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ABSTRACT 

 Bats are ecologically important inhabitants of forest landscapes in the southeastern 

United States.  These forests account for the majority of regional land cover, much of which is 

actively managed for forest products.  Although many owners of managed-pine forests are 

committed to preserving biodiversity, responsible management is hampered by a paucity of data 

concerning bat ecology in these landscapes.  To address the lack of data and improve 

management, my objectives were to evaluate an acoustic identification method and elucidate 

factors that influence foraging bats in Coastal Plain managed-pine forests.  I used cross-

validation to assess performance of K-nearest neighbor analysis as a method to classify unknown 

bat calls.  Overall accuracy of K-nearest neighbor was 83% and species-specific accuracy ranged 

from 51% to 96%.  Results suggest that K-nearest neighbor should be considered a viable call 

identification method.  I used Anabat II detectors to survey and determine presence of multiple 

bat species across managed-pine forest landscapes.  I used program PRESENCE to evaluate 

plausibility of occupancy models based on Akaike’s Information Criterion and estimate 

influence of factors on detection and occupancy.  Plausibility of detection and occupancy factors 

was supported over null models.  Detection probabilities of resident bats decreased with 



 

increasing amounts of vegetation at sample points.  Results suggest that investigations 

concerning the influence of factors on bat occupancy should account for variable detection.  

Increasing insect abundances increased the probability of occupancy by bats, but the most 

plausible measure of insect abundance was species-specific.  Small-scale vegetation abundance 

was negatively related to occupancy.  Management activities in managed-pine forests that reduce 

small-scale vegetation clutter and increase insect abundance are likely to benefit resident bat 

species.  Plausibility of landscape-scale factors influencing probability of occupancy was 

supported, but plausible factors were species-specific.  Landscape-scale factors with evidence 

supporting their potential influence included un-thinned stands of intermediate age, distance to 

water sources, road density, patch richness, amount of edge, and percentage of stands older than 

30 years.  Bats respond to landscape conditions, but managing a single landscape attribute likely 

will not benefit all members of the bat community.  However, maintaining a diverse landscape 

apparently provides habitat for a diverse bat community. 
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

 

INTRODUCTION 

Bats are one of the most diverse and speciose groups of mammals (Laerm et al. 2000, 

Jones et al. 2009) performing many vital functions within the ecosystems they inhabit, such as 

insect control (Kalka et al. 2008), pollination (Molina-Frinear and Equiarte 2003), and seed 

dispersal (Medellin and Goana 1999).  Insectivorous bats in the United States are worth an 

estimated $23 billion to the agriculture industry alone (Boyles et al. 2011) by reducing insect 

damage to crops that would otherwise require chemical insecticide agents that may have 

ecological and social costs (Cleveland et al. 2006).  Additionally, bats can be valuable as 

ecological and environmental indicators provided sufficient baseline data are collected and 

monitoring programs are implemented (Jones et al. 2009).   

Forest landscapes are important to virtually all bat species within the southeastern U.S., 

and many species in the region exclusively use forests to fulfill their life history requirements 

(Miller et al. 2003).  The importance of these landscapes may increase as Geomyces destructans, 

the fungus thought to be the causative agent of white-nose syndrome (Gargas et al. 2009), 

spreads into the region.  Cave dependent populations infected by the fungus have experienced 

precipitous declines (Blehert et al. 2009), but forest dependent populations appear unaffected 

thus far and are likely less susceptible to large population declines from G. destructans.  Some 
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southeastern species exhibit roosting flexibility and are capable of using both caves and forests 

depending on availability (Hurst and Lacki 1999, Trousdale and Beckett 2005, M. Clement 

University of Georgia pers. comm.).  The regional impact of the fungus on roost-flexible species 

may depend on the health of forest populations (USFS 2010).  Additionally, as the fungal 

pathogen spreads (Zimmerman 2009), forest populations of all species may play a critical role in 

maintaining the vital ecosystem functions bats perform.   

Much of the research on forest bats in the Southeast has concentrated on publicly owned lands 

(e.g., Menzel et al. 1998, Menzel et al. 2003, Britzke et al. 2003, O’Keefe et al. 2009), which 

may not be representative of privately owned forests in the region and therefore limited in utility.  

Publicly owned forests only comprise approximately 13% of the forest land cover in the southern 

U.S. and typically are less intensively managed than the remaining forests privately owned by 

individuals, families, trusts, and other unincorporated groups (60%) or corporations (27%; Smith 

et al. 2009).  Forest management activities alter stand and landscape conditions but provide an 

economic incentive to maintain forest land cover (McComb 2008) and reduce conversion rates to 

agricultural or urban/suburban land cover that is often detrimental to native wildlife populations 

and biodiversity conservation (McKinney 2002, Dunn 2004).  However, managing forests 

concurrently for timber production and biodiversity conservation requires data that are largely 

lacking in reference to bats on actively managed forest landscapes (Lacki et al. 2007).                                                     

LITERATURE REVIEW  

Call Analysis  

Acoustic research methods have increased in use and sophistication following the 

pioneering work by Griffin (1958) and realization that echolocation calls could be used to 

differentiate species (Fenton and Bell 1981, Ahlen and Baagoe 1999).  The importance and use 
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of acoustic methods in research may increase as a result of white-nose syndrome.  The outbreak 

of white-nose syndrome in the U.S. may have originated from fungal spores transported on 

clothing and equipment used by cavers or researchers in Europe (Puechmaille et al. 2010).  

Therefore, capturing and handling bats increases the likelihood of subsequently spreading fungal 

spores (U.S. FWS 2011).  Consequently, an increased emphasis has and will continue to be 

placed on acoustic identification and survey techniques to limit spread of the fungus by 

researchers.   

Methods used to identify bats based on recorded echolocation calls can generally be 

categorized as qualitative or quantitative.  While every identification method has strengths and 

limitations, quantitative techniques are desirable because of increased objectivity, repeatability, 

and transferability over qualitative methods (Vaughan et al. 1997, Barclay 1999, Robbins and 

Britzke 1999, Redgwell et al. 2009).  Rigorous application of scientific principles to 

identification of free-flying bats from acoustic recordings is not universal, and many researchers 

use non-repeatable qualitative methods for identification.  However, few researchers possess the 

experience or resources to accurately identify echolocation calls qualitatively (Zorpette 1999). 

The most commonly used quantitative method, discriminant function analysis (DFA; 

Gannon et al. 2004), is easy to implement and is widely available (Papadatou et al. 2008).  

However, alternative classification methods may perform better when multivariate normality is 

violated (Press and Wilson 1978, Parson and Jones 2000) as is often the case with bat calls (e.g., 

Russo and Jones 2002, Fukui et al. 2004, Preatoni et al. 2005, Papadatou et al. 2008).  Artificial 

neural networks (ANN; Parsons 2001, Parsons and Jones 2000, Preatoni et al. 2005), machine 

learning (Skowronski and Harris 2006), and synergetic pattern recognition (Obrist et al. 2004), 

have been used effectively to identify bat calls, but have not been widely adopted because of 
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inconclusive classification improvements over DFA, advanced software and extensive training 

requirements, or the need for further method refinements prior to widespread use (Parsons and 

Jones 2000, Obrist et al. 2004, Papadatou et al. 2008).  Performance of additional quantitative 

classification methods have been investigated such as classification and regression trees 

(Preatoni et al. 2005), but are generally considered inferior to DFA (but see Gannon et al. 2004).  

Discovery of an accurate quantitative classification method that is widely available, easy to use, 

and has minimal underlying assumptions, will benefit managers facing the daunting yet critical 

task of identifying unknown bat calls.  

Insects and Vegetation Clutter 

Predator fitness is closely linked to foraging decisions (Stephen and Krebs 1986), and 

decisions about alternative foraging locations may be influenced by physical habitat 

characteristics (Hopcraft et al. 2005), abundance of prey items (Ives et al. 1993), or a 

combination of both (Sleep and Brigham 2003).  Species-specific characteristics of wing 

morphology and echolocation call influence flight speeds, maneuverability, and ability of bats to 

discriminate between prey and non-prey items (Aldridge and Rautenbach 1987).  Therefore, 

optimal habitat conditions and prey items may differ among foraging bat species.  Failure to 

acquire sufficient resources may result in reduced reproductive output (Burles et al. 2009) or 

likelihood of survival (Thomas et al. 1990) in temperate region bats.    

On a small-scale, site occupancy by foraging bats is often attributed to the amount of 

structural complexity (Ford et al. 2005, Loeb and O’Keefe 2006).  Increased occupancy and 

activity in areas of reduced vegetation structure is commonly found in forested landscapes 

including bottomland forests (Menzel et al. 2002), mixed forests (Loeb and O’Keefe 2006), and 

managed-pine dominated landscapes (Ford et al. 2006).  The negative influence of structural 
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clutter on foraging has also been demonstrated experimentally (Sleep and Brigham 2003).  

However, habitat variables alone are often insufficient to fully understand species’ ecology 

(Morrison 2001).   

Failure by bats to conform to predictions of habitat use based on morphology alone may 

be partially attributable to effects of prey densities (Tibbels and Kurta 2003, Ford et al. 2005).  

Some studies have found a positive relationship between indices of bat foraging activity and 

insect abundances (Anthony et al. 1981, Rautenbach et al. 1996, Kusch et al. 2004, Fukui et al. 

2006) while others indicate a lack of relationship between foraging activity and insect abundance 

(Ober and Hayes 2008).  One factor hampering our ability to understand insect/bat relationships 

is an inability to accurately measure prey availability, attributable to a lack of knowledge 

concerning discriminatory capabilities of foraging bats.  Many bat species actively select prey 

(Brigham 1990), but it is unclear if the selection is based on size, insect taxon, or both.  Some 

diet studies have suggested that bats discriminate among prey items by taxon (Buchler 1976, 

Agosta et al. 2003), whereas others suggest that selection is based on size (Barclay and Brigham 

1991, Barclay and Brigham 1994).   

It is likely that decisions regarding selection of foraging areas are based on a combination 

of vegetation characteristics and prey abundances as both factors contribute to small-scale 

foraging efficiencies (Aldridge and Rautenbach 1987, Salcedo et al. 1995).  Sleep and Brigham 

(2003) found that less maneuverable bat species did not exploit areas of high insect abundance 

with high amounts of clutter.  Meyer et al. (2004) found that bat activity patterns followed the 

spatial and temporal activity patterns of lepidopteran prey, but habitat characteristics had the 

most pronounced effect.  Among similar habitat types, Wickramsinghe et al. (2004) found that 

differences in bat activity were related to differences in insect abundances.  Despite many 
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inherent challenges, understanding links between foraging bats and prey availability has been 

recognized as an important research area, particularly within forested landscapes (Lacki et al. 

2007).   

Landscape Influences on Bat Occupancy 

Landscape characteristics potentially influence the distribution, abundance, and activity 

of many animals, including bats.  Therefore, management of bats across large areas requires an 

understanding of important landscape characteristics and how they influence foraging habitat 

selection (Walsh and Harris 1996, Brooks and Ford 2006).  A landscape management approach 

is effective if species are motile and can use the landscape at a scale that prevents management 

activities from inhibiting movement between suitable habitat patches or within areas of sufficient 

resources (MacNally and Bennett 1997).  Bats are capable of moving across unsuitable habitat 

types and commuting between favorable areas of the landscape (Bernard and Fenton 2003) 

making concurrent management of forest landscapes for sustainable resources and sustainable 

bat populations possible if important landscape characteristics are known.  

Landscape-scale studies are relatively rare, but previous studies suggest that bats respond 

to landscape characteristics when selecting habitats.  Walsh and Harris (1996) found that 

landscape-scale habitat types (i.e., intensively farmed arable, pastural, upland) influenced bat 

activity in Britain. In Switzerland, Jaberg and Guisan (2001) used a database of bat records and a 

geographic information system (GIS) to examine the influence of landscape characteristics on 

bat distribution across a 786 km2 area.  Their results indicate the importance of elevation, 

vegetation type, and lake habitats on species distributions.  Duff and Morrell (2007) found that 

the amount of edge habitat, distance to lakes, and elevation influenced mist-net captures in a 

California recreation area.  Additional investigations suggest the importance of fragmentation 



 

 7 

and urbanization on bats (Duchamp et al. 2004, Ghert and Chelsvig 2004, Gorreson and Willig 

2004).  Although these previous studies indicate the potential influence of landscape-scale 

habitat characteristics on bats, they are not directly relevant to managed-pine dominated 

landscapes because of geographic and landscape differences, scale, and factors investigated.  

 Investigations conducted in forested landscapes are most informative and provide the 

most insight for managers of pine forest landscapes.  In one of few replicated landscape studies, 

Erickson and West (2003) did not find evidence to support significant influence of landscapes on 

acoustic bat activity at points (n=22) in Washington and Oregon although they concluded that 

proximity to certain landscape types likely influenced activity.  However, Yates and Muzika 

(2006) found support for the influence of landscape characteristics (abundance of non-forest 

habitat types, patch size, patch complexity, amount of edge, and interspersion of forest types) on 

site-occupancy of foraging bats in Missouri forests.  In Sumter National Forest, a mixed forest in 

the Upper Piedmont and Mountain physiographic regions of South Carolina, Loeb and O’Keefe 

(2006) found support for a single landscape factor (distance to roads) on overall site-occupancy, 

but a greater influence of small-scale vegetation density.  However, they acknowledged that the 

strong influence of vegetation density they observed may be due, in part, to acoustic 

detectability.  Similarly, Ford et al. (2006) found that vegetation density influenced occupancy in 

South Carolina, but also found that proximity of sample points to water influenced site-

occupancy by most species.   

Many of these previous investigations do not indicate a strong influence of landscape 

characteristics on occupancy, but landscape variables and the habitat mosaic may have a greater 

influence on bat habitat use in intensively-managed landscapes (Erickson and West 2003, Ford et 

al. 2006, Miles et al. 2006).  However, landscape-level investigations in managed-pine forest of 
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the southeastern U.S. are limited.  In a foraging study conducted in managed-pine forests in 

Mississippi, Elmore et al. (2005) tracked actively foraging bats and found evidence to support 

the importance of water sources in these forests although they did not exhibit a preference among 

habitat types investigated.  Although roost-site preferences do not indicate foraging-site 

preferences, several roost-site selection studies conducted in managed-pine forests across the 

southeastern U.S. also suggest that landscape-level factors influence the choices bats make in 

these forest landscapes.  For example, Elmore et al. (2004) found evidence suggesting that red 

bats (Lasiurus borealis) in intensively-managed pine landscapes in Mississippi chose diurnal 

roosts based in part on distances to streamside management zones, forest edges, stand types, and 

water sources.  In the Ouachita Mountains of central Arkansas, Perry et al. (2007, 2008) found 

evidence of species-specific selection of roost sites based on both stand and landscape 

characteristics including distances to forest habitat types, stands of particular age classes, water 

sources, roads, and percentage of the landscape composed of various habitat or stand types.  Hein 

et al. (2008) found that Seminole bats (L. seminolus) in an intensively-managed pine landscape 

in South Carolina chose roost sites based on the distance to forested corridors, edge (or road), 

open habitat types, and mature pine stands.  Elucidating landscape factors that influence foraging 

choices in addition to these important roost-site preferences will allow managers to better 

manage bats in managed-pine forest landscapes. 

OBJECTIVES AND GUIDE TO THE DISSERTATION 

 Many of the managed-pine forest landscapes in the southeastern U.S. Coastal Plain are 

concurrently managed for sustainable harvest of wood and conservation of biodiversity.  

However, managing for healthy bat populations is challenging because of the paucity of data 

concerning factors that influence foraging locations in managed-pine landscapes.  Additionally, 
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bat research in general is hampered by continued use of non-transferrable or repeatable 

qualitative methods to classify bat calls and identify species from acoustic data.  The goal of this 

project was to provide land managers with the data and call analysis methodology required to 

better manage forest landscapes and provide suitable foraging habitat for resident bat species.  

 The dissertation is organized as a series of manuscript-style chapters addressing the goals 

of this project.  Chapter 2 is an evaluation of K-nearest neighbor classification as a method to 

quantitatively classify calls from a suite of resident Coastal Plain forest bat species.  I used a 

library of known reference calls to evaluate the accuracy of the K-nearest neighbor approach and 

compared results to those achieved with the most commonly used quantitative classification 

method, discriminant function analysis.  This manuscript will be submitted to the Wildlife 

Society Bulletin. 

 Chapter 3 is an investigation into the influence of insect abundance and small-scale 

vegetation characteristics on site-occupancy of foraging bats.  I sampled insects, vegetation 

characteristics, and bats at points in three replicated study areas.  I used occupancy models and 

an information-theoretic approach to evaluate suites of vegetation and insect-based models, and 

to estimate effects of parameters.  This manuscript will be submitted to Forest Ecology and 

Management. 

 Chapter 4 is an investigation into the influence of landscape-scale factors on site-

occupancy of foraging bats.  I sampled vegetation characteristics and bats at sample points in 

addition to characteristics of the surrounding landscape.  I included data from replicated study 

areas under diverse ownership across the Coastal Plain so that inferences could be made to 

managed-pine forests in the region.  I used occupancy models and an information-theoretic 
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approach to evaluate the plausibility of vegetation and landscape-based models and estimate 

effects of parameters.  This manuscript will be submitted to Forest Ecology and Management. 
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CHAPTER 2 

 

K-NEAREST-NEIGHBOR CLASSIFICATION TO IDENTIFY BAT CALLS: 

PERFORMANCE WITH A SUITE OF COASTAL PLAIN FOREST SPECIES AND 

COMPARISON TO DISCRIMINANT FUNCTION ANALYSIS1 
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ABSTRACT  

 The primary purpose of many acoustic surveys for bats is to determine and monitor 

species presence.  A critical step in this process is accurate identification of species based on 

echolocation calls.  Many quantitative approaches have been used to identify calls such as 

artificial neural networks, classification trees, machine learning, and synergetic pattern 

recognition.  The most common quantitative approach to identification is discriminant function 

analysis (DFA).  Although DFA may not be the most accurate quantitative approach, it is 

commonly used because it is considered less complex and more available than alternative 

methods.  Another relatively simple and widely available alternative method is K-nearest-

neighbor analysis (KNN).  We used KNN and DFA to classify bat calls associated with Coastal 

Plain forests and compared accuracy rates.  KNN achieved an overall call accuracy rate of 82.5 

percent, 9.9 and 7.6 percentage points higher than linear and quadratic DFA rates, respectively.  

Our results, along with the underlying assumptions and capabilities of KNN analysis, indicate 

that KNN analysis should be given strong consideration when the primary objective is 

identification of unknown bat calls. 
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INTRODUCTION 

Identification of bats based on call characteristics remains an imperfect science and topic 

of debate among bat researchers (Barclay 1999), but the practice is likely to persist until better 

methods of identification are available.  All acoustic identification methods involve comparisons 

of unknown calls to a reference library of known calls, either quantitatively or qualitatively 

(Britzke 2003).  Few researchers possess the experience or resources to accurately identify 

echolocation calls qualitatively (Zorpette 1999).  Betts (1998) found that among researchers with 

qualitative identification experience, half performed significantly worse than the classification 

accuracy expected from randomly assigning identities.  Additionally, self assessments of ability 

to make qualitative identifications were negatively related to classification accuracy.  Even 

preliminary determination of call type (search, approach, or terminal phases; Griffin 1958) can 

be highly subjective (Weller et al. 1998).  Therefore, quantitative techniques are desirable over 

qualitative methods because of increased objectivity, repeatability, and transferability (Vaughan 

et al. 1997, Barclay 1999, Robbins and Britzke 1999, Redgwell et al. 2009).   

 The most common quantitative approach to call identification is discriminant function 

analysis (DFA; Gannon et al. 2004).  Examples of either linear or quadratic forms of DFA being 

used for bat call analysis are widespread (e.g., Parsons and Jones 2000, Britzke 2003, Fukui et al. 

2004, Schirmacher 2006, Corcoran 2007, Papadatou et al. 2008, Hein et al. 2009).  DFA allows 

the user to determine which call characteristics are most influential in discriminating between 

species in addition to classifying unknown calls.  Additionally, linear discriminant functions can 

be used in the absence of the original function-generating data set thereby promoting 

transferability (Papadatou et al. 2008).  However, DFA is a parametric approach and call data 

typically violate the underlying multivariate normality assumption (e.g., Russo and Jones 2002, 
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Fukui et al. 2004, Preatoni et al. 2005, Papadatou et al. 2008).  Although DFA is considered 

robust to violations of normality (Dillon and Goldstein 1984), alternative classification methods 

may perform better when multivariate normality is violated (Press and Wilson 1978).  

Alternative quantitative classification approaches, such as artificial neural networks 

(ANN; Parsons 2001, Parsons and Jones 2000, Preatoni et al. 2005), machine learning 

(Skowronski and Harris 2006), and synergetic pattern recognition (Obrist et al. 2004), have been 

used to identify bat calls.  These alternative approaches have not been widely adopted because of 

inconclusive classification improvements over DFA, advanced software and extensive training 

requirements, or the need for further method refinements prior to widespread use (Parsons and 

Jones 2000, Obrist et al. 2004, Papadatou et al. 2008).  Performance of other quantitative 

methods such as classification and regression trees has been investigated (Preatoni et al. 2005), 

but they generally are considered inferior to DFA (but see Gannon et al. 2004).   

Another potentially alternative method that is computationally simple and widely 

available is K-nearest-neighbor analysis (KNN; Hand 1982).  In contrast to DFA and other 

parametric approaches, KNN is a nonparametric classifier that does not require assumptions 

about underlying data distributions.  Non-parametric classification methods often perform better 

than parametric methods (Peterson et al. 1999, Olden and Jackson 2002), and are particularly 

useful when classification rather than interpretation is the primary objective (Peterson et al. 

