even though the nature of the misconception may not always be conceptual and the 

negative connotation implied by the prefix mis- may not always accurately describe the trait. 

Depending upon the context, the misconceptions may be defined as procedural or conceptual 

errors, or as inaccuracies in thinking, reasoning, or problem solving. These inaccuracies may 

reflect commonsense or innovative lines of reasoning or partial understandings that are positive 

developmental stages of understanding through which students may progress. Although the 

reasoning manifested due to the misconception may or may not be more advanced in comparison 

to other conceptions, in a testing scenario, understanding reflective of a misconception is 

unilaterally inferior to understanding that yields a correct answer.  

Misconceptions are ultimately defined by content experts or cognitive scientists and are 

founded upon strong empirical research; the SICM model is simply a statistical tool to model 

these traits and help form falsifiable statistical hypotheses regarding the nature of the 

misconceptions (i.e., how they are measured by an item, how they interact, how they are 

correlated). Although the nature of misconceptions may vary from one domain to another, or 

even within a domain, requisite for a misconception to be measured by the SICM model is that a 

misconception must be a trait of the examinee. A trait of an examinee is a characteristic of the 

examinee that is exhibited with a degree of stability. For a misconception to be a trait, possession 

of a misconception must result in systematic responses to an item measuring the misconception 
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throughout the entire assessment. A careless error or an aberrant mistake is not the product of a 

misconception; misconceptions produce systematic incorrect answers. 

Misconceptions are often targeted by instruction for the purpose of eliminating them, so 

they are not expected to be fixed traits over time. They are, however, expected to be stable 

enough to produce consistent responses at a given testing occasion. The SICM model rests 

heavily on the assumption of stable misconceptions; it cannot reliably measure unsystematic 

errors. The more the misconception represents a firmly cemented belief held by the examinee, 

the more consistently the misconception will produce the expected incorrect response and, in 

turn, the more reliably that misconception can be measured.  

Formulation of the SICM Model 

Given a set of    response categories or possible alternatives for an item  , the SICM 

model utilizes a nominal response mixture item response model that defines the probability of 

observing an examinee‘s nominal response pattern to   items      as 
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The terms    and      are the structural components of the model, describing the distributions 

of and relationships among of the latent variables in the model, with   and   held independent. 

The term    describes the proportion of examinees that have misconception/attribute pattern  , 

parameterized as a function of the individual attributes by a log-linear model as described in 

Chapter 2 for DCMs (e.g., Henson & Templin, 2005; Rupp, Templin, & Henson, 2010). The 

term      is the density function of ability, with           for identifiability.  
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The parameter           
 denotes the conditional probability that an examinee‘s response 

to item   will be the selection of alternative   from the set of    alternatives for item   (i.e., 

        , given examinee e‘s attribute pattern (    and continuous ability     . The brackets 

[∙] are Iverson brackets indicating that if        ,           =1; otherwise           =0. The 

parameterization of           
 represents the measurement component of the SICM model in that 

it quantifies how the latent variables (misconceptions and ability) are related to the observed item 

responses. For the SICM model, ability is measured by the correct alternative on each item, and 

the misconceptions are measured by the incorrect alternatives. Not every incorrect alternative 

measures each misconception, so an indicator variable is used to specify when a misconception 

is measured by an item alternative. Mimicking DCM practices, specifications are set a priori and 

are described in an item-by-alternative-by-misconception Q-matrix. The entries in the Q-matrix 

are indicators denoted by      
, where      

   if alternative j for item   measures 

misconception   and         otherwise.  

The SICM model parameterizes           
 in Equation (16) by utilizing a multicategory 

logistic regression model (e.g., Agresti, 2002) that models the      non-redundant logits with 

the     alternative as the baseline category as: 
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for every     such that    , where  
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The correct alternative is specified as the baseline category, denoted    , to simplify Equation 

(17). In Equation (18),     
 equals zero for every alternative     where     because the 

incorrect alternatives do not measure θ. In Equation (19),     
 always equals zero because the 

correct alternative does not measure any misconceptions. Therefore the      equations 

specifying the log-odds of selecting an incorrect alternative over the correct alternative in the 

SICM model can be equivalently formulated as: 
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 (       |     )
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)=              
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for every     such that    , and the conditional probability that     will be selected on item    

can be reexpressed as:  

 (       |     )  
                  

         
          

  

∑                    
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The intercept        is the logit of selecting an incorrect alternative     over the correct 

alternative     for an examinee with an ability of zero who possesses none of the misconceptions 

measured by alternative    . The more difficult the alternative is, the larger the intercept will be 

as it reflects the likelihood of choosing an incorrect alternative over the correct one.  

The term        is the loading for continuous ability. In an IRT context, this term is the 

discrimination parameter for ability and is interpreted similarly: the higher the value of       , the 
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more different the probability of choosing the correct alternative is for examinees at different 

locations on the ability continuum. The probability the item is answered correctly should 

increase as ability increases, so the value of this parameter should be positive. The loading       
 

represents the increase in the logit of a correct response for every unit increase in ability. 

Using notation consistent with the LCDM and the NR LCDM, the term     
          

   

is a linear combination of main and interaction effects of the model. The vector     
 

                       and denotes the   Q-matrix entries for alternative j of item  , and    is 

the misconception (attribute) pattern for examinee e. The term          is a column vector of 

indicators with elements that equal one if and only if (a) the item measures the misconception or 

set of misconceptions corresponding to the parameter      
    and (b) the examinee possesses 

the misconception or set of misconceptions corresponding to the parameter       . 

Specifically,     
          

  equals 
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where           is the main effect for misconception   for the     alternative of item    

           is the interaction effect between attributes   and         for the     alternative of 

item   (if alternative    of item   measures two or more misconceptions), and the ellipses denote 

the third through    higher-order interactions for options on items that measure more than two 

misconceptions, where                 is the  -way interaction effect between all attributes   
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Main effects and interactions are also discrimination parameters but with respect to 

misconceptions, so more discriminating items have larger main effects and interactions.   

To identify the model, as is usual for identification of a baseline-category logit model, an 

arbitrary category must be treated as the baseline category, and all parameters for the baseline 

category are set equal to zero. Additionally, the main effect parameters are constrained to ensure 

monotonicity for attributes and for ability, meaning that (a) the possession of a misconception 

related to an alternative never leads to a decrease in the probability of selecting that alternative 

over a different alternative, and (b) an increase in ability never results in a decrease in the 

probability of answering the item correctly.  

The SICM Model Illustrated as a Combination of an IRT model and a DCM 

The SICM model posits that there is a dominant continuous trait being measured by the 

assessment that largely explains the covariance among the selection of the correct alternatives for 

a set of items. It additionally hypothesizes that there exists a set of categorical misconceptions, 

each of which a student does or does not possess, that systematically account for the variations in 

the selections amongst the incorrect alternatives for a set of items. It models that hypothesis by 

making alternative-specific manipulations of the presence of discrete latent variables in the 

model. The hypotheses of the SICM model can be verified by testing the significance of the main 

effects for ability and for misconceptions. In this way, the SICM model can help test and 

advance empirical theories about why an examinee may provide an incorrect response to an item.  

To further illustrate the differences among the NR IRT, the NR LCDM model, and the 

SICM model, consider again the item in Figure 4. From an NR IRT perspective, the level of a 

person‘s overall ―math‖ ability explains the variations in the item responses and is the only latent 
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variable being measured by the alternatives. Using the SICM model in Equation (17), if       
 is 

always equal to 1 (i.e., θ is measured by every alternative), and     
 is fixed to be a 1 x A vector 

of zeros (i.e., no misconceptions are measured), then the item response function is specified as 

Bock‘s (1972) NR IRT model.  

From a NR DCM perspective, using the NR LCDM as described in Chapter 2, two 

discrete abilities are needed to answer this item correctly: the ability to find the area of a 

rectangle (Attribute 1;   ) and the ability to make conversions among units within a metric 

system (Attribute 2;   ). Using the SICM model in Equation (17), if        is always equal to 0 

(i.e., θ is measured by no alternative), then the item response function is specified as the NR 

LCDM where    is defined as a pattern of attributes or skills, instead of a pattern of 

misconceptions as in the SICM model.  

To model the example item from the SICM model perspective, the attributes are defined 

as misconceptions or errors. Attribute 1 (  ) will be redefined as the inability to find the area of a 

rectangle and Attribute 2 (  ) as the inability to make conversions among units within a metric 

system. An examinee is expected to answer the item correctly (to select Alternative A) if he or 

she possess neither of these attributes and has a modest level of overall ability. The Q-matrix for 

the SICM model for the example item is given the last five columns of Table 2. The difference in 

the Q-matrices for the NR LCDM and the SICM model is that the entries corresponding to the 

attributes are exactly opposite of one another (because attributes have opposite meanings in the 

two models), and the SICM model measures a continuous ability (θ) by the correct answer.  

Figure 5 illustrates the SICM model for this item with a path diagram. This figure depicts 

the measurement components of the model, where the continuous ability is measured by the 
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correct answer, Alternative A, and the two misconceptions (attributes) are measured by the 

incorrect alternatives (B, C, and D). The directional arrows from the misconception to an 

alternative indicate that the presence of the misconception influences the probability that that 

alternative is selected. The figure shows the structural components of the model by (a) the arrows 

between the two misconceptions, indicating correlations among attributes are modeled, and (b) 

the absence of arrows between the misconceptions and ability, indicating correlations between 

ability and misconceptions are not modeled, as discussed subsequently.  

Figure 6 provides hypothetical item response probabilities for the NR IRT model, the NR 

LCDM, and the SICM model to compare the type of information each model would provide 

about the item in Figure 4. The legend of the first graph corresponds to each model containing 

the Q-matrix entries for the corresponding model. For the NR IRT model, in the top left graph, 

the item response probability is solely a function of ability (θ). The NR LCDM, shown in the 

next 4 graphs, provides the item response probability by the group that an examinee is in. Groups 

are defined by attribute patterns (α). When an attribute pattern an examinee has corresponds to 

the attribute pattern measured by an alternative, the examinee is most likely to select that 

alternative. The SICM model, shown in the last 4 graphs, provides the item response probability 

not only as a function of ability as the NR IRT model does, but also as a function of the group an 

examinee is in (the misconception pattern that an examinee has) as the NR LCDM does. For the 

SICM model, the set of trace lines differ for each group. Examinees in a group that have a given 

misconception are more likely to select the incorrect alternative that corresponds to that 

misconception, regardless of their ability level. 
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Figure 6 illustrates that the SICM model provides two types of examinee parameters that 

each contributes to the item response probability. An examinee in any group (with any 

misconception pattern) can have an ability anywhere along the scale. This result means 

examinees in different groups may have the same ability estimate, or examinees in the same 

group may have different ability estimates.  If two examinees have the same scored response 

pattern, they will have approximately the same ability estimate. However, even though two 

examinees may miss the exact same set of items, classification according to the misconception 

pattern is dependent on why they are missing the item (which incorrect alternative they are 

selecting). Thus, if two examinees‘ nominal response patterns differ, even if they have the same 

scored response and ability level, they can be classified into different groups. The classification 

of examinees according to misconceptions is the multidimensional feedback the SICM model 

provides beyond the ability estimate offer by IRT methods.   

Contrasting and Altering Specifications of the SICM Model 

 The previous sections have demonstrated that the purpose of developing the SICM model 

was to combine a common measure of ability as a unidimensional construct with actionable, 

multidimensional feedback in the form of diagnoses of misconceptions. How to best model this 

phenomena requires considerable statistical considerations that will be discussed in this section.  

 The SICM model is neither the first nor the only model including both a continuous trait 

and a set of dichotomous attributes within the same model; however, it does do so in a unique 

manner and with a unique purpose. In the DCM literature, continuous traits have been 

incorporated in both the structural and measurement components of various models. As the 

SICM model does, several models have estimated a continuous trait simultaneously with a set of 
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dichotomous attributes in the measurement component of the models.  The Reparameterized 

Unified Model (RUM) incorporates a continuous completeness parameter that is hypothesized to 

capture abilities not specified by the Q-matrix (Hartz, 2002; DiBello & Stout, 1995). In the 

diagnostic classification mixture Rasch model (DCmixRM), dichotomous attributes are specified 

as latent covariates in a mixture Rasch model to aid in understanding the nature of latent groups 

detected through exploratory mixture IRT modeling (Choi, 2009). More generally, Henson, 

Templin, Willse and Irwin (2009) extended the LCDM to accommodate multiple continuous and 

discrete factors in the measurement portion of the model, which is also a feature of the General 

Diagnostic Model (von Davier, 2005). Other DCMs have been specified to include continuous 

higher-order factors in the structural component of the model. Unidimensional or 

multidimensional higher-order models may be of interest when modeling continuous factor(s) 

that may explain how attributes are related to each other (e.g., Templin & Henson, 2006). 

By contrasting features of the SICM model with other relevant models, this section will 

establish the rational for the specifications made in the SICM model. Specifically, this section 

will discuss three questions of model specifications that bear significant statistical implications: 

1. Should ability contribute to the probability of selecting incorrect responses? 

2. Should misconceptions and overall ability be correlated?  

3. Should the model account for the phenomena of guessing on multiple-choice tests? 

Relationships among Ability and Misconceptions 

 As mentioned previously, continuous factors have been incorporated into both structural 

and measurement components of several psychometric models. Although Questions 1 and 2 may 

seem similar, they pertain to distinct components of the model. Question 1 is concerned with 
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how the continuous ability functions in the measurement component of the model, whereas 

Question 2 regards the behavior of the continuous ability in the structural component of the 

model. Each will be discussed in the following sections.  

Ability in the Measurement Component of the Model      

 The SICM model is more closely related to a bifactor model than to a higher-order 

model. As a bifactor model (Holzinger & Swineford, 1937) does, the SICM model includes the 

continuous factor in the measurement portion of the model through the parameterization of the 

item response. In contrast, higher-order models include a continuous factor in the structural 

portion of the model through correlations. A bifactor model estimates a general, continuous 

construct hypothesized to be made up of several distinct yet highly related sub-domains. Bifactor 

models are applicable when the interpretation of the sub-domains is of interest in addition to the 

general construct (Chen, West, & Sousa, 2006).   

As described previously, the continuous trait,  , is the only predictor in the SICM model 

for selecting the correct answer, and the set of misconceptions (α) are the only predictors in the 

model for selecting an incorrect alternative. It is debatable whether    should also be a predictor 

for the probability of selecting an incorrect alternative, as it is possible that the level of an 

examinee‘s ability would also influence which incorrect alternative is chosen. Thus, the SICM 

model could be specified in this alternative manner.  

If the SICM model did allow        to be present on every alternative, it could be viewed 

as a nominal response version of the categorical bifactor model that Henson, Templin, Willse, 

and Irwin (2009) specified by extending the LCDM to include a single continuous predictor. The 

idea behind the bifactor model is that separate abilities that comprise an overall ability exist even 
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after the general ability has been partialled out. Henson et al. (2009) refer to the continuous 

ability in the categorical bifactor model as ―ancillary‖ and suggest that it captures any ability 

needed to correctly respond to an item that was not specified by the Q-matrix. Because the Q-

matrix for the SICM model specifies attributes as misconceptions that are only present in the 

incorrect alternatives, none of the ability needed to correctly respond to the item is specified by 

the Q-matrix. Thus, the continuous ability modeled by the SICM model may more closely 

resemble the general ability with respect to a unidimensional construct being measured by IRT 

methods; however, interpreting the continuous ability and understanding the interplay of 

misconceptions and a continuous trait needs further investigation.  

The present specification of the SICM model is motivated by the existing literature 

surrounding nominal response IRT models. Formulating the SICM model where the continuous 

ability is measured only with the correct answer results in plausible statistical properties. Like 

Thissen and Steinberg‘s (1984) Multiple-choice (MC) model, the probability of selecting an 

incorrect alternative is non-zero for all incorrect alternatives. In contrast, for models like Bock‘s 

(1972) NR IRT model, the probability of selecting a single incorrect alternative approaches one 

as ability decreases, meaning the probability of selecting any other alternative approaches zero. 

The present specification of the SICM model reflects the logical notion that as ability decreases, 

the examinee is expected to miss the item, with some non-zero probability of selecting each of 

the provided incorrect alternatives. For the SICM model, unlike the MC model, the probability of 

selecting the correct response is always monotonically increasing with respect to ability. This 

feature was also desired as a monotonic relationship between ability and answering the item 
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correctly is more reasonable. In this way, the SICM model addresses the problematic feature of 

the NR IRT model without resulting in the undesired feature of the MC model. 

Consider again Figure 6. In the NR IRT model and the SICM model, unlike the MC 

model which is not pictured in Figure 6, the trace lines for the correct alternative are 

monotonically increasing as ability increases. Also for the SICM model, unlike the NR IRT 

model or the MC model, incorrect alternatives are monotonically decreasing with an upper 

asymptote and thus never intersect. For the NR IRT model, the most likely incorrect answer 

changes as a function of ability. For the SICM model, within a misconception pattern, the order 

of the probability of selecting a given incorrect alternative is dependent upon the misconceptions 

and invariant with respect to ability. The upper asymptote for an incorrect alternative (     is 

 (       |     )

              
 (23) 

where          is the probability of an incorrect answer. Across misconception patterns, 

asymptotes for the incorrect alternatives differ, yet within a pattern, the ratio in Equation (23) 

remains constant at all ability levels.  

If specified as a nominal response categorical bifactor model, the SICM model would 

behave more like the NR IRT model in these graphs. One incorrect alternative would have a unit 

probability of being selected as ability approached negative infinity, and trace lines for incorrect 

alternatives would intersect. If trace lines intersect, the model-predicted incorrect alternative that 

an examinee is mostly likely to select can be different among examinees with the same 

misconception pattern. The present specification of the SICM model is more desirable because it 

fixes the predicted order of incorrect alternatives an examinee will pick based upon their 
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misconception pattern. Therefore, the SICM model was specified to have ability load only onto 

the correct alternative instead of onto all alternatives. 

Ability in the Structural Component of the Model 

In the structural component of the SICM model, the misconceptions are correlated with 

each other, but uncorrelated with overall ability. An alternate specification of the SICM model 

could allow for ability to be negatively correlated with the attributes. In practice, reasons for 

either specification can be provided. If misconceptions and ability are restricted to have a zero 

correlation, having a higher ability does not necessarily imply that an examinee does not have 

certain misconceptions. That is to say, examinees with a high ability may have anywhere from 

all to no misconceptions. Intuitively, one might expect for an examinee with a high ability to be 

more likely to have no misconceptions than to have all misconceptions. However, relationships 

of misconceptions and abilities are domain-specific, and it is plausible to think an examinee with 

a high ability may still have misconceptions. To provide some counterexamples to this notion, 

imagine the continuous construct of interest is language fluency, and a misconception is the 

inability to conjugate verbs. One can imagine a person who is very fluent in speaking, reading, 

and interpreting a language, yet consistently exhibits errors in conjugating verbs.  

Perhaps more concrete is an example of physical, not mental, ability. In the following 

two scenarios, regard a ―misconception‖ to be a lack of a skill. A basketball player who gets over 

ten rebounds and points per game, yet cannot dribble or accurately shoot three pointers, may still 

be a great basketball player (presence of misconceptions does not preclude the athlete from 

having a high overall ability). Conversely, a golfer who can drive the ball over 300 yards and 
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putt accurately, yet cannot chip is likely not a good golfer (presence of a misconception 

precludes the athlete from having a high overall ability).  

Estimating the correlations of ability with each misconception would allow flexibility in 

the model but would increase the complexity of the structural component of the model. As an 

entry point to vet the performance of a model of this type, the more complex model will not be 

estimated. If the simpler model is found to be estimable under reasonable testing circumstances, 

future studies can examine more complex variations of the model.  

A correlation among ability and misconceptions certainly would be needed if 

misconceptions were defined as the opposite of a complete set of skills needed to perform highly 

on a test, but misconceptions should not be defined in this way. Specifying misconceptions for 

the SICM model differs from specifying attributes for a DCM. For DCMs, attributes specified in 

the Q-matrix should fully account for the underlying skills needed to answer the items on the test 

correctly. Otherwise, traits that are unaccounted for would be contributing to the item response. 

The Q-matrix for the SICM model includes ability that functions as an overarching trait needed 

to answer the items correctly, so misconceptions need not represent the lack of all skills required 

to answer the items on a test correctly. In fact, misconceptions should not represent the lack of 

all skills needed to answer items correctly, or they will be redundant with the continuous ability. 

Rather, misconceptions should represent specific errors or beliefs that cause a student to miss the 

item, regardless of their ability level. 

For example, if attributes were delineated for the NR LCDM and then their definitions 

reversed to be estimated along with a continuous ability using the SICM model, it is likely the 

lack of skills would be highly correlated with the overall ability. This is exactly what the 
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example item in Figure 4 did. That main purpose of using that item was to simply illustrate how 

to statistically specify the different models; its purpose was not to be an exemplar for defining 

misconceptions. For examples of items that measure true misconceptions, and for further 

direction on developing those kinds of items, the assessment development projects described at 

the beginning of this chapter are good references.  

Guessing Parameter for SICM 

 One theoretically undesirable feature of the SICM model as expressed in Equation (20) is 

that the probability of selecting the correct response approaches the limit of zero as ability 

decreases. Because multiple-choice items provide alternatives from which examinees choose an 

answer, examinees who do not know the answer can still guess to get the item correct. Guessing 

occurs more frequently in low-ability examinees. These examinees unexpectedly answer difficult 

items correctly, producing aberrant responses that result in misfit for a model that does not 

account for guessing. 

The 2-PL IRT model and the NR IRT model are two commonly used IRT models that do 

not account for guessing. Versions of these models have been created that estimate an additional 

parameter for each item to quantify the affect guessing has on the item. The 2-PL IRT model was 

extended to the three-parameter logistic (3-PL) IRT model (Birnbaum, 1968). The 3-PL IRT 

model adds an additional item parameter to provide a lower-asymptote for the probability of a 

correct response for an item. Although the asymptote is desired theoretically because it reflects 

an empirical theory widely agreed upon —that examinees can guess on multiple-choice items, it 

is difficult to estimate in practice. A widely-used IRT program, BILOG-MG (Zimowski, Muraki, 

Mislevy, & Bock, 1996), puts a prior on the estimator for the guessing parameter in the 3-PL 
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model by default, indicating difficulty in practice of estimating the parameter. Anytime 

additional parameters are added to a model, estimation difficulty increases, but in this case, 

estimation is also impacted because the form of the model is changed. Although named the three- 

parameter logistic model, this model no longer has a logistic form. Similar to the 3-PL extension 

of the 2-PL IRT model, Thissen and Steinberg‘s (1984) MC model extended Bock‘s NR-IRT 

model by including a parameter in the model that represents the probability that an examinee 

does not know the answer and supplies a guess. The 2-PL IRT and the NR IRT model are used 

more commonly than either of their extensions, likely because they are easier to estimate. 

An alternative formulation of the SICM model was developed and will be used to provide 

a lower-asymptote for the probability of a correct response without adding an additional 

parameter to the model. To facilitate a visual comparison of the original and new form of the 

SICM model, recall the original formulation of the SICM model in Equation (20) is  

     
 (       |     )

 (       |     )
 =              

         
          

 . (24) 

The new formulation of the SICM model that accounts for examinees‘ propensities to guess in 

the event they do not know the answer and do not have a line of reasoning that corresponds to a 

misconception measured by one of the possible alternatives is 

     
 (       |     )

 (       |     )
 =                   

          
          

 . (25) 

The difference in Equations (24) and (25) is the ability portion of the model is now 

exponentiated. The intercept of the model is now interpreted as the logit that an examinee with 

an extremely low ability who possesses no misconceptions will choose alternative    . Holding 

other parameters constant, as ability decreases, the value of            
      decreases, and the 
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logit of selecting the correct answer decreases, satisfying the monotonicity assumption for the 

model. As ability approaches negative infinity,            
      approaches 0, meaning the logit 

approaches       
     

          
 , yielding a lower asymptote of the probability of selecting the 

correct response where 

   
   

           
  

        

∑             
     

          
   

   

  (26) 

This correction results in a more realistic model of the item response, without also 

resulting in an increased difficulty in estimation due to an increased number of item parameters 

to be estimated, as is commonly encountered when using the 3-PL IRT model. Analogous 

adjustments can also be made in the 2-PL IRT model and Bock‘s NR-IRT model to provide a 

pseudo-lower asymptote. These models will be the foci of future research.  

