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Abstract

Extreme value theory is a branch of statistics that is devoted to studying the phenomena

governed by extremely rare events. The modeling of such phenomena are tail dependent,

therefore we consider a class of heavy-tail distributions, which are characterized by regular

variation in the tails. While many articles have considered regular variation at one endpoint

(particularly the left endpoint), the idea of regular variation at both endpoints has not be

addressed.

In this dissertation, we propose extreme value estimators for various non-negative time

series, where the second or higher moments does not exist and the innovations are positive

random variables with regular variation at both the right endpoint infinity and the positive

left endpoint. This contrasts with traditional estimators whose asymptotic behavior depends

on the central part of the innovation distribution. For certain estimation problems, the

presence of heavy tails can provide the setting for exceedingly accurate estimates.

Within each model, we provide estimates for the model parameters with respect to an

extreme value criteria. Through the use of regular variation and point processes the limit

distributions for the proposed estimators are obtained while weak convergence results for

asymptotically independent joint distribution are derived. A simulation study is performed



to first assess the small sample size behavior and reliability of our proposed estimates and

secondly to compare the performance of our extreme value estimation procedure and that of

traditional and alternative estimation procedures.

The main goal of all proposed methods, is to capitalize on the behavior of extreme value

estimators over traditional estimators when the regular varying exponent is between zero

and two. In this heavy-tail regime, extreme value estimators converge at a rate faster than

square root n. If a practitioner can entertain an infinite variance time series model, then

methods such as the one proposed in this dissertation should receive consideration and even

more so if an infinite mean time series model were deemed to be acceptable.

Index words: nonnegative time series, autoregressive processes,
autoregressive-moving-average processes, bifurcating autoregressive
processes, extreme value estimator, regular variation, point process
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Chapter 1

Introduction And Literature Review

1.1 Introduction

Extreme Value Theory (EVT) is a branch of statistics that is devoted to studying the

phenomena governed by extremely rare events. The modeling and statistics of such phe-

nomena are tail dependent and vary greatly from classical modeling and statistical analysis,

which give primacy to central moments, averages, and the normal density which has a light

tail and large observations are typically treated as an outlier or even ignored. Traditionally,

the uses for extreme value theory has been limited to answering questions relating to the

distribution of extremes (e.g., what is the probability that a snowfall exceeding x inches will

occur in a given location during a given year?) or the inverse problem of return levels (e.g.,

what height of a river will be exceeded with probability 1/100 in a given year?). However,

during the past 40 years or so, many new techniques have been developed to assist with

the problems such as the exceedance over high thresholds, the dependence among extreme

events in various types of stochastic processes, and multivariate extremes (e.g, estimate the

extreme quantile of the profit-and-loss density, once the density is estimated).

There is a fairly large body of literature concerning the theory, computation and applica-

tion of non–negative time series models. These models form a prominent class to model the

phenomena under study by a dependent process. Over the past four decades or so, a variety of

estimation approaches have been adopted for nonnegative time series models. These include;

least squares, maximum likelihood, linear programming, and extreme value theory method.
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An excellent presentation of the classical theory concerning these models can be found,

for example, in Brockwell and Davis (1987). A few practical applications for such autoregres-

sive models with positive innovations are described in Collings (1975), where the sequence

in an AR(1) process describes the input process for dams. In Hutton (1990), for example,

river flows were studied by such a model. More recent developments have focused on some

specialized features of the model, e.g. heavy tail innovations or nonnegativity of the model.

An elegant approach to studying heavy tail linear models is to examine the behavior of tradi-

tional estimates under conditions leading to non-Gaussian limits. For example, the standard

approach for parameter estimation within an autoregressive process of order p (AR(p)) is

through the Yule-Walker estimator;

φ̂YW =

∑n−1
t=1 (Xt − X̄)(Xt+1 − X̄)
∑n

t=1(Xt − X̄)2
, where X̄ =

1

n

n
∑

t=1

Xt. (1.1.1)

If the AR(1) process has a finite variance, then φ = Corr(Xt, Xt−1) and the Yule-Walker

estimator is an asymptotically normal random variable with mean φ and asymptotic variance

n−1(1− φ2), i.e.
√
n(φ̂YW − φ) ⇒ N(0, 1− φ2).

Davis and Resnick (1986) presented a slightly different approach where they established the

weak limit behavior for the sample autocorrelation function under an assumption that the

innovations have a regularly varying tail with index α and are tailed balanced where α ranges

from greater than 0 to at most 4. However, the analytic difficulties for the Davis-Resnick

estimates are further complicated by the fact that the limiting distribution involves certain

stable distributions whose exact parameter values are not completely explicit.

On a similar note, Anderson et al. (2008) take an approach analogous to Davis and

Resnick (1986) but utilize the innovations algorithm applied to periodically stationary time

series and in particular to PARMA models, i.e. periodic ARMA models. A least absolute

deviation estimation and other related methods are carried out in Calder and Davis (1998)
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while a weighted least squares method to estimate the parameters of a heavy tailed ARMA

model is presented in Markov (2009).

An interesting approach worth mentioning that was unexpected in the time series setting,

is the maximum likelihood, since the likelihood function is generally particularly intractable

and intricate. In this case finding the MLE amounts to solving a constrained maximization

problem with linear constraints.

With these considerations in mind, Feigin and Resnick (1994) developed linear program-

ming estimates for AR(p) processes with nonnegative innovations having 0 as its left endpoint

and satisfying one of two types of regular variation property on the innovation distribution.

McCormick and Mathew (1993) developed consistent estimators with a linear program-

ming estimate for not only the autocorrelation coefficient φ but for an unknown location

parameter θ under certain optimization constraints. Feigin et al. (1996) continued the study

of linear programming estimate for the case of a nonnegative moving average process. The

technique has also been applied to positive nonlinear time series in Brown et al (1996) and

Datta et al (1998).

In addition to their relation to linear programming estimation procedures, nonnega-

tive time series have also been considered in Andĕl (1989), Andĕl (1991), and Datta and

McCormick (1995). Modeling issues in connection to causal nonnegative time series are

addressed in Tsai and Chan (2006). As remarked in Calder and Davis (1998), second-order

based estimation methods for the ARMA model parameters perform well when the innova-

tions are heavy-tailed. Our estimation procedure is more in keeping with the second-order

estimates developed in Davis and Resnick (1986) with which we make a comparison through

a simulation study.

A similar but relatively unknown model in the time series family is called a bifurcating

autoregressive process (BAR, for short). It was first introduced by Cowan and Staudte (1986)

for analyzing cell lineage data, where each individual in one generation gives rise to two

offspring in the next generation. Over the past three decade’s there has been many extensions

3



of bifurcating autoregressive models. For example, the driven noise (ǫ2t, ǫ2t+1) was originally

assumed to be independent and identically distributed normal random variables. However,

in the past decade or so, model’s that allow for correlation between sisters cells and cousin’s

cells have been studied.

Interestingly enough, there is only one paper in the literature by Zhang (2011) which

applies a point process technique to a first-order bifurcating process.

In this dissertation, we focus squarely on the use of extreme value theory to develop alter-

native estimators for a variety of time series models. The proposed estimation procedure relies

on the criteria that the innovations follow a heavy–tail distribution. More specifically, the

innovations are positive random variables with regular variation at both the right endpoint

(infinity), and the positive left endpoint θ. Our extreme value methods enjoy several benefits

over traditional estimation methods such as Least-squares or linear programming method

when the regular varying exponent, β is 0 < β < 2. For example, our estimation procedure

is especially easy to implement. That is, our estimators are nothing more than a ratio of

two sample values, chosen respectively to specify an extreme value criteria. Furthermore, our

extreme value method does not rely on a finite second or higher moment to exist. Instead

we capitalize on the behavior of extreme value estimators, which in a heavy-tail regime, con-

verge at a faster rate than the square root n. Thus, for a time series model with an infinite

variance, our method becomes a very attractive alternative. Thereby providing a competitive

alternative to traditional procedures in the literature. Finally, the limiting distribution for

our estimators are explicit and tractable, whereas the limiting distribution for traditional

methods such as Least-square or maximum likelihood are typically complex and unpractical.

The derivation for some of our limiting distributions relies heavily upon the use of point

processes, where the essential idea is to first establish the convergence of a sequence of point

processes based on simple quantities and then apply the continuous mapping theorem to

obtain convergence of the desired statistics.
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1.2 Review of Mathematical Tools in Extreme Value Theory

In the previous section we discussed the advances and expansions of a number of estab-

lished statistical estimation procedures such as; Least–squares, Maximum Likelihood, and

Linear programming for various time series models. In this section, we present a brief review

of the mathematical building blocks used with or in the development of our extreme value

estimators. This includes heavy–tail distributions, weak convergence, regular variation, and

point processes. Among many excellent books on this subject, Resnick (1987) gives a survey

of the mathematical, probabilistic, and statistical tools used in extreme value theory, Resnick

(2007) on Heavy-Tail Phenomena gives a comprehensive survey of theory as well as applica-

tions, and Finkenstadt (2004) provides an in depth applications in Environment, insurance,

and finance.

1.2.1 A Conceptual Understanding of Extreme Value Estimators

At first, Extreme Value Theory was nothing more than a mere intellectual enthusiasm,

but over the past three decades the subject has flourished in applications for many real

situations. Additionally, the modeling and statistics of extreme events are tail dependent

and differ from classical modeling and statistical analysis, which rely on central moments,

averages, and the normal density. For example, consider a first–order autoregressive process

Xt = φXt−1 + Zt, (1.2.1)

where the innovations are nonnegative random variables having a distribution function F

for which F̄ = 1 − F is regularly varying at infinity with index −β. The motivation for an

extreme value estimator of φ is based on the positivity of the innovations and the fact when

the observation Xt−1 is large, equation (1.2.1) implies

0 ≤ φ ≤ Xt/Xt−1. (1.2.2)
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Therefore, by minimizing the ratio in (1.2.2) we expect φ̂n =
∧n

t=1
Xt

Xt−1
, where x ∧ y =

min(x, y) to be a reasonably good estimator of φ. The actual precision of our extreme value

estimator depends directly upon the index of regular variation β, which controls the tail

behavior of the innovation distribution. Thus, when the regular varying index is small (less

than 1) imagine a sample path which remains relatively constant except for a few random

spikes at different times. From this illustration presented in Figures 1.1 and 1.2 we can draw

upon two key observations; first, the type of outcome expected from a process where the

innovations have a heavy–tail distribution and secondly, how our estimators capitalizes on

large innovations.

Figure 1.1: Sample Path for AR(1) process with β = .8
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Figure 1.2: Sample Path for AR(1) process with β = 1.5
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1.2.2 Heavy–tails: The Underlying Component of Extreme Value Theory

Throughout the literature, there does not seem to be a general rule to classify a dis-

tribution as heavy–tailed. The difficulty lies in the name, that is, the word “heavy” is not

well-defined, thus a precise definition is not easy. For example, sometimes heavy–tailed dis-

tributions are called “fat–tailed”, “thick–tailed”, or even “long–tailed”. A common used

definition of heavy–tailness is based on the fourth central moment. If X is a random variable

with mean µ and standard deviation σ, then X is called heavy–tailed if

E

[

(X − µ)4

σ

]

> 3.

7



This property is called excess kurtosis because the fourth moment of the normal distribution

is 3. Clearly, this definition is only helpful if the fourth moment of a random variable actually

exists. Figure 1.3 below demonstrates five classes of distributions that are nested. 1

Figure 1.3: Different Classes of Heavy–tailed Distributions

  

  A 

A 

B 

  E 

C 

 D 

 

E: nonexistence of exponential moments

D: subexponential distributions

C: regular variation with tail index α > 0

B: pareto tails with α > 0

A: stable (non-normal) distributions

The broadest class E encompasses all distributions with

E(eX) = ∞.

1This classification is borrowed from Bamberg and Dorfleitner (2001).
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With this distinction, the normal distribution is clearly not contained in this class as its tail

probability declines faster than exponentially. A distribution is subexponential distribution

if

lim
n→∞

P ((X1 + . . .+Xn) > x)

P (max(X1, . . . , Xn) > x)
= 1. (1.2.3)

Therefore, a class D distribution has the interpretation that the sum of n i.i.d. subexponential

random variables is likely to be large if and only if their maximum is likely to be large. This

is often known as the principle of the single big jump. Another way to express (1.2.3) is

lim
t→∞

F̄ (t)

e−ǫt
= ∞ ∀ ǫ > 0.

As the name suggests, the tails of this class decrease slower than any exponential distribution.

In this dissertation, we focus on the class C distributions, which are characterized by

regular variation in the tails. They form a subclass of the subexponential distributions and

satisfy the condition

lim
t→∞

F̄ (tx)

F̄ (t)
= x−α.

Hence, far out in the tail (t → ∞) the distribution in this class behaves like a Pareto

distribution. As a consequence, the tail probabilities P (X > x) decline according to a power

function. As we have discussed above, the parameter α is called “regular varying exponent”

and is used to measure the (heaviness) of the tail.

In contrast, distributions in class B have exact Pareto tails. The tail probability 1−F (x) =

F̄ (x) of class B distributions is therefore aαx−α where x > a and a > 0. Understanding better

the relationship between the regularly varying index α and moments of a distribution with

Pareto tails, will help bridge the gap of understanding with the relatively unknown class A,

or as it is called α−stable distributions. Consider the kth moment for a distribution in Class

B, that is,

E[Xk] = αaα
∫ ∞

a

xk−α−1dx.

9



It then follows that only k−moments with k < α are bounded. This property states that a

distribution of class A will have Pareto tails with α < 2, which implies infinite variance and,

as a consequence, very heavy tails. Despite this restriction, class A is of great importance

because asymptotic theory similar to the central limit laws is possible. Unfortunately, it is

only possible to represent a stable distribution through its characteristic function. That is,

the density function can only be computed by numerical approximation. Another common

way to define a heavy-tailed distribution is if its moment generating function doesn’t exist

on the positive real line, i.e.

∫

etxdF (x) = ∞ for any t > 0.

Thus we can simply say a distribution is heavy-tailed if and only if it has a heavier tail than

any exponential distribution. Under this definition many distributions can be classified, such

as Student’s t, F, Cauchy, Pareto, log-normal, log-gamma, Weibull as heavy-tailed.

1.2.3 Background

Since there is a nice connection between class C and classical extreme value theory, let us

look deeper into class C. Probably the fundamental topic in extreme value theory is modeling

the variation of the sample maxima. Suppose we have an i.i.d. sequence of random variables,

X1, X2, . . . , whose common cumulative distribution function is F , i.e.,

F (x) = P (Xi ≤ x).

Then if F (x) < 1, we have P (Mn ≤ x) = F (x)n → 0, where Mn =
∨n

i=1Xi =

max{X1, . . . , Xn}. This result is of no immediate interest, since it simply says that for

any fixed x for which F (x) < 1, we have that the probability of the nth sample maximum of

the process staying below x converges to 0. However, if we set x0 = sup{x : F (x) < 1} ≤ ∞,

10



then

Mn
a.s.−−→ x0. (1.2.4)

Just as the normal distribution is a useful approximation to the distribution of
∑n

i=1Xi, we

seek a limit distribution to act as an approximation to F n. The relation (1.2.4) makes it clear

that a non-degenerate (i.e. , a distribution function which does not put all its mass at a single

point) limit distribution will not exist unless we normalize Mn. It is common to use an affine

normalization, which is also the most practical in statistical estimation problems. It was not

until the mid 20th century before the founding fathers Fisher and Tippett (1928) originally

stated without detailed mathematical proof, if the properly normalized maximum converges

to a non-degenerate distribution G, then this distribution belongs to one of the following

three distributions defined in Proposition (1.2.1). Later derived rigorously by Gnedenko

(1943).

Proposition 1.2.1. (Gnedenko, 1943) Suppose there exist bn > 0, an ∈ ℜ, n ≥ 1 such that

P [b−1n (Mn − an) ≤ x] = F n(bnx+ an) → G(x),

weakly as n → ∞ where G is assumed non-degenerate. Then G is of the type of one of the

following three classes called the Domains of Attraction.

Fréchet: Φα(x) =















0 x ≤ 0

exp(−x−α), x > 0,

Weibull: Ψα(x) =















exp(−(−x)α), x ≤ 0

0 x > 0,

Gumbel: Λ(x) = exp(−e−x), for all x,

where α is a positive parameter for the first two cases.
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In this dissertation we will be focusing more on the class of distributions that belongs to

the domain of attraction of the Fréchet distribution. A distribution belongs to this class if

and only if its tails are regularly varying. This is exactly corresponds to class C distribution

where the heaviness of the tails depends negatively on the tail index α.

Example: Suppose {Xi, i ≥ 1} is iid from F (x) = 1 − e−x, x > 0 and Y ∼ Φ(x). In the

case an = 1 and bn = ln(n),
n
∨

i=1

Xi − ln(n) ⇒ Y.

Remark. This example is a situation where the right end point x0 = sup{s : F (s) < 1} = ∞.

1.2.4 Weak Convergence

Asymptotic properties of statistics in extreme value theory are understood with an inter-

pretation which comes from weak convergence of probability measures on metric spaces. See

Billingsley, (1968) for more details. Utilizing the power of weak convergence allows for a uni-

fied treatment of the one-dimensional and higher-dimensional cases of heavy-tail phenomena.

Before we discuss some important properties of weak convergence, we must first familiarize

ourself with some key definitions.

Definition 1.2.1. A set A in S is compact if each open cover of A contains a finite subcover.

In addition, a set A is complete if each fundamental sequence in A converges to some point

of A.

Tightness proves important in both the theory of weak convergence and in its applications.

This condition helps insure that the probability mass does not escape the state space.

Definition 1.2.2. A family Π of probability measures on the general metric space S is said

to be tight if for every ǫ > 0 there exists a compact set K such that P (K) > 1 − ǫ for all

P ∈ Π.
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A main proof in Chapter 2 of this dissertation, makes use of dissecting covering rings. Let

E denote a fixed locally compact second–countable Hausdorff space with Borel σ−algebra

B.

Let ζ denote a ring consisting of all bounded (i.e. relatively compact) sets in Borel

σ−algebra B.

Definition 1.2.3. A DC–ring (D for dissecting, C for covering) is a ring U ⊂ ζ with the

property that, given any B ∈ ζ and any ǫ > 0, there exists some finite cover of B by U-sets

of diameter less than ǫ (in any fixed metrization of E).

Definition 1.2.4. A DC–semiring is a class J of sets which is closed under finite intersec-

tions and such that any proper difference between J -sets may be written as a finite disjoint

union of sets in J .

In this dissertation, DC–rings and DC–semirings are families of intervals and interval

unions respectively.

Definition 1.2.5. A class C ⊂ ζ is covering if every set B ∈ ζ has a finite cover of C-sets.

Here we define the actual definition of weak convergence, later we will discuss methods

to actually prove weak convergence.

Definition 1.2.6. Let F be the Borel σ-algebra of subsets of S. If we have a given sequence

{Xn} of random elements of S, there is a corresponding sequence of distributions on F,

Pn = P [Xn ∈ ·], n ≥ 0, where Pn is called the distribution of Xn. Then Xn converges weakly

to X (written Xn ⇒ X) if whenever f ∈ C(S), the class of bounded, continuous, real-valued

functions on S, we have

E[f(Xn)] =

∫

S

f(x)Pn(dx) → E[f(X)] =

∫

S

f(x)P (dx).

13



Remark: If f is a measurable function on S, then, by the change-of-variable formula,

∫

Ω

f(Xn)dP =

∫

S

f(x)Pn(dx).

The following results are essential analytical tools used in proofs for this dissertation. For

notational purposes, weak convergence can be expressed in either of the following ways

(i)Pn ⇒ P

(ii)Xn
D−→ X

(iii)Xn
w−→ X.

For the purpose of the following theorem, let ℓ denote the class of Borel sets as the σ-field

generated by the open sets, which is the same thing as the σ-field generated by the closed

sets.

Theorem 1.2.1. (Billingsley, 1968) Let κ be a subclass of ℓ such that (i) κ is closed under

finite intersections and (ii) each open set in S is a finite or countable union of elements of

κ. If Pn(A) → P (A) for every A ∈ κ, then Pn ⇒ P .

Many of the concepts and results in this dissertation deal with verifying convergence in

probability.

Definition 1.2.7. Let ρ denote the metric for a metric space S. If, for an element a of S,

P [ρ(Xn, a) ≥ ǫ] → 0 for each ǫ > 0, we say Xn converges in probability to a and write

Xn
p−→ a.
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Theorem 1.2.2. (Billingsley, 1968) [continuous mapping theorem]. Let (Si, ρi), i = 1, 2 be

two metric spaces and suppose {Xn, n ≥ 0} are random elements of (S1, ℓ1) and Xn ⇒ X.

If f : S1 → S2 satisfies P [X ∈ Df ] = 0, where

Df = {s1 ∈ S1 : f is discontinuities at s1 }.

then,

f(Xn) ⇒ f(X), in S2.

Many weak convergence results can be obtained through the continuous mapping the-

orem. Another method that can be applied given weak convergence is Slutsky’s theorem.

Theorem 1.2.3. (Resnick, 2007) [Slutsky’s theorem]. Suppose {Xn, X, Yn, n ≥ 1} are

random elements of a separable metric space S with metric ρ(·, ·). If Xn ⇒ X and

ρ(Xn, Yn)
p−→ 0, then Yn ⇒ X.

Theorem 1.2.4. (Billingsley, 1968) [second converging together theorem]. Suppose that

{Xun, Xu, Yn, X ;n ≥, u ≥ 1} are random elements that have a common domain and that

S is separable. Assume for each u, Xun
D−→ Xu as n → ∞ and that Xu

D−→ X as u → ∞.

Suppose further that

lim
u→∞

lim sup
n→∞

P [ρ(Xun, Yn) ≥ ǫ] = 0

for each ǫ > 0. Then Yn
D−→ X as n→ ∞.

1.2.5 Regular Variation

The theory of regular varying functions is an essential analytical tool for dealing with

heavy tails, long-range dependence, and domains of attraction. Roughly speaking, regular

varying functions are those functions which behave asymptotically like power functions.
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Definition 1.2.8. A real measurable function U : ℜ+ 7→ ℜ+ is regular varying at infinity

with index −β ∈ ℜ (denoted U ∈ RV−β) if for x > 0,

lim
t→∞

U(tx)

U(t)
= x−β. (1.2.5)

Note: We call β the exponent of variation. For a more detailed discussion, see Bingham,

Goldie and Teugels (1987), and L. de Haan (1970).

For example, suppose X has a common distribution F , and consider for a fixed x > 0

the probability P (X > tx). Then for large t, this probability is approximately x−βP (X > t)

with β ≥ 0. If this statement is true for all x > 0, then F is said to have a regularly varying

right tail.

If β = 0, then we call U slowly varying. Slowly varying functions are generically denoted

by ℓ(x). The significance of slowly varying functions is that we can express the tail of a

distribution as a multiple of a slowly varying function, i.e., U(x) = x−βℓ(x).

The next theorem concerns global bounds for ℓ(y)/ℓ(x).

Theorem 1.2.5. (Bingham, Goldie, and Teugels, 1987) [Potter’s Theorem]. (i) If ℓ is slowly

varying then for any chosen constants A > 1, δ > 0 there exists X = X(A, δ) such that

ℓ(y)/ℓ(x) ≤ A
{

(
y

x
)δ ∨ (

y

x
)−δ
}

(x ≥ X, y ≥ X).

(ii) If, further, ℓ is bounded away from 0 and ∞ on every compact subset of [0,∞), then for

every δ > 0 there exists A′ = A′(δ) > 1 such that

ℓ(y)/ℓ(x) ≤ A′{(y
x
)δ ∨ (

y

x
)−δ} (x ≥ 0, y ≥ 0).
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(iii) If f is regularly varying of index ρ, then for any chosen A > 1, δ > 0 there exists

X = X(A, δ) such that

f(y)/f(x) ≤ A{(y
x
)ρ+δ ∨ (

y

x
)ρ−δ} (x ≥ X, y ≥ X).

Having established regular variation and possible limit laws for normalized maxima we

are ready now to characterize the normalizing constant {bn}. First, recall the definition for

the inverse of a monotone function.

Definition 1.2.9. Suppose H : ℜ 7→ (a, b) is a nondecreasing function on ℜ with range

(a, b), where −∞ ≤ a < b ≤ ∞. Then the (left-continuous) inverse H← : (a, b) 7→ ℜ of H is

H←(y) = inf{s : H(s) ≥ y}.

Figure 1.4 below gives an illustration of this definition.

Figure 1.4: Inverse of a Monotone Function

H(s)

y

1s 2s s

H( )1s

The inverse at y is the foot of the left dotted perpendicular. 

The following corollary provides the normalizing constants for Mn in Proposition 1.2.1

and for an extreme value estimates, which in turn can improve the rate of convergence on
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√
n. Note that here and elsewhere that we use the notation

f(x) ∼ g(x), x→ ∞, as shorthand for lim
x→∞

f(x)

g(x)
= 1,

for two real functions f , g.

Corollary 1.2.1. (Resnick, 1987) Let F (x) be a distribution with a regular varying tail at

∞ with index −α for some α > 0. Set U(x) = 1/(1−F (x)), then bn = U←(n) = F←(1−1/n)

determines bn as the normalizing constant in Proposition 1.2.1 with an = 0. Then, using the

fact that bn → ∞ we have for x > 0,

lim
n→∞

1− F (bnx)

1− F (bn)
= x−α. (1.2.6)

1.2.6 Point Processes

The use of point processes as a statistical approach in extreme value theory was intro-

duced by Smith (1989). Although a few statisticians have used point processes, this technique

is becoming popular. In particular, Davis and McCormick (1989) derived the limiting dis-

tribution of their proposed estimators for a First-Order Autoregressive process using point

processes. Books by Leadbetter, et al (1983) and Resnick (1987) contain excellent informa-

tion on point processes used in this dissertation.

In this approach, instead of considering times at which high-threshold exceedances occur

and the excess values over the threshold as two separate processes, they are combined into

one process based on the two-dimensional plot of exceedance times and values. The asymp-

totic theory of threshold exceedances shows that under suitable normalization, this process

behaves like a nonhomogeneous Poisson process.

Definition 1.2.10. A nonhomogeneous Poisson process on a domain D is defined by an

intensity λ(x), x ∈ D, such that if A1, . . . , Ak are disjoint subsets of a measurable subset of

D and N(A) denotes the number of points in A, where N(A1), . . . , N(Ak) are independent
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random variables, then N(A) has a Poisson distribution with mean

µ(A) =

∫

A

λ(x)dx.

Definition 1.2.11. A point process N is a Poisson random measure denoted by (PRM(µ)

with mean measure µ, if

P [N(A) = k] = e−(µ(A))µ(A)k/k!, k = 0, 1, . . .

for A ∈ D with µ(A) <∞.

That is, a point process is nothing more than a random distribution of points in space.

Since point processes are such an essential tool in our dissertation, we will begin by explaining

how point processes can be applied to extreme value theory.

Assume the process is observed over a time interval [0, T ], and that all observations above

a threshold level x⋆ are recorded, and denoted by x = (t, y) where t is time, and y ≥ x⋆ is

the value of the process, D = [0, T ]× [x⋆,∞]. These points are marked on a two-dimensional

scatterplot and Figure 1.5 below provides an illustration of a point process.

Figure 1.5: Illustration of Point Process Approach
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In this dissertation, the state space where the points live will be denoted by E, unless oth-

erwise mentioned we will assume E to be a fixed locally compact second–countable Hausdorff

state space with the Borel σ−algebra B. For us, E will typically be a subset of Euclidean

space of finite dimension.

Definition 1.2.12. For x ∈ E, we define the measure εx by

εx(A) =















1 x ∈ A

0 x ∈ Ac.

Definition 1.2.13. Let C be compact subsets of E. A measure µ is called Radon if

µ(K) <∞ for all K ∈ C

Thus compact sets are known to have finite µ−mass.

Definition 1.2.14. A point measure on E is a measure µ which can be represented as

follows. If {xi, i ≥ 1} is a countable collection of (not necessarily distinct) points of E, then

µ :=
∞
∑

i=1

εxi
. (1.2.7)

We can think of {xi} as the atoms and µ as the function that counts how many atoms

fall in a set. The set Mp(E) is the set of all Radon point measures of the form (1.2.7). That

is, Mp(E) is the class of non–negative integer–valued Radon measures on E. Hence, Mp(E)

is a closed subset of M+(E), where M+(E) = {µ : µ > 0 measure on E and µ is Randon}.

Definition 1.2.15. A point measure on E is considered a measurable map from a probability

space (Ω,ℑ, P ) into (Mp(E),Mp(E)), where Mp(E) is the σ-algebra generated by the vague

topology.
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A small but important detail to notice throughout the literature in extreme value theory

and this dissertation is with infinite measures inM+(E), we cannot just integrate a bounded

function to get something finite. However, we know our measures are also Radon, therefore

we can try to use functions that vanish on complements of compact sets.

Definition 1.2.16. Let

C+
K(E) = {f : E 7→ R+ : f is continuous with compact support}.

If µn ∈ M+(E) for n ≥ 0, then µn converges vaguely to µ, (written µn
v−→ µ), if for all

f ∈ C+
K(E), we have

µn(f) :=

∫

E

f(x)µn(dx) → µ(f) :=

∫

E

f(x)µ(dx) as n→ ∞.

The next theorem makes the connection between regular variation and vague convergence.

Since the vague topology renders Mp(E) a complete separable metric space, we may speak

of convergence in distribution of point processes which will be denoted by ⇒.

Theorem 1.2.6. (Resnick, 2007) Suppose X1 ≥ 0 is a random variable with distribution

function F (x). The following are equivalent:

(i) 1− F (x) ∈ RV−β, β > 0.

(ii) There exists a sequence {bn} with bn → ∞ such that

lim
n→∞

n(1 − F (bnx)) = x−β, x > 0.

(iii) There exists a sequence {bn} with bn → ∞ such that

µn(·) := nP [b−1n X1 ∈ ·] v−→ νβ .

in M+(0,∞], where νβ(x,∞] = x−β.
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Remark. Note that in (iii) the space E = (0,∞] has excluded 0 and included ∞. This is

required since we need neighborhoods of infinity to be relatively compact. Within the vague

topology, we can specify the notion of “distance” in Mp(E) by putting a metric d(·, ·) on the

space.

Definition 1.2.17. If there exists some sequence of functions fi ∈ C+
k (E) and µ1, µ2 ∈

Mp(E), then the vague metric is defined as

d(µ1, µ2) =
∞
∑

i=1

(1− e−|µ1(fi)−µ2(fi)|)

2i
, for i = 1, . . . , n. (1.2.8)

Proposition 1.2.2. (Resnick, 1987) Suppose {Xn} are random elements of a nice space

E1 such that
∑

n εXn is PRM(µ). Suppose {Jn} are iid random elements of a second nice

space E2 with common probability distribution F , and suppose the Poisson process and the

sequence {Jn} are defined on the same probability space and are independent. Then the point

process on E1 × E2, is given by

∑

n

ε(Xn,Jn) is PRM (µ× F ).

This procedure is described by saying we give to point Xn the mark Jn. See figure 1.6

below for an illustration.
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Figure 1.6: Illustration of Marking an Poisson Process
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The next proposition has far-reaching implications and provides the link between regular

variation and point processes.

Proposition 1.2.3. (Resnick, 1987) For each n suppose {Xn,j, j ≥ 1} are iid random ele-

ments of E and µ is a Radon measure on E. Define Nn :=
∑∞

j=1 ε(jn−1,Xn,j) and suppose N

is PRM(dt× dµ) on [0,∞)×E. Then Nn ⇒ N in Mp([0,∞)× E) iff

nP [Xn,1 ∈ ·] v−→ µ on E.

