INVERSE REINFORCEMENT LEARNING FOR ROBOTIC APPLICATIONS: HIDDEN VARIABLES,
MuLTIPLE EXPERTS AND UNKNOWN DYNAMICS

by

KENNETH BOGERT
(Under the Direction of Prashant Doshi)
ABSTRACT

Robots deployed into many real-world scenarios are expected to face situations that their design-
ers could not anticipate. Machine learning is an effective tool for extending the capabilities of these
robots by allowing them to adapt their behavior to the situation in which they find themselves.
Most machine learning techniques are applicable to learning either static elements in an environ-
ment or elements with simple dynamics. We wish to address the problem of learning the behavior
of other intelligent agents that the robot may encounter. To this end, we extend a well-known
Inverse Reinforcement Learning (IRL) algorithm, Maximum Entropy IRL, to address challenges
expected to be encountered by autonomous robots during learning. These include: occlusion of the
observed agent’s state space due to limits of the learner’s sensors or objects in the environment,
the presence of multiple agents who interact, and partial knowledge of other agents’ dynamics.
Our contributions are investigated with experiments using simulated and real world robots. These
experiments include learning a fruit sorting task from human demonstrations and autonomously
penetrating a perimeter patrol. Our work takes several important steps towards deploying IRL
alongside other machine learning methods for use by autonomous robots.

INDEX WORDS: robotics, inverse reinforcement learning, machine learning, Markov decision
process

INVERSE REINFORCEMENT LEARNING FOR ROBOTIC APPLICATIONS: HIDDEN VARIABLES,
MULTIPLE EXPERTS AND UNKNOWN DYNAMICS

by

KENNETH BOGERT

B.S., The University of North Carolina at Asheville, Asheville, NC, 2004

A Dissertation Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the
Requirements for the Degree

DocCcTOR OF PHILOSOPHY

ATHENS, GEORGIA

2016

© 2016
Kenneth Bogert
All Rights Reserved

INVERSE REINFORCEMENT LEARNING FOR ROBOTIC APPLICATIONS: HIDDEN VARIABLES,
MULTIPLE EXPERTS AND UNKNOWN DYNAMICS

by

KENNETH BOGERT

Approved:
Major Professor: Prashant Doshi
Committee: Walter D. Potter

Lakshmish Ramaswamy
Brian Ziebart

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School
The University of Georgia
August 2016

Dedicated to the world, for allowing me run around on it for a little while.

iv

Acknowledgments

First and foremost, I want to thank my advisor, Dr. Prashant Doshi, for all he has done these past
five years. His motivation and commitment to excellence has prepared me for success as a professor
of computer science. Our lengthy conversations and collaboration on my research have significantly
contributed to my growth as a scholar and establishing international recognition of our work.

I would like to thank my lab-mates for the debates and discussion that helped me along my
journey, including Ekhlas Sonu, BJ Wimpey, Muthu Chandrasekaran, Roi Ceren, William Richard-
son, Fadel Adoe, Shervin Shahryari, Sina Solaimanpour, Indrajit Das, Kedar Marathe, Maulesh
Trivedi, Shibo Li, Yu Qiu, Shan Khan, Anuja Nagare, Anousha Mesbah, and Xia Qu.

Thanks to my close friends, the Family and Norwood, for the support and encouragement I
needed to see this through; to Laura, for your patience, wisdom and understanding poured out at a
moment’s notice; to Kyle Johnsen for providing endless advice and expertise that I will likely make
use of for the rest of my life; to my family for your love and encouragement; and finally, thanks to
Dr. Bert and Hertha for pushing me towards graduate school, none of this would have happened if
not for you!

Publication List:

1. Kenneth Bogert and Prashant Doshi. ”Multi-Robot Inverse Reinforcement Learning under
Occlusion with Estimation of State Transitions” Under Review.

2. Kenneth Bogert and Prashant Doshi. ”Inverse Reinforcement Learning with Hidden Data:
Scaling to Multiple Robots” In Preparation.

3. Kenneth Bogert, Jonathan Feng-Shun Lin, Prashant Doshi, and Dana Kulic. ”Expectation-
Maximization for Inverse Reinforcement Learning with Hidden Data” In Proceedings of the
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp.
1034-1042, 2016, Singapore.

4. Kenneth Bogert and Prashant Doshi. ”"Toward Estimating Others Transition Models Under
Occlusion for Multi-Robot IRL” In Proceedings of the 24th International Joint Conferences
on Artificial Intelligence (IJCAI), pp. 1867-1873, 2015, Buenos Aires, Argentina.

5. Kenneth Bogert, Sina Solaimanpour, Prashant Doshi. ”(Demonstration) Aerial Robotic Sim-
ulations for Evaluation of Multi-Agent Planning in GaTAC” In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1919-
1920, 2015, Istanbul, Turkey.

6. Kenneth Bogert and Prashant Doshi. ”(Extended abstract) Multi-Robot Inverse Reinforce-
ment Learning under Occlusion with State Transition Estimation” In Proceedings of the

International Conference on Autonomous Agents and Multi-Agent systems (AAMAS), pp.
1837-1838, 2015 Istanbul, Turkey.

7. Kenneth Bogert and Prashant Doshi. ”Multi-Robot Inverse Reinforcement Learning Under
Occlusion with State Transition Estimation” Workshop on Autonomous Robots and Multirobot
Systems (ARMS), In the International Conference on Autonomous Agents and Multiagent
Systems, 2015, Istanbul, Turkey.

8. Kenneth Bogert and Prashant Doshi. ”Multi-Robot Inverse Reinforcement Learning under
Occlusion with Interactions” In Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pp. 173-180, 2014, Paris, France.

vi

Contents

Acknowledgments
Publication List
List of Figures
List of Tables

1 Introduction
1.1 Motivation: Robots as Learning Agents
1.2 Contributions of this Dissertation
1.3 Dissertation Organization o

2 Background
2.1 Probabilistic Reasoning over Time
2.2 Markov Decision Processes
2.3 Inverse Reinforcement Learning oL
2.4 Principle of Maximum Entropy
2.5 Maximum Entropy IRL
2.6 Evaluation of IRL e
2.7 Learning transition functions L L
2.8 Numerical optimization
2.9 Notation and Terminology
2.10 SUMMATY . . . o e e e e e e

3 Related Work
3.1 Inverse Reinforcement Learning,
3.2 Applications of Inverse Reinforcement Learning
3.3 Multiple Interacting Robots
3.4 Learning Transition Probabilities of an External Agent
3.5 Expectation-Maximization with IRL
3.6 Summary and Discussion L e

4 Learning in the Presence of Hidden Variables
4.1 Effectsof occlusion
4.2 Simple solution e

vii

vi

ix

xii

11
13
14
15
18
18
19
22
23

24
24
26
27
28
28
29

4.3 Expectation over hidden variables.o oL 31

4.4 Experiments and Results. oo 35
4.5 SUMMATY .« . . o o v e e e e e e e e e 42
5 Learning with Unknown Dynamics 44
5.1 Transition Model 44
5.2 Transition Features L 45
5.3 Maximum Entropy Solution 46
5.4 Estimating a Full Transition Function 47
5.5 Convex Approximation with Bernstein Polynomials 48
5.6 SUMMATY . . .« . 0 ot e e e 49
6 Learning in the Presence of Multiple Experts 51
6.1 IRL for Multiple Mobile Robots 52
6.2 Solving and Approximation 55
6.3 Multi-Agent Hidden Data EM 56
6.4 Summary L e 60
7 Experiments with Penetrating a Robotic Patrol 61
7.1 Evaluation of mIRL*+Int 61
7.2 FEvaluation of Multi-Agent Hidden Data EM 70
7.3 Evaluation of mIRLjT+Int 76
T4 SUmMmMAary e e e e e e 82
8 Conclusions 84
8.1 Discussion e e e e 84
8.2 Future Work e 85
A Appendix 87
A.1 Robotic Experiment Details 87
A2 Proofs e 102
References 103

viil

List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

4.1

4.2

4.3

4.4

A Turtlebot 2, used in our robotic experiments. As an example of an inexpensive autonomous
differential drive robot it exhibits noisy, limited sensors and imperfect actuators. 3

Example of a Bayesian network. Each node represents a random variable, edges indicate
conditional dependencies, e.g. Pr(A|B) e 8
The Markov blanket of node A is all nodes in the blue area. A is conditionally independent
of all other nodes given its Markov blanket, which is defined as its parents, its children, and
its children’s parents. e e e e 8
Example dynamic Bayesian network (left) and the DBN unrolled for three time steps (right) 9
Example of a hidden Markov model (HMM) shown as an unrolled dynamic Bayesian network.
Z nodes represent hidden state and Y nodes probabilistic observations received at each timestep. 10
Two time step dynamic Bayesian network modeling the state transitions of a Markov Decision
Process. e e e e 12
Average Inverse Learning Error (ILE) and Learned Behavior Accuracy (LBA) of IRL* as
the number of provided trajectories increases. Random MDPs with 6 states and 4 actions,
trajectories of length 10. Error bars are one standard deviation, standard error is between
0.018 (1 trajectory, ILE) to 0.0021 (100 trajectories, ILE) 19

Average Inverse Learning Error (ILE) and Learned Behavior Accuracy (LBA) of IRL* as the
number of occluded states decreases. Random MDPs with 6 states and 4 actions, trajectories
of length 10 and 10 trajectories sampled. Error bars are one standard deviation, standard
error is between 0.023 (6 occluded states, ILE) to 0.0058 (0 occluded states, LBA) 32
The UAV tracks the fugitive (I) as it moves through the grid of states. States may
be occluded from the UAV’s view by foliage. The sectors shaded blue and orange
are the true safe and penalty states respectively., 36
Video captures from our experiment showing a subject performing the ball sorting
task. Notice that there are four types of balls in all - soft clay balls of two colors
and hard ping-pong balls of two colors. Balls are sorted into two bins based on their
color. (a) Subject picks a hard ball, and (b) Subject places a soft red ball in one of

Performance evaluation of all three methods in the UAV reconnaissance scenario.
(a) ILE for all methods in the fully observable setting. Notice that Hidden Data
EM’s performance coincides with that of MaxEnt IRL as we may expect. (b) ILE the
fugitive’s trajectories are partially occluded, notice the failure of MaxEnt IRL due to
the absence of the critical features from all observed trajectories. (c¢) High levels of
occlusion which changes randomly between trajectories due to UAV movement. . . 40

X

4.5

4.6

5.1

6.1

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

A series of snapshots of the PhantomX Pincher arm sorting the balls. We introduce
balls one at a time due to lack of sufficient space for several balls and the arm being
small. The two bins with balls are visible on the left side of the arm. We show the
deformed clay ball due to mishandling and the non-deformed clay ball on the bottom. 41
Average time to complete learning in the fugitive domain for exact Hidden Data EM and a
Monte-Carlo EM variant as the number of provided trajectories increases. Note logarithmic
scale. Occlusion was randomized. Error bars are one standard deviation, standard error is
between 44.94s (10 trajectories of length 6, Exact method) to 0.24s (2 trajectories of length
6, Gibbs) e 42

Venn diagrams showing example intersections between sets &7, &7, £/ and &7,
and the mapping used by differential drive robots in our scenario. 46

(a) Patrolling robots I and J approach each other, entering an interaction state (b) The
two robots abandon their MDP-based policies and begin executing the actions dictated by
the interaction game equilibrium (¢) I stops while J sidesteps slowly. (d) The interaction
behavior is now completed and the two robots return to the behavior specified by their
individual policies. e e e e e 53

Successful penetration by L of our larger environment. In this particular instance, L chose
to enter a room briefly to allow I to move past before exiting and moving towards the goal. 62
The smaller environment and the corresponding MDP state space for our experiments. The
two goal cells are colored black and the white cells denote occupied locations. L’s starting
location is shown while I and J move in a cycle between the two goal cells. 64
Trajectories of patrollers, I and J, in the simulated hallways of a building for our
larger environment. Subject robot L is tasked with reaching the goal state at X
undetected from its starting position.o Lo 64
Learned behavior accuracy of our approach measured for different occlusion rates. The
vertical bars represent one standard deviation from the mean, standard error is between
0.022 (lowest visibility smaller map) to 0.0031 (highest visibility larger map). Smaller map
on the left and larger on the right. 65
(a) The effect of the learned joint behavior accuracy on the success rate in both simulated
environments. (b,¢) A comparison of the success rates achieved by our approach and the
baselines as a function of the amount of visibility and the time spent observing. Vertical
bars indicate (a) standard deviation (standard error 0.048 (0.75, Smaller mIRL*+Int) to 0.012
(1.0, Larger mIRL*)) and (b, ¢) 95% confidence intervals. 66
Success rates based on observation times in the physical runs. We compare these with those
obtained from the simulations for the same degree of observability. The vertical bars are
95% confidence intervals. L L e e 67
(Top) I and J in the process of interacting, J stops movement while the I moves past at a
reduced speed. (Bottom) L observing a patroller from its vantage point (left) and performing
a successful penetration (right)o Lo 67
Average entropy of Nash Equilibrium weights w during solving iterations for various levels of
observability. Error bars are one standard deviation, standard error is between 0.115 (early
iterations, lowest visibility) to 0.0049 (final iterations, lowest visibility). 68

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

Al
A2

Average time to solve the patrolling domain (small map) as the number of agents is increased.
Error bars are one standard deviation, standard error is between 65.16 seconds (4 agents) to
3.8seconds (2 agents). L
(a) The effect of amount of observability on the average Learned Behavior Accuracy (error
bars are one standard deviation, standard error ranges from 0.010 (Gibbs, lowest observ-
ability) to 0.0024 (Gibbs, highest observability)) (b) Success rate achieved by each method,
vertical bars 95% confidence intervals (c¢) Proportion of runs which timed out, we stop a run
after 25 minutes. L oL L L e e e
(a) A diagram showing the map for our simulated patrolling experiment (b) corresponding
MDP state space for each patroller. Shaded squares are the turn around states and the red
Xis L'sgoal state L e e e
Success rates based on observation times in the physical runs for (a) Gibbs Sampling (D)
Blocked Gibbs Sampling and (¢) mIRL*+ne. We compare these with those obtained from
the simulations for the same degree of observability. The vertical bars are 95% confidence
intervals. . . . L L L e e
Average Inverse Learning Error (ILE) of the M-step methods as the number of occluded
states decreases. Note log scale. Random MDPs with 6 states and 4 actions, trajectories
of length 10 and 10 trajectories sampled. Error bars are one standard deviation, standard
error is between 0.08999 (6 occluded states, SGD-Empirical) to 0.017 (0 occluded states,
SGD-Empirical)o e e e e e
Average time to solve randomly generated MDPs (25 states, 4 actions) for each M-step
method as the length of sampled trajectories increases. 10 trajectories sampled. Error bars
are one standard deviation, standard error is between 5.851 (150 timesteps, SGD) to 0.015
(10 timesteps, SGD-Empirical)« . o o i e e e
Simulated trace showing the damaged patrolling robot (red) and its slower, oscillating move-
ment. Undamaged patroller trace (blue) shown for reference.
(top) Learned behavior accuracy of mMIRL7+Int and Known R for different occlusion
rates and observing times. (bottom) Improving accuracy of learned behavior correlates
almost linearly with success rate. Vertical bars denote one standard deviation, standard
error ranges from 0.09 (0.90, Known R,7) to 0.0099 (1.0, Known R 7).
(a) Comparative success rates of L for various methods that either learn 77 and T’y or fix
it arbitrarily. True transition probabilities of the patrollers are not known. (b) Transition
feature probabilities that correctly identify that the left wheel of J is partially damaged as
indicated by its comparatively low success probability. (c¢) Transition feature probabilities
when both patrollers are operating properly.o
(top) Patrollers I and J moving through the hallway while L begins its attack behind them
(bottom) L observing I from its vantage pointo
Time to solve (in seconds) as a function of the number of g7 constraints. Note log scale on
both axes. Error bars are one standard deviation, standard error ranged from 0.000006 (4
constraints, approximate method) to 0.033 (496 constraints, exact method)

Patroller J with distinct color patches for detection by a blob finder.
Visualization of the motion capture points attached to the expert’s arm with discretized
regions corresponding to the four MDP locations (On table, Center Area, Bin 1, Bin 2)
superimposed. The wrist is currently in the highlighted state Center Area.

X1

List of Tables

4.1

6.1

7.1

Al

A2

Performance of the various methods on the PhantomX Pincher arm on the ball
sorting task. Notice that Hidden Data EM did not damage any balls and dropped
just one ball while sorting. Its performance is similar to our occlusion-free control
method that provides an upper bound.

One example of a game that models the interaction of two robots (row player is I, column
player is J) attempting to pass each other in a narrow hallway. Nash equilibria (shown in
bold) are the possible ways of resolving the interaction efficiently. The payoffs displayed here
are not necessarily representative of those the two robots actually receive and are chosen by
L using side information about the scenario, in this case the expected transition outcome of
the joint action. L L L e e e e e e

L’s success rates using various methods over 10 physical runs each. L suffers from very high
occlusion of patrollers. L L e e e e e e e

Feature weights learned by all four methods from ball sorting data. ¢1 - ¢4: reward
for sorting ball types 1-4 into bin 1, ¢5 - ¢g: reward for sorting ball types 1-4 into
bin 2, and ¢g - ¢12: reward for handling ball types 1-4 gently.
Optimal policies learned by all four methods from the ball sorting data with hidden
variables. While the state consists of multiple variables, we show the robot’s action
map for the main state variable of ball type here. Underlined actions are erroneous.

xii

90

Chapter 1

Introduction

In many contexts an autonomous robot is likely to come across situations that its designer did not
or could not anticipate. This problem is increasingly relevant as robots are forecast to be deployed
in unpredictable or dynamic scenarios, for instance: disaster recovery, autonomous vehicles, or
health care. In these uncontrolled or partially controlled scenarios a robot may be limited by:

e Situations the designer did not or could not anticipate
e Incomplete knowledge, for instance of the current state of the world due to sensor limitations
e Inaccurate actuators causing uncertainty in the robot’s actions

e Presence of other intelligent agents that the robot must interact with in some way

Machine learning solution

Rather than attempt to pre-program robots with responses to all possible situations it might find
itself in (an intractable approach by far) machine learning can be employed to extend the robot’s
useful range beyond what the designer anticipated. Examples include SLAM [56], which can be
used in unknown environments to learn the map of an area while the robot is moving through
it, and reinforcement learning [23] which learns the dynamics of uncertain actions, even when the
state of the world is only partially observable [34]. This dissertation will address the problem of a
robot learning from other agents in the environment. Our goal is produce a generally applicable
machine learning technique which could be employed alongside other machine learning methods on
autonomous robots to produce an intelligent agent capable of operating in its environment without
the prior knowledge it needs to accomplish its tasks. We will first discuss the unique problems
and challenges encountered by robots which motivate developing and deploying these machines as
learning agents.

1.1 Motivation: Robots as Learning Agents

Though robots come in a vast variety of body types and capabilities all share in common the ability
to effect a physical change in the world. In environments where actuators are imperfect the robot
may be given access to sensors to provide information about the state of the world it needs to
complete its task. In many scenarios the relevant state of the world is continuous, for example in

navigation tasks the state is the robot’s pose on a map. Actions available to the robot may also be
continuous, such as the speed with which to turn its wheels.

In some cases it is beneficial to discretize the robot’s state and action spaces. The cost of finding
action plans in the full continuous space may be computationally prohibitive, for example, or the
robot may lack resources with which to store and utilize the complete high-dimensional data. In
this document we will consider only discrete states and actions unless otherwise noted.

1.1.1 Challenges of robotic domains
Noisy sensors

Autonomous robots may be expected to rely on their on-board sensors to produce information
about the world. These sensors are often limited in the range, quality, and completeness of the
information they produce. For example, laser scanners attached to a mobile robot can produce
accurate distance and bearing measures of external objects but suffer from minimum and maximum
range as well as occlusion by objects in the environment. This problem is particularly present with
inexpensive robots such as the Turtlebot 2 (figure 1.1, used in our robotic experiments) due to the
use of inexpensive, limited range sensors with many unexpected failure modes. Furthermore, if a
robot is interested in knowing its pose on a map a laser scanner alone will likely not reveal such
information un-ambiguously. While external references, such as GPS, could be queried to fill in the
gaps of on-board sensors these suffer from communication issues that may be unacceptable for the
robot’s intended task, for instance during movement indoors or real time decision making.

Sensors, in fact, rarely produce noise-free data. Autonomous cars, for instance, cannot rely
solely on GPS data to make second-to-second driving decisions due to the need to filter successive
GPS readings which results in the car’s position belief lagging behind the car’s true position. When
at speed such a situation is dangerous as the car may not respond correctly to external events such
as the movement of other cars or pedestrians. Ideally, autonomous robots must fuse limited, low-
latency on-board sensor data with available external data to make use of both sources of information
effectively.

As a result of these issues, the true state of the world that a robot needs to complete its task
may be hidden with only partial information about it available. In spite of this many other agents
with similar or less sensor data (humans, for example) regularly accomplish the tasks we desire
robots to do. This strongly indicates that robots have the necessary information needed to do the
same but lack the intelligence, energy, or actuators needed.

Imperfect actuators

In most cases the actuators robots use to effect change do not perform perfectly. This may be due
to the physical system it relies on being fundamentally stochastic or could arise due to wear or
damage to the actuator. Examples include the wheels on a small, differential drive robot wearing
down over time, or a legged robot slipping in mud.

As a result even if the robot were to be gifted with perfect knowledge of the state of the world it
could not be certain as to what the outcome of its actions would be. By contrast, in contexts where
the environment can be fully controlled and the robot’s actuators perform relatively noise free the
designer can confidently predict the range of states the robot might find itself in, for example an
assembly line robot bolted in to place in a factory.

Figure 1.1: A Turtlebot 2, used in our robotic experiments. As an example of an inexpensive autonomous
differential drive robot it exhibits noisy, limited sensors and imperfect actuators.

Unanticipated environments

Additionally, robots are often expected to perform in environments in which the designer did
not or could not anticipate. Examples include household robots where the layout of the home it
operates in is not known ahead of time or disaster robots entering areas inaccessible to humans.
It is unreasonable to assume these issues could be solved by making every possible environment’s
data available to the robot due to the intractable amount of information it would have to store,
unreliable access to large external data stores, or the authentic unknowns of an environment.

Presence of other agents

Lastly, a robot may operate in environments in which it will interact with other agents, for instance
other robots, humans, or animals. Multi-agent scenarios greatly complicate planning and reduce
the predictability of the environment, necessitating advanced techniques to allow the robot to
accomplish its goals. This is especially the case when the goals include interaction with other
agents as the possible results now depend upon the choices of the other agents which the robot
cannot perfectly control. As a result, multi-agent solutions have significantly higher computational
time and storage costs than single agent.

1.1.2 Machine learning with robots

Because of the above challenges it is desirable to endow robots with the ability to adapt to the
situation they find themselves in. The field of machine learning provides a number of solutions to
many of these issues. For example, a robot can employ SLAM [56] to autonomously learn the map
of its environment while keeping itself localized and reinforcement learning [23] allows the robot
to learn the mechanics of the world while attempting to reach its goals. However, these and most
current methods are only applicable to the static elements of the environment.

1.2 Contributions of this Dissertation

Application of IRL to autonomous robots

Dynamic elements of an environment include non-agent elements which move such as flowing water
or loose dirt. These elements are usually governed by static laws and therefore existing techniques
can be adapted to learn the way in which they change, dynamic Bayesian networks can be employed
to learn the behavior of weather events for example. Agents, however, present a much larger
challenge in that they have the ability to select an action which then influences their dynamics.
When attempting to predict or understand the agent’s motion some explanation for the action
choice is required or else the information learned about the agent is not generalizable to novel
situations. In this dissertation we will model agents to be learned from (”experts”) as attempting
to optimize their rewards in a Markov Decision Process (MDP), thus explaining their action choices.

To avoid having to provide the robot with one MDP for every agent it may encounter we wish to
give the robot the ability to learn these MDPs by observing agent behavior. Inverse Reinforcement
Learning (IRL) provides one such method, as given all components of a MDP except for the reward
function (MDP/R) and observations of the agent’s behavior IRL finds a reward function that
results in a completed MDP whose optimal behavior matches observations. IRL makes a number
of assumptions, however, that are difficult to satisfy in the challenging robotic domains previously

described. Particularly, IRL assumes: the learner can obtain perfect observations of the expert’s
behavior, the learner has full knowledge of the expert’s dynamics, the expert is perfectly rational
and its states conform to the Markov assumption, and the expert behaves solely to optimize the
rewards it receives from its MDP without distraction from other agents.

Relaxing assumptions of IRL

In this work we partially relax a number of these assumptions with the goal of utilizing IRL on-
board an autonomous mobile robot to learn MDPs that accurately describe the agents it encounters
in its environment. We focus first on the difficulty of the learning robot constantly observing the
expert using its on-board sensors. Due to the limits of sensor range or objects in the environment
the learner may fail to observe the expert during portions of its demonstrated behavior, and this
failure may be persistent resulting in no information received for a specific subset of states the expert
may traverse through. We call this style of observation failure occlusion and develop techniques to
account for the missing data that results.

IRL assumes the expert is rational and, being an expert, has arrived at the optimal policy for
the given MDP that describes it. Then, the behavior observed must be due to the expert trying to
maximize its rewards over time, an assumption that may not be valid in the presence of multiple
experts as some of their behavior may be due to interaction between them that is not captured by
their MDPs. We develop a model of this sparse interaction and extend a well known IRL algorithm
to account for this interaction behavior in order to prevent the interactions from becoming a source
of persistent noise that biases the learned reward functions.

In real-world contexts the learner may not have complete knowledge of the expert’s dynamics.
This is represented in MDPs by the transition function 7'() and describes the (potentially stochas-
tic) changes in state influenced by the actions of the agent. This lack of knowledge could be due
to many mundane causes, for instance, damaged or worn components on a robot may change its
ability to move through a space and such effects would not plausibly be known ahead of time to the
learner. Commonly a method such as estimating the parameters of a dynamic Bayesian network
that describes the transition function would be employed to estimate the transition probabilities
from the observed behavior. However, as the expert is acting optimally it is not expected to visit
every state and perform every action in them, making learning the transition function from obser-
vations with a model free approach difficult. Worse, in the presence of occlusion some transitions
critical to the expert’s behavior may never be observed. We remedy this problem by developing
a model based upon features or sub-components of the transitions, once learned this model rig-
orously projects the transition information from observed transitions to those that have not been
seen, recovering a complete transition function.