Figure 7 illustrates the lower asymptote versions of the SICM model and the 2-PL IRT 

model, denoted as the SICM* model and the 2-PL IRT* model. Throughout the remainder of this 

dissertation, the name of a model specified with a lower asymptote as the SICM model is in 

Equation (25) will be followed by an asterisks (e.g., SICM*) to distinguish between the two 

versions of the models. First, consider the SICM models on the left hand side of the figure. The 

trace lines are for a hypothetical item that has three alternatives. The same misconception is 

measured in each of the two incorrect alternatives. The trace line for the correct answer is 

denoted with + lines. The trace line for the misconception with the higher and lower intercept are 

denoted with upward and downward facing triangles, respectively. These trace lines were for the 

group of examinees who did not have the misconception measured by the alternatives. For the 

SICM model without the lower asymptote, the loading for ability was 1.1 and the intercepts for 
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the incorrect alternatives were -0.5 and 0. For the SICM* model, the loading for ability was 0.55 

and the intercepts were -0.5 and 0.50. Although the parameters from the two models are not 

directly comparable due to the exponentiation, an item for which an examinee with an average 

ability has about a .50 probability of answering the item correctly is illustrated for each model.  

Although for each version of the SICM model an examinee at the upper end of the ability 

scale (  =  3) has almost unit probabilities of responding correctly, the probability an examinee 

at the lower end of the ability scale (  = - 3) answers the item correctly are very different for the 

two models. For the SICM model, an examinee with   = - 3 has almost a zero probability of 

answering the item correctly, but for the SICM* model, the examinee has approximately .35 

probability of answering the item correctly. Note in the SICM* model the upper asymptotes for 

the incorrect alternatives also remain intact; the exponentiation did not impact other features of 

the SICM model previously described. 

The two right hand graphs are of the 2-PL IRT and 2-PL IRT* models to further illustrate 

the use of this type of lower asymptote. The trace lines for the incorrect responses in the 2-PL 

IRT models are denoted with x lines. As in the SICM model, the correct alternative has a non-

zero probability of being selected by examinees with low abilities, resulting in the response 

probabilities for the lower ability extremes being very different in the two versions of the model.  

SICM Framework: Concluding Remarks 

It is important to acknowledge that the SICM model exists within a specific mathematical 

framework, not as a fixed mathematical equation. Although the framework has a very distinct 

purpose, the mathematical equation may be altered to more closely adapt to the context within 

which the model may be applied. In applications of the SICM model, specific empirical theories 
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may drive the statistical specifications of the model. For example, there may be documented 

literature or empirical evidence that supports the notion that misconceptions are correlated to 

overall ability in a given domain, and the specification of the SICM model may change to allow 

the continuous ability and the categorical misconceptions be correlated in the structural 

component of the model. The discussion in the previous section sought to highlight 

considerations made in developing the model in order to bring those considerations to the 

forefront of any subsequent practical application of the model.   

Estimation of the SICM Model 

The SICM* model was estimated using a Markov Chain Monte Carlo (MCMC) 

algorithm written in Fortran. Using the specification of the model by Equation (20), the SICM 

model is estimable using Mplus Version 6.1 (Muthén & Muthén, 1998-2010). However, Mplus 

cannot estimate the SICM* model with the exponentiation, so writing a unique estimation 

algorithm using Fortran was necessary. Other advantages to using MCMC methods in Fortran 

include providing a more efficient way to estimate the model parameters in comparison to 

Marginal Maximum Likelihood estimators from Mplus. The following sections detail the 

specific steps of the algorithm used to estimate the SICM* model. 

MCMC Estimation Algorithm 

Using the       matrix of   examinees responses to   observed items (X), the goal is to 

estimate the parameters that define the SICM* model (i.e., a set of item ( ) and a set of 

structural (Γ) parameters) and the parameters that describe latent traits of the examinees (i.e., the 

misconception patterns (α) and examinee abilities (θ)). To estimate these parameters, a Bayesian 

technique that employees an MCMC estimation algorithm called Gibbs sampling was 
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implemented to sample from the posterior distributions for the parameters. The posterior 

distribution is the conditional probability distribution of all unobserved variables, given the 

observed variables. From the posterior distributions, quantities of interest for describing 

parameter estimates, such as means and variances, can be determined. Using Bayes Theorem, the 

posterior distribution of the parameters of the SICM* model, given the observed data, are 

defined as 

                               
                         

    
  (27) 

where               is the probability of the data, given the model parameters, and defined by 

the likelihood function for the SICM* model, and             is the joint probability of the 

model parameters. The term      is the marginal distribution of the observed data, often 

referred to as the normalizing constant. In theory, estimates for each individual parameter can be 

determined by sampling directly from this posterior distribution. The posterior distribution of the 

SICM* model is made complex by its multivariate nature and its composition of both continuous 

and discrete variables. Direct sampling from the SICM* model‘s non-standard posterior 

distribution would be difficult, if not impossible. 

MCMC simulation methods can be used when it is not possible or is inefficient to sample 

directly from the posterior distribution, as is the case for the multivariate posterior distribution in 

Equation (27).  MCMC estimation methods repeatedly draw a random value from an 

approximate posterior distribution. Each draw is evaluated by considering the likelihood that the 

draw came from the target posterior distribution. The evaluations allow for adjustments to be 

made for the approximate distribution until it converges to a stable target distribution. For 

MCMC estimation, the draws that are accepted or retained at each of the   stages of sampling 
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represent entries in a Markov chain. A Markov chain is a sequence of T random variables, 

          , such that the distribution for any variable of the sequence at stage        is solely 

dependent upon the variable in the previous step           

Metropolis-Hastings Algorithm 

The Metropolis–Hastings algorithm is an MCMC method for governing the values that 

are accepted for the Markov Chain by defining a transitional kernel that will direct the chain to 

converge to the target distribution for a large  . The algorithm defines the probability the 

candidate parameter proposed at iteration   (    is accepted (   will be set to equal     over the 

previous value of the parameter at iteration     (   will be set to equal        as  

         (28) 

where   equals 

                  
        

  

                   
      

     
 (29) 

where             is the joint posterior distribution as defined in Equation (27). The density 

            is the distribution given    equals    
  and all other parameters are held constant; 

similarly,               is the distribution given    equals    
    and all other parameters are 

held constant. Because the normalizing constant for             is a function of the observed 

data, and not a function of the estimated parameters, it is the same for              or 

             .  Therefore, the normalizing constant can be factored from this equation and 

does not need to be known. To estimate the model parameters, using this algorithm, it is 

sufficient to know that the posterior distribution is proportional to the product of the conditional 

probability of the data given the model parameters and the joint probability of the parameters.  
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This proportional relationship is expressed as 

                                                        (30) 

Therefore, Equation (29) simplifies to 

                                    

                                          
 (31) 

where                is the probability of the data, given the model parameters, and 

           is the joint probability of the model parameters.    (·) indicates the probability 

given    equals    and all other parameters are held constant; similarly      (·) is the probability 

given    equals      and all other parameters are held constant.  

The term            is the candidate generating density, the density of the distribution 

from which the candidate parameter      is drawn given the previous value of the parameter 

      . The term            is the probability density of the previous parameter given the value 

of the candidate parameter. For some parameters in the SICM* model (i.e., item parameters), 

non-symmetric proposal distributions are used. These non-symmetric distributions are used due 

to boundaries placed on the parameter space. For example, main effects for misconceptions 

cannot be negative. Experience with MCMC algorithms suggest that parameter boundaries make 

estimation difficult due to symmetric proposal distributions having a large probability mass 

occur at the boundary. The large mass causes more proposed values to be at the boundary than a 

non-symmetric distribution, slowing convergence of the algorithm. For estimation of the SICM* 

model, when the proposal distribution was not symmetric, a moving window proposal 



67 

 

 

 

distribution was used (Henson & Templin, 2003). A moving window proposal distribution draws 

   from a uniform distribution with bounds UB and LB (        ) where 

      (     
 

 
  )        (     

 

 
  )  (32) 

The parameter   controls the width of the sampling interval. The parameters   and   constrain 

the sampling intervals to lower and upper boundaries, respectively. The value of            is 

calculated as the height of the density of the uniform distribution         : 

           
 

     
  (33) 

The value of            is calculated as in Equation (33) where LB and UB instead equal 

      (   
 

 
  )        (   

 

 
  )  (34) 

The values of   that are accepted at each of the   stages,           , comprise the 

Markov chain. Because the chain may require initial stages to find the target posterior 

distribution, the first   entries of the Markov chain are discarded. Stages 1 thought   are 

regarded as the burn-in period, where the value of   is large enough for the chain to reach 

stationarity. Stationarity is reached when the chain has converged to the target posterior 

distribution. Stages     through   provide samples from the target posterior distribution to 

accurately describe its shape and moments.  

The Metropolis-Hastings algorithm eliminates the need to know the complete posterior 

distribution, which significantly reduces computation. Gibbs sampling can further reduce 

computational demands of complex integration. Gibbs sampling is a special case of the 

Metropolis-Hastings algorithm that generates random values by sampling from the distribution 
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of a single parameter conditional on the values of all other parameters. This sampling method 

eliminates the need to integrate over the joint posterior distribution to yield marginal 

distributions for each parameter of interest.  

Using Gibbs sampling, each parameter is updated individually, meaning the marginal 

distribution       of a parameter replaces the joint posterior distribution of all model parameters 

           in Equation (31). When updating the     parameter in a set of   model parameters, 

the value of r expressed in Equation (29) simplifies to 

          
       

 
         

        
      

      
  

          
       

   
         

        
        

    
    

 (35) 

where      is the likelihood of the model, where the first     parameters have already been 

updated during the      iteration          
 ), and the     through     item parameters have not 

yet been updated and retain their values from the         iteration (        
        The term 

    
   is the marginal distribution, or the prior distribution, of the proposed parameter. To begin 

the estimation process, starting values are assigned to every parameter and prior distributions of 

each parameter in the model are specified so that all conditional distributions are known. For 

estimating multivariate models, the posterior distribution of each parameter is updated at each 

stage and each parameter has its own Markov chain.  

To illustrate this procedure, consider the     item parameter,   , for item  . The 

probability a newly proposed parameter at stage   (  
   is accepted over the previous value of 

the parameter at stage     (  
   

) is defined in Equation (28) where   equals 
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The term ∏  ∏  
         

[       ] 
            

       
 
         

     
    defines the likelihood of 

observing all   examinees‘ responses to item   given each examinee‘s attribute pattern, ability, 

and the set of item parameters. Calculating the full likelihood of the model, a process that would 

use a product across all items, is redundant. The terms in the likelihood that correspond to items 

other than the current item will be equal and  hence will not influence the value of the expression 

due to factorization (i.e., they cancel in the Metropolis-Hastings ratio). The item response 

probability (          
   is a function of the set of item parameters ( ).  When updating the     

item parameter,     parameters have already been updated during the      iteration (        
 ). 

In contrast, the     through     item parameters have not yet been updated and retain their 

values from the         iteration (        
       The term  (  

 ) is the prior probability for the 

proposed value of    for the      iteration; similarly,     
     is the prior probability for the 

value of    at the          iteration. If the proposal value is accepted,   
    

 
; if it is 

rejected,   
      

    Accepted values,   
      

        
 
, comprise the Markov chain.  

Gibbs Sampling Steps for Individual Parameters in the Model 

To begin the estimation algorithm, starting values for each parameter were chosen at 

random. The choice of starting value was arbitrary and did not impact the final destination of the 

chain. In each stage, the algorithm first updated all item parameters one-by-one, then updated the 

structural parameters individually, and finally updated the examinee parameters. For each type of  

parameter, the following sections detail the steps of the algorithm by defining the value of   from 
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Equation (28), providing the distributions from which candidate parameters were drawn 

           , and specifying the prior distribution       of the parameter used for estimation.  

Item Parameters         

Item parameters included the intercepts        
 , misconception main effects for an 

attribute a (          ), the interactions between pairs of misconceptions a and b present on the 

same alternative              , and the main effects for ability        
 . For item parameters the 

value of r can be found in Equation (36). 

Intercepts 

For the intercept corresponding to each incorrect alternative,       

  was drawn from 

        

       . An (improper) uniform prior across the space of real numbers was used. An 

uninformative prior was used to have little impact on the estimation process. Uninformative 

priors also make the MCMC estimator parallel to marginal maximum likelihood estimators. 

Thus, the choice of uninformative priors for the item intercepts, and other item parameters, 

provides a bridge between the two estimation techniques. 

Main Effects for Misconceptions 

For the main effect for a misconception a present in an alternative,          
  was drawn 

from the moving window proposal distribution (         
           ), with UB and LB as 

defined in Equation (34). For this equation,               
   ,   = .1,   = 0 (defining a lower 

bound), and   = 10,000 (an ill-defined lack of an upper bound). An (improper) uniform prior 

across the space of real numbers was used. 

Interactions of Misconceptions 
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For interactions of misconceptions that occur when an alternative measures two 

misconceptions (a and b), the proposal was drawn from             
           as defined in 

Equation (34). For this equation,     ,    = .1,             
   , and   = 10,000 (an ill-defined 

lack of an upper bound).  Here,          
    denotes the smallest misconception main effect for 

alternative    . This specification restricted the absolute value of the lower bound of the 

interaction to be less than the main effect for any misconception present in that alternative. This 

restriction ensured the monotonicity assumptions for misconception main effects were satisfied.  

An (improper) uniform prior across the space of real numbers was used. 

Main Effects for Ability  

For the loading for ability for each item, the proposal was drawn from       
           

as defined in Equation (34). For this equation,      =       
   ,    = .1,   = 0 (defining a lower 

bound), and   = 10,000 (an ill-defined lack of an upper bound). An (improper) uniform prior 

across the space of real numbers was used. 

Structural Parameters 

The full structural model includes    structural parameters, which model the probability 

any profile of misconceptions are present in the sample. Using a log-linear model, these 

parameters include an intercept,   main effects, and (  
   

 )  -way interactions, where 

         . Consider a given structural parameter,   ,  in the set of all G structural parameters  

( ). The probability   
  was accepted over    

    is defined in Equation (28) where the value of  
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  is now  

  
∏             

       
 
         

      
        

      
      

  

∏             
       

   
         

      
        

        
    

    
  (37) 

The term    is the marginal probability that examinee   has attribute pattern  . The proportion of 

examinees with pattern  ,    , is a function of the set of structural parameters ( ). The set of 

parameters         
  have already been updated in this stage, and          

    have not.   

For each of the   structural parameters     was drawn from           . An (improper) uniform 

prior across the space of real numbers was used. 

Examinee Parameters          

The SICM model has two kinds of examinee parameters, the examinee attribute pattern 

(    and the examinee ability estimate    .  

Examinee Attribute Pattern  

The acceptance probability for a proposed value for an examinee‘s ability,   
  is a 

function of   defined as 

  
∏ ∏   

         

[       ] 
         

       
      

      
  

∏ ∏   
         

[       ]      
   

 
       

        
    

    
 (38) 

The term ∏ ∏   
         

[       ] 
        

     is the likelihood of observing examinee  ‘s responses to all 

  items, given examinee  ‘s attribute pattern, ability, and the set of current item parameters    , 

which have already been updated in stage  .  

The proposed attribute pattern for each examinee   
  was drawn from a multivariate 

Bernoulli distribution defined by the proportion of examinees having each attribute pattern at the 
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previous step,    (  
 )  where   

  was set by the parameters of the structural model earlier in 

stage  . This distribution also served as an empirical prior distribution for   
 , mirroring common 

practice in factor analytic, mixed effects, and item response models estimated with MCMC. 

Because   
   was drawn from the prior distribution,     

    cancelled with     
    

    , and 

    
      

   cancels with     
      simplifying Equation (38) to a function of only the item 

response likelihood of an examinee.  

Examine Ability Estimate 

Similarly, the acceptance probability for a proposed value for an examinee‘s ability,   
  

was a function of   defined as 

  
∏ ∏   

         

[       ] 
         

       
      

      
  

∏ ∏   
         

[       ]      
   

 
       

        
    

    
 (39) 

The ability for each examinee   
  was drawn from     

       . A standard normal,       , prior 

was used (i.e.,     
   

 

√  
     

    
   

 
  to set the scale for ability.  

Conclusions 

 In this chapter, a new psychometric model was presented that provides multidimensional 

feedback to students in addition to an overall ability estimate. This multidimensional feedback is 

in the form of classifications of examinees according to the misconceptions they have. A 

practical need for the model was demonstrated, the statistical specifications of the model were 

delineated, considerations when applying the model were discussed, and the estimation 

procedure for the model was presented in step-by-step detail. The next chapter examines whether  
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the estimation algorithm accurately estimates the parameters of the model in a simulated context.  

The final chapter will analyze an existing data set to demonstrate an application of the model in 

practice.
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CHAPTER 4 

SIMULATION STUDY  

 Chapter 2 provided a review of some existing psychometric models from item response 

theory (i.e., Rasch, 2-PL, NR IRT, and MIRT models) and diagnostic classification modeling 

(i.e., LCDM, C-RUM, and NR-LCDM). The delineation of these models was followed by 

Chapter 3 which specified a new psychometric model: the Scaling Individuals and Classifying 

Misconceptions (SICM) model, which combines features from a unidimensional NR IRT model 

and the NR LCDM. The chapter illustrated the dual-purposes of the model: scaling examinees 

and diagnosing misconceptions. Chapter 3 also detailed the estimation procedure for the model. 

The potential usefulness of the SICM model depends on its statistical properties and 

estimation capabilities, which have not yet been examined. The present chapter outlines a 

simulation study to assess the estimation algorithm for the SICM model. The estimation accuracy 

of its item, examinee, and structural parameters and the reliability of examinee parameter 

estimates will be evaluated. 

Simulation Study Purpose 

 The SICM model is a complex model. The complexity is due to the large number of 

parameters, and also to the different types of parameters (i.e., continuous and categorical), that 

are estimated for the model. A simulation study is a study in which the researcher specifies the 

model parameters and examinee parameters so their true values are known. Using these known 

values, a sample of data is generated, and then the model is estimated using the data set. The 

study can evaluate how well the model can estimate the parameters because the known true 
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values of each parameter can be compared to the estimated values. The goal of this simulation 

study is to answer open questions about the SICM model that must be addressed before the 

model can be used in practice. For example, information needs to be gathered about the 

performance of the model under typical testing situations. To develop an assessment to be 

analyzed by the SICM model, practical limitations of the model must be known. Researchers 

need to know, for example, how many items or examinees are needed to estimate a given number 

of misconceptions along with an overall ability. Also, the interplay of a continuous ability and a 

set of categorical misconceptions within a single model must be better understood. Specifying 

continuous and categorical variables in the measurement part of a nominal response 

psychometric model has never been tried in this manner before. We need to understand how one 

type of variable will affect the estimation of the other within the model (e.g., whether the effect 

of one type of variable will dominant or mask the other‘s effect). 

Simulation Study Design 

The simulation study was designed to mirror both ideal and realistic situations under 

which the SICM model might be used. In ideal situations, the model has an abundance of 

information with which to estimate the model (e.g., many items, many examinees, strong effects 

of parameters). Under these conditions, the SICM model should readily recover the true values 

of the parameters. These conditions afford the opportunity to determine if the estimation 

algorithm was accurate and to glean information about the model when used on carefully 

constructed tests with large samples. Realistic conditions tried to emulate a variety of testing 

scenarios that may be found in practice (e.g., limited number of items and test-takers, range of 
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weak to strong effects).  These conditions provided information about settings that may be 

familiar to researchers seeking to apply the model on a smaller scale.   

Table 3 provides an outline of the design of the simulation study. The study had five 

manipulated factors: sample size, test length, number of misconceptions, magnitude of main 

effects, and correlation among attributes. The design fully crossed the 2 attribute, 2 test length, 2 

sample size, 4 main effect, and 2 correlation conditions. Fifty replications were made for each of 

the 64 conditions. The following sections provide further details of the simulation conditions. 

Test Length 

 Test lengths of 30 and 60 items were used. The test length of 30 items was considered to 

be an average test length and was a test length of interest to current research projects in this field 

(e.g., the Diagnosing Teacher‘s Multiplicative Reasoning Project; Izsak et al., 2010). The long 

test length of 60 items was used in order to investigate a test length that provided ample data for 

the estimation of the attribute profiles and examinee ability. This length is comparable to an end-

of-course test (EOCT) that is federally mandated for states to administer (e.g., state of Georgia 

Mathematics I and II EOCT).  

The length of the test influences the number of times an attribute can be measured on a 

given test. For this study, each simulated item had four alternatives. Each alternative was 

specified to measure one or two attributes (or misconceptions); therefore, no three-way or other 

higher-order interactions were modeled. A balanced Q-matrix was used, meaning individual 

attributes were measured with the same number of alternatives and items. For the 3-

misconception, 30-item conditions, each attribute was measured by 34 alternatives in 21 items. 

For this condition, on average, 2.1 attributes were measured per item and 1.13 attributes were 
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measured per alternative. Table 4 contains the Q-matrix that was used for this condition. For the 

3-misconception, 60-item conditions, every item in the Q-matrix in Table 4 appeared twice, 

meaning attributes were measured by twice as many alternatives and items, but the average 

attribute measured per item and per alternative remained the same.  

For the 6-misconception, 30-item conditions, each attribute was measured by 17 

alternatives in 11 items. For this condition, on average, 2.2 attributes were measured per item 

and 1.13 attributes were measured per alternative. Table 5 contains the Q-matrix that was used 

for this condition, although the entries for Alternative D are not displayed as they were in Table 

4. For every item, D was the correct answer and was only measured by the continuous ability 

(i.e., the entry for the θ column was the only non-zero entry in each row corresponding to the 

correct answer). As before with the previous pair of test length conditions, when the test length 

was doubled (in the 6-misconception, 60-item condition) every item in the Q-matrix in Table 5 

appeared twice. Again, this specification doubled the number of times each misconception was 

measured, but maintained an equal complexity of the items for the 6-misconception conditions. 

Specifying the Q-matrices in this way prevented confounding the effects of longer tests with the 

effects of more complex Q-matrices.  

Sample Size 

Templin and Bradshaw (under review) recommended that the LCDM with dichotomous 

data be used instead of the NR LCDM if samples of less than 1,000 examinees are available. 

Because the SICM model estimates a continuous ability in addition to the parameters estimated 

in the NR LCDM, this recommendation that the NR LCDM be used only for large-scale 
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applications is likely to apply for the SICM model as well. For that reason, larger samples of 

3,000 and 10,000 examinees were simulated.  

Simulations from nominal response IRT models also provided some information for 

sample size considerations. DeMars (2003) found when estimating the NR IRT model with a  

sample of 2,400 examinees, the root mean squared error (RMSE) values were less than 0.10 for 

item parameters. These results came from items with three alternatives, and DeMars (2003) 

acknowledged that because many factors, like the number of alternatives per item, play into the 

specification of the model and test, it is difficult to provide general recommendations for sample 

size requirements. de Ayala and Sava-Bolesta (1999) suggest the ratio of the sample size to the 

total number of item parameters on the assessment should be at least 10:1 for the nominal 

response IRT model. Because there are a larger number of item parameters per item for the 

SICM model than for the NR IRT model, this ratio becomes difficult to reach. Even if 

alternatives have simple structure, meaning each incorrect alternative measures one 

misconception, the model has       parameters per item and          total item parameters. 

Namely, each item has        intercepts, one ability main effect, and        misconception 

main effects. The item design for the test may also be more complex; the model allows an 

alternative to measure up to   misconceptions. The number of parameters for an item then must 

include up to          ) misconception main effects, and       ( 
 
) misconception two-way 

interactions. Higher-order interactions can also be included, but were not for this simulation. 

For the assessments in this simulation, each incorrect alternative measured either one or 

two misconceptions and    = 4 (for every item). The number of item parameters for the 30-item 

conditions were 240 and 256, for the 3- and 6- attribute conditions, respectively. The number of 
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item parameters for the 60-item conditions were 474 and 490, for the 3- and 6- attribute 

conditions, respectively. The 3,000 sample supplied at least a 10:1 item parameter-to-examinee 

ratio for the 30 item test, and the 10,000 sample did so for the 60 item test.  

In practice, for a national company seeking to diagnose misconceptions a sample size of 

3,000 examinees seemed reasonable. The sample of 3,000 also approximates the number of 

students a medium-sized county may have per grade level for implementing county-wide 

benchmark testing. Although the larger sample of 10,000 was much lower than the number of 

students per grade level per state, it was a larger sample that would offer results about the utility 

of the SICM for large-scale assessment, such as a state-wide type of assessment.   

Number of Attributes 

Two attribute-number conditions were used: a three attribute and a six attribute condition. 