The following condition is necessary for Breiman’s Theorem which deals with the case

where the multiplier has a relatively thin tail:

∫

xβF (dx) <∞ for some β > α. (1.2.9)
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Proposition 1.2.4. (Resnick, 2007) [Breiman’s Theorem]. Let Z and Y be two positive and

independent random variables with distribution functions F and G, respectively. Suppose F

satisfies (1.2.9) and EY β <∞ for some β > α. Then

lim
x→∞

P [Y Z > x]

P [Z > x]
= EY α.

1.3 Literature Review

1.3.1 Estimation for an First–order Autoregressive Processes

In this dissertation we consider a stationary AR(1) process {Xt} satisfying the difference

equations

Xt = φXt−1 + Zt, t = 0,±1, . . . , (1.3.1)

where |φ| < 1 and {Zt} is an iid sequence of random variables with common distribution F .

A common estimator known as the Yule-Walker estimator (see Brockwell and Davis, (1987))

for the autocorrelation parameter φ = corr(Xt, Xt−1) when {Zt} has finite variance is

φ̂ =

n−1
∑

t=1

(Xt − X̄)(Xt+1 − X̄)/

n
∑

t=1

(Xt − X̄)2, X̄ = 1/n

n
∑

t=1

Xt.

This estimator is an asymptotically normal random variable with mean φ and asymptotic

variance (1− φ2)/n, i.e.,
√
n(φ̂− φ) ⇒ N(0, 1− φ2).

Davis and McCormick (1989) lay the foundation for our dissertation. They made two

major contributions; one, considering an estimator

φ̂ =
n
∧

t=1

Xt/Xt−1 (1.3.2)
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when the innovation distribution F is regularly varying at the lower endpoint 0, which under

certain conditions can be vastly superior to the Yule-Walker estimator. Secondly, considering

when F is bounded between [−1, 1]. In this situation, they determined the limiting distri-

bution for their estimators as well as an insightful example. Below are some of the results

from this article. The first proposition and corollary are handy tools for weak convergence

of point processes.

Proposition 1.3.1. (Davis and McCormick, 1989) Let {Xt} be the stationary AR(1) process

(1.3.1), where F is regularly varying at 0 with variation index α. Let Nn and N be the point

processes on the space E = [0,∞)× [0,∞) defined by

Nn =
n
∑

t=1

ε(a−1
n Zt,Xt−1)

and N =
∞
∑

k=1

ε(jk,Yk)

where an = F←(1/n) := inf{x : F (x) ≥ 1/n}, ∑∞k=1 εjk is PRM(αxα−1dx) and {Yk} is an

iid sequence of random variables, independent of
∑∞

k=1 εjk , with Y1 = X1. In other words, N

is PRM(αxα−1dx×G(dy)), where G(y) = P [Y1 ≤ y]. Then in Mp(E),

Nn ⇒ N.

Corollary 1.3.1. (David and McCormick, 1989) Under the conditions of Proposition 1.3.1.

Define the point process ηn and η on [0,∞) by

ηn =
n
∑

t=1

εa−1
n (Xt/Xt−1−φ)

and η =
∞
∑

t=1

εjk/Yk

where
∑∞

k=1 εjk and {Yk} are as defined in the statement of Proposition 1.3.1. In particular

η is PRM
(

(EXα
1 )αx

α−1dx
)

. Then in Mp([0,∞)),

ηn ⇒ η.
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Davis and McCormick (1989) used the above results produced from point processes to

obtain the limit distribution for φ̂.

Theorem 1.3.1. (Davis and McCormick, 1988) With φ̂ :=
∧n

t=1Xt/Xt−1, we have

lim
n→∞

P [a−1n (φ̂− φ)cα ≤ x] = 1− exp{−xα}, x > 0,

where cα = [E(Xα
1 )]

1/α and φ̂ → φ a.s. .

In the following corollary, they show the same limit law holds if {Xt} is replaced by the

non-stationary solution {X̃t} defined by

X̃t =















0 if t = 0,

φX̃t + Zt if t ≥ 1,

which has the representation

X̃t =
t−1
∑

j=1

φjZt−j . (1.3.3)

Corollary 1.3.2. (Davis and McCormick, 1989) Let {X̃t, t = 0, 1, . . .} be the nonstationary

AR(1) process given by 1.3.3 and define φ̃ =
∧n

j=2 X̃j/ ˜Xj−1. Then

lim
n→∞

P [a−1n (φ̃− φ)cα ≤ x] = 1− exp{−xα}, x > 0

where cα is as specified in Theorem 1.3.1 and φ̃
a.s.−−→ φ.

Davis and McCormick (1989) also considered the case when F is supported on [−1, 1], is

regularly varying at its endpoints and satisfies a balancing condition at the two endpoints.
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Theorem 1.3.2. Let {Xt} be the stationary AR(1) process given by (1.3.1) where the dis-

tribution of the innovation sequence satisfies

lim
t↓0

P [Zt ≤ −1 + tx]

P [Zt ≤ −1 + t] + P [Zt > 1− t]
= qxα,

and

lim
t↓0

P [Zt > 1− tx]

P [Zt ≤ −1 + t] + P [Zt > 1− t]
= pxα,

where p, q ≥ 0 and p+ q = 1. Define the sequence of positive constants an by an = g←(n−1)

where g is the nondecreasing function g(t) = P [Zt ≤ −1 + t] + P [Zt > 1− t]. Define

T1n =

n
∨

t=1

[

Xt

Xt−1
− 1

|Xt−1|

]

and T2n =

n
∧

t=1

[

Xt

Xt−1
+

1

|Xt−1|

]

.

Then, for all x > 0 and y > 0,

lim
n→∞

P [a−1n (T1n − φ) ≤ −x, a−1n (T2n − φ) > y] = exp{−c1xα − c2y
α}. (1.3.4)

Here the endpoints are known, therefore they simply add/subtract a known constant

1/|Xt−1| to φ̂ defined in (1.3.2) and apply the result when F is regular varying at zero.

McCormick and Mathew (1993) considered an AR(1) process with an unknown location

parameter, but unlike Davis and McCormick (1989) they did not consider a finite upper

bound. However, they proposed estimates of (θ, φ), which were obtained as the solution to

a linear programming problem, where θ represents the unknown lower endpoint and φ the

correlation coefficient. In addition, they did a simulation study to determine the performance

of their estimators for (θ, φ). This help demonstrated the dependence of the estimators on

the model and how if that model is not correct, then there is not much robustness in the

estimators. This result verifies that their estimators for (θ, φ) are strongly consistent.
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Theorem 1.3.3. (McCormick and Mathew, 1993) Let {Zt, t = 0,±1,±2, . . .} be an i.i.d.

sequence of nonnegative random variables having common distribution function F . Define a

stationary sequence by

Xt = θ + φXt−1 + Zt (t ≥ 1) (1.3.5)

where

X0 = θ/(1− φ) +
∞
∑

i=0

φiZ−i (1.3.6)

and θ ≥ 0, 0 ≤ φ < 1. If (θ̂, φ̂) are estimates defined as the value of (θ, φ) maximizing

X̄φ+ θ subject to Xt − θ − φXt−1 ≥ 0, 1 ≤ t ≤ n, then

(θ̂, φ̂)
a.s.−−→ (θ, φ) as n→ ∞.

A particular result from McCormick and Mathew (1993) is that the minimum {Xt}

converges almost surely as n→ ∞.

Corollary 1.3.3. (McCormick and Mathew, 1993) Under the assumptions of Theorem 1.3.3

we have that
n
∧

k=1

Xk
a.s.−−→ θ

1− φ
as n→ ∞.

The next result is very useful when trying to prove weak convergence of a point process

in the situation when Xt is not independent such as Proposition 1.2.3.

Proposition 1.3.2. Let {Xt} be the AR(1) process given by Xt = θ + φXt−1 + Zt (t ≥ 1)

with error distribution F satisfying (1.2.6). If an = F←(1− 1/n) and

Mn =
n
∑

k=1

ε((k/n),a−1
n Xk,Zk+1)

then in Mp(E) we have

Mn ⇒ M

where M =
∑∞

k=1

∑∞
i=0 ε(tk ,φijk,Vk).

28



There has been a good bit of work done on the AR(1) process, but little work for higher

order autoregressive process has been successful. Andĕl, (1989) considered the case of p > 1,

but his straightforward generalization of φ̂ defined in (1.3.2) did not perform well. Under the

AR(2) modelXt = φ1Xt−1+φ2Xt−2+Zt he suggested two estimators of (φ1, φ2). One of which

was based on a maximum likelihood argument. Using simulation he found that this estimator

also converged at a faster rate than the Yule-Walker estimator. Andĕl’s finding is explained

in Feigin and Resnick (1992), whom establish a rate of consistency for the estimators of

φ1 and φ2 in the case p = 2. Feigin and Resnick (1994) used an MLE argument when the

innovations have an exponential distribution. In their article they considered a stationary

autoregressive processes of order p and derive a limit distribution for φ̂ defined in (1.3.2)

which has positive innovations using a linear program for their consistent estimators. Feigin

and Resnick (1992) assumed that {φ1, . . . , φp} were nonnegative. Based on the literature this

is suitable for most modeling applications of data such as, stream flows, interarrival times,

teletraffic applications (video conference scenes), etc. However, Feigin and Resnick (1992)

discovered that the nonnegative assumption can be dropped, adding flexibility to fitting

models to data. The aim of Feigin and Resnick (1999) was to evaluate what happens when

the AR(p) model is not an accurate description of the structure in the time series. They

considered alternatives such as a model with contamination of large outliers, a non-linear

time series, and a moving average MA(q). Another major result in their article is that the

common distribution F can have regular variation of either the left or right tail instead of

just regular variation at one tail. Below is a standard but necessary condition used in many

articles that used a linear program to obtain there estimates.

Condition S (stationarity): The coefficients φ1, . . . , φp satisfy the stationarity condition that

the autoregressive polynomial Φ(z) ≡ 1−∑p
i=1 φiz

i has no roots in the unit disk {z : |z| ≤ 1}.

Furthermore, assume Φ(1) > 0; i.e.,
∑p

i=1 φi < 1.
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1.3.2 Estimation for Bifurcating Autoregressive Processes

Bifurcating autoregressive (BAR) processes are an adaptation of autoregressive (AR)

processes to binary tree structured data. They were first introduced by Cowan and Staudte

(1986) for cell lineage data, where each individual in one generation gives birth to two

offspring in the next generation. Cell lineage data typically consist of observations of some

quantitative characteristic of the cells over several generations of descendants from an initial

cell. BAR processes take into account both inherited and environmental effects to explain

the evolution of the quantitative characteristic under study. More precisely, the original BAR

process is defined as follows. The initial cell is labeled 1, and the two offspring of cell t are

labeled 2t and 2t + 1. Denoted by Xt the quantitative characteristic of individual t. Then,

the first-order BAR process is given, for all t ≥ 1, by

Xt = φX⌊t/2⌋ + ǫt, (1.3.7)

where 0 ≤ φ < 1, ⌊x⌋ is the largest integer which does not exceed x. Thus, we first arrange

the observations (Xt, t = 1, . . . , n) into k generations, the jth generation consisting of 2j−1

observations, j = 1, . . . , k, and n = 2k − 1 total number of observations. Let Aj denote the

set of observations in the jth generation. Thus, if t ∈ Aj then j = log2(t) + 1. Furthermore,

we define Bj to be the set of all observations contained in the first j generations.

The driven noise (ǫ2t, ǫ2t+1) was originally supposed to be independent and identically

distributed with normal distribution. However, two sister cells being in the same environment

early in their lives, (ǫ2t and ǫ2t+1) are allowed to be correlated, inducing a correlation between

sister cells distinct from the correlation inherited from their mother. Huggins and Basawa

(1999) proposed bifurcating ARMA(p, q) models to accommodate for correlation between

the environmental effects of relatives more distant than sisters.

There are several results on statistical inference and asymptotic properties of estimators

for BAR models in the literature. Huggins and Basawa (2000) discussed maximum likeli-
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hood estimation (mle) for a Gaussian BAR(p) process and established the consistency and

asymptotic normality of the mle of the model parameters. Recently, Zhou and Basawa (2004)

introduced non-Gaussian bifurcating autoregressive models. They also considered the asymp-

totic properties of the least-squares estimator (LSE) of parameters in a BAR(p) process, see

Zhou and Basawa (2005a). In all these papers, the process is supposed to be stationary.

Consequently, {Xt} has a time-series representation involving an holomorphic function. The

goal of this dissertation is to improve and extend the previous results in the non-stationary

situation. As previously done by Zhou and Basawa (2004, 2005a, 2005b), we shall make use

of the strong law of large numbers as well as the central limit theorem for martingales. See

Hall and Heyde (1980) for more details on martingales. Based on Bercu, Saporta and Petit

(2009) it should allow us to relax some of the standard assumptions on the driven noise

(ǫt) found in articles on this subject. Below are some keystone results from various articles

mention above.

Theorem 1.3.4. (Zhuo and Basawa, 2005b) Suppose the marginal distributions of ǫ2t and

ǫ2t+1 are both exponential with mean λ and correlation ρ. Let Aj denote the set of observations

in the jth generation. If φ̂ML =
∧n

t=2
Xt

X⌊t/2⌋
. Then we have

lim
k→∞

αk( ˆφML − φ)
d−→ exp(1), for all φ ≥ 0

where

αk =































2k

(1+ρ)(1−φ)
, for 0 ≤ φ < 1 (stationary)

2kk
1+ρ

, for φ = 1 (critical)

2kφk−1W
λ(1+ρ)(2φ−1)

, for φ > 1, (explosive)

with W being a positive random variable defined by W =
∑∞

j=2 φ
−(j−1)ǭj + X1, with ǭj =

2j−1)
∑

t∈Aj
ǫt the average of ǫts corresponding to the jth generation.
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Below is a fundamental result for least-squares estimation of φ = (φ0, . . . , φp)
′
for a

BAR(p) model, where Yt = (1, X[t/2], . . . , X[t/2p])
′
without imposing any specific distribu-

tional assumption on ǫt.

Theorem 1.3.5. (Zhou and Basawa, 2005a)Let φ̂ = (
∑n

t=2p YtY
′

t )
−1
∑n

t=2p YtXt. Under

sufficient conditions, we have

√
n(φ̂− φ)

d−→ N(0, σ2(1 + ρ)A−1) as n→ ∞.

where A is a positive definite matrix.

Consider the BAR(1) model defined in (1.3.7) where the LS estimators are given by

φ̂1 =

∑n
t=1 Ut(Xt − X̄)
∑n

t=1(Xt − X̄)2
where Ut =

ǫ2t + ǫ2t+1

2
and X̄ =

n
∑

t=1

Xt,

φ̂0 = Ū − φ̂1X̄ where Ū =

n
∑

t=1

Ut.

Corollary 1.3.4. (Zhou and Basawa, 2005a) The limit distribution for the LS estimator φ̂1

is
√
n(φ̂1 − φ1)

d−→ N(0, (1 + ρ)(1− φ2
1)).

The following result provides the limiting distribution for the correlation parameter φ̂n in

the first-order bifurcating autoregressive process where we assume {(ǫ2t, ǫ2t+1)} is a sequence

of independent random vectors such that the distribution of Yt = ǫ2t ∧ ǫ2t+1, FY , is regularly

varying at 0 with index α, i.e. for all x > 0

lim
t→0+

FY (tx)

FY (t)
= xα.

Furthermore, we define b−1(t) = inf{x : FY1(x) ≥ 1/t} for t > 1.

The following proposition is one particular result Zhang (2011).
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Proposition 1.3.3. Let φ̂n =
∧n

t=2
Xt

X⌊t/2⌋
. For any x > 0,

P [(E(X1)
α)1/αb(n)(φ̂n − φ) > x] → exp(−xα).

1.4 Outline of Dissertation

In Chapter 2, we consider a first-order autoregressive processes Xt = φXt−1 + Zt, where

the innovations are nonnegative random variables with regular variation at both the right

endpoint infinity and the unknown left endpoint θ. We propose estimates for the autocor-

relation parameter φ and the unknown location parameter θ. The joint limit distribution

of the proposed estimators is derived using point process techniques. A simulation study is

provided to examine the small sample size behavior of these estimates.

In Chapter 3, we consider an infinite order moving average processes Xt =
∑∞

i=0 ciZt−i

where the coefficients are nonnegative and the innovations are positive random variables

with a regularly varying tail at infinity, we provide estimates for the coefficients. We then

apply this result to obtain estimates for the parameters of nonnegative ARMA models. Weak

convergence results for the joint distribution of our estimates are established and a simulation

study is provided to examine the small sample size behavior of these estimates.

In Chapter 4, we consider a first-order bifurcating autoregressive processes Xt = φX⌊t/2⌋+

ǫt, where the innovations are nonnegative random variables with regular variation at both

the right endpoint infinity and the unknown left endpoint θ. We provide estimates for the

autocorrelation parameter φ and unknown location parameter θ. Using a moment gener-

ating technique, the limit distributions of the proposed estimators are directly derived and

compared with an extensive simulation study.

Each chapter is self-contained in terms of describing and highlighting the performance of

the above mentioned methods.
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Estimation for Nonnegative first-order autoregressive processes with an

unknown location parameter and heavy-tail innovations 2
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Abstract

Consider a first-order autoregressive processes Xt = φXt−1 + Zt, where the innovations are

nonnegative random variables with regular variation at both the right endpoint infinity and

the unknown left endpoint θ. We propose estimates for the autocorrelation parameter φ and

the unknown location parameter θ by taking the ratio of two sample values chosen with

respect to an extreme value criteria for φ and by taking the minimum of Xt − φ̂nXt−1 over

the observed series, where φ̂n represents our estimate for φ. The joint limit distribution of

the proposed estimators is derived using point process techniques. A simulation study is

provided to examine the small sample size behavior of these estimates.

AMS 1980 subject classifications. Primary 62M10; secondary 62E20, 60F05.

Keywords: nonnegative time series, autoregressive processes, extreme value estimator,

regular variation, point processes
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2.1 Introduction

In many applications, the desire to model the phenomena under study by nonnegative depen-

dent processes has increased. An excellent presentation of the classical theory concerning

these models can be found, for example, in Brockwell and Davis (1987). Recently, advance-

ments in such models have shifted focus to some specialized features of the model, e.g. heavy

tail innovations or nonnegativity of the model. In this chapter we examine the behavior of

traditional estimates under conditions leading to non-Gaussian limits. For example, the stan-

dard approach to parameter estimation within the AR(1) process is through the Yule-Walker

estimator;

φ̂LS =

∑n−1
t=1 (Xt − X̄)(Xt+1 − X̄)
∑n

t=1(Xt − X̄)2
, where X̄ =

1

n

n
∑

t=1

Xt. (2.1.1)

A slightly different approach presented in McCormick and Mathew (1993) used linear pro-

gramming to obtain estimates for φ and θ under certain optimization constraints. While

there are many established methods to estimate the autocorrelation coefficient in an AR(1)

model, there are just a few approaches on estimating the unknown location parameter in an

AR(1) model. One, was mentioned in McCormick and Mathew (1993) where they considered

θ̂range = Xj∗ − φ̂rangeXj∗−1, where φ̂range =
Xt∗+1 −Xj∗

Xt∗ −Xj∗−1

,

t∗ and j∗ provides the index of the maximal and minimal Xi respectively for 1 ≤ i ≤ n.

In this paper we examine estimation questions and asymptotic properties of alternative

estimates for φ and θ respectively, relating to the model

Xt = φXt−1 + Zt, t ≥ 1, (2.1.2)

where 0 < φ < 1, θ > 0 and {Zt} is an i.i.d. sequence of nonnegative random variables

whose innovation distribution F is assumed to be regularly varying at infinity with index
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−β and regularly varying at θ with index α, where θ, denotes the unknown but positive left

endpoint. As a result of not restricting the innovations {Zt} to be bounded on a finite range,

we can first estimate the autoregressive parameter φ through regular variation at infinity

and then estimate the positive but unknown location parameter through regular variation

at θ, the left endpoint.

While we have mentioned a few established estimation procedures, one notable exception was

that of maximum likelihood. Although typically intractable and intricate in the time series

setting, when the innovations in the AR(1) model are exponential, the maximum likelihood

procedure had a major contribution on the estimation of positive heavy tailed time series.

With these considerations in mind, Raftery (1980) determined the limiting distribution of the

maximum likelihood estimate for the autocorrelation coefficient φ. As a result, the estimator

φ̂n =

n
∧

t=1

Xt

Xt−1
, (2.1.3)

was considered. The realization of this estimator was the stepping stone for the work done

in this paper along with Davis and McCormick (1989) which first considered this alternative

estimator and used a point process approach to obtain the asymptotic distribution of the

natural estimator φ̂n. This was done in the context that the innovations distribution F varies

regularly at 0, the left endpoint, and satisfies some moment condition.

The work presented in this paper is an extension of the work done in Davis and McCormick

(1989) including the following contributions to dependent time series with heavy-tail inno-

vations. The first contribution involves the development of estimates for the autocorrelation

coefficient and unknown location parameter under regular variation at both endpoints, with

a rate of convergence n1/βℓ(n), where ℓ is slowly varying function. The second contribution

involves using an extreme value method, e.g. point processes to establish the asymptotic

distribution of the proposed estimators and weak convergence for the asymptotically inde-

pendent joint distribution. An initial observation is that our estimation procedure is espe-

cially easy to implement for both φ and θ. That is, the autoregressive coefficient φ in the
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causal AR(1) process is estimated by taking the minimum of the ratio of two sample values

while estimation for the unknown location parameter θ was achieved through minimizing

Xt − φ̂nXt−1 over the observed series.

This naturally motivates a comparison between the estimation procedure presented in this

paper and the standard linear programming estimates mentioned above, since within a non-

negative AR(1) model the linear programming estimate reduces to the estimate proposed,

namely, min1≤t≤n(Xt/Xt−1), where {Xt} denotes the AR(1) process. This comparison along

with the comparison between McCormick and Mathew (1993) optimization method and

Bartlett and McCormick (2012) extreme value method was performed through simulation

and is presented in Section 2.3. The results found appear to demonstrate a favorable perfor-

mance for our extreme value method over the three alternative estimators.

The main proofs in this paper rely heavily on point process methods from extreme value

theory. The essential idea is to first establish the convergence of a sequence of point pro-

cesses based on simple quantities and then apply the continuous mapping theorem to obtain

convergence of the desired statistics. More background information on point processes, reg-

ular variation, and weak convergence can be found in Resnick (1986). Also, a nice survey

on linear programming estimation procedures and nonnegative time series can be found in

Andĕl (1989), Andĕl (1991), and Datta and McCormick (1995), whereas more applications

on modeling the phenomena with heavy tailed distributions and ensuing estimation issues

can be found in Resnick (2007).

The rest of the paper is organized as follows: asymptotic limit results for the autocorrelation

parameter φ, unknown location parameter θ, and joint distribution of (φ, θ) are presented

in Section 2.2, while Section 2.3 is concerned with the small sample size behavior of these

estimates through simulation.
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2.2 Asymptotics

The following point process limit result presented in Lemma 2.2.1 is fundamental. It involves

the convergence in distribution of a sequence of point processes, which is ultimately used

to derive the limit distribution for φ̂n. In turn, this will allow us under certain conditions,

to increase the rate of convergence from the square root of n to bn. The significance of

the normalizing constant bn is that it not only can help improve the rate of convergence

of our estimator, but ensures that the limit distribution is non-degenerate. The following

proof was greatly simplified by applying Theorem 4.7 of Kallenberg (1976), which makes use

of dissecting covering semi–rings denoted by DC-semiring. In this paper, DC-semiring are

essentially a family of intervals on the real line. In this regime, we assume that {Xt, t ≥ 0}

is a unique stationary solution to (2.1.2) and is given by

Xt =
∞
∑

j=0

φjZt−j .

By assuming that F is assumed to be regularly varying at infinity with index −β, we are

considering time series with heavy-tailed errors and within certain time series applications

a better model is achieved. Thus, our goal is to capitalize on the behavior of extreme value

estimators over traditional estimators when 0 < β < 2.

Lemma 2.2.1. Let Z
(m)
t = (Zt, Zt−1, . . . , Zt−m+1) and consider the point processes I(m)

n and

I(m) on the space E = (0,∞]m × [θ,∞) defined by

I(m)
n =

n
∑

t=1

ǫ
(b−1

n Z
(m)
t ,Zt+1)

and I(m) =
∞
∑

k=1

m−1
∑

i=0

ǫ(jk·ei,Zi,k),

where
∑∞

k=1 ǫjk is PRM(ν) with ν[x,∞) = x−β, x > 0, e0 = (1, . . . , 0), . . . , em−1 = (0, . . . , 1)

are the usual basis vectors in R
m and {Zi,k} are i.i.d. with Zi,k

d
= Z1 and further {Zi,k} is
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independent of {jk, k ≥ 1}. Then in Mp(E) we have

I(m)
n ⇒ I(m).

Proof. Suppose that U ∈ U where U is a DC-ring of bounded continuity sets. That is,

P [I(m)(∂U) = 0] = 1. Further suppose A ∈ J , where J is a DC-semiring of bounded

continuity sets with respect to I(m). Since I(m) is almost surely simple, we can establish

weak convergence by applying Theorem 4.7 of Kallenberg (1976). With this result, it now

suffices to show as n→ ∞

(C1) P [I(m)
n (U) = 0] → P [I(m)(U) = 0], for all U ∈ U ,

(C2) EI(m)
n (A) → EI(m)(A), for all A ∈ J .

To establish (C2), consider a vector x = (x0, . . . , xm−1) and real y. We write z = (x, y) to

denote z ∈ R
m+1. Now observe that the mean measure EI(m) is concentrated on the set

S =
⋃m−1

i=0 (R+ · ei, [θ,∞)). Thus, if z ∈ S then z ∈ R
m+1, and zi = 0 for all 0 ≤ i ≤ m − 1

except if the two nonzero coordinates zi0 and zm with 0 ≤ i0 ≤ m − 1 are both positive.

Now let A ⊂ S be Borel measurable. Then by writing A =
⋃m−1

i=0 Ai with Ai = A∩Ci, where

Ci = {(x · ei, y) : x ∈ R+, y ∈ [θ,∞)}, for 0 ≤ i ≤ m− 1, we have

EI(m)(A) =
m−1
∑

i=0

∫

πi(A)

dν × dF,

where πi(A) = {(x, y) : (0, . . . , x, . . . , 0, y) = (x · ei, y) ∈ A}. Now, to compute the mean

measure EI(m)
n notice that I(m)

n is a point process such that the limit point process has

no points off the axes. Therefore, we consider taking the one-dimensional jk’s and laying

them down on the axis e0, and then repeating deterministically this pattern on each axis

e1, . . . , em−1. Let us begin by considering a set A ⊂ R
m
+\{0} × [θ,∞) of the form

A = [x0,∞)× . . .× [xm−1,∞)× [θ, y],
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where xi ≥ 0 and
∑m−1

i=0 xi > 0 and y > θ. For the case when exactly one component

of x is positive, we assume without loss of generality (WLOG), that A takes on the form

[x,∞)× [0,∞)× . . .× [0,∞)× [θ, y]. Then

EI(m)
n (A) = nP [Z

(m)
1 ∈ [bnx,∞)× [0,∞)× . . .× [0,∞), Z2 ≤ y]

∼
P [Z1 ≥ bnx]

P [Z1 ≥ bn]
F (y)

∼ ν[x,∞)F (y).

(2.2.1)

For the case when exactly two components of x are positive, we assume (WLOG) that A

takes on the form [x1,∞)× [x2,∞)× [0,∞)× . . .× [0,∞)× [θ, y]. Then

EI(m)
n (A) = nP [Z

(m)
1 ∈ [bnx1,∞)× [bnx2,∞)× [0,∞)× . . .× [0,∞), Z3 ≤ y]

≤ F (y)
P [Z1 ≥ bns]

P [Z1 ≥ bn]
P [Z2 ≥ bns]

→ F (y)s−β · 0 = 0,

where s = min(x1, x2). Finally observe that

EI(m)(A) =
m−1
∑

i=0

∫

πi(A)

dν × dF =

∫

[x,∞)×[0,∞)×...×[0,∞)×[θ,y]

dν × dF = ν[x,∞)F (y).

Therefore (C2) holds since EI(m)
n (A) → EI(m)(A), for all A ∈ J .

To establish (C1) we consider sets of the same form

U =

k
⋃

l=1

Al, where Al = [x(l,1),∞)× . . .× [x(l,m),∞)× [θ, y(l,m+1)]

are disjoint sets for 1 ≤ l ≤ k. As we have seen in the proof for (C2), the limit process can

have no points off the axes. Thus, we consider the case when exactly one component of x is
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positive. For simplicity, we suppose (WLOG) that U takes on the form

U = [0,∞)× [0,∞)× . . .× [x,∞)× [θ, y].

Then

(I(m)
n (U) = 0) =

n
⋂

t=1

((Zt, Zt+1) /∈ [bnx,∞)× [θ, y]) . (2.2.2)

In order to calculate the probability in (2.2.2) we consider the following blocking argument.

Since the vectors (Zt, Zt+1) are 1-dependent we need only separate the blocks by 1 to achieve

independence between blocks. Therefore, we define rn = ⌊n/k⌋ for large k, and h = ⌊n/rn⌋.

Then for i = 1, . . . , h set

Ji = [(i− 1)rn + 1, . . . , irn − 1] and J
′

i = {irn}.

Now we define the events

χi = {(Zt, Zt+1) /∈ [bnx,∞)× [θ, y], for all t ∈ Ji}

and

χ
′

i = {(Zirn, Zirn+1) /∈ [bnx,∞)× [θ, y]}.

In this way, the events χi, i = 1, . . . , h are independent and equiprobable. For notational

purposes, we define Ẽ = [bnx,∞)× [θ, y]. Then we have

P [χ1] = 1− P [χc
1],

where P [χc
1] = P [(Zt, Zt+1) ∈ Ẽ, for some t ∈ J1]. Now applying the Bonferroni inequality,

we have

P [χc
1] ≤ (rn − 1)P [(Z1, Z2) ∈ Ẽ],
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which from (2.2.1) is asymptotically equivalent to 1
k
x−βF (y) as n→ ∞. P [χc

1] is also bounded

below by

(rn − 1)P [(Z1, Z2) ∈ Ẽ]−
∑

1≤s<t≤rn−1

P [{(Zs, Zs+1) ∈ Ẽ} ∩ {(Zt, Zt+1) ∈ Ẽ}]

which as n→ ∞ is asymptotically equivalent to

∼
1

k
x−βF (y)−

rn−2
∑

s=1

P [{(Zs, Zs+1) ∈ Ẽ} ∩ {(Zs+1, Zs+2) ∈ Ẽ}]

∼
1

k
x−βF (y)− 1

2
(rn − 3)(rn − 2)P 2[(Z1, Z2) ∈ Ẽ]

∼
1

k
x−βF (y)− 1

2k2
x−2βF 2(y).

Now recall that we are interested in calculating the probability that the point process I(m)
n (U)

contains no points, which from (2.2.2) is equivalent to P [
⋂n

t=1(Zt, Zt+1) /∈ Ẽ]. Therefore, to

complete the proof it suffices to show that

P

[

n
⋂

t=1

(Zt, Zt+1) /∈ Ẽ

]

= P [χ1]
h + o(1), as n→ ∞.

However,

n
⋂

t=1

(Zt, Zt+1) /∈ Ẽ =
h
⋂

i=1

χi ∩
h
⋂

i=1

χ′i ∩ {(Zt, Zt+1) /∈ Ẽ, for t = rnh+ 1, . . . , n}

⊂
h
⋂

i=1

χi.

Thus, the difference of the two sets above is contained in

h
⋃

i=1

χ
′c
i ∪ {(Zt, Zt+1) ∈ Ẽ, for some t = rnh+ 1, . . . , n}.
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But this implies that the latter set has probability at most 2n/rnP [(Z1, Z2) ∈ Ẽ]. Thus, as

n→ ∞ this set is asymptotically equivalent to

∼
2

rn
x−βF (y) → o(1).

