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ABSTRACT 

 Scalability prediction is one of the key problems facing high performance 

computing today.  Methods to predict scalability accurately are necessary in order to 

improve throughput and overall efficiency on large-scale machines. This dissertation 

presents our novel, regression-based system for accurately predicting the scalability of 

scientific applications on large-scale machines. Our regression-based system provides 

accurate runtime predictions on large processor counts for multiple scientific applications 

when run using strong scaling. Our system is also able to provide input parameters 

leading to accurate time-constrained scaling on larger processor counts. We also discuss 

the impact of noise on scalability prediction.  This work takes large steps towards a 

general scalability prediction system that could be deployed on supercomputing systems 

in the near future. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

 The top supercomputers in the world today average nearly 13,000 processing 

cores per system.  Nine out of the top 500 systems contain more than 128,000 processors 

[23].  Systems of this size are extremely expensive to build and to maintain. For example, 

the fastest supercomputer in the world today, Tianhe-1A, costs over $88 million to build 

and requires roughly $2.7 million of power annually [64].  Annual operating costs 

including salaries of the hundreds of employees hired to run Tianhe-1A are estimated at 

$10-20 million [61]. In 2012, Oak Ridge National Laboratory and IBM are expected to 

complete 20 petaflop supercomputers named Titan and Sequoia, respectively. Without 

considering operating costs, Titan is estimated to cost $100 million, and Sequoia is 

expected to cost $200 million [11].  Given the increasing size and cost of 

supercomputers, it is reasonable to expect that total cost of ownership will soon reach 

over a billion dollars. With such large amounts of monetary resources applied to the 

construction and maintenance of large-scale systems, there is significant pressure on 

supercomputer centers to justify the expense.  

 Supercomputers must run jobs that are relevant to national security, prosperity, 

and improve our understanding of science while maintaining high efficiency and 

throughput. Each day, computational scientists (hereafter, referred to as scientists) around 
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the world use supercomputers to tackle some of the world's most difficult scientific 

problems in over 30 application domains [40]. For example, Sequoia will be used for 

classified nuclear weapons simulations, predicting the weather, studying the cosmos, and 

understanding the human genome.  Recently, supercomputers at Lawrence Livermore 

National Lab were used to gauge radiation risks posed by the nuclear crisis in Japan. 

Unfortunately, scientists do not always run their jobs on an efficient number of 

processors, which leads to application slowdown and lower throughput on the machines. 

 In parallel computing, two of the most important performance metrics are speedup 

and efficiency. Speedup refers to how much faster the program runs when compared to 

the sequential version (Formula 1.1) [70]. The speedup on p processors (Sp) is the ratio of 

the sequential application time (Ts) to the parallel application time on p processors (Tp). 

Efficiency, on the other hand, estimates how well the processors are being utilized in a 

given application run. Parallel efficiency (Ep) is the ratio of the speedup on p processors 

to p (Formula 1.2). 

     

€ 

Sp =
Ts
Tp

     (1.1) 

     

€ 

Ep =
Sp
p

     (1.2) 

 The ideal number of processors to use for a scientific application varies with both 

the application and the machine under consideration. For example, Alam et al. [4] 

characterized performance of a biomolecular simulation and found that one time-

consuming part of the program achieved a speedup of only 10 on 1024 processors (see 

Figure 1.1). In this case, the application would have run more efficiently on 16-64 

processors. However, since the users are typically unaware of how an application is going 
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to scale, they will attempt to run their jobs on as many processors as possible, which 

leads to inefficient use of expensive supercomputing resources. This inefficiency is costly 

to both the owners and the other users of the systems. To the supercomputer center, it 

wastes the system in terms of money and power consumption. To the other users of the 

system, it reduces system availability because more processors than necessary are being 

allocated. Figure 1.2 shows the worst-case time to acquire nodes appears to increase 

exponentially in the number of nodes.  So, in some cases, users are waiting exponentially 

longer in the scheduling queue only to have their jobs run slower. Given such a large 

downside to running applications inefficiently, why do users choose to run on so many 

processors? Predicting the parallel efficiency of applications without executing them at 

scale is an extremely complicated problem. In fact, it is one of the key problems facing 

high-performance computing (HPC) as we move toward exascale systems.   

 

 

 

 

 
 
 
 
 
Figure 1.1: Speedup of the HhaI function. Speedup levels off around 128 and then begins 
to decline. 
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Figure 1.2: Time for short jobs to begin execution on increasing node counts on the 
Thunder cluster at Lawrence Livermore National Lab. 
 
 
 In order for a user to predict an application's scalability they would need an in-

depth understanding of the parallel algorithm, how input parameters affect the program, 

the amount of potential parallelism that an application contains, the effects of the parallel 

overhead on runtime, and an understanding of the machine architecture. If the user knows 

the amount of potential parallelism, Amdahl provided an equation for theoretical 

application speedup when using N processors (Equation 1.3). In this equation, P 

represents the parallelizable portion of the code, 1 - P is the serial portion, and N 

represents the number of processors used. Amdahl's law shows that speedup is limited by 

the percentage of sequential code present in the application. If we fix the values of N and 

P, we quickly see how parallelism is limited (Table 1.1).  In the right-most column, 

where P is .99, speedup is bounded by 100 at large processor counts.  In this case, 

increasing the processor count by a factor of 10 (from 10,000 to 100,000) yields a less 
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than 1% increase in speedup, an extremely inefficient use of such a large number of 

processors. Amdahl's law provides a theoretical approximation of speedup, but a more 

detailed analysis is required in practice.  

      

     (1.3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.1: Theoretical speedup of applications with varying amounts of potential 
parallelism (P) under different processor counts (N) 
 
 
 
1.2 Contributions 
 
The contributions of this dissertation are novel regression-based approaches to 

scalability prediction for large-scale scientific applications. 

 
 In this dissertation, we present a system to predict parallel program scalability.  

We use several program executions on a small subset of the processors to predict 

application performance on larger numbers of processors.  Our system produces accurate 

predictions without having to understand low-level details about the applications and 

without executing them at scale.  We argue that, if used on future supercomputers, our 

N P = .50 P = .90  P = .99 

10 1.82 5.26 9.17 

100 1.98 9.17 50.25 

1000 1.99 9.91 90.99 

10000 1.99 9.91 99.02 

100000 1.99 9.99 99.90 
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system will help increase availability. Application scientists could use the system to 

determine how many processors to request so their applications run quickly without 

wasting resources beyond the point at which they achieve good speedup. The improved 

efficiency would not only reduce demand on the system’s resources but would generally 

improve response time for the specific application.  Our system could also be deployed as 

a service running on a separate partition to avoid using processors on the full partition. 

 In many HPC applications, the goal when given more processors is to run with 

larger input values, which allows the scientist to solve a larger problem (as opposed to 

running a given problem size as fast as possible).  With time constraints, it is important to 

understand how the application is going to scale in order to provide input parameters that 

will result in the same execution time at a larger scale.  Using input parameters that result 

in increased execution time could lead to a job exceeding the system's time constraints, 

which causes the job to be cancelled and the supercomputer resources to be wasted.  The 

system presented in this dissertation is able to provide the application input parameters 

which result in accurate, time-constrained scaling at large processor counts. Our gray-box 

system does this with only a small amount of application-level information from the user. 

Our system works by using a focused regression technique, which uses a small focused 

set of training data closely resembling the application instance.  

 The presence of noise in a system causes random execution time variability which 

complicates performance prediction and leads to degraded accuracy for scalability 

models. The effects of system noise on a particular application are difficult to understand 

without running multiple replications of each program instance. In fact, the amount of 

training time required for our system to model the effects of system noise on an 
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application would be impractical without optimization. We believe that a logical first step 

to predicting application scalability in the presence of noise is to cut down the amount of 

training required. In this dissertation, we present a technique which reduces training time 

by predicting the execution time of scientific applications running for multiple iterations 

by using many samples from single-iteration executions on the same number of 

processors. While this technique does not extrapolate to larger processor counts, we 

believe it is an essential building block for a large-scale extrapolation system. 

 

1.3 Dissertation Outline 

 The rest of this dissertation is organized as follows. Chapter 2 discusses our 

system using a regression-based approach to scalability prediction. Then, Chapter 3 

discusses an extension of our system for time-constrained scaling.  In Chapter 4 we detail 

our work on prediction in the face of runtime variance. Next, we present related work on 

performance prediction for large-scale computer systems in Chapter 5.  Finally, 

conclusions and future work comprise Chapter 6. 
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CHAPTER 2 

SCALABILITY PREDICTION USING REGRESSION-BASED TECHNIQUES 

 

 Many applied scientific domains are increasingly relying on large-scale parallel 

computation. Consequently, several large clusters now have hundreds of thousands of 

processors. However, the ideal number of processors to use for these scientific 

applications varies with both the input variables and the machine under consideration, 

and predicting this processor count is rarely straightforward. Accurate prediction 

mechanisms would provide many benefits, including improving cluster efficiency and 

identifying system configuration or hardware issues that impede performance. 

 In this chapter we show how regression-based techniques can be used to predict 

execution time at large scale from training data gathered on a small subset of the 

processors. We explore novel regression-based approaches to predict parallel program 

scalability. We use several program executions on a small subset of the processors to 

predict execution time on larger numbers of processors. We compare three different 

regression-based techniques: one based on execution time only; another that uses per-

processor information only; and a third one based on the global critical path. These 

techniques provide accurate scaling predictions, with median prediction errors between 

6.2% and 17.3% for seven applications.  In this chapter, we focus on strong scaling [69], 

where the scientist runs the same program instance, i.e., uses identical input parameters at 

larger processor counts.  In the following chapter, we will present our focused regression 
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technique for predicting the input parameters that lead to accurate time-constrained 

scaling. 

 We investigate three techniques based on regression for predicting parallel 

program scalability. These techniques use several executions with different input sets on 

a small subset of the processors to predict performance on a larger number of processors. 

Our first technique is the most straightforward: simply fit total execution time from the 

data collected on training runs to a regression and extrapolate to larger configurations. 

This simple technique works well for some cases if we use a reasonable prediction 

function (a second-order polynomial). Our other two techniques refine this approach by 

handling computation and communication separately. One technique relies only on per-

processor information; it gathers the computation and communication times of each 

processor, chooses the most representative pair, and separately regresses on each to form 

a prediction. Our third technique, unlike the per-processor method, ensures 

communication time never includes blocking by calculating computation and 

communication time via identification of the (global) critical path. Both techniques that 

separate communication from computation improve prediction quality in the common 

case that both quantities are significant. 

 This chapter makes several contributions. First, we show that the simple, “black-

box” technique of regression can often accurately predict performance on a larger 

processor count. Second, we present a novel technique—separate regression on 

computation and communication—that improves prediction accuracy for processor 

counts at which applications scale poorly. Third, we identify two potential refinements to 

make higher-quality predictions: better prediction functions and special handling of 
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memory anomalies, including both NUMA and cache capacity effects. Fourth, our 

predictions for seven applications at processor counts up to 1024, based on runs on as few 

as 128 processors, demonstrate that accurate extrapolation of scaling behavior is possible. 

Specifically, we achieve median prediction errors of between 6.2% and 17.3% over all 

nontrivial programs. One of the nontrivial programs is Sweep3D, where we specifically 

chose a configuration that would obscure scaling behavior. We also provide a mechanism 

to estimate how large processor counts for training runs need to be for an accurate 

prediction. 

 The rest of this chapter is organized as follows. Section 2.1 describes our 

techniques for performance prediction. Next, we describe our experimental methodology 

in Section 2.2 and the results of using our techniques on seven applications in Section 

2.3. Finally, Section 2.4 places our approach in the context of prior work, while Section 

2.5 summarizes our findings and future directions. 

 

2.1 Performance Prediction Techniques 

 In this section, we outline the definitions and assumptions of this chapter and we 

discuss the mathematical models used to make scalability predictions on large scale 

machines. 

 

2.1.1 Definitions and Assumptions 

 In this section a processor configuration is simply a set of processors, with one or 

more processors (or cores) on each node. We investigate predictions using strong scaling 

where possible, where the total working set size is fixed over all processor 
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configurations. In some cases, strong scaling is impractical because of memory 

requirements at low-end processor counts, and in those cases we use a hybrid of strong 

scaling along with weak scaling. Applications that use weak scaling increase their total 

working set size proportionally as the number of processors increases, while the working 

set for each processor remains constant.  

 We make several assumptions in this work. First, we assume that all input 

variables to a given program (such as data set size and processor grid dimensions) are 

available to us. This assumption is reasonable, as most high-performance computing 

applications use (sometimes complex) configuration files that specify the input variables 

directly. Next, we assume that we know which input variables (e.g., sizes/constants given 

typically in input files) contribute significantly to execution time. Known techniques exist 

to find these variables [41]. Our procedure models execution time as some function of 

these input variables. The quality of our model depends on considering all of the 

important input variables when building the model. We also assume that the 

computational load is well balanced; we will explore load imbalance in future work. 

Finally, we assume that a program can be run using any configuration of the input 

variables. While this does not always hold—for example, many of the NAS Parallel 

Benchmarks [5] constrain the values of the input variables—we overrode this limitation 

in our training sets. 

 

2.1.2 Approach 

 We predict execution time of a given program on p processors using several 

instrumented runs of the same program on q processors, where q ∈ {2, . . . , p0}, p0 < p, 
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and p is arbitrary. We vary the values of the input variables (x1, x2, . . . , xn) on the 

instrumented runs. Because it is easier to acquire q processors than p, it is reasonable to 

perform many instrumented runs for different configurations of the input variables. We 

then use the relationship between the input variables and the observed execution time to 

develop a predictor, T ', of the execution time T: 

   T ' = F(x1, x2, . . . , xn , q).        (2.1) 

 The idea is that T ' ≈ T, with small error. Once we determine T ', we use it to 

predict execution time for any arbitrary input variable set (a1, a2, . . ., an) and p 

processors. We emphasize that we produce T ' without any data from runs using p 

processors, since we choose p0 < p. 

 The scale in which the error between T ' and the true T is measured is crucial. For 

most applications, variability increases as T increases, so we use relative error: 

   E = |(T − T ' )|/T        (2.2) 

 Thus, our function F should minimize this relative error, subject to some 

feasibility constraints. Evaluation of different models in terms of relative error depends 

heavily on the input variables. Ideally, the function F minimizes the relative error by 

intelligent choices of the training set, i.e., the sets of input variables (x1, x2, . . . , xn) and 

number of processors (q) used to build the model. 

 Because we use relative error to evaluate models, F should be fit to T in log-scale. 

