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region of the Southeastern USA should be planted during April, May, and June. Irrigation also 

could offset the negative effects of water deficit and high temperature.  
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CHAPTER 1 

INTRODUCTION 

Climate is one of the most important factors that control the future supply of food and 

there is already overwhelming evidence that shows that climate change is reducing crop yield 

(Gosling et al. 2011, Lobell et al. 2011). Maize (Zea mays L.) is one of the three most important 

cereals and contributes the most to the calories that were either directly or indirectly consumed 

by humans (Cassman 1999). A significant effect of climate on maize has been found by both 

historical data and impact studies (Tsvetsinskaya et al. 2003, Kucharik & Ramankutty 2005, 

Lobell & Field 2007, Eckersten et al. 2010, Lobell et al. 2011, Rowhani et al. 2011). 

Many studies have been conducted to understand the biophysical and biological 

processes of how maize responds to warmer growing seasons, reduced water supply, and 

increased carbon dioxide (Bunce 2004, Rotter et al. 2011, Li et al. 2014). A negative response to 

rising temperature has been found for maize yield (Kurek et al. 2007, Lobell & Field 2007). 

Precipitation is an important driver that affects the inter-annual variability of maize yield. 

However, the effect of temperature on yield is larger than for precipitation in most situations 

(Burke et al. 2009, Lobell et al. 2011, Asseng et al. 2013). CO2 enrichment is generally believed 

to be able to offset the negative effects on maize grain yield from high temperature extremes 

(Challinor & Wheeler 2008). However, arguments still exist since some studies insisted that 

maize does not directly benefit from rising CO2 (Long et al. 2006, Gosling et al. 2011).  

Many limitations in the studies that have been conducted with respect to the potential 

impact of climate change on maize growth, development, and yield still exist for those literatures. 
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First of all, many of the studies still focused on conducting a sensitivity analysis research of 

climate change impact on maize growing. Only a few provided understandable information that 

is useful for decision-makers or farmers. Secondly, although progress was made on 

characterizing and analyzing uncertainties in generating future climate (Christensen et al. 2007), 

it is not likely to mitigate them in short time (Knutti 2010). Given the uncertainties associated 

with of the climate scenarios, a good approach is to use several possible scenarios as input for the 

crop simulation models to provide range of possibilities for impact analysis (Iglesias 2006). 

Thirdly, wide divergence in simulated grain yield by various crop simulation models has been 

found since these models represent the crop development and growth differently (Palosuo et al. 

2011, Rotter et al. 2011, Rötter et al. 2012, Carter 2013). Recent studies have shown that a 

greater proportion of the uncertainty in climate change impact projections was due to variations 

among crop models than due to the variations among downscaled general circulation models 

(Palosuo et al. 2011, Malcolm et al. 2012, Asseng et al. 2013, Rosenzweig et al. 2013). 

Fortunately, an ensemble of multiple crop models can offer a more robust basis for projecting 

future crop yields and associated uncertainties rather than relying on individual model 

simulations (Semenov & Stratonovitch 2010, Rötter et al. 2012, Asseng et al. 2013, Carter 2013). 

However, most of climate impact studies until very recently are still are based on a single crop 

model for the analyses.  

The National Corn Growers Association (NCGA, http://www.ncga.com) reported that 

32.1% of the world's maize is produced by United States and 2% of the US maize is from the 

southeastern USA. Maize production is important and climate change impact on crop varies with 

region. This study dedicated the impact of changing climate in 2050 and 2070 for maize 

production in southeastern USA. Multiple climate scenarios and two crop models were applied. 
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The overall goal of this study was to determine potential adaptation strategies for crop 

production in the southeastern USA under a changing climate in 2050 and 2070. The specific 

objectives were: 1) to compare the performance of two maize crop simulations models, Cropping 

System Model (CSM)-CERES-Maize and Erosion-Productivity Impact Calculator (EPIC) for 

maize, 2) to evaluate the accuracy of an Integrated Assessment Model (IAM)-SimCLIM in 

projecting future climate for specific locations in the southeastern USA, 3) to determine the 

maize grain yield in 2050 and 2070 based on two crop models under a wide coverage of climate 

scenarios, and 4) to develop the adaptation strategies for future maize planting.  

First of all, in this study we try to address some of the limitations of previously conducted 

climate change impact studies. In Chapter 2, since few studies have been conducted for 

comparison of maize crop models (Carter 2013), two popularly used maize simulations models, 

i.e., CSM-CERES-Maize and EPIC, were calibrated and evaluated first for seven recently 

released cultivars. Those hybrids were Dyna-Gro V5373VT3, Pioneer 33M57(Hx1/LL/RR2), SS 

731CL, Croplan Genetics 851 VT3 PRO, Croplan Genetics 8756 VT3, DeKalb DKC69-

71(RR2/YGCB), and Pioneer 31D58. Model calibration was based on the observed crop 

performance data obtained during 2003 to 2010 from locations Blairsville, Calhoun, Griffin, 

Midville, Plains, and Tifton in Georgia. Following model evaluation, the two crop models were 

compared in simulating both rainfed and irrigated grain yield from 1958 to 2012 with the seven 

calibrated hybrids for six locations. 

In Chapter 3, the accuracy of SimCLIM in projecting site-specific climate for the 

southeastern USA was evaluated. The purpose of this chapter was to develop a good statistical 

approach for evaluating SimCLIM. Tifton, Georgia was selected as a case study because of the 

availability of historical weather data for maximum and minimum temperature, precipitation, and 
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especially solar radiation. The evaluation was based on a range of statistical tests, including box-

plot, time-series plot, standard deviation, Kolmogorov-Smirnov test (KS-test), and Cumulative 

Distribution Function (CDF) analyses for minimum and maximum temperature, precipitation, 

and solar radiation for both the mean and variability of climate.   

The comprehensive evaluation for Tifton Georgia from chapter 3 could not represent the 

southeastern USA. In Chapter 4, 34 locations therefore were selected encompassing the states of 

Alabama, Florida, and Georgia, for the period from 1993-1998, depending on the availability of 

data, and ending in 2012. Statistical analysis including box-plot, time-series plot, standard 

deviation, KS-test, and probability histogram were applied. Site-specific climate variables 

minimum and maximum temperature, precipitation, and solar radiation for multiple locations 

over southeastern USA (in Alabama, Florida, and Georgia) were evaluated. 

In Chapter 5, the impact of climate change on both rainfed and irrigated maize yield was 

determined using the two crop simulation models and multiple climate scenarios. Southeastern 

USA was divided into different climate divisions. It was assumed that the climate for each 

climate division was similar. A climate division should have similar crop distribution. One 

location was used to represent one climate division. 22 locations were selected to represent the 

climate zones in Alabama, Florida, and Georgia. Climate scenarios for those 22 locations in the 

three states that were generated by SimCLIM were based on 15 GCMs and three gas emission 

scenarios, A1B, A2 and B1. Under each of the climate scenarios, both rainfed and irrigated grain 

yield for seven maize hybrids were simulated using the two crop simulation models CSM-

CERES-Maize and EPIC. Maize grain yields for planting dates from February to June with a 15-

day gap were simulated. 
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Chapter 6 summarizes the results of this study and proposes possible adaptation strategies 

for farmers and policy/decision-makers. Furthermore, recommendations are also proposed for 

future research for climate change impact and adaptation strategy. 
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CHAPTER 2 

A COMPARISON OF THE PERFORMANCE OF THE CSM-CERES-MAIZE AND EPIC 

MODELS FOR THE SOUTHEASTERN USA USING VARIETY TRIAL DATA1 

 

 

 

 

 

  

                                                
1 Bao, Y., Hoogenboom, G., McClendon, R.W., and Vellidis, G. to be submitted to Agricultural 
and Forest Meteorology 
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2.1 INTRODUCTION 

"Crop simulation models integrate the current state-of-the art scientific knowledge from 

many different disciplines, including crop physiology, plant breeding, agronomy, 

agrometeorology, soil physics, soil chemistry, soil fertility, plant pathology, entomology, 

economics and many others" (Hoogenboom 2000). Since agricultural production is determined 

by weather and climate (Adams et al. 1998), the crop (simulation) models have been used to 

analyze the potential impact of changing climate in agricultural production (Lobell & Asner 

2003, White & Hoogenboom 2010, Semenov & Shewry 2011). Coupling crop models and 

climate models has been widely used in past and current climate impact analysis (Curry et al. 

1995, Easterling et al. 1996, Easterling et al. 1997, Carbone et al. 2003, Parry et al. 2004, Parry 

et al. 2007, White et al. 2011).  Alexandrov and Hoogenboom (2000) used the CERES v.3.5 

simulation model for maize (Zea mays L.) and winter wheat (Triticum aestivum L.) and the 

CROPGRO v.3.5 model for soybean (Glycine max L.) and peanut (Arachis hypogaea L.) based 

on climate projections of Global Circulation Models (GCM) for more than 500 locations in the 

southeastern region of the USA. Their results concluded that the GCM scenarios projected a 

decrease in crop yield for the 2020s under the current level of CO2 and the increased CO2 tended 

to increase crop yields. Adaptation options were suggested for changing sowing data, hybrids 

and cultivar selection, and fertilization to mitigate the potential negative impact of potential 

warming.  

It is well known that the calibration and evaluation of a crop model is always critical 

when a crop model is applied for new locations and varieties. This procedure can not only 

promise that crop model can provide accurate information, e.g., simulations of grain yield, but 

also can show the possible uncertainties that crop models could introduce in impact studies. 
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Many studies have developed procedures to calibrate crop models based on limited observations, 

not only for model improvement but also for numerous applications for a range of crops such as 

maize, soybean, alfalfa (Medicago sativa), grain sorghum (Sorghum bicolor (L.) Moench), wheat, 

barley (Hordeum vulgare L.), peanut, rice (Oryza sativa), cotton (Gossypium hirsutum L.), etc. 

(Cabelguenne et al. 1990, Perez-Quezada et al. 2003, Soler et al. 2007, Ko et al. 2009, Gaiser et 

al. 2010, Balkovič et al. 2013).  

In addition to the calibration and evaluation of single model, studies also have shown that 

different modeling approaches may lead to significant differences in results from crop growth 

simulation models (Wolf 2002). The comparison of different crop models' performance in 

predicting crop phenology (e.g., Porter et al. (1993) and French and Hodges (1985)) and grain 

yield (e.g., Cerrato and Blackmer (1990)) have been studied and also concluded that some 

models showed better predictions than the others, which means less uncertainties will be 

introduced when the models are applied. Recent discussion of uncertainties that crop models 

could introduce to for climate change impact studies urges the comparison of the performance of 

different crop models (Semenov & Stratonovitch 2010, Ceglar et al. 2011, Rötter et al. 2012). 

The recently released cultivars have not been parameterized in the models and therefore need to 

be calibrated, while the crop models also have improved over time. Therefore, the comparison of 

different crop models' performance and the use of multiple crop models to minimize the 

uncertainties from crop models have been acted on internationally, such as The Agricultural 

Model Intercomparison and Improvement Project (Rosenzweig et al. 2013). While, the 

comparison of crop models usually contains the calibration and evaluation of each model, and 

also the sensitivity test under temperature, water, and fertilizer stresses. An accurate sensitivity 

test also promises the better investigation of the climate change effect on crop growth.  
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Comprehensive data sets are needed for the comparison of crop models' performance, 

especially for the more complex dynamic crop growth simulation models (Hoogenboom et al. 

2012a). For instance, Anothai et al. (2008) collected detailed phenological and growth analysis 

data for the calibration of CSM-CROPGRO-Peanut. However, limited observations are normally 

only available because detailed field experiments are time-consuming and require extensive 

financial resources. For most impact studies, the calibration and evaluation procedures of the 

crop simulation models have been ignored. In general, the recommended cultivar coefficients 

from model designers or previous studies were used for the impact studies, which certainly 

introduced more uncertainties to the impact studies.  

Only a few studies so far have concentrated on multiple model comparisons, such as 

wheat (Asseng et al. 2013) and barley (Rötter et al. 2012). There is, therefore, also a need to 

analyze the uncertainties of maize crop models for impact studies, especially with recently 

released maize hybrids. This study selected two commonly used maize crop simulation models in 

both the USA and across the globe. One is CSM-CERES-Maize, which is one module of 

Decision Support System for Agrotechnology Transfer (DSSAT), the other one is Erosion-

Productivity Impact Calculator (EPIC) cropping systems model. DSSAT is a software package 

that incorporates independent models of more than 25 different crops with programs that 

facilitate the evaluation and application of the crop models for different purposes (Jones et al. 

2003, Hoogenboom et al. 2012b). It can simulate growth, development, and yield of a crop 

growing on a uniform area of land by considering weather, genetics, soil water, soil carbon and 

nitrogen, and management in single or multiple seasons and in crop rotations at any location 

where minimum inputs are provided (Hunt & Boote 1998, Jones et al. 2003). The minimum 

inputs contain soil profile, daily weather data (minimum and maximum temperature, 
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precipitation, and solar radiation), crop management (plant population, row spacing, application 

of irrigation and fertilizer etc.), and a set of cultivar coefficients. Individual crop growth modules 

were designed for simulating different crops, which promises an accurate description for the 

development stages of specific cultivar. CSM-CERES-Maize is the module to simulate growth, 

development and yield of maize with a daily time step. Growth stages that are simulated by the 

CSM-CERES-Maize include germination, emergence, end of juvenile, floral induction, 75% 

silking, beginning grain fill, maturity, and harvest (Jones & Kiniry 1986, Ritchie et al. 1998, 

Jones et al. 2003). The physiological day accumulator is a function of temperature and day 

length, while it reaches the threshold given in the cultivar file, the new growth stages is triggered. 

The potential growth depends on photosynthetically active radiation and its interception, where 

the actual biomass production is constrained by stresses such as temperature, nitrogen, and water. 

It also considers the sensitivity of crop to CO2 concentration.  

EPIC was designed to estimate soil productivity as affected by erosion throughout the 

U.S.  (Williams et al. 1989). The components of the EPIC model include weather, hydrology, 

erosion-sedimentation, nutrient cycling, crop growth, tillage, soil temperature, economics, and 

plant environment control (Jones et al. 1984b, a, Sharpley et al. 1984, Williams et al. 1984, 

Williams et al. 1989). Similar to CSM-CERES-Maize, soil profile information, daily weather 

data, crop management, and a set of cultivar coefficients are the minimum data inputs for EPIC. 

However, multiple crops are simulated by a single module. The yield is estimated using the 

harvest index and above-ground biomass. The above-ground biomass in turn is a function of 

photosynthetically active radiation and leaf area. Leaf area is calculated as a function of heat unit 

accumulation, crop development states and crop stresses. Unfortunately, this model does not 

provide the outputs for crop development stages.  
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The goal of this study was to determine the feasibility to evaluate CSM-CERES-Maize 

and EPIC with limited maize (Zea mays L.) variety trial data. The first objective was to 

determine the cultivar coefficients for the two crop models with observed grain yield; the second 

objective was to determine whether the performance of two crop models are comparable in 

predicting maize grain yield. 

2.2 EXPERIMENTAL DATA COLLECTION 

In Georgia, variety trials for both rainfed and irrigated maize are conducted at the 

regional agricultural experimental stations located in Blairsville (34.84oN, 83.93oW), Calhoun 

(34.34oN, 85.12oW), Griffin (33.26oN, 84.28oW), Midville (32.88oN, 82.22oW), Plains (32.05oN, 

84.37oW), and Tifton (31.49oN, 83.53oW) (Table 1). These variety trials are conducted by the 

University of Georgia (UGA) College of Agricultural & Environmental Science (CAES) 

Statewide Variety Testing (SWVT) program. In this study data collected from 2003 until 2010 

were used (Coy et al. 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010). Soil profile and soil 

surface data and generic soil information for these seven locations were obtained from the soil 

analyses conducted by Perkins et al. (1978, 1979, 1982, 1983, 1985, 1986) and Natural 

Resources Conservation Service (NRCS) of United States Department of Agriculture (USDA). 

The soil types were Bradson clay loam for Blairsville; Waynesboro loam, Ethowah loam, Rome 

gravelly clay loam, and Savannah loam for Calhoun; Pacolet sandy loam and Cecil sandy loam 

for Griffin; Tifton loamy sand and Dothan loamy sand for Midville; Faceville sandy loam and 

Greensville sandy loam for Plains; and Tifton loamy sand, Fuquay loamy sand, and Dothan 

loamy sand for Tifton. A soil utility program of DSSAT, SBuild, was used to create the soil 

inputs based on these local soil profile data.  
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The daily solar radiation, maximum and minimum air temperature, and precipitation for 

each location were obtained from the Georgia Automated Environmental Monitoring Network 

(GAEMN, www.georgiaweather.net), which was first deployed in 1991 (Hoogenboom 1996), 

with 60 operational stations in 2004 (Garcia y Garcia & Hoogenboom 2005) and over 80 in 2013. 

The typical maize growing season is April to October for Blairsville, April to September for 

Calhoun, Griffin, and Midville, and March to September for Plains and Tifton. Blairsville has the 

highest latitude and elevation and, therefore a relatively longer growing season than the other 

locations, while Tifton has the lowest latitude and elevation and is located in the Coastal Plains. 

Precipitation varied among locations and among years due to the variable summer thunderstorms 

that normally occur in Georgia. Some of the years had a dry season, which was less than 400 mm, 

i.e., Calhoun in 2007, Griffin in 2006 and 2007, and Midville in 2006 (Table 2.1). 

Crop management, planting dates, irrigation amount, fertilizer amount, and planting 

population corresponded to the local management of the variety trials. Plant population at 

seeding was around 6 to 8 plants/m2, row spacing was 76 cm, and the planting depth was 5 cm. 

The reported dates and amount of irrigation for each individual trial were also obtained and the 

irrigation method was sprinkler irrigation. Previous crops grown in these fields included maize, 

cotton, soybean, peanut, and fallow, while in some instances there was a fallow season.  

The hybrids, Dyna-Gro V5373VT3, Pioneer 33M57(Hx1/LL/RR2), SS 731CL, Croplan 

Genetics 851 VT3 PRO, Croplan Genetics 8756 VT3, DeKalb DKC69-71(RR2/YGCB), and 

Pioneer 31D58, were the selected seven that were planted at all locations, which covered the 

period of 2003 to 2010 (Table 2.2). The observations included grain yield with 15.5% moisture 

and final harvest dates, which were used for model calibration and evaluation Observed grain 

yield was corrected to 0% water content first prior to running the crop models.  



 

13 

 

2.3 CALIBRATION AND EVALUATION  

2.3.1 CSM-CERES-MAIZE 

Model calibration and evaluation were based on comparing the model simulations with 

observations. Multiple years (2003 to 2010) have been considered for calibration and evaluation, 

some of them were used for calibration and the rest was for evaluation (Table 2.2). Hybrid 

coefficients were adjusted to make the simulated variables fit well with observations. The hybrid 

coefficients of the CSM-CERES-Maize model include thermal time from seedling emergence to 

the end of the juvenile phase (P1), extent to which development is delayed for each hour increase 

in photoperiod above the longest photoperiod at which development proceeds at a maximum rate 

(P2), thermal time from silking to physiological maturity (P5), maximum possible number of 

kernels per plant (G2), kernel filling rate during the linear grain filling state and under optimum 

conditions (G3), and the interval in thermal time (degree days) between successive leaf tip 

appearances (PHINT) (Table 2.3). The soil fertility factor (SLPF) was also adjusted as it is an 

input parameter that affects the overall growth rate of simulated total biomass by modifying daily 

canopy photosynthesis and is attributed to soil fertility differences and soil-based pests, such as 

nematodes (Mavromatis et al. 2001, Guerra et al. 2008) .   

The calibration procedure was similar to the one developed for the CSM-CROPGRO-

Soybean models (Bao et al. 2014). This included the Genotype Coefficient Calculator 

(GENCALC) to calibrate the parameters with corresponding observations and manually adjusted 

the remainder of the hybrids. GENCALC was designed to calibrate hybrid coefficients especially 

for DSSAT model calibration. It starts with the initial coefficients that are extracted from the 

genotype file of DSSAT and it selects the best value for each coefficient by evaluating the root 

mean square error (RMSE) between the simulated and observed variables (Hunt et al. 1993). The 
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search of appropriate value for each of the genetic coefficients was in a limited range by setting 

the change for each step, i.e., STEP, and the number of times GENCALC should change the 

values of a particular coefficient, i.e., LOOP.  

First, SLPF was manually adjusted for each location based on the initial set of hybrid 

coefficients. The values of SLPF range from 0.7 to 0.94 (Jones et al. 1989, Mavromatis et al. 

2001). The adjustment started with an initial value, 0.8, until simulated grain yield was similar to 

the observations. All seven hybrids for all years (2003 to 2010) were used for each of the six 

locations. The next step was to calibrate hybrid coefficients. Because grain yield was only 

available from the variety trial data, the hybrid coefficients G2 and G3 could be automatically 

calibrated by using GENCALC. At the same time the hybrid coefficients P1, P2, P5, and PHINT 

were manually changed with a certain percentage while GENCALC optimized for G2 and G3. A 

sensitivity test showed that the loop for manually modifying parameters was 10 for P1, 0.3 for P2, 

10 for P5, and 1 for PHINT. The search for P1 ranged from 110 to 458, for P2 ranged from 0 to 3, 

for P5 ranged from 390 to 1000, and for PHINT ranged from 30 to 75. The initial values were 

200, 0.3, 800, and 38.9 for P1, P2, P5, and PHINT respectively.  Ideally, the simulated days from 

planting to maturity (maturity days) should have a good fit with observed maturity days when 

adjusting P1, P2, P5, and PHINT. However, because no observed maturity days were obtained, 

the observed days from planting to harvest (harvest days) were used, which is usually longer than 

the number of days to maturity. The GENCALC searches G2 and G3 by comparing simulated 

grain yield with observations. For G2 the range was 248 to 990 and for G3 the range was 4.4 to 

16.5. The initial value for G2 was 770 and 8.5 for G3. The final step was to use the calibrated 

hybrid coefficients for evaluation using an independent data set from the variety trial data.  
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2.3.2 EPIC 

EPIC also requires a number of crop-specific coefficients (Table 2.3), which is similar to 

the CSM-CERES-Maize model. The parameters that were calibrated in this study also have been 

selected for calibration in previous studies, such as Williams et al. (1989), Cabelguenne et al. 

(1990) and Guerra et al. (2004), and Ko et al. (2009). The potential heat units (PHU) for maize is 

defined as the total number of heat units from planting to physiological maturity. Biomass-

energy ratio (WA), maximum harvest index (HI), fraction of growing season when leaf area 

declines (DLAI), maximum potential leaf area index (DMLA) and drought sensitivity parameter 

(WSYF) were also adjusted. Batch processing was applied to search parameters within a certain 

range for those six parameters. A sensitivity test was first conducted to determine the optimum 

range for the optimization. The range for PHU was from 1600 to 2000 with a step of 10; the 

range for WA was from 40 to 55 with a step of 1; the rage for HI was from 0.1 to 0.6 with a step 

of 0.05; the range for DMLA was from 2 to 6 with a step of 1; the range for DLAI was from 0.5 

to 0.95 with a step of 0.05; and the range for WSYF was from 0.01 to 0.4 with a step of 0.01.. 

The final step was also using independent variety trial data to evaluate the calibrated hybrid 

coefficients by comparing simulated grain yield with observations.  

2.3.3 STATISTICAL CRITERIA 

The comparison between simulated and observed data for both calibration and evaluation 

was based on the following criteria: slope of the regression of simulated against observed, the 

coefficient of determination (R2), index of agreement (d), and root mean square error (RMSE) 

(Casella & Berger 2002, Yang et al. 2014a), which were defined as following: 

𝑅! = 1− (!!!!!)!!
(!!!!)!!
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𝑑 = 1− [
(𝑃! − 𝑂!)!!

!!!

( 𝑃!! − 𝑂!! )!!
!!!

