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Abstract

Random walks of various types have been studied for more than a century. Recently, a

new measure on the space of fixed total length random walks in 2 and 3 dimensions was

introduced. We will develop de Finetti-style results to help better understand this measure.

Along the way, we will demonstrate how to apply these results to better understand these

polygons by bounding the expectations of any locally determined quantity, such as curvature

or torsion.
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Chapter 1

Introduction

Figure 1.1: Closed 1000 edged Polygon Figure 1.2: Open 1000 edged Polygon

A polymer is a long, flexible, chain-like molecule formed from simpler building block

molecules called monomers. When a polymer’s ends are joined, it is called a closed polymer,

or sometimes a ring polymer. On the other hand, to indicate that the ends are not necessarily

joined, we specify that a polymer is open or linear. In a dilute solution with a good solvent,

repulsive intermolecular forces between the solvent and monomer subunits dominate over

intramolecular interactions, pulling the polymer to occupy relatively large volume. On the

other hand, in a solution with a poor solvent, the repulsive intramolecular forces dominate

and the chain contracts to occupy relatively small volume. In between these two types of

solvents is the theta solvent, where the intermolecular polymer-solvent repulsion balances
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exactly with the intramolecular monomer-monomer repulsion. Under the theta condition,

the polymer behaves like a random walk [36].

In this model, the monomers are rigid rods of a fixed length and their orientations and

positions are independent of each other. We will choose to ignore the steric effect, which

is the repulsion of atoms whose electron clouds overlap, so that we entertain the possibility

that two monomers co-exist at the same place. As such, these polymers are a type of random

walk.

Definition 1. Let {Xk}∞k=1 be a sequence of independent, identically distributed random

variables in Rm. For each positive integer n, we let Sn denote the sum X1 +X2 + · · ·+Xn.

The sequence {Sn}∞n=1 is called a random walk in Rm.

Definition 2. Let {Sn}∞n=1 be a random walk formed from the random variables {Xk}∞k=1.

A random open polygon chain with m edges, or open polygon for short, is a polygonal chain

whose vertex set is given by {0, S1, S2, . . . , Sm}. A random closed polygonal chain, or closed

polygon for short, is an open polygon in which Sm = 0.

(For more information, Panagiotou-Milllett-Lambropoulou provide a detailed exposition

in the introduction of [33]).

In keeping with the connection to polymers, let us for the moment restrict our view to

R3. Defining a probability measure on the space of open polygonal chains is elementary:

take a probability measure on R3 and then sample each edge of the chain independently

according to this measure. One specific example arises from require the measure to only be

supported on a sphere of appropriate radius. This choice will lead to a probability measure

supported on equilateral polygonal arms.

Upon endowing this space with a Riemannian manifold structure, we can then induce

the submanifold metric to the subset of closed polygonal chains and obtain a measure from
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its volume form. It turns out that this closure condition imposes conditions on the distribu-

tion of edges that are difficult to understand.

Currently, sampling algorithms used to model random walk representations of polymers,

a random walk that requires fixed edge length, are very computationally expensive (such

as that shown by Moore-Grosberg in [30]). The Moore-Grosberg algorithm, for instance, is

based on computing successive piecewise-polynomial distributions for diagonal lengths and

directly sampling from these distributions. These polynomials, however, are of high degree,

use large coefficients, and involve many near-cancellations, leading to numerical problems

in evaluating them accurately. These methods are discussed by Hughes in [24] in Section

2.5.4. In addition, known theorems show asymptotic behavior without explicit bounds. For

example:

Theorem 3. [42] The probability P (n) that an n-gon is knotted is given by

P (n) = 1− exp(−αn + o(n)) where α is positive and o(n) denotes an expression f(n) such

that for every positive constant ε, there exists some N ∈ N for which |f(n)| ≤ ε|g(n)| for all

n ≥ N .

Theorem 4. [10] For any given knot type K and any given p ∈ (0, 1), there exists α > 0

independent of the number n such that if n is large enough, then with probability at least

p, in any random equilateral polygon of length n, there exists a knot of type K with a nice

neighborhood of size at least α
√
n so that the polygon is contained in this neighborhood as a

non-trivial loop. Here, a neighborhood of size r of a compact set S is the set of all points

whose distance from from S is less than or equal to r, and a neighborhood of K is called nice

if it is homotopic to K via a strong deformation retract.

While these theorems initially look quite good, in practice knots are fairly rare, even for

somewhat large values of n. As an explicit example, we sampled 100,000 random 300-gons
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using the method of [30], but found that only 6,755 of them were knotted, of which only 367

had crossing number larger than 8 and none had crossing number greater than 12.

In this paper, we will consider a different probability measure on polygon spaces—one

in which we fix only the total length of the polygon, and allow the individual edge lengths

to vary. This probability measure was inspired by the connection between Grassmannians

and the set of fixed perimeter polygons established by Hausmann and Knutson in [20] and

[21]). These manifolds, which have been studied extensively, have opened the way for many

(e.g. Kapovich-Millson [27] and Howard-Manon-Millson [23]) to examine the symplectic

and algebraic geometry of polygon spaces. In [5], Cantarella-Deguchi-Shonkwiler develop

both a probability measure, known as the symmetric measure, and an algorithm for directly

sampling polygons with respect to this measure by utilizing this connection. From this, they

calculate a number of exact expectations of physically significant quantities associated with

polygons, such as the squared chord length and radius of gyration for both planar and spatial

polygons [5], and the total curvature of spatial polygons [6].

Our main goal will be to examine two main questions about this probability measure.

In Chapter 1, we will establish a numerical algorithm to efficiently calculate a natural class

of expectations with respect to this measure, given by Theorem 76. In Chapter 2, we

will apply current de Finetti-style results to justify the intuition that as the edges of the

polygons increase, the closure constraint has a lessened effect on local configurations of sub-

arms through Theorem 91. We will then create an analogous set of de Finetti results in

Chapter 3 to justify that same intuition with space polygons in Theorem 114.
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1.1 Arms

Let us begin by talking about polygonal arms.

Definition 5. Consistent with [5], we will define a polygonal arm with n edges in Rd to be

a curve in Rd specified by a sequence of vertices (v0, v2, . . . , vn, vn+1) consisting of the n line

segments joining consecutive pairs of vertices.

Rd acts on a polygonal arm by translation. While this changes the vertices, it does not

change the edge vectors. We can therefore think of the equivalence class of a polygonal arm

with n edges up to translation on Rd as an ordered set of n vectors in Rd.

Definition 6. Following the exposition given in [6], define Ad(n) to be the moduli space

of open n-edge polygonal arms in Rd up to translation. Likewise, define Pd(n) to be the

moduli space of closed n-edge polygons in Rd up to translation.

We can further consider the space of polygonal arms up to the action of the group of

dilations. For reasons that will be apparent later, we will choose a canonical representative

by selecting the polygonal arm which has a total length of 2.

Definition 7. Taking our notation to match that in [5], let Armd(n) and Pold(n) denote

respectively the moduli space of open polygonal arms with n edges in Rd of total length 2

up to translation in Rd and the the moduli space of closed polygons with n edges in Rd of

total length 2 up to translation in Rd.

Finally, we can also consider the space of arms up to the action of translations, dilations,

and rotations.

Definition 8. As in [5], for d > 2, let Armd(n) and Pold(n) denote respectively the moduli

space of open polygonal arms with n edges in Rd of total length 2 up to translations and

rotations and the moduli space of closed polygons with n edges in Rd of total length 2 up to

translations and rotations.
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Definition 9. As in [5], let Arm2(n) and Pol2(n) denote respectively the moduli space of

open polygonal arms with n edges in R2 of total length 2 up to translations, rotations, and

reflections and the moduli space of closed polygons with n edges in R2 of total length 2 up

to translations, rotations, and reflections.

Here, we need the additional identification via reflections so that we can realize Arm2(n)

as the subset of Arm3(n) of arms contained in the xz-plane, as two planar arms related by

reflection across some axis L in the xz-plane are likewise related by the rotation in R3 about

that axis by an angle of π.

Proposition 10. From [5], we have a commutative diagram given by:

O(2)

��

// Arm2(n)

��

// Arm2(n)

��

O(2)
zz

∼=
::

��

// Pol2(n)
+ �

99

��

// Pol2(n)
+ �

99

��

SO(3) // Arm3(n) // Arm3(n)

SO(3)
zz

∼=
::

// Pol3(n)
+ �

99

// Pol3(n)
+ �

99

1.2 Quaternions

We will now introduce the associative division algebra known as the quaternions. The

quaternions share a special connection with our polygon spaces, but we will need to first

derive a number of important properties the quaternions enjoy.

There are a number of ways to represent quaternions, and the proofs for many of the

properties of the quaternions can be simplified greatly by the choice of representation. We

will begin our discussion of the quaternions by defining them first as vector space over R.

6



Definition 11. The quaternions, H, are a four dimensional vector space over R. Throughout

this document, we will let {1, i, j,k} be a fixed basis for H.

Proposition 12. There is an isomorphism of vector spaces between the quaternions and
 z w

−w z

 : z, w ∈ C


Proof. It is simple to verify that sending a1 + bi + cj + dk to the matrix

 a+ bi c+ di

−c+ di a− bi


provides such an isomorphism.

Proposition 13. Using this isomorphism, we define a binary operation on H as multiplica-

tion of the matrix representatives.

Proof. Given

 z w

−w z

 and

 x y

−y x

, consider the product:

 z w

−w z


 x y

−y x

 =

 zx− wy zy + wx

−xw − zy −wy + zx


=

 zx− wy zy + wx

−xw + zy −wy + zx


=

 zx− wy zy + wx

−zy + wx zx− wy



which has the form

 a b

−b a

 for a = zx − wy and b = zy + wx. As such, the matrix

product of the matrix representation of two quaternions is the matrix representation of a

new quaternion.
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Proposition 14. Quaternionic multiplication enjoys the following four properties: Let x, y, z ∈

H and a, b ∈ R be arbitrary.

1. Left distributivity: (x+ y)z = xz + yz

2. Right distributivity: x(y + z) = xy + xz

3. Compatibility with scalars: (ax)(by) = (ab)(xy)

4. Associativity: x(yz) = (xy)z

Proof. These properties are all inherited from matrix multiplication.

Proposition 15. There is a multiplicative identity.

Proof. While this is also inherited from matrix multiplication, we must also point out that

the multiplicative identity of matrix multiplication is in fact a quaternion. Specifically, that1 0

0 1

 has the form

 z w

−w z

.

Additionally, we note here that in the basis representation, the multiplicative identity is

give by the basis element 1.

Proposition 16. Quaternionic multiplication admits a unique inverse for each non-zero

quaternion.

Proof. For a non-zero quaternion

 z w

−w z

, we see that the determinant of this matrix is

zz+ww = ‖z‖2 + ‖w‖2 is a non-zero real number. As such, it has a matrix inverse given by

1

‖z‖2 + ‖w‖2

z −w

w z

. This matrix has the appropriate form, and so the inverse is indeed

a quaternion.

Proposition 17. H is an associative division algebra over the base field R.
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Proof. We have shown in Propositions 13, 14, and 15 that the vector space H over R has

a bilinear product which is associative and possesses an identity element. As such it is an

associative algebra. We also showed in Proposition 16 that every non-zero quaternion has a

multiplicative inverse. As such, we have shown that H is a division algebra.

Definition 18. We define the vector space isomorphism between H and R4 to be

G : H→ R4 so that G(q0 + q1i + q2j + q3k) = (q0, q1, q2, q3).

Proposition 19. In the basis representation, quaternionic multiplication of

x = x11 + x2i + x3j + x4k and y = y11 + y2i + y3j + y4k is given by:

xy = (x1y1 − x2y2 − x3y3 − x4y4)1

+ (x1y2 + x2y2 + x3y4 − x4y3)i

+ (x1y3 − x2y4 + x3y2 + x4y2)j

+ (x1y4 + x2y3 − x3y2 + x4y2)k

Proof. Writing these as matrices, we have

xy =

 x1 + x2i x3 + x4i

−x3 + x4i x1 − x2i


 y1 + y2i y3 + y4i

−y3 + y4i y1 − y2i


=

 (x1 + x2i)(y1 + y2i) (x1 + x2i)(y3 + y4i)

(−x3 + x4i)(y1 + y2i) (−x3 + x4i)(y3 + y4i)


+

(x3 + x4i)(−y3 + y4i) (x3 + x4i)(y1 − y2i)

(x1 − x2i)(−y3 + y4i) (x1 − x2i)(y1 − y2i)


9



=

 (x1y1 − x2y2 − x3y3 − x4y4) (x1y3 − x2y4 + x3y2 + x4y2)

−(x1y3 − x2y4 + x3y2 + x4y2) (x1y1 − x2y2 − x3y3 − x4y4)


+

(x1y2 + x2y2 + x3y4 − x4y3) (x1y4 + x2y3 − x3y2 + x4y2)

(x1y4 + x2y3 − x3y2 + x4y2) −(x1y2 + x2y2 + x3y4 − x4y3)

 i

= (x1y1 − x2y2 − x3y3 − x4y4)1

+ (x1y2 + x2y2 + x3y4 − x4y3)i

+ (x1y3 − x2y4 + x3y2 + x4y2)j

+ (x1y4 + x2y3 − x3y2 + x4y2)k

Definition 20. The real part of a quaternion q = q01+q1i+q2j+q3k is q0 and the imaginary

part of a quaternion is q1i + q2j + q3k. We say that a quaternion is real if q1 = q2 = q3 = 0.

Likewise, we say that a quaternion is purely imaginary if q0 = 0.

Definition 21. The norm of a quaternion is norm of the corresponding vector in R4.

Proposition 22. The norm of a quaternion is equal to the square root of the determinant

of the matrix representation of the quaternion.

Proof. We saw in the proof of Proposition 16 that the determinant of the matrix represen-

tation of the quaternion q = q01 + q1i + q2j + q3k is given by q2
0 + q2

1 + q2
2 + q2

3. Which we

can easily verify to be the square of the norm of the corresponding vector.

Now that we have established that the quaternions are a normed associative algebra with

a natural global isometry with R4, we will introduce two new endomorphisms. In discussing

them, it will prove useful to have a quick reference of the products of basis vectors which we

will provide now.
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Proposition 23. The products of the basis vectors q1q2 can be summarized in the following

table:

q2

1 i j k

q1

1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1

Definition 24. The conjugate of a quaternion q = q0 + q1i + q2j + q3k is the quaternion

q = q0 − q1i− q2j− q3k.

Proposition 25. For any q, r ∈ H, (qr) = (r)(q).

Proof. Consider the map fq : H → H given by fq(r) = (qr) − (r)(q). We can see that for

any q ∈ H, the map fq is linear. We can then specify what happens to any r by looking at

what happens to the basis vectors.

Write q = q01 + q1i + q2j + q3k. It is then clear that fq(1) = 0, as 1 = 1 is the

multiplicative identity.

Likewise, fq(i) = (qi) + (iq) = (−q11 − q0i − q3j + q2k) + (q11 + q0i + q3j − q2k) = 0,

fq(j) = (qj) + (jq) = (−q21 + q3i− q0j− q1k) + (q21− q3i + q0j + q1k) = 0, and

fq(k) = (qk) + (kq) = (−q31− q2i + q1j− q0k) + (q31 + q2i− q1j + q0k) = 0

Since this is a linear map that evaluates to zero on each basis vector, we see that fq is

the zero map for any q. Hence, we may conclude that for any q, r ∈ H we have the equality

(qr) = (r)(q)

Proposition 26. The square of the norm of a quaternion q = q0 + q1i + q2j + q3k is given

by ‖q‖2 = qq

11



Proof. We have defined already the norm of the quaternion to be ‖q‖ =
√
q2

0 + q2
1 + q2

2 + q2
3,

so we need only check that qq = q2
0 + q2

1 + q2
2 + q2

3:

qq =

 q0 + q1i q2 + q3i

−q2 + q3i q0 − q1i


q0 − q1i −q2 − q3i

q2 − q3i q0 + q1i


=

 q2
0 + q2

1 + q2
2 + q2

3 (q0 + q1i)(−q2 − q3i + q2 + q3i)

(q0 − q1i)(−q2 + q3i + q2 − q3i) q2
0 + q2

1 + q2
2 + q2

3


= (q2

0 + q2
1 + q2

2 + q2
3)1

Proposition 27. The norm of any quaternion is equal to the norm of its conjugate.

Proof. Given q = q0 + q1i + q2j + q3k, we have that q = q0 − q1i − q2j − q3k. Working out

the norm then gives us:

‖q‖ = (q2
0 + (−q1)2 + (−q2)2 + (−q3)2)1/2

= (q2
0 + q2

1 + q2
2 + q2

3)1/2

= ‖q‖

Proposition 28. The norm of a product of quaternions is the product of their norms.

Proof. From Proposition 22, we see that the norm of a quaternion is the square root of the

determinant of the matrix representation of the quaternion. Recall that the determinant of a

product of matrices is the product of the determinants of the matrices. Likewise, the square

root of a product of positive numbers is the product of the square roots of the numbers. The

result follows immediately from these two facts.
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Definition 29. The Hopf map on H is the mapping given by q 7→ qiq

Proposition 30. The Hopf map takes any quaternion to a purely imaginary quaternion.

Specifically, for q = q01 + q1i + q2j + q3k, we have

Hopf(q) = (q2
0 + q2

1 − q2
2 − q2

3)i + 2(q1q2 − q0q3)j + 2(q0q2 + q1q3)k

Proof. The proof of this claim is a straightforward calculation:

qiq =

q0 − q1i −q2 − q3i

q2 − q3i q0 + q1i


i 0

0 −i


 q0 + q1i q2 + q3i

−q2 + q3i q0 − q1i


= i

q0 − q1i −q2 − q3i

q2 − q3i q0 + q1i


1 0

0 −1


 q0 + q1i q2 + q3i

−q2 + q3i q0 − q1i


= i

q0 − q1i q2 + q3i

q2 − q3i −q0 − q1i


 q0 + q1i q2 + q3i

−q2 + q3i q0 − q1i


= i

 q2
0 + q2

1 − q2
2 − q2

3 (q0 − q1i)(2q2 + 2q3i)

(q0 + q1i)(2q2 − 2q3i) −q2
0 − q2

1 + q2
2 + q2

3


= i

 q2
0 + q2

1 − q2
2 − q2

3 2(q0q2 + q1q3) + 2(q0q3 − q1q2)i

2(q0q2 + q1q3) + 2(q1q2 − q0q3)i −q2
0 − q2

1 + q2
2 + q2

3


=

 (q2
0 + q2

1 − q2
2 − q2

3)i 2(q1q2 − q0q3) + 2(q0q2 + q1q3)i

2(q0q3 − q1q2) + 2(q0q2 + q1q3)i (−q2
0 − q2

1 + q2
2 + q2

3)i


= (q2

0 + q2
1 − q2

2 − q2
3)i + 2(q1q2 − q0q3)j + 2(q0q2 + q1q3)k

Proposition 31. For all q ∈ H, ‖Hopf(q)‖ = ‖q‖2

Proof. ‖Hopf(q)‖ = ‖qiq‖ = ‖q‖ ∗ ‖i‖ ∗ ‖q‖ = ‖q‖ ∗ 1 ∗ ‖q‖ = ‖q‖2
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Definition 32. Let IH be the additive subgroup of the ring H formed from the purely

imaginary quaternions.

Definition 33. Define the map I : IH → R3 to be the linear isomorphism which sends

(01 + q1i + q2j + q1k) 7→ (q1, q2, q3).

Proposition 34. Where π : R4 → R3 is projection to the last three coordinates, we have

that I = π ◦G|IH

Proof. To see this, we need only recall that G takes a quaternion to the corresponding vector

in R4.

Definition 35. Define the map HopfR : H→ R3 to be HopfR = I ◦ Hopf.

Proposition 36. HopfR is a surjection. Moreover, HopfR |IH is a surjection.

Proof. In coordinates,

HopfR(q0 + q1i + q2j + q3k) = (q2
0 + q2

1 − q2
2 − q2

3, 2(q1q2 − q0q3), 2(q0q2 + q1q3)). In particular,

notice that if q ∈ IH, then HopfR(q) can be simplified to (q2
1 − q2

2 − q2
3, 2q1q2, 2q1q3). For a

given element (x, y, z) ∈ R3, if q ∈
(
IH
⋂

Hopf−1
R ({(x, y, z)})

)
, then we know that:

1. q2
1 − q2

2 − q2
3 = x

2. 2q1q2 = y

3. 2q1q3 = z

Let us treat this in two cases:

Case 1: y2 + z2 6= 0.

In this case, we see that q1 is a solution to the equation q2
1 −

(
y

2q1

)2

−
(
z

2q1

)2

= x,

which we can write as q4
1 − xq2

1 −
y2 + z2

4
= 0. Letting w = q2

1, this becomes the quadratic

14



equation w2 − xw − (y2 + z2)

4
= 0. Given that this quadratic has a negative constant term,

we know that it has one positive and one negative zero. Let w0 denote the positive zero.

Then we have shown that the quaternion 01 +
√
w0i +

y

2
√
w0

j +
z

2
√
w0

k maps to (x, y, z).

Case 2: y2 + z2 = 0.

In this case, we have that y = 0 and z = 0. If x ≤ 0, then setting q1 = 0 and q2 = q3 =

√
−x
2

produces a preimage of (x, y, z). If x > 0, then setting q1 =
√
x, and q2 = q3 = 0 will

produce a preimage of (x, y, z). Hence we have shown that HopfR is surjective, and that for

all (x, y, z) ∈ R3,
(
IH
⋂

Hopf−1
R ({(x, y, z)})

)
6= ∅.