1999).  In general, comparisons between KNN, neural networks, and a variety of other 

classification methods have found KNN to be among the better classifiers producing lower error 

rates than alternative classification methods (Ripley 1994, Taylor and Henery 1994).  KNN 

classification is based on the assumption that call characteristics of members of a class (e.g., 

species) are similar and therefore should be located closely within statistical space (Cover and 
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Hart 1967, Peterson et al. 1999).  Observations are classified based on identities of a predefined 

number of closest known neighbors.  KNN is commonly available in many statistical software 

packages (e.g., SAS, R, MatLab), and the minimal prerequisite training and knowledge 

requirements are similar to DFA.     

Given the need to further refine quantitative methods for classifying bat calls recorded 

during acoustic surveys, our objective was to test performance of KNN as a quantitative method 

to classify bat calls and compare cross validation accuracy rates of KNN with the most 

commonly used quantitative methods, linear and quadratic DFA.  Accuracy of call identifications 

is dependent on variability encompassed by the reference library and suite of potential species 

(Britzke 2003).  Reference libraries comprised of species with dissimilar echolocation calls, 

either true differences among species or artificial differences resulting from the particular calls 

included, are likely to exhibit higher overall and species-specific accuracy rates that reference 

libraries collected from species with similar echolocation calls, regardless of the classification 

method used. Therefore, we evaluated performance of all methods using the same suite of 

species and library of reference calls. 

METHODS  

Reference Call Library  

 We obtained from Chris Corben, designer of the ANABAT system (Titley Scientific, 

East Brisbane, Australia), a reference library of calls (Gannon et al. 2004) recorded with 

ANABAT from individuals through a variety of methods including hand releases, visual 

identification of free-flying individuals, emergence from known roosts, and zip lines (Chris 

Corben, formerly of Titley Electronics, pers. comm.).  The library is comprised of calls recorded 

across the United States and therefore likely to exhibit greater variance than a geographically 
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restricted library.  While use of a local reference library is often encouraged (Papadatou et al. 

2008), inter-specific variation is more significant than geographic intra-specific variations 

(O’Farrell et al. 2000, Murray et al. 2001) eliminating the absolute necessity of a local reference 

library.  We used multiple calls from the same sequences for analyses thereby introducing 

problems of pseudoreplication (Hurlbert 1984).  However, comparisons between classification 

methods using the same pseudoreplicated data set are still valid (Preatoni et al. 2005).   

We included in our reference collection calls from species that we considered to be 

summer residents of forests within the southeastern U.S. Coastal Plain including: Corynorhinus 

rafinesquii (CORA, Rafinesque’s big-eared bat), Eptesicus fuscus (EPFU, big brown bat), 

Lasiurus borealis (LABO, eastern red bat), L. seminolus (LASE, Seminole bat), L. cinereus 

(LACI, hoary bat), Nycticeus humeralis (NYHU, evening bat), Perimyotis subflavus (PESU, tri-

colored bat), Tadarida brasiliensis (TABR, Brazilian free-tailed bat), and Myotis austroriparius 

(MYAU, southeastern myotis).  This suite of resident species was determined based on mist-net 

captures of bats on nine study areas located in the coastal plain (Bender et al. unpublished data), 

literature reports, and from personal communication with other biologists familiar with the 

region.  While additional species are likely to be found in the region, they are migrants or rare in 

Coastal Plain forests and thus were not considered typical summer residents and were not 

included in our analyses.  

We created a customized ANALOOK (v 4.9; Titley Scientific, East Brisbane, Australia) 

filter to retain only search phase calls following the methods and criteria of Britzke and Murray 

(2000).  We followed terminology used by Britzke (2003), in which “calls” were individual 

sound pulses, a combination of which comprised a “call sequence.”  We used ANALOOK to 

automatically calculate and extract call parameters from all calls within retained files. Call 
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parameters included maximum frequency (Fmax), minimum frequency (Fmin), duration (Dur), 

mean frequency (Fmean), initial slope (S1), slope of flattest portion (Sc), frequency where slope 

changes from S1 to Sc (Fk), frequency of flattest portion (Fc), time into call when Fc reached 

(Tc), time into call when Fk reached (Tk), and degree of curvilinearity (Qk).  O’Farrell et al. 

(2000) provides a more complete explanation of call parameters calculated by ANALOOK.  

Automated filtering and parameter calculation increase objectivity and repeatability while 

reducing influence of researcher experience (Obrist et al. 2004) which may have significant 

impact on classification errors (Gannon et al. 2004).  Additionally, maintaining objectivity 

throughout the quantitative identification process is an expressed goal of many research projects 

(Parsons and Jones 2000, Russo and Jones 2002).  

 Call Classification  

The expected error rate is the most appropriate tool to evaluate a classification method 

(Lachenbruch 1975).  Therefore, we used this metric to compare DFA (linear and quadratic) and 

KNN classifiers.  Leave-one-out cross validation is considered a nearly unbiased estimator of 

out-of-sample error (Fukunaga and Kessel 1971), and provides a measure of predictive ability 

without excessive variance (Efron 1983).  Our leave-one-out cross validation procedure involved 

withholding one call from the data set, generating a model with the remaining data, and then 

using the model to classify the withheld call.  The process is repeated until all calls have been 

classified.  The resulting confusion matrix (Table 2.1) displays percentages of observations 

classified correctly and incorrectly into each alternative category (e.g., suite of possible species).  

Confusion matrices permit calculation of overall, mean, and species-specific error rates for each 

classification method.  To facilitate comparisons to other research and to permit more intuitive 

reporting of results, we present accuracy rates (1 minus error rate) rather than error rates.  
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Species with high accuracy rates likely have unique call characteristics, while species with lower 

accuracy rates likely have call characteristics that are similar to those species that they were 

incorrectly classified as. 

We used SAS software (v 8.2, SAS Institute Inc., Cary, North Carolina, USA) for all 

statistical analyses.  To classify calls using the KNN approach we used PROC DISCRIM with 

the METHOD = NONPARAMETRIC option and specified KNN analysis with the option K = a 

pre-specified number of neighbors.  The most appropriate and best performing call parameters 

for classification likely depend on the suite of species being investigated.  Therefore, we 

examined overall cross validation error rates (i.e., percentage of the total known calls incorrectly 

classified) from 11 candidate models (Table 2.2) to determine the best performing model.  The 

candidate set included call parameters previously used to quantitatively classify bat calls from 

the southeastern U.S. (Britzke 2003) and other additive combinations of call parameters thought 

to vary among species (Fenton and Bell 1981, Russo and Jones 2002; Table 2.2).  We used a 

SAS macro (J.T. Peterson, U.S. Geological Survey, Athens, Georgia, USA) to plot overall leave-

one-out cross validation error rates by the number of neighbors to determine optimal number of 

neighbors.  We calculated error rates from 1 to 50 neighbors for each potential candidate model.  

We defined optimal number of neighbors (K) as the K that resulted in the lowest overall error 

rate.  If multiple levels of K produced the same minimum error rate, we selected the lowest K.  

We considered the best-predicting model in the candidate set to be the model with the lowest 

overall cross validation error rate when the optimal number of K was used to identify calls.    

We used PROC DISCRIM to perform both linear and quadratic DFA classifications with 

the 11 candidate models.  The POOL option was used to define DFA form (POOL = YES, linear; 

POOL = NO, quadratic), and the CROSSVALIDATE option was used to conduct the leave-one-
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out cross validation procedure.  Papadatou et al. (2008) found that linear and quadratic DFA 

forms performed equally well as bat call classifiers, although the covariance matrix was better 

suited to the quadratic DFA form.  However, classification performance and most appropriate 

DFA form may vary depending on the data set and suite of species being investigated.  To 

determine the most appropriate form and test if the findings from Papadatou et al. (2008) applied 

to our data we used the POOL = TEST option to determine which DFA form (linear or 

quadratic) was best suited to our data.  This SAS option requests Bartlett’s modification of the 

likelihood ratio test of the homogeneity of within-group covariance matrices at the 0.10 

significance level (SAS Institute Inc. 2010).  A significant test statistic indicates that quadratic 

DFA is most appropriate, given the data.  Linear DFA uses the pooled covariance matrix while 

quadratic DFA uses within-group covariance matrices for discriminant function calculations.  

Most previous research that used DFA used only one DFA form (e.g., Russo and Jones 2002), 

failed to test the covariance structure (Britzke 2003), or did not report the specific DFA form 

used (e.g., Obrist et al. 2004).  Therefore, we report results from both DFA forms to allow for 

comparisons.    

RESULTS 

 Our reference library contained 13,356 calls from 482 total sequences (Table 2.3).  Two 

species, L. borealis and L. seminolus, are acoustically similar (Chris Corben, formerly of Titley 

Electronics, pers. comm., Susan Loeb, U.S. Department of Agriculture-Forest Service, pers. 

comm.).  Therefore, we pooled them into one species group (LAsp) prior to analysis following 

recommendations of Barclay (1999).    

We determined 10 to be the optimal number of neighbors in our KNN analysis for 9 of 

the candidate models based on overall error rates generated with our optimal K macro (Figure 
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2.1).  The remaining 2 models had substantially higher error rates for all levels of K (1-50), 

indicating generally inferior classification performance. The optimal number of neighbors varied 

between these models (Fmax + Fmin, 44 neighbors; Fmax + Fmin + Fmean, 17).  Overall 

accuracy rates for the KNN analysis ranged from 56.5 to 82.5% (Table 2.2).  The model with the 

highest overall accuracy rate, and therefore the model we defined as the best-performing model, 

incorporated 10 call parameters: Fmax, Fmin, Fmean, Tk, Fk, Qk, Tc, Fc, S1, and Sc.  Accuracy 

rates for the top model varied by species ranging from 50.8% (LAsp group) to 96% (CORA) 

correct classification (Table 2.4) with a mean species accuracy rate of 80.6%.   

Call data were better suited to a quadratic DFA form than to a linear form based on the 

homogeneity of variance test, and quadratic DFA generally outperformed linear DFA.  Overall 

accuracy rates for quadratic DFA models ranged from 55.5 to 74.9%, and the best-performing 

model included; Dur, Fmax, Fmin, Fmean, Tk, Fk, Qk, Tc, Fc, S1, and Sc (Table 2.2).  Species 

accuracy for the best quadratic model ranged from 33.3% (LAsp) to 88.3% (PESU) and had a 

mean accuracy of 71.3% (Table 2.4).  Linear DFA overall accuracy rates ranged from 49.2 to 

72.6%, the best model included; Fmax, Fmin, Fmean, Tk, Fk, Qk, Fc, S1, and Sc (Table 2.2).  

The best-performing linear model had a mean accuracy rate of 66.6% and ranged from 33.6% 

(LAsp.) to 85.1% (PESU; Table 2.4).  Mean accuracy of the best quadratic DFA model was 5 

points higher than the best linear DFA model (72% and 67%, respectively; Table 2.4).  The 

quadratic DFA had higher classification rates than linear for all species, except NYHU, and both 

DFAs had classification rates > 70% for 5 species.    

 KNN classification exhibited mean and overall accuracy improvements of 14.0% and 

9.9%, respectively, over linear DFA, and mean and overall improvements of 8.8% and 7.6%, 

respectively, over quadratic DFA (Table 2.4).  KNN species classification accuracy was superior 
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in every case to linear DFA (range 2.2 - 26.7%), and all cases except PESU when compared to 

quadratic DFA (-0.94 - 20.2%).  

DISCUSSION 

The number of species with accuracy rates > 70% is an often cited statistic when 

determining effectiveness of quantitative analysis methods (e.g., Russo and Jones 2002, Britzke 

2003).  K-nearest neighbor analysis produced accuracy rates > 70% in seven of the eight 

species/groups investigated.  Improvements over DFA indicate that classification performance 

with KNN analysis may be comparable to artificial neural networks (ANN), which have 

effectively been used to quantitatively identify bat calls (e.g., Parsons 2001, Wickramasinghe et 

al. 2003). Parsons and Jones (2000) compared ANN to quadratic DFA when classifying 12 bat 

species in Britain and found that overall, ANN accuracy rates were 6 percentage points higher 

than quadratic DFA rates.  However, subsequent analyses with the same data set indicated that 

performance of DFA and ANN varied depending on parameter extraction and network training 

procedures (Redgwell et al. 2009).  Preatoni et al. (2005) compared accuracy rates of four 

quantitative methods of call identification (DFA, cluster analysis, artificial neural networks, and 

classification/regression trees) using calls from species recorded in Italy.  DFA outperformed 

ANN (overall accuracy at species level 77% and 64% respectively), whereas cluster analysis and 

classification/regression trees were far less accurate (45% and 41%, respectively).  

Despite potential classification improvements over DFA, ANNs have not been commonly 

used for call identification primarily because of increased complexity (Papadatou et al. 2008), 

difficulty in quantifying classification uncertainty (Preatoni et al. 2005), and computational 

power required for network training (Obrist et al. 2004).  Our overall improvement of 7.6% over 

quadratic DFA is comparable to the increase in accuracy of ANN over DFA demonstrated by 
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Parsons and Jones (2000), and the software, training, and computational resources required for 

KNN analysis are similar to that required for classification using DFA.  Furthermore, 

classification uncertainty on a call-by-call basis is easily quantified with KNN by calculating 

posterior probabilities of group membership based on the identity of the known neighbors.  

Classification methods with improvements over DFA greater than those achieved with 

KNN have been developed, but widespread application is unlikely.  Obrist et al. (2004) 

compared pattern recognition to DFA for classification of 26 bat species found in Switzerland 

and achieved an overall accuracy rate 12% points higher than DFA.  While pattern recognition 

resulted in greater improvements over DFA than our KNN approach, the complex synergetic 

classification algorithm and software, extensive training and filtering process, and stated need to 

conduct more cross validation work (Obrist et al. 2004) will likely limit use of this approach.  

Machine learning methods have resulted in the greatest classification improvement over DFA 

(16% versus 0.4% classification error; Skowronski and Harris 2006).  However, the authors 

acknowledged limitations, primarily the large reference library required because of the number 

of parameters used by machine learning models (DFA = 20 parameters, machine learning model 

= 1425).  Additionally, results were based on an assumption of ideal recording conditions and a 

suite of geographically separated species.  The authors note that machine learning classification 

methods require substantially more time and computational complexity than DFA and may only 

be suitable for full-spectrum recording systems (Skowronski and Harris 2006).  The 

requirements and limitations are likely to eliminate this classification method as a viable option 

for many research projects, particularly those using the ANABAT system.  

Our results indicate the best-performing suite of call parameters is likely to vary among 

methods, and parameter choice affects overall accuracy rates and discrepancies between 
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alternative methods.  Therefore, we suggest that performance of multiple suites of parameters 

(models) be investigated and some model selection procedure be incorporated so that accuracy 

can be maximized.  A model selection approach has been incorporated by some (Russo and 

Jones 2002), but many previous studies have failed to do so (e.g., Britzke 2003, Preatoni et al. 

2005, Obrist et al. 2004).  Although we used overall classification error to evaluate models, 

alternative error rates may be more appropriate depending on research or monitoring objectives. 

For instance, if the objective is to assess potential occupancy of an area by a particular species 

then the suite of model parameters and optimal number of neighbors should be chosen so that 

calls of that species are accurately classified and calls from alternative species are not improperly 

classified as the target species.  

KNN analysis possesses several advantages as a quantitative classification method for bat 

calls over alternative methods.  We demonstrated higher accuracy rates than DFA, and our 

improvements were comparable or superior to improvements exhibited by ANNs.  Beyond 

classification performance, another advantage of using KNN as a classifier is the ability to easily 

calculate posterior probabilities for each classified call based on the identity of known neighbors.  

These posterior probabilities represent an estimate of classification confidence in addition to 

cross validation accuracy rates, and may be more appropriate measures of the probability that an 

individual call has been identified correctly than overall percent species identification rates 

traditionally used in DFA and ANN applications (Russo and Jones 2002).  Probability thresholds 

can be used to eliminate calls or effectively create an “unknown” category when calls are 

classified with low confidence, thereby addressing one of the major concerns expressed by 

proponents of qualitative classification methods.  Most quantitative methods such as DFA and 

ANN are unable to place a call into an unknown category, although a recently developed 
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classification method (support vector machine) that does not have this constraint shows promise 

for accurate call analysis in the future (Redgwell et al. 2009).  Additionally, posterior probability 

estimates can be directly incorporated into statistical analyses to account for misclassification 

when investigating factors that influence occupancy (Royle and Link 2006).  We did not 

incorporate posterior probabilities into our analysis because we knew the true identity of all calls 

and wanted to maintain an equal number classified by each method for comparison purposes. We 

recommend use of a posterior probability threshold with data collected in the field as a 

conservative approach to identification. Depending on the objectives and consequences of 

misidentifications the threshold value can be adjusted.  However, a higher threshold will result in 

more calls being placed in the unknown category. 

The KNN classification method is suitable for data collected with the ANABAT system 

and processed with ANALOOK software, both of which are in widespread use and financially 

and logistically feasible for many research projects (Britzke 2003).  Although access to a 

reference library is necessary (in contrast to linear DFA), KNN performs well with the 

ANABAT recorded reference library already accessible to many researchers.  The ability to 

classify calls without access to the reference library is a potential benefit of using linear DFA 

(Papadatou et al. 2008).  However, our results indicate that the equivalent classification 

performance achieved by Papadatou et al. (2008) using linear and quadratic DFA is likely to 

depend on the suite of species investigated.  Therefore, the potential benefits of using linear DFA 

for call identification are likely offset by lower accuracy rates and violated assumptions. 

MANAGEMENT IMPLICATIONS 

Our findings suggest that KNN classification is an accurate quantitative method to 

identify calls made by bat species associated with southeastern U.S. coastal plain forests, 
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recorded using the ANABAT system, and processed using ANALOOK.  However, managers 

should be aware that performance of any classification method varies with the suite of species 

investigated, recording methods employed, recording conditions, call measurements used, and 

software used to process and measure call characteristics.  Our results indicate that managers 

should incorporate a model selection procedure because we demonstrated that classification 

performance varies among models. Further research is required to assess KNN classification 

performance with alternative suites of species, recording hardware, or processing software.  

However, our results indicate that managers should consider KNN as an accurate, available, and 

suitable method to quantitatively identify unknown bat calls.   
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Figure 2.1: Sample plot of overall classification error (i.e., percentage of the total known calls 

incorrectly classified) by number of neighbors.  Optimal K is defined as the number of neighbors 

that produces the lowest overall classification error (e.g., optimal K=10).  The optimal K is used 

to predefine the number of neighbors used in K-nearest-neighbor classification.    
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Table 2.1: Confusion matrix resulting from leave-one-out cross validation with K-nearest 

neighbor classification of calls from a suite of bat species from the southeastern U.S. Coastal 

Plain.  The bold type diagonal row indicates the percentage of correctly classified calls, all others 

represent percent misclassifications.  The suite of species include big brown (EPFU), eastern red 

and Seminole group (LAsp.), hoary (LACI), evening (NYHU), tri-colored (PESU), Brazilian 

free-tailed (TABR), Rafinesque’s big-eared (CORA), and southeastern myotis (MYAU).   

  Classified into   

Known EPFU LAsp. LACI NYHU PESU TABR CORA MYAU Total # 
classified 

EPFU 74.8 0.1 3.4 0.3 0.1 20.5 0.8 0.1 1427 

LAsp. 0.1 50.8 0.0 24.1 17.3 0.0 0.1 7.5 1021 

LACI 3.9 0.0 89.0 0.3 0.0 6.8 0.0 0.0 589 

NYHU 0.3 10.4 0.0 83.7 2.5 0.1 0.5 2.4 2381 

PESU 0.0 7.6 0.0 2.1 87.3 0.0 0.1 2.9 3293 

TABR 19.3 0.1 7.2 0.3 0.0 71.6 1.4 0.1 1106 

CORA 1.3 0.0 0.0 0.4 0.0 0.0 96.0 2.2 225 

MYAU 0.2 3.0 0.0 0.9 0.1 0.1 2.3 91.6 3314 
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Table 2.2: Overall leave-one-out cross validation accuracy rates for 11 candidate models used to 

classify bat calls from the southeastern U.S. Coastal Plain using linear discriminant function 

analysis (DFA), quadratic DFA, and K-nearest neighbor analysis (KNN).  Call parameters were 

automatically calculated using ANALOOK software including call duration (Dur), initial slope 

(S1), slope of flattest call section (Sc), maximum frequency (Fmax), minimum frequency (Fmin), 

mean call frequency (Fmean), frequency where slope changes from S1 to Sc (Fk), frequency of 

flattest part of call (Fc), time when Fk reached (Tk), time when Fc reached (Tc), and significance 

of change from S1 to Sc (Qk).  Bold type indicates best performing model for each method.  

  Method  

Candidate Model 
Linear 
DFA 

Quadratic 
DFA 

KNN 

    

Fmax, Fmin, Fmean, Tk, Fk, Qk, Tc, Fc, S1, Sc 71.83 73.07 82.50 

Dur, Fmax, Fmin, Fmean, Tk, Fk, Qk, Tc, Fc, S1, Sc 71.74 
           

74.87 82.37 

Fmax, Fmin, Fmean, Tk, Fk, Qk, Fc, S1, Sc 
               

72.59 70.20 82.12 

Dur, Fmax, Fmin, Fmean, Tk, Fk, Tc, Fc, S1, Sc 70.58 73.83 81.50 

Fmax, Fmin, Fmean, Fk, Fc, Sc 68.59 66.79 81.29 

Dur, Fmax, Fmin, Fk, Tc, Fc, Sc 67.32 71.68 81.27 

Dur, Fmax, Fmin, Tk, Fk, Qk, S1, Sc 68.54 73.84 81.12 

Dur, Fmax, Fmin, Tk, Qk, S1, Sc 67.21 72.61 79.00 

Dur, Fmin, Fc, S1, Sc 68.34 70.54 78.85 

Fmax, Fmin, Fmean 59.61 62.49 73.47 

Fmax, Fmin 49.24 55.53 56.45 
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Table 2.3: Species, number of sequences, and number of calls comprising the reference library of 

ANABAT recorded calls used to classify bat calls from the southeastern U.S. Coastal Plain.  

