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ABSTRACT 

 Diagnostic classification models (DCMs) are statistical models designed to provide 

feedback about students’ understandings of multiple latent knowledge components, termed 

attributes. Compared to traditional measurement models that place students’ abilities on a 

unidimensional continuous scale, DCMs classify students into levels of attribute mastery and can 

achieve high reliability with shorter assessments than those required by continuous measurement. 

To this point, however, DCMs have been used to provide dichotomous feedback about students’ 

mastery and non-mastery levels. In educational contexts, further delineating mastery categories 

may be useful for meaningfully grouping students to provide tailored instruction or interventions.  

To identify additional mastery levels, we extended the current DCM framework by 

developing a polytomous DCM (PDCM) that classifies students into more than two mastery 

levels for each attribute. In the PDCM, we defined a polytomous attribute as an ordinal latent 

variable, and we allowed the item response probabilities to vary differentially between different 

mastery levels. A constrained PDCM was proposed in this dissertation by constraining some 

item parameters to be equal to reduce the number of item parameters and required fewer items 

and smaller sample size compare to the PDCM. 



Two simulation studies were conducted to investigate the model estimation and model 

misspecification. The first study examined the attribute classification accuracies and the item 

parameter estimation across various conditions. The results shown the PDCM required longer 

test lengths to yield accurate classification for the attributes and item parameter estimation. The 

second study evaluated model misspecification. When the attribute mastery levels were under-

specified, examinees in the intermediate mastery groups were forced to be classified into other 

mastery groups and thus the feedback provided was less detailed. When the attribute mastery 

levels were over-specified, most examinees were still classified into original mastery level 

groups.   

An empirical study was conducted to illustrate the application of the PDCM using data 

from an assessment designed for special education students which measured four mathematics 

problem solving skills. We compared PDCM results with a dichotomous DCM framework which 

shown the PDCM provided improved model-data fit. The more detailed attribute classification 

also illustrated the utility of PDCM feedback for education practitioners. 
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CHAPTER 1  

INTRODUCTION 

With the increasing need of using assessments to better support students’ learning, many 

psychometric and statistical models have been used to assist test designing and score reporting. 

Particularly, more attention has been given to a group of psychometric models that provide 

multidimensional fine-grained diagnoses about students’ knowledge or skills (Rupp, & Templin, 

2008). The group of models are referred to as diagnostic classification models (DCMs; e.g., 

Rupp, Templin, & Henson, 2010), or the cognitive diagnostic models (CDMs; e.g., Leighton & 

Gierl, 2007). DCMs focus on classifying students into mastery or nonmastery levels of specific 

skills or knowledge components, which are usually termed as attributes. Teachers and parents 

can use this type of feedback to remedy the knowledge that students’ need to improve in the 

future learning process. However, current studies on DCMs are limited to providing such 

dichotomous feedback. The dissertation focuses on generalizing dichotomous DCMs to 

polytomous DCMs to provide more detailed information from educational assessments. This 

chapter presents the motivation of the dissertation by introducing the utility of DCMs and the 

need for the development of the polytomous general DCM.  

Recent legislation indicates the potential of applying DCMs to K-12 assessments. The 

“No Child Left behind Act” (2001; Section 1111, [b][3][c] xii) and the “Every Student Succeed 

Act” (2015; Section 1111, [b] [3] [c] x) both emphasize an assessment shall be used to 

produce individual student interpretive, descriptive, and diagnostic reports, consistent 

with clause (iii) that allow parents, teachers, and principals to understand and address the 

specific academic needs of students, and include information regarding achievement on 

academic assessments aligned with State academic achievement standards, and that are 
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provided to parents, teachers, and principals, as soon as is practicably possible after the 

assessment is given, in an understandable and uniform format, and to the extent 

practicable, in a language that parents can understand 

Moreover, the “Every Student Succeed Act” allows more flexibility to the states to administer 

assessments in that a single annual assessment can be divided into a set of smaller and more 

specific assessments (USA Today, Dec. 11, 2015; Darling-Hammond, Bae, Cook-Harvey, Lam, 

Mercer, Podolsky, & Stosich, 2016). 

The recent education policies shed a light on the application of DCMs to the K-12 

education to provide diagnostic reports for each individual student to meet the academic needs. 

The purpose of the dissertation study is to broaden the use of DCMs by proposing a general 

DCM framework that is appropriate to provide diagnostic feedback about not only the 

dichotomous mastery levels (mastery and nonmastery), but also the polytomous mastery levels 

for specific knowledge or skills. The model allows researchers and test administrators to obtain 

more flexible feedback on what attribute and to what extent a student needs to improve on the 

attribute. In the following sections, we compare traditional psychometric models and DCMs, as 

well as the idea of generalizing the dichotomous DCMs to the polytomous DCMs. 

Traditional Psychometric Models 

Classical test theory (CTT; e.g., Crocker & Algina, 1986) is a traditional test theory that 

assumes an examinee’s observed test score is the sum of the true test score and the error. The 

observed test score is on a continuous scale and represents an examinee’s ability, that is, a higher 

test score means a higher ability. When two or more examinees have the same observed test 

score, CTT treats the examinees as having equal ability without considering which items they 

answered incorrectly. However, an examinee who missed more easy items because of 

carelessness and answered more difficult items correctly might have a higher ability than other 
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examinees who have the same total score. Item difficulty is the percentage of the correct 

response for the item and the item discrimination is the point biserial correlation between the 

item responses and the observed test scores. These item statistics are highly sample dependent 

and cannot be compared under two samples, meaning if a population has a higher average test 

score than the other, it is likely the item is easier, and the item difficulty is higher. 

Rooted in the CTT, item response theory (IRT; e.g., Hambleton, Swaminathan, & 

Rogers, 1991; Baker and Kim, 2004) considers an examinee’s ability as a latent variable and 

places examinees’ abilities on a unidimensional continuous scale. Item response theory is a 

framework that contains many statistical models to estimate the probability of answering an item 

correctly given an examinee’s ability. Different from CTT, the IRT models are not sample 

dependent meaning even if two examinee groups took the test in different time and locations, the 

examinees can be equated on the same continuous scale. However, the test conducted under the 

IRT framework requires items to measure a unidimensional latent ability. An item that measures 

more than one latent ability is often treated as a misfitting item and needs to be removed from the 

test. Though the unidimensional IRT framework can be generalized to the multidimensional IRT 

(MIRT; Reckase, 2009), a test under the MIRT framework requires much longer test length and 

large sample size to yield accurate estimate of examinees’ multidimensional latent abilities 

(Jiang, Wang, and Weiss, 2016). 

Diagnostic Classification Models 

The development of the diagnostic assessments is based on the limitations of the current 

unidimensional testing theories. Different from CTT and IRT that rank students on a 

unidimensional continuous latent scale, DCMs focus on classifying students into mastery or 

nonmastery levels of knowledge components. These knowledge components may be specific 

https://scholar.google.com/citations?user=6j3ABHUAAAAJ&hl=en&scioq=MIRT+longer+test&oi=sra
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content areas or curriculum standards. DCMs are useful for the formative assessments because 

DCMs provide feedback about multiple fine-grained knowledge without the requirement of long 

test length and large sample size. Recent studies have shown that DCMs performed uniformly 

greater reliability for examinees’ latent attribute estimation compared to IRT under the same test 

length condition (Templin and Bradshaw, 2013).  

In DCMs, the latent knowledge or skills are called attributes. If the mastery levels of 

attributes are dichotomous, the value of the attributes are usually defined as 0 or 1, where 0 

represents nonmastery and 1 represents mastery. Suppose a test measures A attributes, there are 

2𝐴 possible attribute profiles, and an examinee will be classified into one of the attribute profiles 

based on his/her item response pattern of the test. For example, if the examinee answered most of 

the items which measured Attribute a correctly, he/she would more likely be classified as a 

master of this Attribute a. In DCMs, we use a Q-matrix to represent the relationship between 

items and attributes. Suppose the test has I items, the Q-matrix is an 𝐼 by A matrix with 

dichotomous entries, where 0 indicates the item does not measure the attribute and 1 indicates 

the item measures the attribute. 

Many DCMs have been proposed in the past two decades. Each DCM describes different 

attribute behaviors on an item. In the dissertation, we choose to use a general DCM framework 

called the loglinear cognitive diagnosis model (LDCM; Henson, Templin, & Wilse, 2009) as it 

can obtain most sub models of DCMs by constraining the item parameters. The commonly used 

sub models includes the deterministic inputs, noisy, ‘‘and’’ gate (DINA; Haertel, 1989; Junker & 

Sijtsma, 2001) model; deterministic inputs, noisy, ‘‘or’’ gate (DINO; Templin & Henson, 2006) 

model; additive CDM (A-CDM; de la Torre, 2011); the linear logistic model (LLM; Maris, 
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1999); and the reduced reparameterized unified model (R-RUM; DiBello, Roussos, & Stout, 

2007; Hartz, 2002).  

We generalize the LCDM to a polytomous DCM framework and compared the results of 

using the LCDM with the polytomous DCM as a baseline model. The LCDM is an ANOVA like 

model that includes an intercept, main effects, and interactions to predict the log-odds of the 

probability of a correct answer for an item. The intercept is the log-odds of the probability of a 

correct answer when an examinee is nonmastery for all required attributes of the item; the main 

effect of an attribute is the increase of the log-odds of the item response probability when an 

examinee is a master of the attribute; and the interaction is the effect on the item response 

probability when an examinee possesses multiple required attributes by the item. Another benefit 

of the LCDM is that it is an item-level measurement model, which allows attributes to behave 

differently across items. Besides the LCDM, there are other general DCMs, such as the general 

deterministic-input, noisy-and-gate model (G-DINA; de la Torre, 2011), the general diagnostic 

model (GDM; von Davier, 2005), and the Generalized Diagnostic Classification Models for 

Multiple Choice Option-Based Scoring (GDCM-MC; DiBello, Henson, and Stout, 2015). 

General DCMs have been generalized to model more complex scenarios. For example, 

the scaling individuals and classifying misconceptions model (SICM; Bradshaw and Templin, 

2013) is a nominal response model that aims at detecting examinees’ misconceptions and 

estimating examinees’ general abilities simultaneously. The nominal response LCDM (NR 

LCDM; Bradshaw, 2011) is a simplified version of the SICM which only focuses on detecting 

examinees’ misconceptions through nominal responses. The multiple-choice DINA (MC-DINA; 

de la Torre, 2009) models examinees’ nominal responses of a multiple-choice item to detect 

examinees’ mastery of knowledge or skills. The restricted sequential G-DINA (RS-GDINA; Ma, 
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de la Torre, 2016) and unrestricted sequential G-DINA model (US-GDINA; Ma, de la Torre, 

2016) can model the ordered polytomous item responses. Minchen et al. (2017) proposed the 

continuous DINA (c-DINA) to model the continuous item responses. Moreover, DCMs were 

also applied to the longitudinal studies to provide feedback about examinees’ learning progress 

(Madison, 2016; Wang et al., in press). In this dissertation, we extend the general DCM to model 

polytomous item responses.  

A Generalization of the Polytomous DCMs 

We generalize DCMs which measure dichotomous attribute mastery levels to polytomous 

mastery levels. Prior similar studies have proposed DCMs for polytomous attributes including 

the polytomous RUM (Templin, 2004), the ordered-category attribute coding (OCAC; Tarelitz, 

2004; Chen and de la Torre, 2011) framework, and the general diagnostic model (GDM; von 

Davier, 2005). These models are described in detail in Chapter 3. This dissertation study 

proposes a general polytomous DCM, named PDCM, to guide DCM users to define attribute 

mastery levels, understand the measurement model, and interpret the results. 

The PDCM defines attribute mastery levels as nonnegative integers from 0 to the highest 

mastery level, where 0 represents the nonmastery level and the largest value represents the 

highest mastery level. For example, if an attribute has four mastery levels, the values of the 

attribute is 0, 1, 2, and 3. The order of the values means the order of mastery levels but does not 

necessarily mean the difference between two mastery levels is equal to the difference between 

the two values. That is, the difference between nonmastery level to the first mastery level is not 

equal to 1, as well as not equal to the difference between the first mastery level to the second 

mastery level. The entries of the Q-matrix for the PDCM are dichotomous, where 0 represents 

the item does not measure the attribute and 1 represents the item measures the attribute. 
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The measurement model form of the PDCM is generalized from the LCDM, where the 

PDCM has the intercept, main effects, and the interactions. The difference between the PDCM 

and the LCDM in that the main effects and interactions are defined at the attribute mastery level. 

For example, if Item i measures attributes 𝑎1 and 𝑎2, and both attributes have three mastery 

levels, the PDCM for Item i has two main effects for Attribute 𝑎1 and two main effects for 

Attribute 𝑎2. The two main effects represent the increase of the log-odds of the item response 

probability when an examinee has mastered the attribute one level higher. The interactions 

represent the influence on the item response probability between the different combinations of 

the attributes and their mastery levels. Therefore, the PDCM creates the most flexibility on the 

item response probabilities across all attribute profiles.  

Another flexibility of the PDCM lies in the application of the PDCM. The PDCM does 

not constrain all attributes to have the same mastery levels. For example, assume a test measure 

three polytomous attributes. Stakeholders might pursue different mastery levels for each attribute 

such that the feedback provided for each attribute is customized. The PDCM can fulfill this need 

and can also suggest test administrators the most appropriate the mastery levels for each attribute 

through statistical tests. When the attributes have two mastery levels, the PDCM is equal to the 

LCDM.  

Overview of Chapters 

Chapter 1 provides the introduction of the diagnostic assessments and the purpose of 

proposing the general polytomous DCM. Chapter 2 introduces a general dichotomous DCM 

framework and summarized the existing studies of the polytomous DCMs. Chapter 3 proposes a 

general polytomous DCM, named the PDCM, by explaining how the two key components – 

measurement model and structural model, as well as a constrained polytomous DCM, named the 
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cPDCM. Chapter 4 demonstrates the designs of two simulation studies and an empirical study. 

The two simulation studies are to investigate the item parameter estimation and classification 

accuracy, and the model misspecification. The empirical study aims to present an application of 

the saturated PDCM and the constrained PDCM to a real educational assessment to provide a 

guidance for the potential users of the PDCM and the cPDCM. Chapter 5 summarizes the results 

of the two simulation studies and the empirical study mentioned in Chapter 4. Chapter 6 is a 

conclusion of the dissertation and a discussion about future study direction. 
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CHAPTER 2  

THEORETICAL BACKGROUND 

 Chapter 2 presents an introduction of a general dichotomous DCMs and an overview of 

the existing literature about DCMs measuring polytomous attributes. This chapter illustrates the 

dichotomous and polytomous DCMs by four factors: definition of attribute mastery levels, Q-

matrix, Q-matrix, measurement model and structural model. The purpose of the chapter is to 

review the existing literature and summarize the key factors of both dichotomous and 

polytomous DCMs. The chapter provides a theoretical foundation of the proposed general 

polytomous DCM in the following chapters. 

The Diagnostic Classification Models 

Attribute Profile 

Suppose a test measures A attributes, examinee e’s attribute profile is denoted as a 

categorical latent vector 𝜶𝒆 = (𝛼𝑒1, ⋯ , 𝛼𝑒𝐴)′ where each entry of the vector represents the 

attribute mastery level. In most DCMs, the attribute mastery levels are dichotomous, where 

𝛼𝑒𝑎 = 0 represents Examinee e is not a master of Attribute a and 𝛼𝑒𝑎 = 1 represents Examinee e 

is a master of Attribute a. Considering all the combinations of the dichotomous attribute mastery 

levels, examinees were into 2A attribute profiles based on their item responses. 

Q-matrix 

We assume a test contains I items and measures A attributes. Each item measures one or 

more attributes. In this dissertation, we use an I by A matrix called a Q-matrix (Tatsuoka; 1990) 
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to represent the test blueprint and indicate which attributes are measured by an item. The rows in 

the Q-matrix represent the items and the columns represent the attributes. The entries of the Q-

matrix are 0s and 1s, where 0 represents that an attribute is not hypothesized to be measured by 

an item and 1 represents that an attribute is hypothesized to be measured by an item. For 

example, 𝑞𝑖𝑎 = 0 means item i does not measure attribute a, and 𝑞𝑖𝑎 = 1 means item i measures 

attribute a. More specifically, a vector 𝒒𝒊 = (qi1, ⋯ , 𝑞𝑖𝐴)′ in the Q-matrix indicates which 

attributes are measured by item i.  

Table 2.1 illustrates an example Q-matrix in Bradshaw et al. (2014). The test contained 

27 effective items and was to measure teachers’ understanding of the fraction arithmetic. More 

specifically, the test measured 4 attributes named: reference units (RU), partitioning and iterating 

(PI), appropriateness (APP), multiplicative comparison (MC). The Q-matrix, in this example, is a 

27 by 4 matrix with 0s and 1s as entries. Item 1 measured only one attribute, RU and Item 14 

measured two attributes, RU and MC. In total, the four attributes were measured by 14, 10, 5 and 

5 items respectively. Among the 27 items, there were 20 items that only measured one attribute, 

which were also referred to as simple items in this dissertation, and the remaining 7 items 

measured two attributes. 

The test blueprint or Q-matrix is established during the test design. Specifying the Q-

matrix is essential to make diagnostic inferences about whether a student has mastered the 

attributes an item is measuring. For example, if an item measures a single Attribute a, a student 

with a correct response for this item is more likely a master of Attribute a, while another student 

with an incorrect response is more likely a nonmaster of Attribute a.  
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Item Response 

Examinee e’s item response vector for the test is denoted as 𝑿𝒆 = (𝑥𝑒1, 𝑥𝑒2, ⋯ , 𝑥𝑒𝐼)′, 

where I is the total number of items for a test. In this study, we only consider dichotomous item 

responses, where 𝑥𝑒𝑖 = 1 means Examinee e has answered Item i correctly and 𝑥𝑒𝑖 = 0 means 

Examinee e has answered Item i incorrectly.  

Overview of the Probability Structure of DCMs 

DCMs parameterize the relationship of an item response and the attribute profiles. DCMs 

assume local independency at the item level, meaning the item responses of an examinee are 

conditionally independent given the examinee’s attribute profile. Given local independence, the 

likelihood function includes the simple product of conditional item response probabilities across 

examinees. The probability of examinee e’s item response vector can be expressed as: 

P(𝐗𝐞 = 𝒙𝒆) = ∑ 𝑃(𝑿𝒆 = 𝒙𝒆, 𝜶𝒆 = 𝜶𝒄)

2𝐴

𝑐=1

= ∑ 𝜈𝑐𝑃(𝑿𝒆 = 𝒙𝒆|𝜶𝒆 = 𝜶𝒄)

2𝐴

𝑐=1

= ∑ 𝜈𝑐 ∏ 𝑃(𝑋𝑒𝑖 = 1|𝜶𝒄)𝑥𝑒𝑖(1 − 𝑃(𝑋𝑒𝑖 = 1|𝜶𝒄))
1−𝑥𝑒𝑖

𝐼

𝑖=1

2𝐴

𝑐=1

         (2.1) 

Where P(𝐗𝐞 = 𝒙𝒆) is the probability that examinee e has the item response vector 𝒙𝒆, 𝜈𝑐 is the 

probability of examinee e is classified into attribute profile group c where c could be any number 

from 1 to 2A. In DCMs, the component νc can then further be modeled with the attribute 

relationships and called the structural model. Four structural models were introduced in the 

current literature including the log-linear model (e.g., Henson & Templin, 2005; Xu & von 
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Davier, 2008a), the unstructured tetrachoric model (e.g., Hartz, 2002), the structured tetrachoric 

model (e.g., de la Torre & Douglas, 2004; Templin et al., 2007; Templin & Henson, 2009), and 

the unstructured structural model (e.g., Rupp, Templin and Henson, 2010). Applying structural 

models in the DCM framework can reduce the complexity of the parameterization of the latent 

attribute space.  

 The form of 𝑃(𝑋𝑒𝑖 = 1|𝜶𝒄) is called the measurement model, and it can be modeled with 

the deterministic inputs, noisy, ‘‘and’’ gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001) 

model, deterministic inputs, noisy, ‘‘or’’ gate (DINO; Templin & Henson, 2006) model, additive 

CDM (A-CDM; de la Torre, 2011), the linear logistic model (LLM; Maris, 1999), reduced 

reparameterized unified model (R-RUM; DiBello, Roussos, & Stout, 2007; Hartz, 2002). In the 

following sections, the structural model and measurement model are explained in detail. 

The Measurement Model: The Log-linear Cognitive Diagnostic Model (LCDM) 

In this study, we first introduce an existing saturated measurement model for the 

saturated dichotomous DCM, called the log-linear cognitive diagnostic model (LDCM; Henson, 

Templin, & Wilse, 2009). The LCDM is an ANOVA-like item-level generalized linear and latent 

mixed model that contains intercepts, main effects of attributes, and interactions effects for 

combinations of attributes. It models an examinee e’s item response probability for item i, 

𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒), as a monotonic increasing function of the attributes measured by item i, that is, 

examinee e is more likely to answer item i correctly when he/she masters more required 

attributes. The form of the model is 

𝑙𝑜𝑔𝑖𝑡 𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒) = log
𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝜶𝑒)
= 𝜆𝑖,0 + 𝝀𝑖

𝑇𝒉(𝜶𝒆, 𝒒𝒊),              (2.2) 
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where 𝜆𝑖,0 is the intercept for item i; 𝝀𝑖
𝑇 is a vector that contains all the main effects and possible 

interactions; 𝒉(𝜶𝒆, 𝒒𝒊) is the vector that contains all the combinations of the attribute profile 

elements and q-vector elements. More specifically, the right-side of the equation can be 

expanded as 

𝜆𝑖,0 + 𝝀𝒊
𝑻𝒉(𝜶𝒆, 𝒒𝒊) = λi,0 + ∑ 𝜆𝑖,1,(𝑎)𝛼𝑒𝑎𝑞𝑖𝑎

𝐴

𝑎=1

+ 

∑ ∑ 𝜆𝑖,2,(𝑎,𝑎′)𝛼𝑒𝑎𝛼𝑒𝑎′𝑞𝑖𝑎𝑞𝑖𝑎′
𝐴
𝑎′=𝑎+1

𝐴−1
𝑎=1 + ⋯                                    (2.3) 

where 𝜆𝑖,1,(𝑎) represents the main effect for attribute a, 𝜆𝑖,2,(𝑎,𝑎′) represents the two-way 

interactions for attribute a and a’, and the ellipsis represents the higher-order interactions.  

An intercept λi,0 is the log-odds of the item response probability of a correct response for 

item i when examinee e is a nonmaster for all the attributes measured by item i. λi,0 conceptually 

corresponds to the guessing effect for examinees who are nonmasters of the required attributes. 

λi,0 can be any real number ranging from the negative infinity to the positive infinity. The 

negative infinity corresponds to the item response probability of 0, meaning examinees who are 

nonmasters have 0 probability of answering item i correctly, while positive infinity corresponds 

to the item response probability of 1, meaning examinees who are nonmasters will certainly 

answer item i correctly. A smaller λi,0 represents a lower probability of answering item i 

correctly and a larger λi,0 represents a higher probability of answering item i correctly. 

Especially, when λi,0 equals 0, the item response probability for item i is .50. In a real testing 

scenario, an item with a large intercept is usually easier and causes the effects of attributes 

measured by the item to have a restricted range.  
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The main effect 𝜆𝑖,1,(𝑎) is the increase of the log-odds of the item response probability 

when examinee e is a master of attribute a measured by item i. The product of the elements of 

attribute profile 𝛼𝑒𝑎 and q-vector 𝑞𝑖𝑎 indicates when the main effect 𝜆𝑖,1,(𝑎) appears in the 

equation, that is, when 𝛼𝑒𝑎 = 1 and 𝑞𝑖𝑎 = 1. Because the item response function is 

monotonically increasing on the mastery levels of the required attributes, the correct item 

response logit is constrained to be larger for an examinee mastering attribute a, λi,0 + 𝜆𝑖,1,(𝑎), 

than for an examinee who has not mastered attribute a, λi,0. Therefore, the main effects are 

constrained to be greater than zero, i.e.,  𝜆𝑖,1,(𝑎) > 0. Given the intercept λi,0 for item i, a larger 

main effect represents a stronger effect of the required attribute, meaning a larger increase on the 

item response probability. In the real testing scenario, an item with larger main effects are 

preferred because it contributes more to classifying examinees into attribute mastery groups. 

The two-way and the higher-order interactions allow more flexibilities on the item 

response probability under different attribute behaviors. The LCDM is a saturated model because 

all possible main effects and interactions are modeled. For example, if item i measures two 

attributes: Attribute 1 and 2, the LCDM for item i is  

log
𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝜶𝑒)
= 𝜆𝑖,0 + 𝜆𝑖,1,(1)𝛼𝑒1 + 𝜆𝑖,1,(2)𝛼𝑒2 + 𝜆𝑖,2,(1,2)𝛼𝑒1𝛼𝑒2                (2.4) 

The two-way interaction term between Attribute 1 and 2, 𝜆𝑖,2,(1,2), appears in the equation when 

𝛼𝑒1𝛼𝑒2 = 1, meaning examinee e is a master of both Attribute a and a’ (𝛼𝑒1 = 1, 𝛼𝑒2 = 1). If an 

item measures two attributes, there is only one two-way interaction in the model. By including 

the two-way interaction, the item response probabilities is more flexibly defined and the model 

allows more general increase of the log-odds of the item response probability for mastering both 
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attributes compared to that for mastering one attribute. Because of the monotonicity assumption, 

we have 

𝜆𝑖,0 + 𝜆𝑖,1,(1) + 𝜆𝑖,1,(2) + 𝜆𝑖,2,(1,2) > 𝜆𝑖,0 + 𝜆𝑖,1,(1)                               (2.5) 

𝜆𝑖,0 + 𝜆𝑖,1,(1) + 𝜆𝑖,1,(2) + 𝜆𝑖,2,(1,2) > 𝜆𝑖,0 + 𝜆𝑖,1,(2) 

After simplification, the constraint for the two-way interaction is 𝜆𝑖,2,(1,2) > −𝜆𝑖,1,(1) and 

𝜆𝑖,2,(1,2) > −𝜆𝑖,1,(2). Similarly, the higher-order interactions are the combinations of all the 

possible attributes measured by an item.  

 In summary, suppose an item measures k attributes, there are one intercept, k main 

effects, (
𝑘
2

) two-way interactions, (
𝑘
3

) three-way interactions, …, and (
𝑘
𝑘

) = 1 k-way interaction 

in the LCDM. Therefore, the total number of item parameters in the saturated LCDM equals 1 +

(
𝑘
2

) + (
𝑘
3

) + ⋯ + (
𝑘
𝑘

) = 2𝑘.  

 Many DCMs have been proposed in the past decades. The reason we use the LCDM in 

this study is that most DCMs can be obtained from the LCDM by constraining some item 

parameters. For example, the DINA (Junker & Sijsma, 2001) model can be obtained by 

constraining the LCDM with the main effects and lower-order interactions equal to 0 and 

constraining the highest-order interaction to be positive. The DINO model can be obtained by 

constraining the item response probabilities for all attribute profiles except the nonmastery group 

to be equal and larger than the item response probability for the nonmastery group. The CRUM 

can be obtained by constraining all interaction terms to be equal to 0.  
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The Structural Model  

Other than understanding the attribute-item relationship, researchers might also seek to 

know the correlations among attributes. Practically, the correlations among attributes are good 

indicators of the model dimensionality. For example, a correlation of around .70 between two 

attributes is considered to be a reasonable representation of multidimensionality of the attributes 

and a well-constructed latent test structure (Bradshaw et al., 2014). While a correlation is higher 

than .90, it might implicate the two attributes measure the same latent scale and we might need to 

combine the two attributes to reduce the dimensionality. Mathematically, modeling the 

correlations between attributes can improve the classification accuracy because the DCMs with 

only the measurement models are assumed to have independent attributes, which is not realistic 

in an educational assessment.  

With the local independence assumption and the probability form of the measurement 

model, DCMs can classify examinees into one of the possible attribute profiles based on their 

item responses. For the overall population, we can obtain the proportion of the examinees being 

classified into each attribute profile group, respectively. Since the attribute mastery levels are 

dichotomous in the LCDM, we can treat the proportion of an attribute profile as the 

corresponding element of a 2 × ⋯ × 2 = 2A table. For each pair of attributes, we can simply 

compute the marginal combinations of the mastery levels between these two attributes, which is 

a 2 × 2 table with mastery and nonmastery as columns for the first attribute and mastery and 

nonmastery as rows for the second attribute. We then can use the correlation coefficient for the 

dichotomous variables, called tetrachoric correlation, to compute the correlations between any 

pair of the attributes measured by the test. 
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Like the structural equation models, we need the structural components 𝜈𝑐 which is the 

probability of an examinee being classified into a specific attribute profile group to measure the 

correlations among attributes. For a test measures A attributes, there are (2𝐴 − 1) structural 

components with the constraint ∑ 𝜈𝑐
2𝐴

𝑐=1 = 1 that need to be estimated in a DCM. To reduce the 

number of the strucrual parameters,  𝜈𝑐 can be further modeled under different probability forms, 

refered to structural models (Henson & Templin, 2005, 2006; Henson et al., 2009; Xu & von 

Davier, 2008a). 

The structural model we use in this study is the log-linear model generalized from the 

categorical data analysis (Agresti, 2012) that treats the outcome variables as the group number 

and the predictors as the mastery levels of attributes corresponds to each group. The log-linear 

structural model contains the linear combination of the main effects and interactions for all the 

attributes being measured by the test as a kernel function with a log link function of the structural 

component νc.  

𝜇𝑐 = log 𝜈𝑐/𝜈2𝐴 = 𝛾0 + ∑ 𝛾1,(𝑎)𝛼𝑐𝑎
𝐴
𝑎=1 + ∑ ∑ 𝛾2,(𝑎,𝑎′)𝛼𝑐𝑎𝛼𝑐𝑎′

𝐴
𝑎′=𝑎+1

𝐴−1
𝑎=1 + ⋯            (2.6) 

where μc is the natural log of the ratio of νc and ν2A with the last attribute profile as the reference 

group. 𝛾0 is the intercept; 𝛾1,(𝑎) in the kernel function is the main effect for αca which is the 

mastery level of Attribute a in the attribute profile c; 𝛾2,(𝑎,𝑎′) is the two-way interaction for 𝛼𝑐𝑎 

and 𝛼𝑐𝑎′; the ellipsis means all the other higher-order interaction terms. Note that the value of the 

kernel function for the last attribute profile group is 0, that is μ2A = log
𝜈

2𝐴

𝜈
2𝐴

= log 1 = 0. Thus, 

we have the intercept equals the negative sum of all the main effects and interactions. 

𝛾i,0 = − ∑ 𝛾1,(𝑎)
𝐴
𝑎=1 − ∑ ∑ 𝛾2,(𝑎,𝑎′)

𝐴
𝑎′=𝑎+1

𝐴−1
𝑎=1 − ⋯                          (2.7) 
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Although in the different scale, the value of the kernel function μc represents the value of 

νc, where a larger μc means a higher probability of being classified into the attribute profile c. As 

mentioned before, because the sum of νc is 1, the transformation between μc and νc is 

𝜈𝑐 =
exp(𝜇𝑐)

∑ exp(𝜇𝑐′)2𝐴

𝑐′=1

                                                     (2.8) 

The saturated parameterization for the log-linear structural model has (2A − 1) 

parameters including all the main effects and interactions, which is the same number of the 

structural components νc. Since the higher order interactions are hard to yield a significant 

difference from 0 under a limited sample size, we can reduce the number of parameters estimated 

by constraining some higher-order interactions equal to 0 with a reasonable loss of the model 

flexibility.  

Existing DCMs for Polytomous Attributes 

The Generalized Linear Mixed Proficiency Models 

While most DCMs classify examinees into two latent classes which are usually 

nonmastery or mastery groups for an attribute, Templin (2004) pointed out the need of 

examinees being classified into three or more attribute mastery levels and proposed the 

Generalized Linear Mixed Proficiency Models (GLMPM) which generalized the latent attribute 

mastery levels from dichotomous to polytomous or even continuous estimate. The GLMPM 

contains the measurement model to relate observed responses to the multidimensional attributes 

and the structural model to characterize the correlations among the attributes or the continuous 

latent traits. The measurement model can be any model within the DCM framework to represent 

the probability of answering an item correctly when a student has a specific attribute profile. In 
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the paper, the author used the Reparameterized United Model (RUM; Hartz, 2002) for 

dichotomous attribute levels and the generalized RUM to represent the probability of a correct 

response under the polytomous attribute. The response variable in the measurement model within 

the GLMPM framework remains dichotomous and the only change is the mastery levels of the 

attributes.  