Experimental validation of our methods

Finally, we evaluate the performance of our new techniques in a number of robotic domains, both
real and simulated. Algorithms intended for deployment on real robots must work in the face of
sensor noise and state uncertainty, imperfect actuators, and limits on available computation time or
power. Many of our experiments require time-sensitive, accurate learning in order to successfully
accomplish the task given to the learning robot. All computation is done on-board the robots
using small laptop computers and our favorable results show the viability of our methods in these
challenging domains.

1.3 Dissertation Organization

This dissertation is organized into chapters as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Introduction to the robotic domain, motivation and overview of the contri-
butions of this work.

Review of background material this work makes use of including probabilistic
reasoning over time and graphical frameworks, Markov Decision Processes,
overview of some Inverse Reinforcement Learning algorithms we extend, and
numeric methods used to solve the problems in this dissertation.

Review of related work in the fields of Inverse Reinforcement Learning,
robotic patrolling methods, and learning transition probabilities from tra-
jectories of agents. Comparisons are made to the contributions of this dis-
sertation.

Methods to compensate for hidden variables as a result of occlusion during
IRL. Two methods are presented, a simple fix that ignores the missing data
and an Expectation-Maximization approach that completes the missing data
with its expectation.

Method for estimating the transition function of an external agent from
observed behavior under occlusion prior to performing IRL. Convex approx-
imation for large problems given.

Model and solution for performing IRL in the presence of multiple possibly
interacting experts. Consideration is given for the case where the interaction
behavior of the experts is unknown due to occlusion.

Experimental evaluation of the methods in chapters 5 and 6 in a robotic
patrolling domain.

Conclusion, discussion of the work presented, and consideration of future
work directions.

Additionally, extra details on our robotic experiments and proofs presented in this work are

provided in Appendix A.

A sequential reading of this dissertation will provide: the motivation and background for using
Inverse Reinforcement Learning on autonomous robots, an exploration of work related to this
concept, followed by a number of chapters each focused on relaxing an assumption or requirement
of IRL. Experiments and evaluation follow the methods section in chapter 4 while a number of
other experiments involving the penetration of a perimeter patrol are grouped together in chapter 7.

Lastly, we provide a short discussion of the work presented as well as future work directions.

Chapter 2

Background

The techniques developed in this work build upon existing Inverse Reinforcement Learning tech-
niques. Here we review these precursor works as well as the probabilistic reasoning frameworks and
optimal decision making theory they depend on. Applying IRL to robotic domains entails efficiently
solving the problems presented, in most cases with a numerical function minimizer. For complete-
ness we provide a short background on these algorithms and briefly consider their capabilities and
requirements.

2.1 Probabilistic Reasoning over Time

2.1.1 Bayesian Networks

Bayesian networks are a graphical way of modeling the relationship between random variables.
They are represented as directed-acyclic graphs (DAG) in which nodes may be observable values,
hidden (latent) variables, or even hypotheses whose values are determined according to an associated
probability distribution. The edges represent conditional dependencies between the nodes such that
nodes which have no connection are conditionally independent of each other. We commonly use
family language to describe the relations between nodes, for example B is a parent of A, A is a
child of C, etc. We show an example Bayesian network in figure 2.1

Markov Blanket

Many algorithms exist for performing efficient inference in Bayesian networks in addition to learning
both the structure and distribution parameters underlying the nodes from data. One property we
make use of in this dissertation is the Markov Blanket. A node is conditionally independent of all
other nodes in the network given its Markov Blanket which is defined as the node’s parents, its
children, and its children’s parent nodes. Formally, we have: Pr(X|MB(X),Y) = Pr(X|MB(X))
where the set M B(X) is all the nodes in X’s Markov Blanket, we illustrate this concept in figure 2.2.

2.1.2 Dynamic Bayesian Networks

Bayesian networks can be extended to settings involving time by assuming that the structure of the
network and node distributions remain fixed and ”unrolling” the network out by timestep. These
are referred to as dynamic Bayesian networks (DBN) and are illustrated in figure 2.3. We use

Figure 2.1: Example of a Bayesian network. Each node represents a random variable, edges indicate
conditional dependencies, e.g. Pr(A|B)

O O
Wo

Figure 2.2: The Markov blanket of node A is all nodes in the blue area. A is conditionally independent
of all other nodes given its Markov blanket, which is defined as its parents, its children, and its children’s
parents.

Figure 2.3: Example dynamic Bayesian network (left) and the DBN unrolled for three time steps (right)

a subscript on each node’s variable to indicate the timestep relations between them, for instance
Pr(X¢+1|X¢) gives the probability of the X variable at the next timestep (¢ + 1) given its value at
the current timestep ().

Hidden Markov models

One common form of DBN is known as a hidden Markov model (HMM). In general, at each timestep
in a HMM there is one latent variable representing the state of the system and one observed variable
which depends only upon that state; we illustrate this design in figure 2.4. As each state variable
depends only upon the state at t-1 this model exhibits the Markov property: all other previous
states have no influence on its associated probability distribution.

2.1.3 Expectation-Maximization

Given a sequence of observed variables the joint state probabilities of a HMM may be calculated
efficiently using the Baum-Welch algorithm, also called the forward-backward algorithm for its two
main steps:

Forward Step:

F(Zi|lyreer) o< Pr(yis1|Zigr) D Pr(Zialye) f(2ze|yie) @.1)

Figure 2.4: Example of a hidden Markov model (HMM) shown as an unrolled dynamic Bayesian network.
7 nodes represent hidden state and Y nodes probablhstlc observations received at each timestep.

Backward Step:

B(yey1|Z:) = 35 Pr(ysvilzee1) B(yeralzer) Pr(zi1] Zt)
Zt+1 (22)

Here we use Y to denote the observed variables and Z as the hidden. As can be seen in the
above equations the algorithm’s steps are so named because it first moves forward in time applying a
filtering step and then moves backward in time applying smoothing. This algorithm is a specialized
form of the well known Expectation-Maximization (EM) algorithm and has a time complexity of
O(N?T) where N is the size of the state space and T is the number of timesteps. EM is an iterative
method used to find the locally maximum likelihood parameters by taking the expectation over
latent variables using the current set of parameters, then choosing parameters that maximize the
log likelihood of the expectation.

E step:
Q0,0)= S Pr(Y) S Pr(Z|Y;00) log Pr(Y, Z;0) (2.3)
Yey Zen
M step:
0+l — arg max Q(6,6M) (2.4)

This is repeated until convergence (6 = ().

2.1.4 Monte-Carlo statistical methods

As the size of a DBN grows performing the E step may become prohibitively expensive due to
the exponential growth of the size of Z. An alternative is to perform Monte-Carlo integration to
estimate the distribution over Z using samples. However, sampling directly from the distribution

10

Pr(Z]Y) may be difficult; due to its size it may not be feasible to compute or represent the
distribution exactly. When this method is used to estimate the E step in Expectation-Maximization
the resulting algorithm is called Monte-Carlo Expectation-Maximization [33] (MCEM).

Gibbs sampling

Gibbs sampling provides a simple solution by iteratively sampling one node in Z each iteration
to produce a Markov-chain of samples (each sample’s probability depends only on its parent).
Under mild assumptions the samples converge to the desired distribution as the number of samples
increases.

Gibbs sampling is a Markov-Chain Monte-Carlo method for approximating the distribution
of a Bayesian network with hidden variables [49]. It is a special case of the Metropolis-Hastings
algorithm in which the probabilities of each individual node are known and can be sampled from,
but the distribution over the entire network is intractable. Sampling proceeds by first randomly
assigning all hidden nodes and then repeatedly sampling each hidden node conditioned upon the
current value of all other nodes. This procedure generates a Markov chain of samples where each
complete network generated depends only upon the previous one, and over time the sequence of
networks approaches the true joint distribution desired.

2.2 Markov Decision Processes

Decision theoretic models treat agents differently from the simple state changes of a HMM in that
agents have the ability to choose an action that influences their dynamics. While many such models
exist we focus here on Markov Decision Processes [46] as MDPs are the framework used by Inverse
Reinforcement Learning. Markov Decision Processes describe agents in scenarios where the agent
has the ability to fully observe the state of the world. In situations with partial state observability,
the agent is accurately described by a Partially Observable MDP (POMDP) [22]. Though they
describe many robotic scenarios more accurately than MDPs, POMDP’s will not be discussed at
length here as they are not used in this work.

Formally a MDP is defined by the tuple < S, A, T, R,y > where S is a (possibly infinite) set of
states (we will assume a finite set of discrete states from here forward), A is a set of actions (again,
finite discrete), T' : SxAxS’ — [0,1] is the transition function which returns the probability of
the agent transitioning to state S’ given it is in state S and performs action A, R : SxA — R
is the reward received for being in state S and performing action A, and < is the discount factor
which describes the trade-off in value between immediate rewards and the expected future ones.
The agent using an MDP solves it by finding an optimum policy 7* : S — A which, when followed,
produces the maximum rewards over time. The optimum policy may be found by solving the
Bellman equation:

U(s) =R(s)+~ mazx Z T(s,a,s\U(s") (2.5)

S

and then greedily choosing the action whose expected utility is the highest for each state. The
Bellman equation may be solved using a value iteration, a dynamic programming method:

11

®
s

Figure 2.5: Two time step dynamic Bayesian network modeling the state transitions of a Markov Decision
Process.

VO(s) = max R(s,a)

a

VE(s) = mazx <R(s, a)+v> T(s,a, s’)Vk’_l(s’)> (26)
o

This recursive function may be solved for H iterations, providing the expected value for all
states looking ahead H timesteps (the horizon). It can also be iterated until the change in value of
all states relative to the previous step is less than some tolerable error €, which provides an infinite
horizon guarantee to an error of € of the expected value of each state.

MDPs require the use of state transition distributions that exhibit the Markov property, meaning
that the probability of an outcome state is dependent only on the current state and action. Formally:

Pr(Si+1|S1:4, A1:e) = Pr(Si+1|5t, Ar) (2.7)

These transitions are modeled as a simple 2 timestep DBN as shown in figure 2.5.

Though MDP’s are not accurate models of many robotic domains they may still provide useful
approximations as long as the uncertainty of the state is controlled by some other means. For
example, the use of a localization system to provide the single most likely position a robot is
currently in on a map allows an MDP’s optimal policy to dictate the optimal action to perform
for all possible positions provided the localization is reasonably certain (such a system does not
provide a way of intelligently increasing the certainty, and likely will defer to pre-programmed
recovery behaviors when its location is too uncertain).

In this work the expert agent is modeled as being a rational agent executing the optimum
policy of an MDP, though perhaps imperfectly. A rational agent monotonically prefers policies
that produce higher expected rewards. Given a complete MDP tuple, the reinforcement learning
problem is to find the optimum policy by way of solving the value function, as described above. An
agent may then execute the policy by performing the action specified by the policy at whichever
state it finds the world in. This produces a trajectory Traj = [< s,a,r >,< s,a,r >,...] describing
the sequence of states arrived at, actions chosen, and rewards received by the agent over time.

12

2.3 Inverse Reinforcement Learning

In Inverse Reinforcement Learning a learning agent desires to learn the motivations of another agent
who is assumed to be an expert in the task it is performing. For example, a robot could desire the
value an expert places on various parts of a task that the robot itself is expected to perform, an
application called apprenticeship learning. By modeling the expert as executing a MDP, we can
develop an inverse problem that supports this type of learning.

Assume that the learner has an incomplete MDP which describes the expert, specifically the
learner is missing the expert’s reward function (< S, A,T,~ > are known). Now assume that the
expert reveals to the learner the policy it is using, 7%. The learner’s task becomes finding a reward
function to complete the MDP under which 7% is the optimum policy, 7*. Unfortunately, this
problem is ill-posed, there are an infinite number of reward functions which match this criteria for
any given 7F.

Ng and Russell [41] provide an early solution to this issue by constructing a linear program that
maximizes the margin of value between the action chosen by the expert in each state and all other
actions. They further use a penalty term which encourages the use of smaller magnitude rewards.
This Inverse Reinforcement Learning problem can then be solved as a linear program producing a
reward value for each state.

While possible in some contexts, the requirement of receiving a single optimum policy from the
expert may be difficult to meet. For instance the state space may be large or infinite putting a
burden on the expert to enumerate the policy. Or there may be no communication between the
learner and expert but the learner is capable of observing the expert’s trajectory with the exception
of the reward received. In other cases, there may be multiple agents providing expert policies which
indicate different actions in some states. Finally, we note that Ng and Russell’s [41] formulation
does not allow for the rewards to depend on the action taken in a given state.

2.3.1 Feature Expectations

To solve these issues, we will restrict the reward function to be a linear combination of feature
functions ¢ : SxA — {0,1}, R(s,a) = > Ordi(s,a) where by is a real valued variable. We assume
k

that the reward function the expert is using is of this form and all of the feature functions are known
exactly to the learner. The learner’s task becomes finding a vector of weights © that complete the
reward function. To aid in the search we can calculate an expectation of features that any given
policy would receive during its execution: ®, = > ur(s)p(s, m(s)) where . (s) is the state visitation

S
frequency of state s, as given in equation 2.8 (12 is the initial state distribution). Then we calculate
the feature expectations of the expert given a policy or from an observed trajectory directly as:
b= M;Tlaﬂ > or(s,a). When we arrive at a set of weights which completes the reward function
(s,a)€traj
such that the resulting optimum policy’s feature expectations match the expert’s (&, = qg) we have
solved the IRL problem. Additionally, we are able to calculate the weight gradient as VO = &, —gg
noting that if the optimum policy results in a feature expectation that is higher than the expert’s
we should reduce the corresponding weight, and vice versa. This formula is still not complete,

however, as the set of weight vectors that produce the policy which matches this criteria is infinite,

13

and depending upon the objective function used may never converge.
pin(s') = po (') + 7 ST (s, 7(s), 8") i (5) (2.8)
s

To make progress, Abbeel and Ng [3] follow a max-margin approach to maximize the value
difference between the expert policy and all previously found policies arriving at the following
quadratic program:

max t
t,0

subject to (2.9)
07¢ > 0Td0) +¢, j=0,...,i—1
1012 <1

Where ®U) is the feature expectations from the policy found at iteration j. This program can be
solved with any quadratic solver, such as SVM, to obtain the weights. A convex combination of all
produced policies is then generated, weighted such that the feature expectation of the distribution
over these policies exactly matches the expert’s feature expectations.

Abbeel and Ng also provide an approximate technique that projects the feature expectations
from previous iterations along an orthogonal line with the expert’s feature expectations iteratively
to produce candidate feature weights for the next iteration.

2.4 Principle of Maximum Entropy

The principle of maximum entropy, while existing in various forms since at least the early 1900’s,
was formalized by Jaynes [21] in 1957 when he argued that the entropy in information theory and
entropy in statistical mechanics are principally the same. The principle concerns the choice of a
probability distribution constrained to match feature expectations with some observed data. While
there are usually infinite probability distributions that match a given set of these constraints, only
one of them will have the maximum entropy. This one distribution should be chosen as it makes no
additional assumptions other than what is required to satisfy the constraints. In other words, since
it has the maximum entropy possible this distribution contains the least amount of information
and can be viewed as an encoding of the information provided in the constraints and nothing else.

When a distribution is constrained to match observed feature expectations a non-linear, convex
program to find the distribution with maximum entropy is given by:

max (S Pr(Y) log Pr(Y))

YeYy
subject to > Pr(Y)=1 (2.10)
Yey ~
> Pr(Y) fi)= 3 Pr(Y) fir(Y) Vk
Yey Yey

Where f;,(Y) is a function that returns feature k of ¥ and Pr(Y) is the empirical distribution
over Y.

14

2.4.1 Convex Programs

Maximum entropy programs of the type above are in a class of programs called convex. To be
convex, its objective function must be a convex function, inequality constraints must be convex
functions of relevant variables, and equality constraints must be linear in the relevant variables [15].

A convex function is one in which its epigraph (the set of points > the points of the function)
is a convex set. A convex set is one in which all the points of a line segment drawn between any
two points within the set must also be in the set. Broadly speaking, a set which contains ”indents”
or interior holes that are not part of the set are not convex.

2.4.2 Principle of Latent Maximum Entropy

Wang et. al. [59] introduce the principle of Latent Maximum Entropy to extend the principle of
maximum entropy to problems with hidden variables. The program in equation 2.10 is modified to
take into account an expectation over the missing data in the primary constraint:

max (— S Pr(X) log Pr(X))

Yey
subject to Y Pr(X)=1 (2.11)
XeX R
> Pr(X) fu(X)= > Pr(Y) > Pr(ZlY) fu(X) VE
XeX Yey Z€EL

Here, X = Y U Z. This new program is non-convex due to the presence of Pr(Z|Y); an
approximate solution in which Pr(X) is assumed to be log-linear is provided which leads to the
Lagrangian dual:

LYN0) = log Z(0) = Y 0, > Pr(Y) > Pr(Z|Y)fu(X) (2.12)
k

Yey ZeL

Where Z(6) is the partition function.

2.5 Maximum Entropy IRL

We noted in section 2.3 that the constraint ¢, = <Z> is not sufficient to ensure convergence onto
a single set of weights. Abbeel and Ng’s [3] max-margin assumption may not be accurate for all
scenarios where IRL could be applied. This could result in an inaccurate set of weights found which
negatively impacts the generalizability of the algorithm. In fact, any assumptions made about the
structure of the rewards beyond the feature expectation constraint will distort the results in some
way. To overcome this issue Ziebart et. al. [61] propose a solution using the principle of maximum
entropy.

15

As first formulated in Ziebart et. al. [61], MaxEnt IRL forms a probability distribution over all
possible expert trajectories. Formally, we have:

max (— S Pr(Y) log PT(Y)>

Yey

subject to > Pr(Y) = (2.13)

YeY

S PrY) Y ¢r(s,a) = Vk

YeY (s,a)€Y

Here, A is the space of all distributions Pr(Y).
We may apply Lagrangian relaxation bringing both the constraints into the objective function
and then solving the dual. The relaxed objective function becomes:

L(Pr,0,n) Z Pr(Y) logPr(Y)
Yey

n <Z Pr(Y) - 1>
YeY
+Z@k Z Pr(Y Z or(s,a) (2.14)

YeY (s,a)eY

As equation 2.14 is convex taking the derivative with respect to Pr(Y’) and setting it to zero gives
us the optimum:

oL
———— = —log Pr(Y)—1+ O or(s,a) +n=0
5Pr(Y) 2% 2.
0k > ¢i(sa)
e k (s,a)eY
Pr(Y) = =(0) (2.15)

where Z(6) is the normalization constant e”e™!; as such 1 may easily be obtained. Plugging

equation 2.15 back into the Lagrangian (equation 2.14), we arrive at the dual £4'2!(8):

£YN0) = log Z(0) — Y _ Oxx (2.16)
k

With gradient:
VL) = > Pr(Y i (s,a) — oy

Yevy (s,a)GY

This technique is based upon the observation that the probability of the expert following a
given trajectory is proportional to the rewards received along it. This is defined exactly for deter-
ministic MDPs and an approximation is provided in the case of stochastic transition functions in
equation 2.17. Though this behavior would indicate the expert is sub-rational, we interpret this
distribution as modeling a rational agent’s behavior perturbed by spurious noise, perhaps due to

16

un-modeled effects in the environment. An example would be robots forced to deviate from their
optimum behavior due to the presence of humans blocking their way.

Zek Z ¢k(3711)
H T(S, a, S/)e k (s,a)eY
<s,a,s'>€Y
PrY) ~ =0 (2.17)

Later formulas, such as those found in Boularias et. al. [14], define the maximum entropy distribu-
tion over policies. We note here that given sufficient trajectories supplied by the expert this formula
is approximately correct. However, it violates the correct from of a maximum entropy problem as
the empirical data should be provided in the form of a probability distribution that the maximum
entropy distribution is constrained to match.

max (_ S Pr(r) logPr(w))

mell

subject to (2.18)

> Pr(m) =1

mell

>, Pr(m) X pn(s)or(s;m(s)) = o VK

mell ses

Approximations and Efficient Solutions

These problems may be solved with gradient descent techniques, for instance in Ziebart et. al.
[61] Exponentiated Gradient Descent [27] is used. A common issue that appears during numerical
optimization is the large size of the probability distributions which renders the problem intractable
for large state/action spaces or long trajectories. Numerous solutions exist to address this issue
and we briefly describe those used in this dissertation and relevant background works.

e Calculating the state visitation frequency directly using a forward-backward algorithm and

replacing V0, = S Pr(Traj|0)ép(Traj) — dp with S u(s)ér(s) — ¢p. Ziebart et. al. [61]
Traj s
introduces this method to avoid calculating the large probability distribution over all possible

trajectories taxis may take in a city. We use this approach as part of the Hidden Data EM
algorithm in chapter 4.

e Calculating a measure of the similarity between the expert’s trajectory and a given policy

as >, Q7(s,a) — V™(s). This approach is used in the IRL* algorithm presented in
(s,a)ETraj

chapter 4 and we utilize it in the experiments in chapter 6 (see section 6.2 for more details).

This approach was first described in Ng and Russell [41].

e Reducing the distribution space by only considering policies near the optimum for the current
set of weights rather than every possible policy. Boularias et. al. [14] describes this technique
and suggests using all policies that are one action away from the optimum.

17

2.6 FEvaluation of IRL

Evaluation of the performance of an IRL method is somewhat difficult. Direct comparison of the
learned reward function to the true reward function is ill-advised as two very different reward
functions may produce the same optimum policy and different IRL techniques may return different
rewards for the same behavior. If the true optimum policy of the expert is known then one evaluation
method is to calculate the proportion of states in which the optimum policy for the learned reward
function gives the correct action. We label this technique Learned Behavior Accuracy.

2.6.1 Inverse Learning Error

However, evaluation with Learned Behavior Accuracy risks overemphasizing incorrect actions
in unimportant states. If the expert’s true reward function can be obtained for evaluation purposes
we may utilize a metric presented by Choi and Kim [18] which compares the value function of the
policy obtained from optimally solving the expert’s MDP with the true reward function with the
value of policy that is found by using the learned reward function. In other words, let 7% be the
policy obtained by optimally solving the MDP using the reward function learned by the learner
and 7* be the optimal policy of the expert obtained utilizing the true rewards. Then, the inverse
learning error (ILE) metric is calculated as:

ILE = |[V™ — V™|

where V™ is the optimal value function of the expert’s MDP and V™ is the value function due to
utilizing policy 7 on the expert’s MDP. In the event that the learned reward function results in a
policy identical to the expert’s actual optimal policy, 7* = 7 and ILE will be 0; ILE monotonically
increases as the two diverge. Furthermore, use of the difference in values also allows the error to
grow proportionately to the value of the states where the learned policy diverges thereby placing
emphasis on higher-valued states.

As an example, we show an evaluation of IRL* in randomly generated MDPs. We generate
MDPs with six states, four actions, and random transition and reward functions. We optimally
solve each one using value iteration and repeatedly sample trajectories of length 10 timesteps using
the optimal policy. As more trajectories are provided we expect the accuracy of the learning (LBA)
to increase while ILE to approach zero. As can be seen in figure 2.6 this is indeed the case. Each
data point is the average of averages from the output of 1000 trials grouped into blocks of size 10.
Standard error is from 0.018 (1 trajectory, ILE) to 0.0021 (100 trajectories, ILE).

Notice the large standard deviation with fewer provided trajectories of ILE compared to LBA.
This indicates the improved sensitivity to the true reward function that ILE offers: LBA simply
counts the number of correct actions in the learned policy and as a result two different learned
policies can produce the same LBA but will be unlikely to have the same ILE. In fact, this will only
be the case when two differently learned states have the same optimum value.

2.7 Learning transition functions

Given that IRL algorithms are commonly given expert trajectories, if the learner does not have the
expert’s transition function then it stands to reason that the learner can estimate the transition
function from the transitions within the trajectories. As the transitions of a MDP are describable

18

1 1

08 1 0.8
s g
o 06 IRL* - ILE 106 o
S o4l IRL* - LBA 104 €
= <
02 1 0.2
(s : 0
1 10 100

Number of Trajectories

Figure 2.6: Average Inverse Learning Error (ILE) and Learned Behavior Accuracy (LBA) of IRL* as the
number of provided trajectories increases. Random MDPs with 6 states and 4 actions, trajectories of length
10. Error bars are one standard deviation, standard error is between 0.018 (1 trajectory, ILE) to 0.0021 (100
trajectories, ILE)

with a simple three node DBN (see figure 2.3) the parameters of this transition DBN may be learned
by employing a Maximum a Posteriori approach:
Opap = arg max Pr(0|Trajectory)
= argmax Pr(Trajectory|0)Pr(0)
= argmax I1 Pr(s'|s,a;0)Pr(0)

s,a,s'€l'rajectory

(2.19)

This approach requires the expert to cover a substantial portion of the state space during its
demonstration and, given it is assumed the expert is optimal, this may be difficult to satisfy.
Particularly, the expert will not perform all actions with the same frequency, otherwise it would
not be optimal, increasing the amount of observations needed to adequately learn the transition
DBN’s parameters.

Alternatively, a Dirichlet distribution (see chapter 49 [7]), parameterized with transition counts
from observations, could be used to form a distribution over possible transition DBNs and this
distribution sampled (or the expectation taken) to arrive at candidate transition DBN for use with
IR L.

In the event that some transitions are missing due to spurious data loss, Expectation-Maximization
as described in section 2.1.3 may be employed to complete the missing data with an expectation
given the current parameters. This algorithm is iterated to convergence at a local extrema to arrive
at a likely parameterization for the transition DBN.

2.8 Numerical optimization

In certain cases constrained non-linear programs may be solved analytically, however, this will not
be the case in general and numerical solvers are most often employed to produce an answer. A

19

common approach is to perform Lagrangian relaxation to arrive at a single, unconstrained function
with added Lagrange multiplier variables. This function may then be minimized using a number
of function minimizer algorithms, we review those used in this dissertation below.

2.8.1 Nelder-Mead

The Nelder-Mead or downhill simplex method was proposed in [39] and uses a number of heuristics
to move a simplex, a shape containing D+1 points where D is the number of dimensions of the
problem, through the solution space until a minima is found. The points of the simplex are used
to estimate the gradient relative to each other and as a result this algorithm does not require the
gradient to be specified. Many variations exist but common implementations may be thought of
as moving the simplex proportionally to the estimated gradient thereby approximating steepest
gradient descent. Proof of convergence of Nelder-Mead is an open problem but in certain limited
cases it has been shown to converge [32, 29].