] 

𝑅𝑀𝑆𝐸 =
(𝑃! − 𝑂!)!!

!!!
𝑛  

where 𝑛 is the number of observations, 𝑃! is the predicted value for the 𝑖𝑡ℎ measurement, 𝑂! is 

the observed value for the 𝑖𝑡ℎ measurement, 𝑂 is the mean of all observations, 𝑃!! = 𝑃! − 𝑂, and 

𝑂!! = 𝑂! − 𝑂. For the linear regression of simulated against observed yield, slope, 𝑅!, and 𝑑 

ranged from 0 to 1 and a best fit requires that they are 1. On the other hand, a smaller RMSE also 

means a better fit. These statistical criteria have been used in many studies for model calibration 

and evaluation, e.g., Anothai et al. (2008), Mavromatis et al. (2001), Yang et al. (2014b), Soler et 

al. (2007) etc. 

2.3.4 COMPARISON OF CSM-CERES-MAIZE AND EPIC 

Following calibration and evaluation, both models were then applied for yield prediction 

under both irrigated and rainfed production in Blairsville, Calhoun, Griffin, Midville, Plains, and 

Tifton from 1958 to 2012. One of the objectives of this analysis was to determine the differences 

in yield prediction between the two models for different environments, but using the same crop 

management as input. Crop management was the same as those from the variety trial data. The 

soil types varied with year for the variety trials, but for this analysis the most common soil type 

was used for each location. This included a Bradson clay loam for Blairsville, an Etowah loam 

for Calhoun, a Cecil sandy loam for Griffin, a Tifton loamy sand for Midville, a Greensville 

sandy loam for Plains, and a Tifton loamy sand for Tifton. An analysis of variance (one way 

ANOVA) along with box-plots was then conducted to determine whether the simulations of 

CSM-CERES-Maize and EPIC were significantly different. The null hypothesis here was that 
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the simulations of two crop models do not have significant difference. The level of 𝛼 = 0.05 (95% 

confidence level) was used. If value for 𝑝 is smaller than 𝛼 it means that there is a significant 

difference between the simulations of the two crop models.  

2.4. RESULTS 

2.4.1 EVALUATION OF CSM-CERES-MAIZE 

The calibrated value for the soil fertility factor (SLPF) was 0.8 for Blairsville, 0.76 and 

0.70, 0.87, and 0.9 for Calhoun, 0.78 and 0.7 for Griffin, 0.82 and 0.85 for Midville, 0.84 and 

0.73 for Plains, and 0.89, 0.9, and 0.89 for Tifton (Table 2.4). The locations that have multiple 

values for SLPF are because the soil types varied by year. Since SLPF was estimated for each of 

the six locations and all the hybrids in all years were used for the calibration, the linear 

regression of each location was based on all hybrids. The statistical criteria that were used to 

determine the best value for SLPF were slope, R2, and RMSE. The difference between simulated 

observed yield was 14% for Tifton, 11% for Plains, and less than 3% for the other four locations. 

The slope of the linear regression was low for Blairsville (0.391) and it ranged from 0.582 for 

Midville to 0.997 for Tifton. Blairsville also had a low value for R2, 0.056, and the value for R2 

for the other locations ranged from 0.432 for Midville to 0.803 for Tifton The value for the d for 

Blairsville had a 0.475 for d, the other locations ranged from 0.811 to 0.932. Midville had the 

smallest RMSE, 920 kg/ha, Blairsville, Calhoun, Griffin, and Plains were from 1201 to 1867 

kg/ha, and the largest RMSE was 2029 kg/ha for Tifton.  

The CSM-CERES-Maize model was calibrated for phenology and growth coefficients for 

seven hybrids (Table 2.5). The value for the cultivar coefficient P1 ranged from 220 to 330; P2 

ranged from 0.9 to 1.8; P5 ranged from 820 to 940; PHINT ranged from 48.9 to 63.9; G2 ranged 

from 646.8 to 954.8; G3 ranged from 10.94 to 12.64. In some cases the hybrid coefficients had 
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the same value for different hybrids. For example, the value for P1 for Dyna-Gro V5373VT3 and 

Croplan Genetics 851 VT3 PRO were the same and Dyna-Gro V5373VT3, Pioneer 33M57 

(Hx1/LL/RR2), Croplan Genetics 851 VT3 PRO, and DeKalb DKC69-71(RR2/YGCB) had the 

same value for G2.  

A comparison between simulated grain yield based on these calibrated hybrids 

coefficients and observed data was conducted (Table 2.6). In general, the performance of model 

varied by hybrids. For the hybrids Dyna-Gro V5373VT3, Pioneer 33M57 (Hx1/LL/RR2), and SS 

731CL grain yield was over-estimated in grain yield, which is the expected result since the 

limitations for simulations are less than reality. However, for some of the hybrids grain yield was 

under-estimated. Fortunately, the differences between simulated and observed grain yield were 

no more than 3% of the observations, which means a good fit. The slopes of linear regression for 

the seven hybrids ranged from 0.71 (SS731CL) to 1.222 (Croplan Genetics 851 VT3 PRO). 

Hybrid Dyna-Gro V5373VT3 had the best value, 0.997, which is close to 1. The values for R2 of 

seven cultivars were from 0.67 (DeKalb DKC69-71(RR2/YGCB)) to 0.885 (Dyna-Gro 

V5373VT3). The values of d-stat are from 0.9 (DeKalb DKC69-71(RR2/YGCB)) to 0.969 

(Dyna-Gro V5373VT3) for seven hybrids. The RMSE ranged from 1033 (Dyna-Gro V5373VT3) 

to 2051 kg/ha (SS 731CL).  

The evaluation of CSM-CERES-Maize was conducted by comparing simulated and 

observed grain yield for a different set of trial data (Table 2.6). Yield for the hybrids Pioneer 

33M57(Hx1/LL/RR2), SS 731CL, and Croplan Genetics 8756 VT3 was over-estimated and the 

others were under-estimated. The difference between simulated and observed yield were less 

than 8% of the observed yield. The values for slope of the linear regression ranged from 0.64 

(Dyna-Gro V5373VT3) to 1.18 (Pioneer 33M57(Hx1/LL/RR2)). The lowest value was 0.64 for 
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the hybrid Dyna-Gro V5373VT3, which had the highest value for the slope for the calibration. 

The highest value for the slope for evaluation was 0.911 for Pioneer 31D58, which is close to 1. 

The value for R2 was 0.48 for DeKalb DKC69-71(RR2/YGCB), which is low, but the value for 

R2 for the other hybrids ranged from 0.703 (SS 731CL) to 0.946 (Dyna-Gro V5373VT3). The 

values for d-stat ranged from 0.782 (Dekalb DKC69-71(RR2/YGCB)) to 0.966 (Pioneer 

33M57(Hx1/LL/RR2)), which were similar to the values found for calibration. The RMSE 

ranged from 973 to 1980 kg/ha. The values for RMSE for Pioneer 33M57(Hx1/LL/RR2) (973 

kg/ha), SS 731CL (1895 kg/ha), and Croplan Genetics 8756 VT3 (1642 kg/ha) were less that the 

value for RMSE found during calibration. However, the other hybrids had a larger RMSE than 

for calibration. In summary, the simulated grain yield of evaluation data set showed a good 

agreement with observed yield and comparable to the calibration data set. 

2.4.2 EVALUATION OF EPIC 

The EPIC was calibrated for the grain yield and yield components coefficients for seven 

hybrids (Table 2.5). The values of WA were 50 for all hybrids; 0.5 for HI except for 0.45 for 

Croplan Genetics 851 VT3 PRO; 0.95 for DLAI for all hybrids; 6 for DMLA except for 5 for 

Croplan Genetics 851 VT3 PRO; and 0.01 for WSYF which means all hybrids are very sensitive 

to water stress. The value of PHU was 1800 for Dyna-Gro V5373VT3, SS 731CL, and Croplan 

Genetics 851 VT3 PRO, 1650 for Pioneer 33M57 (Hx1/LL/RR2), 1730 for DeKalb DKC69-

71(RR2/YGCB), and 1770 for Pioneer 31D58.  

The accuracy of EPIC model in predicting grain yield varies with hybrids (Table 2.6), 

which was similar with CSM-CERES-Maize. Average simulated grain yield was over-estimated 

by EPIC for all the hybrids. SS 731CL showed the worst simulations that had a 23% of over-

estimation and the other hybrids were over-estimated by 2% to 15%. The slopes of linear 
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regression ranged from 0.514 (Pioneer 33M57(Hx1/LL/RR2)) to 0.88 (Croplan Genetics 851 

VT3 PRO). The values of R2 ranged from 0.54 (DeKalb DKC69-71(RR2/YGCB)) to 0.814 

(Dyn-Gro V5373VT3). All values of d were above 0.84 but SS 731CL showed a value, 0.754. 

The best d was 0.947 for Dyn-Gro V5373VT3, which is close to 1. Except for SS 731CL with a 

RMSE, 3772 kg/ha, the RMSE ranged from 1268 kg/ha (Croplan Genetics 851 VT3 PRO) to 

2308 kg/ha (Pioneer 31D58) for the other six hybrids.  

The evaluation of hybrids coefficients showed that EPIC over-estimated the average 

grain yield of all hybrids by about 10-23% of observations. The slopes of linear regression for 

DeKalb DKC69-71(RR2/YGCB) and Pioneer 31D58 are even as low as 0.222 and 0.266. The 

other hybrids had slope of 0.555 (Dyn-Gro V5373VT3) to 1.26 (SS 731CL). The slope of 

Pioneer 33M57(Hx1/LL/RR2) was 0.98, which is the best one. DeKalb DKC69-71(RR2/YGCB) 

also showed lower values in both R2 and d-stat, which were 0.19 and 0.575. The values of R2 

were from 0.49 (Pioneer 31D58) to 0.86 (Croplan Genetics 8756 VT3). The values of d were 

from 0.633 (Pioneer 31D58) to 0.875 (Dyn-Gro V5373VT3). The RMSE ranged from 1875 

(Pioneer 33M57(Hx1/LL/RR2)) to 4228 kg/ha (SS 731CL).  

2.4.3 COMPARISON OF CSM-CERES-MAIZE AND EPIC FOR LONG-TERM 

SIMULATIONS 

The combination of calibration and evaluation data presents a clear map for describing 

the performance of both crop models for all years and locations in simulating grain yield (Figure 

2.1). Because linear regression could possibly mislead a performance analysis, this study also 

showed simulations against observations with a reference to the 1:1 line. At a first glance, many 

simulations based on EPIC were higher than observations especially for the hybrids Pioneer 

33M57(Hx1/LL.RR2), Croplan Genetics 8756 VT3, and SS731CL. In contrast to EPIC, the 
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simulations based on CSM-CERES-Maize were concentrated more around the 1:1 line, such as 

for the hybrids Dyna-Gro V5373VT3, Pioneer 33M57(Hx1/LL/RR2), and Pioneer 31D58, which 

means an accurate simulated grain yield. For the hybrid Dyna-Gro V5373VT3, EPIC tended to 

slightly over-estimate the low grain yield, while, CSM-CERES-Maize showed more accurate 

simulations when grain yield was in a low range. For the hybrid Pioneer 33M57(Hx1/LL.RR2) 

and SS731CL, EPIC over-estimated grain yield and the CSM-CERES-Maize model showed that 

scatters widely distributed for SS 731CL which was not a good fit and a good fit for the hybrid 

Pioneer 33M57(Hx1/LL.RR2). For hybrid Pioneer 31D58, both crop models provided similar 

yield with SS 731CL, which was over-estimated by EPIC and CSM-CERES-Maize did not 

provide accurate simulations. Both crop models provided accurate simulations for Croplan 

Genetics 851 VT3 and Croplan Genetics 8756 VT3. Both models were very similar simulations 

for hybrid DeKalb DKC69-71(RR2/YGCB), however, the EPIC tended to over-estimated the 

simulations for years of evaluation but CSM-CERES-Maize showed the opposite way for years 

of evaluation. In summary, the CSM-CERES-Maize showed a slightly better simulation of grain 

yield that EPIC especially for the hybrids SS731CL and Pioneer 31D58, while the two models 

were comparable in predicting grain yield for the other hybrids.  

Following calibration and evaluation of both models, a long-term simulation analysis was 

conducted suing 55 years of historical weather data, but the same crop management for each 

location as is being used for the variety trial data. For rainfed conditions the simulated grain 

yield for 55 years is shown for both CSM-CERES-Maize and EPIC in Figure 2.2. CSM-CERES-

Maize simulated grain yield that ranged from 1000 to 14000 kg/ha, with a median of around 

5500 kg/ha to 6500 kg/ha, for the hybrid Dyna-Gro V5373VT3 at the six locations. A large range 

(difference between maximum value and minimum value) was shown among years, due to 
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differences in precipitation for each year. Simulations for the hybrid Dyna-Gro V5373VT3 with 

EPIC showed similar to CSM-CERES-Maize for Blairsville, but the maximum and minimum 

values were about 1000 kg/ha less. For Calhoun, the median, maximum, and minimum values of 

simulations based on EPIC were about 3000 kg/ha higher than for CSM-CERES-Maize. The 

yield predictions for EPIC at Griffin were similar to Blairsville. Although a similar median was 

found for both models at Midville, EPIC showed a smaller range. At Plains, the simulations 

based on EPIC had a maximum value of about 8200 kg/ha, which was much lower than for 

CSM-CERES-Maize. However, the yield predictions for both models had a similar median, and 

EPIC showed that about 50% of the simulations concentrated between 6000 and 7000 kg/ha. At 

Tifton, the median simulations based on EPIC were about 2000 kg/ha lower than for CSM-

CERES-Maize, while the minimum values were about 2000 kg/ha higher. However, about 50% 

of simulations for EPIC ranged between 5000 and 6000 kg/ha, which was similar to Plains. The 

simulated yields that CSM-CERES-Maize and EPIC provided for the other six hybrids showed 

similar values in maximum, minimum, and median with Dyna-Gro V5373VT3, which showed 

that EPIC provided comparable simulations to CSM-CERES-Maize.  

 For irrigated conditions the simulated yield for both models was much higher compared 

to the rainfed conditions and the range was much smaller, mainly because there was no water 

deficit and the variability of local rainfall was not an issue (Figure 2.3). The irrigated grain yield 

that based on CSM-CERES-Maize ranged from about 8000 to 15000 kg/ha and the median was 

about 11000 kg/ha for Dyna-Gro V5373VT3. The simulations based on EPIC had very similar 

range with CSM-CERES-Maize, however, with different median, 12000 kg/ha. EPIC had higher 

simulations at Blairsville than the other locations. Based on both CSM-CERES-Maize and EPIC, 

the irrigated simulations of Croplan Genetics 8756VT3, DeKalb DKC69-71(RR2/YGCB), and 
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Croplan Genetics 851VT3 PRO showed similar distributions with Dyn-Gro V5373VT3. In 

contrast to those hybrids, these two crop models showed large differences in simulating Pioneer 

33M57(Hx1/LL/RR2), SS 731CL, and Pioneer 31D58 which was consistent with results of 

calibration and evaluation (as shown in Figure 2.1). In general, the simulations of Pioneer 

33M57(Hx1/LL/RR2), SS 731CL, and Pioneer 31D58 were very similar, which were from 6500 

to 14500 kg/ha for CSM-CERES-Maize and 9000 to 16500 kg/ha for EPIC. However, 

simulations based on EPIC at Blairsville were 11000 to 18000 kg/ha for SS 731CL. The medians 

were about 11000 to 12000 kg/ha for CSM-CERES-Maize and 13000 to 14000 kg/ha for EPIC. 

The same with the other hybrids, higher simulations were shown at Blairsville by EPIC for those 

three hybrids.  

In addition to the box-plots, the Anova test showed that two crop models provided 

significantly different rainfed Dyna-Gro V5373VT3 at Griffin, Plains, and Tifton; rainfed 

Pioneer 33M57(Hx1/LL/RR2) was significantly different at Griffin and Plains; rainfed SS 

731CL was significantly different at Blairsville; rainfed Croplan Genetics 851 VT3 PRO was 

significantly different at Blairsville and Plains; rainfed Croplan Genetics 8756 VT3 was 

significantly different at Blairsville and Calhoun; rainfed DeKalb DKC69-71(RR2/YGCB) was 

significantly different at Calhoun and Griffin; rainfed Pioneer 31D58 was significantly different 

at Calhoun. For irrigated maize, Dyna-Gro V5373VT3 was significantly different at Blairsville, 

Calhoun, and Midville; Pioneer 33M57(Hx1/LL/RR2) and SS 731CL were significantly different 

at all locations; Croplan Genetics 8756 VT3 was significantly different at Blairsville.  

2.5 DISCUSSION 

This study conducted the calibration and evaluation for two commonly used maize crop 

models, CSM-CERES-Maize and EPIC, only based on observed grain yield of multiple years 
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and locations in Georgia. The same as previous studies concluded that CSM-CERES-Maize can 

simulate grain yield accurately for various environments (Jagtap et al. 1993, Ritchie & 

Alagarswamy 2003, Soler et al. 2007). In this study, the difference between simulated and 

observed yield was not more than 3% for calibration and not more than 8% for evaluation based 

on CSM-CERES-Maize. The statistical criteria, including slope, R2, and RMSE, also showed a 

good fit except the values for R2 were 0.48 for DeKalb DKC69-71(RR2/YGCB). Simulated 

grain yield was over-estimated by EPIC for all the hybrids and the differences between simulated 

and observed yield ranged from 2% to 23% for calibration and from 10 to 20% for evaluation, 

which were larger than for CSM-CERES-Maize. The same as the results from the study of 

Balkovič et al. (2013) that higher yields were underestimated and lower yield were overestimated.  

Differences exist between the two crop models in simulating maize yield which was 

caused by the differences in model structure and parameter values (Asseng et al. 2013). However, 

their performances were still consistent and comparable for all hybrids. In general, both models 

provided the most accurate simulations for Dyna-Gro V5373VT3, Croplan Genetics 851 VT3, 

Pioneer 33M57(Hx1/LL.RR2), and Croplan Genetics 8756 VT3, and less accurate for DeKalb 

DKC69-71(RR2/YGCB). However, CSM-CERES-Maize showed more accurate simulations in 

grain yield of SS731CL and Pioneer 31D58.  

All crop models suffer from considerable structural and parameter uncertainty and from 

lack of independent datasets to evaluate them thoroughly (Knutti 2010, Rötter et al. 2012), how 

confidence we are in predicting crop grain yield by crop models is always an important issue to 

be discussed before the models' application (Asseng et al. 2013, Carter 2013). However, this 

study was conducted with long term variety trial data with multiple years and multiple locations 
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and also with two crop models, which mitigates the above uncertainties. Although we had 

limited observations, the calibrated results that were provided by our approaches were reasonable. 

2.6 CONCLUSION  

The results from this study showed that long-term variety trial data that only include yield 

observations and harvest dates can be used for the calibration and evaluation of crop simulation 

models, such as CSM-CERES-Maize and EPIC. However, long-term simulations based on the 

two crop simulation models were significantly different at some locations, which should be 

caused by the parameters of the two models. The application of those two crop simulation 

models should be aware of the difference. 
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Table 2.1: Maximum and minimum temperature and precipitation during the crop growing 
season from 2003 to 2010 for the six locations of this study. The crop growing season ranged 
from April to October for Blairsville, April to Sep Calhoun, Griffin, Midville, and March to Sep 
for Plains and Tifton. 
Location Year Maximum Temperature (°C) Minimum Temperature (°C) Precipitation (mm) Max Min Average Max Min Average 
Blairsville 2003 31.8 9.6 24.8 19.9 -0.9 12.2 1037 
 2005 34.7 8.4 25.5 21.1 -3.8 12.5 837 
 2006 34.2 7.7 25.7 21.4 -4.3 11.9 736 
 2007 35.9 3.7 26.5 19.8 -5.6 12 576 
 2008 28.6 7.8 24.6 21.8 -3.9 11.9 438 
 2009 28.6 4.1 24.1 20 -4.9 12.6 1036 
 2010 33.5 14.3 26.4 21.9 -1.3 13 812 
Calhoun 2003 34.1 8.5 27.9 21.5 -0.9 15.3 964 
 2004 35.3 14.7 28.2 22.5 -1.1 15.4 823 
 2005 36.1 10.7 28.6 22.6 -1.7 15.2 723 
 2006 38.6 18.1 29.8 22.8 -0.4 15.3 469 
 2007 39.9 6.7 30.1 22.4 -6 14.6 293 
 2008 37.1 10 28.7 22.7 -2.1 14.7 503 
 2009 36.1 8 27.8 21.6 -4.3 15.1 675 
 2010 37.4 17 30.2 23 0.5 15.7 523 
Griffin 2003 32.8 7.3 27.5 22.5 4.1 16.9 954 
 2004 34.8 14.4 28.2 22.4 1.3 17.2 877 
 2005 35.5 13.8 27.9 24.3 1.5 17.1 867 
 2006 36.7 17.7 29.4 24.1 4.3 17.4 383 
 2007 38.6 7.7 29.1 25.8 -2.8 17.2 379 
 2008 35.9 10.2 28.5 22.9 1.4 17.1 470 
 2009 35.5 7.9 27.9 24.4 -0.4 17.6 516 
 2010 37.2 17.1 30.3 25.2 4.8 18.8 546 
Midville 2003 34.5 9 28.9 23.8 2.1 18.5 941 
 2004 37.1 17 30.1 23.9 2.2 18.5 806 
 2005 36.9 15.5 29.9 25.3 4.3 18.3 614 
 2006 38.4 17.8 30.8 24.4 3.6 18.3 359 
 2007 39.5 11 30.7 25.4 -1.5 17.8 475 
 2008 38.1 14 30.4 24.2 1.9 18.3 494 
 2009 37 9.9 30 26.2 1.9 18.7 824 
 2010 38.5 20.3 31.9 25.8 6 19.3 539 
Plains 2003 34.6 8.9 28.1 23.1 -0.7 16.9 846 
 2004 36.2 14.9 28.8 23.6 0 16.6 866 
 2005 36.2 6.4 27.9 24.9 -2.8 16.4 1084 
 2006 38.8 14.2 29.7 24 -0.1 16.7 687 
 2007 39.2 11 29.7 24.6 -1.1 16.3 535 
 2008 37.4 10.5 28.4 23 -2 16 704 
 2009 36 8.9 27.7 24.6 -3.7 16.5 858 
 2010 38.8 10.5 29.8 25.5 -1.4 17.4 568 
Tifton 2003 34.4 10.9 28.2 23.6 0.5 18.2 987 
 2004 35.1 14.6 28.8 25.5 2 18.1 939 
 2005 35 7.5 27.8 25.2 -2.3 17.6 781 
 2006 36.5 13.3 29.4 25 1.1 17.7 421 
 2007 37.3 11.8 29.3 25.4 0.1 17.5 537 
 2008 35.4 11.3 28.4 24.2 -0.1 17.5 663 
 2009 35.8 9 28.3 25 -1.9 18.1 1054 
 2010 37.5 11.3 29.4 25.4 -0.8 18.3 648 
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Table 2.2: Average grain yield for seven selected maize hybrids for six locations in Georgia.  
Variety Average grain yield (kg/ha) Calibration Years Evaluation Years Irrigated Rainfed 
Dyna-Gro V5373VT3 10400 8669 2008, 2010  2009 
Pioneer 33M57(Hx1/LL/RR2) 10258 9183 2007, 2009  2008 
SS 731CL 9582 8268 2007, 2009  2008 
Croplan Genetics 851 VT3 PRO 10470 8351 2008, 2010  2009 
Croplan Genetics 8756 VT3 10877 7908 2009, 2010  2008 
DeKalb DKC69-71(RR2/YGCB) 10538 8807 2004, 2006, 2007, 2008, 2010 2003, 2005, 2009 
Pioneer 31D58 11619 7966 2006, 2008, 2010 2007, 2009 
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Table 2.3: Cultivar coefficients for CSM-CERES-Maize model 

CSM-CERES-Maize Cultivar Coefficients Min Max Initial 
value 

Unit 

P1 Thermal time from seedling emergence to the end of the juvenile phase 110 458 200 Degree days 

P2 Extent to which development is delayed for each hour increase in photoperiod above the longest 
photoperiod at which development proceeds at a maximum rate 0 3 0.3 Day hr-1 

P5 Thermal time from silking to physiological maturity 390 1000 800 Degree days 
G2 Maximum possible number of kernels per plant 248 990 770 Kernel/plant 
G3 Kernel filling rate during the linear grain filling state and under optimum conditions 4.4 16.5 8.5 Mg day-1 
PHINT The interval in thermal time (degree days) between successive leaf tip appearances 30 75 38.9 Degree days 

EPIC Cultivar Coefficients 

WA Biomass-Energy ratio 40 55 40  
BE Crop parameter - converts energy to biomass    kg·ha·MJ-1·m-2 
HI Potential harvest index - ratio of crop yield to above ground biomass 0.1 0.6 0.5  
To Optimal temperature for a crop    °C 
Tb Base temperature for a crop (plant start growing)    °C 
DMLA Maximum LAI potential for a crop 2 6 6  
DLAI Fraction of growing season when leaf area starts declining 0.5 0.95 0.8  
HUIo Heat unit index value when leaf area index starts declining     
ah1, ah2 Crop parameters that determine the shape of the leaf-area-index development curve     
af1, af2 Crop parameters for frost sensitivity     
Ad Crop parameters that governs leaf area index decline rate     
ALT Aluminum tolerance index number     
CAF Critical aeration factor for a crop     
HMX Maximum crop height    m 
RDMX Maximum root depth for a crop    m 
WSFY Water stress factor for adjusting harvest index     
bn1, bn2, bn3 Crop parameters for plant N concentration equation     
bp1, bp2, bp3 Crop parameters for plant P concentration equation     
PHU Potential Heat Units 1600 2000 1800 °C 
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Table 2.4: Estimation of the soil fertility factor (SLPF) for six locations and observed (Obs.) and simulated (Sim.) grain yield for 
CSM-CERES-Maize. Statistics include slope of regression; coefficient of determination (R2); index of agreement (d-stat); and root 
mean square error (RMSE) between simulated and observed yield. 