The attributes in the GLMPM are defined as ordered integers 0, 1, …. For example, if an 

attribute has three mastery levels, the values of the attribute are 0, 1 or 2. These values may 

represent below standard, meeting standard, exceeding standard in the standard setting scenario, 

or they may be said to represent nonmastery, intermediate mastery, and mastery of the attribute. 

An examinee having a higher mastery level of an attribute also possesses the lower mastery level 

of the attribute. Using the same example, if an examinee is exceeding the standard, he or she 

must have met the standard first. In general, if an attribute a has 𝑙𝑎 mastery levels, the values of 

the attribute are 0, 1, … (𝑙𝑎-1). Suppose a test measures A attributes, there are in total ∏ 𝑙𝑎
𝐴
𝑎=1  

attribute profiles in which examinees will be classified. Note that the GLMPM allows attributes 

on the same to have different numbers of mastery levels. For example, a test measures 3 

attributes as shown in Table 2.2. Attribute 1 has three mastery levels and Attribute 2 and 3 have 

two mastery levels. Examinees are classified into 3 × 2 × 2 = 12 possible attribute profiles, 

where the values for Attribute 1 are 0, 1 and 2, and the values for Attribute 2 and 3 are 0 and 1. 

 Though the mastery levels of the attribute can be more than two levels, the entries of Q-

matrix are still dichotomous indicators, where 0 represents the item does not measure the 

attribute and 1 represents the item measures the attribute. The behavior of the polytomous 

attribute mastery levels is the probability of answering an item correctly where a higher mastery 

level means a larger probability of answering the item correctly. The model is again under the 
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local independence assumption that the item response for each item is independent given an 

examinee’s attribute profile.  

 The probability of a correct response for item i is generalized from the RUM. Suppose an 

examinee e has attribute profile 𝜶𝒆 = (𝛼𝑒1, ⋯ , 𝛼𝑒𝑎, ⋯ , 𝛼𝑒𝐴)′ and higher-order latent trait 𝜃𝑒, and 

the q-vector for Item i is 𝒒𝒊 = (𝑞𝑖1, ⋯ , 𝑞𝑒𝑎, ⋯ , 𝑞𝑖𝐴)′, the measurement model for the polytomous 

RUM for Item i is 

𝑃(𝑋𝑒𝑖 = 1|𝜶𝒆, 𝜃𝑒) = 𝜋𝑖
∗ ∏ (𝑟𝑖𝑎

∗ 𝑓𝑖𝑎(𝛼𝑒𝑎,𝑞𝑖𝑎)
) × 𝑃𝑐𝑖

(𝜃𝑒)𝐴
𝑎=1 ,                        (2.9) 

where  𝜋𝑖
∗ is a product of the parameters that correspond to all attributes measured by item i, 

𝜋𝑖
∗ = ∏ 𝜋𝑖𝑎

𝑞𝑖𝑎  𝐴
𝑎=1 ,                                                          (2.10) 

where 𝜋𝑖𝑎 is between 0 and 1 and can be considered as the contribution to the probability of a 

correct response for item i by Attribute a. If Attribute a is present in 𝒒𝒊, 𝜋𝑖𝑎
𝑞𝑖𝑎 = 𝜋𝑖𝑎. The product 

of all the probabilities 𝜋𝑖𝑎 for attributes measured by Item i is defined as 𝜋𝑖
∗, which is the 

probability of answering Item i correctly when an examinee has mastered all the required 

attributes. In this model, 𝜋𝑖
∗ is referred to as the slipping parameter. Assume all attributes 

contribute independently to the slipping parameter 𝜋𝑖
∗, the probability of answering item i 

correctly is the product of all the slipping parameters for the attributes measured by item i, when 

examinee e has mastered all the required attributes. The item parameter 𝑟𝑖𝑎
∗  can be considered as 

the penalty of the item response probability for not mastering a required attribute. It has the form 

of 

𝑟𝑖𝑎
∗ =

𝑟𝑖𝑎

𝜋𝑖𝑎
                                                               (2.11) 
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where 𝑟𝑖𝑎 is usually smaller than 𝜋𝑖𝑎 and thus the 𝑟𝑖𝑎
∗  is a proportion of 𝜋𝑖𝑎. Suppose Attribute a 

has 𝑙𝑎 levels, where 𝛼𝑎 = 0, 1, ⋯ , (𝑙𝑎 − 1), Templin (2004) defined 𝑓𝑖𝑎(𝛼𝑒𝑎, 𝑞𝑖𝑎) as  

1) 𝑓𝑖𝑎(𝛼𝑒𝑎 = 0, 𝑞𝑖𝑎 = 1) = 1, 

2) 𝑓𝑖𝑎(𝛼𝑒𝑎 = (𝑙𝑎 − 1), 𝑞𝑖𝑎 = 1) = 0, 

3) 𝑓𝑖𝑎(𝛼𝑒𝑎 = 1, 𝑞𝑖𝑎 = 1) > 𝑓𝑖𝑎(𝛼𝑒𝑎 = 2, 𝑞𝑖𝑎 = 1) > ⋯ > 𝑓𝑖𝑎(𝛼𝑒𝑎 = (𝑙𝑎 − 2), 𝑞𝑖𝑎 = 1), 

4) 𝑓𝑖𝑎(𝛼𝑒𝑎 = 𝑘, 𝑞𝑖𝑎 = 0) = 0. 

where 1) represents the index of the penalty is 1 and the penalty on the item response probability 

for item i is present when examinee e did not master or had the lowest mastery level of the 

required attribute a. 2) represents the index of the penalty is 0 and the penalty is absent when 

examinee e has the highest mastery level for attribute a. 3) represents the index of the penalty 

decreases as the intermediate mastery level increases, that is, the penalty on the item response 

probability also decreases as the mastery level increases. 4) represents the index is always equal 

to 0 when Attribute a is not measured by item i when examinee e possesses any mastery level 

((k+1)th level), meaning there is no penalty on the item response probability for the attributes not 

required by item i. 𝑓𝑖𝑎(𝛼𝑒𝑎 = 𝑘, 𝑞𝑖𝑎 = 1) can be considered unknown in the polytomous RUM 

which brings (𝑙𝑎 − 2) more item parameters per item. To reduce the number of item parameters, 

the author constrained  𝑓𝑖𝑎(𝛼𝑒𝑎 = 𝑘, 𝑞𝑖𝑎 = 1) to be equal for all items such that the number of 

item parameters for  𝑓𝑖𝑎(𝛼𝑒𝑎 = 𝑘, 𝑞𝑖𝑎 = 1) was reduced to (𝑙𝑎 − 2) for the test. 

 𝑓1𝑎(𝛼𝑒𝑎 = 𝑘, 𝑞𝑖𝑎 = 1) =  𝑓2𝑎(𝛼𝑒𝑎 = 𝑘, 𝑞𝑖𝑎 = 1) = ⋯ =  𝑓𝐼𝑎(𝛼𝑒𝑎 = 𝑘, 𝑞𝑖𝑎 = 1), 

𝑃𝑐𝑖
(𝜃𝑒) is the similar to the 1PL model in the item response theory with different 

definition of the item difficulty parameter:  
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𝑃𝑐𝑖
(𝜃𝑒) =

exp(𝐷(𝜃𝑒+𝑐𝑖))

1+exp(𝐷(𝜃𝑒+𝑐𝑖))
                                                  (2.12) 

where D is the scaling constant 1.701; θe is examinee e’s latent ability; 𝑐𝑖 represents the 

completeness of the Q-matrix, that is, whether the attributes specified by the Q-matrix can fully 

explain the item behavior. The range of 𝑐𝑖 is from 0 to 3, where 0 means the attributes specified 

by Q-matrix cannot fully describe the change of the item response probability and 𝑃𝑐𝑖
(𝜃𝑒) almost 

ranges from 0 to 1 as the 𝜃𝑒 ranges from -3 to 3. This means examinee e’s ability has a strong 

influence on the item response probability. When 𝑐𝑖 equals 3, 𝑃𝑐𝑖
(𝜃𝑒) is ranges from .5 to 1 as 𝜃𝑒 

ranges from -3 to 3 meaning examinee e’s ability does not have a strong influence on the item 

response probability. The attributes specified in the Q-matrix for item i can almost fully explain 

the change of the item response probability when only considering the attributes. 

 Furthermore, the author assumed the mastery levels for an attribute is related to the 

proficiency space which includes a set of covariates and a higher-order latent trait. Examinee e’s 

mastery level for Attribute a, denoted as 𝛼𝑒𝑎 was mapped to a continuous variable 𝛼̃𝑒𝑎. 

𝛼̃𝑒𝑎 = 𝜷𝒂𝒚𝒆 + 𝜆𝑎𝑔𝑒 + 𝑒𝑎𝑒                                              (2.13) 

where 𝒚𝒆 is a vector of covariates; 𝜷𝒂 is a vector of coefficients for the covariates for Attribute 

a; 𝑔𝑒 is the higher-order latent trait for examinee e; 𝜆𝑎 is the coefficient for the latent trait for 

Attribute a; 𝑒𝑎𝑒 is the residual for examinee e and Attribute a. The range of 𝑔𝑒 is (-1, 1) and 𝑒𝑎𝑒 

follows an independent normal distribution 𝑁(0,1 − 𝜆𝑎
2 ). Therefore, 𝛼̃𝑒𝑎 follows a normal 

distribution 𝑁(𝜷𝒂𝒚𝒆 + 𝜆𝑎𝑔𝑒 , 1 − 𝜆𝑎
2 ). To map 𝛼̃𝑒𝑎 to the polytomous 𝛼𝑎𝑒, the author defined 

(𝑙𝑎 − 2) cut point parameters 𝜅𝑎1, ⋯ , 𝜅𝑎(𝑙𝑎−2), such that for the kth mastery level,  

𝐼(𝛼𝑒𝑎 > 𝑘) = 𝐼(𝛼̃𝑒𝑎 > 𝜅𝑎𝑘)                                             (2.14) 
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We also have 

𝑃(𝛼̃𝑒𝑎 > 𝜅𝑎𝑘|𝒀𝒆 = 𝒚𝒆, 𝐺𝑒 = 𝑔𝑒) = 1 − Φ (
𝜷𝒂𝒚𝒆+𝜆𝑎𝑔𝑒−𝜅𝑎𝑘

√1−𝜆𝑎
2

)                 (2.15) 

where Φ(∙) is the cumulative density function of the standard normal distribution. Therefore, the 

probability of examinee e having mastery level k for Attribute a is  

𝑃(𝛼𝑒𝑎 = 𝑘|𝒀𝒆 = 𝒚𝒆, 𝐺𝑒 = 𝑔𝑒) = 𝑃(𝛼𝑒𝑎 > 𝑘|𝒀𝒆 = 𝒚𝒆, 𝐺𝑒 = 𝑔𝑒) −

𝑃(𝛼𝑒𝑎 = (𝑘 + 1)|𝒀𝒆 = 𝒚𝒆, 𝐺𝑒 = 𝑔𝑒) = 𝑃(𝛼̃𝑒𝑎 > 𝜅𝑎𝑘|𝒀𝒆 = 𝒚𝒆, 𝐺𝑒 = 𝑔𝑒) −

𝑃(𝛼̃𝑒𝑎 > 𝜅𝑎(𝑘+1)|𝒀𝒆 = 𝒚𝒆, 𝐺𝑒 = 𝑔𝑒) = Φ (
𝜷𝒂𝒚𝒆+𝜆𝑎𝑔𝑒−𝜅𝑎(𝑘+1)

√1−𝜆𝑎
2

) − Φ (
𝜷𝒂𝒚𝒆+𝜆𝑎𝑔𝑒−𝜅𝑎𝑘

√1−𝜆𝑎
2

)         (2.16) 

 To assess the effectiveness the RUM for the polytomous attributes under the GLMPM 

framework, Templin (2004, Chapter 4) conducted a set of simulation studies. The simulation 

studies evaluated two polytomous RUM under two test complexity (number of Q-matrix entries) 

conditions, two cognitive structure (magnitude of 𝑟𝑖
∗ parameters) conditions, and two 

completeness (magnitude of c parameters) conditions. The first polytomous RUM had the 

constraint that the item parameters 𝑓𝑖𝑎 were the same for each mastery level across all items, 

while the second model allowed them to be different. The results were evaluated by the recovery 

accuracy of the item parameter estimates and the classification accuracy of examinees’ attribute 

profiles. The two models yielded similar results: all the item parameters had relatively low biases 

across all conditions. The estimates of c parameters were positively biased when the test 

completeness was low and negatively biased when the test completeness was high. The estimates 

of  𝑓𝑖𝑎  had larger biases when the cognitive structure was high. The classification accuracies for 
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examinees’ attribute profiles were lower compared to the results in the dichotomous simulation 

studies.  

 The author used the Fraction Subtraction data set to examine the two polytomous RUM. 

The Fraction Subtraction test measured 8 attributes with 20 items. The author assumed each 

attribute had three mastery levels (0, 1, and 2). The results shown the test completeness increased 

when using the polytomous RUM compared to dichotomous RUM. The results also indicated it 

was not always appropriate to use polytomous attributes because of the lack of examinees. 

Ordered-Category Attribute Coding framework (OAOC) 

Different from Templin’s (2004) polytomous RUM that only defined the order of 

attribute mastery levels, Karelitz (2004) suggested to provide specific definitions of the mastery 

levels for each attribute, and assumed examinees’ current mastery levels of the attributes 

measured by the test followed the sequences of the lowest levels to the highest levels. He 

proposed an Ordered-Category Attribute Coding (OAOC) framework to model the item response 

probabilities of the polytomous attribute levels. 

Like the polytomous RUM, the OAOC framework defined the attributes as integers from 

0 to (𝑙𝑎 − 1), where 𝑙𝑎 is the number of mastery levels for Attribute a. The difference is that the 

author assumed each attribute mastery level had a cognitive definition and examinees must have 

mastered knowledge or skills represented by all lower levels to achieve the higher-level 

proficiency. The ordered mastery levels of an attribute are a reflection of an examinee’s learning 

process of certain knowledge, or the steps required to reach a correct response. The definition of 

each mastery level provides more detailed diagnostic information compared to the polytomous 

RUM. However, the application of the OAOC framework requires content experts to carefully 
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design the test with clarification of each mastery level of the attributes, while the polytomous 

RUM has more flexibility in deciding the number of attribute mastery levels. For example, 

model selection criteria, such as AIC, BIC and SABIC, can be used to compare models under 

different attribute mastery levels and further help decide the number of mastery levels for each 

attribute. Suppose a test measures A attributes and each attribute has 𝑙𝑎 mastery levels, the 

number of attribute profiles in the OAOC framework is ∏ 𝑙𝑎
𝐴
𝑎=1 . 

The definition of the Q-matrix is the main difference between the OAOC framework and 

the polytomous RUM. In the polytomous RUM, the entries of the Q-matrix are dichotomous 

indicating whether the attribute is measured by the item. In the OAOC, the entries of the Q-

matrix are polytomous indicating which mastery level is measured by the item. For example, 

assume Attribute a has three mastery levels and Item i measures Attribute a, the entry of the ith 

row and ath column 𝑞𝑖𝑎 can be 0, 1, or 2. 0 represents Item i does not measure Attribute a; 1 

represents Item i measures the first mastery level of Attribute a; and 2 represents Item i measures 

the highest mastery levels of Attribute a. Suppose Item i measures the first level of Attribute 

a.Examinees who have the lowest mastery level will have a relatively low probability of 

answering Item i correctly, while examinees who have the second or the highest mastery level 

will have equally higher probability of answering Item i correctly. In the polytomous RUM, the 

item response probability strictly increases as the examinees’ mastery levels increase. Since the 

OAOC framework specifies more detailed attribute mastery levels that were measured by each 

item, the test might need enough items to measure each attribute mastery levels to guarantee the 

accurate classification of examinees.  
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In this study, the author generalized the DINA model to the OAOC framework. Assume a 

test measures A attributes, the item response probability for examinee e answering Item i 

correctly is 

P(Xei = 1|𝜶𝒆) = (1 − 𝑠𝑖)
𝜉𝑒𝑖𝑔𝑖

1−𝜉𝑒𝑖 ,                                   (2.17) 

ξei = ∏ 𝐼[𝛼𝑒𝑎 ≥ 𝑞𝑖𝑎]

𝐴

𝑎=1

, 

where 𝛂𝐞 = (𝛼𝑒1, ⋯ , 𝛼𝑒𝐴) is the attribute profile of examinee e. The entry αea = 0, 1, ⋯ , (𝑙𝑎 −

1) of 𝛂𝐞 represents examinee e’s mastery level of Attribute a. 𝑠𝑖 is the slipping parameter 

representing the probability of answering the item incorrectly when examinee e has mastered all 

the required attribute levels measured by item i; 𝑔𝑖 is the guessing parameter representing the 

probability of answering the item correctly when examinee e has not mastered all the required 

attribute levels; 𝜉𝑒𝑖 is a dichotomous indicator of whether examinee e has mastered all the 

required attribute levels of item i. 𝜉𝑒𝑖 is a product of the indicator function of whether 𝛼𝑒𝑎 is 

larger than 𝑞𝑖𝑎. 𝐼[𝛼𝑒𝑎 ≥ 𝑞𝑖𝑎] equals 1 when 𝛼𝑒𝑎 is larger than 𝑞𝑖𝑎, meaning examinee e has 

higher mastery level for Attribute a than the required attribute mastery of item i, otherwise, 

equals 0. 𝜉𝑒𝑖 equals 1 if and only if all the 𝐼[𝛼𝑒𝑎 ≥ 𝑞𝑖𝑎] equals 1, meaning examinee e has 

mastered all the required attributes for item i, otherwise equals 0. When examinee e has mastered 

all the required attribute levels of item i, the item response probability equals (1 − sj) because 

the index of 𝑔𝑖 equals 0. When examinee e has not mastered at least one required attribute of 

item i, the probability of a correct response is 𝑔𝑖. 

The author conducted two sets of simulation studies to investigate the performance of the 

OAOC framework. The first set examined the stability of the model calibration under the 
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conditions of different numbers of attributes and mastery levels, distributions of the proportions 

of attribute profiles, the numbers of missing entries of the Q-matrix, different patterns of the 

missing entries in the Q-matrix, and the sensitivity of the item-level noise parameters. The 

second set examined the robustness of the model when the model assumptions were violated: the 

estimation model had more levels than the simulation model, the estimation model had fewer 

levels than the simulation model, the estimation model only had two levels for all attributes with 

item-level noise parameters. The models were estimated by MCMC algorithm.  

The results of the simulation studies shown the OAOC combined with DINA model as 

measurement model can accurately estimate item parameters and classify examinees under 

different number of attributes and mastery levels even there was item-level noise in the 

parameters. The OAOC framework was sensitive to the distribution of the proportions of 

attribute profiles. The increase of the number of missing entries in the Q-matrix decreased the 

accuracy of the item parameter estimation and examinees’ classification. The asymmetric 

attributes missing entries of the Q-matrix had lower accuracy for the item parameter estimates 

and examinees classification than the symmetric attribute missing of the Q-matrix. The over-

specification and under-specification of the attribute mastery levels would change the OAOC 

framework and provided incorrect classifications for examinees. 

The author used the item responses from a test of the grammatical rules of a fictional 

language conducted at University of Illinois. The sample size was 200. The test measured three 

attributes, of which two attributes had four mastery levels and one attribute had three mastery 

levels. The test contained 40 multiple-choice items. The authors assumed the first levels of all 

attributes were the nonmastery level. Attribute 1 was measured by 39 items, among which 12 

items measured the second level, 11 items measured the third level, and 6 items measured the 



 

28 

fourth level. Attribute 2 was measured by 30 items, among which 8 items measured the second 

level, 11 items measured the third levels and 11 items measured the fourth levels. Attribute 3 was 

measured by 25 items, among which 14 items measured the second level and 11 items measured 

the third level. The results show many items had large guessing parameter estimates.  

The Hierarchical DCM 

 A similar concept to a polytomous attribute is a linear attribute hierarchy (Templin and 

Bradshaw, 2014). The linear attribute hierarchy in the DCMs represents that attributes measured 

by a test follow a sequence to reflect examinees’ learning. For example, assume a test measures 

three attributes (Attribute 1, 2, and 3) , a linear attribute hierarchy of the three attributes could be: 

Attribute 1 is the prerequisite of Attribute 2, and Attribute 2 is the prerequisite of Attribute 3. 

This means an examinee who is a master of Attribute 2 must be a master of Attribute 1, and an 

examinee who is a master of Attribute 3 must be a master of Attribute 2 and Attribute 1. Assume 

there are three exmainees 𝑒1, 𝑒2 and 𝑒3 who are masters of Attribute 1, Attribute 2 and Attribute 

3 respectfully, then Examinee 𝑒2 is also a master of Attribute 1 and Examinee 𝑒3 is also a master 

of Attribute 2 and 3. Thus, Examinee 𝑒3 can be considered to have the highest attribute mastery 

level, followed by Examinee 𝑒2, and Examinee 𝑒1 has the lowest attribute mastery level. In this 

case, the three linear hierarchical attributes are equivalent to one polytomous attribute with four 

mastery levels. The corresponding attribute profiles for three attributes with a linear hierarchy 

and a polytomous attribute are presented in Table 2.4. 

Since the linear attribute hierarchy is present, examinees can only be classified into one 

of the four attribute profiles: 1) the first attribute profile is the nonmastery group for all three 

attributes which correspond to the nonmastery group of the polytomous attribute; 2) the second 

attribute profile is the mastery for Attribute 1 and nonmastery for Attribute 2 and 3, which 
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corresponds to the first mastery level (equals 1) for the polytomous attribute; 3) the third 

attribute profile is the mastery for Attribute 1 and 2 and nonmastery for Attribute 3, which 

corresponds to the second mastery level (equals 2) for the polytomous attribute; 4) the fourth 

attribute profile is the mastery for all three attributes which corresponds to the highest mastery 

level (equals 3) for the polytomous attribute.  

Templin and Bradshaw (2014) mentioned the attribute linear hierarchy can be detected by 

a statistical model and proposed the hierarchical DCM (HDCM) to model the item response 

probability. The authors also addressed the HDCM is similar to the unidimensional DCM 

(UDCM) for a multicategory attribute.  

Using the same example, the item response probability for Item i for the UDCM is 

log
𝑃(𝑋𝑒𝑖=1|𝛼𝑒𝑎)

𝑃(𝑋𝑒𝑖=0|𝛼𝑒𝑎)
= 𝜆𝑖0 + 𝜆𝑖𝑎𝛼𝑒𝑎                                           (2.18) 

where 𝛼𝑒𝑎 is the mastery levels for examinee e which can be equal to 0, 1, 2 or 3. 𝜆𝑖0 is the 

intercept which represents the log-odds of the item response probability for the nonmastery 

group; 𝜆𝑖𝑎 is the main effect meaning the increase of the log-odds when examinee e has one 

higher mastery level.  

 The authors compared the 3-attribute HDCM and the UDCMs with 2 to 5 attribute 

categories using the item responses from the Examination for the Certificate of Proficiency in 

English (ECPE; Henson & Templin, 2007; Templin & Hoffman, 2013; Templin, Rupp, Henson, 

Jang, & Ahmed, 2008; and Buck & Tatsuoka, 1998). AIC, BIC and SSA BIC indicated the 

UDCM with 5 categories fitted the best. The authors suggested the UDCM can be used to 

evaluate whether a certain number of attributes follow a linear hierarchy structure. Moreover, the 

UDCM is also the simplest model for a unidimensional polytomous attribute.  
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The Polytomous Generalized DINA 

Chen and de la Torre (2013) referred polytomous DCMs like the polytomous RUM 

(Templin, 2004) as the data-defined polytomous attributes and the OAOC framework as the 

expert-defined polytomous attributes. Though the OAOC provides more detailed diagnostic 

information for the mastery levels of each attribute, the DINA model used in the OAOC cannot 

comprehensively explain the relationships of the attributes. The authors generalized the 

measurement model of the OAOC framework to a general DCM framework called the 

generalized DINA (G-DINA, de la Torre, 2011). The combination of the OAOC framework and 

the G-DINA model is called the pG-DINA.  

Since the pG-DINA is based on the OAOC framework, examinees’ latent attributes 

values and the Q-matrix entries have the same definition as the OAOC framework. Suppose a 

test measures A attributes and Attribute a has 𝑙𝑎 mastery levels and is measured by Item i, an 

examinee’s mastery level for Attribute a and the possible values for the entry 𝑞𝑖𝑎 of the Q-matrix 

might be 0, 1, …, (𝑙𝑎 − 1). The probability of examinee e answering item i correctly is 

𝑃(𝑋𝑒𝑖 = 1|𝜶𝒆
∗∗) = 𝛿𝑖0 + ∑ 𝛿𝑖𝑎

𝐴𝑖
∗

𝑎=1 𝛼𝑒𝑎
∗∗ + ∑ ∑ 𝛿𝑖𝑎𝑎′𝛼𝑒𝑎

∗∗ 𝛼𝑒𝑎′
∗∗𝐴𝑖

∗

𝑎=1

𝐴𝑖
∗

𝑎′>𝑎
+ ⋯ +

𝛿𝑖1,⋯,𝐴𝑗
∗ ∏ 𝛼𝑒𝑎

∗∗𝐴𝑖
∗

𝑎=1 ,                                                (2.19) 

𝛼𝑒𝑎
∗∗ = {

0, 𝑖𝑓 𝛼𝑒𝑎 < 𝑞𝑖𝑎

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

where  𝛂𝐞𝐢
∗∗ = (𝛼𝑒1

∗∗ , ⋯ , 𝛼𝑒𝐴∗
∗∗ )′ is a dichotomized vector of 𝜶𝒆𝒊, called the collapsed attribute 

vector, indicating whether examinee e has mastered the required mastery level of an attribute 

measured by item i. The elements of 𝜶𝒆𝒊
∗∗ are only the attributes measured by item i. For example, 
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if a test measures 4 attributes and item i measures only 2 attributes (Attribute 1 and 3), 𝛂𝐞𝐢
∗∗ =

(𝛼𝑒1
∗∗ , 𝛼𝑒3

∗∗ )′. 𝛼𝑒1
∗∗  equals 0 if examinee e possesses lower mastery level than the mastery level item 

i measures 𝑞𝑖𝑎, and equals 1 if examinee e possesses equal to or higher mastery level than 𝑞𝑖𝑎.  

The authors then applied 𝜶𝒆𝒊
∗∗ to the G-DINA model with the identity link function of the 

item response probability. 𝛿𝑖0 is the intercept, representing the probability of examinee e 

guessing item i correctly when the examinee does not possess any required mastery levels of the 

attributes measured by item i. 𝛿𝑖𝑎 is the main effect of Attribute a for item i, representing the 

increase of the probability of a correct response for item i when examinee e has mastered the 

required mastery level of Attribute a. 𝛿𝑖𝑎𝑎′ is the two-way interaction of Attribute a and a’. 

𝛿𝑖1,⋯,𝐴𝑗
∗ is the highest order of interaction term. The G-DINA model is an item level 

measurement model and the item response probability is the summation of all intercept, main 

effects and interactions.  

The authors also proposed another polytomous attribute model, called mG-DINA, which 

classified examines by placing multiple cut-off points on the attribute posterior probability scale.  

For example, assume Attribute a has three mastery levels, an examinee’s attribute posterior 

probability being classified into two mastery levels under G-DINA is between 0 and 1. The cut-

off points for the three mastery levels under mG-DINA are set to be 0.40 and 0.60. An examinee 

with the attribute posterior probability 0.10 under G-DINA is classified into the nonmastery 

group under the mG-DINA; an examinee with the attribute posterior probability 0.45 under G-

DINA is classified into the intermediate mastery group; and an examinee with the attribute 

posterior probability 0.80 under G-DINA is classified into the mastery group. The authors also 

compared the pG-DINA with a mG-DINA which has the same form as G-DINA model but 
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classifies examinees’ mastery levels into polytomous mastery levels based on the posterior 

probability of an attribute.   

The authors conducted a set of simulation studies to examine the performance of the pG-

DINA under two numbers of attributes, three sample sizes, two test lengths, two Q-matrices with 

the attribute mastery levels as 2 and 3. Instead of using the saturated pG-DINA, the author used 

the constrained versions, where one model contained only the intercept and main effects, called 

polytomous-attribute A-CDM, and the other model contained only the intercept and the highest-

order of interaction, called polytomous-attribute DINA. The data was generated by the pG-DINA 

with the lowest item response probability .1 and the highest item response probability .90. Then 

they estimated the data under the pG-DINA and mG-DINA using the software OX through EM 

algorithm.  

The results for the polytomous-attribute A-CDM and the polytomous-attribute DINA 

model were similar. The item parameter estimates had small biases and the standard errors. The 

standard errors of the A-CDM were larger than those of DINA model, and decreased as the 

sample size and test length increased, and the Q-matrix was less complex. The classification of 

examinees’ mastery levels ranged from .76 to .93. The classification accuracy increased as the 

sample size increased and the number of mastery levels decreased. The pG-DINA had more 

accurate classifications than the mG-DINA. 

The authors examined the pG-DINA model with a real data example. The data was 

collected from a proportional reasoning assessment for eighth-grade students. The test measured 

4 attributes by 15 items. Two attributes were dichotomous, and another two attributes were 

polytomous with 3 mastery levels. 8 items were simple items that measured only one attribute 

and 7 items were complex items that measured more than one attribute. The sample size was 
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393. The results show only around 10% of examinees were classified into the intermediate 

mastery levels for the polytomous attributes. Results also show some issues with item parameter 

estimates. The item response probability for Item 1 when an examinee was nonmastery of the 

required attributes was .82, meaning the item was an easy item and many examinees answered 

this item correctly without mastering the attribute. Three items had low item response 

probabilities for the mastery group, meaning these items were difficult items and very few 

examinees answered this item correctly even they mastered the required attributes. Four items 

violated the assumption that the mastering more attributes can improve the item response 

probability, that is, these items had at least one item response probability smaller than the one 

correspond to mastering less attributes.     

The Generalized Diagnostic Model 

von Davier (2005) proposed the general diagnostic model (GDM) and generalized it for 

polytomous responses, called pGDM. The pGDM provides a very general formulation and as 

such subsumes most measurement models including item response theory models such as the 

Rasch, 2PL, generalized partial credit model, and the FACETS model, as well as many DCMs 

(von Davier, 2005). Specially, von Davier (2005) mentioned a special case of the pGDM with 

the polytomous attributes. The attribute definition under the pGDM is similar to the definition 

under the polytomous RUM, except that the values of the attributes can be any integers. This 

definition is more like the categorizing the latent abilities under the multidimensional IRT model 

(Reckase, 2009). Moreover, the author assumed the increase of the latent ability was equal 

between any two adjacent mastery levels.  

The form of pGDM can be considered as a constraint version of the polytomous RUM 

with simple mathematical transformation. The difference of the GDM is in how the attribute 
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levels are defined. More specifically, suppose Attribute a has 𝑙𝑎 mastery levels, the mastery level 

of Attribute a in the GDM is 𝛼𝑎 ∈ {𝑠𝑎1, 𝑠𝑎2, ⋯ , 𝑠𝑎𝑙𝑎
}. 𝑠𝑎𝑙 can be defined as any increasing 

sequence of integers. For example, the most common scenario is that Attribute a has two mastery 

levels: mastery and nonmastery. If we define mastery as 1 and nonmastery as 0, the mastery level 

𝛼𝑎 ∈ {0,1}. Another example of the mastery level of Attribute a is 𝛼𝑎 = {−𝑚, −(𝑚 −

1), ⋯ , −1 , 0, 1, ⋯ , (𝑚 − 1), 𝑚}. In this example, Attribute a has (2𝑚 + 1) levels and the value 

for each level is symmetric around 0 ranging from −𝑚 to 𝑚, where −𝑚 represents the lowest 

mastery level (nonmastery) and 𝑚 represents the highest mastery level. Haberman et al. (2008) 

referred the GDM with this definition of the polytomous attributes as the multidimensional item 

response theory with polytomous latent variables and compared the model with the 

multidimensional item response theory with continuous latent variables. 