Three and six attributes are within a usual range of attributes found in current applications of 

IRT-based DCMs (Rupp & Templin, 2007).   

Absolute and Relative Magnitude of Main Effects 

Of particular interest in estimating the SICM model was the interplay between the overall 

ability and the misconceptions. In the simulation study, the strengths of the continuous trait and 

categorical traits were varied systematically. The relative and absolute magnitudes of the main 

effects for these latent traits were manipulated to create four conditions. The values chosen were 

selected to mirror what might be found in practical applications, based upon previous work with 

the NR LCDM (Templin & Bradshaw, under review). For two conditions, the relative 

magnitudes were different. The first condition was one in which ability had a large effect 

(   drawn from a uniform distribution,         ) and misconceptions had a small effect 
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(       drawn from a uniform distribution,            ). In a sense, a more extreme specification 

in this manner may suggest a scenario where the nominal response IRT model would be more 

appropriate. In the second condition, misconceptions had a large effect (       drawn from 

            ) and ability had a small effect (   drawn from         ). A more extreme 

specification of this sort may suggest the NR-LCDM would be more appropriate. For the 

remaining two conditions, the relative magnitudes were comparable, but two different absolute 

magnitudes were tested. For the third condition, both ability and misconceptions had small 

effects, providing a condition that should to be difficult to estimate. For the last condition, both 

had large effects, providing a condition that should be more easily estimated.  

Figures 8 and 9 illustrate the behavior for a sample item from all four of these conditions. 

In this example item, the same misconception is measured by incorrect Alternative A  (dark gray 

trace line) and Alternative B (light gray trace line). The main effect for the misconception is 

always larger for A than B. The trace lines under these conditions are displayed for examinees 

who do not and do possess the measured misconception in Figures 8 and 9, respectively. In 

Figure 8, which depicts a situation in which examinees do not possess the misconception, 

conditions do not vary as the absolute magnitude of the main effects for the misconception 

varies. 

Correlations among Attributes 

Generally, we expect latent traits to be correlated. The degree to which misconceptions 

are correlated is an empirical question and may vary in different contexts. For the simulation 

study, structural parameters were modeled with a log-linear model in which parameters were set 

to values that yielded two different tetrachoric correlations between all pairs of misconceptions. 
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For one condition, the correlation was .50, reflecting a reasonable hypothesis for the level of 

correlation we may expect to find empirically. The second condition used a lower correlation of 

.25. Considering the extreme case where attributes were nearly perfectly correlated may aptly 

illustrate the impact of correlated attributes. If the attributes were almost perfectly correlated, 

then all examinees would be expected to be members of the class that possesses no 

misconceptions or the class that possesses all misconceptions, as the misconceptions would not 

be distinguishable from one another. Conversely, the less correlated misconceptions are, the 

more likely it is for all attribute patterns to be plausible. Estimation is expected to improve when 

all attribute patterns that are posited by the model exist and have substantial membership. A 

correlation of .25 was hypothesized to provide a more favorable scenario under which to 

estimate the model.  

 Data Generation  

Data were generated with a program written in Fortran. For all conditions, item intercept 

parameters were randomly drawn from a uniform distribution,        , and item two-way 

interactions were randomly drawn from a uniform distribution,         . Main effects and 

structural parameters were specified as described above. Ability parameters were sampled from a 

standard normal distribution (i.e.,       ).  

Estimation 

Identification of the model was described in Chapter 3, as were the specific steps of the 

estimation algorithm. The estimation procedure was set to iterate for 10,000 stages, with a burn-

in period of 5,000 stages. The starting value for each parameter was set to its true value. By 

allowing the chain to start at the mean of the target posterior distribution, the estimation 
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algorithm reached stationarity more quickly. The purpose for choosing these values was to 

reduce the time each algorithm took to run and thus allow for more replications in the study. 

Evaluation of Simulation Study Results 

The performance of the SICM model was evaluated with respect to convergence, the 

accuracy of the recovery of parameters, and the reliability of the examinee parameters. 

Convergence was assessed by visually inspecting plots and by calculating one-chain Gelman and 

Rubin (1992) diagnostics using the CODA package (Plummer, Best, Cowles, & Vines, 2006) in 

R (R Development Core Team, 2011). The accuracy of the model parameter estimates was 

evaluated with three measures: bias, root mean squared error (RMSE), and Pearson correlations.  

These indices provided different, yet complementary, information about the accuracy of the 

estimates. The standard errors of the estimates were also examined and are provided for the 

reader, but to avoid repetitiveness, results will not be discussed with respect to the standard 

errors because the RMSE also captures the variability of the estimate. The classification accuracy 

produced by each condition was examined with the overall correct classification rate (CCR) and 

with Cohen‘s kappa. These measures were used to examine classification accuracy with respect 

to individual misconceptions and with respect to the whole pattern of misconceptions. The 

reliabilities of the examinee parameters (i.e., examinee ability and classifications) were 

calculated using a test-retest type of reliability coefficient. The following sections define and 

explain these evaluation criteria in further detail.  

Convergence 

To assess the convergence of each MCMC chain, time series plots and density plots of 

the posterior distribution of the estimated parameters provided visual indicators of whether or not 
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the chain had converged. If the chain converged properly, time series plots showed the parameter 

estimate narrowing in on a certain value and not transitioning to values far from the estimated 

value in the later part of the chain. Densities of the posterior distribution were plotted to evaluate 

the symmetry of the distribution. If the estimate for the parameter is being determined by the 

mean of the posterior distribution (as is the case for this study, which will be described in further 

detail in the next section), density plots of the posterior distribution should be symmetric. A 

skewed posterior distribution indicated the mean of the distribution was biased. To statistically 

assess convergence, a variation of Gelman and Rubin‘s (1992) test statistic ( ̂  was used. When 

multiple MCMC chains are run, this statistic compares the within and between variances for 

separate Markov chains to determine if the chains are mixing well, a feature requisite for the 

separate chains to converge to the same value. Separate chains were not run for this simulation 

study; however, to evaluate whether the first and second halves of the single chain were reaching 

the same value,  ̂ was calculated as if each half was a separate chain. The value of this statistic 

can be interpreted as the potential scale reduction factor of the confidence interval for an 

individual parameter if the chains are never stopped; thus an  ̂ value of 1 indicates running the 

chain longer will not decrease the width of the confidence interval. Gelman and Hill (2007) 

suggested a value of  ̂ < 1.1 as a cut-off to determine if the chains have run long enough, and a 

value of  ̂ < 1.5 as a more liberal cut-off for determining convergence (p. 358).  

Accuracy of Parameter Estimates  

The accuracy of the parameter estimates was examined using the bias of the parameter 

estimate, the root mean squared error of the estimate, and the correlation between the estimated 

and true values of the parameter.  
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Bias  

Bias is a measure that reflects the signed difference in the estimated value of the 

parameter and true value of the parameter. The bias of a given parameter estimate,  ̂, is 

   ̂     ̂    (40) 

where    ̂  is the expected value of the parameter estimate and    is the value of the true 

parameter. The larger the magnitude of the bias, the further away the estimated value of the 

parameter is from the true value. The sign of the bias reflects whether the parameter is being 

over- or under-estimated by the model. Specifically, a negative bias indicates the parameter is 

being under-estimated.  

The value of    ̂  can be determined is different ways. For this study, the Expected A 

Posteriori (EAP) estimate of  ̂ was used. The EAP estimate is the mean of the posterior 

distribution, which was approximated by taking the mean of the values of the Markov chain after 

  burn-in stages: 

   ̂    ∫   ̂        ∑
 ̂ 

   

 

     

 (41) 

Although not used in this study, an alternative to the EAP estimate is the Maximum A Posterior 

(MAP) estimate, which uses the mode of the posterior distribution instead of the mean to 

determine the estimate. Both EAP and MAP estimates will converge to Maximum Likelihood 

estimates if non-informative priors are used in the MCMC algorithm.  

Root Mean Squared Error 

 The root mean squared error (RMSE) is a measure of estimation accuracy influenced by 

both the bias and the variance of the estimate. The mean squared error (MSE) is the expected 
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value of difference in the estimate and true parameter values, which can be decomposed into the 

sum of the variance of the estimate and the squared bias of the estimate: 

      ̂      ̂           ̂      ̂   (42) 

The RMSE is the square root of the MSE, for which the expected value of the squared 

differences in the true and estimated parameter is approximated by taking the square root of the 

average of the square distances across replications: 

       ̂  √      ̂  √    ̂       √
∑     ̂      

   

 
 (43) 

where   equals the total number of replications of the estimation. In this study,   = 50.  

 The RMSE does not offer information about the direction of the estimation inaccuracy as 

the bias does, but instead offers information about the variability and inaccuracy of the estimated 

parameter in an absolute sense. An increase in RMSE reflects an increase in the expected value 

of the difference in the true and estimated parameter values, which indicates a decrease in 

estimation accuracy.  

Pearson Correlation 

The Pearson product moment correlation coefficient was used to describe direction and 

strength of the linear relationship between the estimated and true values of the parameters. 

Specifically, the correlation is calculated as: 

   ̂    
∑   ̂   ̂ 

 
              

√∑   ̂   ̂  
  

     √∑        
  

     

 
(44) 

A strong positive correlation between the estimated and true parameter indicates that the 

estimation process is able to accurately recover the true value of the parameter.  
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Standard Error 

The standard error of the estimate is the standard deviation of the posterior sampling 

distribution. This value is estimated by taking the standard deviation of the values of the Markov 

chain after K burn-in stages:  

    ̂    √             √ ∑
 ̂ 

 

   

 

     

  ∑
 ̂ 

   

 

     

   (45) 

The standard error provides a measure of how variable the estimate is. Large standard deviations 

indicate highly variable estimates. Using the standard error, credible intervals can be calculated 

to determine the posterior probability the true value of the parameter lies within a given range of 

values. For example, the following equation approximately describes the interval within which 

the true value of   lies, with a 95% probability: 

  ̂      ̂           ̂      ̂         ). (46) 

As the standard error decreases, this credible interval decreases and the location of the true value 

of the parameters becomes more precise.   

Accuracy of Examinee Classifications 

The classification accuracy was examined with the correct classification rate (CCR) and 

with Cohen‘s kappa.  For each examinee, the attribute pattern classification was assigned by 

determining the most likely class, given the EAP estimate for classification. As with item 

parameter estimates, the EAP estimates for classifications were approximated by the mean of the 

values of the Markov Chain. The attribute pattern is a multivariate Bernoulli variable such that 

the mean of its posterior distribution is a vector of    probabilities ( ( ̂     ) for               
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           , providing the probability that an examinee possesses each possible attribute 

pattern. Each examinee was assigned to have the overall attribute pattern   , where  

        ̂                      ̂    ̂   . (47) 

Examinees were classified according to each individual attribute. That is, an examinee 

either possessed ( ̂      or did not possess ( ̂      each misconception. Taken 

individually, misconceptions are Bernoulli variables with a mean that represents the probability 

that an examinee possesses that misconception. If    ̂      > .50, an examinee was classified 

as having that misconception. The classification of individual attributes is parallel to the attribute 

pattern classification of selecting the category (i.e., pattern) for which  ( ̂     )   Here only 

two categories exist, so     ̂     > .50 if and only if     ̂     >    ̂    .  

Correct Classification Rate 

The CCR is the proportion of estimated classifications that are accurate (i.e., the 

estimated classification equals the true classification). The CCR for the attribute pattern is the 

number of examinees who were assigned the correct attribute pattern divided by the total number 

of examinees. For each individual attribute, the CCR was also calculated by dividing the number 

of examinees who were correctly classified according to that attribute (i.e.,  ̂   =    ) by the 

total number of examinees.  

Cohen’s Kappa 

Cohen‘s kappa is an index used to describe the level of agreement between two 

classifications relative to the level of agreement that would be reached by chance. In this setting, 

the two classifications are the estimated and true classification. The level of agreement that 
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would be reached by chance is the calculated as if the estimated and true classification were 

statistically independent. 

For the attribute pattern, statistical independence means that the joint probability an 

examinee has a matching estimated attribute pattern ( ̂  )  and true attribute pattern (   ) equals 

the product of the estimated ( ̂ ) and true (  ) marginal probabilities of attribute pattern 

possession. For determining Cohen‘s kappa for attribute pattern agreement, a         matrix is 

formed. In this matrix, the rows represent estimated attribute patterns, columns represent true 

attribute patterns, and the cell entries are joint probabilities of    and  ̂ . Cohen‘s kappa is 

typically denoted as (e.g., Agresti, 2007) 

κ = 
∑    ∑      

  ∑      
. (48) 

The term ∑    is the sum of the diagonal entries of the matrix. In terms of the attribute pattern, 

∑    ∑    ̂     
  

   . (49) 

The value of this term increases as the accuracy of classification increases, which in turn 

increases the value of Cohen‘s kappa. Thus, larger values of Cohen‘s kappa reflect greater 

classification accuracy. The term ∑       is the sum of the expected value of each cell in the 

diagonal of the matrix under the assumption of independence.  In terms of the attribute pattern,  

∑       ∑   ̂      
  

   . (50) 
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Using this notation to contrast Cohen‘s kappa with the CCR, the average correct  

classification rate across all attribute patterns can be expressed as 

        
∑    ̂       

   

  
  (51) 

Interpreting the meaning of 0 for each of these indices facilitates contrasting the two 

measures. If the CCR equals 0, no examinee was correctly classified. A zero value for Cohen‘s 

kappa would reflect an estimated classification what would be expected merely by chance. Both 

the CRR and Cohen‘s kappa have an upper bound of 1, which indicates perfect agreement of 

classification for both measures. 

Cohen‘s kappa was calculated similarly for marginal attribute possession agreement. In 

this case, the matrix was a       matrix, where rows were estimated attribute possession ( ̂   

  or  ̂       columns were true attribute possession (       or       ), and cell entries 

were again joint probabilities.  

Reliability of Examinee Estimates  

In testing situations, the reliability of an estimate can be conceptualized as the 

consistency of an examinee‘s estimate over repeated testing occasions using parallel tests. In this 

study, two types of examinee estimates were considered: a continuous ability and a set of 

categorical misconceptions. As in Templin & Bradshaw (in press), reliability for the examinee 

estimates was conceptualized as a test-retest reliability influenced by the variability of the 

posterior distributions. Calculating reliability in this way placed reliability on the same metric for 

both types of examinee estimates and allowed for comparisons among the reliabilities for the 

continuous and categorical estimates.  
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Examinee Ability Estimates 

To simulate a test-retest situation, two independent draws were made from the posterior 

ability distribution for each examinee. For an examinee‘s ability estimate, the mean of the 

posterior distribution  ̂  and the standard deviation of the posterior distribution     ̂   specified 

the parameters of the normal distribution from which two draws were made. From Templin and 

Bradshaw (in press), the steps for calculating the reliability coefficient for the examinee ability 

parameter were 

1) Randomly draw a value     from    ̂      ̂    for each examinee. 

2) Record these values in vector   , which represents the examinee estimates for Test 1. 

3) Randomly draw a second value     from    ̂      ̂  ) for each examinee.  

4) Record these values in vector   , which represents the examinee estimates for Test 2. 

5) Calculate the Pearson correlation of    and   :           

Although              for an individual examinee, the test-retest correlation         , 

becomes the reliability estimate across examinees. As is the case with other measures of 

reliability, the measure of the reliability is inversely related to the standard error of the estimate. 

If the standard error of the parameter estimate is large, then draws     and     are more likely to 

be distant from each other. The practical interpretation of the simulated draws being distant from 

each other is that the examinees‘ estimates from one testing occasion to the next are not 

consistent. In other words, the examinees‘ estimates of abilities are not reliable. This notion is 

reflected in the measure of reliability as defined here. The more different the two draws are for 

examinees, the lower the correlation (i.e., reliability) will be among the estimates from Test 1 

and Test 2 across all examinees.  
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Examinee Classification  

For examinee classifications in DCMs, an analogous form of the test-retest reliability 

described above for IRT models is calculated. As described before, the salient difference 

between IRT model and DCM estimates is the assumed distributions of the examinee parameters. 

For DCMs, the distribution of an attribute a is Bernoulli with probability of mastery,      In the 

case of the SICM model, the probability is the probability a misconception is present. For an 

examinee e, the mean of the estimated distribution is  ̂  , the estimated marginal probability that 

examinee e has misconception a. Similarly, the variance of the estimate is the resulting variance 

of a Bernoulli variable, or     ̂      ̂   . Unlike the variability of examinee estimates in IRT 

models, the variance of examinee estimates in DCMs are not conditional upon the level or value 

of the estimate (on whether  ̂     or  ̂    ).  

For DCMs, and thus the SICM model, the inconsistency of the measure does not have to 

be simulated because the measures can only differ in two ways: either an examinee has a 

misconception (    
    on the first assessment and does not have the misconception      

 

   on the second, or vice versa (    
       

   . The probability of observing any 

combination of misconception values is found by the product of the estimated probabilities for 

each. This product is the analog to drawing two independent values for the continuous ability 

from the same distribution.  

For a binary misconception, there are four possible outcomes for an examinee e‘s 

estimates with respect to misconception a on the two tests (as the misconception can take on one 

of two values on each of the tests). Because of the assumption of parallel tests, the marginal 

probability of a misconception being present on either test is equal, or       
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     ̂  . Similarly, the probability of observing any combination of misconceptions for the pair 

of tests is found by the product of the marginal probabilities. Specifically,       
        

 

     ̂   ̂  ,       
        

      ̂      ̂   ,       
        

    

     ̂    ̂  , and       
        

         ̂       ̂   . By summing these possible 

joint probabilities for each examinee, a       contingency table can be formed whose entries 

represent the number of examinees expected to have each combination of classification. For 

instance, the first cell of the table describes the number of examinees expected to be a classified 

as having the misconception on each assessment:       
        

     ∑  ̂   ̂  
 
     

Dividing this value by the number of examinees     yields the probability a given examinee will 

be classified as having the misconception on both tests. Therefore, sampling to simulate  ̂  for a 

pair of parallel tests is not necessary; the probability can be fully determined given the mean of 

the estimated distribution for an examinee.  

As with the test-retest reliability metric defined for IRT models, for any given examinee, 

the correlation between     
 and     

 is zero. Upon aggregating across examinees in a sample, 

however, the correlation becomes non-zero, provided estimated misconception probabilities for 

examinees are different from .5 – a case which would indicate zero reliability from the zero 

correlation between     
 and     

. Because the Pearson correlation coefficient is bounded above 

by -1 and below by 1 for       contingency tables where the marginal proportions are not both .5 

(a scenario that is likely for most applications of DCMs), the tetrachoric correlation coefficient is 

used as the metric of test-retest reliability. 
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Simulation Results 

The results of the simulation study are reported and evaluated using the measures detailed 

in the previous section. For this study, each of the 64 conditions was estimated 50 times. 

Replicating the estimation a large number of times allowed for the variability in the parameter 

estimates across separate estimations to be captured. Thus, the reported value of each measure 

being used for evaluation (e.g., bias) is an average value across replications. Along with the 

average value of the measure, the standard deviation of this measure for the 50 replication is 

provided in parentheses following the mean value to quantify the variability across replications. 

First, successful convergence of the estimation algorithm upon the target distribution will 

be assessed. Then, estimates for parameters will be evaluated in the following order: (a) item 

parameters, (b) structural parameters, (c) examinee ability estimates, and (d) examinee 

classifications.  

Generally, results will be provided in tables where values were (a) averaged across the 

magnitude of main effects factor and/or (b) averaged across all other factors and given by the 

magnitude of main effects factor. Results aggregated across the magnitude of main effects factor 

represent the average value irrespective of the magnitude of the main effects, and results 

aggregated by the magnitude of main effects factors represent the average value irrespective of 

all other factors manipulated in the simulation study. Recall there were four variations of the 

magnitude of main effects factor, which were (a) Low Misconception Effect, Low Ability Effect; 

(b) Low Misconception Effect, High Ability Effect; (c) High Misconception Effect, Low Ability 

Effect; and (d) High Misconception Effect, High Ability Effect.  
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Convergence 

Convergence was assessed for item, structural and examinee parameters. Time series 

plots and density plots of the posterior distribution of the estimated parameters were visually 

inspected for a replication within each condition to informally assess whether or not the chain 

had converged. Generally, time series plots showed the parameter estimate narrowing in on a 

certain value in the later part of the chain, and densities of the posterior distribution were 

reasonably symmetric; however, these desirable results did not always occur. As an illustration, a 

time series and density plot is provided in Figure 10 for two examinee ability estimates that 

converged (Examinee 8 and 123), although indicators for convergence were more certain for 

Examinee 8 than 123. Examinee 99‘s ability estimate is also shown in Figure 10. The ability 

estimate showed a significant lack of convergence, indicating a need for a longer chain. Results 

similar to Examinee 99 were very atypical. The true and estimated parameters, along with their 

standard errors, for these examinees are:           ̂            ̂       ;      

       ̂              ̂         ;             ̂             ̂        . 

Results from a variation of Gelman and Rubin‘s (1992)  ̂ test statistic, which was used to 

statistically assess convergence, are given in Tables 6a and 6b. Table 6a contains the results for 

the conditions where pairs of attributes each had a .50 correlation, and Table 6b contains the 

results for conditions where pairs of attributes each had a .25 correlation. Results in Table 6a and 

6b were aggregated across magnitude of main effect conditions. In each table, the mean and 

median values of  ̂ across replications are given, and the average percentage of item parameters 

that were deemed to have converged according to typical ( ̂ < 1.1) and more liberal ( ̂< 1.5) 

criteria are provided.  
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A comparison of Tables 6a and 6b shows that for item and examinee parameters, the 

results do not consistently differ according to the correlation among attribute pairs. The 

conditions for which the least number of item parameters converged were the 3,000 examinee/30 

item/6 attribute conditions (43.25 % <1.1 and 78.85% <1.5, when     = .50). For all other 

conditions, at least 85% of item parameters converged according to the more liberal criteria. The 

greatest number of item parameters converged in the 10,000 examinee/60 item/3 misconception 

conditions (72.25 % <1.1 and 96.75% <1.5, when     = .50). For all conditions, between 85.75% 

and 93.25% of examinee parameters converged according to the more liberal criteria.  

Tables 6a and 6b do differ by the percentage of structural parameters that converged 

according to the  ̂ statistic. When the correlation between attribute pairs was .50, the percentage 

of structural parameters that converged according to the more liberal criteria ranged from 55 to 

96.25%; when the correlation between attribute pairs equaled 0.25, this corresponding range was 

from 64.5 to 95.75%. Particularly for the six attribute conditions, a considerable difference was 

seen between these two conditions. The estimation of structural parameters converged more 

frequently with the lower correlations when a larger number of attributes were measured.  

Because the correlation among attributes pertains to the structural component of the model, this 

result was expected. 

A high percentage of parameters were expected to converge for all conditions. To 

improve convergence, the number of iterations and/or the length of the burn-in period in the 

algorithm can be increased. To ensure the algorithm converges, Gelman and Hill (2007) 

suggested checking the value of  ̂ during steps of the estimation process and continuing the 

estimation algorithm until  ̂ < 1.1 for all parameters. Given the number of parameters being 
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estimated in each condition (between 240 and 490, as shown in Table 7), the number of 

conditions (64), and the total number of replications (50) being assessed through the simulation 

study, a compromise between complete convergence and estimation time was considered and a 

large, yet fixed, number of iterations was used.  

Accuracy of Parameter Estimation 

Generally, item and examinee parameter estimates were most accurately estimated for 

conditions with more examinees, more items, and fewer misconceptions to measure. These 

trends are consistent with the psychometric literature at large; estimation is improved when there 

are fewer parameters to estimate and when the model has more information with which to 

determine the parameters. More specifically, the results reported in this section are compatible 

other simulation studies in the DCM literature (e.g., Choi, 2010; Henson, Templin & Willse, 

2009). Results from varying the magnitude of the main effects conditions uncovered no barriers 

to estimating both the categorical and continuous latent predictors and also shed some light on 

which conditions yielded more accurately estimated parameters. The only surprise in the results 

was that the correlation among misconceptions did not always impact estimation as initially 

expected. That is, estimation was not always better for the lower correlation conditions (.25). 