2.8.2 L-BFGS

The limited memory Broyden-Fletcher-Goldfarb-Shanno [30] algorithm is a quasi-Newton line
search method in which the Hessian of the problem is estimated through repeated gradient eval-
uations. The limited memory variant uses a linear amount of space to approximate the Hessian
improving performance with problems of many variables. Line search quasi-Newton methods it-
eratively project a line based upon the gradient and Hessian approximations at a given point to
estimate where the zero point of a function may be found and as a result are expected to converge
faster than gradient descent methods. BFGS is known to converge to the global optimum if the
function being optimized is strictly convex [43].

2.8.3 Gradient Descent

Gradient descent and its online variant stochastic gradient descent (SGD) are common numerical
solving techniques in which the parameters of the problem are updated in proportion to the gradient
until a minima is reached. This algorithm is simply:

Wi41 = Wg — I/VF(U)t) (220)

With v as the learning rate.
SGD is an approximation of gradient descent useful when the gradient is decomposable into a
sum of parts:

F(wy) =3 Fi(w) (2.21)

SGD iterates through the individual parts and updates its parameters after each one. Though
the parameter updates may be chaotic this algorithm has an advantage in that the entire gradient
does not have to be re-calculated with each parameter update. It therefore offers improved expected
performance for large data sets where calculating the full gradient would be prohibitively expensive.

20

2.8.4 Exponentiated Gradient Descent

Exponentiated gradient descent [27] is a variant of standard gradient descent in which the parameter
updates are exponential in the gradient:

W] = W X eVVF(wt) (222)

This algorithm offers improved performance over standard gradient descent in the presence of
noisy data and has a lower theoretical loss function. One drawback is the parameters are restricted
to the normalized plane and the components of VF (w;) to [—1, 1], though some solutions to alleviate
the parameter restriction are offered. This algorithm is oriented towards online stochastic gradient
descent where F; is equal to the difference in binary feature values between the parameterized
model and the provided data’s at timestep i.

2.8.5 Improved Adaptive Exponentiated Gradient Descent

For sparse data sets having a single learning rate may cause over emphasis on data points that are
more common at the expense of the sparse points, slowing convergence. To remedy this, adaptive
gradient descent algorithms adjust the learning rate per weight in response to the associated error.
In [54] a version of this method is developed for exponentiated gradient descent that offers improved
worse case loss. A simple version of its update procedure (with path-length bounds) is as follows:

wy — eBt—VVF(wtfl)

2.23
Biy1 = B —vVF(w) —v*(VF(wy) — VF(w-1))? (229)

This algorithm allows parameters in the range [0, inf], with a simple transformation this can be
converted to the range [— inf, inf].

2.8.6 Primal-Dual Interior Point

For constrained, non-linear but convex problems interior point methods offer fast, scalable solutions
over methods developed for general non-linear programs (such as sequential quadratic program-
ming [12]). Numerous algorithms in this class exist, one of the most successful is the primal-dual
method [12] (also called central-path algorithms) in which the gradient of a barrier function based
upon the primal problem is found by utilizing the dual problem. This allows for polynomial time
complexity.

2.8.7 Penalty Method

One possible way of solving non-convex programs is to treat the Langrangian multipliers as penalty
terms. These terms are initialized to small, positive values and gradually increased each iteration
of the algorithm. With the multipliers fixed the Lagrangian becomes a function of just the primal
variables, which can be minimized using any function minimizer technique. After a solution is
found, this solution becomes the starting point for the next iteration. This continues until the
multipliers go to infinity, at which point only feasible solutions will have non-infinite values.

21

2.9 Notation and Terminology

To aid the reader we provide a list of common term definitions here as well as notation for reading
equations found in this dissertation.

Variables

e Random variables: A, B,C

e Variable values: a,b,c or ai,as,...a,

Sets: {A, B,C}

Vectors: Ay, = (41, A2,...4;)

Observed variables and values: Y, y,

Hidden variables and values: 7, z,

Full data sets: X =Y UZ

Probability Distributions
e Probability distribution: Pr(A) = Pr(A = a)
e Parameterized probability distribution: Pr(A;0) = Pr(A = a;0)
e Conditional probability distribution: Pr(A|B) = Pr(A =a|B =b)

e Empirical probability distribution: Pr(A)

Markov Decision Processes

e State space and state: S, s

e Action space and action: A, a

e Policy: 7

e Value function: V (s)

e Q-Value function: Q(s,a)

e State visitation frequency: p:(s)

e State occupancy distribution at timestep ¢: 1(S)

e Trajectory: Trajectory = Traj = {< s1,a1 >,< S3,a2 >,... < sy, >}

22

Inverse Reinforcement Learning
e Expert agent: I,J
e Learner agent: L

Features: ¢ = (¢1, ¢2,...0%)

Feature expectations: ¢ = (®1, Pg, ... D)

Expert feature expectations: ¢ = (¢§1, b9, gZ;k)

2.10 Summary

In this chapter we provided a brief overview of the foundation concepts and frameworks used in
our work. Inverse Reinforcement Learning is based around the Markov Decision Process optimal
control framework which is itself justified by probabilistic reasoning over time methods and decision
theory. Our development of Inverse Reinforcement Learning techniques for use on autonomous
robots extends Maximum Entropy IRL in various ways detailed in the following chapters. However,
the IRL methods presented in this chapter are by no means the entirety of those available and we
explore some of them in more detail in chapter 3.

To perform and evaluate our robotic experiments we defined evaluation techniques appropriate
for IRL and briefly reviewed the numerical optimization methods used in this work. Other tech-
niques reviewed in this chapter include Expectation-Maximization and learning dynamic Bayesian
networks from data, both of which are utilized in chapter 5.

23

Chapter 3

Related Work

In this chapter we review and discuss work related to performing Inverse Reinforcement Learning
in robotic environments, particularly other methods of IRL not covered in the background. Ad-
ditionally, we discuss other applications of IRL as well as other work related to patrolling robots
similar to those used in our experiments and contrast them with our applications.

3.1 Inverse Reinforcement Learning

We view IRL as a way of performing inverse optimal control [44] with MDPs as its framework.
Inverse optimal control includes other frameworks besides MDPs such as linear quadratic regu-
lators [60, 35]. Linear quadratic regulators (LQR) are optimal control frameworks in which the
system dynamics take the form of linear differential equations and the cost (or reward) function
is quadratic. LQR’s may in many cases be solved exactly in closed form to produce a controller
which naturally handles continuous state spaces. This property makes them attractive for many
robotic optimal control problems, such as flying a helicopter (Abbeel et. al. [2]).

As we described in more detail in section 2.3, in this work we extend Maximum Entropy IRL
of Ziebart et. al. [61] which, similarly to the Max Margin algorithm from Abbeel and Ng [3],
models the reward function of the expert as a linear combination of binary feature functions. The
weights are manipulated until the feature expectations of the optimum policy (or distribution over
trajectories) matches the feature expectations of the demonstration.

Linear programming approach

Ng and Russell [41] introduced IRL in terms of matching the expert’s provided policy to the
optimum policy produced by a candidate reward function and provide the following linear program.
To solve the reward function degeneracy issue it chooses a reward function that maximizes the
difference in value between the optimal and second most optimal policies.

24

N
maz Y éniln ((Par (i) — Po(i))(I — vPar)"'R) — || R|1
=1@ /a™
st.
(Par (i) = Pa(i))(I = yPax) "R =0 Va € Ay
|Ri|§Rmaw7 ,L:]-aaN

(3.1)

Where P, is the transition matrix for action a, a™ is the action taken by the expert in state
number ¢, A is a penalty coefficient, and R4 is a parameter specifying the maximum allowable
magnitude of the reward vector’s elements.

Bayesian IRL

Other IRL methods include a Bayesian approach from Ramachandran [47] which forms a probability
distribution over the space of all reward functions. The probability of the state-action pairs in the
observed expert’s behavior is modeled with an exponential distribution:

Pr(s;,a;|R) = LeQsiaik) (3.2)

Where « is a parameter indicating the rationality of the expert. The distribution over R may
be found through maximum a posteriori, a common method for Bayesian estimation problems.

An optimal policy can then found which minimizes the expected policy loss over the expectation
of the distribution of R, i.e. the mean reward function. However, the posterior distribution over
R may be complex with analytical derivation difficult, so a Monte-Carlo Markov chain sampling
algorithm is provided to sample from the posterior by performing a random walk through neighbors
of a given reward function (discretized into a grid). This technique contrasts with the Maximum
Entropy IRL technique wherein a single reward function is found that parameterizes a distribution
over all trajectories (or policies). As formulated Bayesian IRL does not use a linear combination
of feature functions for R().

Game-theoretic approach

A game-theoretic approach to IRL from Syed and Schapire [55] produces the MWAL algorithm,
which models the process of IRL as a zero-sum game with a min player that chooses reward weights
0 and a max player that chooses a mixture of policies 1. By solving the game the following quantity
is found:

v* = max min [0 %y — 0 * P
max i [0 % Dy 9] (3.3)
where ®,, is the feature expectations of the policy mixture and qAS is the feature expectations of
the expert. Here, the optimum 1) maximizes the difference between the value functions Vy — V;

¢
under the worst case weights. Notice this is similar to the minimizing |Q—V'| approach in section 2.5.

25

IRL with POMDPs

Domains in which the agent does not have the ability to fully observe the state of the world
are properly described by Partially Observable MDPs (POMDP). Many robotic domains, such as
navigation, fall into this domain and can only be approximated with MDPs. Inverse Reinforcement
Learning with POMDPs was addressed in Choi and Kim [19] and faces a difficulty as the expert
is acting based on its internal belief as to the state of the world which must be shared with the
learner. Alternatively, the expert’s complete optimal finite state machine policy may be shared
instead. In our work, by contrast, the expert agent has full observability over its state even though
the learning agent may not, making it appropriate for the learner to model the expert as an MDP.

Continuous space IRL

Performing IRL in continuous space is considered an open problem but there have been a few papers
that address this challenge. Some, such as relative entropy IRL from Boularias et. al. [13], simply
utilize straightforward integration in their equations with discrete features and discrete time. For
continuous time, space, and actions the use of path integrals allows for a specific class of these
systems to be solved with Maximum Entropy IRL as shown in Aghasadeghi and Bretl [4]. Here the
policies and rewards are linear combinations of basis functions and the expert provides the optimal
set of weights for the true policy (possibly by demonstration). For performance reasons we use only
discrete states and actions in our experiments, and discuss the specifics per experiment.

Active Learning

Most IRL formulations, including those used in this dissertation, assume no interaction between
the expert and learner. However, IRL with active learning as defined in Lopes et. al. [31] extends
Bayesian IRL to allow the learner to make requests for demonstrations from the expert for states it
is interested in. This is accomplished by discretizing the distribution over rewards and calculating
the average entropy per state, then querying the expert for a demonstration of the state with the
maximum average entropy.

3.2 Applications of Inverse Reinforcement Learning

Apprenticeship Learning

One of the first and most well-known applications of IRL is apprenticeship learning (Abbeel and
Ng [3]) in which the learned reward function is transferred from the expert’s MDP to another
MDP /R model which describes the learning agent. Once solved, the learner’s MDP allows it
to accomplish the same task as the expert, but not necessarily in the same way. Apprenticeship
learning is a generalized form of imitation learning (Schaal [51]) that avoids issues of action mapping
due to differing body types and capabilities between the learner and expert, for example when a
non-humanoid robot learns from a human, by performing any needed translation in the reward
function. Many examples exist in the literature, such as learning the type of grasp to use while
sorting objects (Bogert et. al. [11]), learning to drive a simulated car (Abbeel and Ng [3]) or sail
a simulated boat (Neu [40]), learning to fly a helicopter (Abbeel et. al. [1]), robot path planning
that can mimic teachers (Ratliff et. al. [48]), and recently learning to grasp unknown objects by

26

their handle (Boularias et. al. [14]), play a simple ball-in-cup children’s motor game (Boularias et.
al. [13]), and learning to play games such as table tennis as well as an expert (Muelling et. al. [36]).

Prediction of expert motion

Because IRL completes the MDP/R model of the expert another useful application is to use the
completed MDP for predicting the actions of the expert in states that have not been observed,
for instance to determine the future locations of patrolling robots so they may be avoided (Bogert
and Doshi [9, 10]). The learned reward function may also be used to provide predictions of the
expert’s behavior in new, unseen scenarios by transferring it into secondary MDP /R models that
describe the expert in these new scenarios. Examples include a learning a drivers’ behavior to
better optimize fuel efficiency of a hybrid car (Vogel et. al. [58]), predicting driver behavior on
residential roads (Shimosaka et. al. [52]), and predicting the future path of humans so that, for
example, path planning by a robot can avoid collisions with them (Kitani et. al. [26], Ratliff et.
al. [48], and Kim and Pineau [24]).

Others

Other applications of IRL include learning the behavior of the expert so that the learner may
interact with them, for example in spoken dialog (Kim et. al. [25]) where the rules of taking turns
speaking are learned. IRL has also been used to complete models in which agent decision-making
is a component and important data is missing, such as the routes taken by a car when only sparse
GPS point-measurements are available (Osogami and Raymond [45]).

3.3 Multiple Interacting Robots

IRL lends itself naturally to robotic learning from demonstration scenarios in which there is a
single human or robot expert in a controlled environment. However, our scenario in chapter 6
requires that the learner simultaneously learn from multiple, possible interacting robots. Prior
work on multiple robots learning from demonstration either as the learners or as the experts is
sparse. One such domain is the scenario where a single expert teaches a team of robots (Chernova
and Veloso [17]). Here, the learners consider each others’ actions to facilitate coordination while
the expert acts alone. Another multi-robot learning from demonstration scenario places a robot
as an expert and another as the learner (Alissandrakis et. al. [6]) in an imitation learning setup.
In Natarajan et. al. [37] multiple agents with non-sparse interactions are modeled with a single
joint-MDP and IRL performed on this MDP. This model may not be used in our domain due to
the presence of occlusion; if one agent were observed and other not the state of the joint MDP
becomes partially observed, breaking an important assumption of IRL.

Robot Interaction modeling

Modeling of robot interactions has received attention recently with Spaan and Melo [53] utilizing
game theory to model interactions as a component of multi-agent planning. Analogous to our
setting, two robots plan their trajectories using individual MDPs and overlay it with a Markov
game when conflicts arise such as when they must cross through a narrow corridor. This is a multi-
agent planning problem, not inverse learning; our work in chapter 6 may be viewed as the inverse

27

of this problem where we attempt to learn which Nash equilibrium the two interacting robots have
chosen based on their observed actions. Valtazanos and Ramamoorthy [57] use demonstrations to
learn a set of interaction actions, which may then be used by the learner robot when interacting
with another robot. This allows it to predict the state that may result due to its actions, and
utilize these to shape the actions of a second robot as a response to the learner’s actions. Our work
differs in that we focus on entire trajectories where the interaction is a critical part of the perceived
motion, the learner cannot influence the actions of the experts in any way, and we seek to learn
the behavior of multiple robots when they are not interacting as well.

When interactions between two agents are pervasive and extended the problem becomes a
joint decentralized MDP (Goldman and Zilberstein [20]) whose solution is highly intractable. We
instead focus our scenario on settings where interactions between robots are sparse and scattered;
this allows observed robots to be individually modeled as tractable MDPs.

Patrolling robots

Finally, in the context of our multi-robot patrolling application domain, related research has pre-
dominantly focused on generating robot patrolling trajectories that are theoretically difficult to
learn from observations by relying on randomized behavior (Agmon et. al. [5]). This work is
motivated by building robots that could be deployed for perimeter patrolling; by contrast our
application seeks to use Inverse Reinforcement Learning to build robots that may learn simple
patrolling behavior of multiple robots, which may be viewed as the first steps towards an inverse
optimal patrolling problem.

3.4 Learning Transition Probabilities of an External Agent

Few approaches investigate relaxing IRL’s requirement of full knowledge of the expert’s transition
function. Boularias et. al. [13] propose model-free IRL with a single expert, learning the reward
function by minimizing the relative entropy between distributions over trajectories generated by
a baseline and target policies. Klein et. al. [28] propose a method to avoid solving the forward
reinforcement learning problem by instead estimating the Q function from the expert’s feature
expectations directly and using this as a score function for a linearly parameterized classifier that
outputs the rewards. In contrast, in chapter 5 we explicitly first learn the transition function under
occlusion making this a first semi-model based method.

Bard [8] used maximum entropy to estimate state probabilities when event probabilities, which
are aggregation of states, are known. This is challenging because there are fewer event probabil-
ities than the number of unknown state probabilities. Our method, mIRL’+Int builds on Bard’s
approach with several additional challenges. These include our use of features that are random
variables, trajectories that may contain several events (aggregate features), occlusion, and its novel
extension toward learning transition probabilities.

3.5 Expectation-Maximization with IRL

In chapter 4 we apply Expectation-Maximization to IRL in order to learn in the presence of hid-
den variables. An expectation is utilized to fill in missing data, parameterized with the current
iteration’s distribution over trajectories. EM was also applied to IRL in Nguyen et. al. [42] in the

28

context of multiple locally-consistent reward functions. As the reward functions’ parameters and
the identity of the reward function in use at each timestep of the expert’s demonstration is unknown
EM is used to find the maximum likelihood parameterization. A number of component functions
including priors over reward functions, reward function weights, and reward function transitions
must be maximized during the M step. Once EM converges, the trajectories of the expert are
partitioned using the Viterbi algorithm into the most likely segments each learned reward function
generated.

3.6 Summary and Discussion

In our application domain, autonomous robots performing IRL on agents they encounter in the
world with the goal of using the learned rewards as part of their task, some of the assumptions
inherent in IRL are expected to be challenged. Particularly, occlusion is typically unavoidable due to
the reality of on-board sensors. Kitani et. al. [26] model the expert’s state as partially observable
but this model may not work when the expert moves completely out of view. In contrast our
occlusion model compensates for these completely hidden conditions but assumes that the expert
is fully observable otherwise.

Interaction is common in environments with multiple agents and must be modeled to prevent the
interactions being mis-attributed to the individual agents’ reward function. With dense interactions
causing interruptions in each agent’s ideal behavior, Natarajan et. al. [37] build one large joint MDP
that models the complete system and can account for the joint state during interactions. Or, if the
interaction is critical to the agents’ behavior they may be modeled as playing a game rather than
executing separate MDPs; unfortunately this scenario is therefore outside the realm of IRL. We
take a different approach: if the interaction is a temporary distraction from their individual tasks
then the interaction itself may be modeled as a game and the non-interaction behavior as a MDP
which may be inversely solved with IRL. This avoids the performance penalty associated with a
joint MDP and issues that arise in the presence of occlusion.

Complete knowledge of the expert’s transition function is difficult to attain for unknown agents.
In response, model free approaches (Boularias et. al. [13]) and approaches that avoid calculating the
reinforcement learning problem when performing IRL (Klein et. al. [28]) offer methods to obtain
the expert’s reward function without needing the transition function. However, for applications
in which an expert is modeled as a MDP which is then utilized as part of the learner’s task, for
instance to predict the future positions of the expert, the transition function must be estimated
from the data. We present a method for doing so in chapter 5 that is orthogonal to the specific
IRL method used by utilizing side knowledge of the structure of the transitions.

29

Chapter 4

Learning in the Presence of Hidden
Variables

In common IRL scenarios it is assumed the learner has full view of the entire state space the expert’s
behavior occurs in. This is the case in controlled scenarios, for instance in a motion capture lab
when the expert is a human. When a robot must rely on its on-board sensors to observe the expert,
however, it is likely that portions of the state space will be occluded from view due to sensor limits
or objects in the environment. In this chapter we will describe this problem in detail and our
solutions to it.

4.1 Effects of occlusion

Many solutions exist to the problem of spurious missing data. That is, a data set is randomly
missing a small portion of fields in a few entries. For instance, if the missing entries are rare
one could simply remove the offending instances. A more advanced technique is to simply set the
missing fields to the mean of samples. These methods fail if the missing data is persistent, for
instance if a field has no values whatsoever due to a recording error.

In many situations involving robotic learners state space occlusion will result in persistent
missing data for some portion of the expert’s behavior. Examples range from the expert has moved
out of range of sensors, the expert moves behind an object or self-occludes, to more complicated
examples like false observations due to distractions like mirrors or offending color blobs in the
environment. Extreme occlusion may prevent the learner from being able to observe the expert
taking a critical action, if multiple experts are present it precludes the use of a joint-MDP to model
them as the states become partially observable in the event one expert is observed and the other
isn’t.

While it is tempting to simply remove the occluded states from the learner’s model of the expert
this does not work in general as the expert may in fact receive rewards in the occluded states or
these states may be critical to the expert’s trajectory. In these cases at least, removing occluded
states completely from consideration distorts the reward function learned.

30

4.2 Simple solution

A simple and straightforward solution is to limit the feature expectation calculation to sum over
only those states that are visible to the learner. We define the observable state set as Obs(S), and
for Maximum Entropy IRL (MaxEnt IRL) we update the feature expectation constraint accordingly:

STPrmY. > mnl(s)enls,w(s)) = b (4.1)

well k seObs(S)

As the occluded states are already removed from quS by definition, the constraints now match.
Note, however, that we still have K features and constraints, even those features which are defined
entirely in the occluded states and thus never observed. This has the unfortunate effect of
preventing the use of the gradient when solving, as some portion of qg is now underrepresented,
therefore we may not use a numerical solver that rely on the gradient such as L-BFGS or gradient
ascent. Instead, we use the Nelder-Mead simplex technique [39] to solve this problem; this increases
the time to solve as Nelder-Mead scales with the number of parameters. This cost, however, is not
prohibitive as our time-limited experiments will show.

As we continue to use the non-occluded definition of the probability distribution:

> 2 bn(s)ek(s,m(s))
Pr(m) < ek s€s (4.2)
this program is now non-convex as there are potentially multiple equally likely explanations that
match the feature expectations of the visible portion but differ in the occluded (proof available in
appendix A.2.1). We label this algorithm IRL*, and note that we solve this program using the
(@ — V approach described in section 6.2.

4.2.1 Evaluation

To validate our simple approach to occlusion we examine the performance of IRL* in randomly
generated MDPs as we gradually increase the level of occlusion. We generate MDPs with six states,
four actions, and random transition and reward functions. We optimally solve each one using value
iteration and repeatedly sample 10 trajectories of length 10 timesteps using the optimal policy.

As can be seen in figure 4.1 both measures with no occlusion (occluded states = 0) match their
corresponding data point in figure 2.6 (10 trajectories). As more states are occluded from view
both measures smoothly approach their max/min. Notice that even in the face of mild occlusion
accurate policies may still be learned and ILE is reasonable. Each data point is the average of
averages from the output of 1000 trials grouped into blocks of size 10. Standard error is from 0.023
(6 occluded states, ILE) to 0.0058 (0 occluded states, LBA).

4.3 Expectation over hidden variables

Instead of simply ignoring the missing data a better solution may be to take the expectation over
the missing data given the current probability distribution over the expert’s trajectories. If we
complete the missing data in this way it allows the use of all states in the constraint summation
again and with it the calculation of the gradient. We will thus modify the MaxEnt IRL algorithm
detailed in section 2.5 to account for the hidden data.

31

1
14 |

W 12 | 4 0.8 <
.| 11 m
© IRL* - ILE 106 5
& 081 IRL* - LBA &
o 08 AT 0a
L 04} | o Z

0.2 | ’

0 1 1 1 1 1 1 1 0

6 5 4 3 2 1 0
Number of Occluded States

Figure 4.1: Average Inverse Learning Error (ILE) and Learned Behavior Accuracy (LBA) of IRL* as the
number of occluded states decreases. Random MDPs with 6 states and 4 actions, trajectories of length
10 and 10 trajectories sampled. Error bars are one standard deviation, standard error is between 0.023 (6
occluded states, ILE) to 0.0058 (0 occluded states, LBA)

We rewrite the definition of ¢ = 3. Pr(X) Y. ¢x(s,a) where X is the set of observed
Xex (s,ayeX

trajectories and]57‘(X) is the empirical probability of a given trajectory X. We may rewrite this as

S S Pr(Y,Z) Y. ¢i(s,a) where X = (Y U Z), Y is the portion of each trajectory observed,
Yey ZeZ (s,ayeX

Z is one way of completing the hidden portions of this trajectory and Z is the set of all possible Z.
Now we may treat Z as a latent variable and take the expectation:

G AN PrY) Y Przly) Y duls.a) (4.3)

Yey Zel (s,a)eYuz

The revised program from equation 2.13 is now:

max (_ S Pr(X) log Pr(X))

Xex
subject to) Pr(X)=1 (4.4)
Xex
Y PrX) Y dulsa)=f% vk
XeX (s,a)eX

Notice that in the case of no occlusion Z is empty and X =), therefore equation 4.4 reduces
to equation 2.13. Thus, the above problem generalizes the original MaxEnt IRL problem.

This new program is non-convex due to the presence of Pr(Z|Y') and therefore presents some
challenges in solving it as we detail in the next section. It may be viewed as an application of Wang
et. al.’s [59] generalization of the maximum entropy method to allow for hidden variables.

4.3.1 Method of Latent Maximum Entropy

As a first step towards a solution to equation 4.4, we proceed as is a common procedure with
non-linear programs by taking the Lagrangian and finding the derivative with respect to Pr(X)

32

with the goal of finding a definition of Pr(X). Unfortunately, due to the presence of Pr(Z]Y’) we
do not arrive at a closed form solution:

oL = —log Pr(X —1+Z€k Z or(s,a)

OPr(X) ex
ZXE:Z[« %X/ Pr(s,a) — (%:ex o (s, a)|Pr(X’)
+ Z O Z Pr(7 P’I‘(Y}Q +n

Yey

where X' = (Y U Z'). Wang et. al. [59] suggest approximating the above partial derivative with
the following simpler form:

oL
———~ —log Pr(X)—1+ Ok or(s,a) +
oPr(X) Z <SQZ€X

Setting the above to 0 and solving for Pr(X) yields an optimum for Pr(X) that is log linear:
220k > dk(sa)

e k (s,a)eX
Pr(X) =~ =0) (4.5)

Now that we have an (approximate) closed form definition of Pr(X), we proceed by substituting
this definition back into equation 4.4. We then arrive at the objective function to minimize.

£ (9) ~ log = Zek S Pr(V)) _Pr(ZIY) > ¢ils,a) (4.6)

Yey ZEL (s,a)eYUZ

To assist in minimization, we attempt to find the gradient of equation 4.6 with respect to the
Lagrangian parameter vector ©. Unfortunately we again do not arrive at a closed form solution
for the gradient due to the presence of Pr(Z|Y).

