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Abstract

This dissertation describes the development and evaluation of a new analyzer for syntactic

complexity known as SYCORAX: the SYntactic COmplexity RAting eXpert.

SYCORAX, like several prior applications for automated analysis of syntactic complexity

(e.g., Long et al., 2006; Channell, 2007; MacWhinney, 2011), is based on the Developmental

Sentence Scoring (DSS) scale developed by Lee (1974). These existing applications, however,

all have one significant limitation in common: they are all strictly based on immediate linear

context within a sentence. It is evident from prior work (Channell, 2003; Judson, 2006) that

certain syntactic structures involved in DSS are simply not apparent from linear context

alone; indeed, many structures incorrectly analyzed by human raters are due to incorrect

interpretation of local context (Lively, 1984).

In contrast, SYCORAX incorporates a newly-developed shallow dependency parser

known as JED (Just Enough Dependency) optimized for the dependencies which are impor-

tant in DSS, and uses the resulting parse tree in the calculation of its DSS scores. Even

without complete optimization of its DSS rules, the use of shallow parsing in SYCORAX

produces a distinct overall boost in the accuracy of syntactic complexity scores on a variety



of manually-scored real-world transcripts, as measured using Pearson correlation coefficient

and point-by-point accuracy, with no significant increase in execution time.

DSS has proven numerous times to be psycholinguistically valid. It was originally designed

to identify language delays in children, and more recent experiments have found it to still

be valid in that respect (e.g., Scarborough, 1990); in addition, it has been found to be of

use in identifying language decline in adults (Cheung and Kemper, 1992; Kemper et al.,

2003, 2004), distinguishing different forms of developmental delay (Finestack and Abbeduto,

2010), and even identifying Alzheimer’s dementia (Kemper et al., 1993). It is believed that

the improvement in its automated analysis by SYCORAX will prompt even further research

regarding it, much as the prior project CPIDR (Brown et al., 2008) has done for semantic

complexity (Covington et al., 2009; Jarrold et al., 2010; Engelman et al., 2010; Tsai, 2010).

Index words: Natural language processing, Computational linguistics,
Syntactic complexity, Developmental Sentence Scoring
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Chapter 1

Introduction

This dissertation describes the development and evaluation of a new analyzer for syntactic

complexity, known as SYCORAX: the SYntactic COmplexity RAting eXpert.

Like a number of prior applications for automated analysis of syntactic complexity (e.g.,

Long et al., 2006; Channell, 2007; MacWhinney, 2011), SYCORAX uses the Developmental

Sentence Scoring (DSS) scale (Lee, 1974) to evaluate the syntactic complexity of input text.

Further like these applications, SYCORAX not only outputs a final DSS score, but also shows

the breakdown of the score into individual sentences and subscores, in a format similar to

that shown in Lee’s own examples.

Where SYCORAX radically differs from these existing applications is in its method

of analysis. Although some of the existing programs incorporate approaches such as prob-

abilistic inference or nondeterminism, the scoring algorithm at the heart of all of these

programs is based on immediate context within a linear scan of the sentence. In contrast,

SYCORAX incorporates a newly-developed shallow dependency parser, and performs its

DSS analysis based on links within the dependency trees generated by this parser. As will be

discussed further, there are a number of syntactic structures involved in DSS which simply

are not apparent from linear context alone; it is on these structures that SYCORAX demon-

strates an advantage.

The inspiration and the development process of SYCORAX are described in further detail

through Chapter 4. The process of evaluating SYCORAX in comparison to existing tools,

as well as of debugging SYCORAX to further improve its accuracy, are then described in

Chapters 5–6; here, it is shown that SYCORAX does indeed offer an improvement on the

1
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state of the art in automated DSS analysis due to the incorporation of parsing. Finally,

known issues with SYCORAX and future development plans are laid out in Chapter 7.

1.1 Why Syntactic Complexity?

Before describing the development of SYCORAX in further detail, however, it is first neces-

sary to give some background on how syntactic complexity is defined, why it is useful beyond

mere theory, and why an automated analyzer for it is so badly needed.

Syntactic complexity is a general term used to describe a variety of quantitative measure-

ments regarding the grammatical structure of a sentence. Measures of syntactic complexity

can identify how difficult any given sentence is to comprehend, as well as how hard a sentence

is to produce; in both of these cases, higher complexity indicates greater difficulty.

Because neurological and psychological disorders can affect the acquisition and produc-

tion of language in an individual, syntactic complexity can be used for diagnostic purposes.

Entire scales of complexity have been developed with the purpose of identifying develop-

mental delays in children through samples of their language use (Lee, 1974; Scarborough,

1990); others have been created to measure the linguistic competence of developmentally

disabled adults (Rosenberg and Abbeduto, 1987). Even in those with normal language devel-

opment, it is known that linguistic complexity tends to decline with age, as discussed in the

literature review of Cheung and Kemper (1992); this is further exacerbated by conditions

such as Alzheimer’s. Indeed, research has found several of these scales to be equally appli-

cable to identifying language decline in aging adults (Cheung and Kemper, 1992; Kemper

et al., 2003, 2004) and to diagnosing Alzheimer’s (Kemper et al., 1993; Lyons et al., 1994;

Snowdon et al., 1996, 2000).

It is obvious, then, that these metrics are relevant from a psychological perspective.

However, they are not only tedious to calculate by hand, but are also prone to human

error. This has long been a known problem: Lively (1984) identified a list of frequent errors

made by raters using Lee’s DSS scale, some of which can significantly affect a complexity
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score. Furthermore, when dealing with ambiguous sentences, there is room for interpretation

on the rater’s part; it is not uncommon for raters to interpret and thus score the same

sentence differently. Indeed, Lee (1974) includes a real-world example of this: in two separate

transcripts (Charts 15 and 19 from Lee), the sentence They fall is scored differently by two

different raters, one of whom interprets the verb as being in the wrong tense.

An automated tool to analyze syntactic complexity would solve all of these problems. It

would eliminate the tedium of manually scoring an entire corpus of utterances, and allow

for more analyses to be performed in a shorter amount of time. It would be reliable, unlike

human raters, producing the same result on the same sentence every time. Ideally, if its rules

were written as accurately as possible, it would also be less error-prone than humans.

1.2 CPIDR: The Inspiration for SYCORAX

The project which most strongly inspired SYCORAX was CPIDR (Computerized Proposi-

tional Idea Density Rater), an application developed in 2007 at the University of Georgia

(Brown et al., 2008). Like SYCORAX, it is an automated utility to measure the complexity

of utterances; however, unlike SYCORAX, what it measures is their semantic complexity.

Semantic complexity is a measure of the number of ideas expressed within a text; in

short, a more semantically complex text expresses a greater variety of meaning. The most

popular measure of this within psycholinguistic literature is idea density, defined in Kintsch

and Keenan (1973) as a ratio of the number of propositions expressed in a sentence over the

number of words in the same sentence; this is what CPIDR measures.

On a novel corpus of 80 transcripts, CPIDR correlated extremely well with human anal-

yses (r = 0.97), significantly better even than among five human raters on a subset of the

same transcripts (r = 0.81). It has since been used in research on such varied topics as

schizophrenia (Covington et al., 2009), Alzheimer’s disease and aging in general (Jarrold

et al., 2010; Engelman et al., 2010), and teaching of English as a second language (Tsai,

2010).
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However, as Cheung and Kemper (1992) have shown, semantic and syntactic complexity

do not directly correlate with one another. A sentence may express a wide variety of ideas

using syntactically shallow structures such as multiple modifiers; it may also use syntactically

complex structures that carry little meaning. In addition, semantic and syntactic complexity

correlate differently with other non-linguistic factors. All but one measure of syntactic com-

plexity tested by Cheung and Kemper (1992) correlated negatively with age of adults, but

no such correlation existed for semantic complexity. In the opposite direction, the Nun Study

of Snowdon et al. (1996, 2000) found a correlation between reduced idea density and later

development of Alzheimer’s disease in samples written decades before the subjects showed

evidence of Alzheimer’s, but no such correlation for syntactic complexity. This was later

corroborated by Engelman et al. (2010) using a vastly different sample population, this time

of medical students at Johns Hopkins University.

Clearly, there is a need for a syntactic complement to CPIDR—and it was this realization

that led to the development of SYCORAX.

1.3 Choosing a Measurement

The first problem in developing an automated syntactic complexity analyzer is that, unlike

semantic complexity, no measure is universally agreed upon. There is also no easy way to

derive any one measure from another; there are notable differences in the specific structures

analyzed, the level of detail in which they are analyzed, and the extent to which a score can

be broken down into sub-scores for further analysis.

Perhaps the best comparison of the variety of approaches to syntactic complexity can be

found in Cheung and Kemper (1992), which compares several popular measures of complexity

as applied to the language use of adult English speakers over several decades. Aside from

the single measure of semantic complexity (idea density, as discussed above), these measures

can be divided into three main categories:
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1. Length-based: Mean length of utterance (MLU) and mean clauses per utterance

(MCU). These are the most näıve analyses, as they are only concerned with the number

of words or clauses in a sentence, with no attention paid to how those words or clauses

are actually combined.

2. Comprehension-based: Yngve depth (Yngve, 1960) and Frazier count (Frazier,

1985). These are based on the depth of embedding in a phrase-structure tree, and

were designed to predict the level of difficulty that a listener or reader would have in

processing a sentence.

3. Production-based: Developmental Sentence Scoring (DSS; Lee, 1974), Index of Pro-

ductive Syntax (IPSyn; Scarborough, 1990), Developmental Level (D-Level; Rosenberg

and Abbeduto, 1987), and Directional Complexity (Botel and Granowsky, 1972). All

of these are based on the appearance of certain categories of syntactic structure—e.g.,

subordinate clauses, objects of verbs, and conjunctions. These structures are scored

according to their ordering in language acquisition: those which typically manifest at

a younger age are ranked lower than those which manifest at a higher age. This allows

novel utterances to be ranked based on the order they might appear in language devel-

opment.

Most of the body of literature using syntactic complexity as a diagnostic metric focuses on

the production of novel sentences, not the comprehension of existing ones; even studies which

incorporate comprehension-derived complexity metrics, such as that of Cheung and Kemper

(1992), still use those metrics to measure language production. The studies of semantic com-

plexity incorporating CPIDR, as discussed in Section 1.2, have also analyzed newly produced

utterances. Furthermore, as Voss (2005) observes, metrics based on language production tend

to be easier to analyze computationally than those based on comprehension; the latter typ-

ically require a full parse of the sentence, while the former only require partial parsing at

most.
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The combination of all of these factors suggests that a production-based approach to

syntactic complexity would be preferable for SYCORAX. Out of this class of metrics, the

most frequently cited in psycholinguistic literature have been DSS (Lee, 1974), D-Level

(Rosenberg and Abbeduto, 1987), and IPSyn (Scarborough, 1990).

IPSyn is quite detailed in its linguistic profile; indeed, for the population for which it

was designed, it seemed quite promising. Holdgrafer (1995) found that IPSyn was more

useful than DSS in distinguishing neurologically typical preschoolers from language-delayed

preschoolers between the ages of 3 and 5, and Rescorla et al. (2000) shows further evidence

that IPSyn is a useful indicator of language impairment prior to age 4. Scarborough, however,

commented in his own 1990 paper that IPSyn had not been tested beyond age 4, and that

validity beyond that age group would require further study.

Unfortunately, later research on IPSyn revealed that Scarborough’s concerns were very

valid. Cheung and Kemper (1992) found IPSyn to correlate better than any other measure

of syntactic complexity with education and vocabulary in a population of senior adults, but

worse than any other with the more psychologically relevant factors of age and digit span.

Rescorla et al. (2000) found that though a correlation existed between MLU and IPSyn

in language-disordered children of age 4, no such correlation was present for neurologically

typical children of the same age. Hewitt et al. (2005) found IPSyn to be less useful than

even MLU for identifying language impairment in a population of average age 6; the latter

identified 67% of language-impaired children, while the former only identified 37%. Minch

(2009), using a computerized analysis of a corpus derived from the speech of three elementary

school grades and a college class, found that IPSyn correlated only weakly with all other

syntactic measures studied, including syntactic productivity as measured by the number of

unique structures occurring with a certain frequency.

It had become clear that IPSyn was only valid within a limited age range, and significantly

less relevant outside that range; that, then, left D-Level and DSS. D-Level was developed

for the analysis of language use in adults with mental retardation (Lee, 1974), but was also
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famously used in the Nun Study of Alzheimer’s (Snowdon et al., 1996, 2000). DSS, on the

other hand, was developed with an eye toward childhood language usage, and a large majority

of the research using it has naturally focused on children (e.g., Mayberry, 1973; Politzer, 1974;

Pierce and Bartolucci, 1977). However, like D-Level, it has been used in studies of adults with

Alzheimer’s (Kemper et al., 1993; Lyons et al., 1994); in addition, it has been used to analyze

the language of adults with other conditions that are known to affect language acquisition,

such as Down syndrome (Kernan and Sabsay, 1996) and deaf-blindness (Chomsky, 1986).

Both D-Level and DSS have also been used to analyze the change in the complexity of

sentences produced by aging adults, and both have been found psychologically valid for that

purpose (Cheung and Kemper, 1992; Kemper et al., 2003, 2004); further validation of DSS,

but not D-Level, was provided by Minch (2009).

Further comparison of these two scales revealed that D-Level, though simpler, has several

downsides to its simplicity. Perhaps the most notable is that, because of the method by which

D-Level is calculated, the presence of more complex structures overshadows the presence or

absence of less complex structures. Yet those lower-ranked structures are still significant; a

speech sample incorporating higher-level structures without the use of lower-level structures

may still be an anomaly. Worse, a combination of any two or more of the structures from

levels 1–6 is scored as 7, regardless of which forms were combined. Rosenberg and Abbeduto

themselves observed that the vast majority of the sentences in their test corpus scored at level

7, thus requiring further analysis for the results to be truly meaningful. The accuracy of the

D-Level scale’s developmental sequence has also been brought into question by Covington

et al. (2006).

DSS also produces a single value as its ultimate result, but arrives at it via a different

method. Rather than compressing all of syntax into a single scale, DSS is instead calculated

as the sum of scores from eight distinct scales, each of which pertains to a particular category

of syntactic structure. Because of this, DSS analyzes a broader selection of structures than

D-Level; while all of D-Level’s scores relate to the combination of simple clauses into a more
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complex sentence, DSS also analyzes such features as negation, pronoun types, interrogatives,

and question inversion, all of which contribute to the complexity of syntax. In addition, each

scale in DSS is cumulative: if someone uses multiple structures from a category, the score for

that scale is the sum of the scores of all relevant structures. Yet much like D-Level, DSS has

also been criticized regarding the accuracy of its developmental scale; this will be discussed

in further detail in Chapter 2.

In the end, I chose to focus specifically on DSS for a number of reasons. It was more widely

used in studies of both children and adults; it identified a wider variety of structures than

D-Level; unlike D-Level, its scores were cumulative; it could be broken down into component

scores, allowing syntactic anomalies to be spotted more easily; and as shown by Cheung and

Kemper (1992), it correlated reasonably well with D-Level.

1.4 Existing DSS Analyzers

Before developing a new automated analyzer for DSS, it was necessary to review the few

existing applications for automated DSS scoring to ensure that it would indeed be possible

to contribute something new to the field.

Attempts at automated Developmental Sentence Scoring date back to 1983, when Peter

Hixson developed the aptly-named Computerized DSS for the Apple II (reviewed in Klee

and Sahlie, 1986). As is to be expected of a program released in that year, this application

was extremely primitive by modern standards; although it did ease the process of performing

a DSS analysis, it could hardly be considered fully automated. Most notably, Hixson’s appli-

cation required a great deal of additional manual coding to be applied to a transcript to

produce any sort of meaningful result. Irregular verbs and present-tense plural verbs were

not automatically identified and had to be explicitly marked with symbols (< and V, respec-

tively). Incorrect conjugations also had to be indicated using a special notation; for instance,

a use of is when are was correct would have to be written as **is*are. Even with these
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notational quirks taken into account, certain pronouns and auxiliary verbs were still not

scored at all, while others were given incorrect scores.

The next major tool to automatically analyze DSS was CLAN (Computerized Language

ANalysis), a multi-purpose tool originally developed in 1991 as part of the CHILDES project

(MacWhinney, 2000). In 2004, it received a significant update which added automated part-

of-speech tagging, potentially making it a viable automated DSS analyzer. However, its

relative accuracy is still unknown; the relevant improvements to the program are recent, and

no studies of the program have been performed since then. Channell (2003) was unable to

find any literature estimating the accuracy of CLAN on DSS when the tagging improvements

were still unimplemented, and the same still appears to be true even after its implementation.

This dissertation thus incorporates one of the first thorough tests of CLAN’s DSS accuracy,

the results of which are discussed in Chapter 6.

The 2004 version of CLAN uses a three-step approach to analyzing DSS: the sentence is

analyzed morphologically to find all possible tags for each word, the morphological analysis

is disambiguated by context, and the DSS score is then calculated from the resulting tagged

text. Even in more recent versions, however, CLAN still cannot identify certain structures

automatically. One sentence which MacWhinney gives as an example is What this say?; this

sentence should receive attempt marks for both primary verb and interrogative reversal,

but neither error is identified automatically. MacWhinney identifies three additional forms

which are entirely ignored by his automated analyzer: the word one used as a pronoun, the

distinction between complementing and adjunct infinitives, and embedded clauses without

subordinating conjunctions (e.g., the man we saw yesterday).

Another application which can perform automated DSS is Computerized Profiling (CP),

originally developed by Steven H. Long in 1986 and extended in the following years by Ron

Channell, with the latest update to its DSS scoring routines having been added in 2000 (Long

and Channell, 2001; Channell, 2003). Unlike CLAN, the accuracy of Computerized Profiling

has been extensively tested, as described in Channell (2003). Although a high correlation
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(r = 0.97) did exist between manual and automated per-sentence scores, the automated

scores were on average three-fourths of a point higher; worse yet, point-by-point agreement

(i.e., agreement of individual sub-scores per sentence) between CP and manual scores was a

surprisingly low 78.2%, a result which is clearly problematic for anyone who needs to look

beyond the final DSS score. A number of less common structures were not identified at all

by CP’s automated analysis, including participles, passive infinitives, and inversion of verbs

with auxiliary have or multiple auxiliaries.

DSSA, a later program by Channell, scored somewhat better on a different set of tran-

scripts, with 86% point-by-point agreement and r = 0.98 (Judson, 2006). It performed more

accurately on all of the forms which proved troublesome for CP, with the exception of inter-

rogative reversals. However, the point-by-point agreement of DSSA is still well below the

96% average agreement among trained speech-language pathologists on the same set of tran-

scripts. Furthermore, DSSA is still new enough that the only reference found in a search

of relevant literature was that of Judson. Although the latest version was compiled in 2007

(Channell, 2007), the program was only released to the public by Channell in 2011; prior to

this year, only Channell’s own advisees had access to DSSA.

Although the existing applications for DSS which have been tested produce high cor-

relations with manual analyses for overall DSS scores, it is obvious, given point-by-point

agreement, that the individual sub-scores are significantly less accurate—a definite problem

if one needs to analyze patterns involving specific structures. Long and Channell (2001) cite

a threshold of 85% accuracy as a measure of acceptability; by this standard, the 78% agree-

ment of CP is unacceptable, and the 86% agreement of DSSA is only barely acceptable. A

good analysis is said to be 90% or better, and an excellent analysis 95% or better; ideally, it

would even be possible to reach the inter-rater agreement of 96% observed for human raters.

Worse yet, both CLAN and DSSA have a rather significant flaw: neither of them attempts

to analyze what Lee terms the sentence point, a point added to the DSS score for any

grammatical sentence. Unlike Channell’s study of CP, Judson’s analysis of DSSA completely
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ignored the sentence point when calculating point-by-point agreement, producing a skewed

accuracy result as concerns overall scores. It is true that the sentence point is largely negligible

in the correlation coefficient, as it is only a single point difference between scores; however,

it is significant with respect to point-by-point agreement, as it has the same weight as every

other mark. It has also been shown to be a significant factor in specific studies incorporating

DSS; for instance, Finestack and Abbeduto (2010) found the sentence point to be useful in

distinguishing between two types of developmental delay.

The aim of this project, therefore, is to produce a new completely automated DSS rater

which will exceed the accuracy of the existing automated solutions for DSS. As discussed

above, Channell has provided two useful metrics by which to measure DSS accuracy: point-

by-point agreement and the Pearson correlation coefficient. As the latest versions of CLAN,

CP and DSSA are all offered as freeware, they can be run on the same language samples as

SYCORAX for the purpose of comparison. Moreover, the public release of DSSA includes

a subset of the corpus used by Judson (2006), thus allowing for a comparison among the

applications on a reasonably large sample of real-world data.

1.4.1 A Need for Further Analysis

As mentioned in the introduction to this chapter, a common factor amongst all existing DSS

analyzers is that they use a linear, surface-level analysis of text in order to score it. Some

of them have introduced modifications to improve the analysis; for instance, CP performs a

LARSP (Language Assessment, Remediation and Screening Procedure; Crystal et al., 1989)

analysis on the sentence before calculating its DSS score, while DSSA uses probabilities

derived from actual language samples to better disambiguate the context of words. However,

even with these enhancements, the existing applications are still limited to local context in

making certain distinctions—and not all distinctions necessary to DSS can be made using

such a surface-level approach.
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Rules Needing Parsing

For instance, none of the above-mentioned applications can fully test for subject-verb agree-

ment, despite the fact that verbs must agree with their subjects in order to earn anything

more than an attempt mark in DSS. The main problem, in this case, is that subject-verb

agreement is not merely a matter of searching for the nearest noun or pronoun.

For relatively simple sentences such as The dog barks, using strictly local context is

perfectly appropriate. For more complex sentences, however, heuristics based on local context

may not apply. Consider, for instance, the sentence The dogs in the kennel are barking. Here,

the actual subject of are barking is dogs; kennel, the noun that is closest, is actually the

object of a preposition that in turn modifies dogs. In order to properly analyze the subject-

verb agreement in this sentence, and thus give an appropriate score, it is necessary for the

analyzer to recognize that are barking should agree with dogs, not kennel.

Subject-verb agreement can affect not only the main verb score, but also the score for

negatives. The early occurring forms don’t and isn’t are only scored if they are used correctly;

in other words, their subjects must agree with those particular verb forms, and not doesn’t or

aren’t. This, too, requires identifying the subject to ensure agreement, in this case with the

auxiliary verb that is negated; otherwise, the sub-scores for both main verbs and negatives

will disagree with a manually calculated score.

This analysis becomes even more difficult when conjunctions are involved, particularly

when the conjunction is one of verbs. When two verbs are joined by a conjunction, each

is to be scored just as if it stood separately, with the final verb score being their sum.

However, when the first verb is a compound verb, the second verb is obligated to delete any

auxiliaries. For instance, consider the sentence They were eating chicken and drinking tea;

here, were is an auxiliary of both eating and drinking. There is no easy way to identify that

both verbs have an auxiliary using only a simple linear scan of the sentence, particularly

with the intervening direct object. Furthermore, subject-verb agreement must apply to all

of the verbs joined by a conjunction; for instance, *He eats potato chips and drink soda is
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incorrect, and in this case, the first verb should be given a full score while the improperly

conjugated second verb should only receive an attempt mark.

On the topic of deletions, there is also the fact that certain verbs require accompanying

infinitives to be bare—that is, to delete the marker to. In order to properly analyze whether

these structures are grammatically correct or only deserving of an attempt mark, it is nec-

essary to determine which verb is the main verb, whether the second verb depends on the

main verb, and whether the main verb requires infinitives to be bare. The problem is that

intervening words may change the function of the secondary verb; compare, for instance,

I see the children eat (in which eat is a bare infinitive) and I see what the children eat (in

which eat is a simple uninflected verb in a subordinate clause). Any attempt to analyze

every possible sentence structure in which an apparent bare infinitive was actually part of a

subordinate clause would become awkwardly complex.

These are not merely theoretical concerns, as can be shown using the existing DSS appli-

cations. Table 1.1 shows the errors made by the three leading automated DSS analyzers on all

of the structures discussed above. Interestingly, the form of the error can differ significantly

among the three applications; for instance, in the eating and drinking sentence, CP interprets

eating and drinking as a compound participle, DSSA interprets were eating as a main verb

but drinking as a participle, and CLAN ignores drinking entirely. Nonetheless, each of these

structures produces an error in at least one of the three automated DSS applications, and

most produce scoring errors in all three.

Rules Aided By Parsing

In addition to the above, there are other rules for which a linear heuristic-based approach

could greatly be simplified with the addition of parsing. One such rule is the case of inter-

rogative reversals and missing auxiliary verbs: namely, how does one determine that there is

not just a missing auxiliary, but also that an inversion was not made where it should have

been? Examples of questions with both missing auxiliaries and inversions can be found in
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Table 1.1 Errors made by the three leading DSS analyzers on error-prone sen-
tences. The bolded word represents where the error would occur; an ‘X’ indicates
that an error was made in analyzing that word.

Sentence CP CLAN DSSA
The dogs in the kennel are barking. X
*The dogs in the kennel is barking. X X X
The dogs in the kennel don’t bark. X
*The dogs in the kennel doesn’t bark. X X X
They were eating chicken and drinking tea. X X X
I see the children eat. X X X
I see what the children eat.

sentences 27 (What you eating?) and 30 (You want to get spanked?) of Chart 10 from Lee

(1974), as reproduced in Appendix C of this dissertation. The solution seems simple at first:

In nearly all cases, inversion is necessary in questions. An auxiliary is also obligatory in these

cases, unless the verb is the copula. Indeed, a linear scan of the sentence would be sufficient

for most cases: a sentence is a valid question if an auxiliary precedes a noun phrase which

then precedes a main verb.

There is one significant exception to this rule, however, and it concerns interrogatives. As

discussed in section 3.2.1.2 of Huddleston et al. (2002), when the subject is an interrogative

phrase, it is obligatory not to invert (e.g., Who wrote this program?, not *Did who write

this program?); however, when the fronted object is an interrogative phrase, inversion is

still necessary (e.g., What does this program do?). A purely context-based approach to this

problem would quickly become unwieldy; the ability to distinguish subjects from objects

would make this analysis much easier.

Other examples of distinctions that are made easier to analyze with the help of a parser—

and likely more accurate as well, as a side effect—include gerunds and participles, double

negatives, and pronoun case. The functions of gerunds and participles are made completely
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distinct by a parser, with the former acting as a complement and the latter acting as an

adjunct, and no awkward heuristics would be necessary in the DSS analyzer to distinguish

them. Nesting of clauses can be observed in the case of double negatives, to ensure that only

a single negative at most applies to each clause. Pronoun case is trivial to analyze if subjects

and objects can be distinguished by the parser.

1.5 A Hypothesis

Clearly, given the above discussion, and especially given the results shown in Table 1.1, it

would be beneficial to have some sort of parser integrated into SYCORAX, so that it would

be less likely than existing applications to make certain types of errors that are obvious to

any human rater sufficiently trained in DSS.

At the same time, however, it seems that a full parse is unnecessary. For the purposes of

DSS, some structures are more important than others; for just one example, it is necessary

to distinguish subjects from objects, but not to distinguish direct from indirect objects. A

comprehensive parser would be overkill for the purposes of SYCORAX, as it would take too

much time to analyze structures that are entirely unnecessary for DSS analysis.

Thus, the hypothesis of this dissertation is that the addition of a domain-specific shallow

parser, combined with a set of appropriately detailed DSS rules, will make SYCORAX’s

automated scores more accurate than even DSSA on a variety of texts, as measured by

both point-by-point agreement and correlation coefficient. As the existing applications are

available as freeware, and as a variety of manually-scored transcripts exist in Lee (1974),

Lively (1984) and the files included with Channell (2007), this hypothesis is readily testable

once SYCORAX has been sufficiently developed.
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Modifying the DSS Scale

The Developmental Sentence Scoring scale defined in Lee (1974) has continued to be used in

psycholinguistic research decades after it was originally developed. Hughes et al. (1992) made

the case that it had “aged rather gracefully,” in spite of the outdatedness of the syntactic

and psycholinguistic theories on which it was based. That same year, Cheung and Kemper

(1992) showed that DSS accurately identifies the decline of syntactic complexity in senior

adults; a year later, Kemper et al. (1993) found a similar correlation with a standard measure

of Alzheimer’s dementia, largely due to a decrease in conjunction and subordination.

Well over a decade after Hughes et al. (1992), researchers still continue to incorporate

DSS into research on language development. Kemper et al. (2003, 2004) found different

patterns of complexity in the sentences produced by younger and older adults given the

same prompts. Minch (2009) found that DSS was more valid than the much newer Index of

Productive Syntax (Scarborough, 1990) for elementary-school children and college-age adults

alike. Finestack and Abbeduto (2010) found that a breakdown of DSS results can distinguish

the language patterns of typically developing adults, adults with Down syndrome, and adults

with Fragile X syndrome from one another.

Nonetheless, much like Rosenberg and Abbeduto’s D-Level, for which a revision has been

presented by Covington et al. (2006), DSS has also faced a number of criticisms, with various

modifications suggested to address these concerns.

16
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2.1 Criticisms of DSS

One criticism of DSS parallels Covington et al.’s criticism of D-Level: that its scoring rubric

does not accurately reflect the order in which syntactic features appear in childhood language

development as was originally intended. This was already evident just slightly over a decade

after Lee’s book was published; Klee and Sahlie (1986) observed that research on language

acquisition published in the intervening years had rendered some of the claims about language

development which influenced Lee’s scoring system to be invalid. Indeed, this may even be

worse for DSS than for D-Level, as the former predates the latter by thirteen years—a

significant length of time as far as theories of language acquisition are concerned.

Note that this is specifically a problem of psycholinguistic theory, and not of formal

syntactic theory. It is indeed true that syntactic theory has evolved significantly since Lee

published her book. However, as concerns language development, this point is moot: in DSS,

syntactic theory is only used as a means to an end, as a way to formalize empirical obser-

vations regarding children’s language. The order of development is the same, regardless of

how it is analyzed; indeed, as will be further discussed later in this dissertation, DSS can

be analyzed by means other than the phrase-structure parsing that was originally used to

define it. In addition, this does not mean that DSS has been invalidated as psycholinguisti-

cally useful; as discussed above, research within the past decade has shown DSS to still be

psychologically relevant across a variety of age groups.

