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Abstract

Histone modifications, especially methylations, play a vital role in transcriptional activation

of genes within a human body. Hence, we created a web service to help users to study the

local spatial structure of these modifications along a chromosome along with their patterns.

We created four queries for this purpose. A memory mapping technique along with binary

search was used to help obtain quick output results of these queries. We also created a tree

representation to view the homogenous regions of these modifications as we walk through

the chromosome. We not only show there is a large non-uniformity of the spatial distribution

of epigenetic marks in these regions, but also that there are a large number of regions which

are locally multinomial.
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Chapter 1

Preface for the Readers

1.1 Human Genome

Every living organism, including human beings, has a genome that comprises of all the

biological information needed for the development and functioning of that organism. A

human genome is subdivided into chromosomes which are present in the nucleus of every

cell. In humans, there are 22 pair of chromosomes plus a pair of sex chromosomes (XX in

females and XY in males). Each chromosome is made up of Deoxyribonucleic acid, DNA,

which contains the biological information. This DNA molecule encodes genes, which consists

of proteins that direct how a human body is built and maintained. A human genome consists

of about 35,000 genes.

1.2 DNA

DNA is a double-stranded chemical structure, also known as a double-helix. The two strands

in the double-helix are made up of an alternating sugar and phosphate backbone running

parallel to each other, but in opposite directions. DNA is also made up of four chemical bases:
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adenine (A), guanine (G), cytosine (C), and thymine (T). It is the sequence of these bases,

that determine the information available for the development and maintaining a human

body. These bases pair up with each other, A with T and C with G, via hydrogen bonding,

forming a base pair and are the steps o the helical staircase. On an average, a chromosome

is 140 million base pairs long.

The DNA is wrapped around proteins known as histones. There are four primary types

of histones: H2A, H2B, H3 and H4, as well as other variants like H2AZ. There are two copies

of each of these histones, hence forming an octamer.

An overview of sections 1.1 and 1.2 is shown in figure 1.1

Figure 1.1: Overview of Chromosome and DNA in human body
Source: http://creationwiki.org/File:Chromosome.png
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Figure 1.2: Four Core Histones
Source: http://www.nature.com/nrn/journal/v6/n2/fig tab/nrn1604 F2.html

1.3 Histone Modification

Each of the four core histones has a tail which protrudes out of a nucleosome as shown in the

figure 1.2. This tail is subject to a variety of chemical modifications because of the amino

acid that is present in a modified histone protein. These modifications include acetylation,

methylation, phosphorylation, ubiquitylation, and many more. The kind of modification and

its location in a DNA sequence is called the epigenetic code. This epigenetic code in part

decides how we look and who we are.

Among these methylations are a kind of modification which adds one or more methyl

groups to an amino acid. Methylations are important because adding of a methyl group

results in the ”start” of a reaction which can eventually lead to the formation of a protein.

Here, in this thesis, we study methylation modification.
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1.4 DNA Sequencing and Pattern Search

The term DNA Sequencing is defined as the precise determination of the order of the bases

- adenine, guanine, cytosine and thymine in a sample of DNA.

For example:

CATAAACCCTGGCGCGCTCGCGGGCCGGCACTCTTCTGGTCCATGG is a part of a

DNA sequence.

The epigenetic code is determined by a new high-throughput method of genome sequencing.[4]

A pattern is defined as a cluster where nucleotides appear on the DNA. Hence a DNA

Pattern Search accepts a search pattern and returns the number and positions of all the sites

that match the pattern.

For example:

A pattern search for pattern ’CTACGATC’ might return the following:

Match#1 from position 170 to 178

Match#2 from position 8000 to 8008

Match#3 from position 123861 to 123869

Match#4 from position 35638234 to 35638242 and so on

A review of how to do this can be found in[8]. This closely is related to the problem of

finding epigenetic motifs. An epigenetic motif can be defined as a part of a DNA sequence

which is recurring at various positions over the chromosome.