Hence,

lim
k→∞

lim
n→∞

P [I(m)
n (U) = 0] = lim

k→∞
lim
n→∞

P

[

n
⋂

t=1

(Zt, Zt+1) /∈ Ẽ

]

= lim
k→∞

P

[

k
⋂

i=1

χi

]

+ o(1)

= lim
k→∞

P [χ1]
k + o(1)

= lim
k→∞

(

1− 1

k
x−βF (y) + o

(

1

k

))k

= e−x
−βF (y).

Therefore (C1) holds since

e−x
−βF (y) = P [I(m)(U) = 0].

Lemma 2.2.2. Let ξn and ξ be the point processes on the space E = (0,∞]× [θ,∞) defined

by

ξn =
n
∑

t=1

ǫ(b−1
n Xt−1,Zt)

and ξ =
∞
∑

k=1

∞
∑

i=0

ǫ(φijk,Zi,k)

where
∑∞

k=1 ǫjk and {Zi,k} are as defined in the statement of Lemma 2.2.1. Then in Mp(E),

ξn ⇒ ξ.
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Proof. First observe that the points defined in ξn are not independently identically dis-

tributed. Therefore, to handle the dependence, we begin by fixing an integer m and defining

X
(m)
t =

m−1
∑

i=0

φiZt−i

as an approximation of Xt. Now we can think of X
(m)
t as a simple functional of the vector

Z
(m)
t . Applying Lemma 2.2.1 to the point processes

Ĩ(m)
n =

n
∑

t=1

ε
(b−1

n Z
(m)
t−1,Zt)

and I(m) =

∞
∑

k=1

m−1
∑

i=0

ε(jk·ei,Zi,k).

we have that

Ĩ(m)
n ⇒ I(m).

We now consider using a continuous mapping argument to obtain convergence for our

point process ξn and then apply Slutsky’s lemma to remove m. Hence, we define the map

T : (0,∞]m × [θ,∞) → (0,∞]× [θ,∞) given by

T (z, y) =















(
∑m−1

i=0 φizm−1−i, y) if
∨m−1

i=0 zi <∞;

(∞, y) otherwise .

Now if q ∈ Mp(E) is a point measure of ξn, then the mapping T̂ : Mp((0,∞]m × [θ,∞)) →

Mp((0,∞]× [θ,∞)) defined by

T̂ (q) = q ◦ T−1
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can be applied to (Proposition 3.18 in Resnick (1987)) in order to obtain

n
∑

t=1

ε
(b−1

n X
(m)
t−1 ,Zt)

=
n
∑

t=1

ε(b−1
n

∑m−1
i=0 φiZt−1−i,Zt)

= T̂

(

n
∑

t=1

ε
(b−1

n Z
(m)
t−1,Zt)

)

⇒ T̂

(

∞
∑

k=1

m−1
∑

i=0

ε(jk·ei,Zi,k)

)

=
∞
∑

k=1

m−1
∑

i=0

εT (jk·ei,Zi,k)

d
=
∞
∑

k=1

m−1
∑

i=0

ε(φijk,Zi,k). (2.2.3)

Now notice as m→ ∞

∞
∑

k=1

m−1
∑

i=0

ε(φijk,Zi,k) →
∞
∑

k=1

∞
∑

i=0

ε(φijk,Zi,k) (2.2.4)

pointwise in the vague metric. In order to complete the proof, we need to show that the

point process
n
∑

t=1

ε
(b−1

n X
(m)
t−1 ,Zt)

is equivalent to
n
∑

t=1

ε(b−1
n Xt−1,Zt)

.

Equations (2.2.3), (2.2.4), and Lemma 4.25 in Resnick (1987) show that it is enough to prove

for any η > 0

lim
m→∞

lim sup
n→∞

P

[

d

(

n
∑

t=1

ε
(b−1

n X
(m)
t−1 ,Zt)

,

n
∑

t=1

ε(b−1
n Xt−1,Zt)

)

> η

]

= 0 (2.2.5)

where d is the vague metric described in (1.2.8) as a complete separable metric space. Now,

applying Theorem 4.2 in Billingsley (1968) and the definition of the vague metric, proving
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(2.2.5) is equivalent to checking for all η > 0 and f ∈ C+
K(E1)

lim
m→∞

lim sup
n→∞

P

[

n
∑

t=1

f(b−1n X
(m)
t−1 , Zt)−

n
∑

t=1

f(b−1n Xt−1, Zt) > η

]

= 0. (2.2.6)

To verify this, let γ > 0 and without loss of generality suppose the compact support of f

is contained in {x ∈ (0,∞] : x > γ} × [θ, y]. Since f has compact support it is uniformly

continuous and given ǫ > 0 there exists a δ > 0 such that

|f(x, z)− f(w, z)| ≤ ǫ

whenever |x−w| < δ. Thus, ǫ→ 0 as δ → 0. After all the first component of f is of interest,

hence we consider decomposing the probability in (2.2.6) according to whether

V := b−1n

n
∨

t=1

|X(m)
t−1 −Xt−1| < δ or V c := b−1n

n
∨

t=1

|X(m)
t−1 −Xt−1| ≥ δ

occurs.

Case 1: Suppose that V occurs

Assuming δ < γ/2, if b−1n X
(m)
t−1 ≤ γ/2 then f(b−1n X

(m)
t−1 , Zt) = f(b−1n Xt−1, Zt) = 0. However, if

b−1n X
(m)
t−1 > γ/2, then the probability in (2.2.6) is bounded above by

P

[

ǫ

n
∑

t=1

ε
(b−1

n X
(m)
t−1 ,Zt)

({x : x > γ/2} × [θ, y]) > η

]

,

and as a result of (2.2.3) as n→ ∞ this converges to

P

[

∞
∑

k=1

m−1
∑

i=0

ε(φijk,Zi,k)({x : x > γ/2} × [θ, y]) > η/ǫ

]

.
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Therefore, as m→ ∞ we have

P

[

∞
∑

k=1

∞
∑

i=0

ε(φijk,Zi,k)({x : x > γ/2} × [θ, y]) > η/ǫ

]

.

By choosing ǫ > 0 small, the preceding probability goes to zero as δ → 0 since the point

process N has radon measure on the compact set describe above.

Case 2: Suppose that V c occurs

Note by stationarity

P [V c] ≤ nP
[

|X(m)
t−1 −Xt−1| > bnδ

]

= nP

[

∞
∑

i=m

φiZt−1−i > bnδ

]

.

Now applying Lemma 4.24 in Resnick (1987) this is asymptotic equivalent to

∼ δ−β
∞
∑

i=m

φiβ.

Therefore,

lim
m→∞

lim sup
n→∞

P

[

n
∑

t=1

f(b−1n X
(m)
t−1 , Zt)−

n
∑

t=1

f(b−1n Xt−1, Zt) > η;V c

]

≤ lim
m→∞

δ−β
∞
∑

i=m

φiβ = 0.

This completes the proof since the point process

n
∑

t=1

ε
(b−1

n X
(m)
t−1 ,Zt)

is equivalent to

n
∑

t=1

ε(b−1
n Xt−1,Zt)

.

Remark. Unlike the situation when the points on different axes are independent this

situation is very different since the pattern of points on each axis is the same, creating
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dependence among points. Therefore, the limit process ξ is not Poisson random measure

and the reason for this has to do more with the point process ξ
(m)
n than ξ. That is, the

continuous mapping theorem bridged the gap between I(m)
n and ξn, where I(m) was obtained

by taking the one-dimensional jk’s and laying them down on axis e0 and then repeating

deterministically this pattern on each axis e1, . . . , em−1. Therefore, if the largest innovation

Zt occurs on axis em−1, then we have a mark jk in the m − 1 location for the point Zt+1,

but if the large innovation occurs on axis em−2, then we have the same mark jk in the m− 2

location for a different point Zt+2. Hence, we obtain a collection of points in ξ on different

axes which are not independent. To resolve this problem, we consider the point process

N =
∑∞

k=1 ε(jk,Wk), which is PRM(ν1 × G) and Wk =
∧∞

i=0 φ
−iZi,k is an i.i.d. sequence of

random variables, independent of
∑∞

k=1 εjk with G(w) = P [W1 ≤ w]. This then implies for

all sets of the form Qr = {(g, h) : h
g
≤ r, g, h > 0} that

P [ξ(Qr) = 0] ≡ P [N (Qr) = 0].

Theorem 2.2.1. Let {Xt, t ≥ 0} be the stationary solution to the AR(1) recursion Xt =

φXt−1 + Zt and consider the estimator φ̂n =
∧n

t=1
Xt

Xt−1
for φ. Under the assumption that

0 ≤ φ < 1 and the innovation distribution F has regularly varying right tail with index −β

and finite positive left endpoint θ, then

lim
n→∞

P [bn(φ̂n − φ) > x] = e−x
βEW−β

for all x > 0,

where W =
∧∞

i=0
Zi

φi and bn = F←(1− 1/n).

Proof. Since

P [bn(φ̂n − φ) > x] = P

[

n
∧

t=1

Zt

b−1n Xt−1
> x

]

, (2.2.7)

let us define on a subset of R2
+, Qx = {(x1, x2) : x2

x1
≤ x, x1, x2 > θ}. Then it suffices to

show that there are no points t that satisfies the condition in Qx. Thus to complete the
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proof, let x2 = Zt and x1 = b−1n Xt−1, then notice that (2.2.7) is equivalent to P [ξn(Qx) = 0].

Furthermore, observe that Qx is a bounded set in E = (0,∞] × [θ,∞) provided θ > 0.

Therefore assuming φ > 0 and applying Lemma 2.2.2 we have

P [ξn(Qx) = 0] ⇒ P [ξ(Qx) = 0]

= P

[

∞
∧

i=0

Zi,k

φijk
> x

]

= P [N (Qx) = 0]

= P

[

∞
∑

k=1

ε(jk,Wk)(Qx) = 0

]

.

But N =
∑∞

k=1 ε(jk,Wk) ∼ PRM(ν1 ×G), where

ν1 ×G(Qx) =

∫ ∞

θ

ν1[w/x,∞)dG(w) =

∫ ∞

θ

(w

x

)−β

dG(w)

= xβ
∫ ∞

θ

w−βdG(w)

= xβEW−β.

Therefore,

lim
n→∞

P [bn(φ̂n − φ) > x] = lim
n→∞

P [ξn(Qx) = 0]

= P [ξ(Qx) = 0]

= P [N (Qx) = 0]

= e−x
βEW−β

.

The previous proof relied on point processes and dissecting covering semi–rings to estab-

lish weak convergence of ξn and the limiting distribution of φ̂n. The following alternative

proof, makes the necessary adjustments to the proof presented in Theorem 2.4 in Davis and

Resnick (1985) to achieve the same limiting distribution for φ̂n. Unlike the previous result,
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which makes no use of an ARMA structure and only applies to autoregressive processes of

order one, this result applies to general linear models subject to usual summability condi-

tions on the coefficients. In that regard for this result, we assume that {Xn, n ≥ 0} is the

stationary linear process given by

Xn =
∞
∑

j=0

cjZn−j

with
∑∞

j=0 |cj |δ <∞ for some 0 < δ < β, δ ≤ 1. Furthermore for this result we may relax our

assumptions on the innovation distribution and we require that |Z1| has a regularly varying

tail distribution, i.e. P (|Z1| > x) = x−βℓ(x), x > 0 for a slowly varying function ℓ and the

innovation distribution is tail balanced

P (Z1 > x)

P (|Z1| > x)
→ p and

P (Z1 ≤ −x)
P (|Z1| > x)

→ q as x→ ∞.

Define point processes

ξn =

n
∑

k=1

ǫ(b−1
n Xk−1,Zk),

n ≥ 1

and let
∑

k≥1 ǫjk denote PRM(ν) on R0 = R\{0} where ν has Radon-Nikodym derivative

with respect to Lebesgue measure

dν

dλ
(x) = pβx−β−11(0,∞)(x) + qβ|x|−β−11(−∞,0)(x).

Let {Zi,k, i ≥ 0, k ≥ 1} be an iid array with Zi,k
d
= Z1 and independent of

∑∞
k=1 ǫjk . Define

ξ =
∞
∑

k=1

∞
∑

i=0

ǫ(cijk,Zi,k).

Our basic result is to show thatMp(R0×R) equipped with the topology of vague convergence

ξn
d−→ ξ in Mp
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which is close in statement and spirit to Theorem 2.4 in Davis and Resnick (1985). In view

of the commonality of the two results, we present only the needed changes to the Davis and

Resnick proof to accommodate the current setting. Aside from keeping track of the time

when points occur, i.e. large jumps, the difference in the point processes considered here

with those in Davis and Resnick (1985) is the inclusion of marks, i.e. the second component

of the point (b−1n Xk−1, Zk). This complication induces an additional weak dependence in the

points which is addressed in Lemma 2.2.4 through a straight forward blocking argument.

First, we establish weak convergence of marked point processes of a normalized vector of

innovations. For a positive integer m define

Z
(m)
k = (Zk, Zk−1, . . . , Zk−m+1)

and point process

I(m)
n =

n
∑

k=1

ǫ
(b−1

n Z
(m)
k ,Zk+1)

, n ≥ 1.

Let ei = (0, . . . , 1, . . . , 0), 1 ≤ i ≤ m denote the standard basis vectors for R
m. Define an

associated marked point process with the first component placed on an axis by

Ĩ(m)
n =

n
∑

k=1

m
∑

i=1

ǫ(b−1
n Zkei,Zk+i).

In the following Lemma, we show that I(m)
n and Ĩ(m)

n are asymptotically indistinguishable in

the following sense. Let Rm
0 = R

m\{0} and E = R
m
0 × R. Consider the class of rectangles

S = {R× (−∞, x] : R =
m×
i=1

(ci, di], x <∞ and R̄× (−∞, x] ⊂ E}.

Lemma 2.2.3. As n tends to infinity, I(m)
n (B)− Ĩ(m)

n (B)
p−→ 0 for all B ∈ S.

Proof. Following the proof presented in Proposition 2.1 of Davis and Resnick (1985), suppose

that B ∈ S is such that for some 1 ≤ i′ ≤ m,B ∩ (Rei′ × R) 6= ∅. As noted in Davis and
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Resnick (1985) for all i 6= i′, one has ci < 0 < di. Observe that

I(m)
n (B) ≤ I(m)

n (R× . . .× [ci′, di′]× . . .× R× (−∞, x])

=
n−i′+1
∑

k=−i′+2

ǫ(b−1
n Zkei′ ,Zk+i′)

(R× . . .× [ci′ , di′]× . . .× R× (−∞, x]).
(2.2.8)

Similarly let c =
∨

i 6=i′ ci < 0 and d =
∧

i 6=i′ di > 0. Then

I(m)
n (B) ≥ I(m)

n ([c, d]× . . .× [ci′, di′]× . . .× [c, d]× (−∞, x])

≥ I(m)
n (R× . . .× [ci′ , di′]× . . .× R× (−∞, x])−

∑

i 6=i′

I(m)
n (Ei × (−∞, x])

(2.2.9)

where y = (y1, . . . , ym) ∈ Ei according to yi 6∈ [c, d] and yi′ ∈ [ci′ , di′]. Note that

E[I(m)
n (Ei × (−∞, x])] ≤ nP

(

1

bn
|Z1| > |c| ∧ d, 1

bn
|Z1| > |ci′| ∧ |di′|

)

= o(1). (2.2.10)

Thus from (2.2.8) - (2.2.10) we obtain

E|I(m)
n (B)− Ĩ(m)

n (B)| ≤ 2(i′ − 1)P

(

1

bn
Z1 > |ci′ | ∧ |di′|

)

+ o(1)

= o(1) as n→ ∞.

(2.2.11)

Then the result follows as in Davis and Resnick (1985), Proposition 2.1, completing the

proof.

Lemma 2.2.4. Let V(m)
n and V(m) be the point processes on the space E = R0 ×R

m defined

by

V(m)
n =

n
∑

k=1

ǫ
(b−1

n Zk,Z
(m)
k+m)

and V(m) =

∞
∑

k=1

ǫ
(jk,Y

(m)
k )

where {Y(m)
k , k ≥ 1} is an iid sequence with Y

(m)
1

d
= (Z1, . . . , Zm) and is independent of

∑∞
k=1 ǫjk . Then in Mp(E),

V(m)
n

d−→ V(m).
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Proof. We employ a blocking argument to establish this result. Let rn be a sequence of

integers such that r = rn → ∞ as n → ∞ and r = o(n). Let h = ⌊n/r⌋ and l ≥ m. Define

blocks

In,s = [r(s− 1) + 1, . . . , rs− l], Jn,s = [rs− l + 1, . . . , rs] for 1 ≤ s ≤ h

and

Jn,h+1 = [rh+ 1, . . . , n].

Then it is clear that for s 6= t

σ(Zk+i, k ∈ In,s, 0 ≤ i ≤ m) ⊥⊥ σ(Zk+i, k ∈ In,t, 0 ≤ i ≤ m).

Write

V(m)
n,s =

∑

k∈In,s

ǫ
(b−1

n Zk,Z
(m)
k+m)

and Ṽ(m)
n,t =

∑

k∈Jn,t

ǫ
(b−1

n Zk,Z
(m)
k+m).

Then

V(m)
n =

h
∑

s=1

V(m)
n,s +

h+1
∑

t=1

Ṽ(m)
n,t . (2.2.12)

Let B ⊂ E be a disjoint union of rectangles

B =

j
⋃

i=1

Bi (2.2.13)

where Bi = [ci, di] × Ri with Ri =×m

l=1
[xil, yil]. Let µ = ν × F × . . .× F denote the mean

measure of V(m) which is PRM(µ) on E. To complete the proof we first show that for all sets

B of the form given in (2.2.13) that

lim
n→∞

P
(

V(m)
n (B) = 0

)

= exp (−µ(B)). (2.2.14)
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The above limit result follows from the easily verifiable relations:

P
(

V(m)
n,1 (B) = . . . = V(m)

n,h (B) = 0
)

= P h
(

V(m)
n,1 (B) = 0

)

; (2.2.15)

P
(

V(m)
n,s (Bk) ∧ V(m)

n,s (Bl) ≥ 1
)

= O

(

r2

n2

)

for 1 ≤ k 6= l ≤ j;

P

(

V(m)
n,s

(

j
⋃

i=1

Bi

)

≥ 1

)

=

j
∑

i=1

P
(

V(m)
n,s (Bi) ≥ 1

)

+O

(

r2

n2

)

; (2.2.16)

P
(

V(m)
n,1 (Bi) ≥ 1

)

=
r

n
µ(Bi)(1 + o(1)); (2.2.17)

and
h+1
∑

t=1

Ṽ(m)
n,t (B)

p−→ 0 as n→ ∞. (2.2.18)

Indeed, in view of (2.2.12) and (2.2.18), (2.2.14) is equivalent to showing

lim
n→∞

P

(

h
∑

s=1

V(m)
n,s (B) = 0

)

= exp (−µ(B)) (2.2.19)

and the above relation holds by (2.2.15), (2.2.16), and (2.2.17), viz.

P

(

h
∑

s=1

V(m)
n,s (B) = 0

)

=
(

1− P
(

V(m)
n,1 (B) ≥ 1

))h

=

(

1−
j
∑

i=1

r

n
µ(Bi) + o(r/n)

)h

→ exp (−
j
∑

i=1

µ(Bi)).

It is immediate that for a rectangle B = [c, d]××m

i=1
[xi, yi] ⊂ E we have

lim
n→∞

E[V(m)
n (B)] = µ(B). (2.2.20)
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Therefore the result is seen to hold by (2.2.14) and (2.2.20) by application of Theorem 4.7

in Kallenberg (1976).

Lemma 2.2.5. Let I(m)
n and I(m) be point processes on the space E = R

(m)
0 × R

I(m)
n =

n
∑

k=1

ǫ
(b−1

n Z
(m)
k ,Zk+1)

, n ≥ 1 and I(m) =

∞
∑

k=1

m
∑

i=1

ǫ(jkei,Zi,k).

Then in Mp(E),

I(m)
n

d−→ I(m).

Proof. We begin by applying the argument used in Theorem 2.2 of Davis and Resnick (1985)

with the modification that the relevant composition of maps of point processes is given by

∑

k≥1

ǫ(uk ,vmk ,...,v1k) 7→
(

∑

k≥1

ǫ(uk,vmk), . . . ,
∑

k≥1

ǫ(uk,v1k)

)

7→
(

∑

k≥1

ǫ(uke1,v1k), . . . ,
∑

k≥1

ǫ(ukem,vmk)

)

7→
∑

k≥1

m
∑

i=1

ǫ(ukei,vik).

Each map being continuous, the composition is a continuous map from Mp(R0 × R
m) to

Mp(R
(m)
0 × R) with each space being equipped with the topology of vague convergence.

Therefore by the continuous mapping theorem and Lemma 2.2.4 we obtain

Ĩ(m)
n =

∞
∑

k=1

m
∑

i=1

ǫ(b−1
n Zkei,Zk+i)

d−→
∞
∑

k=1

m
∑

i=1

ǫ(jkei,Zi,k) = I(m). (2.2.21)

Finally we complete the proof by Lemma 2.2.3 and (2.2.21) arguing as in Davis and Resnick

(1985).

We are now ready to present our fundamental result.
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Theorem 2.2.2. Let ξn and ξ be the point processes on the space E = R0 × R defined by

ξn =
n
∑

k=1

ǫ(b−1
n Xk−1,Zk)

, n ≥ 1 and ξ =
∞
∑

k=1

∞
∑

i=0

ǫ(cijk,Zi,k)

where
∑∞

k=1 ǫjk is PRM(ν) and {Zi,k, i ≥ 0, k ≥ 1} is an iid array with Zi,k
d
= Z1 and

independent of
∑∞

k=1 ǫjk . Then in Mp(E),

ξn
d−→ ξ.

Proof. Remark. Apart from considering a time coordinate and restricting the process to

an AR(1) process, the above Theorem 2.2.2 and Theorem 3.1 in McCormick and Mathew

(1993) consider essentially the same point process limit result. However, their result gave a

wrong limit point process. This error is corrected in the current paper.

Observe that the map

(zk, zk−1, . . . , zk−m+1) 7→
m−1
∑

i=0

cizk−i

induces a continuous map on point processes given by

∞
∑

k=1

ǫ(zk ,zk−1,...,zk−m+1,zk+1) 7→
∞
∑

k=1

ǫ(
∑m−1

j=0 cjzk−j ,zk+1).

Thus we obtain from Lemma 2.2.5 that

n
∑

k=1

ǫ(b−1
n

∑m−1
i=0 ciZk−i,Zk+1)

d−→
∞
∑

k=1

m−1
∑

i=0

ǫ(cijk,Zi,k). (2.2.22)

The result now follows from (2.2.22) by the same argument in Davis and Resnick (1985) to

finish their Theorem 2.4.
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Returning to the AR(1) model under discussion in this paper and the estimate φ̂n given in

(2.1.3), we obtain the following asymptotic limit result.

Theorem 2.2.3. Let {Xt, t ≥ 0} be the stationary solution to the AR(1) recursion Xt =

φXt−1 + Zt and φ̂n =
∧n

t=1
Xt

Xt−1
. Under the assumptions that 0 < φ < 1 and the innovation

distribution F has regularly varying right tail with index −β and finite positive left endpoint

θ,

lim
n→∞

P
(

bn(φ̂n − φ) > x
)

= e−x
βEW−β

for all x > 0,

where W =
∧∞

i=0
Zi

φi and bn = F←(1− 1/n).

Proof. For x > 0 define a subset

Qx = {(x1, x2) :
x2
x1

≤ x, x1 > 0, x2 ≥ θ}.

Then note that for the point processes ξn =
∑n

k=1 ǫ(b−1
n Xk−1,Zk)

, we have

{

ξn
(

Qx

)

= 0
}

=
{

n
∧

k=1

Zk

b−1n Xk−1
> x

}

=
{

bn
(

φ̂n − φ
)

> x
}

.

Applying Theorem 2.2.2 in the case of an AR(1) process so that ci = φi, i ≥ 0, we have

ξn
d→ ξ =

∞
∑

k=1

∞
∑

i=0

ǫ(φijk,Zi,k).

Note that as a subset of E = (0,∞] × [θ,∞), the set Qx is a bounded continuity set with

respect to the limit point process ξ so that

lim
n→∞

P
(

bn
(

φ̂n − φ
)

> x
)

= P
(

ξ
(

Qx

)

= 0
)

= P
(

∞
∧

k=1

∞
∧

i=0

Zi,k

φijk
> x

)

= P
(

∞
∧

k=1

Wk

jk
> x

)
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where (Wk =
∧∞

i=0 φ
−iZi,k, k ≥ 1) is an i.i.d. sequence independent of (jk, k ≥ 1). Let

ξ̃ =
∑

k≥1

ǫ(jk ,Wk). (2.2.23)

Then by Proposition 5.6 in Resnick (2007), we have that if G denotes the distribution of

W1, then ξ̃ is a Poisson random measure on E with mean measure µ = ν × G, where

ν(dx) = βx−β−11[0,∞)(x)dx. Using (2.2.23) we can write

P
(

∞
∧

k=1

Wk

jk
> x

)

= P
(

ξ̃(Qx) = 0
)

= exp (−µ(Qx)).

Since µ(Qx) = xβEW−β, the result follows.

Corollary 2.2.1. Under conditions given in Theorem 2.2.3,

φ̂n
a.s−→ φ.

Proof. Since bn = F←(1 − 1/n) → ∞ we have φ̂n
p−→ φ. But this implies φ̂n

a.s.−−→ φ since

φ̂n ≥ φ and is non-increasing.

Let us now define our estimate of θ:

θ̂n =
∧

t∈In

(Xt − φ̂nXt−1),

where we define the index set In = {t : 1 ≤ t ≤ n and Xt−1 ≤ (anbn)
ρ} where 0 < ρ < 1 is a

fixed value.

Lemma 2.2.6. Under the assumptions that F is regularly varying with index α at its positive

left endpoint θ and F is regularly varying with index −β at infinity, its right endpoint, and

α > β, then

a−1n

(

θ̂n −
∧

t∈In

Zt

)

p→ 0, as n→ ∞,
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where an = F←(1/n)− θ. Furthermore, for any y ≥ 0

lim
n→∞

P
(

a−1n (θ̂n − θ) > y
)

= lim
n→∞

P
(

a−1n (
n
∧

t=1

Zt − θ) > y
)

= e−y
α

.

Proof. Since α > β, we have limn→∞ anbn = ∞. Therefore since
(

bn(φ̂n−φ), n ≥ 1
)

is a tight

sequence by Theorem 2.2.3 and since maxt∈In Xt−1/(anbn)
ρ ≤ 1 with 0 < ρ < 1, we have

a−1n (φ̂n − φ)
∨

t∈In

Xt−1
p→ 0.

The first statement now follows since

a−1n

∣

∣

∣
θ̂n −

∧

t∈In

Zt

∣

∣

∣
≤ a−1n |φ̂n − φ|

∨

t∈In

Xt−1.

For the second statement observe

0 ≤ P
(

a−1n (
∧

t∈In

Zt − θ) > y
)

− P
(

a−1n (
n
∧

t=1

Zt − θ) > y
)

= P
(

a−1n (

n
∧

t=1

Zt − θ) ≤ y < a−1n (
∧

t∈In

Zt − θ)
)

≤ P
(

⋃

1≤t≤n

(

Xt−1 > (anbn)
ρ and a−1n (Zt − θ) ≤ y

)

)

≤ nP (X0 > (anbn)
ρ)P (Z1 ≤ any + θ) = o(1). (2.2.24)

The result for the second statement now follows from (2.2.24) and the first part of the lemma.

Finally, the identification of the limit distribution is well known.

A useful observation follows from this lemma which we state as a corollary.

Corollary 2.2.2. Under the assumptions of Lemma 2.2.6 for any x, y > 0

lim
n→∞

{

P
(

bn(φ̂n − φ) > x, a−1n (θ̂n − θ) > y
)

− P
(

bn(φ̂n − φ) > x, a−1n (
n
∧

t=1

(Zt − θ) > y
)}

= 0.
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Proof. By Lemma 2.2.6 we have

lim
n→∞

{

P
(

bn(φ̂n − φ) > x, a−1n (θ̂n − θ) > y
)

− P
(

bn(φ̂n − φ) > x, a−1n (
∧

t∈In

Zt − θ) > y
)}

= 0.

The result then follows from

0 ≤ E1{bn(φ̂n − φ) > x}
(1{a−1n (

∧

t∈In

Zt − θ) > y} − 1{a−1n (

n
∧

t=1

Zt − θ) > y}
)

≤ P
(

a−1n (
∧

t∈In

Zt − θ) > y
)

− P
(

a−1n (
n
∧

t=1

Zt − θ) > y
)

.

Corollary 2.2.2 allows a simplification in determining the joint asymptotic behavior of

(φ̂n, θ̂n) by allowing us to replace θ̂n with min1≤t≤n Zt. The next lemma will provide another

useful simplification - this time on φ̂n.

For a positive integer m define

X
(m)
t =

m−1
∑

i=0

φiZt−i.

Lemma 2.2.7. Let U
(m)
n and Un be defined as

U (m)
n =

n
∧

t=1

Zt

b−1n X
(m)
t−1

and Un =
n
∧

t=1

Zt

b−1n Xt−1
.

Then for any ǫ > 0

lim
m→∞

lim
n→∞

P (|U (m)
n − Un| > ǫ) = 0.

Proof. We first note for any positive M that

P (|U (m)
n − Un| > ǫ) = P

(

U (m)
n Un

∣

∣

∣

∣

1

U
(m)
n

− 1

Un

∣

∣

∣

∣

> ǫ

)

≤ P

(∣

∣

∣

∣

1

U
(m)
n

− 1

Un

∣

∣

∣

∣

> ǫ/M2

)

+ P (U (m)
n > M).
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In order to calculate P (| 1

U
(m)
n

− 1
Un

| > ǫ) we partition Xt. That is, we write

Xt = X
(m)
t +X

′(m)
t

where X
′(m)
t =

∑∞
j=m φ

jZt−j , so that

0 ≤
n
∨

t=1

Xt−1

Zt

−
n
∨

t=1

X
(m)
t−1

Zt

≤
n
∨

t=1

X
′(m)
t−1

Zt

.

Define point processes

ξ(m)
n =

n
∑

t=1

ǫ
(b−1

n X
′(m)
t−1 ,Zt)

and ξ(m) =
∞
∑

k=1

∞
∑

i=m

ǫ(φijk,Zi,k)

where {jk, k ≥ 1} and {Zi,k, k ≥ 1, i ≥ 0} have the distributional properties given in

Theorem 2.2.3. Applying Theorem 2.2.3 with ci = φi for i ≥ m and ci equal to 0 otherwise,

we obtain

ξ(m)
n

d→ ξ(m).

Then letting for x > 0

Rx = {(u, v) : u > 0, v > θ, and
u

v
> x},

we have

lim
n→∞

P
(

n
∨

t=1

b−1n X
′(m)
t−1 /Zt ≤ x

)

= lim
n→∞

P
(

ξ(m)
n (Rx) = 0

)

= P
(

ξ(m)(Rx) = 0
)

.

Setting

V
(m)
k =

∞
∨

i=m

φi

Zi,k

and ζ (m) =
∞
∑

k=1

ǫ
(jk ,V

(m)
k )
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we have

P
(

ξ(m)(Rx) = 0
)

= P
(

∞
∨

k=1

jkV
(m)
k ≤ x

)

= P
(

ζ (m)(Sx) = 0
)

,

where

Sx = {(u, v) : u > 0, v > θ, and uv > x}.

Since ζ (m) is Poisson random measure with mean measure µm = ν ×Hm where V
(m)
1 ∼ Hm

and

µm(Sx) = x−βE
(

V
(m)
1

)β

,

we obtain

lim
n→∞

P
(

n
∨

t=1

b−1n X
′(m)
t−1 /Zt ≤ x

)

= exp
(

− x−βE
(

V
(m)
1

)β
)

.