Another criticism concerns the fact that, according to the guidelines originally proposed

by Lee, DSS scores are limited to the first fifty complete sentences in a block of text. The

reasons behind this decision are understandable—not only does it decrease the amount of

time needed to rate a sample of text, it also ensures that, for the sake of normalization, all

samples being compared are of equal length. Yet it is not uncommon for a text to vary in the

complexity of its sentences; as discussed by Johnson and Tomblin (1975), using a 50-sentence

segment may produce results which are misleading for certain samples of speech or writing,

even when the segment has been selected at random. The time constraint is negligible for
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computerized analysis; one of the reasons that automated analysis of DSS is so appealing is

that it is significantly faster than the same analysis done by hand.

Third, DSS suffers from another criticism which applies to D-Level: what is, in this case,

quite a detailed analysis of syntactic patterns is condensed into a single monolithic score

that can be somewhat misleading. Two distinct patterns of language use may earn the same

final score, as Hughes et al. (1992) observe; indeed, as Hughes points out, even Lee herself

urged researchers to look beyond the final score and into specific details. Research such as

that of Kemper et al. (2003, 2004) and Finestack and Abbeduto (2010) has further confirmed

that some patterns are only observable by looking at individual sub-scores in addition to the

overall score.

2.2 Improving DSS

Despite there being room for improvement in DSS, the original unmodified version of the

scale, as summarized in Appendix B, must be kept intact in SYCORAX as an option. Any

modifications, as Hughes et al. (1992) emphasize, would render comparisons with scores based

on the original rules invalid, including the age norms described by Lee. Thus, it is important

that any modifications to DSS can be turned off; this choice can easily be implemented in

SYCORAX through check boxes in the user interface, with conditional statements in the

analysis itself enabled only when the relevant boxes are checked.

The simplest improvement would be an option to allow the score to be calculated using

the full transcript rather than a fifty-sentence sample. This is trivial to implement, simply

by adding a conditional statement within the analysis loop that breaks out of the loop after

the fiftieth sentence if the option remains unchecked.

The second simplest improvement is to provide more information than a single final score.

This problem had already been solved by prior applications for automated DSS analysis; CP,

CLAN and DSSA all output the individual category scores for each sentence in addition to

the overall score. In the case of SYCORAX, I chose to use a tab-delimited format, with each
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tab stop representing one of the categories of DSS; within each category, individual scores

are then separated by commas. This format has the advantage of being both easily read

by humans, as it closely resembles the format of the tables used in Lee (1974), and easily

processed by a computer, as it is based entirely on two types of delimiters. An example of

this format for Chart 10 of Lee (1974), reproduced in its original format in Appendix C, is

shown in Figure 2.1.

Indef Pers Main Sec Inter Sent
Pro Pro Verb Verb Neg Conj Rev Wh-Q Point Total

1 - 0 0
2 - 0 0
3 1 1 2
4 2 1 3
5 3,3 2 1 9
6 3,3 6 7 1 20
7 3,3 6 7 6 1 26
8 3,3 6 7 6 7 1 33
9 3 inc. 7 6 7 1 24
10 3 7 1 11
11 3 1 1 2 1 8
12 3 1,2 1 5 1 13
13 3 1 2 5 1 12
14 1,3 6 6 1 17
15 1,3 6 7 6 1 24
16 4 3 2 5 8 1 23
17 2,3 2,2 8 2 1 20
18 1,1,3 2,6 7 5 1 26
19 1 1 8 1 11
20 4 1,1,3 2,6 7 8 1 33
21 7 1 2 1 11
22 3,3 8 1 15
23 3,3 1 2 1 10
24 3 2,4 4 1 14
25 1 6,2 1,2 5 1 18
26 - - 4 4 0 8
27 1 - - 2 0 3
28 7 - - - 0 7
29 - 0 0
30 1 - 7 - 0 8
----------------------------------------------------------------------------------------
Total 47 73 93 34 62 29 30 18 23 409
Avg 1.5667 2.4333 3.1000 1.1333 2.0667 0.9667 1.0000 0.6000 0.7667 13.6333

Figure 2.1 The correct DSS analysis from Chart 10 of Lee (1974) shown in
SYCORAX’s output format.

That, then, leaves revising the scoring system itself. Unfortunately, in this case, the

solution is not so clearly defined. Although Klee and Sahlie (1986) criticize DSS on the

basis of its outdated developmental model, they do not cite even one example of how newer

research has rendered DSS invalid, and instead leave this as an exercise for later researchers.
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Despite over three decades having passed since the publication of DSS and two decades

since Klee and Sahlie’s review, however, I was unable to find any more recent literature

outlining revisions of Lee’s scale to the extent suggested by Klee and Sahlie. Such a thorough

revision would require reviewing a large mass of literature written since the early 1970s on

theories of language acquisition, determining what is applicable to DSS and how its rules

would be affected, developing appropriate modifications to those rules, and ideally, testing

the updated scale to determine the validity of these modifications.

Clearly, reviewing and revising DSS to this extent is beyond the scope of this dissertation;

improving the accuracy of automated DSS using the unmodified scale is enough of a challenge

in itself. However, though no comprehensive revision of DSS could be found, several papers

did suggest smaller-scale improvements to DSS rules which would bring DSS more in line

with modern theories of language acquisition.

One such paper was the aforementioned work of Hughes et al. (1992). In that paper,

Hughes et al. suggest nine modifications to the DSS rules, two of which are significant

divergences from Lee’s rules and the other seven of which are clarifications of existing rules.

These can be summarized as follows, with the first two rules being the significant changes:

1. Like is not scored when it is used as a preposition, only when it is used as a subordi-

nating conjunction.

2. All sentences containing a subject and verb in the same clause are included. The entire

sentence will be scored, except for conjunctions that stand alone, that start a sentence,

or that are preceded only by minor sentences.

3. Then is ignored as a conjunction, but a sentence containing it still earns a sentence

point. And then is still counted as a conjunction.

4. An attempt mark is not given for interrogative reversal if the question is a request for

clarification.
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5. Incomplete utterances are given a sentence point if they contain a subject and verb, if

the incompleteness is the result of interruption. The sentence point is deducted if there

was no interruption.

6. All repetitions, even if they differ from the prior sentence by the addition or deletion

of a minor element, are ignored in analysis.

7. Imitations of another speaker are ignored, even if they differ from the sentence being

imitated by a minor element.

8. Present-tense be with –en verb is counted as a copula and adjective, unless the adjective

is modified by a prepositional phrase. Past-tense be with –en verb may be considered

passive if the verb does not change meaning by adding a prepositional phrase.

9. Be supposed is scored as a regular be verb, even if supposed is conjugated incorrectly.

The infinitive following supposed is scored normally (i.e., 5 points).

Notably, some of Hughes et al.’s clarifications, much like some of the original rules in

DSS, depend strictly on context, and there is no way that an automated program will be

able to identify all of these contexts. For instance, Rule 4, the rule for question inversion,

depends on the previous statement by the conversational partner, which may not even be

included in the input transcript; some other notation may therefore be necessary to identify

these sentences. Similarly, interruption could be indicated using a standard notation, such

as a dash, but there is no guarantee that all transcriptionists will use the same conventions.

There is also no easy way for a computer to identify, in the case of rule 8, that “the money

was lost” does not change meanings with an added prepositional phrase but “the girl was

lost” does—and even if the program did account for that distinction by means of a lexicon,

it may not know how to deal with an unfamiliar word, as in “the Athenian was lost.”

However, apart from these few context-sensitive rules, the analysis will usually be fairly

straightforward even with these modifications in place. These context-sensitive cases are also

rare, and there is usually one interpretation that is more prevalent: for instance, with question
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inversion, un-inverted questions are more likely to occur than requests for clarification, and

the latter will not occur at all in transcripts of monologues.

DeThorne et al. (2008) not only implemented the changes from Hughes et al. in their own

experiments involving DSS, but also introduced another modification regarding the scoring

of initial conjunctions. Lee’s rubric errs on the side of caution and ignores all conjunctions

at the start of an utterance, even though Lee admits that some are syntactically significant.

However, Lee also marks initial conjunctions in the transcript that are to be ignored using

the standard convention of parentheses; thus, any unmarked initial conjunction is likely

significant and should be scored.

One additional modification was made by Kemper et al. (1993): rather than counting

the verbs of relative and subordinate clauses in the main verb category, as was done by Lee,

Kemper et al. instead counted them as the highest two scores in the secondary verb category

in their own experiment incorporating DSS. However, they cite no literature supporting this

decision—most notably, there is no evidence given to show why these embeddings were ranked

at the same levels as passive infinitives and gerunds, respectively. Even more problematically,

this change breaks a significant developmental division that already existed in Lee’s original

version of DSS. All other verb forms counted in the Secondary Verbs category cannot be

used as main verbs, and thus must be specifically learned in the context of secondary verbs.

Subordinate clauses, on the other hand, contain an entire sentence as a constituent; thus,

although they are secondary verbs in the context of the parse tree as a whole, subordinate

verbs are in the same class as main verbs from a language-acquisition perspective. Because of

Kemper et al.’s lack of justification or explanation for this particular modification, I ignored

this change in my own modifications to DSS.

A couple of other modifications that I introduced in SYCORAX’s modified rule set had

no prior use in the literature, but due to the presence of closely related words in the scale,

seemed to be genuine omissions from DSS:
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1. Yourselves should be given the same score as all other reflexive pronouns. Lee omitted

this particular pronoun while still scoring the singular form, yourself.

2. Why should be given the same score as other relative adverbs such as where, when

and how. Again, this was left out of Lee’s scoring rubric with no explanation, despite

logically fitting into an existing developmental category. Even more oddly, why is used

in an example of an incomplete relative clause by Lee, suggesting that a complete why

clause should have been scored.

With these modifications to DSS decided upon, and with an output format chosen, it

was now time to begin developing the application itself.
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Improving the Tagger

In order for a syntactic complexity analysis to be accurate, the underlying elements of syntax

must also be accurately analyzed. Ideally, this requires accurately tagging the parts of speech

in a sentence so that the syntactic structure is correctly interpreted.

Although some parsers are able to parse untagged texts, the ability to tag a text indepen-

dently of parsing is still beneficial for a number of reasons. Using a pre-tagged text removes

the need for a parser to have its own lexicon; as will be discussed in the following chapter, this

also vastly simplifies the process of developing a new domain-specific parser. Furthermore,

using machine learning to find part-of-speech tags for a lexicon is much more feasible than

doing so to find grammatical relations; different treebanks can give entirely different parse

trees for the same sentence, but tend to be relatively consistent in part-of-speech tagging.

The SYCORAX project inherited from CPIDR an unpublished tagger known as ODT,

the Opportunistically Developed Tagger, developed by Michael Covington. Written in C#

for the .NET 2.0 framework, ODT began with the most significant transformation rules

obtained by Brill (1995) through a machine learning process on the Penn Treebank (Marcus

et al., 1993, 1999). This rule set was further improved by Covington with the addition by

hand of several new rules; many of these rules were not even attempted by Brill’s algorithm

due to their forms, which did not fit into Brill’s limited set of templates. Yet ODT still had

its share of inaccuracies, as I discovered while testing the tagger on a selection of sample

sentences from Lee (1974); clearly, even more manual optimizations were necessary.

This ability to manually improve the tagger’s rules is a significant advantage of Brill’s

tagger over the purely probabilistic taggers with which it was designed to compete. In a

24
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probabilistic tagger, the rule set consists of a large corpus of specific contexts, something

which is not amenable to manual revision. In Brill’s tagger, on the other hand, the result of

the learning algorithm is a lexicon and a reasonably small set of transformations; it is quite

easy to manually remove, modify, or add new transformations from this set as tagging errors

are discovered.

3.1 The Testing Process

The usual measure of accuracy for part-of-speech tagging, as used by Brill among others, is

the percentage of tokens from a tagged reference corpus which have been tagged correctly.

The opposite of accuracy is error rate, the percentage of tokens which have been tagged

incorrectly—i.e., 100% minus the accuracy. Changes in accuracy can be used to determine

whether a new rule should be kept or discarded, both for manual optimization and automated

learning: if it increases the accuracy, the rule is considered an improvement and kept, while

if it decreases the accuracy, it is considered a regression and discarded.

As alluded to previously, the standard reference corpus for part-of-speech tagging is the

Penn Treebank (Marcus et al., 1993, 1999), which was used in the training and testing

of Brill’s own tagger. The Treebank consists of four component corpora: the Brown corpus,

comprising a variety of printed literature across various genres, both formal and informal; the

Switchboard corpus, made up of transcripts of casual telephone conversations; the Wall Street

Journal (WSJ) corpus, consisting of a selection of articles from its namesake newspaper; and

a sample of the ATIS (Air Travel Information System) corpus, based on a prototype speech-

recognition system for flight information. All texts within the Treebank have been manually

tagged and parsed, thus providing an easy way to evaluate any tagger’s accuracy.

To test the new manual optimizations to ODT, all of the Treebank corpora were used

except for the ATIS sample; due to its small size, the artificiality of its language, and its

domain-specificity, ATIS was negligible for the purpose of this project. The remaining three

corpora provide a mix of formal written (Brown and WSJ), casual written (Brown), and
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spoken (Switchboard) forms of language, thus demonstrating the tagger’s applicability to a

wide variety of language use.

Although the percentage of correct tags over these three corpora was the primary measure

used to determine the tagger’s accuracy during this experiment, it was not the only measure.

In several rare cases, described in further detail in the following sections, the accuracy in a

specific context significantly improved with the addition of a rule, but the overall accuracy

decreased at the same time; when this context was relevant to DSS, new rules were sometimes

kept intact even despite the decrease in general accuracy.

During the testing process, several idiosyncrasies in the formatting of the Treebank data

were discovered which were not defined in the accompanying documentation (Santorini,

1995). Specifically, it is possible for tokens to contain slashes and square brackets, both

of which carry additional meaning in the Treebank format; the former are used to separate

tokens from their tags, while the latter are used to delimit phrases. It was therefore necessary

to ensure that the shell application for ODT only removed those slashes and brackets which

were not part of a token. Additionally, as the documentation for ODT revealed, the lexicon

was compiled with all slashes transformed to hyphens; thus, this same replacement also

needed to be made for testing.

A number of typographical errors were present in the Treebank as well, and were corrected

in the local copy used for testing. The Brown corpus contained eight stray curly braces which

were not used as delimiters, as none of them had a matching opposite, but which also were

not used as tokens; these were simply removed. The WSJ corpus contained two occurrences

of the untagged token Chiat\/NNP, which should instead have been Chiat\/Day/NNP (where

\/ is the standard representation for a token-internal slash).

Finally, one additional modification had to be made to the Switchboard corpus, due

to a quirk of the tagging guidelines. This corpus was added in the third edition of the

Treebank, while the written corpora dated back to the second edition; however, between

the two editions, the tagging guidelines were changed so as to make distinctions which were
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originally left ambiguous. For just one example, the infinitive and prepositional uses of to

received the same ambiguous tag in Treebank-2, but were tagged differently from each other

in Treebank-3. The good news, however, is that converting texts from the newer tag set to

the older one is trivial; Covington had already developed a tool (unpublished) to do exactly

that, and it was this version of the Switchboard corpus on which tests were run. For reference,

the original Treebank-2 tag set is reproduced in Appendix A.

3.2 Errors from Lee

The first set of optimizations to be proposed for ODT are summarized in Table 3.1; these

consisted of nine new rules and four enhancements to existing rules. Those rules marked with

an asterisk are especially significant, as these were already present in Brill’s learned rule set

(Brill, 1994); the remainder are logical extensions of existing rules based on errors found in

Lee’s examples.

Table 3.1 Added and modified rules in ODT. Those marked with * were found in
Brill’s rule set.

Added rules
# Transformation Condition
1 wan → VBP next token is na
2 lem → VB next token is me
3 VBP → VB one of the previous two tags begins with VB
4 VBD → VBN one of the previous two tags is VBN

*5 POS → VBZ next tag is DT
*6 POS → VBZ previous tag is WP
*7 POS → VBZ previous tag is DT
8 POS → PRP previous token is let

*9 so → IN next token is PRP or DT, or next token is that
Modified rules

# Transformation Original Modification
10 VBP → VB previous tag is TO one of the previous three tags is TO
11 VB → VBP previous tag is PRP previous tag is PRP, but not an object pronoun;

moved above other VB/VBP rules
12 VBD → VBN previous tag is PRP same, but moved above other VBD/VBN rules
13 VBD → VBN previous tag is VBD one of the previous two tags is VBD
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The modifications from Table 3.1 were initially added to the parser as a group, improving

the overall accuracy by 0.0876%. Further improvements were introduced by selectively

removing rules or parts of rules which were found to produce regressions. These iterations,

and the resulting accuracies, are detailed in Table 3.2. With the most suitable set of modifi-

cations selected, it was possible to increase the accuracy of ODT by 0.0710% on the Brown

corpus, 0.3967% on Switchboard, 0.0493% on WSJ, and 0.2166% overall.

Table 3.2 Accuracy of modified versions of ODT. Rule numbers referenced are
those from Table 3.1.

% Accuracy Revert
# Modification Brown Swbd WSJ Overall To
1 Original ODT 94.9463 86.2832 95.4118 91.0411
2 All modifications in Table 3.1 95.0100 86.4459 95.3965 91.1287
3 Undo ordering from 12 95.0115 86.4462 95.3995 91.1301
4 Undo rules 4 and 13 95.0153 86.4496 95.4476 91.1461
5 Undo rule 3 95.0075 86.3882 95.4438 91.1145 4
6 Undo rule 9 94.9956 86.6036 95.4387 91.2104
7 Restore so that from rule 9 94.9989 86.5945 95.4397 91.2073 6
8 Restore so PRP/DT 95.0121 86.4586 95.4466 91.1492 6
9 so PRP only 95.0085 86.4682 95.4438 91.1520 6

10 so DT only 94.9992 86.5941 95.4415 91.2076 6
11 Undo rule 11 94.9684 86.5715 95.4317 91.1865 6
12 Undo rule 10 94.9999 86.6129 95.4423 91.2168
13 Modify rule 10 to look at only 2 prior tags 94.9994 86.6141 95.4421 91.2171
14 Undo rule 5 94.9967 86.5526 95.4384 91.1868 13
15 Undo rule 6 94.9950 86.5848 95.4355 91.2005 13
16 Undo rule 7 94.9952 86.5067 95.4357 91.1643 13
17 Undo rule 8 94.9917 86.5776 95.4412 91.1980 13
18 Restore rule 13 94.9957 86.6094 95.4189 91.2075 13
19 Restore rule 4 95.0035 86.6148 95.4400 91.2180
20 Modify rule 4 to look at only 1 prior tag 95.0053 86.6152 95.4437 91.2196
21 Undo rule 11 ordering 95.0173 86.6799 95.4611 91.2577
22 Undo rule 11 object pronoun 94.9871 86.6432 95.4536 91.2308 21
23 Modify rule 3 to look at only 1 prior tag 94.9930 86.5620 95.4362 91.1896 21
24 Add PDT as well as DT for rule 7 95.0173 86.6799 95.4611 91.2577

One interesting pattern which deserves further notice, and which occurs again in further

experiments, is that not all rules affect all corpora equally. The most notable example in this

case is rule 9, which improves the tagger’s accuracy on the two written corpora at the expense

of both the Switchboard corpus and the Treebank as a whole. This discrepancy is largely

due to the stylistic difference between the corpora: in colloquial speech, it is more likely that
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so is used as an adverb, which the addition of this rule limits. For accurate disambiguation

of so, context beyond the set of immediately surrounding words is necessary, something that

is not possible in Brill’s tagger.

Although the overall increase in accuracy may seem minor, each of these improvements

had a notable effect on DSS accuracy. Wanna and lemme were not identified as verbs what-

soever, thus causing any sentence with only these verbs to be ignored entirely; the same was

also true regarding the contraction ’s. The errors involving VB and VBN caused main verbs to

be mistaken for secondary verbs and vice versa, sometimes with a drastic difference in point

value. Finally, adverbial so is ignored entirely in DSS, while prepositional so is significant

enough to earn five points.

3.3 The “Her” Ambiguity

Another error common to many Brill-style taggers, including ODT, was discovered by Deb-

orah Keller-Cohen at the University of Michigan (personal communication, June 22, 2010).

This error involves the word her: depending on surrounding context, it may be either a per-

sonal pronoun (He likes her) or a possessive pronoun (He likes her dog). However, because

no transformation rules exist to handle this ambiguity and because her occurred most often

in the training corpus as a possessive pronoun, that tag is consistently given to the word by

ODT even when it is not correct.

Although this distinction is mostly insignificant in DSS, where both forms of her are

scored the same, it does still have its use in parsing; if an instance of her is unambiguously

tagged as an object pronoun, it can safely be ignored in the rule attaching possessive pronouns

as modifiers. In addition, as will be discussed later in this chapter, the methods used to

improve this rule, and the lexical quirks discovered during its development, were also of use

in developing rules which were more relevant to DSS.

In this case, the problem was that the obvious rule—transforming possessive pronouns

(PRP$) into personal pronouns (PRP) except when preceding nouns or adjectives—produced
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a regression on 0.0268% of the Treebank as a whole. Further investigation of the resulting

errors revealed the reason: if a noun was incorrectly tagged (e.g., identifying walk in her walk

as a verb), the preceding pronoun would now be incorrectly tagged as well. Yet preventing

this transformation when the following word could be a noun or adjective also led to an

unexpected regression in the tagger’s accuracy.

A closer look at the contexts of these new errors revealed the problem: some words in

the lexicon have extremely rare probabilities of occurring as nouns or adjectives. In the Penn

Treebank, for instance, the word and is tagged as a noun in the title Jake and the Fatman;

similarly, of is tagged as a noun in The University of Washington. Even quotation marks

can be tagged as nouns when used as an abbreviation for “inches.” These tags are entirely

correct in these specific contexts, of course, but the problem is that they are not applicable

in a more general context.

This problem was exacerbated by the fact that ODT’s lexicon, directly inspired by Brill’s,

contains no contextual information. A probabilistic tagger would be able to determine that

of cannot be a noun except when surrounded by proper nouns, but as far as a Brill tagger is

concerned, of is a perfectly plausible proper noun in any context. However, ODT’s lexicon

did include one significant improvement on Brill’s, which turned out to be extremely useful

for the purposes of this rule. While Brill’s lexicon only identified which tags could potentially

apply to a given token, ODT’s also identified the number of occurrences of each tag for a

given token. This property of the lexicon allowed for an additional restriction: a word could

only be transformed to a noun or adjective if it occurred frequently enough as a noun or

adjective. This would prevent words like of and and from being mistakenly identified as

nouns, while allowing more common nouns to be properly transformed. An experiment was

performed to find the threshold for each tag which produced the best overall accuracy; these

results are summarized in Table 3.3.

After these thresholds had been incorporated into the rules, the accuracy levels reached

95.0679% for the Brown corpus, 86.6462% for Switchboard, 95.4552% for WSJ, and 91.2532%
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Table 3.3 Thresholds for part-of-speech tags following the pronoun in the
PRP$ → PRP rule, in the order tested in ODT’s rule set.

Tag Threshold
NN 81

NNP 15
NNS 1
NNPS 1
JJ 13
JJR 1
JJS 1

1Also explicitly ignoring quotation marks, which occurred 56 times tagged as a noun.

overall. This is still slightly lower accuracy than before the PRP$→ PRP rule was introduced;

however, the decrease was now a much smaller 0.0045% of the overall corpus, and the accu-

racy in fact improved on the Brown corpus.

Based on the results of this admittedly limited experiment, it seems as though this

form of rule—based not only on context, but also on the probability of a word having a

given tag—could be a useful addition to Brill-style tagging. Such rules extend Brill’s tagger

with some of the probabilistic enhancements of stochastic tagging, while still maintaining

the predictability and the simpler lexicon of rule-based tagging. The threshold could be

discovered using new rule templates; for instance, the class of rules learned in this experiment

are all defined by the template “the current word is tagged z and the next word occurs at

least x times in the lexicon as w,” where z and w are part-of-speech tags and x is a bounded

integer value. A transformation-based error-driven learning algorithm such as Brill’s can then

easily test various values to determine the combinations of tags and threshold which produce

the best results.
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3.4 Further Improvements

As testing of SYCORAX continued using a variety of sample texts, several additional classes

of tagging errors were discovered, which are summarized below.

3.4.1 “Like” as a Verb

Another sentence included in Lee’s DSS sample is I like eating cookies. This particular sen-

tence, which was scored by SYCORAX as lacking a main verb, revealed yet another missing

transformation in ODT. In the lexicon, like occurred most often as a preposition, yet only

one applicable rule exists in Brill’s trained tagger. This rule transforms IN to VB if the second

word following the preposition is tagged VB; although this rule will correct sentences in which

like is followed by an infinitive (e.g., I like to parse), it still fails to correct the very sentence

that revealed this omission.

The development of a rule to correct the tagging of like is summarized in Table 3.4. In

Table 3.4 Optimization of transformation rules for the word like. All rules change
like to a VBP in the context provided, before any VBP → VB rules are processed.

% Accuracy
# Context Brown Swbd WSJ Overall
0 No like transformation 95.0679 86.6462 95.4552 91.2532
1 No verb within the 3 prior words 95.0410 86.5882 95.4422 91.2157
2 No verb within the 2 prior words 95.0311 86.5642 95.4391 91.2011
3 No verb after prior punctuation mark 95.0499 86.5941 95.4465 91.2220
4 After do or MD + optional not or n’t 95.0755 86.6785 95.4597 91.2714
5 4 + After NNS/PRP and no other verbs 95.0747 86.7056 95.4577 91.2833
6 Same as 5, but only using subject PRP 95.0748 86.7058 95.4577 91.2834
7 Same as 6, but for all verbs 95.0696 86.6921 95.4528 91.2743
8 Same as 6, but stopping VB scan at IN/CC as well 95.0719 86.6970 95.4551 91.2779
9 Same as 6, but scan whole sentence for VB 95.0761 86.6847 95.4594 91.2744

10 Same as 6, but include does and did too 95.0738 86.7091 95.4577 91.2847
11 Same as 10, but without NNS/PRP fix 95.0744 86.6817 95.4598 91.2727
12 Same as 10, but look for VB after as well 95.0736 86.6979 95.4583 91.2796
13 Same as 10, but allow 0 or more RB after NNS/PRP 95.0739 86.7153 95.4579 91.2877
14 Same as 13, but only allow one RB 95.0739 86.7152 95.4579 91.2876
15 Same as 13, but allow RB after do/MD 95.0738 86.7169 95.4582 91.2885
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the end, the contexts which produced the best improvement were when like was preceded by

a modal or a form of do, or when like was preceded by a plural noun or personal pronoun

and had no preceding verb. In both cases, any number of adverbs could sit between like and

the preceding word as long as the preceding context remained the same.

3.4.2 Adjectives and Adverbs

The next class of errors to be discovered involved adjectives and adverbs; the development

process for this set of rules is shown in Table 3.5. With the exception of very, all of these

modifications affected the Indefinite Pronouns score of DSS, which counts certain adjectives

but not identically-spelled adverbs; the rule for very, on the other hand, was to prevent

spurious attachment of very as a complement of a verb.

Table 3.5 Optimization of adjective- and adverb-related rules.

% Accuracy
# Modification Brown Swbd WSJ Overall
0 End of like iterations 95.07384 86.71688 95.45819 91.28848
1 Fix JB typo in JJ → RB 95.07230 86.74382 95.45812 91.30062
2 very/JJ → RB before JJ 95.07239 86.74410 95.45850 91.30088
3 Keep very change, undo JB 95.07393 86.71716 95.45858 91.28874
4 Restore JB fix; change very/JJ before JJS 95.07248 86.74420 95.45850 91.30095
5 Change very/JJ before JJS and JJR 95.07248 86.74420 95.45850 91.30095
6 Change very when tagged other than JJ 95.07248 86.74420 95.45850 91.30095
7 most/least → RBS before JJx 95.07128 86.74438 95.45804 91.30060
8 most/least → RBS before only JJ 95.07137 86.74443 95.45804 91.30064
9 only adjust most/least after DT 95.07196 86.74420 95.45796 91.30066

10 only adjust most/least after PRP$ 95.07222 86.74471 95.45913 91.30129
11 remove most/least fix; add RB JJ to PRP fix 95.07384 86.74504 95.45905 91.30184
12 add RB RB JJ to PRP fix 95.07376 86.74508 95.45913 91.30186
13 add VBN as well as JJ for PRP$ rule 95.08153 86.74518 95.46440 91.30536
14 add JJS RB → RBS RB rule before PRP$ rule 95.08008 86.74308 95.46254 91.30349
15 JJS RB → RBS RB only before JJ/VBN 95.08102 86.74518 95.46386 91.30507
16 JJS VBN → RBS VBN 95.08119 86.74532 95.46456 91.30538
17 same as 16, but add JJR too 95.08349 86.74564 95.46642 91.30664

The first of these errors was the result of a simple typo in ODT. As intended, one rule

would have transformed any adjective (JJ) preceding an adverb (RB) into an adverb itself. As
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written, however, the rule transformed the nonexistent tag JB, which obviously had no effect.

Correcting JB to JJ in this rule unexpectedly produced minor regressions on the Brown and

WSJ corpora, due to constructions such as answerable directly and unpopular domestically

which are uncommon in spoken language, but did produce the expected increase in accuracy

on the Switchboard corpus and on the Treebank as a whole.

The next modification involved the word very. This word can act as either an adjective

(e.g., this very minute) or an adverb (very happy); however, ODT often failed to identify

very as an adverb. In this case, the relevant contexts were as expected: very should be

transformed to an adverb immediately before any adjective, either inflected or uninflected.

Another error concerned the words most and least. These were mis-tagged as superlative

adjectives (JJS) in contexts where a superlative adverb (RBS) was correct (e.g., not the least

concerned)—quite literally a seven-point distinction in DSS. This turned out to be the result

of two separate omissions. The first was obvious: JJS needed to be transformed to RBS before

an adjective or past participle. The second, however, was unexpected, and was a side effect

of the pronoun transformation rule from Section 3.3. As discovered through further testing,

this rule also needed to allow for one or two intervening adverbs between a pronoun and an

adjective, as well as to allow for past participles in place of adjectives.