The particular log-scale (e.g., log2 or log10) does not matter statistically; we use log2 and 

fit models of the form: 

  log2(T) = log2(F(x1, x2, . . . , xn, q)) + error     (2.3) 

such that the error is minimized in log2-scale. We can convert an individual log2-scale 
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error (e) into a relative error (RE): RE = 2|e| − 1. However, for statistical accuracy we 

must minimize error in the log-scale when evaluating a model’s fit over different input 

configurations. If we minimized error in the untransformed (T) scale, errors at the largest 

values of T would completely dominate those at smaller T values, making the model 

inaccurate.  

 Parameterization of the log2(F(x1, x2, . . . , xn, q)) function is critical. A linear 

model like 

        log2(T) = β0 + β1log2(x1) + β2log2 (x2) + . . . + βnlog2(xn) + βqlog2(q) + error  (2.4) 

provides a reasonable first approximation, although it is too simple to capture the 

behavior of some applications. Statisticians refer to this as a linear model, since it is 

linear in the unknown parameters (β0, β1, . . . , βq) that are estimated so as to minimize the 

sum of squared error (in log-scale). In engineering contexts, one might call this a “log-

log” model, because log2 is applied to both sides of Equation 2.3 to obtain Equation 2.4, 

but it is a linear model in the statistical sense, which means we can employ the vast 

statistical theory of linear models (of which multiple regression is a subset). The right-

hand side of Equation 2.4 can be made considerably more general while remaining a 

linear model in the statistical sense. For example, one could include quadratic terms such 

as (log2(xi)2) or interaction terms such as log2(xi) * log2(xj), or even try other 

transformations of the input variables, such as xi or  rather than log2(xi). Our results 

for the seven applications that we examine show that most of the variability due to the 

input variables (x1, x1, . . . , xn) is explained by models of the form: 

 log2(T) = β1log2(x1) + β2log2(x2) + . . . + βnlog2(xn) + g(q) + error   (2.5) 

Thus, we focus on finding a good-fitting but parsimonious function g(q) that explains the 
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effect of the number of processors, q. For three of the seven applications that we 

examine, the simple linear function:  

    g(q) =  γ0 + γ1 log2(q)      (2.6)  

is best, while quadratic (in log2(q)) models, where there is an additional term γ2(log2(q))2, 

fit the other four applications better. In general, we could use more complex g(q) 

functions or include more parameters (βi in the linear model). However, at some point the 

model adjustments will fit the sample data beyond their relation to the predicted input 

configurations. In this work we therefore do not consider higher-order polynomials. 

 

2.1.3 Techniques 

 Our most straightforward approach uses the total execution time for T in Equation 

2.5. Considering the two possible forms of g(q) above, we have two possible ways to 

model T. Gathering the input for this approach is simple because our applications all 

report their execution times. We show in Section 4 that predictions using regression 

based solely on total execution time are effective in some cases. 

 However, computation and communication typically scale differently as processor 

count changes. To capture the individual scaling properties of computation and 

communication, we developed two techniques that separate computation and 

communication. The amount of computation in parallelizable code regions will generally 

scale proportionally to the increase in the number of processors, which holds for strong 

scaling of load-balanced applications. On the other hand, the behavior of communication 

time as the number of processors increases depends on the application. While it often 

increases with a rising numbers of processors, our experiments also show some cases of 
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decreasing communication time.  

 Our second approach uses the maximum computation time across all processors 

and the communication time from that same processor. We use the PMPI profiling 

interface to wrap all MPI calls to measure both quantities. Because our applications are 

well balanced computationally, the communication time usually contains the minimum 

amount of blocking time over all processors.  

 Our third technique avoids blocking time altogether by focusing on the parallel 

execution’s critical path, the longest execution sequence without blocking. The critical 

path determines the execution time of a parallel program as Figure 1 shows. Any 

communication time on this path is purely communication (i.e., sending/receiving), 

which helps our model avoid overestimating it. 

 

 

 

 

 

 Figure 2.1: Critical path: P, Q, and R are MPI tasks with edges representing 
 messages. 
 
 
 For each technique to separate computation and communication, we can fit the 

computation time two ways and fit the communication time two ways because we 

consider two possible forms for g(q). Combined with two possible ways to split 

computation and communication, we therefore consider eight possible ways to predict 

total execution time when separating computation and communication. 
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2.2 Experimental Methodology 

 We tested our techniques using seven applications: five from the NAS parallel 

benchmark suite [5] and two from the ASC Purple/Blue suites [1, 38]. The NAS codes 

are BT and SP, which are computational fluid dynamic (CFD) applications that use 

different solution approaches; CG, an unstructured sparse linear solver; EP, an 

embarrassingly parallel program; and LU, a lower- and upper-triangular solution to 

implicit CFD problems. We omit some NAS programs because of their inherent 

constraints. Specifically, MG, FT, and IS require that the input sizes be powers of two, 

which does not allow us enough tests to achieve a statistically significant result. The ASC 

applications are SMG, a multigrid code, and Sweep3D, a 3D neutron transport code.  

 We make predictions of programs running on p processors using three different 

processor configurations for training: p0 = p/8, p0 = p/4, and p0 = p/2. We follow this in 

our experiments below as closely as possible; BT and SP require a number of processors 

that is a perfect square, so we chose even-numbered processor configurations as close as 

possible to powers of two.  

 We currently make the decision as to whether to separate computation and 

communication as follows. We separate if either (1) a program is not computation bound 

(consisting of mostly computation) or (2) communication time increases with processors. 

If the computation time is 90% of the total runtime (on average) across all training runs 

for any processor configuration used for training, we deem the application computation 

bound (on both the per-node maximum and the critical path techniques). 

 Recall that we regress on the input variables that contribute significantly to 
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execution time as well as q, the number of processors. Table 2.1 shows the relevant input 

variables and the ranges that we used for our seven applications. The applications are all 

iterative, yet balance the work across the processors; thus, we do not include iteration 

count as a predictor variable. We use strong scaling with BT, CG, SMG and Sweep3D 

while we use a hybrid of strong and weak scaling in which we increase the problem size 

on large processor counts to get reasonable execution times with EP, SP, and LU. 

  

 Table 2.1: The seven applications and their input variable names and ranges. 

 We observe results (T) for each instrumented run on q processors and fit a linear 

model of the form given in Equation 2.5 for various g(q). For a specified g(q), the set of 

βi returned by the regression function are those that minimize the sum of squared error. 

The root-mean-squared-error (RMSE) for a particular regression measures the typical  

error in log2-scale when using the specified regression function to fit execution times 

over all input configurations of (x1, x2, . . . , xn, q). As mentioned above, we choose the 

function g(q) to be a second order polynomial, which we found sufficient for our 

experiments. 

 We use the statistical package R [54] for all regressions. We emphasize that we 

Application Name 1 Range Name 2 Range Name 3 Range 

BT problem_size 20-500 - - - - 

CG NA 500K-3M NONZER 14-24 - - 

EP m 228 - 238 - - - - 

LU isiz1 200-1000 isiz2 200-1000 isiz3 200-1000 

SMG DIM1 290-315 DIM2 290-315 DIM3 290-315 

SP problem_size 40-1400 - - - - 

Sweep3D ITG 300-500 JTG 300-500 KTG 300-500 
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run the program only on a small subset of the many possible input variable/processor 

combinations. Generally, we allowed between 10-64 tests (training runs) with various 

input values at each processor count. For the purposes of verification, we also run the 

program at the predicted processor count, p. We use the execution times, T, on p 

processors to evaluate how well a proposed function actually predicts a run on p 

processors, while the regressions we use to predict time on p processors do not include 

these results. 

 

2.3 Results 

 This section discusses results of our performance prediction techniques. We used 

the “Atlas” cluster, which has 1152 four-way AMD Opteron nodes, for all experiments. 

Each node has four processors containing two cores running at 2.4 GHz, a 128KB split 

L1 cache, a 1MB L2 cache, and 16GB RAM. Each Opteron node is a NUMA architecture 

because each processor has one quarter of the memory connected to a local on-chip 

memory controller, while the rest must be accessed through remote memory controllers 

inside the remaining processors, which incurs longer memory latencies. Hereafter, we use 

the term processor to refer to a core to avoid confusion. We restrict our experiments to 

four processors per node since using all processors on a node risks high variance [52]. 

Atlas uses a priority-based batch queuing system that limited our ability to run sufficient 

experiments to (a maximum of) 1024 processors. Because Atlas nodes have a NUMA 

architecture, we used cpu_bind to ensure that Linux allocated memory for each processor 

locally. Separate experiments showed that Linux allocations do not otherwise account for 

locality, which leads to large, highly unpredictable variance in execution times with 
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identical input variables. 

 

2.3.1 Summary of Results 

 We present the full results of our experiments in Sections 2.3.3 and 2.3.4 while 

Tables 2.2 and 2.3 show the median percentage error over all experiments for each 

application. All predictions are for 1024 except for SMG, which uses 256 due to memory 

limitations. We show the best and worst errors both for regressing on total execution time 

and (if applicable) for regressing on the separate times. For each, we also (if applicable) 

list the permutation that we used (type of fit and whether we used the critical path or 

maximum per-processor computation; when regressing on total time, time is not split into 

two quantities so we only have one degree of freedom). We give more details in Sections 

2.3.2, 2.3.3, and 2.3.4. 

 We make the following general observations. First, prediction quality is often 

quite good, even on as few as p0 = p/8 processors. Second, prediction quality for 

communication intensive applications is, except in one case (CG with p0 = p/8), equal or 

better when we treat computation and communication separately (assuming that there is 

enough communication to merit separating). Third, CG is the primary case in which 

prediction quality on p0 = p/8 processors is poor. Finally, CG is also the one case in 

which prediction quality for separate regression is better on p0 = p/4 processors than on p0 

= p/2 processors. We discuss these issues, including how we might infer them 

automatically, in Section 2.3.4. 
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Table 2.2: Summary of results for all applications when regressing on total execution 
time.  The best and worst median errors along with the number of processors used for 
prediction are shown.  The right-most column shows, for the best error, what type of 
regressions (linear vs. quadratic) is used. 
 
 
 

Table 2.3: Summary of results for all applications when regressing separately on 
computation and communication (if applicable). The best and worst median errors along 
with the number of processors used for predication are shown.  The right-most column 
shows, for the best error, what type of regressions (linear vs. quadratic) and which type of 
separation (critical path vs. maximum), if any, are used. 
 
 
 

Median Error, Total Application 
Best (Procs) Worst (Procs) 

Type (Best) 

BT 6.7% (484) 13.0% (100) L 

CG 16.0% (256) 120% (128) L 

EP 0.1% (512) 0.6% (128) L 

LU 13.8% (512) 15.8% (128) Q 

SP 7.7% (100) 12.8% (256) L 

SMG 14.4% (128) 92.7% (32) Q 

Sweep3D 32.8% (512) 59.3% (128) Q 

Median Error, Separate Application 
Best (Procs) Worst (Procs) 

Type (Best) 

BT -- -- -- 

CG 12.2% (256) 66.3% (128) Q/L/CP 

EP -- -- -- 

LU -- -- -- 

SP 7.7% (100) 12.1% (256) L/Q/Max 

SMG 6.7% (128) 25.6% (32) Q/Q/Max 

Sweep3D 17.3% (512) 33.2% (128) Q/Q/Max 
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2.3.2 Format of Detailed Results 

 In Figures 2.2, 2.3, and 2.4 we show two graphs for each computation-bound 

application. Figures 2.5, 2.6, 2.7, and 2.8 show three graphs for communication intensive 

applications. The first (leftmost) graph is a boxplot that shows the median, minimum, and 

maximum error for predicting 1024-processor performance (again, SMG uses 256 

processors due to per-node memory limitations) using the three next largest processor 

configurations (e.g., for the 1024 processor tests, we use values of 128, 256, and 512 for 

p0). The reported median, minimum, and maximum errors represent values over all 

permutations of the input variables (small circles represent outliers). As we explore 

different fits to model computation and communication, these boxplots display the 

prediction results. The way we chose the prediction model is as follows. For the total 

execution time prediction (TOT), we chose a linear or quadratic fit based on lowest root-

mean-squared-error (RMSE) over all points up to and including the p0 being investigated. 

Additionally, if the program is considered communication intensive (see Section 2.2), 

then for the predictions when separating computation and communication (SEP), we 

chose the model with the lowest weighted average RMSE. That is, we weighted the 

RMSE for computation and communication by the percentage each contributed to total 

execution time on p0 processors.  

 The middle graph in Figures 2.5, 2.6, 2.7, and 2.8 (only for communication 

intensive applications) investigates three different models that treat computation and 

communication separately. This includes prediction using values of all input variables, 

including number of processors. Recall from Section 2.2, we have eight possible models 



 

22 

when regressing separately. For readability, we chose three of these eight possibilities: 

the one with the smallest, second smallest, and largest weighted average RMSE. Each of 

the three alternatives are labeled with a three-tuple that represents the type of fit used for 

computation and communication, respectively (Q or L for quadratic or linear), and 

whether the critical path (CP) or maximum per-processor computation (MAX) was used 

to separate the two quantities. 

 Finally, the rightmost graph (Figures 2.2 through 2.8) shows the quality of the fit 

obtained (over all processor configurations) using the three alternatives in the middle 

graph (or leftmost for computation intensive applications). For communication intensive 

applications, the regression line is shown for one particular permutation of the input 

variables, and this permutation is listed in the caption. We also graph the measured time 

and, for reference, baseline linear speedup relative to the smallest processor 

configuration. Finally, we extend the predictions to show our model results for processor 

counts beyond those with which we experimented. 

 

2.3.3 Computation-Bound Applications 

 We first discuss applications for which computation time is dominant. This 

includes three applications: BT, EP, and LU. We first give an overview of all three 

applications, and then we cover BT in depth (the characteristics of LU are similar, and EP 

is a trivial application). 

 BT overview: BT yields nearly linear speedup up to 1024 processors, as shown in 

Figure 2.2, which makes it a straightforward application to predict. The left-hand figure 

shows that a linear function for g(q) using total execution time to make predictions using 
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1024 processors always has a median error no more than 13%—it is 13% when using 100 

processors for prediction, 7.2% when using 256 processors, and 6.7% when using 484 

processors. The simplicity of modeling BT leads to scaling predictions (right-hand graph) 

that match the measured execution time almost perfectly. 

 LU overview: Like BT, LU yields good speedup (see Figure 2.3). While the 

results for p0 = p/8 are good (14%) when considering the median, the worst case (not 

including outliers) is slightly over 50%. This error arises due to tests with small run 

times. 

 EP overview: EP is a rather straightforward application. Its only communication 

is at MPI initialization and at the end of the program (a barrier). Essentially, any 

technique works well to predict execution time for EP (our error was well below 1%; see 

Figure 2.4). 

