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ABSTRACT

Histone modifications, especially methylations, play a vital role in transcriptional activation
of genes within a human body. Hence, we created a web service to help users to study the
local spatial structure of these modifications along a chromosome along with their patterns.
We created four queries for this purpose. A memory mapping technique along with binary
search was used to help obtain quick output results of these queries. We also created a tree
representation to view the homogenous regions of these modifications as we walk through
the chromosome. We not only show there is a large non-uniformity of the spatial distribution
of epigenetic marks in these regions, but also that there are a large number of regions which

are locally multinomial.
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Chapter 1

Preface for the Readers

1.1 Human Genome

Every living organism, including human beings, has a genome that comprises of all the
biological information needed for the development and functioning of that organism. A
human genome is subdivided into chromosomes which are present in the nucleus of every
cell. In humans, there are 22 pair of chromosomes plus a pair of sex chromosomes (XX in
females and XY in males). Each chromosome is made up of Deoxyribonucleic acid, DNA,
which contains the biological information. This DNA molecule encodes genes, which consists
of proteins that direct how a human body is built and maintained. A human genome consists

of about 35,000 genes.

1.2 DNA

DNA is a double-stranded chemical structure, also known as a double-helix. The two strands
in the double-helix are made up of an alternating sugar and phosphate backbone running

parallel to each other, but in opposite directions. DNA is also made up of four chemical bases:



adenine (A), guanine (G), cytosine (C), and thymine (T). It is the sequence of these bases,
that determine the information available for the development and maintaining a human
body. These bases pair up with each other, A with T and C with G, via hydrogen bonding,
forming a base pair and are the steps o the helical staircase. On an average, a chromosome
is 140 million base pairs long.

The DNA is wrapped around proteins known as histones. There are four primary types
of histones: H2A, H2B, H3 and H4, as well as other variants like H2AZ. There are two copies
of each of these histones, hence forming an octamer.

An overview of sections 1.1 and 1.2 is shown in figure 1.1
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Figure 1.1: Overview of Chromosome and DNA in human body

Source: http://creationwiki.org/File:Chromosome.png
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Figure 1.2: Four Core Histones
Source: http://www.nature.com/nrn/journal/v6/n2/fig_tab/nrn1604_F2.html

1.3 Histone Modification

Each of the four core histones has a tail which protrudes out of a nucleosome as shown in the
figure 1.2. This tail is subject to a variety of chemical modifications because of the amino
acid that is present in a modified histone protein. These modifications include acetylation,
methylation, phosphorylation, ubiquitylation, and many more. The kind of modification and
its location in a DNA sequence is called the epigenetic code. This epigenetic code in part
decides how we look and who we are.

Among these methylations are a kind of modification which adds one or more methyl
groups to an amino acid. Methylations are important because adding of a methyl group
results in the ”start” of a reaction which can eventually lead to the formation of a protein.

Here, in this thesis, we study methylation modification.


http://www.nature.com/nrn/journal/v6/n2/fig_tab/nrn1604_F2.html

1.4 DNA Sequencing and Pattern Search

The term DNA Sequencing is defined as the precise determination of the order of the bases
- adenine, guanine, cytosine and thymine in a sample of DNA.

For example:

CATAAACCCTGGCGCGCTCGCGGGCCGGCACTCTTCTGGTCCATGG is a part of a
DNA sequence.

The epigenetic code is determined by a new high-throughput method of genome sequencing.[4]

A pattern is defined as a cluster where nucleotides appear on the DNA. Hence a DNA
Pattern Search accepts a search pattern and returns the number and positions of all the sites
that match the pattern.

For example:

A pattern search for pattern 'CTACGATC’ might return the following:
Match#1 from position 170 to 178

Match#2 from position 8000 to 8008

Match#3 from position 123861 to 123869

Match#4 from position 35638234 to 35638242 and so on

A review of how to do this can be found in[38]. This closely is related to the problem of
finding epigenetic motifs. An epigenetic motif can be defined as a part of a DNA sequence

which is recurring at various positions over the chromosome.

1.5 Objectives of this thesis

Barski et. al [1] studied twenty three histone modifications using a new Solexa 1G sequencing

technology, and their data can be downloaded from [5]. We aim at determining a local spatial



structure in the occurrences of these modifications as we walk along a chromosome. To
ascertain this, it is necessary to create a data structure that allows queries about the spatial
locations of histone modifications in a DNA sequence quickly. Once this data structure is

created, we can ascertain the spatial structure of the epigenetic code along a chromosome.
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Chapter 2

Introduction

A human genome consists of 23 chromosomes, about 140 million base pairs long, on an
average, and made up of DNA. DNA is wrapped around nucleosomes which are comprised
of 4 core histones(H2A, H2B, H3 and H4). Histones are essential protein components of a
chromatin and play a vital role in gene regulation. The amino-terminus of the core histones
protrude out of the nucleosome. This is called a ’histone tail’, and is subject to various
post-translational modifications such as acetylation, methylation, phosphorylation, ubiqui-
tylation, etc. The kind of modification and its location in a DNA sequence is called the
epigenetic code. This epigenetic code determines in part how we look and who we are.
Among these modifications, methylations at lysine and arginine residues are very stable
and are important for transcriptional activation of genes. Histone methylation is the mod-
ification of certain amino acids in a histone protein by the addition of one, two, or three
methyl groups. There are many kinds of modifications that can be assayed in a genome.
Twenty three such histone modifications were studied closely by Barski et al.[l] using
Solexa 1G sequencing technology.These include H2BK5mel, H3K4mel, H3K4me2, H3K4me3,
H3K9mel, H3K9me2, H3K9me3, H3K27mel, H3K27me2, H3K27me3, H3K36mel, H3K36me3,
H3K79mel, H3K79me2, H3K79me3, H3R2mel, H3R2me2, H4K20mel, H4K20me3, H4R3me2.