3.4.3 Modals and Novel Adverbs

Another set of errors involved the interaction of modals and verbs, along with one minor

typo which had previously escaped notice. These are summarized in Table 3.6.

The error which prompted this set of modifications was that modals (MD) were sometimes

mistakenly identified as uninflected verbs (VB) with the same spelling; for instance, can can

also be a verb meaning “to put something into a tin.” This caused certain compound verbs

to be incorrectly analyzed by the parser, which in turn caused the DSS analyzer to interpret

them as strings of several main verbs. The rule which produced the greatest improvement
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Table 3.6 Optimization of modal- and verb-related rules.

% Accuracy
# Modification Brown Swbd WSJ Overall
0 End of adjective/adverb iterations 95.08349 86.74564 95.46642 91.30664
1 Don’t change MD if it precedes a VB 95.08495 86.74723 95.47037 91.30885
2 Change MD, but retag at end if precedes VB 95.10297 86.75175 95.48046 91.31836
3 Retag MD 1 or 2 places before VB 95.10715 86.75231 95.48092 91.31982
4 Fix typo in MD→VB rule; undo MD retag 95.07726 86.73324 95.45982 91.29743
5 Same as 4, but restore MD retag 95.10502 86.74830 95.47976 91.31708
6 Novel adverbs are RB, not RR 95.10502 86.74932 95.47976 91.31756

in the tagging of compound verbs, and thus in their parsing, transforms any suitable verb

back into a modal if it occurs one or two words before an infinitive-form verb.

During the testing of this rule, two other typographical errors were also discovered in

the tagger. An existing rule added by Covington to transform modals located after another

verb to infinitive-form verbs (e.g., He did will his computer to his heir) failed to trigger

when the prior verb was tagged VBP; this was clearly erroneous given the comments in the

source code. Surprisingly, correcting this error as intended produced a minor regression, but

as the transformation after VBP was clearly Covington’s original intent, this correction was

left intact. Another bug affected novel adverbs that did not occur in the Treebank, tagging

any –ly word as the nonexistent tag RR instead of the correct RB; however, the improvement

from this rule was negligible even on the Switchboard corpus, which was not used to train

the lexicon.

3.5 Post-Processing

Unfortunately, this last set of modifications still did not solve all problems involving modals.

In the sentence Who will water the plants?, for example, the tagger initially identified water

as a noun; by the time water was finally transformed to a verb, it was already too late to
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Table 3.7 Addition of post-processing rules performed after the initial tagging
pass was complete.

% Accuracy
# Modification Brown Swbd WSJ Overall
0 Before post-processing 95.10502 86.74932 95.47976 91.31756
1 that → WDT 95.11305 86.75809 95.50264 91.33009
2 (PRP$) NNx n’t → (PRP) VBx n’t 95.11305 86.75804 95.50264 91.33007
3 Same as 2, but with → MD first 95.11305 86.75804 95.50264 91.33007
4 Same as 3, but with VBP instead of VB 95.11305 86.75813 95.50264 91.33011
5 WRB POS → WRB VBZ 95.11399 86.75921 95.50272 91.33087
6 n’t NNx → n’t VBx 95.11697 86.78205 95.51311 91.34518
7 Retag best word as verb if none found 95.05608 83.83274 95.48627 89.94830
8 gots → VBZ 95.05608 83.83274 95.48627 89.94830
9 VB VBP → MD VB 95.05642 83.83348 95.48674 89.94886

10 All of the above fixes except 7 95.11732 86.78279 95.51358 91.34574

transform will to a modal. Again, this error caused an incorrect parse tree to be produced,

which in turn caused the DSS analyzer to score the verb as two simple verbs rather than as

a higher-scoring compound.

However, another option had presented itself in how SYCORAX was designed. The pro-

gram contained an additional loop which performed a number of additional non-tag-related

transformations on the tagged text after the initial tagger run but before parsing began,

for the convenience of the parser. This stage can be seen as either post-processing or pre-

processing, depending on whether it is considered relative to the tagger or parser; as this

chapter is about the tagger, it will be referred to as post-processing here.

Nine new rules were proposed during the development of this post-processing stage,

summarized along with their resulting accuracies in Table 3.7. The first of these rules retagged

the word that as WDT—i.e., an interrogative determiner like who or what—when preceding a

past participle (VBN) or a modal (MD), both of which were often transformed to their correct

tags only after the tagger had left that. This distinction is important within DSS; the word
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that may be given three different scores depending on its function. Two other rules took

advantage of properties of the contraction n’t to identify verbs that were originally missed in

the DSS analysis: the word which precedes must be a verb rather than a noun, and the word

which follows must also be a verb unless the preceding verb is be or have. Yet another rule

was designed to correct the tagging of the class of sentences described at the beginning of

this section—e.g., Who will water the plants?—by transforming consecutive VB VBP to MD VB.

In addition to the rules described above, two further rules were discovered during the

development of the post-processing stage. The first of these rules, created in response to

SYCORAX not identifying the verb in a sentence with the contraction where’s, transforms

’s to a verb after an interrogative adverb; the other, in response to a drastically incorrect

parse of a sentence containing the nonstandard verb form gots, transforms that word into

a third-person singular verb. Unlike the remainder of the post-processing rules, these two

rules were extremely simple, with no potential interference from other incorrect tags at all;

this naturally prompted the question of whether any of the other rules could also work just

as well in the main loop.

The obvious way to test this theory was to move each rule from post-processing into the

main loop one at a time; the results of this experiment are shown in Table 3.8. Indeed, all

but three of the rules produced the same result on the Treebank whether in post-processing

or in the main tagger loop. These three were rule 9, the Who will water the plants? rule;

rule 1, the rule to tag that as a WDT; and rule 6, the rule to transform nouns to verbs after

n’t. As expected, for reasons described earlier, leaving rule 9 in the main loop produced the

same result as omitting it entirely; that left rules 1 and 6.

The regression which resulted from the movement of rule 6 to the main loop was actually

due to a bug in an earlier rule described in Section 3.4.3. The retagging of modals located

two words before another verb caused need to be tagged incorrectly in many cases, such as

the coordination need or want. Adding an exception for need not only improved the tagger’s
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Table 3.8 Movement of tagger rules from post-processing to the main tagger loop.
Rule numbers referenced are those from Table 3.7.

% Accuracy
Rules Moved Brown Swbd WSJ Overall

All but 7 and 9 in post 95.11697 86.78205 95.51311 91.34518
Moved to main loop:

1 only 95.11621 86.78163 95.51218 91.34453
4 only 95.11697 86.78205 95.51311 91.34518
4 and 5 95.11697 86.78205 95.51311 91.34518
4, 5, 6 95.11706 86.78195 95.51311 91.34516
4, 5, 8 95.11697 86.78205 95.51311 91.34518
4, 5, 8; 6 modified to alter any possible verb 95.11552 86.77095 95.51366 91.33979
4, 5, 8 + ignore need VB 95.11749 86.78386 95.51552 91.34683
4, 5, 6, 8 + ignore need VB 95.11757 86.78386 95.51552 91.34685
4, 5, 6, 8, 1 in loop 95.11680 86.78345 95.51459 91.34620
4, 5, 6, 8, VBN 1 in loop; MD 1 in post 95.11757 86.78386 95.51552 91.34685

accuracy with rule 6 in post-processing, but caused the accuracy to further increase when

that rule was moved to the main loop.

As for rule 1, the rule to transform that into a WDT, its problem was revealed when it was

separated into two sub-rules. In this case, the problem was closely related to that for rule 9:

some modals were not identified as such until later in the sentence, and so the transformation

did not occur before modals. This was solved by leaving the transformation of that before

modals in post-processing, but moving the transformation before past participles to the main

loop.

3.5.1 The Verb Rule

One last rule shown in Table 3.7 was not previously discussed, but deserved further inves-

tigation. This was a special case to handle sentences where the tagger failed to identify a

main verb, which in turn caused the sentence to be ignored in the DSS score. If no verb was
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found in the sentence, this new rule would find the best choice of word to transform to a

main verb (VBP, VBZ, or VBD) and perform the transformation as appropriate.

The initial implementation of this rule produced a significant decrease in accuracy, the

reason for which was a rather unfortunate oversight: the tagger would perform a transfor-

mation even if none of the words in the sentence could plausibly be a verb according to the

lexicon. Even limiting the transformation only to those words which could be tagged as verbs

still produced a regression, albeit not as large.

Much like the preposition rule described in Section 3.3, this rule was suited to an opti-

mization problem based on the probability of a given word being a verb. The results of

this experiment are summarized in Table 3.9, with the best overall accuracy found using a

threshold of 33 occurrences as any form of main verb.

3.5.2 Further Optimizing Post-Processing Rules

The rule to transform that to a relative determiner before modals was still problematic. It

seemed as if there should be a way to handle this transformation in the tagger itself rather

than in post-processing; it followed that if modals were often incorrectly tagged as uninflected

verbs, then the rule should also apply when that preceded an uninflected verb. As shown in

Table 3.10, this change did in fact improve the tagger’s overall accuracy, even when the rule

was moved to the main loop. It also followed that that should be transformed before inflected

verbs as well (e.g., the mouse that roared; the dog that barked), and indeed, this produced an

even further improvement in the correct identification of relative that; still more of a boost

in accuracy resulted from including this rule in post-processing as well as in the tagger itself.

Another concern involved the rule for identifying incorrectly tagged modals, in which,

as mentioned previously, need was to be ignored when it occurred two words before an

uninflected verb. It seemed likely that there were other modals spelled the same as infinitive

verbs which would also be affected by this same rule. However, a test using all known modals
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Table 3.9 Optimization of the rule to retag the best word as a verb, using various
thresholds for occurrences in the corpus as VBP/VBZ/VBD.

% Accuracy
Threshold Brown Swbd WSJ Overall

No retagging 95.11757 86.78386 95.51552 91.34685
5 95.11322 86.80922 95.50078 91.35343

10 95.11441 86.81076 95.50202 91.35480
15 95.11501 86.81109 95.50823 91.35684
20 95.11586 86.81244 95.50892 91.35788
21 95.11586 86.81249 95.50892 91.35790
22 95.11612 86.81267 95.51117 91.35868
23 95.11646 86.81267 95.51110 91.35875
24 95.11655 86.81290 95.51210 91.35916
25 95.11663 86.81295 95.51210 91.35921
26 95.11629 86.81295 95.51218 91.35914
27 95.11621 86.81356 95.51218 91.35940
28 95.11621 86.81356 95.51218 91.35940
29 95.11621 86.81356 95.51218 91.35940
30 95.11621 86.81356 95.51218 91.35940
31 95.11595 86.81360 95.51218 91.35936
32 95.11595 86.81356 95.51218 91.35934
33 95.11595 86.81356 95.51327 91.35964
34 95.11586 86.81356 95.51327 91.35962
35 95.11586 86.81328 95.51319 91.35947
36 95.11595 86.81067 95.51319 91.35827
37 95.11595 86.81067 95.51319 91.35827
38 95.11595 86.81067 95.51319 91.35827
39 95.11561 86.81039 95.51319 91.35805
40 95.11561 86.81043 95.51327 91.35810

Table 3.10 Optimization of the rule transforming that to a WDT.

% Accuracy
# Modification Brown Swbd WSJ Overall
0 +VBN in loop; +MD in post 95.11595 86.81356 95.51327 91.35964
1 +VBN, +VB, +MD in loop only 95.11535 86.81491 95.51249 91.35990
2 Same as #1, but with +MD in post too 95.11612 86.81533 95.51342 91.36055
3 +VBx, +MD in loop only 95.12133 86.85728 95.52963 91.38596
4 Same as #3, but with +MD in post too 95.12210 86.85770 95.53057 91.38661
5 +VBx, +MD in both loop and post 95.12312 86.86059 95.53212 91.38865
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from the lexicon revealed that only one additional word should be ignored: dare, which only

increased the overall accuracy by an incredibly small 0.00002%.

Finally, additional testing revealed that the rule to add a verb when none was found,

as discussed previously in Section 3.5.1, was still not entirely sufficient. Specifically, in the

sentence *How you open?, the word open was still identified as an adjective rather than as

a main verb. The problem in this case was that certain words occurred frequently in the

lexicon as infinitives (VB), but not as plural verbs (VBP), despite the two forms being spelled

the same in all cases but be; for instance, open occurred 111 more times as a VB, but only

9 times as a VBP. A reasonable solution to this problem was to add VB to the list of tags to

search; then, if the word which occurred most frequently as a verb was tagged VB and was

not be, it would be retagged as VBP. This change, of course, also meant that a new threshold

had to be found for the rule, and as shown in Table 3.11, the best result was now found

using a threshold of at least 34 occurrences.

3.6 Final Modifications

Now that the post-processing stage had been sufficiently optimized, it was time to add a

number of final transformations in the main loop for various structures that were overlooked.

One such omission involved the word so, the significance of which was discussed in Sec-

tion 3.2; specifically, the tagger more often than not tagged so as an adverb, even when the

word was used as a preposition (e.g., I parse so you don’t have to). This in turn produced a

chain reaction with another rule, which transformed nouns after adverbs to verbs—thus also

transforming nouns after prepositional so. The seemingly obvious solution was to transform

so before any noun into a preposition (IN); however, although this improved the accuracy

on the written corpora, it caused a regression on the Switchboard corpus, largely due to the

colloquial use of so as an intensifier. As shown in Table 3.12, however, leaving so as an adverb

while adding an exception for so in the verb transformation rule did produce an increase in

accuracy on all three corpora.



42

Table 3.11 Optimization of the rule to retag the best word as a verb, using various
thresholds for occurrences in the corpus as a main or infinitive-form verb.

% Accuracy
Threshold Brown Swbd WSJ Overall

No verbs 95.12517 86.83164 95.53483 91.37645
All but VB 95.12321 86.86059 95.53212 91.38867

20 95.11732 86.85611 95.52475 91.38303
25 95.11783 86.85686 95.52475 91.38350
30 95.11808 86.85789 95.52607 91.38442
31 95.11817 86.85807 95.52707 91.38481
32 95.11817 86.85807 95.52925 91.38541
33 95.11860 86.85807 95.53033 91.38583
34 95.11868 86.85817 95.53033 91.38589
35 95.11868 86.85817 95.53025 91.38587
36 95.11877 86.85560 95.53025 91.38470
37 95.11868 86.85560 95.53025 91.38468
38 95.11885 86.85574 95.53025 91.38478
39 95.11885 86.85546 95.53025 91.38465
40 95.11885 86.85546 95.53025 91.38465
41 95.11894 86.85546 95.53025 91.38468
42 95.11945 86.85584 95.53041 91.38502
43 95.11954 86.85598 95.53088 91.38524
44 95.11971 86.85598 95.53088 91.38528
45 95.11988 86.85607 95.53088 91.38537
46 95.11945 86.85607 95.53088 91.38526

... ... ... ... ...
50 95.11962 86.85598 95.53088 91.38526

Table 3.12 Various fixes for the transformation of nouns to verbs after so.

% Accuracy
# Modification Brown Swbd WSJ Overall
0 No modification for so 95.11868 86.85817 95.53033 91.38589
1 so → IN before NNx 95.12107 86.85239 95.53088 91.38396
2 don’t convert to VBS after so 95.11877 86.85831 95.53080 91.38611
3 don’t convert after so, that 95.11877 86.85831 95.53080 91.38611
4 don’t convert after so, that, as 95.11877 86.85831 95.53080 91.38611
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Another overzealous transformation was that which transformed nouns to verbs when

followed by pronouns. The problem in this case was that the transformation occurred before

any pronoun, even if the pronoun was an object pronoun that could not reasonably be

followed by a verb. In the phrase the man she likes, for instance, man would be transformed

to a verb because it preceded a pronoun; in turn, this caused the resulting parse tree to

become nonsensical. As expected, limiting this transformation to contexts including object

pronouns (i.e., her, him, it, me, them, and us) increased the tagger’s accuracy, with an

improvement of 0.07417% on the Treebank as a whole.

Yet another tagging error involved verbs occurring after pronouns, as discovered when

bit in It bit you was tagged as a noun and thus ignored by SYCORAX. There was already

a rule in the tagger to transform a potential VBZ (third-person singular present tense verb)

after a pronoun, but similar rules did not exist for past-tense verbs or other present-tense

verbs. The process of optimizing this rule summarized in Table 3.13; the best accuracy was

obtained by transforming to a VBP if the word existed in the lexicon with that tag, or a VBD

if it could have that tag but not VBP.

Table 3.13 Optimization of the rule to transform nouns to verbs after pronouns.

% Accuracy
# Modification Brown Swbd WSJ Overall
0 No modification 95.21033 86.95167 95.55725 91.46028
1 PRP NN → PRP VBD 95.21212 86.94995 95.55802 91.46015
2 PRP NN → PRP VBP/VBD 95.22613 86.99973 95.56974 91.49018

(VBP only after pronouns that agree)
3 PRP NN → PRP VBP/VBD 95.22980 87.05776 95.57563 91.51980

(whichever triggers first)

Yet another problem was discovered through the sentence Her baby bear ate it, in which

the tagger identified bear as a verb and the parser misidentified it as the main verb. The

development of this rule is summarized in Table 3.14, with initial implementation in post-

processing but with an eventual transfer to the tagger itself. As finally developed, the rule
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transforms any VB following a singular noun or any form of adjective and directly preceding

a verb or modal into an NN, or if this is not possible, into an NNP.

Table 3.14 Further experiments on transforming verbs directly before verbs to
nouns.

% Accuracy
# Modification Brown Swbd WSJ Overall
0 Before modifications 95.22980 87.05776 95.57563 91.51980
1 NN VB VBx/MD → NN NN VBx/MD 95.23125 87.05800 95.57866 91.52113
2 Same, but allow any NNx for prior word 95.23091 87.05795 95.57881 91.52106
3 Same, but allow either NN or JJx for prior word 95.23134 87.05800 95.57866 91.52115
4 Same, but moved into main tagger loop 95.23160 87.05800 95.57897 91.52130
5 Try transforming to NN, then NNP 95.23160 87.05804 95.57897 91.52132
6 Try transforming to NNP, then NN 95.23108 87.05804 95.57897 91.52119

Another error occurred in the sentence She said, “Sit there!”, in which ODT tagged Sit

as a proper noun (NNP) due to its preference for case-sensitive comparisons, in turn causing

SYCORAX not to score the verb. This was in fact supported by the lexicon; an article in the

Wall Street Journal was about a Chinese immigrant with the surname Sit. An initial attempt

at optimization, shown in Table 3.15, was based on the frequency of the word occurring as

a proper noun; however, although this worked for Sit, it failed to account for even more

common names such as Mark and Cook due to their frequency. Thus,the process was started

once again, this time using rules based strictly on the word’s context, which would apply to

all names equally; this is detailed in Table 3.16.

A final set of optimizations all involved rules which transformed nouns to verbs, either

requiring restrictions on existing rules or addition of new rules; these are all summarized in

Table 3.17. The second of these in particular deserves special mention, as it reveals the wide-

ranging effects that a small human error in the training corpus can have on an automated

tagger. In a single sentence in the Wall Street Journal corpus, the word mature was mistakenly

tagged as a proper noun (NNP) when actually used as an infinitive-form verb (VB); this, in

turn, caused all occurrences of mature to be tagged as a proper noun when preceding any

other proper noun, as in the bills will mature December 21, due to a rule for compound proper
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Table 3.15 Optimization of the rule for transforming proper nouns (NNP) to imper-
ative verbs (VB).

% Accuracy
# Iteration Brown Swbd WSJ Overall
0 Before modifications 95.23160 87.05804 95.57897 91.52132

At start of sentence and before RB, IN, EX
1 < 12 occurrences as NNP 95.23134 87.05842 95.57881 91.52139
2 ≥ 2 occurrences as VB 95.23202 87.05837 95.57912 91.52163

At start of sentence and before any word listed in the lexicon as RB
3 ≥ 2 occurrences as VB 95.23254 87.05832 95.57928 91.52178
4 < 23 occurrences as NNP 95.23262 87.05842 95.57904 91.52178

Table 3.16 Further optimization of the rule to transform proper nouns (NNP) to
imperative verbs (VB), based solely on context.

% Accuracy
# Iteration Brown Swbd WSJ Overall
At start of sentence and...
1 Before could-be-RB. 95.23211 87.05832 95.57641 91.52087
2 Before could-be-RB, except of. 95.23236 87.05832 95.57773 91.52130

All of the below at start of sentence and excepting of:
3 Before RB/IN/EX 95.23083 87.05828 95.57827 91.52104
4 Before RB/IN/EX/DT 95.23330 87.05832 95.57858 91.52178
5 Before RB/IN/EX/DT/JJx 95.23330 87.05837 95.57858 91.52180
6 Before RB/IN/EX/DT/JJx/NNS 95.23279 87.05828 95.57431 91.52043
7 Before RB/IN/EX/DT/JJx/NN 95.23365 87.05837 95.57788 91.52169
8 Before RBx/IN/EX/DT/JJx 95.23330 87.05837 95.57858 91.52180
9 Before RBx/IN/EX/DT/JJx/TO 95.23347 87.05842 95.57858 91.52187

10 Before RBx/IN/EX/DT/JJx/TO/PRP 95.23433 87.05846 95.57881 91.52217
11 Before RBx/IN/EX/DT/JJx/TO/PRP/PRP$ 95.23459 87.05846 95.57897 91.52228
12 Same as 11, but including of 95.23416 87.05846 95.57765 91.52180
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nouns. Again, each of these rules is significant for the purposes of DSS, as verbs contribute

to the score while nouns do not.

Table 3.17 The final set of optimizations to ODT.

% Accuracy
# Modification Brown Swbd WSJ Overall
0 Last good tagger iteration 95.23459 87.05846 95.57897 91.52228

Miscellaneous rules
1 that . → DT . 95.24296 87.18674 95.58292 91.58527
2 JJ NNP → NNP NNP only when JJ is capitalized 95.24355 87.18688 95.58440 91.58590

Restrictions on NNx → VBx
3 Ignore NNx DT → VBx DT immediately after a DT 95.27302 87.20217 95.60177 91.60538
4 Same as #3, but also after a PRP$ 95.27806 87.20534 95.60309 91.60850
5 Same as #4, but also after a PRP 95.27806 87.20534 95.60309 91.60850

NNx → VBx after WP
6 WP NNS → WP VBZ 95.28019 87.20515 95.60635 91.60987
7 #6 + WP NN → WP VBP 95.27883 87.19532 95.60837 91.60551
8 WP NN → WP VBP only 95.27669 87.19551 95.60511 91.60414
9 WP NNS → WP VBZ, except when WP is what 95.28096 87.20641 95.60658 91.61072

10 #9 + WP NN → WP VBP, except when WP is what 95.28438 87.20739 95.61015 91.61304
11 #10 + WP NN → WP VBD, except when WP is what 95.28447 87.20744 95.61015 91.61309
12 #11 + what/WP NNx → what/WDT NNx 95.27968 87.20940 95.60286 91.61074
Further restrictions on NNx → VBx
13 Ignore NNx DT → VBx DT immediately after JJx 95.30121 87.21499 95.62178 91.62412
14 Same as #13, but also after a CD 95.30351 87.21797 95.62799 91.62783



Chapter 4

JED: “Just Enough Dependency” Parsing

Developmental Sentence Scoring, like all measures of syntactic complexity, is inherently based

on syntactic structure as a whole, not just the parts of speech of individual words. Thus,

improving the accuracy of SYCORAX’s part-of-speech tagger is not sufficient to improve its

DSS accuracy; it is also necessary, at least to some extent, to analyze the larger structures

that make up the sentence. Even local context may not be enough: consider, for instance,

the difference between *Her crying in there, which is ungrammatical, and I saw her crying

in there, which contains the same constituent but which is grammatical.

As further evidence that tagging is insufficient for DSS, Lively (1984) gives a selection of

sentences which are prone to human error when DSS is scored by hand. Many of these struc-

tures are incorrectly analyzed precisely because human raters fail to consider the structure of

the sentence beyond immediate context. For just two examples, compound verbs in which an

auxiliary is deleted (e.g., They were eating chicken and drinking tea) are only identifiable

by analyzing a long-distance dependency, while the distinction between complementing and

adjunct infinitives (e.g., I want him to go home; I passed the store to go home) requires

identifying the class of verb on which the infinitive depends.

Yet the state-of-the-art parsers which were initially considered for use in SYCORAX

proved to be far too inefficient with respect to memory or execution time—or, for that

matter, with respect to both. Thus, for this project, a new parser was developed known

as JED: Just Enough Dependency. This parser uses a simplified dependency grammar and

a modified parsing algorithm to generate dependency trees that include the distinctions

necessary for DSS, without any need for backtracking or non-determinism.

47
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4.1 The Problem with Existing Parsers

For the purposes of this project, a number of freely-available “off-the-shelf” solutions for

parsing had originally been considered. However, a cursory test of the candidates revealed

them all to be unsatisfactory for use in SYCORAX; indeed, the most up-to-date parsers

also seemed to be the least satisfactory for the purposes of this project. This paradoxical

situation is the result of a classic tradeoff in computer science: accuracy versus efficiency.

The current state of the art in automated natural language parsing primarily owes itself

to the shared tasks presented by the annual Conference on Natural Language Learning

(CoNLL). Since 1999, the conference has presented a task each year in which researchers

evaluate machine-learning systems against one another on a common set of real-world lin-

guistic data. The 2006 and 2007 CoNLL tasks (Buchholz and Marsi, 2006; Nivre et al., 2007a)

were dedicated to dependency parsing in a variety of languages; the former evaluated the

ability of machine-learning systems to generalize dependency grammars from the given tree-

banks, while the 2007 task also evaluated their ability to learn dependency relations beyond

the domain of the training data.

The CoNLL task uses dependency parsing because there exists a standard and simple

metric for the accuracy of dependency parsers, something that is not available for phrase-

structure parsing. As the 2006 CoNLL documentation explains (Buchholz and Marsi, 2006),

the accuracy of a dependency tree can be determined by finding the number of words whose

head and dependency type match those in a gold standard dependency tree for the same

sentence; this measure is referred to as the labeled attachment score.

The problem, however, is that the CoNLL task has strictly focused on accuracy, while

ignoring efficiency-related factors such as speed and memory use. The reports on the 2006

and 2007 shared tasks compare the competing parsers exclusively in terms of their accuracy,

with no mention, much less any discussion, of efficiency. For generalized parsing, accuracy

alone is a useful metric; however, for the purposes of automated DSS analysis, efficiency is of

greater importance. Only a subset of syntactic relationships are significant in DSS analysis,
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and the rest may be analyzed incorrectly or even ignored entirely with no ill effect; on the

other hand, it is important that the time and memory taken by the parser be minimal, so as

to make the automated DSS analysis more economical than a human rater and competitive

with non-parsing-based DSS analyzers.

4.1.1 Comparison of Existing Parsers

The efficiency problem is not merely a theoretical concern, either, as can easily be demon-

strated through tests of the two best-reviewed and most popular parsers of the 2006 CoNLL

task: MSTParser (McDonald et al., 2006) and MaltParser (Nivre et al., 2007b). The results

described below are not aberrations; Søgaard and Kuhn (2009), for just one example, have

found similar results in their own tests.

With respect to memory consumption, pre-trained dependency models in themselves

provide enough insight. The authors of MaltParser have provided two parser models learned

from the Penn Treebank, one of which was trained using a linear machine-learning algorithm

and the other of which used a polynomial algorithm. The latter, though slower, still takes

up a full 200 megabytes when uncompressed into memory; the former is faster, but uses

over 600 megabytes. MSTParser does not provide a pre-trained model, but training it on the

included 200-sentence sample produces a model that is 8 megabytes in size—which hardly

bodes well for a model trained on the hundreds of thousands of sentences in the Treebank.

The second matter concerns execution time: given an already learned model, parsing

times are still unsuitably slow for applications such as automated DSS. On a MacBook with

a 2.4 GHz Core 2 Duo processor, MaltParser’s slower model took approximately 39 seconds,

using almost 400 megabytes of RAM, to analyze a relatively short text of 96 sentences

comprising 586 tokens. The faster model took thirteen seconds—still relatively long for the

given text—and used over 850 megabytes of RAM in the process. As expected, the difference

grows exponentially with larger texts: a 4,600-sentence corpus took 19 seconds to parse

using the faster MaltParser model, and a whole ten minutes to parse using the slower model.
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MSTParser could not be accurately compared for general use due to the lack of a pre-trained

model, but using the above-mentioned 200-sentence model, the parser took approximately

18 seconds to parse a different 200-sentence sample.

Worse yet, an additional performance issue would arise if either of these parsers were

to be incorporated into SYCORAX. Both MSTParser and MaltParser are written in Java,

and thus would either need to run in an external Java runtime or to be doubly virtualized

using IKVM. The former case would hinder SYCORAX’s usability, would eliminate its self-

contained nature, and would introduce potential compatibility problems; the latter case, on

the other hand, would lead to an even greater performance bottleneck than running under

a native just-in-time compiler for Java.

4.2 Foundations for a New Parser

In a similar vein to that discussed by Søgaard and Kuhn (2009), the obvious solution to

these speed and memory concerns was to “reinvent the wheel” by creating a new parser. The

focus of this parser was to be on efficiency rather than accuracy; although it is less accurate

in general than the state of the art, the aim was to have equal or better accuracy on those

structures that are of interest to SYCORAX, as measured via the accuracy of the resulting

DSS scores.

4.2.1 Phrase-Structure versus Dependency

The first question regarding this new parser was whether it should be based on phrase-

structure grammar or dependency grammar.

Abney (1991) describes the foundations of a simplified form of phrase-structure parser,

the chunk parser. This type of parser breaks the parsing process down into two stages: a

chunker which breaks the sentence down into phrases and analyzes the internal structure of

these phrases, and an attacher which determines the connections between these chunks.
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This initially looked like a suitably simple approach to take, but it quickly became

apparent that it was not so simple as it looked. Although the set of rules given by Abney in

his example grammar is relatively simple, the parsing algorithm Abney uses is a nondeter-

ministic LR shift-reduce parser—not the simplest sort of parser to implement. Additionally,

chunking—the easier part of the analysis—was not sufficient in itself for DSS scoring; it

would be necessary to attach the chunks in order to determine certain necessary relation-

ships such as subject and object. This requires significantly more lexical information, which,

of course, is beyond the scope of Abney’s paper.

