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INTRODUCTION 

 

Value-at-Risk (V@R) is a new, simple and yet informative measure of portfolio 

risk.  V@R measures the maximum dollar amount that an investor�s portfolio can lose 

over a period of time with some degree of confidence or probability that the actual 

(ex-post) loss will exceed the V@R.  The V@R framework has quickly become one of 

the most popular and important tools of enterprise financial risk management.1   

This dissertation consists of four chapters.  It primarily explores the impact of 

assumptions about an asset return-generating process on portfolio risk measurement with 

Value-at-Risk.  The major contribution of this study is an identification of potential 

problems and consequences of model misspecification on risk measurement and 

ultimately on the corporate hedging decision.2   In addition, this research investigates the 

characteristics of financial institutions using V@R systems and provides additional 

evidence on the benefits (or drawbacks) of financial risk management techniques and 

corporate hedging strategies.  Because financial institutions as well as their regulators are 

increasingly using V@R risk-measurement tools in setting capital-adequacy 

requirements, an appropriate model specification is of paramount importance. 

This research fits in the literature on corporate hedging and financial risk 

management following Smith, Stulz (JFQA 1985);  Bessembinder (JFQA 1991),  Nance, 

Smith, Smithson (JF 1993),  Froot et al. (JF 1993, JFE 1998);  Tufano (JF 1996);  Mian 

(JFQA 1996);  Minton, Schrand (JFE 1999);  Ahn, Boudoukh, Richardson, Whitelaw (JF 

1999),  and Allayanis and Weston (2001), as well as the literature on asset price 

processes (Fama, 1965;  Merton, 1976a;  Cox and Ross, 1976;  Bollerslev, 1986;  Roll, 

                                                           
1 Smithson (1996a, b), Bodnar et al. (1995), Jorion (2000) 
2 Tufano (1996) says: �Academics know surprisingly little about corporate risk management practices.�  
Brealey and Myers (2000) quote Arnold Sametz (JF, 1964) who commented: �we know very little about 
how the great nonroutine financial decisions are made.�  The question, �What Risks Should a Firm Take?� 
is listed among their Top 10 Unsolved Problems in Finance.  Because less risk is not always better, the 
question remains what is the appropriate (italics in BM2000) level of risk and how to set up a sensible risk 
management strategy.     
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1988), and estimation and model risk (Green and Figlewski, JF 1999;  Britten-Jones, JF 

1999;  and Longin and Solnik, JF 2001, among others).  This normative and positive 

literature is reviewed in CHAPTER ONE. 

CHAPTER TWO investigates the potential adverse consequences of return-

generating model selection (misspecification) on estimated portfolio risk measured within 

the framework of Value-at-Risk.  The standard V@R model is a natural extension of the 

classic portfolio theory of Markowitz (1952, 1959), which assumes that asset returns are 

normally distributed.3   However, as we know from the research of Fama (1965), 

Mandelbrot (1966) and more recently Richardson and Smith (1993), and Peiró (1999) 

among others, asset-return distributions exhibit significant non-normality.  Several 

models have been proposed in order to account for this non-normality of unconditional 

time-series return distributions.  Merton (1976a), Cox and Ross (1976), and Bates (1991) 

propose models of so-called jump-diffusion (JD) asset return-generating processes.  

Quandt and Ramsey (1978) and Roll (1988) propose a mixture of normal distributions 

model for use in economic and finance modeling.  Mixture of normals can be viewed as a 

discrete-time alternative to a continuous-time jump-diffusion process.  These models 

allow for substantial skewness and leptokurtosis of return distributions and are well 

suited for fitting empirical distributions.   

The implications of assumptions about the return-generating model are explored.  

Since the parameters of a posited process are known by definition, it is possible to 

calculate the exact V@R metrics of returns generated by that process.   True V@R can be 

compared to an estimate obtained by assuming (as an applied researcher would) that the 

returns are generated by some other process, such as Geometric-Brownian Motion 

(GBM), an Autoregressive Conditional Heteroscedasticity (ARCH) or its version, an 

Equally-Weighted Moving Average (EWMA) process.  We hypothesize that the model 

misspecification leads to biased (distorted) estimates of V@R risk-measures.   

CHAPTER THREE empirically examines return distributions of various assets, such 

as equities, currencies and commodities.  To fit empirical distributions, the mixture-of-

normals model parameters are estimated using the Method of Moments of Pearson (1894) 

                                                           
3 This assumption about a specific stochastic process � Geometric Brownian Motion � restricts the type of 
admissible preferences (see, e.g., Bick, 1990; He and Leland, 1993; Lo, 1999).  
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and the Maximum Likelihood Method.  The chapter focuses on the comparison of the 

V@R metrics calculated from 1) the mixture-of-normals model, and 2) models employed 

by RiskMetrics�, which assume either GBM, or a form of an ARCH � EWMA process.    

CHAPTER FOUR empirically explores the economic value and benefits of utilizing 

Value-at-Risk systems in enterprise financial risk management.  The Modigliani and 

Miller (1958) theorem and classic portfolio theory of Markowitz (1952, 1959) suggest 

that firms should not engage in risk management, since shareholders can costlessly 

diversify idiosyncratic risks on their own.  However, the existence of market frictions 

provides reasons for corporate-level financial risk management and explains how hedging 

increases shareholder wealth (see Froot, Scharfstein, and Stein, 1993; Smith and Stulz, 

1985; DeMarzo and Duffie, 1995; among others).  Therefore, the corporate decision to 

hedge should have a measurable effect on some firm-value characteristics.  We 

investigate the use of V@R systems by financial institutions and identify benefits (or 

drawbacks) arising from the use of these financial risk management techniques.  Also, 

recent Basel Committee (1997) regulations allow institutions to use their own risk 

management systems in setting regulatory capital requirements.  This study provides 

implications for regulatory policy.   

 

 



 

 

 

 

Chapter I 

FINANCIAL RISK MANAGEMENT AND ASSET RETURN-GENERATING 

MODELS 

 

I.1  Overview  

 

CHAPTER ONE reviews the existing literature on enterprise financial risk 

management, asset return-generating processes, and establishes the main research 

question.  The goal and major contribution is an investigation of potential adverse 

consequences of return-generating model selection on estimated portfolio risk.  The 

Value-at-Risk metric calculated from models assuming leptokurtic returns is compared to 

the V@R metrics calculated from models with constant and Markov variance processes 

(GBM, ARCH/EWMA), which assume that discrete-time returns (over a certain period, 

e.g., one day) are normally distributed.  Users of V@R risk management systems and 

data vendors such as RiskMetrics� now commonly employ GARCH models.  We 

hypothesize that certain model specifications significantly under- or over-estimate 

measures of risk (V@R) if prices follow a process that generates leptokurtic returns.  The 

second section of this chapter discusses a short case describing one of the risk 

management problems facing investors, traders and underwriters. 

This research provides additional insight into the portfolio selection problem.  If 

an asset is added to a portfolio, then under certain conditions, the risk of a (hedged) 

position as measured by V@R may increase despite a decrease in the portfolio�s 

variance.  We investigate the conditions that must be satisfied in order to decrease an 

underwriter�s position risk.  In general, the model risk and parameter estimation errors 

are shown to have a substantial impact on the hedge return distributions.  
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I.2  Enterprise Financial Risk Management 

 

Firms are exposed to various types of risks.  In general, these can be classified 

into business risks (product market, technological innovations), strategic risks (shifts in 

the economy or political environment), and financial risks (market price risk, credit risk, 

liquidity risk, operational risk, and legal risk).4   Enterprise financial risk management 

can be described as a process by which firms identify, measure, manage and control for 

various financial risks.5  Financial risk in general is defined as a measurable possibility of 

a decrease in an asset�s value.  However, one of the difficulties in analyzing corporate 

risk management systems is that the approaches to risk measurement are quite different 

from the standard measures used in asset pricing models.   

Corporations spend enormous resources on risk management systems. According 

to surveys by Smithson (1996a, 1996b), most firms apply modern financial techniques to 

manage some of their exposures to financial risks.  A survey conducted for a group of 

financial institutions known as the Group of Thirty (1993, Global Derivatives Project) 

reports that over 80% of the surveyed corporations considered derivatives important in 

controlling risk.  Moreover, 43% of dealers reported use of some form of V@R and 37% 

of them indicated plans to adopt V@R-based risk management systems.  The 1995 

Wharton/CIBC Wood Gundy Survey of derivatives usage reports that 41% of U.S. non-

financial firms use derivatives, 48% of end-users use stress testing or scenario analysis 

and 35% use Value-at-Risk.6   A survey by the New York University Stern School of 

Business reports that 60% of responding pension funds use Value-at-Risk.7   

From the perspective of modern finance theory, corporate hedging may seem 

puzzling, as shareholders may diversify and hedge risks on their own.  In a Modigliani-

Miller (1958) framework, corporate hedging and other financial decisions cannot create 

value for a firm unless they affect either the firm�s ability to operate its business or its 

incentives to invest in the future.  Violations of assumptions of the MM theorem have led 

to several testable hypotheses about the ways risk management enhances firm value.   

                                                           
4 Jorion (2000, p.15) 
5 Jorion (2000, p.3) 
6 Smithson (1996b), Dowd (1998), p.19 
7 Linsmeier and Pearson (1996, p.2), as reported in Dowd (1998, p.19) 
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The assumptions about frictionless markets are likely to be violated in practice. 

Most investors face transaction costs and may not have equal access to hedging 

instruments.  In addition, investors may have less information about corporate exposures.  

These problems may affect idiosyncratic risks.  However, most investors hold diversified 

portfolios.  Thus, corporate-level hedging is unlikely to reduce the firm�s cost of capital 

significantly.8   If hedging cannot reduce the discount rate, then it must increase expected 

cash flows in order to improve firm values.  The primary venues for value creation by 

corporate hedging are therefore linked to decisions changing tax liabilities, changing 

contracting costs, or changing investment incentives.   

The finance literature identifies several benefits of corporate hedging policies: 

 

1. Hedging can reduce the costs of financial distress and bankruptcy (Mayers and 

Smith, 1982; Smith and Stulz, 1985).   

2. Risk management that lowers earnings volatility will be optimal for shareholders 

if it reduces expected taxes (Smith and Stulz, 1985).  The tax hypothesis assumes 

that firms face a convex tax function.  If effective marginal taxes on corporate 

income are convex functions of a firm�s pre-tax value, then a firm�s after-tax 

value is a concave function of its pretax value.  Hedging that reduces the 

variability of pre-tax values, reduces the expected value of future tax liabilities.  

3. Firms employing risk management systems may select a better capital structure 

(see Harris and Raviv, 1991, for a review).  Increased leverage may decrease the 

agency costs of managerial discretion (Stulz, 1990).  Hedging may reduce over-

investment problems as debt serves as an effective agency cost control device 

(Jensen, 1985).  As Leland (1995) notes, the benefits of risk management may be 

larger when the agency costs are low.   

4. Hedging also prevents a shortfall in funds and thus the under-investment problem 

(Myers, 1977; Bessembinder, 1991), by allowing a firm to avoid costs associated 

with external financing (Froot at al., 1993, 1998).   

5. Without firm-level hedging, it may not be feasible to distinguish between losses 

associated with market exposures and losses due to a negative-NPV project 

                                                           
8 Grinblatt, Titman (1998, p.714) 
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selection.  Hedging can therefore improve executive compensation contracts and 

performance evaluation (DeMarzo and Duffie, 1995).   

6. An active risk management program can improve internal markets and a 

management�s divisional policy.  A central headquarters� ability to allocate 

capital to internal business units will improve if their profit volatility is low 

(Grinblatt, Titman, 1998, p. 723).   

7. Many industries are regulated and some financial institutions have to conform to 

risk-based capital requirements imposed by regulators.  A simple regulatory 

process is characterized in Myers (1972) and discussed in Mayers and Smith 

(1982).  Regulators set or allow prices that reflect expected costs plus a normal 

rate of return.  If regulated firms insure or hedge (mostly) idiosyncratic risks, they 

are able to pass the cost on to consumers.  This is not possible for firms in a non-

regulated industry where prices are set in a competitive marketplace, independent 

of whether the firm insures.  Reduction in risk may also be a less costly 

alternative to raising additional capital after a negative project-return shock (Froot 

and Stein, 1998).   

 

The literature also identifies cases when corporate hedging may lead to a decrease in 

firm value, in addition to the obvious costs of hedging.  Tufano (1998) discusses a 

potential cost of corporate risk management strategies that are based on cash flow 

hedging.  On one hand, these strategies may allow firms to avoid the deadweight costs of 

external financing.  However, in the presence of agency conflicts between managers and 

shareholders, hedging strategies can be used to reduce shareholder wealth since they 

remove the valuable discipline of external financing markets.  For an overview of the 

literature on corporate hedging, see Nance, Smith, Smithson (1993); and Smith (1995).  

Grinblatt and Titman (1998, Chapter 20) also provide a general survey of financial risk 

management and corporate strategy. 

Empirical evidence on corporate hedging practices is somewhat consistent with 

theoretical predictions.   Nance, Smith and Smithson (1993) and Géczy, Minton and 

Schrand (1997) document that firms with greater growth opportunities are more likely to 

hedge.  In particular, firms with relatively higher R&D expenditures and higher M/B 
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ratios are more likely to use derivatives.  Minton and Schrand (1999) show that higher 

cash flow volatility is associated with lower average levels of capital expenditures and 

R&D.  This suggests that firms do not use external capital markets to fully cover cash 

flow shortfalls, but rather to postpone or permanently forgo investment.  Nance, Smith 

and Smithson (1993) find weak evidence that firms with more leveraged capital 

structures hedge more.  These results may, however, reflect the tendency of firms facing 

high costs of distress to have low leverage ratios.  Géczy et al. (1997) report the absence 

of an association between the leverage and the use of derivatives.   

A study by Tufano (1996) documents that managerial incentives have an 

important effect on the risk management practices in the gold mining industry.  The 

results of Mian�s (1996) investigation of 3,022 firms do not provide support for the 

corporate hedging decision models.  Mian�s evidence is inconsistent with financial 

distress cost models and is mixed with respect to contracting cost, capital market 

imperfections and tax-based models. 

Though the evidence gives reasons for corporate hedging and documents that 

firms� hedging policies are consistent with predictions, there is very little evidence that 

risk management increases firm value.  The first study that directly examines the 

relationship between firm value and hedging is Allayanis and Weston (RFS, 2001).9   

They examine the impact of the use of foreign currency derivatives on firm value in a 

sample of 720 U.S. non-financial firms between 1990-1995.  Their results confirm that 

markets put a premium of about 5% of firm value on firms that hedge their exposure to 

exchange rates. 

 

 

 I.3  Value-at-Risk (V@R) 

 

The V@R statistic provides a description of an asset's (or portfolio's) risk-

exposure.  At the core of the V@R estimation is a forecast of the probability distribution 

of possible asset values (or equivalently, asset returns) over a specified time horizon, 

                                                           
9 Nance, Smith and Smithson (1993) do not provide any direct evidence that hedging increases the firm 
value.  Their results suggest only that corporate choice to hedge is consistent with the theoretical 
predictions. 
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usually a few days.   In general, the term Value-at-Risk (V@R) can be used in different 

ways, depending on a particular context: 

 

A.  V@R is most commonly referring to a maximum dollar amount that an investor�s 

portfolio can lose over a period of time with some degree of confidence, or probability, 

that the actual loss will exceed this amount.  One possible specification is : 

 

V@R ( N, x% ) = Vp,t0 * [ exp(π) - 1 ] ,        1.3.1  

where:         ( )∫
∞

=
π

ξ
-

%, xdzzN  , 

and Vp,t0 is the portfolio�s value at time t0 (today), π is a continuously compounded N-day 

return (log price difference) subject to the above condition, and ξ(N, z) is the probability 

distribution function of the asset�s continuously compounded N-day returns.  Alternative 

definitions are possible (e.g., simple return or price-distribution based).  For example, if 

returns were expressed as simple returns, the simple return would replace the bracketed 

term in 1.3.1. 

In other words, the V@R metric represents an absolute dollar loss  (or return) 

corresponding to a prespecified percentile (usually 5% or less) of the left-hand tail of the 

asset�s price (or return) distribution.  For example, managers can quantify risk in a 

following manner: �We don't expect our portfolio to lose more than 7% (or $7M given 

our portfolio's value of $100M) in more than 1 out of the following 50 weeks.�  For 

example, assuming normality of returns, the specific value of V@R metric can be 

estimated as follows:   

  V@R ( N, x% ) =  ax%  σ  N1/2 ,     1.3.2  

 

where x% denotes the confidence level, or the probability that the actual (ex-post) loss 

will exceed estimated V@R; ax% corresponds to the x-th percentile of cumulative 

standard normal distribution Φ, so that Φ(ax%) = x%; σ2 is the asset�s daily return 

variance, and N is the number of days for the V@R metric estimation purposes. 
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B.  The term V@R often means numerical or statistical procedures used to calculate 

V@R metrics and is referred to as V@R estimation procedure.  We can also refer to a 

V@R methodology that includes a set of procedures and assumptions. 

 

C.  The corporate utilization of V@R figures in financial risk management can form a 

basis for a distinctive V@R approach to risk management (VAR-RM).  However, as 

discussed by Basak and Shapiro (2001), this approach may have some negative 

consequences.  Managers may simply decrease the V@R metric at the expense of the 

magnitude of losses when losses occur.  This practice may increase volatility in down 

markets.  

 

Jorion (2001) and Dowd (1998) provide excellent surveys of V@R approaches to 

enterprise risk management, methodologies, estimation procedures, case studies and 

common problems. 

 

 

 I.4  A Motivating Case Study 

 

On May 14, 1997, Goldman Sachs competed for the biggest block trade in 

history.10  The Kuwaiti Investment Office (KIO) was selling a single block of British 

Petroleum shares worth $2 billion.  Goldman Sachs had originally acted as one of the 

underwriters for the British government when it initially sold the state-owned oil 

company.  In the wake of the 1987 market crash, the British government repurchased the 

shares from the underwriters and later resold them to KIO.  In 1997, KIO held 9.3% of 

the oil company and was seeking to sell 3%.  For Goldman Sachs, the firm that invented 

block trading, the operation �was a simple matter.�11  At the time of the offering, shares 

of BP stood at 744 pence.  Partners of Goldman Sachs decided that clients would be 

                                                           
10 Endlich (2000) 
11 Ibid. 
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interested in the shares at 716 pence and decided to bid 710.5 pence per share on all 170 

million shares.  The bid included a profit spread of 75 basis points or about $15 million.12   

There are several risks inherent in similar trades: the price of shares can plummet 

on the information of a large block sale, lack of liquidity, and most importantly 

idiosyncratic and market risks of a fall in prices.  The BP trade was worth 40% of 

Goldman Sachs equity, and a substantial loss on this trade was a real possibility.  As 

former co-head of the Goldman�s equities division explained: �At the end of the day, it is 

about risk tolerance . . .�  Goldman Sachs needed to take into account the tradeoff 

between risk and trading profits.  From the risk management standpoint, the firm was 

considering the worst-case scenarios and the potential for a downside.  One of these 

scenarios was a stock market crash in the time between the purchase from KIO and the 

clients� trade confirmations.  The firm estimated that it could lose about $100 million, 

with potential losses of $50 million being more realistic.  The partners felt that �it would 

be worth losing $25 million . . . in exchange for the elevated profile.� 

The general strategy of Goldman Sachs is not to hedge block trades.  Even in the 

case of the $2 billion sale of BP, they concluded: �There was no good simple hedge 

available.�  A hedge in a form of the sale of a related instrument to reduce the market risk 

was not found suitable.  One person involved in the deal said: �The danger is that the 

placement fails and the markets rally and you increase your risk exposure.�13     

The most important point of this section is the (lack of) hedging strategy 

implemented.   The interesting question relates to the choice of an optimal strategy.  It 

may be possible, that under some conditions (such as estimation and model uncertainty), 

the optimal strategy is not to hedge.  There is a number of imperfectly diversified 

investors that are exposed to large idiosyncratic risks.  The question remains, how to 

manage the exposure and how to quantify the risks inherent in large undiversified 

holdings.  We explore several issues addressing these questions in sections that follow. 

 

 

 

                                                           
12 The Wall Street Journal, May 16, 1997, �Big BP Share Sale Yields Easy $15 Million For Goldman 
Sachs�, via Dow Jones Online News. 
13 Endlich (2000). 



 

 

12 

 I.5  The Objective Function of Hedgers 

 

The obvious answer to the hedging issue of Goldman Sachs is to suggest a short 

sale of another asset positively correlated with BP.  The likely assets with these 

characteristics are shares of another oil company, an equity index, or an oil-related 

commodity.  It may seem natural that any such trade would decrease the risk of Goldman 

Sachs� position.   

From a basic result in investments we know that investors can decrease the 

variance of their portfolios by adding another less-than-perfectly correlated asset.  In 

other words, subject to certain restrictions, the objective function may be to minimize 

portfolio variance: 

σP
 2 = w� Ω w ,       1.6.1 

 

where σP
 2 is the portfolio variance, w is a column vector of weights of the portfolio�s 

component assets, subject to Σi wi = 1, and Ω is a variance-covariance matrix of asset 

returns.  For a two-asset portfolio this relationship becomes:  

 

σP
 2  = w1 

2 σ1 
2  +  (1-w1) 2 σ2 

2 + 2 w1 (1-w1) cov(r1, r2) .  1.6.2 

 

However, in the case of Goldman Sachs, the objective function was different.  

The portfolio selection decision rests on diversification given some total value of an 

investment.  Investors would replace a portion of one asset with another one, rather than 

adding another contract to their original portfolio.  In a block trading or underwriting, it is 

not possible to rebalance the portfolio.  Thus, the underwriter�s objective function is to 

minimize risk given some fixed amount of securities underwritten.   

Moreover, even for investors diversifying a given endowment, the objective 

function expressed by minimization of σP
 2 may lead to a suboptimal decision.  The 

mean-variance framework of Markowitz (1952, 1959) rests on the assumption of joint 

normality of asset returns and investors� quadratic utility functions.  If asset returns 

exhibit jumps or substantially deviate form normality, then portfolio selection based on 
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the mean-variance framework may lead to suboptimal decisions if investors maximize 

their expected utility of future consumption, E[U].14 

The issue of risk measurement is not confined to underwriters.  As Stulz (1999) 

points out, the mainstream approach to capital budgeting focuses exclusively on the 

special case where the firm or investment-specific risks do not affect the contribution of a 

project to the value of the firm.  There are numerous theoretically sound explanations for 

why firms do and should hedge certain risks.15   If returns on firm projects are not 

normally distributed, then certain large investments may increase, rather than decrease 

risk and thus influence firm value (Stulz, 1999).  This is due to the fact that as the value 

of a firm falls, it becomes unable to take advantage of valuable opportunities it could take 

if it did not face equity capital constrains.  Finance theory also suggests that firms in 

financial distress find it difficult to enter into contracts requiring financial commitments 

on the part of the counterparties.16   It follows that a firm with a nontrivial probability of 

financial distress may not be able to invest in projects that it would find valuable if its 

probability of distress were zero.  Each new project may thus impose costs, and firms 

have to take these costs into account by quantifying a project�s risk.  Firms also need to 

understand how a new project impacts the total risk of the firm.  Because the risk that is 

costly is the risk associated with large losses, the appropriate measures of risk are lower-

tail measures of risk such as Value-at-Risk or Cash-flow-at-Risk rather than volatility per 

se (Stulz, 1999, p.10). 