Next since
∣

∣

∣

∣

1

U
(m)
n

− 1

Un

∣

∣

∣

∣

≤
n
∨

t=1

b−1n X
′(m)
t−1

Zt
,

we have for large n that

P

(∣

∣

∣

∣

1

U
(m)
n

− 1

Un

∣

∣

∣

∣

> ǫ/M2

)

≤ P

(

n
∨

t=1

b−1n X
′(m)
t−1

Zt
> ǫ/M2

)

≤ 2
(

1− exp
(

− ǫ−βM2βE
(

V
(m)
1

)β)
)

≤ 2ǫ−βM2βE
(

V
(m)
1

)β
.

Therefore, since V
(m)
1 ≤ φm/θ,

lim
m→∞

lim
n→∞

P

(∣

∣

∣

∣

1

U
(m)
n

− 1

Un

∣

∣

∣

∣

> ǫ/M2

)

= 0.

Next, note that from the limit law for the maximum obtained above, by replacing X
′(m)
t−1 with

X
(m)
t−1 and by taking reciprocals, we derive the limit law for minimum,

lim
n→∞

P
(

U (m)
n =

n
∧

t=1

Zt

b−1n X
(m)
t−1

≤ x
)

= 1− exp
(

− xβEW̃−β
m

)

(2.2.25)
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where W̃m has the distribution of ∧m−1
i=0 Zi,k/φ

i. Thus, for any integer m ≥ 1,

lim
n→∞

P (U (m)
n ≤ x) ≥ 1− exp

(

− (x/θ)β
)

.

Thus for any ǫ > 0, we have for M large enough that

lim sup
n→∞

sup
m≥1

P (U (m)
n > M) < ǫ

completing the proof.

With Lemma 2.2.7 in hand we can now focus our attention to the limiting joint distribution

of (U
(m)
n ,

∧n
t=1 Zt). This will be accomplished by a blocking argument. To that end for a fixed

positive integer k, let rn = ⌊n/k⌋ and define blocks for i = 1, . . . , ⌊n/rn⌋ by

Ji = [(i− 1)rn + 1, . . . , irn − q], and J
′

i = [irn − q + 1, . . . , irn]

where q is a positive integer greater than m. Furthermore, let

J
′

0 = [rn⌊n/rn⌋ + 1, . . . , n].

Now we define the events

χi =

{

∃ l ∈ Ji :

(

Zl

b−1n X
(m)
l−1

)

≤ x or a−1n (Zl − θ) ≤ y

}

, i = 1, . . . , ln

and

χ
′

i =

{

∃ l ∈ J
′

i :

(

Zl

b−1n X
(m)
l−1

)

≤ x or a−1n (Zl − θ) ≤ y

}

, i = 0, . . . , ln

where ln = ⌊n/rn⌋. We begin by showing that the events χ
′

i are negligible.
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Lemma 2.2.8. For any x, y > 0

lim
n→∞

P
(

ln
⋃

i=0

χ
′

i

)

= 0.

Proof. Observe that

nP
( Zl

b−1n X
(m)
l−1

≤ x
)

≤ nP
( θ

b−1n X
(m)
l−1

≤ x
)

∼ xβθ−β
m−1
∑

i=0

φiβ ≤ xβ

θβ(1− φβ)
(2.2.26)

and

nP
(

a−1n (Zl − θ) ≤ y
)

∼ yα. (2.2.27)

Thus for some constant c and any n ≥ 1,

P
(

ln
⋃

i=0

χ
′

i

)

≤ ck/n

establishing the lemma.

Define events Ai and Bi by

Ai =

{

∃ l ∈ Ji :

(

Zl

b−1n X
(m)
l−1

)

≤ x

}

and Bi = {∃ l ∈ Ji : a
−1
n (Zl − θ) ≤ y}.

The following result provides the asymptotic behavior of the probability of these events.

Lemma 2.2.9. For any x > 0, y > 0, we have as k → ∞

lim
n→∞

P (Ai) ∼
1

k
xβEW̃−β

m and lim
n→∞

P (Bi) ∼
yα

k
.

Proof. Since the events Ai are independent, we have

P

(

k
⋂

i=1

(

Zl

b−1n X
(m)
l−1

> x, ∀ l ∈ Ji

))

=

(

P

(

Zl

b−1n X
(m)
l−1

> x, ∀ l ∈ J1

))k

.
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Using Lemma 2.2.8 we have that

P

(

n
∧

l=1

Zl

b−1n X
(m)
l−1

> x

)

= P

(

k
⋂

i=1

((

Zl

b−1n X
(m)
l−1

)

> x, ∀ l ∈ Ji

))

+O

(

1

n

)

=

(

P

(

Zl

b−1n X
(m)
l−1

> x, ∀ l ∈ J1

))k

+O

(

1

n

)

.

From (2.2.25) we showed that

lim
n→∞

P
(

U (m)
n =

n
∧

t=1

Zt

b−1n X
(m)
t−1

≤ x
)

= 1− exp
(

− xβEW̃−β
m

)

.

Hence using this limit law on ∧n
t=1(Zt/b

−1
n X

(m)
t−1 ), we obtain

lim
k→∞

lim
n→∞

(

P

[

Zl

b−1n X
(m)
l−1

> x, ∀ l ∈ J1

])k

= exp(−xβEW̃−β
m ).

Thus,

lim
n→∞

P [Ai] ∼
xβ

k
EW̃−β

m , as k → ∞. (2.2.28)

Similarly using the result of Lemma 2.2.6, we obtain

lim
n→∞

P [Bi] ∼
yα

k
, as k → ∞. (2.2.29)

Hence the lemma holds.

Lemma 2.2.10. For some constant c

P (Ai ∩ Bi) ≤ c P (Ai)P (Bi).

Proof. Remark. Since the cardinality of Ji depends on rn which depends on k and the

events Ai and Bi depend on n, P (Ai) and P (Bi) depend on k and n. The conclusion of this
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lemma provides that for all k and n, there is a constant dependent on no parameters for

which the inequality stated there holds.

To calculate the intersection we define the following sets

K1 = K1,i = {(l1, l2) : l1, l2 ∈ Ji and l2 /∈ [l1 − 1−m, l1]}

and

K2 = K2,i = {(l1, l2) : l1, l2 ∈ Ji and l2 ∈ [l1 − 1−m, l1]}.

Now for l1 − 1−m ≤ l2 ≤ l1 − 1 and n sufficiently large,

{(

Zl1

b−1n X
(m)
l1−1

)

≤ x

}

∩ {a−1n (Zl2 − θ) ≤ y} ⊂

{
∑

i 6=l1−l2−1
0≤i≤m−1

φiZl1−1−i ≥ bn
Zl1

x
− θ − 1} ∩ {Zl2 ≤ θ + any}.

It then follows from (2.2.26), (2.2.27), and independence that

P
(

{
∑

i 6=l1−l2−1
0≤i≤m−1

φiZl1−1−i ≥ bn
Zl1

x
− θ − 1} ∩ {Zl2 ≤ θ + any}

)

= O

(

1

n2

)

.

If l1 = l2 = l, we have

P

({

Zl

b−1n X
(m)
l−1

≤ x

}

∩ {a−1n (Zl − θ) ≤ y}
)

=

∫ θ+any

θ

P

(

X
(m)
l−1 ≥ z

b−1n x

)

dF (z) = O

(

1

n2

)

.

Therefore, for some constant c

P





⋃

(l1,l2)∈K2

{

Zl1

b−1n X
(m)
l1−1

≤ x

}

∩ {a−1n (Zl2 − θ) ≤ y}



 = c/nk.
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In order to handle set K1, observe from construction of the blocks Ji and set K1 that if

(l1, l2) ∈ K1 then the events

{

Zl1

b−1n X
(m)
l1−1

≤ x

}

and {a−1n (Zl2 − θ) ≤ y}

are independent. Thus, if we define {Z ′

i , i ∈ Z} as an independent copy of {Zi, i ∈ Z}, then

P





⋃

(l1,l2)∈K1

{

Zl1

b−1n X
(m)
l1−1

≤ x

}

∩ {a−1n (Zl2 − θ) ≤ y}





= P





⋃

(l1,l2)∈K1

{

Zl1

b−1n X
(m)
l1−1

≤ x

}

∩ {a−1n (Z
′

l2
− θ) ≤ y}





≤ P (Ai ∩B
′

i) = P (Ai)P (Bi) ≤ c/k2

where B
′

i = {∃ l ∈ Ji : a
−1
n (Z

′

l − θ) ≤ y} and where we used Lemma 2.2.9 in the last step.

Thus, we have that for some constant c

P (Ai ∩ Bi) = P (
⋃

(l1,l2)∈K1

{

Zl1

b−1n X
(m)
l1−1

≤ x

}

∩ {a−1n (Zl2 − θ) ≤ y}

∪
⋃

(l1,l2)∈K2

{

Zl1

b−1n X
(m)
l1−1

≤ x

}

∩ {a−1n (Zl2 − θ) ≤ y})

≤ c/k2 = O((P (Ai)P (Bi)) ,

which completes the proof in view of Lemma 2.2.9.

Lemma 2.2.11. For any x > 0, y > 0,

lim
n→∞

P

(

n
∧

t=1

(

Zt

b−1n X
(m)
t−1

)

> x, a−1n

n
∧

t=1

(Zt − θ) > y

)

= exp (−xβEW̃−β
m − yα).
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Proof. First from Lemma 2.2.8, we have as n→ ∞ that

P

(

n
∧

t=1

(

Zt

b−1n X
(m)
t−1

)

> x, a−1n

n
∧

t=1

(Zt − θ) > y

)

= P

(

k
⋂

i=1

χc
i

)

+ o(1).

Next by (2.2.28), (2.2.29), and Lemma 2.2.10 we obtain that as k tends to infinity

lim
n→∞

P (χi) ∼
1

k

(

xβEW̃−β
m + yα

)

.

Therefore, we obtain

lim
k→∞

lim
n→∞

P

(

k
⋂

i=1

χc
i

)

= lim
k→∞

(

1− 1

k
(xβEW̃−β

m + yα)

)k

= exp(−(xβEW̃−β
m + yα)).

Hence

lim
n→∞

P

(

n
∧

t=1

(

Zt

b−1n X
(m)
t−1

)

> x, a−1n

n
∧

t=1

(Zt − θ) > y

)

= exp(−xβEW̃−β
m − yα).

Theorem 2.2.4. Let {Xt, t ≥ 1} denote the stationary AR(1) process such that the innova-

tion distribution F satisfies

F̄ is RV−β at infinity and F is RVα at θ.

If α > β then for any x > 0, y > 0 we have

lim
n→∞

P (bn(φ̂n − φ) > x, a−1n (θ̂n − θ) > y) = e−x
βEW−β−yα ,

where W =
∧∞

j=0Zj/φ
j.

73



Proof. Let us first observe that for ǫ > 0

P
(

U (m)
n > x+ ǫ, a−1n

n
∧

t=1

(Zt − θ) > y
)

− P
(

|U (m)
n − Un| > ǫ

)

≤ P
(

Un > x, a−1n

n
∧

t=1

(Zt − θ) > y
)

≤ P
(

U (m)
n > x, a−1n

n
∧

t=1

(Zt − θ) > y
)

.

Thus by Lemma 2.2.11 we obtain

exp{−(x+ ǫ)βEW̃−β
m − yα} − lim sup

n→∞
P
(

|Un − U (m)
n | > ǫ

)

≤ lim inf
n→∞

P
(

Un > x, a−1n

n
∧

t=1

(Zt − θ) > y
)

≤ lim sup
n→∞

P
(

Un > x, a−1n

n
∧

t=1

(Zt − θ) > y
)

≤ exp(−xβEW̃−β
m − yα).

Letting m tend to infinity in the above and then ǫ tend to 0, we obtain from Lemma 2.2.7

and limm→∞EW̃
−β
m = EW−β that

lim
n→∞

P
(

Un > x, a−1n

n
∧

t=1

(Zt − θ) > y
)

= exp(−xβEW−β − yα).

The theorem now follows from this and Corollary 2.2.2.

2.3 Simulation Study

In this section we assess the reliability of our extreme value estimation method through a

simulation study. This included a comparison between our estimation procedure and that

of three alternative estimation procedures for both the autocorrelation coefficient φ and the

unknown location parameter θ under two different innovation distributions. Additionally,

the degree of approximation for the empirical probabilities of φ̂min and θ̂min to its respective

limiting distribution was reported.
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To study the performance of the estimators φ̂min =
∧n

t=1
Xt

Xt−1
and θ̂min =

∧

t∈In
(Xt −

φ̂minXt−1) respectively, we generated 5,000 replications for the nonnegative time series

(X0, X1, . . . , Xn) for two different sample sizes (500, 1000), where {Xt} is an AR(1) process

satisfying the difference equation

Xt = φXt−1 + Zt, for (1 ≤ t ≤ n) and Zt ≥ θ.

The autoregressive parameter φ is taken to be in the range from 0 to 1 guaranteeing a non-

negative time series and the unknown location parameter θ is positive when the innovations

Zt are taken to be

F (z) =















c(z − θ)α if θ < z < θ + 1,

1− d(z − θ)−β if θ + 1 < z <∞.

For this innovation distribution let c and d be nonnegative constants such that c+d = 1, then

this distribution is regularly varying at both endpoints with index of regular variation −β

at infinity and index of regular variation α at θ. For this simulation study two distributions

were considered: (i) F1, c = 0, d = 1, (ii) F2, c = .5, d = .5.

Now observe in case (i) the innovation distribution F1 is a Pareto distribution with a regular

varying tail distribution at ∞ with index of regular variation −β and regular varying at

θ + 1 with a fixed index α = 1, whereas in case (ii) the innovation distribution F2 is regular

varying at ∞ and θ with no restriction on α or β.

First we examine the simulation results for φ = .9 under F1 for each of the six different

β values considered by computing 5, 000 estimates using φ̂min =
∧n

t=1
Xt

Xt−1
, φ̂max =

Xt∗+1

Xt∗
,

φ̂range =
Xt∗+1−Xj∗

Xt∗−Xj∗−1
, where t∗ and j∗ provides the index of the maximal and minimal Xi

respectively for 1 ≤ i ≤ n , and

φ̂LS =















∑n−1
t=1 XtXt+1/

∑n
t=1X

2
t , if 0 < β < 1

∑n
t=1(Xt − X̄)(Xt+1 − X̄)/

∑n
t=1(Xt − X̄)2, if 1 < β < 3

75



where X̄ =
∑n

t=1Xt/n. The means and standard deviations (written below in parentheses),

of these estimates are reported in Table 2.1 along with the average length for a 95 percent

empirical confidence intervals with exact coverage. Since the main purpose of this section is to

compare our estimator φ̂min to Bartlett and McCormick (2012) estimator φ̂max, McCormick

and Mathew (1993) estimator φ̂range, and Davis and Resnick’s (1986) estimator φ̂LS, the

confidence intervals were directly constructed from the empirical distributions of n1/β(φ̂min−

φ), n1/β(φ̂max − φ), n1/β(φ̂range − φ), and (n/ logn)1/β(φ̂LS − φ), respectively.

Table 2.1: Comparison of Estimators for φ = .9 under F1

95% C.I. Avg. Length

β n φ̂min φ̂max φ̂range φ̂LS Min est. Max est. Range est. LS est.
.2 500 .9000 .9002 .9002 .8988 < .0001 < .0001 < .0001 .0288

(< .0001) (.0015) (.0016) (.0219) - - - -
1000 .9000 .9001 .9002 .8997 < .0001 < .0001 < .0001 .0091

(< .0001) (.0009) (.0009) (.0112) - - - -
.8 500 .9004 .9026 .9032 .9231 .0046 .0139 .0228 .0657

(.0016) (.0083) (.0083) (.0251) - - - -
1000 .9002 .9020 .9014 .9158 .0023 .0072 .0133 .0529

(.0008) (.0064) (.0064) (.0186) - - - -
1.2 500 .9049 .9072 .9067 .8923 .0271 .0449 .0548 .0623

(.0078) (.0146) (.0139) (.0176) - - - -
1000 .9029 .9117 .9047 .8964 .0187 .0325 .0389 .0439

(.0056) (.0117) (.0109) (.0117) - - - -
1.8 500 .9191 .9202 .9136 .8947 .0562 .0763 .0846 .0695

(.0622) (.0673) (.0612) (.0381) - - - -
1000 .9113 .9208 .9116 .8989 .0501 .0690 .0743 .0485

(.0313) (.0367) (.0384) (.0223) - - - -
2.2 500 .9236 .9313 .9176 .8917 .0670 .0847 .0944 .0709

(.0909) (.1050) (.0244) (.0281) - - - -
1000 .9207 .9293 .9151 .8961 .0623 .0821 .0874 .0494

(.0412) (.0456) (.0217) (.0228) - - - -
2.8 500 .9475 .9505 .9205 .8873 .0767 .0905 .1050 .0737

(.1378) (.1471) (.0723) (.0691) - - - -
1000 .9437 .9484 .9187 .8906 .0735 .0885 .0956 .0516

(.0834) (.1163) (.0317) (.0331) - - - -

To evaluate and compare the performance of four location estimators, six different scenarios

for α and β are presented in Table 2.2 under F2. When θ = 2, 5, 000 estimates for each

estimator; θ̂min =
∧

t∈In
(Xt−φ̂minXt−1), θ̂range = Xj∗−φ̂rangeXj∗−1, θ̂e1 = (1−φ̂range)

∧n
t=1Xt,

and θ̂e2 = (1− φ̂LS)
∧n

t=1Xt were obtained. The exponent ρ inside the index set In = {t : 1 ≤

t ≤ n and Xt−1 ≤ (anbn)
ρ}, was set to .9. The means and standard deviations (written below

in parentheses), of these estimates are reported in Table 2.2 along with the average length for

a 95 percent empirical confidence intervals. For convenience, the empirical distributions of

n−1/α(θ̂min − θ), n−1/α(θ̂range− θ), qn(θ̂e1− θ− (1− φ̂range)wn), and qn(θ̂e2− θ− (1− φ̂LS)wn)
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were respectively used, where the normalizing constants qn and wn are obtained through

equations (3.12 - 3.16) of McCormick and Mathew (1993).

Table 2.2: Comparison of Estimators for θ = 2 under F2

95% C.I. Avg. Length

β α n θ̂min θ̂range θ̂e1 θ̂e2 Min est. Range est. E1(range) est. E2(LS) est.
.5 .6 500 2.00 2.44 3.16 3.98 < .0001 2.34 2.09 3.02

(.0087) (.4068) (.6775) (.7657) - - - -
1000 2.00 2.39 3.77 3.67 < .0001 1.89 1.69 2.60

(.0002) (.3605) (.4381) (.4960) - - - -
1.6 500 1.94 2.68 3.34 4.10 .0273 2.37 3.18 3.66

(.0879) (.3566) (.6656) (.7503) - - - -
1000 1.99 2.63 3.94 3.81 .0152 1.87 2.23 2.79

(.0503) (.3199) (.4311) (.4780) - - - -
2.6 500 1.87 2.77 3.41 4.16 .1422 2.19 2.85 2.38

(.4697) (.7553) (.6733) (.7632) - - - -
1000 1.89 2.73 3.99 3.87 .0988 1.74 2.21 2.03

(.4045) (.3143) (.4276) (.4822) - - - -
1.5 .6 500 NA 1.72 2.35 2.15 NA 1.57 1.28 2.21

(-) (.9410) (.5327) (.3706) - - - -
1000 NA 1.80 2.19 2.65 NA 1.20 1.25 1.88

(-) (.9141) (.4381) (.2565) - - - -
1.6 500 2.80 1.95 2.54 2.26 1.72 2.23 2.18 1.94

(.3863) (.9569) (.5298) (.3815) - - - -
1000 2.38 2.03 2.37 2.84 1.28 2.10 1.78 1.31

(.2263) (.9308) (.4461) (.2701) - - - -
2.6 500 2.99 2.16 2.79 2.35 1.83 2.47 2.21 2.09

(.3604) (.9443) (.5271) (.3982) - - - -
1000 2.68 2.12 2.27 2.93 1.26 2.10 1.81 1.42

(.2956) (.9010) (.4398) (.2837) - - - -

Remark. In the case that 0 < β < 1, θ̂e1 converge at a faster rate than θ̂e2 and in the

case that 1 < β < 3, θ̂e2 converges at a faster rate than θ̂e1. Lastly, since the McCormick

and Mathew (1993) paper has the restriction that V ar(Z1) < ∞, only when α > 2 can

the estimators θ̂e1 and θ̂e2 be fairly compared, whereas only when α > β is our estimator

applicable.

Now observe for the selected β values being considered, Table 2.1 shows that our estimator

performs at least as well as the three other alternative estimators. This is particularly true

under the heavier tail models, i.e. when 0 < β < 2. In this regime our estimate shows little

bias and the average lengths of the confidence intervals are smaller than the other three

estimates, sometimes by a wide margin. In particular, when β = .8 and n = 1000 the 95%

confidence interval average length for our method is 3.13, 5.78, and 23 times smaller than the

three alternative estimators respectively. This is in part due to the use of one-sided confi-

dence intervals since φ̂min ≥ φ, for all t ≥ 1. Naturally, when 1 < β < 3, Davis and Resnick

least square estimator is more efficient than all three extreme value estimators. While our
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estimator φ̂min will always perform slightly better than the φ̂max estimator, Bartlett’s and

McCormick (2012) estimator φ̂max main advantage lies with its versatility to perform well for

various nonnegative time series, including but not restricted to higher order autoregressive

models, along with ARMA models.

Table 2.2 reveals that our estimator for θ generally performs better than the three alternative

estimators for α = .6, 1.6, 2.6 when 0 < β < 1. This is particularly true when comparing

average confidence interval lengths. Although all three estimators θ̂min, θ̂range, and θ̂e1 con-

verge to the true value of the parameter θ as n tends to infinity respectively, in this setting

they may not compete asymptotically with, say, a conditional least square estimator θ̂e2

when β > 1. Nonetheless for small sample sizes our simulation study favors θ̂range over the

other three estimators. The difficulty for a least square estimate is that a small negative

bias for the estimate of the autocorrelation parameter φ gives rise to a much larger positive

bias in the estimate of θ̂e2. While the affect is not as great, the positive bias found in our

estimator φ̂min and the others for φ has a significant effect on the estimate for θ.

Figures 2.1,2.2, 2.3, and 2.4 below show a comparison between the probability that esti-

mators φ̂min, φ̂max, φ̂range, and φ̂LS are within .01 of the true autocorrelation parameter

value, respectively. With a sample size of 500, these figures plotted the sample fraction of

estimates which fell within a bound of ǫ = .01 of the true value. Good performance with

respect to this measure is reflected in curves near to 1.0 with diminishing good behavior as

curves approach 0.0. When 0 < β < 1, the figures seem to show that our estimator compared

to the other three produced a higher fraction of precise estimates, especially compared to

Davis and Resnick estimator. When the regular variation index value is closer to 2, we see a

higher fraction of the Davis-Resnick estimates showing better accuracy by this measure. The

figures also indicate that McCormick and Mathew’s range estimator produced a consistent

high fraction of precise estimates when β > 2.
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Figure 2.1: P [|φ̂Min − φ| < .01] for RV−β
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Figure 2.2: P [|φ̂Max − φ| < .01] for RV−β
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Figure 2.3: P [|φ̂Range − φ| < .01] for RV−β
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Figure 2.4: P [|φ̂LS − φ| < .01] for RV−β
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Lastly, we performed a Monte Carlo simulation to study the degree of approximation for

the empirical probability P [bn(φ̂min − φ) > x], P [a−1n (θ̂min − θ) > y], and P [bn(φ̂min − φ) >

x, a−1n (θ̂min−θ) > x] to its limiting values e−x
βEW−β

, e−y
α
, and e−x

βEW−β−yα respectively. The

empirical distributions were calculated from 5,000 replications of the nonnegative time series

(X0, X1, . . . , Xn) for a sample size of 5, 000, where EW−β = 1−∑M
i=0

φ(βi(i+3)/2)

i+2
(1− φβ(i+2)),

and M was set to 500. Additionally, we restricted α > β. The top two plots in Figure 2.5

below shows the performance when Zt ∼ F1 and the autocorrelation coefficient φ is .9 for

α = 1 and β equal to .8, 1.5 respectively. Observe for 0 < x < 7 that the empirical tail

probability bn(φ̂min − φ) > x mirrors the theoretical probability quite nicely. The lower left

plot in Figure 2.5 displays the asymptotic performance when Zt ∼ F2 and the location

parameter θ is 2 for α = .9, β = .8. Notice that the convergence rate of the empirical

probability to the theoretical probability is extremely slow. This is not surprising since

on average our estimate falls more than .1 from the true value when β = .8. The lower

right plot in Figure 2.5 displays the asymptotic performance when Zt ∼ F1 for the joint

distribution of (φ̂min, θ̂min). Observe that this plot solidifies the asymptotic independence

between bn(φ̂min − φ) and a−1n (θ̂min − θ).
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Figure 2.5: Empirical vs. Theoretical Probability

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

phi = .9[beta=.8]

Threshold

P
ro

ba
bi

lit
y

Empirical Prob
Theoretical Prob

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

phi = .9[beta=1.5] 

Threshold
P

ro
ba

bi
lit

y

Empirical Prob
Theoretical Prob

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta = 2[alpha=.9, beta=.8]

Threshold

P
ro

ba
bi

lit
y

Empirical Prob
Theoretical Prob

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta = 2, phi = .9[alpha=.9, beta=.8]

Threshold

P
ro

ba
bi

lit
y

Empirical Prob
Theoretical Prob

82



2.4 References
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Estimation for Nonnegative Time Series with Heavy-tail Innovations 3
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Abstract

For moving average processes Xt =
∑∞

i=0 ciZt−i where the coefficients are nonnegative and

the innovations are nonnegative random variables with a regularly varying tail at infinity,

we provide estimates for the coefficients based on the ratio of two sample values chosen

with respect to an extreme value criteria. We then apply this result to obtain estimates

for the parameters of nonnegative ARMA models. Weak convergence results for the joint

distribution of our estimates are established and a simulation study is provided to examine

the small sample size behavior of these estimates.

AMS 1980 subject classifications. Primary 62M10; secondary 62E20, 60F05.

Key words: Nonnegative time series, ARMA processes, extreme value estimator, regular

variation, point processes

3.1 Introduction

Linear time series models form a prominent class of models for dependent time series

data. An excellent presentation of the classical theory concerning these models can be

found, for example, in Brockwell and Davis (1987). More recent developments have focused

on some specialized features of the model, e.g. heavy tail innovations or nonnegativity of the

model. An elegant approach to studying heavy tail linear models is to examine the behavior

of traditional estimates under conditions leading to non-Gaussian limits. For example, for

AR(p) models, the standard approach to parameter estimation is through the Yule-Walker

estimates, i.e. using the Yule-Walker equations relating covariances to the model parameters.

In Davis and Resnick (1986), the authors establish the weak limit behavior for the sample

autocorrelation function under an assumption that the innovations have a regularly varying

tail with index α and are tailed balanced where α ranges from greater than 0 to at most

4. When 0 < α < 2 so that variances do not exist, a natural analogue to the correlation
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function in the linear model setting, which reduces to the correlation function when a second

moment exists, appears in the limit results. These results may then be applied in the usual

way to obtain estimates of the AR(p) parameters and their limiting behavior. On a similar

note, Anderson et al. (2008) take an approach analogous to the Davis and Resnick (1986)

work but utilize the innovations algorithm applied to periodically stationary time series

and in particular to PARMA models, i.e. periodic ARMA models. In Davis (1996), the

author analyzes parameter estimation for heavy tailed ARMA models through application

of Gauss-Newton type estimators and M-estimators. Least absolute deviation estimation

and other related methods are carried out in Calder and Davis (1998) while a weighted least

squares method to estimate the parameters of a heavy tailed ARMA model is presented in

Markov (2009).

While a number of established statistical estimation procedures were enumerated in the

list of papers cited above, one notable exception was that of maximum likelihood. This is

not to be unexpected since in the time series setting, the likelihood function is generally

particularly intractable and intricate. However, there is an exception to this general rule

which has particular bearing on estimation of positive heavy tailed time series and that is

the case of exponential innovations in an AR(p) process. In this case the likelihood function

is easily obtained and finding the MLE amounts to solving a constrained maximization

problem with linear constraints, in other words, a linear programming problem. With these

considerations in mind, Feigin and Resnick (1994) develops linear programming estimates

for AR(p) processes with nonnegative innovations having 0 as its left endpoint and satisfying

one of two types of regular variation property on the innovation distribution. They allow

innovation distributions F which are regularly varying at 0, the left endpoint, and satisfy

some moment condition or the tail of F is regularly varying at infinity and some reciprocal

moment condition, EZ−β finite for suitable positive β, where Z has distribution function

F . Feigin et al. (1996) continues this study with a linear programming estimate for the case

of a nonnegative moving average process. The technique has also been applied to positive
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nonlinear time series in Brown et al (1996) and Datta et al (1998). In addition to their rela-

tion to linear programming estimation procedures, nonnegative time series have also been

considered in Andĕl (1989), Andĕl (1991), and Datta and McCormick (1995). Furthermore,

modeling issues in connection to causal nonnegative time series are addressed in Tsai and

Chan (2006). We mention that a very good survey of modeling phenomena with heavy tailed

stochastic structures and ensuing estimation issues may be found in Resnick (1997) and

Resnick (2007) where many references to applications of these methods may be found.

We make a comparison with the estimation procedure developed in this paper with the

linear programming estimates. This is an apt comparison for the following reason. For a

nonnegative AR(1) model, the linear programming estimate reduces to the estimate pro-

posed in Davis and McCormick (1989), namely min1≤t<n(Xt+1/Xt), where Xt denotes the

AR(1) process. The estimate proposed in this paper is a natural extension to the Davis and

McCormick (1989) estimate based on extreme value considerations so that both the linear

programming and the current estimation procedure represent higher order extensions of the

same estimate for the AR(1) model but based on different rationales.

A first observation is that our estimation procedure is especially easy to implement.

Indeed, the coefficients in the causal representation are estimated by a ratio of two sample

values, as simple an estimate as one could imagine. The parameters of the ARMA model are

then estimated as solutions to a system of linear equations. This compares with the linear

programming estimates which require setting up and solving a linear programming problem,

a more difficult task. Furthermore, the limiting distribution of our estimates is explicit and

tractable, whereas the limiting distribution for the linear programming estimates is given

as the solution to a random linear programming problem, rendering finding quantiles of

the limiting distribution to be a nontrivial simulation problem, since analytically obtaining

the asymptotic behavior for tail areas of the limit distribution appears to be a significantly

challenging problem.
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As remarked in Calder and Davis (1998), second-order based estimation methods for

the ARMA model parameters perform well when the innovations are heavy-tailed. Our

estimation procedure is more in keeping with the second-order estimates developed in Davis

and Resnick (1986) with which we make a comparison through a simulation study. This is

presented in section 3.5 and demonstrates a favorable performance for the extreme value

method presented in this paper.

3.2 Estimation for nonnegative time series

Although the main purpose in this paper is to study extreme value based estimates of the

parameters of ARMA models, it is more natural to begin with general infinite order moving

average processes and apply the results gained in that setting to ARMA models. Therefore

consider the model

Xn =

∞
∑

j=0

cjZn−j (3.2.1)

where the i.i.d. innovations Zt are nonnegative random variables having distribution function

F for which F̄ = 1 − F is regularly varying at infinity with index −β, written F̄ ∈ RV−β.