Now that we know that HopfR is surjective onto R3, we may wonder what the preimage

of any given point is. From Proposition 31, we can see that any point ~p ∈ R3 has

Hopf−1
R ({~p}) ⊂ S3(

√
‖~p‖) ⊂ H. The specific subset turns out to be a great circle of S3, as

we will show now.

Proposition 37. The quaternion q satisfies qiq = i if and only if we can express

q = a1 + bi + 0j + 0k with a2 + b2 = 1.

Proof. Write the quaternion as q = zi + wj for z = a + bi and w = c + di. Writing the

product in terms of matrices, we have:

qiq =

z −w

w z


i 0

0 −i


 z w

−w z


=

z −w

w z


zi wi

wi −zi


=

(|z|2 − |w|2)i 2zwi

2wzi (|w|2 − |z|2)i

 .
15



This is equal to i if and only if (|z|2 − |w|2) = 1 and 2zw = 0. This pair of equation is

satisfied precisely when w = 0 and |z| = 1.

Proposition 38. The two quaternions q and r have the same image under HopfR if and

only if there exists some complex number z ∈ C of unit length so that r = zq.

Proof. Suppose that HopfR(q) = HopfR(r). Then we know that qiq = rir. We may express

this as i = (q)−1(rir)q−1 = (q−1 r)i(rq−1) = (rq−1)i(rq−1). By Proposition 37, we know

that this is only possible if rq−1 is a unit length complex number, z. Finally, we may write

rq−1 = z as r = zq as desired.

Proposition 39. There is a surjective map H : Hn → A3(n) that restricts to a surjective

map h : S4n−1(
√

2) ⊂ Hn → Arm3(n).

Proof. First, note that an element of A3(n) is an equivalence class of polygonal arms up

to translation. As such, it is representable uniquely as an ordered set of n edges. Define

H2 : Hn → (R3)
n

to be the map that applies HopfR coordinate-wise. Define the map H3

to be the map that sends an element (v1, v2, . . . , vn) ∈ (R3)
n

to the equivalence class of

polygonal arms represented by the edge set {v1, v2, . . . , vn}. Finally, define H = H3 ◦ H2.

Surjectivity of H follows from that of HopfR.

Next, we claim that the restriction h = H|S4n−1(
√

2) gives a surjection to Arm3(n). In

fact more is true, we shall show that S4n−1(
√

2) = H−1(Arm3(n)), and surjection onto this

subset will follow from H being a surjection to A3(n). The proof of this claim follows from

the following lemma, which we will prove following this proof.

Lemma 40. For any ~q ∈ Hn, the length of the polygonal arm H(~q) is equal to ‖q̃‖2.

By the lemma, we see that the set S4n−1(r) ⊂ Hn is precisely the preimage of the set

of equivalence classes of polygonal arms of total length r2. As such, we have that h is is a

surjection from S4n−1(
√

2) = H−1(Arm3(n)) to Arm3(n).
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Proof of Lemma 40. For a given q̃ = (q1,q2, . . . ,qn) ∈ Hn, note that the total length of

H(q̃) is equal to the sum of the lengths of its edges. Each edge, ei, is obtained as Hopf(qi),

and so its length is equal to ‖Hopf(qi)‖. Putting this together, we see that the length of

H(~q) is given by:

L =
n∑
i=1

‖ei‖ =
n∑
i=1

‖Hopf(qi)‖ =
n∑
i=1

‖qi‖2 = ‖~q‖2.

Proposition 41. Given scalars a, b ∈ R, we have that

Hopf(a1 + bj) = Hopf(ai + bk) = (a2 − b2)i + (2ab)k

Proof. Applying the coordinate form of the Hopf map to these quaternions produces the

desired result.

Since we have that A2(n) ( A3(n), it is natural to wonder what the preimage of A2(n) is

under the map H. We will now show that it is in fact a 2n-dimensional subspace of Hn. We

will further show that there is a natural embedding of Cn into Hn for which the composition

with H is simply the coordinate-wise squaring map (after identifying the polygon in A2(n)

with the vector of edges in Cn).

Definition 42. Define the maps C1, C2 : C→ H by C1(a+ bi) = a1 + bj and

C2(a+ bi) = ai + bk.

Proposition 43. C1 and C2 are linear R-module homomorphisms.

Proof. Since C1 and C2 are defined by sending the basis vectors of the R-module C to distinct

basis vectors of the R-module H and extending linearly, we can see the result immediately.

Definition 44. Define the maps π : R3 → R2 to be projection onto the first and third

coordinates.

17



Definition 45. Define the maps i : R2 → C be the linear isomorphism that sends the vector

(a, b) to the number a+ bi.

Proposition 46. Both maps i ◦ π ◦ HopfR ◦Cj : C→ C for j ∈ {1, 2} are equal to the map

z 7→ z2.

Proof. First, note that for z = a+ bi, we have from Proposition 30 that

(HopfR ◦Cj)(z) = I(Hopf(Cj(a + bi))) will be equal to the vector (a2 − b2, 0, 2ab). Next,

the projection π sends this to the vector (a2 − b2, 2ab). Finally, i sends this to the number

(a2 − b2) + 2abi. It is then a simple computation to verify that when written as z = a + bi,

we have that z2 = (a2 − b2) + 2abi.

Proposition 47. There is a surjective map P : Cn → A2(n) that restricts to a map

p : S2n−1(
√

2) ⊂ Cn → Arm2(n).

Proof. We first recall that an element of A2(n) is representable uniquely as an ordered set

of n edges. We define H4 : Cn → Cn to be the coordinate-wise squaring map,

(z1, z2, . . . , zn) 7→ (z2
1 , z

2
2 , . . . , z

2
n). We then define H5 to be the map that sends an element

(v1, v2, . . . , vn) ∈ (R2)
n

to the equivalence class of polygonal arms represented by the edge

set {v1, v2, . . . , vn}. Where i : R2 → C, is the isomorphism of vector spaces given in the

previous proposition, define P = H5 ◦ i−1 ◦H4. Surjectivity follows from the surjectivity of

each of the three individual maps.

For a given vector ~z = ~a+~bi, we then have that the length of the polygonal arm P (~z) is

given by:

L =
n∑
j=1

|ej| =
n∑
j=1

‖(a2
j − b2

j , 2ajbj)‖ =
n∑
j=1

|(a2
j − b2

j) + 2ajbji| =
n∑
j=1

|z2
j |

=
n∑
j=1

|zj||zj| =
n∑
j=1

|zj||zj| =
n∑
j=1

|zjzj| =
n∑
j=1

zjzj = ‖~z‖2.

18



Hence, the image of a complex vector ~z has total length ‖z‖2. This, along with surjectiv-

ity, shows that Arm2(n) = P−1(S2n−1(
√

2). So p = P |S2n−1(
√

2) is the desired surjection.

1.3 Closed Polygons

We now have a way to model polygonal arms as points on a sphere. This leads us to wonder

what we can say about the subset that corresponds to closed polygons. In this section we

will show that this subset is a well known manifold and use the Hopf map to establish a

probability measure on our polygon spaces. First, recall that we have defined the following

spaces:

• Ad(n), the moduli space of open n-edged polygonal arms in Rd up to translation.

• Pd(n), the subset of Ad(n) consisting of the closed polygons.

• Armd(n), the subset of Ad consisting of all the polygons with total length 2.

• Pold(n), the subset of Armd(n) consisting of the closed polygons.

Lemma 48. For q ∈ H expressed as q = a+ bj where a, b ∈ C, we have that

HopfR(q) = (|a|2 − |b|2, 2Im(ab), 2Re(ab))

Proof. Writing a = x+ yi and b = z+wi, we have that q = a+ bj = x+ yi + zj +wk. From

Proposition 30, we see that HopfR(q) = (x2 + y2− z2−w2, 2(yz−xw), 2(xz+ yw)). We can

easily see that |a|2 − |b|2 = x2 + y2 − z2 − w2. Meanwhile,

ab = (x+ yi)(z − wi) = (xz + yw) + (yz − xw)i), so we see that we indeed have

HopfR(q) = (|a|2 − |b|2, 2Im(ab), 2Re(ab)).

Theorem 49 (From Jean-Claude Hausmann and Allen Knutson [20]). Express ~q ∈ Hn as

~q = ~a+~bj for ~a,~b ∈ Cn. Then H(~q) ∈P3(n) if and only if ‖~a‖ = ‖~b‖ and 〈~a,~b〉 = 0.
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Proof. To be in P3(n) ⊂ A3(n), we require that the edges sum to 0. Since the edges of

H(~q) are the vectors given by applying HopfR to each coordinate, we have that the sum of

the edges is given by:
n∑
j=1

(|aj|2 − |bj|2, 2Im(ajbj), 2Re(ajbj)).

The sum of the first component simplifies to ‖~a‖2−‖~b‖2, so we see that this is zero if and only

if ‖~a‖ = ‖~b‖. Next, recall that 〈~a,~b〉 =
∑n

j=1 ajbj. As such, the sum of the second component

simplifies to 2Im(〈~a,~b〉) and the sum of the third component simplifies to 2Re(〈~a,~b〉). These

are both zero if and only if 〈~a,~b〉 = 0.

Proposition 50. Express ~z ∈ Cn as ~z = ~a +~bi for ~a,~b ∈ Rn. Then P (~q) ∈ P2(n) if and

only if ‖~a‖ = ‖~b‖ and 〈~a,~b〉 = 0.

Proof. From Proposition 46, we see that P is given by coordinate-wise squaring followed by

the association between a complex number and an edge vector. Looking at Proposition 43,

we see that we can do this through a bit of a longer sequence by:

1. first mapping to the 1 ⊕ j plane in H by sending 1 7→ 1 and i 7→ j and extending

linearly.

2. Apply the Hopf map and associate the resulting purely imaginary quaternion with a

vector in R3

3. We observed in Proposition 41, every edge of this polygon will lie in the xz-plane, so

we lose nothing by focusing on the associated 2-dimensional vector.

From Theorem 49, we see that the polygon will be closed if and only if the quaternionic

vector ~q = ~a+~bj satisfies: (1) ‖~a‖ = ‖~b‖ and 〈~a,~b〉 = 0 (as complex vectors). Since the both

the norms and the orthogonality of the vectors ~a and ~b are the same whether viewed as a

real or complex vector, the result follows directly from the previous theorem.
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Definition 51. Fix F to be either the field R or C. We define a k-frame on Fn to be an

ordered k-tuple of linerally independent vectors in Fn. Likewise, we define an orthonormal

k-frame to be a k-frame whose vectors have unit length and are pair-wise orthogonal.

Definition 52. Fix F to be the field R or C. The Stiefel Manifold Vk(Fn) is the set of all

orthonormal k-frames on Fn.

Example.

• Vn+1(Fn) ∼= ∅

• V1(Rn) ∼= Sn−1

• V1(Cn) ∼= S2n−1

• Vn(Rn) ∼= O(n), the set of orthogonal matrices of size n× n

• Vn(Cn) ∼= U(n), the set of unitary matrices of size n× n

Theorem 53.

1. The preimage of Pol3(n) under the map H : Hn → A3(n) is precisely the subset of

S4n−1(
√

2) ⊂ Hn that corresponds to the embedding of V2(Cn) which sends the or-

thonormal 2-frame {~a,~b} to the quaternionic vector ~a1 +~bj.

2. The preimage of P3(n) is precisely the subset of Hn that corresponds to the infinite cone

CV2(Cn) = V2(Cn)× [0,∞)/{V2(Cn)×{~0}}, where the interval coordinate parametrizes

the square root of the total length of the polygon.

3. The preimage of Pol2(n) under the map P : Cn → A2(n) is precisely the subset of

S2n−1(
√

2) ⊂ Cn that corresponds to the embedding of V2(Rn) which sends the or-

thonormal 2-frame {~a,~b} to the complex vector ~a+~bi.
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4. The preimage of P2(n) is precisely the subset of Hn that corresponds to the infinite cone

CV2(Rn) = V2(Rn)× [0,∞)/{V2(Rn)×{~0}}, where the interval coordinate parametrizes

the square root of the total length of the polygon.

Moreover, for any polygon P ∈ P2(n), the inverse image of P , F−1
2 ({p}) consists of

2n−m points where m is the number of length 0 edges of p. In the spatial case, the inverse

image of a polygon P ∈ P3(n), F−1
3 ({P}) is an embedded copy of an (n −m)-dimensional

torus, where again we have that m is the number of edges of p that have length 0.

Proof.

1. First, Proposition 39 tells us that the preimage of Pol3(n) ⊂ Arm3(n) must be con-

tained in the sphere S4n−1(
√

2). Next, Theorem 49 tells us that a quaternionic vector

in the preimage of Pol3(n) if and only if it can be expressed as ~q = ~a1 +~bj for two

complex vectors ~a,~b that are orthogonal and have the same length. From this we see

that the two complex vectors must be unit length, and hence form an orthonormal

2-frame.

2. To see this, we must specify that the embedding of the cone sends the pair of an

orthonormal 2-frame and a real number, ({~a,~b}, r) ∈ V2(Cn) × R to the quaternionic

vector r~a1 + r~bj. Combining this with Theorem 49 and Lemma 40, the result follows.

3. This follows analogously to the case of Pol3(n), where we appeal to Proposition 47 to

see that the preimage of Pol2(n) must be contained in the sphere S2n−1(
√

2), and to

Proposition 50 to see that the the embedded Stiefel manifold is precisely the preimage.

4. This follows directly from Proposition 50 and the planar analogy to Lemma 40 argued

in the proof of Proposition 47.

Next, consider the structure of the preimage of a single polygon P . In the planar case,

we see from Proposition 46 that the the jth edge of P is the image under the squaring map
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(aj, bj) 7→ (a2
j − b2

j , 2ajbj). This map is a double cover of the complex plane except at the

origin. More, the two individual preimages of a particular edge are related by negation.

Replacing aj, and bj with −aj and −bj in the orthonormal 2-frame {~a,~b} will not change

the norms of the vectors, nor the orthogonality. Since we have this choice for each edge of

positive length, we have precisely 2n−m points that map to the polygon P .

Next, consider a spatial polygon Q. Here, we see from Proposition 36 that, provided

it has positive length, the jth edge of P is the image of precisely two points qj,−qj ∈ IH,

under the map HopfR |IH. We then see in Proposition 38 that the other quaternions that

map to this edge under the map HopfR will be precisely those that are related to ±qj by

left-multiplication by a unit length complex number. This shows us that the preimage of

the jth edge is an embedded copy of S1.

Supposing that we have qj = aj1 + bjj and a unit length complex number z, we now

need to examine the change in 〈~a,~b〉 and the norms of ~a and ~b when we replace aj and bj

with zaj and zbj. Since the inner product on Cn is defined as 〈~a,~b〉 =
n∑
i=1

aibi, we can see

that (zaj)(zbj) = zzajbj = ajbj. Likewise, the norm is computed from the norms of the

entries, which are unchanged by multiplication by a complex number of unit magnitude.

This tells us that replacing the jth entries of the orthonormal 2-frame {~a,~b} with zaj and zbj

produces another orthonormal 2-frame. Putting this all together, we obtain the structure of

an embedded (n−m)-dimensional torus in Hn, with each product circle corresponding to a

circle in a distinct coordinate.

Proposition 54. The Stiefel manifold Vk(Rn) can be identified as the quotient of O(n) by

a subgroup isomorphic to O(n− k).

Proof. First we show that O(n) acts transitively on Vk(Rn). To do this, we will first establish

some notation:
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• For a given subspace V ⊂ Rn, denote by V ⊥ the orthogonal complement of V ,

V ⊥ = {~w ∈ Rn : 〈~w,~v〉 = 0, for all ~v ∈ V }.

• For a given subspace V , denote by V⊥ a matrix whose columns form an orthonormal

basis for V .

• For a given matrix M = [ ~m1| ~m2| · · · | ~mk], denote by C(M) the column space of M ,

C(M) = {
∑k

i=1 ci ~mi : ci ∈ Rn}.

We now note that we may identify Vk(Rn) ∼= {A ∈Mn×k(R)|AᵀA = Ik}. Under this identi-

fication, O(n) acts upon Vk(Rn) by left-multiplication of matrices. Let A,B ∈ Vk(Rn), and

construct a matrix of the form Q =

[
B C(B)⊥

]  Aᵀ

(C(A)⊥)ᵀ

. Such an Q will act on A as

follows:

QA =

[
B C(B)⊥

] Aᵀ

(C(A)⊥)ᵀ

A
=

[
B C(B)⊥

]Ik
O


= B.

So we see that Q takes A to B.

If a given matrix is in the stabilizer of A, then it must fix the individual columns of A

and also preserves the subspace C(A)⊥. Fix some orthonormal basis for C(A)⊥ to construct

the matrix A⊥ = (C(A)⊥)⊥, whose columns form that orthonormal basis. Using these, we

can construct the matrix CA =

[
A A⊥

]
. Suppose that N ∈ O(n − k) and consider the

matrix NA = CA

Ik O

O N

 (CA)ᵀ =

[
A A⊥

]Ik O

O N


 Aᵀ

(A⊥)ᵀ

.
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This matrix will act on A as follows:

NAA =

[
A A⊥

]Ik O

O N


 Aᵀ

(A⊥)ᵀ

A
=

[
A A⊥

]Ik O

O N


Ik
O


=

[
A A⊥

]Ik
O


= A.

We see then that NA is in the stabilizer of A for any N ∈ O(n− k). Next, take some M in

the stabilizer of A and look at its conjugate by CA under this group action, C−1
A MCA:

C−1
A MCA = Cᵀ

AMCA

=

 Aᵀ

(A⊥)ᵀ

M [
A A⊥

]

=

 Aᵀ

(A⊥)ᵀ

[MA MA⊥

]

=

 Aᵀ

(A⊥)ᵀ

[A MA⊥

]

=

Ik O

O (A⊥)ᵀMA⊥

 .
We claim that this lower (n−k)× (n−k) block (A⊥)ᵀMA⊥ is an element of O(n−k). Since

the larger matrix, C−1
A MCA is in O(n), its columns form an orthonormal basis for Rn. In
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particular, the last n− k columns form an orthonormal set comprised of vectors whose first

k entries are all zero. Dropping those first k entries will then have no effect on their pair-

wise inner products or on their individual norms. Hence this lower block has columns that

form an orthonormal basis for Rn−k. This allows us to see that the lower block is indeed an

element of O(n−k). We have constructed an explicit isomorphism between O(n−k) and the

stabilizer of A, namely N 7→ NA, and may then conclude that Vk(Rn) ∼= O(n)/O(n−k).

Proposition 55. The Stiefel manifold Vk(Cn) can be identified as the quotient of U(n) by

a subgroup isomorphic to U(n− k).

Proof. The proof of this mirrors the proof of the previous proposition.

Definition 56. The Grassmann manifold Gk(Fn) is the smooth, compact manifold of

k-dimensional subspaces in Fn.

There is an O(k) action on Vk(Rn) which rotates the basis in the plane it spans and

which we can see best as multiplication of matrix A ∈ Vk(Rn) on the right by the matrix

M ∈ O(k). This action defines an equivalence relation on Vk(Rn), allowing us to represent

Gk(Rn) ∼= Vk(Rn)/O(k). Likewise, we can realize Gk(Cn) ∼= Vk(Cn)/U(k).

1.4 Measure

The goal of this section is to develop a measure on each of our polygon spaces. We have

already shown the existence of surjective maps from well-studied manifolds to our polygon

spaces. We will call these manifolds the model spaces for our polygon spaces and use the

surjections to induce measures on our polygon spaces. Each model space carries a specific

measure we will work with will that carries some additional properties beyond a generic

measure which makes it a preferable measure for use in our examination of polygon spaces.
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Theorem 57 (Haar’s Theorem, [7]). Let (G, ∗) be a locally compact Hausdorff topological

group. The there is, up to a positive multiplicative constant, a unique countably additive,

nontrivial measure µ on the Borel subsets of G, called the Haar measure, satisfying the

following four properties:

• µ is left-translation-invariant: µ(gE) = µ(E) for every g ∈ G and Borel set E.

• µ is finite on every compact set.

• µ is outer regular on Borel sets: µ(E) = inf{µ(U) : E ⊆ U,U open and Borel}.

• µ is inner regular on open Borel sets E: µ(E) = sup{µ(K) : K ⊆ E,K compact}.

When G is compact, µ(G) is finite, and often given complete uniqueness by adding a

fifth, normalizing condition that µ(G) = 1. Since the orthogonal group O(m) and the

unitary group U(m) are compact, we will let θm and ωm be the respective normalized Haar

measures on O(m) and U(m).

Recall that the sphere Sm−1 admits a natural Borel measure called the spherical measure,

σm−1, which we will also normalize to satisfy σm−1(Sm−1) = 1. This measure is nicely related

to the Haar measure on the orthogonal group O(m):

Definition 58. Given two measurable spaces, (X1,Σ1) and (X2,Σ2) with a measurable map

f : X1 → X2 and a measure µ : Σ1 → [0,∞], we define the pushforward of µ by f , to be the

measure f∗(µ) : Σ2 → [0,∞] for which the measure of any B ∈ Σ2, (f∗(µ))(B) is defined to

be µ (f−1(B)).

Proposition 59 (From [28] proposition 3.2.1 pg 91). Fix a point s ∈ SN−1. Define

f : O(N) → SN−1 by f(g) = gs. Then the spherical measure σN−1 is the same as the

pushforward of the Haar measure θN−1 by f .
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Definition 60. Given that V2(Rn) ∼= O(n)/O(n − k) (for 0 ≤ k ≤ n), we will define the

invariant measure θk on Vk(Rn) to be the resultant measure obtained by normalizing the

measure obtained from pushing the Haar measure on O(n) forward by the quotient map.

Likewise, we will define the invariant measure ωk on Vk(Cn) to be the resultant measure

obtained by normalizing the measure obtained from pushing the Haar measure on U(n)

forward by the quotient map.