One of the simplest and most intuitive solutions to the risk measurement problem 

of underwriters and investors/firms can be thus examined within the Value-at-Risk 

framework.  The risk measurement problem is addressed later in this chapter and 

examines the potential problems that arise if asset returns exhibit jumps (or equivalently, 

return distributions are skewed and leptokurtic) and traders act as if (conditional or 

unconditional) returns are normally distributed.  

 

 

                                                           
14 See SECTION FIVE for more details.  
15 See SECTION TWO of CHAPTER ONE for a brief review of literature. 
16 This relates to the underinvestment problem of Myers (1977), and the agency theory of Jensen and 
Meckling (1976), and Jensen (1985), among others. 
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 I.6 Return Distributions in Finance Theory  

 

The role of asset return distributions in finance theory has to be addressed.  The 

investor�s portfolio selection or the firm�s project acceptance decision may depend on the 

characteristics of the project return distribution.  Many theoretical models and empirical 

applications in finance assume that log-price differences are normally distributed.17  

However, studies of Mandelbrot, 1963; Fama, 1966; Hagerman, 1978; Richardson and 

Smith, 1993; Harrison, 1998; Campbell, Lo, and MacKinlay, 1998, among others, 

document that assets� price returns exhibit significant non-normality.  Mandelbrot (1997, 

p.253) in his case against the lognormal distribution of prices, points out several 

drawbacks, �each of which suffices to make the lognormal dangerous to use in scientific 

research.�   Peiró (1999) documents skewness in some (least capitalized) markets, though 

his results utilizing the mixture-of-normals, Student�s t distribution, and distribution-free 

methods cannot rule out symmetry in many stock-index and forex return-series he 

examines.   

He and Leland (1993) investigate sufficient and necessary conditions that must be 

satisfied by a general equilibrium asset price process.  The existence of a certain class of 

(power) utility functions implies a skewness preference that is positively valued by 

investors.  Preference for positive skewness may explain the low diversification of many 

investors� portfolios (Simkowitz and Beedles, 1978; Conine and Tamarkin, 1981) and 

�the incorporation of skewness into the investor�s portfolio decision can cause a major 

change in the construction of the optimal portfolio� (Chunhachinda et al., 1997).   

These studies suggest that better estimation and identification of the assets� return 

distributions and measurement of risk may improve decisions of traders, underwriters, 

and other investors in general.  V@R suggests itself as a promising venue to address 

these issues. 

                                                           
17 The normality assumption, or Gaussian hypothesis, is due to Bachelier (1900) and Osborne (1959) and is 
based on the central limit theorem.  If the transaction price changes are independent and identically 
distributed random variables with a finite variance, then the central limit theorem would lead us to believe 
that returns over intervals such as a day, or a week will be normally distributed.  The documented 
autocorrelation of returns may lessen the speed of convergence to the normality.  Some more complex 
processes may even lead to the failure of the central limit theorem (see Feller, 1959). 
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Campbell, Lo and MacKinlay (1997) provide evidence on return moments.  

Sample estimates of skewness for daily U.S. stock returns tend to be negative for stock 

indexes but close to zero or positive for individual stocks. Sample estimates of excess 

kurtosis of daily U.S. stock returns are large and positive for stocks as well as indexes.18  

Early studies of returns modeled this excess kurtosis within a class of stable distributions.  

Paul Lévy (1924) was among the first to investigate stable distributions.19  In order to 

recognize fat-tails of return distributions, applied financial economists explicitly model 

time-varying second moments.  The most important of these studies is the Autoregressive 

Conditional Heteroskedasticity (ARCH) model introduced by Engle (1982).  For an in-

depth overview of ARCH modeling in finance, theory and evidence, see Bollerslev, 

Chou, and Kroner (1992), and Gouriéroux (1997). 

 

 

 I.7  Asset Return-Generating Processes and V@R Estimation 

 

 The methodologies of V@R estimation employed by RiskMetrics� and other 

V@R users mostly assume conditional or unconditional normality of asset returns.  

However, the correctness of this assumption for large portfolios rests on the special 

Lindberg-Feller version of the Central Limit Theorem,20 which posits that sums of 

variables with any distributional properties will converge in distribution to the normal 

distribution, given that no one random variable (asset) dominates.  In practice, cross-

correlations and higher moment dependencies can induce severe departures from 

normality even for large portfolios (e.g., S&P500 index), not to mention distributions of 

single asset or undiversified portfolio returns. 

 Distributional assumptions may severely distort the V@R metrics in some cases.  

The issue is best illustrated by recalling Chebychev�s inequality, which states that for any 

                                                           
18 See Campbell, Lo, MacKinlay (1997, Ch.1) for an introduction to Prices, Returns, and Compounding, 
and early studies of returns and return modeling. 
19 Normal or Gaussian distribution is a special case of a class of stable distributions.  These distributions are 
stable under addition, e.g., a sum of stable random variables is also a stable random variable.  The class is 
also termed stable Pareto-Lévy, stable Paretian, or L-stable. 
20 See Greene (1996).  The general specification requires independence of random Variables.  Extensions 
without the independence assumption require other restrictions (Feller, 1968, 1971). 
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random variable X with finite variance, the probability of falling outside a specified 

interval is: 

 

 P( |X - µ| > rσ )  ≤  1 / r2 ,         1.7.1 

 

where µ, and σ2 are the known mean and variance of random variable X.  The V@R 

methodology is attempting to estimate the value of rσ, given some confidence level or 

probability mass of extreme tails.   If the distribution is symmetrical, then the following 

holds for the left tail:  

 

  P{ (X-µ) < -rσ }  ≤  ½ r2 .         1.7.2 

 

The standard V@R methodologies assume normality of returns and would report 

V@R at the 99% confidence level as: 

 

 V@RNormal = α(99%) σ = 2.3 σ .     1.7.3 

 

However, the inequality 1.7.2 says that an extreme case of distribution would require  

r(99%)  = 7.07.  Thus institutions estimating V@R assuming normality of returns can, at an 

extreme, understate the true loss potential by a factor of 3.03 ( = 7.07/2.3).  This 

correction factor for distributional misspecification has justified the rulings of Basel 

Committee requiring banks to have equity capital equal to 3 times their V@R.21  

 Moreover, V@R estimates will critically depend on the estimated variance of 

asset returns.  If asset returns exhibit jumps and the estimation procedure uses a short 

history of returns, the estimated variance may deviate substantially from the true variance 

and potentially provide misleading V@R risk measures.  See the subsection on jump-

diffusion processes for a formal statement.  What follows is a brief description of the 

most commonly used models of return-generating processes. 

 

                                                           
21 See CHAPTER FOUR for Basel Committee capital adequacy rules for financial institutions. 
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Geometric-Brownian Motion (GBM), Gaussian distributions. 

Many financial applications, including standard V@R methodologies, assume that 

asset prices follow the process: 

 

  dP/P = µ dt + σ dW ,       1.7.4 

 

where µ (drift) and σ2 (variance) are constants and dW is an infinitesimal increment of 

the standard Gauss-Wiener process, and ∆W(τ) ~ N[0, ∆τ], where �~� means �is 

distributed as.�  This model of asset price behavior is also known as Geometric Brownian 

Motion (GBM).  The resulting distribution of prices is lognormal and distribution of 

returns (log-price differences, continuously compounded returns) is Normal (Gaussian).  

The price process can also be written as: 

 

Pτ = P0 exp[ (µ - σ2/2) τ + σ W(τ )]  .    1.7.5 

 

Jump-Diffusion (JD) Asset Return-Generating Process  

The JD model is due to Merton (1973), Cox and Ross (1976), and Bates (1991).  

It can be viewed as a mixture of a diffusion process and a jump process.  The 

specification is intuitively appealing as the asset price dynamics can be written as a 

combination of two types of changes: (a) �normal� smooth vibrations in price due to a 

temporary supply/demand imbalance, changes in capitalization rates, or other marginal 

changes, and (b) �abnormal� instantaneous jumps in price due to arrival of new important 

information about an asset�s value.  It is assumed that the important information arrives 

only at discrete points in time.   

  As Merton (1976) points out, the difference between GBM and JD models is 

particularly important because the qualitative characteristics of the two processes are 

fundamentally different.  It is reasonable to expect that there will be ex-post �active� 

periods and �quiet� periods depending on information arrival, though the active and quiet 

periods are ex-ante random.    
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 If P(τ) denotes asset price at time τ, then the posited price dynamics can be 

represented as: 

 

dP/P = ( µ - λk ) dt + σ dW + dq   ,     1.7.6 

 

where dq=(Y-1)  if a Poisson (news) event occurs, and 0 otherwise; µ is the asset�s 

instantaneous expected return; σ2 is the instantaneous asset variance conditional on a 

no-information arrival; dW is an increment of a standard Gauss-Wiener process, 

∆W(τ) ~ N[0,∆τ]; q(τ) is the Poisson process independent of dW; λ is the mean number of 

arrivals of important new information per unit time; and k ≡ E(Y-1) is the expected 

percentage change (or return, possibly itself a random variable) in the stock price if the 

information (Poisson) event occurs.  

 If µ, λ, k, and σ are constants, then the asset price at time τ can be written as: 

 

P(τ) = P0 ⋅  exp[(µ - σ2/2 - λk) τ + σ W(τ )] ⋅ Y(n)   1.7.7 

 

where Y(n) = 1  if   n=0, and Y(n) = Π(j=1,n) Yj  for n>0, where Yj are independently and 

identically distributed and n is Poisson distributed with parameter λτ .  In the special case 

when { Yj } are themselves log-normally distributed, then the P(τ) will be log-normal 

with the variance parameter a Poisson-distributed random variable.22 

 

 

Autoregressive Conditional Heteroscedasticity (ARCH) models 

A class of autoregressive processes due to Engle (1982) has gained widespread 

acceptance.  Bollerslev (1986) has proposed a generalized version of Engle�s ARCH 

model (GARCH).  Bollerslev, Chou, and Kroner (1992), and Gouriéroux (1997) provide 

an in-depth overview of ARCH modeling in finance theory and evidence.   The stochastic 

process for asset price dynamics can be represented in a manner similar to GBM, except 

that the volatility parameter σ is not a constant.  One possible parameterization, suggested 

                                                           
22 See Merton (1976) and Press (1967) for this specification. 
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by Engle (1982), is to express σ as a linear function of past squared values of the process.  

The most general model is GARCH(p, q): 

 

 Rt = α0 + α1 Rt�1 + εt  

 σt 
2 = β0 + Σ(i=1, p) γi (σt�j)2 + Σ(j=1, q)  βj (εt�j)2 ,   1.7.8 

 

where β0 > 0 and αi ≥ 0 are constants and ε t-i ~ N[0, σt�i] is an innovation on day (t-i).  

The most popular is Engle�s original  ARCH(1) model, which can be obtained from the 

above GARCH(p, q) specification by restricting p and q, GARCH(p=0, q=1).  The 

commonly used GARCH(1,1) model is like an ARCH(∞)  process with decaying weights.  

Also popular is a restricted GARCH(1,1) referred to as an Equally Weighted Moving 

Average (EWMA) process.  It is the model of choice for data vendors such as 

RiskMetrics�.   This process can be represented as follows: 

 

  rt = α0 + εt      ;   εt ~ N[0, σt] 

  σt 
2 = λ * σt-1

2  + (1-λ) * εt-1
 2   ,     1.7.9 

 

where rt is an asset return at time t,  and λ is a decay factor.  One additional simplification 

is frequently made about the drift parameter: α0=0.  Though this assumption leads to 

E[rt]=0 and contradicts the risk-return tradeoff principle, it is commonly made for short 

time periods such as a day or a week.  The estimator of changing volatility depends on a 

parameter λ, (0<λ<1).  RiskMetrics� selects λ=0.96 in its V@R metric estimation.  The 

presumed strength of the EWMA volatility estimator is its ability to respond fast to more 

recent observations and potential changes in volatility.  From the standpoint of Merton 

(1976), this feature is also its major weakness. 

The class of GARCH processes is very popular in applied financial economics.  

However, as Merton (1976, p.339) points out, if the true process follows a general jump-

diffusion process, then the estimated variance per unit time will be affected by the choice 

of the length of estimation period: �... if investors believe that the underlying process for 

the stock does not have jumps, then they may be led to the inference that the parameters 

of the process are not constant when indeed they are.�            
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Suppose that investors observe the price changes over a fixed time period but with 

a large number of observations.  They may be led to believe that they have a very 

accurate estimate for each time period�s variance.  If the true asset return-generating 

process follows the JD process 1.7.6, then conditional on m jumps having occurred 

during the observation period, the returns rt will be normally distributed with variance: 

 

E { [rt -E(rt)] 2 }   =  σ2 + mδ2/T      1.7.10       

     = V2 + δ2 (m-λT)/T   . 

 

If an investor samples returns at high frequencies, then he will believe that the observed 

variance is very close to the true value of the variance rate.  However, if one time period 

were a quiet period (ex-post, e.g., m<λT), then he would conclude that the variance rate 

on the �perceived� process is not constant.  Moreover, there would appear to be an effect 

called regression-to-the-mean, and variance would �fluctuate� around the �long-run� 

average variance, V2. 

 For this reason, it may be necessary to have a long enough past history of asset 

prices to obtain an estimate of true, unconditional variance per unit time of the process, 

e.g., V2 ≡ λδ2 + σ2.   This condition is also violated for ARCH specifications since they 

put more weight on recent data.  

 



 

 

 

 

Chapter II 

ESTIMATION ERRORS AND MODEL SPECIFICATION 

 
�While we can readily describe the process of sharp reversals in confidence, to date economists 

have been unable to anticipate it.  Nevertheless, if episodic recurrences of ruptured confidence are integral 
to the way our economy and our financial markets work now and in the future, the implications for risk 
measurement and risk management are significant.  
 Probability distributions estimated largely, or exclusively, over cycles that do not include periods 
of panic will underestimate the likelihood of extreme price movements because they fail to capture a 
secondary peak associated with extreme negative outcomes.  Furthermore, joint distributions estimated 
over periods that do not include panics will underestimate correlations between asset returns during 
panics.� 
 
 Alan Greenspan (2000, page 110) 
 

 

 II.1  Introduction  

 

CHAPTER TWO examines the consequences of various model specifications and 

estimation errors on correlation coefficient estimates, hedge volatilities, hedge 

distributions, and ultimately the hedging decision.  Finance theory provides numerous 

models guiding the economic agent�s decision making.  One of the models is the 

minimum variance hedge technique.  In practice, parameters have to be estimated and 

assumptions about the return-generating model made.  While there is a large body of 

literature on some aspects of hedge ratios and correlation coefficients, the area of 

estimation errors and model misspecification has not received appropriate attention in the 

academic literature.   

 Parameter and asset-return model uncertainties are shown to have the ability to 

increase rather than decrease the risk of a classic minimum variance hedge (see Hull, 

1996).  The minimum variance hedge may not be optimal, not only in cases of severe 

parameter uncertainty, but also for assets whose returns are highly leptokurtic.  It is also 

shown that model mis-specification may lead to substantial differences in Value-at-Risk 

(V@R) measures.   

21 
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The parameter estimates necessarily rely on a sample of past returns and an 

assumed return-generating model.  The estimated parameters are subject to what in the 

literature is commonly called estimation error and model error (or model risk).  In 

financial applications, parameters of the models must first be estimated.  Black and 

Litterman (1992) report that investors have often encountered unreasonable results when 

they have tried to use quantitative models to help optimize the critical allocation decision.  

The sampling error in estimates of mean-variance efficient portfolio weights was 

estimated by Britten-Jones (JF, 1999).  Using monthly returns on 11 developed countries� 

stock indexes during 1977-1996, he shows that the sampling error in estimates of the 

weights of a global efficient portfolio is large.  For example, the results provide no 

statistical support for the hypothesis that there are benefits to global diversification for a 

U.S. investor (page 666).  Similarly, Best and Grauer (RFS, 1991) document that sample 

efficient portfolios are extremely sensitive to changes in asset means, which are subject to 

large estimation errors.  Clearly, a further examination of the estimation and model errors 

and their potential impact on the optimality of decision makers� actions should be a 

positive net-present value project. 

 

 

II.1.1  Methods and Motivation 

 

There is evidence that volatilities vary over time (French, Schwert, Stambaugh, 

1987; Schwert, 1989, 1990).  This fact led to an ascent of models and methods that 

weight the most recent data more heavily.  The most common estimation procedures use 

GARCH specification (or its variants such as EWMA), or assume that returns are draws 

from a normal distribution (prices follow a Geometric Brownian Motion).  In either case, 

the distribution of returns over subsequent periods is assumed to be Gaussian.    

Because of a presumed time varying nature of many parameters that are not 

directly observable and must be estimated, many practitioners and data vendors use short 

estimation periods.  For example, RiskMetrics� uses an EWMA specification and usually 

the 25 most recent observations (Longerstaey and Spencer, 1996).   However, even if the 

evidence strongly suggest that the variance of returns this year is different from the 
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variance twenty years ago, it is not obvious that the best way to model daily returns is to 

employ a short estimation window and an EWMA specification.  The EWMA processes 

and its effective estimation periods are discussed in the next section.   

Prices and returns may exhibit jumps due to various news events that are 

unrelated to the volatility of returns on no-news days.  Numerous event studies document 

that news is rapidly incorporated into asset prices.  The distributional assumptions as well 

as the length of estimation period create a new source of errors due to the potential model 

misspecification and random character of stock prices.   Small sample properties of 

parameter estimators under various distributional assumptions should be of great interest.  

For models such as GARCH (EWMA), even long estimation periods may yield very noisy 

forecasts since the effective estimation period is rather short due to a greater weighting of 

the most recent observations.  Susmel and Hamilton (1994, page 312) note that the 

forecasting performance of GARCH specifications is rather poor in a sample of the value-

weighted portfolio of stocks traded on the NYSE from July 1962 to December 1987.   If 

their specifications were correct and the parameters were known with certainty, then σt
2 

would be the conditional expectation of squared innovations.  Hence, a mean squared 

error loss function MSE = E [(εt
2 - θt)2 | εt-1, εt-2, �] would be minimized with respect to 

θt by choosing θt = σt
2.   However, they show that the GARCH MSE is larger than the 

MSE under the assumption of constant variance during the period.    

It is informative to examine first the estimation errors under the normality 

assumption when the true returns are indeed draws from a normal distribution.   An 

examination of the impact of a short estimation period will provide answers to two 

related questions.  How large are the standard errors of parameter estimates?   

Alternatively: How short can our estimation period be and still produce �reasonably� 

precise estimates?    

The minimum variance hedge is always optimal for investors with preferences 

governed by a quadratic utility function.  One remaining question relates to the possibility 

that the minimum variance hedge may not be optimal if: 1) there is a severe parameter 

uncertainty; 2) an investor has a strong preference for positive skewness; 3) an investor�s 

utility function declines rapidly below some threshold, and the investor may be interested 
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in the probability that the asset declines below this threshold (e.g., the confidence level of 

the V@R metrics).   

The risk of a minimum-variance hedge is shown to be not unambiguously smaller 

than the risk of an unhedged position.  Moreover, different measures of risk � such as 

portfolio variance and V@R metrics � may lead to contradictory conclusions about the 

change in risk level.   It is shown that if asset returns are normally distributed, only an 

extreme parameter uncertainty and very low absolute levels of return correlation would 

lead to an increase in risk level, no matter what risk measure is used.  However, the same 

conclusions cannot be made for leptokurtic asset return series.       

The impact of model misspecification on V@R measurement is addressed further.  

An alternative model to the commonly assumed GBM model (an assumption of normality 

of returns) is the mixture-of-normals model (Roll, 1988; Quandt and Ramsey, 1978).  The 

mixtures model can be viewed as a discrete time alternative to the jump-diffusion models 

of Merton (1976a, b), Cox and Ross (1976), and Bates (1991).23   The extent and 

magnitude of errors are illustrated on several examples.  It is shown that the normality 

assumption may lead to severe under-reporting of V@R metrics.  Also, back-testing of 

V@R methodologies using higher confidence levels may be highly misleading if the true 

returns are leptokurtic. 

Monte Carlo methods have been used extensively in prior research (e.g., 

Figlewski, 1989).  They are well suited for estimation of small sample properties of 

various estimators, as well as for problems that cannot be solved analytically.  This paper 

follows this line of research and simulation techniques.  The Mathematica� software 

package is used because of its symbolic capabilities and a well-tested random-number 

generator.  

Monte Carlo methods are used to illustrate the impact of short estimation periods 

on parameter estimation (such as correlations, variances and hedge ratios), which directly 

impact other variables of interest, such as the volatility of a hedged position.  

Specifically, I generate between 10,000 and 1,000,000 samples of random vectors.24  

Subsequently, random vectors (generated from the posited �true� distribution � either a 

                                                           
23 See CHAPTER ONE for a further discussion. 
24 The actual number of repetitions (10,000 to 1,000,000) for each Monte Carlo experiment depends on the 
length of generated random vector samples, which range from 10 to 250. 
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normal or a mix-normal) are used to examine the probability densities (PDF) of various 

parameters such as correlation coefficients, volatilities, and V@R metrics.  Distributions 

of hedge returns are contrasted to the distributions of an unhedged asset returns as well as 

to distributions obtained under incorrect return-model specifications.  The parameter 

estimation window ranges from 10 to 250 periods (estimation sample size), which 

corresponds to two weeks to one-year�s worth of daily data.   The errors in Value-at-Risk 

metrics, V@R(N, x%), induced by model errors are illustrated for distributions with an 

increasing magnitude of leptokurtosis and at various confidence levels (90% to 99.9%).    

 

 

 II.1.2  The Effective Estimation Period and the EWMA Processes 

 

A class of Autoregressive Conditionally Heteroscedastic (ARCH) return-

generating processes has gained widespread attention.  CHAPTER ONE, SECTION SEVEN, 

introduces this class of processes as well as a subset of processes called EWMA (Equally 

Weighted Moving Average), also known as an exponential smoothing model.  The general 

feature of these models is that they weight the most recent observations more heavily.  

The models are intuitively appealing because the older returns need not reflect future 

return properties adequately.  This feature is their major strength but also their major 

weakness, because it effectively shortens the estimation period.  The EWMA model has 

been widely applied by numerous Value-at-Risk data vendors, including RiskMetrics�.    