Our concern is with nonnegative time series and so we will assume that the coefficients

ci are nonnegative and further that
∑

i≥0 c
δ
i < ∞ for some 0 < δ < β ∧ 1. Under these

assumptions the series converges almost surely. See Resnick (1987) Section 4.5. The almost

sure convergence of such series can be established under weaker conditions (see, e.g., Mikosch

and Samorodnitsky (2000)) but this suffices for our application to ARMA models. Our goal

is to capitalize on the behavior of extreme value estimators over traditional estimators when

0 < β < 2. In this heavy-tail regime, extreme value estimators converge at a rate faster

than square root n. This contrasts with estimators whose asymptotic behavior depends on

the central part of the innovation distribution when a second or higher moment is finite. To
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motivate the form of the estimate, let us define the index 1 ≤ t∗ = t∗n ≤ n such that

Xt∗ = max
1≤i≤n

Xi. (3.2.2)

For the purpose of motivation we will assume F to be continuous thereby ensuring t∗

is almost surely well defined. We shall assume in addition to our other assumptions on the

ci that c0 = 1 > ci, i > 0. It is not essential that the leading coefficient is the maximal

coefficient and its value is 1 but these assumptions make bookkeeping easier. It is intuitive

that in the heavy-tail regime that the maximal observation should be associated with the

observation having the maximal innovation receiving the highest weight. Then if the weights

decay appropriately

Xt∗ approximately equals Zt∗ (3.2.3)

and if 1 ≤ k∗ = k∗n ≤ n is such that

Zk∗ = max
1≤i≤n

Zi, (3.2.4)

then with high probability

t∗ = k∗. (3.2.5)

These relations will be made rigorous in section 3.3. From (3.2.3) one then has

Xt∗+i ≈ ciZt∗

which leads to our estimate

ĉi =
Xt∗+i

Xt∗
, i ≥ 1. (3.2.6)

Remark: In proposing the estimators ĉi in (3.2.6), we have done so for the model (3.2.1) with

c0 = 1 being the unique maximal coefficient among the nonnegative coefficients ci. Notice

that the estimators ĉi being homogeneous functions of the data of degree 0 are invariant
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with respect to a change of scale. That is, for any a > 0

ĉi(X) = ĉi(aX)

where X = (Xn)n≥1. Thus for the estimation scheme to succeed in the infinite order moving

average case one constraint on the coefficients needs to be imposed to remove the ambiguity

resulting from the ĉi being estimates of the parameters up to a scale factor. The simplest

such constraint is to have a fixed known value of one coefficient. Actually, two pieces of

information are needed to implement this method for the MA(∞) model: a known value for

ck0 for some k0 and knowing the index l0 of the maximal coefficient. In this more general

case the estimator in (3.2.6) should be replaced by

ĉi = ck0
Xt∗−l0+i

Xt∗−l0+k0

. (3.2.7)

In the ARMA(p, q) case, one constraint is automatically satisfied. The coefficient c0 = 1.

Therefore, if the location of the maximal coefficient is l0, determined by say applying standard

time series estimation to the dataX1−X̄, . . . , Xn−X̄ , e.g. least squares estimation (Brockwell

and Davis (1987) section 8.7), then the extreme value estimates become

ĉi =
Xt∗−l0+i

Xt∗−l0

, i ≥ 1. (3.2.8)

3.3 Asymptotics

In the following it is assumed that

c0 = 1 > ci ≥ 0, i ≥ 1 and
∞
∑

i=0

cδi <∞, (3.3.1)

for some 0 < δ < β ∧ 1.

F (0) = 0 and 1− F = F̄ ∈ RV−β. (3.3.2)
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Let Xn be the model defined in (3.2.1) with innovations having distribution function F .

Define

Mn = max
1≤i≤n

Xi and Wn = max
1≤i≤n

Zi. (3.3.3)

From Resnick (1987), Proposition 4.29, we have that Mn and Wn share the same weak limit

behavior. The following lemma provides a strengthening to that.

Lemma 3.3.1. Under assumptions (3.3.1) and (3.3.2),

lim
n→∞

Mn

Wn

= 1 in probability.

Proof. Define

bn = F←
(

1− 1

n

)

= inf{t : F (t) ≥ 1− 1

n
}. (3.3.4)

For a real a and v ∈ R
m we define av to be the vector (av1, . . . , avm) where v = (v1, . . . , vm).

Next, we define a sequence of point processes Nn,m, n ≥ 1 in E = (0,∞]m+2 by

Nn,m =
n
∑

t=1

ǫ((Zt−m,Zt−m+1,...,Zt,Zt)/bn). (3.3.5)

Notice that the last two coordinates of the points of Nn,m are equal and ǫx denotes the

degenerate measure at x. The argument used to prove Theorem 2.2 in Davis and Resnick

(1985) can be applied to show that

Nn,m
d−→ Nm =

∞
∑

k=1

ǫ(0,...,0,jk,jk) +

∞
∑

k=1

ǫ(jk ,0,...,0) + . . .+

∞
∑

k=1

ǫ(0,...,0,jk,0,0) (3.3.6)

where
∑∞

k=1 ǫjk is PRM(µ), Poisson random measure with mean measure µ determined by

µ((x,∞]) = x−β, x > 0. (3.3.7)
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The limit point process Nm is obtained by taking the points of
∑∞

k=1 ǫjk and for each point

jk create m+ 1 points in (0,∞)m+2 with jk in one of the first m coordinates with all others

being 0 and another point where the last two coordinate values are jk with the others

being 0. Applying the continuous mapping theorem to (3.3.6), we obtain the following weak

convergence of point process

Mn,m =

n
∑

t=1

ǫ(b−1
n

∑m
i=0 ciZt−i,b

−1
n Zt)

d−→ Mm =

∞
∑

k=1

ǫ(jk ,jk)+

∞
∑

k=1

ǫ(c1jk,0)+. . .+

∞
∑

k=1

ǫ(cmjk,0). (3.3.8)

By setting

Xt,m =
m
∑

i=0

ciZt−i,

it then follows from (3.3.8) that for x, y > 0

lim
n→∞

P (b−1n max
1≤t≤n

Xt,m ≤ x, b−1n max
1≤t≤n

Zt ≤ y)

= lim
n→∞

P
(

Mn,m

(

([0, x]× [0, y])c
)

= 0
)

= P
(

Mm

(

([0, x]× [0, y])c
)

= 0
)

= P
(

∞
∑

k=1

ǫ(jk,jk)
(

([0, x]× [0, y])c
)

= 0
)

= P
(

∞
∑

k=1

ǫjk
(

[0, x ∧ y]c
)

= 0
)

= exp{−(x ∧ y)−β}, (3.3.9)

where we used the fact that 0 ≤ ci < c0 = 1 for i ≥ 1 so that the condition (jk, jk) ∈ [0, x]×[0, y]

implies (cijk, 0) ∈ [0, x]× [0, y] for 1 ≤ i ≤ m.

Summarizing with Mn,m = max
1≤i≤n

Xi,m we have that

b−1n (Mn,m,Wn)
d−→ H (3.3.10)
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where H(x, y) = exp{−(x ∧ y)−β}, x, y > 0. We note two things concerning this limit law.

Firstly, the limit does not depend on m which is a consequence of the assumption c0 = 1 is

maximal and, secondly, H has all its mass on the diagonal {(x, x) : x ≥ 0}. Letting ξ ∼ Φβ

with Φβ(x) = exp{−x−β}, we have that

b−1n (Mn,m,Wn)
d−→ (ξ, ξ). (3.3.11)

Let

X∗t,m = Xt −Xt,m =

∞
∑

i=m+1

ciZt−i,

and set γm = max
i>m

ci. Then by Resnick (1987), Proposition 4.29,

lim
n→∞

P (b−1n max
1≤t≤n

X∗t,m ≤ x) = exp{−γβmx−β}. (3.3.12)

Since X∗t,m is a nonnegative process, we have by (3.3.9)

lim sup
n→∞

P (b−1n Mn ≤ x, b−1n Wn ≤ y) ≤ lim
n→∞

P (b−1n max
1≤t≤n

Xt,m ≤ x, b−1n Wn ≤ y) = Φβ(x ∧ y).

(3.3.13)

Furthermore,

lim inf
n→∞

P (b−1n Mn ≤ x, b−1n Wn ≤ y)

≥ lim
n→∞

P (b−1n max
1≤t≤n

Xt,m ≤ x− ǫ, b−1n Wn ≤ y)− lim
n→∞

P (b−1n max
1≤t≤n

X∗t,m > ǫ)

= Φβ((x− ǫ) ∧ y)− (1− Φβ(ǫ/γm)).

Letting m tend to infinity and then ǫ tend to zero, we obtain

lim inf
n→∞

P (b−1n Mn ≤ x, b−1n Wn ≤ y) ≥ Φβ(x ∧ y), (3.3.14)
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so that putting (3.3.13) and (3.3.14) together

b−1n (Mn,Wn)
d−→ (ξ, ξ). (3.3.15)

Hence, for ǫ > 0 letting

Dǫ = {(x, y) : x/y > 1 + ǫ, x, y > 0},

we deduce by (3.3.15) that

lim
n→∞

P (Mn/Wn > 1 + ǫ) = lim
n→∞

P (b−1n (Mn,Wn) ∈ Dǫ) = P ((ξ, ξ) ∈ Dǫ) = 0

establishing the lemma.

As indicated in section 2.2, our extreme value estimator is motivated by the closeness of

Xt∗ and Zt∗ , where t
∗ provides the index of the maximal Xi for 1 ≤ i ≤ n. The following

lemma makes that relationship precise. We set

t∗ = t∗n = min{i : 1 ≤ i ≤ n and Xi =Mn}.

Lemma 3.3.2. Under assumptions (3.3.1) and (3.3.2)

lim
n→∞

Xt∗

Zt∗
= 1 in probability .

Proof. The proof is accomplished by a blocking argument. The idea of the proof is that for

any ǫ > 0 the expected number of Zi, 1 ≤ i ≤ n to exceed ǫbn remains bounded as n tends

to infinity and therefore these large innovations will tend to fall in separate blocks allowing

us to capitalize on this feature of isolated large values. Let mn and lm be two sequences of
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positive integers tending to infinity with n such that

mn = o(n) and lm = o(m).

To ease notation we suppress the subscript n in the following. Define disjoint blocks

Ik = [(k − 1)m+ 1, km− l], Jk = [km− l + 1, km]

and

J⌊n/m⌋+1 =
[

⌊n/m⌋m+ 1, n
]

where k = 1, . . . , ⌊n/m⌋ and where, for integers i ≤ j, [i, j] denotes the integer interval

{i, i+ 1, . . . , j}. Fix ǫ > 0 and define counting variables for 1 ≤ k ≤ ⌊n/m⌋

nk =
∑

i∈Ik

1[Zi > ǫbn], n′k =
∑

i∈Jk

1[Zi > ǫbn],

and n′⌊n/m⌋+1 =
∑

i∈J⌊n/m⌋+1
1[Zi > ǫbn].

Our first step is to show that with high probability the big blocks, Ik, contain at most

one large innovation and the small blocks, Jk, contain none. We assert that

P
(

⌊n/m⌋
⋃

k=1

(nk ≥ 2)
)

= o(1), P
(

⌊n/m⌋
⋃

k=1

(n′k ≥ 1)
)

= o(1), and P
(

n
′

⌊n/m⌋+1 ≥ 1
)

= o(1),

(3.3.16)

as n→ ∞. To establish (3.3.16) observe that

P (n1 ≥ 2) ≤ m2(1− F (ǫbn))
2 = O

(

m2

n2

)

so that

P
(

⌊n/m⌋
⋃

k=1

(nk ≥ 2)
)

= O
(m

n

)

= o(1).
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Similarly,

P (n′1 ≥ 1) = O

(

l

n

)

which implies

P
(

⌊n/m⌋
⋃

k=1

(n′k ≥ 1)
)

= O

(

l

m

)

= o(1).

Finally,

P (n′⌊n/m⌋+1 ≥ 1) = O
(m

n

)

= o(1).

Thus we see (3.3.16) holds. Our next step is to show that the index t∗ providing the index

of the maximal observation is with high probability contained in one of the big blocks.

Specifically, we show

P
(

t∗ ∈
⌊n/m⌋+1
⋃

k=1

Jk

)

= o(1) (3.3.17)

as n tends to infinity. This follows since

P
(

t∗ ∈
⌊n/m⌋+1
⋃

k=1

Jk

)

≤ P
(

Mn = max{Xt : t ∈
⌊n/m⌋+1
⋃

k=1

Jk}
)

≤ P (b−1n Mn ≤ ǫ) + P
(

max{Xt : t ∈
⌊n/m⌋+1
⋃

k=1

Jk} > ǫbn

)

≤ P (b−1n Mn ≤ ǫ) +
( n

m
l +m

)

P (X1 > ǫbn) .

Hence

lim
ǫ→0

lim sup
n→∞

P
(

t∗ ∈
⌊n/m⌋+1
⋃

k=1

Jk

)

≤ lim
ǫ→0

Φβ(ǫ) = 0.

Thus (3.3.17) holds. Define the event

En =

⌊n/m⌋
⋂

k=1

(nk ≤ 1) ∩
⌊n/m⌋+1
⋂

k=1

(n′k = 0) ∩ (t∗ /∈
⌊n/m⌋+1
⋃

k=1

Jk).

By (3.3.16) and (3.3.17)

lim
n→∞

P (En) = 1. (3.3.18)
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On En suppose t∗ ∈ Ik. Since on En, (nk ≤ 1), three cases are possible. These are:































case (1): Zt∗ > ǫbn and Zt ≤ ǫbn for t ∈ Ik \ {t∗}

case (2): Zt∗ ≤ ǫbn and Zt > ǫbn for some unique t ∈ Ik \ {t∗}

case (3): Zt ≤ ǫbn for all t ∈ Ik .

Before discussing these cases, we note that since 0 ≤ ci < c0 = 1 for all i ≥ 1,

0 < c̄ =
∞
∑

i=0

ci ≤
∞
∑

i=0

cδi <∞

where δ < 1 is chosen so as to satisfy (3.3.1). Let

X̃t,m =

m
∑

i=1

ciZt−i = Xt,m − Zt.

Then under case (1), we find providing t∗ is greater than l

0 ≤ X̃t∗,l ≤ c̄ǫbn

because for 1 ≤ i ≤ l, if t∗ > l, then either t∗ − i ∈ Ik or t∗ − i ∈ Jk−1 if k ≥ 2.

Fix η > 0 and choose 0 < ǫ < η/c̄. Then on En ∩ (t∗ > l), we have under case 1

X̃t∗,l < ηbn. (3.3.19)

Before analyzing case (2) we make the observation that

0 ≤ ζ = sup
i>0

ci < 1.

This is obvious from the assumption that 0 ≤ ci < c0 = 1 for i ≥ 1 and cn tend to zero as

n tends to infinity. We remark that it is only in this part of the proof that the assumption
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that the coefficients ci have a unique maximal value is used.

Let us note that case 2 divides into two subcases. We first consider the case that for some

t
′ ∈ Ik with t

′
< t∗, we have Zt′ > ǫbn. Then observe that in view of the decomposition

Xt∗ = Xt∗,t∗−t′−1 + ct∗−t′Zt′ +X∗
t∗,t∗−t′

≥ Zt′ ,

we have

(t∗ ∈ Ik, Zt′ > ǫbn for some t
′ ∈ Ik with t

′

< t∗)

⊂
⋃

t′<t,t′ ,t∈Ik

(

Xt,t−t′−1 +X∗
t,t−t′

> (1− ζ)ǫbn, Zt′ > ǫbn

)

.

Hence

P
(

t∗ ∈ Ik, Zt
′ > ǫbn for some t

′ ∈ Ik with t
′

< t∗) ≤ m2P 2(X1 > (1− ζ)ǫbn

)

= O

(

m2

n2

)

.

Thus

lim
n→∞

P
(

⌊n/m⌋
⋃

k=1

(t∗ ∈ Ik, Zt′ > ǫbn for some t
′ ∈ Ik with t

′

< t∗)
)

= 0. (3.3.20)

For the other subcase of case 2, we consider the event that for some t
′ ∈ Ik with t

′
> t∗, we

have Zt′ > ǫbn. Then simply

X̃t∗,l =

l
∑

i=1

ciZt∗−i ≤ c̄ǫbn < ηbn. (3.3.21)

Under case 3, we have for the same reasons as in case 1 that provided t∗ > l

X̃t∗,l < ηbn. (3.3.22)
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Thus we find that by (3.3.19), (3.3.21), (3.3.22) and our analysis of case 2 that

En ∩ (t∗ > l) ⊂ (b−1n X̃t∗,l < η) ∪
⌊n/m⌋
⋃

k=1

(

t∗ ∈ Ik, Zt
′ > ǫbn for some t

′ ∈ Ik with t
′

< t∗
)

.

Therefore in view of (3.3.18), (3.3.20) and for any ǫ > 0

P (t∗ ≤ l) ≤ P (b−1n Mn ≤ ǫ) + lP (X1 > ǫbn)

showing that

lim
n→∞

P (t∗ ≤ l) = 0,

we have for any η > 0

lim
n→∞

P (b−1n X̃t∗,l < η) = 1.

We record this result as

lim
n→∞

b−1n X̃t∗,l = 0 in probability. (3.3.23)

Fix a positive integer m. Then since l = lm tends to infinity, for large enough n we have

l > m. Thus by nonnegativity for all n large enough

X∗t,l ≤ X∗t,m for all t ≥ 1. (3.3.24)

Thus for any ǫ > 0 using (3.3.12) and (3.3.24)

lim
n→∞

P (b−1n max
1≤t≤n

X∗t,l > ǫ) ≤ 1− Φβ(ǫ/γm).

Letting m tend to infinity we see that

lim
n→∞

b−1n max
1≤t≤n

X∗t,l = 0 in probability . (3.3.25)
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From (3.3.23) and (3.3.25) we obtain the main step in the proof of lemma 3.3.2, namely that

lim
n→∞

b−1n

∞
∑

i=1

ciZt∗−i = lim
n→∞

b−1n X∗t∗,0 = 0 in probability . (3.3.26)

The proof is now completed by noting that

Zt∗

Xt∗
= 1− X∗t∗,0

Xt∗
= 1−

(

Xt∗

bn

)−1(X∗t∗,0
bn

)

p−→ 1, as n→ ∞,

using (3.3.15) and (3.3.26).

In view of Lemmas 3.3.1 and 3.3.2 the following result is to be expected.

Lemma 3.3.3. Assuming (3.3.1) and (3.3.2) hold,

t∗ − k∗
a.s−→ 0, as n→ ∞.

Proof. Since the variables t∗ = t∗n and k∗ = k∗n are discrete it suffices to show convergence

to zero in probability. Denote the first n order statistics for the Zi by {Z1,n ≤ . . . ≤ Zn,n}.

Thus for any 0 < ǫ < 1

P (|t∗ − k∗| > ǫ) ≤ P (|t∗ − k∗| ≥ 1)

≤ P (Zt∗ ≤ Zn−1,n). (3.3.27)

By Lemmas 3.3.1 and 3.3.2

lim
n→∞

Zk∗

Zt∗
= 1 in probability . (3.3.28)

Hence

lim
n→∞

P (b−1n Zk∗ ≤ x, b−1n Zt∗ ≤ y) = Φβ(x ∧ y). (3.3.29)
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By Leadbetter, Lindgren, and Rootzén (1983), Theorem 2.3.2,

lim
n→∞

P (b−1n Zn,n ≤ x, b−1n Zn−1,n ≤ y) = P (ξ1 ≤ x, ξ2 ≤ y), (3.3.30)

where (ξ1, ξ2) has an absolutely continuous joint distribution such that P (ξ1 ≤ ξ2) = 0. Note

by (3.3.29)

lim
n→∞

b−1n (Zk∗ − Zt∗) = 0 in probability

and therefore

lim
n→∞

P (|t∗ − k∗| > ǫ) ≤ lim
n→∞

P (b−1n Zk∗ − b−1n (Zk∗ − Zt∗) ≤ b−1n Zn−1,n)

= P (ξ1 ≤ ξ2) = 0.

A straightforward calculation shows for ĉi defined in (3.2.6) under the model (3.2.1) that

ĉi − ci =
1

Xt∗

(

∞
∑

j=1

(cj+i − cicj)Zt∗−j +

i
∑

j=1

ci−jZt∗+j

)

, i ≥ 1.

For integers i, k ≥ 1 define

Ui,k =

∞
∑

j=1

(cj+i − cicj)Zk−j and Vi,k =

i
∑

j=1

ci−jZk+j.

Then

bn(ĉ1 − c1, . . . , ĉm − cm) =
bn
Xt∗

(U1,t∗ + V1,t∗ , . . . , Um,t∗ + Vm,t∗) . (3.3.31)

The following lemma will be useful in analyzing the asymptotics of the sequence defined in

(3.3.31). Let

Ui = Ui,1 and Vi = Vi,1, i ≥ 1.
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Lemma 3.3.4. Under (3.3.1) and (3.3.2),

(

Z1

bn
, U1, . . . , Um, Z2, . . . , Zm+1|k∗ = 1

)

d−→ (ξ, U1, . . . , Um, Z2, . . . , Zm+1)

as n→ ∞ where ξ ∼ Φβ and is independent of

(U1, . . . , Um, Z2, . . . , Zm+1).

Proof. We first make the observation that

lim
n→∞

nP (Wn ≤ z) = lim
n→∞

nF n(z) = 0. (3.3.32)

Then

P
(Z1

bn
≤ z1, U1 ≤ u1, . . . , Um ≤ um, Z2 ≤ z2, . . . Zm+1 ≤ zm+1|k∗ = 1

)

= nP (U1 ≤ u1, . . . , Um ≤ um)P
(Z1

bn
≤ z1, Z2 ≤ z2, . . . , Zm+1 ≤ zm+1,Wn ≤ Z1

)

= nP (U1 ≤ u1, . . . , Um ≤ um)P
( 1

bn
max

j∈{1,m+2,...,n}
Zj ≤ z1, max

m+2≤j≤n
Zj ≤ Z1

)

· P (Z2 ≤ z2) . . . P (Zm+1 ≤ zm+1) + o(1) (3.3.33)

where we used Ui ∈ σ(Z−j, j ≥ 0), i ≥ 1 and where we used (3.3.32) which allowed us to

replace Wn in the next to last inequality with max
m+2≤j≤n

Zj . The result follows from (3.3.33)

and

lim
n→∞

nP (b−1n max
j∈{1,m+2,...,n}

Zj ≤ z1, max
m+2≤j≤n

Zj ≤ Z1) = lim
n→∞

P (b−1n Wn ≤ z1) = Φβ(z).
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The first result describes the weak limiting behavior of our estimates for the moving

average coefficients. The asymptotic distribution of our parameter estimates then follows

from this result by the usual delta method.

Theorem 3.3.1. Under (3.3.1) and (3.3.2),

bn(ĉ1 − c1, . . . , ĉm − cm)
d−→ 1

ξ
(U1 + V1, . . . , Um + Vm)

where ξ ∼ Φβ and ξ is independent of (U1, . . . , Um, V1, . . . , Vm).

Proof. Using (3.3.31), Lemmas 3.3.1 and 3.3.3 and setting for any ǫ > 0 and real yi

zi = zi,ǫ = (1− ǫ)yi ∨ (1 + ǫ)yi,

we have

lim sup
n→∞

P (bn(ĉi − ci) ≤ yi, 1 ≤ i ≤ m)

= lim sup
n→∞

P
( bn
Xt∗

(Ui,t∗ + Vi,t∗) ≤ yi, 1 ≤ i ≤ m
)

≤ lim sup
n→∞

P
( bn
Zk∗

(Ui,t∗ + Vi,t∗) ≤ zi, 1 ≤ i ≤ m
)

= lim sup
n→∞

P
( bn
Zk∗

(Ui,k∗ + Vi,k∗) ≤ zi, 1 ≤ i ≤ m
)

. (3.3.34)

Next we note that

P
( bn
Zk∗

(Ui,k∗ + Vi,k∗) ≤ zi, 1 ≤ i ≤ m
)

=

n
∑

k=1

P
( bn
Zk

(Ui,k + Vi,k) ≤ zi, 1 ≤ i ≤ m, k∗ = k
)

= nP
( bn
Z1

(Ui + Vi) ≤ zi, 1 ≤ i ≤ m, k∗ = 1
)

= P
( bn
Z1

(Ui + Vi) ≤ zi, 1 ≤ i ≤ m
∣

∣k∗ = 1
)

. (3.3.35)
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Now observe that

bn
Z1

(U1 + V1, . . . , Um + Vm) = h
(Z1

bn
, U1, . . . , Um, Z2, . . . , Zm+1

)

for

h(w, u1, . . . , um, z2, . . . , zm+1) =
1

w
(u1 + z2, u2 + c1z2 + z3, . . . , um +

m
∑

j=1

cm−jz1+j).

Thus from (3.3.34), (3.3.35), Lemma 3.3.4 and the continuous mapping theorem

lim sup
n→∞

P (bn(ĉi − ci) ≤ yi, 1 ≤ i ≤ m) ≤ P
(1

ξ
(Ui + Vi) ≤ zi, 1 ≤ i ≤ m

)

.

Letting ǫ tend to zero, we obtain

lim sup
n→∞

P (bn(ĉi − ci) ≤ yi, 1 ≤ i ≤ m) ≤ P
(1

ξ
(Ui + Vi) ≤ yi, 1 ≤ i ≤ m

)

.

The corresponding lower bound is proved similarly, establishing the theorem.

3.4 ARMA Models

The autoregressive moving average model, ARMA(p, q), can be written as

Φ(B)Xt = Θ(B)Zt

where

Φ(z) = 1− φ1z − . . .− φpz
p and Θ(z) = 1 + θ1z + . . .+ θqz

q

and B denotes the backward shift operator. With regard to this model, we make the following

assumptions. The polynomials Φ and Θ have no common zeros and Φ has no roots in the

closed unit disc. We further assume that the Zt are i.i.d. nonnegative innovations having
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distribution function F for which F̄ = 1− F is regularly varying at infinity with index −β,

written F̄ ∈ RV−β.

By the assumptions on Φ, we have that ξ(z) = Θ(z)/Φ(z) is analytic in a neighborhood

of 0 with radius of convergence greater than 1 and writing

ξ(z) =
∞
∑

j=0

cjz
j , |z| ≤ 1,

we have that for some constants k and r > 1

|cj | ≤ kr−j, j ≥ 0.

Therefore by Resnick (1987) section 4.5 the series

Xn =
∞
∑

j=0

cjZn−j (3.4.1)

converges almost surely. It then follows that Xn satisfies Φ(B)Xn = Θ(B)Zn and so Xn given

by (3.4.1) provides the stationary solution to the ARMA(p, q) recursion.

Let us observe that, if the parameters φi, θj , 1 ≤ i ≤ p, 1 ≤ j ≤ q are nonnegative,

then since we have assumed additionally that the innovations are nonnegative, it is evident

that Xn is a nonnegative process. Furthermore, this entails that all the coefficients cj in the

MA(∞) process defined in (3.4.1) must be nonnegative. Indeed, if ci < 0 for some i ≥ 0,

then noting that c0 = 1 and, if i ≥ 1 is the first index such that ci < 0, we obtain

0 ≤ θi = ci −
i∧p
∑

j=1

φjci−j

which leads to the contradiction that ci ≥ 0, where θi denotes a coefficient of the polynomial

Θ if i ≤ q and where we take θi = 0 for i > q. However, it is not necessary that all the

causal ARMA model parameters be nonnegative for the process to be nonnegative. We refer
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to Tsai and Chan (2006) for information on this question.

We now apply Theorem 3.3.1 to the ARMA(p, q) model. From the relation

Θ(z) = ξ(z)Φ(z) = Φ(z)

∞
∑

j=0

cjz
j

where Φ and Θ are the ARMA(p, q) polynomials, we obtain the relations

θi = ci −
i∧p
∑

j=1

φjci−j, i ≥ 1 (3.4.2)

where θi = 0 for i > q and otherwise equals the coefficient of zi in Θ. Assuming that the first

p+q equations in (3.4.2) provide an invertible transformation between (φ1, . . . , φp, θ1, . . . , θq)

and (c1, . . . , cp+q), we may solve for the ARMA parameters in terms of the ci. Let

φi = ψi(c1, . . . , cp+q) and θj = ψp+j(c1, . . . , cp+q)

denote these solutions to the linear equations in (3.4.2). Define the estimates

φ̂i = ψi(ĉ1, . . . , ĉp+q), 1 ≤ i ≤ p and θ̂j = ψp+j(ĉ1, . . . , ĉp+q), 1 ≤ j ≤ q. (3.4.3)

In order to state the next result, it will be convenient to introduce some notation. We

denote the parameter vectors by,

φ = (φ1, . . . , φp)
′

and θ = (θ1, . . . , θq)
′

with estimates

φ̂ = (φ̂1, . . . , φ̂p)
′

and θ̂ = (θ̂1, . . . , θ̂q)
′

.
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Define the transformation Ψ : Rp+q → R
p+q by

Ψ(c1, . . . , cp+q) = (ψ1(c1, . . . , cp+q), . . . , ψp+q(c1, . . . , cp+q))
′

, (3.4.4)

where the ψi are as in (3.4.3).

We take vectors to be column vectors. Let the differential of Ψ be denoted DΨ : Rp+q →

L(Rp+q,Rp+q). Since a cleaner result exists in the AR(p) case, we present this case separately.

Firstly, we discuss the estimates φ̂i in this case and the differential map DΨ of the map in

(3.4.4). From (3.4.2) we obtain

φ1 = c1

φi = ci −
i−1
∑

j=1

ci−jφj, 2 ≤ i ≤ p.
(3.4.5)

Therefore the φ̂i are defined recursively by

φ̂i = ĉi −
i−1
∑

j=1

ĉi−jφ̂j, 1 ≤ i ≤ p. (3.4.6)

Let ∂jφi =
∂φi

∂cj
. Then from (3.4.5) we obtain

∂kφl = −φl−k − cl−k −
l−k−1
∑

i=1

ci∂kφl−i, k < l, l = 2, . . . , p. (3.4.7)

The matrix DΨ = (∂jφi)1≤i,j≤p has its diagonal elements equal to 1 and is lower triangular.

Its nonzero elements ∂jφi with i > j may be found recursively from the equations in (3.4.7).

Notice that ∂kφk = 1 and for k < l the expression for ∂kφl involves only the expressions

∂kφk+1, . . . , ∂kφl−1.
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Corollary 3.4.1. Let Xt be an autoregressive process with parameters φi ≥ 0, 1 ≤ i ≤ p

such that φ1+ . . .+ φp < 1. Then under the usual conditions on the innovations distribution

F

bn(φ̂− φ)
d−→ 1

ξ
DΨ(c1, . . . , cp)(U1 + V1, . . . , Up + Vp)

′

.

Proof. From (3.4.5) we find ci < 1, i = 1, . . . , p. This is clear for c1, suppose the statement

is true for cl with 1 ≤ l ≤ i− 1. Then

ci =

i∧p
∑

j=1

ci−jφj ≤
p
∑

j=1

φj < 1.

Hence the statement is true for all i ≥ 1. Therefore we may apply Theorem 3.3.1 to get

bn(ĉ1 − c1, . . . , ĉp − cp)
d−→ 1

ξ
(U1 + V1, . . . , Up + Vp). (3.4.8)

Since (φ̂1, . . . φ̂p) = Ψ(ĉ1, . . . , ĉp), the result follows by the delta-method applied to (3.4.8).

Example 1: Consider an AR(2) model. We find

φ1 = c1, and φ2 = c2 − c21.

Hence

DΨ(c1, c2) =





1 0

−2c1 1



 .

Furthermore,

U1 =

∞
∑

j=1

(cj+1 − c1cj)Z1−j , V1 = Z2

and

U2 =

∞
∑

j=1

(cj+2 − c2cj)Z1−j, V2 = c1Z2 + Z3.
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Using the relation

cj+1 − c1cj = φ2cj−1, j ≥ 1,

we can write

U1 = φ2

∞
∑

j=0

cjZ−j = φ2X0.

Next using the relation

cj+2 − c2cj = φ1φ2cj−1,

we have

U2 = φ1φ2X0.

We find after some simplification





1 0

−2c1 1



 ·





U1 + V1

U2 + V2



 =





φ2X0 + Z2

−φ1φ2X0 − φ1Z2 + Z3



 .

