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ABSTRACT

The goal of this study was to investigate high school mathematics teachers’ instructional
practices with contextual problems and their notions of terminology associated with such
problems. The study was motivated by the literature on research and teaching that calls for the
incorporation of contextual problems in high school mathematics. Teaching with such problems
is not easy. Yet little research has focused on teachers’ practices with these problems. In
addition, the increased inclusion of contextual problems in the secondary mathematics
curriculum has introduced terminology associated with such problems. Three such
terms —mathematics in context, applications of mathematics, and mathematical modeling—have
been defined and redefined in the literature, and their meaning has been confounded by disputes
about what constitutes the real world and reality. As a result, mathematics educators and
teachers alike have somewhat ambiguous notions about these concepts.

Six teachers who taught with contextual problems on a near-daily basis in two schools in
the southeastern United States agreed to participate in this study. All teachers were interviewed
concerning their notions of terminology associated with contextual problems and their practices
with such problems. Three of them were also observed teaching lessons that incorporated
contextual problems and interviewed about those lessons. A grounded theory approach and
constant comparative analysis were applied to the data.

The results of this study highlighted that these teachers’ notions of terminology varied,
but that they defined and differentiated the terms along a number of dimensions including the
degree of reality and the role and complexity of the mathematics in the problem. The data also
showed that three features of the teachers’ instruction with contextual problems were important
in shaping the lessons—how they (a) adapted and used problems from other sources, (b) helped
the students formulate the problem, and (c) balanced time and attention to the context and the
mathematics. Four conditions were identified that enabled the teachers to do this work:
technology, commitment, community support, and beliefs. The results of this study have
implications for the preparation and support of high school teachers who incorporate contextual
problems in their teaching, and for mathematics educators who engage in scholarly writing on
this subject.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

This report concerns a study of six high school mathematics teachers’ notions of
terminology associated with contextual problems in mathematics and their instructional practices
with such problems. These teachers were well known for their work and had published
curriculum materials and articles centered on that work in addition to leading workshops.
Interviewing and observing these teachers provided an informative look into how they viewed

and taught with contextual problems.

Background

As the changing economic picture in the United States has required people entering the
workforce to be educated at higher levels, the public has responded with demands that standards
be raised and that schools and educators be more accountable for their performance. In
mathematics education, the National Council of Teachers of Mathematics (NCTM) has
recommended reforming the curriculum and teaching of school mathematics (NCTM, 1989,
2000). A hallmark of this effort has been to make mathematics more practical, useful, and
meaningful to students by using problems embedded in realistic situations or contexts.

The National Science Foundation has supported the development of middle school
materials (e.g., Lappan, Fey, Fitzgerald, Friel, & Phillips, 2002) and high school materials (e.g.,

Coxford, Fey, Hirsch, Schoen, Burrill, & Hart, 1997) that emphasize uses of mathematics and



that also ask teachers to teach in unfamiliar ways. For example, when introducing exponential
functions, high school teachers have typically defined the relevant terms, examined properties of
the functions and their graphs, and supplied students with opportunities to “do the math.” With
the new materials, teachers can use a realistic context to introduce the topic. Problems based on
compound interest, plant growth, or population growth provide students with opportunities to
explore exponential functions in practical situations that can make the mathematics more
meaningful. Yet many teachers lack the experience and knowledge necessary to comfortably
teach with contextual problems or are uncertain how to use such problems in their teaching
(Berry & Houston, 2004). Mathematics students often ask, “When am I ever going to use this?”
But their teachers are typically not prepared to give them a convincing answer. The use of
contextual problems has been proposed as a way to change that.

That proposal and the development of new curriculum materials emphasizing the use of
contextual problems has introduced a range of terminology and perhaps instructional practices
previously given little attention by teachers. Teachers are forced to sort through
terms —mathematics in context, applications of mathematics, and mathematical modeling —and
incorporate problems, technologies, and mathematical ideas that may be unfamiliar or
challenging. Among the myriad of instructional decisions teachers must make are those about
how much time to devote to contextual problems in lieu of the required topics mandated in state
curriculum documents and how best to facilitate students in developing competence with such
problems. The present study was based on my claim that teachers’ notions about the three terms
mathematics in context, applications of mathematics, and mathematical modeling and their
instructional practices with contextual problems warrant investigation. In this chapter I provide a

rationale for that claim.



Using Contextual Problems

Attention to teaching mathematics as a useful tool began in some countries (England, the
Netherlands, and the United States) in the 1970s and 1980s (Pollak, 2003). The move towards
making mathematics more relevant emphasized the introduction of applications and
mathematical modeling into the secondary school curriculum. Proofs of the effort to introduce
those topics are numerous national and international conferences; for example, the intercollegiate
competition for mathematical modeling sponsored by the Consortium for Mathematics and Its
Applications (COMAP) (see http://www.comap.com) beginning in 1985, the International
Conferences on the Teaching of Modeling and Applications (ICTMAs), and the 2004 conference
of the International Commission on Mathematical Instruction’s Study Group 14 on Applications
and Modelling in Mathematics Education. These conferences emphasized applications and
modeling, as have books and papers written in support of the effort (e.g., Blum, Berry, Biehler,
Huntley, Kaiser-Messmer, & Profke, 1989; Breiteig, Huntley, & Kaiser-Messmer, 1993; de
Lange, Keitel, Huntley, & Niss, 1993; National Research Council [NRC], 1998).

At these conferences and in these publications, a number of arguments have been made in
favor of including contextual problems and modeling activities in mathematics curricula and
instruction (Blum & Niss, 1989, 1991; de Lange, 1996). Fifteen years ago, Blum and Niss (1989)
outlined five arguments in favor of using applications, modeling, and problem solving. Versions
of these arguments are still used today by advocates for teaching with contextual problems.

According to Blum and Niss (1989), the “formative argument”

emphasizes the application of mathematics and the performing of mathematical

modeling and problem solving as suitable for developing general competences

and attitudes with students, in particular orientated towards fostering overall

explorative, creative and problem solving capacities, as well as open-mindedness
and self reliance. (p. 5)



This argument supports the claim that students need opportunities to apply mathematics and
recognize its uses in the world. The intent is that through engagement with contextual problems
students will develop enthusiasm and competence with applying, using, and connecting
mathematics within and across disciplines. In this way, contextual problems form or shape
students’ competences and attitudes towards mathematics and, more generally, problem solving.

The second argument is the “critical competence argument” (Blum & Niss, 1989). This
argument

focuses on preparing students to live and act with integrity as private and social

citizens, possessing a critical competence in a society which is being increasingly

influenced by the utilization of mathematics through applications and modeling.

The aim of such a competence is to enable students to see and judge

independently, to recognize and understand representative examples of actual uses

of mathematics. (p. 5)
The critical competence argument for teaching mathematics through contextual problems is in
part a response to the needs and demands of the workforce and of society (Howey, 1998). In our
ever-changing and technologically progressive world, students need experiences in applying and
using the mathematics learned in school to gain an edge in workplace settings. This argument is
similar to the formative argument since it argues that students need specific experiences applying
particular mathematical concepts if they are to be prepared for the workplace—or to be
competent citizens. In working with contextual problems, students gain experiences with
problems that illustrate the actual uses of mathematics in the world.

A recent branch of the critical competence argument—in response to calls for equity in
mathematics teaching—is based on the potential of contextual problems to develop students’
sociopolitical awareness and thus their critical competence. Gutstein (2003) and Ladson-Billings

(1995) have developed the concepts of “pedagogy for political justice” and “culturally relevant

pedagogy” as alternative and more equitable teaching approaches that use contextual problems.



In Gutstein’s pedagogy for political justice contextual problems facilitate three main goals:
helping students develop sociopolitical consciousness, a sense of agency, and positive social and
cultural identities. In Ladson-Billings’ approach, the teacher selects problem contexts that are
culturally relevant to students, thereby connecting the mathematics being taught with aspects of
their daily living. Contextual problems utilized in both approaches not only make mathematics
more accessible and exciting for students but also foster their development as critical, competent
members of a larger sociopolitical community.

The third argument described by Blum and Niss (1989) is the “utility argument.” This
argument

emphasizes that mathematics instruction should prepare students to utilize

mathematics for solving problems in or describing aspects of specific extra-

mathematical areas and situations, whether referring to other subjects or

occupational contexts (mathematics as a service subject) or to the actual or future

everyday lives of students. In other words, mathematics instruction should enable

students to practice applications, modeling and problem solving in a variety of

contexts. (p. 5)
The first part of this argument is practical. Contextual problems provide students with
opportunities to use mathematics and to begin to understand its uses in the world and other fields
of study (e.g., physics and other sciences). In addition, students can be prepared to recognize and
use mathematics in their own lives and future.

The motivational benefits that can be provided by workplace and everyday

problems are worth mentioning, for although some students are aware that certain

mathematics courses are necessary in order to gain entry into particular career

paths, many students are unaware of how particular topics or problem-solving

approaches will have relevance in any workplace. (NRC, 1998, pp. 10-11)

Part of the utility argument is focused on students working mathematics in a variety of

contexts and is supported by studies of ethnomathematics (D’ Ambrosio, 1985) and studies in

developmental psychology (studies of mathematics learning in out-of-school contexts versus in-



school contexts; studies of knowledge transfer) that have explored the mathematics of different
groups in everyday settings, showing that mathematical knowledge is generated and used in a
wide variety of contexts by both adults and children. This research has focused on the
connections between cognition, culture, and context. In particular, the everyday practices of
different groups have been investigated: for example, dairy workers (Scribner, 1984),
construction foremen (Carraher, 1986), farmers (Abreu & Carraher, 1988), child street vendors
(Carraher, 1988), carpenters (Millroy, 1992), candy sellers (Saxe, 1990), shoppers (Lave, 1988),
and fisherman (Schliemann & Nunes, 1990). All these studies showed that the groups developed
efficient strategies for solving mathematical problems in everyday situations —often in ways
differing from school-taught strategies. Thus contextual problems can provide students’ practice
with using mathematics in different contexts, thereby connecting their mathematical practices in
and out of school.

Blum and Niss (1989) describe the fourth argument for the inclusion of contextual
problems in the curriculum as the “picture of mathematics argument,” which

insists that it is an important task of mathematics education to establish with

students a rich and comprehensive picture of mathematics in all its facets, as a

science, as a field of activity in society and culture. Since applications, modeling

and problem solving constitute an essential component in such a picture, this
component should be allotted an appropriate position in mathematics curricula.

®D)
This argument, in my review of the literature, seems to be the least used. It is probable that
advocates deploy this argument the least because it is difficult to support with evidence.
Theoretically, students should develop a rich and comprehensive picture of mathematics, but

practically, it is difficult to argue why.



The final argument described by Blum and Niss (1989) and supported in the literature is
the “prompting mathematics learning argument” that

emphasizes that the incorporation of problem solving, applications and modeling

aspects and activities in mathematics instruction is well suited to assist students in

acquiring, learning and keeping mathematical concepts, notions, methods and

results, by providing motivation for and relevance of mathematical studies. Such

work also contributes to exercise students in thinking mathematically, and in

selecting and performing mathematical techniques within and outside

mathematics. (p. 5)

The first part of this argument is motivational. It supports the idea that applications and
modeling problems have the potential to engage and motivate students since such problems
connect mathematics with the world and thus to students’ lives. The second part of the argument
can be thought of as cognitive in its focus. It is centered on the idea of generalization. To prepare
students to deal with novel problems (both realistic and otherwise), and to help them acquire the
concepts and skills needed to address many of the dilemmas encountered in life, students must
work with concepts and procedures that they can generalize (Masingila, Davidenko, & Prus-
Wisniowska, 1996). Thus “knowing and using students’ out-of-school mathematics practice is
important in school situations because it provides contexts in which students can make
connections” (p. 194) and can acquire knowledge they can generalize to other settings.

According to Blum and Niss (1989), the utility argument and the prompting mathematics
learning argument were the two most often invoked by advocates for teaching with contextual
problems, but the other three arguments were gaining momentum. In my view, each of the five

arguments is being used (the fourth to a lesser degree), and research centered on these arguments

both supports and refutes the various claims.



Teachers’ Notions of Terminology

The increased inclusion of contextual problems in secondary mathematics curricula and
teaching in response to the aforementioned arguments has introduced terminology associated
with such problems. The terms of interest in the first facet of the present study —mathematics in
context, applications of mathematics, and mathematical modeling—have been defined and
redefined in the literature and confounded by disputes about what constitutes the real world and
reality. In my review of the literature (see chapter 2), it was difficult to separate the discussion
and research on contextual problems from the discussion and research on word problems and
other such terms. Overlap between the different concepts and the use of one term in the
definition of another made the terminology murky and somewhat ambiguous (e.g., using the term
application in a definition of mathematical modeling, or the term model in a definition of
application, or the terms contextual and real as modifiers in definitions of many terms). As a
result of these practices, mathematics educators and teachers alike may have somewhat
ambiguous notions about these concepts and what they encompass.