11



Along with these, histone variant H2A.Z, RNA polymerase 2 and insulator binding protein
CTCF were also examined.

The nomenclature for these modifications is as follows:

1. The name of the histone (e.g. H3)

2. The single letter amino acid abbreviation (e.g. K for Lysine, R for arginine) and the
amino acid position in the protein, thereby specifying where the modification occurs

on the histone.

3. The type of histone methylation (mel: mono-methylation, me2: di-methylation, me3:

tri methylation).

So H3K4Mel denotes the mono-methylation of H3 on the 4th lysine from the start (N-
terminal) of the histone protein.

Our task is to determine whether or not there is local spatial structure along a chromo-
some in the occurrence of these modifications. This work is motivated by [0]. To ascertain
this, it is necessary to create a data structure that allows queries about the spatial location
in a DNA sequence of histone modifications quickly.

Hence we created a data structure that consists of 3 parts - position, mark and count.
position is the co-ordinate along the chromosome.
mark is a unique one letter code for the modification.
count is the number of modifications at a particular position. In other words, the count is
the number of DNA sequence reads that cover a particular position on the human genome.
To save space, we used a unique one letter code, a single alphabet, for each of the 23
modifications.

The chromosome data are stored in these data structures and written into files in a binary
format, which are then stored on a Sun workstation as .bin files. As this project studies the

pattern of modifications along each chromosome, the data from the original data files were

12



broken down chromosome-wise which resulted in the creation of 24 binary files. (one for
each chromosome, including chromosomes X and Y).

As these datasets are very large, there is a need to find an efficient way of accessing and
retrieving the data. The binary files were memory mapped for this purpose. This resulted
in quick recovery of the required data, as the memory map helps in array-like access to the
data, which means that any row can be accessed directly by specifying its position on the
array. This increased the speed tremendously which culminated in very quick queries.

Four queries were developed to help the users to study the spatial placement of these
modifications on a chromosome. These queries then enabled the construction of graphical
tree representation of spatial distribution of modifications along each chromosome, where
the terminal nodes denote homogeneous subintervals on the chromosome. Within these

subintervals, the distribution of 'modifications’ appears locally multinomial.
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Chapter 3

Methods and Materials

3.1 Data Source

The data used here can be downloaded from [5]. The data contains the 23 modifications,
each having its corresponding reads over a DNA sequence of the human genome, randomly

ordered, for all the chromosomes over the human genome.

3.2 Hardware

The web application which is developed for users to run the queries and view the distribution
of modifications graphically is deployed on a Sun Solaris OS version 5.10 machine with an

intel 1386 processor.
MySQL and JDBC were used on a localhost having Mac OS X version 10.6.4 with 2.26
GHz Intel Core 2 Duo processor and 2 GB RAM.

14



3.3 Software

The web application has been hosted on an Apache2 Web sever. The front-end was developed
in HTML and JavaScript. ClearSilver version 0.10.5 templating system was used for creating
HTML templates to display the results to the users as per their input queries. Using these
templates simplified the process of making any future changes to the HTML front-end,
without affecting the rest of the application.

The 4 queries were coded in C++ version 3.4.3. These programs memory map the binary
files, stored on the server. CgiCC version 3.1.5 has been used as an interface between the
queries and the front-end HTML.

Java version 1.6.0-20 and MySQL version 5.5.3 were used heavily in the initial stages of
this project. As the original files are very large, there was a necessity for an efficient way
of storing these files. MySQL database was used initially for this purpose, but then was
abandoned in favor of the binary files with data structure described in section 2.5. JDBC
(Java Database Connectivity) API was used for finding coverages, run lengths, spacing and

correlation coefficients.

3.4 MySQL Database

Early computation led to the creation of 24 MySQL tables, one for each chromosome.Each
table consisted of all the modifications on that particular chromosome. Mainly, each table
had 3 columns - position, mark and count. As these tables were large, above 100 million
rows, high latency was observed when running queries on them. For this reason, the idea
of using a MySQL database was discarded, and the binary files-memory mapping approach

was adopted for efficiency and speed.
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3.5 Data Structure

typedef struct {
unsigned 1nt pos;

char mark;
short int count;
} Marker;

Marker *rows:

Figure 3.1: Structure used for storing the data

Figure 3.1 shows the data structure "Marker” that has been used to store the data of a
chromosome.

The data structure is of type 'struct’ and consists of 3 datatypes to store the chromosome
data - pos, mark and count. "pos” is of type 'unsigned int’ since we know that positions don’t
have negative values. "mark” is of type 'char’ since we have associated every modification
with a single letter. "count” is the number of modifications of a particular type on that
position of the chromosome and is of type ’short int’.

Every line of data in the file consists of the above mentioned three values and hence can
be directly inserted into the structure.

An array of structs was created to store the necessary data, which was then written into
a binary file. This process was carried out for each of the 24 chromosomes, thus creating 24
binary files with rows of data each containing the 3 data types. The binary files are then
accessed and read in the query programs to generate a memory map for quick access of this
data. "rows” is the pointer to an array of 'Marker’ structs, as shown in fig 3.1. It points to

the memory mapped contents from the binary file.
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3.6 Queries

Four queries were created to help the user to observe the spatial pattern of modifications.
Since the application created is a web-based application, the emphasis of this project was as
much on speed as it was on the correctness of the results. Since, there was a huge amount
of data to be queried, running large queries on this data was a slow process. This led to the
creation of binary files with memory mapping for easy and quick access to the data.