1.5 Objectives of this thesis

Barski et. al [1] studied twenty three histone modifications using a new Solexa 1G sequencing

technology, and their data can be downloaded from [5]. We aim at determining a local spatial
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structure in the occurrences of these modifications as we walk along a chromosome. To

ascertain this, it is necessary to create a data structure that allows queries about the spatial

locations of histone modifications in a DNA sequence quickly. Once this data structure is

created, we can ascertain the spatial structure of the epigenetic code along a chromosome.
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Chapter 2

Introduction

A human genome consists of 23 chromosomes, about 140 million base pairs long, on an

average, and made up of DNA. DNA is wrapped around nucleosomes which are comprised

of 4 core histones(H2A, H2B, H3 and H4). Histones are essential protein components of a

chromatin and play a vital role in gene regulation. The amino-terminus of the core histones

protrude out of the nucleosome. This is called a ’histone tail’, and is subject to various

post-translational modifications such as acetylation, methylation, phosphorylation, ubiqui-

tylation, etc. The kind of modification and its location in a DNA sequence is called the

epigenetic code. This epigenetic code determines in part how we look and who we are.

Among these modifications, methylations at lysine and arginine residues are very stable

and are important for transcriptional activation of genes. Histone methylation is the mod-

ification of certain amino acids in a histone protein by the addition of one, two, or three

methyl groups. There are many kinds of modifications that can be assayed in a genome.

Twenty three such histone modifications were studied closely by Barski et al.[1] using

Solexa 1G sequencing technology.These include H2BK5me1, H3K4me1, H3K4me2, H3K4me3,

H3K9me1, H3K9me2, H3K9me3, H3K27me1, H3K27me2, H3K27me3, H3K36me1, H3K36me3,

H3K79me1, H3K79me2, H3K79me3, H3R2me1, H3R2me2, H4K20me1, H4K20me3, H4R3me2.
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Along with these, histone variant H2A.Z, RNA polymerase 2 and insulator binding protein

CTCF were also examined.

The nomenclature for these modifications is as follows:

1. The name of the histone (e.g. H3)

2. The single letter amino acid abbreviation (e.g. K for Lysine, R for arginine) and the

amino acid position in the protein, thereby specifying where the modification occurs

on the histone.

3. The type of histone methylation (me1: mono-methylation, me2: di-methylation, me3:

tri methylation).

So H3K4Me1 denotes the mono-methylation of H3 on the 4th lysine from the start (N-

terminal) of the histone protein.

Our task is to determine whether or not there is local spatial structure along a chromo-

some in the occurrence of these modifications. This work is motivated by [6]. To ascertain

this, it is necessary to create a data structure that allows queries about the spatial location

in a DNA sequence of histone modifications quickly.

Hence we created a data structure that consists of 3 parts - position, mark and count.

position is the co-ordinate along the chromosome.

mark is a unique one letter code for the modification.

count is the number of modifications at a particular position. In other words, the count is

the number of DNA sequence reads that cover a particular position on the human genome.

To save space, we used a unique one letter code, a single alphabet, for each of the 23

modifications.

The chromosome data are stored in these data structures and written into files in a binary

format, which are then stored on a Sun workstation as .bin files. As this project studies the

pattern of modifications along each chromosome, the data from the original data files were
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broken down chromosome-wise which resulted in the creation of 24 binary files. (one for

each chromosome, including chromosomes X and Y).

As these datasets are very large, there is a need to find an efficient way of accessing and

retrieving the data. The binary files were memory mapped for this purpose. This resulted

in quick recovery of the required data, as the memory map helps in array-like access to the

data, which means that any row can be accessed directly by specifying its position on the

array. This increased the speed tremendously which culminated in very quick queries.

Four queries were developed to help the users to study the spatial placement of these

modifications on a chromosome. These queries then enabled the construction of graphical

tree representation of spatial distribution of modifications along each chromosome, where

the terminal nodes denote homogeneous subintervals on the chromosome. Within these

subintervals, the distribution of ’modifications’ appears locally multinomial.
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Chapter 3

Methods and Materials

3.1 Data Source

The data used here can be downloaded from [5]. The data contains the 23 modifications,

each having its corresponding reads over a DNA sequence of the human genome, randomly

ordered, for all the chromosomes over the human genome.

3.2 Hardware

The web application which is developed for users to run the queries and view the distribution

of modifications graphically is deployed on a Sun Solaris OS version 5.10 machine with an

intel i386 processor.