This surprise has a reasonable explanation and was found to be a useful phenomenon to 

demonstrate considering .50 correlations are closer to the value of the correlations among 

misconception we may expect to find in practice. Results from item, structural and examinee 

parameters will be discussed in turn.  
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Item Parameters 

Four types of item parameters will be discussed: (a) intercepts        
 , (b) main effects 

for misconceptions            , (c) two-way interactions for pairs of misconceptions              , 

and (d) main effects for ability estimates (      
). Tables 8a and 8b provide the bias, RMSE, and 

correlation for each of these types of parameters averaged across the magnitude of main effects 

factor and given by four of the manipulated factors in the simulation design: number of 

examinees, test length, and number of misconceptions measured. Table 8a contains results for 

the 32 conditions for which a tetrachoric correlation of .50 was specified among every pair of 

misconceptions. Table 8b contains analogous results for the other half of the conditions for 

which a tetrachoric correlation of .25 among the attributes was specified. The results did not vary 

greatly nor consistently between these two tables, indicating that a decrease in correlation among 

the attributes did not improve estimation accuracy for item parameters as expected. Discussion in 

later parts of the results section addresses why this may have been the case. Because results for 

conditions with different tetrachoric correlations among attribute are so similar, detailed 

interpretations of results from each table would be repetitive. Given that a correlation of .50 is 

more realistic, results will be discussed with respect to Table 8a.  

First, consider the item intercepts. The average bias and RMSE across all item intercepts 

was greatest for the 3,000 examinee/30 item/6 attribute condition. Consistent with these indices, 

the average Pearson correlation among the estimated and true parameter values was less in this 

condition, indicating estimation inaccuracy was greatest for this condition. However, for all 

conditions, the absolute value of the bias was less than 0.012, the RMSE was less than 0.015, and 

the correlation was greater than .981, indicating accurate estimation of the item intercepts. 
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Similar trends exist for the main effects for the misconceptions and the interactions of the 

misconceptions: conditions with fewer examinees, fewer items, and more misconceptions were 

estimated less accurately. For the main effects, the bias was slightly less than the bias for the 

intercepts, but the RMSE was greater. For the intercepts, bias was consistently negative, 

indicating the intercept was under-estimated. An explanation for the near zero bias for the main 

effects in each of the conditions, yet greater RMSE for the main effects than for the intercepts is 

that the bias for the main effects did not tend toward over- or under- estimation. Thus, the over- 

and under- estimation effectively canceled each other out in the bias measure, but was captured 

in the RMSE, illustrating why the RMSE is a useful measure to use in addition to the bias.  

In an absolute sense, the main effects were estimated accurately. The RMSE values for 

the main effects were all under 0.015 for conditions with 10,000 examinees and under 0.050 for 

conditions with 3,000 examinees. For estimation of the main effects of the misconceptions, the 

number of examinees seemed to have an effect on estimation accuracy, and this trend was also 

reflected by Pearson correlations which were greater for the 10,000 examinee conditions 

(ranging from .767 to .879) than for the 3,000 examinee conditions (ranging from .561 to .707).  

For the two-way interaction parameters, the number of examinees did not impact 

estimation accuracy as much. Holding other factors constant, conditions with more examinees 

did consistently result in more accurate estimates; however, all conditions with more examinees 

did not have more accurate estimates than all conditions with fewer examinees. The RMSE value 

for the 3,000 examinee/60 item/3 misconceptions conditions (0.055) indicated only slightly 

greater estimation accuracy in comparison to the 10,000 examinee/30 item/6 misconceptions 

conditions (0.078), although Pearson‘s correlation was stronger (.479) for the later condition than 
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for the former condition (.313). In an absolute sense, the RMSE values were all under 0.10, 

except for the two 6 attribute conditions measured with 3,000 examinees which still had low 

RMSE values of 0.228 and 0.110 for the 30 and 60 item assessments, respectively. The Pearson 

correlations (ranging from .313 to .750) indicated less accurate estimation than for other item 

parameters.  

The last section of Table 8a contains results for the main effects for ability. Because the 

absolute magnitude was smaller for ability main effects than for the other parameters (e.g., high 

main effects for misconceptions ranged from 1.75 to 2.25, while high main effects for ability 

ranged from 0.60 to 0.80) , information for a relative comparison of accuracy was not available 

from the bias or RMSE. According to Pearson correlations, however, the estimated parameter 

was more strongly related to the true value of the parameter for ability main effects than for 

misconception main effects or interactions, but not as strongly related as the intercepts.  

The bias and RMSE did indicate that ability main effects were accurately estimated. The 

less favorable conditions were again conditions that had fewer examinees and items, although the 

RMSE values were very close for the different conditions. The RMSEs for the 3,000 

examinee/30 item conditions were 0.042 and 0.044 for the 3 misconception and 6 misconception 

conditions, respectively. Corresponding correlations were .810 and .811. Even for these 

conditions, a 95% credibility interval suggested that on average the true value of the loading for 

ability was within approximately 0.08 of the estimated value. As for the main effects for the 

misconceptions, all 10,000 examinee conditions had slightly greater estimation accuracy than the 

3,000 examinee conditions, regardless of the test length or the number of misconceptions. 
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Table 9 provides the estimation accuracy results with respect to all four types of item 

parameters by the magnitude of the main effects.  For this table, results were aggregated across 

the all other factors (including the tetrachoric correlation factor) to examine the effect that the 

absolute and relative magnitude of the main effects had on estimation accuracy.  

Results from this table showed that strength of the main effects for misconceptions most 

significantly impacted estimation. Low main effects for misconceptions led to decreases in 

estimation accuracy, regardless of ability main effects. Low main effects for ability seemed to 

have little impact on estimation. Overall estimation was reasonably accurate for all conditions 

and parameters, as indicated by the largest bias of 0.011 and the largest RMSE of 0.117. 

However, the correlations for the interactions were somewhat low, ranging from .437 to .603. 

The correlation was still positive, but less strong than the correlations for the intercepts (ranged 

from .986 to .991), main effects for misconceptions (ranged from .703 to .776), or main effects 

for ability (ranged from .853 to .933).  

Structural Parameters 

Three types of structural parameters will be discussed: (a) intercepts, (b) main effects for 

misconceptions, and (c) interactions for pairs of misconceptions. Table 10a and 10b provide the 

bias and RMSE for the .50 and .25 tetrachoric correlation conditions, respectively. The Pearson 

correlation was not broken down by structural parameter type, as there were low numbers of 

each type (and only one intercept), but was used as an overall measure for all structural 

parameters. As for the item parameters, results in these tables were aggregated across all four 

variations of the magnitude of main effects factor. 
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 For each type of structural parameter, the indices showed agreement on the conditions for 

which estimation was the most and least accurate. The 10,000 examinee/60 item/3 misconception 

condition had the most accurately estimated parameters, and the 3,000 examinee/30 item/6 

misconception condition had the least accurately estimated parameters. 

 The bias and RMSE measures indicated the intercept was estimated slightly better than 

the main effects, and the main effects were estimated slightly better than the interactions. 

Referring to Table 10a (the     =.50 conditions), estimation for the 3,000 examinee/30 item/6 

misconception condition was significantly less accurate than the other conditions. The number of 

misconceptions seemed to most significantly impact estimation. Holding the number of items 

and examinees constant, the RMSE values increased significantly when 6 misconceptions were 

measured instead of 3. However, accuracy did improve as the number of items and examinees 

increased. When six misconceptions were measured by 60 items using a sample of 10,000 

examinees, the RMSE values remained under 0.10 for all types of structural parameters. The 

effect of the increased number of misconceptions was less pronounced for the     =.25 

conditions shown in Table 10b. Estimation accuracy was slightly better for the main effects and 

interactions in the 6 attribute conditions.  

 The Pearson correlation between the true and estimated values of the parameters is given 

in the last section of Tables 10a and 10b. These correlations ranged from .972 to .999, indicating 

a near perfect linear relationship between the true and estimated parameter values for all of these 

conditions.  

 Table 11 provides the evaluation criteria corresponding to the magnitude of the main 

effects conditions. For all three types of parameters, the same trend in estimation accuracy 
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according to the absolute and relative magnitudes of the main effects for the misconceptions and 

ability was seen. This trend was the same as for the item parameters discussed previously. 

Increasing misconception main effects from low to high led to an improvement in the bias, 

RMSE, and correlation. The strength of the ability estimate had little impact on estimation, 

although, for the conditions with high misconception main effects, decreasing ability main 

effects from high to low resulted in an additional slight improvement in estimation. Although the 

absolute value of the bias remained under 0.027 for all structural parameters, the main effects 

were consistently under-estimated and the interactions were consistently over-estimated.  

Examinee Ability Estimates 

For each examinee, an overall measure of ability was estimated. Table 12 displays the 

bias, RMSE, and correlation for these estimates according to four factors that were manipulated 

in the simulation study: tetrachoric correlation among pairs of attribute, number of examinees 

taking the assessment, number of items on the assessment, and the number of misconceptions 

being measured by the assessment.  

Table 12 shows that the number of items strongly influences the estimation accuracy. For 

both the .25 and .50 correlation conditions, the measures showed greater estimation accuracy for 

the 60 item conditions compared to the 30 items conditions, holding other factors constant. 

Results varied little with respect the tetrachoric correlation conditions, and thus will be discussed 

with references to the     =.50 conditions. As the number of examinees increased from 3,000 to 

10,000, estimation was not significantly improved. For example, for the 60-item conditions, only 

the 3,000 examinee conditions had only a slightly better RMSE (0.592 for three attributes and 

0.599 for 6 misconceptions) than the 10,000 examinee conditions (0.589 for 3 misconceptions 
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and 0.596 for 6 misconceptions). The RMSE was also not significantly impacted as the number 

of misconceptions increased from three to six. The correlations were also varied with respect to 

the number of items measured. For the 30 item conditions, the correlations ranged from .675 to 

.697, while for the 60 item conditions, the range was from .795 to .803. The bias measure varied 

little. Most conditions under-estimated examinee ability, albeit with very small bias (bias ranging 

from -0.003 to -0.015).   

 Table 13 provides the results for the examinee ability estimates by the magnitude of main 

effects factor. The indices indicated that as ability main effects increased, the estimation 

accuracy increased. The strength of the misconception main effects did not significantly impact 

accuracy, although low misconception main effects resulted in slightly better accuracy than high 

misconception main effects. The impact of the magnitude of main effects for ability on examinee 

ability was exactly the opposite of the impact for item and structural parameters. 

  In Table 14, the reliability for the examinee ability estimate is given in the column 

labeled    Results for the .25 condition will not be discussed, but are provided for the reader to 

see that they are similar to results from the .50 condition. In the .50 condition, reliability ranged 

from .523 to .675. Although there is not a minimum reliability that is universally accepted, these 

measures fall short of reaching values of .70 or above that are often reported in achievement 

testing (Crocker & Algina, 1986). Reliability most significantly increased as the number of items 

increased, decreased very slightly as the number of misconceptions increased, and showed little 

change when the number of examinees increased.  

 Table 15 shows the reliability for examinee ability as a function of the varying 

magnitudes of the main effects. Reliability was greatest (.709) when the main effect for ability 
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was high and the main effects for misconceptions were low and decreased slightly when both 

main effects are high (.687). Reliability was least (.491) when the main effect for ability was low 

and the main effects for misconceptions were high and increased when both main effects were 

low (.522). Trends seen for reliability of ability in Tables 14 and 15 were the same as trends seen 

for estimation accuracy of ability seen in Tables 12 and 13.  

Examinee Classifications 

The correct classification rate was calculated for each individual misconception and for 

the misconception pattern as a whole to examine how often examinees were correctly classified. 

Table 16 contains the CCR across the different magnitude of the main effects conditions. Table 

17 contains Cohen‘s Kappa and is organized in the same way as Table 16. When results found in 

the .25 and .50 conditions were similar, only results from the .50 conditions will be discussed. 

 Classification accuracy was high, even for the most disadvantageous conditions. The 

number of items and the number of misconceptions most strongly influenced the classification 

accuracy of individual misconceptions, as indicated by the CCR and Cohen‘s kappa. The CCR 

and Cohen‘s kappa, respectively, ranged from .863 and .728 found in the 3,000 examinee/30 

item/6 misconception condition to .958 and .917, respectively, for the 3,000 examinee/60 item/3 

misconception condition. These ranges were similar for the 10,000 examinee conditions.  

Similar results were found for the classification accuracy with respect to the whole 

misconception pattern. Overall, the CCR and Cohen‘s kappa were lower for the whole pattern 

classification than for the marginal classification. The values were lower because the 

misclassification with respect to any single misconception marginally results in the 

misclassification of that examinee‘s whole misconception pattern. The CCR and Cohen‘s kappa, 
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respectively, ranged from .573 and .505 found in the 3,000 examinee/30 item/6 misconception 

condition to .894 and .875 found in the 3,000 examinee/60 item/3 misconception condition. 

These ranges were similar for the 10,000 examinee conditions. This result indicates that 

increasing the number of examinees had less of an increase in estimation accuracy than 

increasing the number of items on the test or decreasing the number of misconceptions 

measured. Similar results were seen for examinee ability. 

 Although results from the .25 and .50 conditions were very similar for the 3 attribute 

conditions, they varied for the 6 attribute conditions. Marginally, the lowest observed attribute 

classification rate and Cohen‘s kappa were .842 and .686 for the .25 conditions, which was less 

than the corresponding values of .864 and .730 for the .50 condition. For classification with 

respect to the whole pattern of misconceptions, for the 6 attribute conditions, the CCRs ranged 

from .481 to .682 for the .25 conditions and from .573 to .735 for the .50 conditions; and, 

Cohen‘s kappa ranged from .449 to .665 for the .25 conditions and from .595 to .700 for the .50 

conditions. These results indicate that when a higher number of attributes are measured, a 

decrease in the correlation of attributes does not improve classification accuracy. This result can 

be explained on a conceptual level by understanding that if misconceptions are correlated, then 

the model can use information about one misconception to classify examinees according to a 

related misconception. Thus, having correlated attributes results in more accurate classification 

because the misconceptions provide information about each other, resulting in the model having 

a greater amount of information for classifying examinees.  

 Table 18 displays the CCR and Cohen‘s kappa by the magnitude of main effects factor.  

A clear and consistent trend was seen for the accuracy of marginal and whole pattern 
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classification: classification was most accurate when main effects for misconceptions were high 

in an absolute sense. The main effects for ability did not significantly impact classification 

accuracy; accuracy decreased only slightly when main effects for ability increased. These were 

the same trends seen for item and structural parameters. 

In Table 14, the reliability for the each individual misconception (          ) is given 

in addition to the average reliability across the total number of misconceptions measured in that 

condition (    ). Reliabilities in this table were averaged across all magnitude of main effects 

conditions. For the .50 conditions, the average marginal reliability ranged from .853 to .988.  

These measures were high for reliabilities commonly reported in achievement testing (Crocker & 

Algina, 1986). The reliabilities increased as the number of misconceptions decreased from six to 

three and when the number of items increased from 30 to 60, but there was virtually no change in 

reliability when the number of examinees was increased from 3,000 to 10,000.  

In addition to the reliability being impacted by the number of items on the test and the 

number of misconceptions being measured on the test, the tetrachoric correlation also seemed to 

have an impact on reliability. Reliabilities for the .25 conditions were very similar to those for 

the .50 conditions when three attributes were measured. However, for the 6 attribute conditions, 

the reliabilities in the .50 conditions were higher than the .25 conditions. More specifically, when 

the tetrachoric correlation decreased from .50 to .25, reliabilities of .853, .945, .853, and .946 

decreased to .806, .923, .807, and .924 for the 3,000 examinee/30 item/6 attribute; 3,000 

examinee/60 item/6 attribute; 10,000 examinee/30 item/6 attribute; and 10,000 examinee/60 

item/6 attribute conditions, respectively.  The higher correlation of .50 resulted in greater 

reliabilities when six attributes were measured. This result may reflect information about 
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possession of a misconception being leveraged from other correlated misconceptions, improving 

the reliability of the classification of examinees with respect to those misconceptions.  

 Table 15 shows the average reliability for individual misconceptions as a function of the 

magnitudes of the main effects. Reliability was extremely high (.998) when the main effect for 

ability was low and the main effects for misconceptions were high. Reliability was the lowest 

(.820) when the main effect for ability was high and the main effects for misconceptions were 

low. The reliability increased only slightly when the main effect for both types of parameters 

were low (.850); however, it increased drastically when the main effect for both types of 

parameters were high (.991).  These trends are the same those seen for the classification accuracy 

of misconceptions. 

Simulation Study Conclusions 

These results provide information about how the SICM model performs under various 

testing conditions. As is the case with most psychometric models, this model performed better 

when the sample size was larger, the assessment was longer, and the number of parameters to be 

estimated by the model was fewer. On average, all item parameters had a RMSE less than .1 

under all conditions where 3 misconceptions were being measured or when 10,000 examinees 

were being assessed. Structural parameters were more difficult to estimate than item parameters 

and had a RMSE less than .1 when 3,000 examinees were taking the assessment only when 3 

misconceptions are measured by 60 items. When 10,000 examinees were used for estimation, the 

30 item/6 misconception conditions were the only conditions that yielded RMSE values greater 

than .10. Given the complexity of the model, these data demands are quite reasonable, potentially 
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placing the SICM model as a viable option amongst other large-scale psychometric models to be 

used in practice.  

Similarly consistent with psychometric model research, examinee parameters (ability 

estimates and classifications) were less affected by the number of examinees responding to the 

assessment and more affected by the length of the test and number of misconceptions being 

measured. Holding other factors constant, the results for the accuracy of the examinee estimates 

and classifications show greater estimation accuracy for the 60 item conditions (RMSE for 

ability estimates ranged from .588 to .599 and the CCR for individual attributes ranged from .922 

to .958) compared to the 30 items conditions (RMSE ranged from .708 to .725 and CCR ranged 

from .863 to .918), while the RMSE or classification accuracy was not significantly improved as 

the number of examinees increased from 3,000 to 10,000.   

The examinee estimates were also impacted by the magnitude of main effects factor, 

which offered some insights into the interplay of continuous and categorical variables being 

estimated within the same model. The accuracy and reliability of the estimated abilities were 

greatest when ability had a high main effect in an absolute sense; estimation improved only 

slightly when ability also had a high main effect in a relative sense (i.e., when misconceptions 

had a low main effect). Similarly, the accuracy and reliability of the classifications were greatest 

when misconceptions had a high main effect in an absolute sense, and estimation only improved 

slightly when the main effect was higher than the main effect for ability in a relative sense. These 

results indicate that strong main effects for ability improve estimation for ability without 

significantly hurting estimation of the misconceptions, and strong main effects for 

misconceptions improve estimation for misconceptions without significantly hurting estimation 
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of ability. Thus, when estimating the SICM* model in practice, the larger concern for estimation 

regarding main effects is the strength of the main effect in an absolute sense. Given strong main 

effects for each type of variable, the different types of variables can co-exist within the same 

model without one dominating the other.  

For the SICM model, the reliabilities for classification were uniformly much greater than 

reliabilities for examinees regardless of the characteristics of the conditions under which the 

estimates were obtained. This finding echoes the results in Templin & Bradshaw (in press) that 

found across a set of models, DCM classifications (with 2, 3, 4 and 5 categories) were 

consistently more reliable than ability estimates using IRT.   

Lastly, the effect of the correlation amongst the attributes was somewhat different than 

expected. The notion that the lower correlation, although unrealistic, would provide a more ideal 

scenario under which to estimate the parameters was untrue. Only small differences seemed to be 

attributed to the correlation amongst the attributes, with the strongest differences occurring for 

the six misconception conditions. These differences were not always improvements of estimation 

or classification for the .25 correlation conditions. Although the estimation accuracy for the 

structural parameter estimates was more accurate for the .25 correlation/6 misconception 

conditions, the .50 correlation/6 attribute conditions actually classified examinees more 

accurately and reliably.  

These results indicate that the SICM* model can be estimated with MCMC algorithm 

used here. This study shows that the lower asymptote can be implemented in the SICM model to 

provide a more realistic model that accommodates a guessing assumption. Because the SICM 

model is a combination of other models commonly used to analyze multiple-choice tests, these 
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results provide reason to believe that lower asymptotes specified in this way could also be used 

in other common models, like the NR IRT and 2-PL IRT models.  

Limitations of Simulation Study/Directions for Future Research 

Although the results of the simulation study provide some insights for using the SICM 

model, it did so under ideal conditions where the estimation model was correct. From the results 

of this simulation study, complete recommendations about theoretical and practical conditions 

that are required for accurate estimation and classification using the SICM model cannot be 

made. The many conditions under which this model may be applied make it difficult to delineate 

all plausible conditions to study how the model is expected to perform under various conditions. 

This study does provide some general guidelines according to five different factors: sample size, 

test length, number of misconceptions, correlation among misconceptions, and magnitudes of 

main effects. Different values of these factors, or different factors all together, may also be 

encountered when the SICM model is applied in practice. For example, Q-matrices may have 

different levels of complexity, or Q-matrices may have different levels of accuracy. Fairly 

complex Q-matrices were used for this simulation study, but perfect accuracy was assumed such 

that model misspecification was not examined. Model misspecification is an important topic in 

psychometrics because misspecification of the model has expected negative consequences. Other 

situations in practice may offer a different number of alternatives or items, and main effects for 

misconceptions and ability may be mixed within a test instead of having designated absolute and 

relative magnitudes across the test. Additionally, as discussed in Chapter 3, alternative 

specifications of the model may be required to align the psychometric theory reflected by the 

model to mirror researchers‘ domain-specific theories. For instance, in Garfield (1992) more than 
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one correct alternative exists for each item, and the SICM model could be adjusted to model this 

phenomenon by adding an effect for ability on these alternatives. 

Future studies surrounding the SICM model can investigate estimation characteristics of 

this model given different conditions. Also of interest may be to estimate the SICM model 

without a lower asymptote under similar conditions to answer questions about how estimation 

accuracy is impacted if a practical lower-asymptote is not a feature of the model. Presently, the 

estimation effects of the lower asymptote are confounded with the estimation properties of the 

new model; therefore, it is unknown how the SICM model would fare without the lower 

asymptote. This information would disentangle these effects to understand the psychometric 

properties of each and may be relevant to researchers who do not theorize guessing to be present 

in examinee responses. 
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CHAPTER 5 

EMPIRICAL DATA ANALYSIS 

 In Chapter 4, the results of a simulation study indicated that the Scaling Individuals and 

Classifying Misconceptions (SICM) model is able to estimate both a continuous trait 

representing an overall ability and a set of categorical traits defined as misconceptions. The 

previous chapter served to demonstrate the conditions under which the model can recover 

parameters with a reasonable degree of accuracy. The present chapter presents an empirical study 

that illustrates an application of the model in practice, first using the SICM* model and then 

using other similar or common psychometric models. Results from the SICM* model are 

described and then results from the set of models used for estimation are compared. This 

application is of an educational assessment, although the SICM* model may be applicable in 

other areas, such as clinical psychology and epidemiology. 

Analysis of Empirical Data 

The SICM* model tries to provide a psychometric solution to a realistic need in 

educational assessment. To demonstrate the SICM* model‘s use in a practical setting, data from 

a reading comprehension test constructed and administered by a large scale testing company was 

analyzed. The goal of the reading comprehension test is to measure an overall literacy level to 

determine whether or not an examinee would benefit from additional instruction via instructional 

modules, in addition to determining what weakness should be targeted within the modules. Thus, 

the SICM* model was aligned with the purpose of the assessment. These data are presently 

modeled with CTT total scores for ability and subscores for misconceptions. Through a
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partnership with the company, the SICM* model was applied with the goal of providing more 

reliable estimates of ability and misconceptions, in addition to providing information about the 

design of the items and test. 

Data  

 The data were the nominal responses of 1097 examinees to the reading comprehension 

test. The test was a Level B pre-test for the Foundations module. This module is part of the 

company‘s literacy assessment and intervention program called the Literacy Navigator. Level B 

assessments are typically administered to students in the sixth grade. In this 28-item multiple-

choice test, short passages were provided for the student to read and were followed by a set of 

items based on that passage for students to answer. Each item had four possible alternatives. One 

alternative was the correct answer, and each of the incorrect alternatives corresponded to a type 

of error that students make when responding to reading comprehension items. Content experts 

and item writers pre-determined and specified the errors. Information gathered from this pre-test 

was used to determine what types of instructional modules were appropriate to offer students. 

The modules target students‘ weak areas to in turn improve their reading comprehension ability.  