Location SLPF Obs. (kg/ha) Sim. (kg/ha) Slope R2 d-stat RMSE (kg/ha) 

Blairsville 0.8 13276 12870 0.391 0.056 0.475 1867 

Calhoun 0.76,0.7, 0.87, 0.9 8020 8260 0.713 0.732 0.914 1632 

Griffin 0.78, 0.70 9014 9023 0.741 0.784 0.932 1201 

Midville 0.82, 0.85 11868 11898 0.582 0.432 0.811 920 

Plains 0.84, 0.73 9639 10697 0.618 0.65 0.816 1718 

Tifton 0.89,0.9, 0.89 10178 8801 0.997 0.803 0.898 2029 
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Table 2.5: Optimized cultivar coefficients for CSM-CERES-Maize and EPIC for the selected seven maize hybrids. 
CSM-CERES-Maize 

Parameter Dyna-Gro V5373VT3 
Pioneer 33M57 
(Hx1/LL/RR2) 
 

SS 731CL Croplan Genetics 
851 VT3 PRO 

Croplan Genetics 
8756 VT3 

DeKalb DKC69-
71(RR2/YGCB) 

Pioneer 
31D58 

P1 310 260 220 310 290 330 270 
P2 1.8 1.5 1.2 0.9 1.8 0.9 0.9 
P5 900 940 820 820 940 840 900 
G2 646.8 646.8 954.8 646.8 677.6 646.8 708.4 
G3 12.43 10.94 12.64 12.64 12 12.64 11.79 
PHINT 63.9 58.9 53.90 48.9 63.9 48.9 58.9 
EPIC 
WA 50 50 50 50 50 50 50 
HI 0.45 0.50 0.55 0.45 0.5 0.45 0.5 
DLAI 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
WSYF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
DMLA 6.0 6.0 6.0 5.0 6.0 6.0 6.0 
PHU 1800 1650 1800 1800 1800 1730 1770 
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Table 2.6: The average observed (Obs.) and simulated (Sim.) grain yield for the CSM-CERES-Maize and EPIC calibration and 
evaluation of the seven hybrids. Statistics include slope of regression; coefficient of determination (R2); index of agreement (d-stat); 
and root mean square error (RMSE) of simulated and observed yield. 

Calibration Obs. 

(kg/ha) 

Sim. (kg/ha) Slope R2 d-stat RMSE (kg/ha) 

Variety CERES EPIC CERES EPIC CERES EPIC CERES EPIC CERES EPIC 

Dyna-Gro V5373VT3 9891 9912 10102 0.997 0.866 0.885 0.814 0.969 0.947 1033 1268 

Pioneer 33M57(Hx1/LL/RR2) 10263 10310 11815 0.747 0.514 0.812 0.755 0.94 0.83 1512 2279 

SS 731CL 9630 9725 11937 0.710 0.6 0.715 0.587 0.909 0.754 2051 3772 

Croplan Genetics 851 VT3 PRO 10068 9846 10459 1.222 0.88 0.803 0.713 0.921 0.909 1378 1268 

Croplan Genetics 8756 VT3 10083 10022 10907 0.822 0.684 0.734 0.785 0.922 0.898 1515 1602 

DeKalb DKC69-71(RR2/YGCB) 9897 9643 10454 0.832 0.7 0.67 0.54 0.9 0.85 1683 1713 

Pioneer 31D58 10311 10014 11467 0.863 0.71 0.744 0.603 0.925 0.84 1644 2308 

Evaluation 
 

Dyna-Gro V5373VT3 9649 9326 9530 0.64 0.555 0.946 0.681 0.941 0.875 1436 2094 

Pioneer 33M57(Hx1/LL/RR2) 9678 9725 11223 1.18 0.98 0.897 0.838 0.966 0.872 973 1875 

SS 731CL 9128 9559 10961 1.083 1.26 0.703 0.854 0.892 0.66 1895 4228 

Croplan Genetics 851 VT3 PRO 9219 8498 10108 0.884 0.557 0.711 0.63 0.902 0.84 1980 2161 

Croplan Genetics 8756 VT3 9745 10434 11995 0.902 1.1 0.732 0.86 0.91 0.84 1642 2569 

DeKalb DKC69-71(RR2/YGCB) 10155 9302 11411 0.84 0.222 0.48 0.19 0.782 0.575 1935 2225 

Pioneer 31D58 10450 9770 12119 0.911 0.266 0.772 0.49 0.926 0.633 1883 3198 
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Figure 2.1: A comparison between simulated and observed grain yield based on the CSM-CERES-Maize and EPIC models for 
calibration and evaluation of the seven hybrids and the 1:1 line. 
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Figure 2.2: Box-plot for rainfed grain yield based on the CSM-CERES-Maize and EPIC for 
seven hybrids using historical weather data from 1958 to 2012 for Blairsville, Calhoun, Griffin, 
Midville, Plains, and Tifton, Georgia. 
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Figure 2.3: Box-plot for irrigated grain yields based on CSM-CERES-Maize and EPIC for seven 
hybrids using historical weather data from 1958 to 2012 for Blairsville, Calhoun, Griffin, 
Midville, Plains, and Tifton, Georgia. 
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CHAPTER 3 

EVALUATION OF SIMCLIM FOR PROJECTING SITE-SPECIFIC CLIMATE IN THE 

SOUTHEASTERN USA: AN EXAMPLE FOR TIFTON, GEORGIA1 

 

 

 

 

 

  

                                                
1 Bao, Y., Hoogenboom, G., Seymour, L., McClendon, R.W., and Vellidis, G. to be submitted to 
Climate Research 
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3.1 INTRODUCTION 

During the past decade significant progress has been made in the generation of climate 

scenarios that have a higher spatial and temporal resolution (Bronstert et al. 2007, Christensen et 

al. 2007, Fowler et al. 2007, Mearns 2010, Rummukainen 2010), especially due to the need for 

regional climate impact studies (Tubiello & Fischer 2007, Hatfield et al. 2008, Tingem & 

Rivington 2008). Although the General Circulation Models (GCMs) have been improved for 

generating both global and regional climate projections (Meehl et al. 2007, Moss et al. 2010), 

empirical, dynamical, and statistical methods have been developed to downscale the global 

climate projections to regional scale because of the high demand in computer resources for 

running GCMs and the relatively low spatial resolution of the GCMs (Mearns et al. 2003b, 

Benestad 2004, Wilby et al. 2004, Christensen et al. 2007, Jakob Themeßl et al. 2011). All 

downscaling methods assume that GCMs can provide correct climate projections (Giorgi & 

Coppola 2010) since the driving data are obtained from the GCMs.  

The dynamical downscaling is generally referred to as Regional Climate Models (RCMs). 

They generate regional climate projections based on the same physical-dynamical description of 

the fundamental climate processes that is at the core of GCMs (Hewitson & Crane 1996, Castro 

2005, Di Luca et al. 2011), which is the nested model of GCMs. One advantage of RCMs is that 

the nested model is consistent with the large-scale atmospheric circulation, and thus it has the 

potential for capturing mesoscale nonlinear effects and for providing coherent information 

among multiple climate variables (Christensen et al. 2007, Bader et al. 2008). Another advantage 

is that the RCMs can also be used for seasonal prediction and climate process studies (Wang et al. 

2004, Bader et al. 2008). However, the ability of RCMs to simulate the regional climate is 

strongly dependent on the realism of the large-scale circulation provided by the lateral boundary 
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conditions from GCMs, and thus the parameterization schemes that RCMs use to represent sub-

grid scale processes may be operating outside the range for which they were designed (Solomon 

et al. 2007, Leduc & Laprise 2008, Foley 2010). Furthermore, higher resolution RCMs need 

more detailed topography and physical parameterizations, which add significantly to the 

computational cost (Christensen et al. 2007). In addition to the technical limitations, the 

projections from RCMs are in grids which are also not fine enough for the impact studies since 

many impact applications requires the equivalent of point climate data (Wilby et al. 2004).  

Statistical downscaling (SD) is based on a statistical model to estimate the local and 

regional climate characteristics, while the large-scale output of GCM simulation is the input for 

this model (Wilby et al. 2004, Solomon et al. 2007, Giorgi et al. 2009). However, one major 

weakness with SD is whether the predictor-predictand relationships can be assumed stationary 

(time invariance) so that they can be used for future climate projection (Murphy 1998, Mearns et 

al. 1999, Winkler et al. 2012). Fortunately, recent experiments with RCMs has shown that the 

stationary assumption for predictor-predictand relationships is valid for future climate forcing, 

provided that the choice of predictors is judicious (Wilby et al. 2002, Wilby et al. 2004). 

SimCLIM is a climate model that uses a simple statistical method called pattern scaling 

to downscale climate projections and it has been used for a number of GCMs. It downscales the 

climate predictions of a GCM by normalizing Atmosphere-Ocean General Circulation Model 

(AOGCM) response patterns according to the global mean temperature (Santer 1990, Mitchell 

2003). Kenny et al. (1995) showed that SimCLIM can generate climate projections at global, 

regional, and site- specific scales. The large-scale outputs of 15 GCMs (Table 3.1) were 

downscaled under six gas emission scenarios. Climate factors, maximum temperature, minimum 

temperature, mean temperature, precipitation, solar radiation, and wind can be generated for 
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regional/site-specific scale. SimCLIM has been commonly used for climate change impact 

studies by coupling its projections with impact models because of its capability for generating 

climate projections for a specific location (Albertin et al. 2011, Jha 2012, Warrick et al. 2012). A 

comprehensive climate model is the only way to project climate in future (Murphy et al. 2004, 

Solomon et al. 2007). Therefore, the uncertainties of climate models largely affect the accuracy 

of mitigation and adaptation strategies that are proposed based on impact studies (Randall et al. 

2007, Rivington et al. 2008, Foley 2010). Thus, it is important to evaluate how well the climate 

models can provide climate projections for specific locations. However, only a few studies so far 

have evaluated the ability of SimCLIM to generate site-specific climate projections, including 

for the USA.  

For evaluation of the climate models numerous studies have compared the predictions 

with  present climate or paleoclimate because future climate data are not available (Coquard et al. 

2004, Wilby et al. 2004, Gleckler et al. 2008, Pierce et al. 2009, Braconnot et al. 2012, Dowsett 

et al. 2012). Statistics have replaced original “eyeball” assessments and now play an important 

role in quantitatively evaluating climate models by checking whether the projections fit 

observations for both climate mean and climate variability (Murphy 1988, Katz 1992, Murphy 

1998, Berk et al. 2001, Murphy et al. 2004, McKitrick & Tole 2012). Unfortunately, there is still 

no one perfect statistic that can evaluate all aspects of climate projections. Therefore, many 

evaluation studies have used multiple statistics. Different statistics test different characteristics of 

climate data and the ones that are commonly used include mean error (bias), mean square error 

(𝑀𝑆𝐸), root mean square error (𝑅𝑀𝑆𝐸), correlation coefficient (𝑟), probability density function 

(PDF), and the Kolmogorov-Smirnov test (KS-test) for both the temporal and spatial analysis for 
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daily (e.g., Nikulin et al. (2010)), monthly (e.g., Radić and Clarke (2011)),  and seasonal climate 

data (e.g., Pierce et al. (2009), Schaller et al. (2011)).  

Bias,   𝑀𝑆𝐸 , and   𝑅𝑀𝑆𝐸  are usually defined as summary statistics. Bias between 

projections and observations is the most direct way to identify whether the projections are 

different from observations. For instance Nikulin et al. (2010) compared the bias between the 

estimation of maximum temperature from different climate models with the observations over 

Europe. Rivington et al. (2008) compared the projected and observed maximum and minimum 

temperature using time series graphs for specific locations. This showed the differences between 

projections and observations as well as climate trends. 𝑀𝑆𝐸 is the second moment of bias, which 

is a way to quantify the difference between projections and observations in terms of variance and 

bias (Murphy 1988, Murphy et al. 2004). 𝑅𝑀𝑆𝐸 is the square root of mean square error that is 

more often used for evaluating the difference between projections and observations for both 

climate mean and variability (Walsh et al. 2008, Ishizaki et al. 2012). However, evaluation based 

on bias is mostly dependent on eyeball, which put the conclusion in risks if only use this kind of 

statistics. Another limitation is that the summary statistics, such as 𝑀𝑆𝐸/  𝑅𝑀𝑆𝐸, attempt to 

encapsulate enormous of information may obscure more than they enlighten (Berk et al. 2001). 

Compared to the summary statistics, the statistical inference PDF and KS-test are more 

instructive.  

So far SimCLIM has not been evaluated for North America including the southeastern 

United States. There is, therefore, a need to evaluate the accuracy of SimCLIM in generating 

future climate scenarios before the application of any impact study. The overall goal of this study 

was to determine whether SimCLIM is able to provide accurate site-specific climate projections 

for the southeastern United States using Tifton, Georgia as a case study. The evaluation was 
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based on multiple statistical tests to avoid the limitations of individual statistics and to evaluate 

the different aspects of both the climate predictions and observations.  

3.2 DATA AND METHOD 

3.2.1 DATA 

Tifton, Georgia (31.494 ºN, 83.526 ºW) was selected for this study because this location 

has the longest period of observed daily weather data based on automated weather recording 

devices. In addition, Tifton can be considered centrally located with respect to row crop 

agriculture in Georgia and other states in the southeastern USA, which was one of the overall 

goals of the impact study. The observed weather data included minimum and maximum air 

temperature (ºC), precipitation (mm), and solar radiation (MJ/m2) from 1992 to 2012. The data 

were obtained from the Georgia Automated Environmental Monitoring Network (AEMN, 

www.georgiaweather.net). The Georgia AEMN is a network of automated weather stations that 

was first deployed in 1991 (Hoogenboom 1996) and encompassed 80 stations in 2010 (Garcia y 

Garcia & Hoogenboom 2005). Although the period of historical data from 1992 to 2012 is 

relatively short, it is the most complete and accurate set of observed weather data that includes 

solar radiation and, therefore, introduces fewer uncertainties into the evaluation (Gleckler et al. 

2008, Pincus et al. 2008, Radić & Clarke 2011). 

The corresponding climate projections for Tifton for the same period were generated with 

SimCLIM, however, with monthly values. The version of SimCLIM used for this study provides 

downscaled climate change projections based on 15 GCMs (Table 3.1) from the Coupled Model 

Intercomparison Project Phase 3 (CMIP3). The performance of these 15 GCMs has been 

evaluated from many aspects (Piper et al. 1996, Wolf 2002, Allan & Soden 2007, Rotter et al. 

2011, White et al. 2011). They also have been widely used for projecting future climate scenarios 
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(French & Hodges 1985, Solomon et al. 2007, White et al. 2011), providing driving date for 

regional climate scenarios and impact assessment (Porter et al. 1993, CCSP 2008, Hoogenboom 

et al. 2012). The gas emission scenarios from the Special Report on Emissions Scenarios (SRES) 

are applied by SimCLIM for the climate projections after 1990 (Nakicenovic & Swart 2000). 

Because the analysis was conducted for the period from 1992 to 2012, the effects of gas 

emissions were considered. SimCLIM provides six choices of gas emission scenarios, including 

A1B, A1FI, A1T, A2, B1, and B2. These gas emission scenarios are the illustrative marker 

scenarios of SRES, which cover the entire range of gas emissions from the SRES scenarios.  

3.2.3 STATISTICAL EVALUATION 

A statistical analysis was conducted to compare the projected minimum temperature, 

maximum temperature, precipitation, and solar radiation with observed data. The selection of the 

statistics was based on three principals: the statistical tests are not based on too many 

assumptions; the tests are able to evaluate the different characteristics of the data; and the tests 

have been widely accepted in climate research. First of all, the bias between projections and 

observations were calculated and depicted using box-plot. The box-plot includes the values for 

median, mean, lower (25%, 𝑄!) and upper (75%, 𝑄!) quartiles, and outliers for a particular 

variables; the box-plot does not make any assumption with respect to the data population. The 

outliers were defined as the values that are out of the following range: [𝑄! −   1.5  𝐼𝑄𝑅,𝑄! +

  1.5  𝐼𝑄𝑅]  (1),  where 𝐼𝑄𝑅 = 𝑄! − 𝑄!  (2). 

In addition to the box-plot, the difference between climate means for projections and 

observations were also compared using the following equation: 

∆= 𝑃𝑟𝑜𝚥.− 𝑂𝑏𝑠.                                             (3) 

for minimum temperature, maximum temperature, and solar radiation, and  
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∆= (𝑃𝑟𝑜𝚥.− 𝑂𝑏𝑠. )×100/𝑂𝑏𝑠.                       (4) 

which was percentage for precipitation. Where 𝑂𝑏𝑠. is observation and 𝑃𝑟𝑜𝑗. is projection. The 

calculations were based on the entire data set from 1992 to 2012 for each of the 15 GCMs. 

The monthly standard deviation was used to determine whether the projections can 

capture the variability of observations for each month. Furthermore, the ratio of standard 

deviation (SD) set was calculated to determine whether the projections can capture the annual 

variability of the observations: 

𝐹 = 𝑃𝑟𝑜𝑗. 𝑆𝐷/𝑂𝑏𝑠. 𝑆𝐷                                 (5) 

𝐹 is 1 which means a perfect match for the temporal variability of observations and projections. 

Otherwise, projections cannot capture the temporal variability when 𝐹 is 0.  

The time series plot is the most direct method for analyzing time series data, as it shows 

the climate trends for both the projections and observations. Finally, the statistical inference, 

Kolmogorov-Smirnov test (KS-test, 𝛼 = 0.05) and the Cumulative Distribution Function (CDF), 

were applied to test whether the projections and observations represented the same population 

without making any assumptions about the distribution of the data. The null hypothesis of the 

KS-test is that both projections and observations are from the some population. For CDF, two 

close lines for projections and observations mean a good fit; otherwise, the projections and 

observations do not fit well. Additional details about the selected statistics can be found in 

Semenov and Shewry (2011) and Rötter et al. (2012). 
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3.3 RESULTS 

3.3.1 ANALYSIS FOR MULTIPLE GCMS 

3.3.1.1 BIAS FOR MONTHLY PROJECTIONS 

The bias between projected monthly maximum temperature and observations from 1992 

to 2010 were based on 15 GCMs and six gas emission scenarios as described previously (Figure 

3.1a – 3.1f). For the maximum temperature projections for gas emission scenario A1B (Figure 

3.1a), the bias between the projections of the 15 GCMs and observations ranged from -4 ºC to 6 

ºC, with the negative values representing an underestimation and the positive values representing 

an overestimation. All GCMs showed that mean of the biases was about 0.5 ºC, which showed 

that the average maximum temperature was overestimated. The median of the biases was about 

0.6 ºC, which meant that more than 50% of the monthly maximum temperatures were 

overestimated. All 15 GCMs had at least one outlier that one monthly maximum temperature 

was overestimated almost 6 ºC. The bias for the maximum temperature projections for the other 

scenarios including A1FI (Figure 3.1b), A1T (Figure 3.1c), A2 (Figure 3.1d), B1 (Figure 3.1e), 

and B2 (Figure 3.1f) were virtually identical with the A1B scenario and showed no difference 

among the scenarios. Similar results were found for the other variables, including minimum 

temperature, precipitation, and solar radiation. The results are, therefore, not shown and in the 

remaining analysis only the results for the A1B scenario are discussed. 

For the minimum temperature projections the bias ranged from -6 ºC to 4 ºC (Figure 

3.1g). The mean value was overestimated by 0.8 ºC, and median, 0.7 ºC, showed that more than 

50% of the monthly minimum temperatures were underestimated. The outliers also showed that 

the overestimation of minimum temperature reached about 4 ºC and underestimation reached 

about 5.5 ºC. Precipitation showed large biases, ranging from -150 mm to 150 mm without 
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taking into consideration any of the outliers (Figure 3.1h). The mean bias showed that the 

average value for precipitation was overestimated, and the median showed that more than 50% 

of the monthly precipitation projections were overestimated. However, many of the outliers 

showed that monthly precipitation projections were largely underestimated up to 300 mm. The 

biases between projected solar radiation and the observations ranged from -5 MJ/m2 to 6 MJ/m2 

(Figure 3.1i). The values of mean and median showed an overestimation for most months. 

Finally, all the statistics, median, mean, lower (25%) and upper (75%) quartiles of four variables 

in the box-plot were almost identical for all 15 GCMs, which meant that there was no significant 

difference among the downscaled projections for Tifton based on the 15 GCMs.  

3.3.1.2 ANNUAL MEAN AND VARIABILITY  

The projections based on all 15 GCMs had very close values in annual standard 

deviations and climate means (Table 3.2) under gas emission scenario A1B. Comparing with 

observations, minimum temperature was underestimated by 0.8 °C to 0.9 °C; maximum 

temperature was overestimated by 0.6 °C to 0.7 °C; the precipitation was overestimated by 10%; 

solar radiation was overestimated by 0.7 MJ/m2. The ratios of the annual standard deviation for 

minimum temperature, maximum temperature, and solar radiation were 1.0 which showed that 

SimCLIM was able to capture the temporal variability for the period 1992 to 2012. However, the 

ratio of standard deviation for precipitation was only 0.3 which meant that SimCLIM had no skill 

in predicting precipitation.  

3.3.2 ANALYSIS BASED ON GCM CSIRO-30 

Since no difference was found among 15 GCMs and among the six scenarios (Figure 3.1) 

based on above analysis, only one GCM, i.e. CSIRO-30, and one scenario, i.e., A1B, was 

selected to be statistically analyzed. The GCM CSIRO-30 has a relatively finer resolution (1.9º × 
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1.9º) compared to the other GCMs, which could introduce less uncertainty for downscaling 

(Table 3.1).  