To implement these queries, it was necessary to use a search algorithm which can quickly
search for a particular position in a chromosome. Since the data is an ordered list of positions,
binary search was opted for this process. Generally binary search returns the position of the
key value being searched if it is present and a NULL value, if the key is not present. In this
project however, there was a need to get a range of data between the start and end positions
entered by the user. Hence, the nearest position to the key needs to be returned, if the key
is not present in the data. The traditional algorithm of binary search was thus tweaked, so
that it returned the nearest position, greater than the start position requested by the user.

The following is the pseudo code for the binary search used here.

begin

left =0
right = number of lines in the file
key = value to be searched
while left < right do
mid = (left + right)/2
if key == (rows[mid]—position) then
return mid // found the value
else if (key > (rows[mid]—position) then

left = mid +1
else
right = mid +1
end if
end while

// if not found

17



// move pointer to the nearest value greater than key
if (rows[mid]—position) > key then
return mid;
else
return (mid+1)
end if

end

3.6.1 Queryl: Find all (x,y)

The first query is implemented to allow users to be able to search between any two positions(x
and y) in a DNA sequence for histone modifications. This is a basic query which will return
the positions, modifications and their counts.

The pseudo code of this query is as follows

begin
//take user input values for the interval he wants to search
start = start position of the interval
end = end position of the interval
results = vector for holding the output
rows = memory_map(filehandle)
// call the binary_search function
num_lines = number of lines in the file
bin_pos = <Binary_Search>(0, num_lines-1, start)
// due to repeated positions in the binary file,
// binary search returns the position of the first match
// move back until you encounter the first occurrence of the position being
//searched
while bin_pos > 0 do
if rows[bin_pos|—position > start then
decrement bin_pos
else
break
end if
end while
found_count = 0; // counter for number of positions found in the range
while (rows[bin_pos|—position) < end && bin_pos < (num_lines-1) do
increment found_count
insert rows[bin_pos|—position into results

18



increment bin_pos

end while
if found_count == 0 then
print ”No modifications found”
else
display results //display positions,marks, and counts
end if
end

Y our search is between 756780 and 756783

|Position| Mark |[Count|
756780 |H2BKSmel|[l |
756781 |[H2BKSmel|[l |
756782 |[H2BKSmell2 |
756782 |[H3K79mel |1 |
756783 |[H2BKSmell2 |
756783 |H3K79mel |1 |
|
|
|
|

756784 |H2BK Smel|]2
756784 |[H3K79mel |[1
756785 |[H2BK Smel|)2
756785 |[H3K79mel |[1

Figure 3.2: Screenshot of first query

Figure 3.2 shows a screenshot of the first query when searched between DNA positions

756780 and 756785.

3.6.2 Query 2: Find p-mer in (x,y)

The second query enables users to a find a sequence of modifications over a particular interval.
We called this a 'p-mer’. A 'p-mer’ is defined as a particular sequence of modifications over a
chromosome in a consecutive order. For example a p-mer such as ‘cst’, in its one letter code,
is a tri-mer since it consists of 3 histone modifications, c, s and t respectively for H2BK5mel,
H3R2me2, and H4K20mel. All the modifications along with their one letter code can be

viewed on the website. The following is the pseudo code for this query

19



begin

//take user input values for the sequence he wants to search
start = start position of the search interval
end = end position of the search interval
mods = sequence of modifications
inputs = vector for holding the modifications entered by user
pos = vector for storing single matched occurrence
inputs.push_back(mods)
filehandle = open(binary file)
rows = memory_map(filehandle)
// call the binary_search function
num_lines = number of lines in the file
bin_pos = <Binary_Search>(0, num_lines-1, start)
// due to repeated positions in the binary file,
// binary search returns the position of the first match
// move back until you encounter the first occurrence of the position being
//searched
while bin_pos > 0 do

if rows|bin_pos|—position > start then

decrement bin_pos
else
break

end if

end while

// counter for number of occurrences of the particular input pattern
occ_count = 0
// counter for number of positions found in the range
found_count = 0
num_inputs = size of inputs
while (rows[bin_pos|—position) < end && bin_pos < (num_lines-num_inputs) do
// store occurrence position since we need to list multiple occurrences
prev_occ = rows|bin_pos|—position
for j = 0 to num_inputs do
mark string = collect all marks from position //same as rows|bin_pos|—position
non_inputs = characters other than input marks
if (mark string contains inputs[j]) && (mark string does not contains non_inputs)
then
increment found_count
insert rows[bin_pos|—position into pos
end if
end for

20



if found_count = num_inputs then
// all input marks matched in the occurrence
insert all values from pos into occurrence|occ_count]
increment occ_count

end if
increment bin_pos // until next position value is encountered
end while
if occ_count == 0 then
print ”No modifications found”
else
display occurrences //display only positions
end if

end

Your search is between 4000040 and 4000048

Occurrence || Position
4000041
4000042
4000042
4000043
4000043
4000044
4000044
4000045
4000045
4000046
4000046
4000047
4000047
4000048

Occurrence 0

Occurrence 1

Occurrence 2

Occurrence 3

Occurrence 4

Occurrence 5

Occurrence 6

Figure 3.3: Screenshot of second query

Figure 3.3 shows the result of the second query when searched for p-mer ’fk’ between the
interval 4000040 and 4000048. It shows that there are 7 occurrences of this p-mer in the

specified interval.
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3.6.3 Query 3: Find p-mer > Z in (x,y)

This query will allow users to search for a p-mer which have counts above the specified
threshold value,Z. In other words, Z is the number of reads associated with a modification,
at a defined position in a DNA sequence.