Hence

bn(φ̂1 − φ1, φ̂2 − φ2)
d−→ 1

ξ
(φ2X0 + Z2,−φ1φ2X0 − φ1Z2 + Z3).

For a positive ARMA(p, q) process while c0 = 1 the location of the maximal coefficient

needs to be known or obtained from a preliminary estimate. We assume the location l0

is known. The estimate of the coefficients ci are now given in (3.2.8) and the parameters

estimates for the ARMA(p, q) model are given in (3.4.3). With regard to the ARMA(p, q)

model Xt, we recall our standing assumptions. The model is given by Φ(B)Xt = Θ(B)Zt

where the model parameters φi, θj , 1 ≤ i ≤ p, 1 ≤ j ≤ q are nonnegative. Φ and Θ have no

common roots and Φ has no root in the closed unit disc. The innovations have distribution

F with support on the positive half line and tail which is regularly varying at infinity with

index −β.
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Corollary 3.4.2. Let Xt be an ARMA(p, q) process satisfying the above conditions. Let

(φ̂, θ̂)
′

= Ψ(ĉ1, . . . , ĉp+q).

Then

bn(φ̂− φ, θ̂ − θ)
d−→ 1

ξ
DΨ(c1, . . . , cp+q)(U1 + V1, . . . , Up+q + Vp+q)

′

where ξ ∼ Φβ and is independent of (U1, . . . , Up+q, V1, . . . , Vp+q).

Proof. The result is a direct application of the delta-method once the convergence of bn(ĉ1−

c1, . . . , ĉp+q−cp+q) to the appropriate limit law is established. This follows by Theorem 3.3.1,

the proof of which can be adapted to the case of a location of the maximal coefficient to be

something other than 0. In that regard, the main changes are that

Xt∗−l0 is approximately Zt∗−l0

and

k∗ is approximately t∗ − l0.

Further, observe that

ĉi − ci =
1

Xt∗−l0

(

∞
∑

j=1

(cj+i − cicj)Zt∗−l0−j +
i
∑

j=1

ci−jZt∗−l0+j

)

and one can imitate the steps of the proof of Theorem 3.3.1 to obtain the weak limit of

bn(ĉi − ci)1≤i≤m in this case with the same limit law resulting.

Example 2: Consider the ARMA(1, 1) process

Xn = φ1Xn−1 + Zn + θ1Zn−1, n ≥ 1.
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We assume that 0 < φ1 < 1 and φ1+ θ1 > 1. One readily checks that the stationary solution

to this recursion is given by

Xn = Zn +

∞
∑

i=1

(φ1 + θ1)φ
i−1
1 Zn−i.

For this model l0 = 1 and so we estimate the coefficients ci = (φ1 + θ1)φ
i−1
1 , i ≥ 1 by

ĉi =
Xt∗−1+i

Xt∗−1
, i ≥ 1.

Solving (3.4.2) we find

φ1 =
c2
c1

and θ1 =
c21 − c2
c1

yielding

DΨ =





∂1φ1 ∂2φ1

∂1θ1 ∂2θ1



 =





−c2/c21 1/c1

1 + c2/c
2
1 −1/c1



 =
1

φ1 + θ1





−φ1 1

2φ1 + θ1 −1



 .

Next from the relations obtained from (3.4.2)

cj+1 − c1cj = −θ1cj , j ≥ 1

and

cj+2 − c2cj = −φ1θ1cj, j ≥ 1

we obtain

U1 =

∞
∑

j=1

(cj+1 − c1cj)Z1−j = θ1(Z1 −X1)

and

U2 =
∞
∑

j=1

(cj+2 − c2cj)Z1−j = φ1θ1(Z1 −X1).
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Moreover,

V1 = Z2 and V2 = (φ1 + θ1)Z2 + Z3.

DΨ(c1, c2)





U1 + V1

U2 + V2



 =
1

φ1 + θ1





θ1Z2 + Z3

θ1(φ1 + θ1)(Z1 −X1) + φ1Z2 − Z3



 .

Thus we obtain

bn(φ̂1 − φ1, θ̂1 − θ1)
d−→ 1

ξ

1

φ1 + θ1
(θ1Z2 + Z3, θ1(φ1 + θ1)(Z1 −X1) + φ1Z2 − Z3).

3.5 Simulation Study

In this section we study the performance of our extreme value estimation method through

the following three models: AR(1), AR(2), and ARMA(3,1). For the first two models, a

simulation study compared our estimation procedure with that of Davis and Resnick (1986).

Whereas the third model was chosen as it represents a nonnegative time series where not all

parameters are positive.

3.5.1 AR(1) Estimation Study

To study the performance of our estimator φ̂BM =
Xt∗+1

Xt∗
, we generated 5,000 replications

of the nonnegative time series (X0, X1, . . . , Xn) for two different sample sizes (100, 500),

where (Xt) is an AR(1) process satisfying the difference equation

Xt = φXt−1 + Zt, for 1 ≤ t ≤ n. (3.5.1)

The autoregressive parameter φ is taken to be in the range from 0 to 1 guaranteeing a

nonnegative time series when the innovations Zt are taken with a Pareto distribution,

Fβ(x) =















1− x−β , if x ≥ 1

0, otherwise.

(3.5.2)
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The Pareto distribution has a regularly varying tail distribution at infinity with index −β.

For each of the six different β values considered, we computed 5, 000 estimates for φ = .2

using φ̂BM and

φ̂DR =















∑n−1
t=1 XtXt+1/

∑n
t=1X

2
t , if 0 < β < 1

∑n
t=1(Xt − X̄)(Xt+1 − X̄)/

∑n
t=1(Xt − X̄)2, if 1 < β < 2

where X̄ =
∑n

t=1Xt/n. The means and standard deviations (written below in parentheses),

of these estimates are reported in Table 3.1 along with the average length for a 90, 95, and

99 percent empirical confidence intervals with exact coverage. Since the main purpose of

this section is to compare our estimator to Davis and Resnick’s (1986) estimator, the confi-

dence intervals were directly constructed from the empirical distributions of n1/β(φ̂BM − φ)

and (n/ logn)1/β(φ̂DR − φ), respectively. While the limiting distribution of the parameter

estimates by our method have an explicit expression, there is still a difficulty in obtaining

percentiles for the limiting distribution needed to construct asymptotic confidence intervals

in that the limiting distribution may involve the stationary distribution for the underlying

ARMA model which is analytically intractable requiring such percentiles to be obtained

empirically through a simulation. The analytic difficulties for the Davis-Resnick estimates

are further complicated by the fact that the limiting distribution involves certain stable dis-

tributions whose exact parameter values are not made completely explicit in their paper.

For these reasons, the approach taken for our simulation study was to obtain confidence

intervals for the parameter estimates by obtaining directly the empirical distributions for

the estimates. In this way, our confidence intervals have been constructed to have nearly

exact coverage probabilities.

Table 1 shows that under the parameter values being considered our estimate does as

least as well and more often better than the Davis-Resnick estimate. This is particularly true

under the heavier tail models, i.e. when β is small. In that regime our estimate shows little

bias and the average lengths of the confidence intervals are smaller than for the Davis-Resnick
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estimate, sometimes by a wide margin. While Table 1 generally shows a better performance

for our estimate over the Davis-Resnick estimate, our simulations showed that with respect

to certain criteria there are advantages to the Davis-Resnick estimate over our estimate. If

one considered a loss function of the form: lose one unit if the relative error, |φ̂−φ|/φ, exceeds

a threshold m and nothing otherwise, then our estimate did not perform as well under this

loss function as the Davis-Resnick estimate when the threshold was high. For example, for

a sample size of 100 and a threshold m = 1, i.e. a relative error at least 100%, the risk

expressed as a percentage, viz. P (|φ̂ − φ|/φ > 1) 100%, for the Davis-Resnick estimate at

φ = 0.2 and for choices of β equal to 0.2, 0.8, and 1.8 were 0.6, 11, and 1.5, respectively.

Whereas for our estimates, these risks were 0.4, 2.4, and 16. When the threshold increased to

m = 2, the risks for the Davis-Resnick estimates under these parameter combinations were

0.0, 0.5, and 0.9, respectively. While for our method, they were 0.1, 0.9, and 3.3, respectively.

Reflection on the form of our estimator in the AR(1) case suggests that when the inno-

vation following the largest sample value is also large that tends to deteriorate the accuracy

of our estimate and this effect is amplified the smaller the autocorrelation parameter. These

observations are reinforced by consideration of the limit distribution of our estimate in the

AR(1) case. The tail limiting distribution is given by P (Z/η > x) where Z and η are inde-

pendent random variables having a Pareto(β) and Frechet distribution with parameter β,

respectively. A direct calculation shows the tail area to be asymptotically equivalent to x−β as

x tends to infinity so that one finds P (|φ̂−φ|/φ > m) ∼ (mbnφ)
−β where bn = F←(1−1/n).

In the case of a Pareto(β) innovation distribution, this becomes (nmβφβ)−1 showing that

the chance of a relative error at least m increases with decreasing φ for fixed β and for fixed

φ increases with increasing β. These observations appear to be substantiated in simulations

and may be helpful in refining our estimate.

Finally, Table 1 reveals that the average lengths of 99% confidence intervals are consider-

ably wider than for 95% confidence intervals and this observation applies to both estimates.

The reason for this behavior is the heavy tail feature of the sampling distribution of the
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estimates. For the Davis-Resnick estimate, the limit distribution for their estimate is of the

form S1/S0 where S0 and S1 are independent stable random variables with indices β/2 and β,

respectively. For our estimate, as noted above the limit distribution is of the form Z/η where

Z and η are independent random variables having a Pareto(β) and Frechet distribution with

parameter β. In both cases, these limit distributions are heavy tail distributions.

Now observe from Table 3.1 that our estimator on average is significantly more accurate

in estimating the true autoregressive parameter φ = .2 than Davis and Resnick’s (1986) esti-

mator when 0 < β < 1. While the accuracy of our estimator remains consistent as the regular

varying index approaches 1, Davis and Resnick’s estimator performs drastically worse. An

obvious distinction in performances of both estimators can be seen in the average length of

the confidence intervals. While our method was able to use one-sided confidence intervals

since φ̂BM ≥ φ, for all t ≥ 1, Davis and Resnick’s methods couldn’t. Within every compar-

ison (expect β = 1.8) our method of estimation out performs Davis and Resnick’s estimator

in precision. In particular, when β = .2, n = 500 the 95% confidence interval average length

for our method is 58 times smaller than our competitors. Furthermore, the average length of

Davis and Resnick’s estimator for the 95% confidence interval is approximately .3 (one-third

of the maximum coverage for φ) when the sample size is small i.e. (n = 100), whereas ours is

approximately 3 times smaller. Due to the fact that any extreme value method of estimation

becomes extremely difficult for a sample size i.e. (n = 100), this result is quite astonishing.

While the average length of our 95% confidence intervals remain significantly smaller, the

average length of our 99% confidence intervals becomes increasingly larger as β increases,

whereas Davis and Resnick estimator average length remains consistently poor. A possible

explanation for the significant difference in length between the 95% and 99% confidence

interval for our method lies within the occurrence of a few extreme estimates. That is, our

extreme value method of estimation depends heavily on obtaining large innovations. Thus,

it can be shown when the regular varying index is small (less than 1) the largest innovation

Zt will be extremely large, and only in the situation when the next innovation is also large
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does our estimator behave badly. Whereas if β takes on higher values like 1.5 or 1.8, then

the largest innovation is not likely to be nearly as large, thus the chance that we get a bad

estimate increases since now it only takes a moderately above normal innovation to produce

an extreme estimate. Furthermore, the effect of the autoregressive parameter φ is that if it

takes on a value near its lower bound, then the largest innovation is considerably reduced in

value, thus allowing a large spectrum of moderate to normal values for the next innovation to

cause bad estimates. Therefore, we can expect with small probability some extreme estimates

from our estimator, which in turn affects the length for a 99% confidence interval but not

the length for a 95% confidence interval. Additionally observe with Z ∼ Fβ and η ∼ Φβ

we have from Corollary 3.4.1 that bn(φ̂BM − φ)
D−→ Z

η
, where Z and η are independent and

bn = n1/β . For y > 0

P

(

Z

η
> y

)

= Φβ(1/y) +
1

yβ

∫ yβ

0

xe−xdx.

Hence

P

(

Z

η
> y

)

∼
1

yβ
, as y → ∞.

Thus, we find for some positive constant m > 0 that

P ((φ̂BM − φ) > mφ) = P (n1/β(φ̂BM − φ) > mφn1/β) ∼ P

(

Z

η
> mφn1/β

)

∼
1

(mφ)βn
.

In the special case that n = 500, m = 2, φ = .2, and β = .8 we find

P
(

φ̂BM > .6
)

≈ 1

(.4)(.8)500
= .0041.

Although the small probability of an extreme estimate appears alarming, in reality, they

are merely a part of our extreme value method and despite this, Table 3.1 verifies when

0 < β < 1 that our estimator produces a smaller standard deviation than Davis and Resnick’s

estimator. Even with the few extreme estimates, the smaller standard deviation just verifies

the amount of precision and accuracy of our estimator. For example, when β = .5, n = 500
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only 35 estimates were more than .02 away from φ = .2 and of those only 5 were more than

2 times as large as φ.

With regard to bias, it is easily checked that the mean of the limiting distribution of our

estimator φ̂BM is β
β−1

Γ( 1
β
+1) = 1

β−1
Γ( 1

β
), where Γ denotes the gamma function. Noting that

bn = n1/β = F←(1− 1
n
), we see that the estimate

φ̃BM = φ̂BM − 1

β − 1
Γ

(

1

β

)

n−1/β (3.5.3)

is asymptotically unbiased when β > 1.

Table 3.1: Comparison of Estimators for the AR(1) model when φ = .2.

β n φ̂DR φ̂BM avgLengthDR avgLengthBM

90% 95% 99% 90% 95% 99%

β = .2

n = 100 .2160 .2022 .0154 .0544 .2473 .0001 .0008 .0760
(.0291) (.0257) - - - - - -

n = 500 .2010 .2003 .0094 .0176 .0715 < .0001 .0003 .0021
(.0131) (.0081) - - - - - -

β = .5

n = 100 .2243 .2089 .1185 .1765 .3233 .0097 .0302 .2174
(.0565) (.0491) - - - - - -

n = 500 .2049 .2014 .0204 .0408 .1927 .0004 .0014 .0250
(.0201) (.0134) - - - - - -

β = .8

n = 100 .2804 .2237 .2751 .3241 .3845 .0564 .0982 .3345
(.0874) (.0668) - - - - - -

n = 500 .2263 .2054 .0836 .1149 .2109 .0077 .0179 .1036
(.0346) (.0306) - - - - - -

β = 1.2

n = 100 .1862 .2205 .2242 .3028 .4401 .1471 .2188 .4188
(.0705) (.0721) - - - - - -

n = 500 .1978 .2158 .0866 .1214 .2432 .0392 .0671 .1932
(.0328) (.0343) - - - - - -

β = 1.5

n = 100 .1858 .2210 .2424 .3082 .4464 .1957 .2617 .3702
(.0735) (.1002) - - - - - -

n = 500 .1974 .2157 .1058 .1373 .2409 .0729 .1175 .2147
(.0355) (.0426) - - - - - -

β = 1.8

n = 100 .1842 .2445 .2535 .3158 .4464 .2388 .3005 .4138
(.0755) (.0969) - - - - - -

n = 500 .1976 .2274 .1169 .1469 .2222 .1108 .1623 .2307
(.0381) (.0582) - - - - - -

Figures 3.1 and 3.2 below show a comparison between the probability that estimators

φ̂BM and φ̂DR are within .01 of the true autocorrelation parameter value, respectively. The

figures show how the performance of our extreme value method and Davis and Resnick’s

Yule-Walker method varies with respect to size of the autocorrelation parameter and index

of regular variation. With a sample size of 500 these figures plotted the sample fraction of

estimates which fell within a bound of ǫ = .01 of the true value. Good performance with

respect to this measure is reflected in curves near to 1.0 with diminishing good behavior as

curves approach 0.0. The figures show that as the autocorrelation parameter φ increases,
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for each fixed value of β the accuracy of our method increases while the accuracy of the

Davis and Resnick estimator decreases. When 0 < β < 1, our estimator compared to theirs

produced a higher fraction of precise estimates as measured by being within the bound ǫ

of the true autoregressive parameter φ. When the regular variation index value is nearer to

2, we see a higher fraction of the Davis-Resnick estimates showing better accuracy by this

measure. The figures also indicate another interesting difference between the two methods.

Whereas the accuracy of our method increases with decreasing value of β, the Davis-Resnick

estimate shows no such monotonicity with the most challenging values for them occurring

for β near 1.

Figure 3.1: P [|φ̂BM − φ| < .01] for RV−β
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Figure 3.2: P [|φ̂DR − φ| < .01] for RV−β

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Autoregressive Parameter phi

P
ro

ba
bi

lit
y 

(T
hr

es
ho

ld
 =

 .0
1)

Accuracy for Davis & Resnick Estimator (n = 500)

Beta

.2

.5

.8
1.2
1.5
1.8

3.5.2 AR(2) Simulation Study

The simulation study performed for the AR(2) model consisted of two parameter regimes.

For the simulation study presented in Tables 3.2 and 3.3, the AR(2) model had an autore-

gressive polynomial with root of smaller norm close to 1 whereas for the simulation study

presented in Tables 3.4 and 3.5, the smaller root was fairly distant from 1. In particular, the

smaller root in norm for the example in Tables 3.2 and 3.3 was 1.045, whereas the smaller

root for the model reported in Tables 3.4 and 3.5 was 2.0. In both examples, our simulation

followed the same guidelines as AR(1) simulation. That is, we generated 5,000 replications

of the nonnegative time series (X0, X1, . . . , Xn) for sample sizes of 100 and 500. In its infinite
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order moving average MA(∞) representation, the AR(2) process (Xt) takes the form

Xt =
∞
∑

j=0

cjZt−j, where c0 = 1, c1 = φ1, ci = φ1ci−1 + φ2ci−2, for i = 2, 3, . . . .

The Pareto distribution defined in (3.5.2) was used for the nonnegative innovation distribu-

tion F .

A monte carlo simulation was performed in each of the four cases where we obtained

5, 000 estimates for (φ1, φ2), using (φ̂1(DR), φ̂2(DR), φ̂1(BM), φ̂2(BM)). The means and standard

deviations (written below in parentheses), of these estimates are reported in Tables 3.2 and

3.3 for the first example and in Tables 3.4 and 3.5 for the second example, along with the

average length for a 95 and 99 percent empirical confidence intervals with exact coverage.

More precisely, the endpoints of the 95% confidence interval, which depend on the .025

and .975 percentiles of the sampling distribution of the pivot, were determined empirically

through simulation rather than obtained from a limit distribution. Thus, the probability that

the confidence interval contains the true parameter was nearly perfect throughout all four

cases.

For the situation when there is a root of norm near one and 0 < β < 1, Tables 3.2 and 3.3

demonstrate a better performance both in terms of smaller bias and smaller length of confi-

dence intervals of our estimate over the Davis-Resnick estimate. In the range of 1 < β < 2

the Davis-Resnick estimate is less biased but has greater variability than our estimate.

For the situation when the roots of the autoregressive polynomial are farther in norm

from one and 0 < β < 1, Tables 3.4 and 3.5 indicate a similar comparison between the

estimates as shown in Tables 3.2 and 3.3. In the range 1 < β < 2, there is an improvement in

bias for the Davis-Resnick estimate over ours and an improvement in both bias and length

of confidence interval for β = 1.8, the highest value for β considered in our study.
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Table 3.2: Estimator Comparison of φ1 when a root has norm near one

φ1 = .80 avgLengthDR avgLengthBM

β n φ̂1DR φ̂1BM 95% 99% 95% 99%

β = .2

n = 100 .8453 .8262 .3902 .4603 .0567 .2591
(.2104) (.0752) - - - -

n = 500 .8263 .8003 .1673 .2873 .0167 .0968
(.1056) (.0302) - - - -

β = .8

n = 100 .8776 .8162 .5081 .6323 .0835 .1829
(.1622) (.0565) - - - -

n = 500 .8458 .8084 .3304 .3914 .0285 .1397
(.3097) (.0397) - - - -

β = 1.2

n = 100 .8047 .8357 .3200 .4404 .1136 .1913
(.0660) (.0481) - - - -

n = 500 .7995 .8179 .2303 .3485 .0988 .1667
(.1801) (.0424) - - - -

β = 1.8

n = 100 .7836 .8529 .2253 .2798 .1659 .2262
(.0818) (.0333) - - - -

n = 500 .7988 .8277 .1502 .2195 .1481 .1996
(.2963) .0388) - - - -

Table 3.3: Estimator Comparison of φ2 when a root has norm near one

φ2 = .15 avgLengthDR avgLengthBM

β n φ̂2DR φ̂2BM 95% 99% 95% 99%

β = .2

n = 100 .1276 .1386 .2428 .3953 .0018 .0284
(.2518) (.0724) - - - -

n = 500 .1388 .1489 .2155 .3302 < .0001 .0201
(.1404) (.0577) - - - -

β = .8

n = 100 .1071 .1427 .4161 .5224 .0179 .0445
(.3045) (.0556) - - - -

n = 500 .1290 .1492 .3110 .4478 < .0001 .0228
(.2262) (.0391) - - - -

β = 1.2

n = 100 .1135 .1287 .3108 .5024 .0375 .0795
(.1804) (.0474) - - - -

n = 500 .1479 .1408 .2076 .3358 .0187 .0309
(.0648) (.0387) - - - -

β = 1.8

n = 100 .1264 .1142 .2372 .4162 .0939 .1587
(.0747) (.0347) - - - -

n = 500 .1438 .1323 .0603 .1339 .0478 .0759
(.0411) (.0379) - - - -
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Table 3.4: Estimator Comparison of φ1 when roots have norm far from one

φ1 = .20 avgLengthDR avgLengthBM

β n φ̂1DR φ̂1BM 95% 99% 95% 99%

β = .2

n = 100 .2453 .2220 .2554 .7056 .0817 .2791
(.2571) (.0924) - - - -

n = 500 .2199 .2014 .0186 .3565 .0022 .0782
(.1437) (.0412) - - - -

β = .8

n = 100 .2597 .2287 .3781 .6724 .0994 .2998
(.1930) (.0826) - - - -

n = 500 .2239 .2039 .1076 .2941 .0590 .1756
(.1255) (.0391) - - - -

β = 1.2

n = 100 .1955 .2227 .1649 .3411 .1364 .3429
(.1927) (.0923) - - - -

n = 500 .1973 .2105 .1350 .2641 .1246 .2467
(.1039) (.0496) - - - -

β = 1.8

n = 100 .1855 .2403 .1197 .4049 .1744 .4250
(.2243) (.1152) - - - -

n = 500 .1989 .2298 .0837 .2350 .1399 .2962
(.0574) (.0644) - - - -

Table 3.5: Estimator Comparison of φ2 when roots have norm far from one

φ2 = .15 avgLengthDR avgLengthBM

β n φ̂2DR φ̂2BM 95% 99% 95% 99%

β = .2

n = 100 .1682 .1377 .2102 .6957 .0737 .3177
(.2145) (.0717) - - - -

n = 500 .1535 .1481 .0339 .2696 .0004 .0621
(.1247) (.0303) - - - -

β = .8

n = 100 .2264 .1585 .2651 .7957 .0981 .3636
(.2787) (.0871) - - - -

n = 500 .1885 .1519 .1223 .2904 .0453 .1915
(.1106) (.0392) - - - -

β = 1.2

n = 100 .1348 .1678 .1827 .4921 .1677 .3927
(.1783) (.0974) - - - -

n = 500 .1444 .1585 .1504 .2337 .1232 .2422
(.1135) (.0522) - - - -

β = 1.8

n = 100 .1358 .1754 .1515 .3983 .1911 .4579
(.2366) (.1189) - - - -

n = 500 .1456 .1637 .1105 .2057 .1336 .2678
(.0413) (.0707) - - - -
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As with the AR(1) case, accounting for the bias in our estimates, it is easily checked that

the mean of the limiting distribution of our estimator φ̂1(BM) is
1

β−1
Γ( 1

β
) 1−φ1

1−φ1−φ2
when β > 1.

Thus, the estimate

φ̃1(BM) = φ̂1(BM) −
1

β − 1
Γ

(

1

β

)

1− φ̂1(BM)

1− φ̂1(BM) − φ̂2(BM)

n−1/β

is asymptotically unbiased estimate for φ1. Similarly

φ̃2(BM) = φ̂2(BM) −
1

β − 1
Γ

(

1

β

)

(

(1− φ̂1(BM))
2 − φ̂2(BM)

1− φ̂1(BM) − φ̂2(BM)

)

n−1/β

is asymptotically unbiased estimate for φ2.

We conclude this subsection with a comment on the shape of the confidence intervals for

either of these estimation procedures. The point estimate falls towards the left end point of

the intervals so that they are asymmetrical about the estimate and may be said to be right

skewed. Unlike your typically confidence intervals where the parameter estimate is located in

the center of the interval,the nature of the confidence intervals obtained from both methods

in this simulation were non-symmetric. The non-symmetric confidence intervals arises from

the respected empirical distributions. That is, the lower critical values found at the .025 or

.005 percentiles are typically much smaller than the .975 or .995 percentiles respectively. For

example, denoting cu as the .975 percentile and cl as the .025 percentile of the empirical

distribution bn(φ̂1(BM) − φ1) we have

P [cl ≤ bn(φ̂1(BM) − φ1) ≤ cu] = .95.

Consequently,

P [φ̂1(BM) − cu/bn ≤ φ1 ≤ φ̂1(BM) − cl/bn] = .95
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and as a result in general, we get non-symmetrical 95% confidence intervals since cu/bn and

cl/bn are not equal in length.

3.5.3 ARMA(3,1) Simulation Study

In this section we consider simulating the ARMA(3,1) process (Xt) satisfying the equa-

tions

Xt = .1044Xt−1 + .0559Xt−2 + .0068Xt−3 + Zt − .1Zt−1, for 1 ≤ t ≤ n

with ARMA polynomials given by

φ(z) = 1− .1044z − .0559z2 − .0068z3 and θ(z) = 1− .1z.

As with the AR(1) and AR(2) simulations, we considered two different sample sizes (100, 500)

and take the nonnegative innovation distribution to be the Pareto distribution defined in

(3.5.2). Since the autoregressive polynomial φ(z) = 1− .1044z− .0559z2 − .0068z3 has zeros

at 3.00016 and −5.61037 ± 4.18816 i, which are located outside the unit circle, we have a

causal ARMA process. Lastly, the MA polynomial θ(z) = 1 − .1z has a zero at z = 10,

which is also located outside the unit circle. This implies that (Xt) is invertible. What makes

this example so interesting is that we are using a nonnegative time series with nonnegative

innovations and the casual representation

Xt =
∞
∑

j=0

cjZt−j ,

where c0 = 1, c1 = φ1+θ1, c2 = φ1c1+φ2, ci = φ1ci−1+φ2ci−2+φ3ci−3, for i = 3, 4, . . . are such

that all coefficients cj are nonnegative in order to estimate the three positive autoregressive

parameters and the negative moving average coefficient θ1. For this model l0 = 1, and so we
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estimate the coefficients cj , j ≥ 1 by

ĉi =
Xt∗−1+i

Xt∗−1

, i ≥ 1.

Then solving (3.4.2) we find

φ̂1 =
ĉ4 − ĉ22 − ĉ1ĉ3 + ĉ21ĉ2
ĉ3 − 2ĉ1ĉ2 + ĉ31

, φ̂2 = ĉ2 − φ̂1ĉ1, φ̂3 = ĉ3 − φ̂1ĉ2 − φ̂2ĉ1, θ̂1 = ĉ1 − φ̂1 (3.5.4)

to be estimators for (φ1, φ2, φ3, θ1), respectively.

A monte carlo method was performed for β = (.2, .8, 1.2, 1.8) in which we obtained 5, 000

estimates for (φ1, φ2, φ3, θ1), using (φ̂1, φ̂2, φ̂3, θ̂1) in each case. The means and standard

deviations (written below in parentheses) of these estimates are reported in Table’s 3.6 and

3.7 along with the average length for a 95 and 99 percent empirical confidence intervals with

exact coverage.

As seen from (3.5.4), the estimate for φ1 is a complicated function of four estimates of

coefficients from the moving average representation of the process and further the other

parameter estimates involve this estimate in their definitions, suggestive therefore that

variability of the estimates may be high for this problem. This is seen to have occurred in

the estimation of φ1 and in the estimation of the moving average parameter θ1.

Observe from (3.5.4) that φ1 is the most complicated parameter to estimate and the

other estimates depend directly upon φ̂1 with the negative moving average estimate θ̂1 being

affected the most. Hence, it should come to little surprise that θ1 was the hardest parameter

to estimate. However, Tables 3.6 and 3.7 clearly shows based on accuracy, variation, and

precision that our method of estimation in the ARMA(3,1) model performed extremely well

when the regular variation index β is smaller than 1 despite the heavy reliance among esti-

mates. Not only was the accuracy for the three positive autoregressive parameter estimates

within .01 of their true value when n = 500 and 0 < β < 1, but remarkability the estimate for
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the negative moving average parameter was also extremely accurate (within .01) of θ1. Fur-

thermore, seven out of the eight average lengths of the 95% confidence intervals were smaller

than .02 for all four parameters, while all six intervals for the three positive autoregressive

parameters were smaller than .05 when n = 100. Within the AR(1) and AR(2) models the

few extreme estimates have had the most impact on the 99% confidence intervals, however

this was not the case for the ARMA(3,1) model as seven out of eight average lengths were

smaller than .10 and of those seven, five were smaller than .05. Therefore our method of

estimation not only got validation for ARMA models, but the ability with extreme precision

to estimate negative parameters with a nonnegative time series with nonnegative innovations.

A further analysis of the variability of the estimates is provided in Figure 3.3. From these

histograms we see that the sampling distributions for the estimates of φ1 and θ1 have long

tails whereas the sampling distribution of the estimate of φ2 is particularly concentrated at

the true parameter value. More generally for all four estimates, the histogram spikes steeply

at the true parameter and most of the mass of the sampling distribution is concentrated near

the true parameter value.

The amount of variation seen in Table 3.6 for φ̂1 appears to be a concern, but further

analysis reveals that this variation is due to a few bad estimates which based on the discussion

in section 4.2 is to be expected. Figure 3.3 confirms two statements about the empirical

distribution of our estimators: Firstly a large spike within .001 of the true value and small

spikes farther from the true value which skews the mean and standard deviation and secondly,

the few bad estimates for φ1 directly produce bad estimates for φ2, φ3, and θ1, which is

explained by the heavy dependence that the estimators (φ̂2, φ̂3, θ̂1) have with φ̂1.
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Table 3.6: ARMA(3,1) Confidence Intervals for (φ1, φ2)
.

φ1 = .1044 avgLength φ2 = .0559 avgLength

β n φ̂1 95% 99% φ̂2 95% 99%

β = .2

n = 100 .1064 .0143 .1144 .0517 .0224 .1491
(.2965) - - (.0374) - -

n = 500 .1045 .0019 .0524 .0559 .0001 .0131
(.1706) - - (.0079) - -

β = .8

n = 100 .1097 .0450 .1547 .0649 .0433 .1567
(.4173) - - (.0139) - -

n = 500 .1048 .0164 .0768 .0556 .0167 .0338
(.2441) - - (.0149) - -

β = 1.2

n = 100 .1175 .1967 .3772 .0381 .0938 .2186
(.5229) - - (.0122) - -

n = 500 .1104 .0673 .1512 .0536 .0287 .1028
(.3748) - - (.0225) - -

β = 1.8

n = 100 .1447 .2821 .4315 .0272 .1173 .2812
(.6321) - - (.0316) - -

n = 500 .1205 .1184 .2478 .0529 .0501 .1438
(.5148) - - (.0497) - -

Table 3.7: ARMA(3,1) Confidence Intervals for (φ3, θ1)
.