MySQL and JDBC were used on a localhost having Mac OS X version 10.6.4 with 2.26

GHz Intel Core 2 Duo processor and 2 GB RAM.
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3.3 Software

The web application has been hosted on an Apache2 Web sever. The front-end was developed

in HTML and JavaScript. ClearSilver version 0.10.5 templating system was used for creating

HTML templates to display the results to the users as per their input queries. Using these

templates simplified the process of making any future changes to the HTML front-end,

without affecting the rest of the application.

The 4 queries were coded in C++ version 3.4.3. These programs memory map the binary

files, stored on the server. CgiCC version 3.1.5 has been used as an interface between the

queries and the front-end HTML.

Java version 1.6.0 20 and MySQL version 5.5.3 were used heavily in the initial stages of

this project. As the original files are very large, there was a necessity for an efficient way

of storing these files. MySQL database was used initially for this purpose, but then was

abandoned in favor of the binary files with data structure described in section 2.5. JDBC

(Java Database Connectivity) API was used for finding coverages, run lengths, spacing and

correlation coefficients.

3.4 MySQL Database

Early computation led to the creation of 24 MySQL tables, one for each chromosome.Each

table consisted of all the modifications on that particular chromosome. Mainly, each table

had 3 columns - position, mark and count. As these tables were large, above 100 million

rows, high latency was observed when running queries on them. For this reason, the idea

of using a MySQL database was discarded, and the binary files-memory mapping approach

was adopted for efficiency and speed.
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3.5 Data Structure

Figure 3.1: Structure used for storing the data

Figure 3.1 shows the data structure ”Marker” that has been used to store the data of a

chromosome.

The data structure is of type ’struct’ and consists of 3 datatypes to store the chromosome

data - pos, mark and count. ”pos” is of type ’unsigned int’ since we know that positions don’t

have negative values. ”mark” is of type ’char’ since we have associated every modification

with a single letter. ”count” is the number of modifications of a particular type on that

position of the chromosome and is of type ’short int’.

Every line of data in the file consists of the above mentioned three values and hence can

be directly inserted into the structure.

An array of structs was created to store the necessary data, which was then written into

a binary file. This process was carried out for each of the 24 chromosomes, thus creating 24

binary files with rows of data each containing the 3 data types. The binary files are then

accessed and read in the query programs to generate a memory map for quick access of this

data. ”rows” is the pointer to an array of ’Marker’ structs, as shown in fig 3.1. It points to

the memory mapped contents from the binary file.

16



3.6 Queries

Four queries were created to help the user to observe the spatial pattern of modifications.

Since the application created is a web-based application, the emphasis of this project was as

much on speed as it was on the correctness of the results. Since, there was a huge amount

of data to be queried, running large queries on this data was a slow process. This led to the

creation of binary files with memory mapping for easy and quick access to the data.

To implement these queries, it was necessary to use a search algorithm which can quickly

search for a particular position in a chromosome. Since the data is an ordered list of positions,

binary search was opted for this process. Generally binary search returns the position of the

key value being searched if it is present and a NULL value, if the key is not present. In this

project however, there was a need to get a range of data between the start and end positions

entered by the user. Hence, the nearest position to the key needs to be returned, if the key

is not present in the data. The traditional algorithm of binary search was thus tweaked, so

that it returned the nearest position, greater than the start position requested by the user.

The following is the pseudo code for the binary search used here.

begin

left = 0
right = number of lines in the file
key = value to be searched
while left ≤ right do

mid = (left + right)/2
if key == (rows[mid]→position) then

return mid // found the value
else if (key > (rows[mid]→position) then

left = mid +1
else

right = mid +1
end if

end while
// if not found

17



// move pointer to the nearest value greater than key
if (rows[mid]→position) ≥ key then

return mid;
else

return (mid+1)
end if

end

3.6.1 Query1: Find all (x,y)

The first query is implemented to allow users to be able to search between any two positions(x

and y) in a DNA sequence for histone modifications. This is a basic query which will return

the positions, modifications and their counts.

The pseudo code of this query is as follows

begin

//take user input values for the interval he wants to search
start = start position of the interval
end = end position of the interval
results = vector for holding the output
rows = memory map(filehandle)
// call the binary search function
num lines = number of lines in the file
bin pos = <Binary Search>(0, num lines-1, start)
// due to repeated positions in the binary file,
// binary search returns the position of the first match
// move back until you encounter the first occurrence of the position being
//searched
while bin pos ≥ 0 do

if rows[bin pos]→position ≥ start then
decrement bin pos

else
break

end if
end while
found count = 0; // counter for number of positions found in the range
while (rows[bin pos]→position) ≤ end && bin pos ≤ (num lines-1) do

increment found count
insert rows[bin pos]→position into results

18



increment bin pos
end while
if found count == 0 then

print ”No modifications found”
else

display results //display positions,marks, and counts
end if

end

Figure 3.2: Screenshot of first query

Figure 3.2 shows a screenshot of the first query when searched between DNA positions

756780 and 756785.