The invariant measure is so named because it is invariant under the O(n) or U(n) action

on V2(Fn) given by left-multiplication, by which we mean that for any measurable subset

A ⊆ V2(Rn) and orthogonal matrix g ∈ O(n), θk(A) = θk ({ga : a ∈ A}).

Definition 61. As seen in [5], we will define the symmetric measure, µ, for the following

four spaces as follows:

• For Arm2(n), let µ be the pushforward of the spherical measure on S2n−1(
√

2), nor-

malized so that µ(Arm2(n)) = 1.

• For Arm3(n), let µ be the pushforward of the spherical measure on S4n−1(
√

2), nor-

malized so that µ(Arm3(n)) = 1.

• For Pol2(n), let µ be the pushforward of the Haar measure on V2(Rn), normalized so

that µ(Pol2(n)) = 1.

• For Pol3(n), let µ be the pushforward of the Haar measure on V2(Cn), normalized so

that µ(Pol3(n)) = 1.

A more intuitive way to think of an edge is as a length and direction. Direction of course

only really makes sense for edges with non-zero length.

Definition 62. Given a non-empty subset I ⊆ {1, 2, ..., n}, define

ZAnd(I) = {{~e1, . . . , ~en} ∈ Armd(n) : ~ei = ~0 for all i ∈ I}. Likewise, define

ZP n
d (I) = ZAnd(I)

⋂
Pold(n).
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Proposition 63. The set ZAnd(I) is a submanifold of Armd(n) that is diffeomorphic to

Armd(n−m), where m = #(I).

Proof. For notational convenience, order I = {i1, i2, . . . , im} so that i1 < i2 < · · · < im, and

order the set J = {1, 2, . . . , n} \ {i1, i2, . . . , im} so that j1 < j2 < · · · < jn−m. We can then

map Armd(n−m) to ZAnd(I) ⊂ Armd(n) by sending the arm {~e1, ~e2, . . . , ~en−m} to the arm

{~f1, ~f2, . . . , ~fn} where ~fi = ~0 for each i ∈ I, and ~fjk = ~ek for k ∈ {1, 2, . . . , n−m}. Recalling

that Armd(n) is a subset of Rdn, it is not hard to see this as the usual inclusion map of one

such subset of Rd(n−m) into a subset of a subspace of Rdn.

Proposition 64. Let Z(d, n) denote the union of ZAnd(I) taken over all subsets I ⊂ {1, 2, . . . , n}

with 0 < #(I) < n. Then µ(Z(d, n)) = 0.

Proof. Since we have seen that each ZAnd(I) is a submanifold of Armd(n) of strictly lower

dimension, we know that µ(ZAnd(I)) = 0. Since Z(d, n) is a finite union of measure zero

sets, it too has measure zero.

The set Armd(n) \Z(d, n) will then have a probability measure inherited from Armd(n).

No polygon in Armd(n) \ Z(d, n) will have an edge of length zero, so we may define a pair

of maps:

Θ : Armd(n) \ Z(d, n)→= Sd−1 × Sd−1 × · · · × Sd−1︸ ︷︷ ︸
n

Ψ : Armd(n) \ Z(d, n)→ ∆n−1 ⊂ Rn

Here, Θ sends an arm to the list of the directions of each edge, Ψ sends an arm to the

list of the lengths of each edge, and ∆n−1 is the scaled (n− 1)-simplex given by

∆n−1 = {(ψ1, . . . , ψn) ∈ Rn :
∑n

i=1 ψi = 2, and ψi ≥ 0 for all i}. These maps will help us

understand the distribution of the directions and lengths of the edge vectors.
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Definition 65. Define the measure µZ on ∆n−1×
(
Sd−1

)n
to be the pushforward of µ under

the map (Ψ,Θ).

Proposition 66. As a pushforward of the spherical measure, µZ is invariant under the Sn

action which permutes simultaneously the order of the coordinates in the simplex and the

product of spheres. It is also invariant under the action of rotating the spheres.

Proof. For d = 2, set k = 2, and for d = 3, set k = 4. Consider a block matrix in the form

of a permutation matrix where 1 stands for Ik and 0 stand for Ok. This matrix will permute

the order of the n k-tuples of a point in the sphere Skn−1. Notice that each row and each

column of this matrix consists of a single non-zero entry. Moreover, that non-zero entry is

always 1. The product of this matrix with its transpose will be the matrix whose (i, j)-entry

is the dot product of the ith and jth rows. Since the only non-zero entry of the ith row is the

1 located in a particular column, and likewise the only non-zero entry of the jth row is the

1 located in a particular column, we see that this (i, j)-entry will be zero whenever i 6= j.

Further, as the only non-zero entry is 1, and it occurs exactly once per row, the (i, i)-entry

of the product will be 1. Hence, the permutation matrix is orthogonal, as its inverse is equal

to its transpose. Proposition 66 tells us that the the spherical measure is invariant under the

O(kn) action. So the pushforward to ∆n−1×Zn
d must be invariant under this action as well.

Specifically, this action becomes the Sn action permuting simultaneously the coordinates in

the simplex and the product of spheres.

Next consider a diagonal block matrix of the form:



R1 0 . . . 0

0 R2 . . . 0

...
...

. . .
...

0 0 . . . Rn


,

where Ri ∈ O(k). This matrix will apply the transformation of Ri to each of the ith k-tuple.
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In particular, O(k) acts transitively on the set of k-tuples that share a common norm. Since

the columns of this type of matrix are orthonormal, it is an orthogonal matrix. Hence we

may use Proposition 59 to conclude that µZ will be invariant under this action of rotating

the individual spheres.

Note here, that the choice of Ri to obtain a desired rotation is not difficult to make. For

d = 2, if we wish to rotate the S1 by an angle θ, we select Ri to be the rotation in O(2)

of angle
θ

2
. This follows from Proposition 46. For d = 3, we can see from Proposition 36

and Proposition 38 that we can easily find the entire preimage of a given edge vector. We

then need only select one of the transformations in O(4) that carries the current preimage,

a great circle in S3, to the desired one.

Corollary 67. The distributions of directions of edges of polygonal arms in Armd(n) are

independently distributed uniformly on Sd−1.

Proof. The invariance under permutations shows us that they are independently distributed,

and, as seen on page 92 of [28] while discussing Proposition 59, invariance under rotations

is enough to identify the measure as the uniform measure on Sd−1.

1.5 Expectations

While the sphere and the symmetric measure are already nice to work with, it will sometimes

be convenient to drop the total length 2 condition to work with Ad(n). As we’ve seen in

Propositions 39 and 47, we can model spaces Ad(n) by Cn and Hn. Rather than work

with the usual Lebesgue measure on Cn and Hn, it would be nice to have a measure more

closely related to the symmetic measure we have already established by pushing forward the

spherical measure. Notice that we can think of Cn and Hn as the cones Cn = CS2n−1 and
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Hn = CS4n−1. In doing so, it will make sense to have a product measure υ×σ4n−1, for some

finite measure υ on the interval [0,∞), as this will preserve the spherical symmetry.

Definition 68 (From [6]). The Hopf-Gaussian measure, γnd , on Ad(n) ∼= R≥0 × Armd(n) is

defined by

γn3 (U) =

∫
Hopf−1(U)

dγ4n, for U ⊂ A3(n),

where γ4n is the standard Gaussian measure on Hn = R4n, and

γn2 (U) =

∫
Hopf−1(U)

dγ2n, for U ⊂ A2(n),

where γ2n is the standard Gaussian measure on Cn = R2n.

Proposition 69 (From [6]). γnd is the product measure γnd = χ2
2d−1n

×µd, where χ2
2d−1n

is the

chi-squared distribution with 2d−1n degrees of freedom on the interval [0,∞) and µd is the

symmetric measure on Armd(n).

We now have two different ways to compute expectations of scalar-valued functions de-

fined on arm space, so the first question one might ask is “When do they agree?”

Obviously not all the time, as for instance the expected total length of a polygonal arm

of total length 2 is 2, while the expected length of a a polygonal arm sampled under the

Hopf-Gaussian measure would be the expectation of the χ2
2d−1n

parameter—namely 2d−1n.

However, Cantarella et. al. showed the following:

Theorem 70 (From [6]). Suppose that F : Ad(n) → R is a scale-invariant function. Then

the expected value of F over Ad(n) with respect to the Hopf-Gaussian measure H is the same

as the expected value of F over Armd(n) with respect to the symmetric measure µ.

Proof. The proof of this theorem can be found in [6].
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Proposition 71 (From [6]). The probability distribution of the vector ~r joining the ends of a

k-edge sub-arm of an arm in A3(n) with the Hopf-Gaussian measure is spherically symmetric

in R3 and given by the explicit formula:

GSk(~r)dV ol~r =
rk−3/2Kk−3/2(r/2)

22k+2π3/2Γ(k)
dV ol~r,

where r = |~r|, and Kν(z) is the modified Bessel function of the second kind.

Proof. The proof of this proposition can be found in [6].

Bessel’s differential equation, z2d
2w

dz2
+ z

dw

dz
+ (z2 − α2)w = 0, being a second-order

differential equation has two linearly independent solutions. We call the first the Bessel

function of the first kind, Jα(z) =
(

1
2
z
)α∑∞

k=0 (−1)k
(

1
4
z2
)k

k!Γ(α + k + 1)
. When α ∈ Z, this is

an entire function. Otherwise, it has a branch point at z = 0. The second solution, the

Bessel function of the second kind, is Yα(z) =
Jα(z) cos(απ)− J−α(z)

sin(απ)
. When α ∈ Z this is

replaced by the limiting value Yn(z) =
1

π

∂Jα(z)

∂α

∣∣∣∣
α=n

+
(−1)n

π

∂Jα(z)

∂α

∣∣∣∣
α=−n

(Section 10.2 of

[32]).

The modified Bessel functions arise from the solution to the modified Bessel’s equation

obtained by replacing z with ±iz. Here, the first solution is given by

Iα(z) =
(

1
2
z
)α∑∞

k=0

(1
4
z2)k

k!Γ(α + k + 1
. The modified Bessel function of the second kind,

Kα(z) = 1
2
π
I−α(z)− Iα(z)

sin(απ)
has the defining property that it is asymptotic to

√
π/(2z)e−z as

z →∞. As with the (unmodified) Bessel function of the second kind, when α is an integer

we must take limiting values: Kn(z) =
(−1)n−1

2

(
∂Iα(z)

∂α

∣∣∣∣
α=n

+
∂Iα(z)

∂α

∣∣∣∣
α=−n

)
. Both of the

modified Bessel functions are real-valued when α ∈ R and are invariant under the involution

α 7→ −α. [32] (Section 10.25).

We will now build the analogous probability distribution function of the vector ~r joining

the ends of a k-edge sub-arm of an arm in A2(n) with the Hopf-Gaussian measure.

33



Proposition 72. The probability distribution of the vector ~r joining the ends of a k-edge

sub-arm of an arm in A2(n) with the Hopf-Gaussian measure is spherically symmetric in R2

and given by the formula:

GPk(~r) dVol~r =
r(k/2)−1K(k/2)−1

(r
2

)
2k+1πΓ

(
k

2

) dVol~r,

where r = |~r|.

Proof. Suppose that ~z = (z1, . . . , zn) ∈ Cn is sampled from the standard Gaussian distribu-

tion. This distribution is the same as the multivariate Gaussian on R2n with mean 0 and

covariance I2n. Then the failure-to-close vector for the k-edge arm Hopf(~z) ∈ A2(n) is

∑
Hopf(zi) =

∑
z2
i =

∑
(a2
i − b2

i , 2aibi).

Since the ai and bi are chosen from standard Gaussian distributions, the distribution of

the projection of the failure-to-close vector onto the first coordinate is the difference of two

chi-squared distributions, each with k degrees of freedom. In [25], Johnson et al. showed

that the density of a distribution of the form Z = χ2
νσ

2
1 − χ2

νσ
2
2, is given by:

q(r) =
|1− c|m+1/2|r|me−cr/b√
π2mbm+1Γ(m+ 1

2
)
Km

(r
2

)
,

where, c is
σ2

1 − σ2
2

σ2
1 + σ2

2

, b is 4
σ2

1σ
2
2

σ2
1 + σ2

2

, and m is 2ν+1. Here, we use the notation Γ(z) to denote

the gamma function, Γ(z) =
∫∞

0
e−ttz−1 dt, known to be a meromoprhic function with no

zeros and simple poles of residue
(−1)n

n!
at z = −n (5.2.1 of [32]). In our case, this becomes:

2−k(
√
r)k−1

√
πΓ(k

2
)
K k−1

2

(r
2

)
.
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In [29], Lord showed that when a spherically symmetric distribution on R2 has the prop-

erty that the projection of p(~r) to any radial line has a probability distribution function of

p1(~r), then its probability distribution function is given by

p(r) =
−1

π

∫ ∞
r

p′1(t)
1√

t2 − r2
dt.

We will now differentiate the distribution above, p1(t) =
2−k

√
πΓ
(
k
2

)t k−1
2 K k−1

2

(
t
2

)
:

p′1(t) =
2−k
√
πΓ(k

2
)

((
d

dt
t
k−1
2

)
K k−1

2

(
t

2

)
+ t

k−1
2

(
d

dt
K k−1

2

(
t

2

)))
(1.1)

=
2−k
√
πΓ(k

2
)

(
k − 1

2
t
k−3
2 K k−1

2

(
t

2

)
+ t

k−1
2

(
−1

2
K k−3

2

(
t

2

)
− 1

2
K k+1

2

(
t

2

))
1

2

)
(1.2)

=
2−k−1t

k−3
2

√
πΓ(k

2
)

(
(k − 1)K k−1

2

(
t

2

)
− t

2
K k−3

2

(
t

2

)
− t

2
K k+1

2

(
t

2

))
(1.3)

=
2−k−1t

k−3
2

√
πΓ(k

2
)

(
2(k−1

2
)

t/2

(
t

2

)
K k−1

2

(
t

2

)
− t

2
K k−3

2

(
t

2

)
− t

2
K k+1

2

(
t

2

))
(1.4)

=
2−k−1t

k−3
2

√
πΓ(k

2
)

(
t

2

(
K k+1

2

(
t

2

)
−K k−3

2

(
t

2

))
− t

2
K k−3

2

(
t

2

)
− t

2
K k+1

2

(
t

2

))
(1.5)

= −2−k−1t
k−1
2

√
πΓ(k

2
)
K k−3

2

(
t

2

)
(1.6)

In line 1.1, we apply the product rule. In line 1.2, we apply the power rule, and a

combination of the derivative identity 10.29.1.ii from the Digital Library of Mathematical

Functions [32] with the chain rule. In line 1.3, we simplify by factoring out
r
k−3
2

2
. In line

1.4, we re-write the coefficient of the first modified Bessel function in preparation to apply

the recurrence relation 10.29.1.i from [32] in line 1.5. Finally, in line 1.6 we simplify the

expression by collecting like terms.
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We now need to compute the integral

p(r) =
1

2k+1π
3
2 Γ
(
k
2

) ∫ ∞
r

t
k−1
2 K k−3

2

(
t

2

)
1√

t2 − r2
dt.

Using the following lemma (Lemma 73), with m = k−1
2

, b = 1
2
, and p = −1

2
, we see that

this evaluates to:

p(r) =
1

2k+1π
3
2 Γ
(
k
2

)r k−1
2
− 1

2K k−1
2
− 1

2

(r
2

)
Γ

(
1− 1

2

)
=

1

2k+1πΓ
(
k
2

)r k2−1K k
2
−1

(r
2

)

Lemma 73.

∫ ∞
r

tmKm−1(bt) (t2 − r2)p dt = 2p b−(p+1) rm+pKm+p(br) Γ(1 + p),

provided that b > 0, r > 0, m > −1, and p > −1.

Proof. First, we make the substitution s =
t2

r2
:

1

2
r2p+m+1

∫ ∞
1

s
m−1

2 Km−1

(
br
√
s
)

(s− 1)p ds.

Next, we apply the integral identity 6.592.12 from [19]:∫ ∞
1

x−
1
2
ν(x− 1)µ−1Kν(a

√
x)dx = Γ(µ)2µa−µKν−µ(a),

which holds for any a, ν, µ ∈ C such that Re(a) > 0, and Re(µ) > 0. We have also observed
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that Kν(a) = K−ν(a). This allows us to evaluate the integral, as we have ν = 1 − m,

a = br > 0, and µ = p+ 1 > 0.

1

2
r2p+m+1Γ(p+ 1)2p+1(br)−p−1K(1−m)−(p+1)(br) = 2pb−(p+1)rm+pK(m+p)(br)Γ(p+ 1).

Now that we have the probability distribution function we may use this to set up an

integral for the expected value over A2(n) of any function of a sequence of consecutive edges.

Proposition 74. The codimension 3 Hausdorff measure of P3(n) in A3(n) is the value of

GSn(~0) which is given by CSn =
Γ(n− 3

2
)

64
√
πΓ(n)

.

The codimension 2 Hausdorff measure of P2(n) in A2(n) is the value of GPn(~0) which

is given by CPn =
1

8(n− 2)π
.

Proof. The proof of the first claim is given in [6], so we will only give the proof of the second

claim.

We saw in Proposition 72 that GPn(~r) =
1

2n+1πΓ
(
n
2

)r n2−1Kn
2
−1

(
r
2

)
. Since the Bessel

function has a pole at 0, we will need to take the limiting value. From 10.30.2 of [32], we

know that, for fixed ν, as r → 0, Kν(r) ∼ 1
2
Γ(ν)

(
1
2
r
)−ν

. This tells us that:

lim
‖r‖→0+

GPn(~r) = lim
‖r‖→0+

1

2n+1πΓ
(
n
2

)r n2−1Kn
2
−1

(r
2

)
= lim
‖r‖→0+

1

2n+2πΓ
(
n
2

)r n2−1Γ
(n

2
− 1
)(1

4
r

)−(n
2
−1)

= lim
‖r‖→0+

1

24π

Γ
(
n
2
− 1
)

Γ
(
n
2

)
=

1

24π

Γ
(
n
2
− 1
)(

n
2
− 1
)

Γ
(
n
2
− 1
)

=
1

8π (n− 2)
.
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Theorem 75. Let F be a function defined on k consecutive edges. Set s = r1 + r2 + · · ·+ rk

and z = |~e1 + ~e2 + · · ·+ ~ek|. Then the expectation of F over P2(n) is given by the integral:

n− 2

2n+k−2πkΓ(n−k
2

)

∫ 2π

0

∫ ∞
0

. . .

∫ 2π

0

∫ ∞
0︸ ︷︷ ︸

k

esKn−k
2
−1

(z
2

)
z
n−k
2
−1F (~e1, . . . , ~ek)dr1dθ1 . . . drkθk.

Proof. For the consecutive sequence of edges ~e1, ~e2, . . . , ~ek to belong to a closed polygon, the

remaining n− k edge vectors must sum to −(~e1 + ~e2 + · · ·+ ~ek). As explained in section 5.1

of [12], the probability distribution must then be given by:

P (~e1, ~e2, . . . , ~ek) =
GP1(~e1)GP1(~e2) . . . GP1(~ek)GPn−k(−~e1 − ~e2 − · · · − ~ek)

CPn
.

Writing this in polar coordinates, ~ei = (ri, θi), the result then follows from simplifying

the expectation integral and volume form as written in these coordinates.

Corollary 76. Let f(~e1, ~e2) be a function defined on a pair of consecutive edges. Then the

expectation of f over P2(n) is given by the integral:

n− 2

2nπ2Γ
(
n
2
− 1
) ∫ 2π

0

∫ 2π

0

∫ ∞
0

∫ ∞
0

e−
1
2

(r1+r2)Kn
2
−2

(z
2

)
z
n
2
−2f(~e1, ~e2)dr1dr2dθ1dθ2,

where z = |~e1 + ~e2| =
√
r2

1 + r2
2 + 2r1r2 cos(θ2 − θ1).

1.6 Curvature

In this section we will discuss a specific application of Proposition 76. First we will introduce

the notion of curvature for a polygon and compare the performance between direct sampling

and numerical approximation of the form given in Proposition 76.
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Definition 77. Given two consecutive edges ei and ei+1 of a polygonal arm in Rd, they must

lie in a plane. Define the turning angle θi to be the angle of rotation in that plane from the

direction of ei to the direction of ei+1 (with the convention that the turning angle is between

0 and π).

Θiei

ei+1

Figure 1.3: Turning Angle

Definition 78. Define the total curvature of a polygonal arm to be the sum of the turning

angles.

Proposition 79. The expectation of any turning angle for a polygonal arm sampled from

Armd(n) or Ad(n) is
π

2
. The expectation of the total curvature of a polygonal arm sampled

from either Armd(n) or Ad(n) is (n− 1)
π

2
.

Proof. Given the invariance of the measure under permutations of edges, we see that the

expectation of θi will be the same as the expectation of θ1. In the plane spanned by ei and

ei+1, we can express the edges in polar coordinates as ei = (ri, ti) ∈ R≥0 × S1. In this way,

the turning angle becomes simply the absolute value of the difference in their S1 coordinates.

Since, as we have previously mentioned, the directions are independent identically distributed

according to the spherical measure, and the edge lengths are independently distributed, we

may compute the expected value of θ1 as:

∫
Sd−1×Sd−1

min(|t1 − t2|, 2π − |t1 − t2|)(σd−1)2.
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First split this into an iterated integral, and consider first the case d = 2:

1

4π2

∫
S1

(∫
S1

min(|t1 − t2|, 2π − |t1 − t2|) dt2

)
dt1.

By rotating the inner S1 by an angle t1, we see that the expectation becomes

1

4π2

∫
S1

(∫
S1

min(t2, 2π − t2) dt2

)
dt1.