Time series plots were first used to identify whether the annual variability of projected 

climate data match observations in climate factors, monthly maximum and minimum 

temperature, precipitation, and solar radiation during 1992 to 2012 (Figure 3.2). In general, the 

projections were able to capture the annual variability of maximum and minimum air 

temperature and solar radiation. The minimum temperature showed a better match with 

observations than maximum temperature.  However, both the projected maximum and minimum 

temperature showed a disparity for the minimum values during the winter and maximum 

temperature values during the summer. The same problem was also found for solar radiation. 

The projected precipitation ranged from 60 mm to 140 mm. However, observed precipitation 

ranged from 0 mm to 380 mm. The projected precipitation obviously missed the variability of 

observed precipitation.  

The biases between the projected and observed monthly maximum temperature, 

minimum temperature, precipitation, and solar radiation of GCM CSIRO-30 and observations for 

1992 to 2012 were calculated and shown by box-plot (Figure 3.3). The biases between projected 

and observed maximum and minimum temperature varied with month (Figure 3.3a and 3.3b). 

For maximum temperature the biases ranged from -4 ºC to 4 ºC, but February reached 6 ºC. The 

means of biases were generally around 0.5 ºC to 2 ºC for the 12 months, which showed that the 

maximum temperature for each month was overestimated.  The medians were about 0.5 ºC to 1 

ºC, which showed that most of the maximum temperature was overestimated. In general, the bias 

for maximum temperature for the months of May, July, August, and October was smaller than 

for the other months, while for March and December they were larger than the other months. For 
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minimum temperature, the bias ranged from -5 ºC to 4 ºC (Figure 3.3b). Mean and median values 

were very close, which ranged from -0.1 ºC to -1 ºC. This meant that the minimum temperature 

for most years and also the average minimum temperature were underestimated. June, July, 

August, and September had much smaller difference from the observations than the other months, 

which meant better projections for these four months. 

 The projected precipitation showed much larger biases when compared to the 

observations, ranging from -200 mm (underestimated) to 150 mm (overestimated), with outliers 

as high as -300 mm (Figure 3.3c). The bias for precipitation varied with month, with most of 

them not larger than 100 mm. March and June showed the largest range for the biases, while the 

biases for May had the smallest range. The ranges for the biases of solar radiation varied with 

month (Figure 3d). They ranged from -3 MJ/m2 to 3 MJ/m2 for January to April, -4 MJ/m2 to 8 

MJ/m2 for May, and -2 MJ/m2 to 6 MJ/m2 for the other months. The mean values of January 

were very close to zero. The mean values of February to May ranged from -1 MJ/m2 to -0.5 

MJ/m2 and showed that the average solar radiation was underestimated. The means of rest 

months were from 0.2 MJ/m2 to 3 MJ/m2, which were overestimated. 

The standard deviation was used to identify whether SimCLIM can reproduce the 

temporal variability of the present climate (Figure 3.4). Ideally, the projections are believed to 

represent the variability of the current climate if the standard deviation of the projections is close 

to the standard deviation of the observations. However, the standard deviations of all four 

projected monthly variables from 1992 to 2012 was almost zero, especially for precipitation and 

solar radiation, which meant that the projections cannot capture the variability of the current 

climate.  
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Based on the analysis with the KS-test, which is one type of statistical inference, it can be 

concluded that only projected maximum temperature and observed maximum temperature were 

from the same data population, while the projected minimum temperature, precipitation, and 

solar radiation were different from the observed minimum temperature, precipitation and solar 

radiation population. The CDF (Figure 3.5) showed that the projected maximum and minimum 

temperature and solar radiation had the same distribution as the observed maximum and 

minimum temperature and solar radiation, while the projected precipitation only covered a 

narrow range of values, which was unrealistic compared to the distribution of the observed 

precipitation values.  

3.4 DISCUSSION 

The generation of climate change scenarios for Tifton, Georgia, USA was statistically 

compared with the observed data in this study. The downscaled climate scenarios from 1992 to 

2012 based on 15 GCMs from SimCLIM were virtually identical, while there was no difference 

among the six gas emission scenarios either. The SimCLIM model provided reasonable 

projections for climate mean and trend for maximum temperature, minimum temperature, and 

solar radiation based on the analysis of the GCM CSIRO-30, while the climate variability was 

not well reproduced. Also, the downscaled scenarios had little skill for precipitation either for 

climate mean or climate variability. Their results were similar to Mearns et al. (2003a) who 

stated that it is a challenge to generate climate scenarios for the southeastern United States. In 

addition, other studies also have shown that that GCMs have limited ability to provide climate 

variability (Christensen et al. 2007, Flato et al. 2013).  

SimCLIM uses pattern-scaling, which is a simple method for providing regional climate 

scenarios (Santer 1990). Although the simplified downscaling method saves time and resources, 
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uncertainties from GCMs, gas emission scenarios, downscaling method, and observations are 

introduced when downscaling (Randall et al. 2007, Bader et al. 2008, Mearns 2010, Rowell 

2011).. The accuracy of pattern-scaling was evaluated by Mitchell (2003) for downscaling of 

temperature and precipitation. He concluded that this method is generally accurate, however, still 

with some limitations. First of all, pattern scaling assumes that there is a linear relationship 

between local climate change and the amount of global warming. However, a non-linear 

relationship was found during the evaluation, which introduced some statistically significant 

errors into downscaled projections. Secondly, the precipitation projections were worse compared 

to temperature since the patter scaling can only capture the pattern of precipitation for long 

periods. Our study also showed that the pattern scaling of SimCLIM cannot accurately provide 

downscaled precipitation for the short period of evaluation from 1992 to 2012. Thirdly, it is well 

known that climate trends and patterns are easier to be detected with longer period of 

observations, and 30 years of observations are the suggested period for evaluating climate 

models. Thus, the shorter period of only 21 years used in this study is also one main reason for 

the tiny differences among downscaled projections based on multiple GCMs.   

In summary, although there are still limitations for site-specific climate scenarios, this 

study showed that SimCLIM still can provide accurate projections for maximum temperature, 

minimum temperature, and solar radiation, especially with some confidence for climate mean 

and variability. SimCLIM can only provide monthly climate projections; however, the tool to 

perturb historical daily weather data can also generate the daily weather data for future climate 

scenarios.  

 

 



59 

3.5 CONCLUSION  

Based on the statistical analyses it can be concluded that SimCLIM is able to capture the 

mean and variability for maximum temperature, minimum temperature, and solar radiation. 

However, SimCLIM did not regenerate precipitation accurately. 
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Table 3.1: The General Circulation Models that were evaluated in this study. 
Acronym Source Country Resolution 

BCCR-BCM2 Bjerknes Centre for Climate Research, University of 
Bergen, Norway Norway 1.9º  × 1.9º 

CCCMA-31 Canadian Centre for Climate Modeling & Analysis Canada 2.8º × 2.8º 

CNRM-CM3 Me´te´o-France/Centre National de Recherches 
Me´te´orologiques France 1.9º × 1.9º 

CSIRO-30 CSIRO Atmospheric Research Australia 1.9º × 1.9º 

ECHO-G Meteorological Institute of the University of Bonn, 
Meteorological Research Institute of KMA 

Germany, 
Korea 

3.9º × 3.9º 

GFDLCM20 NOAA/Geophysical Fluid Dynamics Laboratory USA 2.0º × 2.5º 
GFDLCM21 NOAA/Geophysical Fluid Dynamics Laboratory USA 2.0º × 2.5º 
GISS-ER NASA/Goddard Institute for Space Studies USA 4º × 5º 
INMCM-30 Institute for Numerical Mathematics Russia 4º × 5º 
IPSL-CM4 Institute Pierre Simon Laplace  France 2.5º × 3.75º 

MIROCMED 
Center for Climate System Research, National Institute 
for Environmental Studies, and Frontier Research Center 
for Global Change 

Japan 
2.8º × 2.8º 

MPIECH-5 Max Planck Institute for Meteorology Germany 1.9º × 1.9º 
MRI-232A Meteorological Research Institute Japan 2.8º × 2.8º 
NCARPCM1 National Center for Atmospheric Research USA 2.8º × 2.8º 

UKHADCM3 Hadley Centre for Climate Prediction and 
Research/Met Office UK 2.75º × 3.75º 
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Table 3.2: The difference between mean, ∆= 𝑃𝑟𝑜𝚥.− 𝑂𝑏𝑠. for Minimum temperature (Tmin), 
Maximum temperature (Tmax), and Solar radiation (Rad), and the difference for precipitation 
(Precip), ∆= (𝑃𝑟𝑜𝚥.− 𝑂𝑏𝑠. )/𝑂𝑏𝑠. , and the ratio of standard deviation (SD), 𝐹 = !"#$.!"

!"#.!"
, at 

Tifton, Georgia. GCM is the General Circulation Model. Projections were based on gas emission 
scenario A1B. 

GCM 
∆   𝐹 

Tmax Tmin Precip Rad Tmax Tmin Precip Rad 

BCCRBCM2 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
CCCMA-31 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
CNRM-CM3 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 

CSIRO-30 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
ECHO-G 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 

GFDLCM20 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
GFDLCM21 0.7 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 

GISS-ER 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
INMCM-30 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
IPSL-CM4 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 

MIROCMED 0.7 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
MPIECH-5 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
MRI-232A 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 

NCARPCM1 0.6 -0.9 0.1 0.7 1.0 1.0 0.3 1.0 
UKHADCM3 0.6 -0.8 0.1 0.7 1.0 1.0 0.3 1.0 
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Figure 3.1: Box-plot for the bias of projected monthly maximum temperature under gas emission scenario A1B (a), A1FI (b), A1T (c), 
A2 (d), B1 (e), B2 (f), projected monthly minimum temperature under A1B (g), projected monthly precipitation under A1B (h), and 
projected monthly solar radiation under A1B (i) based on 15 GCMs from 1992 to 2012 for the corresponding observations.  
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Figure 3.2: Time series plots for both projections and observations from 1992 to 2012 including 
monthly maximum temperature (a), monthly minimum temperature (b), monthly precipitation (c), 
and monthly solar radiation (d) based on the GCM CSIRO-30.  
 

 

  

1995 2000 2005 2010
10

15

20

25

30

35
Ma

xim
um

 te
mp

era
tur

e, 
ºC

 

 

Obs
CSIRO-30

1995 2000 2005 2010
0

5

10

15

20

25

Mi
nim

um
 te

mp
era

tur
e, 

ºC

 

 

Obs
CSIRO-30

1995 2000 2005 2010
0

50

100

150

200

250

300

350

400

Pr
ec

ipi
tat

ion
, m

m

 

 
Obs
CSIRO-30

1995 2000 2005 2010
5

10

15

20

25

30

So
lar

 R
ad

iat
ion

, M
J/m

2

 

 
Obs
CSIRO-30

(b

(a

(d

(c



 75 

 
Figure 3.3: Box-plot for bias between projections and observations during 1992 to 2012 
including monthly maximum temperature (a), monthly minimum temperature (b), monthly 
precipitation (c), and monthly solar radiation (d) based on the GCM CSIRO-30.  
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Figure 3.4: Standard Deviations of projections and observations from 1992 to 2012 for monthly 
maximum temperature (a), monthly minimum temperature (b), monthly precipitation (c), and 
monthly solar radiation (d) based on the GCM CSIRO-30.  
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Figure 3.5: CDFs of projections and observations from 1992 to 2012 for monthly maximum 
temperature (a), monthly minimum temperature (b), monthly precipitation (c), and monthly solar 
radiation (d) based on the GCM CSIRO-30. 
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CHAPTER 4 

SIMCLIM’S PERFORMANCE TO PROJECT CLIMATE FOR SPECIFIC LOCATIONS IN 

THE SOUHTEASTERN USA1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                
1 Bao, Y., Hoogenboom, G., Seymour, L., McClendon, R.W., Vellidis, G., and Ortiz, B. to be 
submitted to Climate Research 
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4.1 INTRODUCTION 

Agriculture is a significant part of the culture and economy of the southeastern USA 

(Gray & Thompson 1933, Carter 2003). With the rapid increase in populations and the shift to 

biofuels there has been an increase in the demand of crop producing during recent years. 

Agriculture is weather dependent (White & Hoogenboom 2010), but the southeastern USA is 

characterized by both a temporal and spatial weather variability due to its landscape and the 

surrounding Atlantic Ocean and Gulf of Mexico (Misra 2013). Agriculture is especially 

vulnerable to extreme events. Similar to other regions across the globe, the climate in the 

southeastern USA is changing, such as increasing temperature, decreasing number of freezing 

days, increasing heavy downpours in many parts (Mirhosseini et al. 2013, Misra 2013). 

Therefore, a comprehensive understanding of climate change impact on crop production is 

crucial for providing strategies to minimize the potential negative effects on southeastern USA 

agriculture.  

The most popular method to study impact of climate on agriculture is coupling climate 

models and crop models. Organizations such as the Southeast Climate Consortium (SECC, 

http://www.seclimate.org/) and the Florida Climate Institute (FCI, 

http://floridaclimateinstitute.org/) have evaluated regional climate projections for the 

southeastern USA (Lim et al. 2007, Hwang et al. 2011, Hwang et al. 2013, Michael et al. 2013, 

Selman et al. 2013). Others have studied the impact of climate change on crop production in this 

region (Bolson et al. 2013, Bucklin et al. 2013, Cammarano et al. 2013, LaRow 2013, Misra et al. 

2013, Solís & Letson 2013). These regional climate projections were generated based on 

statistical, dynamical, and a combination of these two downscaling methods. Asefa and Adams 

(2013) introduced a statistical bias corrections technique based on Bayesian approach for 
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regional climate projections over central Florida. Misra et al. (2013) analyzed the performance of 

a dynamic downscaling model, i.e., the Regional Spectral Model, in projecting climate for 

southeastern USA at a horizontal grid resolution of 10 km. Hwang et al. (2013) combined the 

statistical and dynamical downscaling method to reproduce local-scale spatiotemporal 

precipitation and temperature data. 

However, all previous studies have been challenged by some difficulties. The climate of 

the southeastern USA, especially precipitation, is difficult to reproduce (Robinson & Henderson 

1992, Henderson & Vega 1996, Mearns et al. 2003).  Furthermore, the main uncertainties 

concerning future climate from a physical system point of view were summarized as following: 

"the natural internal variability of the climate system, the trajectories of future emissions of 

greenhouse gases and aerosols, and the response of the global climate system to any given set of 

future emission/concentrations, and the application of downscaling methods yields higher 

resolution projections but presents another source of uncertainty" (Cox & Stephenson 2007, 

Tebaldi & Knutti 2007, Knutti et al. 2008, Mearns 2010). Mearns (2010) also pointed out that the 

uncertainties of downscaling methods is considered to be more important in the context of 

adaptation studies because regional adaptation studies require information at a higher resolution. 

Therefore, the evaluation of regional climate models is usually conducted to quantify the 

uncertainties that climate models probably would introduce into future climate projections, 

especially for sectorial applications. 

The regional climate model SimCLIM was introduced by Bao et al. (2015) to study the 

impact of climate change on soybean production in the southeastern USA. This climate model 

has been widely applied for impact studies around the world. For instance, Warrick et al. (2012) 

analyzed impact on rainwater harvesting for the southeast Queensland; Kenny et al. (1995, 2000, 
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2001) studied the impact on environment and agriculture in New Zealand; Albertin et al. (2011) 

studied the impact on North Carolina interbasin transfer; Jha (2012) analyzed the impact on 

water supply at Kathmandu Valley. SimCLIM uses a statistical method called pattern-scaling to 

downscale the gridded projections of Global Climate Models (GCMs) for a region and a specific 

location. Pattern-scaling was first proposed by Santer et al. (1990) to generate climate scenarios. 

It was then developed as a convenient solution to provide a low cost alternative to expensive 

AOGCM and RCM experiments for creating a range of climate scenarios that embrace 

uncertainties relating to different emissions, concentration and forcing scenarios (Kenny et al. 

1995, Mitchell 1999, Hulme et al. 2000, Kenny et al. 2000, Mitchell 2003).  

The application of SimCLIM as a downscaling tool also cannot avoid introducing 

uncertainties from GCMs, gas emission scenarios, the pattern downscaling method, and baseline 

data. These issues are similar to other downscaling methods for regional climate projections. Bao 

et al. (2015) evaluated the performance of SimCLIM for downscaling climate data for one 

location, i.e. Tifton, Georgia. Downscaled climate projections were based on 15 GCMs and six 

gas emission scenarios. This study found that SimCLIM can provide accurate climate patterns 

for monthly maximum and minimum temperature and monthly solar radiation, but not for 

monthly precipitation for Tifton, Georgia. 

So far the evaluation of SimCLIM was only based on one location, which certainly 

cannot represent the spatial variability of climate over the southeastern USA. Therefore, multiple 

locations should be evaluated because of the spatial climate variability across the southeastern 

USA. The goal of this study was, therefore, to determine the suitability of SimCLIM in 

generating site-specific climate projections for the southeastern USA, including the states of 

Alabama, Florida, and Georgia. 
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4.2 MATERIALS AND METHODS 

4.2.1 HISTORICAL CLIMATE DATA 

The states, Alabama (AL), Florida (FL), and Georgia (GA), were considered as 

representative states for the southeastern USA. In general, observations with a period of 30 years 

or longer are normally used for evaluation of climate model (Randall et al. 2007, Kostopoulou et 

al. 2009). However, these evaluations are based on temperature and precipitation only. For 

climate change applications in agriculture solar radiation is also an important parameters as it 

drives the biomass production through photosynthesis and also affects potential 

evapotranspiration. Although there are sites that have long-term daily historical weather data, 

none of these sites include solar radiation. Therefore, 34 locations with relatively long 

observation periods and that included solar radiation, in addition to daily maximum and 

minimum temperature and precipitation, were selected. These 34 locations evenly span three 

states (Figure 4.1) and all locations had observations for daily minimum air temperature (ºC), 

maximum air temperature (ºC), precipitation (mm), and solar radiation (MJ/m2), except for 

Alabama where solar radiation was not available 

The stations for Alabama included Auburn, Belle Mina, Brewton, Cullman, Grand Bay, 

Headland, Marion Junction, Sand Mountain, Thorsby, and Union Springs and were obtained 

from the Agricultural Weather Information Service (AWIS, http://www.awis.com/). The weather 

stations from Alabama have been operational since 1996. The weather stations for Florida 

included Alachua, Citra, Homestead, Immokalee, Jay, Lake Alfred, Macclenny, Marianna, 

Quincy, and Umatilla were obtained from the Florida Automated Weather Network (FAWN, 

http://fawn.ifas.ufl.edu/). FAWN has been operational since 1997 and is managed the University 

of Florida's Institute of Food and Agricultural Sciences. The weather stations for Georgia 
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included Calhoun, Floyd, Blairsville, Watkinsville, Elberton, Griffin, Plains, Eatonton, Midville, 

Statesboro, Attapulgus, Tifton, and Savannah (Figure 4.1) and were obtained from the Georgia 

Automated Environmental Monitoring Network (AEMN, www.georgiaweather.net). The first 

station of the AEMN was installed in 1991 (Hoogenboom 1996) and the AEMN currently has 

more than 80 operational stations (Garcia y Garcia & Hoogenboom 2005). The period of record 

for location varied due to the differences in the date of installation and quality control issues. The 

stations in Georgia generally had a longer period of record, spanning from 1993/1994 to 2012. 

The period of record that was used for evaluation of the stations in Alabama spanned from 

1996/1998 to 2012. However, those stations missed solar radiation data in many years. The 

period of record in Florida spanned from about 1997/1998 to 2012. Although the historical data 

from 1992 to 2012 is relatively short for evaluation, it was the most complete and accurate set of 

daily observed data for maximum and minimum temperature, precipitation, and solar radiation 

that was available for the three states (Gleckler et al. 2008, Pincus et al. 2008, Radić & Clarke 

2011). 

4.2.2 PROJECTED CLIMATE DATA 

For the specific locations, SimCLIM can only provide monthly climate data. It was used 

to generate the monthly climate data for the selected locations during the period 1991 to 2012 for 

which observed daily weather data were available. The analysis of this study, therefore, was 

based on monthly climate variables. The generated climate variables include monthly maximum 

temperature, minimum temperature, precipitation, and solar radiation. Monthly maximum and 

minimum temperature and solar radiation were the average values. The monthly precipitation 

was total value of a month. For each of the selected locations, monthly climate data for 15 GCMs 

were generated (Table 4.1). The gas emission scenario from the Special Report on Emissions 
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Scenarios (SRES) was applied by SimCLIM for the climate projections after 1990 (Nakicenovic 

& Swart 2000). As Bao et al. (2015) have concluded that the difference among gas emission 

scenarios could not be identified for such short period of weather data, the commonly used gas 

emission scenario A1B was therefore considered in this study for generating climate variables. 

SimCLIM calculates the future projections using the following equations 

𝐹𝑢𝑡𝑢𝑟𝑒  𝑀𝑎𝑥 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝑀𝑎𝑥 + 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  𝑣𝑎𝑙𝑢𝑒𝑠  ×𝐺𝑀𝑇𝐶,  

𝐹𝑢𝑡𝑢𝑟𝑒  𝑀𝑖𝑛 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝑀𝑖𝑛 + 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  𝑣𝑎𝑙𝑢𝑒𝑠  ×𝐺𝑀𝑇𝐶,  

𝐹𝑢𝑡𝑢𝑟𝑒  𝑃𝑟𝑒 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝑃𝑟𝑒  ×(1+ 𝑁𝑜𝑟𝑚𝑎𝑖𝑙𝑖𝑧𝑒  𝑣𝑎𝑙𝑢𝑒𝑠  ×𝐺𝑀𝑇𝐶),  

𝐹𝑢𝑡𝑢𝑟𝑒  𝑅𝑎𝑑 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝑅𝑎𝑑  ×(1+ 𝑁𝑜𝑟𝑚𝑎𝑖𝑙𝑖𝑧𝑒  𝑣𝑎𝑙𝑢𝑒𝑠  ×𝐺𝑀𝑇𝐶),  

which 𝑀𝑎𝑥  is the maximum temperature, 𝑀𝑖𝑛  is the minimum temperature, 𝑃𝑟𝑒  is the 

precipitation, 𝑅𝑎𝑑 and is the solar radiation, 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝑉𝑎𝑙𝑢𝑒𝑠  (𝑀𝑎𝑥,𝑀𝑖𝑛,𝑃𝑟𝑒,𝑎𝑛𝑑  𝑅𝑎𝑑) are 

usually 30 years (usually from 1961 to 1990) or even longer observations which were obtained 

from the dataset of the Global Historical Climatology Network (GHCN)-Daily, 𝐺𝑀𝑇𝐶 is the 

Global Mean Temperature Change that is derived from Model for the Assessment of 

Greenhouse-gas Induced Climate Change (MAGICC) (CLIMSystems 2014). 

4.2.3 STATISTICAL COMPARISON  

Multiple statistical criteria were applied to compare the projected monthly maximum 

temperature, minimum temperature, precipitation, and solar radiation with average monthly 

observations for each location. The statistical tests that were applied did not have too many 

assumptions for the data sets that were analyzed. These statistical tests were selected in order to 

be able to evaluate different aspects of the data set, and the statistical tests are accepted 

methodologies in the field for atmospheric and climatological sciences. This is similar to the 

approach that was used for the detailed evaluation for Tifton, Georgia conducted by Bao et al 
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(2015). The most commonly used methods includes descriptive statistics, such as mean, median, 

and standard deviation, box-plot, and statistical inference, including the Kolmogorov-Smirnov 

test (KS-test).  Those statistical criteria were widely applied for climate models' evaluation, e.g., 

Mearns et al. (2003), Kiktev et al. (2003), Anagnostopoulos et al. (2010), Kostopoulou et al. 

(2009), Cammarano et al. (2013), Misra et al. (2013), Voldoire et al. (2013).  