3.6.2 Query 2: Find p-mer in (x,y)

The second query enables users to a find a sequence of modifications over a particular interval.

We called this a ’p-mer’. A ’p-mer’ is defined as a particular sequence of modifications over a

chromosome in a consecutive order. For example a p-mer such as ’cst’, in its one letter code,

is a tri-mer since it consists of 3 histone modifications, c, s and t respectively for H2BK5me1,

H3R2me2, and H4K20me1. All the modifications along with their one letter code can be

viewed on the website. The following is the pseudo code for this query
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begin

//take user input values for the sequence he wants to search
start = start position of the search interval
end = end position of the search interval
mods = sequence of modifications
inputs = vector for holding the modifications entered by user
pos = vector for storing single matched occurrence
inputs.push back(mods)
filehandle = open(binary file)
rows = memory map(filehandle)
// call the binary search function
num lines = number of lines in the file
bin pos = <Binary Search>(0, num lines-1, start)
// due to repeated positions in the binary file,
// binary search returns the position of the first match
// move back until you encounter the first occurrence of the position being
//searched
while bin pos ≥ 0 do

if rows[bin pos]→position ≥ start then
decrement bin pos

else
break

end if
end while

// counter for number of occurrences of the particular input pattern
occ count = 0
// counter for number of positions found in the range
found count = 0
num inputs = size of inputs
while (rows[bin pos]→position) ≤ end && bin pos ≤ (num lines-num inputs) do

// store occurrence position since we need to list multiple occurrences
prev occ = rows[bin pos]→position
for j = 0 to num inputs do

mark string = collect all marks from position //same as rows[bin pos]→position
non inputs = characters other than input marks
if (mark string contains inputs[j]) && (mark string does not contains non inputs)
then

increment found count
insert rows[bin pos]→position into pos

end if
end for
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if found count = num inputs then
// all input marks matched in the occurrence
insert all values from pos into occurrence[occ count]
increment occ count

end if
increment bin pos // until next position value is encountered

end while
if occ count == 0 then

print ”No modifications found”
else

display occurrences //display only positions
end if

end

Figure 3.3: Screenshot of second query

Figure 3.3 shows the result of the second query when searched for p-mer ’fk’ between the

interval 4000040 and 4000048. It shows that there are 7 occurrences of this p-mer in the

specified interval.
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3.6.3 Query 3: Find p-mer ≥ Z in (x,y)

This query will allow users to search for a p-mer which have counts above the specified

threshold value,Z. In other words, Z is the number of reads associated with a modification,

at a defined position in a DNA sequence.

The following is the pseudo code for this query

begin

//take user input values for the sequence he wants to search
start = start position of the search interval
end = end position of the search interval
z=depth of the stack
mods = sequence of modifications
inputs = vector for holding the modifications entered by user
pos = vector for storing single matched occurrence
inputs.push back(mods)
filehandle = open(binary file)
rows = memory map(filehandle)
// call the binary search function
num lines = number of lines in the file
bin pos = <Binary Search>(0, num lines-1, start)
// due to repeated positions in the binary file,
// binary search returns the position of the first match
// move back until you encounter the first occurrence of the position being
//searched
while bin pos ≥ 0 do

if rows[bin pos]→position ≥ start then
decrement bin pos

else
break

end if
end while

// counter for number of occurrences of the particular input pattern
occ count = 0
// counter for number of positions found in the range
found count = 0
num inputs = size of inputs
while (rows[bin pos]→position) ≤ end && bin pos ≤ (num lines-num inputs) do

// store occurrence position since we need to list multiple occurrences
prev occ = rows[bin pos]→position
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for j = 0 to num inputs do
mark string = collect all marks from position //same as rows[bin pos]→position
non inputs = characters other than input marks
if (mark string contains inputs[j]) && (mark string does not contains non inputs)
&& (rows[bin pos]→count) ≥ Z) then

increment found count
insert rows[bin pos]→position into pos

end if
end for
if found count = num inputs then

// all input marks matched in the occurrence
insert all values from pos into occurrence[occ count]
increment occ count

end if
increment bin pos // until next position value is encountered

end while
if occ count == 0 then

print ”No modifications found”
else

display occurrences //display only positions
end if

end

Figure 3.4 shows the result of the third query when searched for p-mer ’cst’ with Z ≥ 2

between the interval 2930 and 2940. It shows that there are 6 occurrences of this p-mer in

the specified interval.