Indeed, identifying subjects and objects was a problem with any phrase-structure parsing

algorithm. For an example of why this is the case, consider the parse tree for The dog chases

the cat generated by a phrase-structure grammar, as shown in Figure 4.1. Identifying the

subject of chases requires finding the head descendant of the sibling of the parent of chases—

or, in other words, the cousin of chases which is a noun. Determining this relationship

becomes even more complicated when a prepositional phrase is also added to the subject,

thus adding an additional level of depth to the tree as in Figure 4.2.

The dog chases the cat

NP NP

VP

S

Figure 4.1 A traditional parse tree for The dog chases the cat.

The dog chases the cat

NP

NP

VP

S

PPNP

in the park

NP

Figure 4.2 A traditional parse tree for The dog in the park chases the cat.
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Dependency parsing, in contrast, is well suited to finding the relationships necessary

for accurate DSS analysis. Figures 4.3–4.4 show the dependency trees generated using one

popular dependency grammar (Järvinen and Tapanainen, 1997) for the same two sentences

shown in Figures 4.1–4.2. Note that in both of these sentences, finding the subject of chases

is as simple as following a single branch of the tree, the only direct dependent of chases

labeled Subj.

The dog chases the cat

Det Subj
Det

Obj

Figure 4.3 A flattened dependency tree for The dog chases the cat.

The dog chases the cat

Det

Subj

Det

Obj

in the park

Mod
PComp

Det

Figure 4.4 A flattened dependency tree for The dog in the park chases the cat.

Thus, despite the fact that DSS was originally based on phrase-structure grammar, syn-

tactic structures that are significant in DSS are ironically made much more apparent using

dependency grammar.

4.2.2 The Parsing Algorithm

As discussed previously in this chapter, however, the state of the art in dependency parsers

was far too complex in its implementation. What was needed for SYCORAX was something

much simpler, going back to the basics of dependency parsing. Because the aim of this project

was to create a dependency parser that focused on the relationships necessary for DSS, it

was given the name JED: Just Enough Dependency.
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Covington (1990) provides an implementation of one reasonably simple algorithm, which

has been further expanded in Covington (2001). The dependent-first variation of this algo-

rithm is summarized in Algorithm 4.1 below.

Algorithm 4.1 A dependent-first algorithm for dependency parsing.
for each word W in sentence do

for each head D preceding W , starting with the closest do
if D can depend on W then

Link D as dependent of W
end if

end for
for each word H preceding W , starting with the closest do

if W can depend on H then
Link W as dependent of H;
Break out of for loop

end if
end for

end for

In short, this algorithm iterates through each word of the sentence and, at each word,

runs two loops on the set of preceding words. The first loop searches only those preceding

words that have no head, attaching any of these words which could be a dependent of the

current word as such. The second loop searches the full set of preceding words, marking the

first suitable word, if any, as the head of the current word, and stopping there. A head-first

version of the algorithm also exists, which simply swaps the order of these two inner loops.

For further efficiency, Covington (2001) describes an enhancement of the algorithm in

which a list of the known heads and a list of all prior words are maintained in the course

of the loop, and in which the inner for loops iterate through these two lists, respectively,

so that no extra effort is wasted looking at prior words to determining whether they are

heads. As will be discussed later, however, this alternative approach may not be necessary

depending on the data structure used to represent the dependency tree.

Another variation on the dependency parsing algorithm discussed in Covington (2001)

enforces projectivity, a property of dependency trees stating that branches of the tree cannot

cross. This restriction is beneficial for languages such as English with a relatively fixed



54

word order, as it acts as a further safeguard against incorrect long-distance dependencies

and largely eliminates the need to write adjacency requirements into the grammar itself.

There are several structures, such as fronted prepositional complements and standards of

comparison, whose analysis may require overlapping dependencies in some grammars, as

shown in Figure 4.5; however, other grammars are able to represent these same structures

while maintaining projectivity, as shown in Figure 4.6. Hudson (1989) describes a simple

grammar for English which fully enforces projectivity along with an algorithm to parse it, and

Covington (1990) demonstrates that his own projectivity-enforcing algorithm is equivalent

to Hudson’s.

! wonder who she went with.

Dogs are more friendly than cats.

Figure 4.5 Projectivity-violating dependency graphs for two valid sentences, using
the grammar of Järvinen and Tapanainen (1997).

Dogs are more friendly than cats.

Figure 4.6 An alternative, projective structure for Dogs are more friendly than
cats, as implemented in JED’s grammar.

Covington’s modified algorithm ensures projectivity by restricting the set of prior words

which are searched in each loop so as to prevent overlap. In the loop to find dependents

of the current word W , only the nearest consecutive members of the set of prior heads are

tested; that is, if a word is a head but cannot be a dependent of W , the search stops there.

In the loop to find a head for W , only the word preceding W and its ancestors are considered

as possible heads.
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This latter restriction, however, does not work as Covington intended, and in fact prevents

some projective sentences from being analyzed. Consider the previously mentioned sentence

The dog chases the cat, which, as seen in Figure 4.3, has no overlapping branches. Figure

4.7 shows the state of the dependency tree just before the parser has begun the “search for

head” loop on cat. The word preceding cat is the, which cannot be a head of cat. The parser

will then consider all ancestors of the—but the only ancestor is cat! Thus, using this version

of the algorithm, it is impossible to attach cat as a dependent of chases.

The dog chases the cat

Det Subj
Det

Figure 4.7 The state of the parse tree for The dog chases the cat, before attaching
cat as a dependent of chases.

A solution to this problem is to set the initial value of H to the first word preceding

W which does not directly or indirectly depend on W . Since all words between H and W

are rooted at W , no overlap will occur; the path from H to W can be drawn above the

entire subtree rooted at W . Thus, in the case of The dog chases the cat, H would initially be

chases using this modified algorithm, and the object would be properly attached to the verb.

A pseudocode version of this algorithm, as implemented in JED, can be seen in Algorithm 4.2.

4.2.3 Creating a Data Structure

With an algorithm finally chosen, it was now necessary to design a suitable data structure

for the dependency tree. What made this task easier was the uniqueness constraint described

in Covington (2001): each word can only have one head.

To represent an individual relationship within the dependency graph, a class known as

Dependency was implemented. This class includes two members: Type, an instance of the

DependencyType enumeration identifying the dependency label, and HeadIndex, an integer

representing the index of the head word in the sentence.
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Algorithm 4.2 The projectivity-preserving parsing algorithm used for JED.
for each word W in sentence do

D ← W − 1
. Search last contiguous set of heads for dependents of W
while D ≥ first word of sentence do

if D has a head then
D ← D − 1
Go to start of while loop

end if
Test for dependency “W → D”
if dependency does not apply then . It is a head, but not attachable

Break out of while loop
else

Link D as a dependent of W
end if
D ← D − 1

end while
H ← W − 1
. Find nearest word that is not a dependent of W
while H ≥ first word of sentence and W is an ancestor of H do

H ← H − 1
end while
while H ≥ first word of sentence do . Then check it, and all ancestors.

Test for dependency “H → W”
if dependency does not apply then

if H has no head then
Break out of while loop

else
H ← head of H
Go to start of while loop

end if
else

Link W as a dependent of H
Break out of while loop

end if
end while

end for
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That leaves identifying the dependent side of the relationship. Because each word can

only have one head, the obvious choice is to represent the tree as an array of Dependency

objects, with each element of the array representing the dependency with the word of the

corresponding index as dependent. Using this representation, movement toward the head of

the dependency tree can be performed in constant time for each step. Checking the type

of dependency relationship between two words can also be done in constant time, as can

determining whether or not a given word is a head.

The major performance barrier in this representation results from moving downward in

the tree (i.e., from heads to their dependents); however, even this can be done in O(n) time

on the length of the sentence for each step, as it is simply a matter of scanning through the

array and finding which dependents have the specified head. Performance could further be

improved by adding a second array, with each element being a list of dependents, so that

the set of dependents of a given word can be determined in constant time; however, given

the length of most sentences, O(n) is not a significant barrier.

4.3 Choosing a Grammar

The algorithm, of course, is the easier part of a parser to develop; the greater challenge lies

in developing a grammar to identify the possible relationships among words.

Many modern parsers, such as the aforementioned MaltParser and MSTParser, have used

machine-learning algorithms trained on manually-parsed corpora to generate their grammars.

MaltParser, for instance, uses support vector machines, while MSTParser uses an online

learning algorithm. While the use of machine-learned grammars does lead to improved accu-

racy, it also has a number of downsides: the results are unpredictable in comparison to an

explicitly rule-based approach, and the learned model can quickly become large and time-

consuming to an extent that even the most complicated sets of explicit rules do not.

This is largely aided by the purpose of this particular parser. As discussed previously,

the intent of JED is specifically to identify those relationships that are significant to DSS;
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errors and omissions elsewhere are negligible, as long as they do not affect the parsing of the

relevant dependencies. What is important, in other words, is not the accuracy of the parse

tree as a whole, but rather the accuracy of the resulting DSS score. With this restriction

in mind, the problem of developing a rule set becomes much more tractable. Indeed, as

discussed below, it was possible to manually develop a set of rules suitable to this task based

on a relatively small corpus of sample sentences, with a few minor yet novel additions to the

parsing algorithm.

The basis for this grammar was that of Järvinen and Tapanainen (1997). Although the

authors did not document the full set of rules which comprised their implementation, their

documentation does include sufficient detail to reconstruct a simpler version of that grammar.

All types of dependencies are not only clearly defined, but also shown in context within

dependency trees for actual sentences. For a few rules, it was necessary to slightly modify

the rules as documented, for reasons such as the above-mentioned non-projectivity; these

exceptions will be described in further detail later in this chapter. In addition, a number of

dependency types were combined in the case of distinctions that are unnecessary for DSS;

these will also be described in further detail below.

4.4 Handling Ambiguity

Development of the rule set began surprisingly well, but ran into a roadblock early in devel-

opment due to several ambiguities that could not be handled by Covington’s algorithm

alone.

Consider the sentences I want this and I want this dog. In both of these sentences, this is

tagged as a determiner; however, as shown in Figure 4.8, this is itself an object of the verb in

the former sentence, while in the latter, dog is the object and this is a dependent of dog. Using

Covington’s algorithm verbatim, it is impossible to attach this to want at some unambiguous

later point in the sentence; however, if this is attached to want, it will be impossible to later

attach it to dog because of the uniqueness constraint. An almost identical ambiguity applies
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to the head-first prepositional dependency and tail-first infinitive dependency of the word

to, as shown in Figure 4.9.

! want this

Subj Obj

(a)

! want this dog

Subj
Obj

Det

(b)

Figure 4.8 Ambiguity of rules for determiners that can also serve as objects. In
(a), this is an object of want, while in (b), this modifies the following word dog.

She speaks to the class

Subj Adjunct
Det

PComp

(a)

She speaks to impress

Subj PM

Adjunct

(b)

Figure 4.9 Ambiguity of rules involving the word to. In (a), to is a preposition on
which the following noun depends, while in (b), to is an infinitive marker that
depends on the following verb.

It would, of course, be possible to add backtracking into the parser, as Covington (2001)

suggests for such ambiguities; although it is not automatically provided in C# as it is by

Prolog, backtracking could still be implemented in the former by means of recursion. Another

alternative was to use a non-deterministic approach, in which the parser held several alter-

native parses in memory at once. However, each of these had a disadvantage; along with the

details of implementation, both of these alternatives would multiply the amount of time and

memory taken during a parse by an additional O(n). I was curious as to whether there were

any potential ways of handling such ambiguities which were less time- and resource-intensive.

4.4.1 An Initial Attempt: Multi-Pass Parsing

The first approach to be tested involved the use of multiple passes of the parser, each of

which encapsulated a subset of the full grammar of dependency rules. This way, it would be
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possible to postpone the analysis of one dependency until another had been fully analyzed;

for instance, the tail-first dependency for determiner dependents could be analyzed in the

first pass, while the head-first dependency could be analyzed in a second pass. The worst-case

scenario for backtracking, as mentioned in Covington (2001), is O(n3); the worst case for a

multi-pass parse, on the other hand, would be p ·O(n2), where p is the number of passes.

This multi-pass approach was easily implemented through a feature of C# known as

delegates, a class of object which essentially acts as a pointer to a function. Using this

construction, each subset of rules could be implemented as a separate function on the head

and dependent; then, Covington’s algorithm could run each pass with a different rule set as

its parameter, requiring no unnecessary duplication of code. The advantage of this approach

was that it was easily expandable to any number of passes.

The addition of a second pass proved to be useful for handling rule conflicts involving

determiners, to, and even object and subject pronouns. A third pass was necessary to correct

the precedence of verb chains over infinitives (e.g., to have been going) and compound nouns

over object attachment (e.g., of the English language). A fourth pass was eventually added

to solve a problem of ambiguity between interrogative subjects (Who is he?), fronted inter-

rogative objects (What did he do?), and relative subjects of subordinate clauses (I wonder

what he did).

Yet even this multi-pass approach was not enough to disambiguate certain constructions.

The first ambiguity which made this limitation apparent involved prepositions which can

also act as subordinating conjunctions. Consider the word after: as shown in Figure 4.10, it

can introduce a prepositional phrase, as in He left after the dog, or a subordinate clause, as

in He left after the dog barked. Here, dog cannot be attached as a complement of after until

the parser has determined that after is not a subordinate conjunction of an even later verb.

For this to work, however, attachment as a preposition must occur after the attachment

of subjects due to the projectivity restriction; this in turn prevents The scene after the
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intermission was the best, as shown in Figure 4.10(c), from being parsed correctly, as the

preposition attachment must occur before the subject attachment.

after the dog.leftHe

Subj
Det

Adjunct PComp

(a)

after the dog barked.leftHe

Subj

Adjunct

PM
SubjDet

(b)

after thesceneThe was theintermission best.

Det Mod

PComp

Det

Subj

Comp

Det

(c)

Figure 4.10 Ambiguity of rules involving prepositions and subordinating conjunc-
tions. In a multi-pass parse, if (b) can override (a), (c) will be impossible to parse
due to the projectivity restriction.

Another ambiguity which could not be handled by the multi-pass parser was that between

past-tense verbs and past participles. For regular verbs, these two verb forms are spelled

identically, and are thus often indistinguishable to a tagger; any regular past-tense verb

(VBD) may actually be a past participle (VBN), and vice versa. This ambiguity is the reason

that The horse raced past the barn fell is such an infamous “garden-path sentence” in English:

readers initially interpret raced as the main verb of the sentence, realizing only after reaching

fell that raced is actually a past participle modifying horse. The parse trees for this ambiguity,

both before and after the attachment of fell, are depicted in Figure 4.11.

In this case, the problem is that the same pair of words (horse/raced) may be involved in

either a head-first or a tail-first dependency with one another, and that the latter dependency

follows the same rule as that of horse on fell. There is thus no suitable ordering of rules which

can parse both of these sentences without backtracking: horse can only be attached to fell
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if raced has already been attached to horse, but raced cannot be prematurely attached as a

dependent of horse because it may be the main verb instead.

The horse raced past the barn

Adjunct
PComp

Subj

(a)

The horse raced past the barn

Adjunct
PComp

fell

Mod

Subj

(b)

Figure 4.11 The expected dependency trees for The horse raced past the barn
fell. (a) shows the state before, and (b) after, fell has been analyzed.

For a DSS analysis to be accurate, it is necessary to analyze both of these structures

correctly. If horse is not attached as a subject of raced in The horse raced past the barn,

the DSS analyzer will identify the sentence as ungrammatical due to lack of subject-verb

agreement. On the other hand, if horse is wrongly attached as a subject of raced rather

than fall in *The horse raced past the barn fall, the sentence will mistakenly be identified as

grammatical. Clearly, a different approach was necessary.

4.4.2 Pseudo-Heads and Pseudo-Backtracking

The solution which was finally implemented was based on the observation that some depen-

dencies are clearly unambiguous, while others remain ambiguous. For instance, the attach-

ment of a subject to a verb is typically unambiguous, with the aforementioned exception of

regular past-tense verbs. The attachment of an object to a verb, on the other hand, may be

ambiguous: for instance, consider the sentence I saw the green house paint, where each word

of green house paint may be an object of saw with the as its dependent.
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For unambiguous dependencies, Covington’s algorithm would run as usual. For ambiguous

dependencies, on the other hand, the uniqueness constraint could be relaxed, allowing a

dependent to be reanalyzed and moved to a later head during the “find dependents” loop.

At the same time, the adjacency restriction would still apply to ambiguous dependents during

the “find heads” loop. This essentially turns the dependents of ambiguous dependencies into

pseudo-heads, invisible in the “find dependents” loop but still visible in the “find heads”

loop. This behavior essentially allows for reanalysis in a manner similar to backtracking or

non-determinism, but with only a single parse tree in memory at any given time.

Modifying Covington’s algorithm, as implemented in JED, to handle ambiguous depen-

dencies was relatively painless:

• An additional attribute named Final was added to the Dependency class; this would

be set to true within a rule if a dependency is unambiguous, or false if it is in any way

ambiguous.

• In the first while loop of Algorithm 4.2, “if D has a head” was changed to “if D has a

head and D is a final dependent,” allowing the dependents of ambiguous dependencies

to be re-analyzed.

This modification, together with a suitably modified set of rules, allowed the ambiguous

preposition after, as shown in Figure 4.10, to be successfully disambiguated.

Yet this was still not enough to handle The horse raced past the barn fell. Figure 4.12(a)

shows how the sentence is parsed up to fell in a parser that allows for ambiguous dependen-

cies. Using the modified algorithm, it is possible to detach horse from raced and reattach it

to fell—but this, in turn, leaves raced stranded, as shown in Figure 4.12(b). To handle the

reattachment of raced, it is also necessary to add the potential for side effects to parser rules;

for instance, the rule attaching a noun to a verb could have a side effect that reversed any

existing dependency with that noun as its dependent, thus producing the parse tree from

Figure 4.11(b) as a result instead.
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The horse raced past the barn

Adjunct
PComp

Subj

(a)

The horse raced past the barn

Adjunct
PComp

fell

Subj

(b)

Figure 4.12 The dependency trees for The horse raced past the barn fell, as gener-
ated using ambiguous dependencies without side effects. Dotted lines represent
ambiguous dependencies, while solid lines represent final dependencies. (a) shows
the state before, and (b) after, fell has been analyzed.

This addition of side effects essentially behaves as pseudo-backtracking. Like backtracking,

it allows earlier dependencies in the parse tree to be revised when later dependencies show

the original analysis to be unworkable. Unlike backtracking, however, it is not necessary

to entirely revert the parse to an earlier point; instead, only the relevant dependencies are

modified, while others are left alone.

As new rules continued to be added, it became apparent that the parsing algorithm was

still incomplete. Sentences such as Being a developer is difficult and The man in the box cries

were not fully parsed; as shown in Figure 4.13, the parsing algorithm would stop looking

for dependents of is and cries, respectively, after the attachment of the closest pseudo-head

failed. In short, the search for dependents, instead of breaking out of the loop upon failed

attachment of a pseudo-head, needed to restart the loop to search only for real heads. As

shown in Algorithm 4.3, this was implemented through the use of an additional if clause
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which caused the loop to restart only for real heads if no pseudo-head matched; this allowed

the two sentences from Figure 4.13 to be parsed correctly.

Being a developer is difficult.

Det

Obj

(a)

The man in the box cries.

Det

PComp

Det Mod

(b)

Figure 4.13 Two sentences which the original ambiguity-accommodating parsing
algorithm failed to parse. In both cases, the real head which precedes the nearest
pseudo-head is the actual subject.

Algorithm 4.3 The “find dependency” loop, as modified to deal with ambiguous
dependencies.
1: A← true . Identifies whether to consider ambiguous dependents
2: while D ≥ first word of sentence do
3: if D has a head and (D is a final dependent or A = false) then
4: D ← D − 1
5: Go to start of while loop
6: end if
7: Test for dependency “W → D”
8: if dependency does not apply then . It is a head, but not attachable
9: if A = true then

10: A← false
11: D ← W − 1
12: Go to start of while loop
13: else
14: Break out of while loop
15: end if
16: else
17: Link D as a dependent of W
18: end if
19: D ← D − 1
20: end while



66

4.4.3 Bugs Unique to Pseudo-Backtracking

For the most part, this algorithm worked as intended with no problems, even after the

addition of pseudo-backtracking. However, three significant problems were discovered which

required slight modifications to the algorithm.

Cycles

The first of these problems was that, although the algorithm in itself could not produce a

cycle, it was possible to inadvertently generate a cycle through the use of side effects—thus

introducing the potential for the parser to become trapped in an infinite loop while traversing

the parse tree.

Consider, for instance, the following toy grammar:

• VBx → PRP (Subj), if the head has no VCh dependents

• VBG→ VBZ (VCh), with the side effect of making the new head a dependent of the tail’s
original head

• VBP → VBZ (Adjunct)

• VBP → VBG (Adjunct)

• VBG → VBP (Adjunct)

Now consider the sentence I know she is trying, tagged as I/PRP know/VBP she/PRP is/VBZ

trying/VBG. Figure 4.14 shows the state of the parse tree at three different points during the

parse. Figure 4.14(a) shows the parse tree immediately after running both loops on the word

is; here, know has just taken is as a dependent.

After finishing with is, the parser then looks at possible dependency-first attachments

headed by trying. Trying can have is as a dependent, as part of a verb chain, and is is currently

a pseudo-head; attaching is to trying triggers a side effect making trying the dependent of

know, as shown in Figure 4.14(b). The parser then looks at other possible dependencies

headed by trying, and attaches know as a dependent of trying, thus creating a cycle, as
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shown in Figure 4.14(c). Without the addition of the side effect, this cycle would have been

impossible: the parser would only search for possible heads of trying after know had already

been made a dependent of trying.

I know she is trying.!
PRP VBP PRP VBZ VBG

(a)

I know she is trying.!
PRP VBP PRP VBZ VBG

(b)

I know she is trying.!
PRP VBP PRP VBZ VBG

(c)

Figure 4.14 The process by which a cycle is created in the sentence I know she is
trying, using the toy grammar on page 66.

To deal with this potential for cycles without any additional restrictions on the grammar,

a method named FixCycle was added, which runs after the addition of each new depen-

dency. This method determines whether the newly added dependency has produced a cycle,

and if so, removes the existing dependency that has the new dependent as its head. In

Figure 4.14(c), for instance, know → trying would be removed after trying → know was

added. Although this method technically runs in O(n) time, the average run time tends to

be significantly less; the method only runs at all if the head of the new dependency is itself

a dependent of another word, and O(n) is only reached in the rare case of a cycle consisting

of the entire sentence so far.

Ambiguous Dependencies Under Final Dependencies

Another bug resulted from the combination of final and ambiguous dependencies. If a depen-

dency was final, but a dependency “under” it in the graph was ambiguous, the parser could
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cross the final dependency during the search for pseudo-heads, violating the projectivity

requirement if an attachment was made. A sentence which exhibited this problem using

JED’s grammar at the time was He has not the least concern: as shown in Figure 4.15, the

dependency between least and not was final, but the dependency between least and the was

ambiguous, thus allowing the parser to skip over the former when finding dependents for

concern. To fix this clearly erroneous behavior, another new method was introduced, named

DisambiguateBetween, which made all dependencies final between a pair of endpoints; this

would be run whenever a final dependency was created, with the ends of that dependency

as its arguments.

He has not the least concern

(a)

He has not the least concern

(b)

Figure 4.15 A projectivity error created through the use of ambiguous dependen-
cies: the parser is able to skip over least → not and reattach the.

Disambiguation of Subject Modifiers

A final kluge which had to be added to the algorithm involved the fact that the attachment

of modifiers and determiners must remain ambiguous. Consider the sentence The green house

paint is drying. In this sentence, the is initially parsed as a dependent of green, then reattached

to house, and finally reattached to paint. In each of these steps, it is necessary for the

attachment of the to be ambiguous, even when it is attached to a noun.

However, this ambiguity made it impossible to reattach subordinating conjunctions to

verbs in the manner preferred by Järvinen and Tapanainen when the verb had a subject with

modifiers. Consider the sentence He left after the dance ended, shown in Figure 4.16. After

attaching dance to ended, it is impossible to attach after as well; the parser stops searching

for pseudo-heads as dependents after the attachment of the to ended fails.
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He left after the dance

Subj Adjunct
PComp

(a)

He left after the dance

Subj

ended

Adjunct

Subj

PM

(b)

Figure 4.16 An impossibility in He left after the dance ended: the correct parse
is shown in (b), but it is impossible to get there from (a).

To solve this problem, an additional statement was added immediately before the “find

dependents” loop. If the previous word was a determiner, noun, or adjective, but the current

word is not, the parser will make all dependencies headed by the previous word final. This

is admittedly not the most elegant implementation, but it does solve the problem in parsing

sentences such as that from Figure 4.16.

4.5 Modifications to Järvinen’s Grammar

As mentioned previously, the grammar implemented in JED is mostly based on that of

Järvinen and Tapanainen; however, there are a few notable differences which deserve further

discussion, and a few structures for which no examples were shown.

4.5.1 Modifications to Existing Examples

The first difference from Järvinen and Tapanainen’s grammar involves distinctions which are

not necessary to DSS. The point of JED, after all, is to provide “just enough dependency”

to be of use in DSS; thus, distinctions which have no effect on DSS scoring can safely be

ignored. There were two main aspects of Järvinen and Tapanainen’s grammar where these

distinctions were truly unnecessary: adverbial adjuncts and objects.
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Järvinen and Tapanainen describe a total of thirteen distinct types of adverbial adjuncts,

none of which can be attached more than once to the same head. JED takes the opposite

approach, also alluded to in Järvinen and Tapanainen’s paper, for simplicity’s sake: the

grammar only includes a single type of adjunct, known appropriately as Adjunct, but allows

an unlimited number of this type of dependent to depend on a single head.

The other distinction which was removed was between several types of complements that

can follow verbs. In Järvinen and Tapanainen’s grammar, these are divided into three main

types: direct objects (Obj), datives (Dat), and predicative complements (Comp). The rules

to distinguish these three types quickly grew out of hand during their development in JED;

however, it was noted during the course of development that the distinction between these

three types is unnecessary for the purposes of DSS, a fact which could significantly simplify

the rule set. As the only distinction necessary for DSS is to distinguish subjects from all

other verb complements, and as a verb can have a maximum of two following complements,

the other complements were simply consolidated into a single Obj type.

In one case, however, a distinction was added in JED that was not present in Järvinen

and Tapanainen’s grammar, to represent a significant syntactic difference between two types

of quantifiers. For an illustration of this distinction, consider the phrases the two dogs and

all the dogs. Both two and all are given the same label, Qn, by Järvinen and Tapanainen’s

grammar. However, this class encompasses two grammatically distinct varieties of words:

universal quantifiers, which may only precede determiners (as in all the dogs), and cardinal

(numeric) quantifiers, which may only follow determiners (as in the two dogs). It was much

easier to prevent unnecessary attachments by distinguishing the two types of quantifiers; in

JED’s grammar, these were labeled QnUni and QnCd, respectively.

The last difference from Järvinen and Tapanainen’s grammar relates to the projectivity

restriction. Recall, as discussed in Section 4.2.2, that Järvinen and Tapanainen’s grammar

is non-projective in the two constructions shown in Figure 4.5: comparatives and fronted

prepositional complements. In the case of comparatives, the solution, as discussed previously,
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was to attach the as/than clause to the main adjective or adverb itself, rather than to the

comparative adverb; this is shown in Figure 4.6. For fronted prepositional complements, the

alternative representation that was chosen was to attach the complement to the verb itself

rather than to the preposition, as shown in Figure 4.17. Although this is not as syntactically

accurate as directly attaching the complement to the preposition itself, it does solve the

projectivity problem while still emphasizing that the interrogative in question acts as an

object.

! wonder who she went with.

Subj

Obj

Subj Adjunct
Obj

Figure 4.17 An alternative, projective structure for I wonder who she went with,
as implemented in JED’s grammar.

4.5.2 New Examples

A number of other constructions were significant in scoring DSS, but did not have any

examples shown by Järvinen and Tapanainen. These all involved idiosyncratic constructions

in which dependency relationships were not entirely clear.

The first of these constructions was How come. . . ? This is generally accepted to be an

abbreviated form of How did it come to be that. . . ; thus, the obvious parse is to have come

as the main verb, with an adjunct how, and with what follows as a subordinate clause, as

shown in Figure 4.18.

Another construction omitted from Järvinen and Tapanainen’s examples was What if. . . ?

In this case, the analysis used in JED attaches both if and what as dependents of the following

verb; this is based on the analyses used by both the Stanford Parser (Klein and Manning,

2003) and MaltParser (Nivre et al., 2007b).
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How come this sentence fails ?

Adjunct Det Pnct

Obj

Subj

Figure 4.18 The correct parse for How come this sentence fails?

Still another omitted construction involved the expression How about. . . ? This expression

is often, as described in Lee (1974), followed by a gerund; for instance, How about parsing

this sentence? To make matters worse, the two other parsers I tested gave wildly different

analyses of this structure, as shown in Figure 4.19. The Stanford Parser attached both how

and about as dependents of what followed; Malt, on the other hand, treated how as the head,

about as a dependent of how, and the following gerund or noun phrase as a dependent of

about. Malt’s approach made more sense to me, as it is in line with other parses of about;

this is the approach that was implemented in JED as well.

How about parsing this sentence ?

AdvMod

AdvMod Det

DObj

(a) Stanford Parser

How about parsing this sentence ?

Det PComp Det

DObj

(b) MaltParser

Figure 4.19 Two competing parsers’ analyses of How about parsing this sentence?
The MaltParser approach was also followed by JED.
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The final construction involved the phrase whether. . . or not. The problem in this case

is that whether and or can be divided by a clause; as shown in Figure 4.20(a), an accurate

analysis of I don’t know whether to go or not would require overlapping dependencies because

of this separation. The solution which was implemented in JED, as shown in Figure 4.20(b),

was to attach or not to the verb, as would be done in a gapping construction, when whether

has an attached infinitive. In cases where whether or not was contiguous, the conjunction

would be analyzed normally.

whether this works or not

PM Subj
CC

CC

(a) Non-projective parse

whether this works or not

PM

Subj CC

CC

(b) Projective parse

Figure 4.20 Two parses of “whether to go or not”. The first violates projectivity;
the second, while less ideal, is projective.