Besides the definition of attribute mastery levels, the definition of the Q-matrix entries in 

pGDM is polytomous. Suppose a test measures A attributes, the entries of the Q-matrix for item i 

are 𝒒𝒊 = (𝑞𝑖1, 𝑞𝑖2, ⋯ , 𝑞𝑖𝐴). The entry of 𝒒𝒊, for example 𝑞𝑖𝑎, can be any non-negative integers 

based on the user’s definition. Usually, qia = 0 represents Item i does not measure Attribute a 

and qia > 0 represents Item i measures Attribute a. For example, if Attribute a has two mastery 

levels, qia ∈ {0,1}, where 0 represents Item i does not measure Attribute a and 1 represents Item 

i measures Attribute a. If Attribute a has three mastery levels, one possible definition for 𝑞𝑖𝑎 is 

𝑞𝑖𝑎 ∈ {0,1,2}, where 0 represents Item i does not measure Attribute a, 1 represents Item i 

measures the second mastery level of Attribute a, and 2 represents Item i measures the third 

mastery level of Attribute a.  

In summary, the definition of the attribute mastery levels and the definition of Q-matrix 

entries are different under pDCM. The values of the attribute mastery levels are symmetric with 
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respect to 0, where the numbers of negative values for mastery levels are the same as the 

numbers of positive values for mastery levels. The values of Q-matrix entries under pDCM are 

polytomous integers ranging from 0 to the highest mastery levels. Although the definitions of 

attribute mastery levels and Q-matrix entries are different, the numbers of the values used in the 

two definitions are the same and equal to the number of attribute mastery levels. 

For examinee e with attribute profile 𝛂𝐞, the probability of answering Item i correctly is  

log
𝑃(𝑋𝑒𝑖=1|𝜶𝒆)

𝑃(𝑋𝑒𝑖=0|𝜶𝒆)
= 𝜆𝑖0 + 𝝀𝒊

𝑻𝒉(𝜶𝒆, 𝒒𝒊),                                (2.20) 

where 𝜆𝑖0 is the intercept of the log odds of the item response probability. 𝝀𝒊
𝑻 is a vector of other 

item parameters representing the contribution by each attribute measured by the test. 𝒉(𝜶𝒆, 𝒒𝒊) =

(ℎ1(𝜶𝒆, 𝒒𝒊), ⋯ , ℎ𝐴(𝜶𝒆, 𝒒𝒊)) is a vector of A functions, where each function represents a specific 

relationship between examinee e’s attribute profile and the Q-matrix entries 𝒒𝒊. For example, if a 

Q-matric entry 𝑞𝑖𝑎 is defined as 𝑞𝑖𝑎 ∈ {0,1}, where 0 represents Item i does not measure 

Attribute a, and 1 represents Item i measures Attribute a. Attribute a measures 𝑙𝑎 levels, where 

𝛼𝑒𝑎 ∈ {0, 1, ⋯ , (𝑙𝑎 − 1)}. We define ℎ𝑎(𝜶𝒆, 𝒒𝒊) = 𝛼𝑒𝑎𝑞𝑖𝑎, then  

ℎ𝑎(𝜶𝒆, 𝒒𝒊) = {
𝛼𝑒𝑎 𝑤ℎ𝑒𝑛 𝑞𝑖𝑎 = 1

0 𝑤ℎ𝑒𝑛 𝑞𝑖𝑎 = 0
 . 

Suppose Item i measures Attribute 𝑎1 and 𝑎2, the item response probability for Item i is 

log
𝑃(𝑋𝑒𝑖=1|𝜶𝒆)

𝑃(𝑋𝑒𝑖=0|𝜶𝒆)
= 𝜆𝑖0 + 𝜆𝑖1𝛼𝑒𝑎1

+ 𝜆𝑖2𝛼𝑒𝑎2
                            (2.21) 

where 𝜆𝑖1 is the coefficient for Attribute 𝑎1, 𝜆𝑖2 is the coefficient for Attribute 𝑎2. The log-odds 

of 𝑃(𝑋𝑒𝑖 = 1|𝜶𝒆) is the linear combination of the mastery levels for Attribute 𝑎1 and 𝑎2. Since 
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the polytomous attribute GDM is a special case of the pGDM, the author did not provide any 

simulation study or empirical study to examine this model under various conditions. 

Other Polytomous Q-matrix Design Theories 

Besides the studies about the measurement models of polytomous attributes, some 

research (Ding et al., 2016) focus on the design of the Polytomous Q-matrix. Since the increase 

of mastery levels will largely increase the number of attribute profiles, it may require a much 

longer and less complex test design to yield the same classification accuracy. Ding et al. (2016) 

proposed a theorem about the minimum requirement of the polytomous Q-matrix design when 

attribute hierarchical structure was present. The minimum requirement of the polytomous Q-

matrix design will guarantee to discriminate examinees from different attribute profiles to the 

lowest extent. The more items are added to the test, the more powerful the test can classify 

examinees.  

Discussion 

In this chapter, we reviewed the current studies about the polytomous DCMs. We 

summarized the definition of the attributes, the test design, the measurement model, the 

simulation studies and the applications for each model, respectively. Table 2.4 presents the 

comparison about the attribute values, Q-matrix entries, the structural model, and the 

measurement model of the four polytomous DCMs. The models can provide more detailed 

diagnostic information than the traditional dichotomous DCMs by classifying examinees’ 

mastery levels into more than two levels. To review the four existing polytomous DCMs, this 

chapter follows a sequence of introducing: 1) the definition of polytomous attributes; 2) the 

design of Q-matrix; 3) the structural model; 4) the measurement model. 
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The Definition of Polytomous Attributes 

For the definition of polytomous mastery levels of an attribute, the polytomous RUM and 

the OAOC framework with either DINA or G-DINA as the measurement model defined the 

mastery levels as nonnegative integers from 0 to the highest mastery level, where the mastery 

level increases as the value increases. They all have the assumption that an examinee who has a 

higher mastery level of an attribute also masters the lower levels. Specifically, the polytomous 

RUM uses the latent attribute values to indicate the order of the mastery levels, while the OAOC 

framework requires the specific definition for every mastery level of an attribute.  

The diagnostic feedback the models provide is also different: the polytomous RUM 

specifies the ordered mastery levels examinees possesses; since the OAOC framework needs the 

definition of each attribute mastery level prior to the test administration, the attribute 

classification gives specific feedback corresponding to the definition of each attribute mastery 

level. The GDM has a vaguer definition of the attributes which can be either the nonnegative 

values like the polytomous RUM and the OAOC, or symmetric discrete values with respect to 0 

like a polytomous multidimensional item response theory model. von Davior (2005) did not 

mention whether the mastery levels of an attribute had the unique definition like the OAOC. The 

definition of the polytomous attribute requires the collaborative work between psychometricians 

and content experts for each attribute mastery levels.  

The Design of Q-matrix  

Since the polytomous RUM does not define attribute mastery levels, the entries of the Q-

matrix are dichotomous indicating whether the attribute is measured by an item, while the 

OAOC framework requires polytomous entries indicating which mastery level of an attribute the 
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item measures. Again, the GDM provides a general definition of the entries of the Q-matrix. The 

Q-matrix entries can be either dichotomous as the polytomous RUM or polytomous like the 

OAOC, or even any value ranging from negative infinity to positive infinity which researchers 

might find meaningful. 

The Structural Model  

Among the four major studies about the polytomous DCMs, only the study of the 

polytomous RUM provided detailed explanation of the structural model to describe the 

correlations among attributes. The structural model was constructed based on the loglinear 

regression model with the main effects and interactions of the attributes and combined the 

possible higher-order latent trait and other covariates. The loglinear formation allows DCM users 

to have more flexibilities. Moreover, adding the higher-order latent trait and covariates also help 

to classify examinees more accurately to the mastery levels. Though the OAOC and GDM 

framework did not combine the measurement model with the structural model, any structural 

model mentioned in the literature can be applied to the OAOC and GDM framework. 

The Measurement Model  

The four polytomous DCM models also used different measurement models. The 

polytomous RUM is a multiplication of the attribute effects and the ability effect on the item. 

The OAOC framework was applied to the DINA and G-DINA model. Both models required to 

transfer polytomous attributes to the dichotomous attributes based on if an examinee has 

possessed the required mastery levels of the attribute. Therefore, examinees who have lower 

mastery levels of an attribute than the required mastery level have the same probability of 
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providing a correct response. The GDM is the linear combination of all the main effects of the 

attributes measured by the item and does not include any interaction terms.  

Limitations of Real Data Applications 

 DCMs have gained increasing attention within past two decades. Researchers not only 

proposed new models or methods to deepen the theoretical basis of DCMs, but also applied 

DCMs into real world assessments to provide diagnostic feedback to examinees. However, more 

efforts are needed in facilitating the use of DCMs. Among the 49 empirical studies of DCMs 

since 2009, only 6 assessments were designed for DCMs and provided detailed test development 

procedures (Kunina-Habenicht, Rupp, and Wilhelm, 2009; Kim and Kim, 2013; Liu et al., 2013; 

Bradshaw et al., 2014; Chiu, Köhn, and Wu, 2016; You, et al., 2018). The remaining studies 

retrofitted assessments built under IRT or CTT to DCMs. Such studies might have the following 

limitations:  

1) the attributes were highly correlated since the assessments were developed for the 

unidimensional IRT (Lee and Sawaki, 2009; Chen, Ferron, Thompson, Gorin, and 

Tatsuoka, 2010; Wang and Gierl, 2011; Choi, Lee, and Park, 2015; Skaggs, Wilkins, 

and Hein, 2016 & 2017; Liu, Huggins-Manley, and Bulut, 2018);  

2) the test length is not enough to provide accurate and reliable attribute classification 

(Lee, Park, and Taylan, 2011; Briggs and Circi, 2017); 

3) the sample size is not enough to provide accurate item parameter estimation (Im and 

Yin, 2009). 

Moreover, only 16 empirical studies used the general DCM framework including the 

LCDM, the G-DINA, the GDM to estimate item responses. The use of submodels might fail to 
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capture item-level attribute behaviors and misclassify examinees into different mastery groups 

(Bradshaw and Templin, 2014). Only one empirical study (Bradshaw et al., 2014) used the 

structural model to model the correlation and base rates of attributes. All empirical assessments 

measured dichotomous attributes. 

 In this dissertation, we focus on proposing new DCMs for polytomous attributes and 

providing guidance to practitioners about the test design and sample size requirements, as well as 

an illustration of applying the new DCMs to a diagnostic assessment to provide more detailed 

feedback to examinees. 
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Table 2.1  

Sample Q-matrix from DTMR Assessment 

ItemNo. RU PI APP MC Attribute Measured 

per Item 

1 1 0 0 0 1 

2 0 0 1 0 1 

3 0 1 0 0 1 

4 1 0 0 0 1 

5 1 0 0 0 1 

6 0 1 0 0 1 

7 1 0 0 0 1 

8 0 0 1 0 1 

9 0 0 1 0 1 

10 0 0 1 0 1 

11 0 0 1 0 1 

12 1 0 0 0 1 

13 0 0 0 1 1 

14 1 0 0 1 2 

15 1 0 0 1 2 

16 1 0 0 0 1 

17 1 0 0 0 1 

18 0 1 0 1 2 

19 1 1 0 0 2 

20 0 1 0 1 2 

21 0 1 0 0 1 

22 0 1 0 0 1 

23 1 0 0 0 1 

24 0 1 0 0 1 

25 1 1 0 0 2 

26 1 0 0 0 1 

27 1 1 0 0 2 

Total 14 10 5 5 
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Table 2.2 

Attribute Profiles When Attribute 1 Has Three Mastery Levels and Attribute 2 and 3 Have Two Mastery Levels 

  AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11 AP12 

Attribute 1 0 1 2 0 1 2 0 1 2 0 1 2 

Attribute 2 0 0 0 1 1 1 0 0 0 1 1 1 

Attribute 3 0 0 0 0 0 0 1 1 1 1 1 1 
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Table 2.3 

Attribute Profiles for the HDCM and the UDCM 

Attribute Profiles for the HDCM Attribute Profiles for the UDCM 

Attribute 1 Attribute 2 Attribute 3 The 4-category Attribute 

0 0 0 0 

1 0 0 1 

1 1 0 2 

1 1 1 3 
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Table 2.4 

Comparisons of the Current Polytomous DCMs 

Model Attribute Values Q-matrix entries Structural Model Measurement 

Model 

pRUM Polytomous 

(nonnegative) 

Dichotomous  Log-linear RUM 

Multicategory 

UDCM 

Polytomous 

(nonnegative) 

Dichotomous NA LCDM 

OAOC-DINA Polytomous 

(nonnegative) 

Polytomous NA DINA 

OAOC- 

pG-DINA 

Polytomous 

(nonnegative) 

Polytomous NA G-DINA 

GDM Polytomous Dichotomous/ 

Polytomous 

NA GDM 
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CHAPTER 3  

THE POLYTOMOUS-ATTRIBUTE DIAGNOSTIC CLASSIFICATION MODEL 

 The previous chapter described the existing DCMs for polytomous attributes. The chapter 

compares the polytomous-attribute DCMs and classified these models under two different test 

designs. This chapter generalizes the idea of the polytomous-attribute DCM from Templin 

(2004) and Templin and Bradshaw (2013) and proposes a new and general DCM to measure 

polytomous-attribute attribute mastery levels. This chapter starts to introduce the proposed 

polytomous-attribute DCM (PDCM) by presenting the measurement and structural models. 

Chapter 3 then relates the proposed model to the constrained version of the PDCM (cPDCM) 

which has been used in prior research. Compared to the PDCM, the cPDCM may offer a more 

parsimonious solution to modeling polytomous attributes when the model-data fit is adequate.

The Polytomous-attribute Diagnostic Classification Model (PDCM) 

In the PDCM, we specify each attribute as an ordered polytomous latent variable, where 

each latent variable value represents a mastery level for the attribute. The mastery levels are 

ordered as the polytomous values, where lower mastery levels are defined by smaller integers, 

and higher mastery levels are defined by larger consecutive non-negative integers. In this 

section, we propose a general PDCM to explain the probability of a correct response for an item, 

referred to as item response probability, using the polytomous attributes. Similar to the general 

dichotomous DCMs, the item response probability increases as the number of required attributes 

an examinee has mastered increases, the difference is that the PDCM also yielded higher item 
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response probability if the examinee attribute has a higher mastery level of the required attribute. 

In this section, we explain the general form of the PDCM in detail by two major components: the 

measurement model that models the relationship between item responses and attributes, and the 

structural model that illuminates the attribute correlation and attribute base rates.  

Definition of Polytomous Attributes 

 In this study, we generalized the attribute mastery levels from dichotomous to 

polytomous, where we defined one or more intermediate mastery levels between non-mastery 

and mastery. If Attribute a has 𝑙𝑎 mastery levels, we name these levels as the non-mastery level, 

the first intermediate mastery level, the second intermediate mastery level, …, the (𝑙𝑎 − 2)th 

intermediate mastery level, and the mastery level ((𝑙𝑎 − 1)th mastery level). Mapping these 

levels to positive integers, we define the latent variable 𝛼𝑎 for attribute a with numbers 

0, 1, ⋯ , (𝑙𝑎 − 1), where 𝛼𝑎 = 0 is the non-mastery level for attribute a, 𝛼𝑎 = 1 is the first 

intermediate mastery level, 𝛼𝑎 = 2 is the second intermediate mastery level, 𝛼𝑎 = 𝑥 is the 𝑥th 

intermediate mastery level, and 𝛼𝑎 = (𝑙𝑎 − 1) is the mastery level.  

This definition indicates that examinees who belong to the higher mastery level of 

Attribute a have better understanding of the knowledge or skills associated with Attribute a than 

those who belong to a lower mastery level. However, the same difference between any two 

consecutive mastery levels values of attribute a does not mean the same difference in 

understanding Attribute a. For example, suppose Examinee 𝑒1, 𝑒2,  and 𝑒3 belong to the non-

mastery group, the first intermediate mastery level, and the second intermediate mastery level, 

respectively. The difference of the understanding of Attribute a is not necessarily the same 

between Examinee 𝑒1 and 𝑒2 as it is between Examinee 𝑒2 and 𝑒3.  



 

47 

 The PCDM allows different polytomous attributes on the same assessments to have a 

different number of mastery levels. For example, for an assessment that measures three 

attributes, Attribute 1 could have two mastery levels (non-mastery and mastery), Attribute 2 

could have three mastery levels (non-mastery, intermediate mastery, mastery), and Attribute 3 

could have four mastery levels (non-mastery, first intermediate mastery, second intermediate 

mastery, mastery). In this case, examinees will be classified into the non-mastery or the mastery 

groups for Attribute 1; the non-mastery, the intermediate mastery, or the mastery groups for 

Attribute 2; and the non-mastery, the first intermediate mastery, the second intermediate mastery, 

or the mastery groups for Attribute 3. In total, examinees on this test would be classified into 

2 × 3 × 4 = 24 groups, while in a typical DCMs with dichotomous attributes, examinees on this 

test would be classified into 2 × 2 × 2 = 8 groups. In general, if a test measures A attributes, the 

total number of possible attribute profiles is ∏ 𝑙𝑎
𝐴
𝑎=1 , where 𝑙𝑎 is the number of mastery levels 

for Attribute a. When all the attributes have two mastery levels, meaning 𝑙𝑎 = 2, the PDCM is 

the same as the LCDM. 

The PDCM Measurement Model 

As mentioned in the previous section, suppose Attribute a has 𝑙𝑎 levels, the latent 

attribute variable 𝛼𝑒𝑎 has the value 0, 1, ⋯ , (𝑙𝑎 − 1), representing examinee e’s mastery level for 

Attribute a with possible values being level 0 (non-mastery), level 1 (the first intermediate 

mastery), …, level (𝑙𝑎 − 1) (mastery). For an item measuring Attribute a, the PDCM allows the 

item response probability to monotonically increase as an examinee’s mastery level increases. 

For example, if an examinee has the first intermediate mastery level, his/her probability of 

answering this item correctly is equal to or higher than another examinee who has the non-

mastery level. To achieve this flexibility of the PDCM, we utilize dummy variables to represent 
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attribute levels: for the latent attribute variable 𝛼𝑒𝑎, we define (𝑙𝑎 − 1) dummy variables 

𝛼𝑒𝑎
1 , 𝛼𝑒𝑎

2 , ⋯ , 𝛼𝑒𝑎
(𝑙𝑎−1)

.  Table 3.1 is an example of the dummy coding for each mastery level when 

Attribute a has three mastery levels 𝑙𝑎 = 3. 

In this example, 𝛼𝑒𝑎 is defined as 0 (non-mastery), 1 (intermediate mastery), or 2 

(mastery). 𝛼𝑒𝑎
1  and 𝛼𝑒𝑎

2  are two dummy variables for 𝛼𝑒𝑎, where 𝛼𝑒𝑎
1  represents whether 

examinee e has reached the intermediate mastery level of Attribute a, and 𝛼𝑒𝑎
2  represents whether 

examinee e has reached the mastery level of Attribute a. Any examinee cannot reach the mastery 

level without reaching the intermediate mastery level, meaning 𝛼𝑒𝑎
2  cannot equal 1 with 𝛼𝑒𝑎

1  

equaling 0. When examinee e has the non-mastery level (𝛼𝑒𝑎 = 0), the values of the dummy 

variables are 𝛼𝑒𝑎
1 = 0 and 𝛼𝑒𝑎

2 = 0, meaning examinee e has not reached the intermediate 

mastery level yet. When examinee e has the intermediate mastery level (𝛼𝑒𝑎 = 1), the values of 

the dummy variables are 𝛼𝑒𝑎
1 = 1 and 𝛼𝑒𝑎

2 = 0, meaning examinee e has reached the 

intermediate mastery level, yet has not reached the mastery level. When examinee e has the 

mastery level (𝛼𝑒𝑎 = 2), 𝛼𝑒𝑎
1 = 𝛼𝑒𝑎

2 = 1 because examinee e has reached both the intermediate 

mastery level and the mastery level. 

PDCM measurement model for an example item. In the following paragraphs, we 

introduce the measurement model for the PDCM. Suppose Item i measures Attribute 1 and 2, 

and both attributes have 3 levels. The three mastery levels for both attributes are referred to as 

non-mastery, intermediate mastery, and mastery. The probability for examinee e answering Item 

i correctly is: 

log
𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝜶𝑒)
= 𝜆𝑖,0 + 𝜆𝑖,1,(1)

1 𝛼𝑒1
1 + 𝜆𝑖,1,(1)

2 𝛼𝑒1
2 + 𝜆𝑖,1,(2)

1 𝛼𝑒2
1 + 𝜆𝑖,1,(2)

2 𝛼𝑒2
2 + 𝜆𝑖,2,(12)

11 𝛼𝑒1
1 𝛼𝑒2

1  
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+𝜆𝑖,2,(12)
21 𝛼𝑒1

2 𝛼𝑒2
1 + 𝜆𝑖,2,(12)

12 𝛼𝑒1
1 𝛼𝑒2

2 + 𝜆𝑖,2,(12)
22 𝛼𝑒1

2 𝛼𝑒2
2                                                   (3.1) 

Where 𝛼𝑒1
1  and 𝛼𝑒1

2  are the dummy variables for Attribute 1; 𝛼𝑒2
1  and 𝛼𝑒2

2  are the dummy 

variables for Attribute 2; 𝜆𝑖,0 is the intercept and the log-odds of the item response for the 

complete non-mastery group (𝛼𝑒1
1 = 𝛼𝑒1

2 = 𝛼𝑒2
1 = 𝛼𝑒2

2 = 0); 𝜆𝑖,1,(1)
1  is the main effect for the 

intermediate mastery level of Attribute 1 (𝛼𝑒1
1 = 1, 𝛼𝑒1

2 = 0) which represents the increase of the 

item response probability when examinee e has reached the intermediate mastery level of 

Attribute 1; and 𝜆𝑖,1,(2)
1  is the main effect for the intermediate mastery level of Attribute 2 (𝛼𝑒2

1 =

1, 𝛼𝑒2
2 = 0) which represents the increase of the item response probability when examinee e has 

reached the intermediate mastery level of Attribute 2; 𝜆𝑖,1,(1)
2  is the main effect for the mastery 

level of Attribute 1 (𝛼𝑒1
1 = 1, 𝛼𝑒1

2 = 1) which represents the additional increase of the item 

response probability when examinee e has reached the mastery level of Attribute 1; and 𝜆𝑖,1,(2)
2  is 

the main effect for the mastery level of Attribute 2 (𝛼𝑒2
1 = 1, 𝛼𝑒2

2 = 1) which represents the 

additional increase of the item response probability when examinee e has reached the mastery 

level of Attribute 2; 𝜆𝑖,2,(12)
11  is the interaction for the intermediate mastery levels of Attribute 1 

and Attribute 2; 𝜆𝑖,2,(12)
21  is the interaction for the mastery level of Attribute 1 and the 

intermediate level of Attribute 2; 𝜆𝑖,2,(12)
12  is the interaction for the intermediate level of Attribute 

1 and the mastery level of Attribute 2; 𝜆𝑖,2,(12)
22  is the interaction for the mastery levels of 

Attribute 1 and Attribute 2. Interaction terms represent the change in the item response 

probability due to interactions among different attribute levels. 

Table 3.2 shows the summary of the measurement model of Item i. The first two columns 

are the mastery levels of Attribute 1 and 2; column 3 to column 6 are the dummy variables for 

each attribute profile; and the last column shows corresponding log-odds of the item response 
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after conditioning on the attribute profile. For an item like Item 𝑖 that measures two attributes 

where each attribute has three levels, there are 9 log-odds values for the item response, meaning 

there are up to 9 unique item response probabilities for this item. 

PDCM monotonicity constraints for example item. Because of the monotonic property 

of the PDCM, the item response probability increases as the mastery level for a required attribute 

increases. For example, the item response probability for an examinee with the intermediate 

mastery level for Attribute 1 is higher than the probability for an examinee with the non-mastery 

level for Attribute 1. Since the log-odds of the item response does not change the monotonic 

property of a function, the PDCM has the following constraint for the main effect of the 

intermediate mastery level for Attribute 1: 

𝜆𝑖,0 + 𝜆𝑖,1,(1)
1 > 𝜆𝑖,0, 

which is 𝜆𝑖,1,(1)
1 > 0. Similarly, the constraint for the main effect of the intermediate mastery 

level for Attribute 2 is 𝜆𝑖,1,(2)
1 > 0. 

 The same rule applies to the main effects for the mastery levels for both Attribute 1 and 

2; that is, the log odds of the item response for an examinee with the mastery level for Attribute 1 

or 2 is larger than the log odds of the item response for an examinee with the intermediate 

mastery level for Attribute 1 or 2. On the log-odds scale, the constraint is 

𝜆𝑖,1,(1)
2 > 0, 𝜆𝑖,1,(2)

2 > 0. 

 In the PDCM, the interaction terms are present when an examinee possesses the 

intermediate mastery levels or higher mastery levels for Attribute 1 and 2. For example, if an 

examinee has the intermediate mastery levels for both attributes, the log-odds of the item 
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response is the sum of the main effects for the intermediate levels of Attribute 1, 𝜆𝑖,1,(1)
1 , and 

Attribute 2, 𝜆𝑖,1,(2)
1 , and the interaction for the intermediate levels of Attribute 1 and 2, 𝜆𝑖,2,(12)

11 . 

Therefore, the constraint becomes the log-odds of the item response for an examinee with the 

intermediate levels for Attribute 1 and 2 is larger than the log-odds of the item response for an 

examinee only possesses the intermediate level for only one of the attributes (either Attribute 1 

or 2), and the non-mastery level for the other attribute. Therefore, we have 

𝜆𝑖,0 + 𝜆𝑖,1,(1)
1 + 𝜆𝑖,1,(2)

1 +𝜆𝑖,2,(12)
11 > 𝜆𝑖,0 + 𝜆𝑖,1,(1)

1 , 

𝜆𝑖,0 + 𝜆𝑖,1,(1)
1 + 𝜆𝑖,1,(2)

1 +𝜆𝑖,2,(12)
11 > 𝜆𝑖,0 + 𝜆𝑖,1,(2)

1 . 

Using algebraic manipulations, we get 

𝜆𝑖,2,(12)
11 > −𝜆𝑖,1,(1)

1 , 𝜆𝑖,2,(12)
11 > −𝜆𝑖,1,(2)

1 . 

Applying the same rule to the other interaction terms, we have 

𝜆𝑖,2,(12)
12 > −𝜆𝑖,1,(2)

2 , 𝜆𝑖,2,(12)
21 > −𝜆𝑖,1,(1)

2 , 

𝜆𝑖,2,(12)
22 > −𝜆𝑖,2,(12)

12 − 𝜆𝑖,1,(2)
2 , 𝜆𝑖,2,(12)

22 > −𝜆𝑖,2,(21)
21 − 𝜆𝑖,1,(1)

2 . 

General form of the PDCM measurement model. More generally, suppose a test 

measures A attributes, the general form of the PDCM item response function when examinee e 

with attribute profile 𝜶𝑒 responds to item i is: 

log
𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝜶𝑒)
= 𝜆𝑖,0 + ∑ ∑ 𝜆𝑖,1,(𝑎)

𝑙 𝛼𝑒𝑎
𝑙 𝑞𝑖𝑎

𝑙𝑎−1
𝑙=1

𝐴
𝑎=1 +

∑ ∑ ∑ ∑ 𝜆𝑖,2,(𝑎,𝑎′)
𝑙𝑙′

𝛼𝑒𝑎
𝑙 𝛼𝑒𝑎′

𝑙′
𝑞𝑖𝑎𝑞𝑖𝑎′

𝑙
𝑎′−1

𝑙′=1
𝐴
𝑎′=𝑎+1

𝑙𝑎−1
𝑙=1

𝐴−1
𝑎=1 + ⋯                     (3.2) 
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where 𝛼𝑒𝑎
𝑙  is the dummy variable for the level l of attribute a; 𝑞𝑖𝑎 represents whether Item i 

measures Attribute a, where 1 indicates Item i measures Attribute a, and 0 indicates the opposite. 

The main effects or the interaction terms are present in the item response function only when 

examinee e has reached the corresponding mastery levels and the attribute(s) are measured by 

Item i. 𝜆𝑖,1,(𝑎)
𝑙  is the main effect for the level l of attribute a, and 𝜆𝑖,2,(𝑎,𝑎′)

𝑙𝑙′
 is the two-way 

interaction for the level l of attribute a and the level 𝑙′ of attribute 𝑎′. The ellipsis represents the 

summation of the possible three-way or higher-order interactions.  

The saturated PDCM is the summation of the intercept, the main effects and interactions 

for all the dummy attribute variables for the polytomous attributes. Nested versions of the PDCM 

may be specified by reducing the item parameter space for the PDCM. This may be empirically-

driven or theoretically-driven. When terms in the PDCM are empirically not statistically 

significantly different from 0, they may be removed from the PDCM for parsimony. In contrast, 

terms may be set to 0 prior to an analysis to form sub-models of the PDCM that are analogous to 

sub-models of the LCDM. For example, if all interaction terms are set to 0 in the LCDM, the 

compensatory Reparameterized Unified Model (C-RUM; Rupp, Templin, & Henson, 2010) is 

formed. Sub-models of the PDCM have fewer parameters and would be less complex to 

estimate. The caution for sub-models, however, is they should only be specified after 

establishing appropriate model-data fit, else the attribute-item relationships may be 

misrepresented. Sub-models of the PDCM are not the focus of the present study; we use the 

saturated form of the PDCM throughout. 

 The PDCM Structural Model  

 In this section, we generalized the log-linear structural model in Chapter 2 for 

polytomous attributes. Different from the dichotomous DCMs where the attributes follow 
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Bernoulli distributions, the polytomous attributes follow categorical distributions. For example, 

suppose Attribute a has 3 mastery levels (𝛼𝑎 =  0, 1, 2), referred to as non-mastery, intermediate 

mastery, and mastery. The distribution of 𝛼𝑎 is a categorical distribution with probabilities of 

𝑝0 = 𝑃(𝛼𝑎 = 0), 𝑝1 = 𝑃(𝛼𝑎 = 1) and 𝑝2 = 𝑃(𝛼𝑎 = 2), where 𝑝0 + 𝑝1 + 𝑝2 = 1. We call 

𝑝0, 𝑝1,   and 𝑝2 the base rates for Attribute a. Each attribute has a base rate at every mastery level 

which represents the proportion of examinees who have mastery at that level for the attribute. 

Structural model for an example test. Like the measurement model of the PDCM, we 

again used dummy latent attribute variables for the structural model. Suppose a test measures 

two attributes (Attribute 1 and 2) and each attribute has three mastery levels. Examinees who 

take the test will be classified into one of the nine mastery groups based on their item responses 

for the test. For all examinees, we defined the proportion of being classified into a mastery group 

as 𝜈𝑐 (𝑐 = 1,2, ⋯ ,9). The sum of 𝜈𝑐 equals 1 (∑ 𝜈𝑐 = 1) 9
𝑐=1 . Like we mentioned in the Chapter 

2 about the structural model for dichotomous attributes, we treat the last attribute profile which 

has the mastery level for all of the attributes being measured by the test as the reference group. 

To represent the attribute profiles in the structural model, we use dummy variables analogous to 

those used in the measurement model. Table 3.3 shows the 9 attribute profiles, or mastery 

groups, and the corresponding dummy variables. 

Using these dummy variables, the structural model for polytomous attributes contains the 

main effects for all dummy variables and the interactions for all the combinations of the dummy 

variables. The proportion of examinees having attribute profile c is given by: 

𝜇𝑐 = log
𝜈𝑐

𝜈9
= 𝛾0 + 𝛾1,(1)

1 𝛼𝑐1
1 + 𝛾1,(1)

2 𝛼𝑐1
2 + 𝛾1,(2)

1 𝛼𝑐2
1 + 𝛾1,(2)

2 𝛼𝑐2
2 + 

𝛾2,(12)
11 𝛼𝑐1

1 𝛼𝑐2
1 + 𝛾2,(12)

12 𝛼𝑐1
1 𝛼𝑐2

2 + 𝛾2,(12)
21 𝛼𝑐1

2 𝛼𝑐2
1 + 𝛾2,(12)

22 αc1
2 𝛼𝑐2

2                         (3.3) 
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where 𝜇𝑐 is the natural log of the ratio of 𝜈𝑐 and 𝜈9; 𝛾0 is the intercept; 𝛾1,(1)
1  and 𝛾1,(1)

2  are the 

main effects for the first and second mastery levels of Attribute 1; 𝛾1,(2)
1  and 𝛾1,(2)

2  are the main 

effects for the first and second mastery levels of Attribute 2; 𝛾2,(12)
11  is the two-way interaction for 

the first mastery levels of Attribute 1 and 2; 𝛾2,(12)
12  is the two-way interaction for the first 

mastery level of Attribute 1 and the second mastery level of Attribute 2; 𝛾2,(12)
21  is the two-way 

interaction for the second mastery level of Attribute 1 and the first mastery level of Attribute 2; 

𝛾2,(12)
22  is the two-way interaction for the second mastery levels for Attribute 1 and Attribute 2. 