Definition of Misconceptions Measured by the Level B Foundations of Literacy Pre-Test 

 The three errors that content experts defined reflected the types of errors students make 

on reading comprehension tests of this format. A non-text based response was the first type of 

error. An alternative that measured a non-text based response provided a response that was not 

based upon or derived from the text in the passage corresponding to the item. This response may, 

or may not, have been a logical response to the question posed in the stem of the item, but was 

not found anywhere or was not based on anything in the passage text. A text-based 
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misinterpretation of the passage was the second type of error. An alternative that measured a 

text-based misinterpretation of the passage provided a response that was based upon information 

from the text of the passage; however, the interpretation of or conclusion drawn from the content 

in the text was incorrect. A text-based misinterpretation of the question was the third type of 

error. An alternative that measured a text-based misinterpretation of the question provided a 

response that reflected accurate interpretation of the text in the passage, but an inaccurate 

response to the question. In other words, the student was not able to correctly reason about the 

response to the item, but they were able to interpret the text meaning from the passage. Names of 

these three errors were based upon descriptions of errors provided by the test developers, but 

were not given by the content experts or test-developers themselves. 

 These types of errors were different from the types of misconceptions measured in 

assessments that were described at the beginning of Chapter 3. The root of misconception, 

―concept‖ implies reference to an idea or thought. These types of errors did not reflect reasoning 

that resulted from a given understanding or belief that was nascent, still developing, or incorrect. 

Although the errors did not define certain misconceptions examinees had about reading or text 

interpretation, these error types did describe where the examinee was making the mistake. 

Determining where an examinee is making a mistake (i.e., was the passage read, the passage 

misread/misinterpreted, or the question misread/misinterpreted) does provide additional 

information about the student beyond an overall measure of ability. If theory exists that 

examinees consistently make a certain type of error, then the SICM* model could be applied to 

measure the type of error being made. Labeling these types of errors as misconceptions may be a 
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misnomer, so the term error will be used to describe the categorical latent variables being 

measured by the incorrect alternatives in the SICM* model for this test.  

Q-matrix for the Level B Foundations of Literacy Pre-Test 

The Q-matrix describing which latent variable was measured by each alternative for the 

Level B Foundations of Literacy Pre-Test is given in Table 20. On average, each item measured 

1.93 errors. Six items measured all three types of errors. Every incorrect alternative measured 

exactly one error, meaning the test had simple structure. The first error (  , the non-text based 

response) was measured by 30 alternatives in 21 items. The second error (  , the text-based 

misinterpretation of the passage) was measured by 32 alternatives in 19 items. The third error 

(  , text based misinterpretation of the question) was measured by 22 alternatives in 14 items.  

Estimation of the Model  

This pre-test is a multiple-choice assessment, so the probability that a student will answer 

the item correctly may be inflated by guessing, particularly for students with a low ability level 

who may frequently not know the answer to a question. For this reason, the SICM* model will 

be used to estimate the data.  

Estimation of the SICM* model utilized a Markov Chain Monte Carlo algorithm written 

in Fortran. The same Gibbs sampling steps that were used for the estimation in the simulation 

study and were outlined in Chapter 3 were used, with one difference: a prior distribution was 

used to estimate the main effect for ability in the model. This prior distribution will be discussed 

in the next session. As real data typically take a long chain to converge, the SICM* algorithm 

was run for 100,000 steps. The first 50,000 steps were designated as the burn-in stage such that 
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values of estimates at these stages did not contribute to the posterior distribution mean that 

determined values of parameter estimates.  

Selection of a Prior Distribution for the Main Effect(s) for Ability 

A prior distribution was specified for the main effects for ability. This main effect is 

exponentiated in the SICM* model. The value of this parameter needs to be held within certain 

bounds, but how to hold it within those bounds is unknown because this type of exponentiated 

parameter has not been estimated in a psychometric model before. The parameter is constrained 

to a lower boundary of zero in order to satisfy the monotonicity assumption that as ability 

increases the probability of responding correctly to the item increases. Practically, the highest 

value this parameter should take is unknown and is an empirical question. However, 

mathematically if the value is much greater than one, an increase in one unit of ability results in a 

drastic and unrealistic increase in the probability of answering the item correctly.  

Four different prior distributions were chosen to estimate the SICM* model in practice. 

These priors were chosen because of their large probability masses between 0 and 1, a range 

within which I expected the parameter would typically fall in practice. The priors used to 

estimate the model were: (a) a lognormal prior with a mean of 0 and standard deviation of 1.5, 

(b) a lognormal prior with a mean of 0 and a standard deviation of 0.5, (c) a normal prior with a 

mean of 0.60 and a standard deviation of 0.25, and (d) a normal prior with a mean of 0.60 and a 

standard deviation of 0.15. The top four plots in Figure 11 provide a histogram illustrating the 

distribution of the main effect for ability when estimated with each of these priors. The density 

curves for each of the prior distributions are depicted over the histograms to visually assess the 

effect the prior distribution had on the estimated distribution of the main effects for ability. 
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Estimation with either lognormal prior yielded a higher concentration of items with main effects 

ranging from 0.25 to 0.60 than lie in this range for the prior distribution. Similar observations 

can be made for the normal prior in the 0 to 0.50 range. This deviation from the prior distribution 

is common and illustrates that specification of the prior distribution does not overly impact 

values of the estimated parameters. However, when comparing the lognormal (0, 0.50) prior to 

the lognormal (0, 1.5) prior, there is considerable difference in the range of values from 0 to 

approximately 0.25. For the lognormal (0, 0.50) prior, hardly any many effects lie in this range.  

Convergence of the model parameters using the different priors informed the choice of 

the prior to be used. Although primary importance was given to the convergence of the SICM* 

model, results from two of the other models that will be subsequently used to analyze this data 

set for comparison with the SICM* model were also investigated. Bock‘s NR IRT model with a 

lower asymptote (NR IRT* model) and the 2-PL IRT model with a lower asymptote (2-PL IRT*) 

were estimated using an analogous MCMC algorithm with (a) a lognormal prior with a mean of 

0 and a standard deviation of 0.5 and (b) a normal prior with a mean of 0.60 and a standard 

deviation of 0.15. Figure 11 also illustrates a comparison of the estimated and prior distributions 

of the main effects for ability for these two models. 

Convergence for all three models was assessed using a variation of Gelman and Rubin‘s 

 ̂, as described in Chapter 4. Results are presented in Table 21. Convergence for nearly all of the 

parameters for the NR IRT* and 2-PL IRT* models was perfect, even according to the more 

conservative of the two criterion for convergence (i.e.,  ̂         Thus, the prior was picked 

solely due to the difference in convergence for the SICM* model parameters. The most 

problematic parameters with respect to convergence were the structural parameters. Although 
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according the  ̂      criterion, the             prior yielded the largest number of converged 

structural parameters, according to the  ̂      criterion, the             criterion yielded the 

largest number of converged structural parameters. The             prior also yielded a 

considerably higher proportion of main effect for ability parameters that converged according to 

the more stringent criteria. For these two reasons, the             was used as the prior 

distribution for the main effects for ability in all models with a lower asymptote for this 

application. Using this prior, all main effect for ability parameters and virtually all (99.9%) of the 

examinee ability parameters converged. For the item parameters, 95.2 % converged, and for the 

structural parameters, only 42.9% converged. The convergence rate for the structural parameters 

was unacceptably low. Although convergence rates can typically be increased by lengthening the 

chain, an examination of the chain plots for the structural parameters indicated chain length was 

not the problem. Possible reasons for poor structural parameter convergence will be explained in 

a later section of this chapter.  

Results from Empirical Data Analysis with the SICM* Model 

The results from the Foundations of Literacy Pre-Test will be provided to illustrate the 

estimation of the SICM* model and the types of information that can be obtained from the 

model. Specifically, model-data fit will be assessed and then parameter estimates will be 

summarized and discussed.  

Model Fit 

Prior to an evaluation of the estimated model and examinee parameters, the degree to 

which the model fit the data was assessed. Attractive properties of IRT models (see Green, Yen, 

& Burkett, 1989 for a list of properties) and DCMs are enabled by item and examinee parameter 



120 

 

 

 

invariance, which is present only when the model fits the data. To assess the results of the 

SICM* model in an absolute sense, limited-information goodness-of-fit statistics were used. 

More specifically, bivariate information statistics were used to compare the observed responses 

to the model-predicted (or expected) responses for every pair of items. Model fit is good when 

the model‘s predictions are close to the actual data that was observed. For a pair of multiple-

choice items, a           contingency table can be formed, where     and      are the number of 

alternatives present for items   and  , respectively. A chi-squared statistic with (     )     

   degrees of freedom can be used to test whether the observed and expected responses are 

statistically different. This statistics is calculated as: 

  
(     )         ∑ ∑

            

    

   

    

   

   

 (52) 

where      is the observed frequency in cell     and      is the frequency is cell     predicted by 

the model. Using bivariate-information goodness-of-fit statistics is a recommended and practical 

way to assess absolute fit for DCMs (Rupp, Templin, & Henson, 2010; Templin & Bradshaw, 

under review). 

For each item pair on the Foundations of Literacy Pre-Test, a     contingency table was 

formed and the chi-squared statistic in Equation (52) was calculated. For each of the 378 pairs of 

items, the hypothesis test suggested a lack of model-data fit. However, the   distribution utilized 

for this hypothesis testing may inadequately approximate the test statistic distribution if there are 

not a sufficient number (greater than or equal to five) of expected observations in each cell of the 

contingency table (Agresti, 2007). For a given sample size  , the expected value of each cell 

decreases as the number of alternatives for an item increases;    alternatives per item results in 
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    cells of the table. For this assessment, four alternatives are present for each item and 1097 

examinees responded to the items. For 25 item pairs, cells had expected values less than five, 

which renders the hypothesis test incorrect. However, for all other item pairs this test hypothesis 

can be used to conclude that poor model-data fit exists. To illustrate the SICM* model for 

didactic purposes, the analysis will proceed in spite of a lack of fit.  

 In a test-construction scenario where a test is being developed to be estimated with the 

SICM* model, a test can be piloted to determine which items exhibit bivariate misfit with many 

of the other items. These items can be flagged to be reviewed. Reviews can determine whether 

the item needs to be revised or culled. The model-data fit for the test as a whole can be improved 

by revising or eliminating items that demonstrate misfit. However, items should not be deleted, 

irrespective of content considerations, for the sole reason that they do not fit the model. Such 

deletions may conflict with other test construction principles and compromise the construct 

validity of the test (Cohen, Templin, & Bradshaw, 2009). The process of revising items is not 

possible in a scenario, like this one, where the test is being retrofitted to the model.  

Model Parameter Interpretation 

 Model-data misfit precludes any valid interpretations of the model and examinee 

parameters estimated using the model. However, to illustrate how the SICM* model functions, 

sample results will be provided in-depth for a single item and a pair of examinees and followed 

by summaries for model and examinee parameter estimates. The examinee estimates shed light 

on why model-data misfit was present and why the structural parameters were unable to 

converge. Reasons for each of these results will be discussed after the results are provided.  
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Parameter Estimates for an Item 

The item parameters from a single item are discussed to demonstrate how the model 

parameters impact the nominal response probabilities. In the SICM* model, the item response 

probabilities are dependent upon the error pattern an examinee has and also upon his or her 

continuous ability. The Q-matrix and estimated model parameters for Item 26 are given in Table 

22. The specifications of the three logits modeled by the SICM* model for this item are given by 

error pattern in Table 23.  

As the Q-matrix details, this item measured all three types of errors. Each error was 

measured by a single incorrect alternative. Nominal response probabilities are given by ability 

and by error pattern in Figure 12. Each graph in Figure 12 shows the response probabilities by 

ability, and there is a separate graph for each error pattern that an examinee may possess 

according to the model. Combinations of three errors yield a total of eight possible patterns. 

The main effect for ability was below the average main effect for ability of 0.507 across 

all items on the test. According to SICM* Lognormal (0, 0.5) graph in Figure 11, a main effect 

of 0.228 for ability was one of the weaker effects of that kind. In Figure 12, this is reflected by 

the gradual curve of the trace line for the correct alternative (Alternative A, the dotted curve in 

Figure 12). As demonstrated in Figure 12, for the SICM* model, regardless of the error pattern 

an examinee has, as   increases, the probability of selecting the correct answer (A) increases. For 

examinees with no errors (Pattern [000] in Figure 12), the probability of a correct response to 

this item only ranges from approximately 0.35 to 0.75 for abilities within three standard 

deviations of the mean ability, and for examinees with all errors (Pattern [111]) this probability 

only ranges from approximately 0.22 to 0.55. A higher main effect for ability would provide 
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more discrimination amongst the probability of a correct response for examinees with low and 

high ability. That is, these probability ranges would have been greater had the item been more 

discriminating.  

The order of the intercepts for incorrect Alternatives B, C, and D can be deduced from 

the response probabilities of the first of the eight graphs in Figure 12. This graph provides the 

response probabilities for examinees who have no misconceptions or errors (Pattern [000]), so 

the order of the preferred incorrect alternatives is determined solely by the intercept. The most 

likely incorrect alternative is D, with the largest intercept of .666, and the least likely is B, with 

the smallest intercept of -1.154.  

Interpretations of trace lines for the next six graphs are difficult as no examinees actually 

have the error patterns. This undesirable result will be discussed in the following sections. 

Alternative D is actually the most likely incorrect alternative that examinees with the next six 

patterns will select. This result is a reflection of the model-data misfit. In theory, for a situation 

where each incorrect alternative measures a different item, the probability of an item response 

for an examinee who possesses a single error or a misconception should be greatest for the 

alternative that measures that error. For example, the probability of selecting B that measures the 

third error (the black curves in Figure 12) should be greater than the probability of selecting C or 

D for an examinee who has error pattern [001]. However, a glance at the second graph on the top 

shows this is not the case for this item. This main effect has the largest value of the three main 

effects for errors, but the intercept for this alternative has the smallest value, which is why this 

alternative is not preferred by examinees the model would predict it to be preferred by.  
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In the last graph, trace lines of incorrect alternatives suggest similar probabilities exist of 

making any one of these errors when examinees have all of the misconceptions (Pattern[111]). In 

other words, if examinees are making all three types of these errors, when an item is presented 

where each incorrect alternative measures one of those errors, the examinee has a similar 

probability for making each of the errors.  

The main effect for the third error was large (1.705). The main effect for the first error is 

smaller (.681), and the main effect of the second error was near zero. The second error had very 

little impact on the response probabilities. In a test-construction scenario, when a main effect for 

a misconception is near zero for an alternative, this alternative could be rewritten to reflect a 

response that more strongly measures this, or another, error.  

Examinee Results 

In this section, example examinee parameters for two examinees will be provided first to 

illustrate the type of information the SICM* model provides about examinees. Then the 

aggregated classifications will be provided for the sample of examinees and followed by a 

discussion about the misfit of the model.  

Examinee Parameters for Two Example Examinees 

Table 24 will be used to illustrate the two distinct types of information gained from the 

SICM model with respect to examinee parameters. This table contains the responses to this test 

for two examinees, Examinee 403 and Examinee 199. These two examinees have similar scored 

response patterns; they answered the first 22 items correctly. Each examinee answered two of the 

last six items correctly, giving both a total correct score of 24. However, the two final items they 

answered correctly were different items, resulting in their ability estimates to be slightly different 
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(                       . This piece of information about examinees shows what IRT 

ability scores offer beyond CTT total scores; which items an examinee answers correctly impacts 

the score. Furthermore, for the items these examinees answered incorrectly, they selected 

different incorrect answers. Thus, their different incorrect answers on the last six items led to the 

examinees being classified as having drastically different error patterns (          ,      

      ). This piece of information about examinees illustrates what the DCM portion of the 

SICM* model offers beyond IRT ability scores; which incorrect alternatives an examinee selects 

impacts the classification. From the SICM* model estimates, we can conclude that both students 

have an above average ability, yet Examinee 403 needs instruction relevant to all three errors, 

while Examinee 199 does not.  

Remember the misfit of the model that makes the use of these scores invalid, but these 

results still illustrate the utility that the SICM* model examinee estimates can add beyond IRT 

model estimates. For an IRT model, as also seen above in the SICM* model, it matters which 

items an examinee answers correctly. The same total score can yield different ability estimates 

because items are differentially related to the target ability being measured and thus count 

differentially towards the estimated ability. The SICM* model goes a step further and uses 

information not only from which items an examinee answers incorrectly, but also why the 

examinee answered the item incorrectly. As a result, two examinees can have the exact same 

scored response pattern and be classified as possessing a very different set of misconceptions. In 

practice, this did not occur for this assessment because for the three pairs of examinees that had 

the exact same scored response pattern, they also had similar nominal response patterns. 

However, Figure 13 illustrates that the ability distributions for examinees who have the estimated 
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pattern of no errors (Pattern [000]) and for the examinees who have the estimated pattern of all 

errors (Pattern [111]) are very similar. In other words, a high ability estimate does not 

necessarily indicate a lack of misconceptions that are being measured. Conversely, a low ability 

does not necessarily indicate a presence of misconceptions that are being measured. Within a 

pattern, the ability estimates are spread out along the continuum.  

Classification of Examinees 

The results in Figure 13 are actually the ability distributions for all 1097 examinees, 

meaning that, as mentioned previously, the SICM* model estimates placed examinees into one 

of two patterns: all errors present or no errors present. The other six patterns were not observed. 

As noted in Templin and Henson (2006), observing a large number of examinees in patterns for 

which all or none of the attributes are possessed may indicate that the construct being measured 

is truly unidimensional. Both a theoretical and a practical explanation exist to explain this result. 

Theoretically, perhaps these errors did not exist; they were not latent traits of the examinees. 

Alternatively, perhaps multidimensionality that actually exists was not captured by the 

assessment, meaning in theory the errors were traits of the examinees, but in practice the test did 

not elicit these errors. Because the test data were retrofitted to the SICM* model, effects of 

theory and practice cannot be disentangled to determine which explains the results that were 

found. The following paragraphs will further discuss these two possible explanations. 

The first reason given for examinees being classified into one of two attribute patterns 

was that the domain-specific theory that the SICM* model relies on may be incorrect. The theory 

is incompatible with the model if these errors are not traits of examinees that would manifest 

themselves in a systematic fashion such that a statistical model could capture and predict the 
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response pattern. That is not to say that these are not types of errors that students sometimes 

make, but rather to say that the errors themselves are based more on the context of the item, 

question, or testing situation rather than the examinee. An analogous example may be a person 

who runs sometimes, but does not identify themselves as a runner. Classifying oneself as a 

runner implies certain traits that an individual has that, although could be defined in different 

ways, may include: a certain level of dedication to the sport, frequency of participation in the 

sport, or knowledge of the sport. A person may sometimes go for a run to get exercise or to enjoy 

the outdoors, but they do not consistently exhibit the hallmark characteristics of runner. To tie 

the analogy back to misconceptions and errors, just as one who runs is not necessarily a runner, 

an error a student makes is not necessarily a trait that can be measured with the SICM* model. 

The error or misconception must be a trait inherent in the individual to the point that their 

responses are systematically governed by the trait to a significant degree.  

Alternatively, the domain-specific theory may be compatible with the model, but the test 

may have been constructed in a way that prohibits the errors manifesting themselves in a 

systematic way. Just as extensive theory must be developed to determine a set of misconceptions 

relevant to a given domain, extensive validity studies must be completed to verify that 

alternatives on an assessment are eliciting misconceptions that they purport to measure. The test 

development process must also attend to additional statistical considerations that may include 

investigating whether (a) the misconception is measured enough times (in enough alternatives 

and items) to yield a reliable classification, (b) enough examinees are selecting each alternative 

to provide enough information to yield accurate item parameter estimates for each alternative, 

and (c) the sample of examinees is large enough to yield accurate model parameters.   
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We expect for the model-data fit for an assessment designed from the onset to be 

measured with the SICM* model to be much better than the model-data fit observed for this 

assessment. Model-data fit should be improved by verifying the content validity of the 

alternatives (i.e., confirming the alternatives are measuring what they seek to measure) and by 

measuring misconceptions whose presence is illuminated and verified by extensive research. 

The classification of examinees into only categories with all or no errors empirically 

suggests that the structural model of the SICM* model was incorrect. Because the errors were 

highly correlated, they were not practically distinct and could not be estimated as separate 

categorical variables. As a result, the structural parameters did not converge because there was 

no information about examinees in the six classes that were not observed. Essentially, the goal of 

this model was to model the variation of item responses according to predetermined patterns; 

however, there was no observed variation across these patterns. This also explains why, as 

shown in Figure 12, the nominal response probabilities for the patterns that no examinees are 

classified as possessing looked very similar and did not reflect expected response probabilities 

conditional upon the error pattern.   

Comparison of Results from Empirical Data Analysis with Different Psychometric Models 

 In addition to the SICM* model, seven other psychometric models were used to provide 

examinee estimates from the Foundations of Literacy Pre-Test. The SICM model (without the 

lower asymptote) provided estimates of examinee ability and classifications of examinees 

according to errors. The NR IRT model, the NR IRT* model, the 2-PL IRT model, and the 2-PL 

IRT* model provided only estimates of examinee ability. This unidimensional trait was 

measured by each alternative in the NR IRT and NR IRT* models and by each item in the 2-PL 
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IRT and 2-PL IRT* models. The NR LCDM and LCDM provided only classifications of 

examinees according to the three types of errors on the assessment. To specify the NR LCDM, 

the correct alternative was taken as the baseline category and main effects for errors were 

constrained to be greater than zero. To specify the LCDM, main effects for errors were 

constrained to be less than one because the odds of answering the item correctly were modeled, 

as is usual for the LCDM. For the LCDM, errors were measured at the item level instead of the 

alternative level. Results with respect to convergence, parameter estimates, examinee parameters 

and relative model fit will be provided and discussed. 

Convergence 

Convergence results according to the variation of Gelman and Rubin‘s  ̂ used previously 

are provided for all eight models in Table 25. For each model, the percentage of parameters that 

converged according to the  ̂ < 1.1 and  ̂ < 1.5 criteria are provided, by the parameter type. All 

parameters for all four IRT models reached convergence. For the SICM and SICM* models, 

almost all main effects for ability and the ability parameters converged according to the more 

lenient criterion, and over 95% of the item parameters converged according the this criterion. 

Structural parameters had a higher convergence rate in the SICM* model as compared to the 

SICM model, although both rates were unacceptably low. Similarly, in the NR LCDM and 

LCDM models, item parameters converged at a higher rate than structural parameters, although 

for the NR LCDM convergence was much greater for the item parameters.  

Method for Comparing Model-Data Fit 

Generally, competing psychometric models can be examined to determine which model 

accurately represents the characteristics of the items and the test. To evaluate model fit in an 
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absolute sense, correspondence between model predictions and observed data can be assessed at 

the item or test level, as explained previously for the SICM* model. To make a relative 

comparison of model-data fit, Akaike‘s information criteria (AIC; Akaike, 1974) and Schwarz‘s 

Bayesian information criteria (BIC; Schwarz, 1978) were used. These indices are not 

accompanied by a statistical test, but rather the respective values of each of these indices is 

compared for a set of models to determine which model is the better fit to the data. A model with 

a smaller AIC or BIC is considered to fit better. Both of these measures consider parsimony 

between model-data fit and model complexity. The indices incorporate a penalty for added 

model complexity, thereby preferring more parsimonious models. The AIC measure is not a 

function of sample size and, as a result, tends to favor complex models in large samples. The 

BIC is a function of sample size, as well as model complexity (number of estimated parameters), 

and tends to select simpler models. Rupp, Templin, and Henson (2010) caution against using 

relative fit statistics in isolation. They recommend using them subsequently to absolute model-

data fit analyses for the purpose of selecting the most parsimonious model among a set models 

shown to have adequate absolute fit. However, the goal of the model comparisons is not to select 

a model to be used in practice and will have no impact upon an examinee or stakeholder, so 

relative model fit will be evaluated without respect to absolute model fit.  

Both the AIC and BIC require the maximized model likelihood, which for MCMC 

estimation algorithms using uninformative prior distributions can be determined using parameter 

estimates defined as the mean of each parameter‘s respective stable posterior distribution.  The 

AIC and BIC are defined as  

             (53) 
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where    is the log likelihood of the model,   is the number of model parameters and   is the 

number of examinees.  

For the SICM and SICM* models, the likelihood for an examinee is calculated as 
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where     is an       vector of nominal responses to   items on an assessment. The likelihood for 

the model is the product of the likelihoods for each examinee:  
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where   is an       matrix of   examinees‘ nominal responses to   items on an assessment. 

Because       is independent of        for any two examinees (  and   ), the joint probability 

of observing a set of examinees‘ responses is the product of the marginal probability of 

observing each examinee‘s responses. The model likelihood was approximated to avoid complex 

numerical integration. Instead of integrating over the ability distribution with respect to ability, 

the ability distribution was divided into   different quadrature points (rectangular regions), the 

area of which represented the probability that a given examinee‘s ability was within that range of 

ability. By summing across the   quadrature points, an approximation of the integral reflecting 

the cumulative distribution function for ability was obtained. As   increases, the interval 

decreases, and as   approaches infinity, the sum of the quadrature points approach the integral of 

the probability density function of ability. The log likelihood for all examinees is the sum of the 

log likelihood for each examinee: 
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For the SICM model,      was used for determining the model-log likelihood.  