During the development of JED, I also discovered and corrected a significant error in

my own morphological analyzer (Boisclair, 2008), which was directly inherited from the

source that inspired it (Covington, 1994). Both my implementation and Covington’s added

an unnecessary e to the stem in verbs such as seemed, because of a logical error in the rule

used to handle words such as liked; the latter rule should only apply when the consonant is

preceded by a single vowel.

4.6 Final Rule Set

A summary of all of the rules used in the final version of JED can be found in Table 4.1.
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Table 4.1: Dependency Rules from JED

Dependency Direction Type Final Notes
VBx → x head-first Obj false Only if the head is a speech verb and the dependent is one quote level

greater than the head.
x → CC head-first CC false x cannot be tagged CC or ,.

If the head, or any head thereof, is a verb, mark the head’s position as
true in verbCC.

Change any UnkComma dependents of the head to CC. If the head is itself
attached as an UnkComma, change the UnkComma dependents of its head
as well.

x → , head-first UnkComma see notes x cannot be tagged CC or ,.

If the head, or any head thereof, is a verb, mark the head position as
true in verbCC.

If the head’s head is a speech verb whose subject has a comma dependent,
mark the head’s position as true in parenSaid, delete the subject of that
verb, and if it has an object, reattach that as a subject.

Final if the head is a modifier of something that also has a comma
dependent; ambiguous otherwise.

x → y head-first see notes see notes x and y must be of compatible types, x must be at a lesser or equal
quotation level to y, and x must have a dependent either of type CC or
UnkComma at some level.

Type is either CC or UnkComma depending on which dependent x already
has. If the proposed type is UnkComma, the head and dependent are verbs,
and the dependent has a quotation mark attached, attach as Obj instead.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

If the head is whether, the dependent is not, and this is a known coor-
dination structure, make this attachment final; otherwise, mark it as
ambiguous.

If the CC or UnkComma dependent of x is not a direct dependent, reattach
it directly to x.

Convert to a gapping relationship if x already has a non-conjunction
word attached via UnkComma or CC—that is, attach the conjunction to
the verb, and its former sibling to the conjunction.

NNx → NNx head-first Adjunct false Both the head and dependent must be temporal nouns.
NNx → VBN dep-first Attr true Dependent must not have a pseudo-head, must not be the head of a verb

chain, and must not have a subject or prepositioned marker.
POS → NNx dep-first Attr true Head must not have any other dependents.
DT∗ → RB dep-first Adjunct true Adverb must be one of those shown in section 5.11 of Huddleston et al.

(2002).
NNx → DT∗ dep-first see notes false Dependent cannot have another determiner attached anywhere or a

preposition attached afterward.

If the determiner is all or both, attach as QnUni.

If the dependent is a cardinal number and the head has no Det attached,
attach as QnCd.

If the dependent is any other determiner and the head has no dependents
of type Det or QnUni or tagged PRP$, WP or POS, attach as Det.

NNx → PDT dep-first Det false Head must already have a Det dependent attached.
DT∗ → PDT dep-first Det false Head must not already be attached as an ambiguous Det of something

else.
NNx → PRP$/WP$/POS dep-first Attr false Head must not have a dependent of type Det or tagged PRP$, WP$ or POS.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

NNx → PRP dep-first Attr false Head must not have a dependent of type Det or tagged PRP$, WP$, PRP
or POS. This rule exists to handle a non-standard dialect construction.

NNx → JJx dep-first Attr false Head must not have a dependent of type Det, QnUni or QnCd. Dependent
must not have a dependent of its own following it with tag IN.

NNx → JJx head-first Mod false Dependent must either be tagged JJR or have its own dependent of type
Ad.

JJx → (W)RB dep-first Adjunct see notes Do not attach if the head has a dependent of type Det, or the dependent
has an untyped dependent that follows it.

If the dependent could be a subordinating conjunction, make ambiguous;
otherwise, make final.

RBx → (W)RB dep-first Adjunct see notes Do not attach if the head has a dependent of type Det, or the dependent
has an untyped dependent that follows it.

If the dependent could be a subordinating conjunction, make ambiguous;
otherwise, make final.

NNx/JJx/DT → IN head-first Mod see notes Dependent must not already be an ambiguous dependent of another
word, and head must not have a CC dependent.

If the dependent could be a subordinating conjunction, make ambiguous;
otherwise, make final.

NNx → NNx dep-first Attr true Head must not be a temporal noun that can act as an adjunct without
a dependent.

Head and dependent must be directly adjacent.
certain determiners
→ “else”/“more”

dep-first Det true Head and dependent must be directly adjacent.

Allowed determiners are all, much, little, and compound determiners
(every/some/any/no + body/one/thing/where).

compound determiners
→ JJx

head-first Mod true Head and dependent must have at most one word in between them.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

JJx → PRP$/POS dep-first Attr false
DT∗ → of head-first Mod true

JJx/RBx/IN → all dep-first Adjunct true Do not make this attachment if the dependent is of; otherwise, the pre-
vious rule will be overridden.

JJ/RB → as/less/more dep-first Ad true
JJ/RB → RBS dep-first Ad true Always allow most and least as dependents, even when not explicitly

tagged as RBS
JJx/RBS → DT∗ dep-first see notes false Dependent cannot have another determiner attached anywhere or a

preposition attached afterward.

If the determiner is all or both, attach as QnUni.

If the dependent is a cardinal number and the head has no Det attached,
attach as QnCd.

If the dependent is any other determiner and the head has no dependents
of type Det or QnUni or tagged PRP$, WP or POS, attach as Det.

JJR/RBR → than head-first Mod false
JJ/RB → as head-first Mod false Head must have as already attached as a dependent.

JJ/RB → than head-first Mod false Head must have more or less attached as a dependent.
JJS/RBS → VBx/MD head-first Mod false
IN/TO → here/there head-first PComp true Head and dependent must be directly adjacent.
more → some/any dep-first QnUni true Head and dependent must be directly adjacent.

VBx† → temporal noun dep-first Adjunct false Depending on the word used in the tail, may or may not require the
dependent to have its own dependent. This decision is based on the list
given in section 8.6.3 of Huddleston et al. (2002).

VBx → NNx head-first Voc true Head must have a comma attached, and dependent must not have a
quotation mark attached.

As a side effect, the dependency between the head and the comma is also
converted to a Voc.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes
VBx/MD† →

NNx/PRP/POS/
WP/DT∗

head-first see notes see notes Do not create a dependency if the verb already has both an object and
an adjunct attached, or if it has a WRB or WP following it.

If the verb is an auxiliary or modal with no Subj dependent, then attach
as a final dependency of type Subj.

Otherwise, attach as an ambiguous dependent of type Obj.
VBx/MD →

NNx/PRP/POS/
WP/DT∗/JJx

dep-first see notes see notes Type is Subj by default. It will instead be Obj if the dependent comprises
an interrogative, and the head either already has a subject or is the
copula.

Do not attach if the head has any VCh dependents, is a VBG, or has a PM
dependent.

Do not attach if the head already has a dependent of the same type,
unless the existing dependent is a PRP and this dependent is not a PRP
or an ambiguous PComp.

Do not attach if the head is a known infinitive and the dependent is an
adjective that can take an infinitive adjunct.

Do not attach if the dependent is already an ambiguous dependent of
something else, unless:

• The parent of the dependent is a possible subordinating conjunc-
tion, is a conjunction headed by a verb, has a non-interrogative
subject but no PM or interrogative adverb attached, or has an inter-
rogative adverb but no subject attached.

• The dependent is an interrogative or part of an UnkComma struc-
ture.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

Dependency is ambiguous if the dependent comprises an interrogative,
the head is an auxiliary verb, and the head does not already have a
subject; it is also ambiguous if the head is a speech verb and the subject
has a comma attached. Otherwise, the dependency is final.

VBx/MD → EX/here see notes Subj true Head must not have any other Subj dependent. Either the head must be
an auxiliary or modal, or the tail must be to the left of the head.

VBx† → JJx head-first Obj false Dependent must have a Det, Attr or QnCd dependent of its own.
VBx† → JJx/VBN head-first Comp false If the dependent is a VBN, it must not have a subject.

Head must either already have an object or else be a verb that can take
a complement, as listed in section 4.5.4 of Huddleston et al. (2002).

IN/TO →
NNx/PRP/POS/DT∗

head-first PComp false Head must not already have a PComp dependent.

IN/TO → VBx/MD head-first PComp false Verb must have an interrogative dependent at some level.
IN/TO → JJx head-first PComp false Head must not already have a PComp dependent.
IN → IN/TO head-first _ see notes Head and dependent must be directly adjacent. Ambiguous if the head

is a subordinating conjunction and the tail is TO; final otherwise.
VBx/MD → IN dep-first PM see notes Preposition must be a subordinating conjunction; even those that were

not tagged as IN will still be considered, as long as they are not tagged
VBx or NNx.

Do not attach if the verb already has a PM dependent, unless the verb is
an infinitive with no subject; the verb is an infinitive and the proposed
dependent is for; the head is within a verb chain; or the head is a VBG.

Do not attach if the dependent has a PComp dependent and the head has
a Subj.

If the verb is an auxiliary, make the dependency ambiguous; otherwise,
make it final.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

If the dependent already had a pseudo-head z that preceded it (i.e., the
preposition was an adjunct or modifier), attach this dependency’s head
as a dependent of z as a side effect, also making it final if this dependency
was final.

IN/TO → VBG head-first PComp see notes Dependent must not be part of a verb chain.

If the dependent is an auxiliary verb, leave this dependency ambiguous;
otherwise, make final.

VBx† → IN head-first Adjunct see notes If the dependent could be a subordinating conjunction, leave ambiguous;
otherwise, make final.

VBx† → TO head-first Adjunct false
VB → TO dep-first PM true Also mark the verb in isInfinitive.

VBx → VBx/MD dep-first VCh true Do not attach if dependent has an object or complement, unless the tail
also has an interrogative attached.

Do not attach if the head has any non-adjunct dependents, unless one of
those is a determiner which can follow an auxiliary, as specified in section
5.9.2 of Huddleston et al. (2002). In that case, reattach the determiner
to its head as a determiner or quantifier.

If the dependent already has a pseudo-head, make that the head of this
dependency’s head instead, also rendering it final if the head is not an
auxiliary verb itself.

If the dependent has an ambiguous subject and object among its depen-
dents and is not the copula, swap them as a side effect.

NNx/PRP/POS/DT∗

→ VBx/MD
head-first Mod see notes Dependent must have a PM dependent at some level; if the head is a

dependent of anything, the PM must not be to.

If the head has at least one preposition (IN/TO) attached, detach the last
of its prepositions as a side effect.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

If the dependent could possibly be an auxiliary verb, leave this depen-
dency ambiguous; otherwise, make final.

NNx/PRP/POS/DT∗

→ VBx/MD
head-first Mod false Dependent must have either a subject or an interrogative as a dependent;

in the case of a non-interrogative subject, the head must also not have a
comma attached.

Quotation level of the head must be equal to or greater than the quota-
tion level of the dependent.

Do not attach if the head is a PRP or POS, the head is a dependent of a
verb, and that verb is not the copula.

VBx/MD → VBG dep-first see notes true Dependent must not be part of a verb chain.

If the head already has a subject, then attach as an adjunct (i.e., par-
ticiple); otherwise, attach as a subject (i.e., gerund).

VBx/MD → VBx dep-first Adjunct false The dependent either must be a speech verb offset by commas, or must
already have dependents of type UnkComma and Subj.

VBx → VB head-first Obj see notes Head verb must be one that can take bare infinitives, as specified in
section 14.5.6.2 of Huddleston et al. (2002).

As a side effect, the last Obj of the head, if one exists, is removed and
reattached as a Subj of the dependent.

If the dependent is a possible auxiliary verb, leave ambiguous; otherwise,
make final. Mark the verb in IsInfinitive as a side effect.

VBx† → VBG head-first Obj false Dependent must not be part of a verb chain.
VBx → VB head-first see notes true Verb must already be a known infinitive.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

If the preceding word comprised by the head verb could be a subject of
the infinitive and the head verb is one that can take a complex infini-
tive, reattach that word as a Subj of the infinitive verb, then attach the
infinitive as a Obj of the head verb. In addition, if the preceding word
had been the complement of a preposition, attach that preposition to
the infinitive as a PM.

If there is no potential subject for the infinitive and the head verb is one
that can take a simple infinitive complement, attach the infinitive as an
Obj.

In all other cases, attach the infinitive as a Adjunct.
VBx → VBx/MD head-first Obj see notes Do not attach if the dependent is an ambiguous modifier of something

else, if the head has a PM but the dependent does not, if the head com-
prises an interrogative and subject but the dependent does not comprise
an interrogative, or if the head is a parenthetical speech verb.

Leave ambiguous if the dependent verb is a VBN or auxiliary; otherwise,
make final.

VBx → VBx/MD dep-first Subj true Do not attach if the dependent is an ambiguous modifier of something
else, if the head has a PM but the dependent does not, if the head com-
prises an interrogative and subject but the dependent does not comprise
an interrogative, or if the head is a parenthetical speech verb.

Only attach in this direction if the dependent has a PM and the head
does not, if the dependent comprises both an interrogative and subject
and the head does not comprise an interrogative, or if the head is at the
end of a complete verb chain and the tail is not.

JJx → VB head-first Mod false Dependent must be marked in isInfinitive.
NNx → VBG head-first Mod true Dependent must not be part of a verb chain.

Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

NNx → VBG dep-first Attr false Dependent must not be part of a verb chain. Dependent must have a
Det, QnCd, QnUni or Attr dependent and the head must have none of
those.

VBx/MD† → RBx/WRB/EX head-first Adjunct see notes If the dependent is not or n’t, leave ambiguous; otherwise, make final.
VBx/MD† → RBx/WRB/EX dep-first Adjunct true Do not attach if the head already has a Subj or Obj, unless the dependent

is a WRB and the head is not yet part of a verb chain. Also do not attach
if the dependent has an untyped dependent that follows it.

VBG → DT∗ dep-first see notes true Do not attach if the dependent is we or you or the head is part of a verb
chain.

Dependent cannot have another determiner attached anywhere or a
preposition attached afterward.

If the determiner is all or both, attach as QnUni.

If the dependent is a cardinal number and the head has no Det attached,
attach as QnCd.

If the dependent is any other determiner and the head has no dependents
of type Det or QnUni or tagged PRP$, WP or POS, attach as Det.

VBG → JJx dep-first Attr true Head must not be part of a verb chain.
VBG →

PRP$/WP$/POS/PRP
dep-first Attr true Head must not be part of a verb chain. If the tail is a PRP, it must not

have any pseudo-head.
VBx/MD → PRP$/POS dep-first Subj true Dependent must not have any pseudo-head.
JJ/RB → this/that dep-first Adjunct false Head and dependent must be directly adjacent.

PRP → all/both head-first QnUni false Head and dependent must be directly adjacent.
PRP → CD head-first QnCd false Head and dependent must be directly adjacent.

VBx/MD → no dep-first Adjunct true This is to allow for the dialect construction, e.g., “He no walk.”
VBx/MD → what dep-first _ true Head must already have if as a PM dependent.
WP/WRB → about head-first _ true Head and dependent must be immediately adjacent.

x → ‘‘/( dep-first _ true
Continued on next page
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Table 4.1 – continued from previous page
Dependency Direction Type Final Notes

x → ’’/) head-first _ true Head must not be closing punctuation or a comma.
x → . head-first Pnct true Also triggers the routine to correctly attach a tag question as a side

effect.
UH → , dep-first _ true Head and dependent must be directly adjacent. Marks the position of

the dependent in interjComma as a side effect.
, → UH dep-first _ true Head and dependent must be directly adjacent. Marks the position of

the head in interjComma as a side effect.
x → UH/, dep-first _ true If the dependent is a comma, it must be marked in interjComma. The

tag of the head must not be a punctuation tag.

∗This is shorthand for any word tagged DT, WDT or CD, as well as words from section 5.4 of Huddleston et al.
†Can also apply to any coordinating conjunction with a verb head; if this is detected, gapping will be introduced.



Chapter 5

The User Interface: A Brief Digression

Although the main focus of this project is to improve upon the accuracy of existing appli-

cations for automated DSS scoring, the design of the application’s user interface must also

be given some thought. If SYCORAX is too difficult for new users to learn, this will likely

hinder its adoption in spite of the improvements in accuracy.

Thus, in this chapter, I will compare and contrast the three leading applications for

automated DSS from a usability standpoint. I also present the design chosen for the interface

of SYCORAX, which combines features available in all three existing applications’ interfaces

in an extremely user-friendly manner.

5.1 Computerized Profiling

The Computerized Profiling application (Long et al., 2006) dates back to a 1986 application

developed for MS-DOS; although improvements have been made to both its algorithms and

its user interface, the latest version of CP, released in 2006, still remains a 16-bit DOS

application. In the years since its release, 64-bit versions of Windows have become prevalent,

which by design cannot run 16-bit applications; as a result, the application will not run

natively at all on some modern-day Windows systems. In order to even run CP on my

own Windows system, which runs a 64-bit build of Windows 7, it was necessary to use the

Windows XP virtual machine provided as an optional feature by Microsoft.

As is visible from Figure 5.1, the interface is clearly dated; nonetheless, for a DOS appli-

cation, it is reasonably user-friendly, driven by menus rather than a command line. However,

for automatically generating a DSS analysis from a transcript, the interface is extremely
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Figure 5.1 The main menu screen from Computerized Profiling.

cumbersome. A user must navigate through two separate menus (Figures 5.2–5.3) to create

a tagged CORPUS file from an existing transcript, another menu (Figure 5.4) to generate

a LARSP analysis, and yet another (Figure 5.5) to produce a DSS score from the LARSP

analysis. In the case of DSS, the user must also specify a number of options (Figure 5.6) for

each run. All of these steps must be taken for each transcript that needs to be analyzed;

there is no batch capability to process multiple files at once, nor is there any way to run all

the steps of a single analysis as a batch.

5.2 CLAN

Unlike Computerized Profiling, CLAN is written using modern GUI libraries, and can run

natively under modern versions of Windows and Mac OS. Despite this, however, it is ironi-

cally less user-friendly than CP.
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Figure 5.2 The first CORPUS menu from Computerized Profiling.

Figure 5.3 The second CORPUS menu from Computerized Profiling.
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Figure 5.4 The LARSP menu from Computerized Profiling.

Figure 5.5 The DSS menu from Computerized Profiling.
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Figure 5.6 The DSS option screen from Computerized Profiling.

The CLAN user interface consists of two windows: an output window (Figure 5.7),

showing messages generated during the analysis procedure, and an input window (Figure

5.8), in which commands are entered by the user.

As is obvious from these screenshots, rather than being entirely menu-driven like CP,

CLAN is essentially a set of command-line programs encapsulated within a GUI application.

This design does make CLAN more suited to batch analyses than CP, as it is possible to

create a batch script to run a full analysis on a collection of files. However, the syntax of

the commands, though fully documented in the application’s manual (MacWhinney, 2000),

is extremely arcane, and no help is offered for novice users through the GUI. Note, for

instance, the command entered in the screenshot in Figure 5.8: dss +bCHI +c200 +e +le

lee-all.mor.cex. This is the command to run a fully automated DSS analysis on the

entirety of the lee-all file after a morphological analysis has already been run:
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Figure 5.7 CLAN’s output window.
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Figure 5.8 CLAN’s input window.

• dss: The command to be run; in this case, a DSS analysis.

• +bCHI: An option to identify which speaker’s words to analyze in the transcript. In
this case, the speaker labeled as CHI is the one under investigation.

• +c200: Analyze all 200 sentences spoken by CHI, not just the first fifty.

• +e: Run in fully automated mode.

• +le: Use the rules for English rather than Japanese.

• lee-all.mor.cex: The name of the file generated by the morphological analysis step.

Much like CP’s antiquated interface, this user-unfriendly design is largely an artifact of

the application’s age. Pye (1994) criticized the “cumbersome command lines” in a much

earlier version of the application, and urged the developers to create a more user-friendly

interface; unfortunately, seventeen years after Pye’s review, no significant progress has been

made in response to that criticism.
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CLAN is an oddity in another way, also criticized by Pye: because it is designed for such

a wide variety of linguistic analyses, its expected transcript format is a non-standard one

invented by MacWhinney, known as CHAT. This format adds a variety of new codes for

various linguistic phenomena, as well as the ability to track multiple speakers in a single

conversation, but in doing so, it also disregards prior practices for transcribing language

samples. As Pye observes, the most minimal version of CHAT is mostly compatible with

the de facto standard SALT format for transcripts, and it is possible to convert between

the two formats—but nowhere in the documentation does MacWhinney lay out the differ-

ences between CHAT and SALT (e.g., speaker identifications) or give any suggestions on

reformatting transcripts.

5.3 DSSA

Channell’s post-CP project, DSSA, takes a completely different approach with its GUI.

Unlike both CP and CLAN, which automate a variety of linguistic analyses, DSSA is designed

specifically with the purpose of calculating a DSS score directly from a transcript. Thus, its

interface, shown in Figure 5.9, is as simplistic as possible; it is a native Mac OS X application

whose main window consists entirely of an explanation of the program’s expected format and

a single button to perform an analysis.

Clicking that button opens a standard Mac OS dialog box to select a file to analyze, then

a second dialog box to enter a file name for output. The analysis is then performed, with the

full table written to the specified output file; upon completion, the final score is displayed in

a dialog box, as shown in Figure 5.10.

Unlike the two competing applications, DSSA offers no options whatsoever regarding

details of the DSS analysis. Most notably, the program does not even provide an option as

to whether the entire transcript, or just the first fifty sentences, is to be analyzed.
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Figure 5.9 DSSA’s main window.

Figure 5.10 The dialog box displayed by DSSA upon completion.
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Figure 5.11 The user interface of CPIDR version 5.0.

5.4 SYCORAX

As SYCORAX was designed to be a syntactic analogue of CPIDR (Brown et al., 2008),

so too was its user interface designed to closely parallel that of CPIDR. For the sake of

comparison, the user interface of version 5.0 of CPIDR is shown in Figure 5.11, while that

of SYCORAX is shown in Figure 5.12.

The interface in SYCORAX is divided into three main sections:

• Input and options. Here, the user can input a string to be analyzed, open a dialog

box to select one or more text files to be analyzed, or set options regarding the analysis.
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Figure 5.12 The user interface of SYCORAX.

• Results. The actual DSS table is output here for each input file or string, in a form that

is not only human-readable but also tab-delimited in order to simplify computerized

analysis of the data.

• Details. As the name suggests, this displays a more detailed version of the results,

indicating not only the scores in each column but also what structures contributed

those scores. In addition, the part-of-speech tags assigned to each token in the text are

shown here.

To analyze any number of files at once, the user simply clicks on the Analyze File(s). . .

button at the top of the window. This opens a dialog box allowing the user to select one

or more text files. Upon clicking OK in this dialog box, each file is given a DSS analysis,

and the resulting scores are output in the result and detail areas. It is then possible to save
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the results or details to a text file using the corresponding Save buttons at the top of the

window. Note that the text boxes are not cleared unless the user specifically chooses to, using

a command in the Window menu; thus, it is possible to save all results or details from a

batch as a single file.

For further troubleshooting, it is also possible to open an additional window which shows

a representation of the parse tree generated for each sentence, by selecting the Show Parse

Results command from the Debug menu. This window is shown in Figure 5.13.

Figure 5.13 The parse tree display of SYCORAX.

Note that, like CP and CLAN and unlike DSSA, there are a number of options that can

be set before analyzing a transcript. Some of these allow transcripts to be in nonstandard

formats, including processing by an external part-of-speech tagger; others modify the scoring

method with several variations on the published DSS standard, as discussed in Chapter 2.

These options are defined as follows:

1. Use modified DSS scale: If checked, this causes certain rules to deviate from those

described by Lee (1974) in the manner described in Chapter 2 of this dissertation.
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2. Analyze more than 50 sentences: If checked, SYCORAX will analyze all sentences

in the input; if not, SYCORAX will only analyze the first fifty sentences in each

transcript, as originally specified by Lee.

3. Re-analyze repeated sentences: If checked, SYCORAX will include verbatim rep-

etitions of prior sentences when calculating the DSS score, contrary to Lee’s transcrip-

tion guidelines. If unchecked, SYCORAX will ignore repetitions if they appear in the

transcript, as all prior DSS applications have done.

4. One utterance per line: If checked, SYCORAX will consider each line of the input

to be a separate utterance, regardless of punctuation. If unchecked, SYCORAX will

instead attempt to intelligently find the ends of utterances based on end-of-sentence

punctuation, while ignoring line breaks entirely.

5. Pre-tagged text: If checked, SYCORAX will interpret the input as a series of tagged

tokens of the form “token/tag.” If unchecked, it is assumed to be untagged, and

SYCORAX will use its built-in tokenizer and tagger to process the text.

Note that when all options are unchecked, DSS analysis will be performed following the

guidelines laid out by Lee (1974). This was an intentional decision; by default, SYCORAX

matches the default behavior of prior automated applications, with variations in scoring only

applied when activated explicitly by the user.



Chapter 6

A New DSS Analyzer

Now that the parser had been developed and a user interface had been designed for

SYCORAX, it was time to incorporate the parser into SYCORAX’s DSS rules. As hypothe-

sized in Chapter 1, the addition of a parser and the creation of a suitable set of parsing-based

rules should allow SYCORAX to exceed the accuracy of existing automated DSS applica-

tions. At the same time, with JED used instead of an exhaustive parser, performance should

still be comparable to that of existing DSS analyzers.

Indeed, both of these hypotheses were shown to be true through tests on a variety of

manually-scored transcripts, some even designed specifically to test constructions which are

often scored incorrectly by human raters. After its DSS rules had been optimized sufficiently

to use the output of the parser, the scores generated by SYCORAX were found to be more

accurate, with respect to both point-by-point agreement and correlation with manual scores,

than those of Computerized Profiling, CLAN, and DSSA. With additional minor tweaks to

the construction of its rules, SYCORAX even surpassed the accuracy of DSSA on the two

large real-world corpora used by Judson (2006).

The performance claims regarding the JED parser were also upheld during this experi-

ment. Although SYCORAX was more accurate than its competition, its execution time was

no worse than that of its competition, and in fact was sometimes better. Memory usage did

exceed that of its competition, but did not even approach that of the most memory-efficient

MaltParser model, indicating that JED was significantly better optimized for efficiency.
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6.1 Initial Testing

For initial testing of SYCORAX, six sample transcripts from Lee (1974) were used; these

samples are given in Charts 10, 12, 14, 15, 17 and 19 of Lee’s book, along with manually

calculated scores for each sentence, and are reproduced in Appendix C of this dissertation.

Chart 10 shows a hypothetical corpus of thirty sentences that exhibit a variety of structures

scored in DSS, while the other five charts are derived from actual interviews of children at

various stages of language development. The six transcripts comprise a total of 201 sentences;

however, four of these sentences (I don’t know two times, Look two times, I know, and They

fall) are repeated across multiple transcripts, giving 195 unique utterances.

To emulate how a raw transcript would be scored by a human rater, all tests were per-

formed with input sentences transcribed exactly as spoken. This means that all parenthetical

notes regarding the intended meanings of words and omitted words would not be entered in

the transcript as given to the program. In addition, all false starts and sentence-initial con-

junctions were omitted, as neither of those is to be counted in scoring the sentence according

to Lee’s rules.

Tests were run on the same set of texts using SYCORAX, Computerized Profiling and

CLAN. For consistency with prior experiments, a set of agreed-upon options were used in the

latter two applications. Computerized Profiling was run using the same parameters specified

in Channell (2003): always accept the computer’s analysis of ’s in the creation of the corpus

file; answer yes to both questions asked by CP regarding the LARSP (Language Assessment,

Remediation and Screening Procedure) analysis; and answer no to question 1 and yes to

question 2 in the DSS analysis. CLAN was run with the parameters given for automated

analysis in the CLAN manual (MacWhinney, 2000): MOR +c, no arguments for POST, and

DSS +le +e.

Accuracy was measured using the same two metrics used by Channell (2003), as discussed

in Chapter 1: point-by-point agreement and the Pearson correlation coefficient. The latter is
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the standard statistical measure, calculated as:
∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ )2

where n is the total number of sentences, Xi and Yi are the manual and automated scores

for sentence i, and X̄ and Ȳ are the respective mean scores.

To calculate point-by-point agreement, the DSS table for each sentence must first be

transformed into a series of codes; each score within a column is written using a particular

code, with a score of zero (e.g., incomplete marks and attempt marks) represented by omit-

ting the code entirely. For each sentence, the lists of codes are compared. If a code exists

in both the manual and automated score, it is considered an agreement; if it exists in the

manual score but not the automated score (i.e., a false negative), it is a miss; and if it exists

in the automated score but not the manual score (i.e., a false positive), it is an intrusion.

Each code is then marked after comparison so that multiple occurrences of the same code are

counted separately. The total point by point agreement for a sentence can then be calculated

as:
agreements

agreements + misses + intrusions

Agreement for an entire transcript can be found by summing the values of agreements, misses

and intrusions over all sentences, and performing the above calculation on these totals.

Correlation coefficient and point-by-point agreement are complementary metrics of accu-

racy; each measures something that the other does not, and thus both are worth analyzing.

The correlation coefficient indicates how closely the overall scores produced by an automated

DSS analyzer approximate manual scores on the same text. Point-by-point agreement, in con-

trast, indicates how often the individual structures in DSS are analyzed correctly on average.

This is an important distinction; an automated DSS analyzer may get reasonably accurate

overall scores for entirely wrong reasons, or alternatively, may drastically diverge from human

scores on one particular structure alone.
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Finally, there was a question of how to deal with the above-mentioned repeated sentences;

although these would not be an issue in determining the accuracy of each individual tran-

script, they did pose a problem in finding the accuracy of the entire corpus. As a compromise,

each analysis was run on the whole corpus twice: once ignoring all but the first occurrence of

each sentence, as was done in prior experiments such as Channell’s, and once counting each

occurrence of the repeated sentence separately. The sentence They fall was counted twice in

the former case; each occurrence had been given a different score by hand, and so ignoring

either occurrence would be an omission.

6.1.1 Before Parsing

Before JED had been incorporated, SYCORAX initially used a simpler scoring algorithm

based on local context, not unlike the existing applications for automated DSS. An initial

set of tests was run using this preliminary version of SYCORAX as a baseline measure to

determine how well it performed in comparison to its competition.