The main effects and interactions are present in the equation when the corresponding attribute 

profile has equal or higher mastery levels for the required attributes.  

To identify the model, the last attribute profile, the reference group, is fixed to equal 0:  

μ9 = log
𝜈9

𝜈9
= 0 = 𝛾0𝛾1,(1)

1 + 𝛾1,(1)
2 + 𝛾1,(2)

1 + 𝛾1,(2)
2 + 

𝛾2,(12)
11 + 𝛾2,(12)

12 + 𝛾2,(12)
21 + 𝛾2,(12)

22                                                   (3.4) 

Thus, we constrain the intercept to be equal to the negative of the sum of the remaining terms in 

the structural model: 

γ0 =  −(𝛾1,(1)
1 + 𝛾1,(1)

2 + 𝛾1,(2)
1 + 𝛾1,(2)

2 + 𝛾2,(12)
11 + 𝛾2,(12)

12 + 𝛾2,(12)
21 + 𝛾2,(12)

22 )       (3.5) 

Because the sum across μc terms equals 1, the proportion of examinees having each attribute 

pattern, νc, can be expressed as a function of μc: 

𝜈𝑐 =
exp(𝜇𝑐)

∑ exp(𝜇𝑐′)9
𝑐′=1

                                                          (3.6) 
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 General form of the PDCM structural model. For a test that measures A attributes, 

each attribute can have different mastery levels. Suppose Attribute a has 𝑙𝑎 levels, the number of 

mastery groups is ∏ 𝑙𝑎
𝐴
𝑎=1  and the number of structural components is (∏ 𝑙𝑎

𝐴
𝑎=1 ) − 1. The 

general form of the saturated structural model is: 

𝜇𝑐 = 𝛾0 + ∑ ∑ 𝛾1,(𝑎)
𝑙 𝛼𝑎

𝑙𝑙𝑎−1
𝑙=1

𝐴
𝑎=1 + ∑ ∑ ∑ ∑ 𝜆2,(𝑎,𝑎′)

𝑙𝑙′
𝛼𝑎

𝑙 𝛼𝑎′
𝑙′𝑙

𝑎′−1

𝑙′=1
𝐴
𝑎′=𝑎+1

𝑙𝑎−1
𝑙=1

𝐴−1
𝑎=1 + ⋯           (3.7) 

Where 𝛾0 is the intercept; 𝛾1,(𝑎)
𝑙  is the main effect for the lth level of Attribute a; 𝜆2,(𝑎,𝑎′)

𝑙𝑙′
 is the 

two-way interaction for the lth level of Attribute a and 𝑙′th level of Attribute 𝑎′; and the ellipses 

represent the higher-order interaction terms for different levels of different attributes. Again, we 

have the constraint for the structural model parameters: 

𝛾0 = − (∑ ∑ 𝛾1,(𝑎)
𝑙𝑙𝑎−1

𝑙=1
𝐴
𝑎=1 + ∑ ∑ ∑ ∑ 𝛾2,(𝑎,𝑎′)

𝑙𝑙′𝑙
𝑎′−1

𝑙′=1
𝐴
𝑎′=𝑎+1

𝑙𝑎−1
𝑙=1

𝐴−1
𝑎=1 + ⋯ )               (3.8) 

The membership proportion for mastery group c is  

𝜈𝑐 =
exp(𝜇𝑐)

∑ exp(𝜇𝑐′)
∏ 𝑙𝑎

𝐴
𝑎=1

𝑐′=1

                                                              (3.9) 

 Once νc is estimated, we can further calculate the base rate for each attribute at each 

level. For example, for Attribute a, the base rate for the lth level 𝑝𝑎𝑙 is 

𝑝𝑎𝑙 = ∑ 𝜈𝑐𝑐∈{𝜶𝒄|𝛼𝑐𝑎=𝑙}                                                          (3.10) 

which is the sum of all the membership proportions of attribute profiles that measure the level l 

of Attribute a. Since 𝑝𝑎𝑙 is the marginal membership proportion of Attribute a, the sum of 𝑝𝑎𝑙 

across all levels for Attribute a equals 1.  
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The Constrained Polytomous-attribute Diagnostic Classification Model (cPDCM) 

 The constrained PDCM (cPDCM) is more parsimonious version of the PDCM. 

Parsimony is achieved by making assumptions about the magnitude of log-odds increase of 

correct response between mastery levels. The cPDCM uses ordinal values for attribute mastery 

levels as latent predictors; the result of ordinal-valued attribute level is that the main effects are 

constrained to be the same for each attribute level, and the interaction terms are constrained to a 

specific pattern. As a result, the cPDCM has the same number of the item parameters as the 

dichotomous LDCM, which is considerably less complex than the PDCM. Since the cPDCM 

requires fewer item and structural parameters, if the data fit the cPDCM model, we expect we 

would need a shorter test length and a smaller sample size to achieve the same level of 

classification accuracy as the PDCM.  

Templin and Bradshaw (2014) first proposed the model under the unidimensional DCM 

(UDCM) for multi-category attributes. We generalized the idea to a general multidimensional 

polytomous-attribute DCM in this section. von Davier (2005) also demonstrated the GDM could 

classify examinees into polytomous mastery levels. The GDM is specified in a sufficiently broad 

way to share similarities with the cPDCM. The attribute levels of the GDM were defined loosely 

as any value. For the cPDCM, we define them as nonnegative integers, such as 0, 1, 2…. For the 

GDM, the Q-matrix is also sufficiently general to be polytomous or dichotomous; for the 

cPDCM the entries are dichotomous. The cPDCM differs from the GDM in that the cPDCM 

contains all possible interactions such that the item behavior is more flexibly and 

comprehensively parameterized under the cPDCM. 
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The cPDCM Measurement Model 

The cPDCM does not require dummy variables for the polytomous attributes mastery 

levels where these polytomous attributes follow the same categorical distribution as mentioned in 

the previous section. Instead, we consider the attribute latent mastery levels as predictors in the 

measurement model. For example, we assume Item i measures Attribute 1 and 2. Each attribute 

has 3 levels where 0 represents non-mastery, 1 represents intermediate mastery and 2 represents 

mastery. The item response probability for Item i given examinee e with attribute profile 𝜶𝑒 is 

log
𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝜶𝑒)
= 𝜆𝑖,0 + 𝜆𝑖,1,(1)𝛼𝑒1 + 𝜆𝑖,1,(2)𝛼𝑒2 + 𝜆𝑖,2,(1,2)𝛼𝑒1𝛼𝑒2               (3.11) 

where 𝜆𝑖,0, 𝜆𝑖,1,(1), 𝜆𝑖,1,(2) and 𝜆𝑖,2,(1,2) are the intercept, the main effect for Attribute 1, the main 

effect for Attribute 2, and the interaction between Attribute 1 and 2 respectively. The only 

difference in Equation (3.11) and the LCDM equation (Equation (2.4) in Chapter 2) is the 

possible attribute values. For the LCDM, 𝛼𝑒𝑎 ∈ {0,1} and for the cPDCM, 𝛼𝑒𝑎 ∈ {0,1, 2}.  

As a result of the cPDCM parameterization of the effects for polytomous attributes, the 

increase of the log-odds of the item response is constrained to be the same between any adjacent 

mastery levels of an attribute. Table 3.4 shows the possible attribute profiles for examinee e and 

the corresponding parameterizations of the log-odds of the item response.  

 Like the measurement model of the PDCM, the cPDCM has the monotonic constraints 

for the main effects and interactions to ensure that an examinee who has a higher mastery level 

of an attribute will have a higher item response probability than an examinee with lower mastery 

level of the attribute. After applying the analogous simplification as the previous section, we 

have  
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𝜆𝑖,1,(1) > 0, 𝜆𝑖,1,(2) > 0,  

𝜆𝑖,2,(1,2) > −𝜆𝑖,1,(1), 𝜆𝑖,2,(1,2) > −𝜆𝑖,1,(2) 

Compared to the PDCM which has 9 item parameters for item i, the cPDCM is much less 

complex and only contains 4 item parameters. The cPDCM reduces the number of item 

parameters by constraining all the PDCM main effects of an attribute across different levels to be 

the same, λi,1,(1) = 𝜆𝑖,1,(1)
1 = 𝜆𝑖,1,(1)

2 , and all the PDCM interactions across different attributes and 

their mastery levels to be the same, 𝜆𝑖,2,(1,2) = 𝜆𝑖,2,(1,2)
11 = 𝜆𝑖,2,(1,2)

12 = 𝜆𝑖,2,(1,2)
21 = 𝜆𝑖,2,(1,2)

22 . The 

general form of the cPDCM is the same as the LCDM except the latent attribute mastery level 

can be 0, 1, …, (𝑙𝑎 − 1) instead of only 0 and 1. For each item i, the number of item parameters 

needs to be estimated is 2𝐴𝑖, where 𝐴𝑖 is the number of attributes measured by item i.  

The cPDCM Structural Model 

Extending the cPDCM beyond unidimensional models requires specifying a structural 

model that will incorporate parameters to model the relationship between attributes and attribute 

levels. We propose the log-linear structural model that uses the same latent attribute variables as 

in the measurement model of the cPDCM. Using the same example for which we assume the test 

measures two attributes and each attribute has three mastery levels: non-mastery, intermediate 

mastery, and mastery, there are again 9 attribute profiles an examinee might be classified into. 

We again define 𝜈𝑐 as the proportion of examinees being in the attribute profile c. To express 𝜈𝑐 

on the probability scale as a function of 𝜇𝑐, we use the same equation as the structural model for 

the PDCM to describe the relationship, where 

𝜈𝑐 =
exp(𝜇𝑐)

∑ exp(𝜇𝑐′)9
𝑐′=1

                                                        (3.12) 
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where 𝜇𝑐 has the formualtion 

𝜇𝑐 = log
𝜈𝑐

𝜈9
= 𝛾0 + 𝛾1,(1)𝛼𝑐1 + 𝛾1,(2)𝛼𝑐2 + 𝛾2,(12)𝛼𝑐1𝛼𝑐2                   (3.13) 

αc1 and αc2 are the mastery levels for Attribute 1 and 2 for attribute profile c. The values of αc1 

and αc2 can be 0, 1, 2 representing the non-mastery level, intermediate level and mastery level. 

γ0 is the intercept of the structural model, representing the log of the proportion of the non-

mastery group and the mastery group; 𝛾1,(1) and 𝛾1,(2) are the main effects for Attribute 1 and 2, 

representing the change of the proportion of attribute profile c on the log scale compared to the 

non-mastery group;  𝛾2,(12) is the interaction between Attribute 1 and 2 which is present when 

both attributes in attribute profile c are at least intermediate levels. 

Since the last attribute profile 𝜶𝟗 = [2 2] is fixed as the reference group, we have  

𝜇9 = log
𝜈9

𝜈9
= 0 = 𝛾0 + 2 × 𝛾1,(1) + 2 × 𝛾1,(2) + 4 × 𝛾2,(12)                   (3.14) 

which is 

𝛾0 = −(2 × 𝛾1,(1) + 2 × 𝛾1,(2) + 4 × 𝛾2,(12))                              (3.15) 

 To define the general form of the structural model for the cPDCM, suppose a test 

measures A attributes, the general form for the structural model of the cPDCM is: 

𝜇𝑐 = 𝛾0 + ∑ 𝛾1,(𝑎)𝛼𝑐𝑎
𝐴
𝑎=1 + ∑ ∑ 𝛾2,(𝑎𝑎′)𝛼𝑐𝑎𝛼𝑐𝑎′

𝐴
𝑎′=𝑎+1

𝐴−1
𝑎=1 + ⋯                    (3.16) 

where 𝛼𝑐𝑎 and 𝛼𝑐𝑎′ are the mastery levels for Attribute 𝑎 and 𝑎′. The values for 𝛼𝑐𝑎 and 𝛼𝑐𝑎′ 

ranges from 0 to 𝑙𝑎 − 1 and 𝑙𝑎′ − 1, respectively, where 𝑙𝑎 and 𝑙𝑎′ are the numbers of mastery 

levels for Attribute 𝑎 and 𝑎′. 𝛾0 is the intercept; 𝛾1,(𝑎) is the main effect for Attribute 𝑎; and 
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𝛾2,(𝑎𝑎′) is the interaction between Attribute 𝑎 and 𝑎′. The ellipsis represents the sum of the three-

way or higher-order interactions. 

We again have the constraint for the parameters of the structural model that stems from 

setting the kernel of the function equal to zero for the reference group, where 

𝛾0 = − (∑ 𝛾1,(𝑎)(𝑙𝑎 − 1)𝐴
𝑎=1 + ∑ ∑ 𝛾2,(𝑎𝑎′)

𝐴
𝑎′=𝑎+1

𝐴−1
𝑎=1 (𝑙𝑎 − 1)(𝑙𝑎′ − 1) + ⋯ )           (3.17) 

The base rate for each attribute at each level is defined the same as Equation (10) in the previous 

section. 
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Table 3.1 

Example Dummy Code for Attribute with Three Mastery Levels 

Mastery Levels 

(𝛂𝐞𝐚) 

Dummy Variables 

αea
1  αea

2  

0 0 0 

1 1 0 

2 1 1 

 

 

 

 

 

Table 3.2 

Dummy Variables and Thresholds for Different Mastery Levels 

 

 

  

Mastery 

Levels  

Dummy  

Variables 

Conditional Log-odds of Correct Response 

𝛂𝐞𝟏 αe2 αe1
1  αe1

2  αe2
1  αe2

2  log
𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝜶𝑒)
 

0 0 0 0 0 0 𝜆𝑖,0 

0 1 0 0 1 0 𝜆𝑖,0 + 𝜆𝑖,1,(2)
1  

0 2 0 0 1 1 𝜆𝑖,0 + 𝜆𝑖,1,(2)
1 + 𝜆𝑖,1,(2)

2  

1 0 1 0 0 0 𝜆𝑖,0 + 𝜆𝑖,1,(1)
1  

1 1 1 0 1 0 𝜆𝑖,0 + 𝜆𝑖,1,(1)
1 + 𝜆𝑖,1,(2)

1 + 𝜆𝑖,2,(12)
11  

1 2 1 0 1 1 𝜆𝑖,0 + 𝜆𝑖,1,(1)
1 + 𝜆𝑖,1,(2)

1 + 𝜆𝑖,1,(2)
2 + 𝜆𝑖,2,(12)

11 + 𝜆𝑖,2,(12)
12  

2 0 1 1 0 0 𝜆𝑖,0 + 𝜆𝑖,1,(1)
1 + 𝜆𝑖,1,(1)

2  

2 1 1 1 1 0 𝜆𝑖,0 + 𝜆𝑖,1,(1)
1 + 𝜆𝑖,1,(1)

2 + 𝜆𝑖,1,(2)
1 + 𝜆𝑖,2,(12)

11 + 𝜆𝑖,2,(12)
21  

2 2 1 1 1 1 
𝜆𝑖,0 + 𝜆𝑖,1,(1)

1 + 𝜆𝑖,1,(1)
2 + 𝜆𝑖,1,(2)

1 + 𝜆𝑖,1,(2)
2 + 𝜆𝑖,2,(12)

11

+ 𝜆𝑖,2,(12)
21 + 𝜆𝑖,2,(12)

22  
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Table 3.3 

Attribute Profiles and the Corresponding Threshold 

Mastery 

Levels  

Threshold 

αe1 αe2 log
𝑃(𝑋𝑒𝑖 = 1|𝜶𝑒)

𝑃(𝑋𝑒𝑖 = 0|𝜶𝑒)
 

0 0 𝜆𝑖,0 

0 1 𝜆𝑖,0 + 𝜆𝑖,1,(2) 

0 2 𝜆𝑖,0 + 2 ∙ 𝜆𝑖,1,(2) 

1 0 𝜆𝑖,0 + 𝜆𝑖,1,(1) 

1 1 𝜆𝑖,0 + 𝜆𝑖,1,(1) + 𝜆𝑖,1,(2) + 𝜆𝑖,2,(1,2) 

1 2 𝜆𝑖,0 + 𝜆𝑖,1,(1) + 2 ∙ 𝜆𝑖,1,(2) + 2 ∙ 𝜆𝑖,2,(1,2) 

2 0 𝜆𝑖,0 + 2 ∙ 𝜆𝑖,1,(1) 

2 1 𝜆𝑖,0 + 2 ∙ 𝜆𝑖,1,(1) + 𝜆𝑖,1,(2) + 2 ∙ 𝜆𝑖,2,(1,2) 

2 2 𝜆𝑖,0 + 2 ∙ 𝜆𝑖,1,(1) + 2 ∙ 𝜆𝑖,1,(2) + 4 ∙ 𝜆𝑖,2,(1,2) 
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CHAPTER 4 

SIMULATION AND EMPERICAL STUDY DESIGN 

To investigate the proposed PDCM and cPDCM, this chapter presents the designs of two 

simulation studies to investigate the performance of the models and the design of an empirical 

study to illustrate the application of the PDCM and the cPDCM. The simulation studies will 

investigate, respectively, 1) the efficacy of both models with respect to the accuracy of parameter 

estimation and 2) the performance of the models under various conditions including conditions 

where the models are misspecified. The first simulation study purports to provide a general 

guidance of the test design, the sample size requirement, and the anticipation of the item 

parameter estimation and attribute classification accuracy when applying the two PDCMs.  The 

second simulation study help test developers to better understand the trade-offs when selecting 

between the two models in practice.  The empirical study shows an example of using the PDCM 

and the cPDCM to provide polytomous mastery levels to examinees and the conduct item 

analysis. The results of the three studies are presented in Chapter 5. 

Simulation Study 1: Investigation of PDCM Estimation and Examinee Classification 

 The simulation study was designed to examine the performance of the PDCM under 

various conditions. It aims to provide insights to researchers and assessment developers about 

conditions required for the models to provide accurate diagnostic feedback for examinees’ 

polytomous attribute mastery levels. Results will provide insights into the number of examinees 

and items required to calibrate a PDCM-based assessment and achieve reasonably accurate item 

parameters and examinee classifications. 
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 Table 4.1 shows the summary of the simulation conditions. In this study, we manipulated 

6 factors: number of attributes (2 levels), number of attribute levels (2 levels), base rate (2 

levels), test length (2 levels), test complexity (2 levels), and sample size (4 levels). Crossing 

these levels yielded 128 conditions. The correlations among attribute pairs were fixed to be .70 

across all the simulation conditions. Under all conditions, the generating model was the hybrid 

PDCM; when the attributes only had two levels, the PDCM is equivalent to the LCDM. The 

estimation models were always fixed to be the generating model. We conducted 50 replications 

for each condition. The simulation study was conducted using Mplus version 7.4 (Muthén & 

Muthén, 2012).   

Number of Attributes 

 Conditions included assessments measuring 1, 2 or 3 attributes. Though DCMs are more 

often designed for assessments measuring more than one attribute (e.g., Bradshaw et al., 2014; 

Choi, 2009; de la Torre, 2011; Henson, et al., 2009; Kunina-Habenicht, Rupp, & Wilhem, 2012; 

Madison & Bradshaw, 2014; Bradshaw & Madison, 2015; Templin & Hoffman, 2013), we first 

evaluate the PDCM under the simplest simulation condition where a test measures only one 

attribute with more than two mastery levels. One application of a one-attribute test was 

illustrated using four mastery levels (beginning, basic, developing, proficient) in the context of a 

large-scale state test (Templin & Bradshaw, 2013) where the UDCM was equivalent to the 

cPDCM. In addition to the one-attribute conditions, we included conditions with either 2 or 3 

attributes. DCM applications with dichotomous attributes have typically investigated between 1 

attribute (Templin & Bradshaw, 2013) and 18 attributes (Henson & Templin, 2004) with the 

majority ranging from 3 to 5 attributes (e.g., Choi, 2009; Henson et al., 2009; de la Torre, 2011; 

Kunina-Habenicht et al., 2012, Templin & Hoffman, 2013). In our simulation study, our 
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investigation focuses on the smaller end of this range because the PDCM and cPDCM are 

expected to require larger samples and longer assessments than dichotomous attribute DCMs. 

Number of Attribute Levels 

 For all assessments that measure one, two, or three attributes, we simulated assessments 

that either contained all attributes with two mastery levels and or all attribute with three mastery 

levels. We defined the two mastery levels for Attribute a as non-mastery (𝛼𝑎 = 0) and mastery 

(𝛼𝑎 = 1). Under the dichotomous attribute conditions, examinees were classified into 2 attribute 

profiles for the one-attribute assessments, 4 attribute profiles for the two-attribute assessments, 

and 8 attribute profiles for the three-attribute assessments. When attributes had two mastery 

levels, the LCDM was used as generating and estimation model. Note that the dichotomous-

attribute LCDM is the equivalent to the PDCM when all attributes have two mastery levels. The 

LCDM item parameter estimates and attribute classification accuracies were then used as a 

baseline to compare the results of the PDCM under the conditions with three mastery levels. We 

defined the three attribute mastery levels as non-mastery (𝛼𝑎 = 0), intermediate mastery (𝛼𝑎 =

1), and mastery (𝛼𝑎 = 2). The numbers of attribute profiles for the one-, two-, and three-

attribute assessments are 3, 9 and 27 respectively.  

Test Length 

 We examined the test lengths under short and long conditions. In the short test condition, 

each attribute was measured by at least eight items to yield an accurate and reliable classification 

(Templin and Bradshaw, 2013). More specifically, the short test length was 8 items for the one-

attribute tests, 16 items for the two-attribute tests, and 24 items for the three-attribute tests, where 

each attribute is measured at least by 8 items. For the long test condition, we doubled the number 
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of items in the test, that is, the one-attribute tests had 16 items, the two-attribute tests had 32 

items, and the three-attribute tests had 48 items, where each attribute is measured by twice as 

many items as in the short test condition, i.e., at least 16 items. 

Test Complexity 

 We simulated tests under two test complexities. The first type of tests contained only 

simple items, meaning each item measured only one attribute. The second type of test contained 

a blend of simple items and complex items which measured two or more attributes. Across all 

conditions, we simulated the first type of tests to measure either one or three attributes and the 

second type of tests to measure two or three attributes, such that both types of tests were 

examined under the same number of conditions. 

Tests with simple items. For the one-attribute test conditions, the Q-matrix was a 8 × 1 

matrix and each element equals 1, meaning each item measured the attribute, which was Q =

(1,1,1,1,1,1,1,1)t. Table 4.2 shows the item parameters for the test when the attribute had only 

two mastery levels. In this case, the PDCM was equivalent to the LCDM. We fixed the intercepts 

to be -1.250, meaning the item response probability was .223 when an examinee was not a 

master of the attribute. We fixed the main effects to be 2.250, 2.750, 3.000, 3.500, and these 

items were repeated twice for the test. The corresponding probabilities of answering these items 

correctly were .731, .818, .852 and .905 when an examinee was a master of the attribute. We 

duplicated these 8 items for the long test measuring 16 items. 

 Table 4.3 shows the item parameters for the one-attribute tests measuring three mastery 

levels using the same Q-matrix that was used under the conditions for the two-level tests. The 

intercepts again were fixed to -1.250. The generating model for all items is a blend of the PDCM 
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and the cPDCM, termed the hybrid PDCM in this dissertation.  Items 1 to 4 were simulated to be 

like the cPDCM, where the main effects for the intermediate mastery levels and the main effects 

for the mastery levels to be the same. More specifically, the main effects for Items 1 to 4 were 

generated as 1.000, 1.250, 1.500 and 1.750. The item response probabilities for examinees with 

the intermediate mastery level ranged from .438 to .622, and the item response probabilities for 

examinees with the mastery level ranged from .679 to .905.  

We fixed the main effect for the intermediate level and main effect for the mastery level 

to be different for Items 5 to 8. Thus, the generating model for Items 5 to 8 was the PDCM. 

Items 5 and 6 had larger main effects compared to Items 7 and 8. This means Item 5 and 6 had 

higher discriminations and more statistical power to classify examinees into the attribute profiles. 

Item 5 and Item 7 had smaller main effects for the intermediate levels than the main effects for 

the mastery levels, and Item 6 and Item 8 had larger main effects for the intermediate level than 

the main effects for the mastery levels. The item response probabilities for the intermediate 

mastery group ranged from .378 to .731, and the item response probabilities for the mastery 

group ranged from .777 to .905. We again repeated the 8 items for the 16-item test.  

For the three-attribute assessments with simple items, we fixed Item 1 to Item 8 to 

measure Attribute 1, Item 9 to Item 16 to measure Attribute 2, and Item 17 to Item 24 to measure 

Attribute 3. Each attribute was measured by eight items, and the item parameters for the eight 

items measuring each attribute were fixed the same as in the one-attribute assessments. We 

developed the test with 48 items measuring three attributes by repeating the 24 items twice. 

Tests with a blend of simple and complex items. For tests that contained complex 

items, the item parameters used in the simulation study are illustrated in Table 4.4 and Table 4.5. 



 

68 

Table 4.4 provides the item parameters for tests measuring two attributes with three mastery 

levels. The tests contained 16 items with 12 items (Item 1 to Item 12) measuring only one 

attribute and 4 items (Item 13 to Item 16) measuring two attributes. Most items in the tests were 

designed to be simple items because simple items only contribute to the classification of a 

specific attribute while complex items contribute to the classification of all required attributes by 

the item. Including enough simple items for each attribute can guarantee that the test contains 

enough information to provide accurate classification for all attributes. Again, the generating 

model for tests that contained complex items was the hybrid PDCM. 

For simple items, the intercepts were -1.250 and the main effects for the intermediate 

mastery level and the main effects for the mastery level ranged from 1.000 to 2.250. The 

corresponding item response probabilities was .223 for the nonmastery group and ranged 

from .438 to .731 for the intermediate mastery group and .679 to .905 for the mastery group. The 

main effects for the intermediate mastery level and mastery level were also designed for all 

possible situations. More specifically, Item 1 to Item 4 and Item 7 to Item 10 had equal main 

effects for the intermediate mastery level and mastery level, meaning the corresponding 

generating model was the cPDCM. Item 5 and Item 11 had smaller main effects for the 

intermediate mastery levels, and Item 6 and Item 12 had larger main effects for the intermediate 

mastery levels. Thus, the generating model for Item 5, 6, 11, and 12 was the PDCM. 

Item 13 to Item 16 were complex items that measured two attributes. Since these items 

provided information for both attributes, the item response probabilities for different mastery 

groups were more spread out. The intercepts were set to be -1.500 with the corresponding item 

response probabilities for the nonmastery group equal to .182. The main effects for the 

intermediate mastery level and mastery level were set to be the same for Item 13 to Item 15, 
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meaning the generating model was the cPDCM. The interactions were set to be zero, positive 

and negative for each item. Item 16 was a complex item that had a larger main effect for the 

mastery level than for the intermediate mastery level, meaning the generating model was the 

PDCM. 

Table 4.5 shows the item parameters for the assessments that contains complex items 

measuring three attributes with three mastery levels. The test length was 24 items where Item 1 

to Item 18 measured one attribute and Item 19 to Item 24 measured two attributes. Each attribute 

was measured by 10 items including 6 simple items and 4 complex items. The item parameters 

were fixed the same as Table 4.3 for each attribute for the simple items. The interactions for the 

complex items were again set to be zero, positive or negative. 

Sample Sizes 

 The sample sizes for each condition were 1000, 2000, 5000, and 10000. These sample 

sizes had broader ranges than the sample sizes used in the previous simulation studies for 

dichotomous DCMs (e.g., Rupp & Templin, 2008; Bradshaw & Templin, 2012; Cui, Gierl, & 

Chang, 2012; Kunina-Habenicht, Rupp, & Wilhem, 2012; Madison & Bradshaw, 2014; 

Bradshaw & Madison, 2015) because the PDCM and the cPDCM are more complex models than 

the DCMs for dichotomous attributes and are expected to require more examinees to yield an 

accurate estimation. 

Base Rates 

 The base rate of an attribute in the PDCM and cPDCM represents the proportion of 

examinees in each mastery level. We examined the estimation of the PDCM under two types of 

base rates: 1) the base rates were equal across mastery levels; 2) the base rates were not equal 
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across mastery levels. More specifically, the first type of base rates means for the conditions 

where attributes measured two mastery levels, the base rates are 50% for the non-mastery class 

and 50% for the mastery class for each attribute. For the condition where attributes measured 

three mastery levels, the base rates were 33% for the non-mastery class, 33% for the intermediate 

mastery class, and 34% for the mastery class.  

 For the second type of base rates, the base rates for attributes with two mastery levels 

were 30% for the non-mastery group and 70% for the mastery group; the base rates for attributes 

with three mastery levels were 20%, 30% and 50%.  

Evaluation Criteria 

 We evaluated the performance of the estimation of the dichotomous-attribute LCDM, the 

PDCM with respect to the convergence rates, the item parameter estimates, and the classification 

accuracy. The convergence rate for each condition was computed by the percentage of the 

converged replications compared to the overall number of replications. The item parameter 

estimates were examined using Root Mean Square Error (RMSE) to measure the extent to which 

the estimated item parameters are different from the generating values. The classification 

accuracy was evaluated for each attribute respectively and then for the whole attribute profile.  

Convergence Rate. Since the PDCM has more item parameters and classifies examinees 

into more attribute profile groups compared to the LCDM, the model is more complex and 

therefore more difficult to converge. For example, consider an item that measures two attributes 

and each attribute has three mastery levels. The PDCM has 9 item parameters including one 

intercept, four main effects, and four interactions for the item. Examinees with different mastery 

levels for each attribute have 9 different item response probabilities. These 9 different 



 

71 

probabilities range from 0 to 1. When there are not enough examinees in each attribute profile 

group, there is limited information available to determine the value of the item response 

probabilities making convergence difficult to achieve. Therefore, the convergence rate for each 

condition is an important index to inform the sample size and test design requirements when 

using the PDCM and the cPDCM.  

Accuracy of Item Parameter Estimates. The accuracy of the item parameter estimates 

was evaluated using the root mean square error (RMSE), defined as 

RMSE(𝜆̂) = √
1

R
∑ (𝜆̂ − 𝜆)

2𝑅
𝑟=1                                             (4.1) 

where λ is the true item parameter, λ̂ is the estimate of λ, and R is the number of converged 

replications. RMSE measures the Euclidean distance between the item parameter estimate and 

the true item parameter. RMSE does not provide information about whether an item parameter is 

over- or under- estimated. Instead, it provides the average of the bias on the Euclidean distance 

measure across all the replications. 

Classification Accuracy. We computed the classification accuracies for each attribute 

and the attribute profile.  The classification accuracy for an attribute is the percentage of the 

examinees whose estimated mastery levels are the same as their true mastery level. The 

classification accuracy for the attribute profile is the percentage of the examinees whose 

estimated mastery levels for all attributes are the same as their true mastery levels. 

Attribute Reliability. Attribute reliability (Bradshaw and Templin, 2013) is a statistic 

that measures the extent to which an examinee is classified into the same attribute mastery level 
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if he or she theoretically retakes the test. Suppose Attribute a has 𝑙𝑎 mastery levels, the steps of 

computing the attribute reliability for Attribute a is described as follows: 

Step 1. Compute the attribute posterior for each examinee, 𝑃(𝛼𝑒𝑎 = 𝑙|𝑿𝒆). The posterior 

probabilities we obtained from the EM algorithm of Mplus were used as the probability elements 

of the categorical distribution. 

Step 2. Compute a 𝑙𝑎 by 𝑙𝑎 table for each examinee where the entries of the table are the 

corresponding probabilities under the test and re-test classification. Assuming an examinee’s test 

and re-test item responses are independent, we treated the probabilities of being classified into 

each mastery group for the two tests to be identical. For example, if an examinee’s posterior 

probability of being classified into nonmastery group for Attribute a, 𝑃(𝛼𝑒𝑎 = 0|𝑿𝒆), is equal to 

𝑝𝑒
0, the entry (1,1) of the table is 𝑝𝑒

0 × 𝑝𝑒
0. 

Step 3. Compute the average of the 𝑙𝑎 by 𝑙𝑎 table entries for all examinees. This table 

shows the distribution of the attribute posteriors of the population under the theoretical test-retest 

situation. 

Step 4. Compute the polychoric correlation for the 𝑙𝑎 by 𝑙𝑎 table in Step 3. The 

polychoric correlation represents how test and retest posteriors are correlated and is considered a 

measure of how stable the classification is for Attribute a is expected to be across mastery levels.  