Expectation-Maximization Solution

Wang et. al. [59] offer an EM-based solution which we will show produces a valid solution to
equation 4.6. Due to the non-convex nature of the original problem and the use of a log-linear
approximation, this solution is not guaranteed to be the optimal to equation 4.4. Thus, multiple
restarts with varying initial parameters are required and among the found solutions the one with

the highest entropy is chosen as the final solution.
We seek to maximize the likelihood of Lagrangian parameters 8, where the log likelihood is
defined as LL(6|Y) = log Pr(Y;0). This becomes,

LL(O|Y) = log H Pr(Y;0) Z Pr(Y) log Pr(Y;6)

Yey Yey
=Y Pr(Y)log Pr(Y;0) Y Pr(Z|Y;0)
Yey ZEL
= > Pr(Y) Y Pr(Z|Y;0) log Pr(Y;0)
Yey ZEL

33

Rewriting Pr(Y;0) = % in the above equation we get,

L) =Y Pr(Y) > Pr(Z|Y;0) log m

Yey ZeL

=Y _ Pr(Y) > Pr(Z|Y;6)(log Pr(Y,Z;0) —log Pr(Z|Y;#))
Yey ZEL

The above likelihood may be iteratively improved until convergence (possibly to a local optima)

by casting it in an EM scheme. Specifically, the likelihood may be rewritten as, Q(6, O(t))—i—C (9, G(t))
where,

0,01)) =>" Pr(Y) Y Pr(Z|Y;6") log Pr(Y,Z;0) (4.7)
Yey YAV
C(0,00) Z Pr(Y) Z Pr(Z|Y;0W) log Pr(Z|Y;0)
Yey ZEL

Notice that in equation 4.7, we may replace Pr(Y,Z;0) with Pr(X;0), and we may now
substitute in equation 4.5. This gives us,

Q0,00 = ZPT‘ ZPT‘ Z|Y;00) Zﬂk Z or(s,a) —log ()

Yey Zel (s,a)eX

- (log Zek S Pr(y) Y Pr(Zly;eM) > ¢k(s,a))

Yey ZEL (s,a)eX

Notice that the @ function above is almost the negative of the dual Lagrangian presented in
equation 4.6 with the only difference being). On maximizing Q to convergence, we have 8 = (),
due to which we conclude that maximizing the) function minimizes the dual Lagrangian function.
Therefore, approximately solving the maximum entropy IRL of equation 4.4 for 0 is equivalent to
maximizing the @ function; Theorem 1 states this formally.

Theorem 1. Under the assumption that the distribution of the complete trajectories is log linear,
the reward function that maximizes the log likelihood of the observed incomplete trajectories also
mazximizes the entropy of the distribution constrained by the conditional expectation of the feature
functions.

This gives us another path to a feasible solution to the generalized IRL in equation 4.4 subject
to the constraints and the log-linear model for Pr(X). However, due to the non-convexity of the
Lagrangian this solution may not necessarily be the optimal one.

Using this insight, we may now split the primary constraint in equation 4.4 into two portions
and solve each separately.

E-step

Consequently, the E-step involves obtaining a conditional expectation of the K feature functions
using the parameter) from the previous iteration. We initialize the parameter vector randomly.
For all k =1... K we obtain,

Z|Y’ ZPr)ZPT(Z|Y;9(t)) Z T ENT) (4.8)

Yey ZEL (s,a)eYUZ

34

M-step

This involves solving a simpler version of the constrained maximum entropy program of equation 4.4
by utilizing qbZ’(t) from the E-step above and the log linear model for Pr(X) to obtain 6.

max < S Pr(X) log Pr(X))

XeX
subject to > Pr(X)=1 (4.9)
XeX
> Pr(X) Y drlsa)=of" " vk
Xex (s,a)eX

4.3.2 Time to solve considerations

Equation 4.8 requires a summation over every possible Z for each Y. As Z is one possible way of
completing the missing data to result in X the number of possible |Z| grows exponentially with
the number of timesteps of missing data: |Z| = (|Secc| X |A|)! where S,ee = S — Obs(S). As the E
step must be computed repeatedly over the course of the expectation-maximization algorithm the
number of missing timesteps quickly becomes the determining factor for run length.

An alternative to this exact approach is to estimate gigf‘y’(t) using Monte-Carlo Integration.
The distribution is sampled using Gibbs sampling to produce a Markov chain whose equilibrium
distribution matches, producing the Monte-Carlo Expectation-Maximization algorithm (MCEM)
as described in section 2.1.4. We thus treat X as a Bayesian network in which some nodes are
known completely and others completely hidden. There are two types of nodes to sample: states
and actions. As each node in a Bayesian net is independent given its Markov blanket, we may
sample according to:

Pr(si/MB(st)) = nT(s¢—1,at—1,5t)T (¢, at, se+1) Pr(ac|st)
Pr(a;|M B(at)) = T/T(stva‘tv st+1) Pr(at|st)

As the E step in MCEM is only approximate we may not rely on convergence of Q as an
indicator of completion [38]. Instead we fix the number of iterations manually in our experiments.

4.4 Experiments and Results

We present two problem domains to test the performance of the algorithms described in this chapter.
We utilize IRL* described in section 4.2 and we label the Expectation-Maximization approach in
section 4.3 Hidden Data EM.

4.4.1 Domains

Fugitive reconnaissance

Our first domain is simulation only and models a scenario where a fugitive agent is being observed

by a UAV as it tries to make it to a safe sector. There are two possible sectors that may be the

35

e iy !
‘ 7

!

Figure 4.2: The UAV tracks the fugitive (I) as it moves through the grid of states. States may be
occluded from the UAV’s view by foliage. The sectors shaded blue and orange are the true safe
and penalty states respectively.

safe one, but the area may be occluded from view by foliage. In another setup, the UAV changes
positions between trajectories resulting in varying levels of occlusion of the state space. A diagram
of the problem is shown in figure 4.2.

The states of the resulting MDP are simply the coordinates of each sector, actions are move
along each of the cardinal directions. We assume the fugitive is executing a fixed, deterministic
policy and that its transitions are stochastic (90% chance of arriving at the expected state with the
remaining mass distributed evenly to other actions). The fugitive’s reward function is modeled as
a linear combination of three features:

1. Cost of movement is a small penalty for taking any action in all states, this encourages I
to reach the goal state efficiently;

2. Goal state reached is activated if I reaches sector (4, 3);

3. Penalty state reached is activated if I reaches sector (4, 2).

Learning from human demonstration

Our second domain involves a human attempting to teach a robotic arm a fruit sorting task. The
human’s arm is tracked using a motion capture system as well as recorded using a color video
camera. These recordings provide enough data for a learner to determine which type of fruit (here
using different colored and sized balls) should be sorted into which bin. However, there is one
complication: some of the fruit is ripe and therefore must be handled gently but there is no direct
measurement of the force applied by the human’s hand to the fruit.

36

Four types of balls - 6 each - are present. Two types made of soft clay represent ripe fruit that
must be gently handled and the other types are ping pong balls representing unripe fruit that can
be handled roughly. The sorting setup is shown in figure 4.3.

Figure 4.3: Video captures from our experiment showing a subject performing the ball sorting task.
Notice that there are four types of balls in all - soft clay balls of two colors and hard ping-pong
balls of two colors. Balls are sorted into two bins based on their color. (a) Subject picks a hard
ball, and (b) Subject places a soft red ball in one of the bins.

To model the human, we discretize the space their hand may be in into four values { on_table,
in_center, bin_1, bin_2 }. Additional variables include the ball type { 1,2,3,4 } and whether a ball
is being held { yes, no }.

While we do not directly measure the force applied to each ball there is a noisy, indirect
indication available in the form of the amount of time the human spent grabbing and placing the
ball. Soft grabs and places are slightly slower on average but overlap significantly with hard ones.
By adding a discretized ”time for previous action” value to each state, we can model this by using
a stochastic transition function - soft grabs result in higher probability of next states with larger
”time for previous action” values and vice versa. This information is not enough to label the grab
or place action as this may result in incorrect expert trajectories. Instead, we hypothesize that the
Hidden Data EM algorithm, by taking the expectation over the missing action, can learn reward
values that explain ”time for previous action” values in the trajectory. This variable is discretized
into 12 segments: {less than 0.3s, 0.3s, 0.4s, ..., 1.3s, greater than 1.3s}.

The human performs one of the following seven actions:

e (Grab hard denotes the hand grabbing a ball with default force and sets the holding_ball factor
to true;

e Grab soft denotes the hand grabbing a ball gently and sets holding_ball to true.

37

On average, grabbing a ball gently is slower than grabbing it by default. Both grab actions
are applicable for states where the ball position is on the table only;

e Mowve To center denotes the hand moving to the center position while holding a ball. This
action applies for states where the hand has grabbed the ball that is on the table;

e Mowe to bin 1 is the hand moving to bin 1 while holding the ball;

e Mowe to bin 2 is the hand holding the ball moving to bin 2;

These actions that move the ball to the bins are applicable when the ball is held and its
position is in the center;

e Release hard places the ball with default force in a bin and sets the factor holding_ball to
false; and on average is faster than grab soft, only for states in the center position

e Release soft places the ball gently in a bin and sets holding_ball to false.

On average, placing a ball gently in a bin is slower than placing it with regular force. Both
release actions are applicable when the ball is held and its position is in the center;

The human’s reward function is modeled as having the following feature functions:

e Release ball type X in bin 1 leads to 4 feature functions each of which is activated when
a ball of that type is placed in bin 1.

¢ Release ball type X in bin 2, 4 features each of which is activated when a ball of that
type is placed in bin 2.

e Handle ball type X gently also leads to 4 features each of which is activated when the
ball of the corresponding type is grabbed and moved gently.

In total, the reward function is composed of 12 weighted feature functions.

As this is an apprenticeship learning task, we also model the robot arm, in this case a Trossen
Robotics PhantomX Pincher, with an MDP. The parameters of this MDP are similar to the human’s
with the exception of the transition function. In the human’s MDP transitions are primarily
modeled as arriving at their intended next state with a probability of 0.9 with the remaining
probability mass distributed to the other actions. Then the probability mass is distributed according
to the "time for previous action” variable’s probabilities. For the robot, we noted an increased
chance of dropping a ball when using the soft grip and so modeled the transitions accordingly,
specifically probability 0.9 of successfully sorting the ball and 0.1 of dropping it vs. a hard grip of
0.99 and 0.01 respectively. As a result, the optimum policy for the robot’s MDP prefers the use of
a hard grip unless rewarded for using a soft grip with a specific ball per the reward function.

4.4.2 Metrics and Baselines

When the true reward function is unknown or the learner’s and expert agents’ MDP differ signifi-
cantly it is common to evaluate the performance of the learning agent using a performance measure
related to its assigned task. Consequently, we adopt this approach for the ball sorting task.

We evaluate three variations of the algorithms presented in this chapter: MaxEnt IRL is a vari-
ation of the algorithm described by equation 2.13 in which occluded states are removed from all

38

considered trajectories, I RL* is the algorithm described in section 4.2, and Hidden Data EM is
described in section 4.3. In the sorting domain all states are visible with some actions occluded,
however the first two algorithms cannot correctly model this condition and so any occluded ac-
tions also cause the states to count as occluded for MaxEnt IRL and IRL* (Hidden Data EM is
unaffected). One additional limitation of the first two algorithms is that the occluded states must
be constant throughout all observed trajectories, as such these algorithms cannot be applied to
scenarios where the observability of the state space varies.

4.4.3 Results

For our first experiment, we compared the ILE of all three algorithms in the fugitive domain. We
first develop a control where the state space is completely visible. Here we expect the performance
of Hidden Data EM to be identical to MaxEnt IRL. Next, we test the three algorithms when the
last column of the map is occluded which presents a challenge as this includes the two terminal
states. Finally, we vary the occlusion per observed trajectory simulating a UAV moving through
the space. Each method received up to 50 trajectories from the fugitive with each one comprising
5 steps. The fugitive is started in a random state and executes a single policy in all samples.

Figure 4.4 (a) shows the results of the occlusion free control, notice that all methods reduce
ILE as more trajectories are considered and Hidden Data EM is identical to MaxEnt IRL. Both of
these methods are out-performed by I RL* and this is attributed to the short trajectory length as
it is possible the fugitive does not reach a goal state in 5 timesteps due to the stochastic transition
function. In the event this happens, the two trajectory based methods are unable to attribute the
motion of the fugitive to a goal state as the trajectory does not include them, whereas the policy
based IRL* matches feature expectations of all visible states and is therefore unaffected.

Notice the dramatic increase in error the MaxEnt IRL algorithm experiences in figure 4.4 (b).
As the goal states are permanently removed from observation in this experiment this method will
never consider the features associated with these states. Notice too that despite being derived from
MaxEnt IRL, Hidden Data EM effectively overcomes this limitation and performs as well as TRL*.
Finally, in 4.4 (c) we see Hidden Data EM reducing ILE as the number of trajectories increases, no
baseline is provided because we are unaware of any other IRL algorithm that operates with varying
occlusion.

In our second experiment we used a robotic arm to sort 24 balls of varying types into two bins.
Each of the three algorithms in this chapter was given the same set of recorded trajectories of a
human performing this task. The reward functions found by each are transferred to the robot’s
MDP which was then executed repeatedly to sort all given balls. As mentioned previously, the
specific action taken by the human during a grab or place is occluded from view and to provide
an additional baseline we fill in the missing action with the true one execute MaxEnt IRL on the
complete trajectory, we label this Occlusion-Free control.

Table 4.1 shows the performance of all algorithms, while all methods learned to correctly sort
the balls into the correct bin, they differ in the grasp chosen for each ball type. Here we can see
Hidden Data EM outperformed the other methods and matched the performance of the Occlusion-
Free control. MaxEnt IRL, unable to infer the action the human used, simply used the default hard
grasp which deformed most of the soft balls. IRL* learned that one type of soft ball should be
handled gently but failed to find the same for the other, additionally it incorrectly found that a
hard ball should be handled gently and as a result dropped more balls than the other methods. We
show some images of the arm performing a sort in figure 4.5.

39

10

ILE

25

20

15

ILE

10

12
10

ILE

o N B~ O @

MaxEnt IRL
Hidden Data EM
IRL*

10
Number of observed trajectories

(a)

100

MaxEnt IRL
Hidden Data EM
IRL*

10
Number of observed trajectories

(0)

100

Hidden Data EM

10
Number of observed trajectories

()

100

Figure 4.4: Performance evaluation of all three methods in the UAV reconnaissance scenario. (a)
ILE for all methods in the fully observable setting. Notice that Hidden Data EM’s performance
coincides with that of MaxEnt IRL as we may expect. (b) ILE the fugitive’s trajectories are partially
occluded, notice the failure of MaxEnt IRL due to the absence of the critical features from all
observed trajectories. (c) High levels of occlusion which changes randomly between trajectories

due to UAV movement.

40

Ball correctly Balls Balls
Method sorted dropped | damaged
MaxEnt IRL 23 1 11
IRL* 21 3 5
Hidden Data EM 23 1
Occlusion-free control 23 1 0

Table 4.1: Performance of the various methods on the PhantomX Pincher arm on the ball sorting
task. Notice that Hidden Data EM did not damage any balls and dropped just one ball while
sorting. Its performance is similar to our occlusion-free control method that provides an upper

bound.

Figure 4.5: A series of snapshots of the PhantomX Pincher arm sorting the balls. We introduce
balls one at a time due to lack of sufficient space for several balls and the arm being small. The
two bins with balls are visible on the left side of the arm. We show the deformed clay ball due to

mishandling and the non-deformed clay ball on the bottom.

41

[Gibbs-5 Gibbs - 6
Exact - 5 Exact - 6
100 £
[2]) E
3 E
[
<)
8 [
1 | 1 1 1 1
2 4 6 8 10

Number of trajectories

Figure 4.6: Average time to complete learning in the fugitive domain for exact Hidden Data EM and a
Monte-Carlo EM variant as the number of provided trajectories increases. Note logarithmic scale. Occlusion
was randomized. Error bars are one standard deviation, standard error is between 44.94s (10 trajectories of
length 6, Exact method) to 0.24s (2 trajectories of length 6, Gibbs)

4.4.4 Solving speed of Exact EM vs MCEM

Experiments in the previous sections could be solved exactly due to the short lengths of the provided
trajectories. As described in section 4.3.2 the size of |Z| increases exponentially with the number
of occluded timesteps, dramatically increasing the time required to solve Hidden Data EM.

We show an example of time to solve improvement of using MCEM with Hidden Data EM in
figure 4.6 in the fugitive domain. Besides comparing trajectories of different lengths (length 5 and
6) we also increase the number of provided trajectories; the size of Z grows linearly with the number
of trajectories and allows easy comparison between the two methods.

4.5 Summary

In the presence of occlusion the normally convex Maximum Entropy IRL program becomes non-
convex as it is possible the observed behavior of the expert may not be matched with the features
defined in the observable space alone. Simply limiting constraints to the effects on the observable
feature expectations is sufficient in many cases to learn accurate reward functions and benefits from
a solving time that does not depend upon the degree of occlusion.

By completing the hidden variables with an expectation given the currently learned reward
function all states may be considered in the constraints. This new program may be approximately
solved with an Expectation-Maximization based algorithm in which an expectation for the expert’s
feature expectations is calculated in the E step and the original Maximum Entropy IRL program
is solved in the M step. While gaining improved accuracy over simply ignoring the missing data,
calculating the E step exactly is difficult as the size of the potential trajectories the expert could have
traversed grows exponentially in the number of timesteps it was hidden. Monte-Carlo integration
may be effectively employed to estimate the E step in this case.

As all states are again considered in the constraints dynamic occlusion may naturally be handled
by simply allowing Obs(S) to vary with time. Dynamic occlusion is expected to be encountered
when the learning agent moves through the environment resulting in different parts of the state

42

space being occluded during the expert’s demonstration. For autonomous mobile robots employing
IRL this feature may prove critical to successful learning.

43

Chapter 5

Learning with Unknown Dynamics

One of the assumptions inherent in most IRL formulations is that the transition function of the
expert agent is known to the learner. In some cases, transitions are deterministic and easily modeled.
Given enough data, existing techniques can estimate a stochastic transition function an expert agent
is using by modeling the transitions as a dynamic Bayesian network and employing a parameter
learning method. However, this method is challenged when faced with occlusion - it is possible that
transitions from some states are never observed, and further some actions may never be observed
as the expert agent is not expected to execute all actions in every state (otherwise it would not be
optimal!). In this chapter we make progress toward solving this problem by assuming a structure to
the transition function and, utilizing side information about the expert agents, intelligently transfer
information about transition probabilities from observable states to occluded areas.

5.1 Transition Model

When modeling an agent with an MDP one common technique is to design the state and action space
as if the transition function is deterministic and then apply some sort of error model to produce
stochastic transitions. With this in mind, we describe the following transition structure: assume
that for every state and action there is one intended outcome state: ¥: S x A — 5. We may view
this as a deterministic transition function; to make it stochastic we must first choose a probability
with which the agent arrives at the intended state and assign this probability to T'(s,a, (s, a)).
The remaining probability mass, 1 —T(s, a, (s, a)), must now be distributed according to a chosen
error model. This could be as simple as uniformly distributing it among all other states, assigning
it all to an error state, or distributing it among the other actions’ intended outcome states given
the current state.

We must now assume that the learner has full knowledge of ¥ and an accurate error model to
use. At first glance, this might seem difficult to satisfy. There are, however, two factors which
increase the likelihood of this model being applicable. First, it is the learner who is constructing
an MDP to model the expert and as such may be free to add extra states and actions as it sees fit
until this deterministic-core transition model applies. Second, when modeling movement in robotic
domains the transitions are bounded by physical laws and as such intended next states of actions
and the error model may be determined accurately.

We have now condensed the problem of learning the transition function to estimating the values
of each T'(s,a,(s,a)) by simply counting the proportion of successful transitions (agent arrived at

44

its intended next state) out of all attempted transitions. This does not, however, address the issue
with occlusion as we still have no information about the transitions in occluded states.

5.2 Transition Features

We now wish to transfer the information we have about successful transition probabilities from the
observable states to occluded ones. While a simple solution is to assign unobserved T'(s, a, ¢(s,a))
the value of those that are observed, it is not always justified to do so. One situation where doing
this is justified is when we have side information about the expert agent that indicates the transition
in question has the same probability as one we can observe. We extend this concept with the use
of transition features. We begin by attributing a successful transition as caused by an underlying
set of features all operating successfully. In the event that any one feature fails, the agent instead
follows the given error model.

We will model these features as binary random variables with each state-action pair mapped to
some subset of these features. Let {5 = {7q,..., 7} be the subset of independent features mapped
to a state-action pair, (s, a), where each feature, 7 € T, is a binary random variable whose states
are 7 (success) and 7 (failure), and 7 is the set of all transition features. We assume that both the
set of features and mapping to states-actions is known to the learner - these could be provided by

an abstract model of the type of agent being observed for instance. Note that (J &% =T.
(s,a)
We now define for all transitions

T(s,a,9(s,a)) = [[Pr(r) (5.1)

TEES A

This definition is approximate because the relationship between the feature variables is ideally
described by a Bayesian network. In the interest of simplicity and tractability (computing the joint
of a Bayesian network takes exponential time in general) we make an independence assumption
between the features. Equation 5.1 is loosely analogous to the use of features in reward functions.

As an example of transition features, consider an autonomous differential drive robot. Suppose
we model this robot according to the above method and want to describe a Move Forward action,
with the intended next state being one meter ahead of its current position. To accomplish this
task, the robot will need to move both of its wheels at the same rate, its navigation system must
be localized well, and the floor it is on must be smooth and not slippery. Thus we have four
transition features and the probability of moving one meter forward is: Pr(Left wheel rotating
correctly) x Pr(Right wheel rotating correctly) x Pr(Navigation system localized) x Pr(Floor is
traversable). Figure 5.1 illustrates the above feature mapping.

The primary advantage of this technique is that some state-action pairs may share features.
If occluded state-actions share features with state-actions that are visible then by learning the
features’ success probabilities we can transfer transition information from the observable areas to
the occluded ones. In the case that all features of occluded state-actions are shared with at least
one visible state we gain the ability to recover the complete transition function.

5.2.1 Observed Probabilities

We have now reduced the task of estimating each T'(s, a, (s, a)) to estimating a much smaller set
of Pr(t). However, the challenge a learner faces is the observed trajectory of another agent likely

45

* turn_left

Sy

* turn_right

S

Figure 5.1: Venn diagrams showing example intersections between sets £77**, £77%%, £7*" and &7V, and

I

the mapping used by differential drive robots in our scenario.

cannot be attributed directly to specific features. Observed transitions provide only aggregated
empirical distributions. In other words, given a trajectory performed by an agent of length T
{{s,a)°, (s,a)!,...,(s,8)T}, where ¢ is the null action, we know nothing other than the proportion
of times the intended next state is arrived at for the observed state-actions. This value, ¢¥(*%) | is
calculated as:

T-1
o(s"t (st at))
W(s,a) _ t=0:(st,at)=(s,a)
q B T-1
> 1

t=0:(st,at)=(s,a)

where §(-,) is the indicator function that is equal to 1 when its two arguments are equal, otherwise
0.

Notice that the probability, ¢¥(5®) | is equivalent to T'(s,a,(s,a)). As a result we can relate
equation 5.1 to the observed transition probabilities:

H Pr(r) = ¢¥®% ¥ (s,a) (5.2)

TEESA

While it is possible that a unique solution exists to this set of equations, for instance if certain
transitions map to exactly one feature, in general we arrive at an ill-posed problem as there could
be an infinite number of ways to assign each Pr(7) which satisfy the constraints.

5.3 Maximum Entropy Solution

One way to make progress is to utilize the principle of maximum entropy. Under this principle we
will choose the one set of feature probabilities which has the highest entropy while still satisfying the
constraints. As mentioned in section 2.5 the resulting distribution encodes the available information
from the constraints with no extra assumptions beyond what is needed to satisfy them. We therefore
expect the results to be the most generalizable - considering all of the possible ways of assigning

46

Pr(7) given a set of constraints, the one with maximum entropy will be least wrong most often.
This is an important feature as we intend to project the observable transition information to unseen
transitions.

The nonlinear, non-convex optimization problem for finding the transition feature distribution
is:

max — (T%:T Pr(r)log Pr(t) + Pr(7T)log Pr(f))

subject to (5.3)
[1 Pr(r)=¢"® V(s a)
TEES
Pr(r)+ Pr(t)=1 VreT

The Lagrangian relaxation of the above problem is:

L(T,v,\)=— (%:TPT(T)ZOQ Pr(r) 4+ Pr(7)log Pr(?))

B (5.4)
+ 2 v << I1 P?“(T)) - qw“"”) + 2 Ai((Pr(r) + Pr(7)) — 1)
j=1 regEsa TET

In practice, multiple state-action pairs may map to identical sets of transition features. In
this case, we need not distinguish between these state-action pairs in the above program, and
may obtain a single observed probability by including the transitions for all the state-action pairs
with common identical feature mappings in a single q. Thus, depending upon the complexity of
the feature mapping, the number of ¢’s may be significantly smaller than |S||A|. This method is
similar to that used in Bard [8].

To properly handle saddle points in the Lagrangian function we take the sum of squares of
the partial derivatives of £ to arrive at the final objective function, £’. Next, we minimize £’
by using the penalty approach with Broyden-Fletcher-Goldfarb-Shanno (BFGS) [16] unconstrained
optimization method.

We refer this new algorithm as mIRL7T+Int.

5.4 Estimating a Full Transition Function

Unseen state-action pairs, whether due to being in the occluded portion of the robot’s state space
or due to the robot never taking a certain action in a given state, may share transition features
with state-action pairs that have been observed. Thus we obtain informed probabilities (perhaps
partially) for these unseen transitions. This observation highlights an advantage of the use of
transition features and in the special case where the observed transitions exercise all features we
gain the ability to recover the complete transition function. We note again that this principled
projection into the unobserved portion of the state and action space is justified by the maximum
entropy method: over all possible distributions taking into account all available information the
one with the maximum entropy is expected to be the least wrong.

In the case where some features are not mapped to any observed transitions we will not obtain
any information as to their probabilities. We may still, however, place an upper bound on the
transitions which use these features by assigning the unknown features a probability of 1.0 for

Pr(r).

47

5.4.1 Error Models

mIRL7T+Int proceeds by first solving the nonlinear optimization to obtain feature probabilities that
maximize the total entropy. We then compute T7(s,a,(s,a)) for each state-action pair using
Equation 5.1. In order to estimate the complete transition function, we additionally need the
probability of reaching unintended states due to action errors.