Calls were collected by C. Corben (formerly of Title Electronics, Australia) from bats through a 

variety of methods including hand releases, zip lines, free flying bats, and roost emergences.  

Species include big brown (EPFU), eastern red and Seminole group (LAsp.), hoary (LACI), 

evening (NYHU), tri-colored (PESU), Brazilian free-tail (TABR), Rafinesque’s big-eared 

(CORA), and southeastern myotis (MYAU).    

Species Sequences Calls 

MYAU 102 3314 

PESU 75 3293 

NYHU 61 2381 

EPFU 42 1427 

TABR 108 1106 

LAsp. 42 1021 

LACI 43 589 

CORA 9 225 

Total 482 13356 
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Table 2.4: Overall, mean, and species/group leave-one-out cross validation accuracy rates for the best performing models used to 

classify echolocation calls of a suite of bat species from the southeastern U.S. Coastal Plain.  Classification methods include linear 

discriminant function analysis (L-DFA), quadratic DFA (Q-DFA), and K-nearest neighbor analysis (KNN).  Overall accuracy 

calculated as the total correctly classified/total classified, and mean is the average accuracy for all species/groups including; big brown 

(EPFU), eastern red and Seminole group (LAsp), hoary (LACI), evening (NYHU), tri-colored (PESU), Brazilian free-tail (TABR), 

Rafinesque’s big-eared (CORA), and southeastern myotis (MYAU).  Improvement over (IO) L-DFA and Q-DFA represents the 

difference in accuracy rates between KNN and alternative methods.   

   Species 

Method Overall Mean  EPFU LAsp. LACI NYHU PESU TABR CORA MYAU 

Best L-DFA 72.59 66.55 57.95 33.59 69.44 80.43 85.12 58.05 69.33 78.46 

Best Q-DFA 74.87 71.75 54.59 33.30 85.23 74.38 88.25 63.11 90.67 84.49 

Best KNN 82.50 80.59 74.77 50.83 88.96 83.66 87.31 71.61 96.00 91.55 

IO L-DFA 

 

  9.91 14.04 16.82 17.24 19.52   3.23  2.19 13.56 26.67 13.09 

IO Q-DFA 

 

  7.63   8.83 20.18 17.53 3.73   9.28 -0.94  8.50  5.33  7.06 
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CHAPTER 3 

 

INFLUENCE OF INSECT PREY AVAILABILITY AND VEGETATION STRUCTURE ON 

SITE-OCCUPANCY OF COASTAL PLAIN FOREST BATS2
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2 Bender, M. J., S. B. Castleberry, D. A. Miller, and T. B. Wigley.  To be submitted to Forest 
Ecology and Management 
 



 

 45 

ABSTRACT 

 Site-occupancy of bats across forested landscapes often has been linked to vegetation 

clutter.  Clutter alone may not sufficiently explain observed occupancy as abundance of insect 

prey likely has a strong influence on distribution of foraging insectivorous bats.  However, 

inconclusive evidence concerning relevant measures of prey availability hampers understanding 

how insect abundance influences site-occupancy by bats.  Therefore, we sampled insects, 

vegetation characteristics, and presence/absence of bat species across multiple pine-dominated 

landscapes in the Coastal Plain of the southeastern United States to determine how these small-

scale factors influence site-occupancy by foraging bats.  We used Akaike’s Information Criterion 

to evaluate plausibility of models from a set of candidate models that estimated occupancy and 

detection probabilities while incorporating vegetation and insect predictor variables.  Site-

occupancy of foraging bats was better explained by a combination of vegetation characteristics 

and insect abundance than either separately, and vegetation structure appears to have stronger 

influence than prey availability.  The most appropriate measure of available prey remains 

unclear, but our data suggest that insect taxon is more influential that insect size.  Management 

activities in managed-pine forests that reduce vegetation clutter and increase insect abundance 

are likely to benefit resident bat species.  Additionally, results suggest that researchers should not 

assume detection probabilities are constant temporally, geographically, or across sample 

locations that differ in vegetation structure.   
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INTRODUCTION 

Predator fitness is closely linked to foraging decisions (Stephen and Krebs 1986), and 

decisions about alternative foraging locations may be influenced by physical habitat 

characteristics (Hopcraft et al. 2005), abundance of prey items (Ives et al. 1993), or a 

combination of both (Sleep and Brigham 2003).  Foraging decisions made by bats influence 

ability of individuals to acquire sufficient resources to meet immediate energetic demands and 

accumulate fat stores.  Failure to acquire sufficient resources may result in reduced reproductive 

output (Burles et al. 2009) or decreased likelihood of survival (Thomas et al. 1990) in temperate 

region bats.  Many species exhibit foraging site fidelity (Rydell 1989, Clark et al. 1993, 

Duchamp et al. 2004, Hillen et al. 2009) and individuals may use agonistic behavior to reduce 

competition within foraging areas (Belwood and Fullard 1984, Rydell 1989, Barlow and Jones 

1997).  These consequences and behaviors suggest that selection of foraging location has direct 

fitness implications for insectivorous bats.  A better understanding of how bats choose foraging 

areas is required to identify important habitat features and evaluate management prescriptions 

that potentially alter foraging habitat.  

Species-specific characteristics of wing morphology and echolocation call influence 

flight speeds, maneuverability, and ability of bats to discriminate between prey and non-prey 

items (Aldridge and Rautenbach 1987).  Therefore, optimal habitat conditions and prey items 

may differ among foraging bat species.  As hypothesized based on morphology, vegetation 

clutter or similar measures of vegetation structure are often important habitat variables when 

discriminating between occupied and apparently unoccupied acoustic sample points (Ford et al. 

2005, Loeb and O’Keefe 2006), which is one method to discern importance of factors that may 

influence distribution patterns (MacKenzie et al. 2006).  However, habitat variables alone are 
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often insufficient to fully understand species’ ecological relationships (Morrison 2001).  Thus, 

Morrison (2001) recommends going beyond habitat associations and also investigating resources 

associated with the habitat.  For bats, the primary resource is insect prey, and failure of habitat 

use to conform to predictions based on morphology alone may be partially attributable to effects 

of prey densities (Tibbels and Kurta 2003, Ford et al. 2005).  Despite many inherent challenges, 

understanding links between foraging bats and prey availability has been recognized as an 

important research area, particularly within forested landscapes (Lacki et al. 2007).   

Predator distributions are influenced by abundance of prey resources (Colwell and 

Landrum 1993, Ives et al. 1993), and studies have found a positive relationship between indices 

of bat foraging activity and insect abundances (Anthony et al. 1981, Rautenbach et al. 1996, 

Kusch et al. 2004).  However, acoustic indices of activity have limitations because of an inability 

to determine number of individuals contributing to activity measures (Barclay and Bell 1988), 

which may partially account for results indicating a lack of relationship between foraging 

activity and insect abundance (Ober and Hayes 2008).  In general, foraging activity is not 

constant throughout the night (Hayes 1997).  Foraging bouts may be minimized so that only 

immediate energetic demands are met (Barclay 1989) or may be governed by the need to 

periodically stop foraging to facilitate digestion (Barclay 1982).  Therefore, increasing activity 

indices could represent increased effort by a few individuals (representing relatively 

poor/inefficient foraging conditions) or many individuals using the foraging area for short times 

before returning to night roosts (representing efficient foraging conditions).  Additionally, 

acoustic data may be systematically biased because ability to detect echolocation calls may vary 

by habitat type and incorrectly indicate activity differences unless variable detection is 

considered (Patriquin et al. 2003).   
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One method to account for limitations of acoustic surveys is to use presence/absence data 

to investigate influence of insect abundances on site-occupancy of bats, but this approach rarely 

has been used (Ford et al. 2006).  Recently-developed occupancy modeling approaches allow 

researchers to examine factors that influence detection and occupancy with presence/absence 

data (MacKenzie et al. 2006).  This approach acknowledges that, although detection of a species 

indicates presence, non-detection does not always equate to species absence and that 

detectability may vary among sampling locations (MacKenzie et al. 2002).  The ability to 

account for variable detection is important to bat researchers using presence/absence type data 

because probability of detecting most bat species acoustically is generally <1 (Duchamp et al. 

2006, Gorreson et al. 2008, Weller 2008), and traditional logistic regression models are sensitive 

to even low levels of nondetections (Gu and Swihart 2003).  

Another factor hampering our ability to understand insect/bat relationships is an inability 

to accurately measure prey availability, attributable to a lack of knowledge concerning 

discriminatory capabilities of foraging bats.  Many bat species actively select prey (Brigham 

1990), but it is unclear if selection is based on size, insect taxon, or both.  Some diet studies 

suggest that bats discriminate among prey items by taxon (Buchler 1976, Agosta et al. 2003), 

whereas others suggest that size is the relevant factor (Barclay and Brigham 1991, Barclay and 

Brigham 1994).  A recent field study by Ober and Hayes (2008) suggested importance of size for 

some species groups, but their results were largely inconclusive.   

It is likely that decisions regarding selection of foraging areas are based on a combination 

of vegetation characteristics and prey abundances as both factors contribute to foraging 

efficiencies (Aldridge and Rautenbach 1987, Salcedo et al. 1995).  Sleep and Brigham (2003) 

experimentally tested influence of clutter and insect abundance on foraging activity and found 
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that less maneuverable bat species may not be capable of exploiting areas of high insect 

abundance with high amounts of clutter.  Meyer et al. (2004) found that bat activity patterns 

followed the spatial and temporal activity patterns of lepidopteran prey, but habitat 

characteristics had the most pronounced effect.  Among similar habitat types, Wickramsinghe et 

al. (2004) found that differences in bat activity were related to differences in insect abundances.  

Our objective was to examine relationships between site-occupancy of bats and insect 

abundance.  We specifically investigated if overall insect abundance, ordinal richness, abundance 

of size classes, or abundance of taxonomic orders best explained the observed presence/absence 

of resident bat species.  Secondarily, we determined if vegetation characteristics, insect 

abundance, or a combination of the two best discriminated between occupied and apparently 

unoccupied sites.  Lastly, we evaluated relative plausibility of occupancy models that included 

detection factors and the constant/perfect detection model assumed by traditional logistic 

regression.  

METHODS 

Data Collection 

 During summer 2008 we sampled 25 points systematically chosen from a 900 x 900 m 

grid in each of three managed-pine forest landscapes (n = 75) located in the Coastal Plain of the 

southeastern U.S. (near Greenville, Alabama; Shallotte, North Carolina; and Washington, North 

Carolina).  Loblolly pine (Pinus taeda) was the dominant tree species in all landscapes, and 

management activities were “typical” of plantation forestry operation in the southeastern U.S.  

Although management activities are based on site conditions and modified to meet demands of 

individual stands, typical regional management activities include clear-cutting of managed stands 

at 20-30 years, mechanical and/or chemical site preparation, and reforestation using 1 to 2-year-
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old nursery stock typically planted in raised beds at a stocking rate of approximately 450 to 700 

trees per acre (Gresham 2002).  Competing vegetation is reduced as needed through herbicide 

applications, fire, or mechanically and most stands are periodically thinned.  These intensively-

managed stands comprised ≥ 70% of area within sampled landscapes with streamside 

management zones, roads, wildlife openings, and other non-forest habitat types accounting for 

the remaining area.  We collected data in each landscape for approximately 1 month prior to 

moving to the next location (Greenville 12 May – 5 June; Shallotte 16 June – 12 July; 

Washington 17 July – 13 August, 2008).     

We passively recorded bat echolocation calls at each point for two nights using an Anabat 

II frequency division bat detector (Titley Scientific, East Brisbane, Australia) coupled with a 

zero-crossing interface module (ZCAIM).  We stored each Anabat II/ZCAIM combination in a 

waterproof plastic container and stored data on a compact flash (CF) card, which we downloaded 

daily.  We directed Anabat II microphones towards the area of least vegetation clutter, 45˚ from 

horizontal using a 5.1 cm PVC elbow, and 1.5 m above the forest floor on a camera tripod to 

maximize call quality and quantity (Weller and Zabel 2002).  We programmed detectors to begin 

sampling 30 min prior to civil sunset and end sampling 30 min after civil sunrise.  We conducted 

acoustic sampling for two nights at each point and consecutively when possible to minimize 

temporal variability.  We randomly assigned detectors to points on a nightly basis to randomize 

equipment bias, and any data collected during nights with rain events were not retained. 

We created a customized ANALOOK (v 4.9; Titley Scientific, East Brisbane, Australia) 

filter to retain only search phase calls following the methods and criteria of Britzke and Murray 

(2000).  We used ANALOOK to automatically calculate and extract call parameters from 

retained files to increase objectivity and repeatability while reducing influence of researcher 
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experience (Obrist et al. 2004), which may have significant impact on classification errors 

(Gannon et al. 2004).   

We quantitatively identified unknown calls with a reference library of known calls using 

a K-nearest-neighbor classification approach (Bender et al. unpublished data).  We included 8 

species/groups as potential residents of southeastern U.S. Coastal Plain forest landscapes based 

on mist-net captures (Bender unpublished data); big brown bat (Eptesicus fuscus), eastern red + 

Seminole group (Lasiurus borealis + L. seminolus), hoary bat (L. cinereus), evening bat 

(Nycticeius humeralis), tri-colored bat (Perymyotis subflavus), Rafinesque’s big-eared bat 

(Corynorhinus rafinesquii), Brazilian free-tailed bat (Tadarida brasiliensis), and southeastern 

myotis (Myotis austroriparius).  Overall call classification accuracy based on leave-one-out cross 

validation was 83% and mean species accuracy was 81%, ranging from 51% to 96% (Bender et 

al. unpublished data; Table 3.1).  However, species identifications were based on the sequence of 

calls within each unknown call file rather than on individual calls.  Therefore, we used three-fold 

cross validation of the reference library to estimate sequence classification accuracy.  To 

accomplish this, we randomly selected one third of reference sequences with a random number 

generator and used them as our test data.  Calls from the remaining two-thirds of sequences were 

used to train the classification model.  We repeated this process until all sequences containing ≥ 

5 calls were classified.  We used the posterior classification probabilities averaged across all 

calls in a sequence to assign sequence identities.  Sequence accuracies averaged across the three 

iterations ranged by species from 72% to 100% (Table 3.1).  Each sequence recorded in the field 

with ≤ 4 calls or that did not result in identification with an average posterior classification 

probability ≥ 0.5 was eliminated.    
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We collected insects using a variation of a flight intercept trap (Tripplehorn and Johnson 

2005) mounted on a portable frame 1.5 m above the forest floor.  Traps consisted of a 1 m2 

screen panel with a collection device above and below the intercept panel.  A small amount of 

liquid dish soap was added to water in the collection devices to break the surface tension and 

facilitate insect euthanasia (Tripplehorn and Johnson 2005).  Passive insect collection methods 

capture fewer individuals than methods that employ an attractant such as a light source 

(Bontadina et al. 2008).  However, a passive design is likely less biased than designs using 

chemical or light attractants.  Flight intercept traps produce insect captures similar to alternative 

passive sampling methods including sticky and suction traps (Sleep and Brigham 2003) and were 

desirable because of logistic considerations.    

We set insect traps within 15 m of acoustic sampling points in locations likely to 

minimize influence on bat activity or detectability (i.e., not in front of bat detectors or in flight 

corridors leading to detectors).  We collected insects and reset traps each morning so that each 

sample represents captures for approximately 24 hours.  Insects were preserved in 90% ethanol 

until identification.  We used a dissecting microscope to measure and identify all winged insects 

captured to order based on dichotomous keys (Arnett 1985, Tripplehorn and Johnson 2005); 

taxonomy follows Tripplehorn and Johnson (2005).  We measured insect lengths to the nearest 

millimeter from the anterior portion of the head to the last abdominal segment and placed each 

into one of three size classes (≤ 2 mm, 3-6 mm, and ≥7 mm long; Ober and Hayes 2008).  

Insect sampling was conducted concurrently with acoustic sampling whenever possible.  

On rare occasions (n = 9 nights, 6%) we were unable to sample concurrently because of 

equipment malfunctions.  However, acoustic and insect sampling at each point was always 

conducted within 2 days in similar weather conditions.  We sampled insects at 10 points for an 
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additional night (i.e., three nights), and for a single night at one point because of trap damage 

during subsequent attempts.  Insect predictor variables represent average nightly abundances for 

each point.  One sample point was dropped from analyses because reoccurring trap failures (i.e., 

repeatedly broken by wind gusts) prevented insect sampling.   

 We measured percent canopy cover using a convex spherical densiometer (Ben Meadows 

Company, Janesville, WI), averaging measurements taken at the acoustic sample point and 4 

additional locations 5 m from the point in each of the cardinal directions.  We measured basal 

area (m2/ha) using a 10-factor prism centered at the acoustic detector point.  We measured 

vegetation clutter using methods based conceptually on a Nudds board (Nudds 1977), estimating 

percent coverage using a 1-m2 panel raised approximately 4.5 m above the ground and 4.5 m 

from the sample point in each cardinal direction and in the sampling direction of the acoustic 

detector. 

Statistical Analyses 

We interpreted detection of a species during the sampling season (i.e., time period 

encompassing repeated sampling visits) as an indication that members of that species “used” 

rather than constantly “occupied” the sample point during the season, which is a valid relaxation 

of the closure assumption of occupancy models (MacKenzie et al. 2006).  Although we use the 

terms “site-occupancy” and “use” interchangeably, data represent the influence of predictor 

variables on use of sample points by foraging bats.  All modeling steps were performed 

separately for each bat species investigated.  Correlation between predictor variables was 

assessed and no correlated variables (Pearson’s correlation coefficient │r│> 0.70) were used in 

the same model to reduce multicollinearity concerns (Moore and McCabe 1993).  
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We first investigated influence of sampling date, study site, and vegetation structure on 

acoustic detection of bats.  Eight competing models were generated to represent plausible 

hypotheses concerning influence of these parameters on detection by including them as predictor 

variables (Table 3.2).  We constructed 3 candidate models to reflect our hypothesis that detection 

probability is related to vegetation structure.  We predicted that detection probabilities would 

decrease as measures of vegetation structure increased (Weller and Zabel 2002).  Another 

plausible hypothesis is that detection is related to sampling date (Hein et al. 2009), and we 

predicted that later sampling dates would have higher detection probabilities because of 

increased population sizes as juveniles become volant and with increased activity related to 

mating behaviors (Parsons et al. 2003) and/or foraging prior to autumn (Seidman and Zabel 

2001).  We explored both a quadratic and linear relationship between sampling date and 

detection, but found that a linear relationship was more plausible based on Akaike’s Information 

Criterion values (AIC; Akaike 1973).  We created a model to reflect our hypothesis that study 

site might influence detection because of historic conditions, local population levels, or 

unmeasured characteristics of the landscape and surrounding areas.  We constructed 2 candidate 

models representing our hypotheses that detection may be related to additive combinations of the 

most plausible measure of vegetation structure and either sample site or sample date (Table 3.2).  

Lastly, we included the null model which assumed that detection probability was constant and 

that none of the factors measured had an influence on detecting a species provided it was present.  

We held the occupancy portion of models constant by using the null occupancy model when 

evaluating plausibility of detection models (Olson et al. 2005, Kroll et al. 2007, Kroll et al. 2008, 

Mattsson and Marshall 2009, Hansen et al. 2011).  The most parsimonious detection model for 
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each species was incorporated into subsequent occupancy models (Amelon 2007, Kroll et al. 

2007, Kroll et al. 2008, Hein et al. 2009, Hansen et al. 2011).   

In our second analysis, we determined the most plausible insect abundance-based 

occupancy model.  We developed 11 candidate models reflecting our hypotheses regarding 

influence of prey abundances on site-occupancy by foraging bats (Table 3.3).  Our hypotheses 

were that bats choose foraging locations (and therefore the probability of use increases) based on 

1) overall abundance of insects, 2) insect richness, 3) abundance of individual orders, or 4) 

abundance within size classes.  The null model assumed that probability of site-occupancy was 

equal across the landscape and that the predictor variables measured at sample points had no 

influence on occupancy.  No additive combinations of variables were modeled because measures 

of insect abundances were often correlated.  Models were evaluated with and without a binary 

coded (0, 1) study area variable to determine if unmeasured study site characteristics had an 

influence on site-occupancy.  Thus, we evaluated 22 candidate models relating prey abundances 

to site-occupancy by bats. 

Our third analysis examined relative plausibility of insect, vegetation, or combined insect 

+ vegetation factors on site occupancy.  The first step involved determining the most plausible 

vegetation-based model: canopy cover, vegetation clutter, or basal area.  No additive 

combinations of these measures were modeled to minimize number of parameters estimated and 

because preliminary analyses indicated correlations between these variables (Pearson’s│r│> 

0.70).  We retained only the most parsimonious model for the next step, which involved creating 

and evaluating a candidate set of models (Table 3.4) including our previously determined 

confidence set of insect-based models, the most plausible vegetation-based model, and models 

including the vegetation measure in addition to insect abundances, along with the null model.  
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We explored the plausibility of interactions between insect and vegetation factors, but found that 

that modeling predictor variables as additive combinations was more appropriate than modeling 

interactions between predictors based on AIC values.  