φ3 = .0068 avgLength θ1 = −0.1 avgLength

β n φ̂3 95% 99% θ̂1 95% 99%

β = .2

n = 100 .0114 .0212 .1183 -.1277 .0776 .2247
(.0217) - - (.2764) - -

n = 500 .0068 < .0001 .0282 -.1001 .0040 .0439
(.0161) - - (.1832) - -

β = .8

n = 100 .0131 .0112 .1486 -.1303 .1159 .2790
(.0521) - - (.4673) - -

n = 500 .0086 .0027 .0386 -.1097 .0264 .1170
(.0305) - - (.2542) - -

β = 1.2

n = 100 .0217 .0173 .1592 -.1579 .1973 .3772
(.1237) - - (.5931) - -

n = 500 .0101 .0151 .0435 -.1103 .0607 .1812
(.0603) - - (.3920) - -

β = 1.8

n = 100 .0469 .0221 .1821 -.1934 .2181 .4308
(.1667) - - (.6821) - -

n = 500 .0326 .0319 .0944 -.1121 .1214 .2179
(.1133) - - (.4908) - -
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Figure 3.3: Histograms for ARMA(3,1) estimates when β = .2
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Our estimation procedure depends on knowing the index of the maximal coefficient

in the moving average representation. We conclude the simulation study with an anal-

ysis of an ad hoc method for estimating this index. If the index of the maximal coeffi-

cient were l0, then a rough approximation to the process above a high threshold is given

by (Xt, Xt+1, . . . , Xt+l0) ≈ (Zt, c1Zt, . . . , cl0Zt) where Zt represents a large innovation. This

observation suggests a method for estimating l0. Observe the start of a cluster of large values

and note the position of the largest value within the cluster. Estimate l0 to be that position

minus one. We tried this procedure where a cluster was deemed large if all its values were

as large or exceeded the 90th percentile of the sample values. We applied this procedure to
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two ARMA(1,1) models where for both models the largest coefficient in the moving average

representation was given by c1, so that our estimate of the index would be correct if the

largest observation in a high values cluster occurred with the second observation. Table 3.8

reports the probability of correct selection of the index using this method. The procedure

was applied to ARMA(1,1) models with a series length of 500 and 100 replications were

performed. The results were poor and so we would recommend using standard statistical

estimation procedures to obtain initial estimates of the parameter values and based on these

estimates choose the value for l0 needed for our procedure.

Table 3.8: Index Estimate for the Moving Average Largest Coefficient
.

β .2 .8 1.2 1.8
φ = .8, θ = .5 .41 .46 .53 .56
φ = .3, θ = .8 .54 .76 .79 .86

130



3.6 References
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Chapter 4

Estimation for First-Order Bifurcating Autoregressive Processes with an

Unknown Location Parameter

4.1 Introduction

The bifurcating autoregressive process (BAR, for short) was introduced by Cowan and

Staudte (1986) for analyzing cell lineage data, where each individual in one generation gives

rise to two offspring in the next generation. More precisely, the first- order bifurcating autore-

gressive process, BAR(1), is defined by the equation

Xt = φX⌊t/2⌋ + ǫt, for 2 ≤ t ≤ 2(k+1) − 1, (4.1.1)

where k represents the number of generations, 0 < φ < 1, and ⌊·⌋ denotes the greatest integer

function, so that one can write recursively X2 = φX1 + ǫ2, X3 = φX1 + ǫ3, X4 = φX2 + ǫ4,

etc. For illustration, the data structure with four generations is given below.

Figure 4.1: Illustration with four Generations in a Binary Tree
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Over the past two decade’s there have been many extensions of bifurcating autoregressive

models. For example, the driven noise (ǫ2t, ǫ2t+1) was originally assumed to be independent

133



and identically distributed normal random variables. However, two sister cells being in the

same environment early in their lives are allowed to be correlated, inducing a correlation

between sister cells distinct from the correlation inherited from their mother. Cowan and

Staudte (1986) proposed the first BAR(1) model which views each line of descent as a first-

order autoregressive AR(1) process with the added complication that the observations on

the two sister cells who share the same parent are allowed to be correlated. In this section

we will focus mainly upon the correlation between mother and daughter cells, however, we

do verify through simulation that estimates for φ are not affected when the two sister cells

are correlated.

In Zhang (2011), the author applies an point process technique to a first-order bifurcating

process. Within this paper the author defined Yt = min(ǫ2t, ǫ2t+1) and assumed that the

marginal distribution of this random variable was regularly varying at the left endpoint 0

with index α. Additionally, the author derived the joint limiting distribution of the estimator

of φ and the tail index α under some regularity conditions. Bartlett and McCormick (2012)

obtained the limit distribution of φ̂∗n = min1≤t≤n
X̃t

X̃t−1
for an AR(1) model defined in (4.2.4)

when the innovation distribution is regularly varying at the unknown left endpoint θ and

right endpoint infinity. If 0 < φ < 1, then φ̂∗n
a.s.−−→ φ and there exists a sequence of constants

bn = F←(1− 1/n) such that

P [bn(φ̂
∗
n − φ) > x] → e−x

βEW−β

, (4.1.2)

where W = min0≤i≤∞
ǫi
φi . Since bifurcating processes are typically used to model each line

of descent in a binary tree as a standard AR(1) process, it seems natural to expect the

limiting distribution for a BAR(1) to be similar with (4.1.2) as the number of generations

and henceforth the number of observations tends to infinity.

While most papers consider the finite variance case (β > 2) in which the model parameter φ

can be interpreted as the correlation between the mother and daughter cells, in this paper, we

consider the infinite variance case (0 < β < 2) and concentrate on modeling the correlation
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between mother and daughter cells and do not consider the large correlations between more

distant relatives observed by some authors. That is, in Section 4.2 we propose an estimate for

the correlation between the mother and daughter where we assume the innovation sequence

(ǫ2t, ǫ2t+1), t ≥ 1, is a sequence of independently and identically distributed positive bivariate

random variables. Whereas, in Section 4.3 we propose an alternative approach to derive the

limiting law for φ̂n =
∧n

t=2Xt/X⌊t/2⌋ that removes the complexity and difficulty presented in

Theorem 2 of Zhou and Basawa (2005b) under the specified bivariate exponential innovation

distribution. The choice of this distribution allows us to consider the correlation between

sisters that was not dealt with in Section 4.2. The motivation from a biological rationale

for this model is that the sister cells grow in a similar environment, particularly early in

their lives, and hence one expects the correlation between sisters to at least exist. In con-

trast, other more distant relatives, for example cousins, share less of their environment and

it seems reasonable to suppose that their environmental effects are independent. Here the

process is extended, first by considering alternative estimates for φ and θ rather than the

typical least-square or maximum likelihood estimate such that innovations {ǫt} follow an

non-gaussian distribution F and secondly assuming F to be regularly varying at both end-

points.

An initial observation is that our estimation procedure relies heavily upon the large innova-

tions, and because of this, the complex dependency that exists within this process becomes

less of an issue compared to an maximum likelihood approach presented in other papers.

Secondly, our approach is straightforward for both φ and θ. That is, the autocorrelation

coefficient φ in the BAR(1) process is estimated by taking the minimum of the ratio of two

sample values while estimation for the unknown location parameter θ was achieved through

minimizing Xt − φ̂nX⌊t/2⌋ over the observed series.

The rest of the paper is organized as follows: asymptotic limit results for the autocorrelation

parameter φ and unknown location parameter θ, are presented in Section 4.2, Section 4.3

verifies that an extreme value theory method produces the same limit law as Theorem 2 in
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Zhou and Basawa (2005b), while Section 4.4 is concerned with the small sample size behavior

of these estimates through simulation. Additionally, we will investigate the performance of

our heuristic approach.

4.2 Results

Suppose {Xt} is a sequence of observations of some characteristic of individual t. Beginning

with the positive starting valueX1, the first order bifurcating autoregressive process, BAR(1),

with a positive left endpoint θ is defined as,

Xt = φX⌊t/2⌋ + ǫt, for 2 ≤ t ≤ 2(k+1) − 1, (4.2.1)

where 0 < φ < 1 and ⌊x⌋ denotes the largest integer less than or equal to x. We assume

that the innovations {ǫt} are such that the offspring (ǫ2t, ǫ2t+1), t ≥ 1 are a sequence

of independently and identically distributed nonnegative bivariate random vectors with

(ǫ2t, ǫ2t+1) ∼ F1. Additionally, {ǫt} is assumed to have the same marginal distribution F

such that θ = inf{x : F (x) > 0} and sup{x : F (x) < 1} = ∞. Lastly, we assume F is

regularly varying with index α at its positive left endpoint θ, abbreviated F ∈ RVα, and

F̄ = 1 − F is regularly varying with index −β at infinity, its right endpoint. That is, there

exists β > 0 such that

lim
t→∞

F̄ (tx)

F̄ (t)
= x−β, for all x > 0. (4.2.2)

In this paper we will consider the situation where k generations evolved and the offspring

from that generation are included. That is,

1 + 2 + 22 + . . .+ 2k = 2k+1 − 1.
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In order to notationally clarify the transition from the kth generation to the tth individual

in the BAR(1) process {Xt}, let

n = 2k+1 − 1.

That is, the total number of individuals in this process including the offspring during the

kth generation is n. Now by defining

t =















2t̃ if t is even (male);

2t̃+ 1 if t is odd (female),

observe that we can now express the process in (4.2.1) from the offspring perspective,















X2t̃ = φXt̃ + ǫ2t̃, for 1 ≤ t̃ ≤ ⌊n/2⌋;

X2t̃+1 = φXt̃ + ǫ2t̃+1, for 1 ≤ t̃ ≤ ⌊n/2⌋.
(4.2.3)

The process in (4.2.3) allows for a better interpretation of the bifurcating autoregressive

process, where the model parameter φ represents the strength of correlation between the

mother and its offspring under the assumption that the variance is finite. Now denoting

x ∧ y = min(x, y), we have

Yt̃ = ǫ2t̃ ∧ ǫ2t̃+1 = X2t̃ ∧X2t̃+1 − φXt̃.

Then Yt̃ ∼ G(x) = 2F (x) − F1(x, x), with G(θ) = 0. Finally, the first-order autoregressive

process, AR(1), is

X∗t = φX∗t−1 + ǫ∗t , (4.2.4)

where {ǫ∗t} is a sequence of i.i.d. random variables with the same marginal distribution as

{ǫt}.
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By assuming (4.2.2), we are considering a time series with heavy-tailed errors and within

certain time series applications a better model is achieved. Thus, our goal is to capitalize

on the behavior of extreme value estimators over traditional estimators when 0 < β < 2.

This contrasts with estimators whose asymptotic behavior depends on the central part of the

innovation distribution when a second or higher moment is finite. Since the estimate for θ

depends on the estimate for the autocorrelation coefficient, we begin studying the asymptotic

properties of φ̂n and then move onto asymptotic properties for θ̂n. The motivation for the

natural estimator φ̂n, comes from the observation when X⌊t/2⌋ is large, equation (4.2.1)

implies

0 ≤ φ ≤ Xt/X⌊t/2⌋. (4.2.5)

Therefore, by minimizing the ratio in (4.2.5) we expect

φ̂n =

n
∧

t=2

Xt

X⌊t/2⌋

to be a reasonable estimator for φ. In this paper, we will implement the same notation on the

probability space as presented in Davis and McCormick (1989). That is, we define E to be

a two dimensional euclidean space with Borel σ-algebra B. In E, we define ν to be a Radon

measure on E and let Mp(E) denote the class of nonnegative integer-valued Radon measures

on E, where Mp(E) is the σ-algebra generated by the vague topology, and C+
k (E) consists

of all nonnegative continuous functions with compact support. We consider a point measure

on E to be a measurable map from a probability space (Ω,ℑ, P ) into (Mp(E),Mp(E)). That

is, Mp(E) is topologized by vague convergence and since the vague topology renders Mp(E)

a complete separable metric space, we may speak of convergence in distribution of point

processes which will be denoted by ⇒. Finally, we write N is PRM(ν) to indicate that N is

a Poisson process with intensity measure ν where by a Poisson random measure (PRM(ν))
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with mean measure ν, we mean a point process N satisfying

P [N(A) = j] = e−(ν(A))ν(A)j/j!, j = 0, 1, . . .

for A ∈ E with ν(A) < ∞, and furthermore, for any j ≥ 1 and disjoint measurable sets

A1, . . . , Aj , we have that N(A1), . . . , N(Aj) are independent random variables. Hence, for a

point x ∈ E, let ǫx(·) denote the degenerate measure at x.

We now turn to showing that bn(φ̂n − φ) converges in distribution where

bn = F←(1− 1

n
) := inf{x : F (x) ≥ (1− 1/n)}.

Let F̄ (x) = 1− F (x). Then we have

lim
n→∞

F̄ (bnx)

F̄ (bn)
= x−β, for all x > 0. (4.2.6)

Now define an = G←(1/n)− θ. Then

lim
n→∞

G(θ + any)

G(θ + an)
= yα, for all y > 0. (4.2.7)

First observe that the stationary solution is

Xt = ǫt + φǫ⌊t/2⌋ + φ2ǫ⌊t/22⌋ + . . .+ φmǫ⌊t/2m⌋ + . . . .

Thus we begin with a truncation of Xt’s by defining

X
(m)
t =

m
∑

j=0

φjǫ⌊t/2j⌋, m ≥ 1, t ≥ 2m
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as an approximation to Xt. Furthermore,

X
∗(m)
1 =

m
∑

j=0

φjǫ2j
d
= X

(m)
t , m ≥ 1 X∗1 = X

∗(∞)
1 . (4.2.8)

Now using the fact that Yt̃ = ǫ2t̃ ∧ ǫ2t̃+1, we can determine the necessary point process, since

P [bn(φ̂n − φ) > x] = P

[

n
∧

t=2

(

Xt − φX⌊t/2⌋
b−1n X⌊t/2⌋

)

> x

]

= P

[

n
∧

t=2

(

ǫt
b−1n X⌊t/2⌋

)

> x

]

= P





⌊n/2⌋
∧

t̃=1

(

ǫ2t̃ ∧ ǫ2t̃+1

b−1n Xt̃

)

> x





= P





⌊n/2⌋
∧

t̃=1

(

Yt̃
b−1n Xt̃

)

> x



 .

Thus we define the following point process:

In =

⌊n/2⌋
∑

t̃=1

ε(Yt̃,b
−1
n Xt̃)

and I(m)
n =

⌊n/2⌋
∑

t̃=1

ε
(Yt̃,b

−1
n X

(m)

t̃
)
.

Observe that the point process In consists of two independent components, where the first

component consists of the marks for the minimum of the offspring individuals Yt̃ and the

second component consists of the points from the parents b−1n Xt̃.

Since we are looking at the first order bifurcating process from the natural perspective of

(4.2.3), we will let t = t̃, so that 1 ≤ t ≤ ⌊n/2⌋.

Now we consider establishing convergence of the point process I(m)
n by first defining rectangles

Ri = [ai, bi]× [a
′

i, b
′

i], 1 ≤ i ≤ q. (4.2.9)
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Thus, we need to show for any q ≥ 1 that the q−dimensional distribution converges. That

is,

(I(m)
n (R1), . . . , I(m)

n (Rq))
d−→ Pois(λ1)× . . .× Pois(λq) as n→ ∞, (4.2.10)

where λi ≡ λ
(m)
i = limn→∞E[I(m)

n (Ri)] and Pois(λ) denotes a Poisson distribution with

parameter λ, while X × Y means that X and Y are independent.

We will prove (4.2.10) for the case of q = 2. That is, we will show that if a
′

1 < b
′

1 < a
′

2 < b
′

2

so that R1 ∩ R2 = ∅, then

(I(m)
n (R1), I(m)

n (R2)) ⇒ Pois(λ1)× Pois(λ2) as n→ ∞.

The proof of the other cases is similar, thus omitted. Now suppose that we have constructed

arbitrary blocks Ql,s in such a way that X
(m)
t and X

(m)
t′ are independent for all t if t ∈ Ql,s

and t′ ∈ Ql′,s′ such that (l, s) 6= (l′, s′). Under this assumption. we proceed with the argument

and define the following indicator function’s

I i(l,s) =















1 if
∑

t∈Ql,s
1[(Yt, b−1n X

(m)
t ) ∈ Ri] ≥ 1 for i = 1, 2,

0 otherwise ,

(4.2.11)

and

Ĩ i(l,s) =















1 if
∑

t∈Ql,s
1[(Yt, b−1n X

(m)
t ) ∈ Ri] ≥ 2 for i = 1, 2,

0 otherwise .

(4.2.12)

Now let I(l,s) = (I1(l,s), I
2
(l,s)) and Ĩ(l,s) = (Ĩ1(l,s), Ĩ

2
(l,s)).

Now observe that {I(l,s) : 1 ≤ s ≤ ⌊2l/r⌋, l = l0, . . . , k} are i.i.d. Bernoulli random vectors.

The following lemma shows if there exists at least two different indices in the same interval

Ql,s such that the points in I(m)
n fall within either region R1, R2 or both for some (l, s) then

the event is negligible as n tends to infinity.
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First observe since X
(m)
t and X

(m)
t′ are independent if t ∈ Ql,s and t′ ∈ Ql′,s′ with (l, s) 6=

(l′, s′) then
∑

t∈Ql,s
1[(Yt, b−1n X

(m)
t ) ∈ Ri] and

∑

t′∈Ql′,s′
1[(Yt′ , b−1n X

(m)
t′ ) ∈ Ri] are independent

for i = 1, 2.

Lemma 4.2.1. Suppose t ∈ Ql,s and t′ ∈ Ql′,s′ such that (l, s) 6= (l′, s′). Under the assump-

tions that 0 < φ < 1, θ > 0, F̄ ∈ RV−β we have

P





k
∑

l=l0

⌊2l/r⌋
∑

s=1

Ĩ(l,s) 6= (0, 0)



→ 0, as k → ∞.

Remark 1. By definition as k tends to infinity n = 2k+1 − 1 tends to infinity and therefore

we can speak of regular variation in terms of k.

The next lemma shows the probability that there exists at least one index in the same interval

Ql,s for each component of I(l,s), such that the point or points in I(m)
n fall within region Ri

is zero for i = 1, 2 and some (l, s).

Lemma 4.2.2. Under the conditions specified in Lemma 4.2.1 for some l0 ≤ l ≤ k, 1 ≤ s ≤

⌊2l/r⌋, we have

P [I(l,s) = (1, 1)] = o
( r

2k+1

)

.

The following lemma calculates the probability that there exists at least one index in the

same interval Ql,s, such that the point or points in I(m)
n fall within exactly one region for

some (l, s).

Lemma 4.2.3. Let Y1 ∼ G. Then under the conditions specified in Lemma 4.2.1 for r =

o(2k) and some l0 ≤ l ≤ k, 1 ≤ s ≤ ⌊2l/r⌋, we have

2k+1

r
P [I(l,s) = (j, 1− j)] ∼ γ2−j, for j = 0, 1, and k large

where γi = (G(bi)−G(ai)) · κi and κi = (b
′−β
i − a

′−β
i )(1− φ(mβ))/(1− φβ) for i = 1, 2.
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The next lemma determines the limiting distribution for our i.i.d. random vector I(l,s) through

the use of the moment generating function.

Lemma 4.2.4. Under the conditions specified in Lemma 4.2.1 for r = o(2k) we have

P [I(l,s) = (i, j)] =















r
2k+1γ(i,j)(1 + o(1)) if 0 ≤ i, j ≤ 1, i+ j = 1 ,

1− r
2k+1 (γ(1,0) + γ(0,1))(1 + o(1)) if i = j = 0 ,

where γ(i,j) = (G(b2−i)−G(a2−i))(b
′−β
2−i −a

′−β
2−i)(1−φ(mβ))/(1−φβ) for i+ j = 1. Additionally,

k
∑

l=l0

⌊2l/r⌋
∑

s=1

I(l,s) = (I1(l,s), I
2
(l,s)) ⇒ Pois(λ1)× Pois(λ2), as k → ∞,

where λi = (G(bi)−G(ai))(b
′−β
i − a

′−β
i )(1− φ(mβ))/(1− φβ) for i = 1, 2.

Applying the previous lemma’s yields our first main result.

Theorem 4.2.1. Consider the stationary BAR(1) process {Xt} from (4.2.1) where F sat-

isfies (4.2.2). Then for any m ≥ 1 and disjoint sets, Ri := [ai, bi] × [a
′

i, b
′

i] for i = 1, 2 we

have

(I(m)
n (R1), I(m)

n (R2)) ⇒ Pois(λ1)× Pois(λ2), as n→ ∞,

where λi ≡ λ
(m)
i = limn→∞E[I(m)

n (Ri)] = (G(bi)− G(ai))(b
′−β
i − a

′−β
i )(1 − φ(mβ))/(1 − φβ),

for i = 1, 2.

Recall that if n is the total number of observations in k generations, we have n = 2k+1 − 1

or k = log2(n + 1)− 1. The following corollary produces the limiting distribution for φ̂n as

the number of generations tends to infinity.

Corollary 4.2.1. Consider the estimator of φ, φ̂n =
∧n

t=2
Xt

X⌊t/2⌋
. Suppose 0 < φ < 1, θ >

0, F̄ ∈ RV−β and EY −γ <∞ for some γ > β, then

lim
n→∞

P [bn(φ̂n − φ) > x] = e−x
βEY −β(1−φβ)−1

, for all x > 0,
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where Y has the stationary distribution G for the process (4.2.1).

We now shift our attention to the positive unknown location parameter θ. The motivation

for an estimator of θ arrives from the observation that, Xt − φ̂nX⌊t/2⌋ can be expressed as

−(φ̂n − φ)X⌊t/2⌋+ ǫt. Now since
∧n

t=2 ǫt
a.s.−−→ θ and φ̂n

p−→ φ as n→ ∞ allows us to define our

estimator for θ:

θ̂n =
∧

t∈In

(Xt − φ̂nX⌊t/2⌋), (4.2.13)

where we define the index set In = {t : 2 ≤ t ≤ n and X⌊t/2⌋ ≤ (anbn)
ρ} where 0 < ρ < 1 is

a fixed value.

Now to determine the limiting distribution for θ̂ observe that,

θ̂n − θ = [(θ̂n −
∧

t∈In

Yt) + (
∧

t∈In

Yt − θ)]. (4.2.14)

The following lemma show that the first term in (4.2.14) goes to zero in probability, thus

allowing us to focus only on the second term.

Lemma 4.2.5. Under the assumptions that G is regularly varying with index α at its positive

left endpoint θ and F̄ is regularly varying with index −β at infinity, its right endpoint, and

α > β, then

a−1n

(

θ̂n −
∧

t∈In

Yt

)

p→ 0, as n→ ∞,

where an = G←(1/n)− θ.

Now we use point processes to show that the second term in (4.2.14) converges (weakly)

to a Poisson point process with mean measure yα/2.

Theorem 4.2.2. Consider the stationary BAR(1) process {Xt} from (4.2.1) where G sat-

isfies (4.2.7). Let Vn and V be the point processes on the space E2 = [0,∞) defined by

Vn =

⌊n/2⌋
∑

t=1

ε(a−1
n (Yt−θ))

and V =

∞
∑

p=1

εjp,
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where
∑∞

p=1 εjp is PRM(ν) with ν[0, y] = yα/2, y > 0. Then in Mp(E2),

Vn ⇒ V.

The following lemma is an alternative approach to show that the point process used in

Theorem 4.2.2 suffices.

Lemma 4.2.6. Consider the stationary BAR(1) process {Xt} from (4.2.1) where G satisfies

(4.2.7). Let Ṽn and Vn be the point processes on the space E3 = [0,∞)× [0,∞) defined by

Ṽn =

⌊n/2⌋
∑

t=1

ε(a−1
n (Yt−θ),cn)

and Vn =

⌊n/2⌋
∑

t=1

ε(a−1
n (Yt−θ),0)

,

where cn = a−1n |(φ̂n − φ)|Xt. Then for t ∈ In

d(Ṽn,Vn)
p−→ 0,

where d is the vague metric on Mp(E3).

The following corollary uses the continuous mapping theorem to obtain the limiting

distribution for θ̂n as n tends to infinity.

Corollary 4.2.2. Consider the estimator of θ, θ̂n =
∧

t∈In
(Xt − φ̂nX⌊t/2⌋). Suppose θ > 0

and F is RVα at θ. If α > β then for any y > 0 we have

lim
n→∞

P [a−1n (θ̂n − θ) > y] = e−y
α/2.
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4.3 The Elegance of an Extreme Value Approach

In this section we use an extreme value approach to obtain the limit law for φ̂n under the

assumption that Yt = ǫ2t ∧ ǫ2t+1 is positive and the marginal distribution G is regularly

varying at θ = 0 with index α. In the previous section, we obtain the limit law for φ̂n under

the assumption that the innovation distribution for {ǫt} was regularly varying at infinity

with index −β. The goal in this section is not only designed to fill in the gaps for the

proof of Proposition 2 in Zhang (2011), but present an alternative derivation that under the

correct parameterization obtains the same limit law found in Theorem 2 of Zhou and Basawa

(2005b). Naturally this approach may seem like over kill, but it demonstrates the pure power

and elegance that an extreme value approach can have as we will show that complexity and

difficulty found in Zhou and Basawa (2005b) approach is unnecessary. We continue in this

section with the usual first-order bifurcating autoregressive process defined by

Xt = φX⌊ t
2
⌋ + ǫt, for 2 ≤ t ≤ n, (4.3.1)

where ⌊x⌋ denotes the largest integer less than or equal to x.

For the model in (4.3.1) we assume that 0 < φ < 1 and the innovations ǫt are such that

(ǫ2t, ǫ2t+1) are i.i.d with (ǫ2t, ǫ2t+1) ∼ F1 and ǫt has the same marginal distribution F satis-

fying F (θ) = 0. By defining G(x) = 2F (x) − F1(x, x), we assume G is regularly varying at

θ = 0 with index α. The following Theorem generalizes the result presented in Zhang (2011)

where the author assumes Weibull type innovations.

Theorem 4.3.1. Let dn = G←(1/n) and consider the estimator of φ, φ̂n =
∧n

t=2Xt/X⌊t/2⌋.

Under the assumption that G ∈ RVα and EXγ
1 <∞ for some γ > α, we have

lim
n→∞

P [d−1n (φ̂n − φ) > y] = e−y
α

EXα
1 /2,

where X1 has the stationary distribution H for the process in (4.3.1).
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Remark 2. The stationary distribution H is the same as the stationary distribution

of the AR(1) sequence X̃t = φX̃t−1 + ǫ̃t, where the ǫ̃t are i.i.d. with the same marginal

distribution as ǫt.

The following Corollary is a verification that our extreme value method under the spec-

ified bivariate exponential innovation distribution is in agreement with the limit law pre-

sented in Theorem 2 of Zhou and Basawa (2005b). That is, suppose the joint distribution of

(ǫ2t, ǫ2t+1) is specified by

F̄1(x1, x2) = P [ǫ2t > x1, ǫ2t+1 > x2] = exp (−α(x1 + x2)− β(x1 ∨ x2)), x1, x2 > 0, (4.3.2)

where α and β are the model parameters satisfying α > 0, β > 0.

Observe that the marginal distribution of ǫ2t and ǫ2t+1 are exponential with mean (α+β)−1

and correlation ρ = β(2α+ β)−1.

Now we consider the parameterization

α =
1− ρ

(1 + ρ)λ
and β =

2ρ

(1 + ρ)λ
, (4.3.3)

where λ > 0 and 0 ≤ ρ < 1. With this parameterization, the marginal distributions of ǫ2t

and ǫ2t+1 are both exponential with mean λ and correlation ρ. The correlation parameter ρ

represents the correlation between sisters in the bifurcating process. Observe when ρ = 0,

the innovations {ǫt} in (4.3.1) will be independent and identically exponential distributed

random variables.

Corollary 4.3.1. Suppose (ǫ2t, ǫ2t+1) ∼ F1, where F1 is specified in (4.3.2). Then with the

parameterization defined in (4.3.3) we have

lim
n→∞

P

[

n

(1 + ρ)(1− φ)
(φ̂n − φ) > y

]

= e−y.
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4.4 Simulation Study

In this section, we assess the reliability of our extreme value estimation method through a

simulation study, which examined the finite sample properties of (φ̂n, θ̂n). Additionally, the

degree of approximation for the empirical probabilities of φ̂n and θ̂n to its respective limiting

distribution is reported to verify asymptotically that the dependency among X
(m)
t , which

was not proven theoretically in Section 4.2 is negligible as the total number of observations

tends to infinity.

To study the performance of the estimators φ̂n =
∧n

t=2
Xt

X⌊t/2⌋
and θ̂n =

∧

t∈In
(Xt− φ̂nX⌊t/2⌋),

we generated 5,000 independent samples of size n = 2k+1 − 1, where k is the number of

generations and {Xt} is an BAR(1) process satisfying the difference equation

Xt = φX⌊t/2⌋ + ǫt, for 2 ≤ t ≤ n and ǫt ≥ θ.

The autoregressive parameter φ is taken to be in the range from 0 to 1 guaranteeing a

nonnegative time series and the unknown location parameter θ is positive. In order to perform

this simulation the following ad hoc approach was adopted to generate bivariate random

variables from a distribution that is regularly varying at both endpoints. First, let Z1 and

Z2 be independent random variables that are taken from

F (z) =















c(z − θ)α if θ < z < θ + 1,

1− d(z − θ)−β if θ + 1 < z <∞.

For this innovation distribution let c and d be nonnegative constants such that c + d = 1,

then this distribution is regularly varying at both endpoints with index of regular variation

−β at infinity and index of regular variation α at θ. Now define

ǫ2t = a1Z1 + b1Z2 and ǫ2t+1 = a2Z1 + b2Z2,
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where ai and bi are nonnegative constants for i = 1, 2.

For this simulation study two distributions were considered: (i) F1, c = .5, d = .5, a1 =

1, a2 = 0, b1 = 0, b2 = 1 (ii) F2, c = .5, d = .5, a1 = .4, a2 = .6, b1 = .3, b2 = .7.

Observe in case (i) that (ǫ2t, ǫ2t+1) are i.i.d. with a regular varying tail distribution at infinity

with index −β and regular varying at θ with index α, whereas in case (ii) (ǫ2t, ǫ2t+1) are

correlated with a regular varying tail with index −2β at infinity and index 2α at θ.

Choosing k = 9, 10, 11, 12 and n = 2k+1−1, the sample mean and standard error (s.e.) of the

estimates are given in Table 1 and 2 for φ = .2, θ = 1, respectively. Additionally, the average

lengths for 95 percent empirical confidence intervals with exact coverage are also reported.

Note that the confidence intervals were directly constructed from the empirical distributions

of n1/β(φ̂n − φ) and n−1/α(θ̂n − θ) respectively, while the exponent ρ inside the index set

In = {t : 2 ≤ t ≤ n and X⌊t/2⌋ ≤ (anbn)
ρ}, was set to .9.

We first examine the simulation results in Table 1 for different number of generations. As k

increases, the standard errors and biases of φ̂n and θ̂n decrease. In particular, when β = .2

and k increases from 9 to 11, the standard error becomes 693 times smaller. Similarly, the

95% confidence interval average length is 118 times smaller.

Next we look at the behavior of the estimators as β increases. Not surprisingly, the standard

errors and bias get larger as β increases. This is expected since our extreme value method

of estimation depends heavily on obtaining large innovations. Thus, it can be shown when

the regular varying index is small (less than 1) the largest innovation ǫt will be extremely

large, and only in the situation when the next innovation is also large does our estimator

behave badly. Whereas, if β takes on values larger than one, then the largest innovation is

not likely to be nearly as large, thus the chance that we get a bad estimate increases since

now it only takes a moderately above normal innovation to produce an extreme estimate.