 
Figure 2.2: Results for predicting BT on 1024 processors.  The right-hand graph shows 
results for problem_size = 500. 
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Figure 2.3: Results for predicting LU on 1024 processors.  The right-hand graph shows 
results for all input variables equal to 450. 
 

Figure 2.4: Results for predicting EP on 1024 processors.  The right-hand graph shows 
results for m = 234. 
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Discussion: BT scales nearly perfectly because it has very little communication and a 

balanced computational workload. Because Atlas has no local disks to use for swap 

space, we were limited to relatively small input sizes for BT in order to fit the problem 

into the memory of smaller processor configurations, which limits the communication 

time. Thus, we omitted two runs with extremely small run times—less than one-half of a 

second; they are outliers with a large relative error, but are not indicative of any other 

results. Moreover, unlike many parallel programs, the communication time for BT 

actually decreases with an increase in the number of processors, meaning that the small 

amount of communication that is present using small numbers of processors will get even 

smaller when using larger numbers of processors. Thus, we conclude that regressing 

separately on computation and communication is not necessary for BT. In addition to BT, 

separate regressions are also not necessary for LU and EP. As mentioned earlier, we 

regress separately only when either (1) both computation and communication are 

significant or (2) communication is increasing. 

 

2.3.4 Communication Intensive Applications 

 We next discuss applications for which there is a mix of computation and 

communication. Separating computation and communication is generally more important 

for these applications. This class includes four applications: CG, SMG, SP and Sweep3D.

 CG overview: CG is significantly more difficult to predict than any of the 

compute-bound applications. The results are shown in Figure 2.5 and show several 

interesting characteristics of CG. First, the left-hand graph shows that when predicting 
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1024 processors and training with 256 processors, prediction quality is better than when 

training with 512 processors. The median error (for predicting total time using the best 

available fit, which is a quadratic) is 12% lower when training with 256 processors, and, 

when separating computation and communication, it is at least 10% better if g(q) is 

chosen to be the same for both. Memory behavior causes this surprising result. For some 

input data sizes, the working set on 512 processors fits within the L2 cache, which we 

determined by using PAPI [14] to inspect the Opteron performance counters. On these 

tests, the number of L2 cache misses decreased by up to a factor of six (instead of the 

expected factor of two) when increasing from 256 to 512 processors and holding all other 

input variables constant. This phenomenon affects the fit (whether linear or quadratic) 

because the regression overcompensates: the predicted time by the regression is too low 

for the 1024 processor tests. This error occurs because the regression expects the ratio of 

the 256 to 512 processor tests to be fairly similar to that of the 512 to 1024 processor 

tests, but the superlinear memory hierarchy effects only occur in the former. 

 Second, unlike the compute-bound applications, communication in CG is 

significant, even though it also decreases as the number of processors increases. Because 

the computation and communication times decrease at different rates, treating them 

separately improves prediction quality compared to using a monolithic execution time. 

Overall, the median error decreases from 16% when using total execution time to 12% 

when separating the communication and computation for CG. 
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Figure 2.5: Results for predicting CG on 1024 processors. The right-hand graph shows 
results for NA=2M and NONZER=24. 
 
 SMG overview: SMG is written as a weak scaling application: the input 

parameters specify a single cube size for each processor. We converted SMG to strong 

scaling by reducing the cube’s volume by half when we doubled the processor count. We 

could only test up to 256 processors since using more than one processor per node causes 

SMG to run out of memory quickly on smaller processor configurations. 

 Figure 2.6 shows the results for SMG. The left-hand graph shows that separating 

computation and communication makes a more significant difference than with CG (see 

also the discussion below). Unlike CG, increasing the number of processors used for 

training always helps because SMG does not have as pronounced differences in memory 

behavior. The middle graph shows that a quadratic regression for both computation and 

communication performs best. 
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Figure 2.6: Results for predicting SMG on 256 processors. The right-hand graph shows 
results for DIM1=300. 
 
 SP overview: Figure 2.7 shows the results for SP. The results are quite good; 

prediction error is always within 13% and as close as 8%. The primary difference 

between SP and the other communication intensive applications is that separating 

computation and communication improves predictions only slightly. The one unusual 

aspect of our SP predictions is exactly the same as that of CG: predictions using smaller 

numbers of processors (100) is better than larger numbers (484). As with CG, our 

inspection of hardware performance counters show that this is due to memory hierarchy 

issues. 

 
Figure 2.7: Results for predicting SP on 1024 processors. The right-hand graph shows 
results for problem_size = 450. 
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 Sweep3D overview: Sweep3D is an application with which we intentionally 

stressed our prediction system, by choosing a P X 1 processor grid—which is not typical 

for this application. The atypical processor grid causes any processor rank larger than the 

x-dimension (ITG) of the data grid to be assigned no work and therefore remain idle. 

Figure 2.8 shows that while prediction quality is not as good for Sweep3D as for the 

other applications, it is reasonable. The best median error is 17%, but the significant 

algorithmic change caused by the atypical processor grid (which is Sweep3D-specific) 

limits the ability of RMSE to select this regression. Sweep3D demonstrates the 

challenges facing any black box system. Clearly, a regression-based approach will not 

generate high quality predictions in the (fairly unusual) case when program behavior is 

vastly different when increasing the processor configuration. With a program like 

Sweep3D—with a P X 1 processor grid—modest programmer input is needed for better 

predictions. We can probably limit this input to just the knowledge of when the 

granularity of work is too small to keep processors busy. 

Figure 2.8: Results for predicting Sweep3D on 1024 processors. The right-hand graph 
shows results for ITG = 400, JTG = 400, and KTG = 400. 
 

Discussion: Generally speaking, training with as many processors as possible will 

produce a better fit. However, the case of CG shows that sometimes using fewer 
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processors for training can provide a more accurate result. Our system can detect when 

memory behavior is causing super-linear speedup, because the training runs can collect 

the relevant performance counters. However, the ramification might be more training 

runs since machines often have a relatively small number of performance counters and 

we are interested in not just L1 and L2 cache misses, but, for example, also local and 

remote references to memory caused by a NUMA architecture.  More importantly, we 

can choose the best fit within a processor configuration based on RMSE even though we 

cannot easily use it to compare across different processor configurations. Through SP and 

SMG, we see two different extremes of the disparity in fit quality. For SP, using RMSE 

determined that we should use the critical path technique to separate computation and 

communication times. However, the RMSE difference, and the difference in fit quality, is 

small, as Figure 2.7 shows. 

 For SMG, the difference in fit quality is quite significant. The middle graph in 

Figure 2.6 shows that the difference between linear and quadratic for predicting 256 

processors is much more pronounced than with CG. The RMSE is often over twice as 

high for a linear fit as a quadratic fit. The right-hand graph clearly shows that the 

quadratic fit predicts the observed times much better (7% median error using 128 

processors to predict 256) than the linear fits. The worst fit has a median error over 30% 

and worst-case error of over 60%. Thus, even if using RMSE to select the regression 

method might provide only a small improvement, as with CG, selecting the regression 

method based on RMSE avoids cases with very large error. 

 Finally, training with up to 128 processors clearly produces poor results for CG. 

First, CG is the one case where separating computation and communication actually hurt 
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prediction accuracy (on 128 processors). As we have said, memory hierarchy effects are 

the problem. More generally, however, we need a method to determine the processor 

count required to produce good results a priori. We suggest predicting within the training 

runs. For example, in the case of CG, we train with up to 16 processors, and investigate 

how that predicts 128 processors. The results show significant error, an indication that 

training with up to 128 processors will produce poor results when predicting 1024 

processors. As a comparison, we used the same method for LU, and predictions within 

the training set were quite good—and when 128 processors were used, 1024 processor 

predictions were accurate. However, we need more evidence to verify that this approach 

works consistently, which we leave to future work. 

 

2.4 Summary 

 This chapter has presented a novel, black-box technique to predict parallel 

program scaling behavior. The basic idea is to use multivariate regression to predict the 

performance on large processor configurations using training data obtained from smaller 

numbers of processors.  

 Our results are encouraging. The error of our predictions for programs up to 1024 

processors was in most cases 13% or less. We showed that we can formulate several 

different predictions based on the training data and that the one with the lowest root-

mean-squared-error generally provides the best prediction. We also showed that 

understanding memory behavior—specifically the capacity of different memory 

hierarchy levels—is critical to making good predictions. 
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CHAPTER 3 

USING FOCUSED REGRESSION FOR ACCURATE TIME-CONSTRAINED 

SCALING OF SCIENTIFIC APPLICATIONS 

 

 As mentioned in Chapter 2, several large-scale clusters now have hundreds of 

thousands of processors, and processor counts will be over a million within a few years. 

When more processors become available, scientists can take advantage of the extra 

resources in several ways. In the previous chapter, we looked at the strong scaling [69] 

option, where the scientist uses a larger number of processors to solve a problem faster.  

Strong scaling is the most frequent type that appears in computer science literature. 

However, time-constrained scaling [59], in which the scientist attempts to keep total run 

time constant, is becoming more commonplace. This approach solves larger problems 

and keeps the execution time the same on larger processor counts.  Time-constrained 

scaling allows scientists to run problem sizes that were previously unexplored and is 

generally more intuitive from the scientist’s perspective. While time-constrained scaling 

for simple applications seems simple (just increase the total problem size by the same 

factor as the number of processors), several factors complicate it in the general case. 

These factors include nonlinear effects in computation and communication, along with 

complex relationships between input parameters and execution time. 

 In this chapter we present an extension to our regression-based technique that 

allows accurate time-constrained scaling of applications. We have extended our system to 
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use a small amount of application-level information as input (gray-box) for more accurate 

predictions. Similar to our previous work, we choose a small series of training runs, 

varied over different, smaller processor counts.  However, we now use focused regression 

to predict the input parameters that need to be used in order to achieve time-constrained 

scaling. The training runs always use a processor count no more than half of the target 

number; to reduce training time, iterative applications can be executed for just a few 

timesteps. The scientist (or compiler/run-time system) must indicate the number of input 

parameters, whether they represent the dimensions of the main data structure or are 

unrelated, and whether the processor grid is part of the parameterization. Our focused 

regression technique reduces the required training runs to a small number and also 

improves prediction accuracy. 

 This chapter makes two primary contributions. First, we provide a technique that 

the computational scientist can use to guide time-constrained scaling accurately. It builds 

on our prior work, which uses a black-box, non-focused regression approach to predict 

execution time using strong scaling (rather than time-constrained scaling). Second, we 

show that our focused regression technique makes accurate time-constrained scaling 

predictions with little (and often no) program-level information—predictions that are 

better in some cases by a wide margin compared to naive ones. Specifically, over all 

applications, median prediction error is within 13% including applications that exhibit a 

complex interaction between multiple input parameters and execution time. 

 The rest of this paper is organized as follows. Section 3.1 provides motivation for 

this work. Section 3.2 describes our statistical techniques, in particular focused 

regressions. Next, Section 3.3 describes our experimental methodology and results on 
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seven applications. Finally, Section 3.4 summarizes our findings and future directions. 

 

3.1 Motivation 

 Strong scaling is preferred when a scientist must solve a specific problem as 

quickly as possible. However, the available parallelism is immutable and, therefore, 

strong scaling beyond a sufficiently large processor count will fail to reduce runtime. 

Time-constrained scaling, on the other hand, avoids limits imposed by Amdahl’s law and 

allows scientists to solve problems at the limit of their system capacity. For example, a 

scientist often tries to run a problem twice as large when given twice as much computing 

power.  

 However, time-constrained scaling poses many difficulties. First, most scientists 

assume that the data set size per processor should be fixed as the processor count 

increases, which is usually referred to as weak scaling [69] and tries to keep computation 

time per processor constant. Due to communication time, though, weak scaling alone will 

not keep total execution time constant. 

 Second, even if communication is insignificant for a given application, 

proportionally increasing the problem is often not well defined. For example, consider an 

application that has a two dimensional data structure, defined by (global) dimensions N1 

and N2, that is partitioned among the processors at a given processor count. Given twice 

as many processors, it is not clear how N1 and N2 should change. 

 Worse, the dimensions might not be correlated. In the above example, we knew 

that N1 X N2 should be doubled when the processor count doubles. Some applications do 

not have such an obvious relationship between the parameters (e.g., CG from the NAS 
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suite [5]). 

 Finally, overall execution time may not remain constant even when we know how 

to increase the problem size proportionally based on the input parameters. Computation 

time or communication time (or both) can increase at a greater than linear rate (which 

may not be obvious to even the experienced scientist). Figure 3.1 shows the complexities 

of time-constrained scaling for CG from the NAS suite. Here, both computation and 

communication times increase when holding SIZE/P, where P is the number of 

processors, constant for a given value of NONZER. In general, scientists would benefit 

from tools that help navigate through the complexities of time-constrained scaling. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Computation and communication times for CG as the number of processors 
increases.  The ratio of SIZE/P is fixed; SIZE ranges from 46,094 to 2,950,000, and P 
ranges from 16 to 1024 (shown in Log2 scale). The value of NONZER is held constant at 
a value of 20. 
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3.2 Focused Regression 

 This section discusses our focused regression technique. First, we describe the 

general idea. Then, we discuss our basic model, which does not require any program-

level information. Finally, we discuss extensions that provide greater accuracy for more 

complicated applications. 

 

3.2.1 Overall Technique 

 The scientist must provide appropriate inputs for our technique. Our current 

prototype requires the scientist to present the application and input parameters used on 

the largest processor count that is smaller than the target number of processors (denoted 

Pt). For example, in this paper Pt is always 1024, so the scientist must present the input 

parameters used on the 512-processor version. In addition, the scientist must provide 

certain application-level information, which Table 3.1 shows and we describe further 

below. The output is the set of input parameters—or sets, when there are multiple input 

parameters—that will result in application run time that is equal to that of the program 

executing on Pt /2 processors. To find these parameters, we must in part run experiments 

on smaller numbers of processors. While we expect that some of these experiments will 

already be run (e.g., the scientist has run the program with the desired input parameters 

on 512 processors, and now wants to scale to 1024), a few others usually must be 

executed. To control training time, these executions cover only a limited number of time 

steps. Therefore, we assume the time step loop is known.  

 With the value of Pt and the input by the scientist, our technique proceeds as 
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follows. For simplicity, we first present the case with only one input parameter. We 

assume that the scientist provides us with data from points with time ≈ T, at both P = Pt 

/2 and P = Pt /4. Then, we sample points (assuming that this data is not made available by 

the scientist) where the times are ≈ 1.1 X T and ≈ 0.9 X T. We determine the appropriate 

value of the input parameter to achieve this through inspection of the data that the 

scientist provides. From this point, we use the techniques described in the next two 

subsections (basic and general regression models) to predict the value of the input 

parameter on Pt processors that will result in an execution time of ≈ T. We extend this 

technique to multiple input parameters with the procedure described in Section 3.2.3. 