Simulation Study 2: An Investigation of The Misspecification of Attribute Mastery Levels for 

The Polytomous-Attribute DCM 

The second simulation study is centered on investigating the degree to which: 1) 

commonly-used model fit indices can detect the over- and under-specification of attribute 

mastery levels, 2) examinees are misclassified when the mastery levels of an attribute are over- 
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and under- specified,  3) if examinees were misclassified, the classification of examinees 

changed compared to their “true” mastery levels. 

 In this study, we generated the item responses under the LCDM and the hybrid PDCM, as 

general forms of dichotomous and polytomous DCMs. Specially, we investigated two 

misspecification conditions: two-level attributes were misspecified as three-level attributes, and 

three-level attributes were misspecified as two-level attributes. For the first set of conditions, the 

generating model was the LCDM and the estimation models were the PDCM and the cPDCM. 

Examinees were generated from two mastery level groups and classified into three mastery 

levels. Thus, some examinees originally belonging to the mastery or the nonmastery groups 

might be possibly classified into the intermediate mastery level.  

For the second set of conditions, the generating model was the hybrid PDCM and the 

estimation models were the LCDM and the cPDCM respectively. For the LCDM, examinees 

were forced to be classified into fewer mastery groups than their generating number of mastery 

groups. Thus, examinees who were from the intermediate mastery level group were classified 

into either the nonmastery or mastery group. 

Simulation Study Design 

 The simulation study aimed to investigate the misspecification of the attribute mastery 

levels. Table 4.6 shows the summary of all conditions. We manipulated the simulation conditions 

through the following factors: two misspecified attribute mastery levels, two number of attributes 

measured by the test (2 and 3 attributes), two attribute mastery levels (2 and 3 levels), two test 

lengths (short and long), four sample sizes (1000, 2000, 5000, 10000), two base rates (equal and 

unequal), and three estimation models (LCDM, cPDCM, and PDCM). The total number of 
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conditions was 144 and each condition had 50 replications. The simulation study was again 

conducted by Mplus version 7.4 (Muthén & Muthén, 2012). 

 The simulation conditions were similar to Study 1. The main difference lies in that we 

estimated the simulated responses for each condition under two types of measurement models: 

LCDM and the hybrid PDCM. The model misspecification was examined when the tests 

measured one or three attributes with only simple items. The short test length conditions 

measured each attribute with 8 items, and the longer tests measured each attribute with 16 items. 

We doubled the short test length items for the long test length conditions. For each test condition, 

the true item parameters were fixed the same as presented in Study 1. Examinees’ base rates 

were again simulated under the equal and unequal conditions with the values of the proportions 

the same as in Study 1. The attribute correlations were again fixed to .700. 

Generating Model 

For the tests that measured attributes with two mastery levels, the item parameters were 

fixed to be the same as in Table 4.2. Examinees’ item responses were generated under the 

LDCM. For the tests that measured attributes with three mastery levels, the item parameters were 

fixed to be the same as in Table 4.3. The generating models was the hybrid PDCM. All tests 

measured either one or three attributes. 

Estimation Model 

 For each simulation condition, the item responses were calibrated by the LCDM with two 

attribute mastery levels, the PDCM with three mastery levels, and the cPDCM with three 

mastery levels to investigate the performance of the under-specified and over-specified attribute 

mastery level conditions. When attributes measured two mastery levels, we simulated the item 
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responses using the LCDM and for estimation models used the LCDM, the over-specified 

PDCM with three attribute mastery levels, and the overspecified cPDCM also with three attribute 

mastery levels. Similarly, when attributes measured three mastery levels, we simulated the item 

responses by the hybrid PDCM  with three attribute mastery levels and estimated by the under-

specified LCDM, the over-specified PDCM, and the underspecified cPDCM with three attribute 

mastery levels. 

Evaluation Criterion 

 We evaluated the results by comparing the model convergence rate, model selections 

under different model fit indices, attribute level classifications, and attribute reliabilities under 

different model misspecifications. 

Model Convergence Rate. We first evaluate the model convergence rates for all model 

misspecification conditions. Since each condition had 50 replications, the convergence rates 

were computed as the percentage of converged results among all the replications. This criterion 

examines whether there is a negative influence on model convergence when the generating 

model was misspecified. 

 Model Fit Index. For each condition, we computed three information-based criteria: 

Akaike’s Information Criterion (AIC; Akaike, 1973, 1974, 1987), Bayesian Information 

Criterion (BIC; Schwarz, 1978) and the sample-size adjusted BIC (SABIC; Sclove, 1987) for all 

converged replications and summarized the best-fitting model for each index. In our simulation, 

there were three estimation models including two misspecified models and a “true” model for 

each generating model. We summarized the model selection results using the percentage that 

each model was selected under all converged replications. If a replication was not converged, the 
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model selection indices were treated as missing and the model corresponding to the replication 

was not the best-fitting model. For example, assume AIC was used as the model selection 

criterion when the generating model was the LCDM and we obtained converged results for a 

replication when the estimation models was the LCDM or the cPDCM except the PDCM. When 

summarizing the results, we thus considered the AIC for the PDCM was missing and the PDCM 

was not the best-fitting model for this replication. 

 AIC, BIC and SABIC are based on the model likelihood estimation and were adjusted 

based on the number of model parameters and sample size. The AIC is calculated as 

AIC = −2LL + 2k                                                       (4.2) 

and the BIC is calculated as 

BIC = −2LL + k ∗ ln(n)                                                  (4.3)          

The SABIC is defined as 

−2LL + k ∗ ln(n* ((n +2)/24)) 

where LL represents the loglikelihood, k is the number of model parameters, and n is the sample 

size. 

Attribute Classification. The model misspecification might also influence the attribute 

classification. We report the average percentages of examinees from each mastery level of the 

generating model classified into each mastery level under the misspecified model.  For example, 

when the generating model was a blend of the PDCM and the cPDCM, meaning attributes had 

three mastery levels, the LCDM misspecified attributes as dichotomous and classified examinees 

into two mastery levels. We compared examinees’ true mastery levels and the misspecified 
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mastery levels, especially how examinees who had true intermediate mastery levels were 

classified into the mastery or nonmastery group in the misspecified condition. Similarly, when 

the generating model was the LCDM, meaning attributes had two true mastery levels, examinees 

were classified into three mastery levels and the estimation model was PDCM or cPDCM. We 

compared the proportions of examinees who originally possessed either nonmastery or mastery 

level of the two-level attribute were classified into each one of the three mastery levels for the 

misspecified attributes.  

 Attribute Reliability. The attribute reliabilities for the LCDM (Bradshaw & Templin, 

2013) and for the PDCM introduced in Study 1 were computed respectively when the estimation 

model classified examinees into two or three mastery levels. The attribute reliabilities measure 

the extent to which an examinee is expected to be classified into the same attribute mastery level 

if he or she retakes the test. A higher value of attribute reliability means the classification is more 

stable.  

Empirical Study Design  

 To demonstrate the application of the PDCM, we analyzed the post-test data from a 

large-scale mathematics test collected over two years (see also, Madison, 2016; Bottge, Ma, 

Gassaway, Toland, Butler, & Cho, 2014; Bottge, Toland, Gassaway, Butler, Choo, Griffen, & 

Ma, 2015). Table 4.7 shows the Q-matrix of the test. The test contained 21 items and measured 

four mathematics problem-solving skills: ratios and proportional relationships, measurement and 

data, number system (fractions), and geometry (graphing). Each skill was measured by 4, 6, 5, 6 

items respectively. Every item was a simple item where only one attribute was measured by the 

item. A total of 874 students from Grade 6 to Grade 8 participated in the test.  
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Measurement Model 

In this study, we used the LCDM, PDCM, and cPDCM to analyze students’ responses. 

We estimated the three models using maximum likelihood estimation by Mplus 7.4. For all 

estimation models, we assumed each attribute had either 2 levels: nonmastery and mastery, or 3 

levels: nonmastery, intermediate mastery, and mastery. For this four-attribute assessment, there 

were 16 combinations of mastery levels which was shown in Table 4.8. The estimation models 

were labeled as LCDM, PDCM-1 to PDCM-15, and cPDCM followed by the mastery levels for 

each attribute. 

The LCDM as an estimation model had all attributes with two mastery levels. Since all 

items were simple items, each item contained only one intercept and one main effect as item 

parameters. PDCM-1 to PDCM-15 had at least one attribute with three mastery levels. When an 

attribute had two mastery levels, the PDCM was equal to the LCDM which contained one 

intercept and one main effect. When an attribute had three mastery levels, the PDCM had three 

item parameters per item: one intercept, one main effect for the intermediate mastery level group, 

and one main effect for the mastery group. We then compared the model fit indices and chose the 

best fit model among the 16 models. We further compared the best-fitting PDCM with its 

corresponding cPDCM. Since the main effects are constrained to be equal in the cPDCM, only 

one intercept and one main effect was estimated for each item. 

Evaluation Criteria 

Item Characteristic Bar Charts (ICBCs). For the real data analysis, we first evaluated 

the item parameter estimation accuracy. We illustrate the ICBCs for each item and compared the 

estimated item response probabilities and the observed proportions of correct responses for each 
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attribute profile. If the estimated item response probabilities and the observed proportion were 

close to each other, the item parameters for the item might be reasonably estimated and could 

reflect the behavior of the population answering the item.  

 Relative Fit. We used Akaike information criterion (AIC; Akaike, 1974), Bayesian 

information criterion (BIC; Schwarz, 1978), sample-size adjusted BIC, and to evaluate the model 

fit among the LCDM, PDCM, and cPDCM. Moreover, because the cPDCM was nested in the 

PDCM, we conducted the likelihood ratio test between the two models to check if the PDCM 

fitted significantly better than the more parsimonious cPDCM. 

 Attribute Classification. Finally, we evaluated the classification accuracies for each 

attribute and each level under the LCDM, PDCM and cPDCM. Because we did not know 

examinees’ “true” mastery levels for each attribute, we only compared the difference of 

classifications for the three models. For each estimated mastery group, we compared the 

subscores which were defined as the number of correct items for each attribute. If the 

classifications and subscores for each mastery level group under the PDCM and cPDCM were 

similar, the models might yield similar results and it might be reasonable to use the more 

parsimonious model. 
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Table 4.1 

Summary of Simulation Conditions for Study 1 

No. of 

Attributes 

No. of  

Mastery levels 

Test 

 length 

Test  

Complexity 

Base  

Rates 

Sample  

Sizes 

Generating  

Model 

Estimation 

Model 

Total No.  

of Conditions 

1 2 8, 16 Simple Equal, 

 Unequal 

1000, 2000,  

5000, 10000 

LCDM LCDM 16 

3 8, 16 Simple Equal,  

Unequal 

1000, 2000,  

5000, 10000 

PDCM PDCM 16 

2 2 16, 32 Complex Equal,  

Unequal 

1000, 2000,  

5000, 10000 

LCDM LCDM 16 

3 16, 32 Complex Equal,  

Unequal 

1000, 2000,  

5000, 10000 

PDCM PDCM 16 

3 2 24, 48 Simple,  

Complex 

Equal,  

Unequal 

1000, 2000,  

5000, 10000 

LCDM LCDM 32 

3 24, 48 Simple,  

Complex 

Equal,  

Unequal 

1000, 2000,  

5000, 10000 

PDCM PDCM 32 

               128 
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Table 4.2 

Item Parameters for One-Attribute Test with Two Mastery Levels 

Item Intercept Main 

Effect 

Non-mastery  

IRP 

Mastery IRP 

1 -1.250 2.250 .223 .731 

2 -1.250 2.250 .223 .731 

3 -1.250 2.750 .223 .818 

4 -1.250 2.750 .223 .818 

5 -1.250 3.000 .223 .852 

6 -1.250 3.000 .223 .852 

7 -1.250 3.500 .223 .905 

8 -1.250 3.500 .223 .905 

Note. IRP = Item Response Probability. 
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Table 4.3 

Item Parameters for The One-Attribute Test with Three Mastery Levels 

Item Intercept ME 

Level 1 

ME 

Level 2 

Nonmastery  

IRP 

Intermediate 

mastery 

IRP 

Mastery  

IRP 

Model 

1 -1.250 1.000 1.000 .223 .438 .679 cPDCM 

2 -1.250 1.250 1.250 .223 .500 .777 cPDCM 

3 -1.250 1.500 1.500 .223 .562 .852 cPDCM 

4 -1.250 1.750 1.750 .223 .622 .905 cPDCM 

5 -1.250 1.250 2.250 .223 .500 .905 PDCM 

6 -1.250 2.250 1.250 .223 .731 .905 PDCM 

7 -1.250 0.750 1.750 .223 .378 .777 PDCM 

8 -1.250 1.750 0.750 .223 .622 .777 PDCM 

Note. IRP = Item Response Probability. 
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Table 4.4  

Item Parameters for the Two-Attribute Complex Tests with Three Attribute Levels 

Items 

  Attribute 1 Attribute 2   
 Nonmastery  

IRP 

Interme

diate 

Mastery 

IRP 

Mastery 

IRP 

Model 

Intercept 
ME 

Level 1 

ME 

Level 2 

ME 

Level 1 

ME 

Level 2 

INX 

  

1 -1.250 1.000 1.000 0 0 0 .223 .438 .679 cPDCM 

2 -1.250 1.250 1.250 0 0 0 .223 .500 .777 cPDCM 

3 -1.250 1.500 1.500 0 0 0 .223 .562 .852 cPDCM 

4 -1.250 1.750 1.750 0 0 0 .223 .622 .905 cPDCM 

5 -1.250 2.000 2.250 0 0 0 .223 .679 .953 PDCM 

6 -1.250 2.250 1.250 0 0 0 .223 .731 .905 PDCM 

7 -1.250 0 0 1.000 1.000 0 .223 .438 .679 cPDCM 

8 -1.250 0 0 1.250 1.250 0 .223 .500 .777 cPDCM 

9 -1.250 0 0 1.500 1.500 0 .223 .562 .852 cPDCM 

10 -1.250 0 0 1.750 1.750 0 .223 .622 .905 cPDCM 

11 -1.250 0 0 1.250 2.250 0 .223 .500 .905 PDCM 

12 -1.250 0 0 2.250 1.250 0 .223 .731 .905 PDCM 

13 -1.500 1.000 1.000 1.000 1.000 0 .182 - .924 cPDCM 

14 -1.500 .500 .500 .500 .500 .500 .182 - .924 cPDCM 

15 -1.500 1.500 1.500 1.500 1.500 -.500 .182 - .924 cPDCM 

16 -1.500 .500 1.000 .500 1.000 .250 .182 - .924 PDCM 

Note. IRP = Item Response Probability. 
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Table 4.5 

Item Parameters for The Three-Attribute Test with Three Mastery Levels for the Complex Test Design 

   Attribute 1 Attribute 2 Attribute 3   Model 

Item Intercept ME ME ME ME ME ME INX 

   Level 1 Level 2 Level 1 Level 2 Level 1 Level 2   

1 -1.250 1.000 1.000 0 0 0 0 0 cPDCM 

2 -1.250 1.250 1.250 0 0 0 0 0 cPDCM 

3 -1.250 1.500 1.500 0 0 0 0 0 cPDCM 

4 -1.250 1.750 1.750 0 0 0 0 0 cPDCM 

5 -1.250 2.000 2.250 0 0 0 0 0 PDCM 

6 -1.250 2.250 1.250 0 0 0 0 0 PDCM 

7 -1.250 0 0 1.000 1.000 0 0 0 cPDCM 

8 -1.250 0 0 1.250 1.250 0 0 0 cPDCM 

9 -1.250 0 0 1.500 1.500 0 0 0 cPDCM 

10 -1.250 0 0 1.750 1.750 0 0 0 cPDCM 

11 -1.250 0 0 2.000 2.250 0 0 0 PDCM 

12 -1.250 0 0 2.250 1.250 0 0 0 PDCM 

13 -1.250 0 0 0 0 1.000 1.000 0 cPDCM 

14 -1.250 0 0 0 0 1.250 1.250 0 cPDCM 

15 -1.250 0 0 0 0 1.500 1.500 0 cPDCM 

16 -1.250 0 0 0 0 1.750 1.750 0 cPDCM 

17 -1.250 0 0 0 0 2.000 2.250 0 PDCM 

18 -1.250 0 0 0 0 2.250 1.250 0 PDCM 

19 -1.500 1.000 1.000 1.000 1.000 0 0 0 cPDCM 

20 -1.500 0.500 0.500 0 0 0.500 0.500 0.500 cPDCM 

21 -1.500 0 0 1.500 1.500 1.500 1.500 -0.500 cPDCM 

22 -1.500 0.500 1.000 0.500 1.000 0 0 0 PDCM 

23 -1.500 0.500 1.000 0 0 0.500 1.000 0.250 PDCM 

24 -1.500 0 0 0.500 1.000 0.500 1.000 -0.250 PDCM 
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Table 4.6 

Summary of Simulation Conditions for Study 2 

No. of 

Attributes 

No. of  

Mastery levels 

Test 

 length 

Test  

Complexity 

Base  

Rates 

Sample  

Sizes 

Generating  

Model 

Estimation 

Model 

Total Number  

of Conditions 

1 2 8, 16 Simple Equal,  

Unequal 

1000, 2000,  

5000, 10000 

LCDM LCDM, PDCM, 

cPDCM 

48 

3 8, 16 Simple Equal,  

Unequal 

1000, 2000,  

5000, 10000 

Hybrid  

PDCM 

LCDM, PDCM, 

cPDCM 

48 

3 2 24, 48 Simple  Equal,  

Unequal 

1000, 2000,  

5000, 10000 

LCDM LCDM, PDCM, 

cPDCM 

48 

3 24, 48 Simple  Equal,  

Unequal 

1000, 2000, 

 5000, 10000 

Hybrid 

PDCM 

LCDM, PDCM, 

cPDCM 

48 

               144 

 

 



 

86 
 

Table 4.7 

Q-matrix for Empirical Study 

ItemNo Attribute 1 Attribute 2 Attribute 3 Attribute 4 

1 1 0 0 0 

2 0 1 0 0 

3 0 1 0 0 

4 0 0 1 0 

5 0 0 1 0 

6 0 0 1 0 

7 0 0 1 0 

8 0 0 1 0 

9 0 1 0 0 

10 0 1 0 0 

11 0 1 0 0 

12 0 1 0 0 

13 1 0 0 0 

14 1 0 0 0 

15 0 0 0 1 

16 0 0 0 1 

17 1 0 0 0 

18 0 0 0 1 

19 0 0 0 1 

20 0 0 0 1 

21 0 0 0 1 

Total 4 6 5 6 
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Table 4.8 

Estimation Models and Attribute Mastery Levels for Empirical Study 

Estimation Model Attribute 1 Attribute 2 Attribute 3 Attribute 4 

LCDM 2 2 2 2 

PDCM-1 3 2 2 2 

PDCM-2 2 3 2 2 

PDCM-3 2 2 3 2 

PDCM-4 2 2 2 3 

PDCM-5 3 3 2 2 

PDCM-6 3 2 3 2 

PDCM-7 3 2 2 3 

PDCM-8 2 3 3 2 

PDCM-9 2 3 2 3 

PDCM-10 2 2 3 3 

PDCM-11 3 3 3 2 

PDCM-12 3 3 2 3 

PDCM-13 3 2 3 3 

PDCM-14 2 3 3 3 

PDCM-15 3 3 3 3 

cPDCM 3 3 3 3 
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CHAPTER 5  

RESULTS 

Results of Simulation Study 1  

 We present the results for Study 1 under the 128 simulation conditions including: two test 

complexities, two test lengths (short and long), two base rates (equal and unequal), two numbers 

of attributes (1 and 2 or 3), two attribute mastery levels (2 and 3), four sample sizes (1000, 2000, 

5000, 10000). Results were summarized based on 50 replications for each condition by 

computing the convergence rate, the item parameter estimation accuracy, attribute classification 

accuracy, and attribute reliability.  

Convergence Rate

Table 5.1 shows the convergence rates for tests that contained only simple items. Note 

that these tests measured either one or three attributes with two or three mastery levels. The 

convergence rates for all conditions were quite high and above 98%.  There was no meaningful 

difference across conditions.  

When the tests contained both types of simple and complex items, the convergence rates 

decreased as shown in Table 5.2. The test conditions in Table 5.2 measured 2 or 3 attributes with 

2 or 3 mastery levels. In general, the tests that measured two-level attributes had higher 

convergence rates (ranging from 40% to 100%) than those for the tests that measured three-level 

attributes (ranging from 0% to 98%). As the sample size and the test length increased, the 

convergence rates increased for all conditions. When the tests measured two attributes with two 
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mastery levels, the convergence rates maintained a minimum of 96% for all conditions. For other 

conditions, the convergence rates increased from as low as 0% to above 86% as the sample size 

increased from 1000 to 10000. More specifically, the convergence rates were 0% when a test 

measured attributes with three mastery levels by 24 items and the sample size was 1000, and 

when a test measured attributes with three mastery levels by 48 items across all sample size 

conditions.  

 Table 5.3 and 5.4 present the convergence rates when examinees had unequal base rates 

across attribute mastery levels. The convergence rates for assessments that contain only simple 

items remained higher than 92% for all conditions. However, the convergence rates shown in 

Table 5.3 for assessments that contain both simple and complex items were slightly lower 

compared to Table 5.2 due to having fewer examinees in the nonmastery groups for all attributes. 

Especially, the convergence rates for the assessments measuring three attributes with three 

mastery levels were much lower ranging from 0% to 20%. Again, replications did not converge 

when the assessments contained 48 items and measured three attributes with three mastery 

levels. This result shows the fewer examinees in some groups brings difficulty to model 

convergence. 

Item Parameter Estimation 

Table 5.5 shows the average RMSE for the item parameters across converged replications 

for assessments measuring one attribute. The average RMSE for assessments where the attribute 

had two mastery levels ranged from 0.033 to 0.173. Specifically, the RMSE for the main effects, 

ranging from 0.054 to 0.173, were larger than the RMSEs for the intercepts, ranging from 0.033 

to 0.121. Moreover, the RMSE for item parameters of assessments with 16 items, ranging from 

0.037 to 0.173, were smaller than those for assessments with 8 items, ranging from 0.033 to 
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0.072. When the sample size reached 10000, the RMSE for item parameters for both test lengths 

were more stable around 0.030 for intercepts and 0.050 for main effects. The average RMSE for 

assessments where the attribute had three mastery levels were larger, ranging from 0.046 to .520, 

excluding two conditions where RMSE was extremely high as 164.284 and 139.967. In these 

two conditions, RMSE indicated the model did not converge to a stable value for the main effect 

for the mastery level. When the test length increased from 8 to 16, the RMSE decreased 

significantly from larger than 0.500 to smaller than 0.050. Again, the RMSE for the intercepts 

were the smallest, followed by the main effects for the intermediate mastery level among all the 

item parameters. The RMSE for the main effects for the mastery level were the largest and most 

unstable item parameters, where there might exist inflated estimation among replications when 

the test length was 8, as shown in Table 5.5 for the sample size 1000 and 5000 conditions. 

 Table 5.6 presents the RMSE for the item parameters for the assessments measuring three 

attributes where only one attribute was measured by each item. In the two test length conditions, 

each attribute was measured by 8 and 16 items. The RMSE for assessments measuring two 

attributes, ranged from 0.022 to 0.179 and shown the similar pattern to those in Table 5.5. On the 

other hand, the RMSE for assessments measuring attributes with three mastery levels were more 

stable compared to the assessments measuring only one attributes and ranged from 0.026 to 

1.358. Again, the RMSE for assessments measuring three-level attributes were higher than those 

for assessments measuring two-level attributes. As test length increased from 24 to 48, the 

RMSE decreased significantly for all simulation conditions. 

Table 5.7 illustrates the RMSE for item parameters of assessments that measured two 

attributes. Since the assessments were a combination of simple items and complex items, the 

RMSE for each condition was summarized under the two item types. The RMSE for the 
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assessments that measured two attributes were in general smaller than those for the assessments 

that measured three attributes. As the test length increased from 16 to 32, the RMSE decreased 

significantly for all conditions. Among all item parameters, main effects for the mastery level 

had the largest RMSE, followed by interaction terms and main effects for the intermediate 

mastery level; intercepts yielded the smallest RMSE.  

 Table 5.8 presents the RMSE for assessments that measured three attributes and 

contained a mixture of simple items and complex items. Within 120 hours, Mplus did not yield 

converged results for all conditions with 48 items and 24 items under sample size of 1000. The 

RMSE showed the same pattern as those presented in Table 5.7.  

Classification Accuracy 

Table 5.9 shows the classification accuracy under the one-attribute condition across 

attribute mastery levels, test lengths and sample sizes. The classification accuracies were .975 

and .976 across different sample sizes when the attribute had two mastery levels and the test 

length was 8. The classification accuracies for two-level attributes increased from .976 to .997 

across different sample sizes as the test length increased from 8 to 16. When the attribute 

measured three mastery levels, the PDCM classified examinees less accurately than when the 

attribute measured two mastery levels. The classification accuracy slightly increased from .774 

to .788 when the test length was 8 and from .891 to .895 when the test length was 16 as the 

sample size increased from 1000 to 5000. As the test length increased from 8 to 16, the 

classification accuracy increased more when the attribute had more mastery levels. The results 

indicate a test length of 8 is long enough to provide accurate classifications for an attribute with 

dichotomous mastery levels, while the test lengths need to be longer to yield the same level of 

accuracy as the attribute measured more mastery levels of the attribute. 
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Table 5.10 shows the classification accuracies for the assessments measuring three 

attributes with two and three mastery levels and only simple items. The classification accuracies 

for each three-level attribute were similar to those under the one-attribute, three mastery level 

condition (Table 5.9). The increase of the sample size did not have a strong influence on the 

classification accuracies, though classification accuracies increased as the test length increased 

for both two and three mastery level conditions. The attribute classification accuracies increased 

from around .980 to .998 for all three attributes when the test length increased from 24 to 48 

when attributes had two mastery levels. The attribute classification accuracies when attributes 

had three mastery levels were lower by about .200 compared to conditions where attributes had 

two mastery levels, and they increased from around .780 to .900 as the test length increased from 

24 to 48.  

Table 5.11 and 5.12 illustrates the classification accuracy for the assessments containing 

complex items. The attribute classification accuracies for the two-attribute assessments with two 

mastery levels were higher compared to the two-attribute assessments with three mastery levels. 

For the assessments measuring two attributes with two mastery levels, the attribute classification 

accuracies were higher than .970 when the test length was 16 and higher than .995 when the test 

length was 32. For the assessments measuring two attributes with three mastery levels, the 

attribute classification accuracies increased from around .800 to .900 as the test length increased 

from 16 to 32.  

Table 5.12 shows the attribute classification accuracies for the three attribute assessments 

with complex items. The attribute classification accuracies for the 24-item and 48-item 

assessments when attributes had two mastery levels yielded similar results as shown under the 

same condition in Table 5.11. For the assessments measuring three attributes with three mastery 
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levels, the attribute classification accuracies were around .80 for the 24-item assessments. The 

48-item assessments did not provide converge results because of the model complexity. 

Reliability 

 Table 5.13 shows the attribute reliability when assessments measured one attribute across 

attribute mastery levels, test lengths, and sample sizes. The reliabilities for attributes with two 

mastery levels were all larger than .990 and higher than those for attributes with three mastery 

levels, ranging from .863 to .964 for each condition respectively. For assessments measuring 

attributes with two or three mastery levels, the attribute reliabilities were higher as the test length 

increased from 8 to 16. More specifically, the reliabilities increased from around .993 to 1.00 

when attributes had two mastery levels and from around .870 to .960 when attributes had three 

mastery levels. The attribute reliabilities maintained similar values across four sample size 

conditions. 

 Table 5.14 presents the attribute reliabilities for assessments measuring three attributes. 

Note that the test lengths for these assessments were 24 or 48 with each attribute measured by 8 

or 16 items respectively. The results shown in Table 5.14 were similar to those in Table 5.13 

with a slight increase (less than .01) of the attribute reliabilities for each corresponding condition. 

The attribute reliabilities yielded similar values for all three attributes because each attribute was 

measured by items with the same design of item parameters. 

 Table 5.15 and Table 5.16 show the attribute reliability of the two- and three-attribute 

assessments which contains both simple and complex items. Each attribute was measured by 10 

items including 6 simple items and 4 complex items respectively. The attribute reliabilities 

retained similar values as shown in Table 5.13 and 5.14 where the assessments contained only 8 

simple items for each item. The attribute reliabilities in Table 5.15 were not available for the 48-
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item assessments that measured three attributes with three mastery levels because those 

conditions did not have converged estimation due to the model complexity. 

Results of Simulation Study 2 

Convergence rates 

 Table 5.17 presents the convergence rates when the assessments measured only one 

attribute. The base rates for the attribute were equal across mastery levels. Note that the 

convergence rates were computed based on the results of 50 replications for each condition. For 

assessments measuring one attribute, the model misspecification conditions included two test 

lengths, two generating models, two misspecification models, and four sample sizes. Because 

these assessments measured only one attribute and contained only simple items, the convergence 

rates were all greater than 96% even when the models were misspecified. Specially, the 

convergence rates were equal to 100% when the estimation models were the LCDM or the 

cPDCM. When the LCDM was the generating model and the PDCM was the estimation model, 

the convergence rates were smaller than 100% under the sample size 5000 and 1000. 

 Table 5.18 illustrates the model convergence rates for the assessments that measured one 

attribute with unequal base rates. Specifically, the base rates for the two-level attribute were .30 

and .70, and the base rates for the three-level attribute were .20, .30 and .50. The convergence 

rates were slightly lower than those shown in Table 5.17 and ranged from 94% to 100% across 

all simulation conditions. Again, the convergence rates were all equal to 100% when the LCDM 

or cPDCM was used as the estimation model. The PDCM was the most complex model. When 

the LCDM was misspecified by the PDCM, the convergence rates were 94% for both test lengths 

conditions with a sample size of 1000.   
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 When the assessments measured more attributes, though contained only simple items, the 

convergence rates decreased for all simulation conditions, as presented in Table 5.19. The 

convergence rates were computed within a time limit of 120 hours. If a replication did not yield a 

converge result within 120 hours, the replication was recorded as nonconverge. When the PDCM 

was misspecified by the LCDM, meaning all three-level attributes were misspecified as two 

levels, the model convergence rates were all equal to 100%, except the convergence rate was 

98% for the condition with test length 24 and sample size 100. Though the test complexity has 

increased, the model convergence rates did not significantly decrease when the cPDCM was used 

as the estimation model, which ranged from 80% to 100%. For conditions where the LCDM was 

misspecified as the PDCM, the convergence rates were significantly lower compared to other 

model misspecification conditions, ranging from 10% to 52%. 

 Table 5.20 illustrates the model convergence rates when the assessments measured three 

attributes with different base rates for attribute mastery levels. Again, when the LCDM was the 

generating model, the attribute base rates were .30 for the nonmastery and .70 for the mastery; 

when the PDCM was the generating model, the attribute base rates were .20 for the 

nonmastery, .30 for the intermediate mastery and .50 for the mastery. The convergence rates 

were similar compared to the results shown in Table 5.19. The convergence rates when the 

cPDCM was used as the estimation model were lower, ranging from 96% to 100%, compared to 

those when attributes had equal base rates. When the PDCM was the estimation model, the 

convergence rates ranged from 8% to 92% across all conditions.  

Model Selection 

 In this section, we present the percentage of replications that each model was selected 

under different simulation conditions when AIC, BIC, and SABIC were used as model selection 
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criterion. The results were computed based on the result of 50 replications. If a replication under 

a specific model did not yield a converged result, the model selection index was recorded as a 

missing value and was not used to compare with the same model selection index value under 

other models. Under each model selection index, we computed the percentages of replications  

the index preferred each model across the 50 replications under the conditions of two test lengths 

and four sample sizes.  

 Table 5.21 presents the model selection results when the LCDM was used as the 

generating model for assessments that measured only one attribute. The attribute had equal base 

rates for the nonmastery and mastery group. When AIC was used as the model selection index, 

the percentages of the “true” model, the LCDM, being selected ranged from 84% to 94%, with 

those under test length 16 slightly higher (2% to 10%) than those under test length 8. The 

cPDCM was the second preferable model with the percentage being selected between 6% to 12% 

and the PDCM was the least preferable model with the percentage being selected between 0% to 

6%. BIC and SABIC had higher percentages of accurately selecting the LCDM compared to AIC 

ranging from 94% to 100%, and lower percentages of inaccurately selecting the cPDCM, ranging 

from 0% to 6%. The PDCM was not selected as the most favorable model when BIC and SABIC 

used as the model selection indices. The model selection results were similar as shown in Table 

5.22 when the base rates were unequal. 