The mass 1 — Ty(s,a,(s,a)) could be distributed according to many possible models such as
uniformly across all states, to a dedicated error state, or among the intended states that would
result due to performing actions other than a from s. While one could be chosen based on side
knowledge of the agent being modeled, a better way is to choose the model which makes the
observed unintended transitions most likely.

Let Pr(s'|s,a,m) be the distribution over outcome states s’ for error model m. The observed
expert’s trajectories will contain a number of triples < s, a’, s'*1 > where s't! = 1(st,a). We
wish to choose m that maximizes the likelihood of these observed triples:

mML = argmax > Pr(stt1|st, al,m) (5.5)
M st at sttl>etraj « sttl#£p(st at)

We assume here only a finite number of models are available. An extension to parametric
models is straightforward as each model’s parameters could be estimated from the available data
first before choosing the maximum likelihood parameterized model.

Subsequent to choosing an error model, the full transition function of the other robot, I, is
obtained as:

Tr(st,al, st = §(stt (st at)) [Pr(r)+
TE{?Q

(1— IT Pr(T)) Pr(stt1|st, al,m)

TELS

(5.6)

where §(-,-) is an indicator function. In Eq 5.6 the probability of reaching s‘*! is due to both
Tr(st,at, (st at)) (if s'™! is the intended next state due to action a' from state s') and error
process m. The transition probability distribution due to m is multiplied by the probability mass
left over from transitioning to the intended state.

Other alternatives to the maximum likelihood error model include fitting a mixture of models,
learning a dynamic Bayesian network from the error transitions, and a recursive approach in which
the transition feature technique described in this section is employed to learn the error transition
feature probabilities using the residual transitions; this continues until all observed transitions are
explained to within acceptable error.

5.5 Convex Approximation with Bernstein Polynomials

Equation (5.3) is non-linear and non-convex due to the presence of monomial constraints. A convex
approximation provides valuable scalability benefits as there are many well-known algorithms for
quickly solving convex problems. Our strategy for doing so is to find a posynomial approximation
for the entropy function which will convert equation (5.3) into a geometric program, which is log-
convex. We use a Bernstein polynomial approximation which is given by:

48

N

BY@) = /() (a1 -

fy

Bernstein polynomials have a number of properties that make them attractive for our purposes.
For instance, they are convex if the original function is convex, only-positive if the original func-
tion is only-positive, and demonstrate uniform convergence to the original function as N — oc.
Unfortunately, we require all terms of the approximating polynomial to be positive in order to be
a posynomial, and no such solution could be found.

We hypothesized that the downward sloping portion of the entropy function was the cause of
the negative terms in the Bernstein approximation. By first negating the entropy function and
adding on a constant term we arrive at an always positive convex function. We then restricted the
range of Pr(7) to [0.5,1] to remove the downward sloping portion from consideration (we set this
new function to zero in the interval [0, 0.5)). Equation (5.3) now becomes:

min (f) > 0.6932 4+ Pr(r) log Pr(7) 4+ (1 — Pr(7)) log (1 — Pr(7))>

At bAN \ p=1 TE€ET
subject to (5.7)
0.5 S PT(T) S 1 Vr
[Pr(r) =g V(s,a),n=1...N
S

The Bernstein polynomial for N = 4 using the objective function for a single 7 as f is:

B}V(P’I“(T)) ~ 0.1307 % 4 x Pr(7)*(1 — Pr(7)) 4+ 0.693 % Pr(r)*
= 0.5228 Pr(7)3 4+ 0.1702 Pr(r)*

Now our geometric program which approximates (5.7) is:

min (% (> 0.5228 % Pr(7)3 + 0.1702 x Pr(7)4>>

LA \ a2 \ L7
subject to (5.10)
05 <Pr(r)<1 Vr
[Pr(r) =g = Y(s,a),n=1...N
S
Which may be made convex through a change of variables [15]. Note that this approximation
is only applicable if all Pr(7) are known to be > 0.5. This is the case in our experiments and we
expect it to be applicable to many more scenarios; components with such low success rates would
be unlikely to be used as they would be extremely unreliable.

5.6 Summary

Estimating the transition function of an optimal agent from observations of its trajectory presents
a challenge due to the low likelihood that the agent visits every available state and performs every
available action in them. In scenarios that involve occlusion some transitions may never be observed

49

preventing the use of model-free approaches. We developed a model based on transition features
determining the probability of the agent reaching an intended next state that may be learned
from visible transitions only. Transition features may be derived from side information about the
agent in question and in physical agents such as robots may correspond to components used in
the associated actions. When combined with an error model our transition feature model allows
recovery of the complete transition function.

We showed a simple way of choosing the most likely error model to use given the trajectories
available from the agent being observed. Many other error models are possible including a mixture
of models learned from the given trajectories or recursively applying the transition feature model.

We present a convex approximation to enhance the scalability of our method to problems with
large numbers of constraints. Our approach is to approximate the entropy function with a Bernstein
polynomial such that the resulting function is a posynomial, making the approximation a geometric
program. Geometric programs are log-convex with a straightforward change of variables.

We empirically validate our model in our robotic patrolling domain in section 7.2.2 as well as
demonstrate the performance benefits of our approximation.

50

Chapter 6

Learning in the Presence of Multiple
Experts

In this chapter we will focus on the problem of a robotic learner, which we label L to avoid confusion,
attempting to perform IRL in the presence of multiple, interacting experts. The interaction here is
key: if the experts are non-interacting this problem reduces to solving two IRL problems separately.
We will assume that the experts, being physically embodied agents that the learner is observing,
are operating in a shared space and can only interact when in close proximity. We do not place
any restrictions on which state they may interact in.

When multiple experts are available, a learner may desire to learn from some subset of them.
However, if the experts are interacting then the action each chooses, state transition probabilities,
and/or reward each receives could depend upon the joint state and action of all agents involved. It
is therefore necessary to account for the behavior of all agents present - this may involve solving a
much larger joint-IRL problem that encompasses all experts.

Joint MDP

In fact, a straightforward way of proceeding is to model the complete system with a single, much
larger MDP whose states are the joint states of all experts, actions are the Cartesian products
of all agents’ individual actions, and transition and reward functions depend upon the state and
action of all agents. States in which there is interaction between agents could be modeled by using
appropriate transition probabilities assuming the agents’ rewards are agnostic to their interaction,
i.e. the interactions are sparse and not a critical portion of each experts’ task. An example of this
is two robots approaching each other in a narrow hallway with their goals being arriving at the
opposite ends; the temporary slowdown they experience as they sidestep each other serves only as
a small distraction.

This straightforward approach, while capable of being solved with existing algorithms, has a
few significant drawbacks. The size of this joint MDP could become very large as the transition
function must now consider the effects of performing all joint-actions from every possible joint-state
which expands with every agent added. As a result the solving time increases significantly which
exacerbates the solving time of IRL since multiple MDP’s must generally be solved (depending
upon the method used) during the search for the correct reward parameters.

o1

A more serious problem with this approach is if the learning agent loses sight of one of the
experts due to the presence of occlusion. Then the joint state would only be partially observed,
which violates the requirements of IRL. While partial observation of states is a problem addressed
in [26] we take a different approach.

6.1 IRL for Multiple Mobile Robots

Due to the limitations of joint MDPs we described above we develop an alternative approach in
which we will continue to model each robot as a separate, individual MDP. The behavior of the
robots during an interaction will be modeled separately and overrides the behavior proscribed by
these MDPs for the duration of the interaction. A non-linear program that combines the one
in (2.18) for each mobile robot and is used for learning the policies of all robots is given by:

N
max — ». >, Pr(m) logPr(ny)
A1y AN I=1 7€l (6.1)
subject to
> Pr(m)=1, ..., >, Pr(nn)=1
m €Il nn€Ell N
> Pr(m) > pm(s)ok(s,mi(s) = dry VE
m €lly s€0bs(S)
) (6.2)

Y Pr(ny) Y by (8)ok(s,mN(s) = dpn VK

Ty Ell N SEObS(S)

This program may be solved by doubling the approaches described in section 2.5, when IRL*
from section 4.2 is utilized in this way we label this simple multi-agent extension as mIRL*.

6.1.1 Modeling the Interaction

The approach described above requires that any interaction between the robots be sparse and im-
material to the task they separately perform. This implies that the actions taken during interaction,
which may involve some form of coordination, be chosen with the goal of resolving the interaction
quickly and returning to their solitary behaviors. In our scenario, the robots must coordinate their
actions when they are in close proximity to minimize the disturbance to their patrols.

At interaction states such as the one in Fig. 6.1, the subject robot L models the robots as
playing a game. The strategies of this game correspond to the Cartesian product of the actions
in each robot’s MDP. We assume the robots solve the game before their first interaction, arriving
at a solution in the form of a Nash equilibrium. This equilibrium proscribes each robot’s behavior
during the interaction and is not changed while L is observing.

In the event L observes an interaction taking place it simply constructs a game in which the
observed behavior is the sole equilibrium. Alternatively, domain specific side information, such
as knowledge of the interaction transition probabilities, can be encoded in the game as strategy
payoffs. The solution of this game may result in a single Nash equilibrium, but in general may

52

1 §

1
O

A |

AL
Al
Al

. ! ?
i - i i
(a) (b) (c) (d)

Figure 6.1: (a) Patrolling robots I and J approach each other, entering an interaction state (b) The two
robots abandon their MDP-based policies and begin executing the actions dictated by the interaction game
equilibrium (¢) I stops while J sidesteps slowly. (d) The interaction behavior is now completed and the two
robots return to the behavior specified by their individual policies.

admit a number of possible strategies as equilibria. In Table 6.1, we show an example game in the
context of our patrolling application domain, which has five profiles in equilibria each representing
a possible way of resolving the task of safely moving past each other when the robots approach
each other from opposite directions.

Let us focus on the case where there is one interaction Nash equilibrium. As sparse interactions
alter the behavior of the robots the equilibrium must be considered during IRL in order to accurately
learn the policy of each robot. Otherwise the policy learned will likely be different from the actual
policy of the observed mobile robot as it falsely attributes the interaction behavior to attempting
to maximize its reward received from the MDP’s reward function. Let ¢¢ = (01,...,0n) be an
equilibrium with o7, I = 1,..., N denoting each robot’s action that is in equilibrium, respectively.
As interactions impact the state-visitation frequencies of the robots, we decompose equation 2.8 into
a piece-wise function for each robot, I = 1,..., N, as,

po (s) +v > T(s,mr(s), s)us, (s') if s is not an interacting state
S/

e, (s) = (6.3)

po (s) +v> T(s,o1(s), s)us, (s') if s is an interacting state
S/

We may then replace pir, in equations 6.2 with the above equation.

S Pr(m) Y nG(8)on(s,mi(s) = dur Yk (6.4)

mr€lly s€0bs(S)

Without occlusion, L may simply note the proportion of timesteps the robots interacted in a
given state in the observed trajectory. Then a corresponding proportion of iterations of equation 6.3

53

Sidestep Turn left Turn right Turn around Stop

Sidestep 5,5 5,1 5,1 5,5 5,5
Turn left | 1,5 1,1 1,1 1,2 1,0
Turn right 1,5 1,1 1,1 1,2 1,0
Turn around 5,5 2,1 2,1 2,2 2,0
Stop 5,5 0,1 0,1 0,2 0,0

Table 6.1: One example of a game that models the interaction of two robots (row player is I, column player
is J) attempting to pass each other in a narrow hallway. Nash equilibria (shown in bold) are the possible
ways of resolving the interaction efficiently. The payoffs displayed here are not necessarily representative of
those the two robots actually receive and are chosen by L using side information about the scenario, in this
case the expected transition outcome of the joint action.

are treated as interacting for the corresponding state. In the presence of occlusion, however, this
equation may not be computable as the proportion of interacting states may be unknown to L.

Instead, we empirically compute the state-visitation frequencies by projecting in the full envi-
ronment the policy under consideration for each robot for a large number of time steps utilizing
the equilibrium behavior, ¢, when the robots interact. The state visitations in the projections
are accumulated to obtain an approximation of the state-visitation frequency, uz, . Note that this
technique renders the program non-convex, as the state visitation frequency of a policy for one
robot depends in part on the policy chosen for the other robot the constraint is no longer linear
in Pr(my) (see section 2.4.1). The degree of this non-convexity is dependent upon the sparsity of
interaction.

We refer to this game-theory inspired extension of mIRL* as mIRL*+ne

6.1.2 Multiple Equilibria

Note that while the interaction game modeled by L may admit multiple equilibria, the robots pick
one to resolve their interaction. In the case where L is unable to determine the equilibrium used
by the robots through observation or side information how can L determine which equilibrium
behavior was used?

Our approach is to retain each possible equilibrium behavior and weight it based on how close
the state visitation frequency resulting from using each behavior matches observations. If uz s
the empirical state-visitation frequency when equilibrium, o€, is used at the interaction and mr
elsewhere, and fi; is the state-visitation frequencies from the observed trajectories, then L weights
the potential of this interaction behavior as an inverse function of the difference,

. - X)qur,(S)—/lz(S)l

WE o e SEObs(s

(6.5)

We calculate w for each equilibrium behavior, and then the w vector is normalized to sum to
1. Finally, we modify the constraint of (6.4) with a convex combination of each equilibrium-based

54

interaction. Let £ be the set of all equilibria behaviors, the constraint becomes:

ST Pr(en) Yo wt Yl (s)on(s () = s VE (6.6)

mr€elly o¢el SGObS(S)

During each solving iteration of the IRL problem a new set of reward weights are generated
and an optimum policy found for each robot. ug, is found for each 0¢ and the w weights are then
recomputed. Initially we expect weights may be nearly uniform because the learned policies do
not correctly model the observed behavior for the most part. Eventually, as the policies improve,
projecting the true interaction behavior begins to matter more and the relative weights between
equilibria diverge. We explore the dynamics of the evolution of w during solving in section 7.1.5.
This new algorithm for multiple interacting robots with unknown interaction behavior is labeled
mIRL*+Int.

6.2 Solving and Approximation

Our experiments will take place under occlusion and, as described in section 4.2, the complete
gradient of the maximum entropy problem will be unavailable. Our approach to solving used here
is to take the Lagrangian function, £(Pr,n,0) where n and 6 are the Lagrange multipliers and
obtain its partial derivative w.r.t. Pr(m;) and 0 as:

oL £
oPr(rr) Zwei : Z fry (8) Zekﬂﬁk(s,m(S)) —logPr(mr)+n—1 (6.7)
L 5cObs(S) k
oL £ . .
55 = 2 Priend e Y u($)on(s mi(s) — b (6.8)
mrelly i=1 s€0bs(9)

L(Pr,n,0) may have its optimal solution as a saddle point, however, many numerical opti-
mization techniques such as hill climbing and gradient descent are instead designed to find local
minima or maxima. We therefore follow an approach to ensure that the optimal solution resides at
a minima by modifying the objective function of the relaxed Lagrangian. The objective function
becomes \/Lz + oL?

OPr(rr) 00

Our experiments have limited execution time and therefore the learning agent has at most a
few minutes to perform IRL. As summation over the entire space of policies for all agents is time
prohibitive we adopt an approximate solution that avoids the sum. To this end we consider only
the optimum policy for a given set of weights and approximate equation 6.7 with:

oc
W ~ Z Qﬂ'z(sva) - Vﬂ'](s) (6'9)

(s,a)€traj

where, Qr,(s,a) denotes the action value of performing the observed action, a, from state, s, and
following 7 thereafter; and Vi, (s) is the optimal value of (candidate) I’s policy, m;. Note that
Qn;(s,a)—Vz,(s) = 0 when a = 717(s). In other words, the value difference is 0 when the action from
the policy under consideration matches the observed action. In this case we have found a reward
function that leads to the MDP whose solution matches observations. However, it is possible that

95

some other action could also result in a Q-value that is the same as the optimal value. Therefore, the
above substitution is an approximation. If the observed action at s does not match the policy, the
difference is negative increasing in magnitude as the action taken is lesser valued by the candidate
reward function. This then accumulates over the trajectory. Because of these properties, we also
use this measure as an approximation for logPr(7) in equation 6.8 and subsequently drop the
summation over all policies.

6.3 Multi-Agent Hidden Data EM

With the goal of improving the capabilities of our multi-agent model when under occlusion we now
apply the sparse interaction model described in this chapter to our Hidden Data EM method from
section 4.3. To make use of the derivation in section 4.3.1 we assume the interaction behavior
between all agents is known. Then with our sparse interaction model in mind we modify the
definition of X: each trajectory is now the combined trajectories of all observed agents. Note that
the state of an agent I at time ¢ is dependent upon all agents’ states and agent I’s action at time
t — 1. Likewise the action chosen at time ¢ is dependent upon all agents’ states at time ¢ — 1. These
new, interacting transition functions and policies are given by:

(1—1¢) §(ST,8") +0TH(ST, AT, S') if interacting

TI(ST, 87, AT, ST) =
TI(ST, Al ST otherwise

S(AL AL) if interacting

Pr(Al1ST87) =
Pr(A%|ST) otherwise

Where ¢ is the probability of the interaction completing (set to 0.33 in our experiments) which
models interacting transitions as having larger uncertainty than single agent transitions, ¢ is an
indicator function which returns 1 if its parameters are equal and zero otherwise, and A{nt is the
action taken by agent I to resolve the interaction.

6.3.1 Scaling Multi-Agent Hidden Data EM

So long as |Z| remains small Pr(Z|Y;0®) may be calculated by enumerating every possible way
in which a given Y may be completed and calculating the probability of each resulting trajectory
Pr(X). Unfortunately this method quickly becomes intractable as in the worst case |Z| = |Soec||Al*
where t is the number of timesteps in which the expert was not observed, requiring O(|Secc||A|")
time to calculate where S,.. = S—00bs(S). An alternative to this brute-force method is the Forward-
Backward algorithm as given in Russell and Norvig [50] pp 546. This smoothing algorithm makes
use of dynamic programming to calculate the posterior marginal probabilities of the hidden states
of a Markov chain and has a time complexity of O(¢(|Socc||A])?).

The forward-backward algorithm requires an observation received at each timestep which is
emitted by the state of the system stochastically. As the timesteps in the occluded trajectories
described in this paper alternate between fully observable and fully hidden we provide a mapping
to an observation model to ease implementation.

Define 0% € O%4 to be an observation of a state s and action a. O%4 is the set of all possible
such observations and is of size |Obs(S)| x |A]. Pr(o**|s’,a’) = 1if & = s and d’ = a, else

56

0. One additional observation, 0°“, is needed which is equally emitted by all occluded states,
Pr(o°cls’;a’) =1 if 8’ € Sy else 0.

Now we may map each trajectory to a simple Markov chain by creating a single random variable
whose possible states are S x A and assigning the appropriate observation at each timestep (from
Oga when the expert agent was observed and 0°°“ when it was occluded).

The forward and backward messages for a single agent are given by:

fr(s',a') = Pr(opls’,a') > Pr(s',d|s, a) fi(s',d)

s,a

= Pr(op1|s', ') Y T(s, a,8)Pr(d|s') fu(s, a) (6.10)

Bt-‘rl(sva) = Z PT(Ot-‘rl‘S,?a,)Bt-ﬁ-Q(S/aa/)Pr(S,7a,’S7a)

s’ a’

— 3 Pr(op1ls',a)Busa(s',)T (s, a, 8') Pr(a]s') (6.11)

s',a!

Multi-agent trajectories require increasing the space of observations and states in the Markov
chain appropriately, expanding the backward and forward messages to incorporate the state and
actions of all agents, and replacing 7'() and Pr(a|s) used in the above equations with equations 6.3
and 6.3 (one for each agent). For completeness, these are:

firi(s al 87 a7)= Pr(ogils”,a”,s”,a”) 3 T, s, al,s")x

slal s’ ,at

T7(s7 5!, a’, 5") Pr(al'|s" s) Pr(a”|s” s) fi(sT ol 57 a)

(6.12)

Bt+1(517alasjaaj) = Z PT(Ot+1|SI,aa1/>SJ/an/)Bt+2(SI/7aI,aSJ,vaJ,)X
s al’ 57" a0’

TI(s!, 57, al,s"T7 (57, 5T, a7 YPr(a'|s", s\ Pr(a” |s”" s

!

)

(6.13)

In multi-agent settings the number of possible states and actions in occluded timesteps grows

rapidly with the number of agents as for any given state-action pair for one agent there are [S,c.||A]

possible state-action pairs for the other. Then |Z| = (|Soce|| A X (|Soce|?|A?)? ... where #; is the

number of timesteps in which one agent was occluded, t5 is the number of timesteps where 2 agents

were occluded and so on. As a result for any non-trivial multi-agent scenario these exact methods
become prohibitively expensive.

Gibbs Sampling

As described in section 4.3.2 Gibbs sampling may be used as part of a Monte-Carlo Expectation-
Maximization approach to approximation the distribution over trajectories in the E step of Hidden

57

Data EM. We now expand this method to our multi-agent scenario; each node in a multi-agent Z
may be sampled by:

I I I/ I I I
Pr(s;|MB(s;)) = nT (Stfhsilflaatflast)x
TI(S{’ SZ]’CL{’ S£+1)TJ(SZ]7 81{7 ag? SZI+1)PT(CL{|S{7 SZ])X
Pr(af|s{, s{)

Pr(a{|MB(a})) = 0T (s{,5{,a{,s{11)Pr(af|s{,s])

if the sampled node is a state or action respectively, n and 1’ are normalizers.

In our implementation, we initialize the nodes in Z in timestep order by first sampling from
T(s¢—1,a¢—1,S¢) and then Pr(a|s;). As full trajectories are produced during sampling we calculate
the feature expectations of each one and update the mean feature expectations seen so far. Sampling
is stopped once the change in the mean feature expectations is below a threshold for the last 20
samples. This mean is then added to a mean-of-means and Gibbs sampling and repeated until the
mean-of-means has converged.

Blocked Gibbs Sampling

To improve the convergence rate of Gibbs sampling we may employ blocking. Here variables are
grouped into blocks and the joint distribution of all nodes within the block are sampled as one unit.

We may easily calculate the joint distribution when a block size of only one timestep of the
trajectory is used. However, if block sizes incorporate multiple timesteps the joint distribution
becomes difficult to calculate due to its size. We use a forward-backward algorithm to calculate the
distribution in this case. As multi-agent trajectories greatly increase the size of the sample space
we develop variants of the above sampling methods in an attempt to improve converge rates:

¢ Blocked Gibbs - Samples the state and action of one agent as a block, alternating agents,
proceeding in timestep order.

e Multi-Agent Blocked Gibbs - Samples the joint state and action of all agents at a given
timestep of the joint trajectory, reduces to Blocked Gibbs if only one agent is occluded.

e X Timestep Blocked Gibbs - Samples X timesteps of a single agent, alternating agents.
Uses a single-agent forward-backward algorithm to calculate the joint distribution to be sam-
pled from.

A further method X timesteps, All Agents Blocked Gibbs which sampled X timesteps
of all agents was also developed, however, using the multi-agent forward-backward algorithm was
found to be prohibitively expensive in time. The Markov blankets of all the blocking methods
described here are the states and actions in the timesteps surrounding them - these nodes are treated
as perfect observations in the forward-backward algorithm, an uninformative dummy observation
which weights all occluded states and all actions equally is used for the timesteps within the block.

58

6.3.2 M-Step Methods

We minimize the dual of equation 2.13 using the adaptive unconstrained exponentiated gradient
descent algorithm [54] with variance bounds. The gradient involves a summation over all possible
trajectories which is of size (|S| x |A|)!, a very large set. With the goal of speeding up the com-
putation we avoid this summation by first following the approach given in Ziebart et. al. [61] and
express the learner’s expected features in terms of the calculated state visitation distribution at
each timestep:

VO =3 Pr(X) ¥ ¢(s.a)—¢?lv
X (s,a)eX
= 2 11(s) 2 Pr(als)d(s,a) — ¢Zlv (6.14)
>

-

() X Pr(als)é(s,a) - G2l

Where p(s) is the state visitation frequency, p(s) is the state visitation distribution at time
t, pe(s) = D> Pr(sls’;a)Pr(als)u—1(s"), p(s) = > w(s) [61], and Pr(als) is calculated using
s’ a t

soft-max value iteration [62]. We next decompose this gradient along timesteps to use an online
stochastic gradient descent approach:

Vo = ;;ut(s)gPr(a\s)gb(s,a)—
> Pr(Y) Y Pr(ZlY) Y ¢(s,a)
Yey YASYA (s,a)eYUZ
= XS: Zt:,ut(s) ;Pr(a|s)¢(s, a) — Pr(s,a;t)é(s, a) (6.15)
= ;%:Za:(ﬂt(S)Pr(aB)—pT(Saa;t))QS(Saa)

VO, = g ;(ut(s)Pr(ab) — Pr(s,a;t))¢(s,a)

where pr(s,a;t) is the empirical distribution of state-action pairs at time ¢ of all trajectories
calculated from the E step. Notice that as ¢ grows the calculation of u; begins to dominate the run
time due to its recursive nature. One approach to optimization is to utilize the previous timestep’s
empirical state distribution as p;—1 as shown below.

VO, = g;(Pr(cds)ut(s) — Pr(s,a;t))¢(s,a)
Ve, = g %:(PT(QLS) Z Z, Pr(s|s',a")Pr(d'|s) ju—1(s") — Pr(s,a;t)) (s, a) (6.16)

VO~ 33 (Pr(als) D% Pr(sls’,a)Pr(d'|s’) 3 Pr(s',a";t — 1) — Pr(s,a;t))é(s, a)
S a SI a/ a//
Intuitively, this approximation first projects forward one timestep from the expert’s previous
state distribution using the learned stochastic policy and then compares the resulting state-action

distribution with the observed state-action distribution of the expert at the current timestep. This
is in keeping with the approach of stochastic gradient descent where only the local values of the

59

gradient are considered, but may under-emphasize differences in state-visitation that results from
the use of wrong weights, for instance if the expert traverses through a portion of the state space
the current trajectory distribution deems unlikely this will be ignored except for the first timestep
where the deviation occurs. This is compensated for in SGD by repeatedly iterating through the
observed trajectories until convergence of the weights.

In our experiments the learner receives a single trajectory from each expert making it unlikely
that the empirical state distribution is adequately estimated. We therefore further optimize this
step by setting ju(s) = 3. Pr(s,a/;t). This allows us to ignore the computation of the state-

P

visitation distribution completely but has a side effect of disallowing the use of state-only features
(we do not utilize these in our experiments). We perform stochastic gradient descent for 10,000
iterations and update Pr(als) after blocks of 10 iterations.