First of all, the temporal evaluation was conducted for projected monthly maximum and 

minimum temperature, monthly precipitation, and monthly solar radiation at each location. The 

difference between multiple years’ of means of monthly projections and observations were 

calculated as the follows: 

∆= 𝑃𝑟𝑜𝚥.− 𝑂𝑏𝑠. 

for monthly maximum and minimum temperature and monthly solar radiation. The difference 

between projected and observed monthly precipitation was in percentage: 

∆= (𝑃𝑟𝑜𝚥.− 𝑂𝑏𝑠. )/𝑂𝑏𝑠. 

when ∆ is 0 there is good fit between projections and observations. Otherwise, disparity exists 

between the monthly projections and observations. The larger the value for ∆, the larger the 

difference between monthly projections and observations. 

Secondly, the bias between the projected and observed monthly data were calculated and 

depicted using a box-plot for each location. Statistics that are included in a box-plot include the 

median, mean, lower quartile (𝑄!, 25%), higher quartile (𝑄!, 75%), whiskers (between quartiles 

and lowest/highest values), and outliers. This approach makes no assumption with respect to the 

data population. The outliers of bias were defined as the values that are out of the following 

range:  

[𝑄! +   1.5  𝐼𝑄𝑅,𝑄! −   1.5  𝐼𝑄𝑅] 
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where IQR is interquartile range and defined as  

𝐼𝑄𝑅 = 𝑄! − 𝑄! 

Thirdly, to show the climate trends both the projections and observations were displayed 

as time series for each location in this study. Fourthly, the projections and observations were 

summarized in probability histograms to determine if they have the same distribution. Fifthly, 

the projections and observations were tested with the statistical inference Kolmogorov-Smirnov 

test (KS-test) to determine if the both projection and observations have the same population. The 

KS-test makes no assumptions about the distribution of data and the null hypothesis of this 

approach is that projections and observations are from the same data population.  A 𝑝 value close 

to 0 means a rejection to the null hypothesis, and the value close to 1 means acceptable of null 

hypothesis.  

Finally, the standard deviation was calculated to determine whether the projections could 

capture the temporal variability of observations for each location. The ratio of the temporal 

standard deviation was defined as: 

𝐹 =
𝑃𝑟𝑜𝑗.    𝑆𝐷
𝑂𝑏𝑠. 𝑆𝐷  

where 𝑂𝑏𝑠. is observation, 𝑃𝑟𝑜𝑗. is projection, and 𝑆𝐷 is the standard deviation. When 𝐹 is 1, 

there is a perfect match for the temporal variability of both the observed and projected data. 

Otherwise, the projections cannot capture the temporal variability when 𝐹 is 0. In addition to the 

variability, the climate mean for both the projections and observations was also compared. 

In addition to the evaluation for specific locations, the spatial variability of projections 

for multiple locations was also evaluated by comparing with observations. First of all, the 

standard deviation for each month for all 34 locations was calculated for both projections and 

observations. In general, a large standard deviation means a large variability among those 
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locations. When the standard deviation of projections is smaller than the standard deviation of 

the observations, the projections fail to capture the observed spatial variability. When the 

standard deviation of projections is larger than the standard deviation of the observations, the 

projections for multiple locations show a larger difference than observation. In addition to the 

comparison of variability of the 34 locations, the mean, median, and spread of projections and 

observations of each month were compared using graphs of data distributions. When the 

statistics, e.g. mean, median, and spread of data, for both observations and projections are the 

same, it means a good fit between the projections and observations. If the statistics are different, 

then the projections fail to capture observations.  

4.3 RESULTS 

4.3.1 TEMPORAL PROJECTIONS 

4.3.1.1 BIASES BASED ON AVERAGE OF 15 GCMS 

In general, biases existed between the projections and observations for the four climate 

variables in monthly values, maximum and minimum temperature, precipitation, and solar 

radiation, for all locations (Figure 4.2). Negative values for biases mean the projections 

underestimated observations. Otherwise the projections overestimated the observations. First of 

all, the average of climate projections based on 15 GCMs was compared with observations at all 

locations.  

In Alabama, the biases between projected monthly maximum temperature and 

observations ranged between -0.4 °C to 0.4 °C for Cullman, Grand Bay, Marion Junction, 

Thorsby, and Union Springs. While, the biases were about -0.2 °C to 0 °C for the other locations 

in Alabama ((Figure 4.2). The monthly minimum temperature biases were relatively smaller and 
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ranged from -1.2 °C to 0 °C for most locations. However, the biases were -1.8 °C for Auburn. 

The monthly precipitation biases ranged from 17% to 25% for all locations.  

In Florida, three locations Alachua, Jay, and Quincy showed relatively larger monthly 

maximum temperature biases than the other locations, which were about 0.8 °C to 1 °C (Figure 

4.2). The biases were less than 0.5 °C for the other locations, but Umatilla had a bias of  -0.3 °C. 

The monthly minimum temperature biases were 0.8 °C for Alachua and ranged from -0.6 °C to 

0.5 °C for the other locations. The monthly precipitation biases ranged from 3% to 16% for all 

locations, except 27% for Lake Alfred. For monthly solar radiation, biases ranged from about 0.5 

MJ/m2 to 2.8 MJ/m2 for all locations in Florida. 

In Georgia, the biases of monthly maximum temperature were less than 0.5 °C for most 

locations, but 0.8 °C for Statesboro and 0.7 °C for Tifton. The biases of monthly minimum 

temperature ranged from about -0.8 °C to 0.9 °C for all locations, with 1.5 °C for Eatonton. The 

biases of monthly precipitation ranged from 5% to 20%. The biases of monthly solar radiation 

were less than 2.2 MJ/m2 for all locations. 

4.3.1.2 BIASES BASED ON SINGLE GCMS 

In order to conduct a detailed performance of the projections of the 15 GCMs, six 

locations were selected as representatives for the 34 locations in southeastern USA. Those 

locations were Attapulgus, Blairsville, and Midville for Georgia, Auburn for Alabama, Lake 

Alfred and Homestead for Florida, ranging from the most southern to most northern locations of 

the study area (Figure 4.3).  

Using Attapulgus (Georgia) as a central location, the biases between the projected 

monthly maximum temperature and the observations ranged from about -4 °C to 6 °C. The 

boxplot of those biases in monthly maximum temperature showed a mean value of 0 °C for all 
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the 15 GCMs. All 15 GCMs showed almost identical values for the mean, 25%, 50%, and 75% 

for the monthly maximum temperature biases. However, the outliers varied with GCM. For 

monthly minimum temperature, the biases between projections and observations ranged from -

5 °C to 8 °C. The mean value of those biases was about 1 °C, which means the average monthly 

minimum temperature was over-estimated by about 1 °C. The monthly minimum temperature 

biases of the 15 GCMS also showed almost identical values for the mean, 25%, 50%, and 75%, 

and even the outliers. The biases of monthly precipitation ranged from -150 mm to 150 mm, 

while a few years showed biases ranging from -450 mm to - 150 mm, which treated as outliers in 

the box-plot. The mean of monthly precipitation biases was about 20 mm. The similar values of 

mean, 25%, 50%, 75%, and even outliers were too close to be identified among the 15 GCMs. 

All GCMs seemed to over-estimate most years' monthly solar radiation, with the biases ranging 

from - 3 MJ/m2 to 12 MJ/m2. The mean of monthly solar radiation biases was about 2 MJ/m2.  

SimCLIM performed similarly for Blairsville, Midville, Auburn, Homestead, and Lake 

Alfred compared to Attapulugs. However, the values and ranges for the statistics showed some 

differences (Figure 4.3). At Blairsville, the monthly maximum temperature biases ranged from 

about -4 °C to 6 °C and the mean bias was overestimated by about 1 °C. The monthly minimum 

temperature biases ranged from -6 °C to 6 °C, while the mean bias was almost 0 °C. The 

monthly precipitation biases ranged from -200 mm to 150 mm, while the mean bias was about 20 

mm. The monthly solar radiation bias ranged from -5 MJ/m2 to 6 MJ/m2 and mean was about 0. 

The results for Midville were very similar to Blairsville. However, the mean monthly minimum 

temperature was underestimated by about 1 °C and the mean monthly solar radiation was 

overestimated by about 1 MJ/m2. For Auburn, the biases of monthly maximum temperature 

ranged from -4 °C to 5 °C, while the mean bias was almost 0 °C. The range for biases of monthly 
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minimum temperature ranged from -7 °C to 4 °C, while the mean bias was about 2 °C. The 

monthly precipitation biases ranged from -200 mm to 150 mm and the mean bias was 

overestimated by about 20 mm. At Homestead, the biases of monthly maximum temperature 

ranged from about -3 °C to 4 °C, while the mean bias was 0. The monthly minimum temperature 

biases ranged from -4 °C to 6 °C, while the mean bias was 0. The monthly precipitation biases 

ranged from about -200 mm to 200 mm, while the mean bias was also 0; however, the outliers 

reached -400 mm. The monthly solar radiation biases ranged from -5 MJ/m2 to 10 MJ/m2, but the 

outliers reached -10 MJ/m2 and mean bias was 2 MJ/m2. At Lake Alfred, mean monthly 

minimum temperature was underestimated by about 1 °C, mean monthly precipitation was 

overestimated by 20 mm, while the monthly precipitation and monthly solar radiation did not 

show many outliers. 

4.3.1.3 CLIMATE VARIABILITY  

The ratio of projected and observed standard deviations of each climate variable was 

calculated to quantify the difference in temporal climate variability among the 15 GCMs for 

Attapulgus, Blairsville, and Midville for Georgia, Auburn for Alabama, and Lake Alfred and 

Homestead for Florida (Table 4.1). For monthly maximum and minimum temperature, the ratios 

of the standard deviations of projections and observations ranged from about 0.95 to 0.99 at 

Attapulgus, Blairsville, Midville, and Auburn. The ratios were 0.82 to 0.92 at Homestead and 

Lake Alfred. This indicated that the projected monthly maximum and minimum temperatures 

captured the variability of the observations. The ratios of standard deviations of monthly solar 

radiation ranged from 1 to 1.25 at all six locations, which also showed that the projections were 

able to capture the variability of the observations. However, the monthly precipitation at all 

locations showed very low ratios, which indicated that the projected monthly precipitation did 
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not capture the variability of the observations. These ratios ranged from 0.3 to 0.37 for 

Attapulgus, Blairsville, and Midville, and they ranged from 0.5 to 0.72 for Auburn, Homestead, 

and Lake Alfred.  

4.3.1.4 DATA DISTRIBUTION OF CLIMATE BASED ON GCM CSIRO AND 

OBSERVATIONS 

Since the pervious analysis showed that there was no significant difference among the 15 

GCMs in generating monthly maximum and minimum temperature, monthly precipitation, and 

monthly solar radiation for specific locations, the GCM CSIRO was selected as the 

representative GCM to conduct a detailed analysis of the performance of SimCLIM. Several 

studies have shown that the GCM CSIRO can reproduce climate over the continental U.S. 

(Giorgi & Shields 1999, Mearns et al. 2003) and it also has a relatively high spatial resolution 

compared to many of the other GCMs. GCMs can address the internal variability better for 

longer periods (Stocker et al. 2013) and, therefore, the locations with longest observation period 

were selected as example to address the difference between the distribution of the projections 

and observations. These locations included Blairsville and Attapulgus from Georgia, which had 

the longest observations from 1993 to 2012 (Figure 4.4).  

For Blairsville, projected monthly maximum temperature ranged from about 9 °C to 

32 °C, while the observations ranged from about 5 °C to 32 °C. The temporal variability of the 

projections and observations from 1993 to 2012 were close, as indicated by the standard 

deviation that was 7.14 for the projections and 7.17 for the observations. The projected monthly 

minimum temperature ranged from -6 °C to 19 °C and observations ranged from -3 °C to 18 °C, 

while the standard deviation was 7.15 for the projections and 7.34 for the observations. The 

projected monthly solar radiation ranged from 7 MJ/m2 to 24 MJ/m2 and observations were from 
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5 MJ/m2 to 26 MJ/m2, and the standard deviation was 5.52 for projections and 5.45 for 

observations. The projected monthly precipitation showed a very narrow range from 110 mm to 

170 mm, while the observations ranged from 11 mm to 310 mm. The standard deviation for the 

monthly precipitation was 16.72 for the projections and 53.18 for observations, which means that 

projections could not capture the climate patterns of the observations. For Attapulgus the 

SimCLIM also showed that projected monthly maximum and minimum temperature and 

monthly solar radiation were able to capture the observations for both the range and standard 

deviations. However, the projected monthly precipitation showed much narrower ranges and 

smaller standard deviations than the observations.  

4.3.1.5 TIME SERIES BASED ON GCM CSIRO AND OBSERVATIONS 

Blairsville and Attapulgus for Georgia and Lake Alfred for Florida were selected to 

analyze the climate trend along with time (Figure 4.5), which represented the northern, middle, 

and southern study area. The comparison of projected monthly maximum and minimum 

temperature with the corresponding observations for all three locations showed that the 

projections matched the observations well. However, there was a disparity between the 

projections and observations especially for extreme temperatures for both the monthly maximum 

and minimum temperature. The projected monthly solar radiation for Blairsville matched well 

with the observations. However, there was a large different between projected and observed 

monthly solar radiation for Attapulgus and Lake Alfred. Also, the projections for monthly 

precipitation did not regenerate the observations at all three locations.     

4.3.1.6 KS-TESTS BASED ON GCM CSIRO AND OBSERVATIONS 

The KS-tests were conducted for monthly maximum and minimum temperature, monthly 

precipitation, and monthly solar radiation for all locations for the three states. For monthly 
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maximum temperature, the KS-tests showed that both the projections and observations were 

from the same data population for all locations except for Alachua and Umatilla in Florida 

(Table 4.2). For monthly minimum temperature, the projections for many locations had a 

different data population than the observations. These locations included Auburn, Brewton, 

Cullman, Headland, and Thorsby in Alabama, Immokalee and Lake Alfred in Florida, and 

Eatonton, Tifton, and Savannah in Georgia. The projections for Alabama were less accurate than 

for the other two states. Based on the KS-test it can be concluded that the monthly precipitation 

projections did not show any skill. The monthly solar radiation showed that only projections at 

Blairsville and Elberton in Georgia captured the observations.  

4.3.1.7 F-RATIO BASED ON GCM CSIRO AND OBSERVATIONS 

The 𝐹  ratio, which is the ratio of the standard deviations of the projections and 

observations, for monthly maximum temperature for all locations for Alabama ranged from 1 to 

1.06 and the ∆, which is the difference of the means between the projections and observations, 

ranged from -0.4 °C to 0.4 °C which were not rejected by KS-test. The ratio of the monthly 

minimum temperature ranged from 1.04 to 1.13 and ∆ ranged from -1.7 °C to 0.1 °C. The 

locations that were rejected by the KS-test showed that the absolute ∆ were larger than 1 °C. The 

𝐹 ratio of monthly precipitation were from 2.47 to 3.09 and ∆ were from 9.1 °C to 24.9 °C, 

therefore, all locations were rejected. For the locations in Florida, the 𝐹 ratio for monthly 

maximum temperature ranged from 1.01 to 1.1and the ∆ for monthly temperature ranged from 

were and -1 °C to 0.3 °C. The 𝐹 ratio for monthly minimum temperature ranged from 1.05 to 

1.21 and the ∆ for monthly minimum temperature ranged from -0.6 °C to 0.7 °C. The 𝐹 ratio for 

monthly precipitation ranged from 1.55 to 2.82 and the ∆ for monthly precipitation ranged from 

0.5 mm to 23.1 mm. The 𝐹 ratio for solar radiation ranged from 0.74 to 0.93 and the ∆ for 
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monthly solar radiation ranged from 0.5 MJ/m2 to 2.8 MJ/m2. Monthly precipitation and monthly 

solar radiation for all locations in Florida were rejected. For locations in Georgia, the 𝐹 ratio of 

monthly maximum temperature ranged from 0.99 to 1.13 and the ∆ for monthly maximum 

temperature ranged from -0.7 °C to 0.1 °C. The 𝐹 ratio for monthly minimum temperature 

ranged from 1 to 1.12 and the ∆ for monthly minimum temperature ranged from -0.8 °C to 

1.5 °C. The 𝐹 ratio for monthly precipitation ranged from 2.22 to 4.97 and the ∆ for monthly 

precipitation ranged from 6 mm to 16.2 mm. The 𝐹 ratio for monthly solar radiation ranged from 

0.85 to 1.02 and the ∆ for monthly solar radiation ranged from 0 MJ/m2 to 2.2 MJ/m2.  

4.3.2 SPATIAL VARIABILITY 

The spatial data distributions for both the projections and observations for all locations 

were compared in order to evaluate SimCLIM's ability to capture the spatial variability among 

all locations for the monthly climate variables (Figure 4.6). For January, the projected monthly 

maximum and minimum temperature showed the ability to capture the means, maximum value, 

and standard deviations (data spread). The standard deviations were 4.02 and 4.09 for the 

projected and observed monthly maximum temperature and 3.64 and 3.81 for projected and 

observed monthly minimum temperature. However, SimCLIM did not reproduce the extremes of 

monthly maximum and minimum temperature. The projected monthly solar radiation in January 

showed a very similar distribution as the observed monthly solar radiation, with a narrow range, 

but the extremes were not reproduced by the projections. The standard deviation was 1.1 for the 

projected solar radiation and 1.67 for the observed solar radiation. The spread and means of the 

projected monthly precipitation for January showed a large difference from the observed 

precipitation. The standard deviation was 27.5 for the projected monthly precipitation and 52.16 
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for observed precipitation. The four projected variable for February, March, April, May, 

September, October, November, and December had a similar performance as January.  

SimCLIM did capture the mean and spread of the observed monthly maximum and 

minimum temperature in June, however, missed the extremes. The projected monthly solar 

radiation in June showed larger mean value than observations and did not capture the variability. 

SimCLIM also showed no skill in projecting monthly precipitation in June, which was the same 

as January. Projections in July and August were with the similar performance with June. 

4.4 DISCUSSION 

SimCLIM was evaluated by Bao et al (2015) in generating site-specific climate 

projections, but only for one location Georgia, US. The limitations of those studies were 

improved in this study. For coupling SimCLIM with application models such as crop simulation 

models for the southeastern USA, this study evaluated the performance of SimCLIM with 

respect to being able to reproduce recent site-specific climate for multiple locations in the 

southeastern USA. Furthermore, in order to respond to the recent research that found that the 

application of multiple GCMs introduces fewer uncertainties into impact studies (Tebaldi & 

Knutti 2007, Knutti 2010, Asseng et al. 2013), downscaled climate projections of 15 GCMs were 

compared for these multiple locations. The statistical analysis of this study concluded that 

SimCLIM could generate maximum and minimum temperature and solar radiation with 

confidence for the southeastern USA. This conclusion is similar with many studies stated that the 

generation of temperature is with confidence (Lim et al. 2007, IPCC 2013). However, 

improvements are still needed for generating precipitation in the southeastern USA, similar to the 

results of Bao et al. (2015) who only evaluated one location The precipitation is difficult to be 

reproduced in southeastern USA (Robinson & Henderson 1992, Henderson & Vega 1996, 
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Mearns et al. 2003, Misra 2013) that has also been proved in this study. The study of Hwang et al. 

(2013) that evaluated the projections of precipitation for Tampa Bay in Florida also found out 

significant bias from observed precipitation when generated the precipitation projections.  

In comparison to dynamic downscaling methods, the statistical downscaling method of 

SimCLIM is simple and therefore could possibly cause more uncertainties. However, the 

downscaled projections for specific location are definitely an advantage of SimCLIM, especially 

when they are applied for impact studies, such as crop yield prediction for a particular location. 

This study also highlighted the uncertainties associated with the generation of climate scenarios 

with SimCLIM. The evaluation of SimCLIM in this study was based on monthly values because 

this model does not generate daily projections. This could possibly cause bias for the evaluation 

of the projections and thus also for the applications. Fortunately, the application can be partially 

compensated for with the perturbation of long-term daily observations. Another limitation is the 

lack of long-term observations. Although the observations that were used were the most 

complete data, climate patterns cannot be completely shown by the short period (10 to 21 year). 

As summarized by Stocker et al. (2013) that climate projections provide better interanual 

variability with longer period than shorter period. The evaluation of this study showed that the 

climate variability cannot be completely reproduced by SimCLIM.   

4.5 CONCLUSION 

In summary, SimCLIM can be applied for climate change impact studies with confidence 

in projecting maximum temperature, minimum temperature, and solar radiation. However, the 

projected precipitation may introduce more uncertainties especially with respecting to the 

climate variability. Fortunately, the perturbation tool for the local long-term observation can be 

able to offset some of the uncertainties associated with using monthly data.   
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Table 4.1: The ratio of the standard deviations for the projected and observed data (𝐹 = !"#$.!"
!"#.!"

) for Attapulgus, Blairsville, and 
Midville in Georgia, Auburn in Alabama, Homestead and Lake Alfred in Florida. Projections were based on 15 GCMs and gas 
emission scenario A1B. 

 𝐹 BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH 

Attapulgus 

Max 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.97 
Min 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.95 
Pre 0.34 0.35 0.34 0.34 0.37 0.36 0.34 0.36 0.35 0.35 0.34 0.37 0.34 0.35 0.35 
Rad 1.17 1.17 1.17 1.18 1.16 1.17 1.17 1.17 1.17 1.16 1.17 1.17 1.16 1.16 1.17 

Blairsville 

Max 0.99 0.99 0.99 1.00 0.99 1.00 1.00 0.99 1.00 0.99 0.99 0.99 0.99 1.00 0.99 
Min 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.98 0.97 
Pre 0.32 0.32 0.33 0.31 0.31 0.32 0.32 0.34 0.32 0.31 0.33 0.32 0.32 0.31 0.33 
Rad 1.01 1.01 1.02 1.01 1.00 1.01 1.02 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01 

Midville 

Max 0.96 0.96 0.96 0.97 0.96 0.97 0.97 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.96 
Min 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.97 
Pre 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
Rad 1.1 1.1 1.1 1.0 1.0 1.1 1.1 1.1 1.1 1.0 1.1 1.1 1.0 1.0 1.1 

Auburn 

Max 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.99 0.98 
Min 0.95 0.96 0.96 0.96 0.95 0.96 0.97 0.95 0.96 0.95 0.96 0.96 0.96 0.96 0.96 
Pre 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Rad / / / / / / / / / / / / / / / 

Homestead 

Max 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.91 0.91 0.91 0.92 0.91 0.92 0.92 0.91 
Min 0.83 0.82 0.83 0.82 0.82 0.83 0.83 0.82 0.83 0.83 0.83 0.82 0.83 0.83 0.82 
Pre 0.65 0.65 0.66 0.65 0.66 0.65 0.64 0.65 0.65 0.66 0.64 0.66 0.65 0.66 0.65 
Rad 1.25 1.23 1.23 1.24 1.22 1.24 1.23 1.24 1.23 1.23 1.23 1.23 1.23 1.23 1.23 

 Lake Alfred 

Max 0.92 0.92 0.92 0.92 0.91 0.92 0.93 0.91 0.92 0.92 0.93 0.91 0.92 0.92 0.91 
Min 0.91 0.92 0.91 0.92 0.91 0.92 0.92 0.91 0.92 0.91 0.92 0.91 0.92 0.92 0.91 
Pre 0.70 0.69 0.69 0.68 0.72 0.70 0.69 0.70 0.69 0.70 0.68 0.70 0.69 0.72 0.71 
Rad 1.1 1.1 1.1 1.1 1.1 1.13 1.14 1.14 1.13 1.12 1.13 1.13 1.13 1.13 1.13 

/: there is no observed solar radiation 
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Table 4.2: The k value of the KS test, the ratio of standard deviations for the projected and 
observed data (𝐹 = !"#.!"