Many writers recognize the ambiguity associated with these terms and therefore define
them in ways that make sense for their work. Even so, one may wish for less ambiguity and
argue for consensus on a definition for each term. But before making that argument, one must
consider why (or whether) consensus is necessary if useful work can be done without full
agreement on precise definitions. One important reason pointed to by Torner (2002) is that
clarification of terminology helps determine research focus. Terms play a functional role in
educational research: They help us to define areas of needed research and to pose pertinent
research questions. Research studies can build on other research and help the field come to

cumulative understanding only if there is agreement about what the research objects are. If the



terms mathematics in context, applications of mathematics, mathematical modeling, word
problems, contextual problems, context-based problems, real-world problems, experientially real
problems, authentic problems, and realistic problems are used almost interchangeably in the
literature but with different intended meanings, then research studies using these terms will have
little to contribute to one another.

According to McLeod and McLeod (2002), one of the difficulties involved in coming to
agreement about a definition may be that the types of definitions as well as the definitions
themselves differ. They argue that some authors distinguish among several separate types of
definitions, each appropriate for a particular kind of audience. The three types of definitions
described by McLeod and McLeod are also appropriate for the present discussion:

1. Informal definitions—these are “rule of thumb” definitions (often used
parenthetically) for a general audience.

2. Formal definitions—these consist of three parts: the term to be defined, the
class of objects or concept to which it belongs, and the distinguishing
characteristics that separate it from all other objects or concepts in the class.
(The class should be small, just large enough to include all members of the
term, but no larger . . . .[Hence it is not helpful in a formal definition to use
the broad term mathematics in context as the class to which applications
belong.]) The intended audience is more sophisticated in its understanding of
technical terms than a general audience, but it is still a broad one.

3. Extended definitions —these start with a formal definition, but continue in
more technical language to include more complete characteristics and
instantiations of the term. The intended audience is specialists in a particular
field (e.g., mathematicians writing for other mathematicians). (p. 118)
With this classification in mind, one can see that many of the definitions proposed for the terms
mathematics in context, applications of mathematics, and mathematical modeling may in fact be

useful for different audiences and purposes. What I claim is that little attention has been paid to

such considerations when the three terms are used in the literature. Furthermore, little



consideration and research has been devoted to how teachers think about and use these terms in

their teaching.

Teachers’ Instructional Practices

The second facet of the present study focused on teachers’ instructional practices with
contextual problems. I approached this study with a broad perspective that allowed for contextual
problems to be defined by the participants. Contextual problems in this study were therefore
taken to be problems the teachers identified as such. I sought teachers who used problems on a
near-daily basis that in some way incorporated the world outside of mathematics —applications,
modeling problems, word problems, and so on. This characterization, however, was never given
to the teachers. Once I had invited a teacher to participate in the study, I asked him or her to
select two lessons for observation that incorporated contextual problems. The lessons they
selected were considered reflective of how they defined contextual problems.

The teachers in this study used contextual problems on a regular basis despite formidable
obstacles to using modeling and applications in mathematics instruction. Blum and Niss (1989)
claim that “many teachers are afraid of not having enough time to deal with [such problems] in
addition to the wealth of compulsory mathematics included in the curriculum” (p. 11). Similarly,
Silver, Kilpatrick, and Schlesinger (1990) assert that teachers often neglect applications of
mathematics because they are not familiar with how the mathematics they are teaching might be
applied or because they do not want to spend valuable class time on activities seen as “outside
mathematics.” Blum and Niss further comment that using modeling and applications makes
mathematics lessons “unquestionably more demanding and less predictable for learners” (p. 11)

and that “references to the world outside mathematics make instruction more open and more

10



demanding for teachers” (p. 12) as well. Even so, Silver et al. argue that students who develop
mathematical models of practical situations gain valuable experience in putting mathematics to
use. “Students come to see the relevance of the mathematics they are learning, and when they do,
it can be a powerful force in motivating further study of mathematics” (p. 9). Thus despite the
obstacles, many teachers choose to incorporate contextual problems into their mathematics
classes. The inclusion of such problems in the curriculum, however, is often at the expense of
other problems and therefore requires a strong commitment by the teacher if contextual problems
are to become a regular part of his or her instruction.

One cannot simply insert an application or modeling problem into a mathematics
curriculum and expect students to create deep meaning. “How students construct meaning
depends much on the teacher’s pedagogy and on the classroom environment co-created by the
teacher and students” (Gutstein, 2003, p. 48). And teachers “come into teaching with distinct
training, motivations, and competence” (da Ponte, 1993, p. 225). Reformers and educators have
often failed to consider these points when asking teachers to incorporate contexts in their
teaching of mathematics. And incorporation is no easy task. Nunes (1992) reports a study in
which teachers created contexts for mathematical topics and integrated them into their
instruction. She notes, “After identifying an everyday situation in which the concept is used, the
teacher needs to know how to use the situation to promote an awareness and understanding of
this concept” (p. 571). Thus much responsibility resides with the teacher.

In support of this claim, several researchers point to the importance of the teacher when
using contextual problems (Cooper, 2001; Gutstein, 2003; Ladson-Billings, 1995; Verschaffel &
de Corte, 1997). The teacher must help students learn how to work with contextual

problems—when to ignore features of the context and when to pay attention to them. Teachers
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are responsible for selecting problems that will be culturally or socio-politically relevant to their
students’ lives, or that facilitate other curricular goals. To this end, a mathematics teacher may
develop, collect, and cultivate a set of practical situations in which any of several previously
learned concepts and techniques might be applied (Silver et al., 1990). Developing such a
problem bank, however, is no easy task: “One of the major challenges to more widespread and
intensive use of modeling and applications in secondary schools is teachers’ lack of experience
with and knowledge about it” (Berry & Houston, 2004, p. 35).

In general, the teacher determines how the mathematics curriculum is interpreted and
taught, and students’ success with contextual problems is heavily dependent on the teacher’s
instructional practices with such problems. Thus it is important to learn from teachers what they
do in the classroom and how they make sense of what they do. With few exceptions (e.g.,
Chapman, 2004; Kilpatrick, Hancock, Mewborn, & Stallings, 1996), researchers have not

studied how mathematics teachers use contextual problems in their instruction.

Situating Teachers’ Notions of Terminology and Instructional Practices

In the process of studying teachers’ instructional practices with contextual problems, I
investigated their beliefs about mathematics, its teaching and learning, and contextual problems.
These teachers’ beliefs are described in chapter 4 to introduce the teachers under investigation
and to situate their instructional practices.

By the term beliefs, I refer to an aspect of teachers’ knowledge that has been given many
labels: perspectives, personal theories, frames of reference, conceptions, and constructs (see, e.g.,
Calderhead, 1991; Calderhead & Robson, 1991; Carter, 1990; Clark & Peterson, 1986; Peterson

& Comeaux, 1987). Beliefs include the frames of reference or the perspectives that teachers use
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to make sense of their practice and its effects on their students. Beliefs are the incontrovertible
personal “truths” held by an individual, deriving from experience or from fantasy and having a
strong affective and evaluative component (Pajares, 1992). According to Thompson (1992),
belief systems do not require social consensus regarding their validity or appropriateness, and
one’s personal beliefs do not require internal consistency. Consequently, beliefs are quite
disputable, more inflexible, and less dynamic than other aspects of knowledge (Pajares, 1992).
Although we cannot live and act without beliefs, one of the most important goals of education is
to discuss and promote our awareness of them.

In the present study, I assumed that all our knowledge, including our beliefs and
conceptions, has roots in our social activity and is shaped by our experience. I did not view
beliefs as determining practice, because I believe the social institutions in which we live and
their constraints —including schools —mostly shape practice. Instead, I took beliefs as important
in understanding teachers’ practices and therefore investigated those beliefs so as to further

contextualize and ground the knowledge and theory produced in the study.

Problem Statement and Research Questions

This study was focused on high school mathematics teachers with reputations for using
contextual problems. In the first facet of the study, I investigated how these teachers thought
about and defined the terms mathematics in context, applications of mathematics, and
mathematical modeling. My hope was to begin a conversation in the field (similar to the one
about defining beliefs; see the articles published in Leder, Pehkonen, & Torner, 2002) about the
definitions of these terms and whether the ways in which they have been and continue to be

described in the literature are sufficient. I thought that perhaps these teachers could shed light on
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practical dilemmas resulting from the somewhat imprecise definitions of these terms used in
textbooks and in conversation with teachers. In the second facet of the study, I investigated the
teachers’ instructional practices with contextual problems. My assumption was that teachers are
asked to use contextual problems but that many encounter the obstacles described by Blum and
Niss (1989) and Silver et al. (1990). To begin to think about how to prepare U.S. teachers more
broadly to use contextual problems in their teaching, I studied teachers who were already doing
that work on a regular basis.

In this qualitative study, framed by interpretivist and interactionist theories, I interviewed
six high school mathematics teachers with reputations for using contextual problems on a near-
daily basis, and I observed three of them. My purpose was to build descriptions of: (a) the
teachers’ notions of and the relations between terms associated with contextual problems, (b) the
instructional practices of these teachers, and (c) the conditions that enabled these teachers to
teach with such problems. The teachers’ beliefs were also investigated as a way to introduce the
teachers and situate their instructional practices. Specifically, in this study, I addressed each of
the following questions:

1. How do these teachers define and relate the terms mathematics in context,
applications of mathematics, and mathematical modeling’!

2. What are these teachers’ instructional practices with contextual problems?

To address these questions in the chapters that follow, I provide an overview of the
relevant literature (chapter 2), detail the theory and methodology employed (chapter 3), and
present my findings (chapters 4 to 7). In chapter 8, I discuss the implications of my study and

make suggestions for future research.
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CHAPTER 2

SURVEYING THE LANDSCAPE: A REVIEW OF RELEVANT LITERATURE

The present study concerned teachers’ notions of terminology associated with contextual
problems and their instructional practices with such problems. I organize this chapter according
to these foci. I first describe how the terms mathematics in context, applications of mathematics,
and mathematical modeling have been defined and used by teachers and researchers as reported
in the literature. I then discuss research focused on teachers’ instructional practices with
contextual problems and the challenges they face when incorporating such problems into their

teaching.

Muddy Waters— Ambiguity of Terminology

To begin to understand teachers’ notions of contextual problems and how these might be
“messy,” it was important to examine how various terms associated with contextual problems
and teaching are defined and used in the literature. It was also important to look at how work
centered on such problems is confounded by disputes about what constitutes the real world and
reality. | present relevant literature on these points below.

Teachers’ Notions of Terminology

In my review of the research literature, I did not locate any studies specifically

investigating mathematics teachers’ notions of the terms mathematics in context, applications of

mathematics, or mathematical modeling. In the course of studying other aspects of teachers’
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work, however, some researchers hinted at teachers’ knowledge of these terms. For example, in
Kilpatrick et al.’s (1996) study of an innovative teacher-developed precalculus curriculum, they
reported that the teachers who were developing the curriculum made the decision that “if we
can’t introduce a concept with an application, then we won’t teach it” (p. 154). In the teachers’
development of the curriculum —using this criterion for the selection of problems— Kilpatrick et
al. reported that the teachers selected “big problems” often based in real data that were “deep, yet
manageable questions arising from a realistic situation and offering ample opportunities for
exploration” (p. 159). They also reported that “grounding the [precalculus] course in data
analysis and modeling, together with [the criterion above], shifted the instructional sequence in
precalculus from definition-theorem-proof-example-practice to situation-problem-data-model-
solution” (p. 160). From the problems selected by the teachers for inclusion in the curriculum
and the shift made in their instructional sequence, one can conclude that these teachers’ notions
of applications resonated with the definition given by Silver et al. (1990): An application begins
in a situation or context, often ill-defined, and solving it requires the creation of a mathematical
model. The modeling involved in the application problems selected and designed by the teachers
in the study (i.e., Kilpatrick et al.) was unique and relevant to the present study, but how the
teachers were thinking of modeling, applications, or realistic was not explored by Kilpatrick et
al.

Similarly, in a study by Chapman (2004), explicit attention was not given to the teachers’
notions of terminology. Much can be inferred, however, from her research report. Chapman
stated that she studied teachers’ thinking and practice as it related to their teaching of word
problems. She also sought to answer the question: What is the thinking of teachers who include

modeling in their teaching, and what teaching strategies do they use that facilitate modeling?
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From these statements, one can infer that Chapman viewed modeling as related to word
problems, although it is not clear how. She stated that “modeling was considered to include
situations that involved general problem solving strategies but not situations that emphasized
translating key words to mathematical procedure in an instrumental way” (p. 66). From this
statement, one can conclude that she saw modeling as requiring somewhat more sophisticated
methods than solving typical word problems.

Chapman’s (2004) report also suggests how the teachers in her study were thinking about
modeling and word problems. She reported that the teachers “conceptualized word problems as
being most valuable and meaningful when they [were] located in the world in terms of actual or
realistic situations” (p. 66) and that the “teachers’ practice included specific strategies that
facilitated modeling in a variety of situations” (p. 67). Again, one sees that Chapman is
connecting word problems with modeling. The teachers had specific ways of thinking about the
connection between reality and word problems, problems that I conjecture could be categorized
more specifically as applications or modeling problems.