 

 

 

 

 

 

 

Table 3.1: Application-level information needed from the scientist for our seven 
programs 
 

3.2.2 Basic Model 

 In order to determine the proper input parameters for constant run time at Pt, we 

need a model that predicts total run time T of a given application. This model expresses T 

as a function of the values of its input parameters and Pt. Aside from Pt, the size, denoted 

W is the other key characteristic for determining run time in programs with little 

Program Parameter Relatedness Processor Grid Used 

BT Yes No 

LU Yes No 

SP Yes No 

CG No No 

Miranda Yes No 

SMG No Yes 

Sweep3d Yes Yes 
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communication. We can often easily determine W for simple programs from the input 

parameters (i.e., we can just use the product of the parameters (zi’s), or W = f(z1 X z2 X. . . 

zn)), and T is approximately proportional to W/P. More generally, we have  

   log2(T) = β0 + β1log2(W) + β2log2(Pt) + ε    (3.1)  

where β0, β1, and β2 are coefficients that we estimate based on a set of observed (T,W,Q) 

triplets, Q is the number of processors used in a training run (Q < Pt), and ε is the error. 

Generally, we estimate the β values so as to minimize the error between the predicted 

values and the observed values. 

 Specifically, to collect the (T,W,Q) triplets, we execute the program on Q 

processors, where Q ∈{2, . . . , Pt /2}. We vary the values of W and Q on the sample runs 

and then use regression to generate Equation 3.1. Because it is easier to acquire Q 

processors than Pt, it is reasonable to perform multiple instrumented runs for different 

configurations of the input variables. 

 We predict run time using a log-scale because the prediction errors are well 

known to be proportional to the expected time—we are concerned with relative errors. 

Working in log-scale implicitly handles this. As in the previous chapter, the base of the 

log makes no fundamental difference; we use log2 for mathematical convenience. The 

coefficients β1 and β2 in Equation 3.1 measure the relative increase in time due to 

changes in computation. Finally, working in log-scale implicitly handles interactions 

between the different terms in Equation 3.1 (e.g., time is proportional to the quotient of W 

and Pt). 

 While the model in Equation 3.1 is relatively simple, it works well for 

computation-dominated, simple-array based applications. The applications upon which 
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we evaluate our focused regression technique in this paper (see Section 3.3) are listed in 

Table 3.1. The first three are well predicted with Equation 3.1: BT, LU, and SP (from the 

NAS suite [5]). All three have a high computation-to-communication ratio and a single 

input parameter. 

 

3.2.3 General Model 

 For more complex applications, simply applying Equation 3.1 is insufficient for 

three reasons. First, we cannot easily determine size (W) in advance in some applications. 

Rather, we can specify the values of some input parameters in advance, and these 

parameters determine computation in an unknown or complex way. In such cases, one 

may need to examine several potential predictor parameters to determine which ones are 

significant predictors of time and to model the relationship between T and these 

variables. For example, CG has this characteristic, as indicated by Table 3.1. 

 Second, modeling only total execution time produces inaccurate predictions for 

applications with a significant amount of time spent in communication. Computation and 

communication can scale at different rates, which the training runs capture only if we 

model them separately. As mentioned earlier, Figure 3.1 shows this situation. Currently, 

we do not subdivide either computation or communication further into phases because the 

prediction quality we achieve for our applications is usually accurate without it. We are 

currently investigating breaking computation and communication into smaller phases. For 

example, we could break communication calls into groups that have similar scaling 

behavior (e.g., logarithmic-scaling collectives versus linear-scaling collectives). 

 Third, for applications in which the program specifies a processor grid to allow 
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the scientist to control data distribution, T is not only a function of Pt, but also of 

P1, P2, . . ., Pn, where n is the number of processor grid dimensions and Pt is the product 

of the Pi values. Both SMG and Miranda fall into this category. Parameterizing this 

aspect to some extent requires knowledge of the program structure. We can obtain 

significantly better fits when we have this information by using the values of the 

processor dimensions rather than just P. In such cases, our models can give scientists 

insight into the processor configurations, for a fixed W and Pt, that run fastest, in addition 

to providing time estimates for various input combinations. 

 Our prototype handles each of these possibilities. 

Case 1: We use a more general equation for execution time with complex input 

parameter relationships: 

 log2(T) = β0 + β1z1 + β2z2 + . . . + βnzn + βn+1log2(Pt) + ε   (3.2) 

Here, zi is the ith input parameter describing the data. We use additional training runs to 

determine which of the zi are important in predicting T, as well as to model the functional 

form of these variables (similar to what was done by Lee et al. [41]). 

Case 2: If communication is significant, we use separate regressions for computation and 

communication. Both follow the same form of either Equation 3.1 (if the input 

parameters are related) or 3.2 (if they are not, as in case 1 above). Our current prototype 

splits the regressions only if the percentage of time spent in communication is greater 

than 50% at the largest number of processors used for training (512); we found that 

regressing only on total time suffices with smaller percentages. We collect computation 

and communication time using the PMPI profiling layer of MPI. 

Case 3: The most interesting case occurs when the application uses a processor grid. We 
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considered simply extending Equation 3.2 by replacing the Pt term with terms for the 

processor grid terms (e.g., P1 and P2). However, while intuitive, experiments showed that 

this technique is ineffective because the data distribution, as specified by the processor 

grid, significantly affects application execution time in a nonlinear manner, as we show 

in Section 3.3. Thus, using a single regression results in significant errors. 

 Instead, we restrict the sample runs used in the regression to a narrow range or 

focal region around the processor grid at the target number of processors, Pt. In general, 

the focal region is trivial when the number of input parameters is small (e.g., 1); in this 

case, using a fixed execution time to determine the focal region suffices. However, for 

nontrivial applications with several input parameters, such as SMG and Sweep3d, we 

must determine a focal region based on the input parameter space since that space is 

large, and it is quite difficult to cluster sample runs around execution time. 

 We then use Equation 3.1 or Equation 3.2 in the focal region, depending on 

whether or not the input parameters are related, as described above. The typical strategy 

when creating regression models uses more data to achieve a better result. However, in 

our particular case, more data is worse, if it is not nearby in the processor dimension 

space on Q < Pt processors. Also, while the focal region idea is quite useful and 

necessary when handling an application that uses a processor grid, it also improves 

regression quality for all applications. Therefore, we use the focal region idea in 

general—restrict tests to those around the values of the input parameters (adjusted for 

processor count) presented by the scientist. Using only a subset of available data for 

prediction via regression is not new; for example, Lee and Brooks use this technique for 

predicting performance and power [42]. We apply this technique to scalability analysis. 
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 Consider an example, with one of our applications, SMG, that has six input 

parameters—three processor dimensions, px, py, and pz, along with three grid dimensions, 

nx, ny, and nz. We next illustrate what predictions our prototype makes, along with what 

focal region it selects to make each prediction. Suppose the scientist has run SMG on 512 

processors using a processor grid where px = 1, py = 16, and pz = 32, denoted for 

convenience as (1, 16, 32). We assume that if the scientist wants to use time-constrained 

scaling of SMG to 1024 processors, then it is necessary to double one of the three 

processor dimensions. 

 For each prediction, we use a different regression based on experiments in the 

focal region. Figure 3.2 shows two different focal regions, one of which, (1, 32, 32), we 

would use in the preceding example. The figure shows that our prototype uses those 

processor grids (shown in black) at lower (total) numbers of processors that are most 

proportionally similar to the grid at the target number of processors. As the results in the 

next section show, the results degrade if we include data from grids that are not 

proportionally similar. Our figure sets px = 1, because if we also vary px, the picture 

becomes quite complex. However, our prototype handles the general three-dimensional 

case. 
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Figure 3.2: Processor grids (only shown down to 64 processors) used in SMG to predict 
Px = 1, Py = 32, Pz = 32, and Px = 1, Py = 128, Pz = 8, respectively.  For all vertices in the 
graph, Px = 1. The two values listed are Py and Pz. 
 

 

3.3 Results 

 This section discusses results of our focused regression prototype in making time-

constrained scaling predictions. For our evaluation we used two different clusters at 

Lawrence Livermore National Laboratory: the Atlas cluster and the Hera cluster. The 

former is the same as described in Chapter 2, while the latter has 864 four-socket, quad-

core AMD Opteron nodes with 32 GB RAM. We used Hera (which is similar to Atlas) to 

execute Miranda because of time constraints on Atlas. Each Opteron node is a NUMA 

architecture; each socket has local memory, and all others are accessed through longer-

access remote memory controllers. Our experiments use four cores on each node (one per 
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socket on Atlas and Hera) to avoid potential variance if all cores are in use [52]. Note that 

in the rest of this section, we use the term processor to refer to a core. 

 To eliminate potential NUMA effects, we used cpu_bind to ensure that Linux 

allocates memory for each core out of the socket’s local memory. Without binding, Linux 

may allocate remote memory (arbitrarily), which introduces significant variance across 

runs. 

 

3.3.1 Methodology 

 Our prototype collects results for each instrumented training run; these runs occur 

on a variety of processor counts, but never on the target processor count (Pt). We use the 

PMPI layer to collect computation and communication times; we count any time in the 

MPI library as communication time. While this is not completely precise, getting finer-

grain results (e.g., omitting blocking time and collecting only network and copying time) 

requires instrumenting the entire MPI library. We then use measured execution times to 

fit a linear model. We use the statistical package SAS for all regressions. 

 We emphasize that we run the program only on a small subset of the many 

possible input parameter/processor combinations; this choice conserves machine time as 

well as produces better results by using focal regions (as described in the previous 

section).  

 We make the important assumption that we can run an application with the input 

parameters set to values of our choosing. Essentially, the parameter space is quite large 

and sparse for applications like SMG (5 free parameters). This ability to execute the 

program in configurations of our choice ensures that we can collect the data that we need 
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to make accurate predictions. Essentially, we assume that scientists write programs that 

are flexible and provide meaningful timing results, if not physical results, for any 

combination of the input parameters. 

 For our evaluation we executed the program at the target processor count (1024 

processors), and we find the input parameters that are predicted to cause the program to 

run in the same time as for a 512-processor run (which is the goal). We measure 

effectiveness by reporting error based on the relative difference between the observed 

execution times on 1024 and 512 processors. 

 

3.3.2 Applications 

 We tested our techniques using seven applications. Four are from the NAS suite 

[5]. In particular, we use BT, SP, CG, and LU (described in Section 2.2); our approach 

does not apply to other NAS programs (FT, IS, MG) because we have insufficient input 

data due to input restrictions. Further, EP is trivial because it has only one parameter and 

zero communication. We further use SMG and Sweep3d from the ASC suite; the former 

is a three-dimensional multigrid solver, and the latter is a three-dimensional neutron 

transport code. The final application is Miranda, which is an industrial-strength 

hydrodynamics application. 

 

3.3.3 Summary of Results 

 Overall, our prediction quality is quite good: median prediction error ranges from 

3% to 12.2%, and predictions are almost always within 20% and usually much better. For 

the three more complex applications, we must generate different regressions for different 
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focal regions to achieve accuracy. In particular, we obtain a median error as high as 75% 

if we do not use a focal region. 

 

3.3.4 Single Parameter Programs 

 First, we studied three programs that have only one important parameter (other 

than p): BT, SP, and LU. These programs are computation intensive; they serve as 

programs for which the scientist could perform accurate time-constrained scaling in a 

straightforward manner. Proportional scaling, which we define as increasing the 

parameter by an identical factor as the number of processors increases, will be relatively 

effective. 

 Table 3.2 shows the results of all three programs. Focused regression produces 

predictions within 6% of the actual time, whereas predicting using simple proportional 

scaling of the single input is over 17% for BT and 11% for LU. For SP, proportional 

scaling is slightly better, 3.6% to 5.2%, but both predictions are quite good. 

 These results show focused regression performs well and avoids the larger errors 

incurred by proportional scaling. More importantly, it shows that performing time- 

constrained scaling even on seemingly simple applications is not necessarily trivial. 

 
 
 
 
 
 
Table 3.2: Percentage error between actual and predicted times for one-parameter 
programs (BT, SP, and LU) when using 512 processors for training. For reference, the 
error when scaling proportionally is shown. All predictions are for programs executing on 
1024 processors. 
 

Program Focused Regression Error Proportional Scaling Error 
BT 1.8% 17% 
LU 5.3% 11% 
SP 5.2% 3.6% 
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3.3.5 Multiple Parameter Programs 

 Next, we studied four programs that have at least two important parameters: 

SMG, Sweep3d, CG, and Miranda. All of these applications serve as challenges for our 

focused regression approach; time-constrained scaling is difficult either because the 

parameters have nontrivial interactions or the application specifies processor grid 

dimensions. We compare our results to an approach, denoted non-focused, in which we 

use all the sample runs below 1024 processors to create a single monolithic regression. 

We study SMG first and in depth because it presents the most challenges.  

 SMG: SMG has six input parameters: three processor dimensions, px, py, and pz, 

along with three grid dimensions, nx, ny, and nz. The application specifies grid dimensions 

in terms of a per processor local grid; one can recover the global grid by taking the 

product of each grid dimension with the associated processor dimension. For time-

constrained scaling, four of the six input parameters are unconstrained, which still leaves 

many different ways to scale SMG. Note that SMG is not symmetric in all dimensions 

[13], so modeling it is not at all straightforward.  

 We chose to scale the global grid equally in all three dimensions (e.g., if we 

double the processor count, we increase each global grid dimension by a factor of ), 

which corresponds physically to decreasing the grid point resolution by a factor of 2. 

Furthermore, we assume that if the user is scaling a program with processor dimensions 

px, py, and pz, that one of these dimensions will increase by a factor of 2. Therefore, we 

make predictions for all three possibilities.  

 As described in Section 3.2, we must create a regression for different focal 
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regions with SMG. Specifically, a different regression predicts each processor 

configuration. We predict input parameters for a range of input sizes for  six of the 

possible processor configurations (focal regions) at 1024 processors for these results.  

 Figure 3.3 shows the median prediction errors using focused and non-focused 

regressions for SMG, and Table 3.3 summarizes the results across all applications. 

 In the particular case of SMG, using focused regressions allows accurate 

predictions, while the non-focused technique is clearly inferior. Also, the median error is 

just 5.6% for the points predicted. The non-focused technique has median prediction 

errors that are higher (76%). Furthermore, the worst case has an even larger disparity—

up to 117% with the non-focused approach. While the worst case for focused regression 

is 34%, we note that 90% of the predictions are within 10%.  