The following is the pseudo code for this query

begin

//take user input values for the sequence he wants to search
start = start position of the search interval
end = end position of the search interval
z=depth of the stack
mods = sequence of modifications
inputs = vector for holding the modifications entered by user
pos = vector for storing single matched occurrence
inputs.push_back(mods)
filehandle = open(binary file)
rows = memory_map(filehandle)
// call the binary_search function
num _lines = number of lines in the file
bin_pos = <Binary_Search>(0, num_lines-1, start)
// due to repeated positions in the binary file,
// binary search returns the position of the first match
// move back until you encounter the first occurrence of the position being
//searched
while bin_pos > 0 do

if rows|bin_pos|—position > start then

decrement bin_pos
else
break

end if

end while

// counter for number of occurrences of the particular input pattern

occ_count = (

// counter for number of positions found in the range

found_count = 0

num_inputs = size of inputs

while (rows[bin_pos|—position) < end && bin_pos < (num_lines-num_inputs) do
// store occurrence position since we need to list multiple occurrences
prev_occ = rows|bin_pos]—position

22



for j = 0 to num_inputs do
mark_string = collect all marks from position //same as rows|bin_pos]—position
non_inputs = characters other than input marks
if (mark string contains inputs[j]) && (mark string does not contains non_inputs)
&& (rows[bin_pos|—count) > Z) then
increment found_count
insert rows[bin_pos|—position into pos
end if
end for
if found_count = num_inputs then
// all input marks matched in the occurrence
insert all values from pos into occurrencelocc_count]
increment occ_count

end if
increment bin_pos // until next position value is encountered
end while
if occ_count == 0 then
print ”No modifications found”
else
display occurrences //display only positions
end if

end
Figure 3.4 shows the result of the third query when searched for p-mer ’cst’ with Z > 2
between the interval 2930 and 2940. It shows that there are 6 occurrences of this p-mer in

the specified interval.

3.6.4 Query 4: Find p-mer in (x,y) and not in (r,s)

This query allows users to find a p-mer in a interval(x,y) but not in another interval(r,s).
The following is the pseudo code for this query

begin
//take user input values for the sequence he wants to search
start = start position of the search interval
end = end position of the search interval
r = start position of the second search interval
s = end position of the second search interval
mods = sequence of modifications
inputs = vector for holding the modifications entered by user

23



Your search is between 2930 and 2940

Occurrence |[Position|
933
Occurrence 0|{2934
935
934

Occurrence 1

B || Bt || Bt || Bt || Bt || Bt
O || O
L (| L
[= IR ]
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Occurrence 3
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MO (AN
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Occurrence 4

b || bt
O || O
(¥
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L || L

b || bt
O || O
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(=R A=

Occurrence 5

£

Figure 3.4: Screenshot of third query

pos = vector for storing single matched occurrence
inputs.push_back(mods)
filehandle = open(binary file)
rows = memory_map(filehandle)
// call the binary_search function
num_lines = number of lines in the file
bin_pos = <Binary_Search>(0, num_lines-1, start)
// due to repeated positions in the binary file,
// binary search returns the position of the first match
// move back until you encounter the first occurrence of the position being
//searched
while bin_pos > 0 do
if rows[bin_pos|—position > start then
decrement bin_pos
else
break
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end if
end while

// counter for number of occurrences of the particular input pattern
occ_count = 0
// counter for number of positions found in the range
found_count = 0
num_inputs = size of inputs
while (rows[bin_pos|—position) < end && bin_pos < (num_lines-num_inputs) do
// store occurrence position since we need to list multiple occurrences
prev_occ = rows|bin_pos|—position
for j = 0 to num_inputs do
mark_string = collect all marks from position //same as rows|bin_pos]—position
non_inputs = characters other than input marks
if (mark string contains inputs[j]) && (mark string does not contains non_inputs)
then
increment found_count
insert rows[bin_pos|—position into pos
end if
end for
if found_count = num_inputs then
// all input marks matched in the occurrence
insert all values from pos into occurrencefocc_count| except between 'r’ and ’s’ insert
all values from pos into occurrencelocc_count]
increment occ_count

end if
increment bin_pos // until next position value is encountered
end while
if occ_count == 0 then
print ”No modifications found”
else
display occurrences //display only positions
end if

end
Figure 3.5 shows the result of the fourth query when searched for p-mer ’lh’ between the
interval 247199170 and 247199190 but not in the interval 247199180 to 247199185. It shows

that there are 8 occurrences of this p-mer in the specified interval.
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Your search is between 247199170 and 247199190

Occurrence | Position

247199175
247199176
247199176
247199177
247199177
247199178
247199178
247199179
247199186
247199187
247199187
247199188
247199188
247199189
247199189
247199190

Occurrence 0

Occurrence 1

Occurrence 2

Occurrence 3

Occurrence 4

Occurrence 5

Occurrence 6

Occurrence 7

Figure 3.5: Screenshot of fourth query

3.7 Search by Modification

Apart from searching by a chromosome, user also has the option to search by a modification.
The second query, i.e Find p-mer in (x,y) can be used to search the occurrences of a particular
modification in a given range or within the whole chromosome. A p-mer with a single
modification, i.e a uni-mer, can be used in such a case.

For example the figure 3.6 shows the result of when a search is done for the modification
'd” (H3K4mel) on chromosome 5 between 60000 and 69000. It shows that there are 14
occurrences of the same. Similarly, a search can be made over the whole chromosome for a

particular modification.
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[ Occurrence |Position
[Occurrence 0 67828
[Occurrence 1 |[67829
[Occurrence 2 |[67830
[Occurrence 3 |[67831
[Occurrence 4 |[68089
[Occurrence 5 |[68090
[Occurrence 6 |[68091
[Occurrence 7 |[68092
[Occurrence 8 |[68093
[Occurrence 9 |[68094
[Occurrence 10]/68095
[Occurrence 11][68096
[Occurrence 12]/68097
[Occurrence 13]/68098
[Occurrence 14/[68099

Figure 3.6: Search for modification H3K4mel on chr 5 between 60000 and 69000

3.8 Partitioning Algorithm

A divide and conquer strategy is applied to break down an entire chromosome into three
parts recursively, based on the frequency of modifications in each part[6]. A multiple test
correction algorithm|7] is applied to reject parts of the chromosome that are significantly
similar to each other.