For this experiment, one particular formatting adjustment was made in the input given

to CLAN and CP. The transcription standard used by both of these applications requires

that imperative sentences be indicated with an exclamation point; unlike SYCORAX, there

is no heuristic implemented to guess when a sentence is imperative. The DSS transcription

standards, on the other hand, require no such marking; many imperatives are shown ending

in a period in the example sentences.

With this modification made to the input, experiments were run to find point-by-point

accuracy for all three programs on each transcript and correlations on the entire data set.

The results of these experiments are shown in Table 6.1. For the sake of comparison, the same

experiment was then run without explicit marking of imperatives. The results are shown in

Table 6.2; as expected, CLAN and CP both performed slightly worse, while SYCORAX had

no change in accuracy.
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Table 6.1 Accuracy of automated DSS tools on sample texts from Lee (1974), with
explicit marking of imperatives.

CLAN
Transcript SYCORAX CP CLAN No Post CLAN ’09

Point-by-
Point

Agreement

10 96.9231 78.7097 20.7447 20.8738 49.6454
12 50 42.4528 38.4615 35.3535 55.1724
14 58.3333 46.9027 30.8511 28.8288 40.7407
15 78.1726 87.3016 27.8846 29.8387 46.1957
17 74.1935 42 29.0323 24 46.875
19 70.6522 63.3663 30 34.2857 40.7407
All 73.817 65.8263 27.8665 28.3272 46.4471

All Unique 73.1826 65.6652 28.0597 28.25 46.7857
Correlation All Unique 0.951147 0.931905 0.740632 0.597154 0.709077

Table 6.2 Accuracy of automated DSS tools on sample texts from Lee (1974), with
no explicit marking of imperatives.

CLAN
Transcript SYCORAX CP CLAN No Post CLAN ’09

Point-by-
Point

Agreement

10 96.9231 78.7097 20.4301 20.6897 46.8085
12 50 42.4528 38.4615 35.3535 55.1724
14 58.3333 46.9027 28.7234 27.027 37.037
15 78.1726 86.2434 27.4038 29.8387 45.6522
17 74.1935 42 29.0323 24 43.75
19 70.6522 58.4158 26.9663 32.6923 33.3333
All 73.817 64.8459 26.9679 27.8528 43.8475

All Unique 73.1826 64.6638 27.1364 27.7638 44.4643
Correlation All Unique 0.951147 0.929817 0.731800 0.586198 0.701165
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This was already a good start; on the whole, this preliminary version of SYCORAX per-

formed more accurately, with respect to both point-by-point agreement and correlation, than

CP and several versions of CLAN. However, although SYCORAX performed better than CP

on most of the transcripts from Lee, it performed almost 9% worse on Chart 15, spoken by

the most advanced speaker of Lee’s examples. Furthermore, although SYCORAX’s correla-

tion coefficient was well above the 95% threshold considered excellent by Long and Channell

(2001), the point-by-point agreement still remained below the 85% threshold considered

acceptable.

Notes on CLAN

A few additional notes are necessary regarding the results from CLAN, which reveal a number

of unexpected patterns.

The results labeled as “CLAN” in Tables 6.1–6.2 were generated using the March 11,

2011 build of CLAN. Versions released between June 2009 and March 2011 included a logic

error which prevented any sentence with a noun rather than a pronoun as its subject from

being analyzed. This error was reported to the CLAN developers in March 2011, and a fix

was specifically released in response to this bug report.

One interesting aspect of CLAN is that sentences are initially tagged with multiple pos-

sible parts of speech by the morphological analyzer (MOR); these are then disambiguated in a

second step (POST) before the DSS analysis is performed. To determine how much of an effect

this POST step had on the DSS results, a second trial was performed in which the MOR output

was fed directly to the DSS analyzer; this is shown as “CLAN No Post” in Tables 6.1–6.2.

Oddly, although the correlation coefficient was significantly lower without POST than with

it, the point-by-point agreement was slightly higher without POST.

For comparison’s sake, the same sentences were also run through an older version of

CLAN released in May of 2009, before this bug was introduced; this is shown as “CLAN ’09”

in Tables 6.1–6.2. This earlier version of CLAN had not yet incorporated the POST algorithm,
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and its DSS rule set was therefore significantly more complex. Although the 2011 version

of CLAN produced a slightly higher correlation coefficient than the 2009 version, the latter

produced over 18% higher point-by-point agreement than the former on the Lee samples.

6.1.2 Incorporating the Parser

It was now time to incorporate the JED parser into SYCORAX. This required revising

many of the DSS rules to take advantage of the details available in the parse tree; as with

the modifications to the tagger and parser, an iterative approach was taken in which the

rules were improved in several distinct stages. The development process is summarized in

Table 6.3.

Table 6.3 Accuracy of automated SYCORAX DSS analysis at various stages of
parser integration.

All
Version 10 12 14 15 17 19 All Unique Correl.

0 No Parse 96.9231 50.0000 58.3333 78.1726 74.1935 70.6522 73.8170 73.1826 0.951147
1 Remove Pre-Proc 89.4737 50.0000 58.3333 77.2727 70.9677 70.6522 71.9436 71.2681 0.913953
2 Reversal, QTag 90.2256 50.0000 58.3333 77.7778 70.9677 70.6522 72.2571 71.5891 0.918414
3 Verbs 94.6970 62.5000 66.6667 87.2222 88.4615 82.5000 82.2300 81.7531 0.946828
4 Rev/Neg Errors 96.1538 66.1765 68.2927 87.2222 88.4615 82.5000 83.3922 82.9401 0.948849
5 Improper Verbs 97.6563 64.7059 73.6842 89.3258 88.4615 84.6154 85.3791 84.9722 0.961681
6 Indef/Mod 97.6563 67.6923 73.6842 89.8305 88.4615 85.7143 86.1566 85.7678 0.971323
7 Pers. Pronouns 97.6563 68.7500 74.6667 90.8571 82.1429 87.8378 86.7647 86.3894 0.972273
8 More Pronouns 97.6563 69.8413 74.6667 91.4286 88.4615 87.8378 87.4307 87.0722 0.974237
9 Negatives 98.4252 69.8413 74.6667 91.4286 88.4615 89.0411 87.7551 87.4046 0.978602

10 Wh-Questions 98.4252 69.8413 74.6667 91.9540 88.4615 89.0411 87.9182 87.5717 0.978642
11 Conjunctions 98.4252 69.8413 74.6667 92.4855 88.4615 89.0411 88.0819 87.7395 0.978418
12 “Whether or not” 98.4252 69.8413 74.6667 92.4855 88.4615 89.0411 88.0819 87.7395 0.978418
13 QTag fixes 98.4252 69.8413 74.6667 92.4855 88.4615 89.0411 88.0819 87.7395 0.978418
14 Misc. fixes 98.4252 69.8413 74.6667 92.4855 88.4615 89.0411 88.0819 87.7395 0.978418

The most significant improvement resulted from a series of modifications involving the

rules for the two verb scores (main and secondary verbs). In this case, the greatest problem

was that question inversion was no longer handled through transformations that un-inverted

the sentence, and so rules which had been based on the transformed sentence were rendered

invalid. The heuristics for auxiliary verbs and subject-verb agreement instead had to be

modified to make use of the relevant dependency relations.
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The source of this improvement can be seen even more clearly in Table 6.4, which breaks

down the point-by-point agreement for the entire corpus into each individual score. Four

more uninflected main verbs were identified correctly, while a whole thirty false positives were

eliminated. Both false positives for adjunct infinitives (Sec3) were now correctly analyzed

as complements (Sec5). Finally, although two new false negatives were introduced for the

sentence point, thirty-one false positives were avoided.

Further significant improvements resulted from modifications to the rules determining

whether verbs were properly conjugated. One such modification prevented incorrectly conju-

gated main verbs from being wrongly identified as gerunds or present participles, as in The

girl sitting there in Lee’s Chart 14; this is a common error in childhood language develop-

ment, and thus needs to be scored accurately. Similarly, a rule was added to give attempt

marks to negated or inverted verbs that lacked necessary auxiliary verbs. Another new rule

used the included morphological analyzer (Boisclair, 2008) to determine whether irregular

verbs were improperly conjugated, giving them an attempt mark if that was the case. Heuris-

tics for subject-verb agreement were also improved to prevent the incorrect assignment of

attempt marks for correctly conjugated verbs in certain cases.

Although none of the other additions or modifications to SYCORAX’s rules produced

as significant of an improvement on the Lee corpus, a number of them were noteworthy

for solving problems relatively easily that would have required significantly more complex

analyses without the addition of the parser. These include identifying the case of pronouns,

which can be done simply by checking the dependency type in most cases; distinguishing

the various uses of relative pronouns such as that and who, which can be done by identifying

whether the verb to which they are attached is the main verb or a subordinate verb; and

negatives, for which more than one cannot exist in the same clause.

For the most part, point-by-point agreement and correlation increased uniformly with

each of these updates. One significant exception involved the analysis of conjunctions, as

shown in Line 11 of Table 6.3; here, after optimizing the rules to use the parse tree, the
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Table 6.4 Accuracy of DSS before and after parser-based analysis of verbs.

(a) Accuracy of DSS before addition of
parsing.

Point Agr Mis Int Tot % Acc
Indef1 37 0 1 38 97.3684
Indef3 17 0 5 22 77.2727
Indef4 2 0 0 2 100.0000
Indef7 2 1 0 3 66.6667
Pers1 47 0 0 47 100.0000
Pers2 65 0 8 73 89.0411
Pers3 39 0 1 40 97.5000
Pers6 1 0 2 3 33.3333
Pers7 0 0 2 2 0.0000
Main1 47 6 43 96 48.9583
Main2 51 3 6 60 85.0000
Main4 8 1 1 10 80.0000
Main6 8 0 0 8 100.0000
Main7 1 0 1 2 50.0000
Main8 1 0 0 1 100.0000
Sec2 5 0 0 5 100.0000
Sec3 0 0 2 2 0.0000
Sec4 0 0 2 2 0.0000
Sec5 3 2 0 5 60.0000
Sec7 1 0 0 1 100.0000
Sec8 1 0 0 1 100.0000
Neg4 6 0 1 7 85.7143
Neg5 2 0 0 2 100.0000
Neg7 8 0 1 9 88.8889
Conj3 2 0 0 2 100.0000
Conj5 1 0 0 1 100.0000
Conj8 5 0 1 6 83.3333
Rev1 1 2 0 3 33.3333
Rev4 1 0 0 1 100.0000
Rev6 5 0 0 5 100.0000
Wh2 7 3 0 10 70.0000
Wh5 1 0 0 1 100.0000
Wh7 3 0 0 3 100.0000
Sent1 90 1 70 161 55.9006
Total 468 19 147 634 73.8170

(b) Accuracy of DSS after parser-based anal-
ysis of verbs.

Point Agr Mis Int Tot % Acc
Indef1 37 0 1 38 97.3684
Indef3 17 0 5 22 77.2727
Indef4 2 0 0 2 100.0000
Indef7 2 1 0 3 66.6667
Pers1 47 0 0 47 100.0000
Pers2 65 0 8 73 89.0411
Pers3 39 0 1 40 97.5000
Pers6 1 0 2 3 33.3333
Pers7 0 0 2 2 0.0000
Main1 51 2 13 66 77.2727
Main2 51 3 6 60 85.0000
Main4 8 1 1 10 80.0000
Main6 8 0 0 8 100.0000
Main7 1 0 1 2 50.0000
Main8 1 0 0 1 100.0000
Sec2 5 0 0 5 100.0000
Sec3
Sec4 0 0 3 3 0.0000
Sec5 5 0 0 5 100.0000
Sec7 1 0 0 1 100.0000
Sec8 1 0 2 3 33.3333
Neg4 6 0 1 7 85.7143
Neg5 2 0 0 2 100.0000
Neg7 8 0 1 9 88.8889
Conj3 2 0 0 2 100.0000
Conj5 1 0 0 1 100.0000
Conj8 5 0 1 6 83.3333
Rev1 2 1 0 3 66.6667
Rev4 1 0 0 1 100.0000
Rev6 4 1 0 5 80.0000
Wh2 7 3 0 10 70.0000
Wh5 1 0 0 1 100.0000
Wh7 3 0 0 3 100.0000
Sent1 88 3 39 130 67.6923
Total 472 15 87 574 82.2300
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correlation coefficient dropped by approximately 0.0002. This regression could be traced to

a single sentence: He said, “Where’s my soup?” The problem, in this case, is that where

had originally been mistakenly identified as a conjunction, countering another error in the

analysis of question inversion which was corrected later in the development process. Once

where was correctly identified as an interrogative, the score decreased, thus causing the

correlation to drop despite the improvement in point-by-point agreement.

6.2 Further Testing

Although it was a good starting point for tests, the Lee corpus did not provide a complete

measure of SYCORAX’s accuracy; specifically, these sample transcripts do not actually incor-

porate all of the constructions discussed in Lee’s DSS rules. As a result, several improvements

incorporated into SYCORAX based on Lee’s description of the scoring of certain structures

had no effect at all on the accuracy of SYCORAX on Lee’s sample, as seen in lines 12–14 of

Table 6.3. Among these omitted constructions were the discontinuous conjunction whether

or not, adverbial uses of more and most, that as the subject of a subordinate clause, and

elliptical deletions after interrogative adverbs (e.g., I wonder why).

Even beyond the rules specifically discussed in the DSS text, the Lee sample was a

poor measure of accuracy for another reason. As the initial modifications to SYCORAX

were tested using that sample, it essentially behaved as a training set; as with any machine

learning algorithm, a separate data set from that used to optimize the application should

ideally be used to evaluate it.

6.2.1 Scoring Challenges

The next obvious choice for a DSS testing corpus was that of Lively (1984). This paper dis-

cussed a number of common errors made by human DSS raters, giving examples of structures

which have been incorrectly scored along with the correct scores for these structures. There

was one slight problem, however, with evaluating the relative accuracy of SYCORAX and
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its competitors on this sample. For each example sentence, only the score for the particular

structure under discussion is mentioned; neither the overall score for the sentence nor the

full table of scores is given. Thus, because there is no agreed-upon reference score for any

of these sentences, it is impossible to give an accurate correlation; for that matter, it is also

inappropriate to use the standard formula for point-by-point agreement, as the automated

score will naturally include a large number of intrusions in comparison.

For testing SYCORAX on the Lively sample, a modified version of point-by-point agree-

ment was used, which will be termed partial point-by-point agreement. The key factor which

allows this scoring method to be used is that the errors discussed by Lively fall into two

groups: either a point that should be in the score is omitted or graded incorrectly, or a point

that should not be present is incorrectly added to the score. Thus, in the former case, the

point is said to agree if it is present in the automated score; in the latter case, the point is

only said to agree if it is absent.

Although this is mostly identical to the normal measure of point-by-point agreement,

there is one significant case in which it differs: the analysis of intrusions. In normal point-

by-point agreement, if a point is omitted from both the reference score and the automated

score, it is not counted in the number of agreements or the total number of points. In partial

point-by-point agreement, on the other hand, omissions are made explicit in the reference

score; thus, if a point is omitted from both the reference score and the automated score, it is

counted as an agreement. Intrusions thus produce a decrease in accuracy in both measures

of point-by-point agreement, but by different means; in normal point-by-point agreement,

the denominator is increased, while in partial point-by-point agreement, the numerator is

decreased.

6.2.2 Testing Agreement

A total of 96 sentences from the main text of Lively’s paper were used for this test; this

set comprised each list of sentences after the “Awarding the Sentence Point” heading, along
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with the sentence We’re supposed to go home now, which was discussed but not specifically

listed in the “Main Verbs” section. As several of these sentences specifically mention more

than one point that may be analyzed incorrectly, these 96 sentences comprised a total of 115

points of agreement.

For this test, only SYCORAX and CP were evaluated; CLAN had already demonstrated

itself to be significantly lower in its accuracy than CP on the relatively basic Lee sample,

thus suggesting that it would perform with equally low if not lower accuracy on a more

complex text. As the points under consideration applied to specific words and phrases, it

was necessary to manually evaluate the partial point-by-point agreement to ensure that each

matching point also applied to the correct word or phrase.

With a purely automated analysis, SYCORAX correctly identified 89 out of 115 points,

or 77.3913%; CP identified only 68, or 59.1304%. Although the performance of SYCORAX

was significantly better than that of CP, it was still nowhere near the 85% threshold for

acceptability described by Long and Channell (2001).

Further investigation of the errors made by SYCORAX revealed that many of them were

due to incorrect part-of-speech tagging; as JED was driven by part-of-speech tags, these

tagging errors caused the sentences to also be parsed incorrectly. In particular, verbs were

frequently mistaken for nouns in sentences such as Marcia wants the one that rings, Did the

boat turn over?, and Let the dog go; however, no suitable rule could be found to improve the

tagging of these sentences in ODT without an accompanying regression on noun phrases.

To determine how much of the error was in fact the tagger’s fault, SYCORAX was run on

a manually retagged version of Lively’s sample; the resulting accuracy was now 83.4783%,

just less than two percent away from the threshold of acceptability.

6.2.3 Further Improving the Rules

Most of the errors that now remained in the scoring of the manually-tagged text were not due

to inaccuracies in the parse tree, but instead resulted from omissions in the DSS rules. As a
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particularly embarrassing example, a rule to properly identify conjoined verbs with omitted

auxiliaries, as discussed in Chapter 1, had yet to be implemented. Those changes which

did require tweaks to the parser mostly involved special constructions such as ’d better and

adverbial please; however, two genuine bugs in the parser were also discovered, one involving

infinitive dependents of gerunds and one involving a misinterpretation of question tags.

As expected, further improvements to the DSS rules, together with the aforementioned

tweaks to the parser, significantly improved the performance on the Lively corpus, with

accompanying improvements on the Lee corpus. These modifications are summarized in

Table 6.5. Surprisingly, with suitable modifications to the parser and the DSS rules, it was

possible to get the accuracy on the Lively corpus to exceed the 90% threshold even without

modifications to the tagger.

Table 6.5 Accuracy of automated SYCORAX DSS analysis during optimization
for Lively corpus. Rows highlighted in gray required changes to the JED parser
as well.

Lee All Lee Lively
Unique Correl Lively Tagged

1 Agree with object if subject is here 87.7395 0.978418 78.2609 84.3478
2 me requires plural verb 87.7395 0.978418 79.1304 85.2174
3 Attempt for gotta w/o have 87.7395 0.978418 81.7391 87.8261
4 have contractions 87.5240 0.979903 81.7391 87.8261
5 Ignore ’s as has except with VBN 87.7395 0.978418 82.6087 88.6957
6 Rework question inflection rule 88.5277 0.979508 84.3478 90.4348
7 Identify auxiliaries on conjoined verbs 88.5277 0.979508 86.0870 92.1739
8 Identify passives using list from Lee p. 36 88.8889 0.981990 87.8261 93.9130
9 Mark conjoined passives 88.8889 0.981990 87.8261 93.9130

10 Add put to irregular verb lexicon 88.8889 0.981990 88.6957 94.7826
11 Parse the phrase ’d better 88.8889 0.981990 89.5652 95.6522
12 Identify imperatives w/ adjuncts (e.g., please) 88.8889 0.981990 90.4348 96.5217
13 Prevent VBG head as subject of infinitive 88.8889 0.981990 91.3043 96.5217
14 Fix question tag mistaken for parenthetical 88.8889 0.981990 92.1739 97.3913
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6.2.4 More Examples from Lively

In addition to the sentences discussed in the paper itself, Lively (1984) also included two

appendices showing further examples, reproduced in Appendix D of this dissertation. The

second of these appendices was a collection of 58 sentences, different from those given in the

text itself, shown with the relevant subset of DSS scores. The first appendix, on the other

hand, consisted of only ten sentences, but gave a full DSS table for those sentences. Clearly,

it would be useful to test the performance of SYCORAX and CP on these two tables as

well; in the case of Lively’s Appendix A, it would even be possible to obtain a correlation

coefficient.

The results of this experiment are shown in Table 6.6. Again, SYCORAX performed

better than the two competing applications, even without further modification. Two minor

tweaks to the parser, one allowing to following a preposition to be reinterpreted as an infini-

tive and one identifying lemme as a form of let, improved SYCORAX’s partial agreement on

Lively’s Appendix B by an additional three percent.

Table 6.6 Comparison of the accuracy of CP, CLAN, and SYCORAX on the
appendices from Lively (1984).

SYCORAX
CP CLAN SYCORAX + fixes

Appendix A pt-by-pt 75.0000 21.3115 97.6190 97.6190
Appendix A correl 0.917578 0.839637 0.996553 0.996553
Appendix B pt-by-pt 68.7500 29.6875 87.5000 90.6250

6.3 A New Challenger: DSSA

When the above experiments were performed, Ron Channell’s DSSA application (Channell,

2007), as reviewed in Judson (2006), had still not been released beyond Channell’s own

research group. However, on April 15, 2011, in response to an e-mail inquiry, Channell
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finally released a compiled binary of DSSA to the public, available at the URL given in the

bibliography.

Along with DSSA, Channell also included a subset of the data which Judson used to

evaluate the application. The included sample consists of two corpora: the Adam corpus,

derived from interviews with a single child over a two-year span, and the Provo corpus,

derived from a set of interviews with 30 children of ages two through seven. Both of these

corpora included the manual DSS scores from a trained speech-language pathologist that

were used in Judson’s experiment. It was thus possible not only to evaluate SYCORAX

against the state of the art in automated DSS, but also to compare the two applications’

performance on a large, real-world corpus of speech transcripts with agreed-upon DSS scores.

6.3.1 Comparison on Lee and Lively

Before performing any experiments using the Judson data, however, it was worth testing

DSSA on the samples used so far in this experiment. The results of this test are shown in

Table 6.7; as can be seen, SYCORAX performs more accurately than DSSA on this collection

of samples, even on the sentences from Lively.

Table 6.7 Comparison of the accuracy of CP, SYCORAX, and DSSA on transcripts
tested to this point.

CP SYCORAX DSSA

Point-by-
Point

Agreement

Lee 10 78.7097 98.4252 69.5035
Lee 12 42.4528 71.4286 60.0000
Lee 14 46.9027 77.0270 51.1111
Lee 15 87.3016 94.2529 67.9558
Lee 17 42.0000 88.4615 47.2222
Lee 19 63.3663 89.0411 59.0909
Lee All Unique 65.6652 88.8889 62.2673
Lively “A” 75.0000 97.6190 70.8333

Partial
Pt-by-Pt

Lively Main 68.7500 92.1739 66.0870
Lively “B” 68.7500 90.6250 76.5625

Correlation
Coefficient

Lee All Unique 0.931905 0.981990 0.922887
Lively “A” 0.917578 0.996553 0.985326
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Unlike both CP and CLAN, and like SYCORAX, DSSA performed as well when imper-

atives were not explicitly marked as when they were. Yet DSSA did have one significant

disadvantage: like CLAN, but unlike CP and SYCORAX, DSSA did not attempt to guess

whether sentences were grammatical in order to assign a sentence point. Instead, DSSA

simply ignored the sentence point in its output entirely, effectively treating every sentence as

ungrammatical and leaving this judgment up to human scorers instead. For a truly accurate

comparison of both point-by-point agreement and correlation, therefore, each DSSA score

for a valid sentence must have a sentence point added manually. Even with sentence points

manually added, however, DSSA still performed worse than SYCORAX with no manual

additions on all the samples tested so far, as can be seen in Table 6.8.

Table 6.8 Comparison of the accuracy of unmodified SYCORAX scores and DSSA
scores with sentence points added by hand.

DSSA
SYCORAX + Sentence

Point-by-
Point

Agreement

Lee 10 98.4252 85.8156
Lee 12 71.4286 62.8571
Lee 14 77.0270 62.2222
Lee 15 94.2529 89.5028
Lee 17 88.4615 61.1111
Lee 19 89.0411 72.7273
Lee All Unique 88.8889 76.8190
Lively “A” 97.6190 83.3333

Partial
Pt-by-Pt

Lively Main 92.1739 66.0870
Lively “B” 90.6250 78.1250

Correlation
Coefficient

Lee All Unique 0.981990 0.939713
Lively “A” 0.996553 0.989444

6.3.2 The Adam and Provo Corpora

Clearly, SYCORAX outperforms DSSA on the set of tests from Lively designed to identify

common errors in DSS scoring, as well as on the admittedly limited sample of real-world

transcripts from Lee. However, for a true measure of accuracy, it is necessary to compare the
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two applications on a large and varied collection of transcripts—hence the Adam and Provo

corpora that were bundled with DSSA.

The results from the Adam corpus were quite promising. As shown in Table 6.9,

SYCORAX produced a more accurate correlation on the Adam corpus as a whole than

DSSA with manually added sentence points, even when SYCORAX’s automatically calcu-

lated sentence points were used; only five of the texts in the corpus correlated better with

manual scores using DSSA than using SYCORAX, and one of those produced a better

correlation using SYCORAX when manually-scored sentence points were also added to

SYCORAX’s scores. Using the default sentence points from SYCORAX, only three of the

texts had higher point-by-point agreement than DSSA; however, when manually-scored

sentence points were added to SYCORAX’s scores, all but five transcripts exceeded DSSA’s

point-by-point agreement.

However, as seen in Table 6.10, SYCORAX performed significantly less accurately on the

Provo corpus. Using SYCORAX’s automated sentence points with no modification, only 11

of the 29 texts exceeded DSSA’s correlation coefficient, and only one text exceeded DSSA’s

point-by-point agreement. The addition of manually-scored sentence points to SYCORAX’s

results caused only two more transcripts to exceed DSSA’s correlation, and six more tran-

scripts to exceed DSSA’s point-by-point agreement.

6.3.3 Further Improvements to SYCORAX

Closer inspection of the results from the Adam and Provo corpora allowed a number of addi-

tional errors in SYCORAX’s DSS rules to be identified and corrected. These modifications

are summarized in Table 6.11, with corresponding overall accuracy scores on the Adam and

Provo corpora.

Two key changes in particular led to significant improvements in SYCORAX’s accuracy

on the Adam and Provo corpora. The first such change involved contractions such as ’ll and

’ve, which were correctly attached in the parser but which were not properly identified in
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Table 6.9 Comparison between DSSA and SYCORAX scores on the Adam corpus.
Gray highlights indicate an improvement over DSSA.

Point-By-Point Correlation
DSSA SYCORAX DSSA SYCORAX
+ Sent SYCORAX + Sent + Sent SYCORAX + Sent

Adam 36 85.5746 86.6180 92.2280 0.839821 0.880206 0.883257
Adam 37 85.5422 79.0244 84.0102 0.851570 0.857779 0.866751
Adam 38 83.2618 85.3659 87.8104 0.790086 0.916514 0.918923
Adam 39 83.7416 77.7056 83.9729 0.859786 0.881515 0.889592
Adam 40 87.0748 81.0934 87.6190 0.915782 0.950906 0.958789
Adam 41 95.0249 85.3774 90.5941 0.941596 0.959494 0.968697
Adam 42 87.5000 83.1486 88.6047 0.856892 0.889054 0.903062
Adam 43 88.0000 87.6214 90.8416 0.886837 0.888584 0.897218
Adam 44 85.9524 84.7500 88.3721 0.830894 0.903635 0.911394
Adam 45 80.3030 77.3987 83.6735 0.842335 0.819467 0.836657
Adam 46 90.3670 86.4560 89.9767 0.944875 0.934144 0.937405
Adam 47 83.6449 82.2844 88.0779 0.724864 0.844856 0.861120
Adam 48 83.5118 85.8093 88.0631 0.791822 0.916934 0.919274
Adam 49 86.0310 82.4834 87.2437 0.926788 0.898091 0.907742
Adam 50 83.9130 76.4957 81.4978 0.831360 0.895847 0.906609
Adam 51 80.0813 79.8755 85.1613 0.847619 0.915051 0.921590
Adam 52 88.0952 82.2650 87.2768 0.908945 0.798701 0.818179
Adam 53 82.4257 78.9474 85.7895 0.818064 0.797700 0.824515
Adam 54 82.6484 77.7027 83.0233 0.877317 0.907855 0.925334
Adam 55 88.7265 84.0580 89.0558 0.909425 0.942587 0.951685
Adam all 85.5287 82.1634 87.0862 0.863464 0.892719 0.903121



116

Table 6.10 Comparison between DSSA and SYCORAX scores on the Provo
corpus. Gray highlights indicate an improvement over DSSA.

Point-By-Point Correlation
DSSA SYCORAX DSSA SYCORAX
+ Sent SYCORAX + Sent + Sent SYCORAX + Sent

Aaron C 84.9910 84.2576 89.9621 0.874191 0.922273 0.934459
Aimee A 89.1514 78.5362 82.1338 0.957163 0.927185 0.932638
Alisha M 89.6936 82.4490 86.4146 0.923193 0.875200 0.884301
Amber B 92.1717 78.7515 84.2236 0.951528 0.810362 0.823936
Ambree J 89.8417 79.4451 84.3061 0.908062 0.870656 0.881808
Andrus R 79.0378 87.5686 91.4286 0.866746 0.896836 0.907311
Ashley A 86.8852 82.4000 87.8151 0.874532 0.845837 0.866856
Ashley B 91.9935 88.2927 91.3907 0.937610 0.907172 0.919424
BJ J 85.0080 82.6291 87.0340 0.832915 0.922373 0.930466
Christine B 90.4486 84.7242 90.0888 0.919794 0.852949 0.874345
Clarissa B 91.8990 76.6453 80.3645 0.964156 0.920003 0.923912
Cody B 90.9892 74.3979 78.9815 0.962766 0.886845 0.893926
Elizabeth 88.3754 76.8924 82.5243 0.940372 0.886040 0.889493
Heather B 89.7759 74.9676 80.3789 0.957585 0.914026 0.921586
Heather C 89.6403 85.7550 89.8975 0.873770 0.908040 0.918391
Jack M 85.0649 76.3975 81.8478 0.884217 0.857686 0.863506
Jarom 88.3149 77.8165 83.2927 0.918380 0.931510 0.938960
Katie K 87.1762 78.9855 84.7826 0.869315 0.904557 0.914533
Kevin B 86.6176 80.1712 85.0812 0.889506 0.860053 0.870969
Kyle K 79.2398 76.6871 83.9344 0.643142 0.861829 0.884671
Michael Z 87.6119 77.6389 83.9286 0.837653 0.890612 0.897455
Patrick A 84.7662 75.0720 80.7927 0.816938 0.858495 0.861526
Rebecca A 89.0724 78.9725 84.5960 0.922519 0.922398 0.929309
Rebecca T 90.3497 81.4111 85.5956 0.894710 0.907160 0.916440
Sarah 87.0108 75.7312 79.8538 0.956551 0.916642 0.918357
Scott 91.0000 83.9437 87.5714 0.880325 0.852363 0.867971
Talon 91.8981 90.4651 94.2446 0.848495 0.883867 0.904783
Tavida 86.5489 81.1828 84.1816 0.884511 0.882197 0.890726
Tiffany 87.6171 77.3216 81.2942 0.908634 0.881489 0.883859
Provo all 88.3054 79.6315 84.3263 0.924707 0.905879 0.912996



117

Ta
bl

e
6.