 When the hybrid PDCM was the generating model, we considered the LCDM and the 

cPDCM were the misspecified model, Table 5.23 illustrates the model selection percentages for 

these three models under the AIC, BIC, and SABIC criteria. AIC preferred to select the PDCM 

for all simulation conditions with the percentages ranging from 98% to 100%. BIC preferred the 

LCDM with a percentage equal to 88% when the test length was 8 and sample size was 1000 and 
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had the highest percentages of selecting the PDCM for other conditions ranging from 64% to 

100%. SABIC preferred the PDCM for all conditions with percentages ranging from 68% to 

100%. As the test length and sample size increased, the percentage of selecting the PDCM also 

increased for all conditions.  

Table 5.24 presents the model selection results when the attribute base rates were 

unequal. AIC yielded similar results as those when the attribute base rates were equal, with the 

percentages of selecting the PDCM between 94% and 100%. However, the percentages of 

replications selecting the PDCM when BIC and SABIC were used increased from 0% to 100%, 

and from 44% to 100%, respectively as the sample size increased from 1000 to 10000. 

Specifically, when the test length was 8 and the sample size was 1000 or 2000, the BIC preferred 

the cPDCM with percentages of 78% and 72%. As the test length increased to 16, the BIC and 

SABIC selected the PDCM more than 78% of the time.  

 In the real testing scenario, a test usually measures more than one attribute. Table 5.25 to 

5.28 shown the model selection results when a test measured three attributes with two mastery 

levels or three mastery levels. Table 5.25 presents the model selection percentages under the 

AIC, BIC, and SABIC when the generating model was the LCDM. For all simulation conditions, 

these three model selection indices preferred the “true” model – the LDCM with the selection 

percentage equal to 100% across all conditions. Similarly, when the attribute base rates were 

unequal, the AIC, BIC, and SABIC had the percentage of favoring the LCDM larger than 98% 

for all conditions.  

 Table 5.27 and Table 5.28 shows the model selection percentage when the generating 

model was the hybrid PDCM. Table 5.27 presents the results when the attribute base rates were 

equal. The AIC, BIC, and SABIC performed well detecting the attribute mastery levels and 
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selected the cPDCM or the PDCM where the attributes had three mastery levels across all 

replications and simulation conditions. Among the three model selection indices, the AIC had 

higher percentage of selecting the “true” model – the PDCM, ranging from 64% to 100% under 

the test length 24 and ranging from 0% to 100% under the test length 48. The BIC was the least 

accurate index selecting the PDCM, with 0% of replications selecting the PDCM when (a) the 

sample size was smaller than 5000 when the test length was 24 and (b) the sample size was 

smaller 2000 when the test length was 48. SABIC was less strict than BIC yet more strict than 

AIC in selecting the PDCM, with less than 2% of replications selecting the PDCM when the 

sample size was smaller than 2000 under the test length 24 and 48.  

 When attribute base rates were unequal, the population can be considered to be 

distributed in a more complex manner into mastery classes. Thus, the percentages of selecting 

the PDCM shown in Table 5.28 were generally higher than the results shown in Table 5.27. The 

percentages of selecting the PDCM by AIC were higher than 86% for all conditions. The 

increase of the percentage for BIC and SABIC also ranged from 0% to 98%. Again, as the 

sample size and test length increased, the percentage of selecting the PDCM also increased. 

Classification 

 Attribute classifications under model misspecification were summarized by the 

combination of the mastery levels under the generating model and the mastery levels under the 

estimation model. The results for each simulation condition were average across 50 replications. 

Table 5.29 shows the classification results for the test conditions that measured one attribute with 

equal base rates, where 50% examinees were nonmasters and 50% examinees were masters, 

when the generating model was the LCDM and the estimation model was the PDCM. This table 
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presents the attribute classification under 8 simulation conditions: four sample sizes and two test 

lengths.  

The second column represents the true attribute mastery levels under the LCDM, and the 

second row represents the attribute mastery levels under the PDCM. When the LCDM was 

misspecified by the PDCM, examinees who were in the nonmastery level of the LCDM were 

classified again in the nonmastery level of the PDCM with relatively high classification 

accuracy, which ranged from 48.1% to 48.8% for the test length equal to 8 and 49.8% to 50.0% 

for the test length equal to 16. For the other 50% of the examinees in the mastery group under the 

LCDM, only around 1% were classified into the nonmastery group when the test length was 8 

and 0.1% were classified into the nonmastery group when the test length was 16. The majority 

were classified in the mastery group ranging from 33.2% to 38.5% when the test length was 8 

and from 29.6% to 35.6% when the test length was 16. In total, 13.2% to 20.5% of examinees 

were incorrectly classified across all simulation conditions. 

Since examinees who were from the true “mastery” group were less accurately classified 

into the mastery group compared to examinees from the nonmastery group, the distribution of 

classifications for mastery groups was further investigated. Figure 5.1 presents the distribution of 

the classification for the mastery group when the test measured one attribute with sample size 

1000 and test length 8. The first figure in Figure 5.1 shows the histogram of the percentages that 

examinees from the true mastery group who were classified into the nonmastery group; the 

second figure shows the histogram of the percentages  examinees from mastery group were 

classified into the intermediate mastery group; and the third figure shows the histogram of the 

percentages examinees from mastery group were classified into the true mastery group. The 

results show that most examinees from the mastery group were classified into the original 
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“mastery” group and few examinees were classified into the true nonmastery group. The 

classification for the mastery group was more scattered compared to the nonmastery group 

because the distribution of the classification shown in Figure 5.1 was more spread out. 

When the attribute base rates were unequal with 30% of examinees in the nonmastery 

group under the LCDM, the classification results shown in Table 5.30 were similar to those in 

Table 5.29. 

Table 5.31 and Table 5.32 illustrate the classification results when the generating model 

was the LCDM and the estimation model was the cPDCM for equal and unequal base rates. In 

the two simulation conditions, examinees generated under the LCDM were mainly correctly 

classified into the nonmastery and mastery groups under the cPDCM with only fewer than 0.1% 

of examinees classified into the intermediate mastery group across all conditions. When the base 

rates were equal, there were fewer than 1.3% of examinees who were not classified into their 

“true” mastery levels under the cPDCM. The classification yielded high accuracies across all 

simulation conditions and slightly increased by about 1% when the test length increased from 8 

to 16. When the attribute base rates were unequal as shown in Table 5.32, the classification 

accuracy were 0.3% higher for the mastery group compared to those for the nonmastery group 

when the test length was 8. Again, the classification accuracies retained high values across all 

simulation conditions.  

 Table 5.33 and Table 5.34 show the classification results when the PDCM was 

misspecified by the cPDCM, meaning the attribute mastery levels were specified correctly but 

some of the item parameters were more constrained under the cPDCM. When the attribute base 

rates were equal, approximately 33% of examinees were generated for each mastery level. As 

shown in Table 5.33, the classification accuracy of examinees classified correctly into their 
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“true” mastery groups increased as the sample size and test length increased. For the nonmastery 

group, the percentages of examinees classified accurately increased from 25.9% to 28.1% when 

the test length was 8 and increased from 30.0% to 30.8% when the test length was 16. The 

intermediate mastery group had the lowest classification accuracies among all mastery groups, 

where the percentages of examinees classified in the intermediate mastery group around 22.0% 

when the test length was 8 and 27.5% when the test length was 16. The mastery group had the 

highest classification accuracies with around 30.0% of examinees classified accurately when the 

test length was 8 and around 31.0% of examinees classified accurately when the test length was 

16.  

 When the attribute base rates were unequal, the percentages of examinees generated were 

20% for the nonmastery group, 30% for the intermediate mastery group and 50% for the mastery 

group. The classification accuracies retained more than 17.0% for the nonmastery group and 

43.5% for the mastery group, while those for the intermediate mastery group were relatively 

lower and were larger than 13.7%. Again, the classification accuracies slightly increased ranging 

from 0.3% to 6.6% as the sample size and test length increased.  

 Table 5.35 and Table 5.36 present the attribute classification when the PDCM was 

misspecified by the LCDM, that is, attributes with three mastery levels were misspecified by two 

mastery levels. The second column represents the generating attribute mastery levels and the 

second row represents the estimation mastery levels. Examinees from the nonmastery group and 

the mastery group were classified into the nonmastery and the mastery group under the LCDM 

respectively, with relatively high accuracy ranging from 31.9% to 33.4%. As the test length 

increases from 8 to 16, the accuracy increased around 1%. For examinees who were originally in 

the intermediate mastery group, the LCDM classified the majority into the mastery group with 
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the percentages ranging from 18.0% to 19.8%. Table 5.36 illustrates the classification under the 

unequal attribute base rates and yielded similar trend as shown in Table 5.35. 

Table 5.37 to Table 5.44 illustrates the classification results for the three attribute 

assessments when the generating model was misspecified. The classification results were the 

average of the three attributes. The attribute classifications when the LCDM was misspecified by 

the PDCM are shown in Table 5.37 and Table 5.38. Different from the assessments that 

measured one attribute, the three-attribute assessments classified examinees who originally 

belonged to the nonmastery group into either the nonmastery group or the intermediate mastery 

group when the test length was 24. For example, when the attribute had equal base rates, the 

percentages of examinees generated from the nonmastery group under the LCDM ranged from 

33.1% to 39.1% for being classified into the nonmastery group under the PDCM, and ranged 

from 9.2% to 15.6% for being classified into the intermediate mastery group. Similarly, when the 

attribute had unequal base rates, the percentages of examinees from the nonmastery group under 

the LCDM were around 45.0% for being classified into the nonmastery group, and were around 

24.0% for being classified into the intermediate mastery group. Note that the replications for the 

condition with test length equal to 24 and sample size equal to 1000 did not yield any converged 

results. As the test length increased to 48, the PDCM classified the majority of examinees from 

the nonmastery group under the LCDM into the nonmastery group, with over 39.0% for the 

equal base rates condition and over 64.7% for the unequal base rates condition. Moreover, 

examinees from the mastery groups under the LCDM were mostly classified into the mastery 

groups under the PDCM, with larger than 45.7% for the assessments with equal base rates and 

larger than 28.4% for the assessments with unequal base rates.  
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 When the LCDM was misspecified as the PDCM, the classification results shown in 

Table 5.39 and Table 5.40 for the three-attribute assessments followed similar pattern as in Table 

5.31 and Table 5.32 where examinees from the nonmastery and mastery groups under the LCDM 

were again classified into the nonmastery and mastery groups under the PDCM. Because the 

assessments were more complicated under these conditions, the percentages of examinees being 

classified into the “true” class were around 5% fewer compared to the one-attribute assessments.  

 Table 5.41 and Table 5.42 illustrate the classification results when the PDCM was 

misspecified as the cPDCM. Again, the results followed the same pattern as those for the one-

attribute assessments shown in Table 5.34 and Table 5.35. The percentage of being classified in 

correctly for the nonmastery and mastery groups retained relatively high values, larger than 

30.0% across all conditions. However, the percentages of examinees being classified accurately 

in the intermediate mastery group were around 5% lower than those for the one-attribute 

assessments.  

 Table 5.43 and Table 5.44 show the attribute classification when the PDCM was 

misspecified as the LCDM. Examinees in the nonmastery or mastery group under the PDCM 

were again mainly classified into the nonmastery or mastery group respectively under the 

LCDM. Examinees who belonged to the intermediate mastery group under the PDCM were 

classified partly in either the nonmastery group or the mastery group with the percentages for the 

mastery group ranging from 2% to 6% higher than those for the nonmastery group. 

Reliability 

 This section summarizes the attribute reliabilities when the generating model was 

misspecified under different test length and sample size conditions. Each reliability result was  
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averaged across the converged results for the 50 replications for each condition. Table 5.45 

shows the reliability for the test that measured one attribute with two mastery levels. The 

attribute was misspecified by the PDCM or the cPDCM which had three mastery levels. The 

reliabilities for the PDCM and the cPDCM were similar across all simulation conditions. When 

the test length was 8, the reliabilities were around .910 and increased to around .970 when the 

test length was 16. The standard deviations of the reliabilities for the PDCM were around .02 

lower than those for the cPDCM, meaning the classification of the PDCM was more robust than 

the cPDCM. 

 Table 5.46 shows the attribute reliability for the one-attribute assessments when the 

generating model was the PDCM and was misspecified by the cPDCM or the LCDM. When the 

estimation model was the LCDM, the reliabilities represent the consistency of the attribute being 

classified into two mastery levels and were higher than the reliabilities under the cPDCM. The 

reliabilities ranged from .944 to .947 for test length equal to 8 and increased to between .980 

and .991 for test length equal to 16. The reliabilities for the cPDCM were lower because the 

attribute was classified into three mastery levels, ranging from .827 to .878 for test length equal 

to 8 and increased to between .936 and .957 for test length equal to 16.  

 Table 5.47 and Table 5.48 present the reliabilities for the model misspecification when 

the test measured three attributes. We only present the reliabilities for Attribute 1 because 

Attribute 2 and 3 were generated under the same simulation conditions and yielded the similar 

results. Compared to the reliabilities for the one-attribute assessments, the reliabilities for the 

three-attribute assessments followed the similar pattern with a slight increase for most simulation 

conditions. 
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Results for Empirical Study 

Relative Fit 

Table 5.49 is the comparison of model fit statistics for the 17 models. Among the 16 

models with the combinations of two or three attribute mastery levels, the PDCM with all 

attributes having three mastery levels was the best fitting model in terms of the AIC, BIC, and 

SABIC indices. Compared to the cPDCM, the PDCM had smaller AIC and SABIC values but a 

larger the BIC value (.007). Because the constrained PDCM is nested within the PDCM, we 

further conducted a likelihood ratio test which indicated the PDCM was significantly better than 

the constrained PDCM (χ2(21) = 142.198, p < .001).  

Classifications 

Figure 5.2 shows classification results for each attribute under the LCDM, PDCM, and 

cPDCM. The percentages of students being classified into each level for the PDCM and cPDCM 

were similar across attributes with differences ranging from 0.1% to 13.9%. The intermediate 

mastery group from the PDCM and cPDCM consisted of 6.5% to 27.5% of students who were in 

the LCDM non-mastery group and 16.4% to 3.3% of students who were in the LCDM mastery 

group.  

Figure 5.3 shows the mean subscores for students in each attribute mastery level. The 

difference of mean subscores between the PDCM and the cPDCM ranges from 0.035 to 0.812 

indicating the two models yielded similar results. The mean subscores under the LCDM for the 

students in the non-mastery group were 0.367 to 0.634 higher than those under the PDCM and 

cPDCM. Moreover, the mean subscores under the LCDM for the mastery group were 0.355 to 

0.608 lower than those under the PDCM and cPDCM. These discrepancies show what we 
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expected to happen: Students with higher scores in the non-mastery group or lower scores in the 

mastery group under the LCDM were classified into the intermediate mastery group under the 

PDCM and cPDCM.   

Item Characteristic Bar Charts (ICBC) 

ICBCs in Figure 5.4 show the item response probabilities (vertical axis) by attribute 

mastery levels (horizontal axis) for all items in the test. The charts show how the model is 

functioning with the item response probabilities for the intermediate mastery groups being 

between those for the mastery groups and non-mastery groups and ranging from .124 to .845. 

The probabilities of correct response were similar for the PDCM and constrained PDCM with the 

highest value of .202.  As expected, these probabilities in the LCDM for the non-mastery groups 

were .004 to .092 higher and for the mastery group were .017 to .231 lower when compared to 

the PDCM models.  

Discussion 

Simulation Study 1  

The benefits of using the LCDM is to provide direct diagnoses to students about which 

areas or skills needs to be improved. In most cases where the LCDM are used to diagnose 

students’ mastery levels of latent attributes, students can only obtain whether they have mastered 

the attributes and to what extent we are confident to classify them into the dichotomous mastery 

levels. Researcher may seek to provide students more detailed feedback rather than master or 

nonmaster.  

In this dissertation, we proposed two models to measure polytomous attributes named the 

PDCM and the cPDCM. The PDCM and the cPDCM model item response probabilities through 
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a linear combination of the latent attribute variable and item parameters, such as an intercept, 

main effects and interactions. The saturated PDCM has more flexibility in modeling item 

response probabilities in that it allows different main effects and interactions across the attributes 

measured by an item and the mastery levels of these attributes, while conversely, the cPDCM 

constrains the main effects and interactions of an attribute for different levels to be equal. Such 

flexibility makes the saturated PDCM has more item parameters to be estimated, and thus 

requires a larger sample size and long test to achieve an accurate estimation. 

Study 1 investigated the item parameter estimation and attribute classification accuracy 

of the PDCM through various simulation conditions including the number of attributes, the 

number of attribute mastery levels, test lengths, sample sizes and test complexities. Results 

showed the PDCM had lower convergence rates than the LCDM when a test measured more than 

two attributes or contained complex items. The simulation condition with a test length 48 and a 

complex test design did not yield converged results.  

Since the PDCM and the cPDCM are more complex models compared to the LCDM, the 

item parameter estimates when a test measured attributes with three mastery levels were less 

accurate than those under the LCDM. As the test length and sample size increased, the item 

parameters were more accurate with smaller standard deviation. Similarly, since the PDCM 

classified examinees into three mastery levels, the classification accuracies for the PDCM were 

lower than those for the LCDM. Again, as the test length increased, the classification accuracies 

also increased. The classification accuracies did not have significant differences under different 

test complexities. The results of Study 1 indicate the PDCM and the cPDCM require a longer test 

length and a larger sample size to yield similar parameter estimation and classification 

accuracies. 
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Simulation Study 2 

When applying DCMs to provide diagnostic feedback for students’ understandings of 

knowledge, one of the major questions that stakeholders might be interested in is to decide which 

model to use. The choice of the model can further decide which type of diagnostic information 

examinees can obtain. The PDCM and the cPDCM broaden the selection of DCMs for 

stakeholders to decide the number of attribute mastery levels. This study investigated how the 

use of misspecified model can influence attribute classifications and reliabilities when the item 

responses were generated from different DCMs. 

 The simulation studies were conducted under different test lengths, sample sizes, attribute 

base rates and combinations of generation and estimating models using Mplus 7.4. Results show 

that the PDCM, as the most complex model, had the lowest convergence rates (less than 50%) 

when the test measured three attributes across all conditions. Among all the converged 

replications, we investigated whether the generating model can be correctly identified by using 

AIC, BIC, and SABIC. When the LCDM was the generating model, BIC preformed the best to 

identity the LCDM with percentages higher than 98% across all conditions. When the hybrid 

PDCM was the generating model, the percentages of selecting either the PDCM or the cPDCM 

were not as high as selecting the LCDM correctly when the LCDM was the generating model 

especially when the test measured three attributes. Among all three indices, AIC correctly 

specified the attribute mastery levels as three and chose either the PDCM or the cPDCM as the 

best-fitting model with the percentage of larger than 98% for the simulation conditions where the 

sample size was larger than 2000.  Specifically, when the sample size was larger than 2000, the 

percentage of choosing the PDCM larger than 90%. Moreover, as the sample size and test length 

increased, the percentages of identifying the “true” model or the correct mastery levels also 
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increased. This shows the model selection indices in general perform well in identifying attribute 

mastery levels with the percentage larger than 84% when the sample size is larger than or equal 

to 2000.  

 In this study, we focused on investigating the attribute classification under different 

generating and estimation model combinations. When the LCDM was the generating model, both 

the PDCM and the cPDCM classified most examinees into nonmastery and mastery group. 

Moreover, because of the item parameter constraints of the cPDCM, fewer examinees were 

classified into the intermediate mastery group compared to the PDCM. When the hybrid PDCM 

was the generating model, both the PDCM and cPDCM classified over 80% of examinees into 

the “true” attribute mastery levels. Moreover, the cPDCM classified examinees accurately into 

the nonmastery and mastery groups. This is because the PDCM sometimes had very low item 

parameter estimates for the main effect for the partial mastery group while the cPDCM constraint 

the main effects to be equal across mastery levels. In this case, fewer examinees were classified 

into the intermediate mastery levels under the cPDCM compared to the PDCM though the 

cPDCM was less accurate in the item parameter estimation. When the PDCM was the generating 

model and the LCDM was the estimation model, examinees from the intermediate mastery group 

under the PDCM were classified into either nonmastery or mastery group depending on the test 

design. For example, in our simulation, the one-attribute assessments classified more examinees 

with the intermediate mastery level into the nonmastery group, while the three-attribute 

assessments classified more examinees into the mastery group. For the attribute reliabilities, the 

LCDM always had higher values because it measures fewer mastery levels compared to the 

PDCM and cPDCM. As the test length increased, the attribute classifications were closer to the 

generated classes even if the model was misspecified and the attribute reliabilities also increased. 
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This study suggests that the model selection indices can be used as effective indicators 

for the detection of attribute mastery levels and model specification. If an attribute mastery level 

is under specified, examinees will be classified into fewer mastery groups and thus obtain more 

coarse feedback. On the other hand, if a model is over specified, the classification can be similar 

to their “true” classes when the test length is long and sample size is large enough.  

Empirical Study 

The result of the empirical study illustrates an added benefit of the PDCM over the 

LCDM when the model-data fit supports polytomous attributes: It classifies students into an 

intermediate mastery group. The model fit indices indicate the PDCM with three attribute 

mastery levels has the best fit for students’ item responses compared to the cPDCM with three 

attribute mastery levels and the LCDM with dichotomous attribute mastery levels. This type of 

feedback can be used to more meaningfully group students for differentiated instruction and to 

accurately signal intermediate mastery when the underlying attribute is more appropriately 

characterized with multiple levels. 
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Table 5.1 

Convergence Rates for Assessments with Only Simple Items Under Equal Base Rates 

Levels Attributes Test 

Length 

Sample Size 

1000 2000 5000 10000 

2 1 8 100% 100% 100% 98% 

16 100% 100% 100% 100% 

3 8 98% 100% 98% 100% 

16 100% 100% 100% 100% 

3 1 24 100% 100% 100% 100% 

48 100% 100% 100% 100% 

3 24 98% 100% 100% 100% 

48 98% 100% 100%  96% 

Note. The convergence rates were based on the Mplus results with 120 hours. 

 

 

 

Table 5.2 

Convergence Rates for Assessments with Both Simple and Complex Items Under Equal Base 

Rates 

Levels Attributes 
Test 

Length 

Sample Size 

1000 2000 5000 10000 

2 2 16 96% 100% 100% 100% 

32 100% 96% 96% 98% 

3 24 50% 60% 44% 38% 

48 40% 94% 90% 92% 

3 2 16 4% 24% 78% 98% 

32 38% 58% 86% 86% 

3 24 0% 16% 70% 88% 

48 0% 0% 0% 0% 

Note. The convergence rates were based on the Mplus results with 120 hours. 
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Table 5.3 

Convergence Rates for Assessments with Only Simple Items Under Unequal Base Rates 

Levels Attributes 
Test 

Length 

Sample Size 

1000 2000 5000 10000 

2 1 8 100% 100% 100% 98% 

16 100% 100% 100% 100% 

3 24 100% 100% 100% 100% 

48 100% 100% 100% 100% 

3 1 8 98% 100% 100% 100% 

16 100% 98% 100% 100% 

3 24 98% 92% 98% 98%  

48 100% 100% 88%  44% 

Note. The convergence rates were based on the Mplus results with 120 hours. 

 

 

 

Table 5.4 

Convergence Rates for Assessments with Both Simple and Complex Items Under Unequal Base 

Rates 

Levels Attributes 
Test 

Length 

Sample Size 

1000 2000 5000 10000 

2 2 16 96% 94% 72% 72% 

32 100% 98% 100% 100% 

3 24 70% 56% 44% 40% 

48 62% 66% 88% 86% 

3 2 16 4% 34% 90% 100% 

32 54% 76% 72% 80% 

3 24 0% 6% 8% 20% 

48 0% 0% 0% 0% 

Note. The convergence rates were based on the Mplus results with 120 hours. 
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Table 5.5 

RMSE for Item Parameters of One-attribute Assessments  

Sample 

Size 

Attribute 

 Level 

Test 

Length 

Intercept ME1 ME2 

1000 2 8 .121 .173 - 

16 .049 .072 - 

3 8 .488 .520 164.284 

16 .161 .227 .265 

2000 2 8 .088 .122 - 

16 .036 .051 - 

3 8 .180 .270 .309 

16 .109 .156 .180 

5000 2 8 .052 .078 - 

16 .021 .030 - 

3 8 .189 .255 139.967 

16 .065 .093 .108 

10000 2 8 .037 .054 - 

16 .033 .051 - 

3 8 .067 .111 .115 

16 .046 .065 .076 

Note. ME1 = main effect for the intermediate mastery level; ME2 = main effect for the mastery 

level. 
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Table 5.6 

RMSE for Item Parameters for Three-attribute Assessments with Only Simple Items 

Sample 

Size 

Attribute 

Level 

Test 

Length 

Intercept ME1 ME2 

1000 2 24 .116 .179 - 

48 .047 .073 - 

3 24 1.358 1.337 1.347 

48 .054 .075 .067 

2000 2 24 .076 .121 - 

48 .032 .052 - 

3 24 .663 .735 .468 

48 .041 .052 .046 

5000 2 24 .050 .079 - 

48 .022 .033 - 

3 24 .086 .137 .156 

48 .026 .034 .028 

10000 2 24 .036 .053 - 

48 .035 .051 - 

3 24 .082 .133 .147 

48 .043 .064 .068 

Note. ME1 = main effect for the intermediate mastery level; ME2 = main effect for the mastery 

level. 
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Table 5.7 

RMSE for Item Parameters for Two-attribute Assessments that Contained Complex Items 

Sample 

Size 

Attribute 

Level 

Test 

Length 

Item 

Type 

Intercept ME1 ME2 Interaction 

1000 2 16 Simple .111 .173 - - 

Complex .167 .291 - .407 

32 Simple .108 .168 - - 

Complex .128 .230 - .351 

3 16 Simple .209 .323 .376 - 

Complex .163 .432 .398 .731 

32 Simple .141 .233 .269 - 

Complex .174 .345 2.174 .552 

2000 2 16 Simple .081 .127 - - 

Complex .112 .188 - .301 

32 Simple .077 .117 - - 

Complex .090 .169 - .268 

3 16 Simple .133 .229 .322 - 

Complex .162 .401 .783 .741 

32 Simple .099 .156 .186 - 

Complex .133 .253 .649 .418 

5000 2 16 Simple .054 .078 - - 

Complex .083 .127 - .188 

32 Simple .047 .073 - - 

Complex .059 .100 - .158 

3 16 Simple .080 .158 .178 - 

Complex .105 .248 .820 .493 

32 Simple .063 .099 .117 - 

Complex .078 .159 .275 .275 

10000 2 16 Simple .035 .055 - - 

Complex .069 .090 - .128 

32 Simple .033 .051 - - 

Complex .045 .078 - .117 

3 16 Simple .056 .100 .118 - 

Complex .074 .180 .317 .360 

32 Simple .045 .068 .082 - 

Complex .055 .112 .199 .187 

Note. ME1 = main effect for the intermediate mastery level; ME2 = main effect for the mastery 

level. 
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Table 5.8 

RMSE for Item Parameters for Three-attribute Assessments that Contained Complex Items 

Sample 

Size 

Attribute 

Level 

Test 

Length 

Item 

Type 

Intercept ME1 ME2 Interaction 

1000 2 24 Simple .122 .187 - - 

Complex .154 .376 - .675 

48 Simple .110 .168 - - 

Complex .146 .354 - .630 

3 24 Simple - - - - 

Complex - - - - 

48 Simple - - - - 

Complex - - - - 

2000 2 24 Simple .082 .124 - - 

Complex .106 .319 - .573 

48 Simple .076 .122 - - 

Complex .097 .295 - .564 

3 24 Simple .144 .221 .289 - 

Complex .192 .358 2.997 2.064 

48 Simple - - - - 

Complex - - - - 

5000 2 24 Simple .047 .076 - - 

Complex .067 .265 - .497 

48 Simple .048 .072 - - 

Complex .063 .254 - .513 

3 24 Simple .080 .135 .169 - 

Complex .108 .222 .644 .675 

48 Simple - - - - 

Complex - - - - 

10000 2 24 Simple .037 .054 - - 

Complex .046 .246 - .481 

48 Simple .034 .052 - - 

Complex .045 .235 - .482 

3 24 Simple .060 .100 .122 - 

Complex .075 .167 .319 .390 

48 Simple - - - - 

Complex - - - - 

Note. ME1 = main effect for the intermediate mastery level; ME2 = main effect for the mastery 

level. 
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Table 5.9 

Classification Accuracies for One-attribute Assessments 

Levels 
Test 

Length 

Sample Size  

1000 2000 5000 10000 

2 
8 .976 .976 .975 .976 

16 .997 .997 .997 .997 

3 
8 .774 .783 .788 .784 

16 .891 .893 .895 .891 

 

 

Table 5.10 

Classification Accuracies for the Three-attribute Assessments with Only Simple Items 

Mastery 

Level 

Test 

Length 

Sample 

Size 

Attribute 1 Attribute 2 Attribute 3 Attribute 

Profile 

2 

24 

1000 .980 .980 .980 .942 

2000 .981 .980 .981 .944 

5000 .981 .981 .981 .945 

10000 .981 .981 .981 .945 

48 

1000 .998 .998 .998 .994 

2000 .998 .998 .998 .993 

5000 .998 .998 .998 .994 

10000 .998 .998 .998 .993 

3 

24 

1000 .774 .784 .780 .504 

2000 .761 .761 .765 .498 

5000 .782 .777 .775 .519 

10000 .810 .809 .809 .554 

48 

1000 .902 .902 .902 .740 

2000 .894 .894 .891 .733 

5000 .906 .897 .896 .738 

10000 .907 .907 .907 .752 

 

  



 

118 
 

Table 5.11 

Classification Accuracies for the Two-attribute Assessments with Complex Items 

Mastery 

Level 

Test 

Length 

Sample 

Size 

Attribute 1 Attribute 2 Attribute 

Profile 

2 

16 

1000 .973 .979 .953 

2000 .974 .978 .953 

5000 .973 .978 .952 

10000 .974 .979 .953 

32 

1000 .996 .998 .994 

2000 .997 .998 .995 

5000 .997 .998 .995 

10000 .996 .998 .994 

3 

16 

1000 .801 .804 .653 

2000 .807 .806 .658 

5000 .815 .815 .672 

10000 .819 .817 .678 

32 

1000 .902 .896 .810 

2000 .903 .902 .817 

5000 .906 .905 .823 

10000 .908 .906 .825 
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Table 5.12 

Classification Accuracies for the Three-attribute Assessments with Complex Items 

Mastery 

Level 

Test 

Length 

Sample 

Size 

Attribute 1 Attribute 2 Attribute 3 Attribute 

Profile 

2 

24 

1000 .965 .983 .973 .926 

2000 .966 .983 .973 .925 

5000 .968 .982 .973 .927 

10000 .968 .983 .974 .929 

48 

1000 .993 .999 .996 .988 

2000 .994 .998 .996 .988 

5000 .994 .998 .996 .988 

10000 .994 .998 .996 .988 

3 

24 

1000 .805 .778 .808 .524 

2000 .796 .796 .804 .525 

5000 .812 .801 .810 .546 

10000 .814 .806 .812 .551 

48 

1000 - - - - 

2000 - - - - 

5000 - - - - 

10000 - - - - 

 

 

Table 5.13 

Attribute Reliability of One-attribute Assessments with Simple Items and Equal Base Rates  

Levels Test 

length 

Sample Size 

1000 2000 5000 10000 

2 8 .994 .993 .993 .993 

16 1.000 1.000 1.000 1.000 

3 8 .884 .872 .867 .863 

16 .964 .963 .962 .964 
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Table 5.14 

Attribute Reliability of Three-attribute Assessments with Simple Items and Equal Base Rates  

Mastery Level Test 

Length 

Sample 

Size 

Attribute 1 Attribute 2 Attribute 3 

2 24 1000 .996 .996 .996 

2000 .996 .996 .996 

5000 .996 .996 .996 

10000 .996 .996 .996 

48 1000 1.000 1.000 1.000 

2000 1.000 1.000 1.000 

5000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 

3 24 1000 .905 .907 .904 

2000 .896 .899 .893 

5000 .894 .894 .894 

10000 .892 .889 .889 

48 1000 .974 .974 .970 

2000 .971 .971 .970 

5000 .969 .972 .969 

10000 .971 .971 .971 
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Table 5.15 

Attribute Reliability of Two-Attribute Assessments with a Mixture of Simple and Complex Items 

and Equal Base Rates  

Mastery Level Test 

Length 

Sample 

Size 

Attribute 1 Attribute 2 

2 16 1000 .992 .995 

2000 .992 .995 

5000 .991 .995 

10000 .992 .995 

32 1000 1.000 1.000 

2000 1.000 1.000 

5000 1.000 1.000 

10000 1.000 1.000 

3 16 1000 .908 .913 

2000 .904 .901 

5000 .897 .893 

10000 .895 .890 

32 1000 .974 .972 

2000 .972 .971 

5000 .970 .969 

10000 .970 .968 

 