Multiple Test Correction is a 2-pass algorithm. The first pass is essentially a simple chi-
square test applied over the entire chromosome and the chromosome is broken down based
on the chi-square being significant at the 0.05 level. The probability values are then sorted
in ascending order and the following formula [Eq. 1] is applied over each of the probabilities
to determine a cut-off probability value. The second pass of the multiple test correction
consists of using this cut-off probability value as a threshold to reject further partitioning

which denotes that the parts in the chromosome are closely similar in their composition.
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Let Py, Py, ... P, be the significant probabilities of the nodes sorted in ascending order.

Let 'k’ be the largest i’ for which Py < é(0.05) Eq. 1
Then, we need to re-partition the nodes with probabilities Py, Ps, ... P and terminate par-
titioning for nodes with probabilities Pyi1, Prio, ... Pp.

If the three parts of the chromosome involved in the multiple test correction differ sig-
nificantly, then the partition is enacted. If the 3 segments at any level of recursion have
insignificant difference in composition, then the recursion is terminated. If the three seg-
ments are significantly different, then the segment is again broken down into three more
segments and the process is repeated all over again. The result is a ternary tree.

The significance test is carried out as follows:

In any given segment, the positions and modifications are extracted using the first query.
An additional piece of code has been used to count the number of modifications of each kind
in that segment. These counts are then stored in the 1st row of a 2D array which will hold
similar counts from the other two segments. Thus finally we create a 3 X 23 contingency
table.

The homogeneity test is applied to this table. It is used to compute the chi-square statistic
and the resulting value is compared against the critical value (0.05) for the significance level
in the first pass. In the second pass, the critical value changes to the cut-off probability
obtained from the first pass.

The partitioning algorithm used here is shown below.
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1. Consider the entire chromosome as a single segment. Let the significant
probability value, Py, be 0.05.

2. Divide the segment into 3 subsegments.

3. For each subsegment, count the number of each type of modifications and
create a row array of counts.

4. Create the 3 X 23 contingency table from the 3 segments.

5. Cualculate the chi-square value for the table, and find the chi-square

iprobability value, given degrees of freedom is 44.

6. If the chi-square probability value is < Pgg4, goto step 2, else stop the recursion.
7. List all the probabilities in ascending order.

8. Calculate a new probability as specified in Eq. 1

9. Now, let the new probability be assigned to Pg,, making it the new cut-off
critical value for significance.

10. Start from Step 1 and run the recursive steps 2-6 with the new Py, value.

11. When the chi-square probability value is > the new Py, stop the recursion and

end the program.

3.9 Graphical representation

a ternary tree which is plotted using gnuplot [2].

A tree-like representation is created which allows users to view all the homogeneous inter-

vals within a chromosome. The partition algorithm mentioned in section 3.7 resulted in

for each chromosome. All these graphs can be viewed in Appendix E or on the website
http://giles.genetics.uga.edu/~ankit/. We decided to represent each interval on the graph
using its mid-point. The graphs are plotted with locations on the chromosome forming the

'x” co-ordinates and the levels in the tree forming the 'y’ co-ordinates for the graph. The
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Twenty four such trees are drawn, one


http://giles.genetics.uga.edu/~ankit/

highest level in the graph shows all the homogeneous regions in the chromosome.

3.10 Web Process

HTML using ClearSilver =N JavaScript
o L4

1; Presentation Tier

cgicc

i3

Queries/C++ programs Application Tier
Memory Mapped Data pa—
Storage Tier
A
Binary Files
Storage

Figure 3.7: Architecture of the Web Application

The web application can be accessed at http://giles.genetics.uga.edu/~ankit/. The ap-
plication was created as a 3-tier architecture as shown in Figure 3.6. The presentation,
application and the data storage have been separated into independent modules whose soft-

ware and hardware specifications are described on section 2.2 and 2.3 respectively.

30


http://giles.genetics.uga.edu/~ankit/

Chapter 4

Results

4.1 Query timings

queryl | query2 | query3 | query4
small (100 - 10000) 0.0048 | 0.0076 | 0.0058 | 0.0081
medium (10000 - 1000000) 1.0648 | 1.2824 | 2.1672 | 1.8256
large (1000000 - 100000000) | 8.8345 | 12.6754 | 16.4024 | 13.5689

Figure 4.1: Timing comparison for different range of search intervals in seconds

Figure 4.1 shows the execution times, in seconds, for all the queries over small, medium
and large intervals of search ranges. As shown in the table, small range is of interval (100-
10000) means that the range of search can vary between 100 to 10000. Ex: A user can search
either 100 to 500 (interval of 400) or he can search 350 - 10300 (interval of 9950). Similarly,

a medium range is of interval (10000 - 1000000) and a large range is of interval (1000000 -

100000000).

The point to note here is that even though the queries run on huge search intervals,
they run very fast and deliver results within seconds. This is largely a result of the memory

mapping technique being employed in the queries. A more important benefit of using memory
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mapping can be seen in figure 1.2.

0.012

0.008

seconds

0.006

0.004

0.002

queryl query2 query3 query4

W beginning ™ middle - end

Figure 4.2: Execution time comparison in seconds

Figure 4.2 shows a comparison of the timings when queries are executed at the beginning
of the file, in the middle of the file and at the end of the file. As seen, the timings are very

similar with only a few milliseconds of difference.

4.2 Coverage

Coverage is defined as the number of times a site was covered by n number of reads of a
particular modification. Appendix A gives an overview on the coverages. As seen from the

examples in figure 4.3, the coverage has a roughly exponential distribution.