!"#.!"
) and the difference between mean of the projected and observed 

data (∆= 𝑃𝑟𝑜𝚥.− 𝑂𝑏𝑠. ) for the 34 weather stations in Alabama, Florida, and Georgia. The 
difference for monthly precipitation was in percentage ( ∆= (𝑃𝑟𝑜𝚥.− 𝑂𝑏𝑠. )/𝑂𝑏𝑠. ). / means 
no solar radiation 

Location KS test, k value 𝐹 ∆ 

 Max Min Pre Rad Max Min Pre Rad Max Min Pre Rad 

Auburn 0 1 1 / 1.01 1.04 2.24 / 0.2 -1.7 20.3 / 

Belle Mina 0 0 1 / 1.03 1.06 2.87 / 0.1 -0.7 22.8 / 

Brewton 0 1 1 / 1.06 1.13 3.09 / 0.0 -1.2 19.4 / 

Cullman 0 1 1 / 1.03 1.08 2.70 / 0.3 -1.1 9.1 / 

Grand Bay 0 0 1 / 1.03 1.10 3.20 / 0.4 0.1 21.3 / 

Headland 0 1 1 / 1.02 1.06 2.61 / 0.1 -1.3 20.0 / 

Marion Junction 0 0 1 / 1.04 1.08 2.62 / -0.4 -0.2 16.3 / 

Sand Mtn 0 0 1 / 1.04 1.09 2.59 / -0.1 -0.5 21.7 / 

Thorsby 0 1 1 / 1.00 1.06 2.47 / -0.4 -1.0 24.9 / 

Union Springs 0 0 1 / 1.02 1.06 2.70 / 0.3 -0.1 22.9 / 

Alachua 1 0 1 1 1.04 1.10 2.20 0.82 -1.0 0.7 8.6 1.6 

Citra 0 0 1 1 1.02 1.08 1.84 0.81 -0.2 -0.3 15.8 2.0 

Homestead 0 0 1 1 1.10 1.21 1.55 0.81 -0.4 0.4 0.5 1.8 

Immokalee 0 1 1 1 1.09 1.19 1.60 0.84 -0.2 0.2 9.1 0.5 

Jay 0 0 1 1 1.03 1.06 2.82 0.88 -1.0 0.1 15.0 0.9 

Lake Alfred 0 1 1 1 1.09 1.09 1.46 0.88 -0.3 -0.6 23.1 1.7 

Macclenny 0 0 1 1 1.05 1.12 2.40 0.74 -0.5 -0.1 4.7 2.8 

Marianna 0 0 1 1 1.05 1.07 2.79 0.93 -0.2 -0.4 15.3 1.0 

Quincy 0 0 1 1 1.01 1.05 2.53 0.83 -0.8 0.0 15.6 1.8 

Umatilla 1 0 1 1 1.06 1.08 2.11 0.89 0.3 0.4 15.7 1.3 

Calhoun 0 0 1 1 1.03 1.04 2.31 0.92 -0.2 0.4 13.2 1.2 

Floyd (Rome) 0 0 1 1 1.02 1.05 2.98 0.85 0.1 -0.1 12.9 1.8 

Blairsville 0 0 1 0 1.00 1.02 3.18 0.99 -0.4 -0.2 15.8 0.0 

Watkinsville 0 0 1 1 1.01 1.01 2.95 0.94 -0.3 -0.6 10.5 1.0 

Elberton 0 0 1 0 1.01 1.04 3.59 1.02 0.0 -0.6 16.2 0.0 

Griffin 0 0 1 1 1.03 1.02 3.33 0.99 -0.5 -0.2 6.9 0.4 

Plains 0 0 1 1 0.99 1.01 3.49 0.95 -0.5 0.0 6.7 1.3 

Eatonton 0 1 1 1 1.03 1.02 3.21 0.95 -0.5 1.5 8.5 0.9 

Midville 0 0 1 1 1.03 1.01 3.18 0.97 -0.4 -0.4 9.3 0.8 

Statesboro 0 0 1 1 1.00 1.02 2.73 0.95 -0.7 0.4 15.9 0.8 

Attapulgus 0 0 1 1 1.04 1.08 2.22 0.89 -0.3 0.7 10.9 2.2 

Tifton 0 1 1 1 1.02 1.02 2.47 0.91 -0.6 -0.8 8.7 0.7 

Alma 0 0 1 1 1.04 1.00 3.40 0.98 -0.3 -0.4 12.3 1.8 

Savannah 0 1 1 1 1.13 1.12 4.97 0.96 -0.1 0.9 6.0 1.5 
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Figure 4.1: Study region and the 34 selected locations.  
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Figure 4.2: The difference between mean values of downscaled projections based on 15 GCMs and observations for 34 locations in Alabama, Florida, 
and Georgia. The climate variables were monthly maximum and minimum temperature, monthly precipitation, and monthly solar radiation from 
1993 to 2012. Observed solar radiation in many years was missing for all locations in Alabama.

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Alma

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Attapulgus

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3 Blairsville

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Calhoun

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Eatonton

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Elberton

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3 Griffin

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Midville

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Plains

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3 Rome

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3 Savannah

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Statesboro

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Tifton

 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-2

-1

0

1

2

3
Watkinsville

 

 

Max
Min
Pre
Rad



 

109 

 

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-10

-5

0

5

10
Maximum Temperature-Attapulgus

M
ax

im
um

 te
m

pe
ra

tu
re

-A
1B

, º
C

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-10

-5

0

5

10
Maximum Temperature-Blairsville

M
ax

im
um

 te
m

pe
ra

tu
re

-A
1B

-B
la

irs
vil

le
, º

C

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-10

-5

0

5

10
Maximum Temperature-Midville

M
ax

im
um

 te
m

pe
ra

tu
re

-A
1B

-M
id

vil
le

, º
C

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-10

-5

0

5

10
Minimum Temperature-Attapulgus

M
in

im
um

 te
m

pe
ra

tu
re

-A
1B

, º
C

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-10

-5

0

5

10
Minimum Temperature-Blairsville

M
in

im
um

 te
m

pe
ra

tu
re

-A
1B

-B
la

irs
vil

le
, º

C

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-10

-5

0

5

10
Minimum Temperature-Midville

M
in

im
um

 te
m

pe
ra

tu
re

-A
1B

-M
id

vil
le

, º
C

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-500

-400

-300

-200

-100

0

100

200

300
Precipitation-Attapulgus

Pr
ec

ip
ita

tio
n-

A1
B,

 m
m

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-500

-400

-300

-200

-100

0

100

200

300
Precipitation-Blairsville

Pr
ec

ip
ita

tio
n-

A1
B-

Bl
ai

rs
vil

le
, m

m

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-500

-400

-300

-200

-100

0

100

200

300
Precipitation-Midville

Pr
ec

ip
ita

tio
n-

A1
B-

M
id

vil
le

, m
m

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-15

-10

-5

0

5

10

15
Solar Radiation-Attapulgus

So
la

r R
ad

ia
tio

n-
A1

B,
 M

J/
m

2

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-15

-10

-5

0

5

10

15
Solar Radiation-Blairsville

So
la

r R
ad

ia
tio

n-
A1

B-
Bl

ai
rs

vil
le

, M
J/

m
2

BCC CCC CNR CSI ECH GF0 GF1 GIS INM IPS MIR MPI MRI NCA UKH-15

-10

-5

0

5

10

15
Solar Radiation-Midville

So
la

r R
ad

ia
tio

n-
A1

B-
M

id
vil

le
, M

J/
m

2

(a2) 

(c2) 

(d2) 

(c1) 

(d3) 

(c3) 

(b3) 

(a3) 

(b2) 

(d1) 

(b1) 

(a1) 



 

110 

 
Figure 4.3: Box-plots for the bias of projected monthly maximum and minimum temperature, monthly precipitation, and monthly solar 
radiation base on 15 GCMs and gas emission scenario A1B from the corresponding observations from 1993 to 2012. Locations were 
Attapulgus, Georgia (a1 - d1); Blairsville, Georgia (a2 - d2), Midville, Georgia (a3 - d3), Auburn, Alabama (a4 - d4), Homestead, Florida 
(a5 - d5), and Lake Alfred, Florida (a6 - d6). Statistics, median, mean, lower quartile (25%), higher quartile (75%), whiskers, and 
outliers are shown in the plots.  
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Figure 4.4: Probability histogram for the projections and observations from 1992 to 2012 for monthly maximum and minimum 
temperature, monthly precipitation, and monthly solar radiation based on the GCM CSIRO-30 and gas emission scenario A1B for 
Blairsville and Attapulgus, Georgia. 
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Figure 4.5: Time series for monthly maximum and minimum temperature, monthly precipitation, 
and monthly solar radiation for Blairsville and Attapulgus, Georgia from 1993 to 2012, and Lake 
Alfred, Florida from 1998 to 2012. 
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Figure 4.6: Probability density function for the observed and projected monthly maximum and minimum temperature, monthly 
precipitation, and monthly solar radiation for each month for the southeastern USA based on the data from the 34 selected locations. 
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APPENDIX I 
Table S4.1: The General Circulation Models that were evaluated in this study. 
Acronym Source Country Resolution 

BCCR-BCM2 Bjerknes Centre for Climate Research, 
University of Bergen, Norway Norway 1.9º  × 1.9º 

CCCMA-31 Canadian Centre for Climate Modeling & 
Analysis Canada 2.8º × 2.8º 

CNRM-CM3 Me´te´o-France/Centre National de Recherches 
Me´te´orologiques France 1.9º × 1.9º 

CSIRO-30 CSIRO Atmospheric Research Australia 1.9º × 1.9º 

ECHO-G 
Meteorological Institute of the University of 
Bonn, Meteorological Research Institute of 
KMA 

Germany, 
Korea 

3.9º × 3.9º 

GFDLCM20 NOAA/Geophysical Fluid Dynamics Laboratory USA 2.0º × 2.5º 
GFDLCM21 NOAA/Geophysical Fluid Dynamics Laboratory USA 2.0º × 2.5º 
GISS-ER NASA/Goddard Institute for Space Studies USA 4º × 5º 
INMCM-30 Institute for Numerical Mathematics Russia 4º × 5º 
IPSL-CM4 Institute Pierre Simon Laplace  France 2.5º × 3.75º 

MIROCMED 
Center for Climate System Research, National 
Institute for Environmental Studies, and Frontier 
Research Center for Global Change 

Japan 
2.8º × 2.8º 

MPIECH-5 Max Planck Institute for Meteorology Germany 1.9º × 1.9º 
MRI-232A Meteorological Research Institute Japan 2.8º × 2.8º 
NCARPCM1 National Center for Atmospheric Research USA 2.8º × 2.8º 

UKHADCM3 Hadley Centre for Climate Prediction and 
Research/Met Office UK 2.75º × 3.75º 
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CHAPTER 5 

CLIMATE CHANGE IMPACT ON MAIZE YIELD AT LOCAL LEVEL SOUTHEASTERN 

USA FOR 2050 AND 2070 BASED ON THE ANALYSIS OF TWO CROP SIMULATION 

MODELS1 

 

                                                
1 Bao, Y., Hoogenboom, G., Seymour, L., McClendon, R.W., Vellidis, G., Ortiz, B. and Mote, T. 
to be submitted to Climate Research 
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5.1. INTRODUCTION 

The availability, stability, utilization, and access to food determine the well-being of 

human-beings (Schmidhuber & Tubiello 2007). The foundation of the human food supply is 

cereal production, including maize (Zea mays L.), wheat (Triticum aestivum L.), rice (Oryza 

sativa L.), which contribute most of the calories that humans directly or indirectly consume 

(Cassman 1999). Climate is one of the most important factors to control the future of our food 

supply and overwhelming evidence already has shown that climate change is already exerting a 

considerable drag on crop yield (Gosling et al. 2011, Lobell et al. 2011). A significant impact of 

climate on maize has been found based on both historical data and impact studies (Tsvetsinskaya 

et al. 2003, Lobell & Field 2007, Eckersten et al. 2010, Lobell et al. 2011, Rowhani et al. 2011). 

Meteorological observations have shown that the global average temperatures has 

increased by about 0.1 °C per decade (Hartmann 2013). In comparison to changes in average 

temperature and precipitation, more adverse impact on crop production can be expected from 

changes in extreme weather events. The frequency, intensity, and duration of extreme climate 

events, e.g., heat waves, droughts, floods, warm nights has increased since 1950 (Hartmann 2013) 

and are expected to keep increasing (Ainsworth & Ort 2010, Hatfield et al. 2011).  

Studies based on field experiments and crop simulations models have provided 

understanding of biophysical and biological processes of maize response to warmer growing 

seasons, reduced water supply, and increased carbon dioxide (Bunce 2004, Rotter et al. 2011, 

Wang et al. 2011). In general, a negative response to rising temperatures has been found for 

maize production (Kurek et al. 2007, Lobell & Field 2007, Butler & Huybers 2013). 

Precipitation is also an important driver that affects the inter-annual variability of maize yield. 

However, under climate change conditions the effect of temperature can be larger than for 
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precipitation for many situations (Burke et al. 2009, Lobell et al. 2011, Asseng et al. 2013). CO2 

enrichment is generally believed to be able to offsite some of the negative effects from high 

temperature extremes on maize (Challinor & Wheeler 2008). However, some studies also 

concluded that maize does not directly benefit an increase in CO2 concentration (Long et al. 2006, 

Gosling et al. 2011). Therefore, uncertainties still exists whether maize growth and development 

is affected by CO2 concentration.  

The United Nations Food and Agriculture Organization (UNFAO) recently stated that a 

70% increase in agricultural productivity will be required by 2050 to meet the growing food 

demand (Petherick 2011). Fortunately, some studies have shown that the adaptation of 

agriculture could result in an increase in yield of cereal crops under a warming climate 

(Ainsworth & Ort 2010). In general, adaptation is the adjustment of agronomic practices, 

agricultural processes, and capital investments in response to climate change threats. It could 

especially increase maize yield for mid- to high-latitude region to take advantage of positive 

aspects of climate change for those environments (Solomon et al. 2007).  

Commonly used approaches to assess the impact of climate change on agriculture and to 

provide adaptation strategies include agroclimatic indices and Geographic Information Systems 

(GIS) (Carter & Saarikko 1996), statistical models and yield functions (Parry et al. 2004, Lobell 

et al. 2011, Altinsoy et al. 2013), and crop simulation models (White et al. 2011) . However, crop 

simulation models are the most popular method to analyze the climate change impact on crop 

production and to determine up-to-date adaptation information for policy and decision-makers 

because of the ability to analyze the sensitivity of crop yield and management to climate change 

Climate models are usually applied to generate future weather inputs for crop simulation models. 



 

120 

Uncertainties, therefore, are introduced by both generation of future climate and crop simulation 

models (Mearns (2010), Knutti et al. (2008), and Bao et al. (2014)).  

Previous studies have concluded that the uncertainties about future climate were  "the 

natural internal variability of the climate system, the trajectories of future emissions of 

greenhouse gases and aerosols, the response of the global climate system to any given set of 

future emission/concentrations, and the application of downscaling methods yields higher 

resolution projections but presents another source of uncertainty" (Cox & Stephenson 2007, 

Tebaldi & Knutti 2007, Knutti et al. 2008, Mearns 2010). Although progress has been made on 

characterizing and analyzing uncertainties (Christensen et al. 2007), it is not likely that they can 

be mitigated on the short-term (Knutti 2010). Given the uncertainties of the climate scenarios, a 

good approach is to use several scenarios as inputs for the crop models to provide a range of 

possibilities for impact analysis (Iglesias 2006). Climate projections based on multiple general 

circulation models (GCMs) or regional climate models (RCMs) ensembles can also address the 

uncertainties from climate models (Tebaldi & Knutti 2007, Knutti 2010, Asseng et al. 2013). 

Furthermore, uncertainties from gas emission scenarios can also be decreased by using plausible 

projected emission scenarios (Moss et al. 2010). 

The uncertainty is also an issue for applying crop simulation model in climate change 

impact studies. Until recently most climate impact studies have used single crop models for the 

analysis. Although the complex interaction of crop-climate-soil cannot be simulated at an 

extreme detailed level (Rotter et al. 2011), it has been shown that a single crop model can 

accurately simulate crop yield for a range of environments, especially if the input information is 

sufficient (Soler et al. 2007, Asseng et al. 2013). However, a wide divergence in crop models has 

been found since they represent crop development and growth differently (Palosuo et al. 2011, 
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Rotter et al. 2011, Carter 2013). Several studies have shown that a greater proportion of the 

uncertainty in climate change impact projections was due to the variation among crop models 

than due to the variation among downscaled GCMs (Malcolm et al. 2012, Asseng et al. 2013). 

However, an the ensemble of multiple crop models can offer a more robust basis for projecting 

future crop yields and their uncertainties than relying on individual model simulations (Semenov 

& Stratonovitch 2010, Palosuo et al. 2011, Rötter et al. 2012, Asseng et al. 2013, Carter 2013).  

The National Corn Growers Association (NCGA, http://www.ncga.com) reported that 

32.1% of the world's maize is produced by United States and 2% of the US maize is from the 

southeastern USA. As summarized above, maize production is important and the potential 

impact of climate change on crop varies by region. Furthermore, although studies concluded that 

more uncertainties could be introduced to climate change impact studies by crop models, few 

studies so far have been conducted that have used multiple maize simulation models (Carter 

2013). This study therefore dedicated the impact of changing climate in 2050 and 2070 on maize 

production in the southeastern USA. The objectives were 1) to determine the impact of changing 

climate in maize grain yield in 2050 and 2070 for the southeastern USA, 2) to determine the 

possible adaptation strategies for future maize planting in the southeastern USA. 

5.2. MATERIALS AND METHODS 

5.2.1 HISTORICAL CLIMATE 

22 locations that belong different climate divisions were selected for Alabama (AL), 

Florida (FL), and Georgia (GA) to represent the southeastern USA. The climate patterns were 

divided as 9 zones for Georgia, 8 zones for Alabama, and 8 zones for Florida 

(http://www.esrl.noaa.gov/psd/data/usclimdivs/data/map.html). These climate divisions were 

Northwest (1), North Central (2), Northeast (3), West Central (4), Central (5), East Central (6), 
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Southwest (7), South Central (8), and Southeast (9) for GA. North Valley (1), Appalachian 

Mountain (2), Upper Plains (3), Eastern Valley (4), Piedmont Plateau (5), Prairie (6), Coastal 

Plain (7), and Gulf (8) for AL. Northwest (1), North (2), North Central (3), South Central (4), 

Everglades (5) and Southwest Coast (6), Lower East Coast (7), and Keys (8) for Florida (Table 

5.1). Because the Southwest Coast, Lower East Coast, and Keys in Florida are not suitable for 

maize production, only the remaining 5 climate divisions for Florida were considered in this 

study. Weather inputs from 1981 to 2010 with daily minimum temperature (ºC), maximum 

temperature (ºC), and precipitation (mm) were obtained from the National Climatic Data Center 

(NCDC) for these 22 locations in order to account for the inherent annual weather variability. 

The solar radiation (MJ/m2) was then generated with Weather Generator for Solar Radiation 

(WGENR), which is based on a multivariate stochastic process using minimum and maximum 

temperature and precipitation (Garcia y Garcia & Hoogenboom 2005, Garcia y Garcia et al. 

2008). The southern locations had higher average values for minimum and maximum 

temperatures than the northern region, while the average monthly precipitation was very similar 

for all locations (Table 5.1).  

5.2.2 CLIMATE CHANGE SCENARIOS 

Daily weather data of reference years (1981 to 2010) were perturbed by SimCLIM to 

generate daily weather data as inputs for the crop models to represent the climate change 

projections for 2050 and 2070. SimCLIM was applied to southeastern USA for generating site-

specific future climate for Bao et al. (2015), which has been commonly applied in many regions 

(Kenny et al. 2001, Albertin et al. 2011, Jha 2012). Pattern-scaling was used for statistical 

downscaling of the global projections of 15 GCMs for the southeastern USA. Based on the study 

of Bao et al. (2015), the best way to minimize uncertainties that could be introduced into the 
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climate projections is to perturb long-term historical daily weather data. Multiple climate 

scenarios were generated for both 2050 and 2070 based on 15 GCMs (Table 5.3) and three gas 

emission scenarios A1B (Medium), A2 (High), and B1 (Low). The modifications for daily 

weather data based on the delta method 

𝑀𝑎𝑥  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒!"#"$% = 𝑀𝑎𝑥  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒!"#"!"$%" + ∆𝑀𝑒𝑎𝑛  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒         

𝑀𝑖𝑛  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒!"#"$% = 𝑀𝑖𝑛  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒!"#"!"$%" + ∆𝑀𝑒𝑎𝑛  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"#"$% = 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"#"$"%&"× 1+ ∆𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛    

∆Mean  Temperature is the change in monthly mean temperature for 2050 or 2070 from the 

baseline. ∆𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 is the percentage change in monthly precipitation for 2050 or 2070 

from the baseline.  

The projected CO2 concentration for 2050 was 533 ppm for the A1B and A2 scenarios 

and 487 ppm for the B1 scenarios. A higher CO2 concentration was projected for 2070, which 

was 613 ppm for A1B, 627 ppm for A2, and 522 ppm for B1. 

5.2.3 CROP MODELS 

In order to analyze the effects of climate impact on maize yield in the southeastern USA 

for 2050 and 2070, the Cropping System Model (CSM)-CERES-Maize and Erosion-Productivity 

Impact Calculator (EPIC)-Maize were applied to simulate present and future maize yield. The 

CSM-CERES-Maize is one of the modules of the Decision Support System for Agrotechnology 

Transfer (DSSAT) (Jones et al. 2003, Hoogenboom et al. 2012). The individual plant modules of 

CSM are designed for simulating different crops, in order to be able to provide an accurate 

prediction of the development stages of specific cultivar. Each module simulates growth, 

development, and yield of a specific crop grown on a uniform area of land by considering 

weather, soil, management and genetics for single or multiple seasons and for crop rotations for 
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any location where the minimum input data for the models are available (Hunt & Boote 1998, 

Jones et al. 2003). Potential growth depends on photosynthetically active radiation and its 

interception, where the actual biomass production is constrained by stresses such as temperature, 

nitrogen, and water. It also considers the sensitivity of crop to CO2 concentration.  

EPIC was designed to estimate soil productivity as affected by erosion throughout the 

U.S.  (Williams et al. 1989). The components of the EPIC model include weather, hydrology, 

erosion-sedimentation, nutrient cycling, crop growth, tillage, soil temperature, economics, and 

plant environment control (Jones et al. 1984b, a, Sharpley et al. 1984, Williams et al. 1984, 

Williams et al. 1989) to simulate multiple crops. The yield is estimated using the harvest index 

and aboveground biomass. The aboveground biomass in turn is a function of photosynthetically 

active radiation and leaf area. Leaf area is calculated as a function of heat unit accumulation, 

crop development states, and crop stresses.  

5.2.4 SOIL AND CROP MANAGEMENT 

The soil types (Table 5.1) and profile data for 22 locations were obtained from both the 

collection of Perkins et al. (1978, 1979, 1982, 1983, 1985, 1986) and the National Cooperative 

Soil Survey (NCSS, http://ncsslabdatamart.sc.egov.usda.gov). The planting dates that were 

considered included February 15, March 1 and 15, April 1 and 15, May 1 and 15, and June 1, 15, 

and 30 to seek for effective adaption strategies for a changing climate. The plant population at 

seeding was around 6 to 8 plants/m2, row spacing was 76 cm, and the planting depth was 5 cm, 

which were the same that were used in the maize performance tests from the University of 

Georgia (UGA) College of Agricultural & Environmental Science (CAES) Statewide Variety 

Testing (SWVT) program (Coy et al. 2010). Both rainfed and irrigated management practices 

were considered. For irrigated maize, both models set automatic irrigation with a threshold of 50% 



 

125 

of available soil moisture. This means that irrigation is “triggered” or applied when 50% of the 

available soil moisture has been depleted. The previous crop grown in the field was also set as 

maize for CSM-CERES-Maize.  