From here, splitting the inner integral into two, we have:

1

4π2

∫
S1

(∫ π

t2=0

t2 dt2 +

∫ 2π

t2=π

2π − t2 dt2

)
dt1 =

1

4π2

∫
S1

(
π2

2
+
π2

2

)
dt1

=
1

4

∫
S1

dt1

=
π

2

For the case d = 3, after splitting the integral up we have:

1

16π2

∫
S2

(∫ π

s=0

∫ 2π

φ=0

min(|t1 − t2|, 2π − |t1 − t2|) sin(s) dφds

)
dσ2.

Next, use a change of variables on the inner S2 that rotates it so that the plane spanned

by {e1, e2} is the xy-plane with e1 lying on the positive x-axis.

1

16π2

∫
S2

(∫ π

s=0

∫ π

φ=−π
|φ| sin(s) dφds

)
dσ2 =

1

8π2

∫
S2

(∫ π

s=0

∫ π

φ=0

φ sin(s) dφds

)
dσ2

=
1

16

∫
S2

(∫ π

s=0

sin(s) ds

)
dσ2

=
1

8

∫
S2

dσ2

=
π

2
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Next, recall that for integrable random variables, the expectation of a sum is the sum of

the expectations, even when they are not independent (Section 5.1 of [12]). We can conclude

that the expectation of total curvature for a polygonal arm sampled from either Armd(n) or

Ad(n) to be n
π

2
.

Since the turning angle does not depend on the orientation of the pair ~e1 and ~e2, we

may use Proposition 66 to rotate the configuration so that ~e1 lies on the positive x-axis. By

combining this with Proposition 76 and Theorem 70, we may express the expectation of the

turning angle of a closed planar polygon as a 4-dimensional integral, and then immediately

integrate out along the direction of ~e1. This gives us:

θ(n) =

∫ π

0

∫ ∞
0

∫ ∞
0

n− 2

2n−2πΓ
(
n
2
− 1
)e− 1

2
(r1+r2)Kn

2
−2

(z
2

)
z
n
2
−2ψ dr1dr2dψ,

where again we have that z = |~e1 + ~e2| =
√
r2

1 + r2
2 + 2r1r2 cos(ψ). To compute this numer-

ically, it will be convenient to have a bounded domain.

Theorem 80. The expected turning angle of a polygon in Pol2(n), θ(n) is given by the

integral:

n− 2

2n−2πΓ
(
n
2
− 1
)∫ π

0

∫ 1

0

∫ 1

0

(
f(r1, r2, ψ) +

f( 1
r1
, r2, ψ)

r2
1

+
f(r1,

1
r2
, ψ)

r2
2

+
f( 1

r1
, 1
r2
, ψ)

r2
1r

2
2

)
ψdr1dr2dψ,

where f(r1, r2, ψ) = e−
1
2

(r1+r2)Kn
2
−2

(√
r21+r22+2r1r2 cos(ψ)

2

)
(r2

1 + r2
2 + 2r1r2 cos(ψ))

n−1
2 .
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Proof. Notice that we may write any convergent integral of the form∫ ∞
0

f(x) dx =

∫ 1

0

f(x) dx+

∫ ∞
1

f(x) dx

=

∫ 1

0

f(x) dx+

∫ 1

0

f
(
y−1
)
y−2 dy

=

∫ 1

0

f(x) + f(x−1)x−2 dx.

The result then follows from applying this trick to the integral given above for both the r1

and r2 variables.

While we have not yet successfully computed this integral in the general setting, we have

reduced the numerical problem from computing an integral over the 2n−3 dimensional space

Pol2(n) to a more efficiently computed 3-dimensional integral over a bounded domain.

Proposition 81. The expected turning angle of a polygon in Pol2(n), θ(n) is given by the

integral:

θ(n) = π − n− 2

2n−2πΓ
(
n
2
− 1
) ∫ ∞

0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1

(
2a√
s2 − 1

Φ

(
a2, 2,

1

2

))
dsdz,

where a = s −
√
s2 − 1, and Φ is the Lerch Transcendent given by Φ(a, b, c) =

∞∑
k=0

ak

(c+ k)b

(25.14.1 of [32]).

Proof. This is simply a lengthy computation and so we shall leave the full proof for the

Appendix A.

Notice, however, that the presence of this infinite sum, prevents this expression from

being numerically preferable to the one we have established in Theorem 80. We include it

solely as a demonstration of how involved the computation is to carry out exactly.
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Proposition 82 (From [6]). Let θ(n) and κ(n) be the expectations over Pol2(n) of turning

angle and total curvature. Then the expectation of θ(n) of a closed n-gon approaches
π

2
, and

the limit lim
n→∞

κ(n)− nπ

2
=

2

π
.

Proof. A proof of this is found in [6], but let us attempt to to see this from our integral. We

can express the turning angle as:

θ(n) =
2−n(n− 2)

πΓ
(n

2
− 1
) ∫ 2π

0

∫ ∞
0

∫ ∞
0

z
n
2
−2Kn

2
−2

(z
2

)
e−

1
2

(r1+r2) Min(ψ, 2π − ψ) dr1 dr2 dψ,

where z =
√
r2

1 + r2
2 + 2r1r2 cos(ψ). Let f(r1, r2, ψ, n) =

2−n(n− 2)

πΓ
(n

2
− 1
)z n2−2Kn

2
−2

(z
2

)
e−

1
2

(r1+r2)

and g(ψ) = Min(ψ, 2π−ψ), so that we have θ(n) =

∫ 2π

0

∫ ∞
0

∫ ∞
0

f(r1, r2, ψ, n)g(ψ) dr1 dr2 dψ.

First, notice that cos(ψ) = cos(2π − ψ), which tells us f(r1, r2, ψ, n) = f(r1, r2, 2π − ψ, n),

and that 2π − (2π − ψ) = ψ, so g(ψ) = g(2π − ψ). We may now split the integral with

respect to ψ into:

∫ 2π

0

f(r1, r2, ψ, n)g(ψ) dψ =

∫ π

0

f(r1, r2, ψ, n)g(ψ) dψ +

∫ 2π

π

f(r1, r2, ψ, n)g(ψ) dψ

=

∫ π

0

f(r1, r2, ψ, n)g(ψ) dψ +

∫ 2π

π

f(r1, r2, 2π − ψ, n)g(2π − ψ) dψ

=

∫ π

0

f(r1, r2, ψ, n)g(ψ) dψ +

∫ 0

π

−f(r1, r2, φ, n)g(φ) dφ

= 2

∫ π

0

f(r1, r2, ψ, n)g(ψ) dψ

= 2

∫ π

0

f(r1, r2, ψ, n)ψ dψ
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Next, from 10.41.2 of [32] we know that for large z, Kν(z) ∼
√

π

2ν

( ez
2ν

)−ν
, so in the limit,

we have:

Kn
2
−2

(z
2

)
∼
√

π

2ν

( ez
2ν

)−ν
=

√
π

n− 4

(
e z

2

n− 4

)2−n
2

= 2
n
2
−1e2−n

2
√
π(n− 4)

n−5
2 z2−n

2 .

This tells us that, in the limit, we have:

θ(n) =
21−n(n− 2)

πΓ
(n

2
− 1
) ∫ π

0

∫ ∞
0

∫ ∞
0

z
n
2
−2Kn

2
−2

(z
2

)
e−

1
2

(r1+r2)ψ dr1 dr2 dψ

=
21−n(n− 2)

πΓ
(n

2
− 1
) ∫ π

0

∫ ∞
0

∫ ∞
0

z
n
2
−22

n
2
−1e2−n

2
√
π(n− 4)

n−5
2 z2−n

2 e−
1
2

(r1+r2)ψ dr1 dr2 dψ

=
21−n(n− 2)

πΓ
(n

2
− 1
) ∫ π

0

∫ ∞
0

∫ ∞
0

z
n
2
−22

n
2
−1e2−n

2
√
π(n− 4)

n−5
2 z2−n

2 e−
1
2

(r1+r2)ψ dr1 dr2 dψ

=
2−

n
2 e2−n

2 (n− 4)
n−5
2 (n− 2)

√
πΓ
(n

2
− 1
) ∫ π

0

∫ ∞
0

∫ ∞
0

e−
1
2

(r1+r2)ψ dr1 dr2 dψ

=
2−

n
2 e2−n

2 (n− 4)
n−5
2 (n− 2)

√
πΓ
(n

2
− 1
) ∫ π

0

∫ ∞
0

∫ ∞
0

e−
1
2

(r1+r2)ψ dr1 dr2 dψ

=
2−

n
2 e2−n

2 (n− 4)
n−5
2 (n− 2)

√
πΓ
(n

2
− 1
) (2π2)

=
21−n

2 e2−n
2 (n− 4)

n−5
2 (n− 2)π

3
2

Γ
(n

2
− 1
)
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If we now use Stirling’s Formula (5.11.3 of [32]), we see that

Γ
(n

2
− 1
)
∼
√

2π
(n

2
− 2
)( n

2
− 2

e

)n
2
−2

= (2e)2−n
2 (n− 4)

n−3
2
√
π. This lets us see that:

θ(n) =
21−n

2 e2−n
2 (n− 4)

n−5
2 (n− 2)π

3
2

Γ
(n

2
− 1
)

∼ 21−n
2 e2−n

2 (n− 4)
n−5
2 (n− 2)π

3
2

(2e)2−n
2 (n− 4)

n−3
2
√
π

=

(
n− 2

n− 4

)
π

2

=

(
1 +

2

n− 4

)
π

2
.

From here, we see that indeed, lim
n→∞

θ(n) =
π

2
. From our approximations, however, it

appears that:

lim
n→∞

κ(n)− nπ
2

= lim
n→∞

nθ(n)− nπ
2

= lim
n→∞

n
(
θ(n)− π

2

)
= lim

n→∞
n
π

2

(
1 +

2

n− 4
− 1

)
= lim

n→∞

π

2

(
2n

n− 4

)
= π.

In the future, we plan to take better care with the asymptotic approximation of the

Bessel Function, as numeric experiments indicate that our approximation at that stage leads

to an error in line with:

n

21−n
2 e2−n

2 (n− 4)
n−5
2 (n− 2)π

3
2

Γ
(n

2
− 1
) − π

2

 ' 2.88.
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As an example, for n of the form 5 + 10m for 1 ≤ m ≤ 100, we numerically computed

the difference between the expected total curvature of a polygon in Pol2(n) and n
π

2
by using

the integral in Theorem 80 with an adaptive Monte-Carlo algorithm on one million points.

We additionally recorded both the error estimates for the integral, and the time it took to

compute. We then sampled polygons directly from Pol2(n) for the same amount of time,

and computed the difference and the error estimates. Below are the plots that illustrate the

convergence to this asymptotic bound. Notice that the maximum error from the integrals

was 1.7079×10−4, while the maximum error from the samples was 3.92231×10−3. Indeed, of

all n, the closest the gap between the errors from the integral and the sample errors occurred

for n = 15, where the sample error was only 9.8459 times as large as the integral’s error.
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Figure 1.4: Plot of Timing
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Figure 1.5: Comparing the error bars for the expected turning angle derived from numeric
integration and direct sampling to the known asymptote. The black line is the asymptotic
value, the light grey is the region between the sample average ± sample standard error, and
the dark grey is the region between the numeric approximation of the integral ± the reported
error.
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Chapter 2

Planar Polygons

Recall that we have placed a measure on Pol2(n) and Arm2(n) by pushing forward the

measure on V2(Rn) and S2n−1. As such, if we wanted to sample a random planar polygon

uniformly under this measure, we could instead sample a point of V2(Rn) and look at its

image under the Hopf map. Likewise, we can sample a planar polygonal arm by sampling

uniformly on the sphere and applying the Hopf map. Given that the integral we’ve proposed

for finding total curvature is difficult to evaluate exactly, let us instead attempt to bound it.

2.1 Variation Distance

Given the intuition that the closure condition on polygons becomes less imposing as the

number of edges grows, one expects that for any given configuration of k edges, where

k << n, the probability of finding a this configuration present in a random closed polygon

sampled from Pol2(n) should approach the probability of finding the configuration in a

random arm sampled from Arm2(n). However, before this connection to Stiefel manifolds

was made, this conjecture had not seen a rigorous proof. Let us correct this now.
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Definition 83. Given two probability measures P and Q defined on a sigma-algebra F of

the sample space Ω, define the total variation distance between P and Q to be

‖P −Q‖TV = 2 sup
A∈F
|P (A)−Q(A)|.

Informally, we can think of this as the largest possible difference between the probabilities

that P and Q assign the same event.

Lemma 84 (From [9]). If P and Q are absolutely continuous with respect to a reference

measure ρ having densities p and q, then ‖P −Q‖TV =
∫
|p− q|dρ.

To loosely see this connection, consider the set B = {x : p(x) ≥ q(x)}. Then for

any A ∈ F , we have that P (A) − Q(A) ≤ P (A ∩ B) − Q(A ∩ B), as the difference in

probability will not decrease by ignoring those elements for which p(x)− q(x) < 0. Likewise,

P (A∩B)−Q(A∩B) ≤ P (B)−Q(B), as including more elements of B cannot decrease the

difference. By similar reasoning, Q(A)− P (A) ≤ Q(Bc)− P (Bc). Hence,

2 sup
A∈F
|P (A)−Q(A)| = [P (B)−Q(B)] + [Q(Bc)− P (Bc)] =

∫
|p− q|dρ.

Next, notice that we may sample an n-edge polygon from the symmetric measure on

Pol2(n) by applying the map F2 to a 2-frame sampled from the Haar measure on V2(Rn).

This 2-frame may in turn may be obtained by sampling a matrix from the Haar measure

on O(n) and taking the first two columns. Likewise, we may sample an n-edge arm from

the symmetric measure on Arm2(n) by applying p to a point sampled from the spherical

measure on S2n−1(
√

2) ⊂ R2n, where F2 = p ◦ i for the embedding of V2(Rn) into S2n−1(
√

2),

and p is the map which sends the vector

(x1, y1, x2, y2, . . . , xn, yn) to ((xn + yni)
2, (xn + yni)

2, . . . , (xn + yni)
2) ∈ Cn.
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Since these both of these maps, F2 and p, are constructed by applying the map

z 7→ z2 to pairs of real coordinates seen as the real and imaginary parts of a single complex

coordinate, if we are interested in the distribution of the first few edges of polygons sampled

from the symmetric measure, we need only focus on the distributions of the first few coor-

dinates of {~v = (x1, y1, x2, y2, . . . , xn, yn) ∈ R2n : ‖v‖2 = 2} under the embeddings of V2(Rn)

and S2n−1(
√

2) into R2n.

Persi Diaconis has published much on the topic of how small collections of coordinates of

certain high-dimensional random variables behave like independent Gaussians. Specifically

we will use the following two theorems:

Theorem 85. [8] Suppose that Z is the r × s upper block of a random matrix U which is

uniform on O(n), implying that it has mean 0 and covariance of
1

n
Ir ⊗ Is. Let X be an rs

multivariate normal distribution with the same mean and covariance. Then, provided that

r+ s+ 2 < n, the total variation distance between the law of Z and the law of X is bounded

by B(r, s;n) = 2

((
1− r + s+ 2

n

)−c
− 1

)
, where c =

t2

2
and t =min(r, s).

Here, A⊗B is the Kronecker product of A and B, given by:

Definition 86. Where A = (ai,j) is an m × n matrix and B = (bi,j) is a p × q matrix we

define the Kronecker product A⊗B to be the mp× nq matrix, given in block form as
a1,1B . . . a1,nB

...
. . .

...

am,1B . . . am,nB


Theorem 87. [9] Let Qn,r,k be the law of (ξ1, . . . , ξk) when (ξ1, . . . , ξk, ξk+1, . . . , ξn) is uni-

formly distributed over the surface of the sphere

{
ξ :

n∑
i=1

ξ2
i = r2

}
. Let P k

σ be the law of

σζ1, . . . , σζk where the ζ are independent standard normals. Then the total variation dis-

tance between Qn,r,k and P k
r/
√
n

is bounded by 2
k + 3

n− k − 3
, for 1 ≤ k ≤ n− 4.
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Equipped with these bounds on total variation distance between the distribution of cer-

tain multivariate normal distributions and small collections of coordinates in high-dimensional

spheres and orthogonal matrices, we will now bound the total variation distance between

the distribution of small collections of edges in high-dimensional polygons sampled from the

respective symmetric measures on Pol2(n) and Arm2(n).

Theorem 88. Let P (k, n) be the law of the first k-edged segment of a random n-edged

closed polygon sampled under the symmetric measure on Pol2(n), and A(k, n) be the law of

the first k-edged segment of a random n-edged arm sampled under the symmetric measure

on Arm2(n). If 1 ≤ k ≤ n − 2, then we have that the total variation between P (k, n) and

A(k, n) is bounded above by B2(k, n) = 2

(
2k + 3

2n− 2k − 3
+

(2n− k − 4)(k + 4)

(n− k − 4)2

)
.

Proof. First, notice that LP (k, n) is given by the law of Z, the k × 2 upper left block of

a matrix sampled uniformly on O(n). Likewise, LA(k, n) would be the law of the first 2k

coordinates of a point sampled from the sphere

{
ξ :

2n∑
i=1

ξ2
i = (

√
2)2

}
. To use Theorems 85

and 87, we will need X, the 2k multivariate normal distribution with mean 0 and covariance

matrix
1

n
I2k, and P 2k√

2/
√

2n
, the law of

1√
n
ζ1, . . . ,

1√
n
ζ2k with the ζi independent standard

normals. Next, notice here that this P 2k
1/
√
n

is a multivariate distribution with mean 0 and

covariance given by

(
1√
n
I2k

)(
1√
n
I2k

)ᵀ

=
1

n
I2k. So we see that X and P 2k

1/
√
n

are multi-

variate normal distributions with the same mean and covariance. Notice that they are the

same multivariate normal distribution, often denoted by N

(
0,

1

n
I2k

)
. Since total variation

is a norm on measures, it satisfies the triangle inequality. We then have that:

‖LP (k, n)− LA(k, n)‖ = ‖LP (k, n)−N
(

0,
1

n
I2k

)
+N

(
0,

1

n
I2k

)
− LA(k, n)‖

≤ ‖LP (k, n)−N
(

0,
1

n
I2k

)
‖+ ‖N

(
0,

1

n
I2k

)
− LA(k, n)‖
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= ‖Z −X‖+ ‖P 2k
1/
√
n −Qn,

√
2,2k‖

≤ 2

((
1− k + 4

n

)−2

− 1

)
+ 2

(
2k + 3

2n− 2k − 3

)

= 2

((
n− k − 4

n

)−2

− 1

)
+ 2

(
2k + 3

2n− 2k − 3

)
= 2

(
n2

(n− k − 4)2
− n2 − 2n(k + 4) + (k + 4)2

(n− k − 4)2
+

2k + 3

2n− 2k − 3

)
= 2

(
2n(k + 4)− (k + 4)2

(n− k − 4)2
+

2k + 3

2n− 2k − 3

)
= 2

(
(2n− k − 4)(k + 4)

(n− k − 4)2
+

2k + 3

2n− 2k − 3

)
.

Proposition 89. B2(k, n) is asymptotic to
6k + 19

n
.

Proof. Combining this expression, and using the notation of o(np) to represent a quantity,

q(n), that satisfies the limiting condition lim
n→∞

q(n)

np
= 0, we have:

B2(k, n) = 2

(
(2n− k − 4)(k + 4)

(n− k − 4)2
+

2k + 3

2n− 2k − 3

)
= 2

(
(2n− k − 4)(k + 4)(2n− 2k − 3)

(n− k − 4)2(2n− 2k − 3)
+

(2k + 3)(n− k − 4)2

(n− k − 4)2(2n− 2k − 3)

)
= 2

(
4(k + 4)n2 + (2k + 3)n2 + o(n2)

(n− k − 4)2(2n− 2k − 3)

)
= 2

(
(6k + 19)n2 + o(n2)

2n3 + o(n3)

)
=

6k + 19

n
+ o(n−1).

Before moving on, let us take a moment to discuss this bound in more detail. For one

thing, if one fixes k, then B2(k, n) ∼ 6k + 19

n
will limit to 0 as n → ∞. It should be

pointed out that B2(k, n) is decreasing to this asymptotic: for any k <
n

2
, we will have
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B2(k, n) >
6k + 19

n
. Nonetheless, if we wanted to let k grow with n, then as long as k is

o(n) [for example k = λnp for any p ∈ [0, 1) and λ ∈ (0,∞)], we have that lim
n→∞

B2(k, n) = 0.

This is sharp in the sense that if we write k = αn, then we can see that:

lim
n→∞

B2(αn, n) = lim
n→∞

2

(
(2n− αn− 4)(αn+ 4)

(n− αn− 4)2
+

2αn+ 3

2n− 2αn− 3

)
= lim

n→∞
2

(
((2− α)n− 4)(αn+ 4)

((1− α)n− 4)2
+

2αn+ 3

2(1− α)n− 3

)
= lim

n→∞
2

(
(2− α)αn2 − αn+ 4(2− αn)− 16

(1− α)2n2 − 8(1− α)n+ 16
+

2αn+ 3

2(1− α)n− 3

)
= 2

(
(2− α)α

(1− α)2
+

α

1− α

)
= 2α

(
2− α

(1− α)2
+

1− α
(1− α)2

)
=

2α(3− 2α)

(1− α)2
.