We used Program PRESENCE (MacKenzie et al. 2002) to evaluate our candidate model 

sets and estimate detection and occupancy parameters for each species.  We used Akaike’s 

Information Criterion adjusted for small sample size (AICc; Hurvich and Tsai 1989) to evaluate 

the relative plausibility of all candidate sets of models.  We specified AICc in PRESENCE by 

changing effective sample size to our number of sample points (n = 74; Schmidt 2005).  Models 

that did not converge were eliminated from further analyses (Long et al. 2007).  We defined our 

confidence set of models as those with ∆AICc values ≤ 2.0, which indicates substantial support 

(Burnham and Anderson 2004, Perry et al. 2008).  We also calculated model weights (ωi) to 

estimate weight of evidence for models and used the ratio of these weights to asses likelihood of 

one model over another (Burnham and Anderson 2001).  

We incorporated model selection uncertainty in our final analyses by averaging 

parameter estimates and standard errors across our confidence set of models for all parameters 

included in the confidence set to create a composite model (Burnham and Anderson 2002, Perry 

et al. 2008).  We calculated odds ratios from the model averaged parameter estimates and 90% 

confidence intervals around the odds ratios to determine relationship to site-occupancy, assess 

variability within the data (Gardner and Altman 1986), and evaluate biological significance of 

parameters given the data (Gerard et al. 1998).  We made inferences based on relative 

Information Criterion (ICc) rankings (either AICc or QAICc), model weights, and composite 

model parameter estimates and confidence intervals.  



 

 57 

We assessed model goodness-of-fit in PRESENCE with 1000 bootstraps using the most 

parameterized model within the confidence set (MacKenzie and Bailey 2004).  If lack of fit was 

determined (i.e., greater dispersion than the underlying distribution assumes), we used the 

overdispersion parameter (c-hat; observed test statistic/average bootstrapping test statistic) to 

calculate quasi-AICc (QAICc) values which were then used to evaluate model plausibility 

(Burnham and Anderson 2001).  Standard errors from overdispersed models were adjusted using 

the square root of the c-hat value (MacKenzie and Bailey 2004).  

RESULTS 

 We collected, identified to order, and placed into size class 4008 insects captured during 

159 trapping periods.  Combined captures included members from 12 insect orders.  Seven 

orders (Dictyoptera, Hemiptera, Isoptera, Neuroptera, Orthoptera, Psocoptera, and Zoraptera) 

were never abundant (i.e., < 15 individuals at point with highest abundance) and were eliminated 

as potential occupancy factors.  Therefore, abundance of five insect orders including; Coleoptera, 

Diptera, Hymenoptera, Lepidoptera, and Thysanoptera were included as predictor variables 

along with abundance within size classes and vegetation measures (Table 3.5).  Total insect 

abundance was negatively but weakly correlated with basal area, percent clutter, and percent 

canopy cover (Pearson’s r = - 0.37, -0.39, and -0.50, respectively; P < 0.01).  This weak negative 

correlation between insect abundances and measures of vegetation structure was consistent for 

all order and size class abundances, except abundance of thysanopterans which generally 

exhibited no relationship to vegetation structure (Pearson’s r = 0.00, 0.10, and -0.14, 

respectively; P ≥0.25). 

We detected at least one identifiable bat call at 78% (58/74) of surveyed points. Nycticeus 

humeralis was detected at the greatest number of points (56.8%, n = 42), followed by the L. 
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borealis + L. seminolus group (54.1%, n = 40). Eptesicus fuscus was detected at 36 points 

(48.7%), P. subflavus at 30 (40.5%), M. austroriparius at 19 (25.7%), and T. brasiliensis at 16 

(21.6%).  Because Corynorhinus rafinesquii was never detected and L. cinereus was only 

detected at 3 points (4.1%) they were excluded from modeling efforts.  Based on simple means, 

sample points with confirmed bat occupancy were characterized by lower levels of basal area, 

canopy cover, and clutter and greater or equal insect abundances than apparently unoccupied 

points (Appendix A).      

The most plausible detection model differed among species investigated (Table 3.6).  

However, the null model, which assumed equal probability of detection at all sites given the 

species was present, received little empirical support for any species (∆AICc ≥ 7) indicating the 

plausibility of measured factors and importance of accounting for detection when investigating 

site-occupancy.  Mean estimated detection probability using the most plausible model from the 

insect + vegetation model set differed among species.  Among the species investigated, detection 

probability was highest for N. humeralis (0.71 after a single sample night, 0.91 after two sample 

nights), followed by the L. borealis + L. seminolus group (0.67, 0.89), P. subflavus (0.57, 0.82), 

E. fuscus (0.47, 0.72), T. brasiliensis (0.44, 0.69), and was lowest for M. austroriparius (0.20, 

0.36).  

 The most parsimonious insect-based occupancy model differed among bat species 

investigated (Table 3.6).  Abundance of at least one insect taxonomic order was included in the 

confidence set for all bat species and abundance of an insect size class was included as a 

parameter in the confidence set of models for three species (E. fuscus and T. brasiliensis = 

medium, M. austroriparius = small; Table 3.7).  The confidence sets of models for the L. 

borealis + L. seminolus group and M. austroriparius included the null model (Table 3.6).  Model 
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averaged estimates and odds ratios for all bat species indicated a positive relationship between 

increasing insect abundances and probability of use.   

The vegetation occupancy model with the strongest empirical support for 4 species (P. 

subflavus, L. borealis + L. seminolus group, N. humeralis, and M. austroriparius; Table 3.8) was 

amount of vegetation clutter.  The canopy cover model for T. brasiliensis did not converge and 

was eliminated from the analysis.  The most parsimonious model for each species had substantial 

support receiving ICc weights ranging from 52.5 – 83.8% of the total weight (Table 3.8).  The 

top models were 1.7 – 5.2 times more likely to be the best model than the second ranked models.  

Among the candidate sets that included both insect and vegetation based models, the top 

performing model for three species included vegetation as the single occupancy parameter (E. 

fuscus, P. subflavus, L. borealis + L. seminolus group), while the remaining top models included 

an additive combination of  the vegetation parameter and abundance of an insect order (Table 

3.9).  The confidence sets for L. borealis + L. seminolus group and M. austroriparius again 

included the null occupancy model indicating that, given our data, none of the models and 

predictor variables investigated had strong empirical support for their influence on site-

occupancy (Table 3.9).   

Detection of E. fuscus was positively related to Julian date, and negatively related to 

increasing percentage of vegetation clutter at sample points (Table 3.10).  Abundance of 

medium-sized insects (3-6 mm) was the most plausible insect-based occupancy model.  

However, there was strong support for total abundance, lepidopteran abundance, and coleopteran 

abundance (Table 3.7).  Model averaged estimates indicated a positive yet imprecise influence of 

these measures of abundance on probability of E. fuscus occurrence.  The composite model from 

our candidate set generated from insect and vegetation parameters included one occupancy 
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parameter (canopy cover) with confidence intervals that did not overlap zero, indicating useful 

information for predicting site-occupancy of E. fuscus (Table 3.10).  Odds of E. fuscus using a 

point decreased from 1.9 to 3.2 times for every one percent increase in canopy cover.  

Detection of P. subflavus was positively related to Julian date and percent vegetation 

clutter, although the confidence interval for vegetation clutter contained zero (Table 3.10).  The 

most plausible insect-based model, which accounted for 66% of AICc weight, indicated a strong 

but imprecise positive relationship between lepidopteran abundance and probability of 

occurrence (Table 3.7).  The confidence set from our combined candidate set for P. subflavus 

bats contained a single model that included clutter as the single occupancy predictor variable 

(Table 3.9).  Model averaged parameter estimates suggested that Perimyotis subflavus was from 

1.1 to 1.3 times less likely to use a sample point for every percentage increase in vegetation 

clutter (Table 3.10). 

Basal area at the sample point was the most plausible N. humeralis detection parameter, 

but estimates indicated a weak negative relationship to detection probability (Table 3.10).  

Insect-based models indicated importance of hymenopterans along with overall insect richness, 

both of which were positively associated with use, along with importance of study site (Table 

3.7).  A single model containing clutter and hymenopteran abundance as occupancy predictor 

variables comprised the confidence set for N. humeralis from the combined candidate set (Table 

3.9).  This single model accounted for 90% of cumulative AICc weight and was 17.2 times more 

likely to be the best than the next best model.  Nycticeus humeralis was 7.37 times more likely to 

use a sample point for each additional hymenopteran captured per night, and slightly (1.06 times) 

less likely for every percentage increase in vegetation clutter (Table 3.10). 
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Estimates for all data associated with T. brasiliensis detection and occupancy were 

imprecise (Table 3.10).  Within the composite model created from the combined candidate set, 

the confidence interval surrounding the estimate for influence of Julian date on detection 

indicated a positive relationship and was the only interval that did not include zero (Table 3.10).  

Estimates from the insect only model set indicated a positive relationship between coleopterans, 

lepidopterans, and medium sizes insect abundances and T. brasiliensis site-occupancy (Table 

3.7).  Confidence intervals for all occupancy parameters within our composite model surrounded 

one, indicating an inability to predict site-occupancy based on these factors.  

DISCUSSION 

Our results support the general conclusion that foraging bats are positively influenced by 

increasing insect abundances (Kunz 1973, Hayes 1997, O’Donnell 2000, Wickramsinghe et al. 

2004).  However, the most appropriate measure of available prey to predict site-occupancy by 

bats remains unclear as multiple abundance measures appeared in confidence sets and varied by 

species.  We found that site-occupancy of foraging bats was frequently better explained by a 

combination of vegetation characteristics and insect abundance than by either separately.  

Additionally, our data support recent research suggesting that detection probabilities for elusive 

animals should not be assumed constant temporally (Hein et al. 2008), geographically (Nichols 

et al. 1998), or across sample locations that differ in vegetation characteristics (Bailey et al. 

2004, Amelon 2007). 

 Insect abundances contribute to foraging efficiencies of insectivorous bats (Racey and 

Swift 1985) and are likely to influence foraging decisions.  In our study, this hypothesis was 

supported by the higher abundance of insects captured at points with confirmed occupancy and 

by the positive relationship between occupancy and abundance of insects for all species.  
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However, insect abundance as we measured it does not appear to have a consistently strong 

influence on foraging location choices.  Because of large confidence intervals associated with 

insect parameter estimates, our data suggest that insect abundance alone is not sufficient to 

predict site-occupancy in Coastal Plain forest landscapes unless precision of parameter estimates 

can be improved.  We hypothesize that the inability of insect predictor variables to improve 

model performance over our null model for Southeastern myotis may be related to a strong 

affinity for certain habitat types rather than insect abundance or vegetation characteristics (Ford 

et al. 2006).  Lack of substantial increase in plausibility over the null model for the L. borealis + 

L. seminolus group models may be related to the high degree of foraging plasticity noted for this 

species group (Elmore et al. 2005).  However, the relationship may also be confounded because 

we combined two species into one phonic group although differences in behavior (Menzel et al. 

1998) and diet (Carter et al. 2004) have been documented.  This source of uncertainty and 

inability to discriminated between these two species based on echolocation calls is common 

(Menzel et al. 2002, Menzel et al. 2005, Ford et al. 2006), yet hampers our ability to discern the 

influence of insect abundance on site-occupancy.  

Inconclusive results for some species groups were also obtained by Ober and Hayes 

(2008) in a similar study investigating influence of insect abundance on indices of bat activity in 

Oregon forests.  Our combined results suggest that alternative factors unrelated to insect 

abundance may be more influential to foraging bats, possibly because insects may be 

ubiquitously distributed in sufficient abundances during summer (Racey and Swift 1985) which 

limits their influence on foraging decisions.  Stronger influences may be observed in seasons or 

geographic areas characterized by lower insect abundances or across landscapes that exhibit 

greater variability in insect abundances than what we observed.   



 

 63 

 It remains unclear if bats discriminate between prey items, and are therefore more likely 

to use sites based on insect size classes or taxa (Ober and Hayes 2008).  Our results generally 

support the hypothesis that prey discrimination is likely based on taxon characteristics (Agosta et 

al. 2003) rather than size (Barclay and Brigham 1994).  Model-averaged parameter estimates 

indicated a stronger influence per unit change of taxa abundances than size classes for E. fuscus 

and T. brasiliensis, and the confidence sets for N. humeralis and P. subflavus bats included only 

taxa-based factors.  However, correlations between size classes and taxa (Pearson’s correlation 

coefficient │ r│ > 0.70; small – dipteran abundance, medium – coleopteran and hymenopteran 

abundances) make interpretation difficult because of possibly confounded results.  Additionally, 

our results may have been influenced by the size classes we chose to model.  Although we placed 

our insects into size classes based on previous research (Ober and Hayes 2008), these size classes 

may not be biologically relevant to all species.  Alternative and possibly more biologically 

relevant size classes may reveal a greater importance of prey size than our data suggest.  

Assuming that Coastal Plain forest bats actually discriminate based on taxon characteristics as 

our data suggest, this level of discrimination may not apply to all habitat types or geographic 

regions.  Barclay and Brigham (1994) found that as the density of foraging bats increases 

individuals become less discriminant in the prey they pursue, possibly because of acoustic 

interference or increased competition.  Therefore, the relatively low amount of bat foraging 

activity associated with southeastern U.S. forests (Menzel et al. 2005, Loeb and O’Keefe 2006) 

and abundance of insects may allow for discrimination among taxa rather than more coarse 

discrimination by size.  

Probability of occurrence was always positively related to abundance of insect taxa, but 

the taxon (or taxa) of importance varied by species.  Results indicated the importance of 
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lepidopterans and coleopterans for E. fuscus and T. brasiliensis, lepidopterans for P. subflavus, 

and hymenopterans along with taxa richness for N. humeralis.  Diet studies confirm the potential 

for these insect orders to influence foraging decisions as they have been commonly documented 

as prey.  Coleopterans often constitute a large portion of the prey consumed by E. fuscus (Agosta 

et al. 2003, Feldhamer et al. 2009) and lepidopterans and coleopterans were the most commonly 

consumed prey items by E. fuscus in western Oregon (Ober and Hayes 2008).  Diet similarities 

between E. fuscus and T. brasiliensis were expected as their call structure and body morphology 

are similar.  Diet studies confirm that P. subflavus consume lepidopterans and a diversity of 

other soft bodied prey (Carter et al. 2003, Feldhamer et al. 2009), although we found 

lepidopteran abundance to be the only important insect order supported by our data.  The 

occurrence of N. humeralis was positively related to hymenopteran abundance which is 

supported in diet studies (Whitaker and Clem 1992, Carter et al. 2004) and in habitat types 

similar to those examined in this study (Bender et al. 2009).  Although site-occupancy was 

modeled without additive combinations of insect predictor variables, diet studies indicate a 

diverse diet for all species we investigated.  Therefore, bats may respond to abundance of 

multiple insect orders simultaneously and importance of prey items may vary seasonally (Agosta 

et al. 2003, Fukui et al. 2006) or even nightly.  

We found that insect abundances and vegetation structure were weakly and negatively 

correlated, similar to within-stand results from Tibbels and Kurta (2003).  In apparent contrast to 

our results, Kalcounis and Brigham (1995) captured more insects in a cluttered habitat type 

(white spruce forest) than in an uncluttered habitat type (open fescue field) in Saskatchewan, 

Canada.  These contrasting results suggest that the assumption that insect abundance increases 

with vegetation clutter (Aldridge and Rautenbach 1987) may not apply within forest landscapes.  
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Furthermore, in managed-pine landscapes the relationship is likely reversed with insect 

abundance being higher in areas with reduced vegetation clutter than in areas with high amounts 

of vegetation clutter (Tibbels and Kurta 2003) and may be related to insect-repelling compounds 

synthesized by coniferous trees (Kalcounis et al. 1999).   

Sample points with decreased amounts of clutter generally were more likely to be used by 

foraging bats.  Although morphological differences are often useful for classifying species as 

clutter or open-adapted species (Aldridge and Rautenbach 1987), and representatives of each 

group were present in our study (Menzel et al. 2005), all species (except M. austroriparius) were 

more likely to use points with reduced vegetation clutter.  This pattern of higher activity or site-

occupancy in areas of reduced vegetation structure regardless of morphological predictions is 

commonly found in forested landscapes including bottomland forests (Menzel et al. 2002), 

mixed forests (Loeb and O’Keefe 2006), and managed-pine dominated landscapes (Ford et al. 

2006), but does not hold true in all forest landscapes (Ford et al. 2005).  Although morphology 

suggests that species are most adapted to foraging in particular habitat types, behavioral 

flexibility to exploit areas that promote efficient foraging is expected (Aldridge and Rautenbach 

1987).  Provided that insect abundances are relatively similar, areas with reduced vegetation 

structure may be easier to navigate which enables more efficient foraging and therefore 

represents preferred foraging habitat (Grindal and Brigham 1998).  Importance of structural 

complexity on foraging is likely more influential in forest landscapes, particularly in forest 

landscapes with high stand densities, than less structurally complex land-cover types such as 

orchards, suburban, and pasture lands.   

Our data support previous conclusions that foraging is related to both habitat 

characteristics and prey abundance (Wickramsinghe et al. 2003, Meyer et al. 2004, 
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Wickramsinghe et al. 2004).  Results suggest that, in general, vegetation structure may be more 

important to foraging bats in forests than insect abundances, similar to conclusions of Meyer et 

al. (2004) and Grindal and Brigham (1998).  However, there is little empirical evidence to 

support influence of insect abundance or small-scale vegetation characteristics on occupancy of 

some resident species in these managed forest landscapes.  The high degree of variability within 

the data for T. brasiliensis may be related to foraging behaviors of this species which is well 

documented in its ability to forage high above the forest floor (Davis et al. 1962, Williams et al. 

1973, Claire et al. 1984, McCracken et al. 2008).  Therefore, our vegetation and insect sampling 

protocol may be poorly suited to accurately measuring the insect community and structural 

characteristics experienced by foraging T. brasiliensis individuals.  

Detection probabilities and important predictors were species-specific.  We found that 

sample date was positively related to detection for 3 of our resident species (E. fuscus, P. 

subflavus, and T. brasiliensis).  This positive relationship between detection probability and later 

sampling dates within the summer season is supported by results from South Carolina (Hein et 

al. 2009) and Missouri (Yates and Muzika 2006, Amelon 2007).  The observed influence of 

sample date on detection suggests that studies spanning long time periods should consider the 

temporal influence on detection and make inferences accordingly.  Our results caution against 

assuming that vegetation clutter does not influence sampling effectiveness (Loeb and O’Keefe 

2006) or detection probabilities (Hein et al. 2008) unless supported by data.  Although Patriquin 

et al. (2003) found that vegetation clutter has minimal impact on detectability of 40 Khz sound in 

forest environments, our data suggest that vegetation did impact our ability to detect species with 

calls in this range (P. subflavus and N. humeralis).  Others have noted the negative influence of 

vegetation on detectability (Amelon 2007) and number of identifiable sequences (Ford et al. 
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2005).  However, Yates and Muzika (2006) did not find understory density to be an important 

detection probability parameter.  These conflicting results may be related to the widely different 

measures of vegetation clutter used across studies, which may vary in ability to accurately and 

equally describe the amount of vegetation clutter (O’Keefe 2009).  At a minimum, field 

protocols of orienting acoustic detectors towards the area of least clutter should be maintained to 

increase detection probabilities (Weller and Zabel 2002, Patriquin et al. 2003).  Ideally, we 

suggest that differential detectability be accounted for whenever possible.  

Our insect sampling protocol introduced biases that had an unknown effect on the results 

obtained.  All insect sampling methods are biased towards capturing prey of certain sizes or 

behaviors (Tripplehorn and Johnson 2005).  However, because of logistical constraints, we were 

forced to sample both diurnal and nocturnal insects.  The number of exclusively diurnal insects 

comprised an unknown portion of the insects collected although they were unavailable as prey to 

bats.  Our sampling was restricted to aerial insects which is appropriate because the species we 

investigated are considered aerial hawkers.  However, gleaning prey from vegetation may be 

more widespread than expected in morphologically capable species (Feldhamer et al. 2009).  

Lastly, insects were sampled just above the forest floor although vertical stratification of the 

insect community within managed forests has been documented (Su and Woods 2001).  

 To partially account for variability in foraging activity within nights, among nights, and 

seasonally (Hayes 1997) we used site-occupancy as a variable of interest as opposed to bat 

passes/hour (Hogberg et al. 2002), pulses/hour (O’Keefe 2009), or minutes of activity/night 

(Ober and Hayes 2008).  We assumed that sample points were closed to occupancy changes 

during the brief sampling time required to acoustically sample for two nights or that the 

occupancy changes were random, both of which are valid for our modeling approach 
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(MacKenzie et al. 2006).  Others have partitioned nights into multiple time periods to facilitate 

estimation of both occupancy and detection parameters (Duchamp 2006, Yates and Muzika 

2006, Amelon 2007).  Given that many species exhibit peaks of foraging activity (Hayes 1997) 

or forage during certain times of the night (Rydell et al. 1996) we believed it was more 

appropriate to sample multiple nights than to consider portions of each night as separate 

observation periods.  However, our use of an entire night as a sampling visit limited the number 

of visits we could make to each sample point as well as the number of points sampled.  

Therefore, the likelihoods of false absence were higher than recommended when investigating 

habitat preferences (MacKenzie et al. 2006).   