This section examines the effect of EWMA weighting and establishes the notion of 

an effective estimation period.  The results suggest that even very long actual estimation 

window may yield noisy estimates because the effective estimation window is relatively 

short.  From the model given by equation 1.7.9, it is possible to derive a volatility 

estimator of the EWMA process.  Table II.1 provides volatility estimators of EWMA and 

GBM models; where λ denotes the decay parameter, N is the estimation sample size, 

r denotes the mean sample return, and rt is a return on day-t.   
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Table II.1   Volatility Estimators 
EWMA – Exponential weighting GBM – Equally weighted 
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Because of a finite estimation period (with N observations), the EWMA volatility 
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The �decay factor� λ and an estimation period N play an important role in 

effective weighting of observations.  RiskMetrics� methodologies choose decay factors 

0.97 or 0.96 for their V@R estimation procedures, which means that the most recent 

observation has a weight of 3% or 4%, respectively.  With finite estimation periods this 

weight proportionately increases.  Table II.2 illustrates the scope of the problem by 

providing the cumulative weights of the most recent observations, depending on various 

decay factors and estimation period lengths.   For example, an EWMA specification with 

a decay factor λ=0.94 provides volatility estimates whose values are effectively (to more 

than 95%) tied to the 50 most recent observations.  For λ=0.97, the effective estimation 

period is approximately 100 observations.  Thus, even procedures using very long 

estimation periods yield estimates where 95% of the value is determined by the last 50 

(or 100) observations.  Volatility estimates based on EWMA with a decay factor of 0.90 

will effectively depend on the last 25 observations. 

Therefore, there are good reasons to examine short estimation periods whether 

long or short estimation windows are used.   The RiskMetrics� system provides 

volatility and correlation estimates for a large number of financial rates and prices based 

on a weighted average of the last 25 trading days� returns, with the bulk of the weight put 

on the most recent observations (see Longerstaey and Spencer, 1996; and Figlewski, 

1997) 
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Table II.2 Sum of weights of N observations for EWMA process with a decay factor λ 
 
                    Decay Factor 
Length of  
the Estimation period 

λ = 0.94 λ = 0.95 λ = 0.96 λ = 0.97 λ = 0.98 

N  =  10 46.14% 40.12% 33.52% 26.26% 18.29% 
N  =  20 70.99% 64.15% 55.80% 45.62% 33.24% 
N  =  30 84.37% 78.54% 70.61% 59.90% 45.45% 
N  =  40 91.58% 87.15% 80.46% 70.43% 55.43% 
N  =  50 95.47% 92.31% 87.01% 78.19% 63.58% 
N  =  60 97.56% 95.39% 91.36% 83.92% 70.24% 
N  =  70 98.68% 97.24% 94.26% 88.14% 75.69% 
N  =  80 99.29% 98.35% 96.18% 91.26% 80.14% 
N  =  90 99.62% 99.01% 97.46% 93.55% 83.77% 
N  =  100 99.79% 99.41% 98.31% 95.24% 86.74% 
N  =  110 99.89% 99.65% 98.88% 96.49% 89.16% 
N  =  120 99.94% 99.79% 99.25% 97.41% 91.15% 
N  =  130 99.97% 99.87% 99.50% 98.09% 92.77% 
N  =  140 99.98% 99.92% 99.67% 98.59% 94.09% 
N  =  150 99.99% 99.95% 99.78% 98.96% 95.17% 

 
 
Note:  
Decay factor λ = 0.94 means that the most recent observation has a weight of 6% in the EWMA 
volatility estimator, see the EWMA specification given by 1.7.9. 
 
 
 

 

 

 II.2.  The Sample Correlation Coefficient 

  

 The correlation coefficient plays an important role in asset pricing as well as in 

risk management.  The benefits of portfolio diversification depend on the asset 

correlation structure.  Similarly, a hedging decision is based on the contemporaneous 

cross-correlation of asset returns.  Value-at-Risk metrics, which can be viewed as an 

extension of classic portfolio theory, often relies on the knowledge of cross-correlation 

structure.  As important as it is, our knowledge of this structure remains elusive.  One 

reason is that the correlation coefficient is a complex function of asset returns.     

Kendall, Stuart, Ord (1987, page 524) provide an overview of the statistical 

literature on the distribution of the sample correlation coefficient.  The finance literature 

that has previously examined the correlation structure among international stock markets 
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includes Karolyi and Stulz, (JF 1996), Longin and Solnik (JF 2001, 1995), Eun and 

Resnick (JF 1984), and Ramchand and Susmel (JEF 1998).  Campbell and Ammer 

(1993), Keim and Stambaugh (1986), and Kwan (JFE 1996) investigate the correlation 

between stocks and bonds. 

There seems to be a persuasive evidence of time varying volatilities, covariances 

and correlations (French, Schwert, Stambaugh, 1987; Schwert, 1989, 1990; King, 

Sentana, and Wadhwani, 1994; Makridakis and Wheelwright, 1974).  However, the 

power and conclusiveness of these results necessarily rests on the examination of long 

time series.   Many recent studies point out that the correlation between assets increases 

in times of large volatility (e.g., during crises).  King et al. (Econometrica 1994, RFS 

1990) use monthly returns over 1970-1988 period to investigate conditional correlations.  

Early studies fail to find a common world risk factor or correlation.  For example, 

Hilliard (JF, 1979) examines the structure of international equity market indices during 

the world financial crisis caused be OPEC embargo of 1973-1974.  He does not find 

significant comovement in the inter-continental equity index series, though it is possible 

that world markets integration has since changed the underlying structure.25   

However, as Longin and Solnik (2001) point out, the estimates of correlations in 

samples conditional on the size of returns are misleading.  Even if the correlation 

coefficient is constant and linear in returns, the correlation coefficient measured in 

conditional return subsamples is different from the true coefficient.  An obvious 

implication is that conclusions about the changing correlation cannot be based on a 

simple comparison of estimated correlations conditional on different values of one return 

variable.  The distribution of (conditional) correlation coefficient must be specified. In 

addition, the asymptotic errors may substantially overstate the small sample standard 

errors and make the results inconclusive.   

It is not clear that utilizing short periods of high-frequency data to obtain 

estimates is the best alternative.  Practitioners and data providers such as RiskMetrics� 

have widely adopted ARCH/GARCH models of Engle (1982) and Bollerslev (1986) by 

                                                           
25 The intra-continental equity index series such as New York � Toronto or Amsterdam � Frankfurt do have 
significant comovement structure. 
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utilizing short estimation periods such as 25 days (see Longerstaey and Spencer, 1996).   

These estimates are subject to large estimation errors or noise fitting.   

This section extends this line of literature and provides some insight into the small 

sample properties of correlation coefficient under different model specifications and 

compares them to the theoretical asymptotic results under the assumption of normality. 

 

 

 II.2.1  The Distribution of a Sample Correlation Coefficient 

 

 Fisher (1915, 1921) derives the distribution of the sample correlation coefficient 

for normally distributed samples.  The joint probability of n sample values (x1, y1) � (xn, 

yn) from a bivariate normal population with  parameters {µ1, µ2, σ1
2, σ2

2, ρ} is 
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 There exists a transformation of this distribution that utilizes the five parameters 

and the corresponding sample estimates (statistics) of these parameters to express the 

joint distribution of the sample statistics.  It turns out that in normal samples the 

(bivariate) distribution of means is entirely independent of the (trivariate) distribution of 

the variances and correlation coefficient, which is a characteristic property of multivariate 

normality.  The distribution of the sample correlation coefficient r is then obtained by 

integrating with respect to s1 and s2.   Kendall, Stuart and Ord (1987, page 528) provide 

the following specification of the distribution function of the correlation estimate r:  
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where 1 ≥ r ≥ -1.   The result is due to Fisher (1915).  For any ρ, as n→∞, the distribution 

of r tends very slowly to normality, and the density function is increasingly skew as |ρ| 
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increases.  The first moment (mean) and the second central moment (variance) of the 

sample correlation r can be approximated by: 
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In large samples, the distribution of r can be approximated by:  
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However, Kendall, Stuart and Ord (1987, page 338) do not recommend this 

approximation except for very large samples.  Exhibit II.2.1 illustrates the extent of the 

approximation bias in small samples if tests of significance use asymptotic 

approximations given by relation 2.2.4. 

 Fisher (1921) found a remarkable transformation of r, which tends to normality 

much faster than r itself.  The Fisher�s z-variable is defined as: 
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and the recommended test for r uses the approximation for z, which is asymptotically 

normally distributed as  z ~ N [ (1/2) ln{(1+ρ) /(1 �ρ)}, (n-3)-1].   Kendall, Stuart and Ord 

(1987, page 533) and David (1938) note that this approximation seems satisfactory only 

for a relatively small ρ and longer time series n>50.  However, a simulation reveals that a 

z-test would lead to correct inferences at the usual significance levels (e.g., 5%) even in 

very small samples (e.g., 15 to 25 observations).  Note again, that this approximation 

holds for bivariate normal random vectors.  It is shown later, that the approximation 

produces spurious results for a sample correlation coefficient of sample return series 

whose distributions depart substantially from normality.  
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 II.2.2  Correlation: Small Sample Properties vs. Asymptotics; Normal Variates 

 

This section compares the asymptotic and small sample properties of the 

correlation coefficient if the sample series are from a bivariate normal population, as 

defined by expression 2.2.1.   Exhibit II.2.1 provides two plots of true and asymptotic 

standard errors of the estimated correlation coefficient as functions of a sample size.  

Scenarios with two different joint probability density functions with parameters ρ = 0.7 

and 0.9 are considered (Panels A and B).  It is obvious that the asymptotic results given 

by expression 2.2.4 are not satisfactory.  For example, the small sample standard errors 

exceed the asymptotic by a factor of 2 to 5.   

 
Exhibit II.2.1   Exact and Asymptotic Standard Errors of a Sample Correlation Coefficient 
 
Panel A.:  True correlation ρ = 0.7   Panel B.:  True correlation ρ = 0.9 
 
Std. Error of estimated ρ                      Std. Error of estimated ρ   

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

 
       Sample Size     Sample Size 
 
 
Note:  Small sample and asymptotic standard errors of a sample correlation coefficient for random samples 
from a bivariate normal population given by expression 2.2.1.  Correct, small sample standard errors, are 
depicted in BLUE (thin) curve, and were obtained by a Monte Carlo simulation on 10,000 random samples.  
The asymptotic standard errors, RED (thick) curve, are calculated from expression 2.2.4.  
  
 

 

Exhibit II.2.2 depicts PDFs of the sample correlation coefficient if: 1) the returns 

of assets A and B are normally distributed N[0, 1];  2) the true correlation of asset returns  

is corr(rA, rB) = 0; and 3) the estimation window ranges from 5 days to 250 periods (e.g., 

the random vector lengths are n=5 in Panel A., n=10 (25, 250) in Panel B. (Panels C., D.).   
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Exhibit II.2.2   Probability distribution of a sample correlation ρ� , if true ρρρρ=0.  Normal variates. 
     
Panel A.:  estimation period: n=5;  ρ=0  Panel B.:  n=10;  ρ=0 

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Exhibit , Panel A, PDF of correlation coef .

 -1 -0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

Exhibit , Panel B, PDF of correlation coef .

 
 
Panel C.:  n=25;  ρ=0    Panel D.:  n=250;  ρ=0 

-1 -0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

Exhibit , Panel C, PDF of correlation coef .

 -0.4 -0.2 0 0.2 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

Exhibit , Panel D, PDF of correlation coef .

 
 
Note:  Each bar is 0.05 wide (0.02 wide for Panel D) and represents the probability that a correlation 
coefficient estimate will be from a respective interval.  Some representative probabilities that the correlation 
coefficient estimate falls into interval Int.   
 
 Prob ( ρ�  ∈∈∈∈  Int): 

            Interval 
Size 

0.0, 0.2 0.2, 0.4 0.4, 0.6 0.6, 0.8 0.6, 1.0 

N=5 12.7% 12.1% 11.0% 9.0% 5.2% 
N=10 21.0% 16.4% 9.2% 3.1% 0.3% 
N=25 33% 14.5% 2.3% - - 
N=250 50% <0.01% - - - 

Note:  Because of symmetry about zero, the probabilities for negative values are not reported. 
 
 
 

Exhibit II.2.3 shows PDF of the sample correlation coefficient if: 1) the returns of 

assets A and B are normally distributed:  rA ~ rB ~ N[0,1];  2) the true correlation of asset 

returns  is corr(rA, rB) = 0.7; and 3) the estimation window is 10 days to 250 periods (e.g., 

the random vector lengths are n=10 in Panel A., n=25 (100, 250) in Panel B. (Panel C., 

D.).   Sampling reveals a substantial skewness in the distribution of the sample 

correlation coefficients. However, the skewness seems important (in terms of hypothesis 

testing and confidence bound deviations) only in small samples or for extremely large 

correlation coefficients. 
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Exhibit II.2.3   The Probability Distribution of a Sample Correlation Coefficient ρ� , true ρρρρ = 0.7 
 
Panel A.: n=10;  ρ=0.7    Panel B.:  n=25;  ρ=0.7 

  -1 -0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Exhibit , Panel A, PDF of correlation coef .

   -1 -0.5 0 0.5 1
0

0.05

0.1

0.15

Exhibit , Panel B, PDF of correlation coef .

  
 
Panel C.:  n=100;  ρ=0.7    Panel D.:   n=250;  ρ=0.7 

0 0.2 0.4 0.6 0.8 1
0

0.025

0.05

0.075

0.1

0.125

0.15

Exhibit , Panel C, PDF of correlation coef .

 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
Exhibit , Panel D, PDF of correlation coef .

 
 
 
Note:  Each bar in Panels A., B. is 0.05 wide (0.02 in Panels C., and D.) and represents the probability that 
the correlation coefficient estimate will be from the corresponding interval.  Number of sampling repetitions: 
200,000;  100,000;  30,000; and 10,000 for Panels A., B., C., and D. respectively.    
Some representative probabilities that the correlation coefficient estimate falls into interval Int.   
 
 Prob ( ρ�  ∈∈∈∈  Int): 

Int 
Size 

<0.0 0.0, 0.2 0.2, 0.4 0.4, 0.6 0.6, 0.8 0.8, 1.0 

N=10 0.8% 1.9% 6.2% 18% 42.8% 30.3% 
N=25 - <0.1% 1.4% 16.9% 66.1% 15.4% 
N=100 - - - 3.9% 94.6% 1.5% 
N=250 - - - 0.3% 99.7% - 

  
 
  

 

Exhibit II.2.4 shows standard errors of the sample correlation coefficient if: 1) 

asset returns are normally distributed:  rA ~ rB ~ N[0,1];  2) the true return correlation  is 

corr(rA, rB) = 0.7;  and  3) the estimation sample is 10 (or 25) observation (e.g., the 

random vector lengths are n=10 in Panel A., and n=25 in Panel B.) 

The results given in Exhibits II.2.2 � II.2.4 provide a strong case for the use of 

small sample results and alternative robust return-generating models in tests of 

hypotheses.  Moreover, the potential estimation errors may lead to errors in some other 



 

 

34 

variables of interest such as optimal hedge ratios.   For example, an estimate of a 

correlation coefficient obtained from a sample of 25 bivariate-normal returns has only a 

66.1% chance to take on a value in the (0.6, 0.8) interval, if the true correlation is 0.7.    

 
 
Exhibit II.2.4   Standard Errors of a Sample Correlation Coefficient ρ� , Bivariate-Normal Returns. 
 
Panel A.: n=10      Panel B.:  n=25   

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4
Std.error of rho as fHrhoL, n=10, BiNormals

 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4
Std.error of rho as fHrhoL, n=25, BiNormals

  
         ρ      ρ 
 
Note:  Standard Errors of a sample Correlation Coefficient for random samples from a bivariate normal 
population given by expression 2.2.1.  Estimates obtained by Monte Carlo analysis of 40,000 random 
samples.  
 
Standard Errors of sample ρ�  as f(ρρρρ, size) : 
 
                           ρ�  
sample size 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 
N=10 

 
0.33 

 
0.33 

 
0.32 

 
0.31 

 
0.29 

 
0.27 

 
0.24 

 
0.20 

 
0.15 

 
0.083 

 
N=25 

 
0.20 

 
0.20 

 
0.20 

 
0.19 

 
0.17 

 
0.16 

 
0.14 

 
0.11 

 
0.082 

 
0.043 

 
N=100 

 
0.10 

 
0.099 

 
0.097 

 
0.093 

 
0.083 

 
0.075 

 
0.064 

 
0.050 

 
0.036 

 
0.019 

  
 
 

 

II.2.3  The Sample Correlation Coefficient: Non-Normal Returns 

 

The previous section examined the properties of the sample correlation coefficient 

if a return sample is from a bivariate normal distribution.  However, as reviewed in 

CHAPTER ONE, financial asset returns exhibit substantial non-normalities.  Tests of time-

varying correlation and autocorrelation commonly assume normality.  The numerical 

examples below illustrate the scope of potential errors and suggest that great care should 

be exercised in hypothesis testing (see exhibit II.2.5).  One recommendation is to fit non- 
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normal distribution to the sample returns, and investigate the properties of the sample 

correlation of returns from the fitted distributions. 

One alternative to the normality assumption is, as before, to assume that each 

return series in a sample of two asset returns is generated by a process containing 

occasional jumps (�news events�), producing a return distribution that is a mixture of two 

normal distributions (as defined by expressions 3.2.1 and 3.2.2).  Panels A1 and A2 of the 

Exhibit II.2.5 illustrate the extent of an increase in standard errors of the sample 

correlation coefficient if asset returns are leptokurtic.  Note that the normality case is 

represented by the point with the leptokurtosis parameter equal to σ1=1.  Panels B1 and 

B2 of the Exhibit II.2.5 provide the distribution of the sample correlation coefficient for 

return distributions with parameters µ1 = µ2 = 0, σ1 = 5, σ2 = 1, the mixing parameter 

w = 0.1 (news frequency), and the cross-correlation parameter ρ12 = 0.7.26   The standard 

error of the sample correlation is SEMix-Normal[ρ] = 0.19, which exceeds substantially the 

standard error of the sample correlation if a sample is from a bivariate normal distribution 

(SENormal[ρ]=0.11).  Tests of time-varying correlations may provide spurious results and 

over-reject the null hypothesis of constant correlation if the investigated sample return 

distributions are leptokurtic. 

 

 

II.3  Hedge Ratios, Hedge Volatility, and Hedge Return Distributions 

 

The finance literature examining the hedge ratios and optimal hedging with 

futures is extensive and includes work of Sercu and Wu (2000), Hilliard (1994), Kroner 

and Sultan (1993), Cecchetti, Cumby, Figlewski (1988), Stulz (1984), Anderson and 

Danthine (1981), Ward and Fletcher (1971), Stein (1961), Johnson (1960), Telser (1955), 

among others.27   However, the academic literature has paid little attention to the impact 

of estimation risk and model errors.  

                                                           
26 The expected sample correlation is also 0.7.  Note that due to the way the correlated vector are simulated, 
the second return vector is a linear combination of the mix-normal with the posited parameters.  
E.g., rA ~ (0.1) N[0, 5] +  (0.9) N[0, 1],  and  rB ~  rA ρ  +  rA,2 √(1-ρ2) , where rA,2 ~ rA , and  rA ⊥  rA,2 .   
27 See also Hull (1997, page 35).   
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Exhibit II.2.5   Sample Correlation Coefficient Standard Errors and Distributions 
 
PDFs of ρ� as a function of asset kurtosis; Normal vs. Mix-Normal returns 
Panel A1.:  Mix-Normal Variates, ρ=0.7, n=25.  Panel A2.:  Mix-Normal Variates, ρ=0.7, n=100. 
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0.4
Std.Error of rho as fHkurtosisL, n=25, rho=0.7

 2 4 6 8 10

0.05

0.1

0.15

0.2
Std.Error of rho as fHkurtosisL, n=100, rho=0.7

 
  Kurtosis (jump size, σ1)      Kurtosis (jump size, σ1)   
 
 
 
PDFs of a sample correlation coefficient ρ� ; Normal vs. Mix-Normal returns 
Panel B1.:  Normal Variates, ρ=0.7, n=25.   Panel B2.:  Mix-Normal Variates, ρ=0.7, n=25. 
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PDF correlation; Normal returns; rho=0.7; n=25
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0.1

PDF correlation ; MIX-Normal returns; rho=0.7, n=25

 
  Correlation Coefficient      Correlation Coefficient   
 
Notes:   
Sample size is n=25 observations, corresponding to about 1 month of daily data, or “effective” estimation 
period of EWMA processes as discussed in SECTION II.1.2. 
 
Panels A:  The sample random vectors rA and rB are from a mixture of normal distributions as defined by  

 expressions 3.2.1  and 3.2.2.  Sample vectors are distributed as follows:  
 rA ~ (0.1) N[0, s1] + (0.9) N[0, 1],  and  rB ~  rA ρ  +  rA,2 √(1-ρ2) , where rA,2 ~ rA , and      
 rA ⊥  rA,2.  Corr[rA, rB] = ρ = 0.7.  

 
Panel B1:  The sample is from a bivariate normal population defined by expression 2.2.1 with   
        parameters:   µ1 = µ2 = 0, σ1 = σ2 = 1, ρ12 = 0.7.  
 
Panel B2:  The sample random vectors rA and rB are from a mixture of normal distributions as defined by  

 expressions 3.2.1  and 3.2.2. rA ~  (0.1) N[0, 5] + (0.9) N[0, 1].  rB ~  rA,1 ρ  +  rA,2 √(1-ρ2) .      
 rA,1 ⊥  rA,2.  Corr[rA, rB] = 0.7.  

 
 
  
 
 



 

 

37 

  This section introduces the hedging problem in general.  Portfolio managers often 

hedge their underlying positions.28   One common approach is to hedge with futures on 

other assets.  The optimal hedge ratio is usually derived under assumptions of quadratic 

utility function and uses the minimum variance criterion.29 

The hedge ratio �h� is the ratio of the value of the position taken in futures 

contracts to the value of the hedged asset.30  The optimal hedge ratio will depend on the 

volatilities of the hedged asset and futures, as well as their correlation.  The objective is 

to minimize the variance of the hedged position. 

Let�s assume that a long position in an asset �A� is hedged with an asset �B� 

(e.g., short position in a futures contract).  Then the change in the portfolio value is:  

 

∆Π = ∆SA � h (∆SB)   ,      2.3.1 

 

where h is the hedge ratio, and ∆SA and ∆SB are changes in the spot prices of assets A and 

B over time period ∆t.  The variance of the change in value of the hedged position is: 

 

ρσσσσ BABA hhVarianceV 2)( 222 −+=∆Π≡  ,   2.3.2 

 

where ρ = Corr(∆SA, ∆SB); σA is the standard deviation of ∆SA; σB is the standard 

deviation and ∆SB.  The minimum variance hedge is then determined by the hedge ratio 

parameter �h� that minimizes variance �V�.  