 

  



 

122 
 

Table 5.16 

Attribute Reliability of Three-Attribute Assessments with a Mixture of Simple and Complex Items 

and Equal Base Rates  

Mastery Level Test 

Length 

Sample 

Size 

Attribute 1 Attribute 2 Attribute 3 

2 24 1000 .988 .998 .993 

2000 .987 .997 .993 

5000 .988 .997 .992 

10000 .987 .997 .992 

48 1000 1.000 1.000 1.000 

2000 1.000 1.000 1.000 

5000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 

3 24 1000 .908 .900 .904 

2000 .915 .902 .901 

5000 .902 .894 .898 

10000 .901 .893 .895 

48 1000 - - - 

2000 - - - 

5000 - - - 

10000 - - - 
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Table 5.17 

Model Convergence Rates for One-attribute Assessments with Equal Attribute Mastery Base 

Rates 

      Sample Size 

Test 

Length 

Generating 

Model 

Estimation 

Model 

1000 2000 5000 10000 

8 Hybrid 

PDCM 

LCDM 100% 100% 100% 100% 

cPDCM 100% 100% 100% 100% 

LCDM PDCM 100% 100% 98% 96% 

cPDCM 100% 100% 100% 100% 

16 Hybrid 

PDCM 

LCDM 100% 100% 100% 100% 

cPDCM 100% 100% 100% 100% 

LCDM PDCM 100% 100% 98% 98% 

cPDCM 100% 100% 100% 100% 
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Table 5.18 

Model Convergence Rates for One-attribute Assessments with Unequal Attribute Mastery Base 

Rates 

      Sample Size 

Test 

Length 

Generating 

Model 

Estimation 

Model 

1000 2000 5000 10000 

8 Hybrid 

PDCM 

LCDM 100% 100% 100% 100% 

cPDCM 100% 100% 100% 100% 

LCDM PDCM 100% 98% 100% 94% 

cPDCM 100% 100% 100% 100% 

16 Hybrid 

PDCM 

LCDM 100% 100% 100% 100% 

cPDCM 100% 100% 100% 100% 

LCDM PDCM 100% 100% 96% 94% 

cPDCM 100% 100% 100% 100% 

 

 

 

 

Table 5.19 

Model Convergence rates for Three-attribute Assessments with Equal Attribute Mastery Base 

Rates 

      Sample Size 

Test 

Length 

Generating 

Model 

Estimation 

Model 

1000 2000 5000 10000 

24 Hybrid 

PDCM 

LCDM 98% 100% 100% 100% 

cPDCM 100% 100% 100% 100% 

LCDM PDCM 10% 52% 34% 34% 

cPDCM 100% 100% 100% 80% 

48 Hybrid 

PDCM 

LCDM 100% 100% 100% 100% 

cPDCM 100% 100% 80% 94% 

LCDM PDCM 32% 26% 44% 20% 

cPDCM 100% 100% 100% 100% 
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Table 5.20 

Model Convergence Rates for Three-attribute Assessments with Unequal Attribute Mastery Base 

Rates 

      Sample Size 

Test 

Length 

Generating 

Model 

Estimation 

Model 

1000 2000 5000 10000 

24 Hybrid 

PDCM 

LCDM 100% 100% 100% 100% 

cPDCM 100% 100% 100% 100% 

LCDM PDCM 8% 50% 36% 26% 

cPDCM 96% 100% 100% 100% 

48 Hybrid 

PDCM 

LCDM 100% 100% 100% 100% 

cPDCM 100% 100% 76% 80% 

LCDM PDCM 92% 72% 32% 16% 

cPDCM 100% 100% 100% 100% 
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Table 5.21 

Model Selection Percentage Under Different Indices for One-attribute Assessments Under the LCDM as Generating Model with 

Equal Base Rates 

Test  Sample AIC BIC SABIC 

Length  Size PDCM cPDCM LCDM PDCM cPDCM LCDM PDCM cPDCM LCDM 

8 

1000 2% 10% 88% 0% 0% 100% 0% 6% 94% 

2000 4% 12% 84% 0% 0% 100% 0% 4% 96% 

5000 0% 12% 88% 0% 2% 98% 0% 2% 98% 

10000 6% 10% 84% 0% 0% 100% 0% 0% 100% 

16 

1000 0% 8% 92% 0% 0% 100% 0% 4% 96% 

2000 0% 12% 88% 0% 2% 98% 0% 4% 96% 

5000 2% 12% 86% 0% 0% 100% 0% 2% 98% 

10000 0% 6% 94% 0% 0% 100% 0% 0% 100% 
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Table 5.22 

Model Selection Percentage Under Different Indices for One-attribute Assessments Under the LCDM as the Generating Model with 

Unequal Base Rates 

Test  Sample AIC BIC SABIC 

Length  Size PDCM cPDCM LCDM PDCM cPDCM LCDM PDCM cPDCM LCDM 

8 

1000 2% 10% 88% 0% 0% 100% 0% 6% 94% 

2000 2% 8% 90% 0% 0% 100% 0% 4% 96% 

5000 0% 16% 84% 0% 0% 100% 0% 0% 100% 

10000 4% 10% 86% 0% 2% 98% 0% 2% 98% 

16 

1000 0% 10% 90% 0% 0% 100% 0% 4% 96% 

2000 0% 8% 92% 0% 0% 100% 0% 0% 100% 

5000 0% 6% 94% 0% 0% 100% 0% 2% 98% 

10000 0% 6% 94% 0% 0% 100% 0% 0% 100% 
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Table 5.23 

Model Selection Percentage Under Different Indices for One-attribute Assessments Under the Hybrid PDCM as the Generating 

Model with Equal Base Rates 

Test  Sample AIC BIC SABIC 

Length  Size LCDM cPDCM PDCM LCDM cPDCM PDCM LCDM cPDCM PDCM 

8 

1000 2% 0% 98% 88% 6% 6% 30% 2% 68% 

2000 0% 0% 100% 34% 2% 64% 0% 0% 100% 

5000 0% 2% 98% 0% 2% 98% 0% 2% 98% 

10000 0% 0% 100% 0% 4% 96% 0% 0% 100% 

16 

1000 0% 0% 100% 0% 4% 96% 0% 0% 100% 

2000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

5000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 
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Table 5.24 

Model Selection Percentage Under Different Indices for One-attribute Assessments the PDCM as the Generating Model with Equal 

Base Rates 

Test  Sample AIC BIC SABIC 

Length  Size LCDM cPDCM PDCM LCDM cPDCM PDCM LCDM cPDCM PDCM 

8 

1000 0% 6% 94% 22% 78% 0% 8% 48% 44% 

2000 0% 0% 100% 4% 72% 24% 2% 28% 70% 

5000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

16 

1000 0% 0% 100% 0% 22% 78% 0% 0% 100% 

2000 0% 4% 96% 0% 4% 96% 0% 4% 96% 

5000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 
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Table 5.25 

Model Selection Percentage Under Different Indices for Three-attribute Assessments Under the LDCM as the Generating Model with 

Equal Base Rates 

Test  Sample AIC BIC SABIC 

Length  Size PDCM cPDCM LCDM PDCM cPDCM LCDM PDCM cPDCM LCDM 

24 

1000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

2000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

5000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

48 

1000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

2000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

5000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 
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Table 5.26 

Model Selection Percentage Under Different Indices for Three-attribute Assessments the LCDM as the Generating Model with 

Unequal Base Rates 

Test  Sample AIC BIC SABIC 

Length  Size PDCM cPDCM LCDM PDCM cPDCM LCDM PDCM cPDCM LCDM 

24 

1000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

2000 2% 0% 98% 0% 0% 100% 0% 0% 100% 

5000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

48 

1000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

2000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

5000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 
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Table 5.27 

Model Selection Percentage Under Different Indices for Three-attribute Assessments Under the Hybrid PDCM as the Generating 

Model with Equal Base Rates 

Test  Sample AIC BIC SABIC 

Length  Size LCDM cPDCM PDCM LCDM cPDCM PDCM LCDM cPDCM PDCM 

24 

1000 0% 36% 64% 0% 100% 0% 0% 100% 0% 

2000 0% 10% 90% 0% 100% 0% 0% 98% 2% 

5000 0% 8% 92% 0% 100% 0% 0% 8% 92% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

48 

1000 0% 100% 0% 0% 100% 0% 0% 100% 0% 

2000 0% 98% 2% 0% 100% 0% 0% 98% 2% 

5000 0% 0% 100% 0% 0% 100% 0% 0% 100% 

10000 0% 4% 96% 0% 4% 96% 0% 4% 96% 
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Table 5.28 

Model Selection Percentage Under Different Indices for Three-attribute Assessments Under the PDCM as the Generating Model with 

Unequal Base Rates 

Test  Sample AIC BIC SABIC 

Length  Size LCDM cPDCM PDCM LCDM cPDCM PDCM LCDM cPDCM PDCM 

24 

1000 0% 12% 88% 0% 100% 0% 0% 98% 2% 

2000 0% 8% 92% 0% 100% 0% 0% 94% 6% 

5000 0% 2% 98% 0% 80% 20% 0% 2% 98% 

10000 0% 2% 98% 0% 2% 98% 0% 2% 98% 

48 

1000 0% 4% 96% 0% 100% 0% 0% 22% 78% 

2000 0% 0% 100% 0% 52% 48% 0% 0% 100% 

5000 4% 10% 86% 4% 10% 86% 4% 10% 86% 

10000 0% 0% 100% 0% 0% 100% 0% 0% 100% 
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Table 5.29 

Classification for One-attribute Test with Equal Base Rates Under the LCDM as Generating Model and the PDCM as Estimation 

Model  

Sample  True Mastery  Test length = 8 Test length = 16 True Base 

Size  Levels Nonmastery Intermediate 

mastery 

Mastery Nonmastery Intermediate 

mastery 

Mastery Rate 

1000 Nonmastery .481 .010 .005 .498 .002 .000 .500 

Mastery .012 .116 .376 .001 .143 .356 .500 

2000 Nonmastery .484 .007 .007 .500 .001 .000 .500 

Mastery .012 .106 .385 .001 .167 .330 .500 

5000 Nonmastery .487 .006 .007 .499 .001 .001 .500 

Mastery .013 .156 .332 .001 .202 .296 .500 

10000 Nonmastery .488 .004 .007 .497 .001 .001 .500 

Mastery .014 .133 .355 .001 .187 .313 .500 
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Table 5.30 

Classification for One-attribute Test with Unequal Base Rates Under the LCDM as Generating Model and the PDCM as Estimation 

Model   

Sample  True Mastery  Test length = 8 Test length = 16 True Base 

Rate Size        Levels Nonmastery Intermediate 

mastery 

Rate Nonmastery Intermediate 

mastery 

Mastery 

1000 Nonmastery .283 .011 .500 .300 .001 .001 .300 

Mastery .009 .233 .500 .001 .222 .475 .700 

2000 Nonmastery .284 .008 .500 .301 .001 .001 .300 

Mastery .009 .190 .500 .001 .278 .418 .700 

5000 Nonmastery .287 .006 .500 .300 .001 .000 .300 

Mastery .010 .196 .500 .001 .254 .443 .700 

10000 Nonmastery .286 .006 .500 .298 .001 .001 .300 

Mastery .010 .230 .500 .001 .241 .459 .700 
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Table 5.31 

Classification for One-attribute Test with Equal Base Rates Under the LCDM as Generating Model and the cPDCM as Estimation 

Model   

Sample  Mastery  Test length = 8 Test length = 16 True Base 

Rate Size   Levels Nonmastery Intermediate 

mastery 

Rate Nonmastery Intermediate 

mastery 

Mastery 

1000 Nonmastery .484 .001 .500 .498 .000 .001 .500 

Mastery .012 .001 .500 .001 .000 .499 .500 

2000 Nonmastery .486 .000 .500 .500 .000 .001 .500 

Mastery .013 .000 .500 .001 .000 .497 .500 

5000 Nonmastery .488 .000 .500 .499 .000 .001 .500 

Mastery .013 .000 .500 .001 .000 .498 .500 

10000 Nonmastery .488 .000 .500 .497 .000 .001 .500 

Mastery .013 .000 .500 .001 .000 .500 .500 
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Table 5.32 

Classification for One-attribute Test with Unequal Base Rates Under the LCDM as Generating Model and the cPDCM as Estimation 

Model  

Sample  Mastery  Test length = 8 Test length = 16 True Base 

Rate Size   Levels Nonmastery Intermediate 

mastery 

Mastery Nonmastery Intermediate 

mastery 

Mastery 

1000 Nonmastery .284 .001 .300 .300 .000 .001 .300 

Mastery .009 .001 .700 .001 .000 .697 .700 

2000 Nonmastery .286 .000 .300 .301 .000 .001 .300 

Mastery .010 .000 .700 .001 .000 .696 .700 

5000 Nonmastery .287 .000 .300 .300 .000 .001 .300 

Mastery .010 .000 .700 .001 .000 .698 .700 

10000 Nonmastery .287 .000 .300 .298 .000 .001 .300 

Mastery .010 .000 .700 .001 .000 .700 .700 
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Table 5.33 

Classification for One-attribute Test with Equal Base Rates Under the Hybrid PDCM as Generating Model and the cPDCM as 

Estimation Model   

Sample  Mastery  Test length = 8 Test length = 16 
True Base  

Rate Size   Levels Nonmastery 
Intermediate 

mastery 

Mastery 

  
Nonmastery 

Intermediate 

mastery 

Mastery 

  

1000 

Nonmastery .259 .069 .003 .300 .036 .000 .330 

Intermediate 

mastery 
.069 .222 .043 .041 .273 .017 .330 

Mastery .002 .037 .297 .000 .016 .318 .340 

2000 

Nonmastery .263 .066 .003 .301 .035 .000 .330 

Intermediate 

mastery 
.066 .224 .043 .040 .275 .016 .330 

Mastery .001 .034 .299 .000 .015 .318 .340 

5000 

Nonmastery .268 .063 .003 .299 .035 .000 .330 

Intermediate 

mastery 
.066 .224 .043 .038 .278 .016 .330 

Mastery .001 .032 .300 .000 .015 .318 .340 

10000 

Nonmastery .281 .051 .001 .308 .025 .000 .330 

Intermediate 

mastery 
.053 .218 .063 .026 .274 .033 .330 

Mastery .001 .055 .279 .000 .032 .302 .340 
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Table 5.34 

Classification for One-attribute Test with Unequal Base Rates Under the Hybrid PDCM as Generating Model and the cPDCM as 

Estimation Model  

Sample  Mastery  Test length = 8 Test length = 16 
True Base 

Rate Size   Levels Nonmastery 
Intermediate 

mastery 

Mastery 

  
Nonmastery 

Intermediate 

mastery 

Mastery 

  

1000 

Nonmastery .171 .028 .001 .182 .022 .000 .200 

Intermediate 

mastery 
.120 .142 .038 .085 .201 .013 .300 

Mastery .003 .061 .437 .000 .032 .464 .500 

2000 

Nonmastery .176 .024 .001 .179 .024 .000 .200 

Intermediate 

mastery 
.123 .138 .039 .075 .213 .013 .300 

Mastery .003 .059 .437 .000 .032 .463 .500 

5000 

Nonmastery .183 .017 .001 .189 .013 .000 .200 

Intermediate 

mastery 
.127 .137 .037 .086 .203 .012 .300 

Mastery .002 .060 .435 .000 .034 .462 .500 

10000 

Nonmastery .183 .018 .001 .190 .011 .000 .200 

Intermediate 

mastery 
.123 .140 .037 .090 .200 .011 .300 

Mastery .002 .061 .435 .000 .034 .464 .500 

 



 

140 
 

Table 5.35 

Classification for One-attribute Test with Equal Base Rates Under the Hybrid PDCM as 

Generating Model and the LCDM as Estimation Model  

Sample  Mastery  Test length = 8 Test length = 16 True Base 

Rate Size   Levels Nonmastery Mastery  Nonmastery Mastery  

1000 

Nonmastery .319 .011 .334 .002 .330 

Intermediate 

mastery 
.148 .186 .132 .198 .330 

Mastery .007 .329 .001 .333 .340 

2000 

Nonmastery .322 .010 .335 .002 .330 

Intermediate 

mastery 
.152 .182 .133 .197 .330 

Mastery .007 .327 .001 .332 .340 

5000 

Nonmastery .324 .009 .333 .001 .330 

Intermediate 

mastery 
.153 .180 .135 .197 .330 

Mastery .007 .326 .001 .332 .340 

10000 

Nonmastery .323 .009 .331 .001 .330 

Intermediate 

mastery 
.151 .183 .135 .198 .330 

Mastery .007 .327 .001 .334 .340 
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Table 5.36 

Classification for One-attribute Test with Unequal Base Rates Under the Hybrid PDCM as 

Generating Model and the LCDM as Estimation Model  

Sample  Mastery  Test length = 8 Test length = 16 True Base 

Rate Size   Levels Nonmastery Mastery  Nonmastery Mastery  

1000 

Nonmastery .195 .004 .203 .000 .200 

Intermediate 

mastery 
.209 .091 .252 .048 .300 

Mastery .016 .485 .005 .492 .500 

2000 

Nonmastery .197 .004 .203 .000 .200 

Intermediate 

mastery 
.207 .092 .254 .047 .300 

Mastery .015 .484 .005 .491 .500 

5000 

Nonmastery .197 .004 .202 .000 .200 

Intermediate 

mastery 
.209 .092 .253 .048 .300 

Mastery .015 .482 .005 .492 .500 

10000 

Nonmastery .198 .004 .201 .000 .200 

Intermediate 

mastery 
.207 .093 .253 .048 .300 

Mastery .015 .483 .004 .494 .500 
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Table 5.37 

Classification for Three-attribute Test with Equal Base Rates Under the LCDM as Generating Model and the PDCM as Estimation 

Model  

Sample  

Size  

Mastery  

Levels 

Test length = 24 Test length = 48 
True Base 

Rate Nonmastery 
Intermediate 

mastery 
Mastery Nonmastery 

Intermediate 

mastery 
Mastery 

1000 
Nonmastery .391 .092 .010 .390 .100 .007 .500 

Mastery .005 .006 .496 .003 .015 .486 .500 

2000 
Nonmastery .376 .112 .010 .413 .080 .006 .500 

Mastery .004 .006 .491 .002 .012 .487 .500 

5000 
Nonmastery .336 .150 .010 .428 .066 .003 .500 

Mastery .004 .006 .493 .002 .036 .465 .500 

10000 
Nonmastery .331 .156 .010 .454 .040 .003 .500 

Mastery .004 .006 .493 .002 .044 .457 .500 
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Table 5.38 

Classification for Three-attribute Test with Unequal Base Rates Under the LCDM as Generating Model and the PDCM as Estimation 

Model  

Sample  

Size  

Mastery  

Levels 

Test length = 24 Test length = 48 
True Base 

Rate Nonmastery 
Intermediate 

mastery 
Mastery Nonmastery 

Intermediate 

mastery 
Mastery 

1000 
Nonmastery .266 .015 .008 .297 .002 .000 .300 

Mastery .006 .041 .664 .001 .041 .660 .700 

2000 
Nonmastery .243 .044 .010 .296 .002 .001 .300 

Mastery .005 .010 .689 .001 .046 .655 .700 

5000 
Nonmastery .245 .040 .010 .295 .001 .001 .300 

Mastery .005 .018 .682 .001 .075 .627 .700 

10000 
Nonmastery .243 .042 .010 .295 .001 .001 .300 

Mastery .005 .021 .680 .001 .073 .630 .700 
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Table 5.39 

Classification for Three-attribute Test with Equal Base Rates Under the LCDM as Generating Model and the cPDCM as Estimation 

Model  

Sample  

Size  

Mastery  

Levels 

Test length = 24 Test length = 48 
True Base 

Rate Nonmastery 
Intermediate 

mastery 
Mastery Nonmastery 

Intermediate 

mastery 
Mastery 

1000 
Nonmastery .438 .056 .001 .466 .030 .000 .500 

Mastery .001 .101 .403 .000 .057 .448 .500 

2000 
Nonmastery .441 .055 .000 .471 .029 .000 .500 

Mastery .001 .100 .402 .000 .054 .446 .500 

5000 
Nonmastery .438 .058 .000 .469 .028 .000 .500 

Mastery .001 .098 .405 .000 .055 .448 .500 

10000 
Nonmastery .438 .058 .000 .468 .028 .000 .500 

Mastery .001 .099 .404 .000 .054 .450 .500 
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Table 5.40 

Classification for Three-attribute Test with Unequal Base Rates Under the LCDM as Generating Model and the cPDCM as 

Estimation Model  

Sample  

Size  

Mastery  

Levels 

Test length = 24 Test length = 48 
True Base 

Rate Nonmastery 
Intermediate 

mastery 
Mastery Nonmastery 

Intermediate 

mastery 
Mastery 

1000 
Nonmastery .210 .086 .003 .265 .033 .000 .300 

Mastery .018 .069 .614 .000 .045 .657 .700 

2000 
Nonmastery .200 .094 .002 .264 .033 .000 .300 

Mastery .000 .060 .643 .000 .044 .659 .700 

5000 
Nonmastery .216 .078 .001 .262 .033 .000 .300 

Mastery .000 .066 .638 .000 .043 .663 .700 

10000 
Nonmastery .221 .074 .001 .262 .032 .000 .300 

Mastery .000 .068 .636 .000 .044 .661 .700 
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Table 5.41 

Classification for Three-attribute Test with Equal Base Rates Under the Hybrid PDCM as Generating Model and the cPDCM as 

Estimation Model  

Sample  

Size  

Mastery  

Levels 

Test length = 24 Test length = 48 
True Base 

Rate Nonmastery 
Intermediate 

mastery 

Mastery 

  
Nonmastery 

Intermediate 

mastery 

Mastery 

  

1000 

Nonmastery .311 .031 .001 .329 .016 .000 .330 

Intermediate 

mastery 
.063 .169 .077 .028 .243 .038 .330 

Mastery .001 .030 .317 .000 .021 .325 .340 

2000 

Nonmastery .316 .031 .001 .330 .016 .000 .330 

Intermediate 

mastery 
.064 .170 .077 .027 .242 .039 .330 

Mastery .001 .030 .312 .000 .019 .326 .340 

5000 

Nonmastery .312 .031 .001 .328 .017 .000 .330 

Intermediate 

mastery 
.060 .173 .078 .028 .243 .039 .330 

Mastery .001 .029 .316 .000 .019 .326 .340 

10000 

Nonmastery .314 .030 .001 .329 .017 .000 .330 

Intermediate 

mastery 
.062 .171 .077 .028 .242 .039 .330 

Mastery .001 .029 .316 .000 .019 .326 .340 
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Table 5.42 

Classification for Three-attribute Test with Unequal Base Rates Under the Hybrid PDCM as Generating Model and the cPDCM as 

Estimation Model  

Sample  

Size  

Mastery  

Levels 

Test length = 24 Test length = 48 
True Base 

Rate Nonmastery 
Intermediate 

mastery 

Mastery 

  
Nonmastery 

Intermediate 

mastery 

Mastery 

  

1000 

Nonmastery .203 .023 .001 .211 .013 .000 .200 

Intermediate 

mastery 
.057 .164 .091 .027 .242 .046 .300 

Mastery .001 .030 .430 .000 .021 .440 .500 

2000 

Nonmastery .199 .023 .001 .210 .013 .000 .200 

Intermediate 

mastery 
.054 .166 .094 .025 .244 .045 .300 

Mastery .001 .029 .434 .000 .021 .442 .500 

5000 

Nonmastery .198 .024 .001 .275 .015 .000 .200 

Intermediate 

mastery 
.053 .169 .093 .027 .242 .042 .300 

Mastery .001 .030 .432 .000 .020 .379 .500 

10000 

Nonmastery .198 .024 .001 .228 .013 .000 .200 

Intermediate 

mastery 
.054 .168 .093 .025 .243 .045 .300 

Mastery .001 .030 .432 .000 .021 .425 .500 
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Table 5.43 

Classification for Three-attribute Test with Equal Base Rates Under the Hybrid PDCM as 

Generating Model and the LCDM as Estimation Model  

Sample  

Size  

Mastery  

Levels 

Test length = 24 Test length = 48 True Base 

Rate Nonmastery Mastery  Nonmastery Mastery  

1000 

Nonmastery .336 .007 .343 .002 .330 

Intermediate 

mastery 
.142 .167 .125 .184 .330 

Mastery .005 .343 .000 .346 .340 

2000 

Nonmastery .341 .007 .343 .003 .330 

Intermediate 

mastery 
.140 .170 .120 .188 .330 

Mastery .005 .337 .000 .345 .340 

5000 

Nonmastery .337 .007 .344 .001 .330 

Intermediate 

mastery 
.139 .171 .124 .186 .330 

Mastery .005 .341 .000 .345 .340 

10000 

Nonmastery .337 .007 .345 .001 .330 

Intermediate 

mastery 
.139 .171 .123 .185 .330 

Mastery .005 .341 .000 .345 .340 
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Table 5.44 

Classification for Three-attribute Test with Unequal Base Rates Under the Hybrid PDCM as 

Generating Model and the LCDM as Estimation Model  

Sample  

Size  

Mastery  

Levels 

Test length = 24 Test length = 48 True Base 

Rate Nonmastery Mastery  Nonmastery Mastery  

1000 

Nonmastery .224 .005 .223 .000 .200 

Intermediate 

mastery 
.137 .174 .157 .158 .300 

Mastery .007 .453 .001 .460 .500 

2000 

Nonmastery .218 .005 .222 .000 .200 

Intermediate 

mastery 
.139 .175 .155 .159 .300 

Mastery .006 .457 .001 .462 .500 

5000 

Nonmastery .218 .004 .223 .000 .200 

Intermediate 

mastery 
.141 .174 .156 .158 .300 

Mastery .007 .457 .001 .462 .500 

10000 

Nonmastery .218 .004 .223 .000 .200 

Intermediate 

mastery 
.141 .174 .156 .158 .300 

Mastery .006 .456 .001 .461 .500 
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Table 5.45 

Reliability for One-attribute Assessments When the LCDM Was Misspecified as the PDCM or the cPDCM 

Test 

length 

Sample 

size 

PDCM cPDCM  
Equal Unequal Equal Unequal 

8 1000 .903(.007) .912(.006) .922(.015) .904(.028) 

2000 .902(.005) .910(.004) .920(.020) .906(.030) 

5000 .901(.003) .909(.003) .925(.026) .905(.032) 

10000 .901(.002) .909(.002) .919(.028) .920(.027) 

16 1000 .977(.005) .977(.002) .965(.017) .942(.023) 

2000 .977(.006) .977(.004) .967(.017) .952(.028) 

5000 .977(.006) .976(.001) .968(.018) .948(.034) 

10000 .977(.007) .976(.001) .972(.017) .949(.035) 
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Table 5.46 

Reliability for One-attribute Assessments When the Hybrid PCDM Was Misspecified as the cPDCM or the LCDM 

Test 

length 

Sample 

size 

cPDCM LCDM  
Equal Unequal Equal Unequal 

8 1000 .863(.030) .839(.036) .939(.008) .946(.007) 

2000 .859(.026) .832(.029) .937(.006) .946(.005) 

5000 .859(.022) .826(.011) .938(.003) .947(.003) 

10000 .851(.006) .827(.008) .938(.003) .946(.002) 

16 1000 .948(.005) .940(.018) .981(.003) .991(.002) 

2000 .948(.004) .943(.016) .981(.002) .991(.001) 

5000 .947(.002) .937(.008) .980(.001) .991(.001) 

10000 .947(.002) .936(.005) .980(.001) .991(.001) 
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Table 5.47 

Reliability for Three-attribute Assessments When the LCDM Was Misspecified As the PDCM or the cPDCM 

Test 

length 

Sample 

size 

PDCM cPDCM  
Equal Unequal Equal Unequal 

24 

1000 .930(.006) .920(.016) .922(.005) .932(.021) 

2000 .924(.024) .938(.014) .922(.003) .933(.021) 

5000 .920(.028) .924(.017) .920(.002) .927(.009) 

10000 .908(.024) .927(.021) .920(.001) .925(.002) 

48 

1000 .982(.010) .980(.019) .972(.003) .972(.003) 

2000 .985(.006) .981(.015) .971(.002) .972(.002) 

5000 .982(.016) .972(.022) .971(.001) .972(.001) 

10000 .980(.007) .956(.049) .971(.001) .971(.001) 
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Table 5.48 

Reliability for Three-attribute Assessments When the Hybrid PCDM Was Misspecified as the cPDCM or the LCDM 

Test 

length 

Sample 

size 

cPDCM LCDM  
Equal Unequal Equal Unequal 

24 1000 .871(.008) .869(.010) .961(.006) .957(.007) 

2000 .870(.006) .868(.006) .961(.004) .955(.005) 

5000 .869(.004) .867(.005) .960(.002) .954(.003) 

10000 .868(.003) .866(.004) .960(.002) .953(.002) 

48 1000 .963(.003) .957(.005) .986(.002) .983(.003) 

2000 .961(.001) .961(.003) .986(.002) .982(.002) 

5000 .961(.002) .962(.002) .985(.001) .982(.001) 

10000 .960(.001) .960(.002) .985(.001) .982(.001) 
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Table 5.49 

Summary of Model Fit Statistics for Empirical Study 

Model a1 a2 a3 a4 AIC BIC SABIC LogLikelihood No. of Parameters 

LCDM 2 2 2 2 18731.698 18998.991 18821.148 -9309.849 56 

PDCM-1 3 2 2 2 18634.638 18963.981 18744.853 -9248.319 69 

PDCM-2 2 3 2 2 18537.569 18886.004 18654.173 -9195.784 73 

PDCM-3 2 2 3 2 18569.196 18903.312 18681.008 -9214.598 70 

PDCM-4 2 2 2 3 18579.797 18918.686 18693.206 -9218.899 71 

PDCM-5 3 3 2 2 NA NA NA NA NA 

PDCM-6 3 2 3 2 18444.731 18855.216 18582.100 -9136.366 86 

PDCM-7 3 2 2 3 18455.594 18870.852 18594.560 -9140.797 87 

PDCM-8 2 3 3 2 18388.330 18817.907 18532.088 -9104.165 90 

PDCM-9 2 3 2 3 18386.182 18815.759 18529.940 -9103.091 90 

PDCM-10 2 2 3 3 NA NA NA NA NA 

PDCM-11 3 3 3 2 18256.146 18781.185 18431.851 -9018.073 110 

PDCM-12 3 3 2 3 18250.915 18780.726 18428.216 -9014.457 111 

PDCM-13 3 2 3 3 18274.879 18799.918 18450.584 -9027.440 110 

PDCM-14 2 3 3 3 NA NA NA NA NA 

PDCM-15 3 3 3 3 18087.051 18769.602 18315.467 -8900.526 143 

cPDCM 3 3 3 3 18187.249 18769.565 18382.121 -8971.625 122 
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Figure 5.1 Classification Distribution for True Mastery Group Across All Replications Under 

One Attribute Condition: Sample Size = 1000, Test Length = 8. Note. Generating model: 

LCDM, Estimation model: PDCM. 
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Figure 5.2 Mastery Percentages for Each Attribute under Three Models 
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Figure 5.3 Mean Subscore for Each Attribute for Different Mastery Levels 
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Figure 5.4 Item Characteristic Bar Charts 
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CHAPTER 6 

DISCUSSION 

Diagnostic classification models have gained more attention in the application of 

educational assessments (e.g., Bradshaw et al., 2014; Chiu, Köhn, and Wu, 2016; Kim and Kim, 

2013; Kunina-Habenicht, Rupp, and Wilhelm, 2009; Liu et al., 2013; You, et al., 2018) and 

psychological assessments (e.g., Templin & Henson, 2006) to provide quantitative feedback for 

multiple attributes. DCMs are a group of item-level probability models that models the 

probability of answering the item correctly. Many core DCMs have been proposed over past two 

decades (e.g., Haertel, 1989; Maris, 1999; Junker & Sijtsma, 2001; Hartz, 2002; Templin & 

Henson, 2006; DiBello, Roussos, & Stout, 2007; de la Torre, 2011). These models can be 

obtained by constraining the item parameters of the most general models existed in the current 

literature (von Davier, 2005; Henson et al., 2009; de la Torre, 2010). In this dissertation, the 

loglinear cognitive diagnostic model (LCDM) was used as the general framework.  