6.4 Summary

In this chapter we presented a sparse interaction model that may be applied to multiple interacting
robots when they are nominally performing separate behaviors except for brief interactions. This
model is based on game theory and assumes the robots have played the game and arrived at some
Nash equilibrium (possibly unknown to the learner) which dictates their interaction behavior prior
to the learner observing their behavior.

We show how our model may be applied to mIRL* to remove the persistent noise caused by
the interaction, when the interaction behavior is known we call this simple extension mIRL*+ne.
We demonstrate how the interaction behavior may be searched for during IRL by weighting each
possible Nash equilibrium according to how close its use brings the calculated feature expectations
to the expert’s, a procedure we call mIRL*+Int.

We extend Hidden Data EM in a straightforward way to our sparse interaction multi-robot
scenarios. We note the large size of the hidden variable space makes exact solutions intractable for
all but trivial contexts and describe a number of variants of Gibbs sampling to alleviate this issue.
Our methods are experimentally validated in sections 7.1.4 (mIRL*) and 7.2.2 (multi-agent Hidden
Data EM).

60

Chapter 7

Experiments with Penetrating a
Robotic Patrol

We apply the techniques developed in chapters 5 and 6 to a problem domain in which an attacking
robot L is attempting to move through a perimeter patrol of two other robots, I and J, without
being detected. L has obtained a vantage point from which it can observe the other two robots
without being detected, however, once it starts moving it will be detected if a patroller is nearby
and facing it. The patrollers move in a shared space and interact when approaching each other to
avoid collisions, their interaction mode is not known to the attacker ahead of time. L is required to
1) observe the patrollers without moving to gather data for IRL 2) use IRL to recover the patrollers’
reward function and subsequently the policy they are using 3) using the found policies predict the
future path of the patrollers 4) plan a route through the space that avoids the predicted path of
the patrollers while still arriving at the goal state.

7.1 Evaluation of mIRL*+Int

We use two measures to quantify the ability of IRL to learn the behavior of the patrollers. The first
is Learned Behavior Accuracy which, as described in section 2.6, is the proportion of states in
which the optimum policy for the learned reward function gives the correct action. This gives a
measure of the prediction accuracy to be expected from a given technique. The second measure is
the Success Rate of L as a proportion of penetration attempts that result in L reaching its goal
without being detected. This measures all aspects of the experiment but suffers from the possibility
that L could fail to learn the patrollers’ policies accurately but still reach its goal undetected by
chance.

7.1.1 Penetrating a simple multi-robot patrol

Each patroller is modeled as acting according to the output of its own MDP with interactions re-
solved by an interaction game Nash equilibrium. The states of this MDP are the cell decomposition
of the patrolled area (x, y) and an additional discretized orientation 1. Each patroller may take
one of 5 actions: Move Forward, Stop, Turn Left, Turn Right, and Turn Around. The transition
function models the probability of any action succeeding at 66% with the remaining probability
mass distributed to the other actions.

61

1=

It

=i

=

l— =L

Figure 7.1: Successful penetration by L of our larger environment. In this particular instance, L chose to
enter a room briefly to allow I to move past before exiting and moving towards the goal.

]

Al

As L is expected to move through the same space as the patrollers its MDP is similar to theirs
with the important addition of a discretized time variable. This 4 dimensional MDP is needed
because the states L must plan for are dynamic as the patrollers are constantly in motion. After
the policies for each patrollers have been learned, L jointly projects forward in time, starting from
the last position each patroller was observed at, to arrive at a prediction for the future positions
of each patroller. These positions are noted in L’s MDP and any states which are visible from a
patroller’s position at a given time step receive a negative reward. The goal state at all time steps
is given a positive reward and the MDP is solved optimally. L then searches for a positive value
at any time for its starting position and if found there must be a path to the goal that avoids
detection starting at that time. L waits until that time has arrived and begins following its policy.
In the event that no positive value is found the positions of the patrollers are updated with any
new observations and the process is repeated until one is found or the experiment runs out of time
(set to a max of 20 minutes). We show an example of a successful run in figure 7.1.

7.1.2 Maps

We test two maps, both of indoor office environments, in our simulation experiments. The smaller
of these is also used in our physical experiments. As can be seen in figures 7.2 and 7.3 L is located
in a central location from which it can gather observations and the patrollers move in a cyclic
fashion between their pre-determined way-points.

There are a number of possible interaction behaviors that each patroller could take when they
approach each other. These include: stopping, turning left or right, turning back around, or slowly

62

side-stepping the other robot. L is unaware what the choices of each robot are, however, it can
eliminate certain combinations as not resolving the interaction (such as Stop, Stop). Interactions
are time extended to 3 timesteps to model the slower movement of the patrollers during interaction.

Each robot in our simulations and physical experiments is a Turtlebot equipped with a video
camera and laser scanner. In physical experiments the robots identify each other by color and
are autonomous relying on adaptive Monte-Carlo localization and ROS’s Move_base system for
navigation.

In the smaller environment the reward functions of both robots are a linear combination of two
types of features:

1. Has mowed, which returns 1 if the action causes the patroller to leave its current location,
otherwise 0; and

2. Turn around at state, s, which returns 1 if the robot turns around 180° at the location given
by s, otherwise 0.

Reward functions of the patrollers in the larger environment include the following binary feature
functions as their trajectories may go through rooms in the large hallways as well.

1. Has mowed, which returns 1 if the action causes the patroller to leave its current location,
otherwise 0; and

2. Turn around in the hallway, which returns 1 if the robot turns around 180° at a location that
is in the hallways, otherwise 0.

3. Enter room, which returns 1 if the patroller enters a room from one of the hallways, otherwise
0;

4. In room, which returns 1 if the patroller is in any of the rooms in the map, otherwise 0; and

5. Leave room, which returns 1 if the patroller leaves a room to enter a hallway.

The true reward function penalizes turning around in the middle of the hallway or entering a
room and rewards turning at the goal states. As a result, the optimum policies of the patrollers
generates trajectories that move through the hallways, turn around at the ends, and move back.
The Nash equilibrium chosen by the patrollers to resolve their interaction game is (Side Step, Stop).

We make use of a number of baselines to evaluate the approach introduced in this section 6.1.2
(labeled mIRL*+Int). mIRL* uses the approach described in section 6.1 which handles occlusion
but does not model interaction between the robots. As an upper bound on the success rate we
reveal the true policies and NE of the patrollers to L, this Known Policy approach evaluates the
prediction abilities of L only. Finally, a Random approach, in which all observations are ignored
and a random time is waited before L begins its attack is used to provide a lower bound on the
success rate.

7.1.3 Simulation Results

We begin by evaluating the Learned Behavior accuracy of both learning algorithms as a function of
the degree of observability. This data is gathered from 400 simulated runs of the larger environment
and 200 from the smaller, leading to standard error from 0.022 (lowest visibility smaller map) to
0.0031 (highest visibility larger map) - in the physical experiments it is impossible to change the
degree of observability and corresponds to the lowest measure here. As can be seen in figure 7.4 the
accuracy increases with observability, as expected. Note, however, the divergence between the two

63

T

o | > H

Figure 7.2: The smaller environment and the corresponding MDP state space for our experiments. The
two goal cells are colored black and the white cells denote occupied locations. L’s starting location is shown
while I and J move in a cycle between the two goal cells.

L , [T N I

e
L

) i
OB IEPEESSq bt

P

t
—

I d :

Figure 7.3: Trajectories of patrollers, I and J, in the simulated hallways of a building for our
larger environment. Subject robot L is tasked with reaching the goal state at X undetected from
its starting position.

|

64

> >
[} o
£ o9} . g T T
3 3
2 08 |] g 0.95
8 S o9} .
@ 0.7 F i H
§ é 0.85 .

0.6 | .
3 2 0.8 5
£ £
g 05F mIRL* T § 075G mIRL* 4
- mIRL*+Interaction - mIRL*+Interaction

04 1 1 1 1 1 1 1 07 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Degree of Observability Degree of Observability

Figure 7.4: Learned behavior accuracy of our approach measured for different occlusion rates. The vertical
bars represent one standard deviation from the mean, standard error is between 0.022 (lowest visibility
smaller map) to 0.0031 (highest visibility larger map). Smaller map on the left and larger on the right.

methods indicating mIRL*’s failure to take the interaction into account has a detrimental effect on
its ability to learn the reward functions. This effect is increased with observability and highest with
no occlusion as it becomes more likely that interactions between robots are directly observed and it
becomes increasingly unable to explain the observations with separate MDPs alone. The accuracy
difference between these two methods is statistically significant (Student’s paired, two-tailed t-test,
p < 0.025 for both environments).

Next we evaluate the success rate of each algorithm as a function of three factors: the Learned
Behavior accuracy, degree of observability, and the observation time L was given to observe the
patrollers. As can be seen in figure 7.5 (a), Learned Behavior accuracy positively correlates with
the success rate, particularly for mIRL*+Int. Notice, however, that the success rate decreases for
mMIRL* as the Learned Behavior accuracy increases to 100%, indicating the importance of modeling
the patroller interaction on L’s ability to predict where they will be in the future accurately. 7.5 (b)
and (c) show that the success rate generally increases mIRL*+Int with more observations available
but this is not necessarily true for mI RL*. Also notice both methods are well bounded by Known
Policy and Random, and that given enough observations mIRL*+Int performs on par with the upper
bound.

7.1.4 Physical Robot results

As it was challenging to vary the degree of observability in our physical experiments, we report
the success rate as a function of observation time. We performed 10 runs of each observation time
setting and noted the success rate produced. Notice in figure 7.6 the success rate starts low but
improves with more observations and also the close agreement with the success rate produced by
simulations for equivalent parameters. Importantly, the difference between simulation and physical
results is not statistically significant, as we should expect.

Finally, figure 7.7 shows photos of L, I and J at various points of our experiment. In particular,
I and J are shown in an interacting state. We also illustrate L’s visibility during the experiment
and L exiting its vantage point as it makes its way towards the goal state.

65

Success Rate

Success Rate

Success Rate

Smaller environment
0.65

06 | mIRL* ; b]
) mIRL*+Interaction === B :
0.55 |- :
0.5 = Qo
0.45 | - &
04 — §
0.35 | - g
03 | - @
0.25 | —
0.2 | : _
0.15] 1 1 1 1
0.6 0.65 0.7 0.75 0.8 0.85 0.9
Learned Behavior Accuracy
(a)
1 T T T T T T T T
Known Policy e mIRL*+Interaction ==—@=—
mIRL* Random
0.8 |]
2
06 | 4
(2]
o
04 I 8
>
n
02 |]
0 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1
Degree of observability
(b)
1 T L T T T L
Known Policy e mIRL*+Interaction ==—@-——
mIRL* Random
0.8 |) e
Q
T
14
(2]
%]
Q
Q
o
=
n
1 1 1 1 1 1

100 150 400

0
50

Observation time (s)

()

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.6

0.7

Larger environment

mIRL* ' 7
- mIRL*+Interaction = . : 7

1 1 1 1 1
0.75 0.8 0.85 0.9 0.95 1
Learned Behavior Accuracy

(@)

0.5

0.4

0.3

0.2

0.1

0 0.1

0.6

0.5

0.4

0.3

0.2

0.1

n'1IFlL*+'Interac'tion —
Random]

Known P'olicy ke
mIRL*

02 03 04 05 06 07 08 09 1
Degree of observability

(0)

T T T
mIRL*+Interaction. ===@=——

" Known |'=’olicy ke
mIRL*

100 150 200 250 300 350 400

Observation time (s)

(©)

Figure 7.5: (a) The effect of the learned joint behavior accuracy on the success rate in both simulated

environments. (b,¢) A comparison of the success rates achieved by our approach and the baselines as a
function of the amount of visibility and the time spent observing. Vertical bars indicate (a) standard
deviation (standard error 0.048 (0.75, Smaller mIRL*+Int) to 0.012 (1.0, Larger mIRL*)) and (b,¢) 95%

confidence intervals.

7.1.5 Evolution of w

As discussed in section section 6.1.2 we expect the Nash equilibrium weighting parameters, w, to
be relatively flat (high entropy) at the beginning of the optimization procedure since the reward
weights considered will be essentially random. Then, as the numeric optimization proceeds and

66

0.8
0.7
0.6
05 |
04
03 |
02 @
0.1 | B

0 1 1 1 1
100 150 200 250 300 350

Observation time (s)

T T T T
Physical —e— Simulated ---t--- —l

Success Rate

Figure 7.6: Success rates based on observation times in the physical runs. We compare these with those
obtained from the simulations for the same degree of observability. The vertical bars are 95% confidence
intervals.

Figure 7.7: (Top) I and J in the process of interacting, J stops movement while the I moves past at a
reduced speed. (Bottom) L observing a patroller from its vantage point (left) and performing a successful
penetration (right)

67

7 iﬁTiTJﬁ,‘;ﬁT S T
i e

| Y\ Lo i~
its &
¥ e e
——"
ol
)

T
4 it
H e

=
=
Fer==
[

Entropy

60 80 100 120
Iteration #

Figure 7.8: Average entropy of Nash Equilibrium weights w during solving iterations for various levels of
observability. Error bars are one standard deviation, standard error is between 0.115 (early iterations, lowest
visibility) to 0.0049 (final iterations, lowest visibility).

the rewards begin to approach optimum we expect the weights to diverge towards the most likely
NE’s that correctly resolve the interaction. We recorded the w distribution during the numeric
optimization of mIRL*+Int for various levels of occlusion. This algorithm was limited to 125
iterations of Nelder-Mead simplex, and at the end the reward weights as well as the most likely
NE used by the agents is returned. We sampled 30 times for each level of occlusion and averaged
the entropy at each iteration together, standard error is between 0.115 (early iterations, lowest
visibility) to 0.0049 (final iterations, lowest visibility).

Interestingly, as can be seen by figure 7.8, the w distribution does not behave as expected and
instead begins at low entropy and gradually rises to a moderate level. We observe that near the
beginning of the solving process the w distribution is erratic and may be near deterministic with
one equilibrium containing nearly all the probability mass. This does not persist for long, however,
and the next iteration a completely different equilibrium might contain the bulk of the probability
mass, or a bad reward function might be chosen that results in w reaching maximum entropy (1.6
in our experiment, meaning all equilibria equally likely). This is illustrated in figure 7.8 as the
standard deviation error bars; notice their large size in the early iterations and gradually reducing
towards the end. The vast majority of runs end with two or three equilibria having the bulk of the
probability mass, with the others essentially zero, regardless of the level of observability.

Notice, however, the difference in behavior between the low observability (0.14 and 0.29) runs
and the others. With few states available to compare the effects each equilibria has on the state
visitation frequency in these particular runs w oscillates more extremely and we see a jump to near
maximum entropy around iteration 20, whereas runs with more visibility tend to smoothly increase
entropy as the reward function converges.

68

1800
1600 | MIRL*+Int
1400
1200
1000
800
600
400 |
200

0 1 1
2 3 4

Number of Agents

Time to solve (s)

Figure 7.9: Average time to solve the patrolling domain (small map) as the number of agents is increased.
Error bars are one standard deviation, standard error is between 65.16 seconds (4 agents) to 3.8 seconds (2
agents).

7.1.6 Scaling with multiple agents

An important question pertains to the scalability of mIRL*+Int as the number of robots is in-
creased. As more agents are added to the problem, the number of reward function weights which
must be solved for grows linearly (assuming similar MDPs for all agents). However, the number
of Nash equilibria that resolve the interaction between these agents grows exponentially. At each
solving iteration and for each equilibrium, we are required to sample repeatedly to estimate pf .
Therefore for large numbers of agents we expect the solution time to grow exponentially. For fewer
agents the linear time needed by Nelder-Mead simplex technique is instead expected to dominate.
We can see this happening in figure 7.9 as we add more simulated agents to our patrolling domain
the solving time increases from 156 seconds to around 1,350. Comparison with greater than 4 agents
is difficult in our scenario as the interactions begin to dominate the agent behavior, violating the
sparse interaction assumption critical to mIRL*+Int. Each data point shown is the average of 10
runs, leading to standard error between 65.16 seconds (4 agents) to 3.8 seconds (2 agents).

7.1.7 Discussion

Our experiments demonstrate an improvement in both the learning accuracy and performance
of L on its penetration task when the interaction between robots is modeled using our method.
Accounting for the interaction removes a source of persistent noise from observations and enables
more accurate predictions. We show our method for determining which Nash equilibrium the
robots are likely using to resolve their interaction is effective, which is critical in scenarios involving
occlusion as the learner may not observe the interaction.

Interestingly, though we expected the Nash equilibrium weights to be approximately equal at the
start of numeric optimization and gradually converge on a single best solution we instead observe
extremely dynamic changes in weights in response to changes in the reward function. These changes
gradually reduce until convergence leaving two or three probable NE’s.

69

7.2 Evaluation of Multi-Agent Hidden Data EM

We evaluate multi-agent Hidden Data EM, developed in section 6.3, in a similar multi-robot pa-
trolling scenario to that described in section 7.1 and so to save space we will only describe here the
differences from those experiments.

As before, there are two robots, I and J, patrolling a space that an attacker L wants to
move through without being detected. The patrollers move in a shared space and interact when
approaching each other to avoid collisions, their interaction mode is known to the attacker ahead
of time. L is required to 1) observe the patrollers without moving to gather data for IRL 2) use
IRL to recover the patrollers’ reward function and subsequently the policy they are using 3) using
the found policies predict the future path of the patrollers 4) plan a route through the space that
avoids the predicted path of the patrollers while still arriving at the goal state.

As in section 7.1 we use two measures to quantify the ability of IRL to learn the behavior of
the patrollers. The first is Learned Behavior Accuracy which is the proportion of states in
which the optimum policy for the learned reward function gives the correct action. This gives a
measure of the prediction accuracy to be expected from a given technique. The second measure is
the Success Rate of L as a proportion of penetration attempts that result in L reaching its goal
without being detected. This measures all aspects of the experiment but suffers from the possibility
that L could fail to learn the patrollers’ policies accurately but still reach its goal undetected by
chance.

Additionally, we report the number of Time Outs for each solving method as a measure of L
taking too long to perform its task. We time out each run of the experiment after 25 minutes and
if L has failed to reach the goal before then the run is counted as a failure. Time outs can occur if
1) the IRL solving algorithm takes too much time or 2) the policies learned using IRL produce no
useful predictions, causing L to believe there is no safe path to the goal.

7.2.1 Penetrating a simple multi-robot patrol

Our multi-robot experiment in this section is similar to that described in section 7.1 however the
state space and feature count are expanded in size to emphasize the differences in Hidden Data EM
and MIRL*+ne solution methods. Particularly, we expect Hidden Data EM to be less affected by
the feature count due use of the Langrangian dual’s gradient.

Each patroller is modeled as acting according to the output of its own MDP with interactions
resolved by an interaction game Nash equilibrium. The states of this MDP are the cell decomposi-
tion of the patrolled area (x, y) and an additional discretized orientation . Each patroller may take
one of 4 actions: Move Forward, Stop, Turn Left, and Turn Right. The transition function models
the probability of any action succeeding at 92.5% with the remaining probability mass distributed
to the other actions.

L is modeled as in section 7.1, with a 4 dimensional MDP it uses to predict the future locations of
the patrollers once their policies are learned. We use the most likely policy only for our predictions
(found using standard value iteration using the learned reward functions). We use a map of an
indoor office environment in our simulated patroller experiments. As can be seen in figure 7.11
L is located in a corner location from which it can gather observations while the patrollers move
in a cyclic fashion between their pre-determined way-points. Each robot in our experiment is a
simulated Turtlebot equipped with a video camera and laser scanner. Interactions between the
robots occur as they attempt to pass each other, resulting in one robot stopping while the other

70

1 y
3 ' Gibbs —&— 3 Timestep Gibbs
© Blocked Gibbs mIRL*+ne ===
3 095 | M/ABlocked Gibbs 7
<
5 09 -
>
@
s 085 .
g o
el
(4]
E 08 -
[
(0]
|

075 1 1 1 1 1 1 1 1 1

01 02 03 04 05 06 07 08 09
Degree of observability

-

(a)
T T T T T T T T T
1k Gibbs M/A Blocked Gibbs i
Blocked Gibbs 3 Timestep Gibbs
mIRL*+ne ===
e 08 _
g D¢
2 06} = |
8
s
o 04 F R
02 B
1 1 1 & 1 i 1 1 1
01 02 03 04 05 06 07 08 09 1
Degree of observability
(b)
1 L T T T T T T T N T T]
Gibbs
2 Blocked Gibbs
3 08¢ M/A Blocked Gibbs
@ 3 Timestep Gibbs
£ MIRL*+ne =—gp=—
= o6t} i
o
s
£ 04 B
o
s
& 0.2 F —
0 %I : It L 1 I¢ 1 1 :
01 02 03 04 05 06 07 08 09 1

Degree of observability
(c)

Figure 7.10: (a) The effect of amount of observability on the average Learned Behavior Accuracy (error bars
are one standard deviation, standard error ranges from 0.010 (Gibbs, lowest observability) to 0.0024 (Gibbs,
highest observability)) (b) Success rate achieved by each method, vertical bars 95% confidence intervals (c)
Proportion of runs which timed out, we stop a run after 25 minutes.

moves slowly around it, and are time extended to 3 timesteps to model the slower movement of the
robots during interaction. Timesteps are two seconds long.
The reward functions of both robots are a linear combination of two types of features:

1. Has mowed, which returns 1 if the action causes the patroller to leave its current location,
otherwise 0; and

71

2. Turn around at state, s, which returns 1 if the robot turns at the location given by s, otherwise
0.

3. Catch All, which returns 1 for all other state-action pairs not matched by the above two
features.

The true reward function penalizes turning around in the middle of the hallway and rewards
turning at the goal states. As a result, the optimum policies of the patrollers generates trajectories
that move through the hallways, turn around at the ends, and move back. This scenario is illustrated
in figure 7.11 (a) which shows a trace of the patrollers during their patrol route up until they begin
an interaction. A diagram of the MDP used is shown in figure 7.11 (b), the shaded squares are the
states in which the patrollers turn around in. L must move from its position in the top left corner
to reach the red X without being seen by either I or J.

Figure 7.11: (a) A diagram showing the map for our simulated patrolling experiment (b) corresponding
MDP state space for each patroller. Shaded squares are the turn around states and the red X is L’s goal
state

We test the methods given in section 6.3.1 in this section, we do not test the exact methods
as their runtime is prohibitively expensive. As the size of Z is very large due to the large number
of timesteps in a given trajectory, the multi-agent state space increase, and the large number of
states per agent the exact methods of calculating the E step of Hidden Data EM are not employed
here. Instead we test Gibbs Sampling, Blocked Gibbs Sampling, Multi-Agent Gibbs Sampling, and 3

72

Timestep Gibbs Sampling as previously described. As time is a limiting factor we do not perform
restarts of the EM algorithm, limit the maximum EM iterations to 7 (3 in 3 Timestep Gibbs Sam-
pling for performance reasons), and limit the E step feature expectation mean-of-means calculation
to a maximum of 50 repeats.

Additionally, we compare to mIRL*+ne as described in section 6.1.1. This approach, while
penalized due to unavailable of the gradient, has an advantage in that it does not require computing
the expectation over trajectories and so is expected to take constant time with respect to |Spec|-

7.2.2 Experiments and Results

We first examine the Learned Behavior Accuracy of all provided methods as a function of
the percent of states that are visible to L. Figure 7.10 (a) shows that of all the methods tested,
Blocked Gibbs performed the best. Observe the large standard deviation of mIRL*+ne and Gibbs
as compared to Blocked Gibbs, which is much more consistent in its output. Note when all states
are observable, all Hidden Data EM-based methods are equivalent; without missing data no E step
is needed. Each data point is the result of 230 runs, resulting in a standard error that ranges from
0.010 (Gibbs, lowest observability) to 0.0024 (Gibbs, highest observability).

We next report the Success Rate achieved by all methods as a observability changes. In
figure 7.10 (b) we see Blocked Gibbs is again the best overall method, matching or outperforming
mIRL*+ne and all other Hidden Data EM-based methods. As observability decreases these methods
are required to sample from a greatly increased space of possible trajectories, increasing the time
to find a solution. This leaves less time to find an opportunity to successfully attack, and results
in an increased number of Time Outs. As can be seen in figure 7.10 (¢), mIRL*+ne experiences
the fewest timeouts of all methods followed closely by Blocked Gibbs. Notice the high proportion of
timeouts experienced by 3 Timestep Gibbs and M/A Blocked Gibbs, this explains its observed poor
performance as these sampling algorithms require too much time to sample Z under large amounts
of occlusion and cause most runs to time out without an attempt on the goal.

These experiments indicate that Blocked Gibbs is the best method of those tested, achieving a
higher expected accuracy and a success rate that outperforms all other methods in most cases and
avoiding an excessive run time in high occlusion scenarios.

To verify the applicability of Hidden Data EM to real-world robots we performed a set of
experiments with physical Turtlebots in conditions that matched the lowest observability in our
simulations. As altering the observability is not possible in the physical setup we instead varied the
observation time and performed 10 runs per data point. As can be seen in figure 7.12 all methods
closely matched simulation results for 45 and 180 second observation times. However, interestingly
both Hidden Data EM methods outperformed their simulations at 360 seconds. While the amount
of data is too small to draw conclusions this may hint at an unexpected robustness of Hidden Data
EM to noisy trajectories, more research is needed.

7.2.3 Comparison of M-Step Methods

We described the stochastic gradient descent approach (SGD) we use in the M step of Hidden Data

EM in section 6.3.2 as well as two approximations: using the previqus empirical state distribution

as p—1 which we label SGD-Approx and simply assigning u; to > Pr(s,a’;t) which we label SGD-
a/

Empirical. Here we compare the performance of these methods on randomly generated MDPs. We
generate MDPs with six states, four actions, and random transition and reward functions. We

73

0.6

Gibbs - Simulated
o 02 Gibbs - Physical
5 04f
@ 03r
8
S 02}
»n
0.1F
O 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400
Observation Time
(a)
0.6
Blocked Gibbs - Simulated
o 02 Blocked Gibbs - Physical
5 04t
2 03r
8
S 02}
7
0.1F
O 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400
Observation Time
(b)
0.6
mIRL*+ne - Simulated
° 0.5 mIRL*+ne - Physical
5 04t
@ 03r
3
S 02}
»n
0.1F
0 1

50 100 150 200 250 300 350 400
Observation Time

(c)

Figure 7.12: Success rates based on observation times in the physical runs for (a) Gibbs Sampling ()
Blocked Gibbs Sampling and (¢) mIRL*+ne. We compare these with those obtained from the simulations for
the same degree of observability. The vertical bars are 95% confidence intervals.