 

022 2 =−=∂ BABh hV σσσ       2.3.3 

 

                                                           
28 The underwriters of securities and block-traders may serve as an example.  CHAPTER ONE introduced a 
case of Goldman Sachs block-trading. 
29 The classic mean-variance portfolio theory of Markowitz (1952, 1959) and CAPM of Sharpe, Lintner, 
Mossin, Black are also based on the assumption that investors care only about the mean and variance of 
their portfolios, thus restricting the class of acceptable utility functions.  The restriction implicitly 
constrains the allowable set of the return generating processes (for further discussion see Bick, 1990; He 
and Leland, 1993; Lo, 1999). 
30 The term �hedging� refers to actions designed to decrease or completely eliminate risk.  These actions 
usually involve taking positions in futures or options that tend to offset increases or decreases in prices of 
the hedged asset. 
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Solving equation 2.3.3 for h gives the optimal hedge ratio:  

 

ρ
σ
σ

B

Ah =           2.3.4 

 

However, because of the random character of stock prices, one really obtains only 

an estimate of the optimal hedge ratio:  
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Ah =         2.3.5 

 

and thus the true variance of the hedged position is: 
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The hedger could be led to believe that the position has a variance: 

 

)1( 22
min, ρσ −= APositionV ,      2.3.7 

 

which is only the lower bound variance, and is attainable only if the true parameters are 

known. 

 The question of interest relates to the variance of hedged position returns and how 

it differs from the variance of an unhedged portfolio and the minimum variance in 

expression 2.3.7.   The next section illustrates magnitude of the estimation and model 

misspecification errors.   
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 II.3.1  Bivariate Normal Returns 

 

Finance theory in general as well as the minimum variance hedge rule provides 

unambiguous advice to the decision makers.  They need to take certain actions suggested 

by the theory in order to maximize their objective function.  However, the models� 

parameters create another source of uncertainty.  This section examines the small sample 

properties of the volatility of the hedged portfolio when the true return distribution is 

normal.   

Exhibit II.3.1 shows the PDF of the hedge ratio if: 1) the returns of assets A and B 

are normally distributed:  rA ~ rB ~ N[0,1];  2) the true correlation of asset returns  is 

corr(rA, rB) = 0.7, and thus the correct hedge ratio h = 0.7; and 3) the estimation period is 

10, 25, and 100 days or periods (Panels A, B and C).31   The uncertainty about the true 

minimum variance hedge ratio leads to a higher average hedge volatility.  The deviations 

do not seem to be trivial. 
 
Exhibit II.3.1   
The Probability Distribution of an optimal Hedge Ratio estimate; E[ρρρρ] = 0.7, the optimal h=0.7. 
 
Panel A.:  n=10     Panel B.:  n=25 
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Exhibit , Panel A, PDF of hedge ratio estim .
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Exhibit , Panel B, PDF of hedge ratio estim .

 
 
Note:  Each bar in Panel A., and Panel B. is 0.05 wide (0.02 wide in Panel C.) and represents the probability 
that the hedge ratio estimate will be from the corresponding interval.  Number of repetitions used in 
sampling: 100,000 (Panels A., and B.) and 40,000 (Panel C.).  Some representative probabilities that the 
estimated hedge ratio falls into interval Int, given the estimation period N=10 (or 25, 100). 
 
Prob ( h� ∈∈∈∈  Int): 

Int <0.2 0.2, 0.4 0.4, 0.6 0.6, 0.8 0.8, 1.0 1.0, 1.2 >1.2 
N=10 3.2% 8.7% 22.2% 31.7% 22.2% 8.7% 3.2% 
N=25 0.1% 2.4% 22.4% 50.4% 22.4% 2.4% 0.1% 
N=100 - - 8.2% 83.7% 8.2% - - 

  
 

                                                           
31 E.g., the simulated bivariate normal random samples contain 10, 25 and 100 returns.  
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The most important question, of course, relates to the distribution of volatilities of 

the hedged position given imperfect parameter estimates that are due to the random 

character of prices and possible model errors.   Exhibit II.3.2 shows the PDF of standard 

deviations of the hedge portfolio under the following assumptions: 

 

Panel A:  1)  returns of assets A and B are normally distributed:  rA ~ rB ~ N[0, σ=1] 

2)  corr(rA, rB) = 0.5 

3)  the estimation sample n=10.   

Panel B:  1)  returns of assets A and B are normally distributed:  rA ~ rB ~ N[0, σ=1] 

2)  corr(rA, rB) = 0.5 

3)  the estimation sample n=25.   

Panel C:  1)  returns of assets A and B are normally distributed:  rA ~ rB ~ N[0, σ=1] 

2)  corr(rA, rB) = 0.7 

3)  the estimation sample n=10.   

Panel D:  1)  returns of assets A and B are normally distributed:  rA ~ rB ~ N[0, σ=1] 

2)  corr(rA, rB) = 0.7 

3)  the estimation sample n=25.   

Panel E:  1)  returns of assets A and B are normally distributed:  rA ~ rB ~ N[0, σ=1] 

2)  corr(rA, rB) = 0.9 

3)  the estimation sample n=10.   

Panel F:  1)  returns of assets A and B are normally distributed:  rA ~ rB ~ N[0, σ=1] 

2)  corr(rA, rB) = 0.9 

3)  the estimation sample n=25.   

 

Note that the lower bound of the hedge volatility is given by equation 2.3.7.  For 

the examples in Exhibit II.3.2 with parameters σA = 1, and ρ=0.7  (Panels A.-D.),  and 

ρ=0.9  (Panels E.-F.) this translates into the optimal (minimum) hedge volatility equal to: 

866.05.01*11 22
5.0,min, =−=−== ρσρ APortfolioStdDev  ;  

714.07.0,min, ==ρPortfolioStdDev  ;  436.09.0,min, ==ρPortfolioStdDev . 
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Exhibit II.3.2  PDF of Hedge Volatilities if ρρρρ = 0.5; 0.7, or 0.9;  Bivariate-Normal returns. 
 
Panel A.:       Panel B.: 
n=10, ρ=0.5, σA=1, σF=1, E[σP]=0.92    n=25, ρ=0.5, σA=1, σF=1, E[σP]=0.88 
 
pdf(σP)          pdf(σP) 

0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

 
Hedge Volatility     Hedge Volatility 

 
Panel C.:       Panel D.: 
n=10, ρ=0.7, σA=1, σF=1, E[σP]=0.76  n=25, ρ=0.7, σA=1, σF=1, E[σP]=0.73 
 
pdf(σP)          pdf(σP) 

0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.05

0.1

0.15

0.2

0.25

 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

 
Hedge Volatility     Hedge Volatility 

 
Panel E.:       Panel F.: 
n=10, ρ=0.9, σA=1, σF=1, E[σP]=0.46    n=25, ρ=0.9, σA=1, σF=1, E[σP]=0.45 
 
pdf(σP)          pdf(σP) 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

 
Hedge Volatility     Hedge Volatility 

 
Note:  Each bar in Panels A.- F., is 0.02 wide and represents a probability that the volatility (Standard 
Deviation) of a hedged position will be from the corresponding interval.   Number of repetitions used in 
sampling: 100,000 (all Panels).  Some representative probabilities that the estimated volatility is from interval 
Int, given an estimation period N=10 (or 25, 100).    
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Exhibit II.3.2  continued 
 
 
Probability (σσσσhedged portfolio ∈∈∈∈ Int):    
 
σσσσhedged portfolio 

Interval 
 

< 0.5 
 

0.5, 0.6 
 

0.6, 0.7 
 

0.7, 0.8 
 

0.8, 0.9 
 

0.9, 1.0 
 

> 1.0 
 

Min 
 

Mean 

Panel A: 
σA=1, σF=1, ρ=0.5, N=10 

 
- 

 
- 

 
- 

 
- 

 
58.1% 

 
30.2% 

 
11.7% 

 
0.866 

 
0.92 

Panel B:  
σA=1, σF=1, ρ=0.5, N=25 

 
- 

 
- 

 
- 

 
- 

 
82.2% 

 
16.8% 

 
<0.1% 

 
0.866 

 
0.88 

Panel C:   
σA=1, σF=1, ρ=0.7, N=10 

 
- 

 
- 

 
- 

 
83.6% 

 
11.7% 

 
3.0% 

 
<0.1% 

 
0.714 

 
0.76 

Panel D:   
σA=1, σF=1, ρ=0.7, N=25 

 
- 

 
- 

 
- 

 
97.9% 

 
2.0% 

 
<0.1% 

 
0 

 
0.714 

 
0.73 

Panel E:   
σA=1, σF=1, ρ=0.9, N=10 

 
87.4% 

 
10.6% 

 
1.5% 

 
<0.1% 

 
0 

 
0 

 
0 

 
0.436 

 
0.46 

Panel F:  
σA=1, σF=1, ρ=0.9, N=25 

 
98.9% 

 
1.0% 

 
<0.1% 

 
0 

 
0 

 
0 

 
0 

 
0.436 

 
0.45 

 
Note:  The above probabilities are estimates themselves, but their relative errors are quite small. For 
example, for the probability of about 0.1%: the relative standard error of this value is about 10% of the value 
– e.g., the 95% confidence bound is 0.08% to 0.12% (based on a binomial distribution and its normal 
approximation).  The relative standard error is about 3% of the probability value if the estimated interval 
probability is about 1% (e.g., the confidence bounds are 0.94% –1.06%.  The relative standard error is 0.3% 
if the estimated interval probability is about 50% (e.g., the confidence bounds are 49.4% to 50.6%). 
 

 

 

 

As can be seen from Exhibit II.2.3, taking into account the parameter uncertainty 

does not lead to an extreme departure of the hedge volatilities from the minimum 

variance hedge volatility.  Thus under the assumption of normality, the hedge volatility is 

generally smaller than volatility of an unhedged asset even for relatively short estimation 

periods and small correlation coefficient.  

Exhibit II.3.3 compares the distributions of unhedged asset returns to the hedge 

returns under parameter uncertainty and normality of returns.  Results reveal that it would 

take extreme parameter uncertainty (estimation period of less than 10 days) or extremely 

low levels of asset correlation (ρ < 0.3) to make the hedge volatility larger than the 

volatility of an unhedged position.  The hedge return distribution has several noteworthy 

features. First, it is leptokurtic, because the distribution of hedge ratios is highly skewed 

to the right.  Second, it is a mixture of normals, because hedge returns are normal for 

each value of the hedge ratio, e.g., if rA ~ rF ~ N[µ, σ], then from rH = rA + h rF follows 
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that rH|(hedge ratio h) ~ N[m, s].   Even though the distribution is leptokurtic, the 

deviations from normality are minor and tend to disappear with longer estimation 

periods. 

 
 
 
Exhibit II.3.3   PDF of Hedge Returns under parameter uncertainty.  Normal Returns. 
 
Panel A.:       Panel B.: 
n=5, ρ=0.3, σA=1, σF=1; σH=1.16, k H=3.6     n=10, ρ=0.3, σA=1, σF=1; σH= 1.02,  k H=0.15 
 

-4 -2 2 4

0.1

0.2

0.3

0.4
PDF of Hedge HboldL vs. unhedged, rho=0.3, n=5

 -4 -2 2 4

0.1

0.2

0.3

0.4
PDF of Hedge vs. unhedged, r=0.3, n=10, Normal

 
 
 
 
Panel C.:       Panel D.: 
n=25, ρ=0.7, σA=1, σF=1; σH=0.73, k H=0.01    n=100, ρ=0.9, σA=1, σF=1; σH= 0.43, k H<0.01   
 

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

PDF of Hedge vs. unhedged, r=0.7, n=25, Normals

 -4 -2 2 4

0.2

0.4

0.6

0.8

PDF of Hedge vs. unhedged, r=0.9, n=100, Normals

 
 
Note: 
  
RED (bold) curve is a PDF of the hedge portfolio returns that incorporates parameter uncertainty. 
BLUE (thin) curve is a PDF of unhedged asset returns.  σH denotes the standard deviation of the hedge 
portfolio that takes into account the estimation error (the distribution of hedge ratio parameter), given the 
stated estimation and distributional parameters.  k H denotes the excess kurtosis of the hedge portfolio given 
the stated estimation parameters. 
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II.3.2  Non-Normal Asset Returns 

 

This section investigates the impact of non-normal returns on the volatility of the 

hedge.  Assume that returns are generate by the following Mixture of Normals process: 

 

 σA,1 εA,1      in state X with probability �w� 
rA  =  { 

σA,2 εA,2   in state Y with probability �1-w�   
and            2.3.8 

 σF,1 εF,1   in state X with probability �w� 
rF  =  { 

σF,2 εF,2  in state Y with probability �1-w�  , 
 

where ε ~ N[0,1] ;  corr[ rA|X, rF|X] = ρ;  and corr[ rA|Y, rF|Y] = ρ.   This model has been 

applied by Roll (1988) and Quandt and Ramsey (1978) and is also discussed in CHAPTER 

THREE, SECTION TWO.  To generate a sample of correlated vectors for the simulation 

purposes, the Cholesky decomposition is commonly used.32   

The return specification 2.3.8 can be viewed as a switching regime model, where 

returns are generated either from the distribution X (e.g., �no news� state of the world) or 

from the distribution Y (e.g., a state of firm-or-economy-wide news events).  The model 

allows for substantial skewness and leptokurtosis in returns.   

Exhibit II.3.4 contrasts the distributions of hedge volatilities for normal and mix-

normal return distributions under the following assumptions: 

 

 

Panel A1:  (1)  returns of assets A and B are normal:  rA ~ rB ~ N[0, σ=3.3] 

(2)  corr(rA, rB) = 0.7 ;  

(3)  estimation sample is n=25.   

 

 

                                                           
32 A sample of two independent random vectors Y={Y1, Y2} is generated first: Y1 ~ N[0, σ1], and 
Y2 ~ N[0, σ2].   In the next step, a new set of vectors Z={Z1, Z2} is calculated as a linear combination of Y1 
and Y2 in order to induce cross-correlation ρ.  Z1 = Y1; Z2 = Y1 ρ + Y2 √(1-ρ2).  This rotation ensures that 
corr[Z1, Z2] = ρ.  
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Panel A2:  (1)  returns of assets A and B are from a mixture of normal distributions:   

rA,mix ~ {10% N[0, 10] + 90% N[0, σ=1]};  

rB,mix ~ ρ rA,mix ⊕  √(1-ρ2) rA,mix, new ; 

(2)  ρ = corr(rA, rB) = 0.7 ;     

(3)  the estimation sample n=25.   

Panel B1:  (1)  returns of assets A and B are normal:  rA ~ rB ~ N[0, σ=3.3];   

(2)  corr(rA, rB) = 0.5 ;    

(3)  the estimation sample n=15.   

Panel B2:  (1)  returns of assets A and B are from a mixture of normal distributions:   

rA,mix ~ {10% N[0, 10] + 90% N[0, σ=1]};  

rB,mix ~ ρ rA,mix ⊕  √(1-ρ2) rA,mix, new ; 

(2)  corr(rA, rB) = 0.5 ;   

(3)  the estimation sample n=15.   

Panel C1:  (1)  returns of assets A and B are normal:  rA ~ rB ~ N[0, σ=1.84];   

(2)  corr(rA, rB) = 0.5 ;  (3)  estimation sample n=15.   

Panel C2:  (1)  returns of assets A and B are from a mixture of normal distributions:   

rA,mix ~ {10% N[0, 5] + 90% N[0, σ=1]};  

rB,mix ~ ρ rA,mix ⊕  √(1-ρ2) rA,mix, new ; 

(2)  ρ = corr(rA, rB) = 0.5 ;    

(3)  the estimation sample n=15.   

 
 

Note that comparisons of hedge volatility distributions under normality vs. non-

normality are consistent � e.g., the individual asset volatilities are the same under both 

normal and non-normal scenarios.   

For example, the true asset volatility is: σ = [(0.1) 100 + (0.9) 1]1/2 = 3.3 and true 

cross-correlation ρ = corr(rA, rB) = 0.7 for Panels A1 and A2 of this exhibit.  It is apparent 

that asset return leptokurtosis increases the ex-ante dispersion of the proposed hedge 

volatilities and the model misspecification may lead to a non-negligible increase rather 

than decrease in the hedged position volatility.  



 

 

46 

 
Exhibit II.3.4   
 
Probability Distributions of Hedge Volatilities; Normal versus Mixture-of-Normal Returns 
 
Panel A1:       Panel A2:   
Normals, σ=3.3, ρ=0.7, n=25      MixNormals, w=10%, σ1=10, σ2=1, ρ= 0.7, n=25 
 

2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

PDF of hedge volat , n=25, s=3.3, NORMALS

 2 2.5 3 3.5 4
0

0.05

0.1

0.15

PDF of hedge volat , n=25, s1=10, r=0.7, MIX-normals

 
 
 
Panel B1:       Panel B2:   
Normals, σ=3.3, ρ=0.5, n=15      MixNormals, w=10%, σ1=10, σ2=1, ρ= 0.5, n=15 
 

2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

PDF of hedge volat , n=15, s=3.3, r=0.5, NORMALS

 3 4 5 6
0

0.025

0.05

0.075

0.1

0.125

0.15

PDF of hedge volat, n=15, s1=10, r=0.5, MIX-normals

 
 
 
Panel C1:       Panel C2:   
Normals, σ=1.84, ρ=0.5, n=15      MixNormals, w=10%, σ1=5, σ2=1, ρ= 0.5, n=15 
 

1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

PDF of hedge volat , n=15, s=1.84, r=0.5, NORMALS

 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

PDF of hedge volat , n=15, s1=5, r=0.5, MIX-normals

 
 
 
Note:   
See the text for a description of parameters.  Each bar in Panel A, and Panel B is 0.02 units wide and 
represents the probability that a realization of  hedge volatility falls within some corresponding interval.  
Number of sampling repetitions is 100,000 for both panels.  Some representative probabilities are given 
below: 
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Exhibit II.3.4 continued: 
 
 Prob (σσσσhedge portfolio ∈∈∈∈  Int):    

Interval < 2.4 2.4–2.7 2.7–3.0 3.0–3.3 > 3.3  σσσσA,B σσσσH,min σσσσH,avg 

Panel A1: Normal 64.3% 34.6% 1.0% 0.1% - 3.30 2.36 2.41 
Panel A2: MixN 19.3% 36.2% 23.2% 17.3% 4.0% 3.30 2.36 2.72 

 
 Prob (σσσσhedge portfolio ∈∈∈∈  Int):    

Interval < 3.0 3.0–3.3 3.3–3.6 3.6–3.9 > 3.9  σσσσA,B σσσσH,min σσσσH,avg 

Panel B1: Normal 74.7% 20.4% 3.6% 0.9% 0.3% 3.30 2.86 2.97 
Panel B2: MixN 31.0% 31.8% 11.5% 4.7% 19.6% 3.30 2.86 3.55 

 
 Prob (σσσσhedge portfolio ∈∈∈∈  Int):    

Interval < 1.7 1.7–1.8 1.8–1.9 1.9–2.5 > 2.5  σσσσA,B σσσσH,min σσσσH,avg 

Panel C1: Normal 80.7% 12.1% 4.2% 2.8% <0.1% 1.84 1.60 1.66 
Panel C2: MixN 50.6% 18.8% 9.9% 16.7% 3.8% 1.84 1.60 1.80 

 
 

 

While the hedge volatilities are the usual concern and an objective function of a 

minimum variance hedge, the ultimate interest rests with the distribution of the resulting 

hedge returns.  While the hedge returns are well described by the second moment if asset 

returns are normal (apart from the case of an extremely small sample), the higher 

moments play an important role if asset returns exhibit leptokurtosis.  Exhibit II.3.5 

provides examples of hedge return distributions under parameter uncertainty and non-

normal asset returns.  It is shown that the parameter and model uncertainty may lead to an 

increase in the volatility of the position if hedged, even for relatively larger estimation 

windows (Panel C).  However, the sampling reveals that an alternative measure of risk, 

V@R, may be smaller for the hedged position relative to an unhedged one.  This is an 

interesting consequence of the central limit theorem � e.g., the portfolio returns will be 

more normal than the individual asset returns, thus leading to a decrease in V@R.  One 

other result is noteworthy.  The two measures of risk, variance versus V@R, may provide 

contradictory indications about the change in risk of a hedged position.  While the 

variance of normally distributed positions may decrease if hedged with leptokurtic assets, 

the V@R metrics at some confidence level may actually increase.  Panel D provides an 

example of a normally distributed asset hedged by a leptokurtic one.  Even though the 

estimation window is relatively large (n=20), both variance and V@R(1%) of the hedged 

position increase substantially.   
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Exhibit II.3.5   PDF of Hedge Returns under Parameter Uncertainty.  Non-Normal Returns. 
 
Panel A.:  MixNormals      Panel B.: MixNormals 
σA=σF=1.84, (w=3%, σ1=9); ρ=0.5; n=15    σA=σF=3.3, (w=10%, σ1=10); ρ=0.5; n=10 
σHedge=1.85, k H=45.5      σHedge=3.75, k H=32.4 
 

-7.5 -5 -2.5 0 2.5 5 7.5
0

0.05

0.1

0.15

0.2
PDF Hedge ret, Mix-normal, w=3%, s1=9, r=0.5, n=15

    -7.5 -5 -2.5 0 2.5 5 7.5
0

0.025

0.05

0.075

0.1

0.125

0.15

PDF Hedge ret, Mix-normal, w=10%, s1=10, r=0.5, n=10

 
 
Panel C.:  MixNormals      Panel D.: Normal returns hedged by MixNorm 
σA=σF=3.3, (w=10%, σ1=10); ρ=0.5; n=20  σA=σF=3.3, (w=10%, σ1=10); ρ=0.5; n=20 
σHedge=3.5, k H=24     σHedge=3.5, k H=15.9 
 

-7.5 -5 -2.5 0 2.5 5 7.5
0

0.025

0.05

0.075

0.1

0.125

0.15

PDF Hedge ret , Mix-normal, w=10%, s1=10, r=0.5, n=20

    -10 -5 0 5 10
0

0.02

0.04

0.06

0.08
PDF Hedge R, Normal by MixN, w=10%, s1=10, r=0.5, n=20

 
 
 
NOTE:  
σHedge denotes the standard deviation of the hedge portfolio that takes into account the estimation error (the 
distribution of hedge ratio parameter), given the stated estimation and distributional parameters. 
k H denotes the excess kurtosis of the hedge portfolio given the stated estimation parameters. 
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 II.4  Value-at-Risk and Model Misspecification 

 

This section illustrates the magnitude of the potential errors posed by the 

distributional assumptions.  One famous example of underestimation of the potential for 

model error is the case of LTCM hedge fund, which faced near bankruptcy in September 

1998 (see Jorion, 2000; Stulz, 2000). 