4.3 Run lengths

A location can be defined as a position in nucleotides along a chromosome. A run is defined
as a contiguous sequence of locations which consists of DNA reads. Run length is defined as
the distance between start and end positions of these runs. There were cases when another
run would start before the earlier run has ended. Such runs are known as overlapping runs

and in this thesis, they are considered to be different.
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Coverages for H3K27me2 on chr8 Coverages for H3K4me2 on chr2
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Figure 4.3: Examples of Coverage
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Figure 4.4: Examples of Run Lengths

If such overlapping sequences are considered to be the part of the same run, we would

get an exponential curve as shown in figure 4.4 and in Appendix B.

4.4 Spacing

A space is a location with no DNA sequence reads. A run for each kind of modification
will have a corresponding space which comprises of empty locations. Every space can be
associated with a unique run. Similar to run lengths, even spacing has a exponential curve

as shown in figure 4.5
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Figure 4.5: Examples of Spacing

4.5 Correlation Coefficient

o=

D (x, =)y, - y)

= -JE{II- _ ;}:Z(_\'; _ ;JE

Figure 4.6: Correlation Coefficient formula

A correlation between the run and the spaces was calculated by using the formula as

shown in figure 4.6 where 'z’ denotes the run and ’y” denotes the space.

The correlation coefficient, r , gave very low values as shown in Appendix C, which meant

that the runs and spaces are nearly independent of each other.

As seen from Appendix C, many of the correlation coefficient values were negative, which
indicates a negative correlation between the runs and spaces. This negative correlation is

caused due to the fact that in many cases, the run lengths are longer than their respective

spaces.
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Chromosome | Total # of modifications
chrl 303228071
chr2 312668742
chr3 250020056
chr4 208347035
chrb 218295125
chr6 212288689
chr7 190666723
chr8 179008125
chr9 145778656

chrl() 174430721
chrll 175351822
chrl2 171317202
chrl3 115187991
chrl4 119236849
chrlb 109002079
chrl6 115784070
chrl? 121161507
chrl® 92984182
chrl9 95937678
chr20 90337142
chr21 45780610
chr22 56506289
chrX 101128973
chrY 10165326

Figure 4.7: Total number of modifications per chromosome

4.6 Total Modifications

Figure 4.7 shows the total number of modifications on every chromosome. These numbers

do not count the overlapping sequences, as overlapping runs were considered to be different.

4.7 Multiple Test Correction

Using a multiple test correction reduced the number of terminal nodes by an average of 8%.
A table showing this is given in appendix D. The table shows the chromosome number and

the terminal nodes obtained before and after using the multiple test correction.
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4.8 Graphs

The graphs are drawn with a tree-like representation with x-axis showing the locations on
the chromosome and y-axis showing the levels in the tree. We see that there are a lot of
non-uniform intervals. Most of the chromosomes get divided up to level 15 (i.e 3'® nodes
in the tree) which suggest inhomogeneity with large number of intervals with respect to the
modifications present within them. Most of the graphs have a big gap, which is likely to be
the centromere.

Figure 5 in appendix E shows the graph drawn for chromosome 1. It shows all the
homogeneous regions for that chromosome. Each region is denoted by a point representing
the center of the homogenous interval. This graph, similar to all others, has been drawn
using the partitioning algorithm as described in section 3.8 . The x-axis shows the positions
over the 1st chromosome from 0 to 250,000,000. The y-axis represents the levels of the tree,
from 1 to 15. This denotes how deep the recursion went through. In this case, it went upto
15 levels. However, not all the homogenous regions are at level 15. Some of them have
uniform intervals at lower levels too.

As seen from the graph, there is just one point on the graph at level 1, which represents
the first mid-point in the chromosome. At level 2, there are 3 points on the graph and so
on until level 15. However, due to lack of proper zooming, it is not possible to see distinct
points on the graph at higher levels. So, it seems to be a straight line. There is also a huge
gap or space in the graph where there are no points plotted on the graph. This represents
the centromere of the chromosome. Hence, we do not see any points on the chromosome in

that interval.
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Chapter 5

Discussion

The main development here was to create a partition of each chromosome that was locally
multinomial. The number of intervals in the partition varied from 200,000 - 6,500,000 within
the chromosome. There was thus substantial spatial inhomogeneity in the marks. The graphs
also show that the centromeres are apparent.

We have demonstrated some features of the distribution of epigenetic marks. The spacing
and the run lengths have a roughly exponential distribution and appear uncorrelated. These
observations provides some evidence of the independence in occurrences of the modifications.
What remains to be specified is, 'what is determining the variation in probabilities of a
modification along a chromosome’.

Another observation which can be noted from the coverages table in Appendix A is
that, four modifications namely H3K36mel, H3K36me3, H3K79mel and H3K79me2, have a
peculiar distribution. But surprisingly the runs and spacing of these modifications is quite
similar to the rest of the modifications. It would be interesting to find out the reason behind
this. We decided to include these modifications in our further calculations as leaving them
out would have results in different counts for our study with only 19 modifications.

We have created the partition for all the chromosomes in the human genome. It would
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be desirable to identify characteristic motifs within elements of the partition and relate the
elements of the partition by composition [J].

Here we have considered overlapping sequences of the same kind of modification as sepa-
rate runs. We might have considered these overlapping sequences as a part of the same run,
which would have eventually led us with comparatively less number of counts.

Before using the multiple test correction, Fishers exact test[3] along with chi-square test
was used for the partition algorithm. But this process increased the number of terminal
nodes by around 20-30%. A reason for this might be the size of the tables. The table size
used here is 3 X 23 (i.e 69 entries). This might be a huge table for the Fishers exact test to
calculate on due to which we might not get appropriate results. The reason for this can be
researched in the future.