11
It

er
at

io
ns

of
SY

C
O

R
A

X
de

ve
lo

pm
en

t
fo

r
th

e
Ju

ds
on

co
rp

or
a.

G
ra

y
hi

gh
lig

ht
s

in
di

ca
te

an
im

pr
ov

e-
m

en
t

ov
er

D
SS

A
;

“d
ef

au
lt

”
an

d
“m

an
ua

l”
de

sc
ri

be
th

e
so

ur
ce

of
th

e
se

nt
en

ce
po

in
ts

in
SY

C
O

R
A

X
’s

sc
or

e.

A
da

m
P

ro
vo

P
oi

nt
-b

y-
P

oi
nt

C
or

re
la

ti
on

P
oi

nt
-b

y-
P

oi
nt

C
or

re
la

ti
on

R
ev

is
io

n
D

ef
au

lt
M

an
ua

l
D

ef
au

lt
M

an
ua

l
D

ef
au

lt
M

an
ua

l
D

ef
au

lt
M

an
ua

l
In

iti
al

ve
rs

io
n

fr
om

Ta
bl

es
6.

9–
6.

10
82

.1
63

4
87

.0
86

2
0.

89
27

19
0.

90
31

21
79

.6
31

5
84

.3
26

3
0.

90
58

79
0.

91
29

96
Ig

no
re

fr
on

te
d

co
nj

un
ct

io
ns

82
.8

94
0

87
.8

94
2

0.
90

13
92

0.
91

22
60

81
.9

61
6

86
.8

93
6

0.
91

96
72

0.
92

75
60

Id
en

tif
y

co
nt

ra
ct

io
ns

as
au

xi
lia

rie
s

82
.9

54
9

87
.9

53
5

0.
90

19
35

0.
91

27
58

83
.0

81
1

87
.5

95
4

0.
92

72
44

0.
93

29
32

C
ou

nt
VB

P
m

ist
ag

ge
d

as
VB

83
.2

21
5

88
.1

37
2

0.
90

45
73

0.
91

51
62

83
.3

43
2

87
.7

84
6

0.
92

77
05

0.
93

32
81

A
llo

w
ba

re
in

fin
iti

ve
s

w
ith

go
;

in
tr

od
uc

to
ry

co
nj

un
ct

io
ns

be
fo

re
im

pe
ra

tiv
es

83
.3

14
4

88
.2

20
0

0.
90

41
98

0.
91

48
33

83
.4

17
3

87
.8

25
8

0.
92

72
68

0.
93

27
13

C
ou

nt
in

fin
iti

ve
w

ith
go

as
ad

ju
nc

t
83

.3
14

4
88

.2
20

0
0.

90
44

15
0.

91
50

33
83

.4
75

5
87

.8
87

9
0.

92
78

17
0.

93
32

90
In

ve
rs

io
n

ap
pl

ie
s

to
he

ad
ve

rb
,n

ot
fir

st
ve

rb
83

.4
29

8
88

.2
78

4
0.

90
64

20
0.

91
60

10
83

.5
36

7
87

.9
15

0
0.

92
85

95
0.

93
37

50
A

llo
w

ad
ve

rb
s

w
ith

im
pe

ra
tiv

es
,

co
nj

oi
ne

d
im

pe
ra

tiv
e

83
.6

92
7

88
.4

33
4

0.
90

67
43

0.
91

61
33

83
.5

91
0

87
.9

50
3

0.
92

86
07

0.
93

37
64

A
gr

ee
m

en
t

on
ly

ap
pl

ie
s

to
ne

ar
es

t
su

bj
ec

t
de

pe
nd

en
t

83
.8

60
7

88
.5

67
4

0.
90

85
86

0.
91

76
33

83
.8

52
3

88
.2

25
9

0.
92

98
65

0.
93

49
38

R
el

at
iv

e
WP

ca
n

ag
re

e
un

iv
er

sa
lly

w
ith

ve
rb

s
83

.8
60

7
88

.5
67

4
0.

90
85

86
0.

91
76

33
83

.8
56

8
88

.2
30

6
0.

92
98

69
0.

93
49

40
R

ea
tt

ac
h

ob
je

ct
s

of
su

bo
rd

in
at

es
as

su
bj

ec
ts

of
la

te
r

ve
rb

s
83

.8
60

7
88

.5
67

4
0.

90
85

86
0.

91
76

33
83

.8
97

4
88

.2
75

8
0.

93
05

42
0.

93
56

07

R
et

ag
NN

S
af

te
r

on
e,

th
is

,o
r

th
at

as
VB

Z
83

.8
60

7
88

.5
67

4
0.

90
85

86
0.

91
76

33
83

.8
93

6
88

.2
66

9
0.

93
06

44
0.

93
56

77
R

ea
tt

ac
h

co
nj

oi
ne

d
ob

je
ct

s
of

pr
ep

os
iti

on
s

as
su

bj
ec

ts
of

la
te

r
ve

rb
s

83
.8

60
7

88
.5

67
4

0.
90

85
86

0.
91

76
33

84
.1

67
6

88
.5

30
2

0.
93

24
91

0.
93

72
77

Fi
x

pa
rs

in
g

of
ta

g
qu

es
tio

ns
84

.1
47

2
88

.8
02

2
0.

90
81

45
0.

91
68

77
84

.1
88

8
88

.5
29

1
0.

93
16

76
0.

93
64

19
N

eg
at

io
n

fix
es

;
su

bj
ec

t
ag

re
em

en
t

fo
r

co
n-

jo
in

ed
ve

rb
s

84
.1

15
4

88
.7

61
4

0.
90

65
89

0.
91

54
44

84
.2

28
9

88
.5

62
6

0.
93

18
49

0.
93

65
54

C
ou

nt
VB

D
m

ist
ak

en
fo

r
VB

N
as

m
ai

n
ve

rb
84

.2
11

1
88

.8
18

0
0.

90
87

92
0.

91
74

35
84

.2
82

5
88

.5
69

9
0.

93
24

33
0.

93
69

24
Ig

no
re

ho
w

co
m

e
as

a
m

ai
n

ve
rb

84
.2

49
4

88
.8

60
0

0.
90

86
06

0.
91

72
64

84
.3

07
1

88
.6

02
9

0.
93

21
52

0.
93

67
19

Im
pr

ov
e

ta
gg

in
g

of
VB

G
84

.1
86

0
88

.7
77

3
0.

90
46

12
0.

91
34

52
84

.3
35

2
88

.6
34

0
0.

93
30

19
0.

93
76

37



118

DSS scoring; the correct scoring of these contractions allowed SYCORAX to produce a better

overall correlation on the Provo corpus than DSSA even without any manual correction of

sentence points.

The second change concerned a significant omission in the parser; specifically, the rule

that reattached objects as subjects of later verbs failed to account for sentences where an

apparent object of a preposition was actually the subject of a later verb (e.g., the word it

in I went to Athens and it was hot). Correcting this rule allowed SYCORAX to exceed the

point-by-point agreement of DSSA on both corpora when sentence points were manually

corrected in both programs’ output.

Several additional tweaks were made following this breakthrough in an attempt to make

the DSS analysis even more accurate, as shown in the last five rows of Table 6.11, but

none of them produced as significant an effect as these two prior changes. In the end, after

this final set of modifications was complete, the correlation on the Adam corpus decreased

slightly, though not enough to perform more poorly than DSSA; however, the point-by-point

agreements for both corpora and the correlation for the Provo corpus increased, so these

modifications were kept intact.

To complete the analysis, this improved version of SYCORAX was run again on the Lee

and Lively samples. The results on these samples remained unchanged from those shown in

Table 6.8, suggesting that the rules relevant to those sentences had remained stable.

6.4 Further Interpretation of Results

It was clear that overall, SYCORAX now had a slight advantage over DSSA in terms of

accuracy on the corpora used by Judson (2006). Nonetheless, it was still not entirely clear

how this improvement was distributed over the individual transcripts that make up these

corpora, what specific syntactic structures contributed most to the improvement, or whether

any structures produced a regression in accuracy compared to DSSA.
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6.4.1 Per-Transcript Results

To identify how the improvement applied to the individual transcripts that make up the

Judson samples, the experiment from Tables 6.9–6.10 was run again, this time using the

revised version of SYCORAX; the per-transcript results from this run are presented in

Tables 6.12 and 6.13.

Table 6.12 Comparison between DSSA and SYCORAX scores on the Adam
corpus, using a later revision of SYCORAX. Gray highlights indicate an improve-
ment over DSSA.

Point-By-Point Correlation
DSSA SYCORAX DSSA SYCORAX
+ Sent SYCORAX + Sent + Sent SYCORAX + Sent

Adam 36 85.5746 86.4078 92.2280 0.839821 0.905888 0.906672
Adam 37 85.5422 79.9517 83.9196 0.851570 0.841537 0.851680
Adam 38 83.2618 86.1298 88.8128 0.790086 0.929473 0.931233
Adam 39 83.7416 80.4825 86.6972 0.859786 0.905668 0.915578
Adam 40 87.0748 85.0575 90.8434 0.915782 0.964108 0.973307
Adam 41 95.0249 88.2494 93.1990 0.941596 0.977099 0.982051
Adam 42 87.5000 84.4098 89.4860 0.856892 0.896201 0.910934
Adam 43 88.0000 88.5366 91.5212 0.886837 0.921505 0.924958
Adam 44 85.9524 85.1117 88.9460 0.830894 0.821333 0.831643
Adam 45 80.3030 77.2824 83.4842 0.842335 0.843013 0.860331
Adam 46 90.3670 88.9640 93.4118 0.944875 0.973173 0.975680
Adam 47 83.6449 84.2227 89.0777 0.724864 0.848843 0.865606
Adam 48 83.5118 86.5772 89.0661 0.791822 0.930009 0.931625
Adam 49 86.0310 82.8947 87.5566 0.926788 0.917783 0.925191
Adam 50 83.9130 80.7775 85.0780 0.831360 0.912097 0.920148
Adam 51 80.0813 81.5900 86.3341 0.847619 0.909528 0.913365
Adam 52 88.0952 84.2217 89.0380 0.908945 0.846220 0.861542
Adam 53 82.4257 81.2030 87.8307 0.818064 0.780231 0.808953
Adam 54 82.6484 84.1379 87.6485 0.877317 0.934371 0.943475
Adam 55 88.7265 88.3090 92.1909 0.909425 0.954220 0.959367
Adam all 85.5287 84.1860 88.7773 0.863464 0.904612 0.913452

Again, the fully automated point-by-point accuracy of SYCORAX still fell well below

that of DSSA with manually added sentence points, with only seven of the Adam transcripts

and four of the Provo transcripts exceeding the DSSA result. The fully automated corre-

lation, however, showed significant improvement; though the same number of transcripts
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Table 6.13 Comparison between DSSA and SYCORAX scores on the Provo
corpus, using a later revision of SYCORAX. Gray highlights indicate an improve-
ment over DSSA.

Point-By-Point Correlation
DSSA SYCORAX DSSA SYCORAX
+ Sent SYCORAX + Sent + Sent SYCORAX + Sent

Aaron C 84.9910 88.6447 94.1748 0.874191 0.968379 0.976456
Aimee A 89.1514 85.5442 88.8401 0.957163 0.948249 0.951912
Alisha M 89.6936 85.9917 89.6996 0.923193 0.896327 0.905121
Amber B 92.1717 86.9619 91.2932 0.951528 0.904701 0.911589
Ambree J 89.8417 85.9375 89.6783 0.908062 0.916012 0.924096
Andrus R 79.0378 87.9121 92.1456 0.866746 0.913093 0.923636
Ashley A 86.8852 85.1626 90.3640 0.874532 0.914096 0.929915
Ashley B 91.9935 91.3681 93.5323 0.937610 0.945154 0.947780
BJ J 85.0080 87.0192 91.0000 0.832915 0.943179 0.949278
Christine B 90.4486 87.1105 91.9881 0.919794 0.896647 0.911079
Clarissa B 91.8990 83.6700 87.7622 0.964156 0.940198 0.944747
Cody B 90.9892 82.9222 87.2530 0.962766 0.916593 0.918480
Elizabeth 88.3754 80.7588 86.2020 0.940372 0.903855 0.902954
Heather B 89.7759 80.8824 85.4749 0.957585 0.935886 0.940588
Heather C 89.6403 88.7608 92.1481 0.873770 0.926030 0.933735
Jack M 85.0649 78.9144 84.3440 0.884217 0.887803 0.891817
Jarom 88.3149 82.4150 87.2840 0.918380 0.959058 0.963531
Katie K 87.1762 82.1867 87.8590 0.869315 0.936776 0.942308
Kevin B 86.6176 84.4380 88.3408 0.889506 0.904391 0.910254
Kyle K 79.2398 81.1912 87.5839 0.643142 0.911031 0.926046
Michael Z 87.6119 81.8830 88.3257 0.837653 0.914086 0.920162
Patrick A 84.7662 77.1596 83.0745 0.816938 0.895171 0.901080
Rebecca A 89.0724 82.0513 88.0674 0.922519 0.938695 0.944314
Rebecca T 90.3497 87.0396 89.7902 0.894710 0.928405 0.929972
Sarah 87.0108 81.9820 85.4008 0.956551 0.932060 0.933925
Scott 91.0000 88.7304 90.7381 0.880325 0.927026 0.930493
Talon 91.8981 91.3953 94.7242 0.848495 0.891481 0.908154
Tavida 86.5489 84.4049 87.6231 0.884511 0.915432 0.922400
Tiffany 87.6171 82.8283 86.6109 0.908634 0.916707 0.919573
Provo all 88.3054 84.3352 88.6340 0.924707 0.933019 0.937637
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performed better on the Adam corpus, an additional nine transcripts from the Provo corpus

now produced better correlation than DSSA.

With the sentence points in SYCORAX’s score manually corrected, the improvement

was even more impressive. Three more transcripts from the Adam corpus now produced

better point-by-point agreement than DSSA, as did seven more transcripts from the Provo

corpus. Although only one additional transcript from the Adam corpus correlated better

with manual scores using SYCORAX than using DSSA, seven more of the Provo transcripts

also produced better correlation using SYCORAX.

6.4.2 Per-Point Results

The other remaining question concerned whether SYCORAX was more or less accurate than

DSSA on particular structures. Although the previous experiment shows that the improve-

ment in SYCORAX’s accuracy is reasonably generalized within each corpus, it does not

provide any evidence as to which particular syntactic structures have contributed to this

improvement.

However, one advantage of point-by-point agreement as a measure of accuracy is that it

can be broken down into agreement scores for each individual point value, thus identifying

the accuracy for each class of syntactic structure. This property was used in both Channell’s

evaluation of CP (2003) and Judson’s evaluation of DSSA (2006).

A point-by-point breakdown of agreements, misses and intrusions is shown for the Adam

corpus as a whole in Table 6.14, and for the Provo corpus in Table 6.15. In addition to the

agreements, misses and intrusions for each application, the change in misses and intrusions

between DSSA and SYCORAX is also shown; for these two scores, lower values are better,

as this indicates improved accuracy in SYCORAX. In addition, each of these changes is also

shown as a percentage of the total possible number of agreements. To better highlight where

improvements have occurred, all negative values are presented with a gray background in

the tables.
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Table 6.14 Comparison of agreements, misses and intrusions per point, between
DSSA and SYCORAX on the Adam corpus.

DSSA SYCORAX Max ∆ % ∆ ∆ % ∆
Point Agr Mis Int Agr Mis Int Agr Miss Miss Int Int

Indef1 932 4 11 897 39 14 936 35 3.74 3 0.32
Indef3 351 1 24 342 10 7 352 9 2.56 -17 -4.83
Indef4 3 0 8 2 1 3 3 1 33.33 -5 -166.67
Indef7 27 0 4 24 3 7 27 3 11.11 3 11.11
Pers1 1449 6 16 1380 75 16 1455 69 4.74 0 0.00
Pers2 122 0 4 122 0 2 122 0 0.00 -2 -1.64
Pers3 187 0 1 180 7 1 187 7 3.74 0 0.00
Pers5 9 1 0 10 0 0 10 -1 -10.00 0 0.00
Pers6 47 5 6 33 19 13 52 14 26.92 7 13.46
Pers7 1 0 1 1 0 9 1 0 0.00 8 800.00
Main1 1091 33 312 999 125 49 1124 92 8.19 -263 -23.40
Main2 399 29 123 385 43 51 428 14 3.27 -72 -16.82
Main4 288 69 5 322 35 4 357 -34 -9.52 -1 -0.28
Main6 88 51 0 112 27 1 139 -24 -17.27 1 0.72
Main7 19 14 4 20 13 8 33 -1 -3.03 4 12.12
Main8 0 0 0 0 0 1 0 0 0.00 1 ∞
Sec2 147 57 1 172 32 2 204 -25 -12.25 1 0.49
Sec3 1 9 0 6 4 14 10 -5 -50.00 14 140.00
Sec4 12 1 91 2 11 6 13 10 76.92 -85 -653.85
Sec5 99 24 41 97 26 8 123 2 1.63 -33 -26.83
Sec7 1 0 1 0 1 1 1 1 100.00 0 0.00
Sec8 10 10 0 10 10 26 20 0 0.00 26 130.00
Neg1 12 2 0 10 4 4 14 2 14.29 4 28.57
Neg4 123 17 1 136 4 7 140 -13 -9.29 6 4.29
Neg5 25 0 4 25 0 6 25 0 0.00 2 8.00
Neg7 60 0 24 56 4 12 60 4 6.67 -12 -20.00
Conj3 69 0 4 69 0 4 69 0 0.00 0 0.00
Conj5 42 1 3 38 5 3 43 4 9.30 0 0.00
Conj6 11 0 0 11 0 3 11 0 0.00 3 27.27
Conj8 74 50 12 102 22 21 124 -28 -22.58 9 7.26
Rev1 76 37 14 91 22 5 113 -15 -13.27 -9 -7.96
Rev4 4 11 0 14 1 6 15 -10 -66.67 6 40.00
Rev6 103 103 1 165 41 8 206 -62 -30.10 7 3.40
Rev8 0 1 0 0 1 0 1 0 0.00 0 0.00
Wh2 146 3 1 137 12 7 149 9 6.04 6 4.03
Wh5 38 9 8 45 2 9 47 -7 -14.89 1 2.13
Wh7 42 8 0 38 12 0 50 4 8.00 0 0.00
Wh8 6 0 0 5 1 0 6 1 16.67 0 0.00
Sent1 0 1457 0 1363 94 350 1457 -1363 -93.55 350 24.02
Non-Sent 6114 556 725 6058 612 338 6670 56 0.84 -387 -5.80
Total 6114 2013 725 7421 706 688 8127 -1307 -16.08 -37 -0.46
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Table 6.15 Comparison of agreements, misses and intrusions per point, between
DSSA and SYCORAX on the Provo corpus.

DSSA SYCORAX Max ∆ % ∆ ∆ % ∆
Point Agr Mis Int Agr Mis Int Agr Miss Miss Int Int

Indef1 1938 11 26 1844 105 27 1949 94 4.82 1 0.05
Indef3 919 13 46 897 35 44 932 22 2.36 -2 -0.21
Indef4 6 0 1 6 0 1 6 0 0.00 0 0.00
Indef7 117 13 11 110 20 24 130 7 5.38 13 10.00
Pers1 2675 18 52 2628 65 30 2693 47 1.75 -22 -0.82
Pers2 855 16 9 826 45 4 871 29 3.33 -5 -0.57
Pers3 1295 3 11 1255 43 7 1298 40 3.08 -4 -0.31
Pers5 8 2 0 8 2 1 10 0 0.00 1 10.00
Pers6 87 18 21 67 38 29 105 20 19.05 8 7.62
Pers7 9 5 1 10 4 17 14 -1 -7.14 16 114.29
Main1 2403 73 544 2181 295 100 2476 222 8.97 -444 -17.93
Main2 1833 118 213 1754 197 126 1951 79 4.05 -87 -4.46
Main4 606 76 13 633 49 5 682 -27 -3.96 -8 -1.17
Main6 206 58 7 227 37 8 264 -21 -7.95 1 0.38
Main7 66 34 23 64 36 31 100 2 2.00 8 8.00
Main8 8 19 1 13 14 6 27 -5 -18.52 5 18.52
Sec2 305 136 4 360 81 55 441 -55 -12.47 51 11.56
Sec3 14 45 2 31 28 94 59 -17 -28.81 92 155.93
Sec4 11 5 135 4 12 31 16 7 43.75 -104 -650.00
Sec5 343 27 121 255 115 66 370 88 23.78 -55 -14.86
Sec7 5 8 0 2 11 1 13 3 23.08 1 7.69
Sec8 33 44 6 65 12 28 77 -32 -41.56 22 28.57
Neg1 34 11 0 33 12 3 45 1 2.22 3 6.67
Neg4 234 22 8 248 8 10 256 -14 -5.47 2 0.78
Neg5 27 3 1 28 2 2 30 -1 -3.33 1 3.33
Neg7 180 3 43 176 7 21 183 4 2.19 -22 -12.02
Conj3 547 5 5 544 8 5 552 3 0.54 0 0.00
Conj5 228 2 22 218 12 33 230 10 4.35 11 4.78
Conj6 80 0 1 80 0 10 80 0 0.00 9 11.25
Conj8 153 133 51 245 41 99 286 -92 -32.17 48 16.78
Rev1 105 28 20 105 28 8 133 0 0.00 -12 -9.02
Rev4 3 23 0 21 5 3 26 -18 -69.23 3 11.54
Rev6 92 94 5 146 40 8 186 -54 -29.03 3 1.61
Rev8 0 7 0 0 7 3 7 0 0.00 3 42.86
Wh2 175 22 7 178 19 4 197 -3 -1.52 -3 -1.52
Wh5 36 5 11 38 3 12 41 -2 -4.88 1 2.44
Wh7 18 11 0 14 15 0 29 4 13.79 0 0.00
Wh8 2 0 0 1 1 0 2 1 50.00 0 0.00
Sent1 0 3463 0 3302 161 889 3463 -3302 -95.35 889 25.67
Non-Sent 15656 1111 1421 15315 1452 956 16767 341 2.03 -465 -2.77
Total 15656 4574 1421 18617 1613 1845 20230 -2961 -14.64 424 2.10
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These tables reveal a number of constructions for which SYCORAX notably outperforms

DSSA, either by more frequently agreeing with manual scores or by reducing the detection

of false positives:

• Main verbs. SYCORAX produces fewer false positives for simpler main verbs (Main1–

2), and fewer false negatives for earlier compound verbs (Main4–6).

• Early infinitives. On both corpora, SYCORAX scores the use of early-developing

infinitives such as wanna and gotta (Sec2) correctly more often.

• Gerunds and participles. Significantly fewer verbs are misdetected by SYCORAX

as participles (Sec4) than by DSSA. In the Provo corpus, SYCORAX also identifies

gerunds (Sec8) more often than DSSA; however, this does not hold for the Adam

corpus.

• Negations. SYCORAX more often gives a correct score to can’t and don’t (Neg4),

while preventing false positives more frequently for uncontracted negatives (Neg7).

• Subordination. SYCORAX correctly identifies 22% more subordinating conjunctions

(Conj8) on the Adam corpus, and 32% more on the Provo corpus.

• Question inversion. For the simplest inversions (Rev1), SYCORAX produces fewer

intrusions than DSSA, and on the Adam corpus, also correctly identifies 13% more

of those that are present. Inversions of compound verbs with be (Rev4) are correctly

identified two-thirds more often, and of verbs with modals and do (Rev6) are identified

over a quarter more often.

• When and how. Both of these interrogative adverbs, scored as Wh5, are correctly

identified more often than by SYCORAX than by DSSA, though the difference is more

pronounced on the Adam corpus than on the Provo corpus.

Yet although there was a net improvement in accuracy, there are several structures, most

notably pronouns and infinitives, for which SYCORAX performs significantly less accurately
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than DSSA. These inaccuracies, along with potential solutions, will be discussed in greater

detail in the following chapter.

One additional point deserves attention, and that is the sentence point. The agreements

shown in Tables 6.14–6.15 are directly derived from the two programs’ output; unlike the

prior experiments in this chapter, sentence points have not been corrected manually for either

program. For only those sentences which should be given a sentence point, SYCORAX

performs surprisingly accurately, identifying 93.55% within the Adam corpus and 95.35%

within the Provo corpus. The problem in this case is with false positives: in both corpora,

for approximately every four sentences correctly assigned a sentence point, one false positive

was also produced by SYCORAX. As Tables 6.12–6.13 show, although these false positives

have only a minor effect on the correlation of scores, they produce a nearly five percent

decrease in overall point-by-point accuracy.

6.5 The Accuracy-Performance Tradeoff

As discussed previously, accuracy is only one aspect of the performance of automated DSS

analyzers; the time and memory taken to perform an analysis cannot be ignored. The reason

that a custom parser was written for use in SYCORAX was that state-of-the-art parsers

were simply too inefficient compared to existing automated DSS utilities to make up for the

expected increase in accuracy.

Obtaining truly accurate timings for these programs’ DSS analyses proved to be impos-

sible. Not only does each of these programs run under a different runtime environment,

but the process from the perspective of the user is significantly different in each of these

applications:

• In SYCORAX, a Windows .NET application, the text is tagged and then parsed; then,

the resulting parse tree is analyzed by a collection of DSS rules. This entire process

is activated by a single click, so that a DSS table is directly produced from an input

sentence; if necessary, options are specified via checkboxes before running the analysis.
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• DSSA, a Mac OS X application, is most similar in design to SYCORAX. After the

user selects a file, processing begins, and the DSS score is then output with no further

user intervention.

• In CLAN, a Windows C++ application, the text must be morphologically analyzed,

disambiguated, and then analyzed for DSS. Each of these steps requires a separate

command to be entered into CLAN’s command line, but it is possible to run several

commands as a batch.

• In CP, a MS-DOS application, the text must first be converted into a CORPUS file.

A LARSP analysis is then generated from the CORPUS file, and then a DSS analysis

is produced from the LARSP file. Each of these steps requires running a separate

sub-program from CP’s menu and entering appropriate parameters at prompts.

Given the vastly different environments and the vastly different processes necessary to pro-

duce a DSS analysis, it was only reasonable that wall-clock time should instead be used as

a measure of performance—specifically, the amount of time necessary to perform the entire

process generating a DSS score from an input transcript.

6.5.1 Initial Testing

For the following set of tests, the same input files were used: all 201 sentences, including

repetitions, contained within the six charts from Lee (1974), along with the 96 sentences

from Lively (1984). All tests were run on a MacBook with a 2.4 GHz Core 2 Duo processor.

For the three Windows applications, tests were run in a Windows XP Mode virtual machine

under Windows 7 64-bit; running the programs natively in Windows 7 would have been the

best option, of course, but this was impossible given the aforementioned incompatibility of

CP. As it was a Macintosh application, DSSA was simply run using the stock installation of

Mac OS X 10.6.
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During an initial test of SYCORAX, an odd discrepancy in timing became apparent; the

first analysis in any SYCORAX execution took approximately 0.7 seconds longer than any

analysis afterward. The reason for this delay was that the parser and analyzer were only

compiled into native code and loaded into memory by the .NET framework’s just-in-time

compiler at the start of the first analysis. To improve the program’s apparent performance

from the end user’s perspective, the tagger and parser were primed immediately after the

tagger’s lexicon was loaded.

With this modification made, the execution times for SYCORAX are shown in Table 6.16.

Clearly, the greatest bottleneck in the case of SYCORAX is the initialization phase; once

initialization is complete, a transcript of a hundred sentences can be analyzed in a fraction

of a second.

Table 6.16 Initialization and analysis times for SYCORAX, after adding priming
of analyzer.

Seconds to run
1 2 3 4 5 Avg

Initialize 6.35 6.28 6.33 6.21 6.04 6.24
Analyze Lee 0.89 0.57 0.67 0.70 0.64 0.69
Analyze Lee again 0.55 0.55 0.68 0.66 0.52 0.59
Analyze Lively 0.56 0.58 0.59 0.58 0.59 0.58
Analyze Lively again 0.53 0.47 0.57 0.52 0.52 0.52

For the purpose of comparison, Computerized Profiling, CLAN and DSSA were all run

five times on the same collection of sentences from Lee. The wall-clock time taken for each

analysis is shown in Table 6.17.

As described previously, obtaining a truly accurate comparison of the time taken by

just the DSS algorithms is impossible, especially for Computerized Profiling; as discussed in

Chapter 5, that program’s interface is designed so as not to allow the steps of the analysis

to be performed as a batch. With this caveat in mind, the time taken by SYCORAX still

appears to be extremely competitive, especially in comparison to DSSA, the most accurate
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Table 6.17 Analysis times for Computerized Profiling, CLAN, and DSSA, from
raw transcript to DSS output.

Seconds to run
1 2 3 4 5 Avg

Computerized Profiling 19.46 20.23 20.62 18.96 19.35 19.72
CLAN 5.46 4.96 3.45 3.59 3.45 4.18
DSSA 0.59 0.58 0.54 0.72 0.60 0.61

of its competitors by far. This is particularly significant given that SYCORAX was run in a

virtualized environment while DSSA was run natively.

6.5.2 Further Tests

To determine whether this pattern would still hold for an even larger input, both SYCORAX

and DSSA were run on a combination of the first ten transcripts from the Adam corpus,

which comprise a total of 1,036 sentences. In this case, because CLAN and CP were not

being evaluated, both SYCORAX and DSSA were run natively rather than virtualized.