3.6.4 Query 4: Find p-mer in (x,y) and not in (r,s)

This query allows users to find a p-mer in a interval(x,y) but not in another interval(r,s).

The following is the pseudo code for this query

begin

//take user input values for the sequence he wants to search
start = start position of the search interval
end = end position of the search interval
r = start position of the second search interval
s = end position of the second search interval
mods = sequence of modifications
inputs = vector for holding the modifications entered by user
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Figure 3.4: Screenshot of third query

pos = vector for storing single matched occurrence
inputs.push back(mods)
filehandle = open(binary file)
rows = memory map(filehandle)
// call the binary search function
num lines = number of lines in the file
bin pos = <Binary Search>(0, num lines-1, start)
// due to repeated positions in the binary file,
// binary search returns the position of the first match
// move back until you encounter the first occurrence of the position being
//searched
while bin pos ≥ 0 do

if rows[bin pos]→position ≥ start then
decrement bin pos

else
break
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end if
end while

// counter for number of occurrences of the particular input pattern
occ count = 0
// counter for number of positions found in the range
found count = 0
num inputs = size of inputs
while (rows[bin pos]→position) ≤ end && bin pos ≤ (num lines-num inputs) do

// store occurrence position since we need to list multiple occurrences
prev occ = rows[bin pos]→position
for j = 0 to num inputs do

mark string = collect all marks from position //same as rows[bin pos]→position
non inputs = characters other than input marks
if (mark string contains inputs[j]) && (mark string does not contains non inputs)
then

increment found count
insert rows[bin pos]→position into pos

end if
end for
if found count = num inputs then

// all input marks matched in the occurrence
insert all values from pos into occurrence[occ count] except between ’r’ and ’s’ insert
all values from pos into occurrence[occ count]
increment occ count

end if
increment bin pos // until next position value is encountered

end while
if occ count == 0 then

print ”No modifications found”
else

display occurrences //display only positions
end if

end

Figure 3.5 shows the result of the fourth query when searched for p-mer ’lh’ between the

interval 247199170 and 247199190 but not in the interval 247199180 to 247199185. It shows

that there are 8 occurrences of this p-mer in the specified interval.
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Figure 3.5: Screenshot of fourth query

3.7 Search by Modification

Apart from searching by a chromosome, user also has the option to search by a modification.

The second query, i.e Find p-mer in (x,y) can be used to search the occurrences of a particular

modification in a given range or within the whole chromosome. A p-mer with a single

modification, i.e a uni-mer, can be used in such a case.

For example the figure 3.6 shows the result of when a search is done for the modification

’d’ (H3K4me1) on chromosome 5 between 60000 and 69000. It shows that there are 14

occurrences of the same. Similarly, a search can be made over the whole chromosome for a

particular modification.
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Figure 3.6: Search for modification H3K4me1 on chr 5 between 60000 and 69000

3.8 Partitioning Algorithm

A divide and conquer strategy is applied to break down an entire chromosome into three

parts recursively, based on the frequency of modifications in each part[6]. A multiple test

correction algorithm[7] is applied to reject parts of the chromosome that are significantly

similar to each other.

Multiple Test Correction is a 2-pass algorithm. The first pass is essentially a simple chi-

square test applied over the entire chromosome and the chromosome is broken down based

on the chi-square being significant at the 0.05 level. The probability values are then sorted

in ascending order and the following formula [Eq. 1] is applied over each of the probabilities

to determine a cut-off probability value. The second pass of the multiple test correction

consists of using this cut-off probability value as a threshold to reject further partitioning

which denotes that the parts in the chromosome are closely similar in their composition.
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Let P1, P2, . . . Pm be the significant probabilities of the nodes sorted in ascending order.