The question remains: How do teachers think about terms associated with contextual
problems? How might different notions of these terms affect practice, if at all? The mixture of
informal, formal, and extended definitions (McLeod & McLeod, 2002) of these terms to be
found in the literature on teaching and research may have led to ambiguity about their meaning,
and teachers’ notions of these terms have not been explored.

Researchers’ Entanglement of Terms

It is yet to be seen whether teachers have ambiguous notions of the terms mathematics in
context, applications of mathematics, or mathematical modeling, but close inspection of the ways

in which these terms are defined and used in the research literature supports such a conjecture.
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The terms have been defined, redefined, and used to support a number of different arguments
and theoretical perspectives. Much of this definition and use has led to fuzzy notions of what the
terms mean.

According to Henn and Blum (2004), applications and modeling have been—and
continue to be—a central theme in mathematics education because “very many questions and

problems concerning human learning and the teaching of mathematics affect, and are affected

e

by, relations between mathematics and the real world” (p. 7), where real world denotes the “‘rest

of the world’ outside mathematics, that is, everything that has to do with nature, society or
culture, including everyday life, as well as subjects or disciplines different from mathematics” (p.
7). In this description, the real world is broadly defined, but further explication of what is meant
by applications and modeling is necessary so that an understanding can be taken as shared by
mathematics educators.

Mathematical modelling often denotes the process leading from a real world
problem situation to a mathematical model of this situation. In a broader sense,
this notion is used here to describe the entire process of linking mathematics and
the real world, that is, structuring and mathematising a problem situation, working
within mathematics to derive useful results, and validating as well as interpreting
these results in the original situation (perhaps involving several iterations round
the loop). The term applications of mathematics is used to denote segments of the
real world that can be, or have been tackled by means of mathematics, and for
which there exist corresponding mathematical models. In an application, we know
the mathematics and apply it to the real world. In modelling, we begin with the
real world situation and look for some mathematics that we might apply to the
situation. The term “modelling” emphasizes more the processes involved in the
interplay between the real world and mathematics, whereas the term “application”
focuses more on the objects involved. During the last decade or so it has become
common to use the combined term applications and modelling in order to
encompass the many kinds of problems and relationships linking the real world
and mathematics. (p. 7)
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The above quotation implies that to some degree, two of the three focus terms have clearcut
formal definitions. Yet these meanings have evolved over time and have been, and continue to
be, changed and redefined.

The most familiar, and to some extent, the least fuzzy of the three terms is applications of
mathematics. According to Silver, et al. (1990),

applications typically begin with an ill-defined situation outside mathematics —in

economics, physics, engineering, biology, or almost any field of human activity.

The job is to understand this situation as well as possible. The procedure is to

make a mathematical model which we hope will shed some light on the situation

we are trying to understand. (p. 9)

In subtle contrast, Pollak (2003) states that an application of mathematics is typically an
idealized version of a real-world problem given to a solver “who must then translate it into
mathematical terms, carry out appropriate mathematics, and restate the results in the vocabulary
of the real-world situation” (p. 650). According to Pollak, every application of mathematics uses
mathematics to understand, or evaluate, or predict something in the part of the world outside of
mathematics.

Differences like those detected in the definitions of application given by Pollak (2003)
and Silver et al. (1990) may contribute to the fuzziness of the term. For Silver et al., an
application begins with an ill-defined situation, whereas for Pollak, it begins with an idealized,
somewhat simplistic, version of a real-world problem. Also note that although Pollak avoided the
use of the word model in his definition of the term, he described a process that paralleled the
modeling process as described by Henn and Blum (2004) and others. The introduction of model,
explicitly or implicitly, into the definition of application complicates a shared understanding of

both terms by connecting the concepts—each of which has its own definitions —in implicit ways.

Such discrepancies in the definitions may seem insignificant but are important for teachers,
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curriculum developers, and researchers who are trying to select, design, use, and study
applications. A notion shared in both definitions of an application is its connections that lead
outside of a mathematical domain. According to these definitions, applications involve situations
from the real world or another discipline.

Mathematics educators often describe applications in ways similar to Henn and Blum
(2004), Silver et al. (1990), and Pollak (2003). Despite the discrepancies cited above, defining
applications in such limited ways is problematic for Robert and Treiner (2004), who remind us of
the limitations of language:

The proposed definition of an “application of mathematics” [given by Henn and

Blum] does not seem to be satisfactory. . . . Indeed, tackling a world situation by

means of mathematics may often be called creating new mathematics rather than

applying them! The word group applying mathematics implicitly assumes that

mathematics preexist to their application and have the status of a tool for other
disciplines. This masks the role of other disciplines in the creation of new fields

of mathematics. (p. 223)

Thus, in defining applications of mathematics (or any other concept) in particular ways, we limit
the possibilities of the concept in some ways and potentially open it other ways. We must always
ask: What does this definition allow and what does it prohibit? What might be different if I re-
described this concept in a new way? How might I define this term so that others and I can work
with taken-as-shared meanings?

The second term, mathematical modeling, or simply modeling, while familiar to
mathematics educators, is less familiar to many teachers and is easily misinterpreted or
misunderstood. The term mathematical modeling is used to describe or interpret two related
types of activity. The first type is the process of translating the real world into mathematical

terms (Gravemeijer, 1997) for the purpose of solving a problem or analyzing a situation (Dossey,

1996). The second type involves the various steps by which one accomplishes the first, loosely
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organized around a heuristic framework (often called the modeling process), and “the process of
using these steps to solve a real world problem” (Berry & Houston, 1995, p. 24). Differentiation
between these two activities is a matter of attention to language and is seldom done explicitly.

Johnson’s (1979) argument for students to model real-world phenomena using
mathematics resonates with the former of the two types: translation.

A mathematical model can be thought of as an equation or set of equations that

can be used to explain known phenomena and to make predictions. This, in a

sense, differentiates between modeling and the typical translation, of “write an

equation and solve for x” settings. Translation exercises tend to emphasize a
specific case, whereas modeling usually involves some notion of generalization.

(p- 138)
Alternately, modeling as a process is often characterized as a cyclic one in which one starts with
a “real problem set in words,” formulates a mathematical model and mathematical problem by
making assumptions and simplifications, solves the mathematical problem and interprets the
solution. The cycle is repeated until revisions generate a satisfactory solution to the problem
under investigation. This process is complex and often involves creating a miniature problem
that is analogous to the larger problem but that enables the modeler to draw more precise
conclusions. The miniature problem can be extrapolated to the original real-life problem.
Although the model attempts to simulate the original problem, it cannot truly replicate all the
constraints that might be imposed by the problem itself.

What distinguishes modeling from other forms of applications of mathematics are

(1) explicit attention at the beginning to the process of getting from the problem

outside of mathematics to its mathematical formulation and (2) an explicit

reconciliation between the mathematics and the real-world situation at the end.

(Pollak, 2003, p. 649)

Modeling is usually a form of metaphor; a model serves as a simplified representation of

a portion of reality (of interest in a certain problem) used for improving the visualization of some

aspects, generalizing properties (grammar rules), or allowing comparisons (Dapueto & Parenti,
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1999). The process of modeling involves focusing on essential aspects of the problem,
identifying relations among the aspects and reality, and associating these aspects to the model. In
mathematical modeling this process is called mathematization.

Enacting this process is not so simple, because the phrase mathematical modeling covers
a broad range of theoretical and practical orientations; it is not clear what enactment of this
process entails. In addition, De Villiers (1993, p. 3) describes three different categories of model
application: namely, direct application (“immediate recognition of a model to be used”),
analogical application (“development of a model that is similar to an existing model”), and
creative application (“a completely new model is created using new techniques and concepts”).
Not only does De Villiers’s characterization make the modeling waters more murky, but in its
use of the word application, it makes that concept less clear as well. Mathematical modeling as a
phrase thus encompasses such a range of activity and application that researchers and readers are
often forced to guess what speakers might mean when they say their students will be “doing a
modeling problem.” Will they create a mathematical model that explains a phenomenon in the
world? Will they fit a pre-existing model to a set of real data? Or will they apply mathematics
previously learned in a new setting?

The last term I explore is the notion of mathematics in context. This term gained
recognition among mathematics educators in the 1990s with the development of the U.S. middle
school mathematics curriculum of the same name, Mathematics in Context (Romberg,
1997-1998). This curriculum was developed at the University of Wisconsin— Madison and the
Freudenthal Institute in the Netherlands and is underpinned by the theory of Realistic
Mathematics Education (RME). Thus the term mathematics in context is a referent that has

developed over time from interpretations of RME and from informal usages of the term. For
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example, a teacher may be said to be teaching mathematics in context if his or her students are
solving problems connected in some way to the real world, or if they are doing mathematics in
settings outside of school (e.g., using mathematics to design a playground for a city park).

At the heart of mathematics in context is the word context, and on this word I focused
much of my attention and that of the teachers in this study. Treffers (1978/1987) expounds the
notion of context in RME, the theory through which the term mathematics in context evolved:

With regard to form and function context problems is a broader conception than

traditional word or text problems. A context problem looks like a word problem, or may

be embedded in a play, game, described in a story, offered as a press-cutting, represented
by models or graphs, or as a combination of such information resources. They can be part
of themes or projects. . . . As far as content is concerned, ‘context’ means: (a) that, in the
case of an isolated, self-contained problem, one looks for the ‘surroundings’ of the text or
the presentation of the problem, in other words, for that which is not explicitly formulated

or presented, but does belong to the background assumptions; (b) that, in the case of a

non-self-contained problem, one looks for the surroundings explicitly evoked by the

story, the theme, the location, which, as a matter of fact, also carry their own background

assumptions with them. (p. 255)

In this way, mathematics in context refers to mathematics taught in real situations
(contexts) or within real (context-based) applications. Contexts are elements of each of the
constructs: applications and models. The context is the real situation or setting embedded in the
application or modeled by the mathematics. Contexts are “domains of reality disclosed to the
learner in order to be mathematised” (Freudenthal, 1991, p. 75). These domains vary in form and
include: locations (students work mathematics in a real setting outside of school), stories
(mathematics presented in the context of a story), projects (mathematics projects in communities
and workplaces), themes (mathematics in the context of other mathematics), and clippings

(mathematics as in newspapers, television, and commercials). In all of these instances, the goal is

to relate mathematics to some aspect of the world or to other aspects of its own domain.
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The word context has also been associated with notions of “teaching or learning in
context” (also known as “situated teaching or learning”). In terms of a given set of disciplinary
concepts, the word context is used to “indicate a situation or activity in which these concepts are
introduced and applied in a meaningful manner (that is, meaningful as regards to the situation or
activity itself)” (Dapueto & Parenti, 1999, p. 2, italics in original).

For Wedege (1999), a differentiation between task context and situation context is
important:

According to the dictionaries, the word ‘context’ has two fundamental meanings. The one

is linguistic, meaning words that come before and after a word, phrase, statement etc.,

helping to show what the meaning is. The other meaning has to do with historical, social,
psychological etc. circumstances in which, a) something happens, or, b) something is to
be considered. Mathematical didacticians use the term ‘context’ in both fundamental
meanings. ‘Context’ representing reality in tasks, word problems, examples, textbooks,
teaching materials, is closest to the linguistic fundamental meaning. . . . I call this type
task-context. . . . In the other fundamental meaning, . . . researchers in mathematics
education speak of a context for learning, using and knowing mathematics (school,
everyday life, place of work etc.), or context of mathematics education (educational

system, educational policies etc.). . . . I call this type situation context. (pp. 206-207)

I applaud Wedege’s attempt to clear some of the waters by defining context in these
ways; practitioners and researchers can begin to overcome the ambiguity of the terms and work
from a common ground in terms of the word context. Still, a shared understanding of
mathematics in context is fuzzy. Is the term similar to Wedege’s definitions of the two types of
contexts? Neither? Both, in different ways? The answers to these questions are not clear.

In the research literature, scholars have argued that there is a need for common
definitions across terms. “To arrive at a definition,” however, may mean quite different things
depending on the intent of the one who defines it. Without clearly established common referents

(Lampert & Ball, 1998), we run the risk of reaching apparent agreement but not really. Thus the

use of certain key expressions—in education as in other fields—does not necessarily mean that
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the speakers or writers are thinking about the same thing. They may be using the same words but
defining them in very different ways—in essence, they are talking at each other, not with each
other.

Throwing Reality Into the Water

Scholars have struggled to find words to describe the kinds of problems intended to
resonate with students—those problems that are meaningful to students because somehow they
are more real than typical textbook problems. But what is real varies with the theory and the
writer. For some scholars, “real” has been a focal point of their work and has become a well-
developed and well-defined concept. For example, the work at the Freudenthal Institute on the
RME theory has resulted in a broad interpretation of real.