It is not hard to see that for α >
4−
√

11

5
' 0.136675, this limit,

2α(3− 2α)

(1− α)2
, is greater

than 1. This tells us that as long as, in the limit, k < 13% of n, we have some information

about the distribution of k-edged segments in Pol2(n) by virtue of our knowledge of the

distribution of k-edged segments in Arm2(n). To get a better sense of this bound, consider

the following table of values of B2(k, n) :

n

300 500 1, 000 10, 000

k

2 0.106074 0.0629767 0.0312423 0.00310241

3 0.127162 0.0753618 0.0373375 0.00370335

10 0.280319 0.163969 0.0804659 0.00791443

20 0.517348 0.296629 0.143515 0.0139439
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Definition 90. Call a function f : Armd(n) → R a k-edged locally defined function if

f([~e1, ~e2, . . . , ~ek, ~u1, . . . , ~un−k]) = f([~e1, ~e2, . . . , ~ek, ~v1, . . . , ~vn−k]) for all ~ei, ~uj, ~vj ∈ Rd,

i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n− k}.

Theorem 91. Let f be an essentially bounded, k-edged locally defined function. Then the

expectation of f over Pol2(n) may be approximated by the expectation of f over Arm2(n) to

within MB2(k, n), where M is a bound for f almost everywhere.

Proof. The expectation of f over Arm2(n), EArm2(n)(f) is given by
∫
Arm2(n)

fµA, where

µA is the symmetric measure on Arm2(n). Likewise, the expectation of f over Pol2(n),

EPol2(n)(f) is given by
∫
Pol2(n)

fνP , where νP is the symmetric measure on Arm2(n). Since

f is a k-edged locally defined function, we may integrate out the last n− k edges to obtain

EArm2(n) =
∫

A2(k)
f(q)µkn, where µkn is the law of the first k edges of a polygon sampled from

the symmetric measure on Arm2(n). Similarly, we can see that EPol2(n) =
∫

A2(k)
f(q)νkn,

where νkn is the law of the first k edges of a polygon sampled from the symmetric measure

on Pol2(n). We may therefore write:

Let g be the function that takes an ordered pair of vectors in Rn to the value of q

determined by the first k edges of the polygon determined by Hopf of the pair. Then we

have that the expectation of q, Epol(q) is the result of integrating f against the masure

µ = LP (k, n) on the space of configurations of k edges. Likewise, we have the measure

ν = LA(k, n). As such, we can write:

|EPol2(n)(q)− EArm2(n)(q)| = |
∫
fνkn −

∫
fµkn|

= |
∫
f(νkn − µkn)|

≤ ‖f‖∞‖νkn − µ‖TV

≤ ‖f‖∞B2(k, n).
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Corollary 92. Let f be an essentially bounded, k-edged locally defined function. Let Ep(n)

stand for the expectation of f over Pol2(n), and Ea(n) stand for the expectation of f over

Arm2(n). Further, let Ẽp(n) stand for the expectation of the sum of f over a polygon in

Pol2(n), by which we mean the expectation of the quantity
n∑
i=1

f(ei, ei+1, . . . , ei+k), where the

indices are taken modulo n. Additionally, let Ẽa(n) stand for the expectation of the sum of f

over a polygon in Arm2(n). If lim
n→∞

nEa(n) =∞, then lim
n→∞

Ep(n)

Ea(n)
= 1 and lim

n→∞

Ẽp(n)

Ẽa(n)
= 1.

Proof. From Theorem 91, we see that Ea(n) −MB2(k, n) ≤ Ep(n) ≤ Ea(n) + MB2(k, n).

Dividing through by Ea(n), this becomes 1−MB2(k, n)

Ea(n)
≤ Ep(n)

Ea(n)
≤ 1 +M

B2(k, n)

Ea(n)
. From

Proposition 89, we see that B2(k, n) is asymptotic to
6k + 19

n
. This, in addition to our

assumption on lim
n→∞

nEa(n), tells us that lim
n→∞

M
B2(k, n)

Ea(n)
= lim

n→∞
M

6k + 19

nEa(n)
= 0. The first

result then follows from the Squeeze Theorem [39].

In the second case, note that from the invariance under permutations, we have that

Ẽp(n) = nEp(n) and Ẽa(n) = (n− k − 1)Ea(n). This produces the inequality

Ẽa(n) − nMB2(k, n) ≤ Ẽp(n) ≤ Ẽa(n) + nMB2(k, n), which we can divide through to

produce: 1−MB2(k, n)

Ea(n)

(
n

n− k − 1

)
≤ Ẽp(n)

Ẽp(n)
≤ 1 +M

B2(k, n)

Ea(n)

(
n

n− k − 1

)
. The result

then follows from the Squeeze Theorem and our earlier observation that M
B2(k, n)

Ea(n)
→ 0 as

n→∞.

2.2 Curvature

Let us return to the question of the total curvature of planar polygons. As stated before,

this is defined as the sum of the turning angles, and when we sample under the symmetric

measure, each turning angle has the same expectation. Combining this with the fact that

an expectation of a sum is the sum of the expectations (even for highly correlated data) as

cited before from Section 5.1 of [12], we see that the expectation of total curvature will be n
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times the expectation of a turning angle. For arms, we have already seen that the turning

angle has expected value of
π

2
. Using Theorem 91, we see that |EPol2(n)(θ)−

π

2
| ≤ πB2(2, n).

Moreover, we know that a closed polygon will have a higher expected turning angle than a

polygonal arm. As such, we see that we can bound the expectation of the total curvature of

a closed planar polygon as:

0 ≤ Epol(κ)− nπ
2
≤ 2nπ

(
7

2n− 7
+

12(n− 3)

(n− 6)2

)

Of particular interest, we see from taking the limit of this inequality, that the expectation

of total curvature of planar polygons lies between n
π

2
and 31π+n

π

2
+O

(
1

n

)
. Of course we

already have a trivial upper bound of nπ, but the bound we show is better, provided that

n > 69.

Even though it has already been shown in [6] that
EPol2(n)(κ)

EArm2(n)(κ)
→ 1, our corollary here

shows this not to be an artifact of total curvature, but of the proximity in distribution

between pairs of edges in open polygonal chains and pairs of edges in closed polygonal

chains. Let us now look at the variance of total curvature.

First note that we have a trivial upper bound on the variance: Fix some n ∈ N. Note

that the largest total curvature possible for an n-edged closed polygon is nπ, occurring if

the entire polygon lies on a line, with edge directions reversing at each vertex. Likewise, the

smallest total curvature possible is 2π, occurring if the entire polygon lies on a line with a

single vertex having edges with distinct directions. In the most extreme example, were it

the case that all of the n-edged closed polygons were partitioned into such extremes, with

n− 4

2n− 4
× 100% having total curvature nπ and the remaining

n

2n− 4
× 100% having total

curvature 2π, then the expectation of total curvature would be
π

2
and the variance of the total

curvature of π2

(
n2 − 4n

4

)
. Chebyshev’s inequality (Theorem 93 below, cited as a common

corollary to Markov’s Inequality, page 91 of [38]), would then tell us that the probability that
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a sampled polygon has total curvature between
nπ

2
± kπ

√
n(n− 4)

2
is greater than or equal

to 1− 1

k2
. As usual, this is only relevant for k > 1, but in such a case, kπ

√
n(n− 4)

2
' kn

π

2
,

so we have gained almost no additional insight.

Theorem 93 (Chebyshev’s Inequality, from [38]). Let X be a random variable with finite

expected value µ and finite non-zero variance σ2. Then for any real number k > 0,

Pr(|X − µ| ≤ kσ) ≥ 1− 1

k2
.

Proposition 94. The variance of total curvature of a random polygon sampled under the

symmetric measure on Pol2(n) is bounded by

M = π2
(
nB2(2, n) + 2nB2(3, n) + (n2 − 3n)B2(4, n)

)
− n2

(
πεn + ε2n

)
,

where en = EPol2(n)[θ1] − π

2
is surplus of the expectation of the turning angle of a polygon

over Pol2(n) over
π

2
.

Corollary 95. The variance of total curvature of a random polygon sampled under the

symmetric measure on Pol2(n) is bounded above by (nπ)2B2(4, n) ' 43nπ2.

Proof of Proposition. We know that the covariance of a pair can be computed as either

Cov(θi, θj) = E[(θi −E[θi])(θj −E[θj])] = E[θiθj]−E[θi]E[θj]. We already have established

the bounds that
π

2
≤ E(θ1) ≤ π

2
+ πB2(2, n). For convenience, let tn = E(θ1) and define

εn = tn −
π

2
, so that εn > 0 and εn → 0 as n→∞.

We may partition the pairs (θi, θj) into three categories: (1) j ≡ i mod n,

(2) j ≡ i ± 1 mod n, and (3) j ≡ i ± k mod n for 1 < k < n
2
. By the symmetry of the

measure, the covariance of any pair will be the same as the covariance of any other pair from

the same category. More, we see that in each category, the covariance is the integral of an

essentially bounded function determined by a set of consecutive edges (a pair of edges in

category 1, a triple of edges in category 2, and four edges in category 3).
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Recall then that the variance of a sum is equal to the sum of the covariance of the pairs

(corollary 8 on page 64 of [15]). This tells us that the variance of total curvature may be

partitioned into the sum:

V ar

(
n∑
i=1

θi

)
=

(
n∑
i=1

Cov(θi, θi)

)
+ 2

(
n∑
i=1

Cov(θi, θi+1)

)
+ 2

(
n−2∑
i=1

n−i∑
k=2

Cov(θi, θi+k)

)

=

(
n∑
i=1

Cov(θ1, θ1)

)
+ 2

(
n∑
i=1

Cov(θ1, θ2)

)
+ 2

(
n−2∑
i=1

n−i∑
k=2

Cov(θ1, θ3)

)

= nCov(θ1, θ1) + 2nCov(θ1, θ2) + n(n− 3) Cov(θ1, θ3).

By choosing to compute Cov(θi, θj) = E[θiθj] − E[θi]E[θj], and recalling our definition

that tn = E[θi], we may express this as:

Var

(
n∑
i=1

θi

)
= n(E[θ2

1]− t2n) + 2n(E[θ1θ2]− t2n) + (n2 − 3n)(E[θ1θ3]− t2n)

= nE[θ2
1] + 2nE[θ1θ2] + (n2 − 3n)E[θ1θ3]− (ntn)2.

We can compute E[θ2
1] as the integral of a scale-invariant function determined by a pair

of edges that is essentially bounded by π2. This means that we may use Theorem 91 to

conclude that |EPol2(n)[θ
2
1] − EArm2(n)[θ

2
1]| ≤ π2B2(2, n). A simple calculation shows that

EArm2(n)[θ
2
1] =

π2

4
, so we have that EPol2(n)[θ

2
1] ≤ π2

(
B2(2, n) +

1

4

)
.

Likewise, E[θ1θ2] and E[θ1θ3] are computed as the integral of scale-invariant functions

determined by three and four edges respectively. The independence of edge directions in

Arm2(n) tells us that EArm2(n)[θ1θ2] = EArm2(n)[θ1]EArm2(n)[θ2] =
π2

4
. So we see that

EPol2(n)[θ1]EPol2(n)[θ3] ≤ π2

(
B2(3, n) +

1

4

)
and EPol2(n)[θ1]EPol2(n)[θ2] ≤ π2

(
B2(4, n) +

1

4

)
.
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This allows us to place an upper bound on the variance of total curvature for Pol2(n) as

follows:

Var

(
n∑
i=1

θi

)
= nE[θ2

1] + 2nE[θ1θ2] + (n2 − 3n)E[θ1θ3]− (ntn)2

≤ nπ2B2(2, n) + 2nπ2B2(3, n) + (n2 − 3n)π2B2(4, n) +
n2π2

4
− n2(

π

2
+ εn)2

≤ π2
(
nB2(2, n) + 2nB2(3, n) + (n2 − 3n)B2(4, n)

)
− n2

(
πεn + ε2n

)
≤ π2n2B2(4, n)

Next, we claim that B2(k, n) is increasing in k. Recall that

B2(k, n) = 2

(
(2n− k − 4)(k + 4)

(n− k − 4)2
+

2k + 3

2n− 2k − 3

)
. The second summand is clearly in-

creasing, with k, as the denominator is decreasing while the numerator is increasing. The

first summand likewise has a decreasing denominator, and the numerator, (2n−(k+4))(k+4)

is quadratic in k with negative concavity. Since the critical point of this quadratic occurs at

k = n− 4 (which is also the largest k for which the bound holds), we see that the numerator

of the first summand is also increasing.

We can now establish a larger bound by replacing B2(2, n) and B2(3, n) with B2(3, n).

We then obtain an even larger bound by ignoring the −n(πεn + ε2n).

Chebyshev’s inequality tells us that the probability of a polygon having total curvature κ

inside the range of [ntn−λ
√

Var, ntn+λ
√

Var] is at least 1− 1

λ2
. By the above corollary, we can

write extend this to a slightly larger, but easier to work with interval by replacing
√

Var with

nπ
√

B2(4, n). This interval is then [n
(π

2
+ εn − λπ

√
B2(4, n)

)
, n
(π

2
+ εn + λ

√
B2(4, n)

)
].

We know from Proposition 82 that εn is asymptotic to
2

nπ
. We also know from Proposi-

tion 89 that B2(4, n) is asymptotic to, and less than,
43

n
, so we see that, asymptotically,

εn < B2(4, n). Since we only obtain useful information when λ > 1, this interval may be
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augmented to

[
nπ

(
π

2
− 7λ√

n

)
, nπ

(
π

2
+ 2

7λ√
n

)]
. Notice here, that the length of the inter-

val is 21π
√
n. So the length of this interval is growing at a rate of O(

√
n).

Of course we already have the trivial bounds that all planar polygons in Pol2(n) will

have total curvature between 2π and nπ, so let us first check that these bounds are better

than that. By setting λ =
√

2, we can say that at most
1

2
of the polygons in Pol2(n), lie

outside our given bounds, and that the lower will be larger than 2π when n ≥ 48, while the

upper will be smaller than nπ when n ≥ 159. Past those marks, our bounds from variance

become more useful than the trivial bounds.

Before moving on, we would like to point out that this analysis is adaptable for any

essentially bounded k-edged locally defined function. By which we mean that the interested

reader will be able to verify that the arguments leading to Proposition 94 and Corollary 95

could be slightly adjusted to say that the variance of the sum of f over all n runs of consec-

utive k-edges in a polygon is bounded by the quantity (nM)2B2(2k, n), where M is a bound

for f almost everywhere.

2.3 Intersections

We now turn to the topic of self intersections. As with curvature, finding the expectation

of the total number self-intersections is a bit large of a task, so we will instead focus on

bounding it. If we partition the polygon into triples of consecutive edges, we can see that

the total number of self-intersections of the polygon is certainly larger than the total number

of triples that contain a self-intersection. Recall then that for polygonal arms, the edges are

all independently sampled, and then scaled down to the appropriate length. As such, the

expected number of triples that contain a self-intersection in arms of 3n edges would be

bounded by n times the expected number of self-intersections in an arm of 3 edges.
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If a configuration of three edges is to intersect itself, then the third edge must intersect

the first edge. Label these edges e1, e2, e3, and their endpoints v0, v1, v2, and v3, where ei has

endpoints vi−1 and vi. Further, let us denote by ri and θi the length and direction of ei. For

convenience, rotate, and reflect if necessary, so that θ1 = 0 and θ2 ∈ [0, π]

Figure 2.1: Intersecting 3 Edged Arm

Proposition 96. Let σ be the sign function, the function σ(x) =

 |x|x
−1, x > 0

0, x = 0
. Then

the function I on R3
>0 × [0, π]× [0, 2π) given by

4I(r1, r2, r3, θ2, θ3) = 1− σ[r2 sin(θ2) + r3 sin(θ3)]

− σ[sin(θ2 − θ3)(r2 sin(θ2 − θ3)− r1 sin(θ3))]

+ σ[(r2 sin(θ2) + r3 sin(θ3))(r2 sin(θ2 − θ3)− r1 sin(θ3)) sin(θ2 − θ3)]),

returns 1 if the corresponding three edge polygonal arm with edges e1 = (r1, 0), e2 = (r2, θ2),

e3 = (r3, θ3) contains a self-intersection and 0 otherwise.

Moreover, the function I(r1, r2, r3, θ2, θ3) is the characteristic function of the the set

Is =

{
(r1, r2, r3, θ2, θ3) : r3 > −r2

sin(θ2)

sin(θ3)
& r1 > r2

sin(θ2 − θ3)

sin(θ3)

}
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Proof. First, observe that two line segments intersect when the each of the two half-planes

created by extending one segment to a full line contains the endpoints of the other segment,

and that condition holds when reversing the roles of the segments. For two points in the

plane, x, y ∈ R2, let L(x, y; p) be a function representing the line between x and y, so that the

line is the locus of points {p ∈ R2 : L(x, y; p) = 0}. Then one can determine which half-plane

a point p lies on by checking the sign of L(x, y; p). Writing the criteria for intersections in

terms of the sign of L(x, y; p) then gives us:

I(r1, r2, r3, θ2, θ3) =
1

4
(1−σ(L1(v2))σ(L1(v3)))(1−σ(L3(v0)σ(L3(v1)))), where v0 is the origin,

v1 is the point (r1, 0), v2 is the point v1 + r2(cos(θ2), sin(θ2), v3 is the point

v2 + r3(cos(θ3), sin(θ3), L1(p) = L(v0, v1; p) and L2(p) = L(v2, v3; p). It is clear from this

expression of I(r1, r2, r3, θ2, θ3) that the image of I is precisely the two point set {0, 1}, so I

will be the characteristic function of some set.

We can expand this formula and simplify to arrive at the proposed simplified form. The

computation of this involves many lines that must split in unappealing ways, so it has been

moved to Appendix B for the fastidious reader’s enjoyment. Picking up from there, we have

that

4I(r1, r2, r3, θ2, θ3) = 1

− σ[r2 sin(θ2) + r3 sin(θ3)]

− σ[sin(θ2 − θ3)(r2 sin(θ2 − θ3)− r1 sin(θ3))]

+ σ[(r2 sin(θ2) + r3 sin(θ3))(r2 sin(θ2 − θ3)− r1 sin(θ3)) sin(θ2 − θ3)]),

Next, let us consider the requirements for I(r1, r2, r3, θ2, θ3) to be 1. We need both

(r2 sin(θ2) + r3 sin(θ3)) and sin(θ2 − θ3)(r2 sin(θ2 − θ3)− r1 sin(θ3))) to be negative and their

product to be positive. Of course the product of any two negative numbers is positive, so

we need only look at the the middle two summands of I. showing the For this first to be
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negative, it must be the case that r3 sin(θ3) < −r2 sin(θ2). Since θ2 ∈ [0, π], we know that

sin(θ2) ≥ 0, so we require sin(θ3) < 0, telling us that we must have that θ3 ∈ (π, 2π). With

sin(θ3) 6= 0, let us write this requirement as r3 > −r2
sin(θ2)

sin(θ3)
. For the second inequality, we

need (sin(θ2− θ3)(r2 sin(θ2− θ3)− r1 sin(θ3))), to be negative. In the case that sin(θ2− θ3) is

positive, we need sin(θ3) positive, which cannot happen as we already required θ3 ∈ (π, 2π).

This leaves us with the case that sin(θ2 − θ3) is negative. In that case, we need

r2 sin(θ2− θ3) > r1 sin(θ3), so dividing by this negative quantity gives us r1 > r2
sin(θ2 − θ3)

sin(θ3)
,

as desired.

Proposition 97. The expected number of self-intersections in a 3-edged planar polygonal

arm is within the range of 0.05246379± 0.00006397.

Proof. Since this is a scale invariant quantity, Theorem 70 tells us that it has the same

expected value over A2(3) as it does over Arm2(3). Next, to integrate I over A2(3), notice

that I is the characteristic function of a region, so its expectation is the same as the measure

of that region. We have then that the number of self-intersections is given by the integral:

∫ ∞
0

∫ 2π

π

∫ π

0

∫ ∞
r2 sin(θ2−θ3)/ sin(θ3)

∫ ∞
−r2 sin(θ2)/ sin(θ3)

G1(r1)G1(r2)G1(r3)r1r2r3 dr3dr1dθ2dθ3dr2.

Working this integral out by hand may prove tedious, so we will instead supply the

numeric approximation of the integral. Using an adaptive Monte Carlo algorithm on one

million points yields 0.05246379 with an error bound estimate of 0.00006397.

As such, we find that a given arm with 3n edges is expected to have more than 0.05246379n

self-intersections, as that is the number of expected self-intersections formed by an edge ~ek

with the edge ~ek+2, where k ≡ 1 (mod 3). Utilizing Theorem 91, we can then establish

bounds on the probability of finding a self-intersection formed by the first three edges of a

closed polygon of 0.05246379 ±B2(3, n). As before, the symmetric nature of the symmet-

ric measure then lets us say that the expected number of self-intersections occurring from
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a triple of edges of the form ~ek, ~ek+1, ~ek+2 with k ≡ 1 (mod 3) in a 3n-edged polygon is

bounded by n(0.05246379±B2(3, n)). Looking at the asymptotic value, we see that this is

limiting to 0.05246379n± 37

3
.

Since this is only a bound on the expectation, we should point out that the example case

in which (05.246379 +
18.5

n
)% of 3n-gons have the property that, under this partition, all n

of the 3-edge configurations have an intersection, while the remaining polygons all have no

intersections of this type would also achieve this asymptotic bound. We could, as before, turn

to a variance argument to uncover more information. However, there is another perspective

we can take that is worth investigating.

2.4 Second Bound for Intersections

Recall that if an event occurs with probability p, and we have r independent samples, then

the probability of the event occurring at least once is given by 1 − (1 − p)r. In particular,

this tells us that that the probability of an arm with 3n edges to have at least one self-

intersection arising from our 3-edge configuration is 1 − 0.947536n. We know then, that

the probability of the event occurring at least once is approaching 1, which is something we

could not immediately say previously.

Now consider the probability of at least one self-intersection arising from a configuration

of 3 consecutive edges occurring in the first r sets of 3 edges in a closed polygon with n edges.