The hybrids Dyna-Gro V5373VT3, Pioneer 33M57(Hx1/LL/RR2), SS 731CL, Croplan 

Genetics 851 VT3 PRO, Croplan Genetics 8756 VT3, DeKalb DKC69-71(RR2/YGCB), and 

Pioneer 31D58 were used to represent the planted hybrids in the three states, which were 

calibrated and evaluated by Bao et al. 2015 (Table 5.2). We made the assumption that the current 

range of hybrids might be suitable for future maize production, as they represent a range of 

different maturities. However, seed companies release new varieties on a regular basis. In 

addition to the calibrated hybrids, daily observed weather data (minimum temperature, maximum 

temperature, precipitation, and solar radiation), soil profile data (bulk density, pH in water, soil 

water content, and clay on each soil layer), and crop management (planting date, population, 

seed depth, row spacing, and date and amount for irrigation and fertilization) were obtained as 

input for both models.  

5.2.5 STATISTICAL ANALYSIS 

The Analysis of Variance (ANOVA) was applied to test the difference among simulated 

maize yield based on multiple climate scenarios and crop management scenarios: (1) simulated 

grain yield based on 15 GCMs, (2) simulated grain yield based on three gas emission scenarios, 

(3) simulated grain yield for the 2050 and 2070 projections, (4) simulated maize yield based on 

two crop models. The null hypothesis of ANOVA tests was that simulations based on different 

input combinations provided the same yield predictions. The significance level was 0.05. 
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5.3 RESULTS 

5.3.1 CHANGES IN CLIMATE 

The combination of GCMs (15) and gas emission scenarios (3) generated 45 climate 

scenarios for both 2050 and 2070 for each location. In general, the changes in both monthly 

temperature and monthly precipitation were larger for 2070 than for 2050 (Table 5.4). In 

Alabama, the changes in monthly temperature for 2050 showed that the smallest change was 

1.3 °C for all locations, while the largest change varied with location ranging from 3 °C to 4.6 °C. 

For 2070, all locations in Alabama showed at least 1.7 °C of increase in the monthly temperature, 

while the largest change varied from 4.5 °C to 6.8 °C. Monthly temperature changes in Florida 

were much smaller than for Alabama. They ranged from 0.8 °C to 2.8 °C for 2050 and from 

1.1 °C to 4.2 °C in 2070 for Florida. For Georgia, the changes ranged from 1.1 °C to 3.9 °C for 

2050 and from 1.4 °C to 5.8 °C for 2070. The changes in monthly precipitation from the baseline 

climate data varied significantly for each location in Alabama, with extremes for some locations. 

Calera, Alabama showed the largest change in monthly precipitation which ranged from -58.7% 

to 77.5% for 2050 and from -87.6% to 115.7% for 2070. For Montgomery, Alabama the changes 

ranged from -30.8% to 53.3% for 2050 and from -46% to 79.6% for 2070. For Bankhead, 

Alabama the changes in precipitation ranged from -19.4% to 42% for 2050 and from -29 to 62.7% 

for 2070. The other locations showed similar changes in precipitation, ranging from -14.2% to 

21.1% for 2050 and from -21.2% to 31.5% for 2070. For Florida, the changes in monthly 

precipitation ranged from -11.7% to 18.8% for 2050 and from -18.3% to 28.1%, while for 

Georgia they ranged from  -17.4% to 32.6% for 2050 and from -25.9% to 48.7% for 2070. 

 

 



 

127 

5.3.2 PREDICTED MAIZE GRAIN YIELD  

5.3.2.1 RAINFED YIELD FOR THE REFERENCE YEARS  

The analysis for grain yield for the reference years was based on the average values for 

seven hybrids for 30 years for each of the 10 planting dates, which ranged from February 15 to 

June 30 (Figure 5.1). Rainfed grain yield that based on the simulations of both crop models 

showed sensitivity to different planting dates for all locations. For maize planted in February and 

March, both crop models predicted no yield especially for locations in northern Georgia and 

Alabama, because low temperatures caused a delay in germination.  

For the February 15 planting date, CSM-CERES-Maize predicted about 2321 kg/ha to 

4280 kg/ha for Mobile, Alabama and for all locations in Florida except for Chipley. The grain 

yield for the other locations ranged from 0 to 1383 kg/ha. As planting dates were changed to later 

dates from March 1 and 15, grain yield increased. Compared to February 15, grain yield 

increased. Yield for Mobile, Alabama reached 4500 kg/ha for March 1 and 6700 kg/ha for the 

March 15 planting dates. For the locations in Florida, yield ranged from 3700kg/ha to 5600 kg/ha 

for March 1 and from 4500 kg/ha to 7500 kg/ha for the March 15 planting date. However, 

Chipley, Florida had lower yields that were about 1797 kg/ha for March 1 and 2541 kg/ha for 

March 15. Grain yields for Colquitt, Georgia and Tifton, Georgia were about 3000 kg/ha for 

March 1 and 3800 kg/ha for March 15. The other locations had grain yield that ranged from 7 

kg/ha to 2707 kg/ha. Grain yields continued to increase as planted dates were moved to April and 

May, and then slightly decreased when planted in June. Blairsville, Georgia showed the largest 

change with the change in planting dates; simulated yield reached 7237 kg/ha on May 15 and 

then dropped to 1708 kg/ha for the June 30 planting date. For Mobile, Alabama and Chipley, 

Florida yield continued to increase until the latest planting date of June 30. The grain yield for 
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Bankhead, Calera, and Mobile in Alabama and Ocala in Florida ranged from 6000 kg/ha to 8000 

kg/ha for planting between April and June. Naples, Florida and Griffin, Georgia showed a 

relatively higher grain yield that ranged from 7913 kg/ha to 10615 kg/ha. The remaining 

locations had yield that ranged from 3200 kg/ha to 7571 kg/ha.  

Simulated rainfed grain yield based on EPIC showed similar trends compared to the 

simulations based on the CSM-CERES-Maize model (Figure 5.1). Even lower yield were 

simulated because of some temperature limitations. For maize planted on February 15 and March 

1, only Avon, Naples, and Ocala in Florida had yields that ranged from 4862 kg/ha to 6474 kg/ha, 

while the other locations had had a simulated yield that was less than 2657 kg/ha. For the March 

15 planting date the southern locations had a simulated yield that ranged from 5414 kg/ha to 

9655 kg/ha, while yield for the other locations ranged from 161 kg/ha to 4724 kg/ha. The 

simulated yield for maize that planted during April and June ranged from 4512 kg/ha 9931 kg/ha, 

while the simulated yield for the late June 30 planting decreased by about 500 kg/ha to 1000 

kg/ha compared to the June 15 planting.   

5.3.2.2 IRRIGATED YIELD FOR THE REFERENCE YEARS 

Irrigated yield for most of the locations was higher compared to rainfed yield because 

there was no water limitation (Figure 5.1). However, there was still a temperature limitation for 

February 15 and March 1 planting dates, especially for the northern areas of the region and 

simulated yield decreased for the later planting dates in June based on both crop models. 

Simulated yield of the CSM-CERES-Maize model February 15 and March 1 ranged from 0 to 

5344 kg/ha for most locations in Alabama, Florida, and Georgia. Mobile in Alabama had yields 

from 4690 kg/ha to 7159 kg/ha. For Naples, Florida yield was 12458 kg/ha and 12344 kg/ha for 

the February 15 and March 1 planting dates, respectively. For the March 15 to June 30 planting 
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dates, Heflin, Montgomery, and Scottsboro in Alabama, Chipley in Florida, and Colquitt and 

Savannah in Georgia had a simulated yield that was less than 6300 kg/ha. Yields at the other 

locations ranged from 6900 kg/ha to 12655 kg/ha. When planted on June 15 and June 30, 

simulated yield at Belle Mina in Alabama, Avon in Florida, Blairsville, Elbert, and Rome in 

Georgia dropped to a range of 1787 kg/ha to 5560 kg/ha.  

Irrigated grain yield based on the simulations with EPIC had a very similar trend when 

compared to the simulations based on the CSM-CERES-Maize model. Low temperatures on 

February 15, March 1 and Mar 15 resulted in a low yield for locations that were north than 

Calera in Alabama, which had yield that was less than 2715 kg/ha. The other locations generally 

had a simulated yield that was less than 3481 kg/ha for maize planted on February 15 and March 

1 and a yield of 5126 kg/ha to 8885 kg/ha for maize planted on March 15. However, Avon, 

Naples, and Ocala in FL were not limited by low temperature and as a result yield ranged from 

4713 kg/ha to 8986 kg/ha for maize planted in February and March. Grain yield increased for all 

locations when planting date was moved to April to June 15, with yield ranging from 7047 kg/ha 

to 11133 kg/ha. For planting on June 15 yield decreased to 4922 kg/ha to 9039 kg/ha.  

5.3.2.3 STATISTICAL ANALYSIS FOR MAIZE YIELD UNDER FUTURE CLIMATE 

Grain yield for multiple hybrids was simulated based on a wide range of climate 

scenarios in this study. In order to be able to analyze the predictions, ANOVA tests were 

conducted to identify whether significant differences exist among simulated yield for each hybrid 

based on 15 GCMs, three gas emission scenarios, and two crop models for the projections for 

2050 and 2070 (Table 5.5). For yield simulated with the CSM-CERES-Maize model, significant 

differences were found for rainfed production for 2050 based on 15 GCMs and also for three gas 

emission scenarios. The p-value of those ANOVA tests was 0. However, simulated yield for 



 

130 

irrigated production for 2050 did not show significant differences among the GCMs or gas 

emission scenarios. The p-value for GCMs was 1 and ranged from 0.065 to 0.638 for gas 

emission scenarios. For 2070, the 15 GCMs (p-value was 1) did not show a significantly 

different effect on rainfed production, but there was a significant difference among the three gas 

emissions (p-value was 0). For irrigated production for 2070, the 15 GCMs (p-value was 0) did 

show a significantly different effect on yields. The three gas emission scenarios showed a 

significantly different effect for irrigated production for 2070 for the hybrids Pioneer 

33M57(Hx1/LL/RR2), SS 731CL, Croplan Genetics 851 VT3 PRO, DeKalb DKC69-

71(RR2/YGCB), and Pioneer 31D58, but not for the hybrids Dyna-Gro V5373VT3 (p-value was 

0.116) and Croplan Genetics 8756 VT3 (p-value was 0.259). Significant differences were found 

among the GCMs and gas emission scenarios for both the 2050 and 2070 projections for all 

hybrids for both rainfed and irrigated production based on yield simulated with the EPIC model, 

which p-value of all tests was 0.  

5.3.2.4 CHANGES IN YIELD FOR 2050 BASED ON CSM-CERES-MAIZE MODEL 

Both the rainfed and irrigated grain yield for the 2050 projection was analyzed based on 

the differences from baseline yields (Figure 5.2). The commonly used gas emission scenario 

A1B was selected for this analysis. For the February 15 planting date, the changes in rainfed 

maize yield varied with location and also climate scenario. The baseline rainfed grain yields for 

February 15 was zero for Blairsville and Elberton in Georgia and Belle Mina in Alabama, which 

caused the changes in percentage as infinite. There was a variation for the changes for all 

locations. The median changes ranged from 0 to 50% based on all climate scenarios. The 

northern locations generally showed a larger variation than the southern locations. The largest 

increase in yield was 510% more than the baseline yield for Rome, Georgia, due to its northern 
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location and relatively low yield for early planting dates. However, decreases in yield reached 

100% under some climate scenarios at Rome, Georgia. The changes in yield ranged from -100% 

to 200% for Midville and Griffin in Georgia. The negative value means a decrease from baseline 

yields. Grain yields at the other locations changed from -100% to 150% from baseline.  

Grain yield for rainfed production for on the March 1 planting date for 2050 still showed 

that the northern locations were more sensitive to an increase in temperature than the southern 

locations (Figure 5.2). The baseline yield for Blairsville, Georgia was still zero similar to the 

February 15 planting date. The largest changes were found for Rome, Georgia, with yield 

changes that ranged from -100% to 1150%. Griffin and Savannah, Georgia showed changes in 

yield that ranged from 5% to 170%. Bankhead, Belle Mina, and Heflin in Alabama and Midville, 

Milledgeville, and Tifton in Georgia showed changes in yield from -100% to 270%. Grain yields 

at the other locations generally showed increases in yields, which were about 2% to 30%. The 

changes for rainfed yield for the March 15 planting date still showed similar trend as for March 1. 

However, large changes that ranged from -110% to 700% were found at the locations in Georgia 

but not for Blairsville and Colquitt, Georgia. The rest locations have relatively smaller changes 

that ranged from -43% to 32%. The changes for rainfed grain yield for the other planting dates 

for April, May, and June were much less than the earlier planted maize. Some locations in 

Georgia still showed large changes that ranged from -120% to 210%. However, for the other 

locations the changes ranged from -10% to 60%.  

For irrigated maize the increase in temperature for 2050 benefited the early planting dates 

for many locations (Figure 5.2). For the February 15 planting date, large changes in yield that 

ranged from -28% to 800% for Calera and Heflin in Alabama and Griffin and Milledgeville in 

Georgia. Tifton, Georgia had changes that ranged from -95% to 50%. Changes for the other 
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locations ranged from -7% to 60%. The changes in yield for the March 1 and March 15 planting 

date were similar to the February 15 planting date, but with lower values. The changes ranged 

from -43% to 307% for March 1 and from -35% to 291% for March 15 for all locations. Irrigated 

maize also did not show too many changes for the other planting dates from April 1 through June 

15, which ranged from -55% to 186%. For Blairsville, Georgia yield for the June 30 planting 

date increased from 84% to 1150%, while the changes for the other locations ranged from -50% 

to 210%.  

5.3.2.5 CHANGES IN MAIZE YIELD FOR 2050 BASED ON THE EPIC MODEL 

Simulations based on EPIC also showed that increasing temperature will benefit the early 

planted maize at northern locations (Figure 5.3). For all locations in Alabama and Georgia and 

for Chipley and Glen St Mary in Florida there was an increase in yield for the February 15 

planting date that ranged from 0 to 1800%. However, Avon, Naples, and Ocala in Florida there 

was a decrease in yield that ranged from -50% to -6%. For the March 1 planting date, most 

climate scenarios showed an increase in yield that ranged from 0 to 2800% for Andalusia and 

Calera in Alabama and Griffin, Midville, Milledgeville, and Savannah in Georgia The increase in 

yield for Glen St Mary in Florida, Mobile and Montgomery in Alabama and Colquitt and Tifton 

in Georgia were less than 600%. There were also decrease in yield ranging from -60% to -2% for 

Avon, Naples, and Ocala in Florida. Grain yield for the northern locations increased for the 

March 15 planting date with values ranging from 2000% to 3000% for Blairsville, GA, and 200% 

to 1800% for Belle Mina, Alabama and Rome, Georgia. Grain yield for Calera, Heflin, and 

Scottsboro in Alabama and Elberton in Georgia had an increase that ranged from 0 to 800%. For 

the later planting dates from April to June, grain yield for all locations changed from about -50% 

to 10%.  
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For the February 15 planting date Avon, Naples and Ocala in Florida had a decrease in 

irrigated yield that ranged from -70% to -20%, while all other locations showed an increase in 

irrigated yield for almost all climate scenarios that ranged from 0 to 2000% (Figure 5.3). For the 

March 1 planting date, the changes in yield ranged from -150% to 3200%.  For maize planted on 

March 15 and April 1, grain yield for the northern locations increased, while it decreased for the 

southern locations. The largest increase was found for Blairsville, Georgia, which ranged from 

800% to 3100%. For maize planted from April to June, the changes were almost negative 

ranging from  -70% to 2%. The only exception was Blairsville, Georgia were yield for the June 

30 planting showed an increase that ranged from 10% to 71%. 

5.3.2.6 CHANGES IN MAIZE YIELD FOR 2070 BASED ON THE CSM-CERES-MAIZE 

MODEL 

For the 2070 projections, the changes in rainfed yield compared to the base line based on 

CSM-CERES-Maize generally ranged from -100% to 300% for all locations (Figure 5.4). The 

changes rainfed maize planted from April 1 to June 30, which ranged from -15% to 45%.   

For irrigated grain yield, large increases were found for many northern locations when 

planted on February 15 (Figure 5.4). For Calera, Alabama the increase was 1600%, while for 

Heflin, Alabama and Griffin and Milledgeville at Georgia the increase was 800%. The other 

locations showed a change in yield that ranged from -10% to 120% of changes. For planting date 

March 1, the changes for locations in Alabama and Georgia were about 5% to 35% and the 

changes for Florida were about -9% to 27%. For the March 15 planting data Blairsville in 

Georgia also showed the largest increases in yield, ranging from 200% to 650%. Belle Mina, 

Alabama and Elbert and Rome in Georgia had an increase that ranged from 50% to 160%, while 

for the other locations the change in yield ranged from -20% to 70%. For maize planted from 
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April 1 to June 1 yield changes varied from -27% to 51% for almost all locations. However, for 

Blairsville, Georgia the increase in yield was higher for these planting dates and ranged from 70% 

to 105%. The changes in grain yield for maize planted on Jun 15 were similar to maize planted 

on June 1, except again for Blairsville, Georgia where the change in yield varied from 25% to 

235%. For the June 30 planting date, the changes in yield ranged from -23% to 146% for all 

locations, except for Blairsville, Georgia where the yield changes ranged from 125% to 1300%. 

5.3.2.7 CHANGES IN MAIZE YIELD FOR 2070 BASED ON THE EPIC MODEL 

For February 15 planting date the changes in rainfed yield for the 2070 projections based 

on EPIC model showed large increases that reached 1800% (Figure 5.5). However, for Avon, 

Naples, and Ocala in Florida there was a decrease in yield that ranged from -79% to -20%. For 

the March 1 planting date, the changed in yield ranged -150% to 670% except some locations 

where there was no baseline yield. For the March 15 planting date the changes in yield ranged 

from 1800% to 2700% for Blairsville, Georgia, from 200% to 1200% for Belle Mina, Alabama, 

and 200% to 1500% for Rome, Georgia, and -70% to 353% for the rest locations. For rainfed 

production planted from April 1 through June 30 the changes in grain yield ranged from -90% to 

70%.  

For irrigated maize production for the 2070 projections, yield showed an increase from 

the baseline yield when planted on February 15 and March 1 (Figure 5.5). However, Avon, 

Naples and Ocala in Florida showed a decrease in grain yield for some climate scenarios, with 

the changes ranging from -100% to 3300%. For the March 15 and April 1 planting date, grain 

yields for the northern locations increased, while it decreased for the southern locations. Similar 

to other planting dates, the largest increase was found fro Blairsville, Georgia which yield 

changes ranging from 1000% to 3000% For the other locations yield changes ranged from -150% 
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to 800%. For later planting dates during April, May and June, the changes in yield ranged from -

70% to 2% for all locations, except for Blairsville, Georgia for the June 30 planting date, with 

changes in yield that ranged from 10% to 71%. 

5.3.2.8 COMPARISON OF THE CSM-CERES-MAIZE AND EPIC MODELS 

The two maize simulation models that were used n this study reported both increases and 

decreases in grain yield for the 2050 and 2070 projections under multiple climate scenarios 

compared to the baseline simulations. However, because of the different purpose of each model, 

the different model structures resulted in differences in the simulations and also showed some 

different sensitivities to the changing climate factors. Based on the ANOVA test for rainfed and 

irrigated grain yields based on the simulations with CSM-CERES-Maize and EPIC, significant 

differences were found for them under the gas emission scenarios A1B, A2, and B1. The 

ANOVA test for all gas emission scenarios showed p-value as 0. 

5.4 DISCUSSION 

Compared to previously conducted studies, the application of multiple scenarios for both 

the climate projections and crop management scenarios that were used in this study was a good 

approach to search for adaptation strategies under uncertainties. Uncertainties were largely 

minimized based on that method. The analysis for multiple locations in this study also addressed 

the spatial variability of climate in the southeastern USA. The use of multiple maize hybrids also 

provided a wide range of options for future maize production under climate change in the 

southeastern USA, although in reality the maize hybrids might change more rapidly especially 

with respect to drought tolerance and heat resistance depending on the interest of the major seed 

companies 
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This results from this study showed that changes in maize yields varied with location, 

planting date, hybrid, climate projection period, climate scenario and GCM. For example, the 

yield for the northern locations of the study area was more sensitive to planting date. In this 

study, maize yield simulated with both crop simulation models was mainly affected by the three 

changing atmospheric factors, including temperature, precipitation, and CO2 concentration.  

So far only a few studies have studied the impact of climate change on maize production 

in the southeastern USA and none have used multiple crop models. Bassu et al. (2014) conducted 

a sensitivity study of the response of twenty-three maize crop simulation models to the change in 

climate factors. The results of our study were consistent compared to the results of the study by 

Bassu et al. (2014). Normally, an increase in temperature decreases the number of days from 

planting to maturity and thus decreases grain yields, while an increase in CO2 concentration will 

benefit grain yield for certain environments. In our study, the early-planted maize in reference 

years, such as on February 15 and March 1, was limited due to the low temperature, which 

caused fail in germination. The days from planting to maturity of the later planted maize (June 

15 and 30) were affected by the low temperature near maize maturity date. Increasing 

temperature in the future will offset some of the restrictions and yield for the northern locations 

of the southeastern USA. However, the high temperature caused by the climate change 

projections decreased yield for maize planted in April and May. Finally, the projected increase in 

precipitation generally benefitted rainfed grain yield, while a projected decrease in precipitation 

caused a decrease in rainfed grain yield.  

For the 2050 and 2070 projections, the predicted increase in temperature was relative 

larger for the northern than the southern locations. The crop modeling results also showed that 

the changes in maize grain yields for the northern locations was in general also larger than for 
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the southern locations. In this study we evaluated the combined effects of all these changes in the 

multiple climate variables on maize yield. However, as concluded by Boote et al. (2010) that 

temperature is always considered as the main factor because it affects many processes, such as  

phenological development, growth and biomass partitioning, in crop simulation models.  

Although there were differences for simulated grain yield based on the CSM-CERES-

Maize and EPIC models, these two crop models still provided similar responses to the projected 

change in climate conditions. Multiple planting dates from February through June were covered 

in this study for potential adaptation to a changing climate. In general, the early-planted maize 

will benefit from an increase in temperature (Abraha & Savage 2006). However, the large 

percentage increase in maize grain yield for the early planting dates does not mean necessarily a 

high yield. Because of the low temperature, the baseline grain yield for the early-planted maize 

was very low or sometimes even zero. In general, maize in Blairsville and Rome in Georgia and 

Belle Mina, AL cannot plant maize before March 15. Therefore, for the locations in Florida 

maize can be planted in February in 2050 and 2070 since the yield for the locations in Alabama 

and Georgia were still low.  

Yield for maize planted in April and May decreased for all locations for both rainfed and 

irrigated conditions. However, irrigated grain yields showed more resistance to an increase in 

temperature. Maize will not be suitable for planting in Florida during April and May in 2050 and 

2070 a because of the high temperature that will require an increase in irrigation demand but also 

a large decrease in yield. The distribution of maize planting should move to north for planting 

during April and May in 2050 and 2070 in order to obtain a reasonable yield. Maize planted 

during June in 2050 and 2070 will be more suitable for the northern region such as Blairsville 

and Rome in Georgia that the southern regions because the increase in temperature will offset the 
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low temperature risk during the time near crop maturity. Finally, irrigated maize will have a 

larger increase in yield than rainfed maize for all climate scenarios. It is possible that the shift of 

maize planting area, planting dates, and irrigation cannot offset the risk from climate extremes in 

the future. Breeders therefore need to develop new hybrids that are more resistant to changes in 

local weather conditions.  

In summary, for the southern region of the southeastern USA maize should be planted 

earlier to avoid the increase in temperature projected for 2050 and 2070 that could cause heat 

stress. For maize planted during April, May, and June, production should be shifted to the 

northern region. Irrigation could also be an adaptation strategy in order to minimize the negative 

effects associated with the projected changes in precipitation, especially for regions where there 

is a decrease in precipitation that could cause water stress.  
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Table 5.1: Annual average maximum and minimum temperature and total precipitation for the 22 selected locations in Alabama, 
Florida, and Georgia.  