The word “reality” can be interpreted two ways. First, it can refer to real-life
contexts that offer opportunities for concept-building, model-building,
application, and exercising (de Lange, 1987). However, reality is not synonymous
with real life. It can also refer to mathematical situations that students experience
as realistic. The essential point here is the word “experience.” Therefore,
Gravemeijer (1999) speaks about “experientially real” situations, which can refer
both to the real life and to mathematics. For example, if students have developed a
mathematical reality in which linear functions are meaningful objects, an
assignment that starts with “A linear function f has the property...” may be
perceived as realistic. Essential in the word “realistic,” therefore, is that the
activities and concepts involved are meaningful and natural to the students, no
matter whether the meaning is derived from a real-life situation, from
mathematics, or from another topic. (Drijvers, 2003, p. 53)

Similarly, Brown (2001) proposes that problems need not draw on applications as their
sole source of content. “Real is not merely what we can touch. It is important to see it as what
touches us” (p. 31). Fictional characters like Barney are products of human imagination and can
be very real for children. Thus realistic means

that the context of the problem is imaginable for students. . . . The fantasy world

of fairy tales and even the formal world of mathematics can provide suitable

contexts for a problem, as long as they are real in the students’ minds and they
can experience them as real. (van den Heuvel-Panhuizen, 2004, p. 3)

25



Brown (2001) and van den Heuvel-Panhuizen (2004) claim that problems framed in this way can
be engaging and can lead to learning.

Brown (2001) also comments on real in terms of mathematical modeling. He notes that
the focus in modeling is not on imagination or creativity but rather on seeking a correspondence
between the elements of the real world and associated mathematical concepts and operations. In
the modeling process, one of the first things students are encouraged to do is to identify and
eliminate “irrelevant” information in the name of “making simplifying assumptions.” This step is
not always appropriate in real problems. Many so-called real problems involve ethical and moral
issues that cannot simply be discarded; they must also be considered. Mathematics cannot solve
real problems on its own; rather, people can use mathematics to inform their decisions, such as
by learning how confident one can be when making inferences from a small data set.

Although Brown (2001) concedes that the modeling connection is sometimes useful, he
proposes an alternative and much broader view of connections between mathematics and the
world. He argues that general human devices including humor, metaphor, error making,
confusion, morality, and self-understanding connect the mathematics world and the
nonmathematics world. Mathematics “is already ‘in’ the real world, and it is only by making
believe that it is severed from the world that we arrive at some artificial notion of ‘application.’
That is, the application is there by virtue of the very way we speak about events in the world” (p.
153). Brown’s point is well taken, particularly if one accepts Lakoff and Nunez’s (2000) thesis
that mathematics is a mental creation of human minds and that people’s understanding of central
ideas in mathematics evolves and continues to evolve through their use of metaphorical thought.
There are certainly important connections between mathematics and the world other than those

that arise from mathematical modeling or applications.
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Mokros, Russell, and Economopoulos (1995) identified the focus on making problems
“real” for students in elementary grades as one of the red herrings of the reform movement in
mathematics education. Real in this sense was taken to mean relevant, familiar, about the world
that students know, and built on and applicable to their everyday experience. Russell (1996)
cautioned that teachers and mathematics educators should not put too much stock in such
characterizations of real contexts. “It is not the context of the problem itself, but the context of
mathematical inquiry that determines whether or not students are engaged with mathematics” (p.
159). Students do not perceive school mathematics tasks as real merely because they have been
given a real world “veneer” (Maier, 1991), yet their mathematical procedures and performance
are largely determined by the context. Hence such problems may not simply be unrealistic; they
may affect students’ performance.

The following excerpt from Robert and Treiner (2004) points to another danger in
defining real:

One can always redefine the meaning of a word, and work with a new convention,

but it is dangerous to do this with the word “real,” when the subject matter is

physical and/or mathematical modeling. “Real world,” in the context of sciences,

is usually opposed to “abstract world.” This opposition is fruitful, since one is

interested in various phenomena which we would like to understand, and

understanding always goes with an “abstract” (mental) reconstruction of the “real
world,” the world out there. (p. 223)

Summary

I have pointed to the multiple ways in which the terms mathematics in context,
applications of mathematics, and mathematical modeling have been used in the research
literature. By paying little attention to the type of definition being used —informal, formal, or
extended (McLeod & McLeod, 2002) —and by using these terms to define one another, teachers

and researchers may exhibit fuzzy notions about what the terms reference. Furthermore, the
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multiplicity of meanings and uses associated with these terms have led some researchers to make
explicit distinctions between kinds of modeling and types of contexts. Yet these efforts have had
little effect because others have not taken up these ideas and employed them in their work. In
addition, disputes about what is real and how real a problem’s context is have further muddied
notions about these terms.

It is important to note also that teachers, researchers, and mathematics educators have not
explicitly defined the term mathematics in context. It is employed in the literature and used
informally in conversation as if teachers and researchers have a shared understanding of its
meaning. In my view it is the least articulated of the three terms in the present study.

Finally, I think it is important to recognize that the three terms of interest in this study are
only a few of many that could have been studied. Sorting through the research literature on
teachers’ and students’ work with word problems, contextual problems, applications, work-based
problems, and modeling problems proved difficult. Many of the ideas in that research seem to
overlap. Yet when one considers how these terms are differentiated by scholars who specialize in
studies of, say, word problems —if one can detect how they are differentiated —one is not sure
how or to what extent the research on one problem type informs research on another type. A
more explicit distinction between definition types and problem types is needed. This study
sought to address that need by investigating teachers’ notions of the three terms and their

relations.

Teachers’ Instructional Practices With Contextual Problems

Little attention has been given to teachers’ notions of terminology associated with

contextual problems. Likewise, little research has focused on teachers’ instructional practices
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with such problems. In this study, teachers’ instructional practices were taken to include both
teachers’ talk and action, what they say as well as what they do. These forms of practice shape
mathematics lessons and students’ opportunities to learn.

Chapman (2004) studied teachers’ thinking and practice as it related to their teaching of
word problems. Part of her study focused on the teaching strategies the teachers used to facilitate
modeling. Chapman and two research assistants interviewed and observed 22 mathematics
teachers from junior and senior high schools. Using inductive analyses, they described teachers’
conceptions that influenced modeling pedagogy and offered examples of teaching strategies.
Chapman reported excerpts from the teacher interviews that “are representative of the teachers’
conceptions of mathematics” (p. 66) and gave examples of modeling lessons taught by the
“exemplary” teachers. Her findings focused on the teachers’ conceptions (e.g., these teachers had
very “logical” conceptions of mathematics, thought word problems were most valuable and
meaningful when located in actual or realistic situations, and viewed problem solving as a
thinking process and life skill) and teaching strategies.

Chapman (2004) concluded that the teachers’ conceptions were important factors in
creating a classroom culture that supported modeling and application. “With the appropriate
conceptions, teachers are able to implement teaching strategies that allow students to experience
modeling in a realistic way” (p. 70). But what were those teaching strategies? In four examples,
Chapman described teachers whose instructional practices included focusing on problem solving
and mathematical assumptions; questioning students’ work, ideas, and assumptions; facilitating
students as they worked collaboratively on tasks; leading whole-class discussions of the
mathematics and contexts in the given problems; and incorporating real-world data from

newspapers and elsewhere. In the report, Chapman did not elaborate on these practices.
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Chapman’s (2004) study focused on the modeling pedagogy of teachers selected because
of evidence that they used “real or realistic situations to develop and apply mathematics
concepts” (p. 66). Her findings concerning teachers’ practices were informative but lacked a
degree of detail that could differentiate the teachers’ practices from those of almost any reform-
oriented mathematics teacher. For example, many teachers question students and facilitate
classroom discussions. But how were these practices specific to teaching with “word problems”
or using “a modeling pedagogy?”

Unlike Chapman, I did not restrict the present study to teachers who were using a
modeling pedagogy. My goal was to draw attention to the negotiations made by the teachers (and
their students) in their work with contextual problems—how the teachers organized the lessons
to facilitate students’ learning, and how they adjusted their teaching (and the mathematics) to
account for both contextual and mathematical considerations. In my reading of Chapman’s
report, I realized that I was interested in the finer details of the teachers’ practices —details
missing from the report. I therefore zoomed in to investigate the teachers’ practices—how they
were questioning students, what kinds of questions they were asking and for what purposes, and
how they were facilitating discussions. For me, it was insufficient to say that teachers were
facilitating discussion without describing how and foward what goal they were working.

The present study was also informed by a study conducted by Kilpatrick et al. (1996),
which focused on teachers’ development of a precalculus curriculum based on the idea that all
mathematical concepts would be introduced to students through an application. In this way, the
students would select the mathematics to use to solve a given problem, or they would develop

new mathematics and models as needed. Kilpatrick and his colleagues reported that the teachers
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who attempted to implement this curriculum in their courses faced challenges but were able to
gradually change their teaching practices.

Initially, some teachers in the study (Kilpatrick et al., 1996) feared that the students
would not be able to solve the problems and often gave too much information and assistance.
Over time, and with support and collaboration, the teachers became more comfortable with
allowing the students to struggle and work together on “big” ill-defined problems that yielded
multiple correct answers. Their instruction incorporated the use of technology in the form of
graphing calculators, and much emphasis was placed on data analysis and modeling. The
teachers in all five schools in the study were involved in the mathematics education community
at various levels: national, local, and at the school where the curriculum had been developed.
Through the collaborations within these communities, the teachers’ instruction evolved as the
curriculum did. Central themes in the precalculus text—data analysis and modeling—began to
spill over into other subject areas. Not only had precalculus changed but so had the teachers and
their approaches to teaching. For example, the teachers no longer followed a detailed syllabus for
their courses. They became much more interested in connecting themes of ideas across
mathematics. “They felt comfortable modifying, reordering, or dropping units that did not seem
to work as they should and adding others” (Kilpatrick et al., 1996, pp. 220-221). In addition,
many of the teachers studied by Kilpatrick and his colleagues were willing to take risks in their
teaching and move away from traditional modes of teaching. This move required knowledge,
courage, and support. As a result, the teachers in the study were able to make change not only in
their school but across schools and states.

Because the teachers in Kilpatrick et al.’s (1996) study evidenced a commitment to

contextual problems and a willingness to use such problems regularly in their teaching—so much
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so that they were willing to discard mathematical topics they could not introduce through an
application—I wondered what the practices of such teachers might be. I was interested in
studying teachers’ practices as a way to inform mathematics educators seeking to prepare
teachers to teach with contextual problems. The most fruitful site for informing this interest was
with teachers already doing that work. Similarly, Kilpatrick et al. talked with teachers, reviewed
historical documents, observed some teaching, and took into account factors at local, state, and
national levels that affected the teachers’ development of the precalculus curriculum. I, too, felt
it was important to interview and observe teachers, to look both closely and broadly at their

instructional practices, and to account for the conditions enabling them to do their work.

Challenges of Using Contextual Problems

In spite of the arguments presented in chapter 1 for the inclusion of contextual problems
in the teaching of mathematics, counterarguments and challenges to using such problems are
numerous. For example, one debate alluded to in chapter 1 asks whether the context of a problem
hinders or helps learning. One side argues that students should work predominantly with
abstraction and that competence with abstract mathematical thinking is necessary if they are to
generalize and apply their knowledge in any situation or setting. Advocates of this argument are
concerned that students who are taught mathematics predominantly in context will not be able to
think abstractly —using contexts hinders learning. Advocates on the other side of the debate
claim that students need some practice applying mathematics and recognizing its uses in the
world. If students work solely with abstract mathematics, they may become disengaged from the
content and disinterested in mathematics because the subject will seem disconnected from their

lives—using contexts helps learning. The debate may lead teachers of mathematics to question
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whether they should use contextual problems in their teaching. Perhaps a balance of the two
perspectives would be best. Students should engage in both mathematical abstraction and
application. Thus, alongside the learning of pure mathematics, contextual problems are worth
consideration.

Another reason for teachers to question the place of contextual problems in the
curriculum has to do with research that shows many students ignore the context of a problem
focusing only on the numbers. One reason students ignore the context may be its artificiality.
The context may be so artificial that, for the student, it is really not a context at all. Or the
context may not be experientially meaningful or real to the student and is therefore seen as
unimportant or confounding. Blum and Niss (1991) note that

there are abbreviated and restricted links between mathematics and reality which

are much more frequently found: On the one hand a direct application of already

developed “standard” mathematical models to real situations with a mathematical

content, on the other hand a “dressing up” of purely mathematical problems in the

words of another discipline or of everyday life. Such problems often give a

distorted picture of reality. (p. 40)

Students may also ignore the context because of established practices of school
mathematics. Many students have learned that mathematics as presented in school is about
numbers and getting correct answers. The problem’s context may appear to be of little concern to
the teacher compared with the problem’s solution. Thus many students have learned that there is
no need to pay attention to context when solving a problem. In fact, attention to the context may
lead to an answer deemed unacceptable by the teacher. The student may account for too much
“reality” when solving the problem. According to Schwarzkopf (2004), solving word problems

demands an interplay between at least two very different framings: namely, a framing based on

“everyday understanding” of the problem’s real-world context and a “mathematical” framing:
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The interplay is complex in nature, because within different framings the

participants are acting in different ways concerning the relevance of facts, the

meaning of assertions, the acceptance of statements, the rules for correct

reasoning and many other aspects. Hence, solving [contextual] word problems

demands a switch between framings that are not only different, but sometimes

contradictory concerning their rule for rational acting. (p. 242)
This quotation points to the complexities encountered by students when working with contextual
problems. On the one hand, students must understand the framing within which they are working
and make decisions based on that framing. On the other hand, contextual problems may give
students a distorted picture of reality because particular features of the problem are often
irrelevant in a mathematical sense. Students may view all contextual problems within a
mathematical frame because the problems are encountered in a school mathematics context.