 Finally, we do not give the prediction error when using proportional scaling for 

SMG because we lack a clear definition of proportional scaling with six input parameters, 

and some parameters (the processor grid dimensions) have strict restrictions on their 

values. 
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Figure 3.3: Scatterplots showing prediction error for focused and non-focused regressions 
for SMG. The tests are ordered by percentage error. 

 
 
 

Prediction SMG Sweep3d 
Error (%) Max Avg Median Max Avg Median 
Focused 34 7.1 5.6 12 4.9 5.0 

Non-focused 117 75 76 53 33 36 
 

Prediction CG Miranda 
Error (%) Max Avg Median Max Avg Median 
Focused 22 12 12 20 3.7 2.2 

Non-focused 53 27 27 21 3.7 3.2 
 
Table 3.3: Maximum, average, and median prediction error in SMG, Sweep3d, CG, and 
Miranda for focused and non-focused regressions. 
 
  

 Sweep3d: Sweep3d has fewer input parameters (five) than SMG (six) because it 

has a two dimensional processor grid. Also, the specification of the grid is global, not 

local. Three of the five input parameters are unconstrained for time-constrained scaling. 

Thus we can scale Sweep3d in many ways, as with SMG. We choose the same approach 

for scaling as for SMG and use focal regions in exactly the same way. 

 Figure 3.4 shows the results for Sweep3d and Table 3.3 summarize the results. 
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The results are similar to those of SMG; the median prediction error is quite low for our 

focused regression (5.0%) and poor for the non-focused regression (36%). 

 

Figure 3.4: Scatterplots showing prediction error for focused and non-focused regressions 
for Sweep3d. 
 

 CG: Figure 3.5 shows the results when applying focused regression to CG, and 

Table 3.3 summarizes this data. The figure shows that we produce predictions with 

median error of 12% and worst-case error less than 23%. For comparison, we also show 

the error when using a non-focused regression—for CG, we focus the regression on 

different values of the NZ input parameter, along with splitting computation and 

communication and regressing on them separately. Prediction quality is much better with 

focused regression. Figure 3.6 shows the effect of using our prototype to predict SIZE, as 

opposed to using naive weak scaling. 

 We also further investigated the naive time-constrained scaling prediction. 

However, the question is: how would the scientist scale CG to keep the execution time 

constant without our approach? As we mentioned earlier, CG has two parameters: SIZE 

and NONZER. The scientist has three intuitive potential choices to scale CG: double 
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SIZE, holding NONZER constant; double NONZER, holding SIZE constant; or increase 

each by . We ruled out the third case for two reasons. First, increasing both 

parameters by  seems physically unrealistic since CG is at its core a one-dimensional 

data structure (sparse matrix). Second, CG requires integers for both input parameters, so 

increasing NONZER by  will lead to experiments that we cannot actually run. 

 Therefore, we investigated the first two possibilities. When doubling SIZE and 

holding NONZER constant, the average error is 53%; when doubling NONZER and 

holding SIZE constant, the average error is 13%. Both are worse than the average error 

with focused regression, and the potential for large error exists. 

 

 
Figure 3.5: Scatterplots showing prediction error for focused and non-focused regressions 
for CG. 
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Table 3.4: Time-constrained scaling with our prototype for 16 through 1024 processors. 
(with NONZER fixed at 20). Our prototype predicts the value of SIZE at 1024 (given a set 
of experiments using 16 through 512 processors) that will match the time at 16 
processors, which is 29.3 seconds. For completeness, we also show the predicted values 
for 32 through 512 processors. Clearly, our prototype leads to time-constrained scaling, 
while naive weak scaling does not. Figure 3.4 (Below) displays these results graphically. 
 

 

 

 

 

 

 

 

 

  

 

 Figure 3.6: A graphical representation of the results presented in Table 3.4 

 

 

 

P Size (Wk Scaling) Time (s) Size(Prototype) Time (s) 

16 46,094 29.3 46,094 29.3 
32 92,188 33.5 78,682 27.9 
64 184,375 43.2 124,979 27.4 
128 368,750 52.8 237,656 31.4 
256 737,000 81.3 299,536 28.7 
512 1,475,000 101 458,171 29.2 
1024 2,950,000 189 558,273 29.7 



 

53 

  

 Miranda: Figure 3.7 shows the results from Miranda for both focused and non-

focused regressions, and Table 3.3 summarizes this data. In this case, we vary only two 

processor grid dimensions, which substantially reduces the number of processor grids at 

1024 processors.  

 The data shows that either technique achieves good prediction quality. The 

median is slightly better when using the non-focused approach, while we have fewer 

prediction errors over 10% (17 to 11). Recall, however, that for SMG, prediction quality 

was much better with focused regression, and the non-focused regression produced 

consistently poor results. 

Figure 3.7: Scatterplots showing prediction error for focused and non-focused regressions 
for Miranda. 
 

 

3.4: Summary 

 This chapter has described the design, implementation, and evaluation of an 

approach that uses focused regression, which assists computation scientists in scaling 
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their application so that execution time is kept constant. Our approach only requires the 

application scientist to provide a small amount of application-level information—

specifically whether the input parameters are related and if the application uses a 

processor grid. Our approach then provides values of input parameters that will yield 

approximately the same execution time on a larger number of processors. Notably, our 

technique never requires a run of the application at the target scale. 
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CHAPTER 4 

PREDICTION IN THE PRESENCE OF RUNTIME VARIANCE 

 

 With a balanced workload, a deterministic algorithm, and dedicated nodes, one 

would expect only slight variation in execution time (runtime variability) when running 

multiple replications of an application with the same input parameters.  However, when 

running the original tests for our work in Chapters 2 and 3, we observed significant 

performance variability, especially at large scale. Depending on the complexity of the 

system, different sources of variation may exist, including non-uniform memory access 

(NUMA) effects, operating system activity, network contention, and even the layout of 

the nodes assigned for a given run.  We minimized variability in previous chapters by 

leaving a core idle to handle system processes and by binding each process to a single 

core to avoid potential NUMA effects. By adding these constraints, we were able to 

minimize (but not eliminate) the prediction error caused by noise. However, constraining 

the runtime environment and leaving cores idle is not a viable solution to the noise 

problem. In this chapter, we explore the difficulties of prediction in the presence of 

runtime variability and discuss our approach to make accurate predictions when noise is 

present on the system.   

 Without runtime constraints, large-scale applications are prone to significant 

variation. Figure 4.1a shows the variation of a single instance of Sweep3D executed 65 

times on a range of processor counts from 4 to 128. The percent variation on most 
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processor counts is +/- 7% of the mean for that processor count.  However, on 64 

processors, the runtime ranges from 5.58 seconds to 10.11, which is approximately a +/- 

35% variation about the mean. Variability of this magnitude is not surprising, as other 

research shows up to 100% performance degradation due to noise on the Parallel Ocean 

Program (POP) [27].  

 Significant runtime variability causes problems for performance prediction and 

leads to degraded accuracy for scalability models. Figure 4.1b demonstrates the effect of 

noise on our prediction models presented in Chapters 2 and 3. In this example, we select 

a single Sweep3D experiment out of the possible 65 tests in Figure 4.1a at each processor 

count (including the maximum observed runtime at 64 processors). A single test is 

selected because the techniques presented in earlier chapters require a single experiment 

at each processor count. We model the data using a quadratic regression up to 64 (p/2) 

processors to predict at p = 128. The test selected on 64 processors causes the regression 

model to curve upward, resulting in a prediction of 8.44 seconds for a test that actually 

takes only 3.5 seconds to run (141% relative prediction error). In an environment with 

minimal noise, the small decrease in runtime from 32 to 64 processors indicates the point 

at which speedup begins to level off and at which it becomes inefficient to run on more 

processors. However, in this case, the regression model is altered by a test that is highly 

impacted by noise on the system. While it is true that noise of this magnitude was not 

present in earlier chapters, small amounts of noise (including operating system activity) 

may have degraded the accuracy of our predictions. In order to model scalability on 

increasingly complex supercomputer architectures accurately, we must consider the 

impact of noise on application runtimes. 
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Figure 4.1: Sweep3D experiments run in a noisy environment using a 200x200x200 
processor grid on various processor counts.  Figure 4.1a (left) shows all 65 tests run on 
each processor count.  Figure 4.1b (right) shows the effects of noise on scalability 
predictions.  We predict 128 processors using data from 4 through 64.  
 

 In principle we can modify our system to provide the user with a range of runtime 

predictions at large scale using runs from small processor counts. This approach would 

require many replications of each test at all processor counts in order to gather the 

approximate minimum, maximum and probability distribution of runtimes for each test. 

The system could then use regression techniques to show the projected range at large 

processor counts. However, the amount of training runs required makes this solution 

impractical. For example, non-replicated training tests took roughly 24 hours for the CG 

predictions obtained in Chapter 2.  Repeating these tests enough times to capture all types 

of variability on the machine could take months or even longer. A more practical starting 

point is to predict the distribution of execution time accurately for a given processor 

count before moving to the more complicated problem of extrapolation. Our approach 

consists of gathering many execution time samples from a single iteration (either by 
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simulation or real application runs) of an iterative application and then predicting the 

execution time of the same application run for many iterations. Both the single iteration 

tests and the long-running tests are executed in a noisy environment (either simulated or 

real system). Solving this first allows us to focus on noise effects within a given 

processor count without extrapolation, and it also serves as a building block for a large-

scale extrapolation prediction system. The ability to understand the noise effects of an 

application running for many iterations by running the application for only a single 

iteration will greatly reduce the amount of time required to run training tests on an 

extrapolation-based system. 

 This chapter makes three important contributions. First, we present two methods 

for gathering single-iteration runs of scientific applications. One is by the use of 

simulation techniques, and the other is by running many single-iteration tests on the 

actual systems. We also demonstrate how the Central Limit Theorem can be used to 

predict application runtime in the presence of runtime variability of multiple iterations 

using only information about single-iteration runs. Finally, we discuss reasons for 

prediction error and demonstrate how various sources of noise can affect application 

runtime. 

 The rest of this chapter is organized as follows. Section 4.1 outlines the types of 

noise that can be found on modern supercomputers.  Next, Section 4.2 provides an 

overview of the two methods for gathering single-iteration information and discusses our 

prediction formula, based on the Central Limit Theorem. Section 4.3 discusses our 

approach to predictions using simulations. Then, Section 4.4 demonstrates predictions 
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made using real runs on the system. Finally, Section 4.5 summarizes our findings and 

future directions. 

 

4.1 Sources of Noise on Modern Supercomputers 

 The complex architectures and network interconnects of modern supercomputers 

result in many potential sources of runtime variability on the systems. We outline a few 

of the main sources of variability in this section. 

 Operating System Activity - This type of variability is caused by system events 

that interrupt the execution of the application. It is the most well-studied type of noise 

found in the literature. Most authors on the subject recognize two types of operating 

system interference: short-lived timer interrupts (15-30 us) and longer-lived daemon 

processes. Type 1 includes the OS tick, which keeps up with the clock for process 

scheduling.  Type 2 (daemon processes) includes servers that may be running on the 

system (sshd, httpd, etc.), monitoring daemons, cron jobs, and many others.  These can 

run up to a second or more [33].  If a core is not left unused to process these events, they 

can introduce significant delays to a large-scale application.  These delays have a 

detrimental effect on the application runtime at large scale due to the increased 

probability of a "straggler" process at each synchronization point. 

 Non-Uniform Memory Access - This type of variability is caused by references 

to non-local memory, which cause a process to delay on each remote reference.  When 

multiple processes have different numbers of remote references throughout an application 

run, runtime variation results.  In our experience on the Atlas cluster at LLNL, remote 

memory references can happen for three reasons.  First, they can be the result of an 
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overflow on a memory module, which occurs when the processes are not balanced across 

the cores and the total memory requirements for a given processor exceed the available 

local memory (large problem sizes increase the probability that this kind of variability 

will occur).  The second cause of remote references is when a task migrates away from 

the core on which it has allocated its data [50], which can happen at any point during the 

execution of the application and may result in varying numbers of remote references (the 

probability increases with processor count). The final source of remote references, which 

we have not experienced on the Atlas cluster, is when a process assigns data remotely 

even though local memory is free. 

 Network Contention - When other applications are executing simultaneously on 

the cluster, they may create traffic on the network.  The amount of traffic (which changes 

across runs of an application) will affect the communication time of the application.  This 

traffic variability will cause the time for communication calls to vary, thus creating 

variability in overall application runtime. In our observations, network contention has 

only a minor impact on applications being run on the systems on which we are working, 

so we leave it as a topic of future work. 

 Node Allocation - Supercomputers often consist of hundreds or thousands of 

nodes grouped into physically separate racks. When a job is assigned to nodes located on 

separate racks on the system, runtime variability is likely to occur. We have not yet 

explored the significance of allocating a process on a remote node in detail, but we are 

currently investigating it. Our initial findings show that node allocation has a distinct 

effect on runtime (discussed further in Section 4.4.3). Scheduler bias makes the 

probability of being assigned nodes within the same rack is higher than that of being 
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assigned nodes located in separate racks (unless, of course, the job size exceeds the rack 

size). Predicting the effect of node allocation requires knowledge about the system layout 

and the ability to choose the nodes where the training tests will run. System layout 

information would allow us to match the allocated nodes for the job to their rack 

locations in the system. Matching the locations of the nodes to the measured execution 

time would give a clear idea of how node allocation affects runtime. Also, if given the 

ability to choose the allocated nodes, we could run experiments on nodes located on 

various racks in the system in order to estimate the effect of remote node allocation 

without having to rely on chance (which would require far more tests). Since machine 

layout information and node selection privileges are not available on our machines, we 

leave this study to future work. 

 

4.2 Prediction Methodologies 

 As previously mentioned, the goal of this chapter is to predict a range of runtimes 

for applications running for many iterations, using times obtained from many runs of a 

single iteration of the program. In order to predict execution time, we must first have an 

understanding of the amount of runtime variability (in terms of mean and standard 

deviation) that exists on a single iteration of the application. Once we understand the 

variability for a single iteration, we can then use the information to predict the runtime at 

larger iteration counts. 

 

4.2.1 Understanding Single Iteration Variability 

 In this section, we discuss two different approaches to this problem. The first uses 
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micro-benchmarks to capture the noise signature of the machine and then injects noise 

based on this signature into a single-iteration simulation of the application. The noise 

signature is a collection of all operating system noise events on the system and their 

duration over a fixed time interval. Since other types of noise are not repeatable and 

therefore impossible to capture using micro-benchmarks, this approach focuses on 

operating system noise. The second approach captures the runtime variability of a single 

iteration by running one iteration of the application repeatedly on the system. This 

approach is able to capture other sources of noise on the system, in addition to operating 

system activity. We discuss the benefits and drawbacks of each approach in the following 

sections. 