Let ’k’ be the largest ’i’ for which P(i) ≤ i
m(0.05) Eq. 1

Then, we need to re-partition the nodes with probabilities P1, P2, . . . Pk and terminate par-

titioning for nodes with probabilities Pk+1, Pk+2, . . . Pm.

If the three parts of the chromosome involved in the multiple test correction differ sig-

nificantly, then the partition is enacted. If the 3 segments at any level of recursion have

insignificant difference in composition, then the recursion is terminated. If the three seg-

ments are significantly different, then the segment is again broken down into three more

segments and the process is repeated all over again. The result is a ternary tree.

The significance test is carried out as follows:

In any given segment, the positions and modifications are extracted using the first query.

An additional piece of code has been used to count the number of modifications of each kind

in that segment. These counts are then stored in the 1st row of a 2D array which will hold

similar counts from the other two segments. Thus finally we create a 3 X 23 contingency

table.

The homogeneity test is applied to this table. It is used to compute the chi-square statistic

and the resulting value is compared against the critical value (0.05) for the significance level

in the first pass. In the second pass, the critical value changes to the cut-off probability

obtained from the first pass.

The partitioning algorithm used here is shown below.
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1. Consider the entire chromosome as a single segment. Let the significant

probability value, Psig be 0.05.

2. Divide the segment into 3 subsegments.

3. For each subsegment, count the number of each type of modifications and

create a row array of counts.

4. Create the 3 X 23 contingency table from the 3 segments.

5. Calculate the chi-square value for the table, and find the chi-square

probability value, given degrees of freedom is 44.

6. If the chi-square probability value is ≤ Psig, goto step 2, else stop the recursion.

7. List all the probabilities in ascending order.

8. Calculate a new probability as specified in Eq. 1

9. Now, let the new probability be assigned to Psig, making it the new cut-off

critical value for significance.

10. Start from Step 1 and run the recursive steps 2-6 with the new Psig value.

11. When the chi-square probability value is > the new Psig, stop the recursion and

end the program.

3.9 Graphical representation

A tree-like representation is created which allows users to view all the homogeneous inter-

vals within a chromosome. The partition algorithm mentioned in section 3.7 resulted in

a ternary tree which is plotted using gnuplot [2]. Twenty four such trees are drawn, one

for each chromosome. All these graphs can be viewed in Appendix E or on the website

http://giles.genetics.uga.edu/∼ankit/. We decided to represent each interval on the graph

using its mid-point. The graphs are plotted with locations on the chromosome forming the

’x’ co-ordinates and the levels in the tree forming the ’y’ co-ordinates for the graph. The
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highest level in the graph shows all the homogeneous regions in the chromosome.

3.10 Web Process

Figure 3.7: Architecture of the Web Application

The web application can be accessed at http://giles.genetics.uga.edu/∼ankit/. The ap-

plication was created as a 3-tier architecture as shown in Figure 3.6. The presentation,

application and the data storage have been separated into independent modules whose soft-

ware and hardware specifications are described on section 2.2 and 2.3 respectively.
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Chapter 4

Results

4.1 Query timings

Figure 4.1: Timing comparison for different range of search intervals in seconds

Figure 4.1 shows the execution times, in seconds, for all the queries over small, medium

and large intervals of search ranges. As shown in the table, small range is of interval (100-

10000) means that the range of search can vary between 100 to 10000. Ex: A user can search

either 100 to 500 (interval of 400) or he can search 350 - 10300 (interval of 9950). Similarly,

a medium range is of interval (10000 - 1000000) and a large range is of interval (1000000 -

100000000).

The point to note here is that even though the queries run on huge search intervals,

they run very fast and deliver results within seconds. This is largely a result of the memory

mapping technique being employed in the queries. A more important benefit of using memory
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mapping can be seen in figure 1.2.

Figure 4.2: Execution time comparison in seconds

Figure 4.2 shows a comparison of the timings when queries are executed at the beginning

of the file, in the middle of the file and at the end of the file. As seen, the timings are very

similar with only a few milliseconds of difference.

4.2 Coverage

Coverage is defined as the number of times a site was covered by n number of reads of a

particular modification. Appendix A gives an overview on the coverages. As seen from the

examples in figure 4.3, the coverage has a roughly exponential distribution.