Cooper and Dunne (2000) provide further evidence that students may have learned to
ignore a problem’s context in a school setting. They report that in the context of realistic
assessments, to be successful, students are often required to consider some, but not too many,
features of the real situation described in a task. Such findings have led Cooper and Dunne and
other researchers (Boaler, 2000a; Schoenfeld, 1991; Verschaffel, Greer, & De Corte, 2000) to
express concern about students’ suspension of sense-making when working with contextual
problems, particularly when connecting school mathematics and reality. Students may use
solution strategies with contextual problems that do not include any consideration of the realities
of the situations described in the problems. Boaler (1993) suggested that

contexts may be useful in relation to learning transfer even though contexts as

they are generally used are not useful, and that the factors which determine

whether a context is useful or not are numerous and complex and have little to do

with a description or depiction of real world events which students will eventually

encounter. (p. 13, emphasis in original)

Thus, the selection of contextual problems for use in instruction and the classroom practices

established when working with such problems require deliberation by the teacher.
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To counteract the tendency of some students to strip away and ignore real-world
constraints, Verschaffel and de Corte (1997) designed instruction that would, they hoped,
encourage fifth-grade students to be more sensitive to real-world constraints when formulating
solutions. In a comparative study, they found a strong tendency for students to exclude realistic
considerations on the pretest, but instruction in the experimental class was effective in
significantly improving realistic responses on the posttest. In the control class, students
performed similarly on both the pretest and posttest. Thus simply including contextual problems
in the curriculum was not sufficient; students had to be taught how to work with such problems.
As aresult, Verschaffel and de Corte suggested that interventions aimed at establishing new
social and socio-mathematical norms in line with the mathematical modeling perspective need to
occur often and be explicit.

On the one hand, students who have not been taught how to work with contextual
problems may ignore a problem’s context. On the other hand, they may place too much
importance on the context. Research has shown that in settings where ignoring the context is
desirable (e.g., standardized assessments), students who pay attention to the problem’s context
will be less successful. And not all students appear to be equally adept at ignoring the context.
For example, Gipps and Murphy (1994) found that the students who tend to be successful with
contextual problems are those who can take a contextualized problem and strip away (or ignore)
the context to focus on abstracted techniques —in their study, boys tended to be more successful
than girls at this process. Cooper (2001), using Bernstein’s theory of pedagogical practices (e.g.,
Bernstein, 1996), argued that those students who are more likely to be comfortable ignoring the
everyday reality, focusing instead on the esoteric decontextualized nature of mathematical

problems, tend to be from the higher social classes. Together these studies highlight that
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mathematics —and mathematics situated in contexts—can exclude subgroups of students from
“success” in school mathematics.

Contextual problems themselves also pose challenges. No one task context can offer an
application that is familiar and, more importantly, meaningful to all students. It is equally
difficult to create contextual tasks that are faithful to both the context and the way mathematics is
used in the world. Contextual tasks are often simplified so that they are manageable for students
or so that they emphasize a particular mathematical point. In this simplification, the context may
be distorted so that it is incorrect, or so that it introduces contextual issues that will frustrate and
possibly confuse students (e.g., pizza cut into 9 slices). Such problems are challenging for
teachers and students who are trying to use contextual problems.

Despite the refutations and documented challenges of using contextual problems,
teaching with such problems continues to be strongly valued (Pollak, 2003; van den Heuvel-
Panhuizen, 2004) and promoted (NCTM, 2000). It can be observed in middle school and
secondary mathematics curricula such as Mathematics in Context (Romberg, 1997-1998), the
Connected Mathematics Program (Lappan, et al., 2002), and the Applications/Reform in
Secondary Education (ARISE) project of the Consortium for Mathematics and Its Applications
(COMAP, 1998-2000; see http://www.comap.com/highschool/projects/). The reason is that
using such problems can potentially confer on students a variety of benefits that outweigh the
challenges (e.g., to engage, motivate, prepare for workplace, enhance mathematical reasoning,
increase ability to generalize mathematics to new or different situations, and increase knowledge

transfer; see chapter 1). Contextual problems were therefore the focus of the present inquiry.
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CHAPTER 3

METHODOLOGY AND RESEARCH DESIGN

In light of the research questions, I used a qualitative research design and interpretive
approaches to data collection and analysis. Interviews with and observations of teachers were the
main sources of data. Artifacts (mathematical task handouts, teachers’ curriculum vitaes, and
teachers’ graphic organizers) were also important data sources. Interpretive analyses and a
grounded theory approach were used to generate descriptions of teachers’ beliefs about, notions

of, and instructional practices with contextual problems.

My Position

In this study I entered the classrooms of the teacher participants and positioned myself as
“a fly on the wall.” Though such a position is never neutral —the researcher’s presence inevitably
changes the context and brings with it a set of beliefs about the world and how it should be
understood and studied (Crotty, 1998; Denzin & Lincoln, 2000; Lerman, 2000) —my presence in
the classroom consisted only of operating the video camera and sometimes walking about to
zoom in on teachers’ and students’ conversations and work. I did not directly interact with the
students or teachers in the classroom. Outside the classroom, I spent considerable time with the
teachers: attending math team meetings, attending sporting events, eating meals, walking for
exercise, and conversing. Such interactions strengthened the trust and increased the comfort

levels between me and the participants. In all interactions, the participants were positioned as the
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“experts” —those from whom I hoped to learn something. I maintained the position of
“nonexpert,” deliberately refusing to define terms such as mathematics in context and
consciously seeking their meanings for such terms. I tried to work within their frame in an
attempt to get at the meanings they attached to their work as teachers. I did not directly interact
with their students on any level.

In a qualitative research study, it is important to account for the “subjectivities” of the
researcher. I am a middle-class White woman' working from a number of theoretical positions
with participants who were similar both economically and racially. Philosophically, I do not
believe there is an objective truth waiting to be discovered or that truth can be found in the
meanings I (or anyone else) attribute to the classrooms and teachers in this study. Truth and
meaning are not discovered, but constructed and produced. In all aspects of this study, sense-
making and meaning-production were my constructions or productions. To describe the
difficulty in accounting for the theories impacting those constructions, I offer the following
rambling notes from my researcher log (October 8, 2004):

In the analyses conducted in this study, it is important to note that the researcher

approached the data with a number of theories embedded in her own thinking in

ways that cannot be articulated. Informed by socio-cultural theories of mind and

interpretive methodologies —all laced with post-structural theory —to name a few,

I have approached my data with a “theoretical gaze” that is overlapping, “folded”

within itself, and inexplicable. Yet, somehow, the multiplicity of my mind and

self opened paths into the data that “made sense.” Perhaps it is our nature (though

I don’t believe in such a thing) to want to “make sense” of things, to rationalize

them in some way and “explain” away all incoherence. In fact, research

methodologies have taught us that analysis of data must be articulated, accounted

for, and theorized. We must account for data that are unusual, that do not
“fit” —we must adjust and adapt our theories (particularly when developing

"I have categorized myself in ways recognizable in our current socio-historical setting (though I may not think of
myself in these ways). In response to the question, “is there a realm of personal identity possible apart from social
constraint?” Scott (1991) reminds us that “the social and personal are imbricated in one another and that both are
historically variable. The meanings of the categories of identity change and with them the possibilities for thinking
self” (pp. 794-795).
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grounded theory) to encompass and subsume “negative cases.” It is in this way
that the research is “reliable” and “trustworthy” —and rigorous. And yet, in doing
this work, in explaining (or explaining away) the interesting nuances, in trying to
verbalize and analyze your “headwork” as a researcher, one thing becomes
perfectly clear: This work is an illusion, a powerful myth, something to strive for,
but impossible to obtain. I cannot account for all of the theory that was put to
work in my analyses; there are too many influences and no sense or logic to their
employment. What I can offer the reader is the assurance that interpretation in this
study was grounded (in the sense of, close to the data) and it was theoretical. It is
impossible to think outside of theory. And it is impossible to account for it in any
coherent and complete way. What I offer is the best description of what I think 1
did. Should this be considered a lack of attention to rigor? I think not. I think such
acknowledgement is the most sincere and “honest” depiction of the analyses
conducted here. I leave it to the reader to judge the product.

Issues of Validity

A number of procedures can be applied in qualitative research to enhance the
trustworthiness of a study’s findings: prolonged engagement and persistent observation,
triangulation, peer review and debriefing, negative case analysis, clarification of researcher bias,
member checking, thick description, and external audit, just to name a few (Glesne, 1999;
Lincoln & Guba, 1985; Merriam, 1995). In this study, prolonged engagement (over the course of
3 months) and multiple observations (16 in all) enhanced the trustworthiness of the findings.
With extended engagement, the tendency for participants to exhibit contrived behaviors was
reduced. Triangulation of data sources—observations, interviews, and artifacts—increased the
probability that emergent conceptions were consistent with a variety of data. Triangulation was
done by looking across the data and highlighting the apparent convergences, inconsistencies, and
contradictions in what the teachers said and did (Mathison, 1988). This process allowed for a
more holistic view of the data and a more “reliable” interpretation of the data. Thick description
was important in terms of describing the teachers, their teaching contexts, and the findings, as

well as the methodological decisions, concerns, and analyses. Thick description helps increase
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the trustworthiness of the study because any researcher can trace my steps in all aspects of the
research process. In addition, interpretations were scrutinized by me and members of my
doctoral committee. I also maintained a researcher’s log that documented my shifting
interpretations, theoretical considerations, and research activity.

Crotty (1998) noted,

In the end, we want outcomes that merit respect.... Our outcomes will be

suggestive rather than conclusive. They will be plausible, perhaps even

convincing, ways of seeing things — and, to be sure, helpful ways of seeing things

— but certainly not any ‘one true way’ of seeing things. (p. 13)

In the sections that follow, I lay out the methods used in this study to make explicit how the

outcomes were produced.

Theoretical Perspectives

Because situations of teaching practice have unique characteristics of complexity,
specificity, instability, disorder, and undetermination (da Ponte, 1994), Boaler (2000b) advocates
situated theoretical perspectives that focus on the culture, practices, and expectations within the
classroom, and that emphasize the communities within which the students and teachers work, the
practices that are central to their classroom communities, and the relationship of these practices
to students’ cognitive development. She argues that such an interpretation is important because it
accounts for the learning of practices in the school community —the “patterned participations,
systematic dances” (Birdwhistell, quoted in McDermott, 1993, p. 276) of practice. Borrowing
from Greeno and the Middle School Mathematics Through Applications Project Group (MMAP)
(1998), Boaler (2000b) points out that a situated perspective

does not negate the importance of depth of understanding or of practicing
methods; it includes both features within a focus on the broader patterns of
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participation in communities and the various constraints and affordances to which
students become attuned in the mathematics classroom. (p. 116)

In the present study, I took Boaler’s recommendation and adopted complementary
perspectives that centralize the communities within which teachers work and the practices central
to these communities: interpretivist and interactionist perspectives. The following descriptions of
these perspectives should be taken as reflective of my theoretical gaze regarding the research
design and data analyses.

Interpretivist Perspective

Mathematics is a part of students’ social and cultural lives, and the mathematics
classroom has its own social and cultural life. To portray teachers’ notions of terminology
associated with contextual problems and their instructional practices with such problems, this
study was framed from the philosophical position of interpretivism. This position allowed me to
focus on the social and cultural aspects of these teachers’ classrooms.

Central to interpretivism is the idea that all human activity is fundamentally a

social and meaning-making experience, that significant research about human life

is an attempt to reconstruct that experience, and that methods to investigate that

experience must be modeled after or approximate it. (Eisenhart, 1988, p. 102)

From this perspective, meanings and actions, context and situation are inextricably linked and
make no sense in isolation from one another. The “facts” of human activity are social
constructions; they exist only by social agreement or consensus among participants in a context
and situation. Thus what counts as teaching, reasoning, or whatever depends on the ways (and
whether) these things are defined and used in human groups (Bredo & Feinberg, 1982, p. 116).