Assume that the true asset returns follow a jump diffusion process, or its discrete 

time alternative � known as the mixture-of-normals model.   Roll (1988) has analyzed 

some aspects of the mixture model and provides early evidence about the complex 

structure of returns.  Quandt and Ramsey (1978) suggest the following specification: 

 σA,1 εA,1      in state X with probability �w� 
rA  =  {         , 2.4.1 

σA,2 εA,2   in state Y with probability �1-w�   
 

where εA,1 ~ εA,2 ~ N[0,1].   The returns observed conditional on state �X� can be thought 

of as returns observed during periods with �no asset-specific news�.  However, returns 

occasionally exhibit jumps caused by unexpected news events (state Y).  Reasonable 

values for w are:  w ∈  ( 0.1%, 10% ).   This model can be more compactly written as: 

 

 rA ~ w N[0, σA,1] + (1-w) N[0, σA,2] ,      2.4.2 

 

where �+� results in a �mixture� or �superposition� of two distribution functions. 

 Value-at-Risk (V@R) is often calculated at different confidence levels � the most 

common being 99%.33   The usual criticism is that V@R neglects to take into account the 

magnitude of returns.  However, this criticism is misplaced, since the V@R metrics is not 

the absolute maximum one can lose, but rather a point on a continuous distribution of 

possible returns.  The correct use of V@R techniques involves calculation of V@R 

measures at various confidence levels.  Alternatively, it should provide a complete 

description of the return distribution. 

                                                           
33 The other commonly used confidence levels are: 97.5% and 95%.  Confidence level of 99% means that 
the probability of returns exceeding V@R99% confidence level is 1%.  In other words, portfolio under 
consideration will lose more than the specified V@R amount only once in 100 periods.   
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 Exhibit II.4.1 illustrates the potential for understating V@R metrics if prices 

follow a jump-diffusion process (or an alternative mixture-of-normals process), but the 

risk-manager acts as if returns are normally distributed.  Panels A and B compare the 

PDF of a posited true distribution: rA,mix ~ {95% N[0, 1] + 5% N[0, σ=5]},34  with the 

PDF of a normal distribution with the same volatility: rA,Gauss ~ N[0, σ=1.48] .  If the 

above returns are daily returns, and the volatility (standard deviation) is expressed in 

percentage terms, the unconditional annual volatility of the asset�s returns is:  

 

45.23)505.0195.0(250 22 =×+×=Aσ , 

 

and approximates (in percentage terms) the usual estimates of annual volatility of stocks 

and stock indexes.   

 
 
Exhibit II.4.1   Value-at-Risk and model misspecification 
 
Panel A.      Panel B. 
PDF of N[0, 1.48] – thin;      PDF of N[0, 1.48] – thin;   
PDF of MixN {95%N[0,1] + 5%N[0,5]} – bold  PDF of MixN {95%N[0,1] + 5%N[0,5]} – bold 

-4 -2 0 2 4
0

0.1

0.2

0.3

  -6 -5.5 -5 -4.5 -4 -3.5 -3
0

0.0025

0.005

0.0075

0.01

0.0125

0.015

 
 
Note:  Panels A and B show the PDF of a posited return distribution (mixture of normals) and the PDF of a 
Gaussian distribution with the same volatility (standard deviation).  The table below shows some lower 
quantiles of two distributions:  
1) bold line: rA,mix ~ {95% N[0, 1] + 5% N[0, σ=5]}, and 2) thin line: rA,Gauss ~ N[0, σ=1.48]  
 

V@R            Lower Quantile 0.1% 0.5% 1.0% 2.5% 5.0% 10% 

Φ-1( rA,mix ) -10.27 -6.41 -4.21 -2.35 -1.83 -1.37 
Φ-1( rA,normal ) -4.58 -3.82 -3.45 -2.91 -2.44 -1.90 

 
 
 
                                                           
34 This corresponds to the �no-news� returns occurring 95% of the time, and the �news/jump� returns 
occurring 5% of the time (e.g., on 12 days during one year). 



 

 

51 

 Exhibit II.4.2 shows the probability distribution of estimated V@R values under 

the following conditions:  

(1) the true return distribution is rA,mix ~ {95% N[0, 1] + 5% N[0, σ=5]}, and  

(2) V@R metrics is based on a 99% quantile of a normal distribution N[0, σ],  

where �σ� is estimated using returns observed during the 100 most recent days.  This 

means that a good estimate of 1-day V@R appears to be 2.32 σ.  The average V@R that 

would be obtained under normality assumption and the correct volatility estimate 

(σ=1.48) is: 

Expected [V@R (99%, normality assumption)] = (2.32)(1.48) = 3.43 

 

However, the true Value-at-Risk metric based on the posited return distribution is  

V@R99% = 4.21.  Thus, the true V@R will be 23% [ =4.21/3.43 - 1 ] larger than the mean 

estimated V@R based on an erroneous model assumption.  Even the usual confidence 

bounds for the average V@R estimate (given 100 returns) is below the true V@R.  

Specifically, if the return distribution is normal, then confidence bounds for a volatility 

estimate can be based on the following approximation: 
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where �n� denotes the length of an estimation period.  The relative standard error of the 

volatility and V@R estimates (under normality) is about 7% of the V@R value (given 

100 returns).  Therefore, the 99% confidence bound for the E[V@R] is (2.7, 4.2).  In 

sum, one could �confidently� underestimate the true V@R in 61% of all cases.   

 Exhibit II.4.3 illustrates the magnitude of the model error for two other 

experiments.  Panels A1 and A2 compare the quantiles of (1) a mixture of normals 

distribution with returns rA,mix ~ {99% N[0, 1] + 1% N[0, σ=5]} � thick line; with the 

quantiles of  (2) a normal distribution with the same volatility parameter: 

rA,Gauss ~ N[0, σ=1.24] � thin line.    
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Panels B1 and B2 compare the quantiles of 1) mixture of normals distribution 

where : rA,mix ~ {97% N[0, 1] + 3% N[0, σ=5]} � thick line, with quantiles  of 2) normal 

distribution with the same volatility: rA,Gauss ~ N[0, σ=1.84] � thin line.  Under perfect 

knowledge of volatility estimates, the above specifications turn out the 0.1% quantiles (an 

event once in 4 years) and thus corresponding V@R measures that are 86% and 189% 

greater for the posited true distributions than V@R measures estimated under erroneous 

normality assumption. 
 

 

Exhibit II.4.2   Probability Distribution of V@R estimate;  (α=1%, n=100, Normal returns) 

1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

   
 
Note:  The Probability Distribution of the Value-at-Risk estimate at the 99% confidence level.  V@R metric is 
calculated using the normality assumption and 100 observations from the assumed leptokurtic return 
distribution:  rA,mix ~ {95% N[0, 1] ⊕  5% N[0, σ=5]}.  The true V@R99% based on the parameters of the 
assumed distribution is 4.21.  The cumulative probability P[ |V@R| < 3.5] = 61%.   
 
Prob (Estimated V@R99% ∈∈∈∈  Int):    
   
Estimated 
V@R1% 
Interval 

 
 
< 2.5 

 
 
2.5, 3.0 

 
 
3.0, 3.5 

 
 
3.5, 4.0 

 
 
4.0, 4.5 

 
 
> 4.5 

 
Average 

 
True 

 
Probability 

 
8.9% 

 
25.0% 

 
27.1% 

 
20.2% 

 
11.4% 

 
7.5% 

 
3.43 

 
4.21 

 
Technical Note:  A sample Ω of 5,000,000 returns is generated from the mixture of normals specified 
above.  For each trial, a random subsample of 100 observations is selected from Ω.  To estimate V@R, the 
standard deviation of a subsample is used to calculate a V@R metric as specified by relation 1.3.2.  Number 
of repetitions to obtain PDF: 100,000. 
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Exhibit II.4.3  Value-at-Risk and model misspecification. 
 
Panel A1:  PDF of N[0, 1.24] – thin;   Panel A2:  PDF N[0, 1.24] – thin; 
and PDF MixN {99%N[0,1] + 1%N[0,5]} – bold   and PDF MixN {99%N[0,1] + 1%N[0,5]} – bold 
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0.001
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Note:  Panels A and B show the PDF of a posited return distribution (mixture of normals) and the PDF of a 
Gaussian distribution with the same volatility (standard deviation).  The table below shows some lower 
quantiles of two distributions:   
 (1) bold line: rA,mix ~ {99% N[0, 1] + 1% N[0, σ=5]}, and (2) thin line: rA,Gauss ~ N[0, σ=1.24]  
 
Value at Risk metrics: 
Confidence Level 
(Lower Quantile) 

0.1% 0.5% 1.0% 2.5% 5.0% 10% 

Φ-1( rA,mix )      – thick line -6.41 -2.85 -2.46 -2.02 -1.68 -1.30 
Φ-1( rA,normal )   – thin line -3.44 -2.87 -2.59 -2.18 -1.83 -1.43 

 
 
Panel B1:  PDF of N[0, 1.84] – thin     Panel B2:  PDF of N[0, 1.84] – thin 
MixN {97%N[0,1] + 3%N[0,9]} – bold     MixN {97%N[0,1] + 3%N[0,9]} – bold 

-4 -2 0 2 4
0

0.1
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Note:  Panels A and B show the PDF of a posited return distribution (mixture of normals) and the PDF of a 
Gaussian distribution with the same volatility (standard deviation).  The table below shows some lower 
quantiles of two distributions:   
 (1) thick line: rA,mix ~ {97% N[0, 1] + 3% N[0, σ=9]}, and  (2) thin line: rA,Gauss ~ N[0, σ=1.84]  
 

Confidence Level 
(Lower Quantile) 

0.1% 0.5% 1.0% 2.5% 5.0% 10% 

Φ-1( rA,mix )       – thick line -16.5 -8.71 -3.91 -2.22 -1.77 -1.34 
Φ-1( rA,normal )    – thin line -5.70 -4.75 -4.29 -3.61 -3.03 -2.36 

 
 
 

 



 

 

54 

II.5  Conclusions 

 
�The effects of noise on the world, and on our views of the world, are profound. . . . Most 

generally, noise makes it very difficult to test either practical or academic theories about the way that 
financial or economic markets work.  We are forced to act largely in the dark.� 
 
 Fisher Black, �Noise,� (Journal of Finance, 1986). 
 
 

The measurement of financial return characteristics and subsequent hedging 

decisions are subject to large estimation errors and model misspecifications.  The various 

model assumptions and simulations presented here provide an important insight about the 

impact of the true return dynamics and our misrepresentation of it on the outcome of our 

hedging decisions.   

The risk of a minimum-variance hedge is shown to be not unambiguously smaller 

than the risk of an unhedged position.  Moreover, different measures of risk � such as 

portfolio variance and V@R metrics � may lead to contradictory conclusions about the 

change in a risk level.   It is shown that if asset returns are normally distributed, only an 

extreme parameter uncertainty and very low absolute levels of return correlation would 

lead to an increase in a risk level, no matter what risk measure is used.  However, the 

same conclusions cannot be made for a leptokurtic asset return series.  If prices are 

generated by a process resulting in a return distribution that is a mixture-of-normals, the 

Gaussian model assumption may lead to a hedging decision that may greatly increase the 

risk of an underlying investment position.    

Hedging errors and the potential increase in risk is most likely to occur if return 

distributions exhibit extreme kurtosis and the estimation period is rather short.  An 

investor may be tempted to choose short estimation periods either directly because of a 

non-stationarity of return series previously reported in finance literature, or indirectly by 

selecting a model that weights the most recent observations more heavily.  It is shown 

that the effective estimation periods of certain ARCH-class models such as Equally 

Weighted Moving Average (EWMA) models can be rather short (25 to 100 days for daily 

return series) even if very long actual data series are used.  The short estimation sample 

introduces extra noise into the parameter estimation and may lead to a hedging decision 
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that increases risk (in terms of variance as well as in terms of V@R) especially if the 

return distribution is leptokurtic. 

The hedging errors can be traced to large standard errors of estimated model 

parameters such as correlation coefficient.  Model misspecification may lead investors to 

believe that the correlation coefficient of return series is non-stationary.  However, 

existence of jumps in asset return series may lead to the standard errors of sample 

correlation coefficient estimates that are two to three times larger than under the 

normality of returns.  Subsequently, large errors in the estimates of asset cross-

correlations can lead to large errors in hedge ratios.  Model and estimation errors may 

ultimately lead to a return distribution of a hedged position that has undesirable 

properties, e.g., Value-at-Risk of the hedged position at some confidence level may be 

substantially larger than if the underlying position were left unhedged.  What should an 

underwriter do to prevent unnecessary model errors?  A simple examination of the return 

properties, alternative models with (preferably) longer effective estimation periods should 

prove highly informative. 

It is also shown that V@R may be significantly understated in both economic and 

statistical sense if a incorrect model is used.  The mixture-of-normals model can lead to 

V@R metrics that dramatically exceed metrics under the normality assumption.  For 

some mixture-of-normals model specifications, the true V@R metric at low (0.1%) 

confidence levels is a large multiple of V@R metric estimated by (erroneously) assuming 

that returns are normally distributed.  Moreover, back-testing of models at higher 

confidence levels (e.g., 5% or 10%) may lead to a false information that models used 

correctly represent the empirical samples.  How serious the problem is can be answered 

only by examining various asset series, which is a subject of CHAPTER THREE.  

 

 

 

 

 



 

 

 

 

Chapter III 

ESTIMATION OF DISTRIBUTIONAL PARAMETERS AND V@R METRICS 
 

�Any virtue can become a vice if taken to extreme. The models are only approximations to the 
complex, real world.  The practitioner should therefore apply the models only tentatively, assessing their 
limitations carefully in each application.� 

 
Robert Merton  
(Comments in 1995, as quoted by Risk magazine, October 1998, in �Meriwether Meltdown�) 

 

 

III.1 Introduction 

 

 The evidence on asset return distribution is reviewed in CHAPTER ONE, SECTION 

FOUR.  Prior literature documents that asset return distributions depart substantially from 

normality.  The assumption of normality is frequently violated in empirical samples of 

short-term (daily) returns (Fama, 1965; Campbell, Lo, and MacKinlay, 1997; Peiró, 

1999).  Most asset return series exhibit leptokurtosis.  Moreover, Peiró (1999), employing 

distribution-free methods, documents that return series in a number of markets (e.g., least 

capitalized) are not symmetric.  Also, Jorion (1989) investigates the existence of 

discontinuities in the sample path and finds that exchange rates exhibit significant jumps 

even after allowing for conditional heteroskedasticity in the diffusion process.  Therefore, 

V@R procedures relying on symmetry such as those assuming Gaussian, t-distribution, 

or EWMA based models may be mis-specified resulting in an underestimate of V@R 

metrics.  One can only speculate on how many wrong decisions are made due to the use 

of an incorrect model. 

One of the proposed alternatives is a mixture of normal distributions.  Roll (1988) 

shows that return kurtosis in his sample of stock returns is different when excluding 

returns on all days surrounding news reports in the financial press, thus �revealing a 

mixture of returns distribution.�  He is able to estimate the minimum ratio of news 

variance to noise (no news) variance and documents that it is substantial.  Non-news days 
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also indicate a presence of a distributional mixture, presumably due to traders acting on 

their private information, but the effect is relatively smaller.   

 This chapter reviews estimation methodologies of mixture-of-normal-distributions 

model parameters.  The model�s parameter estimators are based on Pearson�s Method of 

Moments (MM) and Maximum Likelihood (ML) surface-search procedure. The ML 

procedure uses starting values from the MM estimation in order to avoid singularities.  

Parameter estimates are provided for several assets such as exchange rates, stocks, and 

precious metals. Resulting mixture-of-normals-ML V@R metrics are compared to the 

metrics obtained by some alternative models commonly used by academicians and 

practitioners alike (e.g., Gaussian, ARCH/EWMA).  The Pearson-Fisher test of goodness-

of-fit is used to test the agreement of posited models with the empirical samples.   

An alternative to the discrete time mixture-of-normals model is the continuous 

time jump-diffusion model (see equation 1.7.4) of Merton (1976a), Cox and Ross (1976) 

and Bates (1991) as discussed in CHAPTER ONE.  However, there are substantial 

difficulties in estimating parameters of a general JD-model in practice.  The prior 

Maximum Likelihood estimation techniques of Beckers (1981) and Ball and Torous 

(1985) provide estimators in a somewhat simplified setting.  Their estimators rely on 

some parameter restrictions such as the assumption that the jump component is mean 

zero, which restricts distribution classes to symmetric ones.  This would unnecessarily 

limit the usefulness of this continuous time model in cases where the empirical return 

distribution is skewed.  Also, the Maximum Likelihood estimation with �wrong starting 

values� may produce volatilities that are negative.35    

 

 

III.2  Model Selection and Goodness-of-Fit Tests 

 

The standard V@R methodologies (e.g., those employed by RiskMetrics�) 

assume that asset returns are conditionally (EWMA) or unconditionally (GBM) normally 

distributed.  As noted before, V@R procedures assuming normality may result in a V@R 

                                                           
35 A similar problem occurs in an ML estimation of  parameters for a mixture of normals, but it may be 
alleviated by a careful selection of starting values.  Estimates produced by the method of moments may be 
used for this purpose.  
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metric estimate that is substantially different (smaller) from the true metric if returns are 

draws from a leptokurtic distribution, such as the mixture-of-normals.  The most 

important empirical question is the selection of the asset return model that has the ability 

to fit (or predict) the characteristics of data well (ex-post and more importantly ex-ante).   

While numerous asset return-generating models have been suggested in place of 

the models assuming unconditional normality of returns, there is a need to test their 

empirical performance.36   Susmel and Hamilton (1994, page 312) note that the 

forecasting performance of GARCH specifications is rather poor in a sample of the value-

weighted portfolio of stocks traded on the NYSE from July 1962 to December 1987.   If 

their specifications were correct and the parameters were known with certainty, then σt
2 

would be the conditional expectation of squared innovations. Hence a mean squared error 

loss function MSE = E [(εt
2 - θt)2 | εt-1, εt-2, �] would be minimized with respect to θt by 

choosing θt = σt
2.   However, they show that the GARCH MSE is larger than the MSE 

under the assumption of constant variance during the period.   

While the MSE loss function test provides a valuable insight, a goodness-of-fit 

test is necessary to assess the models� empirical performance, especially in V@R 

applications.  It is possible that even if a particular GARCH (EWMA) model specification 

performs well in terms of the MSE test relative to the Gaussian model, it is not clear that 

it is a �good� model.  A well-established alternative to judge the performance of 

suggested models is a goodness-of-fit test pioneered by Karl Pearson in 1900, when his 

paper introducing the X2 test appeared.37   Without a statistical test, model selection is 

often assessed by visual subjective methods.  However, as R. A. Fisher (1925) 

commented: �No eye observation of diagrams, however experienced, is really capable of 

discriminating whether or not the observations differ from the expectation by more than 

we would expect from the circumstances of random sampling.�38   

 

 

 

                                                           
36 As mentioned earlier, the alternative models are usually of the GARCH family of models. 
37 A goodness-of-fit procedure is a statistical test of a hypothesis that the sampled population is distributed 
in a specific way ... for example, that the sampled population is normal (Rayner and Best, 1989). 
38 R. A. Fisher (1925, p. 399) as cited by Rayner and Best (1989, p. 4) 
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III.2.1  Goodness-of-Fit Test 

 

The Pearson�s X2 smooth test of goodness-of-fit tests a simple null hypothesis that 

a random sample {x1, ... , xn} of size n comes from a population with a completely 

specified cumulative distribution function F(x).  The sample space is partitioned into m 

classes, and Nj is defined as the number of observations from the sample that fall into the 

j-th class.  If pj is the probability of falling into the j-th class when F(x) holds, the Pearson 

X2 test statistic is defined as:  

( ) ( )∑
=

−=
m

j
jjjP npnpNX

1

22 .      3.2.1 

 As n increases, the distribution of X2 tends to be increasingly well approximated 

by 2
1−mχ  ,  the χ2 distribution with m-1 degrees of freedom.  The null hypothesis that the 

sample comes from the specified distribution is rejected if X2 test statistic is larger than 

the critical A(α%, m-1) point of the χ2 distribution.  If this test is to be used, the cells or 

classes must be constructed.  This choice is not innocuous, as different class selection 

may lead to different conclusions.  Rayner and Best (1989, p.24) discuss extensively the 

class construction and statistical literature on this topic.  Since we are primarily interested 

in how well various models fit empirical data in the �tails�, the inferences here are based 

on a construction of nine classes (m=9), one large central class (containing 94% of data) 

and eight equiprobable (1%-tile) tail classes (four classes for each right and left tail). 

 If the null distribution depends on a vector β=(β1, ... ,βq) of unknown parameters, 

then pi in X2 must be replaced by an estimate of pi , say ip� .  If the ip�  is based on the 

grouped maximum likelihood estimator, the new statistic is X2
PF, the Pearson-Fisher 

statistic, which has an asymptotic null 2
1−−qmχ  distribution.  If maximum likelihood 

estimators are based on the ungrouped observations, the Chernoff-Lehmann X2
CL test 

statistic is obtained.  As noted by Rayner and Best (1989, p.27), it is sufficient to base 

inferences on the fact that the null distribution of X2
CL is bounded between 2

1−−qmχ  and 2
1−mχ .  

 One final remark is in order.  It is relatively easy to calculate the likelihood of 

observing a specific sample given some model and its estimated parameters.  The ratio of 

likelihoods of two models may provide some guidance as to the model preference.  
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However, the likelihood ratio test can not be used to test one distributional assumption 

against another.  The test is inappropriate, because the parameter spaces, and hence the 

likelihood functions of the two cases, are unrelated (Greene, 1993, p. 162).  

 

 

III.3 The Mixture-of-Normal-Distributions Model 

 

The problem of separating the components of a probability density function, 

which is a mixture of normal densities, occurs in a wide variety of disciplines.39   It 

appears that this problem is one of the oldest estimation problems in the statistical 

literature, beginning with Pearson (1894), who first suggested the Method of Moments 

estimator.  The simplest possible case of a mixture model is the case in which it is known 

a priori (or in which the theory suggests) that the number of components is two.  In this 

scenario, a sample of observations {x1, x2, �, xn} is given on a random variable x 

defined as: 

x  ~ N[µ1, σ1
2]               with probability λ ,  

and           3.3.1 

x  ~ N[µ2, σ2
2]              with probability 1-λ,         

where the parameter vector { λ, µ1, σ1, µ2, σ2 } is unknown.  A similar specification can 

be found in Roll (1988).  The density function of the random variable x is: 
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with the corresponding moment generating function (MGF):  
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 The variance (the second central moment) of a mix-normal random variable �x� 

with a density function given by expression 3.3.2 can be obtained from the above MGF 

                                                           
39 Quandt and Ramsey (1978) mention several examples, such as engineering (Young and Coraluppi, 
1970), biology (Bhattacharya, 1966), as well as economics (Quandt, 1972; Ramsey, 1975). 
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by differentiating twice the natural logarithm of m(θ ), or a Cumulant Generating 

Function CGF = ln m(θ ), with respect to θ and letting θ → 0,  
( ) ( )( ) ( ) 2

2
2
1

2
21

0

)(ln 11)( 2

2

σλλσµµλλ
θθ

θ −++−−==
→∂

∂ mxVariance
.     3.3.4 

 

The third central moment, or Skewness = E( x - E(x) )3, can be expressed as: 
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Similarly, for the fourth central moment, or Kurtosis = E[ x - E(x)]:  

3.3.6 
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Exhibit III.3.1 shows the standard deviation and coefficient of kurtosis of the 

random variable x as a function of some distributional parameters.  It can be seen that the 

coefficient of kurtosis can attain fairly large values if the news-related jump-return 

frequency is low (parameter λ→0) and the jump size is relatively large (parameter 

σ1>>σ2).   High values of coefficient of kurtosis are commonly observed for daily stock 

returns (see Campbell, Lo, MacKinlay, 1998). 