The partition algorithm used here results in a large number of terminal nodes. We might
reduce the number of these terminal nodes, by say clustering on composition.

Another limitation of our procedure is optimizing the partition. Different approaches
could have been used to create a better partition in some sense. For example, some kind of

model averaging method could have been used to create the partition boundaries [0].
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Chapter 6

Conclusion

Histones in a human nucleosome are subject to various post-translation modifications such
as acetylation, methylation, phosporylation, etc. The modifications play a important role
in gene regulation. The kind of modification and it location in a DNA sequence is called
epigenetic code. The Epigenetic code is responsible in part for developing and maintaining a
human body structure. This thesis deals with creating a web application for users to quickly
find the epigenetic code along the human chromosomes.This thesis aims at finding a local
structure of the histone modifications in a human genome.

To ascertain this, we created a data structure that can allow users to view quickly the
spatial local locations of the histone modifications in a DNA sequence. The information
about the histone modifications, i.e type of the modification, its location over the chromosome
and their number of reads, were there stored in this data structure format which was then
written in a binary files and stored on the server. A memory mapping technique and a binary
search algorithm were used to search for a specific location in theses binary files. Over results
show that this process very less time and works very efficiently.

Another aim of this thesis is to find all the homogeneous regions in the human chro-

mosome. For this, we used a divide and conquer strategy with the partition algorithm as
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mentioned in 3.7. This resulted in a ternary tree which is represented with the chromosome
positions on the x-axis and the levels in the trees on the y-axis. The graphs show that there
are a large number of terminal nodes in the trees, which represent large non-uniformity in
these regions. The graphs show that almost all the chromosomes get divided up to 15 levels
and hence we infer that there are a large number of homogeneous regions in the partition of

each chromosome.
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Appendix A

H2AZ | H2BKS5mel | H3K27mel [ H3K27me2 | H3K27me3 | H3K36mel | H3K36me3 H3K4mel [ H3Kdme2 H3K4me3 | H3K79mel | H3K79me2
1| 109798608 | 116993291 | 190031557 | 175263995 | 169747591 0 7| 125936644 | 91931056 | 176775507 0 0
2 18220632 25226099 27334283 20261093 20672688 | 172207966 | 209642323 30179482 | 14391065 24425468 0 0
3 10168001 6698090 3093975 1369626 1980376 0 15 9615427 2910658 4859941 0 0
4 2043213 3479007 1197498 582363 585721 12547234 35735190 5645413 1479142 3279172 0 0
5 818443 1351745 101574 27854 42241 0 0 2662477 468689 1869579 1327 1378
6 1464953 937199 126539 48737 47426 914047 8891510 1961743 328746 1582042 0 21
7 314500 427052 9164 7074 4762 0 0 1026748 108783 1125540 | 93944079 59716032
8 266629 341506 22342 9069 7394 88398 2955308 845745 95526 1004073 0 0
9 351502 168198 3898 4014 2383 0 0 448014 30916 756765 0 0
10 136647 150503 5871 3136 2637 18641 1230044 407018 35036 696497 155 70
11 77791 79926 2401 2334 1577 0 0 213218 9473 537451 0 0
12 161531 76504 2622 2024 1204 9691 577368 212886 13492 505696 0 49
13 45385 41686 1706 1705 1154 0 0 110743 3278 393998 0 12
14 47337 41788 1458 1381 1018 5953 302123 120193 6225 377368 14376878 13440301
15 71931 24588 1375 1175 913 0 0 58765 1445 294691 9 1
16 30332 25027 1233 1110 805 4848 173597 70324 3142 287721 0 0
17 18142 15981 1081 1067 772 0 0 33586 643 227229 0 17
18 47087 15759 814 701 566 3978 106611 43837 1563 226310 0 0
19 12165 10488 765 867 429 0 0 20405 308 178247 0 0
20 14240 11093 648 769 528 3188 69494 27737 744 179398 0 2
21 24827 7493 645 636 349 0 0 12344 179 141453 2695724 4337701
22 9944 8036 676 546 529 2450 49410 18290 532 144158 0 0
H3K79me3 H3K9mel H3K9me2 H3K9me3 H3R2Zmel H3R2me2 | H4K20mel | H4K20me3 H4R3me2 Pol2 CTCF
1 53220659 | 147058494 | 194294632 | 106913989 | 180325736 | 124673775 | 105721161 76269644 | 152132578 | 66827464 | 43587512
2 27171216 28180301 24540087 14177001 23628454 17081068 27619464 10690274 9549359 9965219 5976906
3 6411826 6010807 1993409 1891081 2022315 1799057 9575282 1918088 710353 2207077 932383
4 3488578 2821259 722908 747012 885114 701061 5636880 959172 124035 753168 560259
5 1800198 732347 45534 165130 62132 77653 2773023 409997 58874 346398 276033
6 1077778 512976 62298 123825 87501 85200 2014767 316504 38179 187430 241181
7 642327 122393 9562 39348 10478 17058 1120829 192958 26733 110694 165703
8 401362 128037 12307 37796 15601 18774 909169 166722 20884 70090 148421
9 251940 24810 4915 16304 5161 7654 537344 116732 15465 45685 107705
10 161247 39354 3821 15808 5442 7659 463959 103937 11837 31229 100300
11 103891 6355 3398 8248 3256 4682 286802 75362 9994 21901 74025
12 68265 14579 2875 7962 2991 4421 257375 69113 8324 15693 70073
13 44488 2292 2150 5346 2156 3185 162704 52769 6398 11526 51758
14 30178 5706 1923 5483 1998 3098 153131 51099 5695 8942 49016
15 20173 1043 1585 3655 1419 2227 97982 39962 4857 6884 35475
16 13779 2590 1388 3245 1663 2277 94270 38452 3920 5481 34635
17 9167 485 1031 2588 1397 2004 61297 28934 3594 4534 24692
18 6388 1137 1188 2722 1201 1729 60334 28179 3391 3884 24308
19 4338 314 806 2039 891 1674 39664 22468 2624 3316 16915
20 3067 657 801 1716 1052 1369 40201 22321 2443 2565 17423
21 2194 212 604 1432 836 1296 26231 17943 2131 2368 11598
22 1686 409 762 1482 759 1123 27375 17866 1781 2027 12004