In other words, it makes little sense for an interpretivist to, for example, catalog beliefs about

mathematics without also considering the contexts in which these ideas are important.
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The primary purpose of this study was to describe and understand various aspects of
teaching with contextual problems. Interpretivist research was therefore appropriate since it is a
“research that seeks merely to understand, . . . that reads the situation in terms of interaction and
community” (Crotty, 1998, p. 113) and that is “oriented towards an uncritical exploration of
cultural meaning” (p. 60). Furthermore, it is a perspective that “does not concern itself with the
search for broadly applicable laws and rules, but rather seeks to produce descriptive analyses that
emphasize deep, interpretive understandings of social phenomena” (Scott, 2001, §2). This
perspective involves the denial of an objective reality independent of the frame of reference of
the observer; reality is mind dependent and influenced by the process of observation. Interpretive
research thus generally enables the researcher to gain a descriptive understanding of the values,
actions, and concerns of the subjects under study. It also provides an avenue through which the
researcher can offer a “thick description” (Geertz, 1973) of the phenomena at hand.

The interpretivist perspective in the present study looked “for culturally derived and
historically situated interpretations of the social life-world” (Crotty, 1998, p. 67)—in this study,
the teachers’ mathematics classrooms. A primary goal of interpretivist research is to understand
meaning in the context in which it is “produced and received” (Moss, 1996; Thompson, 1990). I
therefore found this broader theoretical perspective appealing as I tried to understand the
meanings created by the teachers when using contextual problems in the culture or community of
their classroom.

Interactionist Perspective

In this study, knowledge was taken as both situated and socially mediated. Knowledge
was also viewed as at once tacit and conscious, embodied and discursive (Adler, 1996). In other

words, what one knows often lies in what one says and what one does in a specific situation.
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With this understanding of knowledge, I adopted an interactionist view wherein the individual
and the society are seen as inseparable units, having a mutually interdependent relationship, as
“teacher and students interactively constitute the culture of the classroom” (Bauersfeld, 1994, p.
139). The interactionist perspective, requiring the consideration of both psychological and
sociological theories, takes into account factors such as the social context of learning (Balacheff,
1990) and the nature of the knowledge being learned —also a social construct. The teacher is
certainly one of the most important elements of the learning context and a key person in the
definition of knowledge. In the interactionist perspective, mathematical activity is inherently
social and cultural (Brown, Collins, & Duguid, 1989; Greeno, 1991; Lerman, 1996; Schoenfeld,
1987; Sfard, 1994). From this perspective, “what we are able self-consciously to articulate, as
well as how we act, form and are formed by our developing identity and our activities and
practices in a social, cultural, and historically contingent world” (Adler, 1996).

I approached the present study informed by this perspective. Knowledge was taken as
situated and as culturally and socially mediated; and the individual and society were taken as
inseparable units. Knowledge (produced by the teachers through description and practice) was
considered within the social and cultural activity of their classroom and school. And the
knowledge produced in the present study should likewise be taken as mediated by the cultural,

social, and historical world at present.

Participants and Participant Selection

To study teachers’ notions of and instructional practices with contextual problems, I
sought secondary mathematics teachers who were using contextual problems on a near-daily

basis. In a pilot study in 2003, I had focused on public school teachers who were using curricular
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materials that claimed an emphasis or theme on applications and contexts (Lappan et al., 2002;
Coxford et al., 1997). But because of pressures imposed by administrators and state
examinations, these teachers were paying little attention to the contextual aspects of the
materials. They were extracting the mathematics to be tested on exams and orchestrating practice
opportunities for their students. Although this approach should not be condemned —and is
understandable — these public schools proved unfruitful sites for my study.

Using network sampling (Patton, 1990), I located potential participants through
recommendations from university professors and by attending a national conference for high
school teachers in February 2004. The conference brought together both public and private
school teachers who were immersed in work with contextual problems and mathematical
modeling and thus offered a rich site for recruiting participants. An important criterion for
participation in this study was geographic location: Participants needed to be within driving
distance of northeast Georgia or middle Tennessee. At the conference, I attended every
presentation based on contextual problems given by teachers who taught in this geographic
region. Based on their presentations and my conversations with them about their teaching and
contextual problems, I identified 8 to 10 teachers that I thought might be using contextual
problems on a near-daily basis. The teachers were from three schools: a public school, a private
school, and a public school of mathematics and science. The potential sites were narrowed to two
schools when the teachers at the public school did not respond to my e-mail requests to visit and
observe their classes.

Before formally inviting the remaining teachers to participate in my study, I visited their
schools (in two different states) and observed their teaching over 2 days. I also observed other

mathematics teachers in each school based on teacher recommendations and because the teachers
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using contextual problems regularly (in the geographic region of interest) seemed to be clustered
in these schools. I selected six teachers for participation based on their interest in participating
and their self-identification as using contexts in their mathematics instruction consistently and
regularly —that is, contexts played a role on a near-daily basis. High school teachers were
appropriate for study since (a) demands for the relevance of school mathematics content are
more often aimed at the high school curriculum, and (b) high school mathematics topics lend
themselves to richer and more diverse contexts than do topics in the lower grades (J. Kilpatrick,
personal communication, November 15, 2003). These six teachers were appropriate for study
because they were (a) interested in the research topic, (b) immersed in curriculum development
work and workshops with contextual mathematics, (c) seasoned in teaching with such problems
(14 or more years), (d) experienced in sharing their work with colleagues via publications and in
professional development settings (they could be articulate about their work), (e) situated in
schools that allowed for academic freedom with regards to curriculum decisions, and (f) located
geographically within driving distance. Furthermore, the teachers were highly qualified
academically (2 with doctorates, 4 with master’s degrees or beyond), and thus there could be
little question as to the soundness of their mathematical knowledge.

In these ways, the sample in this study was small and purposive (Denzin & Lincoln,
2000), which may raise questions about its representativeness. As regards representativeness, the
issue concerns the generalizability of cases to theoretical propositions and not a population. That
is, the issue is tied to building a theory, which can then be applied to other cases and contexts
(Silverman, 1993, p. 160). The teachers in this study were not meant to represent all teachers;
they served as a sample from which I could build a theory whose generalizability the reader can

judge.
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Schools

Watercliff Academy

Watercliff was a private pre-first-grade to 12th-grade school located in a large city in the
southeastern United States. (All school and teacher names are pseudonyms.) The school dated
from the 1950s and sat on large grounds with surrounding sports fields, trees, and streams. It was
a beautiful and secluded campus. Watercliff enrolled approximately 1700 students (Grades 9 to
12: 750 students) who came from communities around the city. The school was highly selective;
according to its descriptive literature, it sought “students who demonstrate excellent academic
promise and personal integrity and who represent various racial, ethnic, religious, and economic
backgrounds.” The gender distribution was about equal, with a minority enrollment of about one-
sixth. The school employed around 250 teachers and administrators (72% with graduate
degrees).

High school mathematics courses at Watercliff were taught in two buildings. Classrooms
varied in size but all had whiteboards, chalkboards, overhead projectors, and computer projector
equipment, and most were decorated with students’ work and posters, often even on the ceilings.
Computers were accessible in labs that were always open during school hours, and students
could use them between classes and during breaks to type papers, conduct research, or check e-
mail. All high school mathematics students were expected to purchase graphing calculators,
which were used regularly in all courses. Classes were from 15 to 20 students each, and met four
out of five days a week for 55 minutes each on a rotating schedule. This schedule allowed for the
inclusion of assemblies and other programs during the school week. Technology such as

graphing calculators, computers, and Calculator Based Laboratories (CBLs) were regularly
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integrated into lessons, and students utilized these and other tools in experimentation and
simulation activities.

The mathematics faculty in the high school (Grades 9-12) consisted of 14 teachers, one
of whom served as department chair. Teachers met two to five times a year as a department to
discuss matters of significance. Smaller course groups met intermittently. Teachers of the same
course strove to teach their lessons at the same pace but were free to adjust the syllabi as they
saw fit. For example, one teacher reported hurrying through particular topics to allow time for
the inclusion of week-long modeling projects throughout the year, projects his fellow teachers
did not conduct. Extensive collaboration among teachers was rare; most collaborated only when
newer teachers wanted to discuss a particular topic or lesson they were preparing to teach.

Constantia Ridge

Constantia Ridge was a public residential Grades 11-12 high school that emphasized
mathematics and science. It was located in a city in a southeastern state. It enrolled
approximately 600 students (almost equal gender distribution; about one-sixth minority,
including African American, Hispanic, and Native American), who came from all over the state.
The school was selective and actively recruited students who showed interest in mathematics and
science. The students varied in economic and racial backgrounds. According to a school
pamphlet, “On average there are over 80 of the 100 counties in the state represented in each
graduating class.” Students were selected based on their SAT scores, their scores on an entrance
exam, and an interview with teachers and students from the school. Attendance was free, and
students were provided with accommodation, food, books, and opportunities to participate in

typical high school courses and extra-curricular activities. The school opened its doors in 1980 in
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a renovated hospital; thus, the school grounds were larger than most urban public high schools,
with beautiful old trees lining the entrance.

The mathematics courses at Constantia Ridge were taught on two floors of the main
building. The classrooms were small yet well equipped, with three to five chalkboards, overhead
projectors, and computer projector equipment in each room. Decoration in classrooms was
sparse, with blank walls and ceilings. Computers were accessible in labs that were always open,
and students could stop by between classes, during breaks, and in the evenings to type papers and
conduct research. As a residential school, the science and computer labs were often open late
into the evenings, with students and teachers working on projects and experiments. Though it
was not a requirement, most students had purchased graphing calculators, as these were used
regularly in all mathematics courses.

The mathematics classes included from 10 to 18 students each and met for 40 minutes
one day and 50 minutes on two days each week on a rotating schedule with an additional 90-
minute lab period one day each week. This schedule allowed for the inclusion of modeling
problems and other in-depth investigations that could not be sufficiently tackled in 40 or 50
minutes. Technology such as graphing calculators and Calculator Based Laboratories (CBLs)
were regularly integrated into lessons, and students often utilized these and other tools in
experimentation activities and modeling projects.

The school employed approximately 70 teachers and administrators who taught full and
part-time (all with master’s degrees and over a third with a doctorate in their field), 13 of whom
were mathematics teachers. All of the mathematics teachers either had or were working on
getting National Board for Professional Teaching Standards (NBPTS) certification, and all had

participated in outreach programs to service teachers across the state. The precalculus teachers (a
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team of 9) met every week to discuss the topics they were teaching, to maintain parallel pacing,
and to develop and work mathematics problems. These collaborations were central to their work
as a department and as individual teachers. As a department, they had written precalculus and
calculus textbooks that developed mathematics through applications and mathematical modeling.
Thus the teachers were always looking for problems from the newspaper, television, and other
media that could be adapted and developed into rich mathematical investigations. The hallways
that surrounded their offices and classrooms were continually adorned with new clippings from
the newspaper and with challenging “Problems of the Week.” Teachers were not required to
participate in after-school activities, but many worked until six or seven o’clock every day
tutoring students, helping with labs, or attending meetings. The four participants in this study
were dedicated in that way and were all part of the precalculus curriculum development

initiatives that had taken place at Constantia Ridge from the late 1980s through the late 1990s.

Participants

Six teachers participated in this study: two from Watercliff Academy and four from
Constantia Ridge. I first visited Watercliff Academy in January 2004 and spent 2 days observing
the mathematics teachers and discussing their instructional practices. After observing 11 classes
and 7 teachers, I invited 2 teachers to participate in my study. I selected Gary for three reasons:
He had been recommended by university professors and was known for using modeling and
contextual problems regularly in his teaching; he was planning two “modeling lessons” for later
that spring; and he was interested in my research and willing to participate. Hank was invited to

participate in an interview only. He was not planning any lessons for the spring that he thought
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would use contextual problems but was interested in discussing how he selected and designed
contextual problems for classes.

I first visited Constantia Ridge in February 2004 when it hosted a conference for teachers
of high school mathematics. In March 2004 I returned to the school and spent 2 days observing
nine classes and seven teachers across subjects. I invited four to participate in my study.

I invited Tom for an interview only, because he did not anticipate teaching any lessons during
April and May that would use contextual problems. He did, however, want to share how he
selected, adapted, and used contextual problems in courses. I invited Rhonda and Diane to
participate fully in the study because each had been recommended as a teacher who used
modeling approaches and contextual problems regularly, each was excited and willing to
participate in the study, and each anticipated teaching upcoming lessons that would use
contextual problems. I also invited Cathy to participate fully in the study, but later in the spring
she said she would not be teaching any lessons that would use contextual problems, so I
conducted an interview only. Table 1 provides an overview of the teachers’ professional
backgrounds and community involvement.

Hank

Hank was in his 14th year at Watercliff Academy and chaired the mathematics
department. He had received a number of teaching awards and was proactive in his ongoing
professional development as a teacher. He was also active in publishing and presenting ideas and
problems for fellow mathematics teachers. In addition to teaching at Watercliff, Hank served as a
mathematics professor at a local junior college and as a Scholastic Assessment Test
(SAT)/College Prep instructor for a national organization. At Watercliff, he taught three classes

each day and spent two class periods tending to departmental responsibilities and administrative
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Table 1: Participants’ Professional Backgrounds and Activities

Teacher No. Years Teaching Highest Degree Community
Attained Involvement
Watercliff Academy
Hank 14 Ed.D. Pub/Present
NBPTS (2003) Professional org.
Gary 30 Ed.S. Author/Pub/Present
Professional org.
Constantia Ridge
Tom 29 Ph.D. Author/Pub/Present
Professional org.
Diane 28 M.A. Author /Pub/Present
NBPTS (1997) Professional org.
Rhonda 16 M.A. Author /Pub/Present
NBPTS (1997) Professional org.
Cathy 14 M.S. Author /Pub/Present
NBPTS (current) Professional org.