4.3 Run lengths

A location can be defined as a position in nucleotides along a chromosome. A run is defined

as a contiguous sequence of locations which consists of DNA reads. Run length is defined as

the distance between start and end positions of these runs. There were cases when another

run would start before the earlier run has ended. Such runs are known as overlapping runs

and in this thesis, they are considered to be different.
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Figure 4.3: Examples of Coverage

Figure 4.4: Examples of Run Lengths

If such overlapping sequences are considered to be the part of the same run, we would

get an exponential curve as shown in figure 4.4 and in Appendix B.

4.4 Spacing

A space is a location with no DNA sequence reads. A run for each kind of modification

will have a corresponding space which comprises of empty locations. Every space can be

associated with a unique run. Similar to run lengths, even spacing has a exponential curve

as shown in figure 4.5
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Figure 4.5: Examples of Spacing

4.5 Correlation Coefficient

Figure 4.6: Correlation Coefficient formula

A correlation between the run and the spaces was calculated by using the formula as

shown in figure 4.6 where ’x’ denotes the run and ’y’ denotes the space.

The correlation coefficient, r , gave very low values as shown in Appendix C, which meant

that the runs and spaces are nearly independent of each other.

As seen from Appendix C, many of the correlation coefficient values were negative, which

indicates a negative correlation between the runs and spaces. This negative correlation is

caused due to the fact that in many cases, the run lengths are longer than their respective

spaces.
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Figure 4.7: Total number of modifications per chromosome

4.6 Total Modifications

Figure 4.7 shows the total number of modifications on every chromosome. These numbers

do not count the overlapping sequences, as overlapping runs were considered to be different.

4.7 Multiple Test Correction

Using a multiple test correction reduced the number of terminal nodes by an average of 8%.

A table showing this is given in appendix D. The table shows the chromosome number and

the terminal nodes obtained before and after using the multiple test correction.
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4.8 Graphs

The graphs are drawn with a tree-like representation with x-axis showing the locations on

the chromosome and y-axis showing the levels in the tree. We see that there are a lot of

non-uniform intervals. Most of the chromosomes get divided up to level 15 (i.e 315 nodes

in the tree) which suggest inhomogeneity with large number of intervals with respect to the

modifications present within them. Most of the graphs have a big gap, which is likely to be

the centromere.

Figure 5 in appendix E shows the graph drawn for chromosome 1. It shows all the

homogeneous regions for that chromosome. Each region is denoted by a point representing

the center of the homogenous interval. This graph, similar to all others, has been drawn

using the partitioning algorithm as described in section 3.8 . The x-axis shows the positions

over the 1st chromosome from 0 to 250,000,000. The y-axis represents the levels of the tree,

from 1 to 15. This denotes how deep the recursion went through. In this case, it went upto

15 levels. However, not all the homogenous regions are at level 15. Some of them have

uniform intervals at lower levels too.

As seen from the graph, there is just one point on the graph at level 1, which represents

the first mid-point in the chromosome. At level 2, there are 3 points on the graph and so

on until level 15. However, due to lack of proper zooming, it is not possible to see distinct

points on the graph at higher levels. So, it seems to be a straight line. There is also a huge

gap or space in the graph where there are no points plotted on the graph. This represents

the centromere of the chromosome. Hence, we do not see any points on the chromosome in

that interval.
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Chapter 5

Discussion

The main development here was to create a partition of each chromosome that was locally

multinomial. The number of intervals in the partition varied from 200,000 - 6,500,000 within

the chromosome. There was thus substantial spatial inhomogeneity in the marks. The graphs

also show that the centromeres are apparent.

We have demonstrated some features of the distribution of epigenetic marks. The spacing

and the run lengths have a roughly exponential distribution and appear uncorrelated. These

observations provides some evidence of the independence in occurrences of the modifications.

What remains to be specified is, ’what is determining the variation in probabilities of a

modification along a chromosome’.

Another observation which can be noted from the coverages table in Appendix A is

that, four modifications namely H3K36me1, H3K36me3, H3K79me1 and H3K79me2, have a

peculiar distribution. But surprisingly the runs and spacing of these modifications is quite

similar to the rest of the modifications. It would be interesting to find out the reason behind

this. We decided to include these modifications in our further calculations as leaving them

out would have results in different counts for our study with only 19 modifications.