Similarly, the model log likelihoods for each model whose relative fit was compared 

were calculated. The log likelihoods for the NR LCDM and NR IRT model are expressed in 

Equations (58) and (59), respectively: 
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Model-data Fit Comparisons 

Table 29 displays the number of parameters estimated by each of the eight models along 

with the log likelihood, AIC and BIC values. The relative rank of model-data fit according to 

each index is provided after the value of the index is given. For both measures, the 2-PL IRT 

model demonstrated the best fit, closely followed by the 2-PL IRT* model. These two models 

measured considerably fewer parameters than the other models. The AIC and BIC values do not 
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agree on the next best-fitting model, although it is among the SICM* and NR IRT models. The 

AIC and BIC values for these models are close to the values for the other versions of these two 

models (SICM and NR IRT*). The models with the worst model-data fit were the NR LCDM 

and the LCDM.  

These results were not surprising. Given that the results of the examinees‘ all-or-none 

error patterns found for the SICM* model, it is expected that models estimating high 

dimensionality with respect to the errors would not be preferred. Instead, models estimating a 

continuous unidimensional trait are expected to be preferred. The unidimensional models with 

the fewest number of estimated parameters, the 2-PL IRT and 2-PL IRT* models, were the most 

preferred models. However, the NR IRT models were not clearly preferred over the SICM 

models. When modeling the nominal responses, the errors did demonstrate some dimensionality, 

as examinees were in one of two classes, not just one class. However, the complete 

dimensionality that was modeled by the SICM models resulted in over-fitting the model. If no 

dimensionality with respect to the errors was preferred, the NR IRT models should uniformly be 

preferred to the SICM models because they estimate far fewer parameters. These results suggest 

the test may be measuring something more than a unidimensional trait, but it is not measuring 

the three distinct errors in the Q-matrix. Perhaps a single error that placed examinees into two 

groups would be preferred to three errors that failed to place examinees into eight groups. 

The result that the LCDM was the least preferred model was also expected. The 

specification of the LCDM in this way was not theoretically sound, so model-data fit was not 

theoretically expected for this model. Other evidence suggested the LCDM model parameters did 

not converge (see Table 25), and the results in the next section will show that extreme 



134 

 

 

 

parameters had some extreme values (as will be seen in Table 26) and incongruent classifications 

with other models (as will be seen in Figure 17). Because the types of errors appear in different 

incorrect alternatives, collapsing these incorrect alternatives into a single category of an incorrect 

response means the model does not have the ability to distinguish between the types of errors 

being made; that information is only provided with the nominal response data. To specify this 

model, any error present in one of the three incorrect alternatives was measured by the item. 

Therefore, if the item is missed, each present error has a main effect even though the reason for 

the item being missed is only due to one type of error—the type aligned to the error measured in 

the nominal response that was selected. The LCDM was estimated for this study to illustrate this 

point. Although an error or misconception is simply an attribute redefined as an inability instead 

of an ability, unless every incorrect alternative measures the same error within each item, the 

LCDM is ill-equipped to measure misconceptions or errors. Collapsing the alternatives loses all 

of the necessary information to measure the alternative-specific misconceptions.  

A caveat to comparing these models with these indices is that some of these models have 

very different purposes (e.g., provide estimates of a continuous unidimensional ability versus 

classify examinees according to a set of categorical traits). Model selection should consider 

alignment of the type of information that is needed or desired from the assessment and the type 

of information that the psychometric model is engineered to provide. Statistical relative fit is not 

a sole reason upon which to base model selection. 

Parameter Estimates and Standard Errors 

The following sections will compare the examinee estimates for the different models. For 

future reference to discuss model results, the average estimated item and structural parameters 
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and examinee abilities are given in Table 26, along with their standard errors (in parentheses). 

Blanks in the table indicate that no parameter of that type was estimated for that model.  

Comparison of Ability Estimates 

Figure 14 displays the distributions of estimated abilities for examinees for each of the 

models that estimated a continuous parameter that represented examinee ability. Comparing 

these histograms shows that the models with the lower asymptotes yielded a slightly more left- 

skewed distribution of ability parameters. However, in general the distributions had a slight left-

skew, indicated by more examinees with abilities in the interval (1.5,3) than in (-3, -1.5). 

Average ability estimates for each model are given in the last column of Table 29.   

Correlations of ability estimates from these models were also examined. The more highly 

correlated the estimates are, the more closely the different models ranked the examinees. 

Practically, this information becomes important in answering the question of whether adding 

misconceptions to a model will alter the rank of examinees. For example, if misconceptions are 

measured in addition to a continuous ability on an end-of-grade federally mandated test to 

provide multidimensional feedback, it is important to know how modeling misconceptions will 

impact the estimate of the examinees‘ ability. Significantly altering the rank may alter recipients 

or winners of scholarships or awards. The effects on ability estimation could be examined with 

an with an additional simulation study. The results here show how correlated the estimates were 

for this test as a practical example of the effects. Comparisons are made under the caution of 

drastic misfit of the SICM* model.  

Figure 15 shows a plot of SICM* ability estimates in comparison to, first itself (to 

facilitate relative comparisons to a perfect correlation) and then to each of the other five models 
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that estimated a continuous ability for examinees. The SICM* model estimates are more highly 

correlated with the lower asymptote versions of the NR IRT and 2-PL IRT models, and most 

highly correlated with the SICM model.  

 Correlations for these estimates, along with correlations among all model pairs, are given 

in Table 27. The highest correlations were between the regular and lower asymptote versions of 

the SICM, NR-IRT and 2-PL IRT models. These high correlations (0.915, 0.988, and 0.994, 

respectively) are reflected by the plots of examinee ability estimates given in Figure 16 and 

indicate that the lower asymptote did not considerably alter the ranks of examinees‘ ability 

estimates. The next highest correlations were among the four IRT models. The lowest were 

correlations of the SICM models with the NR IRT models. SICM models may be more 

correlated with 2-PL IRT models than NR IRT models because NR IRT models have alternative-

specific discrimination parameters for ability, while the SICM and 2-PL IRT models are 

constrained to a single discrimination parameter for ability per item.  

Comparison of Classifications 

Figure 17 displays the classifications of examinees for each of the models that measured 

a set of categorical variables that represented errors. As for the SICM* model, the SICM model 

places examinees into one of two error patterns. Examinees either possessed all errors (Pattern 8, 

[111]) or no errors (Pattern 1, [000]). The NR LCDM has similar classifications, with only six 

examinees classified as having Pattern 2 ([001]) and two examinees as having Pattern 3 ([010]). 

The classifications from the LCDM were very different; examinees were classified as possessing 

one of three patterns [001], [011], or [110]. Table 28 displays the percentage of individual 

misconception and whole pattern classifications that pairs of models agreed upon. The SICM and 
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SICM* models classified 90.79% of examinees to the same error pattern. Although how much 

the lower asymptote affects classification is an empirical question, classification was not 

expected to vary greatly between these two models. The SICM* and NR LCDM models were in 

agreement with respect to individual misconception and whole pattern classification for 

approximately 84% of examinees. In a practical sense, understanding how the presence of a 

continuous ability impacts classification is important, although this too is an empirical question 

that cannot be answered by an example application that demonstrates model-data misfit. 

Agreement with respect to the LCDM is drastically lower, explanations for which were provided 

in the previous discussion of why the data does not fit the LCDM. 

The findings with the NR LCDM and SICM models reiterate what was found in the 

SICM* model: high multidimensionality in the assessment with respect to the errors does not 

exist. Again, this can either be due to an issue of these errors not being a stable trait or to an issue 

of test development. The SICM and NR LCDM also had low convergence rates of the structural 

parameters, as seen in Table 28, and extreme values of the structural parameter main effects and 

interactions, as seen in Table 29. As for the SICM* model, these results are reflective of the 

misspecification of the structural model due to the lack of multidimensionality of the assessment. 

The models could not differentiate the main effect and interactions for the errors because the data 

represented no systematic variation due to these traits. 

Discussion for Empirical Data Analysis 

Although model-data fit was not present for the SICM model and these data, steps were 

taken to highlight considerations that an analysis of a test with the SICM model should include 

and to demonstrate the types of information that the model can provide. Consideration was given 
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to not presenting the analysis from these data and turning to another data set that might bear 

―better‖ results with the SICM model. However, there is value in sharing the story this analysis 

tells. This analysis shows that even in a scenario like this one where the purpose of the 

assessment was aligned with the purpose of the model, limitations exist and issues arise when 

retrofitting an assessment to a model. Model-data fit is expected to improve in a test-construction 

scenario where a test is being developed from the onset to be estimated with the SICM* model 

and is thus recommended.  

Retrofitting the Foundations of Literacy Assessment to the SICM model was a limitation 

to this study. One criticism in applications of DCMs is that assessments to which the models 

have been fit were not created for the purpose of classifying individuals according to a set of 

dichotomous attributes. Although applications of DCMs are in progress (e.g., Izsak et al., 2010; 

Patterson 2011), DCMs meanwhile have been fitted to existing assessments to illustrate their 

characteristics and capabilities. Development of the psychometric theory of a model necessarily 

precedes its applications. However, several limitations arise when assessments that are 

constructed within one psychometric framework are modeled with another.   

With respect to the Foundations of Literacy Pre-Test, the goals of the test was very well-

aligned with the features of the SICM model; however statistical and theoretical considerations 

mentioned previously in this chapter should be emphasized from the beginning of the test 

development process. Retrofitting other tests, designed with a completely different purpose in 

mind, is heavily cautioned. For example, if the SICM model was fitted to data from an IRT-

based assessment, the mission essentially would be to extract estimates on multiple dimensions 
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for classification purposes from an assessment that purposefully attempted to eliminate such 

dimensional information via the test construction process. Templin and Henson (2006) note:  

Attempting to obtain classification results from a single latent continuum can result in 

estimates that a large number of individuals possess either all attributes or none of the attributes. 

In this case, all attribute correlations (from the structural model) would approach unity, an 

indication that a single continuum is truly underlying the data (pg. 302).  

 

 Assuming that one could educe commensurate dimensionality from the assessment, other 

issues of retrofitting the assessment are present. First, determining the set of misconceptions that 

are measured by the assessment is non-trivial with respect to the number, nature, and grain-size 

of the misconceptions being defined. The number of misconceptions that are measured is a 

compromise between statistical feasibility and domain-specific theory fidelity. For DCMs, 

incorrectly specifying the attributes required to answer an item correctly has negative 

consequences, whether the misspecification is due to including attributes when they are not 

required or to omitting attributes that are indeed required (Rupp and Templin, 2008). These 

consequences are expected for the DCM portion of the SICM models as well. Evidence must be 

provided that examinees do in fact elicit these misconceptions when selecting corresponding 

incorrect alternatives. The validity of the estimates, inferences and decisions that are made based 

upon the DCM is dependent upon the correct specification of which attribute or combination of 

attributes are required to answer each item (Rupp and Templin, 2007); this is true for the SICM 

model as well. Therefore, incorrect specification of attributes or entries in the Q-matrix will 

negatively impact the fit of the SICM model to the IRT-designed test.   

 Lastly, retrofitting the SICM model to a test will likely fail to capitalize on the salient, 

useful characteristics of the SICM model. The SICM model can readily handle complex 
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structures and model more than one misconception being measured with a single alternative. If 

items were not written from the SICM framework, they may not be crafted to measure the 

misconceptions as many times as possible. The six assessments that were outlined in Chapter 3 

provide examples of assessments whose items have alternatives that were consciously written to 

be aligned to a common misconception. However, none of these assessments have alternatives 

that measure more than one misconception. If alternatives or items did measure multiple 

misconceptions, equally reliable classifications may be obtained with shorter tests or more 

reliable classifications may be provided with equally long tests. 

Concluding Remarks of Dissertation 

The SICM model was presented as a psychometric solution to a realistic need in 

educational assessment—to gain more feedback from assessments about what students do not 

understand. As discussed previously, researchers have developed multiple-choice assessments 

with incorrect alternatives carefully constructed to determine which common misconceptions 

students have. Existing psychometric models do not quantify examinee misconceptions and 

commonly focus only on overall abilities. The SICM model provides a way for researchers who 

have these aims to capitalize statistically on their complex assessment designs. The model 

incorporates misconceptions as latent predictors of an item response and is able, in turn, to 

provide estimates of misconceptions for an examinee.  

The efficacy of the SICM model under various testing conditions was demonstrated 

through a simulation study. Thus, the SICM model can enable diagnostic score reports that 

reflect statistical estimates of student misconceptions in addition to information about student 

ability that is typically provided to stakeholders by current modeling and testing procedures. 
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Whereas the simulation results provided guidelines for test and sampling conditions, they did not 

give guidance in terms of how to create the test itself. As seen in the empirical data analysis, the 

development of a test from the SICM framework a priori is very important.  

Although some general test-development considerations can be applied in developing an 

assessment for the SICM model, open questions still exist as to how to create an assessment that 

can utilize the statistical features of the SICM model. Assessments exist that can provide insights 

for writing items to measure misconceptions with incorrect answers. When the SICM model is 

employed to model these types of items, however, unique statistical considerations arise. For 

unidimensional IRT models, items that exhibit multidimensionality are often screened and 

revised or deleted from the assessment. In contrast, the SICM model uses items that measure a 

single continuous trait and a set of multidimensional categorical traits. Thus, items are expected 

to show multidimensionality and have to be screened differently.  

This dissertation explains how the SICM model can be estimated and applied in empirical 

testing situations. Future assessment development projects can hopefully build upon this 

information to leverage the SICM model in practical settings to provide actionable information 

about where students‘ misunderstandings lie. 
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Table 1 

Class-dependent Values of the Main Effect and Interactions in LCDM Kernel for Example Item  

     
          

(1,1,0); (1,1,1)        +                   

(1,0,0); (1,0,1)         

(0,1,0); (0,1,1)         

(0,0,0); (0,0,1) 0 
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Table 2 

Q-matrix for NR LCDM and SICM model for Example Item in Figure 4 

NR LCDM  SICM 

Alternative           Alternative          θ 

A 1 1 0  A 0 0 0 1 

B 1 0 0  B 0 1 0 0 

C 0 1 0  C 1 0 0 0 

D 0 0 0  D 1 1 0 0 
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Table 3 

Simulation Design and Conditions                        

Characteristics Value or Interval 

Test Number of Items 30,60 

Sample Number of Examinees 3000; 10,000 

Measurement  

 
Low  High   

Model Sampling interval for intercepts (-1, 1) 

 
Sampling interval for α main effects (.75, 1.25) (1.75, 2.25) 

 
Sampling interval for    (.3, .5)  (.6, .8) 

 
Sampling interval for two-way interaction effects (0.5, 1) 

 
Higher-order interactions 0 

Structural 

Model 
 

 

Number of Attributes (Misconceptions) 3,6 

Tetrachoric Correlation among Attributes 0.25,0.50 

Distribution of Continuous Trait N(0,1) 
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Table 4 

Q-matrix for 3 Attribute, 30 Item Test 

Item/ 
Alternative          θ 

Item/ 
Alternative          θ 

Item/ 
Alternative          θ 

1 a 1 0 0 0 11 a 1 0 0 0 21 a 1 0 0 0 
1 b 1 0 0 0 11 b 0 1 0 0 21 b 1 0 0 0 
1 c 1 0 0 0 11 c 1 1 0 0 21 c 1 1 0 0 
1 d 0 0 0 1 11 d 0 0 0 1 21 d 0 0 0 1 
2 a 0 1 0 0 12 a 1 0 0 0 22 a 0 1 0 0 
2 b 0 1 0 0 12 b 0 0 1 0 22 b 0 1 0 0 
2 c 0 1 0 0 12 c 1 0 1 0 22 c 0 1 1 0 
2 d 0 0 0 1 12 d 0 0 0 1 22 d 0 0 0 1 
3 a 0 0 1 0 13 a 0 1 0 0 23 a 0 0 1 0 
3 b 0 0 1 0 13 b 0 0 1 0 23 b 0 0 1 0 
3 c 0 0 1 0 13 c 0 1 1 0 23 c 1 0 1 0 
3 d 0 0 0 1 13 d 0 0 0 1 23 d 0 0 0 1 
4 a 1 0 0 0 14 a 1 0 0 0 24 a 1 0 0 0 
4 b 1 0 0 0 14 b 1 0 0 0 24 b 1 0 0 0 
4 c 0 1 0 0 14 c 1 1 0 0 24 c 0 1 0 0 
4 d 0 0 0 1 14 d 0 0 0 1 24 d 0 0 0 1 
5 a 1 0 0 0 15 a 0 1 0 0 25 a 1 0 0 0 
5 b 1 0 0 0 15 b 0 1 0 0 25 b 1 0 0 0 
5 c 0 0 1 0 15 c 0 1 1 0 25 c 0 0 1 0 
5 d 0 0 0 1 15 d 0 0 0 1 25 d 0 0 0 1 
6 a 0 1 0 0 16 a 0 0 1 0 26 a 0 1 0 0 
6 b 0 1 0 0 16 b 0 0 1 0 26 b 0 1 0 0 
6 c 1 0 0 0 16 c 1 0 1 0 26 c 1 0 0 0 
6 d 0 0 0 1 16 d 0 0 0 1 26 d 0 0 0 1 
7 a 0 1 0 0 17 a 1 0 0 0 27 a 0 1 0 0 
7 b 0 1 0 0 17 b 1 0 0 0 27 b 0 1 0 0 
7 c 0 0 1 0 17 c 0 1 1 0 27 c 0 0 1 0 
7 d 0 0 0 1 17 d 0 0 0 1 27 d 0 0 0 1 
8 a 0 0 1 0 18 a 0 1 0 0 28 a 0 0 1 0 
8 b 0 0 1 0 18 b 0 1 0 0 28 b 0 0 1 0 
8 c 1 0 0 0 18 c 1 0 1 0 28 c 1 0 0 0 
8 d 0 0 0 1 18 d 0 0 0 1 28 d 0 0 0 1 
9 a 0 0 1 0 19 a 0 0 1 0 29 a 0 0 1 0 
9 b 0 0 1 0 19 b 0 0 1 0 29 b 0 0 1 0 
9 c 0 1 0 0 19 c 1 1 0 0 29 c 0 1 0 0 
9 d 0 0 0 1 19 d 0 0 0 1 29 d 0 0 0 1 
10 a 1 0 0 0 20 a 1 0 0 0 30 a 1 0 0 0 
10 b 0 1 0 0 20 b 0 1 0 0 30 b 0 1 0 0 
10 c 0 0 1 0 20 c 0 0 1 0 30 c 0 0 1 0 
10 d 0 0 0 1 20 d 0 0 0 1 30 d 0 0 0 1 
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Table 5 

Q-matrix for 6 Attribute, 30 Item Test 

Item/Alternative                   Item/Alternative                   
1 a 1 0 0 0 0 0 16 a 0 0 0 1 0 0 
1 b 1 0 0 0 0 0 16 b 0 0 0 1 0 0 
1 c 1 0 0 0 0 0 16 c 0 0 0 0 1 1 
2 a 0 1 0 0 0 0 17 a 0 0 0 0 1 0 
2 b 0 1 0 0 0 0 17 b 0 0 0 0 1 0 
2 c 0 1 0 0 0 0 17 c 0 0 0 0 0 1 
3 a 0 0 1 0 0 0 18 a 0 0 0 0 0 1 
3 b 0 0 1 0 0 0 18 b 0 0 0 0 0 1 
3 c 0 0 1 0 0 0 18 c 1 0 0 0 0 0 
4 a 0 0 0 1 0 0 19 a 1 0 0 0 0 0 
4 b 0 0 0 1 0 0 19 b 0 0 1 0 0 0 
4 c 0 0 0 1 0 0 19 c 0 0 0 0 1 0 
5 a 0 0 0 0 1 0 20 a 0 1 0 0 0 0 
5 b 0 0 0 0 1 0 20 b 0 0 0 1 0 0 
5 c 0 0 0 0 1 0 20 c 0 0 0 0 0 1 
6 a 0 0 0 0 0 1 21 a 1 0 0 0 0 0 
6 b 0 0 0 0 0 1 21 b 0 1 0 0 0 0 
6 c 0 0 0 0 0 1 21 c 1 1 0 0 0 0 
7 a 1 0 0 0 0 0 22 a 0 0 1 0 0 0 
7 b 0 1 0 0 0 0 22 b 0 0 0 1 0 0 
7 c 0 0 1 0 0 0 22 c 0 0 1 1 0 0 
8 a 0 1 0 0 0 0 23 a 0 0 0 0 1 0 
8 b 0 0 1 0 0 0 23 b 0 0 0 0 0 1 
8 c 0 0 0 1 0 0 23 c 0 0 0 0 1 1 
9 a 0 0 1 0 0 0 23 d 0 0 0 0 0 0 
9 b 0 0 0 1 0 0 24 a 1 0 0 0 0 0 
9 c 0 0 0 0 1 0 24 b 0 0 1 0 0 0 
9 d 0 0 0 0 0 0 24 c 1 0 1 0 0 0 

10 a 0 0 0 1 0 0 25 a 0 1 0 0 0 0 
10 b 0 0 0 0 1 0 25 b 0 0 0 1 0 0 
10 c 0 0 0 0 0 1 25 c 0 1 0 1 0 0 
11 a 0 0 0 0 1 0 26 a 0 0 1 0 0 0 
11 b 0 0 0 0 0 1 26 b 0 0 0 0 1 0 
11 c 1 0 0 0 0 0 26 c 0 0 1 0 1 0 
12 a 0 0 0 0 0 1 27 a 0 0 0 1 0 0 
12 b 1 0 0 0 0 0 27 b 0 0 0 0 0 1 
12 c 0 1 0 0 0 0 27 c 0 0 0 1 0 1 
13 a 1 0 0 0 0 0 28 a 0 0 0 0 1 0 
13 b 1 0 0 0 0 0 28 b 1 0 0 0 0 0 
13 c 0 1 0 0 0 0 28 c 1 0 0 0 1 0 
14 a 0 1 0 0 0 0 29 a 0 0 0 0 0 1 
14 b 0 1 0 0 0 0 29 b 0 1 0 0 0 0 
14 c 0 0 1 1 0 0 29 c 0 1 0 0 0 1 
15 a 0 0 1 0 0 0 30 a 1 0 0 0 0 0 
15 b 0 0 1 0 0 0 30 b 0 1 0 0 0 0 
15 c 0 0 0 1 1 0 30 c 0 0 1 0 0 0 
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Table 6a 

Convergence Rates for Simulation Conditions with Misconception Correlation of .50  

Parameter Type       Mean  ̂ Median  ̂ %  ̂ < 1.1 %  ̂ <1.5 

Item 3000 30 3 1.250 1.098 52.00 86.25 

(Intercepts, 

  
6 1.368 1.143 43.25 78.75 

Misconception 

 
60 3 1.170 1.068 61.00 91.25 

Main Effects, 

  
6 1.238 1.085 55.00 87.50 

Misconception  10000 30 3 1.155 1.065 62.75 92.75 

Interactions) 

  
6 1.260 1.100 51.75 85.75 

  
60 3 1.100 1.045 72.25 96.75 

   
6 1.145 1.060 65.00 93.50 

Item 3000 30 3 1.155 1.085 61.50 91.75 

(Ability 

  
6 1.190 1.108 58.50 88.50 

Main Effects) 

 
60 3 1.083 1.053 74.00 98.50 

   
6 1.088 1.053 72.50 98.25 

 
10000 30 3 1.153 1.080 60.75 92.50 

   
6 1.183 1.095 59.25 89.25 

  
60 3 1.075 1.048 76.75 98.75 

   
6 1.080 1.048 75.00 98.50 

Structural 3000 30 3 1.183 1.118 62.50 89.50 

(All)  

  
6 1.725 1.448 29.75 63.25 

  
60 3 1.093 1.055 75.25 96.25 

   
6 1.338 1.198 44.25 79.00 

 
10000 30 3 1.240 1.160 53.00 85.00 

   
6 1.853 1.538 23.25 55.00 

  
60 3 1.155 1.105 60.75 91.75 

   
6 1.440 1.250 36.75 72.50 

Examinee 3000 30 3 1.220 1.125 48.25 88.00 

(Ability) 