 Alternative analytical approaches may be more appropriate when attempting to elucidate 

the relationship between insect abundance, vegetation characteristics, and site-occupancy by 

foraging bats.  Although our stepwise method of determining the most parsimonious detection 

model and then incorporating it into subsequent models is often used, alternative methods (i.e., 

investigating all possible detection and occupancy parameter combinations or using a general set 

of occupancy parameters while determining the most plausible detection model) may be more 

appropriate and influence results and interpretations.  Additionally, we investigated the potential 

influence of study sites on detection and occupancy by investigating the plausibility of models 

that incorporated study site as a fixed effect.  Although models incorporating study-site as a 

factor influencing site-occupancy did not receive empirical support, post-hoc analysis of variance 

on the most parsimonious insect + vegetation model revealed spatial dependence among sample 

points for some of the species investigated.  Therefore, although we investigated the influence of 

study site as a fixed effect, it may be more appropriate to include study site as a random effect, 

particularly if researchers are interested in making inferences to landscapes beyond those 
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investigated.  Incorporating the study site as a random effect and accounting for spatial 

dependence may improve parameter estimates and standard errors and more appropriately 

partition variance (Moore and Swihart 2005).  However, PRESENCE does not allow for random 

effects models so researchers interested in incorporating random effects into models should use 

alternative software programs (e.g., MARK, Moore and Swihart 2005).  

MANAGEMENT IMPLICATIONS 

Overall, our results indicate that increasing insect abundance, regardless of how 

measured, has a positive influence on site-occupancy of foraging bats.  Therefore, assessing 

impact of management activities on insect abundance may be a less costly and more feasible 

approach than attempting to monitor the bat community directly.  Additionally, indices of insect 

abundance may already be available as some landowners sample to assess presence or density of 

insect pests.  Reduction in vegetation appears beneficial to the majority of resident species.  

Management activities that reduce basal area, canopy cover, and vegetation clutter, such as stand 

thinnings or planting at lower stocking densities, are likely to benefit the bat community. 
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Table 3.1: Leave-one-out cross validation accuracy for single calls and three-fold cross 

validation accuracy for sequences containing ≥ 5 calls of all species/groups considered residents 

of Coastal Plain forests of the southeastern U.S., summer 2008. Accuracy rates were calculated 

by iteratively withholding a portion of the known reference library of calls and using the 

remaining portion for classification. 

Species ≥ 5 call sequence accuracy single call accuracy 

C. rafinesquii 100 96 

M. austroriparius 100 92 

P. subflavus 99 87 

L. cinereus 97 89 

N. humeralis 97 84 

T. brasiliensis 89 72 

E. fuscus 80 75 

L. borealis + L. seminolus group 72 51 
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Table 3.2:  Hypotheses relating the influence of vegetation characteristics, survey date, and site 

effects to detection probabilities of bats sampled May-August 2008 in managed pine forests of 

the southeastern U.S. Coastal Plain, their expected influence on detection probabilities, and 

models reflecting the hypotheses and considered as the candidate set.  

Hypothesis Expected influence Model 

Detection probability is 
dependent on vegetation 
characteristics at the survey point 

Detection probability will 
decrease with increasing 

amounts of structural 
clutter  

Canopy cover 
Basal area 

Vegetation clutter 

   
Detection probability is survey 
specific depending on population 
reproductive status and mean 
temperature both of which are 
dependent on survey date 

Detection probability will 
increase with increasing 

survey dates 

Julian date 

   
Detection probability is 
dependent on the underlying 
population size and structure 
which is a function of many 
unknown or unmeasured factors 
but likely to vary geographically 
by study site 

Detection probability will 
vary in an unknown 

fashion because of site 
level differences 

Site 

   
Detection probability is an 
additive combination of the 
influence of vegetation 
characteristics and survey date or 
site  

Detection probability will 
increase with decreasing 

amounts of structural 
clutter, later dates, and the 
site influence is unknown 

Best vegetation only model + 
Julian date 

 
Best vegetation only model + 

site 
   
Detection probability is equal at 
all sites provided they are 
occupied, or none of the 
measured predictor variables 
influence detection probabilities 

Null model will perform 
better than or equal to 

models including 
predictors 

Null model (·) 
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Table 3.3: Candidate set of models generated to investigate the influence of alternative measures 

of insect abundance on site occupancy of bats sampled May-August 2008, hypothetical 

relationships, and expected influence of increasing abundances in managed pine forests of the 

southeastern U.S. Coastal Plain.  

Hypothesis Expected influence Model 

Site occupancy is simply related to 
the overall abundance of insects 
rather than abundance of preferred 
items.  

Probability of site-occupancy 
will increase with overall 

abundance of aerial insects.   

Total  

   

Areas with high insect richness may 
be limited in managed pine forests. 
Insect richness may be more 
important to foraging bats and 
influence site occupancy in these 
forests more than abundances of 
particular orders, sizes, or overall.  

Probability of site occupancy 
will increase with increasing 
richness of captured insects.  

Richness 

   

Bats discriminate between prey 
items based on insect taxon and 
therefore site occupancy will be 
related to abundances of preferred 
insect taxa. 

Probabilities of site 
occupancy will increase with 

increasing abundances of 
preferred taxa. Because 
preferences vary by bat 

species, the response to taxa 
abundances will vary by 

species.  

Abundance of individual insect 
orders; 

Coleopteran 
Diptera 

Hymentoptera 
Lepidoptera 

Thysanoptera 
 

   

Bats discriminate between prey 
items based on insect size because 
of echolocation call characteristics, 
jaw morphology, and limitations to 
the discriminatory capacity while 
foraging. Therefore, site occupancy 
will be related to abundances of 
preferred insect size classes.  

Probabilities of site 
occupancy will increase with 
increasing abundances of a 

preferred size class. Because 
preferences vary by bat 

species, the response to size 
class abundances will vary 

by species. 

Abundance of size class; 
Small 

Medium 
Large 

 

   

Probability of site occupancy is 
equal at all sites, or none of the 
measured insect abundances 
influence the probability of site 
occupancy. 

Null model will perform 
better than or equal to 

models including predictors 

Null model (·) 
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Table 3.4: Candidate set generated to investigate the relative influence of insect-based, 

vegetation-based, or combined models on probabilities of bat occurrence sampled May-August 

2008, hypothetical relationships, and expected outcomes in managed pine forests of the 

southeastern U.S. Coastal Plain.    

Hypothesis Expected influence Model 

Site-occupancy depends on the 
vegetation characteristics at the 
sample point that may influence 
maneuverability, insect community, 
and foraging efficiency 

Occupancy probabilities will 
increase or decrease 

depending on species 
morphological constraints 

and foraging strategy  

Best Vegetation Model 

   
Site-occupancy depends on the 
abundance of preferred prey items, 
either overall, richness, taxon, or 
size class depending on the species.  

Occupancy probabilities will 
increase with the abundance 

of preferred prey items.  

Species-specific insect confidence 
set 

   

Site-occupancy depends on the 
additive influence of preferred prey 
abundance and vegetation 
characteristics. Occupancy is related 
to both these because their 
combined influence determines the 
foraging efficiency at the point.  

Occupancy probabilities will 
increase with the abundance 

of preferred prey items + 
preferred vegetation 

characteristics and will be 
species specific.  

Insect confidence set + vegetation 
measure 

   
Probability of site occupancy is 
equal at all sites, or none of the 
measured insect or vegetation 
predictor variables influence the 
probability of site occupancy 

Null model will perform 
better than or equal to 

models including predictors 

Null model (·) 
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Table 3.5: Mean, standard error, and range of insect size classes (small ≤ 2 mm,  medium 3-6 

mm, large ≥7 mm) and vegetation factors measured at 74 sample points in Coastal Plain 

managed-pine forests of the southeastern U.S., summer 2008.  

Variable* Mean Standard Error Range 

Small insects  8.03 1.35   0.5 - 67.0 

Medium insects 12.69 1.26  1.5 - 54.0 

Large insects  4.40 0.38  0.0 - 16.0 

Coleopterans  4.59 0.43  0.0 - 21.0 

Dipterans 11.12 1.52  0.5 - 85.0 

Hymenopterans  4.46 0.78  0.0 - 42.5 

Lepidopterans  1.80 0.30  0.0 - 18.0 

Thysanopterans  0.83 0.31  0.0 - 18.0 

Total insects 25.10 2.52    4.5 - 126.0 

Order richness  4.82 0.13 2.5 - 7.0 

Basal area (m2/ha)/.23 67.43 7.17  0.0 - 200  

Percent vegetation clutter 24.20 2.86   0.0 - 85.0 

Percent canopy cover 54.41 4.35   0.16 - 96.88 

 
*Insect variables represent average number of individuals captured per sample point per 24 hour 
period with passive flight intercept traps. 
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Table 3.6: Model, number of parameters (K), Akaike’s Information Criterion adjusted for small sample size (AICc), difference of 
AICc between a model and the model with the lowest AICc value (∆AICc), and model weight (ωi) for the confidence set (∆AICc < 
2.0) of insect based models used to predict occupancy (ѱ) given detection probability (ρ) of bats sampled May-August 2008 in 
manage-pine forests of the southeastern U.S. Coastal Plain. Occupancy parameters represent the richness or abundance of insect 
orders, size classes, or totals from sample points averaged from ≥ 2 samples/point.  

Species Model K AICc ∆AICc ωi 

      
*E. fuscus ѱ (medium), ρ (Julian date + clutter) 5 65.94 0.00 0.1899 
 ѱ (total), ρ (Julian date + clutter) 5 66.31 0.37 0.1578 
 ѱ (lepidoptera), ρ (Julian date + clutter) 5 67.09 1.15 0.1068 
 ѱ (coleoptera),  ρ (Julian date + clutter) 5 68.14 1.91 0.0731 
      
*P. subflavus ѱ (lepidoptera), ρ (Julian date + clutter) 5 93.35 0 0.267 
      
L. borealis + seminolus ѱ (diptera), ρ (basal area + site) 6 156.57 0 0.173 
 ѱ (·), ρ (basal area + site) 5 157.35 0.78 0.1171 
 ѱ (richness), ρ (basal area + site) 6 157.8 1.23 0.0935 
      
N. humeralis ѱ (hymenoptera), ρ (basal area) 4 151.74 0 0.5202 
 ѱ (site, richness), ρ (basal area) 6 152.35 0.61 0.3835 
      
T. brasiliensis ѱ (coleoptera), ρ (basal area + Julian date) 5 102.73 0 0.1945 
 ѱ (lepidoptera), ρ (basal area + Julian date) 5 103.19 0.46 0.1546 
 ѱ (medium), ρ (basal area + Julian date) 5 104.2 1.47 0.0933 
      
M. austroriparius ѱ (small), ρ (site) 5 121.15 0 0.1346 
 ѱ (thysanoptera), ρ (site) 5 121.21 0.06 0.1306 
 ѱ (·), ρ (site) 4 121.24 0.09 0.1286 
 ѱ (diptera), ρ (site) 5 121.53 0.38 0.1113 
 ѱ (total), ρ (site) 5 122.46 1.31 0.0699 
 ѱ (lepidoptera), ρ (site) 5 122.63 1.48 0.0642 
 ѱ (large), ρ (site) 5 122.71 1.56 0.0617 

* Denotes evaluation using quasi-AICc because of overdispersion within the data (c-hat > 1.0).    
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Table 3.7: Model averaged occupancy estimates and standard errors, lower and upper 90% confidence intervals on parameter 
estimates, odds ratios (OR), and lower and upper 90% confidence intervals on odds ratios for parameters included in the confidence 
set of models used to predict occupancy of bat species sampled May-August in managed pine forests of the southeastern U.S. Coastal 
Plain. The confidence set are those with empirical support given the candidate set generated from insect-based models in Table 3.6.  

Species Parameter Estimate Std. Error Lower 90 Upper 90  OR Lower OR Upper OR 

E. fuscus ѱ (intercept) -3.45 4.33 -10.55 3.66    
 medium 0.60 0.43 -0.10 1.31 1.82 0.90 3.69 
 total 0.69 0.68 -0.43 1.80 1.99 0.65 6.08 
 lepidoptera 2.34 1.67 -0.40 5.09 10.42 0.67 162.45 
 coleoptera 0.81 0.73 -0.39 2.00 2.24 0.68 7.40 
         
P. subflavus ѱ (intercept) -1.29 1.43 -3.63 1.04    
 lepidoptera 6.73 7.31 -5.26 18.71 833.39 0.01 133344613.66 
         
L. borealis + seminolus ѱ (intercept) -0.03 0.97 -1.62 1.57    
 diptera 0.06 0.04 -0.01 0.13 1.06 0.99 1.14 
 richness 0.44 0.31 -0.07 0.95 1.55 0.93 2.59 
         
N. humeralis ѱ (intercept) -5.64 3.92 -12.07 0.79    
 hymenoptera 1.72 0.63 0.68 2.75 5.56 1.97 15.63 
 richness 1.83 0.64 0.78 2.87 6.20 2.17 17.70 
 Shallotte  1.53 0.92 0.02 3.03 4.60 1.02 20.73 
 Washington 3.99 1.51 1.52 6.47 54.15 4.56 642.46 
         
T. brasiliensis ѱ (intercept) -1.25 1.16 -3.15 0.65    
 coleoptera 0.41 0.23 0.03 0.78 1.50 1.03 2.18 
 lepidoptera 0.72 0.49 -0.09 1.52 2.05 0.92 4.58 
 medium 0.11 0.08 -0.01 0.24 1.12 0.99 1.27 
         
M. austroriparius ѱ (intercept) -0.03 0.83 -1.40 1.34    
 small 0.07 0.06 -0.02 0.16 1.07 0.98 1.17 
 thysanoptera 2.33 2.47 -1.72 6.38 10.27 0.18 588.36 
 diptera 0.04 0.04 -0.02 0.10 1.04 0.98 1.11 
 total 0.02 0.02 -0.01 0.05 1.02 0.99 1.05 
 lepidoptera 0.15 0.19 -0.16 0.45 1.16 0.85 1.58 
 large 0.15 0.23 -0.23 0.52 1.16 0.80 1.69 
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Table 3.8: Model, number of parameters (K), Akaike’s information criterion adjusted for small sample size (AICc), difference of AICc 
between a model and the model with the lowest AICc value (∆AICc), and model weight (ωi) for the candidate set of vegetation based 
models used to predict occupancy (ѱ) given detection probability (ρ) of bats sampled May-August 2008 in managed pine forests of the 
southeastern U.S. Coastal Plain. Occupancy parameters represent the % canopy cover, basal area, or % vegetation clutter measured at 
sample points. All models incorporate the previously determined most parsimonious detection model.  

Species Model K AICc ∆AICc ωi 

      
*E. fuscus ѱ(canopy),ρ(Julian date, clutter)  5 65.31 0 0.6585 
 ѱ(basal area),ρ(Julian date, clutter) 5 66.69 1.38 0.3303 
 ѱ(clutter),ρ(Julian date, clutter) 5 73.46 8.15 0.0112 
      
*P. subflavus ѱ(clutter),ρ(Julian date, clutter)  5 109.78 0 0.7747 
 ѱ(canopy),ρ(Julian date, clutter) 5 112.73 2.95 0.1772 
 ѱ(basal area),ρ(Julian date, clutter) 5 115.34 5.56 0.0481 
      
L. borealis + seminolus ѱ(clutter),ρ(basal area, site)  6 156.31 0 0.7049 
 ѱ(basal area),ρ(basal area, site) 6 159.27 2.96 0.1605 
 ѱ(canopy),ρ(basal area, site) 6 159.62 3.31 0.1347 
      
N. humeralis ѱ(clutter),ρ(basal area)  4 155.3 0 0.5876 
 ѱ(canopy),ρ(basal area) 4 156.35 1.05 0.3476 
 ѱ(basal area),ρ(basal area) 4 159.71 4.41 0.0648 
      
T. brasiliensis ѱ(basal area),ρ(basal area, Julian date)  5 103.88 0 0.8382 
 ѱ(clutter),ρ(basal area, Julian date) 5 107.17 3.29 0.1618 
      
M. austroriparius ѱ(clutter),ρ(site)  5 121.35 0 0.525 
 ѱ(canopy),ρ(site) 5 122.51 1.16 0.294 
 ѱ(basal area),ρ(site) 5 123.48 2.13 0.181 

* Denotes evaluation using quasi-AICc because of overdispersion within the data (c-hat > 1.0). 
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Table 3.9: Model, number of parameters (K), Akaike’s information criterion adjusted for small sample size (AICc), difference of AICc 
between a model and the model with the lowest AICc value (∆AICc), and model weight (ωi) for the confidence set of insect-based, 
vegetation-based, and combined models used to predict occupancy (ѱ) given detection probability (ρ) of bats sampled May-August 
2008 in managed pine forests of the southeastern U.S. Coastal Plain. All models incorporate the previously determined most 
parsimonious detection model.  

 Species Model K AICc ∆AICc ωi 

      
*E. fuscus ѱ(canopy),ρ(Julian date, clutter)  5 62.33 0 0.3165 
 ѱ(coleoptera, canopy),ρ(Julian date, clutter)  6 63.33 1 0.192 
 ѱ(lepidoptera, canopy),ρ(Julian date, clutter) 6 63.88 1.55 0.1458 
      
*P. subflavus ѱ(clutter),ρ(Julian date, clutter)  5 116.51 0 0.662 
      
L. borealis + seminolus ѱ(clutter),ρ(basal area, site) 6 156.31 0 0.2609 
 ѱ(diptera),ρ(basal area, site) 6 156.57 0.26 0.2291 
 ѱ(.),ρ(basal area, site) 5 157.35 1.04 0.1551 
 ѱ(diptera, clutter),ρ(basal area, site) 7 157.57 1.26 0.1389 
 ѱ(richness),ρ(basal area, site) 6 157.8 1.49 0.1238 
      
N. humeralis ѱ(hymenoptera, clutter),ρ(basal area) 5 144.44 0 0.9028 
      
T. brasiliensis ѱ(coleoptera, basal area),ρ(basal area, Julian date) 6 100.79 0 0.3725 
 ѱ(medium, basal area),ρ(basal area, Julian date) 6 102.26 1.47 0.1786 
 ѱ(coleoptera),ρ(basal area, Julian date) 5 102.73 1.94 0.1412 
      
M. austroriparius ѱ(diptera, clutter),ρ(site)  6 120.23 0 0.1566 
 ѱ(small, clutter),ρ(site) 6 120.47 0.24 0.1389 
 ѱ(total, clutter),ρ(site) 6 121.04 0.81 0.1044 
 ѱ(small),ρ(site) 5 121.15 0.92 0.0988 
 ѱ(thysanoptera),ρ(site) 5 121.21 0.98 0.0959 
 ѱ(.),ρ(site) 4 121.24 1.01 0.0945 
 ѱ(clutter),ρ(site) 5 121.35 1.12 0.0894 
 ѱ(diptera),ρ(site) 5 121.53 1.30 0.0817 

* Denotes evaluation using quasi-AICc because of overdispersion within the data (c-hat > 1.0).  
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Table 3.10: Model averaged estimates and standard errors, lower and upper 90% confidence intervals on parameter estimates, odds 
ratios (OR), and lower and upper 90% confidence intervals on odds ratios for occupancy parameters included in the confidence set of 
models used to predict occupancy of bat species sampled May-August 2008 in managed pine forests of the southeastern U.S. Coastal 
Plain. Detection probabilities were modeled using the most parsimonious model for each species (See Table 3.7).  

Species Parameter Estimate Std. Error Lower 90 Upper 90  OR Lower OR Upper OR 

         
E. fuscus ѱ (intercept) 83.98 13.47 61.89 106.07    
 coleoptera 1.02 0.73 -0.18 2.22 2.77 0.83 9.24 
 lepidoptera 3.49 2.98 -1.40 8.38 32.80 0.25 4356.93 
 canopy -0.91 0.16 -1.17 -0.66 0.40 0.31 0.52 
 p (intercept) -10.62 0.98 -12.23 -9.01    
 Julian date 0.06 0.01 0.05 0.07 1.06 1.05 1.07 
 percent clutter -0.02 0.02 -0.05 0.01 0.98 0.95 1.01 
         
P. subflavus ѱ (intercept) 3.98 1.76 1.10 6.87    
 clutter -0.14 0.05 -0.23 -0.05 0.87 0.80 0.95 
 p (intercept) -6.95 0.55 -7.85 -6.05    
 Julian date 0.04 0.00 0.03 0.04 1.04 1.03 1.04 
         
         
L. borealis + seminolus ѱ (intercept) 0.49 0.94 -1.05 2.02    
 clutter -0.02 0.01 -0.05 0.00 0.98 0.95 1.00 
 diptera 0.05 0.04 -0.02 0.12 1.05 0.98 1.13 
 richness 0.44 0.31 -0.07 0.95 1.55 0.93 2.59 
 p (intercept) 0.63 0.77 -0.63 1.90    
 basal area -0.02 0.01 -0.03 -0.01 0.98 0.97 0.99 
 Shallotte  1.81 0.77 0.56 3.07 6.13 1.75 21.50 
 Washington 2.62 0.88 1.17 4.06 13.70 3.23 58.06 
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Table 3.10 (continued): Model averaged estimates and standard errors, lower and upper 90% confidence intervals on parameter 
estimates, odds ratios (OR), and lower and upper 90% confidence intervals on odds ratios for occupancy parameters included in the 
confidence set of models used to predict occupancy of bat species sampled May-August 2008 in managed pine forests of the 
southeastern U.S. Coastal Plain. Detection probabilities were modeled using the most parsimonious model for each species (See Table 
3.6).  