Figure 1: Table showing the coverages for
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Appendix B

H2AZ|H2ZBK5mel| H3K27mel| H3K27me2| H3K27me3| H3K36mel| H3K36me3| H3K4mel| H3K4me2| H3K4me3| H3K79mel| H3K79me2
6449656 7433400 9748956 8990667 8743975 8028907 11988296| 9062443 5093850| 11365689 4938075 4160877
252144 241991 146110 78471 86375 57452 391464 432424 125221 628115 74048| 161022
35118 28711 4335 1648 1601 1295 30792 66507 9576 196763 2070 16645
7573 4896 479 355 247 351 4601 13288 979 84623 82 2454
1811 1381 173 152 80 147 1148 3329 151 35852 11 408
566 419 96 76 55 83| 389 951 28 16079 4 118
192 187 61 37 34 47 159 299 12 7522 1] 26
74 62 34 32 12 35 102 107 2 3879 2| 9
38 36 17 9 12 24 44 56 2 2037 2| 1
22 22 17 9 5 16| 23 20 1 1128 2| 1

7 11 15 16 4 7| 22 7 0 648 ql 0

8 9 10 8 2 9 11 10 1 336 0l 0

4 8| 7 5 2 10f 13 4 0 233 0l 0

1 3| 8 2 3 8 6 3 0 135 0f 0

2 3 4 0 1 2 5 7 0 99 0l 0

1 0 1 1 2 1 0 3 0 50 0l 0

1 2 1 1 0 2 6 2 0 32 0l 0

0 1 6 2 1 3 5 1 0 23 0l 0

0 2 0 1 1 2] 4 0 0 11 0l 0

0 0 1 3 0 1 2 0 0 8 0l 0

0 0 0 0 0 1 1 0 0 11 0l 0

0 1 0 0 0 O 1 1 0 2 0l 0
H3K79me3| H3K9mell H3K9me2| H3K9me3| H3R2mel] H3R2Zme2| H4K20mel H4K20me3| H4R3me2| Pol2| CTCF
4143848 8534215 9540738 5950082 9239999 6066335 8254038 4027524 7231492 3627523| 2421267
159295 250777 123318 87235 132348] 36588 557832 145813 45811 123304 73877
17616 17097 3616 6072 3806 1784 99102 28021 3662 9520 18768
2910 1546 519 1224 566 644 25375 10161 1398 2200 6326

596 201 212 418| 234 261 8754 4411 649 787 2531

141] 51 120 185 143 164 3458 2343 383 364 1186

44 24 74 99 79| 97 1593 1477 188 184 470

15 11 39 48| 71 49 802 978 150 120 264

5 4 37 56| 45| 38 424 630 88 100 141

3 5 22 30 22 25 237 379 63 51 81
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Figure 2: The total run lengths for all the modifications for all the chromosomes
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Figure 3: Table showing correlation coefficient of spacing and run lengths
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Appendix D

Chromosome # Terminal nodes before Terminal nodes after
multiple test multiple test
correction correction

1 6985471 6501661
2 7386077 6912765
3 5652315 5149539
4 4579833 43741865

5 4700193 4421525
6 4509073 4281157

7 4135103 4009053
8 4037995 3923059

9 3928107 3852265
10 3854737 3736259
14 3865791 3747787
12 3819251 3698983
13 2862635 2705747
14 2780659 2626505
15 2507371 2365689
16 2534539 2394211
17 2577619 2437795
18 2258731 2031463
19 1890361 1757899
20 1088487 19088487
21 1057471 1008587
22 1135587 1090799
X 2920127 2707119
Y 262679 229685

Figure 4: Number of terminal nodes before and after applying the multiple test correction
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Appendix E
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Figure 5: graphical representation of the partitions on chromosome 1
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Figure 6: graphical representation of the partitions on chromosome 2
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0

Figure 7: graphical representation of the partitions on chromosome 3
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Figure 8: graphical representation of the partitions on chromosome 4
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Figure 9: graphical representation of the partitions on chromosome 5
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Figure 10: graphical representation of the partitions on chromosome 6
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Figure 11: graphical representation of the partitions on chromosome 7
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Figure 12: graphical representation of the partitions on chromosome 8
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Figure 13: graphical representation of the partitions on chromosome 9
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Figure 14: graphical representation of the partitions on chromosome 10
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Figure 15: graphical representation of the partitions on chromosome 11
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Figure 16: graphical representation of the partitions on chromosome 12
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Figure 17: graphical representation of the partitions on chromosome 13
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Figure 18: graphical representation of the partitions on chromosome 14
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Figure 19: graphical representation of the partitions on chromosome 15
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Figure 20: graphical representation of the partitions on chromosome 16
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Figure 21: graphical representation of the partitions on chromosome 17
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Figure 22: graphical representation of the partitions on chromosome 18
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Figure 23: graphical representation of the partitions on chromosome 19
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Figure 24: graphical representation of the partitions on chromosome 20
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Figure 25: graphical representation of the partitions on chromosome 21
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Figure 26: graphical representation of the partitions on chromosome 22
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Figure 27: graphical representation of the partitions on chromosome X
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Figure 28: graphical representation of the partitions on chromosome Y
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