The results for this experiment are shown in Table 6.18. Although it initially appeared

that SYCORAX was significantly slower than DSSA, by a factor of about 15, this turned

out to be entirely a side effect of the Windows Forms GUI. Buffering the output to the GUI

caused the run time to be slightly faster than DSSA on average, as also shown in Table 6.18.

Table 6.18 Analysis times for DSSA and SYCORAX on a 1,036-sentence subset
of the Adam corpus.

Seconds to run
1 2 3 4 5 Avg

DSSA 1.91 1.93 1.99 1.99 1.91 1.95
SYCORAX 31.63 30.67 30.60 . . . . . . 30.97
SYCORAX w/ Buffer 2.09 1.58 1.61 1.54 1.59 1.68
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One final concern remained regarding performance, and that was memory usage. To

measure this, both DSSA and SYCORAX were run five times on the same subset of the Adam

corpus without exiting either program, and the memory usage was recorded at the peak of

each analysis for both programs. The results of this experiment are shown in Table 6.19.

Table 6.19 Memory usage, in megabytes, for DSSA and SYCORAX on a 1,036-
sentence subset of the Adam corpus.

Megabytes of RAM
1 2 3 4 5 Avg

DSSA 18.9 18.8 19.7 20.6 20.5 19.7
SYCORAX 138 187 241 . . . . . . 189
SYCORAX w/ Buffer 112 130 145 165 183 147

Unfortunately, memory use was the one aspect in which SYCORAX did not outperform

its competitors; it consistently used almost ten times as much RAM as DSSA. This appeared

to be the result of a memory leak somewhere in the program; while DSSA’s memory usage

went up and down, SYCORAX’s memory consumption continued to increase after each

analysis. Nonetheless, even with this memory leak, SYCORAX’s use of RAM was still sig-

nificantly smaller than it would have been if a full-fledged parser such as MaltParser had

been incorporated.

Clearly, then, JED is a worthwhile compromise for use in SYCORAX: it allows the DSS

analyzer to identify certain structures which a purely linear analysis could not, with memory

consumption significantly lower than that of an exhaustive parser, and with execution times

competitive with those of linear DSS analyzers.
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Known Issues and Future Work

Although SYCORAX did perform more poorly on a number of transcripts than DSSA, its

overall performance on the Adam and Provo corpora, together with its performance on the

Lee and Lively data sets, provide strong evidence that the addition of a shallow parser,

combined with DSS rules that are able to make use of the parse tree, can improve the

accuracy of automated DSS with no significant effect on execution time. Yet there are still

aspects of SYCORAX which could benefit from further improvement.

First, there are still problems with SYCORAX’s accuracy. Of course, there is the afore-

mentioned issue of sentence points; however, even with the grammaticality of sentences

scored manually, several other constructions frequently produce false negatives or false pos-

itives when automatically scored by SYCORAX.

Second, there are questions regarding the accuracy of the manual scores which have been

assigned to the corpora used by Judson (2006). Although grading was performed by speech-

language pathologists trained in DSS, and although inter-rater reliability between two raters

was found to be between 95% and 97% by Judson (2006), I have found a number of sentences

which are clearly scored incorrectly based solely on examples given in Lee’s guidelines.

Finally, though it does not affect the accuracy of SYCORAX, there is the problem of

memory consumption, as discussed in the previous chapter. Although SYCORAX is on par

with its competition with respect to timing, and slightly better with respect to accuracy,

this improved accuracy comes at the expense of a greater RAM footprint. There is a clear

need to optimize SYCORAX’s memory use so as to make it more efficient in that respect.

130
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7.1 Errors Made by SYCORAX

Although SYCORAX did produce DSS scores with greater accuracy than DSSA on a variety

of tests, as shown in Table 6.14–6.15 (pages 122–123), a number of syntactic structures are

still scored more poorly by SYCORAX than by DSSA and thus deserve further attention.

Pronouns, in particular, are a frequent source of error: although there were fewer intru-

sions for most indefinite and personal pronoun scores, there are an even greater number

of pronouns in the Adam and Provo corpora which were correctly identified by DSSA but

not by SYCORAX, for two main reasons. A majority of the misses for indefinite pronouns

occur on the Indef1 score; most of these can be traced to incorrect tagging of the word

that, which, as discussed previously, can be given three different scores based on context.

Personal pronouns, on the other hand, were often missed by SYCORAX because of mis-

taken judgments about subject-verb agreement, usually resulting from incorrect parsing;

here, additional improvements to JED’s rules could potentially be beneficial.

Another common problem which deserves further attention is the distinction between

complementing and adjunct infinitives. In both corpora, SYCORAX frequently mistook com-

plementing infinitives (Sec5) for adjuncts (Sec3), producing intrusions on the latter score

and, in the case of the Provo corpus, numerous misses on the former. This, too, could be

solved through additional tweaks to the two infinitive attachment rules in the parser.

Finally, although this was not one of the structures for which SYCORAX had a net

decrease in accuracy, there is a prevalent error in the Main1 score that involves the contraction

’s, which is often incorrectly tagged as a possessive by ODT. This is one of the main problems

with a tag-driven parser such as JED: if the tags are in any way incorrect, the resulting parse

will also be incorrect. To correct all of the misses involving ’s, it would be necessary either

to improve ODT’s rules to better disambiguate ’s, or else to perform the disambiguation in

the parser itself.
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7.2 Errors in Manual Scores

Furthermore, some of the errors in the Provo corpus may not be due to the automated DSS

analysis at all; rather, they may be purely the fault of the human analyzers whose work

Judson used.

Ten errors were discovered in the manual scores for the Provo corpus during a cursory

glance at the results from SYCORAX; these are presented below in Table 7.1. Admittedly,

this is a small sample which makes up only 0.2% of the entire corpus; nonetheless, to ensure

that accuracy is measured reliably, it would be worthwhile to check the manual scores for

any other significant inaccuracies and correct any errors that were found.

Table 7.1 A selection of ten errors in the manual scores of the Provo corpus.

Sentence Scored As Should Be
I did it. Main1 Main2
My mom help put these one on. Main1 Attempt
My mom help put these on. Main1 Attempt
My mom help put them on. Main1 Attempt
It’s not the tape I want. Pers1 Indef1
It’s a eyes. Pers1 Indef1
There’s guns here. Main1 Attempt
Where’s their magnets? Main1 Attempt
I gotta look for it. Main2 Attempt
You didn’t like it? Rev6 None

7.3 Memory Consumption

Finally, it is necessary to address the memory consumption of SYCORAX. While the 200-

megabyte RAM footprint of SYCORAX is significantly better than that of full-fledged

state-of-the-art parsers, it nonetheless seems quite extreme in comparison to the memory

consumption of SYCORAX’s closest competitors.
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Curiously, the greatest memory leak in SYCORAX comes from neither the parser nor the

DSS analysis algorithm, but rather, from the Windows Forms GUI. Again, this can be con-

clusively demonstrated through an experiment using a command-line version of SYCORAX,

which was trivial to develop due to the fact that SYCORAX’s model lies in a separate

library from the view and controller. Running this experimental command-line version of

SYCORAX on the same input used in Table 6.19 (page 129) stabilized at 80 megabytes of

RAM after approximately ten seconds of execution.

Furthermore, the bulk of this memory usage lies in the tagger. Simply initializing the ODT

library, with no further analysis performed, uses 55 megabytes of RAM in itself. This is no

doubt due to the fact that ODT’s lexicon is a 16-megabyte text file when decompressed—and

is stored in RAM by ODT in an even less compact format, using a 32-bit integer for each

tag frequency when most frequencies are less than a single digit in size.

Clearly, SYCORAX could use some further optimization to make it even more memory-

efficient; optimizing the GUI code and using a more efficient data structure to store the

lexicon would both produce significant drops in RAM consumption.
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Appendix A

Penn Treebank Tag Set

The following table, defining all part-of-speech tag symbols, is reproduced from the Penn

Treebank tagging guidelines (Santorini, 1995).

Tag Part of speech
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle

(Continued on next page)
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(Continued from previous page)
Tag Part of speech
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb



Appendix B

Summary of DSS Scoring Rules

The following two-page table, reproduced from Lee (1974), summarizes the entire set of DSS

scoring rules as proposed by Lee; the numbers on the left represent the point values given

to constructs, while the labels on top identify the columns in which constructs are scored.

Thus, for instance, the words it, this and that each score one point in the Indefinite Pronouns

column, while because is given six points in the Conjunctions column.

144
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Indefinite Pronouns
or Noun Modifiers

Personal
Pronouns Main Verbs Secondary Verbs

1

2

3

4

5

6

7

8

it, this, that 1st and 2nd person: I, me, my, 
mine, you, your(s)

A. Uninflected verb:
I see you.

B. copula, is or ’s:
It’s red.

C. is + verb + ing:
He is coming.

3rd person: he, him, his, she, her, 
hers

A. -s and -ed: plays, played
B. irregular past: ate, saw
C. Copula: am, are,

was, were
D. Auxiliary am, are,

was, were

Five early-developing infinitives:
I wanna see (want to see)
I’m gonna see (going to see)
I gotta see (got to see)
Lemme [to] see (let me [to] see)
Let’s [to] play (let [us to] play)

A. no, some, more, all, lot(s), 
one(s), two (etc.), other(s), 
another

B. something, somebody, 
someone

A. Plurals: we, us, our(s), they, 
them, their

B. these, those

Non-complementing infinitives:
  I stopped to play.
  I’m afraid to look.
  It’s hard to do that.

nothing, nobody, none, no one A. can, will, may + verb: may go
B. Obligatory do + verb: don’t go
C. Emphatic do + verb:

I do see.

Participle, present or past:
  I see a boy running.
  I found the toy broken.

Reflexives: myself, yourself, 
himself, herself, itself, themselves

A. Early infinitival complements 
with differing subjects in 
kernels:
I want you to come.
Let him [to] see.

B. Later infinitival complements:
I had to go. I told him
to go. I tried to go.
He ought to go.

C. Obligatory deletions:
Make it [to] go.
I’d better [to] go.

D. Infinitive with wh-word:
I know what to get.
I know how to do it.

A. Wh-pronouns: who, which, 
whose, whom, what, that, how 
many, how much
I know who came.
That’s what I said.

B. Wh-word + infinitive:
I know what to do.
I know who(m) to take.

A. could, would, should, might + 
verb:
might come, could be

B. Obligatory does, did + verb
C. Emphatic does, did + verb

A. any, anything, anybody, anyone
B. every, everything, everybody, 

everyone
C. both, few, many, each, several, 

most, least, much, next, first, 
last, second (etc.)

(his) own, one, oneself, whichever, 
whoever, whatever
  Take whatever you like.

A. Passive with get, any tense
Passive with be, any tense

B. must, shall + verb:
must come

C. have + verb + en:
I’ve eaten

D. have got: I’ve got it.

Passive infinitival complement:
With get:
I have to get dressed.
I don’t want to get hurt.

With be:
I want to be pulled.
It’s going to be locked.

A. have been + verb + ing
had been + verb + ing

B. modal + have + verb + en: may 
have eaten

C. modal + be + verb + ing: could 
be playing

D. Other auxiliary combinations: 
should have been sleeping

Gerund:
Swinging is fun.
I like fishing.
He started laughing.
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Negatives Conjunctions
!nterrogative
Reversals Wh-Questions

1

2

3

4

5

6

7

8

it, this, that + copula or auxiliary is, 
’s + not:
It’s not mine.
This is not a dog.
That is not moving.

Reversal of copula:
!sn’t it red? Were they there?

A. who, what, what + noun:
Who am I? What is he eating? 
What book are you reading?

B. where, how many, how much, 
what...do, what...for
Where did it go?
How much do you want?
What is he doing?
What is a hammer for?

and

can’t, don’t Reversal of auxiliary be:
!s he coming? !sn’t he coming? Was 
he going? Wasn’t he going?

isn’t, won’t A. but
B. so, and so, so that
C. or, if

when, how, how + adjective
When shall I come?
How do you do it?
How big is it?

because A. Obligatory do, does, did: Do they 
run? Does it bite? Didn’t it hurt?

B. Reversal of modal:
Can you play? Won’t it hurt? Shall 
! sit down?

C. Tag question:
It’s fun, isn’t it?
It isn’t fun, is it?

All other negatives:
A. Uncontracted negatives:

I can not go.
He has not gone.

B. Pronoun-auxiliary or pronoun-
copula contraction:
I’m not coming.
He’s not here.

C. Auxiliary-negative or copula-
negative contraction:
He wasn’t going.
He hasn’t been seen.
It couldn’t be mine.
They aren’t big.

why, what if, how come,
how about + gerund

Why are you crying?
What if I won’t do it?
How come he is crying?
How about coming with me?

A. where, when, how, while, 
whether (or not), till, until, 
unless, since, before, after, for, 
as, as + adjective + as, as if, like, 
that, than
I know where you are.
Don’t come till I call.

B. Obligatory deletions:
I run faster than you [run].
I’m as big as a man [is big].
It looks like a dog [looks].

C. Elliptical deletions (score 0):
That’s why [I took it].
I know how [I can do it].

D. Wh-words + infinitive:
I know how to do it.
I know where to go.

A. Reversal of auxiliary have:
Has he seen you?

B. Reversal with two or three 
auxiliaries:
Has he been eating?
Couldn’t he have waited?
Could he have been crying?
Wouldn’t he have been going?

whose, which, which + noun
Whose car is that?
Which book do you want?



Appendix C

Example Sentences from Lee

The following tables, providing examples of DSS scoring, are reproduced from Lee (1974).

Table C.1 Chart 10 from Lee: A hypothetical corpus illustrating a variety of pos-
sible DSS scores.

Indef Pers Main Sec Inter Sent
Pro Pro Verb Verb Neg Conj Rev Wh-Q Pt Total

1 Boy eat. - 0 0
2 Boy eat cookie. - 0 0
3 The boy is eating a cookie. 1 1 2
4 The boys are eating cookies. 2 1 3
5 They ate them. 3,3 2 1 9
6 They didn’t eat them. 3,3 6 7 1 20
7 Didn’t they eat them? 3,3 6 7 6 1 26
8 Why didn’t they eat them? 3,3 6 7 6 7 1 33
9 Why didn’t they? 3 inc. 7 6 7 1 24

10 All the cookies were eaten. 3 7 1 11
11 I want to eat some cookies. 3 1 1 2 1 8
12 I want him to eat some cookies. 3 1,2 1 5 1 13
13 I tried to find some cookies. 3 1 2 5 1 12
14 Could you find them? 1,3 6 6 1 17
15 You couldn’t find them, could you? 1,3 6 7 6 1 24
16 Nobody knows where to find them. 4 3 2 5 8 1 23
17 Who knows where she keeps them? 2,3 2,2 8 2 1 20
18 I looked but I couldn’t find them. 1,1,3 2,6 7 5 1 26
19 I like eating cookies. 1 1 8 1 11
20 Nobody told me that I shouldn’t eat them. 4 1,1,3 2,6 7 8 1 33
21 I only ate a few. 7 1 2 1 11
22 Somebody else must have eaten all the rest. 3,3 8 1 15
23 Let’s eat some more. 3,3 1 2 1 10
24 Mommy said, “Don’t eat those cookies.” 3 2,4 4 1 14
25 That isn’t what she said. 1 6,2 1,2 5 1 18
26 Him can’t have some. - - 4 4 0 8
27 What you eating? 1 - - 2 0 3
28 Her don’t gots any. 7 - - - 0 7
29 Mommy find out. - 0 0
30 You want to get spanked? 1 - 7 - 0 8

Total 409
409/30 = 13.63 DSS
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Table C.2 Chart 12 from Lee: Transcript from “C.S.,” a developmentally delayed
child of age 3;7.

Indef Pers Main Sec Inter Sent
Pro Pro Verb Verb Neg Conj Rev Wh-Q Pt Total

1 You do. (imperative) 1 1 0 2
2 Car go. - 0 0
3 Dog do. - 0 0
4 Table move. - 0 0
5 Mommy clean. - 0 0
6 I put back. 1 1 0 2
7 I see little. 1 1 0 2
8 I got that. (got/have) 1 1 - 0 2
9 You got paper. (got/have) 1 - 0 1

10 I told you. 1,1 2 1 5
11 Boy take that. 1 - 0 1
12 Dog lie down. - 0 0
13 Girl ride bike. - 0 0
14 I no know. 1 - - 0 1
15 I no take. 1 - - 0 1
16 I put in here. 1 1 0 2
17 I got two cow. (got/have) 3 1 - 0 4
18 Who broke my chair? 1 2 2 1 6
19 That go in barn. 1 - 0 1
20 He go in bed. 2 - 0 2
21 Who eat my cereal? 1 - 2 0 3
22 Truck no need that. 1 - - 0 1
23 Table go in here? - - 0 0
24 Bed go in here? - - 0 0
25 That go in here? 1 - - 0 1
26 I see doggy on TV. 1 1 0 2
27 I put tea in here. (-/the) 1 1 0 2
28 I get girl and baby. (-/the) 1 1 3 0 5
29 Who sit in my chair? 1 - 2 0 3
30 That little girl ride car. 1 - 0 1
31 He go in he house. 2,- - 0 2
32 He no go in that. 1 2 - - 0 3
33 Little baby say, “Who eat my cereal all up?” 3 1 -,- 2 0 6

Total 61
61/33 = 1.85 DSS
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Table C.3 Chart 14 from Lee: Transcript from “A.W.,” a normal child of age 2;1.

Indef Pers Main Sec Inter Sent
Pro Pro Verb Verb Neg Conj Rev Wh-Q Pt Total

1 I can get fix it. 1 1 - - 0 2
2 That’s broken. 1 1 1 3
3 Baby wakes up. 2 0 2
4 I don’t know. 1 4 4 1 10
5 I know. 1 1 1 3
6 She gots coat. 2 - 0 2
7 Her shopping. - - 0 0
8 I want to see. 1 1 2 1 5
9 This is talk. 1 - 0 1

10 Get that baby’s goes go up. (imperative) 1 1 -,- 0 2
11 It broke it. 1,- 2 0 3
12 This is a baby sock. 1 1 0 2
13 They wake her up. 3,2 - 0 5
14 Her broke a baby’s chair. - 2 0 2
15 It bit you and bite. 1 1 2,- 3 0 7
16 Girl making dinner oatmeal. - 0 0
17 Look. (imperative) 1 1 2
18 Him have a bath. - - 0 0
19 How you open? 1 - - 5 0 6
20 He have a baseball. 2 - 0 2
21 His shoe will fall off. 2 4 1 7
22 Her sit in chair. - - 0 0
23 Her stand up. - - 0 0
24 Her can fall off. - 4 0 4
25 Now he sits up. 2 2 1 5
26 Dolly sit there. - 0 0
27 Daddy fix it. 1 - 0 1
28 It works. 1 2 1 4
29 It work. 1 - 0 1
30 Fix it. (imperative) 1 1 1 3
31 That’s a man. 1 1 1 3
32 Baby fell off. 2 0 2
33 Cow fall off. - 0 0
34 It fall off. 1 - 0 1
35 Doggie walk. - 0 0
36 He fall off. 2 - 0 2
37 The girl sitting there. - 0 0
38 Doggie watching TV. - 0 0

Total 92
92/38 = 2.42 DSS
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Table C.4 Chart 15 from Lee: Transcript from “A.R.,” a normal child of age 3;7.

Indef Pers Main Sec Inter Sent
Pro Pro Verb Verb Neg Conj Rev Wh-Q Pt Total

1 He’s trying to stop everybody. 7 2 1 5 1 16
2 (He’s) he’s putting water on here. 2 1 1 4
3 He’s putting some water in here. 3 2 1 1 7
4 They’re washing dog. 3 2 1 6
5 The dog came out. 2 1 3
6 He jump out. 2 - 0 2
7 She cover her eyes. 2,2 - 0 4
8 (Cause) the soap won’t go in her eyes. 2 4 5 1 12
9 (Because) his shoe came off. 2 2 1 5

10 It’s going by the boy. 1 1 1 3
11 (Took. . . ) his shoe fell off. 2 2 1 5
12 (He. . . he. . . ) he laughed at the shoe. 2 2 1 5
13 (They) they fell out of his hand. 3,2 2 1 8
14 They didn’t fall. 3 6 7 1 17
15 He’s carrying them with his shirt. 2,3,2 1 1 9
16 (He. . . he’s. . . ) he takes it away. 1 2 2 1 6
17 He took the (the) hot-dog. 2 2 1 5
18 (She. . . her. . . she. . . her. . . sher. . . ) 2 2 1 5

her toys are falling.
19 Those are toys. 3 2 1 6
20 Why are they falling? 3 2 4 7 1 17
21 They fall. 3 1 1 5
22 He eats them. 2,3 2 1 8
23 He eat them. 2,3 - 0 5
24 The dog he (he) barks. - 2 0 2
25 He (he. . . he. . . ) bite them. 2,3 - 0 5
26 He’s putting him here. 2,2 1 1 6
27 Her books fell out of her hand. 2,2 2 1 7
28 She put them in here. 2,3 1 1 7
29 It fell. 1 2 1 4
30 She say, ”Oh, no!” 2 - 0 2
31 He’s trying to take it off. 1 2 1 5 1 10
32 (She. . . she. . . ) she’s vacuuming off. (-/him) 2 1 0 3
33 (But) they’re singing now. 3 2 1 6
34 Where’s the sister one? (-/possessive) 3 1 1 2 0 7
35 (But) I want to go. 1 1 2 1 5
36 She drank the soup. 2 2 1 5
37 Her chair fell apart. 2 2 1 5
38 ”Who was eating her soup?” (her/my) - 2 2 0 4
39 He said, ”Where’s my soup?” 2,1 2,1 1 2 1 10
40 (Cause her. . . her. . . cause. . . ) 1,3 2 2 1 9

her baby bear ate it all.
41 He said, ”Somebody broke it.” 3,1 2 2,2 1 11
42 They fixed it. 1 3 2 1 7
43 They go up. (go/went) 3 - 0 3
44 I don’t know. 1 4 4 1 10
45 She said, ”Get out of my bed.” 2,1 2,1 1 7
46 (She. . . she. . . went. . . ) she’s running. 2 1 1 4
47 She went way over here. 2 2 1 5
48 He said, ”Come back.” 2 2,1 1 6
49 ”Come back.” 1 1 2
50 She drinked all the soup. 3 2 - 0 5

Total 320
320/50 = 6.40 DSS



151

Table C.5 Chart 17 from Lee: Transcript from “N.S.,” a normal child of age 2;0.

Indef Pers Main Sec Inter Sent
Pro Pro Verb Verb Neg Conj Rev Wh-Q Pt Total

1 Look. (imperative) 1 1 2
2 My coat go? (Where did my coat go?) 1 - - 0 1
3 I do it. 1 1 - 0 2
4 The baby sit down there. - 0 0
5 More go. (Some more cars are going) 3 - 0 3
6 Where spoon go? - - 2 0 2
7 Baby’s eat. (Baby is eating) - 0 0
8 It fall down. 1 - 0 1
9 It broke. 1 2 1 4

10 Baby fits in that. 1 2 0 3
11 The baby is sleepy. 1 1 2
12 I know. 1 1 1 3
13 (And) that go fall on the baby. 1 - - 0 1
14 Is this a knife? 1 1 1 1 4
15 Fork fall down. - 0 0
16 Her crying in there. - - 0 0
17 Her crying. - - 0 0
18 A knife eat baby. - 0 0

(Baby eats with a knife)
Total 28

28/18 = 1.50 DSS
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Table C.6 Chart 19 from Lee: Transcript from “S.B.,” a normal child of age 2;6.

Indef Pers Main Sec Inter Sent
Pro Pro Verb Verb Neg Conj Rev Wh-Q Pt Total

1 She washing. 2 - - 2
2 He wash. 2 - - 2
3 They riding. 3 - - 3
4 Look at this. (imperative) 1 1 1 3
5 He fell off. (he/it) - 2 - 2
6 He look like Roger. 2 - 8 - 10
7 He want baby. 2 - - 2
8 He was hiding. 2 2 1 5
9 I know where he’s hiding. 1,2 1,1 8 1 14

10 He wake up baby. 2 - - 2
11 She drank it up. 1 2 2 1 6
12 She said, ”Sit there.” (imperative) 2 2,1 1 6
13 He know. 2 - - 2
14 They find sleep baby. 3 1 - - 4
15 She wake up. 2 - - 2
16 I don’t know. 1 4 4 1 10
17 Her fell off. - 2 - 2
18 That’s his chair. 1 2 1 1 5
19 There’s one. 3 1 - 4
20 Her bed fit. 2 - - 2
21 They girls fall down. - - - 0
22 Come on. (imperative) 1 1 2
23 Let’s see. (imperative) 1 2 1 4
24 They fit. 3 1 1 5
25 He holding he hand. 2,- - - 2
26 Now they hugging. 3 - - 3
27 They fall. 3 - - 3
28 They looking me. 3,1 - - 4
29 (He. . . ) he following him. 2,2 - - 4
30 They can’t fit. 3 4 4 1 12
31 They not fit. 3 - - - 3
32 Look. (imperative) 1 1 2

Total 132∗

132/32 = 4.12 DSS

∗Lee gives the total as 131, and the DSS score as 4.09. This is incorrect, and the correct total and
average are shown above.



Appendix D

Example Sentences from Lively

Both of the following sets of sentences are reproduced from the appendices to Lively (1984).

Lively Appendix A

Indef Pers Main Sec Inter Sent
Pro Pro Verb Verb Neg Conj Rev Wh-Q Pt Total

1 I gotta take this thing off. 1 1 - 2 0 4
2 Her gonna talk to Daddy. - - 2 0 2
3 Will she help me? 2,1 4 6 1 14
4 Yes, it does. 1 inc. 1 2
5 Here’s all the dishes. 3 - 0 3
6 I don’t know what to make. 1,6 4 5 4 1 21
7 He climbed the ladder to pick one of these. 3 2,3 2 3 1 14
8 We can get all the stuff out of it. 3,1 3 4 1 12
9 Now you’re ready but he has to get his 1,2,2 2,2 5 5 1 20

clothes on.
10 Where’s those other eyes? 3 3 - 1 2 0 9

Total 101
101/10 = 10.1 DSS
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Lively Appendix B

I. Determining sample

A. (omitted as irrelevant to SYCORAX)

II. Sentence Point (grammatically and semantically correct)

A. Daddy came home. (sentence point)
B. Carrie brang me some ice cream. (no sentence point)
C. Mom went to the golf court. (no sentence point)

III. Attempt Mark and Incompletes

A. Attempt (grammatic, semantic, or pragmatic error)
1. I maked my bed. (maked = attempt mark)
2. Her is my friend. (her = attempt mark)

B. Incomplete (conversationally appropriate)
1. Clinician: Are you jumping?

Child: No, I’m not. (main verb = inc.)
2. I don’t want to. (secondary verb = inc.)
3. Clinician: Do you know why you’re here?

Child: I don’t know why. (conjunction why = inc.)

IV. Indefinite Pronouns and Noun Modifiers

A. No adverbs
1. Johnny eats more than Bobby. (more = indef. pronoun)
2. Casey wants more cookies. (more = noun modifier)
3. Sally finished last. (last = adverb, thus no score)

B. Numbers
1. I have fifteen Smurfs. (fifteen = 3 as noun modifier)
2. Carol was third in the race. (third = 7 as indef. pronoun)

V. Personal Pronouns (Wh-pronouns vs. Wh-conjunctions vs. Wh-questions)

A. I know who he is. (who = 6 personal pronoun)
B. I remember where I put them. (where = 8 conjunction)
C. Where are the toys? (where = 2 wh-question)

VI. Main Verbs

A. Have and got
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1. I’ve got three trucks. (have got = 7)
2. I got three trucks in my toy box. (got = attempt mark)

B. Inflections
1. Smokey is barking. (is barking = 1)
2. Smokey was barking. (was barking = 2)
3. I want my blanket. (want = 1)
4. He wants his blanket. (wants = 2)

C. Use of “do”
1. We do see the bikes. (do see = 4)
2. We did see the bikes. (did see = 6)
3. Do the dishes. (do = 1)
4. I did the dishes yesterday. (did = 2)

D. Modal auxiliary (inflected vs. uninflected)
1. Alison may go to the store. (may go = 4)
2. John might go with her. (might go = 6)

E. Must and shall
1. You must finish your dinner. (must finish = 7)
2. We shall decide later. (shall decide = 7)

F. Perfect tense
1. The kittens have torn the curtains. (have torn = 7)
2. The kittens have a new bed. (have = 1)
3. The kittens had an old blanket. (had = 2)

G. Multiple auxiliaries
1. He has been singing a lot. (has been singing = 8)

H. Score form in all relevant categories
1. Didn’t we see you yesterday? (didn’t see = main verb 6, interrog. reversal 6,

negative 7)
I. Passives

1. The apple is rotten. (is = 1)
2. The cow got milked. (got milked = 7)

J. Compound verbs (obligatory vs. optional deletions)
1. They were playing the piano and singing. (were playing = 2; were singing = 2)
2. The mouse can fit but the cat can’t. (can fit = 4; can’t = incomplete in Main

Verb category)

VII. Secondary Verbs

A. Absent infinitive marker “to”
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1. Make the helicopter go. (infinitive (to) go = 5)
B. Five special lexical verbs plus infinitive (2 or 5)

1. I wanna talk. (talk = 2)
2. I’m going to talk. (talk = 2)
3. I’ve gotta talk to him. (talk = 2)
4. Lemme talk to David. (talk = 2)
5. Let’s talk now. (talk = 2)
6. I want you to talk. (talk = 5—different subject)
7. They wanted the girls to talk. (talk = 5)
8. Let him talk now. (talk = 5)

C. Complementing vs. noncomplementing infinitives
1. He went out to play. (to play = 3)
2. They asked me to join. (to join = 5)

VIII. Negatives (this, that, or it + is + not = 1)

A. This is not mine. (not = 1)
B. That’s not yours. (not = 1)
C. It’s not fair. (not = 1)
D. Mike was not at home. (not = 7)

IX. Conjunctions (Wh-conjunctions: refer to V.)

X. Interrogative Reversals

A. Score both Int. Reversal and Wh-question
1. Where is Ruth? (Int. Rev. = 1; Wh-question = 2)
2. When are we going? (Int. Rev. = 4; Wh-question = 5)

B. Tag questions (6 if correct in all respects)
1. Alicia worked, didn’t she? (didn’t she = 6)
2. Bill isn’t home, is he? (is he = 6)

XI. Wh-questions (refer to V.)