 

 

 III.3.1  Estimation of Mixture-of-Normals model parameters 

 

Three principal methods are used for the estimation of the parameter vector 

{ λ, µ1, σ1, µ2, σ2 }.  The oldest one is the Method of Moments suggested by Karl Pearson 

(1894).  Quandt and Ramsey (1978) examine and compare this method to their newly 

developed method of Moment Generating Functions.   The last method is based on the 

Maximum Likelihood technique.  These methods are discussed below. 
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Exhibit III.3.1  Standard-Deviation and Coefficient of Kurtosis of a mix-normal random variable. 
 
Panel A1:  Standard Deviation of x   Panel A2:  Standard Deviation of x 
x ~ MixN { λ N [0, s1]  +  (1-λ) N [0, 1] }   x ~ MixN { 10% N [0, s1]  +  90% N [0, 1] } 
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Panel B1:  Coefficient of Kurtosis   Panel B2:  Coefficient of Kurtosis 
x ~ MixN { λ N [0, s1]  +  (1-λ) N [0, 1] }   x ~ MixN { λ N [0, s1]  +  (1-λ) N [0, 1] } 
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Panel B3:  Coefficient of Kurtosis   Panel B4:  Coefficient of Kurtosis 
x ~ MixN { 10% N [0, s1] + 90% N [0, 1] }  x ~ MixN { 1%  N [0, s1]  +  99% N [0, 1] } 
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 1) Method of Moments. This method has been proposed by Pearson (1984) and 

discussed by Cohen (1967) and Day (1969).  The parameters of a density function 

defined by equation 2.3.2 are estimated by equating the sample mean and second through 

fifth central moments to the corresponding theoretical moments.  This provides five 

equations in five unknowns that can be solved via a ninth-order polynomial for consistent 

estimators of the five parameters.  Recall that the k-th central moment is defined by: 

 

  ∑
=

−=
n

i

k
ik xx

n
m

1

)(1    ,  k = 2, 3, 4, 5.      3.3.7  

 

Note that m1 = 0 and m2 provides an estimate for σ2.  Because x converges in 

probability to µ, the central moments converge in distribution to their true theoretical 

functions.  In general, computing K moments and equating them to these functions 

provides K equations that can be solved to provide estimates of the K unknown 

parameters.40   

 The solution requires the negative root of the nonic equation: 

 

  a9 z9 + a8 z8 + a7 z7 + a6 z6 + a5 z5 + a4 z4 + 

           + a3 z3 + a2 z2 + a1 z1 + a0  =  0  ,     3.3.8 

 

where a9 = 24, a8 = 0,  a7 = 84 k4,  a6 = 36 (m3)2,  a5 = 90 (k4)2 + 72 k5 m3,   

a4 = 444 k4 (m3)2 � 18(k5)2,  a3 = 288 (m3)4 � 108 m3 k4 k5 +  27 (k4)3,  

a2 =  � [63 (k4)2 + 73 m3 k5] (m3)2,  a1 = 96 (m3)4 k4,  a0 =  � 24 (m3)6 ,  

 

where mi denotes the i-th central sample moments and kj is the j-th sample cumulant;  

e.g.,  k4 = m4 � 3 (m2)2, and k5 = m5 � 10 m2 m3.    

 

                                                           
40 Kumar, Nicklin and Paulson (1979) note that the method of moments does not provide estimators which 
are statistically appealing since the consideration of only the first five moments or cumulants may result in 
a considerable loss of information. Moreover, the higher the order of the moment, the greater the sampling 
variability.  Though any sequence of moments (even fractional, e.g., non-integer) carries information about 
the parameters in question and can be used to solve for parameters, these procedures are more complicated 
than solving a nonic equation. 



 

 

64 

It can be further shown (Cohen, 1967) that if we define the differences: 

 

   d1 = µ1 � E(x),  and  d2 = µ2 � E(x)  ,    3.3.9  

  

and if z�  is the negative root which solves equation 3.3.8, and if r is defined by: 
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then we obtain as estimates of d1 and d2: 
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From the above results we obtain the estimates of the vector { λ, µ1, σ1, µ2, σ2 }: 
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where x  is the sample mean, and λ is the mixture coefficient.  Though it is known that 

the sample variances of high-order moment estimates are very large (Kendall, Stuart and 

Ord, 1998) and therefore affect the variances of parameters, the estimated parameters can 

be used as starting points in ML estimation which is known to have serious difficulties.41  

 

                                                           
41 See below for further discussion of MLE including a discussion of some common difficulties (see also 
Quandt and Ramsey, 1978). 



 

 

65 

 2) Method of Moment Generating Function (MGF).  This method has been 

proposed and studied by Quandt and Ramsey (1978), Q&R.  They introduce an estimator, 

which minimizes the sum of squares of differences between the theoretical and sample 

moment generating functions.  They also show the consistency and asymptotic normality 

of the estimator and compare its finite sample behavior to the Method of Moments 

estimator.  The moment generating function is: 

  
22

22
22

11 2
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1
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θσθµθσθµ
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++
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where γ  is the parameter vector {λ, µ1, σ1, µ2, σ2}.   For any given value of θj the 

quantity E(eθ x) may be estimated by: 
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which converges to E(eθ x) with probability one by the Strong Law of Large Numbers.  

Since this estimator is, except for sampling error, equal to the moment generating 

function given by 3.3.13, it is possible to estimate the parameters by minimizing the 

quantity: 
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Q&R recommend selecting the nuisance parameters {θj}j=1,�,5 so that they are 

neither close to zero nor too large in order to make G(γ, θj) computationally tractable.  

The MGF estimate γ is obtained by solving five normal equations:   
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θγθγθ ;   i=1,2,�,5.  3.3.16 

 

It appears that this method provides more efficient estimates in small samples and 

when component densities are well separated.  However, as Johnson (1978) notes,42  the 

MGF method is equivalent to fitting a mixture of two lognormal distributions by using 

                                                           
42 See his Comment that follows the paper by Quandt and Ramsey (1978). 



 

 

66 

{θ1, �,θ5} moments.  Moreover, if λ is close to 0 (as would be expected for distributions 

of asset returns), the best (ML) estimators of the parameters would be given by the 

moments, and one would therefore expect the moments estimators to perform relatively 

better under this assumption.  This is also evident from examples provided by Q&R. 

 

 3) Method of Maximum Likelihood (ML).  Properties of ML estimators are well 

established (see Green, 1997, page 133).  ML estimators are consistent, asymptotically 

normal, efficient and invariant to re-parameterization.  It is possible to estimate the 

parameters of a normal-mixture distribution defined by 3.3.2 by maximizing the 

likelihood function: 
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,       3.3.17 

where X denotes the sample vector {xi}i=1,�,n.  Equivalently, it is possible to maximize 

the log of the likelihood function, which is usually simpler in practice.   

 

The necessary first-order condition for maximizing ln L(γγγγ, X) is:   

  

0),(ln =∂
∂

i

L
γ
γ X

, where γγγγ is the parameter vector {λ, µ1, σ1, µ2, σ2}.   3.3.18 

 

There are several problems with a ML estimation for a mixture of distributions 

model (see Quandt and Ramsey, 1978).  These include problems due to the existence of 

local maxima, unboundedness of the likelihood function and the potential singularity of 

the matrix of second partial derivatives of the likelihood function, which is equivalent to 

a vanishing Jacobian for the set of normal equations derived.  The estimation may 

therefore break down in practice if the components are not well separated (see a 

Comment to Quandt and Ramsey, 1978, by Hosmer).  However, it is possible to use the 

MM estimates as starting values for obtaining the ML estimates, which (naturally) 

dominate the MM in terms of model probability (likelihood).   
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 III.4  Data and Results 

 

This limited study documents the extent and impact of various model 

(mis)-specifications in V@R applications.  If the estimation procedure correctly predicts 

the distribution of returns, then we would expect a uniform distribution of the number of 

ex-post returns in individual percentiles predicted by the posited model distribution.  For 

example, given a sample of 10,000 returns, a model and its parameter estimates, we 

should observe approximately 100 returns (1%) in the first percentile.  A significant 

deviation implies a model misspecification.43  A goodness-of-fit test, X2
PF, is used to 

assess the predictive ability of models. 

The CRSP database is used for stock returns data.  Datastream is the primary 

source of data on commodities and foreign exchange return series.  The estimation covers 

long return series and compares the V@R metrics assuming normal returns and V@R 

metrics estimated using the estimates of the mixture of normals model parameters. 

 

 

III.4.1  Exchange Rates, GBP/USD 

 

Exhibit III.1 presents the distribution of 4011 daily returns of the GBP/USD 

exchange rate over the period January 1986 to May 2001.  For comparative purposes, the 

histogram also includes the scaled normal fit (red/bold-dashed curve) and the mixture-of-

normals fit using the maximum-likelihood parameter estimates (green/bold-solid curve).  

The blue/thin curve depicts the mixture model fit using the method-of-moments 

estimates. The ratio of models� likelihoods reveals that the mixture-of-normals model is 

enormously more likely than the normal fit.  However, as mentioned earlier, the ratio test 

is inappropriate as a Likelihood Ratio test, since the parameter spaces and likelihood 

functions are unrelated.   

                                                           
43 The significance of deviation can be tested by the Pearson�s test of goodness-of-fit, or in case of two 
classes by exact binomial distribution.  For example, each (1%-wide) percentile should contain about 1% of 
all observations, subject to a random variation that depends on the sample size.  For a sample of 10,000 
returns, the 95% confidence interval is 0.008 � 0.012.  For a sample of 1,000, the confidence interval 
becomes 0.004 � 0.016.   See Jorion (2001, Chapter six, page 143) for other commonly used model 
verification methods, e.g., a similar Kuiper statistic is used by J.P. Morgan for model verification. 
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The distribution of a relative number of returns falling in percentiles predicted by 

the assumed model and parameter estimates is depicted in Exhibit III.1, Panels B and C.  

If a model is correct, each percentile class should contain approximately 1% (0.01) of all 

returns.  Even though the number of returns in each predicted percentile is itself subject 

to random variation and a function of the total sample size, it is possible to estimate the 

95% confidence level using the binomial distribution.  For the sample of 4011 gold 

returns, the variation should be confined to the 0.007 to 0.013 interval.   

The visual inspection of the exhibits confirms that the mixture-of-normals model 

fits the empirical sample rather well, apart from the rather troublesome frequency of 0% 

returns, which exceeds the predicted frequency by a factor of 6.  More importantly, the 

frequency of extreme returns (those in the left-and-rightmost percentiles) conforms to the 

model.  The goodness-of-fit confirms that the mixture-of-normals model is a worthy 

contender.  The Pearson-Fisher statistic X2
PF is below the critical value of the 2

1−−qmχ  

distribution and we would (with reservations) accept this model.   

On the other hand, the performance of the normal model is rather weak.  The 

frequency of returns in the right-tail�s extreme one percentile exceeds the predicted 

frequency by a factor of 2.2.  The goodness-of-fit test confirms that this model should be 

rejected.  It is worth to note that neither of the two other conditional normality models 

fares any better (see Exhibit III.1, panel C).  Both of the equally-weighted-moving-

average (EWMA) model specifications can be rejected at very high confidence levels.  

Note that this conditional normality model, similarly to the Gaussian model, severely 

underestimates the frequency of the most extreme positive or negative observations by a 

factor of about 2.  The EWMA specifications use an estimate of volatility given by 

relation 2.1.1, and a sample of 25 or 100 most recent observations (denoted as 

EWMA(25) and EWMA(100), respectively. 

Several caveats are in order.  As Rayner and Best (1989) note, we can probably 

reject any potential theoretical model by increasing the sample size or by using different 

X2
PF �test classes.  One would reject even the mixture-of-normals model at very high 

confidence levels if one hundred 1%-wide equiprobable classes are used.  Also, the 

goodness-of-fit test of the mixture-of-normals model is performed using in-sample 

parameter estimates.  This �perfect-insight� estimation is not possible in real-world 
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applications.  However, a limited robustness check using only a subset of known prior 

returns to estimate return distribution still yields predictions that are better than 

predictions of conditional or unconditional normality models. 

Given the financial risk management objective of this dissertation, estimates of 

V@R metrics are of great interest.  The table in Exhibit III.1, Panel A, presents estimates 

of value-at-risk measures given model assumptions.  The empirical standard errors of 

V@R metrics are also provided.  The results suggest that distributional assumptions can 

lead to  a substantial underestimation of Value-at-Risk, though not too dramatic for the 

GBP/USD exchange rate.  The mixture-of-normals model yields V@R metrics at 

probability levels below one percent that are significantly larger than V@R metrics 

assuming the Gaussian model.  The V@R at 0.1% level is about 30% (=2.61/1.98 �1) 

larger if the normality model is replaced with distributional mixtures model.  It is worth 

noting that tests of V@R procedures and back-testing would not reveal any discrepancies 

if the probability level (significance level of a firm�s reported V@R metric) used is about 

5% or larger.  Such a back-testing procedure may confirm the validity of the used models 

and lead to a false sense of security.  It seems, that asset crises and the �six-sigma� 

events often reported in popular press are surprising not because the probability theory 

suggests that we should not observe them in our lifetimes (since we do), but because our 

models or �sigmas� are incorrect and incapable of capturing the dynamics of asset 

returns. 

 

 

III.4.2  Stocks, E-Bay Inc. 

 

Similar to the results for the GBP/USD exchange rate, the mixture-of-normals 

model performs significantly better than the alternative conditional and unconditional 

normality models on a sample of 1190 E-Bay�s equity returns, April 1996 to December 

2000.  Exhibit III.2 presents some descriptive statistics, the distribution of returns with 

models� fits as well as V@R metric for this relatively more successful internet stock.   

Normality models (Gaussian, EWMA(25) and EWMA(100)) can be rejected at very high 

confidence levels, since the realized frequencies of extreme returns exceed the models� 
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predictions by a factor of two to three.  Given the sample size, each percentile�s 

frequency should be within 0.004 � 0.016 confidence bound.   

However, the use of the mixtures model does not lead to larger V@R metrics (not 

for any practical purposes).  This result is due to the relatively low excess kurtosis of the 

sample data.  Naturally, we would expect the deviations to be larger in samples exhibiting 

large excess kurtosis.   

 

 

III.4.3  Precious Metals, Gold 

 

Exhibit III.3 presents the distribution of 4540 daily returns of gold over the period 

January 1984 to May 2001.  Similar to the previous assets, the exhibit provides various 

descriptive statistics.  The distribution with scaled model fits and goodness-of-fit tests of 

various model specifications are also included.   The values of the model likelihood 

function reveal that the mixture-of-normals model is much more likely than the Gaussian 

model.  However, the Pearson-Fisher test rejects even the mixture-of-normals model.  

The mix-normal model assumption results in V@R estimates at low (but not negligible) 

probability levels that are significantly and economically meaningfully larger (in absolute 

value) than V@R metric under the normality assumption.  For example, the V@R at 

0.1% level is -3.69% for the mixnormal fit versus �2.52% for the normal fit.  

Several troubling spots remain.  The frequency of zero returns (no price changes) 

is far larger than could be predicted by any simple model.  Also, an examination of the 

absolute price changes reveals remarkable price discreteness that should not be present 

for such a highly liquid asset.  This price discreteness is even more pronounced for silver 

(not reported in this study).  The frequency of whole dollar changes (and especially exact 

$5 dollar changes) is several times the frequency of fractional changes, even though the 

silver price was between $200 and $600.  The virtual absence of returns between ±0.4% 

may be due to this large bid/ask spread phenomenon.  The impact of price discreteness on 

the distributional parameter estimation is still not clear. 
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Exhibit III.1  GBP/USD exchange rate daily returns, 1986 to 2001 
 
Panel A:  The return distribution and V@R metrics, the Normal fit and Mixture-of-Normals fit 
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Notes:  Descriptive statistic of GBP/USD returns (evaluated in 100% terms): Number of obs.: 4011 

Mean=0.0025;  Standard Deviation=0.642;  Skewness=0.219;  Excess Kurtosis=3.66. 
1) The GREEN curve (bold full, more peaked) corresponds to the Mixture-of-Normals (Max-Likelihood) fit:  
    rgbp/usd ~ 0.373 N[ µ1 = 0.012, σ1 = 0.942 ]  +  0.627 N[ µ2 = –0.0038, σ2 = 0.358 ]. 
2) The BLUE curve (thin) corresponds to the Mixture-of-Normals (Method-of-Moments) fit:  
     rgbp/usd ~ 0.132 N[ µ1 = 0.113, σ1 = 1.25 ]  +  0.868 N[ µ2 = –0.015, σ2 = 0.483 ]. 
3) The RED curve (bold dashed) corresponds to the Gaussian fit, e.g., assuming unconditional normality:  
     rgbp/usd ~ N[ µ = 0.0025, σ = 0.642]. 
V@R metric             Confid. Level 0.1% 0.5% 1.0% 2.5% 5.0% 10% 

MIXTURE-ML fit :  Φ-1( rA,MixN )     
Log-likelihood = –3641 

-2.61 
stderr=0.13 

-2.07 
stderr=0.12 

-1.80 
std.err=0.12 

-1.40 -1.04 -0.70 

NORMAL fit :  Φ-1( rA,normal )    
Log-likelihood = –3916 

-1.98 
std.err=0.024 

-1.65 
std.err=0.023 

-1.49 
std.err=0.020 

-1.26 -1.05 -0.82 

The ratio of models’ likelihoods = e-3641 / e-3916 > 10119 .  
 
Panel B:  Returns� percentile distributions based on Mixture-of-Normals and Gaussian Models 
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Panel C:  Returns� percentile distributions based on EWMA(n=25)  and EWMA(n=100) model. 
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GOODNESS-OF-FIT tests 
 

X2
PF statistic 99% critical value of 

 χ2
m-q-1 dist 

model decision 

MIXTURE-ML fit :   12.74 12.83 accept 
NORMAL fit :  98.06 18.54 reject 
EWMA (n=25) fit 149.2 18.54 reject 
EWMA (n=100) fit 85.9 18.54 reject 
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Exhibit III.2  E-Bay Inc. equity daily returns, 1996 to 2000 
 
Panel A:  The return distribution and V@R metrics, the Normal fit and Mixture-of-Normals fit 
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Notes:  Descriptive statistic of E-Bay�s returns (evaluated in 100% terms); Number of obs.: 1190 

Mean=0.334;  Standard Deviation=5.19;  Skewness=0.401; Excess Kurtosis=1.63. 
1) The GREEN curve (bold full, more peaked) corresponds to the Mixture-of-Normals (Max-Likelihood) fit:  
     rE-Bay ~ 0.382 N[ µ1 = 1.71, σ1 = 6.98 ]  +  0.618 N[ µ2 = –0.511, σ2 = 3.41 ]. 
2) The BLUE curve (thin) corresponds to the Mixture-of-Normals (Method-of-Moments) fit:  
     rE-Bay ~ 0.369 N[ µ1 = 1.58, σ1 = 7.17 ]  +  0.631 N[ µ2 = –0.391, σ2 = 3.35 ]. 
3) The RED curve (bold dashed) corresponds to the Gaussian fit, e.g., assuming unconditional normality:  
     rE-Bay ~ N[ µ = 0.334, σ = 5.19 ]. 
V@R metric             Confid. Level 0.1% 0.5% 1.0% 2.5% 5.0% 10% 

MIXTURE-ML fit :  Φ-1( rA,MixN )     
Log-likelihood = –3610 

-17.8 
stderr=1.26 

-13.8 
stderr=0.88 

-11.9 
std.err=0.70 

-9.30 -7.40 -5.55 

NORMAL fit :  Φ-1( rA,normal )    
Log-likelihood = –3651 

-15.7 
std.err=0.36 

-13.0 
std.err=0.31 

-11.7 
std.err=0.30 

-9.84 -8.21 -6.32 

The ratio of models’ likelihoods = e-3610 / e-3651 > 1017 .  
 
Panel B:  Returns� percentile distributions based on Mixture-of-Normals and Gaussian Models 
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Panel C:  Returns� percentile distributions based on EWMA(n=25)  and EWMA(n=100) model. 
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GOODNESS-OF-FIT tests 
 

X2
PF statistic 99% critical value of  

χ2
m-q-1 distribution 

model decision 

MIXTURE-ML fit :   6.76 11.34 accept 
NORMAL fit :  27.1 16.81 reject 
EWMA (n=25) fit 69.5 16.81 reject 
EWMA (n=100) fit 42.8 16.81 reject 
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Exhibit III.3  Gold daily returns, 1984 to 2001 
 
Panel A:  The return distribution and V@R metrics, the Normal fit and Mixture-of-Normals fit 
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Notes:  Descriptive statistic of Gold returns (evaluated in 100% terms); Number of obs.: 4545 

Mean= –0.00454;  Standard Deviation=0.815;  Skewness=0.0420;  Excess Kurtosis=10.31. 
1) The GREEN curve (bold full, more peaked) corresponds to the Mixture-of-Normals (Max-Likelihood) fit:  
     rGold ~ 0.283 N[ µ1 = –0.011, σ1 = 1.36 ]  +  0.717 N[ µ2 = –0.00064, σ2 = 0.435 ]. 
2) The BLUE curve (thin) corresponds to the Mixture-of-Normals (Method-of-Moments) fit:  
     rGold ~ 0.02 N[ µ1 = 0.044, σ1 = 3.12 ]  +  0.98 N[ µ2 = –0.0045, σ2 = 0.705 ]. 
3) The RED curve (bold dashed) corresponds to the Gaussian fit, e.g., assuming unconditional normality:  
     rGold ~ N[ µ = –0.00454, σ = 0.815]. 
V@R metric             Confid. Level 0.1% 0.5% 1.0% 2.5% 5.0% 10% 

MIXTURE-ML fit :  Φ-1( rA,MixN )     
Log-likelihood = –4952 

-3.69 
stderr=0.24 

-2.88 
stderr=0.23 

-2.48 
std.err=0.22 

-1.86 -1.30 -0.819 

NORMAL fit :  Φ-1( rA,normal )    
Log-likelihood = –5518 

-2.52 
std.err=0.037 

-2.10 
std.err=0.023 

-1.90 
std.err=0.022 

-1.60 -1.34 -1.05 

The ratio of models’ likelihoods = e-4952 / e-5518 > 10245 .  
 