 

4.2.2 Making Predictions 

        Under each model, once we can model the variability of a single iteration of the 

application, in terms of its mean and standard deviation, we can use the central limit 

theorem to make predictions about the behavior of the application when run for multiple 

iterations. If a random variable has a mean (µ) and standard deviation (σ), the 

approximate range of the sum of n independent replications from this distribution will, 

for large n, be: 

  ((n * µ) - (3.30 *  * σ)) to ((n*µ) + (3.30 *   * σ))  (4.1) 

with 99.9% confidence. There are other confidence intervals that can be calculated using 

this theorem. However, we focus on the 99.9% interval in this chapter, since we desire an 

interval that is almost sure to contain any realizable result.  All predictions in the 

following sections of this chapter are made using this formula. 
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 We note several caveats concerning use of this formula: 

a)   The number of iterations, n, must be known in advance.  

b)  The procedure used to estimate the mean (µ) and SD (σ) must be unbiased. The 

estimates of µ and σ based on many runs of a single iteration must be 

representative of the many iteration experiments. 

c) The formula given above depends crucially on the assumption that runtimes for 

successive iterations are independent of one another. If something in the 

application process causes subsequent experiments to be similar to one another 

with respect to run-time, then there will be positive serial auto-correlation, and the 

formula given above will under-estimate (perhaps significantly) the true 

variability that will occur. 

 

4.3 Prediction By Simulation 

 In this section, we discuss our technique that simulates a single iteration of an 

application and then show our results when predicting the performance of 100 iterations 

on a real system. Simulating a single iteration of a scientific application requires one to 

understand the noise signature on the machine along with the application's runtime for a 

single iteration.  As previously mentioned, this technique focuses on operating system 

noise on the supercomputer. The application studied in this section is a program that 

mimics a wavefront application with an a x b processor grid layout (often denoted 

Wavefront(a,b) in this section). In a wavefront application, each processor receives from 

its northern and western neighbors (if neighbors exist), computes for approximately one 

second (in a noisy environment), and then sends to its southern and eastern neighbors 
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(Figure 4.2). The wavefront communication begins at the top-left corner of the a x b 

processor grid. We perform these tests on 32 processors (using an 4x8 processor grid, 

Wavefront(4,8)) on the Atlas cluster. A process cannot begin execution until it has 

received from both of its neighbors, if both exist. One pass through the wavefront is 

considered to be one iteration,and there is an MPI_Barrier call at the end of each 

iteration. Our wavefront application represents an application with long computation 

phases followed by short communication phases. 

 The diagram in Figure 4.2 displays an example Wavefront(4,8) iteration with noise 

injected based on the Atlas noise signature (described in Section 4.3.1 and seen in Figure 

4.3). The per-processor times are shown, with the critical path (among all 120 possible 

south-east paths going from top-left processor to the bottom-right processor) highlighted 

in red. In the absence of all noise, the time on each processor would take exactly 1.000 

seconds and the total execution time would be 11.000 seconds for every path. However, 

because of random noise events occurring on each processor, the computation time of 

each processor is greater than 1.000 seconds and not all paths take the same amount of 

time. The critical, or longest, path [57] is the one that determines the true execution time, 

11.144 seconds in the example shown. Under our method, we perform many simulations 

of a single Wavefront(4,8) iteration like the one shown in Figure 4.2. The single iteration 

simulations are then used to estimate the mean and standard deviation of the one-iteration 

critical path. Then, we use those values in the formula of Section 4.2 to obtain prediction 

intervals for the time needed for n iterations, where n is a larger number of interest, such 

as 100. In the following sections, we further explain how we generate the per-processor 

times and run our single-iteration simulations. 
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Figure 4.2: Example Wavefront(4,8) iteration with noise injected based on the Atlas noise 
signature. Each block represents a processor in the 4x8 configuration. Times represent the 
time to complete the computation on a given processor (in seconds). The critical path is 
labeled in red. 
  

4.3.1 Measuring Operating System Noise With Micro-benchmarks 

 A common approach to measuring noise on a machine is to use micro-

benchmarks. These are specifically written algorithms to capture operating system 
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activity on the processors [8, 27, 28, 61], and we briefly discuss these in Chapter 5. For 

this work, we use the selfish benchmark, which is publicly available as part of the 

Netgauge network performance measurement framework [28]. The selfish benchmark 

runs a carefully calibrated spin loop and records any deviations from the minimum loop 

time (found empirically).  Figure 4.3 shows the noise events recorded during a 250 

second period on the Atlas supercomputer at LLNL (described in Chapter 2). 

 

 

 

 

  

 

 

 

 

 

 Figure 4.3: Noise events recorded on Atlas during a 250 second period. 

 

4.3.2 Summarizing the Noise Signature 

 Once the noise signature is obtained, we group the noise events into distinct types. 

We look for periodic repeating noises first and group them based on similar frequency 

and duration. For example, the first type of noise classified from the Atlas signature 

occurs once every millisecond and, when it occurs, is approximately normally distributed 
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with a mean of 615ns and a standard deviation of 7ns. Occasionally, we see a probability 

distribution within a noise type. For example, type 1 noise on Atlas has a 62% chance of 

N(615,7), a 14% chance of N(715,17), and a 24% chance of N(815,45), when it occurs, 

where N(µ, σ) represents a Normal Distribution with a mean of µ and standard deviation 

of σ. This means that when a type 1 noise event occurs, it has a chance of following one 

of the three possible distributions in column 3 of Table 4.1. A summary of the high-

frequency noise summary on Atlas based on a 250-second sample is given in Table 4.1. 

 

Noise Period (1/freq) in ns Noise length (ns) % 

N(615; 7) 62% 

N(715; 17) 14% 1 1,000,000 

N(815; 45) 24% 

N(3,400; 23) 83% 
2 1,000,000 

N(3,500; 33) 17% 

3 250,000,000 N(9,200; 260) 100% 

4 550,000,000 N(12,300; 1060) 100% 

Table 4.1: A summary of the high-frequency noise based on a 250-second sample from 
the Atlas cluster. 
 
 The four noise types listed in Table 4.1 are considered high-frequency, low-

duration noise. The effect of these four types of noise on the wavefront application is 

expected to be low due to the relatively large amount of computation time. High-

frequency, low-duration noise has a much larger affect on applications with fine-grained 

communication calls [49], i.e. those where computation times are short relative to their 

communication times. However, for most of the applications considered in this 
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dissertation, and especially for the wavefront application considered in this chapter, 

computation dominates communication. Thus, in such cases, the four types of noise noted 

in Table 4.1 will not be a large source of variation. In addition to these four types of 

noise, we also observed high-duration, low frequency noise events, which did not follow 

a normal distribution and were not periodic. For these noise types, we found an average 

frequency and an approximate distribution. In one case, when the noise event occurred (if 

at all), it occurred many times in succession, causing roughly a 20ms delay. High-

duration, low-frequency noise can have a dramatic impact on application runtime and is 

usually hard to capture in sample runs based on their relatively low probability of 

occurrence.  

 

4.3.3 Application Simulation 

 One advantage of our micro-benchmark simulation approach is that the single 

iteration execution range is gathered using inexpensive simulation instead of having to 

use valuable supercomputer resources. Given the noise-free runtime for all processors of 

a single iteration of an application, we generate random noise according to the different 

distributions (obtained from the noise signature distribution) and accumulate them into 

the overall noise impact. For example, suppose we want to simulate a wavefront 

application with 1.0 seconds of noise-free execution time per processor. First, we 

generate the expected number of events of each type of noise that occur during the one 

second of computation. For each noise event that occurs, the duration is randomly 

generated from the distribution for its noise type. The durations of each event for a 

specific noise type are then summed to get the total noise for that type. For the short, 
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periodic noise types, this value is essentially deterministic for this type of computation-

bound application. The more interesting cases are the high-duration events that occur less 

frequently, such as a noise event that occurs 15% of the time over a one-second interval. 

This means that 85% of the time there will be no noise of this type, but when it occurs, it 

will delay the application longer relative to the other noise.  

 

4.3.4 Results 

 In this section, we present results from our simulations, which inject noise 

according to the Atlas noise signature into a simulation of the wavefront program using a 

4x8 processor configuration. These random noise events are accumulated to generate 

computation times for each of the a x b nodes in the Wavefront(a,b) program. The values 

shown in the diagram in Figure 4.2 represent a particular set of random noise events that 

could have occurred on the 32 processors in Wavefront(4,8) if each node's noiseless 

computation time were 1.000 seconds and noise events were generated according to 

mixtures of distributions that approximate the Atlas noise signature shown in Figure 4.3 . 

This entire process was simulated many times (10,000) to obtain 10,000 simulations of 

one iteration of Wavefront(4,8). The mean and SD of these 10,000 values could then be 

used in the formula of Section 4.2 to make predictions about the expected length of time 

for n=100 iterations. We then predict the estimated runtime using the formula discussed 

in Section 4.2.  

 Our simulation results show that the 99%-ile estimates under the Atlas noise 

signature are less than 11.155 seconds.  However, when 100 actual single-iteration 

Wavefront(4,8) tests were run on Atlas, we observed that the actual execution times 
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range from 11.227 to 11.798 seconds (Figure 4.4). All tests on the real machine are 

greater than the 99%-ile estimate, which strongly indicates that the machine has other 

sources of noise (in addition to operating system noise) that cause the application to slow 

down.  

 As mentioned in Section 4.1, complex systems have various sources of noise 

including non-uniform memory access (NUMA) effects, operating system daemons, 

network contention, and the layout of the nodes assigned for a given run. Clearly, other 

sources of noise affect our predictions, so we must try another approach to capture 

additional sources of noise in the system.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 4.4: 1 iteration runs of Wavefront(4,8) on 32 processors.  
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4.4 Application Measurement 

 The micro-benchmark simulation approach has the advantage of avoiding 

supercomputer usage. However, it will work only if the noise signature obtained from the 

machine is representative of the true noise on the system. Since there is clearly other 

noise is present on the system, we must find another approach.  

 Our second approach involves running a single iteration of the application many 

times on a real machine in order to understand the variability due to noise for a single 

iteration. We then use this information (via the formula of Section 4.2) to predict the 

runtime of multiple iterations. This technique allows us to capture the architectural 

variability such as NUMA noise and cache effects, in addition to operating system 

variability.  We cannot accurately capture network contention and node allocation 

variability since these sources of variance are not easily captured (as mentioned in 

Section 4.1). However, these sources of noise likely still impact our tests. 

 

4.4.1 Experimental Methodology 

 To investigate this method, we run two different synthetic applications. The first 

is the wavefront application discussed in section 4.3. We run the synthetic wavefront on 

32 processors (Wavefront(4,8)) and 256 processors (Wavefront(16,16)) in this section. 

The second program is a small segment of the Parallel Ocean Program (POP). Many 

research studies point out that the large number of MPI_Allreduce calls in POP cause it 

to be highly affected by noise events. Many researchers claim that the reason for POP's 

noise sensitivity is that it contains mostly fine-grained computation phases followed by 
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global synchronization calls (typically MPI_Allreduce). Since POP has roughly 75K lines 

of code, we decided to start by analyzing a segment of the program that represents its 

typical behavior. Specifically, our synthetic program computes for a few hundred 

microseconds; executes an MPI_Bcast and an MPI_Barrier; and then does 4 separate 

computation phases of a few hundred microseconds with MPI_Allreduce calls made in 

between each computation phase. The end of the iteration is marked with an 

MPI_Barrier. The POP segment is executed on 32 processors. All experiments are run on 

the Atlas cluster at LLNL. 

 

4.4.2 Results 

 The first program that we examine is the synthetic wavefront application. First, 

we ran 5000 runs of a single iteration of both Wavefront(4,8) and Wavefront(16,16). 

From the former, we estimated 11.034 seconds for the mean (µ) and 0.009 for the 

standard deviation (σ) of the critical path. For the latter, the estimates were 32.138 for the 

mean (µ) and 0.072 for the standard deviation (σ).  

 We then ran the wavefront application on 32 and 256 processors, respectively, for 

100 successive iterations. Figure 4.5 shows 100 replications of the 100-iteration synthetic 

Wavefront(4,8) application on 32 processors. Each point on the graph represents a single 

run of the application. Using the equation 4.2 and the results from the 5000 1-iterations, 

we can obtain an expected time of 1103.350 seconds (dotted line) along with a 99.9% 

upper and lower prediction bounds (solid horizontal lines) at 1102.750 and 1103.930. Of 

the 100 tests run, 96% of them fall within the predicted range with four tests falling 

outside of the range being within 0.005% of the upper bound of the range. So, in this 
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case, the procedure worked reasonably well, although the true variability is slightly more 

than predicted (points lie outside of the predicted range) and the mean is slightly higher 

than predicted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5: 100 replications of the 100-iteration wavefront application (Wavefront(4,8)). 
Dotted and solid horizontal lines represent expected value and 99.9% upper and lower 
prediction bounds, respectively, based on single-iteration sampling. 
  

 Figure 4.6 shows the predictions for the synthetic wavefront application 

(Wavefront(16,16)). Our technique predicts that the 100-iteration tests should fall 

between 3111.404 seconds and 3116.153 seconds with an expected value of 3113.780. 

The figure shows that 23 of the 100 tests lie outside of the prediction range. However, the 

points lie within 0.010% of the prediction lines in the worst case. The variation for 

Wavefront(16,16) is more extreme than the Wavefront(4,8) case. We believe the 

increased variation is due to the fact that Wavefront(16,16) runs for a longer amount on 

an increased number of processors, which leaves it vulnerable to additional sources of 

noise. 
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 Figure 4.6: 100 replications of the 100-iteration wavefront (Wavefront(16,16)).  
 

 The second application that we examine is the synthetic POP segment mentioned 

in the previous section. This program's total execution time is comprised of a much 

higher percentage of communication than the synthetic wavefront application. We make 

predictions for this application at increasing iteration counts. Using a single set of 5000 

single-iteration POP tests and the formula described in Section 4.2, we predict POP 

execution time at both n = 100 and n = 1000. Figure 4.7 shows a comparison of our 

predictions to the actual results of n = 100 iterations of the POP segment on 32 

processors. In this graph, the tests fall within the prediction range 99% of the time with 

only one test lying outside of the prediction range. However, the mean estimate is biased, 

as shown by comparison with the dotted line in the figure. Figure 4.8 shows predictions 

for n = 1000 iterations of the POP segment on 32 processors. The tests in this graph fall 

within the prediction range only 62% of the time with a worst-case error of 0.8%. 