This quantity then depends only on the first 3r edges, and is represented by a characteristic

function of a measurable set. As such, invoking Theorem 91, tells us that the probability,

pn(r), of finding at least one self-intersection from a 3-edge configuration is bounded as:

|pn(r)− (1− 0.947536r)| ≤ B2(3r, n) = 2

(
12r + 6

2n− 6r − 3
− (2n− 3r − 4)(3r + 4)

(n− 3r − 4)2

)
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Since we are only particularly interested in bounding from below, we will only care about

the part of the absolute value that gives pn(r) ≥ (1 − 0.947536r) − B2(3r, n). Set qn(r)

to be this lower bound. We are now faced with the natural question: When is qn(r) the

maximized?

This is a straight-forward optimization problem on the closed domain of r ∈
[
1,
n− 4

3

)
.

Letting α = 0.947536 and taking the derivative with respect to r, will give us, after a little

simplification:

q′n(r) = 12n

(
−n

(n− 3r − 4)3
− 2

(2n− 6r − 3)2

)
− αr ln(α)

Since 0 < α < 1, we have that −αr ln(α) > 0. On the other hand, since we know that

n > 0 and r <
n− 4

3
, we see that both

−n
(n− 3r − 4)3

< 0 and
−2

(2n− 6r − 3)2
< 0. Looking

at the second derivative, we have that:

q′′n(r) = 36n

(
−3n

(n− 3r − 4)4
− 8

(2n− 6r − 3)3

)
− αr ln(α)2.

Notice here that this will be strictly negative, as it is the sum of 3 strictly negative terms: The

first being a negative number divided by an even power of some quantity, the second being

a negative 8 divided by a power of the positive quantity 2n− 6r− 3 > 2n− 2(n− 4)− 3 = 5,

and the third being the product of a power of the positive constant α an an even power of

ln(α). This tells us that qn(r) is concave down, and may admit at most one critical point,

which would be a global maximum. At the lower endpoint, r = 1, we see that qn(1) > 0

(provided that n > 705), while qn

(
3n

20

)
< 0, as we have pointed out prior that B2(k, n) > 1

for k > 14% of n. Hence, we know that a global maximum is achieved. Unfortunately,

solving directly for this critical point, is non-trivial. If we allow ourselves the approximation

B2(k, n) ≥ 6k + 19

n
, we see that qn(r) ≥ 1 − αr − 18r + 19

n
, we can observe that the only

critical point of this lower bound of qn(r) occurs at
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ln(18)− ln(−n ln(α))

ln(α)
' −107.8334 + 18.5562 ln(n). Notice below that this curve, which is

positive for n > 334 and greater than 2 for n > 372 provides a lower bound for the critical

point of qn(r). Applying logarithmic regression to the values of the critical points for n from

242 to 10000 provides the other curve shown, −107.8334 + 18.5562 ln(n).
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Figure 2.2: Comparing the critical point growth. The gray dots are the numerical approxi-
mations for each n, the blue curve is the logarithmic regression, and the black curve is the
critical point of the simplified lower bound.
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Chapter 3

Space Polygons

Our next goal will be to extend this approach to space polygons. Much of the ground

work has been laid out in chapter 2, but we will first need to develop a bound on the total

variation between the appropriate multivariate Gaussian, and the upper r × s block of a

matrix sampled uniformly on U(n), the set of unitary n× n matrices.

Recall that we see that we may sample an n-edge polygon from the symmetric measure

on Arm3(n) by applying the map h to a point sampled from the spherical measure on the

sphere of radius
√

2 in Hn, where h first applies the Hopf map, q 7→ qiq, to each coordinate,

and then identifies the resulting purely imaginary quaternion with an edge vector in R3.

Likewise, we may sample a closed n-edged polygon under the symmetric measure on Pol3(n)

by applying the map h to the image of a point sampled from the Haar measure on V2(Cn)

under the embedding {~a,~b} 7→ ~a1 +~bj.

Next, recall that to sample a point on the sphere, it suffices to sample 2n complex

independent and identically distributed normal random variables and then scale the resultant

vector to length of
√

2 [31]. Likewise, we may sample an orthonormal 2-frame from the Haar

measure on V2(Cn) by applying the Gram-Schmidt orthonormalization procedure to a pair of

points sampled from the spherical measure on S2n−1 ⊂ Cn (pg. 29 [5]). We needn’t work out
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the probability density function for k-edged sub-arms, as it is given in [6], but one still has

the intuition that k-edge segments of arms are sampled very closely in total variation to a

multi-variate normal distribution. Unfortunately, we will need to establish a total variation

bound on the upper k × 2 block of a random unitary matrix to establish an analogue to

Theorem 88 for Pol3(n) and Arm3(n).

3.1 Variation Bound

Many sources in the literature claim their results for real variates can be extended or adapted

to complex or even quaternionic variates, but leave such extensions to the interested reader

(see for example [8]). Here we will provide those adaptations to produce the analogue to

the variation bound given in [8] for unitary matrices. We wish to stress at this time that

the following is simply an adaptation of what is currently found in the literature to our

particular problem. After developing the result needed we will return to our own work with

polygons. Lastly, throughout this section we will let L (∗) denote “the law of ∗,” as is the

convention in many of the references.

Definition 98. Given a subspace M of Cn, the compact subgroup Un(M) ⊂ U(n) is defined

by Un(M) = {g ∈ U(n)|gx = x for all x ∈M}.

Definition 99. Since Un(M) is compact, we may pushforward the Haar measure on U(n)

to and then normalize it to produce a measure νM on Un(M).

Definition 100. We say that U is uniform on Un(M) if it is a random element with law νM .

Definition 101. Let P be the orthogonal projection onto the m-dimensional subspace

M ⊂ Cn and set Q = I − P to be the orthogonal projection onto M⊥. Let r be no larger

than n−m and let α be a complex matrix of size r × n. Define A(M,α) = αQα∗. Further,
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since Q is Hermitian, we see that A(M,α) will be Hermitian. The Spectral Theorem ([14])

then tells us that there exists a unitary matrix UA and a real diagonal matrix D such that

A(M,α) = U∗DU . Since A(M,α) is positive semi-definite, we know that all elements of

D are non-negative, so it makes since to define the matrix D1/2 to be the matrix whose

(i, j)−entry is the positive square root of the (i, j)−entry of D. We then define

A1/2(M,α) := U∗D1/2U . In particular, note that

A1/2(M,α)A1/2(M,α) = U∗D1/2UU∗D1/2U = U∗D1/2ID1/2U = U∗DU = A.

Lemma 102. Fix an m-dimensional subspace M ⊂ Cn, and let P be the projection matrix

for M . Let U be uniformly distributed on U(n−m) and let Z be the upper left r× s corner

block of U . Let α be an r × n complex matrix and let β be an s× n complex matrix, where

r and s are no larger than n − m. For A = A(M,α) and B = B(M,β), and the variate

V = αUβ∗, we have L (V ) = L (A1/2ZB1/2 + αPβ∗). are

Proof. First, notice that for anym-dimensional subspaceM , and any Γ ∈ U(n), the subgroup

Un(ΓM) = {g ∈ U(n) : gx = x for all x ∈ ΓM}, is equal to the subgroup ΓUn(M)Γ∗. To

see this, note that if g ∈ Un(M) and x ∈ ΓM , then there is a unique y ∈ M so that

x = Γy. Then (ΓgΓ∗)x = (Γg)y = Γy = x, so ΓgΓ∗ ∈ Un(ΓM). Further, if h ∈ Un(ΓM),

and y ∈ M , then hΓy = Γy. Multiplying on the left by Γ∗ then shows us that Γ∗hΓy = y,

so Γ∗hΓ ∈ Un(M). This then tells us that h ∈ ΓUn(M)Γ∗. Together, these give us the

relationships that ΓUn(M)Γ∗ ⊆ Un(ΓM) ⊆ ΓUn(M)Γ∗ as desired.

Next, since Un(ΓM) = ΓUn(M)Γ∗, it suffices to establish the lemma in the case where

M = M0 =

~z ∈ Cn : ~z =

~x
~0

 , ~x ∈ Cm

.
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For M0, it is clear that

Un(M0) =

g ∈ On : g =

Im O

O h

 , h ∈ U(n−m)

. Hence, if U is uniform on U(n−m),

then U0 =

Im O

O U

 is uniform on Un(M0).

Set P0 =

Im O

O O

, the orthogonal projection onto M0, and set

Q0 = I − P0 =

O O

O In−m

. We can write Q0 = C0C
∗
0 , where C0 is the n× (n−m) matrix

 O

In−m

. Then for any V = αU0β
∗, we have that

V = αInU0Inβ
∗ (3.1)

= α(P0 +Q0)U0(P0 +Q0)β∗ (3.2)

= α(P0U0 +Q0U0)(P0 +Q0)β∗ (3.3)

= α(P0U0P0 +Q0U0P0 + P0U0Q0 +Q0U0Q0)β∗ (3.4)

= α(P0P0U0 +Q0P0U0 + U0P0Q0 +Q0U0Q0)β∗ (3.5)

= α(P0 +OU0 + U0O +Q0U0Q0)β∗ (3.6)

= α(P0 +Q0U0Q0)β∗ (3.7)

= αP0β
∗ + αQ0U0Q0β

∗. (3.8)

In 3.1 we use the identity that U0 = InU0In and in 3.2 the identity that In = P0 +Q0. Lines

3.3 and 3.4 follow from the distributive property. Line 3.5 comes from the identity that

P0U0 = U0P0 = P0. Line 3.6 follows from the identity that P0Q0 = Q0P0 = O. We have
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then that V = αQ0U0Q0β
∗ + αP0β

∗ = αC0C
∗
0U0C0C

∗
0β
∗ + αP0β

∗ = γUδ∗ + αP0β
∗, where

γ = αC0 and δ = βC0 and we have used the fact that C∗0U0C0 = C∗0

O
U

 = U . Now notice

that we have A0 = γγ∗ = αQ0α
∗ = A(M0, α), and B0 = δδ∗ = βQ0β

∗ = A(M0, β). This

allows us to write γ and δ in their polar decompositions [16], as γ = A
1/2
0

[
Ir O

]
ψ1, and

δ = B
1/2
0

[
Is O

]
ψ2, where ψ1, ψ2 ∈ U(n −m). Recalling that U is uniform on U(n −m),

and is thus sampled from the Haar measure, we see that L (U) = L (ψ1Uψ
∗
2) which gives

us:

L (V ) = L (αQ0U0Q0β
∗ + αP0β

∗)

= L

A1/2
0

[
Ir O

]
ψ1Uψ

∗
2

Is
O

B1/2
0 + αP0β

∗


= L

(A
1/2
0

[
Ir O

]
U

Is
O

B1/2
0 + αP0β

∗


= L (A

1/2
0 ZB

1/2
0 + αP0β

∗)

Where Z =

[
Ir O

]
U

Is
O

 is the r × s upper left block of U , as desired.

We have already established a view of the Stiefel manifold Vq(Cn) as the set of all n× q

complex matrices A that satisfy A∗A = Iq, and the fact that that if Γ is uniform on U(n)

then Γ1 = Γ

Iq
O

, is uniform on Vq(Cn).

Definition 103. For a compact group G acting on a measurable space Y , a function

τ : Y → Z is called a maximal invariant function under G if (1) τ(gy) = τ(y) for all y ∈ Y

and g ∈ G and (2) for any pair of points y1, y2 ∈ Y such that τ(y1) = τ(y2), there exists

some g ∈ Y such that gy1 = y2.
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Proposition 104 (From [13]). Suppose that G is a compact group that acts on a measurable

space Y . Let τ : Y → Z be a maximal invariant function, and let Zi = τ(Yi) where

L (Yi) = Pi for i = 1, 2 are two G-invariant distributions. If L (Z1) = L (Z2), then P1 = P2.

Next, for q ≤ p, partition Γ1 =

∆

Ψ

, where ∆ is p× q and Ψ is (n−p)× q. Additionally,

let Lq,n be the space of all n× q complex matrices of rank q, and note that Vq(Cn) ( Lq,n.

Proposition 105. Suppose X ∈ Lq,n has a left U(n)-invariant distribution. Let

φ : Lq,n → Vq(Cn) satisfy φ(gx) = gφ(x) for all x ∈ Lq,n and g ∈ U(n), which is to say

that φ is an equivariant map. Then L(φ(X)) = L(Γ1). In other words, the image of any

invariant distribution under an equivariant map is the Haar measure on Vq(Cn).

Proof. From the uniqueness of the uniform distribution on Vq(Cn), it suffices to show that

L (gφ(X)) = L (φ(X)) for g ∈ U(n).We have from assumption on φ that

L (gφ(X)) = L (φ(gX)) and from left U(n)-invariance that L (φ(gX)) = L (φ(X))

Notice here that a particular such φ is given by φ(x) = x(x∗x)−1/2, (the unitary matrix

of the polar decomposition of the matrix x, as seen in Lemma 2.1 of [22]), as we have that

φ(gx) = gx((gx)∗gx)−1/2 = gx(x∗g∗gx)−1/2 = gx(x∗x)−1/2.

Proposition 106. Let X ∈ Lq,n and partition it into X =

Y
Z

, Y : p× q, Z : (n− p)× q.

Then L (∆) = L (Y (Y ∗Y + Z∗Z)−1/2), where again ∆ is the top p× q block of Γ1.

Proof. We have then, that X∗X =

[
Y ∗ Z∗

]Y
Z

 = Y ∗Y + Z∗Z, so the matrix

Y (Y ∗Y + Z∗Z)−1/2 is the upper p × q block of X(X∗X)−1/2. The result then follows from

the previous proposition.

Proposition 107. Let U ∈ Lp,n and partition it into U =

V
W

, V : q× p, W : (n− q)× p.

Then L (∆∗) = L (V (V ∗V +W ∗W )−1/2) and L (∆) = L ((V ∗V +W ∗W )−1/2V ∗).
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Proof. By mirroring the previous proof, we see that L (∆∗) = L (V (V ∗V + W ∗W )−1/2).

Since V ∗V +W ∗W is Hermitian, so too is its square root. This tells us that

(V (V ∗V +W ∗W )−1/2)∗ = (V ∗V +W ∗W )−1/2)V ∗, so we can conclude that

L (∆) = L ((V ∗V +W ∗W )−1/2V ∗).

We know have the tools needed to find explicitly the density of these distributions. First,

we will define the densities we will be using:

Definition 108 (From [17]). For a matrix distribution Y , whose n rows are independent and

identically distributed p-variate complex Gaussian random variables with covariance matrix

Σ. Then the distribution of Y ∗Y =
∑n

k=1 YiY
∗
i , has the probability density function given

by:

pW (A) =
det(A)n−p

π
1
2
p(p−1)Γ(n) · · ·Γ(n− p+ 1) det(Σ)n

e− tr(Σ−1A),

defined on the set of Hermitian positive semi-definite p × p matrices. This distribution is

known as the Complex Wishart distribution and we will denote it as C W (p, n,Σ)

Next, we point out that in [11] matrices with the above distribution are said to have the

complex matrix variate gamma distribution C G p(n,Σ).

Definition 109 (From [11]). Define the complex matrix variate beta type I distribution as

follows: for A ∼ C Gm(a, Im) = C W (m, a, Im) and B ∼ C Gm(b, Im) = C W (m, b, Im), the

distribution of either of

(1) U = (A+B)−1/2A((A+B)−1/2))

(2) V = A1/2(A+B)−1(A1/2).

Further, the density function of this distribution, denoted as C BI m(U ; a, b), is given by:

pB(M) =
C Γm(a+ b)

C Γm(a)C Γm(b)
det(M)a−m det(Im −M)b−m,
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defined on the set of m × m Hermitian positive semi-definite matrices M , where C Γm(a)

stands for πm(m−1)/2
∏m

j=1 Γ(a− j + 1).

Proposition 110. L (∆∗∆) = C BI q(p, n−p) and L (∆∆∗) = C BI p(q, n− q). Further,

L (∆∗∆) has a density given by:

p(∆∗∆) =
C Γq(n)

C Γq(p)C Γq(n− p)
det(∆∗∆)p−q det(Iq −∆∗∆)n−p−q

Proof. Let X be distributed as N(0, In ⊗ Iq), and be partitioned as X =

Y
Z

.

From our definition of the Complex Wishart distribution,

L (Y ∗Y ) = C W (q, p, Iq) = C G q(p, Iq) and L (Z∗Z) = C W (q, n − p, Iq) = C G q(n − p, Iq).

Next, we see from Proposition 107 that

L (∆∆∗) = L (((Y ∗Y +Z∗Z)−1/2)Y ∗Y (Y ∗Y +Z∗Z)−1/2). Finally, from the definition of the

complex matrix variate beta type I distribution, since this is in the form

U = (A+B)−1/2A((A+B)−1/2)) for A = Y ∗Y ∼ C G q(p, Iq) and B = Z∗Z ∼ C G q(n−p, Iq),

we see that ∆∆∗ has a distribution of type C BI p(q, n− q). Likewise, we see that

∆∗∆ ∼ C BI q(p, n− p) and a density function given by:

p(∆∗∆) =
C Γq(p+ n− p)

C Γq(p)C Γq(n− p)
det(∆∗∆)p−q det(Iq −∆∗∆)n−p−q

=
C Γq(n)

C Γq(p)C Γq(n− p)
det(∆∗∆)p−q det(Iq −∆∗∆)n−p−q

Theorem 111 (From [37]). For a complex matrix M of size p × q, if the density of M

depends only on the matrix B = M∗M , by a function f(B), then the density of B = M∗M

is given by
f(B) det(B)p−qπq(p−(1/2)(q−1))∏q

j=1 Γ(p− j + 1)

Proof. This is the main theorem of [37], so the proof is omitted here.
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We know have the tools needed to determine the probability density function of ∆:

Theorem 112. For the the upper p × q block of Γ1, called ∆, the density of ∆ is given by

f(∆) = c1|Iq −∆∗∆|n−p−q, where c is the constant given by

c1 = πqp
q∏
j=1

(
Γ(n− j + 1)

Γ(n− p− j + 1)

)
.

Proof. It follows from the Proposition 110 that ∆∗∆ has a density given by

C BI q(p, n− p). First, we have that the distribution of ∆ is invariant under the action of

U(p) given by left multiplication, ∆→ g∆, g ∈ U(p). Second, we have a maximal invariant

given by τ(∆) = ∆∗∆. Let Ψ be the random matrix variate with density given by f . U(p)

acts on Ψ, and the density of the maximal invariant τ(Ψ) is then calculated from Theorem 111

as

h(Ψ∗Ψ) =
c1 det(Iq −Ψ∗Ψ)n−p−q det(Ψ∗Ψ)p−qπq(p−(1/2)(q−1))∏q

j=1 Γ(p− j + 1)

= πqp
q∏
j=1

(
Γ(n− j + 1)

Γ(n− p− j + 1)

)
det(Iq −Ψ∗Ψ)n−p−q det(Ψ∗Ψ)p−qπq(p−(1/2)(q−1))∏q

j=1 Γ(p− j + 1)

= π−q(q−1)/2

q∏
j=1

Γ(n− j + 1)

Γ(p− j + 1)Γ(n− p− j + 1)
det(Ψ∗Ψ)p−q det(Iq −Ψ∗Ψ)n−p−q,

This calculation shows that L (Ψ∗Ψ) = C BI q(p, n−p), so we see that L (Ψ∗Ψ) = L (∆∗∆).

Since we can see that the distribution of Ψ is invariant under the group action of U(p), it

follows from Proposition 104 that L (Ψ) = L (∆). Hence, f must be the density of ∆.

Theorem 113. Let Z be the upper left r × s block of a random matrix U which is uniform

on U(n), so that it has density given by Theorem 112. Further, we have that

EZ = O ∈Mr,s(C) and Cov(Z) = n−1Ir ⊗ Is, so we shall take X to be a random matrix
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with the r×s complex multivariate Gaussian distribution with the same mean and covariace.

Then, provided that r+s+2 < n, the variation distance between L (Z) and L (X) is bounded

above by B(r, s;n) := 2

((
1− r + s

n

)−t2
− 1

)
, where t = min(r, s).

Proof. Setting L (X) = P1 and L (Z) = P2, let us start with the case of s ≤ r. The density

f1 of P1 is given by f(x) = 1
πrs
e−tr(x

∗x) [17]. The density f2 of P2 is given in Theorem 112.