 
Station 

Latitude 
(ºN) 

Longitude 
(ºW) 

Elevation 
(m) 

Min Temp 
(°C) 

Max Temp 
(°C) 

Precipitation 
(mm) 

Climate 
zones 

Soil 
Types 

AL Andalusia 31.1 -86.52 76 10.4 25.1 128 7 Shadygrove Sandy Loam 
AL Bankhead 33.45 -87.35 85 9.8 23.3 124 3 Choccolocco Sandy Loam 
AL Belle Mina 34.68 -86.88 183 8.9 22.0 114 1 Dickson Silty Loam 
AL Calera 33.12 -86.75 162 9.3 23.7 116 4 Hanceville Loam 
AL Heflin 33.65 -85.6 259 8.4 22.5 120 5 Lucedale Loam 
AL Mobile 30.68 -88.25 66 13.9 25.1 137 8 Norfolk Sandy Loam 
AL Montgomery 32.3 -86.4 62 12.0 24.5 109 6 Lucedale Loamy Sand 
AL Scottsboro 34.66 -86.05 186 8.5 22.1 122 2 Hartsells Sandy Loam 
FL Avon Park  27.6 -81.53 47 16.1 28.6 107 4 Immokalee Sand 
FL Chipley 30.78 -85.48 40 12.4 25.6 125 1 Albany Sand 
FL Glen St Mary  30.27 -82.18 39 12.5 26.3 117 2 Blanton Sand 
FL Naples 26.02 -81.72 1.5 17.8 29.1 113 5 Immokalle Fine Sand 
FL Ocala 29.2 -82.08 23 14.9 27.9 109 3 Eureka Loamy Sand 
GA Blairsville 34.83 83.92 590 19.6 5.9 121 2 Hayesville Sandy Loam 
GA Colquitt 31.17 84.77 118 12.4 25.8 114 7 Wahee Sandy Loam 
GA Elberton 34.12 82.87 145 8.1 22.2 104 3 Cecil Sand Loam 
GA Griffin 33.27 84.27 285 10.3 22.2 107 4 Lloyd series 
GA Midville 32.87 82.18 79 11.4 24.4 95 6 Shellbluff Clay Loam 
GA Milledgeville 33.07 83.25 84 9.8 24 100 5 Cecil Sandy Clay Loam 
GA Rome 34.25 85.15 187 8.9 21.9 115 1 Conasauga Silt Loam 
GA Savannah  32.12 81.18 13 13.2 24.9 103 9 Kenansville Loamy Sand 
GA Tifton 31.47 83.52 5 12.5 24.7 100 8 Tifton Sandy Loam 
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Table 5.2*: Optimized cultivar coefficients for the CSM-CERES-Maize and EPIC models for the selected seven maize hybrids. 
CSM-CERES-Maize 

Parameter Dyna-Gro V5373VT3 
Pioneer 33M57 
(Hx1/LL/RR2) 
 

SS 731CL Croplan Genetics 
851 VT3 PRO 

Croplan Genetics 
8756 VT3 

DeKalb DKC69-
71(RR2/YGCB) 

Pioneer 
31D58 

P1 310 260 220 310 290 330 270 
P2 1.8 1.5 1.2 0.9 1.8 0.9 0.9 
P5 900 940 820 820 940 840 900 
G2 646.8 646.8 954.8 646.8 677.6 646.8 708.4 
G3 12.43 10.94 12.64 12.64 12 12.64 11.79 
PHINT 63.9 58.9 53.90 48.9 63.9 48.9 58.9 
EPIC 
WA 50 50 50 50 50 50 50 
HI 0.45 0.50 0.55 0.45 0.5 0.45 0.5 
DLAI 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
WSYF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
DMLA 6.0 6.0 6.0 5.0 6.0 6.0 6.0 
PHU 1800 1650 1800 1800 1800 1730 1770 
P1: Thermal time from seedling emergence to the end of the juvenile phase 
P2: Extent to which development is delayed for each hour increase in photoperiod above the longest photoperiod at which development proceeds at a maximum rate 
P5: Thermal time from silking to physiological maturity 
G2: Maximum possible number of kernels per plant 
G3: Kernel filling rate during the linear grain filling state and under optimum conditions 
PHINT: The interval in thermal time (degree days) between successive leaf tip appearances 
WA: Biomass-Energy ratio 
HI: Potential harvest index - ratio of crop yield to above ground biomass 
DLAI: Fraction of growing season when leaf area starts declining 
WSYF: Water stress factor for adjusting harvest index 
DMLA: Maximum LAI potential for a crop 
PHU: Potential Heat Units 
*: This table was cited from Chapter 2 
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Table 5.3: General circulation models (GCMs) that were evaluated in this study. 
Acronym Source Country Resolution 

BCCRBCM2 Bjerknes Centre for Climate Research, 
University of Bergen, Norway Norway 1.9º  × 1.9º 

CCCMA-31 Canadian Centre for Climate Modeling & 
Analysis Canada 2.8º × 2.8º 

CNRM-CM3 Me´te´o-France/Centre National de Recherches 
Me´te´orologiques France 1.9º × 1.9º 

CSIRO-30 CSIRO Atmospheric Research Australia 1.9º × 1.9º 

ECHO---G 
Meteorological Institute of the University of 
Bonn, Meteorological Research Institute of 
KMA 

Germany, 
Korea 

3.9º × 3.9º 

GFDLCM20 NOAA/Geophysical Fluid Dynamics Laboratory USA 2.0º × 2.5º 
GFDLCM21 NOAA/Geophysical Fluid Dynamics Laboratory USA 2.0º × 2.5º 
GISS--ER NASA/Goddard Institute for Space Studies USA 4º × 5º 
INMCM-30 Institute for Numerical Mathematics Russia 4º × 5º 
IPSL_CM4 Institute Pierre Simon Laplace  France 2.5º × 3.75º 

MIROCMED 
Center for Climate System Research, National 
Institute for Environmental Studies, and Frontier 
Research Center for Global Change 

Japan 
2.8º × 2.8º 

MPIECH-5 Max Planck Institute for Meteorology Germany 1.9º × 1.9º 
MRI-232A Meteorological Research Institute Japan 2.8º × 2.8º 
NCARPCM1 National Center for Atmospheric Research USA 2.8º × 2.8º 

UKHADCM3 Hadley Centre for Climate Prediction and 
Research/Met Office UK 2.75º × 3.75º 
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Table 5.4: Average changes in temperature and precipitation for the 2050 and 2070 projections 
compared to the baseline as implemented by SimCLIM. 

ST Station 2050 (°C) 2070 (°C) 2050 (mm) 2070 (mm) 
AL Andalusia 1.3-3 1.7-4.5 -10.2-16.5 -15.3-24.7 
AL Bankhead 1.3-3.8 1.7-5.7 -19.4-42 -29-62.7 
AL Belle Mina 1.3-4.6 1.8-6.8 -10.6-21.1 -15.9-31.5 
AL Calera 1.3-3.6 1.7-5.4 -58.7-77.5 -87.6-115.7 
AL Heflin 1.3-3.7 1.7-5.5 -13.5-14.3 -20.2-21.4 
AL Mobile 1.3-3 1.7-4.5 -13.1-16 -19.5-23.9 
AL Montgomery 1.3-3.2 1.7-4.8 -30.8-53.3 -46-79.6 
AL Scattsboro 1.3-4.3 1.7-6.3 -14.2-13.6 -21.2-20.3 
FL Avon Park  0.9-2.3 1.2-3.4 -8.8-8.8 -13.1-13.1 
FL Chipley 1.2-2.8 1.6-4.2 -11.5-18.8 -17.2-28.1 
FL Glen St Mary  1-2.7 1.4-4 -9.2-11.1 -13.7-16.6 
FL Naples 0.8-2 1.1-3 -12.3-8.4 -18.3-12.6 
FL Ocala 1-2.5 1.3-3.7 -11.7-15.3 -17.5-22.9 
GA Blairsville 1.3-3.6 1.7-5.4 -8.7-11.3 -13-16.9 
GA Colquitt 1.2-2.8 1.6-4.2 -17.4-32.6 -25.9-48.7 
GA Elberton 1.3-3.2 1.7-4.8 -14.9-19 -22.2-28.3 
GA Griffin 1.2-3.3 1.6-4.9 -11.9-17.6 -17.8-26.3 
GA Midville 1.1-2.8 1.5-4.2 -11.7-24.9 -17.5-37.2 
GA Milledgeville 1.1-2.9 1.5-4.4 -9.6-22.2 -14.4-33.2 
GA Rome 1.3-3.9 1.7-5.8 -11.7-16.3 -17.5-24.3 
GA Savannah  1-2.7 1.4-4.1 -14.1-21.1 -21.1-31.5 
GA Tifton 1.1-2.7 1.5-4.1 -14.1-27.7 -21-41.3 
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Table 5.5: ANOVA tests for changes in simulated maize yield for the seven cultivars with 
multiple planting dates and locations. The p-values are shown. A value that is near 0 means that 
at least one of sample means is different from the others. Otherwise, there is no difference among 
samples.  

 DSSAT 
 Rainfed Irrigated 
 2050  2070  2050  2070  
 GCMs Scenarios GCMs Scenarios GCMs Scenarios GCMs Scenarios 

Dyna-Gro V5373VT3 0 0 1 0 1 0.4194 0 0.1161 
Pioneer 
33M57(Hx1/LL/RR2) 

0 0 1 0 1 0.1114 0 0 

SS 731CL 0 0 1 0 1 0.3295 0 0 
Croplan Genetics 851 
VT3 PRO 

0 0 1 0 1 0.0646 0 0 

Croplan Genetics 
8756 VT3 

0 0 1 0 1 0.261 0 0.2593 

DeKalb DKC69-
71(RR2/YGCB) 

0 0 1 0 1 0.3105 0 0 

Pioneer 31D58 0 0 1 0 1 0.638 0 0 
 EPIC 

Dyna-Gro V5373VT3 0 0 0 0 0 0 0 0 
Pioneer 
33M57(Hx1/LL/RR2) 

0 0 0 0 0 0 0 0 

SS 731CL 0 0 0 0 0 0 0 0 
Croplan Genetics 851 
VT3 PRO 

0 0 0 0 0 0 0 0 

Croplan Genetics 
8756 VT3 

0 0 0 0 0 0 0 0 

DeKalb DKC69-
71(RR2/YGCB) 

0 0 0 0 0 0 0 0 

Pioneer 31D58 0 0 0 0 0 0 0 0 
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Figure 5.1: Average baseline maize yield simulated by the CSM-CERES-Maize and EPIC models for the seven cultivars. Averages 
were based on 30 years of simulations (1981 to 2010).  
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Figure 5.2: Changes in average maize yield predicted by the CSM-CERES-Maize model based 
on 15 GCMs under scenario A1B for the 2050 projection. The planting dates ranged from 
February 15 to June 30 for both rainfed and irrigated conditions.  
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Figure 5.3: Changes in average maize yield predicted by the EPIC model based on 15 GCMs 
under scenario A1B for the 2050 projection. The planting dates ranged from February 15 to June 
30 with both rainfed and irrigated conditions.  
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Figure 5.4: Changes in average maize yield predicted by the CSM-CERES-Maize model based 
on 15 GCMs under scenario A1B for 2070 projection. The planting dates ranged from February 
15 to June 30 with both rainfed and irrigated conditions.  
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Figure 5.5: Changes in average maize yield predicted by the EPIC model based on 15 GCMs 
under scenario A1B for the 2070 projection. The planting dates ranged from February 15 to June 
30 with both rainfed and irrigated conditions.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The overall goal of this study was to determine the effects of climate change on maize 

yield in 2050 and 2070 in the southeastern USA and propose adaptation strategies. The specific 

objectives of this study were 1) to compare the performance of two maize crop simulations 

models, Cropping System Model (CSM)-CERES-Maize and Erosion-Productivity Impact 

Calculator (EPIC) for maize, 2) to evaluate the accuracy of an Integrated Assessment Model 

(IAM)-SimCLIM in projecting future climate for specific locations in the southeastern USA, 3) 

to determine the maize grain yield in 2050 and 2070 based on two crop models under a wide 

coverage of climate scenarios, and 4) to develop the adaptation strategies for future maize 

planting. 

In Chapter 2, the feasibility to use limited maize variety trial data for the evaluation of the 

CSM-CERES-Maize and EPIC models was determined. These two crop models were calibrated 

only using observed grain yield from variety trials conducted in Blairsville, Calhoun, Griffin, 

Midville, Plains, and Tifton in Georgia from USA. The software program GenCALC was used to 

calibrate the yield components coefficients of CSM-CERES-Maize, while the other coefficients 

were manually adjusted. Several commonly calibrated cultivar coefficients were adjusted for 

EPIC. The slope of linear regression, R2, d-stat, and RMSE were the criteria for evaluating the 

performance of the two crop models. The calibrated crop models were applied to simulate 

rainfed and irrigated grain yield during 1958 to 2012 for the six locations for model evaluation. 
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The differences between simulations of CSM-CERES-Maize and observations were no more 

than 3% for calibration and no more than 8% for evaluation. The differences between 

simulations of EPIC and observations ranged from 2% to 23% for calibration and evaluation, 

which was a little bit larger than for the CSM-CERES-Maize model. This analysis showed that 

calibration of CSM-CERES-Maize was superior than EPIC for some hybrids, but both models 

can be applied with confidence. The simulated grain yield for long-term period also showed that 

EPIC was comparable to CSM-CERES-Maize. Although this study only used observed grain 

yield for calibration and evaluation, the results showed that both calibrated models can provide 

accurate simulations with confidence.  

In Chapter 3, in order to apply SimCLIM in the southeastern USA, the ability of 

SimCLIM to generate accurate site-specific climate scenarios was evaluated. Tifton, Georgia 

was taken as an example to determine the good statistical approach to evaluate SimCLIM. The 

projected monthly maximum and minimum temperature, precipitation, and solar radiation from 

1992 to 2012 based on downscaling of 15 GCMs with six gas emission scenarios were 

statistically compared with the corresponding observations which were obtained from the 

Georgia Automated Environmental Monitoring Network. Statistics that included box-plot, time-

series plot, standard deviation, KS-test, and CDF analyses were used. Biases were found for the 

projections of maximum and minimum temperature, precipitation, and solar radiation based on 

15 GCMs from observations. However, no significant difference was found among the 15 GCMs 

and among the six gas emission scenarios. The GCM CSIRO-30 was, therefore, selected for a 

detailed statistical analysis because it had a finer spatial resolution. Although biases between 

projections and observations were found for all four climate variables based on the analysis of 

monthly data, it can be concluded that projections captured climate mean and annual variability 
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for maximum and minimum temperature and solar radiation. There was no skill in generating 

precipitation and monthly variability also could not be regenerated for all four climate variables. 

Although this evaluation was based on a relatively short period and might be insufficient for 

detecting long-term climate patterns, it is the most complete and accurate set of observed 

weather data for all four variables and, therefore, introduces less uncertainty into the evaluation.  

In Chapter 4, three states Alabama, Florida, and Georgia represented the southeastern 

USA. Observations of 34 locations in Alabama, Florida, and Georgia started around 1993-1998 

and ended in 2012. Statistical analysis including box-plot, time-series plot, standard deviation, 

KS-test, and probability histogram were used to quantify SimCLIM's performance. The 

downscaled projections based on 15 GCMs did not show a significant difference among the 15 

GCMs using box-plots for all sites. Further analysis was, therefore, conducted with the GCM 

CSIRO-30. The projections for monthly maximum and minimum temperature matched the 

observations well. However, the extreme values for both monthly maximum and minimum 

temperature were not very well captured. The projected monthly solar radiation captured the 

mean values of the observed data well, but was unable to project the extreme values very well. 

Monthly solar radiation projections for Florida showed larger biases than for Georgia. Finally, 

the projected monthly precipitation did not match the observed values for any of the sites in the 

three states. The spatial variability among the selected locations was well captured by SimCLIM. 

In summary, the projections of SimCLIM matched the observed maximum and minimum 

temperature and solar radiation well. However, SimCLIM was unable to regenerate precipitation 

compared to the observed values.    

In Chapter 5, the potential climate change impact on maize yield in 2050 and 2070 was 

determined. The approach combined regional climate scenarios with two crop simulation models, 
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CSM-CERES-Maize and EPIC. The climate scenarios were downscaled from 15 GCMs under 

three gas emissions scenarios using the climate model SimCLIM. Site-specific projections were 

generated for 22 locations in Alabama, Florida, and Georgia. Seven calibrated maize hybrids 

were used to represent the maize production under future climate change. Based on the 

projections of SimCLIM, temperature in the future will increase about 0.9 °C to 6.8 °C, while 

precipitation will change from -87.6% to 115.7%. Those changes in both temperature and 

precipitation vary with location. Increasing temperature will benefit the early-planted maize on 

February 15, March 1, and March 15, which generally will result in a significant increase in yield. 

Yield changes for maize planted in April, May, and June generally ranged from -100% to 200%. 

Irrigated maize showed more tolerance to increasing temperature than rainfed maize. The 

northern locations such as Blairsville in Georgia showed a larger increase in maize yield when 

planted on June 15th and 30th. In order to adapt to the changing climate, maize in Florida should 

be planted earlier to avoid the higher temperature that are projected for the future. Maize planted 

in April, May, and June should shift to the more northern region. Irrigation also could be a 

method to off set the negative effects, especially from water deficit and high temperature. The 

adjustment in crop management will not be able to eliminate the agricultural risks. New hybrids 

with high temperature and drought resistance will also be needed to obtain higher grain yields.  

Uncertainties were the most important concerns for climate change impact studies 

(Kjellström et al. 2010). The application of multiple scenarios in both climate and management 

in this study was a good approach to search for adaptation strategies under uncertainties.  

First of all, GCMs are connected with the uncertainties in generating global climate 

projections and also introduce the uncertainties into regional climate projections because the 

driving data for downscaling was obtained from GCMs (Wilby et al. 2004, Hawkins & Sutton 



162 

 

2009, Flato et al. 2013).  Previous studies have shown that more uncertainties would be 

introduced into impact studies if they are only based on a single GCM (Meehl et al. 2007, 

Murphy et al. 2007). Fortunately, research has shown that the application of multiple climate 

scenarios can increase the confidence in impact studies (Tebaldi & Knutti 2007, Knutti 2010, 

Flato et al. 2013). This study generated climate data based on 15 GCMs and three gas emission 

scenarios, which covered a wide range of climate scenarios and reduced the uncertainties. 

Secondly, this study used two calibrated maize simulation models. Research has shown 

that calibrated crop simulation models and the use of multiple crop simulation models could 

minimize those uncertainties (Challinor et al. 2009, Thornton et al. 2009, Asseng et al. 2013). 

CSM-CERES-Maize and EPIC are the two commonly used crop simulation models in USA. The 

evaluation of these two crop models showed that they can be applied with confidence in 

simulating grain yield of maize.  

Thirdly, the downscaling (SimCLIM) of global climate data from GCMs were also 

evaluated by comparing with the historical data of the southeastern USA, which also determined 

the uncertainties that could be introduced into the impact studies. Evaluation showed that 

SimCLIM model could provide accurate projections in maximum and minimum temperature and 

solar radiation. However, SimCLIM did not have good skill in the projections of precipitation, 

which is the same as concluded by the previous studies that showed that it is a challenge to 

reproduce precipitation in the southeastern USA (Mearns et al. 2003, Stefanova et al. 2012).  

Furthermore, the analysis for multiple locations in this study also addressed the spatial 

variability of the southeastern USA. Multiple maize hybrids also provided wide range of 

possibilities for the future maize planting in the southeastern USA. Many of crop management 
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scenarios, including planting date, irrigated, and rainfed conditions were also applied to provide 

possible adaptation strategies. 

In this study, the simulations of maize grain yields based on crop models was mainly 

affected by the three changing climate factors including temperature, precipitation, and CO2 

concentration. Both the CSM-CERES-Maize and EPIC models provided similar responses to 

changing climate. In general, the early-planted maize will benefit from the increase temperature 

in future (Abraha & Savage 2006). However, the large percentage of increase for maize grain 

yield for the early-planted dates does not mean that there is a high yield especially for north 

locations because the low temperature caused very low or even zero baseline grain yields for 

early-planted maize. In general, for Blairsville and Rome in Georgia and Belle Mina in Alabama 

maize cannot be planted before March 15. Only for the locations in Florida maize can be planted 

in February in 2050 and 2070, as the yield for the locations in Alabama and Georgia were low 

for the very early planting dates  

Maize grain yields that planted in April and May decreased at all locations for both 

rainfed and irrigated conditions. However, irrigated grain yields showed more resistance for the 

increasing temperature. Maize will not be suitable for planting in Florida in April and May in 

2050 and 2070 anymore because high temperature will cause a higher demand for irrigation but 

also a large decrease in yield. The distribution of maize planting should move to north if they 

will be planted in April and May in 2050 and 2070. Maize that planted in June in 2050 and 2070 

will be more suitable for northern region such as Blairsville and Rome in Georgia than the 

southern region because the increasing temperature will offset the low temperature risk during 

the time near crop maturity. Finally, irrigated maize has a higher increase in yield compared to 

rainfed maize for all climate scenarios. In order to apply irrigation, water resources must be 
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available and affordable. It is possible that the shift of maize planting area, planting dates, and 

irrigation cannot offset the all risks from climate extremes in future. In addition, farmers need to 

use new hybrids with drought- or pest-resistance to adapt to the changing climate.  

Although the approach of this study minimized the uncertainties, some uncertainties still 

cannot be avoided for all current impact studies. It is well known that climate models have been 

substantially developed and improved, but uncertainties still were caused by our limited 

knowledge in understanding climate and natural systems and in simulating climate scenarios 

(Mitchell 1999, Flato et al. 2013). Furthermore, the limited ability in downscaling global climate 

projections into regional/site-specific climate, which was possibly caused by technical limitation 

and weather data input sources. In this study, the baseline data for SimCLIM can only be 

collected from limited locations in the southeastern USA. A finer resolution for collecting 

baseline data is required. Finally, only climate factors precipitation, mean temperature, and CO2 

concentration were considered. However, the actual projected climate change is much more 

complex. 
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APPENDIX I 

GAS EMISSION SCENARIOS 

The A1 storyline and scenario family describes a future world of very rapid economic 

growth, global population that peaks in mid-century and declines thereafter, and the rapid 

introduction of new and more efficient technologies. Major underlying themes are convergence 

among regions, capacity building, and increased cultural and social interactions, with a 

substantial reduction in regional differences in per capita income. The A1 scenario family 

develops into three groups that describe alternative directions of technological change in the 

energy system. The three A1 groups are distinguished by their technological emphasis: fossil 

intensive (A1FI), non-fossil energy sources (A1T), or a balance across all sources (A1B). 

The A2 storyline and scenario family describes a very heterogeneous world. The 

underlying theme is self-reliance and preservation of local identities. Fertility patterns across 

regions converge very slowly, which results in continuously increasing global population. 

Economic development is primarily regionally oriented and per capita economic growth and 

technological change are more fragmented and slower than in other storylines. 
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The B1 storyline and scenario family describes a convergent world with the same global 

population that peaks in mid-century and declines thereafter, as in the A1 storyline, but with 

rapid changes in economic structures toward a service and information economy, with reductions 

in material intensity, and the introduction of clean and resource-efficient technologies. The 

emphasis is on global solutions to economic, social, and environmental sustainability, including 

improved equity, but without additional climate initiatives. 

The B2 storyline and scenario family describes a world in which the emphasis is on local 

solutions to economic, social, and environmental sustainability. It is a world with continuously 

increasing global population at a rate lower than A2, intermediate levels of economic 

development, and less rapid and more diverse technological change than in the B1 and A1 

storylines. While the scenario is also oriented toward environmental protection and social equity, 

it focuses on local and regional levels. 
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