One of the limitations of the current DCM literature is that few models can provide 

feedback to polytomous attributes (Haertel, 1989; Maris, 1999; Junker & Sijtsma, 2001; Hartz, 

2002; Templin & Henson, 2006; DiBello, Roussos, & Stout, 2007; de la Torre, 2011). This 

dissertation focused on addressing this limitation by proposing a new DCM, named the 

polytomous-attribute DCM (PDCM), that can measure two or more attribute mastery levels. 

Moreover, the Study 2 in the dissertation investigate the model misspecification on attribute 

mastery levels.  
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The Polytomous-attribute Diagnostic Classification Models 

 There are few studies related to modeling the polytomous-attribute DCMs (e.g., Karalitz, 

2004; Templin, 2004; Chen and de la Torre, 2010). These studies mainly focused on developing 

DCMs under two frameworks: 1) define polytomous attributes at attribute level and specify 

which level is measured by an item using a Q-matrix (e.g., Karalitz, 2004; Chen and de la Torre, 

2010), 2) define polytomous attributes only in order and without specifying a content for each 

mastery level (e.g., Templin, 2004). The second framework remains the definition of the Q-

matrix entries as 0 or 1 as the dichotomous-attribute DCMs where 0 represents an item does not 

measure an attribute and 1 represents an item measures an attribute. The main differences of the 

two frameworks are the definition of attribute mastery levels and the design of Q-matrix. 

Compared to the first framework, the second framework has a more general definition of 

attribute mastery levels and thus provide a more general attribute diagnostic feedback. This 

dissertation proposed a general DCM for polytomous attributes under the second framework, 

termed as the polytomous-attribute DCM (PDCM). 

The PDCM was introduced in Chapter 3 and contained two key-components: the 

measurement model and the structural model. The measurement model is an item-level model for 

the probability of answering an item correctly under a latent attribute profile. Like the LCDM, 

the log-odds of the item response function of the PDCM is a linear combination of an intercept, 

main effects and interactions. The generalizability of the PDCM over the dichotomous DCMs 

and other polytomous DCMs is that the attribute mastery levels were indicated by a set of latent 

dummy coded variables and the main effects and interactions were corresponded to each dummy 

coded variables and combinations. The use of the main effects and interactions for specific 

attribute mastery levels can capture the relationship between attribute and item response to the 
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most extent. The PDCM also allows the number of mastery levels to vary across attributes. More 

specifically, if all attributes measured by a test are dichotomous, the PDCM is equal to the 

LCDM.  

The structural model models the attribute space which is the probability of an examinee 

from the same population being classified into an attribute profile. Among the existing methods, 

this study generalized the form of loglinear model which is one of the most common structural 

models of dichotomous DCMs to model the polytomous attribute space. Similarly, the structural 

model parameters contained intercepts, main effects, and interactions for each dummy variable 

of attribute mastery levels. Again, the full parameterization of the structural model can capture 

the attribute mastery of the population to the most extent. 

When lack of sample size or test length, the PDCM might provide less accurate item 

parameter estimation and attribute classification. Chapter 3 also proposed an alternative model to 

solve this problem, a constrained version of the PDCM named the constrained PDCM (cPDCM). 

The cPDCM was defined by constraining the main effects and interactions to be equal across 

attribute mastery levels. Therefore, it contains the same number of item parameters as the 

LCDM. The difference between the cPDCM and LCDM is that the latent attribute was defined as 

polytomous values (0, 1, 2…) instead of dichotomous values (0 and 1). Moreover, the cPDCM 

also has the same forms for the structural model as the LCDM with the difference in defining 

latent attributes as polytomous values. 

Study 1: An Investigation of PDCM Estimation  

 Two simulation studies and an empirical study were conducted in Chapter 4 and 5. 

Simulation Study 1 was designed to investigate the model estimation and attribute classification 

for the PDCM. The purpose of Study 1 is to provide an insight of the test design and the sample 
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size requirements to the PDCM users.Results showed the PDCM functioned properly since it 

yielded accurate item parameter estimation and high attribute classification accuracy and 

reliability. In general, a stable and accurate item parameter estimation requires more than 2000 

examinees when using the PDCM. As the sample size increased, the RMSEs for the item 

parameters decreased. An increase of the test length, from 8 items per attribute to 16 items per 

attribute, can largely decrease the RMSE. Simple items had smaller RMSEs than complex items 

across all simulation conditions. Compared to the LCDM under the same test length and sample 

size conditions, the PDCM yielded larger RMSEs than the LCDM due to the more item 

parameters and more attribute mastery groups.  

Attribute classification accuracies for the PDCM were higher than 76% for all simulation 

conditions. Since the PDCM classified examinees into more attribute mastery classes, the PDCM 

had lower classification accuracy compared to the LCDM. The increase of the test length can 

contribute to increasing the classification accuracy under the PDCM.  Including complex items 

in the test can increase the number of items measuring an attribute but did not show significant 

improvement on the classification accuracy. This shows the simple items may have stronger 

influence in attribute classification. Attribute reliabilities were higher than .86 for all conditions 

under the PDCM but smaller then those under the LCDM.  

Study 2: An Investigation of Model Misspecification 

When applying DCMs to educational or psychological assessments, the test design is 

required as a priori indicating which attributes are measured by each item. After administering 

the assessment, the first question for test administrators is to decide which DCM to use for item 

response calibration. The choice of the model can further decide which type of diagnostic 
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information student might obtain. Study 2 investigated the influence of model misspecification 

on attribute classifications and reliabilities. 

 Results from simulation study show that if attribute mastery levels were over specified, 

most examinees were classified into the same number of the generating classes. This represents 

the attribute mastery levels can yield similar definitions of knowledge proficiencies. As the test 

length and sample size increased, more examinees were classified into the major classes. When 

the attribute mastery levels were under specified, examinees were forced to be classified into 

fewer classes. The classification under the estimation model depends on the test design and the 

values of item parameters. In this situation, not only the classification was less stable, but also 

examinees obtained fewer diagnostic information. 

Study 2 also investigated the model selection by three information indices. The model 

selection indices in general perform well in identifying attribute mastery levels but might need 

longer test length and larger sample size to identify more complicated models. As the sample 

size and test length increased, the percentages of identifying the “true” model also increased. 

Empirical Study 

To demonstrate the application of the PDCM, we analyzed data from a mathematic 

assessment to diagnose students’ problem-solving skills. We used 17 PDCMs (or LCDM) with 

different combinations of two or three as attribute mastery levels, where the two mastery levels 

were defined as nonmastery and mastery, and the three mastery levels were defined as 

nonmastery, partial mastery and mastery. More specifically, these models contained one LCDM 

which all attributes had two mastery levels, 15 PDCMs with at least one attribute having three 

mastery levels, and a cPDCM to compare to the best-fitting PDCM. 
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The result of the empirical study illustrates an added benefit of the PDCM over the 

LCDM when the model-data fit supports polytomous attributes: It classifies students into an 

intermediate mastery group. The model fit indices, AIC, BIC and SABIC indicated the PDCM 

with all attributes having three mastery levels was the best-fitting model. The attribute 

classification showed that more than 28% of students were classified into the partial mastery 

levels under the PDCM for each attribute. The cPDCM yielded similar attribute classifications 

with less than 14% of difference for attribute mastery levels. When using the LCDM, such 

information will not be provided because students from the partial mastery group were either 

classified into the nonmastery group or the mastery group.  

The item parameter estimation under the PDCM, cPDCM, and LCDM can further explain 

the reason for the differences in attribute classification. Among all items, more than 30% items 

had the differences of the item response probability across attribute mastery levels larger 

than .30. Most item yielded similar item response probability estimates for the PDCM and 

cPDCM except around 15% items had differences of the item response probabilities for the 

partial mastery group larger than .20. Such difference results in the inconsistent of the 

classification of students. Compared to the PDCM and cPDCM, the LCDM under specified the 

attribute mastery levels and had higher item response probabilities for the nonmastery group and 

lower item response probabilities for the mastery group. 

Educational Significance 

The PDCM contributes the existing DCM literatures as a general DCM for polytomous 

attributes to provide more detailed diagnostic feedback to educational researchers, teachers and 

examinees. This type of feedback can be used to more meaningfully group examinees for 

differentiated instruction and to accurately signal intermediate mastery when the underlying 
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attribute is more appropriately characterized with multiple levels. The flexibility of the PDCM 

lies in the definition of the attribute mastery levels. It does not require a specific definition for 

each attribute mastery levels and retains a simple Q-matrix. The PDCM users may decide the 

number of attribute mastery levels based on the model estimation. It also allows attributes to 

have different attribute mastery levels so that examinees can obtain the diagnostic feedback of 

attributes in detail to the different extents. Although using the full PDCM might requires longer 

test lengths and larger sample sizes, many constraint PDCMs can be obtained to reduce the test 

length and sample size requirement, such as, by constraining all main effects to be 0, the PDCM 

becomes a polytomous-attribute DINA model. The submodels of the PDCM provides valuable 

alternatives for people who seek to obtain more detailed feedback yet struggling with test 

development or data collection.  

Future Study 

Though the PDCM and cPDCM show a promising application through the simulation 

studies and the empirical study, the complexity of these models requires further investigations in 

many aspects. First, we can further investigate what is the statistically optimum number of 

mastery levels for each attribute for this data. In Study 1, we only compared the LCDM and 

PDCMs with three mastery levels for all the attributes. It is possible that some attributes only 

require to be classified into two mastery levels while the others might prefer to be classified into 

three or more levels. Second, simulation studies are needed to investigate the accuracy of 

classification into each mastery level and item parameter estimates, as well as the reliabilities of 

the attribute classifications under various test conditions. Third, more efforts are needs in 

providing a guideline for DCM practitioners about how to use the PDCM to provide more 

detailed feedback to students and educators. 



 

167 
 

Although many simulation conditions were covered in Study 2, the real testing scenario 

might be more complicated. One of the limitations of the study is that the assessments contained 

only simple items, while a real test might contain items that measure two or more attributes. In 

this situation, the PDCM might become even more complicated when the attribute has three or 

more mastery levels. Although using the PDCM can provide more detailed feedback to 

examinees, the model does not always yield converged results. A more constrained model, such 

as the cPDCM, might be considered as an alternative. Moreover, since the PDCM allows 

attributes to have different mastery levels, an investigation of a test design that measures 

multiple attributes with different mastery levels can be conducted as a future study.
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Appendix A 

Mplus Code for Tests Measuring Three Attributes With Three Mastery Levels 

 

TITLE:  ! Section that appears in header of output file 

    DCM for DTMRdata with 4 attributes and full structural model, 

28 items, and maximum 2-order item model, 

Saturated structural model (Mplus default). 

                            

DATA:  ! Location of free format data file 

    FILE = l3tl24n1000_1.dat; 

                           

VARIABLE: 

    NAMES = I1-I24 group;          

    USEVARIABLE = I1-I24;       

    CATEGORICAL = I1-I24; 

    CLASSES = c(27); 

    MISSING ARE ALL (99);  

                               

 

ANALYSIS: 

    TYPE = MIXTURE;                    ! Estimates latent classes 

    STARTS = 0;                        ! Turn off multiple random start feature 

    PROCESSORS = 8;                    ! Number of processors available 

                               

MODEL: 

 

%OVERALL% 

                    

[c#1] (m1) !Latent variable mean for class1 

[c#2] (m2) !Latent variable mean for class2 

[c#3] (m3) !Latent variable mean for class3 

[c#4] (m4) !Latent variable mean for class4 

[c#5] (m5) !Latent variable mean for class5 

[c#6] (m6) !Latent variable mean for class6 

[c#7] (m7) !Latent variable mean for class7 

[c#8] (m8) !Latent variable mean for class8 

[c#9] (m9) !Latent variable mean for class9 

[c#10] (m10) !Latent variable mean for class10 

[c#11] (m11) !Latent variable mean for class11 

[c#12] (m12) !Latent variable mean for class12 

[c#13] (m13) !Latent variable mean for class13 

[c#14] (m14) !Latent variable mean for class14 

[c#15] (m15) !Latent variable mean for class15 

[c#16] (m16) !Latent variable mean for class16 
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[c#17] (m17) !Latent variable mean for class17 

[c#18] (m18) !Latent variable mean for class18 

[c#19] (m19) !Latent variable mean for class19 

[c#20] (m20) !Latent variable mean for class20 

[c#21] (m21) !Latent variable mean for class21 

[c#22] (m22) !Latent variable mean for class22 

[c#23] (m23) !Latent variable mean for class23 

[c#24] (m24) !Latent variable mean for class24 

[c#25] (m25) !Latent variable mean for class25 

[c#26] (m26) !Latent variable mean for class26 

!====================================================================

======= 

 

%c#1%    ![000] 

[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 

[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 

[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 

[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#2%    ![001] 

[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 
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[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 

[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 

!====================================================================

======= 

%c#3%    ![002] 

[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 

[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 

[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 

[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 

[I23$1]     (T23_3); 

[I24$1]     (T24_3); 
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!====================================================================

======= 

%c#4%    ![010] 

[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 

[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 

[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 

[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 

[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#5%    ![011] 

[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 

[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 

[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 
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[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 

!====================================================================

======= 

%c#6%    ![012] 

[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 

[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 

[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 

[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 

[I23$1]     (T23_3); 

[I24$1]     (T24_3); 

!====================================================================

======= 

%c#7%    ![020] 

[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 

[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 
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[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 

[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 

[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#8%    ![021] 

[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 

[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 

[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 

[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 

!====================================================================

======= 

%c#9%    ![022] 
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[I1$1]     (T1_1); 

[I2$1]     (T2_1); 

[I3$1]     (T3_1); 

[I4$1]     (T4_1); 

[I5$1]     (T5_1); 

[I6$1]     (T6_1); 

[I7$1]     (T7_1); 

[I8$1]     (T8_1); 

[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 

[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 

[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 

[I23$1]     (T23_3); 

[I24$1]     (T24_3); 

!====================================================================

======= 

%c#10%    ![100] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 

[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 

[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 
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[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#11%    ![101] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 

[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 

[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 

!====================================================================

======= 

%c#12%    ![102] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 

[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 
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[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 

[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 

[I23$1]     (T23_3); 

[I24$1]     (T24_3); 

!====================================================================

======= 

%c#13%    ![110] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 

[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 

[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 

[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#14%    ![111] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 
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[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 

[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 

!====================================================================

======= 

%c#15%    ![112] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 

[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 

[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 
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[I23$1]     (T23_3); 

[I24$1]     (T24_3); 

!====================================================================

======= 

%c#16%    ![120] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 

[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 

[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 

[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#17%    ![121] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 

[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 
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[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 

!====================================================================

======= 

%c#18%    ![122] 

[I1$1]     (T1_2); 

[I2$1]     (T2_2); 

[I3$1]     (T3_2); 

[I4$1]     (T4_2); 

[I5$1]     (T5_2); 

[I6$1]     (T6_2); 

[I7$1]     (T7_2); 

[I8$1]     (T8_2); 

[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 

[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 

[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 

[I23$1]     (T23_3); 

[I24$1]     (T24_3); 

!====================================================================

======= 

%c#19%    ![200] 

[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 
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[I7$1]     (T7_3); 

[I8$1]     (T8_3); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 

[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 

[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#20%    ![201] 

[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 

[I7$1]     (T7_3); 

[I8$1]     (T8_3); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 

[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 
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!====================================================================

======= 

%c#21%    ![202] 

[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 

[I7$1]     (T7_3); 

[I8$1]     (T8_3); 

[I9$1]     (T9_1); 

[I10$1]     (T10_1); 

[I11$1]     (T11_1); 

[I12$1]     (T12_1); 

[I13$1]     (T13_1); 

[I14$1]     (T14_1); 

[I15$1]     (T15_1); 

[I16$1]     (T16_1); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 

[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 

[I23$1]     (T23_3); 

[I24$1]     (T24_3); 

!====================================================================

======= 

%c#22%    ![210] 

[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 

[I7$1]     (T7_3); 

[I8$1]     (T8_3); 

[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 
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[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 

[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#23%    ![211] 

[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 

[I7$1]     (T7_3); 

[I8$1]     (T8_3); 

[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 

[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 

!====================================================================

======= 

%c#24%    ![212] 

[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 

[I7$1]     (T7_3); 

[I8$1]     (T8_3); 
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[I9$1]     (T9_2); 

[I10$1]     (T10_2); 

[I11$1]     (T11_2); 

[I12$1]     (T12_2); 

[I13$1]     (T13_2); 

[I14$1]     (T14_2); 

[I15$1]     (T15_2); 

[I16$1]     (T16_2); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 

[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 

[I23$1]     (T23_3); 

[I24$1]     (T24_3); 

!====================================================================

======= 

%c#25%    ![220] 

[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 

[I7$1]     (T7_3); 

[I8$1]     (T8_3); 

[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 

[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_1); 

[I18$1]     (T18_1); 

[I19$1]     (T19_1); 

[I20$1]     (T20_1); 

[I21$1]     (T21_1); 

[I22$1]     (T22_1); 

[I23$1]     (T23_1); 

[I24$1]     (T24_1); 

!====================================================================

======= 

%c#26%    ![221] 
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[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 

[I7$1]     (T7_3); 

[I8$1]     (T8_3); 

[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 

[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_2); 

[I18$1]     (T18_2); 

[I19$1]     (T19_2); 

[I20$1]     (T20_2); 

[I21$1]     (T21_2); 

[I22$1]     (T22_2); 

[I23$1]     (T23_2); 

[I24$1]     (T24_2); 

!====================================================================

======= 

%c#27%    ![222] 

[I1$1]     (T1_3); 

[I2$1]     (T2_3); 

[I3$1]     (T3_3); 

[I4$1]     (T4_3); 

[I5$1]     (T5_3); 

[I6$1]     (T6_3); 

[I7$1]     (T7_3); 

[I8$1]     (T8_3); 

[I9$1]     (T9_3); 

[I10$1]     (T10_3); 

[I11$1]     (T11_3); 

[I12$1]     (T12_3); 

[I13$1]     (T13_3); 

[I14$1]     (T14_3); 

[I15$1]     (T15_3); 

[I16$1]     (T16_3); 

[I17$1]     (T17_3); 

[I18$1]     (T18_3); 

[I19$1]     (T19_3); 
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[I20$1]     (T20_3); 

[I21$1]     (T21_3); 

[I22$1]     (T22_3); 

[I23$1]     (T23_3); 

[I24$1]     (T24_3); 

 

!====================================================================

======= 

 

MODEL CONSTRAINT:  ! Used to define LCDM parameters 

  ! Mplus uses P(X=0) rather than P(X=1) so multiply by -1 

NEW(G_0 G_11_1 G_11_2 G_12_1 G_12_2 G_13_1 G_13_2  

G_212_11 G_212_12 G_212_21 G_212_22 G_213_11 G_213_12 

G_213_21 G_213_22 G_223_11 G_223_12 G_223_21 G_223_22); 

G_0 = -(G_11_1+G_11_2+G_12_1+G_12_2+G_13_1+G_13_2+G_212_11+ 

      G_212_12+G_212_21+G_212_22+G_213_11+G_213_12+G_213_21+ 

      G_213_22+G_223_11+G_223_12+G_223_21+G_223_22); 

m1 = G_0; 

m2 = G_0+G_13_1; 

m3 = G_0+G_13_1+G_13_2; 

m4 = G_0+G_12_1; 

m5 = G_0+G_12_1+G_13_1+G_223_11; 

m6 = G_0+G_12_1+G_13_1+G_13_2+G_223_11+G_223_12; 

m7 = G_0+G_12_1+G_12_2; 

m8 = G_0+G_12_1+G_12_2+G_13_1+G_223_11+G_223_21; 

m9 = G_0+G_12_1+G_12_2+G_13_1+G_13_2+G_223_11+G_223_12+ 

     G_223_21+G_223_22; 

m10 = G_0+G_11_1; 

m11 = G_0+G_11_1+G_13_1+G_213_11; 

m12 = G_0+G_11_1+G_13_1+G_13_2+G_213_11+G_213_12; 

m13 = G_0+G_11_1+G_12_1+G_212_11; 

m14 = G_0+G_11_1+G_12_1+G_13_1+G_212_11+G_213_11+G_223_11; 

m15 = G_0+G_11_1+G_12_1+G_13_1+G_212_11+G_213_11+G_223_11+ 

      G_223_12+G_213_12; 

m16 = G_0+G_11_1+G_12_1+G_12_2+G_212_11+G_212_12; 

m17 = G_0+G_11_1+G_12_1+G_12_2+G_13_1+G_212_11+G_212_12+ 

      G_213_11+G_223_11+G_223_21; 

m18 = G_0+G_11_1+G_12_1+G_12_2+G_13_1+G_13_2+G_212_11+G_212_12+ 

      G_213_11+G_213_12+G_223_11+G_223_21+G_223_12+G_223_22; 

m19 = G_0+G_11_1+G_11_2; 

m20 = G_0+G_11_1+G_11_2+G_13_1+G_213_11+G_213_21; 

m21 = G_0+G_11_1+G_11_2+G_13_1+G_13_2+G_213_11+G_213_21+ 

      G_213_12+G_213_22; 

m22 = G_0+G_11_1+G_11_2+G_12_1+G_212_11+G_212_21; 

m23 = G_0+G_11_1+G_11_2+G_12_1+G_13_1+G_212_11+G_212_21+ 

      G_213_11+G_213_21+G_223_11; 
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m24 = G_0+G_11_1+G_11_2+G_12_1+G_13_1+G_13_2+G_212_11+G_212_21+ 

      G_213_11+G_213_21+G_223_11+G_223_12; 

m25 = G_0+G_11_1+G_11_2+G_12_1+G_12_2+G_212_11+G_212_12+G_212_21+ 

      G_212_22; 

m26 = G_0+G_11_1+G_11_2+G_12_1+G_12_2+G_13_1+G_212_11+G_212_12+ 

      G_212_21+G_212_22+G_213_11+G_213_21+G_223_11+G_223_21; 

         

! Item 1: Define LCDM parameters present for item 1 

NEW(L1_0 L1_11_1 L1_11_2); 

T1_1=-(L1_0); 

T1_2=-(L1_0+L1_11_1); 

T1_3=-(L1_0+L1_11_1+L1_11_2); 

L1_0>-10; L1_0<10; 

! Main effect order constraints 

L1_11_1>0; L1_11_2>0; 

L1_11_1<10; L1_11_2<10; 

  

! Item 2: Define LCDM parameters present for item 2 

NEW(L2_0 L2_11_1 L2_11_2); 

T2_1=-(L2_0); 

T2_2=-(L2_0+L2_11_1); 

T2_3=-(L2_0+L2_11_1+L2_11_2); 

L2_0>-10; L2_0<10; 

! Main effect order constraints 

L2_11_1>0; L2_11_2>0; 

L2_11_1<10; L2_11_2<10; 

  

  

! Item 3: Define LCDM parameters present for item 3 

NEW(L3_0 L3_11_1 L3_11_2); 

T3_1=-(L3_0); 

T3_2=-(L3_0+L3_11_1); 

T3_3=-(L3_0+L3_11_1+L3_11_2); 

L3_0>-10; L3_0<10; 

! Main effect order constraints 

L3_11_1>0; L3_11_2>0; 

L3_11_1<10; L3_11_2<10; 

  

! Item 4: Define LCDM parameters present for item 4 

NEW(L4_0 L4_11_1 L4_11_2); 

T4_1=-(L4_0); 

T4_2=-(L4_0+L4_11_1); 

T4_3=-(L4_0+L4_11_1+L4_11_2); 

L4_0>-10; L4_0<10; 

! Main effect order constraints 

L4_11_1>0; L4_11_2>0; 
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L4_11_1<10; L4_11_2<10; 

  

! Item 5: Define LCDM parameters present for item 5 

NEW(L5_0 L5_11_1 L5_11_2); 

T5_1=-(L5_0); 

T5_2=-(L5_0+L5_11_1); 

T5_3=-(L5_0+L5_11_1+L5_11_2); 

L5_0>-10; L5_0<10; 

! Main effect order constraints 

L5_11_1>0; L5_11_2>0; 

L5_11_1<10; L5_11_2<10; 

  

! Item 6: Define LCDM parameters present for item 6 

NEW(L6_0 L6_11_1 L6_11_2); 

T6_1=-(L6_0); 

T6_2=-(L6_0+L6_11_1); 

T6_3=-(L6_0+L6_11_1+L6_11_2); 

L6_0>-10; L6_0<10; 

! Main effect order constraints 

L6_11_1>0; L6_11_2>0; 

L6_11_1<10; L6_11_2<10; 

  

! Item 7: Define LCDM parameters present for item 7 

NEW(L7_0 L7_11_1 L7_11_2); 

T7_1=-(L7_0); 

T7_2=-(L7_0+L7_11_1); 

T7_3=-(L7_0+L7_11_1+L7_11_2); 

L7_0>-10; L7_0<10; 

! Main effect order constraints 

L7_11_1>0; L7_11_2>0; 

L7_11_1<10; L7_11_2<10; 

  

! Item 8: Define LCDM parameters present for item 8 

NEW(L8_0 L8_11_1 L8_11_2); 

T8_1=-(L8_0); 

T8_2=-(L8_0+L8_11_1); 

T8_3=-(L8_0+L8_11_1+L8_11_2); 

L8_0>-10; L8_0<10; 

! Main effect order constraints 

L8_11_1>0; L8_11_2>0; 

L8_11_1<10; L8_11_2<10; 

  

! Item 9: Define LCDM parameters present for item 9 

NEW(L9_0 L9_12_1 L9_12_2); 

T9_1=-(L9_0); 

T9_2=-(L9_0+L9_12_1); 
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T9_3=-(L9_0+L9_12_1+L9_12_2); 

L9_0>-10; L9_0<10; 

! Main effect order constraints 

L9_12_1>0; L9_12_2>0; 

L9_12_1<10; L9_12_2<10; 

  

! Item 10: Define LCDM parameters present for item 10 

NEW(L10_0 L10_12_1 L10_12_2); 

T10_1=-(L10_0); 

T10_2=-(L10_0+L10_12_1); 

T10_3=-(L10_0+L10_12_1+L10_12_2); 

L10_0>-10; L10_0<10; 

! Main effect order constraints 

L10_12_1>0; L10_12_2>0; 

L10_12_1<10; L10_12_2<10;  

 

! Item 11: Define LCDM parameters present for item 11 

NEW(L11_0 L11_12_1 L11_12_2); 

T11_1=-(L11_0); 

T11_2=-(L11_0+L11_12_1); 

T11_3=-(L11_0+L11_12_1+L11_12_2); 

L11_0>-10; L11_0<10; 

! Main effect order constraints 

L11_12_1>0; L11_12_2>0; 

L11_12_1<10; L11_12_2<10;  

  

! Item 12: Define LCDM parameters present for item 12 

NEW(L12_0 L12_12_1 L12_12_2); 

T12_1=-(L12_0); 

T12_2=-(L12_0+L12_12_1); 

T12_3=-(L12_0+L12_12_1+L12_12_2); 

L12_0>-10; L12_0<10; 

! Main effect order constraints 

L12_12_1>0; L12_12_2>0; 

L12_12_1<10; L12_12_2<10;  

  

! Item 13: Define LCDM parameters present for item 13 

NEW(L13_0 L13_12_1 L13_12_2); 

T13_1=-(L13_0); 

T13_2=-(L13_0+L13_12_1); 

T13_3=-(L13_0+L13_12_1+L13_12_2); 

L13_0>-10; L13_0<10; 

! Main effect order constraints 

L13_12_1>0; L13_12_2>0; 

L13_12_1<10; L13_12_2<10;  
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! Item 14: Define LCDM parameters present for item 14 

NEW(L14_0 L14_12_1 L14_12_2); 

T14_1=-(L14_0); 

T14_2=-(L14_0+L14_12_1); 

T14_3=-(L14_0+L14_12_1+L14_12_2); 

L14_0>-10; L14_0<10; 

! Main effect order constraints 

L14_12_1>0; L14_12_2>0; 

L14_12_1<10; L14_12_2<10;  

  

! Item 15: Define LCDM parameters present for item 15 

NEW(L15_0 L15_12_1 L15_12_2); 

T15_1=-(L15_0); 

T15_2=-(L15_0+L15_12_1); 

T15_3=-(L15_0+L15_12_1+L15_12_2); 

L15_0>-10; L15_0<10; 

! Main effect order constraints 

L15_12_1>0; L15_12_2>0; 

L15_12_1<10; L15_12_2<10;  

  

! Item 16: Define LCDM parameters present for item 16 

NEW(L16_0 L16_12_1 L16_12_2); 

T16_1=-(L16_0); 

T16_2=-(L16_0+L16_12_1); 

T16_3=-(L16_0+L16_12_1+L16_12_2); 

L16_0>-10; L16_0<10; 

! Main effect order constraints 

L16_12_1>0; L16_12_2>0; 

L16_12_1<10; L16_12_2<10;  

  

! Item 17: Define LCDM parameters present for item 17 

NEW(L17_0 L17_13_1 L17_13_2); 

T17_1=-(L17_0); 

T17_2=-(L17_0+L17_13_1); 

T17_3=-(L17_0+L17_13_1+L17_13_2); 

L17_0>-10; L17_0<10; 

! Main effect order constraints 

L17_13_1>0; L17_13_2>0; 

L17_13_1<10; L17_13_2<10;   

 

! Item 18: Define LCDM parameters present for item 18 

NEW(L18_0 L18_13_1 L18_13_2); 

T18_1=-(L18_0); 

T18_2=-(L18_0+L18_13_1); 

T18_3=-(L18_0+L18_13_1+L18_13_2); 

L18_0>-10; L18_0<10; 
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! Main effect order constraints 

L18_13_1>0; L18_13_2>0; 

L18_13_1<10; L18_13_2<10;  

  

! Item 19: Define LCDM parameters present for item 19 

NEW(L19_0 L19_13_1 L19_13_2); 

T19_1=-(L19_0); 

T19_2=-(L19_0+L19_13_1); 

T19_3=-(L19_0+L19_13_1+L19_13_2); 

L19_0>-10; L19_0<10; 

! Main effect order constraints 

L19_13_1>0; L19_13_2>0; 

L19_13_1<10; L19_13_2<10;  

  

! Item 20: Define LCDM parameters present for item 20 

NEW(L20_0 L20_13_1 L20_13_2); 

T20_1=-(L20_0); 

T20_2=-(L20_0+L20_13_1); 

T20_3=-(L20_0+L20_13_1+L20_13_2); 

L20_0>-10; L20_0<10; 

! Main effect order constraints 

L20_13_1>0; L20_13_2>0; 

L20_13_1<10; L20_13_2<10;  

  

! Item 21: Define LCDM parameters present for item 21 

NEW(L21_0 L21_13_1 L21_13_2); 

T21_1=-(L21_0); 

T21_2=-(L21_0+L21_13_1); 

T21_3=-(L21_0+L21_13_1+L21_13_2); 

L21_0>-10; L21_0<10; 

! Main effect order constraints 

L21_13_1>0; L21_13_2>0; 

L21_13_1<10; L21_13_2<10;  

  

! Item 22: Define LCDM parameters present for item 22 

NEW(L22_0 L22_13_1 L22_13_2); 

T22_1=-(L22_0); 

T22_2=-(L22_0+L22_13_1); 

T22_3=-(L22_0+L22_13_1+L22_13_2); 

L22_0>-10; L22_0<10; 

! Main effect order constraints 

L22_13_1>0; L22_13_2>0; 

L22_13_1<10; L22_13_2<10;  

  

! Item 23: Define LCDM parameters present for item 23 

NEW(L23_0 L23_13_1 L23_13_2); 
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T23_1=-(L23_0); 

T23_2=-(L23_0+L23_13_1); 

T23_3=-(L23_0+L23_13_1+L23_13_2); 

L23_0>-10; L23_0<10; 

! Main effect order constraints 

L23_13_1>0; L23_13_2>0; 

L23_13_1<10; L23_13_2<10;  

  

! Item 24: Define LCDM parameters present for item 24 

NEW(L24_0 L24_13_1 L24_13_2); 

T24_1=-(L24_0); 

T24_2=-(L24_0+L24_13_1); 

T24_3=-(L24_0+L24_13_1+L24_13_2); 

L24_0>-10; L24_0<10; 

! Main effect order constraints 

L24_13_1>0; L24_13_2>0; 

L24_13_1<10; L24_13_2<10;   

 

OUTPUT: 

    TECH10;  ! Request additional model fit statistics 

 

SAVEDATA: ! Format, name of posterior probabilities of class membership file 

    FORMAT = F10.5; 

    FILE = respondents1.dat; 

    SAVE = CPROBABILITIES; 

                               