  
6 1.233 1.138 47.00 85.75 

  
60 3 1.163 1.090 57.00 92.25 

   
6 1.170 1.095 55.75 91.50 

 
10000 30 3 1.223 1.125 49.50 86.50 

   
6 1.230 1.133 45.50 86.50 

  
60 3 1.150 1.083 59.75 93.25 

   
6 1.170 1.090 57.75 92.00 

Note. A variation of Gelman and Rubin‘s (1992)  ̂ statistic is used to assess convergence.  
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Table 6b 

Convergence Rates for Simulation Conditions with Misconception Correlation of .25  

Parameter Type       Mean  ̂ Median  ̂ %  ̂ < 1.1 %  ̂ < 1.5 

Item 3000 30 3 1.253 1.098 52.25 86.25 

(Intercepts, 

  
6 1.393 1.158 41.50 77.00 

Misconception 

 
60 3 1.170 1.068 61.00 91.50 

Main Effects, 

  
6 1.243 1.090 53.50 87.00 

Misconception  10000 30 3 1.155 1.065 62.75 92.75 

Interactions) 

  
6 1.263 1.105 50.75 85.50 

  
60 3 1.103 1.045 71.50 96.75 

   
6 1.148 1.060 64.75 93.5 

Item 3000 30 3 1.148 1.085 62.00 92.50 

(Ability 

  
6 1.180 1.098 58.00 89.75 

Main Effects) 

 
60 3 1.070 1.040 77.50 99.50 

   
6 1.078 1.043 76.25 98.75 

 
10000 30 3 1.145 1.075 62.25 93.25 

   
6 1.180 1.095 59.75 89.25 

  
60 3 1.070 1.045 77.75 99.5 

   
6 1.073 1.045 76.00 99.00 

Structural 3000 30 3 1.180 1.113 62.50 89.75 

(All)  

  
6 1.510 1.300 37.25 70.75 

  
60 3 1.098 1.060 74.25 95.75 

   
6 1.215 1.115 54.75 87.50 

 
10000 30 3 1.243 1.165 55.00 84.75 

   
6 1.643 1.400 29.50 64.50 

  
60 3 1.128 1.080 67.00 94.25 

   
6 1.305 1.170 44.25 80.25 

Examinee 3000 30 3 1.223 1.115 48.00 87.25 

(Ability) 

  
6 1.228 1.133 46.75 86.00 

  
60 3 1.163 1.093 58.25 92.00 

   
6 1.170 1.098 55.75 91.25 

 
10000 30 3 1.215 1.125 47.75 87.75 

   
6 1.228 1.138 47.00 86.00 

  
60 3 1.168 1.093 56.25 91.25 

   
6 1.185 1.100 54.75 90.75 

  Note. A variation of Gelman and Rubin‘s (1992)  ̂ statistic is used to assess convergence.  
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Table 7 

Number of Parameters in Simulation Conditions by Number of Items ( ) and Attributes ( )  

    
Item Intercepts 

(    

Misconception 

Item Parameters 
                 

Ability Item 

Parameters 
         

Structural 

Parameters 
    Total 

30 3 90 114 30 6 240 

 
6 90 114 30 22 256 

60 3 180 228 60 6 474 

 
6 180 228 60 22 490 
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Table 8a 

Estimation Accuracy for Item Parameters across Magnitude of Main Effects Factor: 

Misconception Correlation of .50  

               ̂         ̂     ̂        ̂  

   3000 30 3 -0.009 (0.023) 0.013 (0.003) .983 (.004) 0.103 (0.002) 

   

6 -0.012 (0.024) 0.015 (0.004) .981 (.004) 0.107 (0.003) 

  

60 3 -0.010 (0.014) 0.010 (0.001) .860 (.002) 0.094 (0.001) 

   

6 -0.010 (0.013) 0.011 (0.001) .986 (.002) 0.095 (0.001) 

 

10000 30 3 -0.002 (0.011) 0.004 (0.001) .995 (.001) 0.057 (0.001) 

   

6 -0.003 (0.012) 0.004 (0.001) .994 (.001) 0.058 (0.001) 

  

60 3 -0.004 (0.009) 0.003 (0.000) .996 (.001) 0.052 (0.000) 

   

6 -0.004 (0.008) 0.003 (0.000) .996 (.000) 0.052 (0.000) 

      3000 30 3 0.002 (0.026) 0.030 (0.006) .657 (.056) 0.149 (0.003) 

   

6 0.003 (0.030) 0.046 (0.010) .561 (.073) 0.173 (0.004) 

  

60 3 0.005 (0.014) 0.021 (0.003) .707 (.034) 0.133 (0.001) 

   

6 0.000 (0.017) 0.028 (0.004) .658 (.039) 0.147 (0.002) 

 

10000 30 3 0.000 (0.012) 0.008 (0.002) .853 (.024) 0.083 (0.001) 

   

6 -0.001 (0.016) 0.015 (0.003) .767 (.046) 0.099 (0.002) 

  

60 3 0.002 (0.008) 0.006 (0.001) .879 (.015) 0.073 (0.001) 

   

6 0.000 (0.010) 0.008 (0.001) .850 (.021) 0.082 (0.001) 

        3000 30 3 0.014 (0.088) 0.098 (0.038) .423 (.250) 0.245 (0.013) 

   

6 0.018 (0.134) 0.228 (0.098) .313 (.249) 0.324 (0.024) 

  

60 3 0.007 (0.047) 0.055 (0.017) .541 (.133) 0.209 (0.007) 

   

6 0.020 (0.067) 0.110 (0.034) .440 (.164) 0.258 (0.010) 

 

10000 30 3 0.005 (0.042) 0.027 (0.012) .658 (.162) 0.143 (0.005) 

   

6 0.018 (0.070) 0.078 (0.035) .479 (.211) 0.209 (0.013) 

  

60 3 0.000 (0.027) 0.015 (0.005) .750 (.078) 0.117 (0.002) 

   

6 0.009 (0.033) 0.031 (0.010) .652 (.105) 0.152 (0.004) 

   3000 30 3 0.005 (0.014) 0.042 (0.006) .810 (.060) 0.040 (0.040) 

   

6 0.006 (0.015) 0.044 (0.008) .811 (.054) 0.040 (0.042) 

  

60 3 0.011 (0.011) 0.038 (0.005) .867 (.027) 0.035 (0.036) 

   

6 0.011 (0.013) 0.039 (0.006) .864 (.027) 0.036 (0.035) 

 

10000 30 3 0.001 (0.007) 0.022 (0.003) .935 (.019) 0.021 (0.021) 

   

6 0.002 (0.008) 0.023 (0.003) .926 (.021) 0.022 (0.022) 

  

60 3 0.004 (0.006) 0.019 (0.002) .954 (.009) 0.019 (0.019) 

   

6 0.004 (0.006) 0.020 (0.003) .953 (.009) 0.019 (0.019) 
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Table 8b 

Estimation Accuracy for Item Parameters across Magnitude of Main Effects Factor: 

Misconception Correlation of .50  

               ̂         ̂     ̂        ̂  

   3000 30 3 -0.011 (0.021) 0.014 (0.004) .982 (.004) 0.105 (0.002) 

   
6 -0.018 (0.025) 0.020 (0.006) .974 (.006) 0.117 (0.004) 

  
60 3 -0.012 (0.015) 0.011 (0.001) .986 (.002) 0.096 (0.001) 

   
6 -0.011 (0.016) 0.012 (0.002) .984 (.002) 0.100 (0.001) 

 
10000 30 3 -0.003 (0.011) 0.004 (0.001) .995 (.001) 0.058 (0.001) 

   
6 -0.005 (0.012) 0.005 (0.001) .993 (.002) 0.063 (0.001) 

  
60 3 -0.003 (0.008) 0.003 (0.000) .996 (.001) 0.052 (0.000) 

   
6 -0.005 (0.008) 0.003 (0.000) .995 (.001) 0.055 (0.000) 

      3000 30 3 0.008 (0.023) 0.030 (0.007) .657 (.066) 0.148 (0.003) 

   
6 0.006 (0.026) 0.049 (0.012) .547 (.074) 0.175 (0.004) 

  
60 3 0.006 (0.015) 0.021 (0.003) .705 (.033) 0.132 (0.001) 

   
6 0.004 (0.015) 0.028 (0.004) .663 (.036) 0.145 (0.002) 

 
10000 30 3 0.002 (0.013) 0.008 (0.002) .852 (.029) 0.083 (0.001) 

   
6 -0.001 (0.015) 0.014 (0.003) .778 (.041) 0.099 (0.002) 

  
60 3 0.001 (0.008) 0.006 (0.001) .882 (.015) 0.073 (0.000) 

   
6 0.002 (0.008) 0.008 (0.001) .856 (.016) 0.081 (0.001) 

        3000 30 3 0.001 (0.089) 0.098 (0.042) .438 (.230) 0.245 (0.012) 

   
6 0.006 (0.122) 0.214 (0.092) .337 (.270) 0.312 (0.022) 

  
60 3 0.007 (0.049) 0.058 (0.019) .514 (.148) 0.206 (0.007) 

   
6 0.005 (0.062) 0.100 (0.027) .426 (.165) 0.247 (0.010) 

 
10000 30 3 0.000 (0.047) 0.025 (0.011) .658 (.169) 0.142 (0.005) 

   
6 0.015 (0.069) 0.068 (0.028) .493 (.238) 0.196 (0.011) 

  
60 3 0.003 (0.027) 0.015 (0.005) .770 (.077) 0.117 (0.002) 

   
6 0.002 (0.031) 0.026 (0.008) .688 (.102) 0.143 (0.004) 

   3000 30 3 0.006 (0.013) 0.042 (0.007) .817 (.056) 0.040 (0.039) 

   
6 0.005 (0.015) 0.043 (0.007) .811 (.053) 0.042 (0.042) 

  
60 3 0.010 (0.011) 0.037 (0.006) .868 (.025) 0.035 (0.035) 

   
6 0.011 (0.012) 0.038 (0.005) .862 (.028) 0.035 (0.036) 

 
10000 30 3 0.002 (0.007) 0.022 (0.003) .931 (.021) 0.021 (0.021) 

   
6 0.001 (0.007) 0.023 (0.004) .926 (.024) 0.022 (0.021) 

  
60 3 0.003 (0.006) 0.019 (0.002) .954 (.008) 0.019 (0.019) 

   
6 0.004 (0.006) 0.020 (0.002) .953 (.008) 0.019 (0.019) 
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Table 9 

Estimation Accuracy for Item Parameters by Magnitude of Main Effects Factor 

  
Misconception 

Main Effects  
(       

Ability 
Main 

Effects (    
       ̂         ̂     ̂        ̂  

   Low Low -0.008 (0.014) 0.009 (0.002) .988 (.002) 0.081 (0.002) 

  High -0.010 (0.017) 0.010 (0.002) .986 (.003) 0.084 (0.002) 

 High Low -0.005 (0.012) 0.007 (0.001) .991 (.001) 0.074 (0.001) 

  High -0.008 (0.014) 0.008 (0.001) .991 (.002) 0.077 (0.001) 
      Low Low 0.000 (0.016) 0.025 (0.005) .709 (.043) 0.125 (0.002) 

  High -0.001 (0.018) 0.026 (0.005) .703 (.043) 0.128 (0.002) 

 High Low 0.006 (0.014) 0.015 (0.002) .781 (.033) 0.107 (0.001) 

  High 0.005 (0.015) 0.016 (0.003) .776 (.036) 0.109 (0.001) 
        Low Low 0.015 (0.076) 0.109 (0.040) .437 (.202) 0.234 (0.013) 

  High 0.011 (0.078) 0.117 (0.047) .506 (.183) 0.238 (0.013) 

 High Low 0.003 (0.047) 0.040 (0.015) .599 (.158) 0.169 (0.006) 

  High 0.003 (0.050) 0.045 (0.018) .603 (.146) 0.176 (0.007) 
   Low Low 0.003 (0.008) 0.033 (0.004) .859 (.037) 0.031 (0.032) 

  High 0.009 (0.011) 0.027 (0.005) .915 (.021) 0.026 (0.026) 

 High Low 0.001 (0.009) 0.036 (0.004) .853 (.039) 0.035 (0.034) 

  High 0.008 (0.011) 0.026 (0.005) .933 (.016) 0.025 (0.025) 
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Table 10a 

Estimation Accuracy for Structural Parameters across Magnitude of Main Effects Factor: 

Misconception Correlation of .50  

               ̂         ̂      ̂     ̂    

   3000 30 3 -0.014 (0.085) 0.069 (0.053) 0.326 (0.008)  

   6 -0.032 (0.094) 0.081 (0.058) 0.327 (0.008)  

  60 3 -0.004 (0.051) 0.040 (0.032) 0.321 (0.007)  

   6 -0.003 (0.058) 0.045 (0.036) 0.321 (0.007)  

 10000 30 3 -0.008 (0.043) 0.035 (0.027) 0.319 (0.007)  

   6 -0.010 (0.050) 0.039 (0.031) 0.319 (0.007)  

  60 3 -0.003 (0.034) 0.028 (0.020) 0.318 (0.007)  

   6 -0.003 (0.036) 0.029 (0.021) 0.318 (0.007)  

   3000 30 3 -0.003 (0.072) 0.102 (0.045) 0.101 (0.006)  

   6 -0.062 (0.064) 0.271 (0.113) 0.195 (0.021)  

  60 3 0.003 (0.048) 0.072 (0.031) 0.076 (0.004)  

   6 -0.013 (0.037) 0.134 (0.044) 0.128 (0.008)  

 10000 30 3 0.005 (0.037) 0.053 (0.023) 0.054 (0.004)  

   6 -0.016 (0.031) 0.125 (0.043) 0.097 (0.009)  

  60 3 0.000 (0.027) 0.039 (0.015) 0.041 (0.002)  

   6 -0.008 (0.019) 0.072 (0.026) 0.067 (0.004)  

   3000 30 3 0.008 (0.059) 0.115 (0.047) 0.115 (0.006)  

   6 0.027 (0.025) 0.302 (0.089) 0.225 (0.015)  

  60 3 -0.002 (0.042) 0.083 (0.037) 0.091 (0.004)  

   6 0.006 (0.014) 0.162 (0.042) 0.152 (0.007)  

 10000 30 3 -0.002 (0.030) 0.060 (0.025) 0.061 (0.004)  

   6 0.007 (0.012) 0.151 (0.041) 0.110 (0.008)  

  60 3 0.001 (0.025) 0.046 (0.019) 0.049 (0.002)  

   6 0.003 (0.007) 0.088 (0.025) 0.080 (0.004)  

   3000 30 3 
   

.990 (.008) 

   6    .974 (.011) 

  60 3    .995 (.004) 

   6    .993 (.003) 

 10000 30 3    .997 (.002) 

   6    .993 (.003) 

  60 3    .999 (.001) 

   6    .998 (.001) 
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Table 10b 

 Estimation Accuracy for Structural Parameters across Magnitude of Main Effects Factor: 

Misconception Correlation of .25  

               ̂         ̂      ̂     ̂    
   3000 30 3 -0.019 (0.085) 0.071 (0.053) 0.328 (0.008) 

 
   6 -0.073 (0.135) 0.128 (0.094) 0.341 (0.011) 

 
  60 3 -0.006 (0.065) 0.052 (0.040) 0.322 (0.007) 

 
   6 -0.015 (0.079) 0.060 (0.054) 0.323 (0.006) 

 
 10000 30 3 -0.003 (0.044) 0.037 (0.027) 0.319 (0.008) 

 
   6 -0.020 (0.062) 0.056 (0.038) 0.321 (0.008) 

 
  60 3 -0.008 (0.033) 0.027 (0.020) 0.317 (0.007) 

 
   6 -0.004 (0.037) 0.029 (0.024) 0.318 (0.007) 

 
   3000 30 3 0.005 (0.071) 0.101 (0.040) 0.099 (0.007) 

 
   6 -0.025 (0.075) 0.236 (0.079) 0.184 (0.018) 

 
  60 3 0.007 (0.052) 0.072 (0.030) 0.075 (0.003) 

 
   6 -0.004 (0.042) 0.119 (0.038) 0.117 (0.006) 

 
 10000 30 3 0.001 (0.038) 0.052 (0.021) 0.053 (0.004) 

 
   6 -0.005 (0.033) 0.109 (0.035) 0.090 (0.009) 

 
  60 3 0.004 (0.028) 0.038 (0.016) 0.040 (0.002) 

 
   6 -0.002 (0.024) 0.063 (0.021) 0.062 (0.004) 

 
   3000 30 3 0.002 (0.063) 0.110 (0.046) 0.111 (0.006) 

 
   6 0.015 (0.026) 0.209 (0.056) 0.179 (0.010) 

 
  60 3 -0.004 (0.046) 0.083 (0.034) 0.088 (0.003) 

 
   6 0.002 (0.016) 0.124 (0.032) 0.122 (0.004) 

 
 10000 30 3 0.000 (0.034) 0.059 (0.025) 0.060 (0.004) 

 
   6 0.003 (0.012) 0.103 (0.027) 0.091 (0.004) 

 
  60 3 -0.001 (0.025) 0.045 (0.018) 0.048 (0.002) 

 
   6 0.001 (0.009) 0.068 (0.018) 0.065 (0.002) 

 
   3000 30 3 

   
.983 (.014) 

   6 
   

.972 (.010) 

  60 3 
   

.991 (.007) 

   6 
   

.992 (.003) 

 10000 30 3 
   

.995 (.004) 

   6 
   

.993 (.003) 

  60 3 
   

.998 (.002) 

   6 
   

.997 (.001) 
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Table 11 

Estimation Accuracy for Structural Parameters by Magnitude of Main Effects Factor 

  
Misconception 

Main Effects 
(       

Ability 
Main Effects 

(    
       ̂         ̂      ̂     ̂    

   Low Low -0.027 (0.077) 0.067 (0.049) 0.325 (0.008) 
  

 
High -0.031 (0.084) 0.073 (0.054) 0.326 (0.008) 

  High Low 0.000 (0.043) 0.033 (0.027) 0.319 (0.007) 
  

 
High 0.002 (0.043) 0.034 (0.027) 0.319 (0.007) 

       Low Low -0.013 (0.058) 0.122 (0.045) 0.118 (0.011)  

 
 

High -0.007 (0.059) 0.124 (0.043) 0.124 (0.012)  

 High Low -0.005 (0.028) 0.051 (0.019) 0.063 (0.002)  

 
 

High -0.004 (0.029) 0.054 (0.020) 0.065 (0.003)  

        Low Low 0.007 (0.035) 0.127 (0.039) 0.128 (0.008)  

 
 

High 0.005 (0.036) 0.126 (0.039) 0.131 (0.008)  

 High Low 0.002 (0.020) 0.061 (0.018) 0.075 (0.003)  

 
 

High 0.002 (0.020) 0.065 (0.020) 0.077 (0.003)  
   Low Low 

   
.986 (.008) 

 
 

High 
   

.986 (.007) 

 High Low 
   

.997 (.002) 

 
 

High 
   

.996 (.002) 
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Table 12 

Estimation Accuracy for Examinee Ability Parameters across Magnitude of  

Main Effects Factor 

                  ̂         ̂     ̂    

.25 3,000 30 3 -0.006 (0.019) 0.708 (0.010) .697 (.010) 

   
6 -0.007 (0.019) 0.724 (0.010) .678 (.011) 

  
60 3 -0.012 (0.019) 0.590 (0.010) .802 (.007) 

   
6 -0.013 (0.021) 0.597 (0.010) .796 (.008) 

 
10,000 30 3 -0.003 (0.010) 0.705 (0.006) .699 (.006) 

   
6 -0.003 (0.011) 0.721 (0.006) .680 (.006) 

  
60 3 -0.004 (0.010) 0.588 (0.005) .803 (.004) 

   
6 -0.006 (0.011) 0.594 (0.005) .799 (.004) 

.50 3,000 30 3 -0.006 (0.020) 0.710 (0.011) .694 (.010) 

   
6 -0.008 (0.017) 0.728 (0.010) .675 (.011) 

  
60 3 -0.011 (0.019) 0.592 (0.010) .801 (.008) 

   
6 -0.015 (0.018) 0.599 (0.009) .795 (.007) 

 
10,000 30 3 -0.003 (0.010) 0.707 (0.006) .697 (.006) 

   
6 -0.003 (0.010) 0.725 (0.005) .679 (.006) 

  
60 3 -0.005 (0.010) 0.589 (0.005) .803 (.004) 

   
6 -0.006 (0.010) 0.596 (0.005) .798 (.003) 

 

  



166 

 

 

 

Table 13 

Estimation Accuracy for Examinee Ability Parameters by Magnitude of Main Effects Factor 

Misconception Main 

Effects (       
Ability 

Main Effects (    
       ̂         ̂     ̂    

Low Low -0.006 (0.015) 0.727 (0.008) .682 (.008) 

 
High -0.007 (0.015) 0.560 (0.007) .827 (.005) 

High Low -0.006 (0.014) 0.751 (0.008) .653 (.009) 

 
High -0.008 (0.015) 0.580 (0.008) .811 (.005) 
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Table 14 

Reliability for Examinee Ability ( ) and Classification of Individual Misconceptions (  )  

across Magnitude of Main Effects Factor 

Note. The average of the reliability of the individual misconceptions for a row is denoted by   . 