Since these are functions of x∗x and z∗z respectively, the variation distance is equal to the

variation distance between the distributions of x∗x and z∗z. x∗x has, in accordance with

the definition above, the complex Wishart distribution C W
(
s, r, 1

n
Is
)
, and hence a density

given by

f(v) =
det(v)r−s

π
1
2
s(s−1)Γ(r) · · ·Γ(r − s+ 1) det( 1

n
Is)r

e− tr(( 1
n
Is)−1v)

=
det(v)r−s

π
1
2
s(s−1)Γ(r) · · ·Γ(r − s+ 1)n−sr

e−n tr(v)

= det(v)r−se−n tr(v)π−
1
2
s(s−1) nrs∏s

j=1 Γ(r − j + 1)
,

defined on the set of s× s Hermitian, positive-definite matrices. The density of z∗z we have

seen in Proposition 110 to be given by

g(v) =
C Γs(n)

C Γs(r)C Γs(n− r)
det(v)r−s det(Is − v)n−r−s

=
π

1
2
s(s−1)

∏s
j=1 Γ(n− j + 1)

(π
1
2
s(s−1)

∏s
j=1 Γ(r − j + 1))(π

1
2
s(s−1)

∏s
j=1 Γ(n− r − j + 1))

det(v)r−s det(Is − v)n−r−s

= det(v)r−s det(Is − v)n−r−sπ−
1
2
s(s−1)

s∏
j=1

Γ(n− j + 1)

Γ(r − j + 1)Γ(n− r − j + 1)
,

defined on the set of matrices with v and I − v positive definite. By an alternate charac-

terization of total variation (seen in [8]), we see that the total variation distance is given

by δr,s,n :=
∫
|g(v) − f(v)|dv = 2

∫
E

(
g(v)
f(v)
− 1
)
f(v)dv, where E is the set of s × s positive
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definite matrices on which g(v) > f(v). As we will be using it often, let us now simplify the

expression
g(v)

f(v)
:

g(v)

f(v)
=

det(v)r−s det(Is − v)n−r−sπ−
1
2
s(s−1)

∏s
j=1

Γ(n− j + 1)

Γ(r − j + 1)Γ(n− r − j + 1)

det(v)r−se−n tr(v)π−
1
2
s(s−1) nrs∏s

j=1 Γ(r − j + 1)

=
det(Is − v)n−r−s

e−n tr(v)nrs

s∏
j=1

Γ(n− j + 1)

Γ(n− r − j + 1)

= det(Is − v)n−r−sen tr(v)

s∏
j=1

Γ(n− j + 1)

nrΓ(n− r − j + 1)

Hence, δr,s,n ≤ 2 supv∈E

(
g(v)
f(v)
− 1
)

. Set Mr,s,n := supv∈E

(
g(v)
f(v)
− 1
)

, so that

δr,s,n ≤ 2 Mr,s,n. Differentiation shows that the maximum of
(
g(v)
f(v)
− 1
)

is attained uniquely

for v =
r + s

n
Is:

Let us first write
g(v)

f(v)
= c det(Is − v)n−r−sen tr(v), with c =

∏s
j=1

Γ(n− j + 1)

nrΓ(n− r − j + 1)

independent of v. Next, computing the derivative with respect to v, we will look at first at

the partials from the entries off the diagonal, and secondly at the entries of the diagonal.

Case 1: (i 6= j) In this case, we first note that
∂

∂vi,j
en tr(v) = 0, as the trace depends only

on the diagonal. This tells us that
∂

∂vi,j

g(v)

f(v)
= cen tr(v) ∂

∂vi,j
(det(Is− v))n−r−s. Applying the

Power Rule and Chain Rule ([39]), we see that

∂

∂vi,j
(det(Is − v))n−r−s = (n − r − s)(det(Is − v))n−r−s−1 ∂

∂vi,j
det(Is − v). Next, we see

from 2.1.1 of [34] that
∂

∂vi,j
det(Is − v) = det(Is − v) tr

(
(Is − v)−1 ∂

∂vi,j
(Is − v)

)
. Here,

∂

∂vi,j
(Is − v) is a matrix whose only non-zero entry the (i, j)-entry, which is a -1. Hence, we

see that that tr

(
(Is − v)−1 ∂

∂vi,j
(Is − v)

)
is (j, i)-entry of −(Is − v)−1. Recall that for an

invertible matrix M , M−1 =
1

det(M)
adj(M) =

1

det(M)
C(M)ᵀ, where adj(M) is the adjoint

matrix and C(M) is the cofactor matrix (3.1.2 and 3.1.4 of [34]). Therefore, we see that the
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(j, i)-entry of −(Is − v)−1 is the (i, j)-entry of
−1

det(Is − v)
C(Is − v). We may then conclude

that
∂

∂vi,j

g(v)

f(v)
= −cen tr(v)(n− r− s)(det(Is−v))n−r−s−1 C(Is−v){i,j}. We can then see that

this will only be zero when C(Is− v){i,j} is zero, as the first three terms are all positive, and

the determinant term is non-zero as g(v) is only defined on the set of matrices with both v

and Is − v positive definite.

Case 2: (i = j). We first apply the Product Rule to see that

∂

∂vi,i

g(v)

f(v)
= c

(
en tr(v)

(
∂

∂vi,i
(det(Is − v))n−r−s

)
+ (det(Is − v))n−r−s

(
∂

∂vi,i
en tr(v)

))
.

We have already computed the partial derivative of the power of the determinant. In the

second term, we see from a quick application of the chain rule that
∂

∂vi,i
en tr(v) = nen tr(v).

We may then conclude that

∂

∂vi,i

g(v)

f(v)
= cen tr(v)(det(Is − v))n−r−s−1

(
−(n− r − s) C(Is − v){i,i} + n det(Is − v)

)
.

This will be zero only when n det(Is − v) = (n− r − s) C(Is − v){i,i}.

We have now classified the critical point of
g(v)

f(v)
to be any matrix v for which the

(i, j) cofactor of (Is − v) is given by the equation
n

n− r − s
det(Is − v)δi,j, where δi,j is the

Kronecker delta. We have already seen how to express the inverse of a matrix in terms of the

determinant and the cofactor matrix, so since we know all of the cofactors of Is−v, we know

the inverse of Is − v. Specifically,

[
(Is − v)−1

i,j

]
=

1

det(Is − v)

[
n

n− r − s
det(Is − v)δj,i

]
.

Observe that the matrix on the right-hand side of the equation is simply the identity matrix

scaled by
n

n− r − s
. Inverting both sides produces Is − v =

n− r − s
n

Is, so we see that

v =

(
1− n− r − s

n

)
Is =

r + s

n
Is.

Now that we see that this is the only critical point, we will show that it produces a

maximum. All of the following properties are given in [4]. First, recall that a critical point

of a concave function must be a maximum. Second, note that if φ(x) is convex, then so too
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are αφ(x), φ(x + t), and φ(Ax) for any α > 0, t ∈ RM , and M ×M matrix A and −φ(x) is

concave. Fourth, we know that the sum, product, and composition of convex functions are

convex. From this last property, we see that a concave function pre-composed with a convex

function is concave and the product of a convex function and a concave function is concave.

Using these properties, it is easy to see that the trace of a matrix is convex, as it is the sum

of the projections to the the diagonal elements. Likewise, from the fact that
d2

d2x
eαx = α2eαx,

we know that eαx is convex, showing that cen tr(v) is convex. Now, we need only show that

det(v) is concave to show the concavity of
f(v)

g(v)
− 1, which is given as Example 3.39 of [4].

Hence, we know that

Mr,s,n + 1 =
g((r + s)n−1Is)

f((r + s)n−1Is)

= det(Is − (r + s)n−1Is)
n−r−sen tr((r+s)n−1Is)

s∏
j=1

Γ(n− j + 1)

nrΓ(n− r − j + 1)

= det

((
1− r + s

n

)
Is

)n−r−s
ens(

r+s
n

)

s∏
j=1

Γ(n− j + 1)

nrΓ(n− r − j + 1)

=

(
1− r + s

n

)s(n−r−s)
es(r+s)

s∏
j=1

Γ(n− j + 1)

nrΓ(n− r − j + 1)

=
s∏
j=1

(
Γ(n− j + 1)

nrΓ(n− r − j + 1)

(
1− r + s

n

)n−r−s
er+s

)

We would now like to write this in terms of logarithms. To do this, we first observe that

−n
∫ t

0

ln(1− x) dx = −n ((x− 1) ln(1− x)− x)x=t
x=0

= −n((t− 1) ln(1− t)− t)

= nt+ (n− nt) ln(1− t).

Setting t = r+s
n

gives us −n
∫ r+s

n

0

ln(1− x) dx = (r + s) + (n− r − s) log

(
1− r + s

n

)
.

81



Next, set

Aj = ln

(
Γ(n− j + 1)

nrΓ(n− r − j + 1)

)
− n

∫ (r+s)/n

0

ln(1− x)dx+ ln

(
1− r + s

n

)
,

we can write Mr,s,n + 1 =
∏s

j=1 e
Aj . Now let us write Aj in a more pliable form by noting

that

log

(
Γ(n− j + 1)

nrΓ(n− r − j + 1)

)
= ln(Γ(n− j + 1))− ln(Γ(n− r − j + 1))− ln(nr) (3.9)

=

(
n−j∑
i=1

ln(i)

)
−

(
n−r−j∑
i=1

ln(i)

)
−

(
r∑
i=1

ln(n)

)
(3.10)

=

(
n−j∑

i=n−j−r+1

ln(i)

)
−

(
r∑
i=1

ln(n)

)
(3.11)

=

(
r∑

k=1

ln(n− j − k + 1)

)
−

(
r∑
i=1

ln(n)

)
(3.12)

=
r∑
i=1

ln

(
n− j − i+ 1

n

)
(3.13)

=
r∑
i=1

ln

(
1− j + i− 1

n

)
. (3.14)

In line 3.10, we have used the fact that for x ∈ N, Γ(x) =
∏x−1

i=1 i. In line 3.12, we

introduce the change of indices k = (n− j + 1)− i, which ranges from 1 when i = n− j to

r when i = n− j − r + 1.

This lets us simplify Aj into the form:

Aj =

(
r∑
i=1

log

(
1− j + i− 1

n

))
− n

∫ (r+s)/n

0

ln(1− x)dx+ ln

(
1− r + s

n

)
.

Writing Aj in this way as sum of three quantities, it is easy to see that Aj ≤ A1 for all

j = 1, 2, . . . , s: Only the first depends on j, and as j increases, 1 − j + i− 1

n
is decreasing,

so that log

(
1− j + i− 1

n

)
is decreasing. This allows us to to bound
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Mr,s,n + 1 ≤
∏s

j=1 eA1 = esA1 . Next, we claim that − log(1− x) is an increasing convex

function on [0, 1). To see this, first, we note that the first derivative,
1

1− x
, is strictly positive

for all x ∈ [0, 1), while the second derivative,
−1

(1− x)2
, is strictly negative. Next, recall that

the graph of a convex function h(x) on any interval [a, b] lies below the graph of the secant line

from (a, f(a)) to (b, f(b)). Next, let l[a,b](x) =
ln(1− a)− ln(1− b)

b− a
(x−a)− ln(1−a) be the

function whose graph is the secant line of − ln(1−x) from (a,− ln(1−a)) to (b,−ln(1− b)).

We then have the inequality that 0 ≤ − ln(1− x) ≤ l[a,b](x) for any

0 ≤ a < x < b < 1. In particular, monotonicity of integration tells us then that

0 ≤ −
∫ b
a

log(1− x)dx ≤
∫ b
a
l[a,b](x)dx =

b− a
2

(− ln(1− b)− ln(1− a)).

Setting a =
i− 1

n
and b =

i

n
, we then have that

−n
∫ i/n

(i−1)/n
log(1− x)dx ≤ 1

2

(
− log(1− i

n
)− log(1− i−1

n
)
)
. Which we can write as

1

2
log(1− i

n
) ≤ n

∫ i/n
(i−1)/n

log(1− x)dx− 1

2
log(1− i−1

n
). We now have the tools to bound A1

nicely:

A1 =

(
r∑
i=1

ln

(
1− i

n

))
− n

∫ (r+s)/n

0

ln(1− x)dx+ ln

(
1− r + s

n

)
(3.15)

=

(
2

r∑
i=1

1

2
ln

(
1− i

n

))
− n

∫ (r+s)/n

0

ln(1− x)dx+ ln

(
1− r + s

n

)
(3.16)

≤

(
r∑
i=1

1

2
ln

(
1− i

n

))
+

(
r∑
i=1

n

∫ i/n

(i−1)/n

ln(1− x)dx− 1

2
ln

(
1− i− 1

n

))
(3.17)

− n
∫ (r+s)/n

0

ln(1− x)dx+ ln

(
1− r + s

n

)
(3.18)

=

(
r∑
i=1

1

2
ln

(
1− i

n

)
− 1

2
ln

(
1− i− 1

n

))
+

(
r∑
i=1

n

∫ i/n

(i−1)/n

ln(1− x)dx

)
(3.19)

− n
∫ (r+s)/n

0

ln(1− x)dx+ ln

(
1− r + s

n

)
(3.20)
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=
1

2
ln
(

1− r

n

)
− n

∫ (r+s)/n

r/n

ln(1− x)dx+ ln

(
1− r + s

n

)
(3.21)

≤ 1

2
ln
(

1− r

n

)
− s+ 1

2

(
ln
(

1− r

n

)
+ ln

(
1− r + s

n

))
+ ln

(
1− r + s

n

)
(3.22)

= −s
2

ln
(

1− r

n

)
− s− 1

2
ln

(
1− r + s

n

)
(3.23)

≤ −
(
s

2
+
s− 1

2

)
ln

(
1− r + s

n

)
(3.24)

≤ −s ln

(
1− r + s

n

)
(3.25)

In lines 3.17-3.18, we have applied the bound we obtained form the convexity argument to

one of the sums of
1

2
ln

(
1− i

n

)
. In lines 3.19-3.20, we combine the sums of the logarithms,

in preparation to evaluate the single telescoping sum in lines 3.21. In lines 3.22, we use again

the convexity argument to bound the integral by the sum of two logarithms before collecting

terms in 3.23. In line 3.24, we use the fact that − ln(1 − x) is increasing. Finally, in line

3.25, since − ln

(
1− r + s

n

)
> 0, we use the slightly simpler upper bound for

(
s− 1

2

)
.

We then have that Mr,s,n + 1 ≤ e−s
2 ln(1−(r+s)/n) =

(
1− r + s

n

)−s2
. Hence, we have that

δr,s,n ≤ 2

((
1− r + s

n

)−s2
− 1

)
. To finish the proof, in the case that r ≤ s, we repeat these

arguments with their roles reversed. This brings us to the promised form:

δr,s,n ≤ 2

((
1− r + s

n

)−(min(r,s)2)

− 1

)
= B(r, s;n).

Now that we are done with the detour through random matrix theory, let us return our

focus to random polygons.

Theorem 114. Let f be an essentially bounded k-edged locally defined function. Then the

expectation of f over Pol3(n) may be approximated by the expectation of f over Arm3(n) to

within MB3(k, n), where M is a bound for f almost everywhere, and

B3(k, n) := B(k, 2;n) = 2

(
4k + 3

4n− 4k − 3
+

n4

(n− k − 2)4
− 1

)
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Theorem 115. Let f be an essentially bounded, k-edged locally defined function. Then the

expectation of f over Pol2(n) may be approximated by the expectation of f over Arm2(n) to

within MB2(k, n), where M is a bound for f almost everywhere.

Corollary 116. Let q be an essentially bounded, locally measured quantity of a polygonal

chain. Let Ep(n) stand for the expectation of q over Pol3(n), and Ea(n) stand for the

expectation of q over Arm3(n). If nEa(n)→∞, then
Ep(n)

Ea(n)
→ 1.

Moreover, the expectation of the average of q over the polygon, Ẽp(n) and the expectation

of the sum of q over the polygon, Ep(n) also satisfy
Ẽp(n)

Ẽa(n)
→ 1 and

Ep(n)

Ea(n)
→ 1.

Proof. The proofs of these mirror those given in for Theorem 88, Theorem 91 and Corol-

lary 92, where we replace V2(Rn) with V2(Cn), S2n with S4n, and our variation bounds from

the shared, close-proximity multivariate Gaussian, come from Theorem 113 and Theorem 87

respectively.

Looking at this bound, we see that, as with the planar case, it is limiting to 0 at a rate of

O(n). Specifically, it is asymptotic to lim
n→∞

nB3(k, n) = 10k +
35

2
, and we additionally have

again that B3(k, n) <
10k + 17.5

n
, provided that the bound is useful (B2(k, n) is greater

than 2 for k > n
5
). When k = o(np) with 0 < p < 1, this is limiting to 0. On the other

hand, when k = αn, B3(αn, n) is limiting to
2

1− α
+

2

(1− α)4
− 2, which is greater than 1

for α > 0.08235533. In other words, provided that the the number of edges k is less than

8% of n, we are able the distributions of k-edged segments coming from Arm3(n) are close

in total variation to those coming from Pol3(n).

3.2 Torsion

In [6], we can see that the analogous integral to find the expected total curvature with respect

to the symmetric measure on Pol3(n) and the Hopf-Gaussian measure on P3(n) is much
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tamer than for planar polygons. Indeed, it is explicitly computed to give

E(κ;Pol3(n), σ) = π
2
n+ π

4
2n

2n−3
. Let us now then attempt to solve the problem of finding the

expected total torsion.

Definition 117. For a polygon in Rd, we define the torsion angle (sometimes called the

dihedral angle) at an edge ei by the following procedure: Let pi be the plane which is normal

to ei at vi. Project edges ei−1 and ei+1 to pi along vi to get a 2-edge planar polygonal arm in

pi with middle vertex vi. The torsion angle is then defined as the angle between these edges,

with the convention that we take its value in the range (−π, π].

Proposition 118. The distribution of the torsion angle for arms is the same as the distri-

bution of π − θ, where θ is the polar angle in the spherical coordinates of the edges.

Proof. Write ei = (ri, θi, φi) in spherical coordinates. Rotate the configuration so that ei is

on the z-axis. If we then further rotate so that ei−1 has no y-component, we can see that

the projections to pi (the xy-plane) form a planar 2-edge arm that runs along the negative

x-axis, then turns to form an edge given in polar coordinates as (r̃i+1, θi+1). As such, the

torsion angle of the rotated configuration will be given by π− θi+1. Since the distribution of

arms is invariant under the SO(3) action on R3, the result follows.

Proposition 119. The expectation of the torsion angle of a polygonal arm sampled under

the symmetric measure on Arm3(n) or A3(n) is 0.

Proof. Similar to how we found the expectation of curvature, since we know that the sym-

metric measure is expressible as a product measure on Rn×(S2)
n
, with the spherical measure

on the individual copies of S2, we see that the distribution of the polar angles will be uniform

on [0, 2π), so the expectation of π − θ will be 0.

For polygons, we have an integral even more imposing than the one for planar polygon’s

curvature. So this is an excellent opportunity to use the total variation bound. Using
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Theorem 114, we see that |E(τi) − 0| ≤ πB3(3, n). This give us bounds on total torsion

of −nπB3(3, n) ≤ E(τ) ≤ nπB3(3, n). This is limiting to the range of [−55.5π, 55.5π].

However, unlike total curvature, the expectation of total torsion over Arm3(n) is 0 for any

n. As such, lim
n→∞

nEArm3(n)(τ) = 0, so we may not apply Corollary 116. Nonetheless, we may

hope to glean useful information by considering the variance.

Proposition 120. Where τi is the torsion angle at edge ei of a polygon sampled under the

symmetric measure on Arm3(n) or A3(n), we have that Cov(τi, τj) = δi,j
1

3
π2.

Proof. We can easily see from the independence of directions and our earlier description of

the dihedral angle, that the covariance of any distinct pair of dihedral angles will be 0. So

let us focus on Cov(τi, τi) where we have:

Cov(τi, τ)i) = Var(τi)

=

∫
Arm3(n)

(τi − 0)2 dσ

=
1

2π

∫ 2π

0

(π − θi)2 dθi

=
−1

6π
(π − θi)3

∣∣∣∣θi=2π

θi=0

=
1

6π
(2π3)

=
1

3
π3.

For an explicit example, notice that this means the variance of total torsion for an open

polygonal arm is
n

3
π2, which pairs with Chebyshev’s inequality to tell us that we should

expect less than one-third of all open polygonal arms to have total torsion with
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absolute value greater than π
√
n. Given this, we sampled 100,000 polygons from Arm3(100)

and found that 91,626 had total torsion less than π
√

100. Further, they had a mean of

−0.030508 and a variance of only 1.257 larger than
100

3
π2.

Proposition 121. Where τi is the torsion angle at edge ei of a closed polygon sampled under

the symmetric measure on Pol3(n) or P3(n), we have that the variance of total torsion

τ =
∑n

i=1 τi is bounded above by
n

3
π2 + n2π2B3(6, n).

Proof. The U(n) invariance will again give us that we should partition the pairs of torsion

angles into: (A) (τi, τi), (B) (τi, τi±1), (C) (τi, τi±2) and (D) all others. Within these cate-

gories, those in (A) have covariance equal to Covp(τ1, τ1), those in (B) will match Covp(τ1, τ2),

those in (C) will match Covp(τ1, τ3) and those in (D) will match Covp(τ1, τ4). Breaking the

variance apart, we have:

Var

(
n∑
i=1

τi

)
=

n∑
i=1

n∑
j=1

Covp(τi, τj)

= nCovp(τ1, τ1) + 2nCovp(τ1, τ2) + 2nCovp(τ1, τ3) + (n2 − 5n) Covp(τ1, τ4)

= nEp(τ
2
1 ) + 2nEp(τ1τ2) + 2nEp(τ1τ3) + (n2 − 5n)Ep(τ1τ4)− n2E[τ1]2.

Here, we see that both Ep(τ1) and Ep(τ
2
1 ) are obtained as the integral of an essentially

bounded 3-edge locally determined function, and similarly we need 4 edges for Ep(τ1τ2), 5

for Ep(τ1τ3) and 6 for Ep(τ1τ4). We have seen that, over arms, E(τi, τj) = δi,j
1

3
π2, so we

may bound Ep(τ
2
1 ) ≤ 1

3
π2 + π2B3(6, n), and Ep(τiτj) ≤ 0 + B3(6, n) for i < j, by using

the fact that, for fixed n, B3(k, n) is an increasing function of k. To see this fact, recall

that we have B3(k, n) = 2

(
4k + 3

4n− 4k − 3
+

n4

(n− k − 3)4
− 1

)
, written as the sum of three

quantities, only the first two of which depend on k. In the sum, the first summand has
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an increasing numerator and decreasing denominator as k increases, while the second has

constant numerator and decreasing denominator. This shows us that B3(k, n) is increasing

in k (within its domain). This leaves us with:

Var

(
n∑
i=1

τi

)
= nEp(τ

2
1 ) + 2nEp(τ1τ2) + 2nEp(τ1τ3) + (n2 − 5n)Ep(τ1τ4)− n2E[τ1]2

≤ n

3
π2 + n2π2B3(6, n)− n2Ep[τ

2
1 ]

≤ n

3
π2 + n2π2B3(6, n)

This bound is asymptotically bounded by 86π2n, which we can pair with Chebyshev’s

Inequality and our earlier observation about the bounds on expected total torsion to see

that, for large n, we expect that at least

(
1− 1

λ2

)
100% of polygons in Pol3(n) have total

torsion in the range of ±π
(
55.5 + λ

√
86n
)
. As before, we would like to point out that this

range becomes better than the trivial bounds on total torsion in the case of λ =
√

2 for

n > 272. Unfortunately, as we pointed out just after Proposition 121, the total torsion of

a polygon sampled from Pol3(n) is bounded by ±nπB3(3, n) ' ±55.5π, and we can check

that π2n2B3(6, n) > 55.5π for n > 8, so our variance bound is just too high to be used

profitably with Chebyshev’s Inequality.