However, there is again a bias in estimating the mean. 
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Figure 4.7: 100 replications of the 100-iteration POP segment on 32 processors.  
 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.8: 100 replications of the 1000-iteration POP segment on 32 processors.  
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4.4.3 Discussion 

 We observe two reasons why our technique does not predict the range more 

accurately in some cases. The first problem is that the estimation of the mean is slightly 

incorrect. This error probably arises from additional sources of noise that our technique 

fails to capture, indicating the need for more single-iteration tests. Second, sequential 

observations appear to be dependent. They come from blocks with similar means. We 

believe that much of this variation is due to node allocation. Figure 4.9 shows over 900 

single iteration runs of the Wavefront(32,32) application on 1024 processors (256 nodes). 

Each group of tests (roughly 90) is allocated a different block of nodes (randomly) on the 

supercomputer. The vertical lines in the figure show the points at which node allocations 

changed. The effect of node allocation is clearly seen in this figure. Similar block 

variations are seen in other runs that we have considered in order to find the distribution 

of the critical path times for one iteration of various applications, but they are more 

obvious when the runtime for one iteration is large, as it is here.  

 The two problems noted in the previous paragraph are both potentially serious. The 

first is more so, since, as noted in caveat (b) of Section 4.2.2, if the mean can't be 

estimated accurately, there is a high potential for error in the range predictions. We 

believe that some of the mean estimation errors are due to additional (unmeasured) 

sources of noise on the system. The second problem (underestimation of spread) can 

potentially be handled by gaining a better understanding of the block nature of the node 

allocation process. 
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Figure 4.9: Single iteration wavefront runs (Wavefront(32,32)). The effect of different 
node allocations is clearly seen. Vertical lines show points at which node allocations 
change. 
 

4.5 Summary 

 Clearly, more sources of noise are present in the system when applications run on 

more processors and run for more iterations.  We believe that running for thousands of 

iterations may cause other sources of noise to show up that are yet to be seen in 1-

iteration experiments. Also, running applications on more processors may make the 

experiments prone to larger node allocation and network contention variability (two 

factors that we did not consider in this work). In this chapter, we have presented a 

technique that can accurately predict the range of runtimes for two synthetic applications. 

This promising start for runtime prediction in the presence of noise lays the groundwork 

for a large-scale extrapolation system. 
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CHAPTER 5 

RELATED WORK 

 

 In this chapter, we provide a brief overview of other work in the area of 

scalability prediction. Section 5.1 discusses alternative prediction techniques, and section 

5.2 discusses the effects of system noise on scalability and the difficulties it causes for 

accurate predictions. 

 

5.1 Scalability Prediction 

 This dissertation extends a significant body of prior work. Extensive study into 

methods to predict the performance of parallel applications has explored a variety of 

approaches. Prior work has frequently focused on cross-platform predictions in which the 

processor count is held constant but the system under consideration is changed. Other 

research has used extensive manual analysis to derive analytic models. We extend a 

significant body of prior work that has developed statistical methodologies to predict 

performance. 

 The work most closely related to ours uses various regression approaches to 

predict application performance across a range of input parameter values when run on the 

same number of processors. For example, neural networks model the parameter space to 

predict execution time, generally with errors of 10% or less [32]. Direct comparisons 

demonstrated that piecewise polynomial regression provides similar accuracy [41]. 
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Unlike these previous regression-based approaches, we identify techniques to separate 

computation and communication that support extrapolations to larger processor counts. 

 Another similar approach uses machine learning to make predictions on multicore 

machines [68]. Also in a similar vein, Curtis-Maury et al. predict the power-performance 

tradeoff on multicore machines [18]. While similar to our approach, these approaches are 

limited to single multicore processors and do not address cluster systems.  

 Similarly, other black-box modeling approaches offer at best limited abilities to 

extrapolate to larger processor counts. Yang et al. predict performance across platforms 

through partial execution of iterative programs but only for system sizes used for the 

partial executions [73]. Lyon et al. use the theoretical approach of Taylor expansions to 

understand execution behavior, including scalability properties [43]. This more 

theoretical approach is complementary to our empirical approach and could conceptually 

be used in tandem with it. Combining static and dynamic analysis to predict performance 

on different architectures for different inputs offers greater possibilities for extrapolating 

across processor counts than these other statistical methods [44]. Later work showed that 

the technique could locate performance bottlenecks [45]). This approach has the 

advantage of avoiding runs on different hardware architectures, but requires compiler 

infrastructure that can be difficult to integrate into existing application build 

environments. In contrast, our framework only requires re-linking the application with 

the PMPI library to gather data during training runs.  

 A variety of simulation- or trace-based approaches to performance modeling exist 

in the literature. MetaSim provides a general performance modeling framework [60]. 

MetaSim uses Atom [63] or other instrumentation mechanisms like Dyninst [15] to 
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gather memory traces, which then support simulation of memory performance on a 

variety of architectures. MetaSim extends those results to a distributed memory setting 

with Dimemas [37], which consumes an MPI trace to simulate network performance. The 

memory and MPI traces are tied to the original processor count and, thus, unlike our 

approach, their work does not directly support scaling predictions. Although techniques 

could extrapolate those traces to larger numbers of processors, our system provides a 

more direct approach to scaling predictions. 

 White-box approaches typically require detailed analysis of data structures and 

program constructs, such as loop nests. Kerbyson et al. derive an analytical performance 

model for the ASCI Sage application [36]. They combine detailed analysis of program 

constructs with microbenchmarks that measure basic machine characteristics such as 

network, memory and computation capability. This powerful approach does support 

scaling predictions. However, it requires significant performance analysis effort that 

would be difficult, if not impossible, to automate. Our system requires, at most, a small 

amount of application-level information. When predicting the input parameters for time-

constrained scaling, the users must provide our system with information about parameter 

relatedness and whether or not a processor grid is used (Chapter 3). Obtaining this 

information requires little analytic effort. Several other researchers have explored white-

box scalability analysis approaches that provide algorithmic or architectural perspectives 

[16, 26, 51, 59, 71, 72]. In general, they derive application or architecture specific models 

through detailed analysis, which requires significant effort that is not readily automated. 

In a strongly related white-box approach, Brehm et al. make predictions using regression 

and explore separating computation and communication [12]. However, their approach 
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requires detailed analysis to create the computation and communication models. Other 

white-box approaches that predict workload and memory requirements, such as modeling 

assertions [3], require code modifications in order to predict workload and memory 

requirements. Our system uses the MPI profiling interface for instrumentation, which at 

most requires relinking the application. 

 Many have investigated analytic modeling of parallel machines. The best known 

examples are LogP [17] and BSP [66]. The former uses latency, overhead, gap, and 

number of processors to determine an effective parallel algorithm while the latter uses 

supersteps to indicate computational phases, which are terminated by communication 

points. Both of these techniques require significant programmer intervention. For 

example, with LogP, while the programmer can model a computational step as taking 

constant time, it is still necessary to model the communication that exists precisely. As 

the number of processors increases, modeling communication becomes increasingly 

challenging. Another approach requires no user intervention to create a static cost model 

[6]. However, it has so far only been used effectively for simple programs and on simple 

architectures.   

 Several tools trace or analyze MPI performance through the MPI profiling 

interface, including mpiP [67], Open|SpeedShop [58], VampirTrace [48], svPablo [22], 

TAU/ParaProf [10], and Paraver [53], just to name a few. These tools generally focus on 

providing assistance in optimizing applications, particularly for very large processor 

counts [56]. We build on algorithms to capture the critical path in MPI programs that 

were developed to support optimization [30, 57]. 
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5.2 Effects of System Noise 

 When an application is affected by seemingly random operating system noise 

(jitter), it becomes extremely difficult to predict its scalability. Doing so requires in-depth 

knowledge about the types of noise on the system and how the noise affects the 

application at large-scale. The tests performed in Chapters 2 and 3 of this dissertation 

were run under settings that result in negligible amounts of system noise. Important 

strides have been made towards understanding and modeling noise, but a general 

scalability prediction system in the face of noise is yet to be realized. Our work presented 

in Chapter 4 demonstrates a necessary first step towards this goal. 

 Over many years, researchers have conducted numerous studies on the effects of 

operating system noise on large-scale parallel computer systems.  Noise has been widely 

accepted as a major problem in parallel computing.  In 2006, noise was declared one of 

the leading issues facing petascale computing [7].  Over the years, researchers have 

focused on different aspects of the problem including: finding the exact source of noise, 

attempting to reduce the noise effect, understanding application characteristics that 

amplify noise, and understanding the degree to which noise slows down large, parallel 

applications. 

 

5.2.1 Finding Sources of Noise 

 Quantifying the amount of noise on a system and determining the cause is an 

important area of research.  One approach to quantifying the amount of noise on a system 

is to use micro-benchmarks that are able to measure and to record individual noise events 
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on a machine [28, 61].  These studies attempt to find an overall noise signature for a 

given machine.  They are not concerned with which activity in the kernel caused each 

event.  These micro-benchmarks find the minimum time to execute some amount of work 

(or minimum work to execute in a given amount of time) and then repeatedly record any 

deviations from the minimum and deem these variations to be caused by the operating 

system. These micro-benchmarks provide a quick and accurate way to sample operating 

system noise. Most research on operating system noise uses some variation of this 

technique. As the researchers point out, determining precisely how long a given amount 

of work should take and determining the minimum iteration time for a given benchmark 

loop are sources of potential error. Also, noise events that are smaller than the combined 

overhead from the loop and the timer calls will not be recorded.  However, some 

researchers state that such tiny noise events are really of only theoretical value and that 

they do not affect the performance of the application [27]. In Chapter 4, we use the 

selfish benchmark [28] to measure operating system noise and then inject the recorded 

noise events into our application simulations. 

 Other work has focused on finding all sources of noise in the operating system 

kernel and quantifying the total amount of noise from each source [19, 49, 61]. Nataraj et 

al. provide a technique to provide noise information to the application program using 

kernel injection [49]. In this work, the authors are able to provide a kernel noise profile 

showing the amount of time spent in each activity for each node during the run of an 

application. Gioiosa et al. [25] use micro-benchmarks, kernel profiling and a kernel 

module to gather results and to find the sources of noise in the operating system. Kernel 

instrumentation methods produce valuable information about the total noise of each 
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kernel activity. However, kernel instrumentation is not always an option as it was not 

available on the supercomputers used for this research.  

 

5.2.2 Reducing the Impact of Noise 

 Beckman et al. state that operating system interference must be reduced and 

synchronized in order to create scalable petascale systems [7]. Many researchers have 

realized this same fact and, therefore, a broad number of techniques to alleviate noise 

exist in the literature. These include: elevating an application's priority, leaving a 

processor open to handle system daemons, using a lightweight kernel, synchronizing 

noise, and reducing the noisiest activities in the operating system. 

 The first noise study was conducted in 1994 [47]. In this study, the author realized 

that noise was affecting the application and tried to eliminate it by raising the application 

priority above operating system activity. Since then, many researchers have set out to 

find solutions on ways to minimize the impact of noise on scalability. Multiple 

researchers have shown that leaving a processor available to handle noise events can 

greatly reduce the impact of noise [33, 34, 52]. Petrini showed that MPI_Allreduce takes 

300us on 3 processes per node (~900 nodes) and 3ms on 4 processors per node (a factor 

of 10 degradation). While this is an important find, giving up a processor to handle noise 

is not a viable solution since it limits the scalability of the system. Also, this technique 

only reduces daemon activity, not periodic timer interrupts. 

 Another way to reduce the impact of operating system noise is to use a specialized, 

lightweight kernel. Lightweight kernels attempt to remove noise events by simplifying 

the operating system [35, 46]. For example, Blue Gene/L [39] does not have any daemon 
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processes or a process scheduler and, therefore, has almost no system noise.  These 

customized, lightweight kernels are only deployed on compute nodes. They usually have 

a limited amount of operating system functionality and do not support multitasking or 

interrupts. Also, they require that applications be ported to run on the specialized system. 

 Other researchers have suggested enhancements to commodity operating systems. 

The most common suggestion is to synchronize the noise on the machine so that the noise 

penalty is paid at the same time by all processors [8, 9, 20, 21, 27, 33, 34, 52]. When 

noise events are unsynchronized, even a small amount of noise on each processor can 

lead to severe performance degradation (synchronization reduces this amplification 

effect). Jones et al. were some of the first researchers to examine the performance gained 

by coscheduling noise [33, 34].  In this research, the authors show that coscheduling 

noise leads to a 300% speedup in a benchmark performing 4096 allreduce calls of 8 bytes 

each.  Beckman et al. show that the impact of unsynchronized noise on MPI_Allreduce 

performance adds a constant 35us (100% increase at 1024 processors and 50% increase at 

32K processors) when injecting 1.6% noise on a noiseless machine, whereas 

synchronized noise has almost no effect. De et al. show that synchronizing noise can 

reduce the noise impact from 99% slowdown to 6% when injecting real machine noise 

traces into a small MPI_Barrier micro-benchmark on BG/L. Hoefler et al. show that 

unsynchronized noise causes 100% slowdown for POP whereas co-scheduling POP 

results in less than 0.5% slowdown [27]. Hoefler's results are shown using simulation on 

16K processors with operating system noise injected from a noise trace of a real machine. 

 Some researchers believe that by determining the dominant sources of noise (in 

terms of total amount over the application runtime) and removing them from the system, 
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scalability will be improved [19, 49]. However, it has been shown that the largest sources 

of noise do not always cause the biggest problem. Evidence has shown that the frequency 

and duration of the noise (system's noise signature) has a larger effect on scalability than 

a single noise source [24, 27]. We noticed the same effect when looking at operating 

system noise injection in Chapter 4. Tsafrir et al. promote the idea of removing fine-

grained operating system clock ticks and replacing them with "smart timers" [65]. The 

authors show that the impact of these fine-grained noise events is linearly proportional to 

the number of processors used if the probability of noise is small, which means that 

adding more nodes increases the probability of a noise event on a collective operation. 

When the probability is large, adding processors (beyond the convergence point) will not 

affect the runtime since a noise event is a virtual certainty. One issue that is not discussed 

is the possibility of other fine-grained noise events. As we discuss in Chapter 4, modern 

systems contain many sources of variability other than operating system noise. In order to 

realize a large-scale prediction system, all sources of noise must be considered. 

 While it is important to reduce the effects of noise in large-scale systems, it is 

impossible to eliminate all noise on complex supercomputers. For this reason, we must 

consider the impact of noise on scalability in order to make accurate predictions. Our 

work focuses on understanding the impact of noise at large scale instead of ways to 

reduce the noise in the system.  

 

5.2.3 Understanding the Impact of Noise 

 A broad array of work on understanding the impact of noise at large-scale is 

available in the literature. In order to quantify this impact, researchers have conducted 
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theoretical studies, tests using micro-benchmarks, full application runs with noise 

injection, and large-scale application simulators. 