Furthermore, the effect of the autoregressive parameter φ is that if it takes on a value near its

lower bound 0, then the largest innovation is considerably reduced in value, thus allowing a

large spectrum of moderate to normal values for the next innovation to cause bad estimates.
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Therefore, we can expect with small probability some extreme estimates from our estimator,

which ultimately affect the length for a 99% confidence interval more than the length for a

95% confidence interval.

Table 4.1: Performance of (φ̂n, θ̂n) with (φ = .2, θ = 1) and α = 1 under F1

φ̂n θ̂n 95% C.I. Avg. Length

k β mean s.e. mean s.e. φ̂n θ̂n
9 .2 .20001 (1.38× 10−9) 1.0026 (.0051) 1.37× 10−4 .0184

.8 .20029 (1.24× 10−3) 1.017 (.0131) 1.12× 10−3 .0347
10 .2 .20008 (4.17× 10−11) 1.0043 (.0047) 3.6× 10−4 .0112

.8 .20012 (1.43× 10−5) 1.013 (.0125) 5.3× 10−2 .0238
11 .2 .200007 (1.99× 10−12) 1.0037 (.0041) 1.16× 10−6 .0077

.8 .20037 (6.4× 10−6) 1.011 (.0116) 2.3× 10−4 .0146
12 .2 .200002 (1.03× 10−13) 1.0024 (.0028) 4.72× 10−8 .0052

.8 .20079 (2.8× 10−7) 1.007 (.0103) 9.8× 10−5 .0113

We now turn our attention to Table 2. The purpose of this table is to see whether or not

the correlation between the sisters (ǫ2t, ǫ2t+1) affects our estimates for the autocorrelation

between the mother and daughter. The results are expected from a biological viewpoint,

as one expects the environmental correlation between the sisters to be distinct from the

environmental correlations inherited from the mother. Hence, the results seem to suggest

that a cell’s attributes can be explained by inheritance from its mother, suggesting that a

BAR(1) model for a single line of descent is appropriate.

Table 4.2: Performance of (φ̂n, θ̂n) with (φ = .2, θ = 1) and α = 2 under F2

φ̂n θ̂n 95% C.I. Avg. Length

k β mean s.e. mean s.e. φ̂n θ̂n
9 .4 .2008 (5.85 × 10−9) 1.0139 (.0149) 1.39 × 10−4 .0218

1.2 .2005 (9.9 × 10−4) 1.0348 (.0345) 2.3× 10−3 .0715

10 .4 .20017 (1.74 × 10−10) 1.0214 (.0162) 4.56 × 10−5 .0478
1.2 .2002 (3.07 × 10−4) 1.0372 (.04061) 7.2× 10−3 .0536

11 .4 .20009 (3.28 × 10−10) 1.0187 (.00978) 2.81 × 10−6 .0325
1.2 .20048 (5.58 × 10−4) 1.0368 (.0679) 4.8× 10−4 .0419

12 .4 .200083 (7.62 × 10−11) 1.0145 (.01033) 8.14 × 10−8 .0301
1.2 .20052 (2.34 × 10−4) 1.0282 (.0402) 1.45 × 10−6 .0376
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Lastly, we performed a Monte Carlo simulation to study the degree of approximation for

the empirical probability P [bn(φ̂n − φ) > x], P [a−1n (θ̂n − θ) > y] to its limiting values

e−x
βEY −β(1−φβ)−1

and e−y
α/2 respectively. The empirical distributions were calculated from

5,000 replications of the nonnegative time series (X0, X1, . . . , Xn) for a sample size of 210+1−

1 = 2, 047. Additionally, we restricted α > β. The top two plots in Figure 4.2 below shows the

performance when ǫt ∼ F1 and the autocorrelation coefficient φ is .3, α is equal to (1, 2) and

β is equal to (.6, 1.6) respectively. Observe for 0 < x < 7 that the empirical tail probability

bn(φ̂n − φ) > x mirrors the theoretical probability quite nicely, leading us to believe that

indeed the dependency among X
(m)
t is negligible as the total number of observations tends

to infinity.

The bottom two plots in Figure 4.2 displays the asymptotic performance when ǫt ∼ F1 and

the location parameter θ is 1 for α = 1, β = .6 and α = 2, β = 1.6 respectively. Observe

that the lower left plot solidifies the asymptotic result presented in Corollary 2.2. However,

the lower right plot shows that the convergence rate of the empirical probability to the

theoretical probability is extremely slow when β is greater than one. This is not surprising

since on average our estimate falls more than .1 from the true value when β = 1.6.
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Figure 4.2: Empirical vs. Theoretical Probability
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4.5 Proofs

Prior to proving any results, our first objective is to look at the dependency among X
(m)
t .

Upon doing so, we realized that the dependency within each tree segment is more delicate

than anticipated, hence the following argument should be considered heuristic. The thought

process to obtain independence was to determine how much distance was needed between

observations. With this in mind, we begin by partitioning the index set [1, 2k+1 − 1].

Thus, for the lth generation we consider intervals

Zl,s = [2l + (s− 1)r, 2l + sr − 1],

for s = 1, . . . , ⌊2l/r⌋, l = l0, . . . , k, where l0 is such that 2l0−1 < r ≤ 2l0 and r ≥ 2m+1 + 1.

Notice that the number of indices in each interval is at most

2l+1 − 1− 2l − r(2l/r − 1) + 1 = r.

Now we consider trimming the intervals by 2m+1 in hopes of achieving the necessary inde-

pendence. Thus, we define

Ql,s = [2l + (s− 1)r, 2l + sr − 1− 2m+1].

Then

dist(Ql,s, Ql,s+1) = 2l + sr − (2l + sr − 1− 2m+1) = 2m+1 + 1 > 2m+1.

Therefore,

X
(m)
t is independent of X

(m)
t′ , for all t ∈ Ql,s and t′ ∈ Ql′,s′

provided (l, s) 6= (l′, s′). This is true by construction when l = l′ and s 6= s′. In the case

l 6= l′, lets look at Ql,s and Ql−1,⌊2l−1/r⌋. These blocks will be the closest when l = l′, namely,

153



the first block in the lth generation and the last block in the (l − 1)th generation. For these,

we have

dist(Ql,s, Ql−1,⌊2l−1/r⌋) = 2l − (2l−1 + ⌊2l−1/r⌋ − 1− 2m+1 ≥ 2m+1 + 1 > 2m+1.

Remark 1. As stated above, it is not the case that X
(m)
t will be independent of X

(m)
t′

for all t and t′. That is, most of the time the distance between indices t and t′ will be

large enough so that observations X
(m)
t and X

(m)
t′ will be independent, but there are a

few scenarios where this is not true. While this is a concern, we will show that asymptot-

ically this dependency does not affect the limit laws. Additionally, the reason for setting

the initial point of Ql,s to 2
l, is due to the observations of negligible events outside the set Ql,s.

Proof of Lemma 4.2.1.

Proof. Here we sketch how a proof would go. Assuming we have independence between X
(m)
t′

and X
(m)
t we could use (4.2.8) to complete the proof, since applying Lemma 4.24 in Resnick

(1987) for large k gives us

P





k
∑

l=l0

⌊2l/r⌋
∑

s=1

Ĩ i(l,s) ≥ 1



 ≤ 2k+1

r
P [b−1n X

(m)
t′ ≥ a

′

i, b
−1
n X

(m)
t ≥ a

′

i, t > t′ ≥ r]

≤ 2k+1

r
r2P 2[X

∗(m)
1 ≥ bna

′

i]

≤ r

2k+1

[

P [
m
∑

j=0

φjǫ2j ≥ bna
′

i]/F̄ (bn)

]2

≤ r

2k+1
a

′−2β
i

m
∑

j=0

φ(2β)j

= o(1).
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Proof of Lemma 4.2.2.

Proof. Observe that r = o(2k) for large k. Now using the Bonferroni inequality and Lemma

4.24 in Resnick (1987) we have

P

[

⋃

l,s

(

I(l,s) = (1, 1)
)

]

≤
k
∑

l=l0

⌊2l/r⌋
∑

s=1

P
[

I(l,s) = (1, 1)
]

≤ 2k+1

r
P [a

′

1 ≤ b−1n X
(m)
t′ ≤ b

′

1, a
′

2 ≤ b−1k X
(m)
t ≤ b

′

2, for some t > t′ ≥ r]

≤ r2k+1P 2[X
∗(m)
1 ≥ bna

′

1]

=
r

2k+1

[

P [X
∗(m)
1 ≥ bna

′

1]/F̄ (bn)
]2

≤ r

2k+1
a

′−2β
1

m
∑

j=0

φ(2β)j

= o
( r

2k+1

)

.

Proof of Lemma 4.2.3.

Proof. With out loss of generality suppose j = 1. Then applying Lemma 4.24 in Resnick

(1987) for ǫ > 0 and k large we have

P [I(l,s) = (1, 0)] ≤ r2k+1P [a1 ≤ Y1 ≤ b1]P [bna
′

1 ≤ X
∗(m)
1 ≤ bnb

′

1]

≤ (1 + ǫ)r2k+1(G(b1)−G(a1))P [bna
′

1 ≤
m
∑

j=0

φjǫ2j ≤ bnb
′

1]

= (1 + ǫ)
r

2k+1
(G(b1)−G(a1))(b

′−β
1 − a

′−β
1 )

1− φ(mβ)

1− φβ
.

Thus,

lim sup
k→∞

2k+1

r
P [I(l,s) = (1, 0)] ≤ γ1.
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Now to obtain a lower bound observe that

P [I(l,s) = (1, 0)] ≥ (r − 2m+1)P [a1 ≤ Y1 ≤ b1]P [bna
′

1 ≤ X
∗(m)
1 ≤ bnb

′

1]

− r2P 2[bna
′

1 ≤ X
∗(m)
1 ≤ bnb

′

1]

≥ (1− ǫ)
r

2k+1
γ1 − 2

( r

2k+1

)2

(b
′−2β
1 − a

′−2β
1 )

m
∑

j=0

φ(2β)j .

Then

lim inf
k→∞

2k+1

r
P [I(l,s) = (1, 0)] ≥ γ1,

which completes the proof.

Proof of Lemma 4.2.4.

Proof. To begin we consider using the moment–generating function

Mn(t
′, t) := E



exp (t′
k
∑

l=l0

⌊2l/r⌋
∑

s=1

I1(l,s) + t

k
∑

l=l0

⌊2l/r⌋
∑

s=1

I2(l,s))



 , t′, t ∈ R,

where I(l,s) = (I1(l,s), I
2
(l,s)). Now observe that our indicator function I(l,s) are i.i.d. bernoulli

random vectors. Then from Lemma’s 4.2.2 and 4.2.3 we have

P [I(l,s) = (1, 1)] = o
( r

2k+1

)

P [I(l,s) = (1, 0)] = γ(1,0)
r

2k+1

P [I(l,s) = (0, 1)] = γ(0,1)
r

2k+1

P [I(l,s) = (0, 0)] = 1− (γ(1,0) + γ(0,1))
r

2k+1
.
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Therefore,

lim
k→∞

E



exp ((t′, t)

k
∑

l=l0

⌊2l/r⌋
∑

s=1

I(l,s))



 = lim
k→∞

E
[

exp(t′,t)I(l,s)
]2k+1/r

= lim
k→∞

(e(0,0) · P [I(l,s) = (0, 0)] + e(t
′,0) · P [I(l,s) = (1, 0)]

+ e(0,t) · P [I(l,s) = (0, 1)] + e(t
′,t) · P [I(l,s) = (1, 1)])2

k+1/r

= lim
k→∞

(

1− (γ(1,0) + γ(0,1) − γ(1,0)e
t′ − γ(0,1)e

t)/2k+1/r
)2k+1/r

= e(γ(1,0)(e
t′−1)) · e(γ(0,1)(et−1)).

Setting λ1 = γ(1,0) and λ2 = γ(0,1) completes the second part of the proof, since the moment–

generating function for our random vector I(l,s) = (I1(l,s), I
2
(l,s)) is equal to the product of the

individual moment–generating functions which corresponds to a Poisson distribution.

Proof of Theorem 4.2.1.

Proof. We begin with a partition of the index set [1, 2k+1] into two types of sub-intervals.

That is,

[1, 2k+1] =
k
⋃

l=l0

⌊2l/r⌋
⋃

s=1

Ql,s ∪Qc
l,s,

where

Qc
l,s = [1, 2l0 − 1] ∪

k
⋃

l=l0

[2l + r⌊2l/r⌋ − 2m+1, . . . , 2l+1 − 1] ∪ {2k+1}.
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We now determine the cardinality of Qc
l,s denoted by |Qc

l,s| using the fact that 2l0−1 < r ≤ 2l0 ,

then

|Qc
l,s| = 2l0 − 1 +

k
∑

l=l0

(2l − r⌊2l/r⌋) +
k
∑

l=l0

⌊2l/r⌋
∑

s=1

2m+1 + 2k+1

≤ 2l0 + r(k − l0 + 1) +
2k+1

r
2m+1 + 2k+1

≤ r + r(k + 1 + 1) + 2k+1

(

2m+1

r
+ 1

)

≤ r(k + 3) + 2k+1

(

2m+1

r
+ 1

)

≤ 2

(

kr + 2k+1

(

2m+1

r
+ 1

))

.

The partition of the index set allows us to break the point process I(m)
n into two parts. The

first part deals with the situation when the index t falls into one of the Ql,s intervals, whereas

the second part represents the situation when the index t falls into one of the Qc
l,s intervals.

Thus, for i = 1, 2 we define

W i
1 =

k
∑

l=l0

⌊2l/r⌋
∑

s=1

I i(l,s)

W i
2 =

k
∑

l=l0

⌊2l/r⌋
∑

s=1

∑

t∈Qc
l,s

1[(Yt, b−1n X
(m)
t ) ∈ Ri]

Hence on the set {∑k
l=l0

∑⌊2l/r⌋
s=1 Ĩ(l,s) = (0, 0)}, we have

I(m)
n (Ri) =

2k
∑

t=1

1[(Yt, b−1n X
(m)
t ) ∈ Ri]

=

k
∑

l=l0

⌊2l/r⌋
∑

s=1





∑

t∈Ql,s

1[(Yt, b−1n X
(m)
t ) ∈ Ri] +

∑

t∈Qc
l,s

1[(Yt, b−1n X
(m)
t ) ∈ Ri]





= W i
1 +W i

2 for i = 1, 2.
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Now observe for k large and i = 1, 2 that

E[W i
2] = E





k
∑

l=l0

⌊2l/r⌋
∑

s=1

∑

t∈Qc
l,s

1[(Yt, b−1n X
(m)
t ) ∈ Ri]





≤ |Qc
l,s|P [Y1, b−1n X

∗(m)
1 ∈ Ri]

≤ |Qc
l,s|P 2[X

∗(m)
1 ≥ bna

′

i]

≤ 2

(

kr + 2k+1

(

2m+1

r
+ 1

))

(2−(k+1))2a
′−2β
i

m
∑

j=0

φ(2β)j

= op(1).

Applying Lemma 4.2.4 completes the proof since

(I(m)
n (R1), I(m)

n (R2)) =

k
∑

l=l0

⌊2l/r⌋
∑

s=1

I(l,s) + op(1) ⇒ Pois(λ1)× Pois(λ2).

Proof of Corollary 4.2.1.

Proof. First observe that

P [bn(φ̂n − φ) > x] = P





⌊n/2⌋
∧

t=1

(

Yt
b−1n Xt

)

> x



 . (4.5.1)

Now define a subset of R2
+ by Ax = {y1, y2 : y1/y2 ≤ x, y1, y2 > 0}. Then it suffices to show

that there are no points t that satisfies the condition in Ax. Thus, if we let y1 = Yt and

y2 = b−1n Xt, then notice that (4.5.1) is equivalent to (In(Ax) = 0). Furthermore, observe

that Ax is a bounded set in E = [θ,∞)× (0,∞] provided θ > 0. Therefore, assuming φ > 0

and applying Lemma 2.5 in Bartlett and McCormick (2012) we have that the point process

I(m)
n =

∑⌊n/2⌋
t=1 ε

(Yt,b
−1
n X

(m)
t )

is equivalent to In =
∑⌊n/2⌋

t=1 ε(Yt,b
−1
n Xt)

. Hence using Theorem 4.2.1
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and (4.5.1), we have that

lim
n→∞

P [bn(φ̂n − φ) > x] = lim
n→∞

P [In(Ax) = 0]

= exp

(

−(1− φβ)−1
∫ ∞

θ

(y1
x

)−β

Ḡ(y1/x)dy1

)

= exp

(

−(1− φβ)−1xβ
∫ ∞

θ

y−β1 Ḡ(y1/x)dy1

)

= e−x
βEY −β(1−φβ)−1

.

Proof of Lemma 4.2.5.

Proof. Since α > β, we have limn→∞ anbn = ∞. Therefore since
(

bn(φ̂n − φ), n ≥ 1
)

is a

tight sequence by Corollary 4.2.1 and maxt∈In Xt/(anbn)
ρ ≤ 1 with 0 < ρ < 1, we have

a−1n |φ̂n − φ|
∨

t∈In

Xt
p−→ 0.

This completes the proof since

a−1n

∣

∣

∣
θ̂n −

∧

t∈In

Yt

∣

∣

∣
≤ a−1n |φ̂n − φ|

∨

t∈In

Xt.

Proof of Theorem 4.2.2.

Proof. First observe from (4.2.7) we have

nP [a−1n (Y1 − θ) ∈ ·] v−→ ν in E2
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where

ν[0, y] = lim
n→∞

P [a−1n (Yt − θ) ≤ y] = lim
n→∞

n/2P [Y1 ≤ (θ + any)]

= lim
n→∞

1/2
G(θ + any)

G(θ + an)

= yα/2.

The result now follows from the fact that {Yt, t = 1, . . . , ⌊n/2⌋} are i.i.d. random elements

of (E2,B) where E2 is locally compact, B is the Borel σ-algebra, and ν is a Radon measure

on (E2,B). Therefore, by (proposition 3.21 in Resnick (1987)) we have

Vn ⇒ V.

Proof of Lemma 4.2.6.

Proof. As a result of Theorem 4.2 in Billingsley (1968) and the definition of the vague metric

it suffices to show that for all η > 0 and f ∈ C+
n (E3), f ≤ 1,

lim sup
n→∞

P





∣

∣

∣

∣

∣

∣

⌊n/2⌋
∑

t=1

f(a−1n (Yt − θ), cn)−
⌊n/2⌋
∑

t=1

f(a−1n (Yt − θ), 0)

∣

∣

∣

∣

∣

∣

> η



 = 0. (4.5.2)

Now suppose the support of f is contained in the compact set [0, s] × [0,∞]. Since f is

uniformly continuous, given ǫ > 0 there exists a δ > 0 s.t,

|f(z, x)− f(z, 0)| < ǫ, whenever |x− 0| < δ.

Let bn(φ̂n − φ) ⇒ U , where U is an non-degenerate distribution. Now intersecting the event

in (4.5.2) with the set
⌊n/2⌋
⋂

j=1

(

{a−1n (Yj − θ) > s} ∪ {cn < δ}
)
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and its complement, the probability in (4.5.2) is bounded above by

P





⌊n/2⌋
⋃

j=1

{(a−1n (Yj − θ) ≤ s) ∩ (cn ≥ δ)}



+ P



ǫ

⌊n/2⌋
∑

j=1

ε(a−1
n (Yj−θ))

([0, s]) > η





≤ n

2
P [a−1n (Y1 − θ) ≤ s]P [cn ≥ δ] + P

[

∞
∑

j=1

ε(a−1
n (Yj−θ))

([0, s]) > η/ǫ

]

≤ n

2
P [Y1 ≤ (θ + ans)]P [bn(φ̂n − φ)(anbn)

ρ ≥ anbnδ] + P

[

∞
∑

j=1

ε(a−1
n (Yj−θ))

([0, s]) > η/ǫ

]

≤ 1

2

G(θ + ans)

G(θ + an)
Ū((anbn)

1−ρδ) + P

[

∞
∑

j=1

ε(a−1
n (Yj−θ))

([0, s]) > η/ǫ

]

→ sα

2
e−(((anbn)

1−ρδ)βEY −β
1 (1−φβ)−1) + P [ε([0,s]×[0,∞]) > η/ǫ].

Choosing ǫ > 0 completes the proof since this bound can be made arbitrarily small as

n→ ∞.

Proof of Corollary 4.2.2.

Proof. By Lemma 4.2.5 and (4.2.14) we have

lim
n→∞

P [a−1n (θ̂ − θ) > y] = lim
n→∞

P [a−1n (
∧

t∈In

Yt − θ) > y] + o(1).

Now observe that

0 ≤ P
[

a−1n (
∧

t∈In

Yt − θ) > y
]

− P
[

a−1n (

⌊n/2⌋
∧

t=1

Yt − θ) > y
]

= P
[

a−1n (

⌊n/2⌋
∧

t=1

Yt − θ) ≤ y < a−1n (
∧

t∈In

Yt − θ)
]

≤ P
[

⋃

1≤t≤⌊n/2⌋

(

Xt > (anbn)
ρ and a−1n (Yt − θ) ≤ y

)

]

≤ nP [X∗1 > (anbn)
ρ]P [Y1 ≤ any + θ] = o(1). (4.5.3)
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It then follows from (4.5.3) that

lim
n→∞

P





⌊n/2⌋
∧

t∈In

(

Yt − θ

an

)

> y



 = lim
n→∞

P





⌊n/2⌋
∧

t=1

(

Yt − θ

an

)

> y



+ o(1).

Now observe from Lemma 4.2.6 that the point process Vn suffices. Therefore, if we define

the subset By = {z : z ≤ y, z > 0}, then ∧⌊n/2⌋t=1

(

Yt−θ
an

)

> y is equivalent to (Vn(By) = 0).

The result now follows from Theorem 4.2.2 since

lim
n→∞

P [a−1n (θ̂n − θ) > y] = lim
n→∞

P





⌊n/2⌋
∧

t=1

a−1n (Yt − θ) > y



+ o(1)

= lim
n→∞

P [Vn(By) = 0]

= P [V(By) = 0] = e−y
α/2.

Proof of Theorem 4.3.1.

Proof. Let Yt = ǫ2t ∧ ǫ2t+1 and define a sequence of point processes

Nn =

⌊n/2⌋
∑

t=1

ǫ(d−1
n Yt,Xt)

.

Then since Yt are i.i.d. with distribution G, we have that

Nn ⇒ η, (4.5.4)

where η is Poisson Random Measure with mean measure given by ν2 satisfying for x, y > 0

ν2([0, x]× [0, y]) = lim
n→∞

n

2
P [d−1n Y1 ≤ x]P [X1 ≤ y] =

1

2
xαH(y).
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Now define a subset R2
+ by Ay = {x1, x2 : x1/x2 ≤ y, x1, x2 > 0}. Then observe that

(Nn(Ay) = 0) = (d−1n (φ̂n − φ) > y). (4.5.5)

Thus, by (4.5.4) and (4.5.5), we have that

lim
n→∞

P [d−1n (φ̂n − φ) > y] = lim
n→∞

P [Nn(Ay) = 0]

= P [η(Ay) = 0]

= exp

(

−1/2

∫ ∞

0

αxα−11 H̄(x1/y)dx1

)

= e−y
αEXα

1 /2.

Proof of Corollary 4.3.1.

Proof. This follows from Theorem 4.3.1 upon noting that F̄ (x) = e−(α+β)x so that

G(x) = 2F (x)− F1(x, x) ∼ (2α+ β)x as x→ 0

and observing that E[X1] = ((1− φ)(α + β))−1. Thus,

lim
n→∞

P

[

n(2α+ β)

2(α+ β)(1− φ)
(φ̂n − φ) > y

]

= e−y.

Plugging α and β into the above equation completes the proof.

164



4.6 References

[1] Bartlett, A., McCormick W.P. (2012). Estimation for Non-negative First order Autore-

gressive Process with an Unknown Location Paramter. Applied Mathematics, 3 No.

12A, 2133 - 2147.

[2] Bercu, B., Saporta DE, Gegout-Petit B. (2009). Asymptotic analysis for bifurcating

autoregressive processes via a martingale approach. Electron. J. Probab., 14, 2492 -

2526.

[3] Billingsley P. (1968). Convergence of Probability Measures, Wiley, New York.

[4] Cowan, R. Staudte, R. G. (1986). The bifurcating autoregressive model in cell lineage

studies. Bioetrics, 42, 769 - 783.

[5] Davis, R.A., McCormick, W.P. (1989). Estimation for first-order autoregressive pro-

cesses with positive or bounded innovations. Stochastic Process. Appl. 31, 237–250.

[6] Huggins, R.M., Basawa, I.V. (1999). Extensions of the bifurcating autoregressive model

for cell lineage studies. J. Appl. Probab. 36, 1225 - 1233.

[7] Huggins, R.M., Basawa, I.V. (2000). Inference for the extended bifurcating autoregres-

sive model for cell lineage studies. Aust. N. Z. J. Stat. 42, 423 - 432.

[8] Hwang, S.Y., Basawa, I.V. (2006). Local asymptotic normaility for bifurcating autore-

gressive processes and related asymptotic inference. Statistical Methodology. 6, 61 - 69.

[9] Kallenberg, O. (1976). Random Measures, Akademie-Verlag, Berlin.

[10] Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes, Springer,

New York.

[11] Resnick, S.I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling,

Springer, New York.

165



[12] Staudte, R.G., Zhang, J., Huggins, R.M., Cowan, R (1996). A reexamination of the cell

lineage data of E.O. Powell. Biometrics, 52, 1214 - 1222.

[13] Zhang, C. (2011). Parameter Estimation for First-order Bifurcating Autoregressive Pro-

cesses with Weibull Type Innovations. Statistics and Probability Letters, 81, 1961 - 1969.

[14] Zhou, J. Basawa, I.V. (2004). Non-Gaussian bifurcating models and quasi-likelihood

estimation. Stochastic methods and their applications. J.Appl. Probab., 41A, 55 - 64.

[15] Zhou, J. Basawa, I.V. (2005a). Least-squares estimation for bifurcating autoregressive

processes. Statist. Probab. Lett. 74, 77 - 88.

[16] Zhou, J. Basawa, I.V. (2005b). Maximum Likelihood Estimation for a First-Order Bifur-

cating Autoregressive Process with Exponential Errors. J. Time Series Anal., 26, 825 -

842.

166



Chapter 5

Conclusion

In this chapter we provide a few closing remarks regarding the performance of our esti-

mators within various nonnegative time series where the innovation distribution is assumed

to be regularly varying at both the lower endpoint θ and upper endpoint infinity.

5.1 Summary

In Chapter 2 we studied an estimation problem for the autoregressive parameter and the

unknown location parameter of a nonnegative AR(1) model. Our estimators were obtained

by taking the ratio of two sample values chosen with respect to an extreme value criteria

for φ and taking the minimum of Xt − φ̂nXt−1 over the observed series for θ. In the case

that 0 < β < 2 our estimators, compared to Davis and Resnick’s (1986) sample correla-

tion estimator, performed extremely well in terms of bias, accuracy, and the average length

of confidence intervals. However, when β > 2 our estimator was outperformed by Davis

and Resnick’s estimator. This result is not surprising as our procedure relies heavily upon

extremely large innovations and when this does not occur, our estimators produce a small

fraction of estimates with a high relative error. Additionally, the estimation procedure pre-

sented in this chapter lacks the ability to extend to nonnegative autoregressive models of

higher order. Hence, further investigation towards a refinement of the estimation procedure

studied in this chapter is required.

In Chapter 3 we studied an estimation problem for higher order time series models with

heavy tail innovations. We first began by estimating the nonnegative coefficients in an infi-

nite order moving average process. This was accomplished by considering the location of
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the maximum observation rather than minimizing the ratio of two sample values. The idea

being, within the heavy-tail regime the maximal observation should be associated with the

observation having the maximal innovation. Using estimates for the coefficients within an

MA(∞) process, we could then obtain estimates for the parameters of nonnegative ARMA

models by expressing them as a function of the estimated coefficients. Our extreme value

estimators for nonnegative ARMA models converged at a rate faster than square root n and

performs significantly better than Davis and Resnick’s estimator when 0 < β < 2. While the

nonnegative restriction of innovations and coefficients may appear alarming, based upon our

simulation results this does not appear to be an issue since our estimation procedure has

the ability to accurately estimate negative parameters of various time series models. On a

side note, the estimator defined in Chapter 2 performed slightly better in terms of bias and

accuracy than our estimator presented in this chapter.

In Chapter 4, we applied the same estimator introduced in Chapter 2 to a nonnegative

BAR(1) process. The limiting distributions obtained heuristically for our estimators turned

out to be extremely similar to those found in Chapter 2. This was expected since the bifur-

cating process is typically used to model each line of descent in a binary tree as an AR(1)

process. Additionally, the simulation results appear to suggest that our estimation proce-

dure has the advantage of being resistent to the complex dependency that exists within this

process. Hence, further investigation into rigourously proving this observation is required.

In conclusion, our estimation procedure is easy to implement and capitalizes on the behavior

of extreme value estimators over traditional estimators when the regularly varying exponent

is less than 2. Finally, our extreme value procedure provides an alternative and attractive

method to obtain the limiting distribution for estimators in various nonnegative time series

models that are both explicit and tractable, whereas the limiting distribution for traditional

methods such as a maximum likelihood or linear programming are complex and unpractical.
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5.2 Future Research

In this dissertation we have addressed various nonnegative time series models such as;

AR(1), AR(p), MA(q), ARMA(p, q), and BAR(1). Within each model there are several inter-

esting directions and questions that can be investigated in the future. First, we have defined

θ̂n as a minimum over a restricted index In, but in the definition of In we have defined

sequences an and bn which are defined in terms of F , and so are unknown. Therefore, we

need to determine estimators for an and bn so that θ̂n is a statistic. Secondly, our models

mentioned up to this point have a major limitation in common; they only capture short-range

dependence. A model that can handle both short-range and long-range dependence simulta-

neously would be a natural stepping stone. Such a model that could be studied is known as

a FARIMA (fractional autoregressive integrated moving average) model, where one does a

fractional difference to the data and then models with an ARMA model. They are the natural

generalizations of standard ARIMA (p, d, q) processes when the degree of differencing d is

allowed to take nonintegeral values. For example, consider a process of the form if B denotes

the backward shift operator an ARIMA(p, d, q) model and Xt is such that Yt = (1 − B)dXt

then Yt is an ARMA(p, q) model. This would bring us into the domain of non-stationary

time series models which has hardly been studied from the extreme value prospective. Xue

et al. (1999) presented an article on traffic tracing based on FARIMA models. A particular

application of interest is to model traffic flow by fitting a FARIMA model.

Another application of particular interest is to apply an extreme value approach to estimate

the location of change points within a time series model. When trying to perform regres-

sion on a time series for temperature, a change point is the single most important factor

for obtaining accurate trend estimates. For performing the change point test, we consider

starting with an ARMA(1,2) process and using an extreme value approach to estimate the

location and number of change points on the Chula Vista, CA station data set. This data set

contains 936 data points recorded monthly over the years 1919 - 1996. Additionally, we hope

to perform a Bayesian analysis to compare performance between the two approaches. Our
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analysis will implement various Bayesian methods, which produce a probability distribution

for the location and number of change points, where we treat the number and location of

change points as unknown parameters to be estimated using a specified prior distribution.

The advantage of treating the number and location of the change points as parameters allows

for a more flexible and realistic model in which the model through the data will determine

the number and location of the change points, instead of assuming that a change point exists

and using an ad-hoc method by comparing Goodness of Fit statistics (GOF) for each time

point. That is, we begin with a simple frequentist approach that computes the goodness of

fit at each time point and the point that maximizes GOF is the change point. This method

can only find the location of one change point, but can give us a starting place for our

Bayesian methods. We will then try different Bayesian models that use prior information to

find and locate change points. This includes expanding techniques to improve our posterior

probabilities for a change point.
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