As an example, we sampled 100,000 100-edged closed polygons and computed their to-

tal torsion. We found, of course, that all 100,000 had total torsion between the range of

[−55.5π, 55.5π]. More, they had a sample mean of 1.2629 and a sample variance of 327.96.
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3.3 Local Knotting

Given that random walks have a lot of application to polymer physics, and that there is

a lot of interest in that field concerning the knot type of a particular random walk, let us

now move to the topic of knotting. The theme so far has been to look locally and make

approximations on closed random polygons by comparing them to open random polygons.

To continue this, rather than looking at the knot type of the entire random walk, we will

look at local knotting.

Recall that a knot sum K1#K2 is not a well-defined operation (pg. 40 of [35] gives an

example of the ambiguity with the square and granny knot), but it is still the case that if

one of the summands is non-trivial, then the knot sum is non-trivial (pg. 281 of [35]). It is

therefore tempting to think that if we can show random walks are locally knotted then we

have shown that they are globally knotted. Unfortunately, this does not follow immediately,

as there is always the possibility of retracing the steps involved in producing a local knot.

Nonetheless, the likelihood of the presence of local knots is still an interesting question.

Definition 122. A ball-arc pair is a pair (B,α), where B is a ball and α is an arc, such

that α ⊆ B and α ∩ ∂B = ∂α.

One motivation to consider a ball-arc pair (B,α) is that it gives us a canonical way to

turn the open arc α into a closed knot Kα. To do this, we simply connect the boundary of

α by using a path along the boundary of B. This motivates the following new term:

Definition 123. A k-edged polygonal chain is knotable if the first and last endpoints are

exterior to the convex hull of the middle k − 2 endpoints.

To turn a knotable polygonal chain into a knot, we can then join the endpoints by any

simple curve that remains exterior to the convex hull of the polygonal chain. Notice here

that this also fits nicely with our previous observation: if a knotable polygonal chain forms
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a non-trivial knot, then any closed polygon that contains the chain and additionally avoids

the convex hull of the chain will also be knotted.

As a final example of the de Finetti style result, we present the results of an experiment

in which we sampled 100,000 polygons from each of Arm3(1000) and Pol3(1000). For each

polygon sampled, we then determined whether the first 10-edged segment formed a knotable

chain and the resulting knot-type when it is knotable. Since both the expectation that the

segment is knottable and the expectation that the segment is knottable and forms a knot

of type K can be viewed as the expectation of a Boolean expression and relies only on the

10-edges in question, we may use Theorem 114 to say that the difference in the expectations

over open polygons and the expectations over closed polygons is bounded absolutely by

B3(10, 1000) ≈ 0.129204.

For the convenience of the reader, here is explicit pseudocode for this experiment, which

assumes the existence of a function Gaussian which gives a random value sampled from a

standard Gaussian distribution and QHull [3].

ComplexDot(V,W )

� Compute the Hermitian dot product of two complex n-vectors

for ind = 1 to n

do Dot+ = V [ind] ∗ Conj(W [ind])

return Dot

Normalize(V,W )

� Normalize a complex n-vector to unit length.

for ind = 1 to n

do UnitV [ind] = V [ind]/Sqrt(ComplexDot((V, V ))

return UnitV

HopfMap(a, b)
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� Compute the vector in R3 given by the Hopf map applied to the quaternion a+ bj.

return (a ∗ Conj(a)− b ∗ Conj(b), 2Re(a ∗ Conj(b)), 2Im(a ∗ Conj(b)))

Random-Open-Polygon(n)

� Produce edge vectors for random open space polygon of length 2.

� 1. Generate a vector with Gaussian coordinates.

for ind = 1 to 2n

do A[ind] = Gaussian() + I ∗Gaussian()

� 2. Re-scale the vector

for ind = 1 to 2n

do SA[ind] = SQRT(2)A[ind]/SQRT(ComplexDot(A,A))

� 3. Apply the coordinate-wise Hopf map

for ind = 1 to n

do Edge[ind] = HopfMap(SA[2 ∗ ind− 1], SA[2 ∗ ind])

return Edge

Random-Closed-Polygon(n)

� Produce edge vectors for random closed space polygon of length 2.

� 1. Generate a frame with Gaussian Coordinate

for ind = 1 to n

do A[ind] = Gaussian() + I ∗Gaussian()

B[ind] = Gaussian() + I ∗Gaussian()

� 2. Perform Gram-Schmidt to get FrameA and FrameB

for ind = 1 to 2n

do FrameA[ind] = A[ind]

FrameB[ind] = B[ind]− (ComplexDot(B,A)/ComplexDot(A,A))A[ind]

FrameA = Normalize(FrameA)

FrameB = Normalize(FrameB)
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� 3. Apply the coordinate-wise Hopf map

for ind = 1 to n

do Edge[ind] = HopfMap(FrameA[ind], F rameB[ind])

return Edge

GenerateVertices(Edge)

� Generates the vertices of a polygonal chain from its edge vectors.

Vert[0]=(0,0,0)

for ind = 1 to n

do V ert[ind+ 1] = V ert[ind] + Edge[ind]

return Vert

IsKnotable(V ert)

� Tests to see if the given list of vertices form a knotable polygonal chain.

� 1. Create the Convex Hull of the first and last n− 1 vertices.

for ind = 1 to n− 1

do First[ind] = V ert[ind]

Last[ind] = V ert[ind+ 1]

FirstHull = qconvex(First)

LastHull = qconvex(Last)

� 2. If the first and last vertex belong to the convex hull, then they are exterior to the

convex hull of the middle n− 2 verticies.

If V ert[1] is in FirstHull

then FirstBoolean=True

else FirstBoolean=False

If V ert[n] is in LastHull

then LastBoolean=True

else LastBoolean=False
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If FirstBoolean and LastBoolean

then Knottable=True

else Knottable=False

return Knottable

Center(V ert)

� Finds the center of mass of a polygonal chain.

for ind = 1 to n

do Center+ = V [ind]/n

return Center

KnotChain(V ert)

� Closes a knotable arc of total length less than 2.

� 1. Find the center of mass and directions from the center of mass to the ends of the

segment.

Center = Center(V ert)

FirstEdge = V ert[1]− Center

F irstEdgeUnit = Normalize(FirstEdge)

LastEdge = V ert[n]− Center

LastEdgeUnit = Normalize(LastEdge)

� 2. Create an arc external to the convex hull of the segment.

NormalDirection = CrossProduct(FirstEdgeUnit, LastEdgeUnit)

NewV ert[1] = V ert[n]

NewV ert[2] = V ert[n] + 2 ∗ LastEdgeUnit

NewV ert[3] = NewV ert[2] + 2 ∗NormalDirection

NewV ert[5] = V ert[1] + 2 ∗ FirstEdgeUnit

NewV ert[4] = NewV ert[5] + 2 ∗NormalDirection

� 3. Append the original segment to form a closed polygon.
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for ind = 1 to n

do NewV ert[ind+ 5] = V ert[ind]

return NewV ert

After finding those samples whose first 10-edge segment was knottable, their HOMFLYPT

Polynomial and knot type were computed using V ecttools [1].

Category Total Found In Arm3(1000) Total Found in Pol3(1000)

Knotable 55180 55255

Unknot 55105 55178

Knotted 75 77

Trefoil (31) 71 74

Figure Eight Knot (41) 3 3

Cinquefoil Knot (51) 1 0

Of particular note here is how drastically better the results are than the bound we were

assured of. We include now some sample images of these knottable segments:
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Figure 3.1: Sample 1162 from Pol3(1000) making knot 41

Figure 3.2: Knot 41 [2]
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Figure 3.3: Sample 11838 from Arm3(1000) making knot 51

Figure 3.4: Knot 51 [2]
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Appendix A

Proof of Proposition 81

Recall that we have shown that the expected turning angle is given by the integral:

θ(n) =

∫ π

0

∫ ∞
0

∫ ∞
0

n− 2

2n−2πΓ
(
n
2
− 1
)e− 1

2
(r1+r2)Kn

2
−2

(z
2

)
z
n
2
−2ψ dr1dr2dψ.

To save space, let us denote by γ(n) :=
n− 2

2n−2πΓ
(
n
2
− 1
) . Since we are already us-

ing z =
√
r2

1 + r2
2 + 2r2r2 cos(ψ), we will introduce a change of integration variables of

(r1, r2, θ) 7→ (x, y, z) with z as defined, x =
r1 + r2

2
, and y =

r1 − r2

2
. In doing so, it

will be helpful to note that r1 = x + y, r2 = x − y and θ = arccos

(
z2 − 2(x2 + y2)

2(x+ y)(x− y)

)
.

Further, this change of variables will involve an inverse determinant of the Jacobian with

value
2
√
r2

1 + r2
2 + 2r2r2 cos(ψ)

r1r2 sin(θ)
=

2z

x2 − y2

(
1−

(
z2 − 2(x2 + y2)

2(x+ y)(x− y)

)2
)− 1

2

, where we have

simplified csc(arccos(α)) =
1√

1− α2
. We then further simplify(

1−
(
z2 − 2(x2 + y2)

2(x+ y)(x− y)

)2
)− 1

2

=
2(x− y)(x+ y)√

(4x2 − z2)(z2 − 4y2)
. Before introducing this change,

note that we can simplify
2z

x2 − y2

(
1−

(
z2 − 2(x2 + y2)

2(x+ y)(x− y)

)2
)− 1

2

=
4z√

(4x2 − z2)(z2 − 4y2)
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This change produces the integral:

θ(n) = 4γ(n)

∫ ∞
0

∫ ∞
z/2

∫ z/2

−z/2
e−xKn

2
−2

(z
2

)
z
n
2
−1 arccos

(
z2 − 2(x2 + y2)

2(x2 − y2)

)
dydxdz√

(4x2 − z2)(z2 − 4y2)

Next, we introduce another change of variables, (x, y) 7→
(z

2
s,
z

2
t
)

:

θ(n) = 4γ(n)

∫ ∞
0

∫ ∞
z/2

∫ z/2

−z/2
e−xKn

2
−2

(z
2

)
z
n
2
−1 arccos

(
z2 − 2(x2 + y2)

2(x2 − y2)

)
dydxdz√

(4x2 − z2)(z2 − 4y2)

= γ(n)

∫ ∞
0

∫ ∞
1

∫ 1

−1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1 arcsec

(
s2 − t2

2− s2 − t2

)
dtdsdz√

(s2 − 1)(1− t2)

We will now apply integration by parts to the integral with respect to t:

∫ 1

−1

arcsec

(
t2 − s2

t2 + s2 − 2

)
1√

(1− t2)
dt = arcsin(t) arcsec

(
t2 − s2

t2 + s2 − 2

)∣∣∣∣1
−1

−
∫ 1

−1

arcsin(t)
2t

s2 − t2

√
s2 − 1

1− t2
dt

The constant will evaluate to
π2

2
− −π

2

2
= π2, as we have lim

x→1−
arcsin(±x) = ±π

2
and

arcsec

(
1− s2

s2 − 1

)
= arcsec (−1) = π. Our integral is now:

θ(n) = γ(n)

∫ ∞
0

∫ ∞
1

∫ 1

−1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1 arcsec

(
s2 − t2

2− s2 − t2

)
dtdsdz√

(s2 − 1)(1− t2)
(A.1)

= γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1 1√

s2 − 1

π2 −
∫ 1

−1

2t arcsin(t)

s2 − t2

√
s2 − 1

1− t2
dt

 dsdz.

(A.2)

Let us first deal with the constant term. We will be showing that

γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1 1√

s2 − 1
π2 dsdz = π. (A.3)
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First, we recognize that

∫ ∞
1

e−s
z
2

√
s2 − 1

ds is the integral representation of

Γ
(

1
2

)
√
π
K0

(z
2

)
= K0

(z
2

)
, given by 10.32.8 of [32]. So the integral we are interested in is just:

π2γ(n)

∫ ∞
0

z
n
2
−1Kn

2
−2

(z
2

)
K0

(z
2

)
dz.

Next, we apply the product identity 10.32.17 from [32] to write

Kn
2
−2

(z
2

)
K0

(z
2

)
= 2

∫ ∞
0

Kn
2
−2−0

(
2
z

2
cosh(t)

)
cosh

((n
2
− 2 + 0

)
t
)

dt. Bringing out in-

tegral to 2π2γ(n)

∫ ∞
0

∫ ∞
0

z
n
2
−1Kn

2
−2 (z cosh(t)) cosh

((n
2
− 2
)
t
)

dt. Working first on the

integral with respect to z, Lemma 16 of [6] shows us that∫ ∞
0

z
n
2
−1Kn

2
−2 (z cosh(t)) dz = 2

n
2
−2 cosh(t)−

n
2 Γ
(n

2
− 1
)

. We now have the integral

π22
n
2
−2Γ

(n
2
− 1
)
γ(n)2

∫ ∞
0

cosh(t)−
n
2 cosh

((n
2
− 2
)
t
)

dt

=π22
n
2
−2Γ

(n
2
− 1
) n− 2

2n−2πΓ
(
n
2
− 1
)2

∫ ∞
0

cosh(t)−
n
2 cosh

((n
2
− 2
)
t
)

dt

=π(n− 2)21−n
2

∫ ∞
0

cosh(t)−
n
2 cosh

((n
2
− 2
)
t
)

dt

We can now finish the evaluation using 3.5.17 of [19] to give us∫ ∞
0

cosh(t)−
n
2 cosh

((n
2
− 2
)
t
)

dt =
2
n
2
−1

n− 2
, wherein we obtain a final result of π.

We now have

θ(n) = π − γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1 1√

s2 − 1

∫ 1

−1

2t arcsin(t)

s2 − t2

√
s2 − 1

1− t2
dt

 dsdz

(A.4)

= π − γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1

(∫ 1

−1

2t arcsin(t)

s2 − t2
1√

1− t2
dt

)
dsdz. (A.5)
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From here, making the substitution t 7→ sin(φ), will produce:

θ(n) = π − γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1

(∫ 1

−1

2t arcsin(t)

s2 − t2
1√

1− t2
dt

)
dsdz

= π − γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1

(∫ π
2

−π
2

2 sin(φ)φ

s2 − sin2(φ)

1√
1− sin2(φ)

cos(φ)dφ

)
dsdz

= π − γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1

(∫ π
2

−π
2

2 sin(φ)φ

s2 − sin2(φ)
dφ

)
dsdz

Notice that we may decompose
2 sin(φ)

s2 − sin2(φ)
=

(
1

s− sin(φ)
− 1

s+ sin(φ)

)
. 3.794 of [19] tells

us that

∫ π

0

x dx

1 + a2 + 2a cos(x)
=

π2

2(1− a2)
+

4

1− a2

∞∑
k=0

a2k+1

(2k + 1)2
. This leads us to make the

change of variables ζ =
π

2
− φ, so that we can turn the integral with respect to φ into:

∫ π/2

−π/2

2φ sin(φ)

s2 − sin2(φ)
dφ =

∫ π/2

−π/2

φ

s− sin(φ)
− φ

s+ sin(φ)
dφ

=

∫ π

0

(π
2
− ζ
)( 1

s− cos(ζ)
− 1

s+ cos(ζ)

)
dζ

= −
∫ π

0

ζ

(
1

s− cos(ζ)
− 1

s+ cos(ζ)

)
dζ

In this last line, we have used 2.553(3) of [19] to see that

∫ π

0

1

s− cos(ζ)
− 1

s+ cos(ζ)
dζ = 0. Next, in order to use 3.794, we must express

ζ

s+ cos(ζ)
= b

(
ζ

1 + a2 + 2a cos(ζ)

)
and

ζ

s− cos(ζ)
= d

(
ζ

1 + c2 + 2c cos(ζ)

)
.
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In the left-hand side of the equations, we have a coefficient of ±1 for the cos(ζ) term, so we

must have b = 2a and d = −2c with a > 0 and c < 0. This tells us that s =
1 + a2

b
=

1 + a2

2a

and s =
1 + c2

d
= −1 + c2

2c
. Applying the quadratic formula, we see that a = s ±

√
s2 − 1

and c = −s±
√
s2 − 1. In [19], we see that 3.794 only applies for a2 < 1, so we will choose

a = s −
√
s2 − 1 and c = −s +

√
s2 − 1, where we see that c = −a. We may then evaluate

our integral as:

I =

∫ π/2

−π/2

2φ sin(φ)

s2 − sin2(φ)
dφ

= −
∫ π

0

ζ

(
1

s− cos(ζ)
− 1

s+ cos(ζ)

)
dζ

= −
∫ π

0

d
ζ

1 + c2 + 2c cos(ζ)
− b ζ

1 + a2 + 2a cos(ζ))
dζ

= −
∫ π

0

−2c
ζ

1 + c2 + 2c cos(ζ)
− 2a

ζ

1 + a2 + 2a cos(ζ))
dζ

= 2

∫ π

0

c
ζ

1 + c2 + 2c cos(ζ)
+ a

ζ

1 + a2 + 2a cos(ζ))
dζ

= 2

(
c

(
π2

2(1− c2)
+

4

1− c2

∞∑
k=0

c2k+1

(2k + 1)2

)
+ a

(
π2

2(1− a2)
+

4

1− a2

∞∑
k=0

a2k+1

(2k + 1)2

))

= 2

(
(−a)

(
π2

2(1− a2)
+

4

1− a2

∞∑
k=0

(−a)2k+1

(2k + 1)2

)
+ a

(
π2

2(1− a2)
+

4

1− a2

∞∑
k=0

a2k+1

(2k + 1)2

))

= 4a
4

1− a2

∞∑
k=0

a2k+1

(2k + 1)2

= 8
2a

1− a2

∞∑
k=0

a2k+1

(2k + 1)2

= 8
1√
s2 − 1

∞∑
k=0

a2k+1

(2k + 1)2
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We then recognize that

4
∞∑
k=0

a2k+1

(2k + 1)2
= a

∞∑
k=0

4
a2k

(2k + 1)2
= a

∞∑
k=0

(a2)k(
k + 1

2

)2 = aΦ

(
a2, 2,

1

2

)
.

Substituting this in will bring us to our final form:

θ(n) = π − γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1

(∫ π
2

−π
2

2 sin(φ)φ

s2 − sin2(φ)
dφ

)
dsdz

= π − γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1

(
8

1√
s2 − 1

∞∑
k=0

a2k+1

(2k + 1)2

)
dsdz

= π − γ(n)

∫ ∞
0

∫ ∞
1

e−
sz
2 Kn

2
−2

(z
2

)
z
n
2
−1

(
2a√
s2 − 1

Φ

(
a2, 2,

1

2

))
dsdz
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Appendix B

Proof of Proposition 96

Re-writing this in terms of ri and θi gives us:

1

4
(1− σ(r2 sin(θ2))σ(r2 sin(θ2) + r3 sin(θ3)))

∗ (1− σ(cos(θ3)(r2 sin(θ2))− sin(θ3)(r2 cos(θ2)))

∗ σ(cos(θ3)(r2 sin(θ2))− sin(θ3)(r2 cos(θ2) + r1)))

This is quite a lot to work with, so we will simplify it first. After distributing the terms

and using the fact that σ(a)σ(b) = σ(ab), we get:

1

4
(1− σ(r2

2 sin2(θ2) + r2r3 sin(θ2) sin(θ3))

− σ((r2 cos(θ3) sin(θ2)− r2 cos(θ2) sin(θ3))

∗ (r2 cos(θ3) sin(θ2)− r2 cos(θ2) sin(θ3)− r1 sin(θ3)))

+ σ((r2
2 sin2(θ2) + r2r3 sin(θ2) sin(θ3))

∗ (r2 cos(θ3) sin(θ2)− r2 cos(θ2) sin(θ3))

∗ (r2 cos(θ3) sin(θ2)− r2 cos(θ2) sin(θ3)− r1 sin(θ3))))
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Factoring out r2, and using that σ(r2) = 1, we can simplify this to:

1

4
(1− σ(r2 sin2(θ2) + r3 sin(θ2) sin(θ3))

− σ((cos(θ3) sin(θ2)− cos(θ2) sin(θ3))(r2 cos(θ3) sin(θ2)− r2 cos(θ2) sin(θ3)− r1 sin(θ3)))

+ σ((r2 sin2(θ2) + r3 sin(θ2) sin(θ3))(cos(θ3) sin(θ2)− cos(θ2) sin(θ3))

∗ (r2 cos(θ3) sin(θ2)− r2 cos(θ2) sin(θ3)− r1 sin(θ3))))

Finally, using the fact that sin(α − β) = cos(β) sin(α) − cos(α) sin(β) with the fact that

0 < θ2 < π, we arrive at the proposed simplified form:

1

4
(1− σ(r2 sin(θ2) + r3 sin(θ3))

− σ(sin(θ2 − θ3)(r2 sin(θ2 − θ3)− r1 sin(θ3)))

+ σ((r2 sin(θ2) + r3 sin(θ3))(r2 sin(θ2 − θ3)− r1 sin(θ3)) sin(θ2 − θ3)))
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