74

5F SGD
L SGD-Approx
“=]J SGD-Empirical
5 1F
o
o
>
<
01 1 1 1 1 1 1 1
6 5 4 3 2 1 0

Number of Occluded States

Figure 7.13: Average Inverse Learning Error (ILE) of the M-step methods as the number of occluded states
decreases. Note log scale. Random MDPs with 6 states and 4 actions, trajectories of length 10 and 10
trajectories sampled. Error bars are one standard deviation, standard error is between 0.08999 (6 occluded
states, SGD-Empirical) to 0.017 (0 occluded states, SGD-Empirical)

optimally solve each one using value iteration and repeatedly sample 10 trajectories of length 10
timesteps using the optimal policy. The E step of Hidden Data EM is solved using Gibbs sampling.

We show the ILE of each method as a function of the occlusion level in figure 7.13. Notice that
SGD and SGD-Approx both achieve approximately the same ILE and both are outperformed by
SGD-Empirical. We may explain this by noting that with this low number of samples the empirical
state distributions may be ill-estimated penalizing the SGD approach. In this experiment the initial
state distribution was set to the empirical state distribution at the first timestep; this ensures that
an ill-matching initial state distribution could not be the cause of the performance difference.

As SGD-Empirical cannot correctly compute the gradient if state-only features are used (the
state visitation frequency must be used to do so) we must utilize reward features that map to one
state-action pair, therefore these results are not directly comparable to figure 4.1 despite the similar
random MDP settings.Each data point is the average of averages from the output of 1000 trials
grouped into blocks of size 10. Standard error is from 0.08999 (6 occluded states, SGD-Empirical)
to 0.017 (0 occluded states, SGD-Empirical).

The motivation for developing the approximations used in the M-step is the increase in compu-
tation time of SGD as the length of the observed expert’s trajectory increases due to the need to
recursively calculate the state distribution for ¢ timesteps whereas SGD-Approx and SGD-Empirical
take constant time regardless of the length of the trajectory. This is relevant to our patrol pene-
tration experiments due to their sensitivity to IRL computation time and a maximum trajectory
length of 180 time steps. As can be seen in figure 7.14 the time taken for all three methods is linear
in the length of the trajectories but SGD-Approx and SGD-Empirical scale much better than SGD.
Each data point is the average of 20 trials, standard error is between 5.851 (150 trajectories, SGD)
to 0.015 (10 trajectories, SGD-Empirical).

7.2.4 Discussion

Our experiments demonstrate that multi-agent Hidden Data EM offers improved accuracy and in
many cases improved performance in our multi-robot patrolling domain. Blocked Gibbs sampling,

75

1000 | SGD SGD-Empirical
800 | SGD-Approx

600 |
400
200

Seconds

O 1 1 i 1 I 1 1
0 20 40 60 80 100 120 140 160

Number of trajectories

Figure 7.14: Average time to solve randomly generated MDPs (25 states, 4 actions) for each M-step
method as the length of sampled trajectories increases. 10 trajectories sampled. Error bars are one standard
deviation, standard error is between 5.851 (150 timesteps, SGD) to 0.015 (10 timesteps, SGD-Empirical)

with each block the size of one agent’s state-action pair at a single timestep, is shown to perform
the best of the options tested. When the learner is time-constrained the method of calculating the
E step of Hidden Data EM is shown to be of critical importance.

We analyzed our stochastic gradient descent approximations and found that SGD-Empirical
outperformed the others in both accuracy and speed. This is attributed to receiving too few
trajectories to adequately estimate the state distribution at each timestep, leading to inaccurate
results. We note though that when SGD-Empirical is used no features may be state-only; weights
for these features may only be learned by considering the state distributions.

7.3 Evaluation of mIRL7T+Int

We evaluate our method of estimating the transition function of an observed agent, developed in
section 5, in a similar multi-robot patrolling scenario to that described in section 7.1 and so to save
space we will only describe here the differences from those experiments.

As before, there are two robots, I and J, patrolling a space that an attacker L wants to move
through without being detected. We now allow for the possibility that one of the patroller’s wheels
is damaged, unknown to L. We show a simulated trace of the damaged patroller’s movement in
figure 7.15 This damage will cause one patroller to move much more slowly than the other which
manifests as lower transition probabilities to its intended next state. This potentially gives L more
opportunities to reach its goal if the patrollers can be correctly predicted. A robust test of our
new technique is if L can identify the correct patroller and specific feature that is causing it lower
transition probabilities. The error model used in these experiments is to allocate all probability
mass to the current state in event of a failure which accurately models a robot that is moving too
slowly to make it to the next state within a given timestep.

7.3.1 Transition Features and Algorithms

L utilizes the following independent binary feature random variables as part of 7; and Tj:

76

—d £l i N m—

e R L B R B P I (e

=

Figure 7.15: Simulated trace showing the damaged patrolling robot (red) and its slower, oscillating move-
ment. Undamaged patroller trace (blue) shown for reference.

1. Rotate left wheel at specified speed, used at all states and for all actions except stop;
2. Rotate right wheel at specified speed, used at all states and for all actions except stop;

3. Nawvigation ability that models the robot’s localization and plan following capabilities in the
absence of motion errors, used at all states and for all actions except stop.

4. Floor slip, used for all states and actions

We use the technique developed in this chapter to augment the algorithm described in chapter
6 by first learning the transition function of the observed robots before learning the Rewards. This
produces an algorithm labeled mIRL"+Int and we compare this directly to mIRL*+Int with various
manual settings for 1. We take a similar approach with the upper bound algorithm, Known R,r
reveals the true reward function of all patrollers to L but utilizes our technique to calculate the
transition function, and in Known R we manually fix ¢ to various settings. Finally, we compare
our techniques to a popular existing approach for learning the transition function by modeling
as a dynamic Bayesian network and solving using Expectation-Maximization (DBNgys). In this
approach a patrolling robot’s transitions are modeled as a two step state-action-state DBN whose
parameters are learned from the observed portions of the trajectory using EM.

7.3.2 Most likely transition error model

One remaining concern is which transition error model to use in our domain? Following the pro-
cedure detailed in 5.4 we develop a number of possible error models and choose the maximum
likelihood one as calculated using the error transitions from the given trajectory. The candidate
models are:

e Stop - all remaining probability mass to the current state the agent is in.

e Other Actions - remaining probability mass divided equally among the intended states for
the other actions (not including the one the agent performed)

77

e Nearby States - remaining probability mass divided equally among all states whose center
point is < 1 meter from the starting state’s center point

e Uniform - remaining probability mass divided equally among all states (except the intended)

In our experiments the Stop model is found to be the maximum likelihood 100% of the time.
We attribute this to the most common error mode of the robots being moving too slow to make it
to the next state, thereby appearing to "stop” for a timestep. For easy comparison all experiments
in this section use the Stop error model to distribute the remaining probability mass.

7.3.3 Simulation Results

We first examine the Learned Behavior accuracy of the algorithms that utilize our technique de-
scribed in this chapter. As can be seen in figure 7.16 increased observation amounts result in higher
accuracy for both algorithms. Each data point is calculated from at least 100 simulated runs by
placing them in blocks according to learned behavior accuracy of size 15 at intervals of 0.05, then
averaging the success rate over the blocks. Standard error ranges from 0.09 (0.90, Known R 7) to
0.0099 (1.0, Known R /T). Furthermore, the success rate of L correlates strongly with the learned
behavior accuracy, again demonstrating the importance of accurate learning.

Next, we evaluate the success rate when J’s left wheel is damaged. As can be seen in figure
7.17 (a), the two algorithms which used fixed values for ¢ performed worse than their equivalent
that used our method of learning it. Notice too the performance of the DBNgs method is below
random, due to this method’s inability to learn the transition function of the other agents under
occlusion. Indeed, runs using this method timed out (no valid attack plan found) 100% of the
time when occlusion was present and 90% without it. By comparison, the time out rate of all
other methods is under 4% regardless of occlusion. This strongly indicates that utilizing transition
features that are shared among multiple state-action pairs facilities robust learning.

In figure 7.17 (b) we show the learned transition feature probabilities for both patrollers averaged
over all state-action pairs. Notice that mIRL",.+ Interaction correctly learns the left wheel of J is
damaged by assigning the feature a lower probability of success, much lower than for . Additionally
the left wheel’s success probability is lower than the right wheel by a statistically significant amount
(student’s 2-tailed t-test, p << 0.001).

Finally, in figure 7.17 (c) we see the learned transition feature probabilities for both patrollers
when there are no damaged wheels. Comparing the probabilities found to those in 7.17 (b) we see
that both wheels are assigned approximately the same probability of success for both patrollers
and closely matches our upper bound control.

7.3.4 Physical Robot Results

For our physical robot experiments we compared mIRL’;T+Int with mIRL*+Int where the transition
success rate fixed at 0.9 as well as a Random baseline in runs where patroller J’s wheel is damaged
and not. We report the success rate in table 7.1 with 10 runs per data point. Notice that the
success rate improves when L is allowed to learn the transition function. Also as can be seen in
this table runs with a damaged wheel improve the chances of L’s success across all methods used.
We illustrate our physical experiments in figure 7.18 by showing a successful attack by L (top) as
well as the view from L’s vantage point as it watches a patroller (bottom).

78

Known R\
mIRL+Int

Learned Behavior Accuracy

S te
o o
o 0

Known R /7
mIRL*/T+Int

875 08 08 09 095 1
Learned Behavior Accuracy

Figure 7.16: (top) Learned behavior accuracy of mIRL)+Int and Known R 7 for different occlusion rates
and observing times. (bottom) Improving accuracy of learned behavior correlates almost linearly with
success rate. Vertical bars denote one standard deviation, standard error ranges from 0.09 (0.90, Known
R/r) to 0.0099 (1.0, Known R)

7.3.5 Bernstein Polynomial Approximation

We examine the approximation presented in section 5.5 by comparing its performance to our ex-
act formula. Using trajectories generated from our patrolling scenario, we calculated the Pr(7)
using the exact and convex approximation techniques. The exact method utilized Sequential Least
Squares Programming implemented in the SciPy software package and the approximate method
was solved with a primal-dual interior point method from the CVXOPT python package. We
then calculated the average difference in the probabilities found by the two methods: over 1,110
trajectories the median average difference was 0.047 with quartiles 0.026 and 0.075.

The primary advantage of using the convex approximation is scalability as the number of con-
straints increases. Our scenario uses only 4 features and a mapping resulting in 4 qgs’a) constraints
(one per action). To show scalability, we increased the number of features and mapped them such
that there is one q?’a) constraint per state (9 features, 4 mapped to each state) and again such
that each state-action pair had a unique constraint (12 features, 4 mapped to each state-action

pair). This resulted in 124 and 496 constraints, respectively. In figure 7.19 we report the average

79

0.8

0.7
< 06}
@ 05} KnownR
@ 0.4 | Known R 1
3 03k mIRL*+Int
S 7 [mIRL*q+Int
®» 021 DBNg,
0-; " Random
0.5 0.6 0.7 0.8 0.9 1
T, y(s,a,y(s,a))
(a)
1
0.98 -
0.96
= 0.94 -
a_ 092
0.88 Patroller | Known R ¢
0.86 Patroller | mIRL*p+int
0.84 Patroller J Known R 1
0.82 - Patroller J mIRL* y+Int
08 1 1 1 1
Left Wheel Right Wheel Navigability Floor
Transition Feature
()
1
0.98
0.96
= 0.94 -
a_ 092
0.88 Patroller | Known R’
0.86 Patroller | mIRL* +Int
0.84 Patroller J Known R 1
0.82 - Patroller J mIRL* y+Int
08 1 1 1 1

Left Wheel Right Wheel Navigability Floor
Transition Feature

(c)

Figure 7.17: (a) Comparative success rates of L for various methods that either learn Ty and T or fix it
arbitrarily. True transition probabilities of the patrollers are not known. (b) Transition feature probabilities
that correctly identify that the left wheel of J is partially damaged as indicated by its comparatively low
success probability. (¢) Transition feature probabilities when both patrollers are operating properly.

Success rate

Method J’s left wheel damaged | No damaged wheels
mIRL7T+Int 0.60 0.50
mIRL* 0.50 0.40
Random 0.40 0.20

Table 7.1: L’s success rates using various methods over 10 physical runs each. L suffers from very high
occlusion of patrollers.

80

Figure 7.18: (top) Patrollers I and J moving through the hallway while L begins its attack behind them
(bottom) L observing I from its vantage point

81

0

o 1F Exact
g F Convex Approx
2 01}

[} 3

£ 1

= [

o 001F

()] 3

® i

5 [

(e

Figure 7.19: Time to solve (in seconds) as a function of the number of ¢; constraints. Note log scale
on both axes. Error bars are one standard deviation, standard error ranged from 0.000006 (4 constraints,
approximate method) to 0.033 (496 constraints, exact method)

time our exact and convex approximation algorithms took to solve on these two larger problems.
The approximation method took about 0.005 seconds to solve all problems on average while the
exact method ranged from 0.0085 seconds (std. dev. 0.0062) with 4 constraints to 1.02 seconds
(std. dev. 1.114) with 496 constraints. Standard error ranged from 0.000006 (4 constraints,
approximate method) to 0.033 (496 constraints, exact method).

7.3.6 Discussion

We empirically validate our model in our robotic patrolling domain by showing the ability of the
attacker to correctly determine which wheel is damaged of a patrolling robot. We show our model
provides improved success rate over a manually specified transition function, in particular because
the transition functions for the damaged and undamaged robots are different. Finally, the convex
approximation developed in section 5.5 is shown to offer improved scalability over the exact method
while producing similar results. Note that our approximation uses a Bernstein polynomial of degree
4, higher degrees uniformly converge towards the original function and are therefore expected to
provide more accurate results with minimal effect on scalability.

7.4 Summary

Our experiments demonstrate the applicability of our methods to domains involving real-world
robots. Even under extreme occlusion useful policies could still be learned that explains the behavior
of the patrollers accurately enough for L to reach the goal. By modeling the interaction between
robots as a Nash equilibrium that is unknown to the learner we remove a source of persistent noise
from observations of the robots improving L’s ability to perform IRL on them and predict their
future positions.

82

By taking into account an expectation of the patroller’s behavior in the occluded areas and
compensating for the increased computation time this causes we improve the accuracy of the learned
policies and in many cases the performance of L on its task.

In real-world scenarios the learner will likely not have the transition function of the expert
ahead of time and must estimate 7'() from the expert’s observed behavior. When the requirements
of our model are satisfied (intended next state known, transition feature mapping known) we show
improvement in the learner’s performance by using our model to learn T'() over fixing the transition
function to various values ahead of time.

83

Chapter 8

Conclusions

In this chapter we discuss our contributions and potential future avenues for research.

8.1 Discussion

When an autonomous robot is attempting to perform Inverse Reinforcement Learning on the agents
it encounters in its environment a number of challenges arise. Existing IRL methods fail to ade-
quately address these difficulties, in particular: occlusion creating persistent missing data in the
observations the robot receives, the presence of multiple interacting agents in the environment
whose interactions are sources of persistent noise, and a lack of knowledge of the observed agent’s
transition function. The work presented in this dissertation has developed principled extensions of
an IRL method, MaxEnt IRL, to address these challenges and demonstrated their effectiveness in a
number of simulated and physical robotic domains.

We first show the effects of simply ignoring missing data, which is justified in some contexts,
before presenting a method to replace missing data with its expectation in IRL as an application
of the latent maximum entropy principle and illustrate the accuracy improvement it provides.
Simple methods are shown to be effective in reducing the solving time of Hidden Data EM without
compromising accuracy.

We present a model of spurious agent interaction based upon game theory and show that its
use improves performance in a challenging robotic domain. This new model is partially applied
to Hidden Data EM and this algorithm is adapted to significantly sized robotic problems. We
show this algorithm offers an accuracy improvement over mIRL*+ne which may well be worth
its increased computational costs in many contexts. In scenarios where the interaction behavior
is unknown, possibly due to occlusion, we presented a method to consider all possible equilibria
during the solving iterations.

Finally, we develop a new method for estimating the transition function of an observed agent
based upon learning underlying transition feature probabilities. We show this method’s utility in
a scenario in which one of the robots it must learn from has a damaged wheel, necessitating a
learning algorithm. Despite heavy occlusion and a lack of exploration of the state-action space
by the observed robot our method is capable of learning useful transition functions as well as
successfully identifying the specific damaged wheel.

Our work represents important first steps towards making IRL a machine learning technique
usable by autonomous robots in real world scenarios in which other agents are encountered. As

84

robots are expected to be deployed among people in the near future it is our hope that this work
contributes positively to the development of these machines.

8.2 Future Work

This work is by no means an exhaustive treatment of all possible issues a robot could encounter
performing IRL in the real world. For example, Inverse Reinforcement Learning assumes that the
expert is rational which may not be justified when attempting to learn from humans and other
animals. A rigorous treatment of this situation may model the expert as risk-sensitive or using a
one-switch utility function.

Future applications include utilizing IRL to learn the policy of an agent, formulating a best
response to it, and subsequently forming an ad-hoc team between the learner and expert. Inverse
Reinforcement Learning generally assumes no interaction between the expert and learner during
the observed demonstration preventing the learning of behavior that requires cooperation between
the two. Relaxing this constraint would allow the learner to play an active role in the task being
performed and influence the expert towards states the learner is interested in observing, resulting
in more complete learning.

One possible future advancement of IRL*’s solution method is to treat all constraints as lower
bounds on the possible expert feature expectations with an upper bound provided by the maxi-
mum possible feature count that could be received from the time steps in which the expert is oc-
cluded, then solve the resulting problem using any convex optimization with inequality constraints
method [15].

An open question that remains from our work is how can multi-agent Hidden Data EM be
extended to scenarios where the interaction behavior is unknown? We believe a good direction
of inquiry is inspired by our work in section 6.1.2 where, assuming the interactions are sparse,
the probability that each Nash equilibrium is the one the robots are using is proportional to the
difference of feature expectations of the distribution over trajectories and feature expectations of
the expert. We may imagine adding extra constraints onto equation 4.4:

max <_ S Pr(X) log Pr(X))

XeX

subject to > Pr(X)=1

Xex (8.1)
Y Pr(X) Y eu(s.a) =47 Vk
XeX (s,a)eX
> Pr(X) > Y(s!,al,s”,a’) = TZZZ‘Y vl
XeX (sT,al,s7,alyeX

Where Y is a feature that matches Nash equilibrium ! when a! and a” indicate equilibrium I
and ST and S” are interacting states.

Our occlusion methods require fully observable and fully hidden states. Depending upon the
application it may not be feasible to satisfy this constraint. Instead a more advanced technique
which allows for partial observability of states and actions is needed. This was first treated in [26]
by defining Hidden Variable Inverse Optimal Control in which the learner receives an observation

85

which stochastically depends upon the state of the expert agent at a given timestep. Generalizing
this technique to allow the observation to also depend upon the expert’s action requires a more
advanced method and we believe the Hidden Data EM approach may be applicable here by changing
X to be (T'raj Uw), where Trajectory is one possible trajectory of the expert and w is a sequence of
observations of the expert made by the learner which only partially reveals the expert’s state-action
pair at each timestep.

In chapter 5 we partially relaxed the requirement that the learner know the complete transition
function of the expert it is observing by requiring instead that the learner identify the expert’s
intended next state for every state-action pair and have full knowledge of the transition feature set
and mapping. A limitation of our current approach is that each state-action pair is restricted to
a single intended next state only. One avenue of future work is to relax this limitation allowing
multiple intended next states. A possible approach may be to split the transition function into
multiple transition functions each mapped to its own subset of features.

Another requirement is full knowledge of these intended next states. In some cases they may
be determinable through observations of the expert, for instance a probabilistic model of the in-
tended next state for each state-action pair could be developed whose parameters are learned from
trajectory data. A set of transition feature probabilities could be learned from this model, and an
expectation taken over the probabilities (weighted by the intended next state model) to arrive at
the most likely transition probabilities.

86

Appendix A

Appendix

A.1 Robotic Experiment Details

Here we provide extra details related to our robotic experiments that may clarify some details for
the reader or assist with repetition of this work.

A.1.1 Sorting under occlusion: details for section 4.4.1
Expert MDP
States:

The states combine every combination of the following variables, for a total of 384 states.

e Location - {On table, Center area, Bin 1, Bin 2}
e Ball type - {1, 2, 3, 4}
e Holding ball - {Yes, No}

e Time for previous action - { < 0.3s, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, > 1.3s}

Holding no ball in Bin 1 or Bin 2 are terminal states.

Actions:

e Grab Firm - Only applies in the On table states

Grab Soft - Only applies in the On table states

o Mowe to center position - Only applies in the On table states

Move to Bin 1 - Only applies in the Center area states

Mowe to Bin 2 - Only applies in the Center area states

Release Firm - Only applies in the Bin states

87

Figure A.1: Patroller J with distinct color patches for detection by a blob finder.

88

e Release Soft - Only applies in the Bin states

In observations received from the expert, the Grab and Release actions are never observed due
to the ambiguity involved. Portions of the trajectories that involve a grab or place action are
removed before the start of IRL (with the exception of the occlusion free control method)

Transitions:

The transition function is deterministic in all variables except for the previous action time,
which is stochastic. To create this, we start by creating a transition function that is deterministic
in the variables Location, Holding ball, and ball type and considers all Time for previous action
variables equally probable for every state and action. Now, assuming we know the true action taken
we build a distribution over action times from the set of observed trajectories for each action. To
create the final transition function, we multiply this distribution by the transition function gener-
ated previously.

Reward Features:

12 features total:

e Release ball type X in Bin 1
e Release ball type X in Bin 2
e Handle ball type X softly

where X =1, 2, 3, 4
Converting observations to trajectories

The expert’s arm was tracked using a motion capture system and the sorting task was recorded
with an RGB camera. We discretized the position of the wrist into one of four locations as can be
seen in figure A.2, and recorded the time the transition between states took. We then manually
identified the ball type handled in each trajectory.

The reward functions learned by each IRL method are shown in table A.1.

Robot MDP

States:

e Ball Type X at sorting location
e Ball Type X at bin 1 *terminal*
e Ball Type X at bin 2 *terminal*

e Dropped ball X *terminal*

89

Figure A.2: Visualization of the motion capture points attached to the expert’s arm with discretized regions
corresponding to the four MDP locations (On table, Center Area, Bin 1, Bin 2) superimposed. The wrist
is currently in the highlighted state Center Area.

Ball sorting task
Method $1 ¢2 3 P4 @5 ¢ ¢7 ¢8 ¢9 10 | P11 $12
MaxEnt IRL 0.2213 | 0.2456 0 0 0 0 0.27 0.259 0 0 0 0
IRL* 0.8331 1.697 -0.4020 | -0.44 0.25 0.26 1.08 1.07 1.08 1.06 | 0.61 -0.78
Hidden Data EM 0.1622 0.1033 0 0 0 0 0.1879 0.1647 0 0.37 0 0.0109
Occlusion-free control | 0.0002 | 0.0001 0 0 0 0 0.0002 | 0.00006 0 0.5 0 0.4991

Table A.1: Feature weights learned by all four methods from ball sorting data. ¢1 - ¢4: reward for
sorting ball types 1-4 into bin 1, ¢5 - ¢g: reward for sorting ball types 1-4 into bin 2, and ¢g - ¢12:

reward for handling ball types 1-4 gently.

Method Ball type hard and black | Ball type soft and red | Ball type hard and white | Ball type soft and green
MaxEnt IRL To Bin 1 firmly To Bin 1 firmly To Bin 2 firmly To Bin 2 firmly
IRL* To Bin 1 gently To Bin 1 gently To Bin 2 gently To Bin 2 firmly

Hidden Data EM
Occlusion-free control

To Bin 1 firmly
To Bin 1 firmly

To Bin 1 gently
To Bin 1 gently

To Bin 2 firmly
To Bin 2 firmly

To Bin 2 gently
To Bin 2 gently

Table A.2: Optimal policies learned by all four methods from the ball sorting data with hidden
variables. While the state consists of multiple variables, we show the robot’s action map for the
main state variable of ball type here. Underlined actions are erroneous.

90

where X =1, 2, 3, 4
Actions:

e Sort to Bin 1 Firmly
e Sort to Bin 1 Softly
e Sort to Bin 2 Firmly

e Sort to Bin 2 Softly
Transitions:

The transition function modeled successfully sorting a ball softly at 83% and firmly at 89%. A
failure results in transitioning to the dropped state.

Reward Features:

13 features total
e 1 - 12 are the same as the expert’s MDP
e 13 - a feature for entering the Dropped ball state, which is given weight of zero.

The optimum policies for the reward functions learned by each IRL method is shown in table A.2.

This experiment was implemented using the ROS Indigo system. We used a PhantomX Pincher
arm to perform the sorting. We used the turtlebot_arm package with kinematic modifications for a
pinching gripper to provide movement planning. This arm has no force sensors in its gripper so to
simulate grabbing the balls hard and soft we instead designate grabbing hard as closing the gripper
much more than the soft version, then made the balls approximately the same size. ”Firm” balls
are thus balls that can be crushed without damaging them, firm foam and heavy duty scouring
pads were used for this purpose. Soft balls are simply balls made of play doh.

A.1.2 Penetrating a patrol under occlusion: details for section 7.1.4

This experiment was implemented using the ROS Fuerte system. The AMCL package provided
localization, move_base provided local and global navigation, and a map of the relevant area was
provided.

L utilized algorithms 1 (Subject) and 2 (ExecutePolicy) to perform its task. The patrollers
solved their MDP before the experiment started and moved according to the optimum policy found
using algorithm 2 (ExecutePolicy). Interaction was handled by designating one patroller to step
when it sees the other patroller within a certain distance and the other patroller simply reduces its
maximum speed.

The Predict() algorithm in this experiment jointly projects the provided policies from the last
point each patroller was seen. For this experiment, a single projection was used to save time.