Panel B:  Returns� percentile distributions based on Mixture-of-Normals and Gaussian Models 

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
GOLD returns in predicted percentiles , MIXNORM-ML model

    0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

GOLD returns in predicted percentiles , NORMAL model

 
 
Panel C:  Returns� percentile distributions based on EWMA(n=25)  and EWMA(n=100) model. 

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

GOLD returns in predicted percentiles , EWMAH25L model

    0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

GOLD returns in predicted percentiles , EWMAH100L model

 
 

GOODNESS-OF-FIT tests 
 

X2
PF statistic 99% critical value of  

χ2
m-q-1 distribution 

model decision 

MIXTURE-ML fit :   32.9 11.34 reject 
NORMAL fit :  85.9 16.81 reject 
EWMA (n=25) fit 219.2 16.81 reject 
EWMA (n=100) fit 155.1 16.81 reject 
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III.5  Conclusions 

 

The mixture-of-normals model is shown to fit empirical distributions significantly 

better than the alternative models that assume conditional (EWMA) or unconditional 

normality.  The Pearson-Fisher goodness-of-fit tests forcefully show that daily return 

dynamics cannot be captured by the normality assumption.  The empirical samples 

examined in this study contain extremely large returns of either sign that exceed the 

normality models� predicted frequencies by a factor of 2 to 3.   

One important caveat is in order.  It is very likely that any theoretical model could 

be rejected by large empirical samples if a goodness-of-fit test with a large number of 

classes is used.  This is true even for the mixture-of-normals model, though it is greatly 

preferable to the alternative normality models.  A mixture-of-normals model is shown to 

fit empirical samples relatively well and especially well in the �tails�.   

Several unresolved issues remain.  The frequency of zero returns is substantially 

larger than can be justified by any simple model.  Obviously, more complex models are 

needed to explain this special feature of price dynamics. One possibility is to model the 

zero returns with Dirac�s delta function (a zero frequency �dummy�), commonly used in 

physics, though this would require an additional (noisy) parameter estimate. 

Another potentially troubling feature of short-term returns is the impact of price 

discreteness.  It is apparent in gold and especially silver price series.  Price changes of $1 

multiples (especially $1 and $5) are much more frequent than any fractional change, even 

though the silver price oscillated between $200 and $600.  Bid-ask spread may distort 

estimates of model parameters.  Distributions relying on estimators obtained using very 

short (e.g., intraday) returns should be viewed with a healthy dose of skepticism.   

The Value-at-Risk metrics at confidence levels below one percent are 

significantly (and economically substantially) larger if the V@R methodology assumes 

the mixture-of-normals model rather than the Gaussian model.  Return distributions are 

of great interest to risk managers and financial companies� regulators, as well as option 

traders.  Paraphrasing Robert Merton, we need to be careful in selecting our return 

dynamics models and assess their limitations, or else be surprised by the next �six sigma� 

event. 



 

 

 

 

Chapter IV 

FIRM VALUE AND VALUE-AT-RISK 

 

 

IV.1  Introduction 

 

THIS CHAPTER provides an overview of institutional risk management practices 

and investigates the characteristics of financial institutions using Value-at-Risk approach 

to risk management (V@R-RM).  The main focus is on documenting economic benefits 

(or value) of the use of V@R methodologies in the risk management of financial 

institutions.   

The extant literature provides numerous valid reasons for corporate management 

of idiosyncratic risks (Smith and Stulz, 1985; Bessembinder, 1991; Froot, Scharfstein, 

Stein, 1993, 1998; DeMarzo and Duffie, 1995; among others).  It has also been 

documented that firms generally behave in ways consistent with these theoretical 

predictions (Nance, Smith and Smithson, 1993; Mian, 1996; Géczy, Minton and Schrand, 

1997; Haushalter, 2000).   However, we still do not know the answer to the positive 

question of whether the risk management practices increase firm value.   Allayannis and 

Weston (2001) provide the first evidence along these lines by examining the impact of 

the firms� use of foreign currency derivatives on equity value.  Their sample includes 720 

U.S. non-financial firms between 1990-1995.  The results confirm that markets put a 

premium of about 5% of firm value on firms that hedge their exposure to exchange 

rates.44 

This chapter complements Allayannis and Weston�s study in another dimension.  

Given the sound theoretical reasons for corporate hedging and risk management, we 

would expect that markets place a higher value on firms that engage in sophisticated risk 

                                                           
44 Allayanis and Weston (RFS, 2001) are the first to provide direct evidence that hedging increases firm 
value.  Other studies such as Nance, Smith and Smithson (1993) only document that corporations behave in 
ways consistent with the theoretical predictions. 

75 



 

 

76 

management techniques such as Value-at-Risk.45  However, a recent analysis of Basak 

and Shapiro (2001) finds that the V@R risk managers may optimally choose a larger 

exposure to risky assets than non-risk managers and consequently incur larger losses 

when losses occur.46  Their general equilibrium analysis reveals that the presence of 

V@R managers may amplify the stock-market volatility at times of down markets and 

attenuate the volatility in up markets.  One of the features of their analysis is that 

although the probability of a loss is fixed, when a large loss occurs, it is larger than when 

not engaging in V@R risk management.  The final effect on the firm value is therefore 

unknown and a subject for empirical analysis. 

The next section provides a brief discussion of institutional details and benefits of 

using V@R risk management techniques.  Section 3 describes data and methodology.  

Section 4 presents results of univariate and multivariate tests of incremental effect of 

V@R use, while section 5 describes the results of a probit analysis of the determinants of 

the Value-at-Risk use by sample firms.  The final section offers a summary and 

conclusions. 

 

 

IV.2 Risk Management and Financial Institutions 

 

Financial institutions use many different financial risk management techniques.47  

Recent years have witnessed an increase in popularity of the V@R approach to financial 

risk management.48  The V@R methods are very attractive and intuitive because the 

metric is able to describe risks in a form of a single profit/loss number.  From a 

theoretical standpoint, V@R can be viewed as a natural extension of classic portfolio 

theory of Markowitz (1952, 1959) and subsequent asset pricing models.  As described in 

CHAPTER ONE, V@R is the maximum amount of money the firm can lose over some 

                                                           
45 See THE FIRST CHAPTER for a discussion of theoretical reasons for corporate hedging. 
46 They provide only anecdotal evidence in support of their theory by noting an increased volatility in 
August 1998, and subsequent problems related to the demise of LTCM. 
47 Other techniques include RAROC (Risk-Adjusted Return On Capital) introduced by Bankers Trust, 
duration matching of assets and liabilities, cash-flow netting rules, and use of derivatives to manage 
individual trades. 
48 See Jorion (2001) and Dowd (1998) for an in-depth description of V@R, including estimation 
procedures, methodologies, history, risk management applications and case studies. 
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specified period of time with a certain degree of confidence.  V@R techniques enable 

managers to better evaluate risks of certain operations and corporate capital needs.  The 

attractions of Value-at-Risk measures can be summarized as follows: 49  

1. V@R provides managers with a universal (and better?) description of risks, 

leading to more informed and (probably) superior decisions.50    

2. Managers are able to establish robust control systems and detect fraud or human 

error.  Using the V@R approach can prevent risk management disasters similar to 

those of Barings, and Orange County.51   

3. V@R provides a consistent, integrated treatment of risks across and within 

institutions, leading to a greater transparency for shareholders and investors of 

mutual funds, pension funds and trusts.    

4. Traders may have incentives to increase risks of their positions if their 

compensation contracts are imperfect.  For example, traders receiving a fixed 

amount of their trading profits without regard to the risk of their trading positions 

are effectively given a call option on a portion of their firm�s profits.  This type of 

compensation contracts creates a moral hazard problem, as traders have incentives 

to increase the risk (volatility) of their positions. V@R metrics provides a useful 

benchmark for improving compensation contracts of traders and managers by 

taking into account the risks they take.  

5. Firms are better able to allocate capital to individual business units and estimate 

firm-wide capital needs.  The approach enables firms to respond to regulations, 

particularly the capital adequacy regulations that financial institutions face.  The 

costs of regulatory compliance may be lowered by decreasing risks rather than by 

increasing capital. 

 

                                                           
49 Jorion (2000, page xxiii) and Dowd (1998, page 22) discuss these potential benefits. 
50 V@R metrics and methodologies extend in some respect classic portfolio theory as they describe 
portfolio risks not only in terms of volatility, but often in terms of the complete probability distribution of 
portfolio returns  So-called greeks in derivatives trading, duration, beta, standard deviation, among others, 
are examples of risk measures used in different settings. 
51 The failures of Orange County and Barings Bank, and losses of Procter&Gamble are generally blamed 
on lack of risk management systems. See Jorion (2001) among others. 
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As a result, V@R-RM is being adopted around the world by various market 

participants including:  

 

1. Financial Institutions and Asset Managers.  Banks with large trading portfolios 

have been the pioneers of risk management.  Institutions dealing with numerous 

sources of financial risk and complex instruments are implementing centralized 

risk management systems.  Institutional investors can turn to V@R to report 

financial risks 

2. Regulators.  The Basel Committee on Banking Supervision, the U.S. Federal 

Reserve, and the U.S. Securities and Exchange Commission, as well as regulators 

in the European Union have converged on V@R as a benchmark for risk and 

regulatory compliance purposes.52 

3. Non-Financial Corporations.  As discussed earlier, hedging and risk management 

can increase shareholder value.  For example, multinational corporations face 

cash-flows in multiple currencies.  They can use �Cash-flow at Risk� analysis to 

predict likelihood of a critical shortfall of funds.  

 

The Goldman Sachs case study presented in CHAPTER ONE, SECTION FIVE provides an 

example illustrating the risk management problems faced by trading firms in establishing 

position limits and compensation rules.  Larry Becerra was one of the most successful 

traders of the firm.  In 1993, he was reported to have made more than $80 million for the 

firm that earned a record $2.6 billion in total pretax profits that year.  In December 1993, 

Becerra invested heavily in Italian bonds.  After a sharp rise in the Italian bond market, 

his positions alone made the firm $80 million in a single month.  Several signs pointed to 

the rising overconfidence that seemed to extend to the upper levels of management.  One 

partner reportedly met with a member of the Federal Reserve Board and claimed: �We 

are too big to fail.  A $100 million loss, a $50 million loss, it means nothing.  We're too 

big now, [the Fed] won't let us fail.�  It seems that hubris had taken hold.53  Since the 

firm�s proprietary traders felt confident that they could handle a position of almost any 

                                                           
52 Basel Committee, 1995; Securities and Exchange Commission, 1997. 
53 �Hubris� has often been cited as an explanation in the mergers and acquisitions (M&A) literature, (see 
Roll, JB 1986) 
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size, and large concentrated bets were the focus, Becerra was allowed to keep a giant 

position.  By February, he lost more than $100 million, just thirty-one days after the gain 

of $80 million. 

 

 

IV.2.1   The Hypothesis, Economic Benefits of V@R Approach  

 

Initially, V@R was developed as a practical gauge of financial risk.  Recently, it 

has transformed into a benchmark to compare risk across business units, and even decide 

on the amount of equity capital necessary to support a trading activity.54  However, 

LTCM�s failure has been ascribed to its use of Value-at-Risk.  V@R�s usage may expose 

current methods used to set capital-adequacy requirements as inadequate55.  Commercial 

banks are allowed, under the Basel framework, to use their internal models as the basis 

for determining the equity capital necessary to support market risk exposures of their 

trading operations (Basel Committee, 1995, 1997). 

This paper investigates a sample of the largest commercial banks (public bank 

holding companies, BHC) using V@R as their risk management tool to assess economic 

benefits of the V@R approach.  We hypothesize that the �user� banks have superior 

valuations (higher P/E ratios, M/B ratios) relative to a benchmark group of �non-users�, 

controlling for various firm characteristics, as described below.  

Consistent with the theoretical predictions, firms that use risk management tools 

should achieve higher valuations (P/E ratios) because of larger future cash flows, rather 

than the lower risks they take.  From a simple Gordon Growth Model (GGM) follows: 

grE
PL

−
≈≡ 1   ,       4.2.1 

where P/E denotes the firm�s Price/Earnings ratio, r is the cost of capital, and g is the 

expected growth rate of earnings (or dividends).  Ceteris paribus, a positive change in 

                                                           
54 Matten (2000) 
55 Jorion (2000) describes the case of Long-Term Capital Management (LTCM) and uses V@R approach to 
quantify LTCM�s (ex-ante) risks to show that principals of LTCM severely underestimated risks of their 
trading positions. 
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corporate earnings growth prospects will have a positive impact on it�s P/E ratio since 

0>∂∂ gL . 

 For firms using risk management tools, the higher cash flow growth is based on 

various theoretical predictions such as lower future tax liabilities, avoidance of financial 

distress costs, and new capital acquisition transaction costs.  Consequently, a better 

understanding of the risks that firms take allows them to avoid costly states in which they 

are unable to exercise their valuable growth options.    

 It would be incorrect to conjecture that firms achieve higher valuations by 

avoiding risks per se.  Since most investors are well diversified, firms cannot decrease 

their cost of capital r (and thus increase valuations) by removing idiosyncratic risks.  On 

the other hand, while firms can decrease their cost of capital by removing some 

systematic risk, in an efficient market this risk is fairly priced and its impact on firm 

value is inconsequential.   

 

 

 IV.3  Sample Selection and Methods 

 

 The sample consists of the100 largest publicly traded bank holding companies 

(BHC).56  The time period examined covers years 1993-1998.  Table IV.1 provides a 

basic overview of the sample. 

The information on the banks� use of V@R risk management was collected from 

annual 10-K disclosures, which are available online via the Securities and Exchange 

Commission�s EDGAR database of public firms� disclosure filings.  Each report was 

searched for keywords such as �value-at-risk�, �VaR�, �earnings-at-risk�, and �risk 

management�.  From the disclosures reviewed for this study, it is evident that most 

companies engage in some financial risk management.  The extent of disclosure varies 

widely and indicates that techniques range greatly from a relatively simple interest-rate 

risk management (GAP and duration matching of assets and liabilities) through scenario 

                                                           
56 The sample was obtained by selecting 100 largest publicly-traded bank holding companies as of 1998.  
This sample is held constant over the sample period 1993-1998.  Since there were only a few mergers (and 
no defaults) during this sample period among the largest BHCs, the group of 100 largest BHCs in 1998 is 
essentially the same one as in 1993. 
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analysis to more sophisticated methods such as Value-at-Risk (sometimes also referred to 

as Earnings-at-Risk).   

Based on the disclosure in annual reports, each BHC is placed either in a category of 

users or nonusers of V@R-RM.  The test is repeated for all years.  The working 

assumption is that managements voluntarily reporting V@R in their annual reports are 

more likely to use V@R as an important decision-making tool. 

In January 1997, the Securities and Exchange Commission (SEC) issued a ruling 

requiring public firms to disclose quantitative information about the risk of financial 

instruments in reports filed with the SEC.  This rule applies to all filings for fiscal years 

after June 15, 1998.  Firms are asked to disclose market risks using one of three 

alternatives:  1) tabular presentation of cash flows; 2) sensitivity/scenario analysis; or 3) 

Value-at-Risk measures.  The sample used throughout this study ends in 1998, as it 

would be impossible to distinguish between voluntary V@R disclosure reports that are 

based on a genuine use of V@R for decision-making purposes, and reports designed to 

satisfy only the regulatory disclosure requirements.   

The BHC accounting-level data is obtained from the Sheshunoff database.   The 

data-items used include a) total assets; b) the notional amount of derivatives; c) trading 

assets; d) total book equity; f) net income.  The COMPUSTAT database is used to collect 

data on the end-of-period earnings, book values of equity, share prices and total shares 

outstanding.  These are used to construct the relative-value measures, such as price-to-

earnings (P/E) and market-to-book (M/B) ratios. 57 

 

 

IV.4  Empirical Results 

 

Table IV.1 provides a basic overview of the sample.  The use of V@R-RM has 

increased over the years.  There are 23 companies reporting V@R-RM in 1998, 

compared to 2 in 1993 (J.P. Morgan and Chase).  There is a wide variation in total assets 

                                                           
57 The S&P�s Compustat database has several files.  The market value and book value data is obtained from 
the industrial file, the end-of-year price and earnings data is obtained from two alternative files: the annual 
industrial file and dividend/earnings file.  There are two alternative P/E measures: the first is based on total 
annual earnings, the second is based on the last quarter�s earnings.  Both alternatives return similar results. 
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among the top 100 BHCs.  This is also true about the extent of their derivatives and asset 

trading activities.  The distributions are skewed to the right, as there is tendency of the 

largest companies to have more trading assets or total derivatives outstanding (usually for 

trading purposes, but reported separately from other assets held for trading).  

 

 

Table IV.1  Descriptive Sample Statistics  
 
 
Panel A. 

 YEAR 1998 1997 1996 1995 1994 1993 

 Sample size (no. of BHCs) 100 100 100 100 100 100 

 Number of BHCs using V@R 23 17 11 6 5 2 

 Average P/E ratio 20.69 21.16 15.18 14.01 11.00 11.82 

 Average M/B ratio 2.53 2.25 1.30 0.97 0.77 0.80 

 
 
Panel B.  

 YEAR 1998 1997 1996 1995 1994 1993 

 Total Assets (�000 USD)       

 -- Average 45,511,353 32,351,589 27,976,678 23,694,370 21,339,064 18,963,801 

 -- Median 10,366,580 7,713,245 6,577,847 6,180,686 5,357,955 4,691,900 

 -- Max 668,641,000 365,521,000 336,099,000 256,853,000 250,489,000 216,574,000 

 -- Min 2,123,006 948,848 358,752 303,442 728,136 570,433 
Total Equity to 
    Total Assets       

 -- Average 8.09% 8.24% 8.35% 8.38% 8.03% 8.01% 

 -- Median 7.84% 8.04% 8.24% 8.18% 7.75% 7.71% 

 -- Max 13.14% 13.05% 12.70% 14.45% 21.86% 11.80% 

 -- Min 3.53% 4.07% 4.35% 4.79% 4.85% 4.87% 
Trading Assets to  
   Total Assets       

 -- Average 1.67% 1.66% 1.60% 1.67% 1.68% 1.51% 

 -- Median 0.02% 0.01% 0.00% 0.00% 0.00% 0.00% 

 -- Max 43.63% 42.67% 40.98% 46.05% 48.98% 52.43% 

 -- Min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Total Derivatives to  
    Total Assets       

 -- Average 118.66% 114.13% 91.64% 87.29% 66.11% 56.17% 

 -- Median 6.28% 6.44% 5.23% 4.26% 3.92% 4.92% 

 -- Max 3295.37% 2503.15% 2085.85% 1857.29% 1327.99% 1397.77% 

 -- Min 0.11% 0.00% 0.08% 0.03% 0.01% 0.03% 
 
Note:  Total Derivatives denotes the total notional amount of derivates. 
 



 

 

83 

 IV.4.1  An Analysis of V@R Users and Non-users 

 

 Table IV.2 provides a univariate comparison of various characteristics of 

companies that use V@R-RM techniques and characteristics of companies that don�t use 

these techniques.   Panel A reveals that V@R users are significantly larger than non-users 

(both in economic and statistical sense).  This result may be explained by economies of 

scale, as there may be large fixed costs to establishing an extensive risk management 

program with large data processing capabilities.  Also, as we would expect from the prior 

discussion, V@R-RM users have larger derivatives positions and their trading assets 

comprise a larger proportion of their total assets.   If V@R metrics provides an efficient 

monitoring device for managers, we would expect its more extensive use among 

companies with relatively larger leveraged derivatives positions, for which other risk 

measures may be hard to interpret or which may not provide sufficient statistic for 

decision makers. 

 Panel B contrasts the P/E and M/B ratios of users and non-users.  Contrary to our 

predictions, non-users have higher valuations than users, as their P/E ratios are 

consistently higher in all years, although only insignificantly so in 2 out of the 6 sample 

period�s years.58   This result is puzzling.  Why would investors put a lower relative value 

on companies that use V@R risk management systems?   This result may be linked to the 

other firm characteristics, such as size, leverage, and asset composition.  The next section 

provides the results of a multivariate analysis that may shed more light on this puzzle.  

On the other hand, this result may be consistent with Basak and Shapiro (2001), who 

show that managers using V@R techniques to constrain their asset selection may incur 

relatively larger losses if losses exceeding V@R metrics occur.  The other alternative 

measure of firm value, market to book (M/B), is not significantly different for the two 

sub-samples. 

 

 

 

                                                           
58 The other commonly used measure of a distribution�s centrality is the median.  However, the use of 
medians instead of arithmetic averages does not change the observation that the V@R user�s P/E and M/B 
ratios are  smaller than the ratios of companies not using V@R-RM methodologies.  
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Table IV.2  Comparison of V@R-RM users vs. nonusers 

 
Panel A.  

 
          YEAR 

 
1998 

 
1997 

 
1996 

 
1995 

 
1994 

 
1993** 

 

 
  
 V@R users 147,263 123,061 132,201 112,557 113,313 141,888 

 Total Assets 
     (Mean, mill. USD) 

  
 V@R Non-users 15,118 13,314 16,646 17,835 16,229 16,292 

 
p-value for 
difference   0.22% 0.09% 0.5% 3.3% 3.9% 1.8% 

 
  
 V@R users 7.31% 7.11% 7.19% 7.46% 6.67% 7.41% 

 Equity to Assets  
      (Mean)    

  
 V@R Non-users 8.32% 8.48% 8.50% 8.44% 8.10% 8.02% 

 
p-value for 
difference   0.85% 0.06% 2.4% 10.3% 5.6% <0.01% 

    
  
 V@R users 6.61% 8.53% 11.88% 12.31% 12.77% 19.34% 

 Trading to Total Assets 
    (Mean)    

  
 V@R Non-users 0.20% 0.21% 0.27% 0.97% 1.07% 1.13% 

 
p-value for 
difference   1.31% 2.19% 3.1% 10.8% 15.4% 35.9% 

    
  
 V@R users 478% 603% 699% 776% 557% 985% 

 Derivatives to Assets  
      (Mean)    

  
 V@R Non-users 11.3% 11.5% 13.9% 41.9% 38.8% 36.0% 

 
p-value for 
difference   2.22% 1.4% 1.26% 8.6% 13.9% 11.5% 

 

Panel B.  

 
YEAR . 