 Agarwal et al. took a theoretical approach to understanding noise [2].  In this work, 

the authors make the first attempt to explain the impact of noise with a mathematical 

model. They study bulk-synchronous applications under three types of noise 

distributions: exponential, heavy-tailed, and Bernoulli. Performance is shown to be best 

when noise follows an exponential distribution. When Bernoulli noise is introduced, the 

effect of noise scales linearly with the number of processors. At large processor counts, 

the impact converges to the amount of noise injected. The convergence is due to the fact 

that noise occurrence is a virtual certainty at large processor counts. That noise converges 

at large scale has been verified in other work [9, 27, 65]. Tsafrir et al. demonstrate a 

probabilistic model of fine-grained noise (clock ticks) [65]. They claim that when the 

probability of noise is small, the impact of noise grows linearly with the number of 

processors. When either the probability of noise or the number of processors becomes 

large, they also show noise convergence. Hoefler et al. analyzed the effects of noise on 

point-to-point messages using the LogGOPS model [27, 29, 31]. They show that blocking 

point-to-point messages often propagate noise. The authors state that non-blocking point- 

to-point communication has a higher potential to absorb noise. They then show the noise 

bottleneck (convergence point) and where it occurs on different machines with different 

applications. Through the use of simulation and noise traces gathered on individual 

machines, the authors are able to show that each system has a precise point at which the 

noise converges (for collective operations). They state that this knowledge could be used 

for tuning new systems so that the noise bottleneck occurs after the maximum system 
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size. Understanding the noise convergence point may allow our system to further reduce 

the number of training runs required. If we can show the point where noise converges, we 

could eliminate the need to run tests at processor counts beyond the convergence point 

since noise would no longer affect the application execution time. 

 Tests on micro-benchmarks have provided valuable information about the effects of 

noise at large scales. Since most HPC applications are bulk synchronous, micro-

benchmarks often consist of collective communication calls with little to no computation 

in between. Beckman et al. have conducted two studies on the impact of noise on 

collective communication calls at large scale using artificial noise injection [8, 9]. In 

these studies, the authors look at MPI_Allreduce, MPI_Barrier, and MPI_Alltoall on 

1024 through 32K processors on BG/L (a good platform for noise injection since it is 

inherently noiseless). The authors inject noise at different frequencies (1ms, 10ms, 

100ms) and different durations (16us, 50us, 100us, 200us) resulting in a maximum noise 

of 20% (200us every 1ms). Although noise signatures on modern machines are much 

lower (usually less than 1.0%), this work demonstrates the noise effect at extreme 

amounts. The results of these tests show that high duration, low frequency noise is the 

most detrimental. Also, when injecting the same percentage of noise, large noise events 

affect MPI_Allreduce time more than smaller ones. This information leads the authors to 

claim that high-duration, low-frequency (coarse-grained) noise also affects fine-grained 

applications, and they refute Petrini's claim that performance loss is substantial when an 

application resonates with system noise (i.e. fine-grained applications are most affected 

by low duration, high frequency noise and vice versa) [52]. Results also show that 

MPI_Alltoall is most affected (up to 173% degradation) followed by MPI_Allreduce. 
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Under a constant percentage of noise, the authors show that large detours affect 

MPI_Allreduce more than smaller detours. Like the earlier theoretical work, Beckman et 

al. also show that the noise effect levels off at large node counts. They claim that 

increasing the node count any higher than the convergence point will not cause more 

noise effects. The leveling off occurs at lower processor counts with a larger noise 

percentage injected. 

 In a later work, De et al. take a similar approach of artificial noise injection on 

BG/L to understand the scaling of collectives [20]. One of the main differences between 

this work and Beckman's work is that the authors collect noise signatures from real 

machines and replay them on a noiseless machine in order to measure scalability. They 

use a simple micro-benchmark, which does repeated iterations of computation followed 

by MPI_Barrier. Noise is injected on BG/L because of its low noise signature and high 

processor count.  Their experiments are run on up to 2048 processors. Their "Jitter 

Emulator" is an extra function in the code, which the process calls to inject noise 

according to the noise signature. Noise events are scheduled using alarms. Another 

difference from Beckman is that they increase the duration of all noise events at the 

beginning of the run and then scale back down at the end to ensure that they can inject 

small amounts of noise. Without scaling the values, the authors would be unable to inject 

small noise events due to the overhead of the alarms, function calls, etc. Results show 

that unsynchronized jitter leads to 99% slowdown in the worst case (2048 nodes). 

 Other authors have provided techniques for using simulation to understand noise 

effects on collective operations. Sottile et al. wrote a discrete event simulator to analyze 

the effects of noise [62]. In this work, they simulate variations in message latency and 
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compute time (noise) and observe the effect on runtime. They create a message-passing 

graph by analyzing traces and then parameterize the simulation using noise and latency 

variations (found using micro-benchmarks). The results focus on a simple, token ring 

code. The authors show that on 128 nodes that the runtime increases by the product of the 

number of ring iterations, how often noise is injected in cycles, and the number of nodes.

 De et al. also took a simulation approach to understanding noise [21]. They claim 

that simulation is necessary in order to explore the effects of noise beyond the limits of 

currently existing systems since other approaches are limited by the largest jitter free 

system available. In this work, simulations are based on noise traces (from real 

machines), network latency measurements, MPI stack latency measurements, and shared 

memory latency measurements. The authors claim that this approach can be used to 

predict scalability up to any number of processors (results show up to 16K processors). 

Each task starts at random points in the jitter trace in order to achieve unsynchronized 

noise. The authors simulated a bulk-synchronous micro-benchmark with computation 

phases followed by MPI_Barrier synchronization. The results show a 45% slowdown in 

runtime at 16K processors.  

 The next logical step, after understanding noise impacts on micro-benchmarks, is to 

move to real parallel applications. Ferreira et al. look at the noise impact on three 

different parallel applications (SAGE, CTH, and POP). To study the effects of noise, the 

authors create a kernel level noise injection framework. 2.5% net processor noise is 

injected into the applications at varying frequencies and durations on an otherwise 

noiseless machine (Catamount). The results show that changes in the frequency and 

duration greatly affect the performance of the applications even when keeping the total 
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amount of noise the same (this finding is later verified via simulation by Hoefler et al. 

[27]).  Similar to the findings of Beckman et al. [8, 9], the authors show that high-

frequency, low-duration signatures do not affect the applications as much as low-

frequency, high-duration signatures. Out of the three applications that are studied, POP is 

the most affected by noise (nearly 1900% at 2500 nodes) whereas CTH is virtually 

unaffected. The authors explain these findings by pointing out that certain features of the 

application lead to noise absorption or amplification (also verified by Hoefler et al. [27]). 

They show that POP spends most of its time in collective operations at high node counts. 

Also, SAGE spends more time in MPI_Allreduce making it more susceptible to noise 

than CTH. They also show that MPI_Allreduce is more affected by noise than MPI_Bcast 

(later verified by Hoefler et al. [27]).  MPI_Allreduce is especially sensitive at small sizes 

(in bytes). Their results show that applications tend to absorb high-frequency, low-

duration noise and amplify low-frequency, high-duration noise. A coarse-grained 

application, like CTH, is able to absorb frequent, short noise but unable to absorb high-

duration noise (consistent with Beckman et al. [8, 9]). One possible improvement to this 

work would be to test noise signatures from real systems. The authors say 2.5% processor 

noise is common, although it seems to be slightly higher than the amount of noise found 

in other noise studies [8, 9, 27].  

 Hoefler et al. took a simulation approach to understanding noise effects on large-

scale parallel applications [27, 29]. Similar to De [21], they use discrete-event simulation 

and noise traces from real machines (gathered using the selfish benchmark). However, 

their simulations are based on the LogGOPS model [31] and they study noise impacts on 

full applications.  Simulated applications include Sweep3D, POP, and AMG. Out of the 
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three applications that were studied, POP is by far the most affected by system noise 

(similar to the findings of Ferreira et al. [24]). AMG is only slightly affected, while 

Sweep3D has nearly no impact. In agreement with Ferreira [24], Hoefler says that in 

order to understand the impact of noise, you must consider the communication patterns of 

each application. Sweep3D spent only 7.6% of time in collectives and has mostly 

blocking point-to-point operations. On 16K processors, this application shows less than 

.7% slowdown on a noisy machine.  AMG spends 9.72% of runtime in collective 

communication with 45% of communication coming from non-blocking point-to-point 

messages.  The worst slowdown on 16K processors is still less than 5%. POP, on the 

other hand, spends 77.2% of time in communication. 77% of this (overall time) is in 

collective calls. Because of its large amount of collective communication, POP slows 

down by 100% on the noisiest machine studied (CHiC), which has 0.26% operating 

system noise. Ferreira's study went up to 2.5% operating system noise, which may 

explain why POP slowed down by 1900%. Based on the results from this paper, it is clear 

that the influence of noise depends on the noise signature of the machine. The noisiest 

machine does not always have the largest noise impact. Random, long detours can be 

more detrimental than short, periodic ones (as seen in other studies). One possible 

improvement would be verification of their simulations. They simulated full runs on 16K 

processors and it seems like 4K-8K should be obtainable on real machines for 

verification. 

 Hoefler's paper is one of the few to point out that collective and point-to-point calls 

both influence the application's sensitivity to noise. They demonstrate results from AMG 

and POP, which show that P2P messages can help absorb noise or even amplify the noise 
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depending on the situation/application. 

 Most of the work described in this chapter attempts to identify and to reduce the 

impact of noise on large-scale systems. In our work, instead of reducing the amount of 

noise, we focus on predicting a range of application execution times in the presence of 

noise. While there is no current work that does execution time prediction in the presence 

of noise, studies showing the effects of noise on runtime at large-scale are the most 

similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

94 

 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

 In this chapter we summarize the contributions made in this dissertation and 

discuss possible future extensions. 

 

6.1 Summary 

 In this dissertation, we have presented a system that promotes efficient use of 

supercomputers by providing scalability predictions to the users.  Our system guides 

users in selecting an efficient number of processors and/or selecting the correct input 

parameters for time-constrained scaling, thereby avoiding wasted processors and job 

cancellation. Our system can increase supercomputer throughput, improve availability, 

save power, and reduce application runtime.  

 Specifically, this dissertation has shown that regression-based techniques are a 

viable solution for performance prediction. We used regression-based techniques to 

achieve median prediction errors of 6.2% and 17.3% across seven scientific applications 

under strong scaling.  Also, when predicting input parameters for time-constrained 

scaling, prediction error was always less than 13% for seven applications.  We started 

with a monolithic total time regression model that works well for simple applications 

with mostly computation (Chapter 2).  We then extended the base system to predict 

applications with large amounts of communication accurately (Chapter 2).  We then 
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showed how allowing for some application-level information from the user can improve 

input parameter predictions for time-constrained scaling (Chapter 3). All of our 

techniques make predictions based on training runs from processor counts that are strictly 

less than the target run. 

In summary, this dissertation has made the following novel contributions: 

1. A focused regression technique that uses training runs with similar input 

parameters to the target run. This technique allows for more accurate predictions 

than non-focused regression techniques for complex applications with many input 

parameters. 

2. A black-box technique to predict parallel program scalability. This technique uses 

multivariate regression to predict performance on large processor counts using 

training runs from smaller counts. 

3. A technique using separate regressions to predict computation and 

communication. Our separate regression technique accurately captures the 

individual scaling behavior of each quantity. 

4. A gray-box technique that provides the input parameters leading to accurate time-

constrained scaling on large processor counts.  Our technique uses minimal 

amounts of application-level information to provide predictions. 

5. A technique for predicting application behavior at large iteration counts using 

runs on a single iteration. This technique serves as a building block for a large-

scale extrapolation system by reducing the amount of system time required for 

training runs. 
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6.2 Future Work 

 While this dissertation has taken important steps towards the realization of a 

general scalability prediction system that can be run on large-scale machines, many 

improvements remain to be made. We outline some of those improvements in this 

section. 

1. Experimenting with larger processor configurations. Due to the limited size of 

the systems used in this dissertation, our predictions could only be validated up to 

1024 processors.  It remains to be seen what happens to prediction accuracy when 

we reach larger processor counts. 

2. Investigating more applications. An important extension to this work is to test 

the prediction accuracy when using large, industrial strength applications with 

many input parameters that have complicated interactions. While our approach is 

effective for all applications in our set, we may find that other applications require 

different techniques to achieve accurate scalability predictions.  

3. Breaking computation and communication into smaller phases.  In particular, 

different computation or communication phases may scale quite differently.  This 

idea is analogous to dividing total time into computation and communication 

time—which improved prediction accuracy. This extension requires that we 

combine phases when their execution time is sufficiently small, to protect against 

variance that is more striking in small phases. 

4. Determining the smallest number of processors needed for quality 

predictions. We need to make sure that we are using the smallest number of 
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processors for training while still providing accurate predictions. Using fewer 

processors for training would decrease the time it takes for our system to provide 

predictions to the users. 

5. Investigating how to reduce the number of experiments. Using experimental 

design techniques could allow our system to generate a smaller, representative set 

of training runs automatically. This approach would allow fewer runs and avoid 

running tests that only slightly improve prediction accuracy due to their similarity 

to other tests in the set. 

6. Exploring additional prediction techniques. In this dissertation, we focus on 

regression-based techniques for scalability prediction. However, research shows 

that machine learning techniques such as neural networks are also a reasonable 

approach to scalability prediction [41]. In the future, we will explore the 

difference in accuracy between our scalability prediction system and a system 

based on machine learning techniques. 

7. Exploring the effects of additional noise sources. We have looked at techniques 

for capturing noise due to operating system activity and NUMA effects. However, 

other sources of noise, such as network contention and node allocation must be 

addressed to create a more accurate prediction system. 

  

 We have discussed in detail how our system could be utilized on large-scale 

machines in order to promote more efficient use of the resources. However, our 

performance prediction system could be helpful in other areas as well. For example, 

understanding scalability is also an important topic in cloud computing.  In these systems, 
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users run applications on a commercially available supercomputer where there is a charge 

per hour for each processor.  For example, Amazon has a system that is available for ten 

cents per hour per processor.  The main concern for the users of cloud computing systems 

is the cost to run a job.  Our system allows users to analyze the tradeoff of performance 

and cost at higher processor counts to decide if increasing the number of processors is 

cost efficient. Our system could also be used to guide the development of newer, larger 

systems. Providing system designers with a model of how applications will scale allows 

them to make more intelligent decisions about system creation and/or expansion. Our 

system could also be used in system debugging. Observed application performance 

deviations from the model predictions could indicate a problem (as described by Petrini 

et al. [52]). 
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