As can be seen in the ExecutePolicy algorithm 2 the robots were moved by translating the MDP
states into way-points and giving them to the ROS move_base package. move_base at this time

91

Algorithm 1 Subject

Input: obstime, maxTime, startPosition, goalPosition, PatrollerMDP /R, AttackerMDP /R, Max-
Prediction
while time < obstime do
Percepts < ObservePatrollers()
Trajectories «— ConvertPerceptsToTrajectory(Percepts)
PatrollerPolicies «— IRL(PatrollerMDP /R, Trajectories)
repeat
lastSeenPosition <— ObservePatrollers()
V < Valuelteration(AttackerMDP/R, Predict(PatrollerMDP /R, PatrollerPolicies, lastSeen-
Position))
bestTime « -1
bestValue < 0
for t = 1 to MaxPrediction do
if V((StartPosition, t)) > bestValue then
bestTime < t
bestValue < V((StartPosition, t))
Policy + CreatePolicy(V)
until bestTime > 0 or time > maxTime
while time < bestTime and time < maxTime do
sleep()
while curPosition # goalPosition do
if time > maxTime then
exit(FAILURE)
ExecutePolicy (Policy, (curPosition, time))
exit(SUCCESS)

Algorithm 2 ExecutePolicy

Input: Policy, CurrentState
action <— Policy(CurrentState)
nextState <— IntendedNextState (CurrentState, action)
nextWaypoint <— centerPoint (nextState)
nextWaypoint <— nextWaypoint + RandomGaussian(0, 0.1)
{Small random noise added to waypoint to get around move_base bugs}
send WayPointCommand (next Waypoint)

92

was very buggy and would disregard repeated commands if they were similar to each other, to get
around this and ensure the robot moved when a way-point was given a small amount of Gaussian
noise was added to it. This movement algorithm is also used by both patrollers once they have
solved their individual MDPs.

Patroller MDP

Two MDPs were created, one for each map the experiment was performed on.
Actions:

e Mowve Forward
o Turn Left

o Turn Right

e Turn Around
e Stop

Transitions:

Actions caused the agent to move to the intended state 66% of the time with the remaining
mass distributed to the intended next states of the other actions evenly.

States:
Smaller Map:

76 states representing the patrolling map discretized into 19 squares, and the patroller’s orien-
tation discretized into the 4 cardinal directions

Larger Map:

96 states representing the patrolling map discretized into 24 squares, and the patroller’s orien-
tation discretized into the 4 cardinal directions

Reward Features:
Smaller Map

To ease the learning process, reward features were designed to restrict the policy space to con-
sidering plausible policies.

14 features

e Move Forward

e Turnaround X distance from the center point

93

True rewards: 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, .5, -1, -1, -1

The turn around features are mapped to all states that are ideally reachable from the center
point of the map in X actions. To ease learning, we condensed these to just two parameters P
when given to Nelder-Mead (though the full feature expectations were still utilized). These two
parameters corresponded to a magnitude value and the center-point of a Gaussian function. The
reward weights are then generated from these two parameters by setting #; = P[1], and all other
0, = P[1] * N(n — 1,0.632). In essence, rather than individually choosing weights for each feature
this technique enforced a Gaussian shape onto the weights, ensuring that just one would receive a
maximum value while the others much lower.

Larger Map:
5 features

Move Forward

e Is in a room
e Turn around in a hallway
e Move from a room to the hallway

e Move from a hallway to a room

True rewards: 1, -1, -1, 0, 0

Subject MDP

The subject MDP is similar to the patroller’s with the following changes:
States:

The subject robot moves through a larger area than the patrollers (particularly in the larger
map) so extra map space is added to the subject robot’s MDP. These states are then extended with
a time variable to model the dynamic environment the attacker must move through. 30 timesteps
were considered, timesteps are of length 4 seconds for the smaller map and 4.5 seconds for the larger.

Actions:
o Mowve forward
o Turn left

o Turn right

94

Transitions:

Actions caused the agent to move to the intended state 90% or 95% of the time (evenly dis-
tributed throughout runs) with the remaining mass distributed to the intended next states of the
other actions evenly. Regardless, the agent always moves forward one time step per action.

Reward Function:

There are two parts to the subject’s reward function:
e Reward for being at the goal position
e Penalty for being observed

The reward was simply set to 10 for all states at the goal position for all timesteps. To set the
penalty, the predicted positions of each patroller were queried for each timestep. For each state, if
the state was within detection distance from a patroller (3 states) and in the correct direction to
be detected it received a penalty of -10.

The method used to observe the patrollers varied between simulation and reality; we discuss
this further in the following sections. Percepts are sub-timestep data points of the position of
each patroller in continuous. These must be converted into discrete MDP states and the action
performed inferred at each timestep.

Simulation

Simulation runs were provided by the Stage ROS package. This package provides simulated laser
range finders to enable the AMCL localization system to be used however it was unable to provide
adequate simulated RGB cameras for detecting robots visually. We therefore queried the simulator
for the true position of each robot whenever needed, and filtered the results to simulate a limited
range camera by only giving the subject robot a percept if it is within specified observable states.

Percepts are the tuple (x,y,1,t) corresponding to the position and orientation of the robot
at time t. Each percept is simply classified according to which MDP state it is within, then the
classified percepts are grouped together by timestep and the majority state becomes the state
used. The action at each timestep is calculated by simply using the most likely action given two
subsequent states.

Physical

All robots used are Turtlebot version 1.0. These robots are constructed of an iRobot Create with an
added gyroscope sensor, a Microsoft Kinect, and a body frame. The patrollers used a non-standard
body frame, as can be seen in figure A.1.

The primary difference from simulation is in the detection of robots. We use the CMVision
ROS package to identify certain colors in the RGB video stream received from the turtlebot’s
camera. We take the largest identified blob of each configured color and query the range finder
for the distance to the center point. By combining this range and bearing information with the
robot’s current belief we are able to estimate the position of the other robot. Unfortunately, our
experiment has no way of observing the orientation of an observed robot. Instead we compared

95

subsequent percepts and, assuming the robot does not move backward, assume it is facing in the
direction it is moving.

A.1.3 Penetrating a patrol w/ unknown T(): details for section 7.3.4

This experiment was implemented using the ROS Indigo system. The AMCL package provided
localization, move_base provided local and global navigation, and a map of the relevant area was
provided.

Most details given in appendix section A.1.3 apply to this experiment. For completeness, we
repeat them here. To summarize the changes, the MDPs were discretized to a finer extent to allow
for more accurate transition functions to be learned, and subsequently the reward features used
were revised for the new MDPs. The Predict() algorithm in this experiment is modified to jointly
projects the provided policies numerous times and average the results from the last point each
patroller was seen. This way, the learned transition function affects the prediction quality as well
as the policies learned.

In between the path planning component of ROS (move_base) and the turtlebot driver was
inserted a small node with acted to simulate a damaged wheel. A percentage could be given to this
node for the left wheel, and the speed this wheel is turned at would be multiplied by this amount
before given to the driver, with the navigation system unaware this modification was happening.
This resulted in oscillating behavior as the navigation system constantly had to slow down and
correct its path.

Patroller MDP
Two MDPs were created, one for each map the experiment was performed on.
Actions:
e Mowve Forward
o Turn Left
o Turn Right
e Stop
Note: the Turn Around action is not used
Transitions:
The transition functions were either learned using the technique in chapter 5 or fixed to spe-
cific values: actions caused the agent to move to the intended state X% of the time (X = 70, 80,
90, or 95) with the remaining mass distributed to the same state it is currently in (Stop error model).

States:

Smaller Map:

96

124 states representing the patrolling map discretized into 31 squares, and the patroller’s ori-
entation discretized into the 4 cardinal directions

Larger Map:

212 states representing the patrolling map discretized into 53 squares, and the patroller’s ori-
entation discretized into the 4 cardinal directions

Reward Features:

To ease the learning process, reward features were designed to restrict the policy space to con-
sidering plausible policies.

Smaller Map

6 features

e Move Forward

Turn in the vertical portion of the hallway

Turn in the first two states of the horizontal portion of the hallway
e Turn between the 2nd and 4th states of the horizontal portion of the hallway
e Turn between the 4th and 6th states of the horizontal portion of the hallway

e Turn between the 6th and 8th states of the horizontal portion of the hallway
True rewards: 1, -1, -1, -1, 0.5, -1

These ”grouped” features each match multiple states and overlap on the horizontal sections of
the hallway. These features restrict the space of optimal policies while still allowing a great many
?patrolling”-like behaviors. As the run time of the solver used, Nelder-Mead simplex, scales with
the number of parameters it is important that these be kept to as few as possible.

Larger Map:

5 features

e Move Forward

e Isin a room

e Turn around in a hallway

e Move from a room to the hallway

e Move from a hallway to a room

True rewards: 1, -1, .1, 0, 0;

97

Subject MDP

The subject MDP is similar to the patroller’s with the following changes:
States:

The subject robot moves through a larger area than the patrollers (particularly in the larger
map) so extra map space is added to the subject robot’s MDP. These states are then extended with
a time variable to model the dynamic environment the attacker must move through. 30 timesteps
were considered for the smaller map and 60 for the larger, timesteps are of length 2 seconds.

Actions:
o Move forward
o Turn left
o Turn right

Transitions:

Actions caused the agent to move to the intended state 97.5% of the time (evenly distributed
throughout runs) with the remaining mass distributed to the intended next states of the other
actions evenly. Regardless, the agent always moves forward one time step per action.

Reward Function:

There are two parts to the subject’s reward function:
e Reward for being at the goal position
e Penalty for being observed

The reward was simply set to 10 for all states at the goal position for all timesteps. To set the
penalty, the predicted positions of each patroller were queried for each timestep. For each state, if
the state was within detection distance from a patroller (6 states) and in the correct direction to
be detected it received a penalty of -10.

Observations

The method used to observe the patrollers varied between simulation and reality; we discuss
this further in the following sections. Percepts are sub-timestep data points of the position of
each patroller in continuous. These must be converted into discrete MDP states and the action
performed inferred at each timestep.

Simulation

Simulation runs were provided by the Stage ROS package. This package provides simulated laser
range finders to enable the AMCL localization system to be used however it was unable to provide

98

adequate simulated RGB cameras for detecting robots visually. We therefore queried the simulator
for the true position of each robot whenever needed, and filtered the results to simulate a limited
range camera by only giving the subject robot a percept if it is within specified observable states.

Percepts are the tuple (x,y,1,t) corresponding to the position and orientation of the robot
at time t. Each percept is simply classified according to which MDP state it is within, then the
classified percepts are grouped together by timestep and the majority state becomes the state
used. The action at each timestep is calculated by simply using the most likely action given two
subsequent states.

Physical

Robots used are Turtlebot version 2.0 (L and I) and 1.0 (J). Version 2.0 is constructed of a Yujin
robotics Kobuki base, a Microsoft Kinect, and a body frame. Version 1.0 robots are constructed of
an iRobot Create with an added gyroscope sensor, a Microsoft Kinect, and a body frame. Patroller
J used a non-standard body frame, as can be seen in figure A.1.

The primary difference from simulation is in the detection of robots. We use the CMVision
ROS package to identify certain colors in the RGB video stream received from the turtlebot’s
camera. We take the largest identified blob of each configured color and query the range finder
for the distance to the center point. By combining this range and bearing information with the
robot’s current belief we are able to estimate the position of the other robot. Unfortunately, our
experiment has no way of observing the orientation of an observed robot. Instead we compared
subsequent percepts and, assuming the robot does not move backward, assume it is facing in the
direction it is moving.

A.1.4 Penetrating a patrol w/ Hidden Data EM: details for section 7.2.2

This experiment was implemented using the ROS Hydro system.

Most details given in appendix section A.1.3 apply to this experiment. For completeness, we
repeat them here. To summarize, the reward features of our smaller environment were expanded
to better illustrate the difference between the Hidden data EM methods and mIRL*+ne, as the
larger feature count allowed lengthened the number of iterations needed for Nelder-Mead simplex
and expanded the space of possible optimum policies.

Patroller MDP
Actions:
o Move Forward
o Turn Left
o Turn Right
e Stop

The Turn Around action is not used

Transitions:

99

The transition functions were fixed to specific values: actions caused the agent to move to the
intended state 92.5% of the time with the remaining mass distributed to the same state it is cur-
rently in (Stop error model).

States:

124 states representing the patrolling map discretized into 31 squares, and the patroller’s ori-
entation discretized into the 4 cardinal directions

Reward Features:

16 features

e Move Forward

e Turn back at Manhattan distance X from the center state

e Feature which matches any state-action pair that does not match any other feature (catch-all)

True rewards: 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0.5, -1, -1, -1

These simple features allow a much large policy space to be considered than in our previous
experiments. They specifically match turning towards the center point, so actions that turn away
from the center point instead match the catch-all feature. This helps prevent policies that specify
“turn around in place forever” behaviors during the solving process as one feature temporarily
gains more value than others.

Subject MDP

The subject MDP is similar to the patroller’s with the following changes:

States:

The subject robot moves through a larger area than the patrollers (particularly in the larger
map) so extra map space is added to the subject robot’s MDP. These states are then extended with
a time variable to model the dynamic environment the attacker must move through. 30 timesteps
were considered, timesteps are of length 2 seconds.

Actions:
o Move forward
o Turn left
e Turn right

Transitions:

100

Actions caused the agent to move to the intended state 97.5% of the time (evenly distributed
throughout runs) with the remaining mass distributed to the intended next states of the other
actions evenly. Regardless, the agent always moves forward one time step per action.

Reward Function:

There are two parts to the subject’s reward function:
e Reward for being at the goal position
e Penalty for being observed

The reward was simply set to 10 for all states at the goal position for all timesteps. To set the
penalty, the predicted positions of each patroller were queried for each timestep. For each state, if
the state was within detection distance from a patroller (6 states) and in the correct direction to
be detected it received a penalty of -10.

Percepts are sub-timestep data points of the position of each patroller in continuous. These
must be converted into discrete MDP states and the action performed inferred at each timestep.

Simulation

Simulation runs were provided by the Stage ROS package. This package provides simulated laser
range finders to enable the AMCL localization system to be used however it was unable to provide
adequate simulated RGB cameras for detecting robots visually. We therefore queried the simulator
for the true position of each robot whenever needed, and filtered the results to simulate a limited
range camera by only giving the subject robot a percept if it is within specified observable states.

Percepts are the tuple (z,y,,t) corresponding to the position and orientation of the robot
at time ¢t. Each percept is simply classified according to which MDP state it is within, then the
classified percepts are grouped together by timestep and the majority state becomes the state
used. The action at each timestep is calculated by simply using the most likely action given two
subsequent states.

Physical

Robots used are Turtlebot version 2.0 (L and I) and 1.0 (J). Version 2.0 is constructed of a Yujin
robotics Kobuki base, a Microsoft Kinect, and a body frame. Version 1.0 robots are constructed of
an iRobot Create with an added gyroscope sensor, a Microsoft Kinect, and a body frame. Patroller
J used a non-standard body frame, as can be seen in figure A.1.

The primary difference from simulation is in the detection of robots. We use the CMVision
ROS package to identify certain colors in the RGB video stream received from the turtlebot’s
camera. We take the largest identified blob of each configured color and query the range finder
for the distance to the center point. By combining this range and bearing information with the
robot’s current belief we are able to estimate the position of the other robot. Unfortunately, our
experiment has no way of observing the orientation of an observed robot. Instead we compared
subsequent percepts and, assuming the robot does not move backward, assume it is facing in the
direction it is moving.

101

A.2 Proofs

A.2.1 Non-Convexity of IRL*

The non-convexity of IRL* arises because of the use of a probability distribution defined using
all states but constrained over only a subset of them. If the probability distribution only used
the subset of non-occluded states then the resulting program would be convex but may admit no
feasible solution.

Because of the under-constrained feature expectations, it is possible for more than one distribu-
tion over policies to match these limited constraints while having the same entropy: the maximum
achievable. Call the feature weight vectors that produce these two distributions X and Y, X may
not equal Y or else the distributions would be the same and X and Y must have the same magni-
tude or else the distributions generated by them would have different entropy allowing for one to
be chosen over the other.

Theorem: If X and Y each produce distributions with equal, maximum entropy that match con-
straints then all points between X and Y must also result in distributions with the same entropy
whose feature expectations match constraints or else the program is non-convec.

Proof: The points between X and Y must have less magnitude than either one due to this being
a chord line between them. Now, assume all these points do in fact result in distributions with
the same entropy that match the reduced feature expectations, then we conclude that the features
in the occluded space have no effect on the distribution and therefore can be removed, creating
a convex program. Otherwise, all points between X and Y will necessarily produce distributions
that have more entropy due to the points on the line between X and Y having less magnitude
than either point. The distributions created using these interior points may not match the feature
expectations; otherwise, due to their increased entropy, they would be chosen instead for X or Y.
We therefore conclude that the points on the line between X and Y are not in the feasible set,
therefore the feasible set is non-convex and the program is non-convex.

102

References

1]

[7]

8]

[9]

[10]

[11]

Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aerobatics through
apprenticeship learning. The International Journal of Robotics Research, 29(13):1608-1639,
2010.

Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application of rein-
forcement learning to aerobatic helicopter flight. Advances in neural information processing
systems, 19:1, 2007.

Pieter Abbeel and AY Ng. Apprenticeship learning via inverse reinforcement learning. In
ICML, page 1, 2004.

Navid Aghasadeghi and Timothy Bretl. Maximum entropy inverse reinforcement learning in
continuous state spaces with path integrals. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1561-1566. IEEE, 2011.

Noa Agmon, Sarit Kraus, and Gal a. Kaminka. Multi-robot perimeter patrol in adversarial
settings. In ICRA, pages 2339-2345, 2008.

Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dautenhahn. Correspondence map-
ping induced state and action metrics for robotic imitation. IEFEE transactions on systems,
man, and cybernetics. Part B, Cybernetics, 37(2):299-307, 2007.

Narayanaswamy Balakrishnan. Continuous multivariate distributions. Wiley Online Library,
2001.

Yonathan Bard. Estimation of state probabilities using the maximum entropy principle. IBM
Journal of Research and Development, 24(5):563-569, 1980.

Kenneth Bogert and Prashant Doshi. Multi-robot inverse reinforcement learning under occlu-
sion with interactions. In AAMAS, pages 173-180, 2014.

Kenneth Bogert and Prashant Doshi. Toward estimating others’ transition models under
occlusion for multi-robot IRL. In IJCAI, pages 1867-1873. AAAI Press, 2015.

Kenneth Bogert, Jonathan Feng-Shun Lin, Prashant Doshi, and Dana Kulic. Expectation-
maximization for inverse reinforcement learning with hidden data. In AAMAS, pages 1034—
1042, 2016.

103

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Joseph-Frédéric Bonnans, Jean Charles Gilbert, Claude Lemaréchal, and Claudia A Sagas-
tizabal. Numerical optimization: theoretical and practical aspects. Springer Science & Business
Media, 2006.

A Boularias, Jens Kober, and J Peters. Relative entropy inverse reinforcement learning. In
AISTATS, pages 182-189, 2011.

Abdeslam Boularias, O Kromer, and J Peters. Structured apprenticeship learning. Machine
Learning and Knowledge Discovery in Databases, pages 227-242, 2012.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16(5):1190-1208, 1995.

Sonia Chernova and Manuela Veloso. Teaching multi-robot coordination using demonstration
of communication and state sharing (short paper). In AAMAS 2008, pages 1183-1186, 2008.

J Choi and Kee-eung Kim. Inverse reinforcement learning in partially observable environments.
Machine Learning Research, 12:691-730, 2011.

Jaedeug Choi and Kee-eung Kim. Inverse Reinforcement Learning in Partially Observable
Environments. In IJCAI pages 1028-1033, 20009.

Claudia Goldman and Shlomo Zilberstein. Communication-based decomposition mechanisms
for decentralized mdps. Journal of Artificial Intelligence Research, 32:169-202, 2008.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620,
1957.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1):99-134, 1998.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, pages 237-285, 1996.

Beomjoon Kim and Joelle Pineau. Socially adaptive path planning in human environments
using inverse reinforcement learning. International Journal of Social Robotics, 8(1):51-66,
2016.

Dongho Kim, Catherine Breslin, Pirros Tsiakoulis, Milica Gasic, Matthew Henderson, and
Steve J Young. Inverse reinforcement learning for micro-turn management. In INTER-
SPEECH, pages 328-332, 2014.

Kris M. Kitani, Brian D. Ziebart, J. Andrew Bagnell, and Martial Hebert. Activity forecasting.
Computer Vision ECCYV, pages 201-214, 2012.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1-63, 1997.

104

28]

[29]

[30]

[31]

Edouard Klein and M Geist. Inverse Reinforcement Learning through Structured Classification.
Advances in Neural Information Processing Systems, pages 1-9, 2012.

Jeffrey C Lagarias, James A Reeds, Margaret H Wright, and Paul E Wright. Convergence prop-
erties of the nelder—mead simplex method in low dimensions. SIAM Journal on optimization,
9(1):112-147, 1998.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming, 45(1):503-528, 1989.

Manuel Lopes, Francisco Melo, and Luis Montesano. Active learning for reward estimation
in inverse reinforcement learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 31-46. Springer, 2009.

Ken IM McKinnon. Convergence of the nelder-mead simplex method to a nonstationary point.
SIAM Journal on Optimization, 9(1):148-158, 1998.

Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions, volume
382. John Wiley & Sons, 2007.

T Michael and I Jordan. Reinforcement learning algorithm for partially observable markov
decision problems. Proceedings of the Advances in Neural Information Processing Systems,
pages 345-352, 1995.

Mathew Monfort and Brian D Ziebart. Intent Prediction and Trajectory Forecasting via
Predictive Inverse Linear-Quadratic Regulation. In AAAI 2015.

Katharina Muelling, Abdeslam Boularias, Betty Mohler, Bernhard Scholkopf, and Jan Peters.
Learning strategies in table tennis using inverse reinforcement learning. Biological cybernetics,
108(5):603-619, 2014.

Sriraam Natarajan, Gautam Kunapuli, Kshitij Judah, Prasad Tadepalli, Kristian Kersting,
and Jude Shavlik. Multi-agent inverse reinforcement learning. In Machine Learning and
Applications (ICMLA), 2010 Ninth International Conference on, pages 395-400. IEEE, 2010.

Ronald C Neath et al. On convergence properties of the monte carlo em algorithm. In Advances
in Modern Statistical Theory and Applications: A Festschrift in Honor of Morris L. Eaton,
pages 43-62. Institute of Mathematical Statistics, 2013.

J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer
Journal, 7(4):308-313, 1965.

Gergely Neu and Csaba Szepesvari. Apprenticeship learning using inverse reinforcement learn-
ing and gradient methods. In UAI pages 295-302, 2007.

Andrew Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In ICML, pages
663-670, 2000.

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Inverse reinforcement learn-
ing with locally consistent reward functions. In Advances in Neural Information Processing
Systems, pages 17471755, 2015.

105

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

RW Obermayer and Frederick A Muckler. On the inverse optimal control problem in manual
control systems, volume 208. NASA, 1965.

Takayuki Osogami and Rudy Raymond. Map matching with inverse reinforcement learning.
In IJCAI pages 2547-2553. AAAIT Press, 2013.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

Deepak Ramachandran. Bayesian inverse reinforcement learning. In IJCAI, pages 25862591,
2007.

Nathan D. Ratliff, J. Andrew Bagnell, and Martin a. Zinkevich. Maximum Margin Planning.
In ICML, pages 729-736, 2006.

Christian Robert and George Casella. Monte Carlo Statistical Methods. Springer-Verlag New
York, 2 edition, 2004.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition, 2003.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive
sciences, 3(6):233-242, 1999.

Masamichi Shimosaka, Kentaro Nishi, Junichi Sato, and Hirokatsu Kataoka. Predicting driving
behavior using inverse reinforcement learning with multiple reward functions towards environ-
mental diversity. In 2015 IEEE Intelligent Vehicles Symposium (IV), pages 567-572. IEEE,
2015.

MTJ Spaan and FS Melo. Interaction-driven Markov games for decentralized multiagent
planning under uncertainty. In AAMAS, pages 525-532, 2008.

Jacob Steinhardt and Serra Street. Adaptivity and Optimism : An Improved Exponentiated
Gradient Algorithm. Journal of Machine Learning Research, 32(2012), 2014.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. In
Advances in neural information processing systems, pages 1449-1456, 2007.

Sebastian Thrun and John J Leonard. Simultaneous localization and mapping. In Handbook
of Robotics, pages 871-889. Springer, 2008.

Aris Valtazanos and S Ramamoorthy. Bayesian interaction shaping: learning to influence
strategic interactions in mixed robotic domains. In AAMAS, pages 6-10, 2013.

Adam Vogel, Deepak Ramachandran, Rakesh Gupta, and Antoine Raux. Improving hybrid
vehicle fuel efficiency using inverse reinforcement learning. In AAAI pages 384-390. AAAI
Press, 2012.

106

[59]

[60]

[61]

[62]

Shaojung Wang, Dale Schuurmans, and Yunxin Zhao. The Latent Maximum Entropy Princi-
ple. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(2):8:1-8:42, 2012.

Brian D Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum
Causal Entropy. PhD thesis, 2010.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In AAAI pages 1433-1438, 2008.

Brian D Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Peterson, J An-
drew Bagnell, Martial Hebert, Anind K Dey, and Siddhartha Srinivasa. Planning-based pre-
diction for pedestrians. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, pages 3931-3936. IEEE, 2009.

107

	Acknowledgments
	Publication List
	List of Figures
	List of Tables
	Introduction
	Motivation: Robots as Learning Agents
	Contributions of this Dissertation
	Dissertation Organization

	Background
	Probabilistic Reasoning over Time
	Markov Decision Processes
	Inverse Reinforcement Learning
	Principle of Maximum Entropy
	Maximum Entropy IRL
	Evaluation of IRL
	Learning transition functions
	Numerical optimization
	Notation and Terminology
	Summary

	Related Work
	Inverse Reinforcement Learning
	Applications of Inverse Reinforcement Learning
	Multiple Interacting Robots
	Learning Transition Probabilities of an External Agent
	Expectation-Maximization with IRL
	Summary and Discussion

	Learning in the Presence of Hidden Variables
	Effects of occlusion
	Simple solution
	Expectation over hidden variables
	Experiments and Results
	Summary

	Learning with Unknown Dynamics
	Transition Model
	Transition Features
	Maximum Entropy Solution
	Estimating a Full Transition Function
	Convex Approximation with Bernstein Polynomials
	Summary

	Learning in the Presence of Multiple Experts
	IRL for Multiple Mobile Robots
	Solving and Approximation
	Multi-Agent Hidden Data EM
	Summary

	Experiments with Penetrating a Robotic Patrol
	Evaluation of mIRL*+Int
	Evaluation of Multi-Agent Hidden Data EM
	Evaluation of mIRL*/T+Int
	Summary

	Conclusions
	Discussion
	Future Work

	Appendix
	Robotic Experiment Details
	Proofs

	References