Species Parameter Estimate Std. Error Lower 90 Upper 90  OR Lower OR Upper OR 

         
N. humeralis ѱ (intercept) -1.50 1.06 -3.25 0.25    
 clutter -0.06 0.03 -0.10 -0.02 0.94 0.90 0.98 
 hymenoptera 2.00 0.76 0.74 3.25 7.37 2.10 25.83 
 p (intercept) 1.42 0.33 0.88 1.96    
 basal area -0.01 0.00 -0.01 0.00 0.99 0.99 1.00 
         
T. brasiliensis ѱ (intercept) -0.55 1.59 -3.16 2.06    
 basal area -0.04 0.03 -0.08 0.01 0.96 0.92 1.01 
 coleoptera -0.04 0.21 -0.38 0.31 0.96 0.68 1.36 
 medium 0.13 0.10 -0.03 0.29 1.14 0.97 1.33 
 p (intercept) -5.71 0.72 -6.89 -4.53    
 Julian date 0.03 0.00 0.02 0.03 1.03 1.02 1.03 
 basal area 0.01 0.02 -0.02 0.03 1.01 0.98 1.03 
         
M. austroriparius ѱ (intercept) -0.98 1.52 -3.47 1.50    
 diptera 0.07 0.06 -0.03 0.16 1.07 0.97 1.18 
 clutter 0.79 1.37 -1.47 3.04 2.19 0.23 20.86 
 small 0.10 0.08 -0.04 0.23 1.10 0.96 1.26 
 total 0.05 0.04 -0.02 0.12 1.05 0.98 1.13 
 thysanoptera 2.33 2.47 -1.72 6.38 10.27 0.18 588.37 
 p (intercept) -3.54 1.05 -5.27 -1.81    
 Shallotte  2.97 1.10 1.17 4.77 19.40 3.21 117.36 
 Washington 2.72 1.12 0.89 4.56 15.21 2.43 95.32 
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CHAPTER 4 

 

INFLUENCE OF LANDSCAPE CHARACTERISTICS ON SITE-OCCUPANCY OF 

FORAGING BATS IN COASTAL PLAIN MANAGED-PINE FOREST LANDSCAPES3 
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3 Bender, M. J., S. B. Castleberry, D. A. Miller, and T. B. Wigley.  To be submitted to Forest 
Ecology and Management 
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ABSTRACT 

 Effect of small-scale factors on foraging activity of bats is a well-studied aspect of bat 

ecology, but data on landscape effects are largely lacking.  Few large-scale studies relevant to 

Coastal Plain managed-pine forests of the southeastern U.S. are available, and many acoustic 

studies fail to account for imperfect detection of foraging bats.  Without data at all spatial scales 

that properly account for imperfect detection, ability to fully evaluate potential effects of forest 

management activities on bats is severely limited.  Therefore, we used occupancy models to 

examine influence of small-scale vegetation and large-scale spatial factors on foraging patterns 

of bats in managed-pine forests of the southeastern Coastal Plain while accounting for imperfect 

detection.  Results indicate that responses to investigated factors were largely species-specific.  

In general, basal area at the sample point, sampling date, and sample site influenced detection of 

foraging bats.  Small-scale vegetation increases generally had a negative influence on occupancy.  

Landscape-scale factors with evidence supporting their potential influence on foraging activity 

included un-thinned stands of intermediate age, distance to water sources, road density, patch 

richness, amount of edge, and percentage of stands older than 30 years.  Based on our results, 

managing a single landscape attribute likely will not benefit all members of the bat community.  

However, maintaining a diverse landscape provides quality foraging habitat for a diverse bat 

community.  
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INTRODUCTION 

Bat communities are increasingly recognized for their economic importance (Boyles et al. 

2011), as vital components of healthy forest environments (O’Shea et al. 2003), and as a 

significant component of terrestrial vertebrate diversity (Laerm et al. 2000).  The relative 

ecological and economic importance of forest-dwelling species may increase as white-nose 

syndrome, the destructive fungal disease predominantly associated with cave hibernacula, causes 

precipitous declines in many cave dependent populations (Smith et al. 2009).  Even before onset 

of white-nose syndrome, forest managers were increasingly expected to consider the bat 

community in management decisions (Miller et al. 2003), but a paucity of bat research conducted 

in managed-pine forests continues to make this a challenging task.  

Forest management is a continuum that ranges from minimal forestry activities, typical of 

publicly-owned forests in the Southeast, to forests managed intensively to sustainably produce 

goods and services.  Although amount of forest land cover in the Coastal Plain of the 

southeastern U.S. has remained relatively constant over the past half century, there has been a 

shift to more intensive management (Wear and Greis 2002) that provides an economic incentive 

to maintain forest land cover (McComb 2008).  Approximately 98 million acres of commercially 

productive forests in the southern U.S. are now owned by individuals, families, the forestry 

industry, or other corporations (Wear and Greis 2002), and much of this area is actively 

managed.  These managed-forest landscapes are dynamic with management activities being 

conducted throughout much of the year, resulting in alteration of roosting and foraging habitats 

for bats (Lacki et al. 2007).  Information concerning ecology of bats in managed-forest 

landscapes would help managers evaluate management activities and policy issues that may 

affect bat communities (Arnett 2003).  
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Alteration of forest structure enhances foraging habitat for some bat species yet degrades 

foraging habitat for others (Aldridge and Rautenbach 1987, Patriquin and Barclay 2003), making 

management of the community challenging.  Additionally, managing forests to meet small-scale 

habitat requirements for bats (e.g., roost tree characteristics, within-stand foraging conditions) 

generally is not feasible across large and dynamic landscapes.  However, the motility of bats 

allows them opportunities to persist in these landscapes provided suitable resources are available 

at a larger scale.  Therefore, creating desirable foraging conditions for multiple species in 

managed-pine landscapes can be achieved through stand-level management activities conducted 

with a landscape-scale perspective so that suitable stands are appropriately distributed across the 

landscape.  

Data necessary to identify landscape conditions suitable to foraging bats in Coastal Plain 

managed-pine forests of the southeastern U.S. are largely lacking.  Most Coastal Plain studies 

investigating bat-habitat relationships have used telemetry and focused on roost structures (e.g., 

Menzel et al. 2001a, Menzel et al. 2001b, Elmore et al. 2004, Hein et al. 2005, Trousdale and 

Beckett 2005, Miles et al. 2006).  While roosting habitat has long been considered a limiting 

factor for bat populations (Humphrey 1975), much information concerning the equally important 

foraging habitat component of bat biology is anecdotal and insufficient for effective management 

(Ford et al. 2005).  Foraging studies are often difficult to conduct because of the small size, 

vagility, and nocturnal nature of bats (Duff and Morrell 2007).  One method to assess habitat 

associations for foraging bats is to compare occupied and unoccupied points sampled 

acoustically at night when most activity is foraging related (MacKenzie et al. 2006).  It is 

statistically important that differences in detectability between sample points be accounted for 

when using this approach (Gu and Swihart 2004, MacKenzie et al. 2006).  Relatively recent 
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statistical and software advances allow researchers to simultaneously investigate and account for 

factors that influence occupancy and detection probabilities.  These advances are relevant to 

acoustic surveys of bats because most species are imperfectly detected (Duchamp et al. 2006, 

Yates and Muzika 2006, Amelon 2007, Hein et al. 2009) and false absences may influence 

results and inferences unless accounted for in analyses (Gu and Swihart 2004).  

Although limited in relevance to managed-pine landscapes or lacking in replication, 

previous research indicates the potential influence of landscape characteristics on bats.  Previous 

studies using telemetry have indicated importance of water sources (Elmore et al. 2005), 

bottomland hardwoods (Trousdale and Beckett 2005), and young pine stands (Menzel et al. 

2001b) in pine-dominated landscapes of the southeastern Coastal Plain.  Acoustic data from the 

Coastal Plain indicates importance of riparian and seral stages (early and late) for foraging bats 

in pine-dominated landscapes (Menzel et al. 2005a).  Additional research in coniferous forests 

indicates importance of edges (Hein et al. 2008, Hein et al. 2009), roads (Loeb and O’Keefe 

2006), and thinned stands (Humes et al. 1999) to foraging bats.  Outside of the southeastern 

Coastal Plain, point- and stand-level variables were better predictors of activity and occupancy 

than landscape variables in landscapes that were not intensively managed (Erickson and West 

2003, Ford et al. 2006, Loeb and O’Keefe 2006).  However, landscape variables and the habitat 

mosaic may have a greater influence on intensively managed landscapes because of the potential 

for reduced small-scale heterogeneity and possibility of limited roosting structures (Erickson and 

West 2003, Ford et al. 2006, Miles et al. 2006). 

Foraging bats are ecologically and financially important in the landscapes they inhabit 

and land owners interested in sustainable forestry practices are committed to providing quality 

foraging habitat for bats.  However, limited data hamper ability of managers to evaluate 
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management decisions that may influence foraging bats.  Our objective was to characterize 

landscape-level foraging associations of bats in managed-pine forests of the southeastern Coastal 

Plain and to elucidate factors important to foraging bats that could be considered in management 

decisions.  We sampled multiple landscapes to include management and geographic variability 

so that inferences might be applicable to a wide range of intensively-managed pine landscapes in 

the region.   

METHODS 

 

Study Areas   

 We sampled six intensively-managed forest landscapes in corporate 

ownership/management across five states (Alabama, South Carolina, North Carolina, Georgia, 

and Arkansas) in the Coastal Plain of the southeastern U.S. during summer (May – August) 2007 

and 2008.  We collected data from each study area for approximately 1 month prior to moving to 

the next location.  Owner/management companies at the time of sampling included 

MeadWestvaco Corp., International Paper Co., Weyerhaeuser Co., Resource Management 

Service LLC., and Plum Creek Timber Co. Inc.  Landscapes were predominantly loblolly pine 

(Pinus taeda) plantations interspersed with streamside management zones and other less 

intensively managed areas dominated by hardwoods or a mix of pine and hardwood tree species.  

Typical management activities in production stands included clear-cutting at 20-30 years, 

mechanical and/or chemical site preparation, and reforestation using 1 to 2-year-old nursery 

stock typically planted in raised beds at a stocking rate of approximately 450 to 700 trees per 

acre (Gresham 2002).  Competing vegetation was reduced through herbicide applications and 

most stands were periodically thinned.  All landowners were participants in a sustainable forestry 

certification program (Sustainable Forestry Initiative 2010).  
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 The southeastern Coastal Plain physiographic region of the U.S. encompasses diverse 

habitat types and environmental conditions (Hubbard et al. 2004).  However, the region is 

generally characterized as flat and having warm temperatures and high rainfall, particularly 

during the summer (Hubbard et al. 2004).  Soils of the region are highly variable in the amount 

of organic matter and permeability (Hubbard et al. 2004) resulting in a diverse regional 

vegetation community.  However, forests dominate the regional land-cover and agriculture 

(cropland, forest, or pasture) is the primary land use (Wear and Greis 2002, Hubbard et al. 2004). 

A thorough discussion of the sampled sub-regions (southern mixed forest and outer coastal plain 

mixed ecosystem provinces) is provided by Bailey (1995). 

At each study area, we surveyed 22-36 sample points (average = 26.3).  When spatial 

data were available prior to arriving at each site, we used ArcMap 9.3 (ESRI, Redlands, CA) to 

overlay the study area and surrounding areas with 900 x 900 m spaced points.  When spatial data 

were unavailable, we chose a starting point and manipulated global positioning system (GPS) 

coordinates to create appropriately spaced points.  Point spacing was based on bat biology and 

logistical considerations.  We hypothesized that, although the 63 ha encompassed by the 450 m 

radius circular area surrounding each point is not likely to contain all of an individual’s home 

range movements, it is reasonable to assume that this area is large enough to encompass a core 

area that constitutes most of an individual’s foraging movements.  Our assumption is supported 

by telemetry data and estimates indicating that 85% core areas of insectivorous forest bats are 

roughly 6% of the total home range size used during approximately 15 days of tracking 

(O’Donnell 2001).  A systematic sampling approach was employed to the greatest extent 

possible by sampling points regardless of habitat type, distance to roads, or accessibility.  

However, we eliminated points that were logistically impossible to access (i.e., isolated by 
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water) and those with non-corporate ownerships within the 450 m circular buffer unless 

alternative points were not available.  

Acoustic Detection  

At each sample point, we passively recorded bat echolocation calls using Anabat II 

frequency division bat detectors coupled with a zero-crossing interface module (ZCAIM).  We 

stored data on a compact flash (CF) card and we downloaded daily.  We stored each Anabat II/ 

ZCAIM combination in a waterproof plastic container to protect equipment from environmental 

conditions.  We directed Anabat II microphones in the area of least vegetation clutter, 45˚ from 

horizontal using a 5.08 cm PVC elbow.  We placed detectors approximately 1.5 m above the 

forest floor on a camera tripod to maximize call quality and quantity (Weller and Zabel 2002).  

We programmed detectors to begin sampling 30 min prior to civil sunset and end sampling 30 

min after civil sunrise.  Initial acoustic sampling was conducted for 2 consecutive nights when 

possible to minimize temporal variability.  We sampled additional nights opportunistically to 

include a greater diversity of sampling conditions and improve occupancy and detection 

estimates.  We did not sample during rain and heavy wind because of low bat activity during 

these conditions.  We randomly assigned detectors to sampling points on a nightly basis to 

minimize equipment bias.   

We created a customized ANALOOK (v 4.9; Titley Scientific, East Brisbane, Australia) 

filter to retain only search phase calls following methods and criteria of Britzke and Murray 

(2000).  We used ANALOOK to automatically calculate and extract call parameters from 

retained files.  Automated filtering and parameter calculation increase objectivity and 

repeatability while reducing influence of researcher experience (Obrist et al. 2004), which may 

have significant effects on classification errors (Gannon et al. 2004).   
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We used a K-nearest neighbor approach to identify calls individually based on a 

reference library of calls from potential species (Bender, unpublished data).  We included 8 

species/groups as potential residents of Coastal Plain forest landscapes based on mist-net 

captures (Bender, unpublished data) including Big Brown Bat (Eptesicus fuscus), Eastern Red + 

Seminole Bat group (Lasiurus borealis + L. seminolus), Hoary Bat (L. cinereus),  Evening Bat 

(Nycticeius humeralis), Tri-colored Bat (formerly Eastern Pipistrelle, Perymyotis subflavus), 

Rafinesque’s Big-eared Bat (Corynorhinus rafinesquii), Brazilian Free-tailed Bat (Tadarida 

brasiliensis), and Southeastern Myotis (Myotis austroriparius).  Species identifications were 

based on the full sequence of calls within each call file rather than on identification of individual 

calls.  We used average posterior classification probabilities from each sequence to assign 

identities.  Each sequence that did not result in identification with a posterior classification 

probability ≥ 0.5 was eliminated.  Visual examination of these eliminated files suggested they 

resulted from recordings of multiple individuals, non-bat ultrasonic sounds, or poor quality calls.  

Habitat and Landscape Metrics  

 We measured 3 components of local vegetation structure at each sample point.  We 

measured percent canopy cover using a convex spherical densiometer (Ben Meadows Company, 

Janesville, WI), averaging measurements taken at the acoustic sample point and 4 additional 

locations 5 m from the point in each of the cardinal directions.  We estimated basal area (m2/ha) 

of overstory trees using a 10-factor prism centered at the acoustic detector point.  We 

characterized vegetation clutter using methods based conceptually on a Nudds board (Nudds 

1977), estimating percent coverage of a 1-m2 panel raised approximately 4.5 m above the ground 

and 4.5 m from the sample point in each cardinal direction and in the direction of orientation for 

the acoustic detector. 
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We used ArcMap 9.3 and Fragstats (McGarigal et al. 2002) to compute landscape metrics 

from company-provided and publicly available data (Table 4.1).  We corrected data when 

ground-truthing indicated discrepancies (i.e., updated age of stands to reflect recent harvests).  

We measured landscape composition metrics using a 450 m radius circular buffer around sample 

points and landscape configuration metrics using euclidean distances.  Edge was defined as the 

boundary between any two of six habitat classes including nonforest (i.e., roads, food plots, 

utility lines, etc.) and multiple age-based forest classes (0-9, 10-19, 20-30, 30-40, >40 years old).  

We did not investigate influence of distance to edge because we were primarily interested in 

large-scale factors and previous research indicates that distance to edge has only localized effects 

on foraging bats (Krusic et al. 1996).  We considered the possibility that edge and road density 

should be modeled quadratically to better represent the relationship between these variables and 

occupancy.  However, preliminary analyses indicated that linear relationships were more 

plausible based on AIC scores.     

Predictor variable values were rescaled by multiplying/dividing by multiples of ten so 

that the ranges of values for each predictor were on relatively the same scale (Table 4.2; 

Donovan and Hines 2007).  We decided to rescale rather than standardize predictor variables 

because of the difficulties associated with back-transforming and interpreting standardized 

estimates (Field et al. 2001).  Preliminary analyses using predictor variables that were not 

rescaled resulted in non-convergence for many models because of the disparate scales of 

predictors.  Rescaling continuous parameters has no effect on the slope of regression models and 

is equivalent to expressing distance measurements in meters rather than kilometers. However, 

rescaling influences interpretation because per/unit parameter effects may not be biologically 
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relevant.  Therefore, predictor effects are best illustrated by plotting effects across the range of 

observed values or by rescaling parameter estimates.  

Statistical Analyses  

 We used an information theoretic approach to evaluate a candidate set of occupancy 

models for each species.  Occupancy models allow for simultaneous estimation of probability of 

occupancy (ѱ) and detection (ρ) and are useful when investigating influence of covariates on 

each (MacKenzie et al. 2006).  Results should be interpreted as use rather than occupancy 

because species presence at each point was assumed to vary randomly within sample season (i.e., 

duration encompassing repeated sampling visits; MacKenzie et al. 2006)   

Our candidate models were generated from hypotheses concerning factors that potentially 

influence site occupancy and detection (Tables 4.3 – 4.4).  We used only uncorrelated predictor 

variables (Pearson’s │r│ ≤ 0.70) to avoid problems associated with multicollinearity.  We 

eliminated canopy cover from all analyses because it was correlated with basal area, which we 

retained because it is readily available to forest managers.  We used PRESENCE version 2.4 

software (Hines 2006) to calculate Akaike’s information criterion adjusted for small sample sizes 

(AICc) that we subsequently used to evaluate our set of models and determine the most plausible 

given our data set.  To assess goodness-of-fit we used the methods developed by MacKenzie and 

Bailey (2004) with 1000 bootstraps.  If lack of fit was indicated (c-hat value > 1) we used quasi-

AIC values (QAIC) to evaluate models.  We inflated standard errors by the square root of c-hat 

whenever QAIC values were used (MacKenzie and Bailey 2004, Donovan and Hines 2007).  

 We used a general set of predictor variables in the occupancy portion of all models (i.e., 

ѱ = distance to water + distance to stand 10-19 + dist. to roads + TE + % 30 plus + % 0-9 + % 

thinned + % clutter) when determining the most plausible detection model.  We assessed model 
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goodness-of-fit using the general occupancy set and our global set of detection parameters (i.e., ρ 

= site + basal area + julian date + % clutter) to determine if QAIC values should be used to 

evaluate plausibility of detection models.  We did not use the global set of occupancy parameters 

because PRESENCE was unable to reach convergence or produced nonsensical parameter 

estimates in preliminary analyses using the global set of predictors.  Poor performance with the 

global set may be related to the large number of estimated parameters (Hines 2006).  We 

incorporated the most plausible detection model into all occupancy models (Table 4.4).  By 

determining the most parsimonious detection model prior to investigating occupancy hypotheses, 

we prevented evaluation of an excessively large set of models (Yates and Muzika 2006, Hein et 

al. 2009, Long et al. 2010).  

 Covariate modeling was used to evaluate a priori hypotheses about influence of 

landscape and site measurements on probabilities of site occupancy (Tables 4.3 – 4.4).  We 

assessed fit using the global set of occupancy parameters along with the most plausible detection 

model previously determined.  We used a reduced global model to assess fit for analysis of the T. 

brasiliensis data because the full global model did not reach convergence.  Using the most 

general model to assess fit and using the associated c-hat to adjust standard errors is 

recommended when lack-of-fit is detected (MacKenzie et al. 2006).  We conducted an analysis 

of variance (ANOVA) and TUKEY test on the residuals (observed minus expected values) by 

study site for each species to determine if it was appropriate to pool data from our various study 

sites.  To incorporate model selection uncertainty, we model-averaged parameter estimates and 

created a composite model that included parameters from all plausible models (i.e., Akaike 

weights within 10 % of the most plausible model).  
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RESULTS 

We detected presence of bats at 80% (126/158) of sample points during 385 detector 

nights.  We sampled 115 points two nights and the remaining points were sampled from 3-6 

nights to improve parameter estimates.  All species were detected at each of the 6 study areas 

except Corynorhinus rafinesquii and L. cinereus, which were rarely detected at 2 and 3 study 

areas, respectively.  

The two phonic groups detected at the greatest number of sample points (L. borealis + L. 

seminolus group, n = 97; and N. humeralis, n = 99) comprised the species/group most commonly 

captured in concurrent mist net sampling (89 and 99 individuals, respectively; Appendix B).  

Species intermediate in both number of sample points occupied and individuals captured in 

mistnets included T. brasiliensis (44 points; 7 individuals), M. austroriparius (54; 16), E. fuscus 

(70; 7), and P. subflavus (71; 18).  The two species represented by the lowest number of captures 

obtained from mist nets (n = 1; C. rafinesquii and L. cinereus) also occupied the lowest number 

of acoustic sample points (2 and 11 occupied acoustic points, respectively; Appendix B).  We 

were unable to model influence of predictor variables on C.  rafinesquii and L. cinereus because 

of the low number of sites apparently occupied.    