Note: NBPTS (year) = National Board for Professional Teaching Standards certification and
year obtained; Author = involvement in writing textbooks focused on contextual or modeling
problems; Pub/Present = publications and presentations at a national level; Professional org. =
involvement in professional mathematics teaching organizations.

duties. Once a week, he went to Watercliff Elementary School to conduct “Math Recess” with
Grade 3-5 students. During those times, he provided those students with opportunities to play
pattern or number games, or to solve mathematical puzzles —activities that were active, hands-
on, and mathematically rich. He often played the games himself and used his enthusiasm and
passion for mathematics to fuel students’ interests. This enthusiasm was evident in all of his
teaching.
Gary

Gary was in his 30th year of teaching. He served as school sponsor of Watercliff’s math
team, which had won a number of awards throughout the years. The school had four “National
Outstanding” teams in an annual secondary level national modeling contest, one honorable

mention in an annual international undergraduate modeling contest, and several regional and
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state American Mathematics Contests (AMC) recognitions. Gary had an M.S. in applied
mathematics and an Ed.S. in secondary mathematics curriculum and instruction. He had received
a number of teaching awards and some recognition for his work with students in Advanced
Placement Statistics. He participated in professional mathematics education organizations and
regularly attended national conferences and meetings. By invitation, he had attended the first
Woodrow Wilson Summer Institute (on statistics) in 1984 and had served in a leadership role for
the institutes from 1988 to 1993, an experience he cited as integral in shaping the teacher he had
become. In addition, he was active in curriculum development projects, including a secondary
mathematics curriculum project focused on applications.
Tom

Tom was in his 29th year of teaching and was responsible for “Problems of the Week” at
Constantia Ridge. He had his M.Ed. with a specialization in mathematics and his Ph.D. in
mathematics education. He had received National Board certification and a number of teaching
awards. Tom participated in national professional mathematics education organizations, often in
leadership capacities, and was proactive in his professional development as a teacher and leader
in the mathematics education community. In addition, he was active in publishing and presenting
ideas to fellow mathematics teachers, though most of his energies were spent on and with his
students. In the 1980s and 1990s, Tom served in a leadership role for the Woodrow Wilson
Summer Mathematics Institutes—an opportunity that led to ongoing collaborations and
friendships. He felt that it was “essential [for teachers] to have a community” and spoke of the
Woodrow Wilson experience as integral in fostering his growth as a teacher and his continued

involvement in the national mathematics teaching community.
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Diane

Diane was in her 28th year of teaching and for the past 10 years had served as sponsor for
Constantia Ridge’s participants in the yearly Mathematical Contest in Modeling sponsored by
COMAP. She had both her B.S. and M.A. in mathematics and had completed additional graduate
coursework to obtain a teaching certificate in the late 1970s. Diane had received National Board
certification and a number of teaching awards. She participated in professional mathematics
education organizations and was active in organizing and leading professional development
activities for colleagues and teachers. In addition, she had worked on a number of textbook
development projects and had served as the principal investigator on four other projects funded
by the Eisenhower Grants Program and the National Science Foundation from 1987 to 1998.
Rhonda

Rhonda was in her 16th year of teaching at Constantia Ridge and had devoted part of the
previous 12 years to teaching mathematics courses to students and teachers in remote sites
throughout the state via cable television as part of a distance learning and outreach project. She
had both her B.S. and M.A. in mathematics as well as National Board certification. She
participated in professional mathematics education organizations and actively participated in
professional development activities. During the summer and other school breaks, and over some
weekends, Rhonda and her colleagues organized and led a variety of professional development
opportunities: conferences, workshops, institutes, and so on. Rhonda found the outreach
opportunities through distance learning and professional development activities to be among the

most rewarding aspects of her job.
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Cathy

Cathy was in her 14th year of teaching, though she had been in and out of teaching and
computer programming as careers over the preceding 27 years. She had both her B.S. and M.S.
in mathematics and was currently working to obtain National Board certification. Cathy had been
involved in some curriculum development projects at Constantia Ridge but had devoted much of
her efforts to technology and some distance-learning projects. She participated in professional
development opportunities and regularly co-organized and co-led sessions at conferences (and
workshops) for teachers. Because of her background in computer programming, Cathy was
passionate about incorporating technology (graphing calculators and MathCad —a commercial

software package) into her mathematics teaching at every opportunity.

Instruments and Methods

Backeground and Beliefs Interview

All six teachers in this study participated in a semi-structured (Bernard, 1994)
Background and Beliefs (B/B) Interview. I asked the teachers for a copy of their curriculum vita,
and using questions piloted in Spring 2003 and revised for the present study (see Appendix A), I
met with each one individually for 60 to 90 minutes either during his or her planning period or
after school. In the interview, I asked general questions about their teaching background, their
school and curriculum, the purpose they saw for teaching mathematics, and how they prepared
and delivered mathematics lessons. I also asked them to react to statements about teaching with
contextual problems and asked specific questions about terminology —mathematics in context,
applications of mathematics, and mathematical modeling—to get their interpretations of these

terms and what they meant in the context of teaching and learning. Each interview was
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audiotaped and transcribed by me as soon as possible so that I could ask missed questions and
seek clarifications of the teacher’s comments in a subsequent interview. In addition, three
teachers were e-mailed two clarification questions in fall 2004.

Graphic Organizer

The concluding task in the B/B Interview involved the teacher in drawing a graphic
organizer relating the three terms: mathematics in context, applications of mathematics, and
mathematical modeling. This task followed teachers’ descriptions of the terms and how they
were related to the real world, if at all. Specifically, I gave each teacher a blank sheet of paper
and asked, “Can you draw a graphic organizer that shows how you think about the three terms
and how they are related or not?” If the teacher asked for clarification of what I meant by
“graphic organizer,” I responded with the question, “Is there a way you can organize the three
terms that shows how you are thinking about them?”

Hank, Gary, and Tom drew their organizers immediately. Cathy and Rhonda asked to
work on their organizers and give them to me later. I agreed on the condition that they would not
discuss the question, or their organizer, with anyone until after I had completed my data
collection. (Cathy gave me her organizer in the afternoon following her B/B Interview. Rhonda
gave me her organizer the day after her B/B Interview.) Diane was also asked to draw an
organizer, but time constraints prevented her from doing so. Each teacher’s description of his or
her graphic organizer was audiotaped, and I asked questions to clarify aspects of the organizer
and its description. The organizers served to clarify for the participants—and for me —the ways

in which they had previously described the three terms in the interview.
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Pre-lesson and Post-lesson Interview

Three of the six teachers were observed and videotaped teaching lessons that they
thought incorporated contextual problems. Before each of the observed lessons, I conducted an
interview with the teacher concerning the nature of the upcoming lesson: its organization, its
goals, the mathematical foci, the teacher’s and students’ anticipated activity during the lesson,
and its location in their curriculum sequence (what students already knew and what was yet to
come). Upon completion of the lesson—sometimes spanning 2 days—the teacher was
interviewed again. The post-lesson interviews provided opportunities for the teachers to
comment on the lesson: whether they met their goals and their impressions of how it went,
among other things. During these interviews to gain access to the teacher’s perspective, I often
cited particular events, or segments, in the lesson and asked both broad and targeted questions
about the mathematics, the context, and the pedagogical decisions in that lesson segment. I also
used the teacher’s oral lesson plan from the pre-lesson interview to focus the post-lesson
interview questions (see Appendix B for a sample of pre- and post-lesson interview questions).

Classroom Observation

Informal observations from January to March 2004 preceded the onset of data collection
to help identify participants and to portray the larger school context within which these teachers
worked. The informal observations were also part a concerted effort to acquaint myself with the
school, the teachers, and the classes that would later be videotaped so that all would be
accustomed to and comfortable with my presence —an attempt at minimizing observer effect.
The informal observations were not videotaped, but I did take fieldnotes.

The videotaped classroom observations served three purposes. First, they provided

windows into teachers’ “enacted” practices and served as a measure against which to relate their
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“espoused” practices during the interviews. The enacted-espoused dichotomy has been proposed
by Ernest (1991) to explain the discrepancies found in what teachers say and believe and what is
observed in their practice. Second, the observations allowed access to teachers’ instructional
practices with contextual problems, including their organization of a lesson, their questioning
practices, and their interactions with students. Finally, the use of video captured the complexities
of teaching with contextual problems and allowed for in-depth analyses of the complex
interactions that occurred in their classrooms over time.

In this study, the interactions of concern were those between teachers and students
engaged in mathematical lessons centered on contextual problems. Teachers were asked to
choose two lessons for observation that they thought incorporated contextual problems—a word
I refused to define a priori (so that the teachers’ lesson choices reflected how they interpreted the
meaning of the term). Three of the six teachers who participated in the study were not formally
observed, because they determined they would not be teaching any lessons that fit that
description. The other three teachers (across two schools) all chose precalculus lessons for
observation even though I had not specified a particular mathematical domain. For each of the
one or two lessons chosen, the teacher was observed for the duration of the lesson, 1 or 2
consecutive days. Each lesson was observed being taught to more than one precalculus section,
except for two lessons that were observed only once. As a result, 16 videotaped class period
observations in April and May 2004, distributed across three teachers (see Table 2), documented
the nature of the teachers’ instructional practices with contextual problems and provided the
stimulus for post-lesson interviews. In addition to the video records, I collected handouts,

assessments, and assignments during observation days.
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Table 2: Levels of Participation

Watercliff Academy

Teacher Interviews Observations
Hank B/B Int. & graphic organizer 2 (Informal)
Gary B/B Int. & graphic organizer 3 (Informal)

Pre & Post Interviews of L1 Bird Problem (L1):

Pre & Post Interviews of L2 3 precalculus classes x 2 days

Wind Chime Problem (L2):
3 precalculus classes x 2 days
Constantia Ridge

Teacher Interviews Observations
Tom B/B Int. & graphic organizer 2 (Informal)
Cathy B/B Int. & graphic organizer 2 (Informal)
Rhonda | B/B Int. & graphic organizer 3 (Informal)

Pre & Post Interviews of L3 Swing Problem (L.3):

Pre & Post Interviews of L4 1 precalculus class x 1 day

CO, Problem (L4):
1 precalculus class x 1 day

Diane* B/B Interview 2 (Informal)

Pre & Post Interviews of L5 Foul Shot Problem (L5):

2 precalculus classes x 1 day

* Diane was asked to complete a graphic organizer but did not return it to me.
Note: B/B Int. = Background and Beliefs Interview,; L# = Videotaped lesson number.

To summarize my data across both schools (see Table 2):

* Background and Beliefs Interviews with 6 teachers, 5 of whom produced graphic

organizers.

* Pre- and post-lesson interviews with 3 teachers for the 5 observed problems.

* Videotaped observations of 6 different precalculus sections (2 once, 1 twice, and
3 four times) for a total of 16 class periods.

* Videotaped observations of 10 lessons focused on different problems (the Bird
Problem, Wind Chime Problem, Swing Problem, CO, Problem, and Foul Shot
Problem; see chapter 6 for a description of the 5 problems).
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A Grounded Theory Approach

A grounded theory approach (Glaser & Strauss, 1967) guided the analysis of the
interviews and videotapes. This approach is a systematic set of procedures to develop an
inductively derived grounded theory about a phenomenon (Strauss & Corbin, 1990). It assumes
that the processes of data collection, coding, analysis, and theorizing are simultaneous, iterative,
and progressive. The researcher is responsible for developing theories based on observations of
and interactions with the individual or group. The theories are “grounded” in the data, but the
researcher adds her or his own insight into why those experiences exist and thus creates the
theory.

Often grounded theory attempts to reach a theory or conceptual understanding through
inductive processes (Strauss & Corbin, 1994). Inductive analyses, consisting of a series of coding
activities, are used to develop theories by closely inspecting data to reveal commonalities and
themes. From the coding activities, concepts (names given social patterns in the data) are
generated, allowing the researcher to build descriptions and interpretations. Subsequent coding
serves either to confirm the created categories or to refine, extend, or modify them to fit the new
data. As the research study progresses, coding subsides and analysis and theory building become
more dominant. In this study, I devoted many hours to coding the data, categorizing those codes,
and reflecting on their implications. This process was important for identifying concepts and
locating supportive excerpts from the data. My goals in using inductive methods were to identify
concepts, describe them, and compare them across participants (Charmaz, 2000).

Glaser (2002) cautions that many who claim to use grounded theory stop once they have
rich descriptions of the concepts identified in their data; they fail to conceptualize their data.

“Conceptualization in grounded theory must be done as a careful part of theory generating and
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emergence, with each concept earning its way with relevance into the theory” (p. 24). In this
study, I sought to move beyond mere description and to conceptualize the concepts in terms of

the literature and theories available, thus producing new theory.