 
1998 

 
1997 

 
1996 

 
1995 

 
1994 

 
1993** 

 

 
  
 V@R users 19.6 18.5 14.7 11.6 8.52 7.66 

    P / E  ratio 
     (Mean) 

  
 V@R Non-users 21.0 21.7 15.2 14.2 11.1 11.9 

 
p-value for 
difference   23.3% 0.47% 58% 2.9% 1.1% 1.18% 

 
  
 V@R users 2.78 2.39 1.62 0.84 0.67 0.92 

    M / B ratio 
      (Mean) 

  
 V@R Non-users 2.47 2.23 1.26 0.98 0.77 0.80 

 
p-value for 
difference   23.8% 55.3% 20.1% 44.2% 53.5% 86.7% 

 
Notes:   
Median values, as an alternative measure of centrality of variable distribution, are very similar to the 
reported averages and the relative comparisons of the P/E and M/B ratios between the V@R “users” and 
“non-users” using medians remain the same. 
** Though reported, the comparison may not be appropriate for the year 1993, as there were only two V@R 
users: J.P. Morgan and Chase Manhattan. 
“Trading to Total Assets” denotes the ratio of the trading assets to total assets. 
“Derivatives to Assets” denotes the ratio of the total notional amount of derivates to total assets. 
P-values based on the Satterthwaite Method’s t-test for equality of means of distributions with unequal 
variances, except where the F-test for equality of variances can’t be rejected. 
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IV.4.2  Controlling for other firm characteristics 

 

In order to make any conclusions about the impact of corporate risk management 

policies, it is necessary to control for the effect of other firm characteristics that can have 

an impact on the firm�s value (e.g., on P/E or M/B ratio).  It is possible that the V@R 

premium/discount can be explained by factors previously linked to value premia and 

factors that theory suggests affect firm value (Fama and French, 1992; Barber and Lyon, 

1997; Morck and Yeung, 1991; Lang and Stulz, 1994; Servaes, 1996; Yermack, 1996; 

Hannan and Hanweck, 1988).  The following multivariate tests check to see if the results 

are robust by controlling for size, leverage, trading activity and market making activity in 

derivatives.  Most of the studies listed above find that P/E and M/B ratios vary depending 

on the firm investment opportunity set.  In this study, it is assumed that the investment 

opportunity set is the same for all sample firms, as they are all in the same industry 

(bank-holding-companies) and share many characteristics.  The various control variables 

used in multivariate tests are described below: 

1) Size.  Various asset-pricing tests reveal that size is related to firm returns (Banz, 

1981; Fama and French, 1992; Barber and Lyon, 1997; among others).  Though it is 

unclear whether the size characteristic proxies for a missing risk factor, it is evident that 

several presumed anomalies may be �explained� by an observed correlation between 

stock returns and size.  Also, due to the economies of scale and potentially substantial 

fixed start-up costs, relatively larger firms may be more likely to engage in sophisticated 

risk management practices such as V@R.  The size variable used is the natural logarithm 

of total book value of assets (LNTOTAST). 

2) Leverage.  A firm�s capital structure may affect its value (see Harris and Raviv, 

1991, for a survey).  This is especially important for financial institutions such as banks 

that have very high levels of leverage and thus even small differences among these firms 

may lead to substantial deviations in measures such as P/E ratio (see Barber and Lyon, 

1997; Hannan and Hanweck, 1988).  The leverage variable used is the ratio of total book 

equity to total assets (EQTA) expressed in percentage terms. 

3) Trading activity, and derivatives market making.  Large financial firms are active 

in extensive asset trading, which includes derivatives.  The trading portfolio may be 
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riskier than the other assets.  The proportion of assets invested in trading assets 

(TRTAST) may be related to systematic risks of future bank profits and thus affect the 

price that investors are willing to pay for bank equity shares.  Also, derivatives market 

making has received lots of negative publicity and lawsuits from large clients whose bets 

went sour during the sample period.59   Resulting settlements forced many banks (notably 

Bankers Trust) to refund derivatives end-users (Procter and Gamble) a portion of their 

losses.  The threat of further ex-post lawsuits from other bank-clients that happen to lose 

on their derivatives trades may induce markets to revise the price downwards and thus 

relevant measures of value such as P/E and M/B ratios.  The price discount may represent 

the market�s estimate of present value of future liabilities due to derivatives-trade related 

lawsuits.  The extent of derivatives trading may serve as a useful proxy for this effect.  

Though the market values of derivative portfolios are unknown, the notional amounts of 

underlying assets should be monotonically related (DERIVTA). 

4) Time:  Since V@R-RM has gained its widespread acceptance only slowly over 

the years, and P/E ratios tend to change over time, it is necessary to control for annual 

fixed effects by using year dummies (YRxx dummy). 

 

Table IV.3 provides results of the least squares regression analyses.  The 

dependent variable is the P/E ratio.  The variable of interest is VARDUM (V@R dummy 

variable).60  Surprisingly, even after controlling for firm size and other characteristics, the 

V@R dummy parameter estimate is significantly negative, indicating that markets appear 

to put a discount on BHCs that employ V@R-RM techniques.   The effect is somewhat 

smaller after including the derivatives variable (DERIVTA).   A discount on V@R users 

is partially a result of the high correlation between the use of V@R and derivatives.  This 

negative relationship between the firm value and the derivatives market making is itself a 

noteworthy finding.   

The results for the M/B ratio as an alternative dependent variable are not reported, 

because the estimated coefficients of independent variables are mostly not significant.   

 

                                                           
59 See Jorion (2000) for an overview of derivatives scandals involving large derivatives trading firms such 
as Bankers Trust and their clients � Procter and Gamble, Gibson Greetings, Orange County. 
60 VARDUM takes on value of 1 if a company uses V@R-RM, and 0 otherwise. 
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Table IV.3   Multivariate least-squares regression analysis for P/E ratio as the dependent variable 
  

  
Dependent Variable is P/E ratio 

 
 Model 1 

 
Model 2 Model 3 

  
 Independent Variables 

Coefficient 
estimate 

 
p- value 

Coefficient 
estimate 

 
p- value 

Coefficient 
estimate 

 
p- value 

 
Intercept 
 

 
23.6 

 
<0.01% 

 
23.2 

 
<0.01% 

 
22.7 

 
<0.01% 

VARDUM – V@R dummy  
   0=non-users, 1= users 
 

-1.57 
 

2.8% -1.44 5.1% -1.24 10.2% 

LNTOTAST – log of total 
assets total assets in 
thousands USD 

0.001 99.5% 0.04 81.2% 0.08 65.1% 

EQTA – equity to assets 
 expressed in 100% terms 
 

0.084 50.6% 0.055 67.7% 0.041 75.2% 

ROE – return on equity 
 expressed in 100% terms 
 

-0.22 <0.01 -0.22 <0.01% -0.234 <0.01% 

TRTAST – trading-to-total  
assets expressed in 100% 
terms 

  -0.029 40.7%   

DERIVTA – derivatives-
to-assets expressed in 
100% terms 

    -0.001 15% 

YR97dum – year 1997  
                    dummy:  
1 if 1997, 0 otherwise 

0.62 31% 0.65 29.4% 0.68 27.9% 

YR96dum -5.6 <0.01 -5.6 <0.01% -5.6 <0.01% 
YR95dum -7.4 <0.01 -7.4 <0.01% -7.4 <0.01% 
YR94dum -9.9 <0.01 -9.9 <0.01% -9.9 <0.01% 
YR93dum -9.1 <0.01 -9.0 <0.01% -9.0 <0.01% 
 
Adjusted R2 – value  

   
47.9 

  
47.9 

  
48.0 

 

 
Regression F – value 
(Prob>F) 

 
56.6 

 
<0.01 

 
51.0 

 
<0.01% 

 
51.2 

 
<0.01% 

 

 

 

IV.4.3  A Logit Analysis of Determinants of the V@R Use 

 

 This section estimates a binary response model of V@R risk management system 

selection.   There are common claims that BHCs do (or don�t) use V@R because they 

have large (or negligible) trading or derivatives portfolios.  The earlier univariate analysis 

suggests that portfolio composition may indeed induce companies to select a more 

sophisticated system.  This is consistent with predictions that V@R provides a tool to 

monitor trades and risk-taking of traders.  Table IV.4 provides the results of a logit model 

for V@R choice.   
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The results confirm that larger companies as well as those with larger derivatives 

positions are more likely to use V@R-RM.   Importantly, the results indicate that this is 

also true for firms with higher leverage, though the coefficients are not significant at the 

usual confidence levels.   On the other hand, the impact of trading assets on the decision 

to implement V@R techniques is inconclusive as the coefficient estimates are 

insignificant in most specifications.  However, a similar logit analysis for year 1998 only 

gives a significant coefficient for the trading portfolio variable, which is consistent with 

predictions.61   

 

Table IV.4   A Logit Model for a Discrete Dependent Variable VARDUM 
  

 Dependent Variable is a V@R dummy 
Ordered response 1= users,  0=non-users 

 
 Model 1 Model 2 Model 3 
  
 Independent Variables 

Coefficient 
estimate 

 
p- value 

Coefficient 
estimate 

 
p- value 

Coefficient 
estimate 

 
p- value 

 
Intercept 
 

 
-26.85 

 
<0.01% 

 
-28.35 

 
<0.01% 

 
-25.8 

 
<0.01% 

LNTOTAST – log of total 
assets, in thousands USD 
 

1.60 <0.01% 1.72 <0.01% 1.56 <0.01% 

DERIVTA – notional 
derivatives to assets 
expressed in 100% terms 

0.0011 11.0%   0.0028 6.71% 

EQTA – equity to assets 
 expressed in 100% terms 
 

-0.19 27.6% -0.27 14.4% -0.23 19.6% 

TRTAST – trading-to-total 
assets expressed in 100% 
terms  

  0.016 51.8% -0.071 18.9% 

YR97dum – year 1997  
dummy: 1 if 1997, else 0 

-0.37 46.6% -0.38 45.8% -0.36 47.2% 

YR96dum -1.11 5.55% -1.10 5.67% -1.11 5.62% 
YR95dum -2.36 0.18% -2.20 0.18% -2.41 0.20% 
YR94dum -2.47 0.15% -2.40 0.13% -2.32 0.26% 
YR93dum -3.66 0.02% -3.51 0.02% -3.64 0.05% 
Likelihood Ratio:  
Testing global null H0:    
             coefficients=0         

 
220.7 

 
<0.01% 

 
218.2 

 
<0.01% 

 
222.6 

 
<0.01% 

 

                                                           
61 This result may be just a consequence of impending regulation.  Effective January 1, 1998, the regulatory 
agencies began to incorporate market risk into the risk-based capital guidelines. Any bank or bank holding 
company whose trading activity exceeds either: (1) 10% or more of its total assets, or (2) $1 billion or 
greater, must measure its exposure to market risk using its own internal value-at-risk model and hold 
capital in support of that exposure. 
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IV.5   Conclusions 

  

 Despite the enormous popularity of V@R-RM among practitioners, the results of 

this study do not indicate that sophisticated risk management systems increase corporate 

value.  This conclusion, however, does not mean that the gains do not exist, merely that a 

positive effect may (though need not) be obscured by other effects.  More importantly, 

contrary to our predictions, the analysis reveals that investors place a negative value on 

companies using V@R.  The relationship between firms� P/E ratios and V@R use 

remains negative and significant even after numerous robustness checks.62   

 This negative relationship is puzzling as firms using better risk management 

systems should make more informed decisions and avoid numerous costs such as costs of 

financial distress, underinvestment costs, and transaction costs related to raising new 

capital after an adverse return shock.  Moreover, an implementation of sophisticated risk 

management systems should allow firms to establish better monitoring systems and 

compensation schedules for their traders and managers.  As of now, these gains remain 

elusive. 

 An alternative explanation of the negative relationship must be then connected 

with the firms� cost of capital.  It is possible that the V@R dummy proxies for an 

unobserved source of systematic risk, which is not explained by the other explanatory 

variables.  Basak and Shapiro (RFS, 2001) argue that the use of V@R systems may lead 

managers to mechanically decrease the predetermined V@R metric at some confidence 

levels, but consequently (and optimally) increase expected losses when losses exceeding 

the V@R benchmark occur.  This strategy may result in a risk profile that is recognized 

and discounted by investors, but may not show in traditional measures of risk (or their 

proxies).  If V@R use indeed proxies for higher systematic risk and therefore higher cost 

of capital (ceteris paribus), then P/E ratios would be correspondingly lower.  This fact can 

easily be seen from the simple GGM valuation model represented by relationship 4.2.1, 

since 0<∂∂ rL . 

                                                           
62 The robustness checks included White�s heteroskedasticity consistent standard errors,  an analysis of 
dividend payouts, and other partial data analyses. 
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Also, it is likely that sophisticated bank holding companies using V@R are the 

same companies dealing with hedge funds, similar to the famed LTCM hedge fund.  

Contrary to what their names may suggest, many of the hedge funds are not �hedged� (in 

a sense that they are not market neutral) and tend to incur large losses or even go 

bankrupt at times of market crises.  Fung and Hsieh (1997, 1999, 2000) provide empirical 

evidence on hedge funds and document that these funds employ opportunistic trading 

strategies on a leveraged basis.  Hedge funds are often in a position to exert substantial 

market impact via their considerable exposures.  Also, the risk of their investments may 

not be captured by standard linear statistical techniques, because of the funds� non-linear 

dynamic trading strategies (Fung and Hsieh, 1999, p. 232).63   

BHCs often either extend a large line of credit to hedge funds or finance their 

investments.  Large losses incurred by hedge funds may in turn result in large losses to 

their creditors.  Crises are the most expensive states of the world and least likely to be 

insured.  Though they are rare, crises represent systematic portfolio events and may result 

in a sizeable discount in market values of firms affected by them.  The results of this 

study may be a manifestation of the above phenomenon, which in the academic literature 

is also known as the �peso problem.� 

 

 

 

                                                           
63 Fung and Hsieh, (1999, p. 313) also report that the standard deviation of hedge funds returns is less than 
half the standard deviation of the S&P500 index returns.  The author is not aware of any systematic study 
of the hedge funds� bankruptcy rates and returns to the hedge fund creditors during crises.  The recent 
highly publicized examples include bankrupt Long-Term Capital Management hedge fund and Tiger fund.  
Hedge funds are usually organized as of-shore entities and are not required to disclose their operations or 
returns.  This fact may limit any study attempting to document the behavior of returns to hedge fund 
investors or banks dealing with them. 



 

 

 

 

Chapter V 

SUMMARY AND CONCUDING REMARKS 

 

 
�The effects of noise on the world, and on our views of the world, are profound.  Noise in the 

sense of a large number of small events is often a causal factor much more powerful than a small number of 
large events can be.  Noise makes trading in financial markets possible, and thus allows us to observe 
prices for financial assets. . . . Most generally, noise makes it very difficult to test either practical or 
academic theories about the way that financial or economic markets work.  We are forced to act largely in 
the dark.� 
 
 Fisher Black, �Noise,� (Journal of Finance, 1986). 
 

 

V.1  Major findings 

 

MODEL MISSPECIFICATION AND ESTIMATION ERRORS are shown to play an 

important role in financial risk management. Moreover,  they seem to be largely 

unavoidable.  Because our understanding of the true asset price processes is still rather 

vague, theoretical models of finance have to be applied carefully in light of their 

underlying assumptions.  Practitioners need to assess each model�s limitations carefully.  

THIS CHAPTER provides a summary of major findings as well as their discussion and 

suggestions for future research.   

Model misspecification and estimation errors can lead to substantial deviations 

from optimal hedging policies and erroneous assessment of investment risk.  Various 

model assumptions and simulations presented here provide an important insight about the 

impact of the true return dynamics and its potential misrepresentation on the outcome of 

an investor�s hedging decisions and measurement of risk.   

Investors with different utility functions may find more informative different risk 

measures (e.g., variance, V@R metrics).  The risk of a minimum-variance hedge is 

shown to be not unambiguously smaller than the risk of an unhedged position.  Moreover, 

different measures of risk � such as portfolio variance and V@R metrics � may lead to 
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contradictory conclusions about the portfolio�s risk level.   It is shown that if asset returns 

are normally distributed, only an extreme parameter uncertainty and very low absolute 

levels of return correlation would lead to an increase in a risk level, no matter what risk 

measure is used.  However, the same conclusions cannot be reached for leptokurtic asset 

return series.  If prices are generated by a process resulting in a return distribution that is 

a mixture-of-normals, a Gaussian model assumption and the minimum-variance hedge 

methodology may lead to a hedging decision that can increase rather than decrease the 

risk of an underlying investment position.  

The hedging errors and the potential increase in risk is most likely to occur if 

return distributions exhibit extreme kurtosis and the estimation period is rather short.  

Short estimation periods may be applied either directly due to the non-stationarity of 

return series previously reported in finance literature, or indirectly by selecting a model 

that weights more recent observations more heavily.  It is shown that the effective 

estimation periods of certain ARCH-class models such as Equally Weighted Moving 

Average (EWMA) models can be rather short (25 to 100 days for daily return series) even 

if very long actual data series are used in parameter estimation.  The short estimation 

sample introduces extra noise into the parameter estimation that may lead to a hedging 

decision that increases risk (in terms of variance as well as in terms of V@R).  

Uncertainty about the optimal hedging decision and the (change in) risk level can 

be traced to large standard errors of various parameter estimates such as the correlation 

coefficient.  Model misspecification may lead investors to believe that the correlation 

coefficient or variance of return series is non-stationary (Merton, 1976).  Existence of 

jumps in asset return series leads to the standard errors of sample correlation coefficient 

estimates that may be several times larger than standard errors of estimates under the 

normality of returns.  Subsequently, large errors in the estimates of asset cross-

correlations can lead to large errors in hedge ratios.  Model and estimation errors may 

thus ultimately lead to a return distribution of hedged position that has undesirable 

properties, e.g., Value-at-Risk of a hedged position may be substantially larger (at some 

small but not negligible confidence level) than V@R of an unhedged position.  What 

should an underwriter do to prevent unnecessary model risk and ultimately hedging 

errors?  A simple examination of sample return properties, use of alternative models and 
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preferably models with longer effective estimation periods should prove to be highly 

informative and a positive net present value project. 

It is also shown, that V@R may be significantly understated in both economic and 

statistical sense if an incorrect model is used.  The mixture-of-normals model can lead to 

V@R metrics that dramatically exceed metrics under the normality assumption.  For 

some mixture-of-normals model specifications, the true V@R metric at low (0.1%) 

confidence levels is a multiple of the V@R metric estimated by erroneously assuming 

that returns are normally distributed.  Moreover, back testing of models at higher 

confidence levels (e.g., 5% or 10%) may lead to a false sense of security that models used 

are correctly representing the empirical return dynamics.  How serious the problem is can 

be answered only by examining empirical samples. 

CHAPTER THREE investigates characteristics of various asset returns.  A mixture-

of-normals model is shown to fit empirical distributions significantly better than the 

alternative models that assume conditional (EWMA) or unconditional normality (GBM).  

The Pearson-Fisher goodness-of-fit tests forcefully show that daily return dynamics 

cannot be captured by the normality assumption.  The empirical samples examined in this 

study are shown to contain extremely large returns of either sign, which exceed 

frequencies predicted by normality models by a factor of 2 to 3.  One important caveat is 

in order.  It is very likely that any theoretical model could be rejected by large empirical 

samples if goodness-of-fit test with a large number of classes is used.  This is true even 

for the mixture-of-normals model, though it is greatly preferable to the alternatives.  A 

mixture-of-normals model is shown to fit empirical samples relatively well overall and 

especially well in the �tails�, the major concern of financial risk managers.   

Several unresolved issues remain.  The frequency of zero returns (no price 

changes) is substantially larger than can be justified by any simple model.  Obviously, 

more complex models are needed to explain this special feature of price dynamics.   

Another potentially troubling feature of short-term returns is an impact of price 

discreteness.  Bid-ask spread may distort estimates of model parameters, and distributions 

relying on estimators obtained using very short (intraday) returns should be viewed with 

a healthy dose of skepticism. 
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The Value-at-Risk metrics estimates at confidence levels below one percent are 

significantly larger (in a statistical and economic sense) if the V@R methodology 

assumes the mixture-of-normals model rather than the Gaussian model.  Return 

distributions are of great interest to risk managers, financial companies� regulators, as 

well as option traders.  Paraphrasing Robert Merton, we need to be careful in selecting 

our return dynamics models and assess their limitations, or else be surprised by the next 

�six sigma� event. 

 CHAPTER FOUR examines the potential benefits and value of V@R systems in 

managing financial institutions� investments and portfolio choices.  Despite enormous 

popularity of V@R-RM among practitioners, the results of this study do not indicate that 

sophisticated risk management systems increase corporate value.  This conclusion 

however does not mean that the gains do not exist, merely that the positive effect may 

(though need not) be obscured by other effects.  More importantly, contrary to our 

predictions, the analysis reveals that investors place a negative value on companies using 

V@R.  The relationship between firms� P/E ratios and V@R use remains negative and 

significant even after numerous robustness checks. 

 This negative relationship is puzzling as firms using better risk management 

systems should make more informed decisions and avoid numerous costs such as costs of 

financial distress, underinvestment costs and transaction costs related to raising new 

capital after an adverse return shock.  As of now, these gain remain elusive. 

 An alternative explanation of the negative relationship must be then connected to 

the firms� cost of capital.  It is possible that the V@R dummy proxies for an unobserved 

source of systematic risk, which is not explained by the other explanatory variables.  

Basak and Shapiro (RFS, 2001) argue that the firms� use of V@R systems may lead to an 

increase in expected losses when losses exceeding the V@R benchmark occur.  This 

strategy may result in a risk profile that is recognized and discounted by investors but 

does not show in traditional measures of risk.  If V@R use indeed proxies for higher 

systematic risk and therefore higher cost of capital (ceteris paribus), then P/E ratios 

would be correspondingly lower.   

Several hypotheses may be put forward.  Sophisticated banks that use V@R-RM 

deal with numerous hedge funds.  These hedge funds are not �hedged� (in a sense that 
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they are not market neutral) and may incur large losses or even go bankrupt at times of 

market crises.  Fung and Hsieh (1997, 1999, 2000) provide empirical evidence on hedge 

funds and document that these funds employ opportunistic trading strategies on a 

leveraged basis.  Also, the risk of their investments may not be captured by standard 

linear statistical techniques, because of the funds� non-linear dynamic trading strategies 

(Fung and Hsieh, 1999, p. 232). 

BHCs often either extend a large line of credit to hedge funds or finance their 

investments.  Large losses incurred by hedge funds may in turn result in large losses to 

their creditors.  Crises are the most expensive states of the world and least likely to be 

insured.  Though they are rare, crises represent systematic-risk portfolio events and may 

result in a sizeable discount in market values of firms affected by them.  The results of 

this study may be a manifestation of this �peso problem� phenomenon. 

Financial risk management is a rather new and still evolving discipline.  The 

effects of noise are profound.  While we cannot eliminate estimation and model errors, 

we should be able to control their impact on our hedging and risk management decisions.  

Future research should address the tradeoffs between simple models and complex models 

with noisy parameters.  The impact of noise and model uncertainty may force us to act 

largely in the dark.  Paraphrasing Fischer Black (1986, p. 530), if my conclusions are not 

accepted, I will blame it on noise.  Congratulations, you have reached the end, what 

follows is just noise. 
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