 The goodness-of-fit test (MacKenzie and Bailey 2004) indicated that data for all species 

were overdispersed (i.e., more variation than predicted by underlying statistical distributions; 

Burnham and Anderson 2001).  Therefore, QAICc values were used to evaluate model 

plausibility and standard errors were inflated by the square root of the c-hat parameter from 1000 

bootstraps.  ANOVA and TUKEY test results did not indicate spatial autocorrelation, therefore 

data from all sampling locations (n=158) were pooled across sample sites.  
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Detection   

 Basal area (BA) was the parameter most commonly included in the detection portion of 

species models for 4 of the 7 species investigated and the most plausible detection model for 3 

species included basal area as the single detection parameter (Table 4.5).  Model averaged 

estimates and 90% confidence intervals suggest that increasing levels of basal area had a 

negative effect on probability of detecting the L. borealis + L. seminolus group (Table 4.6).  The 

direction of effect on M. austroriparius and N. humeralis was less certain because of confidence 

intervals that overlapped zero.  However, model averaged estimates suggest that increasing basal 

area had a positive influence on M. austroriparius detection and a negative influence on N. 

humeralis detection (Table 4.6).  Basal area and Julian date were included in the most 

parsimonious detection model for E. fuscus.  Increasing basal area had a negative effect on 

detection while later dates positively influenced detection (Table 4.6).  The positive relationship 

between later dates and probability of detection was similar for T. brasiliensis.  Sampling site 

was included in the most plausible detection model for both T. brasiliensis and P. subflavus 

suggesting that detection probabilities varied by site (Table 4.6).  However, estimates were 

imprecise and the direction of effect was largely uninterpretable (i.e., confidence intervals 

overlapping 0).   

Eptesicus fuscus Occupancy 

 Data supported plausibility of a single occupancy model for E. fuscus that included total 

edge as the single parameter estimated.  Increasing amounts of edge in the surrounding landscape 

had a negative effect on occupancy (Figure 4.1).  This model received a QAICc weight greater 

than 0.88 indicating substantial support as the most plausible among the candidate set 

investigated (Table 4.5).  This best model was at least 15 times more likely to be the best model 
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than the other models investigated indicating little evidence to support plausibility of alternative 

models within our candidate set.  

Lasiurus borealis + L. seminolus Occupancy  

 Data indicated strong support (i.e., ∆QAICc within 2 points of most plausible model) for 

the null L. borealis + L. seminolus group occupancy model (Table 4.5), and 18 models were 

included in the confidence set.  Parameters in the composite model with confidence intervals that 

did not overlap 0 were patch richness, vegetation clutter, and basal area; all were negatively 

related to probability of occupancy (Table 4.6).  Estimates and confidence intervals slightly 

overlapping zero indicated a positive influence of distance to water and a negative influence of 

total edge on probability of occupancy (Table 4.6).  The direction of effect for the remaining 9 

parameters was indistinguishable because of large confidence intervals overlapping 0 (Table 

4.6). 

Myotis austroriparius Occupancy   

 The confidence set of models for M. austroriparius lacked substantial support for a single 

or relatively small number of superior models.  The most plausible model was approximately 1.2 

times more likely than the second best model, and 11 models were included in the confidence set 

including the null model.  Percent of stands within 450 m ≥ 30 years old, distance to water, and 

distance to unthinned stands aged 10-19 generally had a positive relationship to occupancy, 

while remaining parameters exhibited a generally negative relationship (Table 4.6).  However, 

percent stands aged ≥30 years and percent vegetation clutter were the only parameters with 

confidence intervals that did not overlap zero (Table 4.6).     
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Nycticeus humeralis Occupancy   

 The composite model for N. humeralis included two measures of vegetation structure 

(basal area and percent clutter) at the sample point as occupancy parameters (Table 4.6).  

Estimates indicate that increasing vegetation structure negatively influenced probability of 

occupancy by N. humeralis (Table 4.6, Figures 4.2 – 4.3).  The percent clutter model was 

approximately 3 times more likely than the basal area model to be the most plausible given our 

data.  There was little evidence to support other models.  

Perymyotis subflavus Occupancy  

 Probability of occupancy declined as amount of basal area, vegetation clutter, and 

percentage of unthinned stands aged 10-19 increased (Table 4.6, Figure 4.4).  A negative 

relationship between occupancy and increases in road density received marginal support.  

However, the confidence interval for the estimate overlapped zero (Table 4.6).  Probability of 

occupancy increased with increasing distances to water, but the remaining parameters included 

in the composite model (distance to stands ≥ 30 years and percent ≥ 30 years) were too variable 

to determine direction of effect (Table 4.6).    

Tadarida brasiliensis Occupancy   

 Probability of occupancy was negatively related to all three parameters included in the 

composite model; basal area, vegetation clutter, and patch richness (Table 4.6).  Confidence 

intervals for vegetation clutter and patch richness indicate variability and that the direction of the 

effect was not always negative, although a negative trend was apparent (Table 4.6).  The effect 

of increasing basal area was more consistent in its negative effect on probability of occupancy 

(Table 4.6). 
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Generalized Species Occupancy 

 Overall, measures of vegetation structure at the sample point (vegetation clutter and basal 

area) were the most common occupancy parameters in composite species models.  Each of these 

parameters was present in the composite model for all species investigated except E. fuscus, and 

consistently indicated that increasing vegetation clutter and/or basal area adversely affected 

occupancy probability (Table 4.6).  Composition metrics of total edge, patch richness, percent 

unthinned stands aged 10-19, and percent aged ≥ 30 years were each found in three composite 

models, as were the configuration metrics of distance to water and distance to stands ≥ 30 years.  

Increasing distances to water consistently had a positive relationship to occupancy, while 

increasing amounts of edge, patch richness, and % unthinned stands aged 10-19 consistently had 

a negative effect on species occupancy in composite models that contained these parameters.  

The general influence of stands ≥ 30 years of age (either distance to or percentage of) could not 

be determined as the confidence intervals either largely overlapped zero and/or the effect varied 

by species.  The composition metric of road density and configuration metric of distance to 

unthinned 10-19 year old stands were each found in two composite models, but effects were too 

variable to speculate on their general influence on site occupancy.  All remaining occupancy 

parameters were only present in a single composite model.  

DISCUSSION 

 Consistent with our predictions and findings from previous researchers, increasing 

amounts of vegetation clutter and basal area at sample points generally had a negative influence 

on detection of forest bat species.  Although Patriquin et al. (2003) and Yates and Muzika (2006) 

found that vegetation clutter has minimal impact on detectability of bats in forests, our data 

suggest that vegetation did impact our ability to detect bats.  Others also have noted this negative 
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influence of vegetation on detectability (Amelon 2007) and number of identifiable sequences 

(Ford et al. 2005).  Therefore, assuming equal detectability among sample points may not be 

appropriate and efforts should be made to account for variable detection as even low levels of 

non-detection can influence results and inferences (Gu and Swihart 2004).   

Increasing amounts of vegetation at sample points had a negative influence on occupancy 

probability regardless of species’ ecomorphology.  Similarly, Yates and Muzika (2006) found 

that occurrences of L. borealis and P. subflavus, both of which are categorized as clutter-adapted 

species (Menzel et al. 2005a), were inversely related to basal area in Missouri forests.  The 

benefits of reducing clutter in forest landscapes for most aerial foragers has been demonstrated 

experimentally (Brigham et al. 1997), and in field studies (Ford et al. 2006, Loeb and O’Keefe 

2006, Loeb and Waldrop 2008).  Although clutter reduction may lead to increased insect 

abundance resulting in increased foraging activity (Tibbels and Kurta 2003), the influence of 

vegetation may be largely independent of insect abundance (Adams et al. 2009, Morris et al. 

2010).  Preliminary analyses did not support a relationship between overall insect abundance and 

vegetation indices within our data (Bender, unpublished data), although vegetation density may 

influence insect community structure (Allgood et al. 2009, Ober and Hayes 2009).  Therefore, 

the negative influence of increasing vegetation clutter is likely related to difficulties associated 

with tracking prey while simultaneously monitoring location of obstacles (Simmons et al. 1979) 

rather than insect abundance.  

 The negative effect of vegetation density on foraging apparently extends beyond sample 

points to the landscape scale.  We found that points across the landscape characterized by shorter 

distances to, or a greater abundance of, unthinned stands aged 10-19 years had a reduced 

probability of occupancy by foraging bats.  This negative relationship has been documented at 
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the stand-level and has been attributed to inefficient foraging condition (Loeb and O’Keefe 

2006), although foraging may take place above the canopy (Kalcounis et al. 1999) or at the stand 

margins (Morris et al. 2010).  At the landscape-scale, Perry et al. (2008) found that diurnal roosts 

were less likely to be located in managed-pine landscapes with increasing amounts of closed-

canopy stands.  Because roost site selection may be influenced by proximity of food resources 

(Kunz and Fenton 2003), observations made by Perry et al. (2008) may have been influenced by 

an aversion to foraging in these closed-canopy stands that were functionally similar to our 

unthinned 10-19 age habitat type. 

 The observed negative relationship between occupancy and distance to water contradicts 

our predictions.  We know of no biological reason that sources of water would negatively 

influence site-occupancy by foraging bats unless the increased activity typically associated with 

aquatic habitats (Brooks and Ford 2005, Menzel et al. 2005b, Vindigni et al. 2009) is produced 

by individuals that vacate the surrounding landscape.  If this is the case, sample points within the 

vicinity of water but beyond the area of increased activity would have a low probability of 

occupancy but this effect would likely diminish with increasing distances from the water source.  

A more plausible alternative is that our results were influenced by the large scale of our project 

that prevented mapping all ephemeral water sources.  Therefore, modeled distance from sample 

points to water may not be representative of the actual distance to all sources of water available 

to foraging bats.  This limitation is difficult to avoid in a large scale project because bats have 

been documented using even the most ephemeral of water sources such as flooded road ruts 

(Menzel et al. 2001a) that would be virtually impossible to census and map.  Additionally, 

aquatic areas as a source of drinking water may be only marginally important to many bat 

species during foraging bouts because a significant portion of water intake can be obtained from 
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prey (Nueweiler 2000).  Results generally suggest that water may not be a limiting resource for 

bats in the Coastal Plain of the southeastern U.S.  

 Contrary to our predictions, increasing amounts of edge in the landscape surrounding a 

sample point had a negative influence on the probability of occupancy by E. fuscus.  Although 

Muzika and Yates (2006) found similar results for northern long-eared bats (Myotis 

septentrionalis),  this species is generally associated with contiguous forest (Owen et al. 2003) 

while E. fuscus is generally considered an open-adapted species (Menzel et al. 2005a) known to 

forage along edges in southeastern Coastal Plain managed-pine forests (Hein et al. 2009).  At a 

small-scale, edges represent preferred foraging areas for many species (Grindal and Brigham 

1999, Hein et al. 2009).  Foraging bats may benefit from concentrated insect abundances (Lewis 

1970, Pasek 1988) and navigational ease (Simmons et al. 1979) that permits efficient foraging 

and high levels of foraging activity (Grindal and Brigham 1999, Morris et al. 2010).  However, 

small-scale effects may not be consistent across all relevant scales (Stephens et al. 2003).  At the 

landscape-scale, the positive influence of edges on foraging E. fuscus appears to diminish as the 

amount of edge habitat increases.  Eptesicus fuscus forages in stand interiors and along edges 

(Morris et al. 2010) often to a higher degree than predicted based on ecomorphology (Hein et al. 

2009).  Therefore, this species may choose foraging areas that balance amounts of edge with 

amount of interior habitat.  We did not differentiate between hard and soft edges that may differ 

in their foraging suitability (Morris et al. 2010) and may have influenced our results, but any 

definition of edge likely has similar limitations. 

 The percent of landscape composed of stands ≥ 30 years was positively related to M. 

austroriparius occupancy.  This species roosts in hardwood tree species (Carver and Ashley 

2008), and appropriate roost trees would be found in our habitat type consisting of stands ≥ 30 
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years old that were often streamside management zones.  Proximity to suitable roosts may 

influence foraging decisions (Crampton and Barclay 1998).  The apparently reduced importance 

of older stands among the other species investigated may be related to a greater propensity to 

roost in foliage (Menzel et al. 1998) or in stands younger than 20-25 years (Elmore et al. 2004, 

Hein et al. 2008).  

 Many landscape characteristics do not appear to consistently influence occupancy by 

foraging forest bats.  Patch richness is likely more relevant to investigations of landscape factors 

that influence species richness and diversity of the community (Fahrig et al. 2011) rather than 

probability of occupancy, which was our primary interest.  We predicted that roads would 

influence occupancy probability but could not determine direction of effect for either road 

density or distance to roads.  Roads are well documented as a habitat feature used for foraging 

and commuting by bats in small-scale investigations (Grindal and Brigham 1998, Hein et al. 

2009), but Loeb and O’Keefe (2006) found that probability of occupancy declined with 

proximity to roads when examined at the landscape scale.  This influence of scale on road effects 

may partially account for our inability to determine a direction of effect for road density or 

distance to roads.  Additionally, we did not map and measure all linear landscape features that 

may be perceived by bats as similar to roads (e.g., forest trails, temporary roads, hard edges, and 

thinned strips).  Modeling the distance to, and density of, all features that may be functionally 

similar to roads may have revealed a stronger relationship between foraging bats and road-like 

landscape features.  

MANAGEMENT IMPLICATIONS 

 Our results suggest that managed-pine landscapes in the southeastern Coastal Plain 

provide sufficient resources and habitat for the majority of bat species in the region.  Responses 
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to landscape characteristics were species-specific suggesting that no single management 

prescription will benefit all members of the bat community.  However, management activities 

that decrease vegetation structure, particularly within stands of intermediate age, should serve to 

increase the suitability of managed forest landscapes to the forest bat community.  One caveat to 

this suggestion is that if insect prey abundance and diversity is adversely affected by vegetation 

reduction activities (Haddad et al. 2001), the net effect on the bat community also may be 

negative.   

 Landscape composition appears to influence bat occupancy more than landscape 

configuration, which indicates that important habitat types are present in sufficient abundance 

(Ritchie et al. 2009) in managed-pine landscapes of the Southeast.  Therefore, maintaining 

diverse habitat types and increasing amount of important habitat types should be the goal rather 

than attempting to manage placement of habitat types.  This independence from configuration is 

likely related to the highly motile nature of bats and their capacity to commute significant 

distances between required habitat types (Elmore et al. 2005).  However, managers should make 

decisions so that the diversity and composition of stands be evaluated at scales relevant to 

foraging bats.  

 When planning landscapes suitable for foraging bats, managers should consider the 

percentage of the landscape comprised of unthinned intermediate-aged stands because of the 

negative relationship to occupancy.  Retention of older stands and corridors as roost sites may be 

important (Miles et al. 2006, Hein et al. 2008), but there is little evidence that these stands 

influence foraging habitat use, except by M. austroriparius.  Importance of older stands may 

depend on the bat species of interest, their dependence on hardwood or mature trees, and 

prevalence of these features in the landscape.  Our results suggest that the bat community 
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requires a mix of foraging and roosting habitats, which managers can best accomplish by 

creating and maintaining diverse habitat conditions across the landscape.  
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Table 4.1:  Name and description of occupancy predictor variables examined to determine the 

relationship to bat occupancy on six study sites in the Coastal Plain of the southeastern U.S., 

summer 2007-2008.  

Predictor name Description 

Water Euclidean distance (km) to the nearest permanent water  

Dist unthin 10-19 Euclidean distance (km) to nearest stand aged 10-19 yrs 

Dist 30plus Euclidean distance (km) to stands aged ≥ 30 years 

Dist Road Euclidean distance (km) to nearest road  

PR Richness of patch types based on stand age class within 450 m 

circular buffer surrounding sample points 

SIDI Simpson’s index of diversity 

Rd density Density of roads (km/km2) within 450 m circular buffer  

TE Total edge (km) within 450 m buffer  

%30plus Percent of 2.5 m cells within the 450 m circular buffer around each 

point aged ≥ 30 years 

%unthin 10-19 Percent of 2.5 m cells within the 450 m circular buffer around each 

point aged 10-19 years 

%0-9 Percent of 2.5 m cells within the 450 m circular buffer around each 

point aged 0-9 years 

%thinned Percent of 2.5 m cells within the 450 m circular buffer around each 

point that had been thinned or pruned within 5 years 

BA Basal area (m2/ha) 

%clutter Percent of vegetation clutter 

 
* 450m buffer areas were independent between points and considered an appropriate foraging 
area size 
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Table 4.2:  Mean, range, unit of measurement, and scalar for occupancy predictor variables 

measured at six managed-pine forest sites in the Coastal Plain of the southeastern U.S. during 

summer 2007-2008 and used to investigate influence on foraging bats. Scaled values were 

required for analysis software to reach optimization and produce logical parameter estimates.     

Predictor units/scalar Mean Range 

Water km 0.56 0.00-2.97 

Dist unthin 10-19 km 0.57 0.00-2.89 

Dist 30plus km 0.21 0.00-1.91 

Dist Road km 0.13 0.00-0.52 

PR richness/10 0.43 0.20-0.60 

SIDI N/A 0.51 0.02-0.77 

Rd density (km/km2)*100 0.27 0.00-0.83 

TE km/10 0.70 0.09-1.71 

%30plus percent/100 0.21 0.00-0.92 

%unthin 10-19 percent/100 0.16 0.00-0.97 

%0-9 percent/100 0.38 0.00-0.99 

%thinned percent/100 0.12 0.00-0.99 

BA (m2/ha)/23 0.72 0.00-2.40 

%clutter percent/100 0.23 0.00-0.99 
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Table 4.3:  Occupancy predictor variables and predicted relationship to probability of site 

occupancy by foraging bats at six managed-pine forest sites in the Coastal Plain of the 

southeastern U.S. during summer 2007-2008. 

Predictor Predictor name Hypothesis 
Predicted 

relationship 

Percent Vegetation Clutter clutter Inhibits efficient foraging - 

Basal Area BA Inhibits efficient foraging - 

Stands aged 0-9 yrs %0-9 

Dist 0-9 

Promotes efficient foraging 
+ 

Unthinned stands 10-19 yrs %unthin 10-19 

Dist unthin10-19 

Overly cluttered for 

efficient foraging 
- 

Stands 30 plus yrs %30plus 

Dist 30plus 

Roosting habitat 
+ 

Roads Rd density 

Dist roads 

Promotes foraging and 

navigation 
+ 

Stands thinned within 5 yrs %thinned Permits foraging regardless 

of stand age 
+ 

Total Edge TE Navigation, increased prey + 

Patch Richness PR Fulfill multiple 

requirements 
+ 

Simpson’s Diversity Index SIDI Diversity of patches + 

Distance to closest water Dist water Often limited resource in 

managed forests, preferred 

foraging habitat for some 

species 

- 
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Table 4.4:  List of occupancy models and associated number of parameters evaluated using 

Akaike’s Information Criterion to investigate the influence of landscape factors on site-

occupancy of bats in Coastal Plain managed-pine forest landscapes during summer 2007-2008.  

Model  # parameters 

BA 4 

Clutter 4 

%0-9 4 

%unthin 10-19 4 

% 30plus 4 

%thinned 4 

TE 4 

Rd density 4 

PR 4 

SIDI 4 

%30plus + %unthin 10-19 5 

%0-9 + %thinned + Rd density 6 

%30plus + %0-9 + %thinned + Rd density 7 

dist water 4 

dist road 4 

dist unthin 10-19 4 

dist 30plus 4 

dist water + dist 30plus 5 

dist water + dist 30plus + dist road 6 

Global 17 

(.) 3 
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Table 4.5:  Quasi –Akaike’s Information Criterion adjusted for small sample size (QAICc), delta 

QAICc, QAICc weight (ωi), and number of parameters (K) for top performing (QAICc ≤ 2) site 

occupancy models of bats within managed-pine forest landscapes of the southeastern Coastal 

Plain, 2007-2008. Models included occupancy (ѱ) and detection (ρ) parameters. 

Model QAICc �QAICc ωi K 

     
E. fuscus     
ѱ (TE), ρ (date, BA) 266.60 0.00 0.8875 5 
     
L. borealis + L. seminolus group     
ѱ (water), ρ (BA) 354.50 0.00 0.1589 4 
ѱ (PR), ρ (BA) 354.65 0.15 0.1474 4 
ѱ (BA), ρ (BA) 354.97 0.47 0.1256 4 
ѱ (clutter), ρ (BA) 355.26 0.76 0.1087 4 
ѱ (TE), ρ (BA) 356.18 1.68 0.0686 4 
ѱ (.), ρ (BA) 356.50 2.00 0.0585 3 
     
M. austroriparius     
ѱ (%30plus, %Unthin10-19.), ρ (BA) 206.80 0.00 0.2333 5 
ѱ (%30plus), ρ (BA) 207.24 0.44 0.1872 4 
ѱ (clutter), ρ (BA) 207.91 1.11 0.1339 4 
     
N. humeralis     
ѱ (clutter), ρ (BA) 292.81 0.00 0.6625 4 
     
P. subflavus     
ѱ (clutter), ρ (site) 269.15 0.00 0.2918 8 
ѱ (water), ρ (site) 270.00 0.85 0.1908 8 
ѱ (% unthin10-19), ρ (site) 270.88 1.73 0.1229 8 
     
T. brasiliensis     
ѱ (BA), ρ (date, site) 134.53 0.00 0.5109 9 
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Table 4.6:  Model averaged parameter estimates, standard errors (SE), and 90% confidence 

intervals for  occupancy (ѱ) and detection (ρ) parameters contained in species composite models 

and averaged over the confidence set of models ( QAICc weight ≥ 10% most plausible model) 

for bats in Coastal Plain managed-pine forests of the southeastern U.S., summer 2007-2008.  