We have created the partition for all the chromosomes in the human genome. It would
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be desirable to identify characteristic motifs within elements of the partition and relate the

elements of the partition by composition [9].

Here we have considered overlapping sequences of the same kind of modification as sepa-

rate runs. We might have considered these overlapping sequences as a part of the same run,

which would have eventually led us with comparatively less number of counts.

Before using the multiple test correction, Fishers exact test[3] along with chi-square test

was used for the partition algorithm. But this process increased the number of terminal

nodes by around 20-30%. A reason for this might be the size of the tables. The table size

used here is 3 X 23 (i.e 69 entries). This might be a huge table for the Fishers exact test to

calculate on due to which we might not get appropriate results. The reason for this can be

researched in the future.

The partition algorithm used here results in a large number of terminal nodes. We might

reduce the number of these terminal nodes, by say clustering on composition.

Another limitation of our procedure is optimizing the partition. Different approaches

could have been used to create a better partition in some sense. For example, some kind of

model averaging method could have been used to create the partition boundaries [6].
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Chapter 6

Conclusion

Histones in a human nucleosome are subject to various post-translation modifications such

as acetylation, methylation, phosporylation, etc. The modifications play a important role

in gene regulation. The kind of modification and it location in a DNA sequence is called

epigenetic code. The Epigenetic code is responsible in part for developing and maintaining a

human body structure. This thesis deals with creating a web application for users to quickly

find the epigenetic code along the human chromosomes.This thesis aims at finding a local

structure of the histone modifications in a human genome.

To ascertain this, we created a data structure that can allow users to view quickly the

spatial local locations of the histone modifications in a DNA sequence. The information

about the histone modifications, i.e type of the modification, its location over the chromosome

and their number of reads, were there stored in this data structure format which was then

written in a binary files and stored on the server. A memory mapping technique and a binary

search algorithm were used to search for a specific location in theses binary files. Over results

show that this process very less time and works very efficiently.

Another aim of this thesis is to find all the homogeneous regions in the human chro-

mosome. For this, we used a divide and conquer strategy with the partition algorithm as
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mentioned in 3.7. This resulted in a ternary tree which is represented with the chromosome

positions on the x-axis and the levels in the trees on the y-axis. The graphs show that there

are a large number of terminal nodes in the trees, which represent large non-uniformity in

these regions. The graphs show that almost all the chromosomes get divided up to 15 levels

and hence we infer that there are a large number of homogeneous regions in the partition of

each chromosome.
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Appendix A

Figure 1: Table showing the coverages for all the 23 modifications
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Appendix B

Figure 2: The total run lengths for all the modifications for all the chromosomes
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Appendix C

Figure 3: Table showing correlation coefficient of spacing and run lengths
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Appendix D

Figure 4: Number of terminal nodes before and after applying the multiple test correction
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Appendix E

Figure 5: graphical representation of the partitions on chromosome 1
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Figure 6: graphical representation of the partitions on chromosome 2
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Figure 7: graphical representation of the partitions on chromosome 3
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Figure 8: graphical representation of the partitions on chromosome 4
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Figure 9: graphical representation of the partitions on chromosome 5
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Figure 10: graphical representation of the partitions on chromosome 6
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Figure 11: graphical representation of the partitions on chromosome 7

53



Figure 12: graphical representation of the partitions on chromosome 8
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Figure 13: graphical representation of the partitions on chromosome 9
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Figure 14: graphical representation of the partitions on chromosome 10
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Figure 15: graphical representation of the partitions on chromosome 11
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Figure 16: graphical representation of the partitions on chromosome 12
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Figure 17: graphical representation of the partitions on chromosome 13
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Figure 18: graphical representation of the partitions on chromosome 14
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Figure 19: graphical representation of the partitions on chromosome 15

61



Figure 20: graphical representation of the partitions on chromosome 16
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Figure 21: graphical representation of the partitions on chromosome 17
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Figure 22: graphical representation of the partitions on chromosome 18
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Figure 23: graphical representation of the partitions on chromosome 19
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Figure 24: graphical representation of the partitions on chromosome 20
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Figure 25: graphical representation of the partitions on chromosome 21
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Figure 26: graphical representation of the partitions on chromosome 22
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Figure 27: graphical representation of the partitions on chromosome X
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Figure 28: graphical representation of the partitions on chromosome Y
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