  

           θ                      

.25 3,000 30 3 .545 

(.015) 
.907 

(.007) 
.894 

(.008) 
.907 

(.008) 
.919 

(.006) 
   

   6 .525 

(.016) 
.806 

(.016) 
.793 

(.019) 
.795 

(.016) 
.812 

(.015) 
.799 

(.016) 
.829 

(.013) 
.809 

(.014) 

  60 3 .674 

(.011) 
.987 

(.003) 
.986 

(.002) 
.987 

(.003) 
.987 

(.003) 
   

   6 .668 

(.012) 
.923 

(.006) 
.911 

(.007) 
.907 

(.006) 
.912 

(.007) 
.938 

(.006) 
.937 

(.005) 
.930 

(.005) 

 10,000 30 3 .544 

(.008) 
.906 

(.004) 
.895 

(.004) 
.906 

(.004) 
.918 

(.004) 
   

   6 .525 

(.008) 
.807 

(.009) 
.793 

(.009) 
.793 

(.009) 
.810 

(0.008) 
.800 

(.009) 
.829 

(.007) 
.812 

(.009) 

  60 3 .676 

(.006) 
.987 

(.002) 
.986 

(.001) 
.987 

(.002) 
.987 

(0.002) 
   

   6 .669 

(.006) 
.924 

(.003) 
.912 

(.003) 
.909 

(.004) 
.914 

(0.003) 
.939 

(.003) 
.938 

(.003) 
.931 

(.003) 

.50 3,000 30 3 .541 

(.015) 
.909 

(.007) 
.897 

(.007) 
.908 

(.008) 
.920 

(0.007) 
   

   6 .523 

(.016) 
.853 

(.015) 
.843 

(.015) 
.839 

(.015) 
.857 

(0.015) 
.847 

(.017) 
.875 

(.013) 
.860 

(.015) 

  60 3 .674 

(.012) 
.988 

(.003) 
.986 

(.002) 
.989 

(.003) 
.988 

(0.003) 
   

   6 .667 

(.012) 
.945 

(.006) 
.935 

(.006) 
.931 

(.006) 
.936 

(0.006) 
.956 

(.004) 
.957 

(.005) 
.951 

(.005) 

 10,000 30 3 .542 

(.008) 
.908 

(.004) 
.897 

(.004) 
.908 

(.004) 
.920 

(0.004) 
   

   6 .523 

(.009) 
.853 

(.007) 
.842 

(.008) 
.841 

(.008) 
.857 

(0.007) 
.846 

(.007) 
.872 

(.007) 
.860 

(.007) 

  60 3 .675 

(.006) 
.988 

(.002) 
.987 

(.001) 
.988 

(.002) 
.989 

(0.002) 
   

   6 .669 

(.006) 
.946 

(.003) 
.937 

(.003) 
.933 

(.003) 
.937 

(0.004) 
.957 

(.003) 
.957 

(.003) 
.952 

(.003) 
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Table 15 

Average Reliability for Examinee Ability ( ) and Classification of Individual Misconceptions 

(   ) by Magnitude of Main Effects Factor 

Misconception 
Main Effects (       

Ability 
Main Effects (      

 

   

Low Low .522 (.013) .855 (.010) 

 
High .709 (.007) .843 (.011) 

High Low .491 (.013) .965 (.001) 

 
High .687 (.008) .954 (.002) 
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Table 16 

Correct Classification Rates for Marginal (  ) and Whole Pattern (α) Classification across 

Magnitude of Main Effects Factor 

                             α 

.25 3000 30 3 .903 

(.006) 
.910 

(.005) 
.916 

(.005)  

  

.778 

(.008) 
   6 .843 

(.007) 
.842 

(.008) 
.851 

(.007) 
.847 

(.008) 
.858 

(.007) 
.851 

(.007) 
.481 

(.011) 
  60 3 .958 

(.003) 
.957 

(.003) 
.958 

(.003)  

  

.891 

(.005) 
   6 .912 

(.004) 
.908 

(.005) 
.913 

(.005) 
.925 

(.004) 
.927 

(.004) 
.921 

(.004) 
.677 

(.008) 
 10000 30 3 .905 

(.003) 
.911 

(.003) 
.918 

(.003)  

  

.781 

(.004) 
   6 .847 

(.004) 
.847 

(.004) 
.854 

(.004) 
.850 

(.004) 
.862 

(.004) 
.855 

(.004) 
.492 

(.005) 
  60 3 .959 

(.002) 
.959 

(.002) 
.959 

(.002)  

  

.894 

(.003) 
   6 .914 

(.003) 
.910 

(.003) 
.915 

(.002) 
.927 

(.003) 
.929 

(.002) 
.923 

(.003) 
.682 

(.004) 
.50 3000 30 3 .904 

(.005) 
.910 

(.006) 
.917 

(.005)  

  

.782 

(.008) 
   6 .864 

(.007) 
.863 

(.006) 
.868 

(.007) 
.867 

(.006) 
.877 

(.006) 
.871 

(.006) 
.573 

(.009) 
  60 3 .958 

(.003) 
.958 

(.003) 
.958 

(.003)  

  

.894 

(.005) 
   6 .925 

(.005) 
.921 

(.005) 
.925 

(.005) 
.934 

(.004) 
.937 

(.004) 
.932 

(.005) 
.731 

(.008) 
 10000 30 3 .906 

(.003) 
.912 

(.003) 
.918 

(.003)  

  

.786 

(.004) 
   6 .867 

(.003) 
.866 

(.003) 
.871 

(.004) 
.870 

(.003) 
.879 

(.003) 
.874 

(.004) 
.580 

(.005) 
  60 3 .959 

(.002) 
.959 

(.002) 
.960 

(.002)  

  

.896 

(.003) 
   6 .926 

(.002) 
.922 

(.003) 
.926 

(.003) 
.936 

(.002) 
.938 

(.002) 
.934 

(.002) 
.735 

(.004) 
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Table 17 

Cohen’s Kappa for Marginal (  ) and Whole Pattern (α) Classification across Magnitude of 

Main Effects Factor 

                             α 

.25 3,000 30 3 .808 

(.013) 
.821 

(.012) 
.833 

(.010) 
   

.742 

(.009) 
   6 .686 

(.021) 
.681 

(.027) 
.700 

(.020) 
.693 

(.027) 
.718 

(.018) 
.704 

(.020) 
.449 

(.010) 
  60 3 .917 

(.006) 
.915 

(.006) 
.916 

(.006) 
   

.874 

(.005) 
   6 .827 

(.010) 
.817 

(.011) 
.827 

(.010) 
.851 

(.008) 
.856 

(.009) 
.844 

(.022) 
.660 

(.008) 
 10,000 30 3 .812 

(.006) 
.823 

(.005) 
.837 

(.005) 
   

.746 

(.005) 
   6 .698 

(.011) 
.698 

(.009) 
.711 

(.009) 
.704 

(.010) 
.729 

(.008) 
.714 

(.008) 
.460 

(.005) 
  60 3 .919 

(.003) 
.917 

(.003) 
.918 

(.004) 
  

 
.877 

(.003) 
   6 .831 

(.005) 
.823 

(.006) 
.832 

(.005) 
.855 

(.005) 
.859 

(.004) 
.848 

(.005) 
.665 

(.004) 
.50 3,000 30 3 .809 

(.011) 
.821 

(.012) 
.835 

(.010) 
   

.743 

(.009) 
   6 .730 

(.017) 
.728 

(.014) 
.740 

(.015) 
.736 

(.014) 
.759 

(.013) 
.746 

(.014) 
.505 

(.010) 
  60 3 .917 

(.007) 
.917 

(.007) 
.917 

(.006) 
   

.875 

(.005) 
   6 .851 

(.009) 
.843 

(.010) 
.852 

(.009) 
.871 

(.009) 
.876 

(.008) 
.866 

(.009) 
.695 

(.008) 
 10,000 30 3 .814 

(.006) 
.825 

(.006) 
.837 

(.005) 
   

.748 

(.005) 
   6 .738 

(.007) 
.736 

(.007) 
.748 

(.008) 
.744 

(.007) 
.763 

(.007) 
.753 

(.007) 
.513 

(.005) 
  60 3 .919 

(.003) 
.918 

(.003) 
.920 

(.003) 
   

.878 

(.003) 
   6 .854 

(.004) 
.846 

(.005) 
.854 

(.005) 
.874 

(.005) 
.878 

(.004) 
.869 

(.004) 
.700 

(.005) 
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Table 18 

Correct Classification Rates and Cohen’s Kappa by Magnitude of Main Effects 

Misconception 

Main Effects 

(       

Ability 
Main 

Effects (    
                  α 

Correct Classification Rate 

 Low Low .861 

(.005) 
.864 

(.005) 
.868 

(.005) 
.847 

(.005) 
.854 

(.005) 
.838 

(.006) 
.847 

(.005) 
 High .848 

(.005) 
.848 

(.006) 
.855 

(.005) 
.826 

(.006) 
.841 

(.005) 
.838 

(.006) 
.826 

(.006) 
  

       High Low .970 

(.002) 
.970 

(.002) 
.970 

(.002) 
.959 

(.003) 
.960 

(.003) 
.958 

(.003) 
.959 

(.003) 
 High .959 

(.003) 
.957 

(.003) 
.963 

(.003) 
.946 

(.003) 
.950 

(.003) 
.947 

(.003) 
.946 

(.003) 

Cohen‘s Kappa 

     Low Low .724 

(.013) 
.729 

(.012) 
.737 

(.012) 
.696 

(.012) 
.711 

(.012) 
.678 

(.015) 
.547 

(.008) 
 High .700 

(.012) 
.699 

(.014) 
.715 

(.012) 
.656 

(.019) 
.688 

(.012) 
.682 

(.012) 
.525 

(.008) 
  

       High Low .940 

(.004) 
.940 

(.005) 
.940 

(.004) 
.919 

(.005) 
.919 

(.005) 
.916 

(.012) 
.867 

(.004) 
 High .919 

(.005) 
.914 

(.005) 
.927 

(.005) 
.892 

(.006) 
.901 

(.006) 
.896 

(.006) 
.843 

(.005) 
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Table 19 

Reliability for Classification of Individual Misconceptions by Magnitude of Main Effects Factor 

Misconception 
Main 

 Effects  
(       

Ability 
Main 

Effects 
(                      

Low Low 
.831 

(.011) 
.843 

(.011) 
.852 

(.011) 
.805 

(.013) 
.822 

(.012) 
.783 

(.014) 

 
High 

.806 

(.012) 
.804 

(.012) 
.824 

(.011) 
.755 

(.015) 
.792 

(.012) 
.786 

(.013) 

High Low 
.997 

(.001) 
.998 

(.001) 
.996 

(.001) 
.998 

(.001) 
.995 

(.001) 
.996 

(.001) 

 
High 

.990 

(.002) 
.987 

(.002) 
.993 

(.001) 
.983 

(.003) 
.988 

(.003) 
.987 

(.003) 
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Table 20 

Q-matrix for Literacy Assessment 

Item/ 
Alternative          θ 

Item/ 
Alternative          θ 

Item/ 
Alternative          θ 

1 a 0 1 0 0 11 a 1 0 0 0 21 a 1 0 0 0 
1 b 0 0 0 1 11 b 1 0 0 0 21 b 0 0 0 1 
1 c 0 1 0 0 11 c 0 0 0 1 21 c 1 0 0 0 
1 d 1 0 0 0 11 d 1 0 0 0 21 d 0 1 0 0 
2 a 0 1 0 0 12 a 0 0 0 1 22 a 0 0 0 1 
2 b 1 0 0 0 12 b 0 1 0 0 22 b 1 0 0 0 
2 c 0 0 0 1 12 c 0 0 1 0 22 c 1 0 0 0 
2 d 1 0 0 0 12 d 0 0 1 0 22 d 1 0 0 0 
3 a 0 0 0 1 13 a 1 0 0 0 23 a 1 0 0 0 
3 b 0 0 1 0 13 b 0 1 0 0 23 b 0 0 0 1 
3 c 0 0 1 0 13 c 0 0 0 1 23 c 0 1 0 0 
3 d 1 0 0 0 13 d 1 0 0 0 23 d 0 1 0 0 
4 a 0 0 1 0 14 a 0 0 0 1 24 a 0 1 0 0 
4 b 1 0 0 0 14 b 1 0 0 0 24 b 0 1 0 0 
4 c 1 0 0 0 14 c 0 0 1 0 24 c 0 1 0 0 
4 d 0 0 0 1 14 d 0 0 1 0 24 d 0 0 0 1 
5 a 0 1 0 0 15 a 0 1 0 0 25 a 1 0 0 0 
5 b 0 1 0 0 15 b 0 0 0 1 25 b 0 0 0 1 
5 c 0 1 0 0 15 c 0 1 0 0 25 c 1 0 0 0 
5 d 0 0 0 1 15 d 0 1 0 0 25 d 0 1 0 0 
6 a 0 0 1 0 16 a 0 0 1 0 26 a 0 0 0 1 
6 b 0 0 0 1 16 b 0 0 0 1 26 b 0 0 1 0 
6 c 0 0 1 0 16 c 0 0 1 0 26 c 1 0 0 0 
6 d 0 0 1 0 16 d 1 0 0 0 26 d 0 1 0 0 
7 a 0 0 1 0 17 a 0 1 0 0 27 a 1 0 0 0 
7 b 0 0 1 0 17 b 0 1 0 0 27 b 0 1 0 0 
7 c 0 0 0 1 17 c 0 0 0 1 27 c 0 0 0 1 
7 d 1 0 0 0 17 d 0 1 0 0 27 d 0 1 0 0 
8 a 0 0 0 1 18 a 0 0 1 0 28 a 0 0 1 0 
8 b 1 0 0 0 18 b 0 1 0 0 28 b 0 0 0 1 
8 c 0 0 1 0 18 c 1 0 0 0 28 c 1 0 0 0 
8 d 0 0 1 0 18 d 0 0 0 1 28 d 0 1 0 0 
9 a 0 1 0 0 19 a 1 0 0 0 

      9 b 1 0 0 0 19 b 0 1 0 0 

      9 c 0 0 1 0 19 c 0 0 1 0 

      9 d 0 0 0 1 19 d 0 0 0 1 

      10 a 0 0 0 1 20 a 1 0 0 0 

      10 b 0 1 0 0 20 b 0 1 0 0 

      10 c 0 1 0 0 20 c 0 0 0 1 

      10 d 0 1 0 0 20 d 0 0 1 0 
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Table 21 

Evaluation of Convergence Rates for Selecting a Prior Distribution for Main Effect for Ability 

Model Prior 
Item  

Parameters 

Main Effect 

for Ability 

Structural 

Parameters 

Examinee 

Ability 

 ̂           1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5 

SICM*             .687 .952 .821 1.000 .286 .429 .924 .999 

 
            .663 .916 .857 1.000 .143 .429 .913 .998 

 
          .675 .934 .679 .964 .143 .571 .922 .999 

 
          .753 .964 .929 1.000 .143 .143 .933 .998 

NR IRT*             1.00

0 

1.000 1.000 1.000 
  

1.000 1.000 

 
          .976 1.000 1.000 1.000 

  
1.000 1.000 

2-PL IRT*             1.00

0 

1.000 1.000 1.000 
  

1.000 1.000 

 
          1.00

0 

1.000 1.000 1.000 
  

1.000 1.000 
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Table 22 

Q-matrix and Estimated Item Parameters for Example Item from Literacy Assessment 

Q-matrix Parameter Estimates (Standard Errors) 

Alternative          θ                         

A 0 0 0 1  0 0 0 0.228 

(.053) 
B 0 0 1 0 -1.154 

(.259) 

0 0 1.705 

(.290) 

0 

C 1 0 0 0 -0.092 

(.154) 

0.681 

(.208) 

0 0 0 

D 0 1 0 0 0.666 

(.082) 

0 0.049 

(.048) 

0 0 
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Table 23 

Misconception Pattern-Specific Log-Odds Equations for Modeling Nominal Response 

Probabilities with the SICM* Model for Example Item 

        
              

              
       

              

              
       

              

              
  

[000]               (                   (                  (     

[001]               (                           (                  (     

[010]               (                   (                   (              

[011]               (                           (                   (              

[100]               (                   (                          (     

[101]               (                           (                          (     

[110]               (                   (                           (              

[111]               (                           (                           (              

Note. A subscript of 0 indicates an intercept and 1 indicates a main effect for a misconception. 

Item subscripts have been suppressed as only one item is illustrated. 
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Table 24 

Nominal Response Pattern for Two Students with Similar Estimated Abilities in  

Different Classes 

Item Key Examinee 403 Examinee 199 

1 2 2 2 

2 3 3 3 

3 1 1 1 

4 4 4 4 

5 4 4 4 

6 2 2 2 

7 3 3 3 

8 1 1 1 

9 4 4 4 

10 1 1 1 

11 3 3 3 

12 1 1 1 

13 3 3 3 

14 1 1 1 

15 2 2 2 

16 2 2 2 

17 3 3 3 

18 4 4 4 

19 4 4 4 

20 3 3 3 

21 2 2 2 

22 1 1 1 

23 2 1 2 

24 4 4 3 

25 2 1 2 

26 1 1 4 

27 3 2 1 

28 2 3 4 

Number Correct 24 24 

  ̂   2.149 1.729 

   ̂   [111] [000] 

Note: Bold face type indicates an item missed by at least one of the two examinees.   
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Table 25  

Convergence Rates for Literacy Assessment  

Model Parameter     Mean  ̂ Median  ̂  ̂ < 1.1  ̂ < 1.5 
SICM* Item 166 1.202 1.048 .687 .952 

 Main Effect Ability 28 1.054 1.023 .821 1.000 

 Structural 7 3.735 1.756 .286 .429 

 Examinee Ability 1097 1.034 1.017 .924 .999 

SICM Item 166 1.098 1.026 .783 .964 

 Main Effect Ability 28 1.025 1.012 .964 1.000 

 Structural 7 3.349 3.731 .143 .286 

 Examinee Ability 1097 1.025 1.013 .963 1.000 

NR LCDM Item 168 1.100 1.023 .869 .976 

 Structural 7 3.917 1.429 .286 .571 

LCDM Item 111 3.120 2.562 .297 .378 

 Structural 7 4.487 3.854 .000 .143 

NR IRT* Item (Intercept) 84 1.002 1.001 1.000 1.000 

 Main Effect Ability 84 1.001 1.001 1.000 1.000 

 Examinee Ability 1097 1.002 1.001 1.000 1.000 

NR IRT Item (Intercept) 84 1.002 1.001 1.000 1.000 

 Main Effect Ability 84 1.002 1.001 1.000 1.000 

 Examinee Ability 1097 1.001 1.000 1.000 1.000 

2-PL IRT* Item (Intercept) 28 1.001 1.000 1.000 1.000 

 Main Effect Ability 28 1.001 1.001 1.000 1.000 

 Examinee Ability 1097 1.002 1.001 1.000 1.000 

2-PL IRT Item (Intercept) 28 1.001 1.000 1.000 1.000 

  Main Effect Ability 28 1.001 1.001 1.000 1.000 

 Examinee Ability 1097 1.001 1.001 1.000 1.000 

Note. A variation of Gelman and Rubin‘s (1992)  ̂ statistic is used to assess convergence. For each 

model, the number of parameters estimated for each parameter type is denoted by   .  
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Table 26 

Average Parameter Values (Standard Errors) from Literacy Assessment  

                   Item Parameters                        Structural Parameters Examinee 

Ability 

                                         

SICM* -0.935 

(0.572) 

1.470 

(0.393)  

0.507 

(0.077) 

-0.068 

(0.351) 

-11.308 

(2.752) 

11.331 

(3.919) 

-0.029 

(0.672) 

SICM 0.308 

(0.823) 

1.340 

(0.207)  

0.501 

(0.104) 

0.253 

(0.344) 

-12.747 

(4.953) 

12.662 

(3.567) 

0.158 

(0.104) 

NR LCDM -2.059 

(0.614) 

1.577 

(0.310)  
 

-0.194 

(0.330) 

-7.174 

(2.209) 

-7.240 

(2.672) 
 

LCDM -2.404 

(.883) 

3.948 

(1.306) 

-7.932 

(2.141) 
 

84.635 

(29.759) 

17.746 

(3.829) 

-45.956 

(12.830) 
 

NR IRT* -0.935 

(0.107)   

0.805 

(0.137)    

0.030 

(0.484) 

NR IRT -1.256 

(0.125)   

0.872 

(0.141)    

0.001 

(0.442) 

2-PL IRT* 0.097 

(0.075)   

0.709 

(0.090)    

0.001 

(0.486) 

2-PL IRT 0.294 

(0.076)   

0.627 

(0.069)    

0.023 

(0.525) 
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Table 27 

Pearson Correlations of Ability Estimates from Different Models 

   ̂   ̂   SICM* SICM NR IRT* NR IRT 2-PL IRT* 2-PL IRT 

SICM* 1 
   

  

SICM .915 1 
  

  

NR IRT* .731 .732 1 
 

  

NR IRT .730 .735 .988 1   

2-PL IRT* .817 .818 .943 .941 1  

2-PL IRT .814 .808 .939 .945 .994 1 

Note. Respectively,  ̂  and  ̂  indicate the estimated ability for the model in the row and column. 
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Table 28  

Percent Agreement of Individual (    and Whole Pattern (α) Classification for Different Models 

  
SICM SICM* NR LCDM 

   SICM* 90.79 

  
 

NR LCDM 84.50 88.06 

 
 

LCDM 78.49 80.95 88.33 

   SICM* 90.79 

  
 

NR LCDM 84.50 88.24 

 
 

LCDM 73.29 76.85 85.69 

   SICM* 90.79 

  
 

NR LCDM 84.32 88.06 

 
 

LCDM 21.51 19.05 12.03 

α SICM* 90.79 

  
 

NR LCDM 84.05 87.79 

 
 

LCDM 0.00 0.00 0.46 
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Table 29 

Relative Model Fit for Literacy Assessment Analysis 

Model           
Relative Fit 

Rank 
    

Relative Fit 

Rank 

SICM 201 -33,681.30 67,762.51 6 68,762.58 5 

SICM* 201 -33,623.20 67,646.39 4 68,646.45 3 

NR LCDM 175 -36,552.00 73,507.91 7 74, 517.98 7 

LCDM 118 -200,599.00 401,487.5

0 

8 402,212.60 8 

NR IRT 168 -33,539.30 67,526.67 3 68,646.74 4 

NR IRT* 168 -33,619.30 67,686.65 5 68,806.73 6 

2-PL IRT 56 -18,712.80 37,649.64 1 38,209.68 1 

2-PL IRT* 56 -18,761.90 37,747.77 2 38,307.81 2 

Note.     denotes the number of model parameters estimated.  
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 X1 X2 X3 X4 

θ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Unidimensional IRT model.  The diagram shows a single continuous trait, indicated by 

the ellipse, being measured by four observed variables (i.e., items), indicated by rectangles. θ is 

the continuous latent ability and the shading that bisects the observed variables indicates the 

dichotomous nature of the scored response variable to item   (   . 
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Figure 2. Multidimensional IRT model. This figure shows a MIRT model with two continuous 

latent variables (also known as traits or dimensions:        being measured by eight 

dichotomous items, indicated by the bisected rectangles. The undirected path between traits 

indicates the correlation between the traits (i.e., the structural components of the model). The 

structural components of the model include trait variances and covariances. The measurement 

components describe how the observed variables are related to the traits. 

  

X1 X2 X3 X4

θ1

X5 X6 X7 X8

θ2

Measurement

Components

Structural

Components
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Figure 3. Diagnostic Classification Model. This figure shows a typical path diagram of an 

example DCM with three dichotomous attributes measured by ten dichotomous items.  The 

diagram shows Attributes 1 and 3 are measured by five items and Attribute 2 by six items. 

  

X1 X2 X3 X4 X5 X6 X7 X8

Attribute 2Attribute 1 Attribute 3

X9 X10
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Figure 4. Example item. This figure contains a sample item about measurement in mathematics. 

The correct answer is Alternative A, indicated by bold face type.  

  

Which of the following operations correctly 
shows how to find the area, in inches, of a 
rectangle that is 3 feet long and 8 inches wide? 

(a) 36 in. x 8 in.
(b) ¼  in. x 8 in.
(c) 36 in.+36 in.+8in.+ 8in.
(d)  ¼ in. + ¼ in.+8in. +8in. 
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Figure 5. Scaling Individuals and Classifying Misconceptions model.  This figure shows a path 

diagram for the example item in Figure 4 being modeled with the SICM model. The correct 

answer, Alternative A, is measuring a continuous trait, θ. The incorrect alternatives are 

measuring specific combinations of two dichotomous attributes. These attributes represent 

misconceptions or errors. For this item,    was the inability to find the area of a rectangle, and 

  was the inability to make conversions among units.  
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Figure 6. Contrasting models by item response probabilities. Item response probabilities for the 

the example item in Figure 4 are given to illustrate that the NR 2-PL IRT model provides the 

nominal response probability as a function of ability (θ), the NR LCDM as a function of attribute 

pattern (α), and the SICM model as a function of ability (θ) and misconception pattern (α).  
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Figure 7. Comparison of the SICM model and the 2-PL IRT model with and without a lower 

asymptote.  This figure shows the trace lines for examinees with no misconceptions for an item 

with three alternatives measuring the same misconception in each incorrect alternative. The trace 

line for the correct answer is denoted with + lines. In the SICM models, the trace line for the 

misconception with the higher and lower intercept are denoted with upward and downward 

facing triangles, respectively. The trace line for the incorrect answer in the 2-PL IRT models are 

denoted with x lines.  



190 

 

 

 

 

Figure 8. Simulation design: Main effects when misconception is absent. In this figure, response 

probabilities are given for an example item for each of the four variations of the magnitude of 

main effects factor. In this item, the correct answer is C (black curve), and the same 

misconception is measured by incorrect alternatives A (dark gray curve) and B (light gray 

curve). Response probabilities are for examinees that do not possess the misconception.  
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Figure 9. Simulation design: Main effects when misconception is present. This figure shows the 

trace lines for the same item alternatives under the four conditions as Figure 8, but for examinees 

who do possess the misconception measured by incorrect alternatives A and B.  
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Figure 10. Trace and density plots. This figure shows the trace plots (on left) and the density 

plots (on right) of three examinees from the same condition.  
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Figure 11. Evaluation of prior distributions for the main effect for ability. This figure shows a 

histogram of the estimated values of the discrimination parameters for ability with an overlaid 

density plot of the respective prior distribution used to estimate the parameters displayed in the 

histogram.  
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Figure 12. Trace lines for predicted nominal response probabilities for an item on the literacy 

assessment. This figure illustrates how the nominal response probabilities differ by the pattern of 

misconceptions that examinees have (e.g., the top left graph is for pattern [000] meaning these 

examinees possess no misconceptions). The legend shows that A is the correct answer because it 

measures zero misconceptions ([000]) and similarly B, C, and D are incorrect alternatives that 

each measure a different misconception.  
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Figure 13. Estimated pattern by ability estimate for literacy assessment.   This figure shows a 

histogram of the estimated values of the ability parameters for each of the two patterns that 

existed empirically, according to estimation using the SICM* model.  
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Figure 14. Comparison of ability distributions by estimation model.  This figure shows a 

histogram of the estimated abilities for examinees for the six models that estimated an ability 

parameter for examinees.  
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Figure 15. Comparison of ability estimates for SICM* model versus other estimation models. 

This figure compares the ability estimates of the SICM model with a pseudo-lower asymptote to 

the other 5 models that estimated an ability parameter for examinees.  
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Figure 16. Comparison of ability estimates for models with pseudo-lower asymptotes. This 

figure compares the ability estimates of the SICM model, the NR IRT model, and the 2-PL IRT 

model with the versions of these models that have a lower asymptote (as indicated by *).   
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Figure 17. Comparison of examinee classifications. This figure compares the classifications of 

estimates with respect to the misconception they possess for the four models that measured 

misconceptions.  

 

 