Species 

Parameter 

name Estimate SE 

90% 

UPPER CI 

90% 

LOWER CI 

      
E. fuscus ѱ intercept 3.9279 -1.2241 1.9204 5.9354 
 TE -4.5749 -1.4348 -6.9279 -2.2219 
 ρ intercept -2.4883 -0.5119 -3.3278 -1.6489 
 date 0.0193 -0.0020 0.0160 0.0226 
 BA -1.6167 -0.3471 -2.1860 -1.0474 
      
L. borealis + seminolus  ѱ intercept 1.6891 1.0989 3.4913 -0.1132 
 water 1.1578 0.7519 2.3909 -0.0753 
 PR -6.6082 -3.6770 -12.6385 -0.5778 
 BA -1.0601 -0.4518 -1.8011 -0.3191 
 clutter -1.9980 -0.9794 -3.6042 -0.3917 
 TE -1.3031 -0.8414 -2.6829 0.0768 
 dist 30plus 0.0836 1.2760 2.1763 -2.0091 
 %Unthin10-19 -1.6585 1.3401 0.5393 -3.8562 
 Rd density -1.6820 -1.8969 -4.7929 1.4289 
 SIDI -1.5912 -2.2787 -5.3283 2.1458 
 %30plus 0.8509 1.4371 3.2077 -1.5060 
 dist Unthin10-19 0.1490 -0.4538 -0.5952 0.8932 
 dist Roads -0.6089 2.7382 3.8817 -5.0995 
 % 0-9 0.1866 -1.0188 -1.4842 1.8575 
 % thinned -0.1006 -1.4925 -2.5483 2.3472 
 ρ intercept 1.2854 0.2663 1.7222 0.8486 
 BA -1.2127 0.3348 -0.6637 -1.7617 
      
N. humeralis ѱ intercept 2.1388 0.4285 2.8416 1.4360 
 Clutter -3.9275 -1.1430 -5.8020 -2.0530 
 BA -1.8691 -0.5331 -2.7434 -0.9948 
 ρ intercept 1.5120 0.5861 2.4732 0.5508 
 BA -1.1940 2.8519 3.4831 -5.8711 
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Table 4.6:  (continued)  
 

Species Parameter name Estimate SE 

90% 

UPPER CI 

90% 

LOWER 

CI 

      
M. austroriparius ѱ intercept -0.0983 0.7991 1.2123 -1.4089 
 % 30plus 2.8565 1.4954 5.3089 0.4041 
 %Unthin10-19 -2.2775 1.4394 0.0832 -4.6381 
 clutter -2.5128 -1.2658 -4.5887 -0.4369 
 BA -1.2116 -0.8280 -2.5695 0.1464 
 water 0.9426 0.7479 2.1691 -0.2839 
 TE -1.3264 -0.9134 -2.8243 0.1715 
 PR -3.8328 -2.9169 -8.6165 0.9510 
 dist 30plus -1.2371 -1.1748 -3.1637 0.6895 
 dist Unthin 10-19 0.4946 -0.4759 -0.2860 1.2751 
 ρ intercept -0.7548 0.4652 0.0082 -1.5177 
 BA 0.8755 0.5778 1.8231 -0.0720 
      
P. subflavus ѱ intercept 0.4495 0.6002 1.4338 -0.5348 
 clutter -2.5336 -1.0281 -4.2197 -0.8476 
 water 1.0992 0.5682 2.0310 0.1675 
 %Unthin10-19 -2.7962 1.3029 -0.6594 -4.9330 
 BA -0.7805 -0.3815 -1.4062 -0.1548 
 dist 30plus -0.3675 -1.0101 -2.0240 1.2891 
 % 30plus -0.2654 -1.4349 -2.6187 2.0879 
 Rd Density -2.7530 -1.8282 -5.7512 0.2453 
 ρ intercept -0.2543 0.5348 0.6229 -1.1314 
 site PC-AR 2.6992 1.0782 4.4675 0.9309 
 site WV-SC 1.0934 0.6991 2.2399 -0.0530 
 site RMS-AL -1.4246 0.8552 -0.0221 -2.8272 
 site RMS-NC 0.3804 0.7283 1.5749 -0.8140 
 site WE-NC 0.8861 0.7071 2.0458 -0.2736 
      
T. brasiliensis ѱ intercept 1.4829 1.2693 3.5646 -0.5989 
 BA -1.9140 -0.8565 -3.3186 -0.5093 
 clutter -3.0647 -2.0200 -6.3774 0.2481 
 PR -8.7249 -7.6321 -21.2416 3.7919 
 ρ intercept -8.2255 1.0711 -6.4689 -9.9821 
 date 0.0436 0.0030 0.0485 0.0387 
 site PC-AR 0.8400 1.2232 2.8459 -1.1660 
 site WV-SC -2.1480 1.1712 -0.2273 -4.0688 
 site RMS-AL -0.2985 1.4095 2.0131 -2.6102 
 site RMS-NC -0.3907 1.1406 1.4798 -2.2612 
 site WE-NC -1.5833 1.1653 0.3278 -3.4943 
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Figure 4.1:  Influence of total edge (km per km2/10 of edge within 450 m circular buffer around 

sample points) on the probability of occupancy by Eptesicus fuscus over the range of observed 

total edge values. Probability is calculated from the intercept and total edge parameter estimate 

obtained from the single plausible occupancy model for E. fuscus.  
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Figure 4.2:  Influence of clutter (percent vegetation clutter/100) on the probability of occupancy 

by Nycticeus humeralis over the range of observed values. Probabilities are based on the 

composite model using model averaged estimates and holding all other variables at the mean of 

their observed values.  
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Figure 4.3:  Influence of basal area [(m2/ha)/23] on the probability of occupancy by Nycticeus 

humeralis over the range of observed values. Probabilities are based on the composite model 

using model averaged estimates and holding all other variables at the mean of their observed 

values.  

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 135 

________________________________________________________________________ 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Un-thinned stands 10-19 years

P
ro

b
a

b
il

it
y

 
 
________________________________________________________________________ 

 
Figure 4.4:  Influence of unthinned stands aged 10-19 years (percentage/100 within 450 m 

circular buffer) on probability of occupancy by Perimyotis subflavus over the range of observed 

values. Probabilities are based on the composite model using model averaged estimates and 

holding all other variables at the mean of their observed values.  
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CHAPTER 5 

 

SUMMARY AND MANAGEMENT IMPLICATIONS 

 

 Privately owned forests account for roughly 90% of the forest land-cover in the 

southeastern U.S. (Wear and Greis 2002).  Many of these privately-owned forests are managed 

for timber production to meet the growing demands of the market (Wear and Greis 2002).  

Although landscape- and stand-scale characteristics in managed landscapes may differ from 

unmanaged forests (Hansen et al. 1991), timber production provides an economic incentive to 

maintain forest land-cover and prevent conversion to land uses that are less favorable to wildlife 

(McComb 2008).  Therefore, managed-pine forest landscapes represent an opportunity to 

provide suitable habitat for many wildlife species in the Southeast, particularly for bats because 

of their motility and capacity to traverse unfavorable habitat types (Bernard and Fenton 2003).   

However, limited information on bat-habitat associations in managed pine systems hampers the 

ability of managers to maintain bat diversity and create suitable habitat conditions.  Therefore, 

the overall objective of my research was to provide land managers with data necessary to better 

manage forest landscapes and provide suitable foraging habitat for resident bat species.  

Call analysis 

Acoustic surveys for bats often are used to determine and monitor species presence 

within a landscape.  A critical step in this process is accurate identification of species based on 

echolocation calls.  Quantitative identification methods are desirable (Redgewell et al. 2009), but 
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the most commonly used quantitative method, discriminant function analysis (DFA; Gannon et 

al. 2004), may not be the most accurate or appropriate alternative.  Therefore, my first objective 

was to test performance of K-nearest neighbor analysis (KNN) as a quantitative method to 

classify bat calls and compare cross validation accuracy rates of KNN with DFA.  My results 

demonstrated that K-nearest-neighbor analysis is a viable quantitative identification alternative 

for bat calls from the Coastal Plain of the southeastern U.S.  I achieved an overall classification 

accuracy rate of 82.5%.  Species-specific accuracy rates ranged from 51% to 96% and seven 

species had rates ≥ 70%.  This non-parametric KNN approach is not limited by normality 

assumptions (Peterson et al. 1999) and was more accurate than the commonly used DFA 

alternative (Gannon et al. 2004).  The improvements over DFA were comparable or superior to 

results from alternative quantitative methods (e.g., artificial neural networks, Parsons and Jones 

2000; pattern recognition algorithms, Obrist et al. 2004) which land managers and researchers 

alike rarely use because of data requirements, lack of availability, and computational complexity 

(Papadatou et al. 2008).  

My results indicate that the suite of parameters used to classify calls influences 

classification accuracy of KNN and DFA approaches.  Therefore, I suggest that researchers using 

quantitative classification approaches investigate the performance of multiple suites of 

parameters (models) so that accuracy can be maximized.  Researchers also should be aware that 

the optimal classification model likely will depend on the suite of resident bat species and the 

objective of the research.  Although determining the best method to classify bat calls is beyond 

the scope of my research, researchers should consider KNN analysis when searching for an 

accurate, available, and suitable method to quantitatively classify unknown bat calls.   
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Insect and local vegetation effects 

 A paucity of relevant information concerning foraging ecology of forest bats is available 

to managers of Coastal Plain forests in the southeastern U.S.  However, management activities 

conducted within managed-pine landscapes may influence foraging efficiencies by altering stand 

structure and insect abundance (Aldridge and Rautenbach 1987, Hollifield and Dimmick 1995).  

Foraging decisions made by bats may influence survival and fitness of individuals and likely 

influences habitat use (Kusch et al. 2004, Burles et al. 2009).  Understanding the responses of 

foraging bats to insect abundances and vegetation characteristics may help managers provide 

suitable foraging conditions through stand-level activities.  In response to the lack of foraging 

information, my second objective was to investigate the relationship between insect abundance 

and stand structure on foraging bats. 

 My results suggest that managed-pine landscapes in the Coastal Plain of the southeastern 

U.S. provide sufficient resources and habitat for the majority of bat species in the region.  

Acoustic and mist-net results confirmed the presence of nine species including Corynorhinus 

rafinesquii, Eptesicus fuscus, Lasiurus borealis, L. seminolus, L. cinereus, Nycticeus humeralis, 

Perimyotis subflavus, Tadarida brasiliensis, and Myotis austroriparius.  Approximately 80% of 

acoustic sample points were used by at least one bat species suggesting that much of these 

managed-pine landscapes are suitable for foraging bats.  Based on acoustic and mist-net data, N. 

humeralis and members of the L. borealis + L. seminolus group were most commonly 

encountered, whereas L. cinereus and C. rafinesquii were rarely encountered.   

My results add to existing evidence suggesting that many insectivorous bat species are 

positively influenced by increasing insect abundances (Kusch et al. 2004).  In general, 

hypotheses suggesting that foraging bats discriminate among prey items based on taxon 
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characteristics (Buchler 1976, Agosta et al. 2003) appear more plausible than size based 

discriminations (Barclay and Brigham 1991, Barclay and Brigham 1994).  However, the most 

appropriate measure of available prey (i.e., measure of insect abundance relevant to foraging 

bats) remains unclear and likely varies by species.  Additionally, parameter estimates suggest 

that insect abundance does not have a strong influence on foraging location choices and insect 

abundance alone is not sufficient to predict site-occupancy in Coastal Plain forest landscapes.   

 I found that site-occupancy of foraging bats frequently was better explained by a 

combination of small-scale vegetation characteristics and insect abundance rather than either 

separately.  Sample points occupied by at least one bat species had reduced canopy cover, basal 

area, and vegetation clutter and higher insect abundances than unoccupied points.  However, the 

most plausible model for E. fuscus, P. subflavus, and the L. borealis+L. seminolus group 

indicated that vegetation characteristics alone were more plausible than models that included 

both insect abundance and vegetation characteristic parameters.  Therefore, managers primarily 

should focus on management prescriptions that reduce the amount of vegetation structure and, 

secondly, on actions that possibly increase insect abundances such as increasing herbaceous 

plant cover (Campbell et al. 2007) or abundance of deciduous cover in riparian areas (Ober 

2006).  

 Bats likely choose foraging areas based on decisions made at multiple scales (Yates and 

Muzika 2006).  Elucidating the large-scale factors that influence occupancy will help managers 

direct stand-level management activities with a landscape-scale perspective so that suitable 

foraging conditions are appropriately distributed across the landscape.  This landscape approach 

may be particularly effective with bats because their motility allows them to traverse unsuitable 

habitat types and use resources that are dispersed across the landscape (Bernard and Fenton 
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2003).  Therefore, my third objective was to evaluate the plausibility of landscape-scale variables 

that might influence foraging bats.   

Landscape effects 

 Landscape-scale characteristics appear to influence foraging decisions made by many 

forest bats.  However, I found that responses to landscape characteristics were species-specific 

suggesting that no single management prescription will benefit all members of the bat 

community.  Additionally, the landscape-scale factors investigated did not appear to affect 

foraging activity of all species and the effects of small-scale vegetation characteristics often 

produced more consistent negative effects.  In general, my landscape-scale results suggest that 

percentage of area in un-thinned stands of intermediate age and increasing road density, patch 

richness, and amount of edge are negatively related to occupancy, while the percentage of area in 

stands older than 30 years and distance to water sources are positively related to occupancy in 

managed-pine forests.  In general, landscape composition (i.e., the abundance of habitat types) 

appeared more plausibly related to bat occupancy than landscape configuration (i.e., the distance 

to habitat types or features), which indicates that important habitat types are present in sufficient 

abundance (Ritchie et al. 2009) in managed-pine landscapes of the Southeast.   

 My results suggest that management activities that reduce canopy cover and vegetation 

clutter in the midstory, increase insect abundances, and result in diverse landscape conditions are 

most likely to benefit the bat community as a whole.  However, management efforts to improve 

foraging habitat for specific species will depend on the species of interest.  Future efforts 

designed to elucidate the influence of landscape changes on foraging may benefit from an 

adaptive management approach in which management actions are prescribed and resulting 
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effects on the bat community monitored and evaluated so that knowledge is advanced and 

subsequent actions can be modified (Stankey et al. 2005).   
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Appendix A. Mean covariate values (+/- 90% confidence interval value) at points occupied (O) and apparently unoccupied (U) by bats 
after two sampling visits sampled May-August 2008 in managed-pine forests of the southeastern U.S. Coastal Plain. Covariates 
include mean abundance of insects captured with passive flight intercept traps including Coleopterans (Col), Dipterans, 
Hymenopterans (Hym), Lepidopterans (Lep), Thysanopterans (Thy), total, insect order richness (Richness), small size class (≤ 2 mm), 
medium size class (3 – 6 mm), and large size class (≥ 7 mm). Vegetation characteristics at points include basal area, mean percent 
vegetation clutter (Clutter), and mean percent canopy cover (Canopy).  

Species  Col Dipterans Hym Lep Thy Total Richness 

         
OVERALL O 5.02 (0.86) 12.46 (3.00) 5.45 (1.58) 1.88 (0.57) 0.93 (0.64) 28.29 (4.91) 5.05 (0.22) 
 U 3.03 (0.80) 6.24 (3.30) 0.86 (0.21) 1.51 (0.98) 0.49 (0.59) 13.51 (4.79) 4.00 (0.44) 
         
E. fuscus O 5.41 (1.12) 14.98 (4.43) 5.20 (1.29) 2.17 (0.86) 0.38 (0.22) 30.68 (6.66) 5.08 (0.29) 
 U 3.81 (0.85) 7.46 (2.08) 3.75 (2.19) 1.45 (0.50) 1.27 (0.97) 19.80 (4.68) 4.58 (0.29) 
         
L. borealis + seminolus O 4.76 (1.05) 13.43 (4.07) 5.16 (1.44) 1.88 (0.80)  0.46 (0.21) 28.11 (6.17) 5.03 (0.27) 
 U 4.39 (0.95) 8.40 (2.43) 3.63 (2.23) 1.70 (0.54) 1.27 (1.09) 21.55 (5.27) 4.58 (0.32) 
         
N. humeralis O 5.40 (1.15) 13.88 (3.91) 6.31 (2.05) 2.00 (0.72) 0.83 (0.71) 31.29 (6.21) 5.23 (0.25) 
 U 3.52 (0.51) 7.49 (2.33) 2.03 (0.90) 1.54 (0.65) 0.84 (0.75) 16.97 (4.03) 4.29 (0.30) 
         
P. subflavus O 5.32 (1.39) 16.57 (5.17) 5.32 (1.51) 2.49 (1.03) 0.92 (0.76) 33.49 (7.77) 5.27 (0.32) 
 U 4.09 (0.72) 7.40 (1.83) 3.87 (1.90) 1.33 (0.41) 0.77 (0.70) 19.37 (4.01) 4.52 (0.25) 
         
T. brasiliensis O 7.27 (2.17) 20.03 (8.78) 6.54 (2.45) 3.43 (1.81) 0.68 (0.47) 40.83 (13.08) 5.23 (0.44) 
 U 3.85 (0.60) 8.66 (1.81) 3.88 (1.48) 1.35 (0.34) 0.88 (0.64) 20.75 (3.39) 4.71 (0.23) 
         
M. austroriparius O 5.30 (1.78) 16.82 (8.03) 5.32 (2.16) 2.38 (1.60) 0.48 (0.33) 32.89 (11.92) 4.95 (0.46) 
 U 4.34 (0.74) 9.15 (1.78) 4.16 (1.57) 1.60 (0.38) 0.95 (0.68) 22.40 (3.66) 4.78 (0.23) 
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Appendix A (continued). Mean covariate values (+/- 90% confidence interval value) at points occupied (O) and apparently unoccupied 
(U) by bats after two sampling visits sampled May-August 2008 in managed-pine forests of the southeastern U.S. Coastal Plain. 
Covariates include mean abundance of insects captured with passive flight intercept traps including Coleopterans (Col), Dipterans, 
Hymenopterans (Hym), Lepidopterans (Lep), Thysanopterans (Thy), total, insect order richness (Richness), small size class (≤ 2 mm), 
medium size class (3 – 6 mm), and large size class (≥ 7 mm). Vegetation characteristics at points include basal area, mean percent 
vegetation clutter (Clutter), and mean percent canopy cover (Canopy).  

Species   Small Medium Large Basal Area Clutter Canopy 

        

OVERALL O 8.95 (2.66) 14.54 (2.47) 4.83 (0.73) 51.38 (11.57) 19.04 (4.58) 44.96 (7.63) 

 U 4.69 (3.32) 6.00 (1.50) 2.82 (0.99) 125.63 (22.57) 42.91 (11.31) 88.64 (8.96) 

        

E. fuscus O 10.26 (3.47) 15.73 (3.03) 4.69 (0.95) 40.56 (11.96) 16.13 (5.36) 40.55 (9.29) 

 U 5.91 (2.74) 9.81 (2.64) 4.12 (0.87) 92.89 (17.58) 31.85 (7.09) 67.54 (9.66) 

        

L. borealis + seminolus O 8.81 (3.19) 14.77 (2.89) 4.56 (0.88) 49.00 (12.99) 16.62 (4.94) 46.40 (8.89) 

 U 7.11 (3.08) 10.24 (2.84) 4.20 (0.91) 89.12 (19.07) 33.13 (7.77) 63.83 (11.09) 

        

N. humeralis O 9.87 (3.39) 16.36 (3.03) 5.09 (0.98) 40.95 (12.71) 13.08 (4.75) 37.36 (8.85) 

 U 5.61 (2.44) 7.88 (1.94) 3.48 (0.61) 102.19 (17.08) 38.80 (6.95) 76.78 (8.11) 

        

P. subflavus O 11.98 (4.24) 16.60 (3.53) 4.97 (1.10) 41.00 (13.83) 10.85 (3.79) 40.26 (9.75) 

 U 5.34 (2.16) 10.02 (2.32) 4.01 (0.74) 85.45 (16.09) 33.30 (6.61) 64.05 (9.38) 

        

T. brasiliensis O 14.18 (6.89) 21.18 (5.76) 5.48 (1.75) 23.75 (12.82) 13.22 (7.83) 29.84 (13.42) 

 U 6.33 (1.99) 10.35 (1.84) 4.10 (0.64) 79.48 (13.55) 27.23 (5.44) 61.18 (7.77) 

        

M. austroriparius O 12.17 (6.25) 15.94 (5.34) 4.86 (1.49) 55.79 (19.42) 22.29 (7.41) 54.57 (13.02) 

 U 6.60 (2.02) 11.57 (2.06) 4.23 (0.68) 71.45 (14.37) 24.86 (5.81) 54.35 (8.57) 

                



 

 146 

Appendix B. Mist net captures from Coastal Plain managed-pine forests of the southeastern U.S., summers 2006-2008. Species 
captured include Corynorhinus rafinesquii (CORA), Eptesicus fuscus (EPFU), Lasiurus borealis (LABO), L. cinereus (LACI), L. 

seminolus (LASE), Myotis austroriparius (MYAU), Nycticeus humeralis (NYHU), Perimyotis subflavus (PESU), L. borealis or L. 

seminolus escape prior to confirmed identification (LA?), Tadarida brasiliensis (TABR).  
 

   Species  

Year 
State General Location CORA EPFU LABO LACI LASE MYAU NYHU PESU LA? TABR Total 

2006 SC 
3km NW of 
Tuckertown 

1 1 21  8 2 22    55 

 GA 
3km NW of 
Townsend 

  2  4  10 2 1  19 

 MS 6km SW of Scooba  1 20  6  8 3   38 

2007 GA 
13km SW of 
Bainbridge 

  1  23 5 17   1 47 

 AR 18km E of Crossett 1  11 1 1 6 8 11   39 

 SC 11km N of Ravenel  2 4  17  32 4  3 62 

2008 AL 
16km SW of 
Greenville 

 1 1   4 16 1  1 24 

 NC 
11km NNW of 

Shallotte 
  8  5 1 1 2   17 

 NC 
15km NE of 
Greenville 

 4 19    25   2 50 

  Total 2 9 87 1 64 18 139 23 1 7 351 

 
 