Data Analysis

Qualitative data analysis is often explained as a process of organizing data, breaking data
into manageable units through codes, synthesizing the data through categories, and finding
patterns and irregularities among all data collected. This reading and rereading process occurs
both during and after data collection (Bogdan & Biklen, 1998; Glesne, 1999; Wolcott, 1994). In
this study, analysis was not one step in a linear process but was instead embedded in all aspects
of the study, from data collection to writing. Writing is itself a “method of inquiry” (Richardson,
2000; E. A. St. Pierre, personal communication, September 9, 2002), and I considered it an
important part of the analysis process. Writing as a method of inquiry “provides a research
practice through which we can investigate how we construct the world, ourselves, and others,
and how standard objectifying practices of social science unnecessarily limit us and social
science” (Richardson, 2000, p. 924). Through synthesizing, organizing, and representing my data
in writing, new interpretations and realizations surfaced and further informed the study. Thus
writing practices throughout the research process not only allowed me to document and report
events and observations but also fueled my “headwork” (Van Maanen, 1995) with the data and
theories.

In this study, the analysis included: (a) transcribing and reading transcripts during the
data collection to shape subsequent data gathering and the direction of the study, (b) coding and

categorizing data from transcripts using a constant comparative method of inductive analyses, (c)
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analyzing teachers’ graphic organizers for structure and content, (d) watching and rewatching
videotapes of teachers’ classrooms and identifying their practices, and (e) writing. Each of these
analyses is detailed below.

Backeground and Beliefs Interview

Analysis of the Background and Beliefs Interviews began with the reading and rereading
of transcripts highlighting those phrases that seemed to be important. I used a constant
comparative method of inductive analysis that required “constantly comparing” pieces of data to
generate “‘explicit categories which help provide an understanding of the data” (Groves, 1988, p.
277). The first phase of the process involved coding the data set and comparing those codes.
Initial codes included belief, technology, mathematics, pedagogical practice, learning, and so on,
as well as a number of “in vivo” codes (Glaser, 1978). In addition to coding the transcripts, I
highlighted all instances in which a teacher used the following terms: context, real world,
applications, and modeling. As 1 coded and highlighted the interviews in this way, I listed the
codes that were recurring across the participants. In other words, as I noticed “similar talk”
among the teachers, I made a note of it. With this list, similarities and differences between what
the teachers emphasized became apparent. It became possible to attend to presences and silences
within and across the six participants. Subsequent coding served either to confirm the created
themes or to refine, extend, and modify them according to the new data. After completing this
initial process, I returned to the transcripts and highlighted the words that the teachers had used
when talking about mathematics in context, applications, and modeling: use, practical, useful,
motivate, interesting, and so on. Because a significant part of this study involved the teachers’
interpretations and understanding of the three terms above, paying attention to their descriptions

was important. After completing this second coding process, I grouped the codes into categories
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that aided in the description of the participants, their beliefs, and their instructional practices with
contexts.

Graphic Organizer

I analyzed each organizer in terms of its structure and content. In analyzing the structure,
I paid attention to links that were drawn or not drawn between terms; the use of linear, cyclic, or
overlapping structures; and the placement of words in the structure. The content of each graphic
organizer was analyzed in terms of the teacher’s verbalizations concerning the content (at a local
level) and in terms of domains —mathematical, pedagogical, and so on (at a global level). Of
each organizer I asked, “What, in general, is this representation about?” Asking this question led
to a “free-association” exercise wherein I jotted down ideas that seemed associated with the
representation. When I did this exercise for each of the five organizers, similarities and
differences became apparent. In making comparisons of the organizers across participants, I did
not make judgments of right or wrong, or good or bad.

Pre-lesson and Post-lesson Interviews

I specifically analyzed the pre- and post-lesson interviews for teachers’ goals and
reflections on lessons. Identifying teachers’ intended goals for the lessons taught, their lesson
plan, and their overall reactions to the lesson in post-lesson reflection helped shape the analysis
of the videotaped lesson observations and pointed to segments identified by the teachers in
lessons in which either positively or negatively “things did not go according to plan.” Other
details in these interviews —the location of the lesson in the curriculum sequence and the
anticipated activities of students and teachers—aided in the description of the lessons but were

not otherwise analyzed.
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Videotaped Observations

Five problems were observed (and videotaped) being taught, some across multiple class
periods. I produced a detailed lesson outline (and selectively transcribed segments) noting the
work and talk of both the teacher and students for each lesson to lay out the overall organization
and implementation of the problem. Problems whose teaching was observed multiple times were
reviewed for significant shifts in lesson delivery, and identified differences were noted on the
lesson outlines. To focus my analysis of teachers’ classroom practices in the videotaped lessons,
I began by segmenting each lesson into manageable chunks. This segmenting was done
according to the sequencing of the lesson: introduction of task, or the launch; teacher-guided
instruction, or direction; student activity, or exploration; culminating activity, or regrouping; and
summary or conclusion of the investigation. These segments were used in organizing the lesson
outlines and for framing analyses; some lessons did not include all of these segments (e.g., not
all lessons were summarized and concluded in the classes I observed).

Lerman (1998) proposed the metaphor of a zoom lens whereby what the researcher
chooses as the object of study becomes

a moment in socio-cultural studies, as a particular focusing of a lens, as a gaze

which is as much aware of what is not being looked at, as of what is. . . . Draw

back in the zoom, and the researcher looks at education in a particular society, at

whole schools, or whole classrooms; zoom back in and one focuses on some

children, or some interactions. The point is that research must find a way to take

account of the other elements which come into focus throughout the zoom,

wherever one chooses to stop. (p. 67)

I adopted Lerman’s approach, zooming back to look at the classroom as a whole, paying
attention to the organization and practices in use. I also zoomed in to analyze in each lesson

segment the teacher’s pedagogical actions and verbal instruction. This close analysis was based

on two assumptions: (a) teachers’ practices are taken to include both teachers’ talk and action,
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what they say as well as what they do; and (b) teachers’ talk is observable and manifests itself in
action; what teachers say changes the context in which they are working and ultimately their
actions in that context. In this way, teachers’ utterances are actions—part of what teachers do.
The utterances shape mathematics lessons and, in part, constitute teachers’ instructional
practices. Thus, teachers’ verbal utterances and shifts or stases in the videotaped lessons as a
result of the utterances were central. The verbal utterances were not interrogated on a linguistic
level; they were viewed only in terms of their impact on the mathematical investigation. For
example, I analyzed whether the utterance opened or closed the problem or the student’s
question; whether the focus of the utterance was on the mathematics or the contextual features of
the problem; and whether the utterance was intended to assist students in formulating the
problem. Thus, in analyzing teachers’ instructional practices, I specifically looked for these
aspects, noting which dimensions a specific lesson segment embodied. For example, in an
exploration segment a teacher’s practice might be described as: using technology, engaged in
talk focused on the mathematical components of the investigation (ignoring contextual features),

and questioning in ways that allow the students to formulate the problem.
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CHAPTER 4

THE TEACHERS AND THEIR BELIEFS

I have made a conscious effort to be “the researcher I would want researching

me.” As such, I have stayed close to the data, using teachers’ quotes in contexts

that complement their original use. I have wrestled with description, grappled

with theory, and considered its implications. I have thought about the knowledge 1

am producing: “Where it will go, and what it will do.” Where might it lead me?

Where might it lead others? (Researcher’s Log, September 6, 2004)

In this chapter, I introduce each participant, describing his or her goals for teaching and
highlighting some of his or her beliefs. Ernest (1989) and Raymond (1997) have proposed that to
understand teachers’ knowledge and practices, one must consider their beliefs about mathematics
and its teaching and learning. I also considered the teachers’ beliefs about contextual problems
since such problems were the focus of the present study. These teachers’ beliefs are reported so
as to orient the reader to the chapters that follow and to provide a foundation for thinking about
the teachers’ notions of terminology and their instructional practices. I introduce each teacher
and then present the teacher’s beliefs according to the following order: beliefs about mathematics

and its teaching and learning, and beliefs about the nature and role of applications, modeling, and

contextual problems.

The Teachers
Hank
Hank was energetic and enthusiastic when doing and teaching mathematics. In his class,

every activity was exciting and rewarding; wrong paths were opportunities to learn something
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unexpected. For Hank, a student’s interest and perseverance in mathematics were of greatest
importance.

The biggest thing I want is for kids to have experienced some really tough

problems, really tough situations . . . and look back and say, “that was a hard

class. I learned a lot. I’'m not going to be able to remember it all. But what I do

remember most of all is that I was able to get through some tough situations.”

(B/B Interview; May 19, 2004)

Hank believed the teacher was responsible for presenting complicated problems so that
students could tackle them: “What I can teach you is how to think, how to persevere.” The
students were responsible for fueling the class with their curiosity and interest in mathematics
and the world around them. Hank’s desire to encourage curiosity in his students was not
surprising given his own curiosity and love for mathematics. He loved the subject and loved to
talk about it. He repeatedly stated that he put stock in Galileo’s claim: “Mathematics is the
language with which God has written the world.” For Hank, teaching mathematics was about
helping students learn to “translate into and out of the language of mathematics —between the
language of the world and the language of mathematics” —and thus to make connections
between the two. “Truly understanding” a concept was a result of “making connections between
bizarre things,” such as the connection between Pascal’s triangle and the number of handshakes
in a crowd. Hank believed that through careful “organization,” the teacher could “bring some
order into [students’] understanding [of] what’s going on in the world.” After all, mathematics
could be viewed as the “science of patterns” and thus spawn curiosity if students began to notice
changes in the patterns around them in the world. In this way, mathematics was inextricably

connected to the world and the world to mathematics: Mathematics is everywhere if we are

sensitive enough to recognize it.
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Hank’s views about the use of contextual problems, in terms of applications and
modeling, were positive. He had co-taught a mathematical modeling course at Watercliff
Academy in the mid 1990s and had found the experience “fun” and exciting: “I just thought it
was very, very cool that you could tackle something like [complex modeling problems] on the
high school level.” Though the course was no longer offered at his school, Hank was committed
to contextual projects and assigned six to eight such projects in each of his mathematics courses
each semester. He described his courses as “scattered, spastic, and high energy” and strove to
create energy for his students through their engagement in contextual projects. Hank spoke of
“contextual stuff” as “anything that’s not textbook, and you just have to sink your teeth into it
and play.” He actively sought ideas for projects and kept stacks of resources and problems in his
office. He commented, “If it’s been a month since I did something, I know it’s time for me to
start flipping through my stacks and try to find something.” His ideas for projects were not
systematic. He did not have a set of problems he used repeatedly in his classes; he simply waited
for inspiration from something going on in the world or from something he had read somewhere.
For Hank, the world was filled with mathematics:

When you watch a car commercial or an old western, . . . you see that wagon or

car going down the road, and the wheels are spinning the wrong way. And why?

Why? Why is that? And it has everything to do with how quickly the wheels are

spinning and the fact that you’re filming at one rate and the wheels are spinning at

another rate. And it’s actually the interference of two trig functions. [You are]

sitting at a concert, and you hear the musicians warming up. And you know

they’re really close to being in tune with each other when you start to hear the

beats. And it’s the interference —destructive and constructive interference —of

sound waves, which is nothing more than trigonometry. . . . So it’s just knowing

math and then having an eye for what I call projects. When you hear something or

when you see something different, your mathematical curiosity kicks in, and that

helps you understand why it is. (B/B Interview; May 19, 2004)

Hank commented that it would be difficult for him to teach a course without helping his

students make connections between mathematics and the world.
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I’m not a pure theorist. It just doesn’t make sense to me unless I’'m using
situations to help drive my students’ learning. . . . One of the great disservices that
we do to our students is ask them to learn this and this, and learn this and this, and
they all come as these separate towers of knowledge. We’ve got to find a way to

help kids see the connections between things. . . . I see the connections, and then
my job becomes to help my students see those connections. (B/B Interview; May
19, 2004)

Hank believed that teaching mathematics using many different contexts and showing
students many different solution strategies helped them “hold on to [the concept] even though
they don’t remember the details — [they] remember the pattern.” To this end, he believed that the
best classes he had taught were those in which he had taken one problem and solved it a number
of different ways instead of teaching five different problems during the hour. He believed the
context in a problem pointed to the “actual utility of the mathematics.” Therefore, exposing
students to a variety of contexts and showing them multiple perspectives was central to the work
of teaching. He commented, “It’s a crime not to go there.”

Gary

At Watercliff, Gary was highly regarded by his fellow teachers and had earned the right
to make decisions about curriculum and instruction. Though Gary seldom used the textbook to
support his teaching—in an interview he was unable to name the precalculus text he was
using—his students excelled. His favorite course to teach was AP Statistics “because it’s always
applicable. There’s never the question about why in your life you’ll probably do this. It’s all
around you all the time.” He also commented that in teaching statistics “you always have the
ability to use simulation or hands-on kind of stuff to get that understanding more concrete; so
you’re still closer to reality in some sense.” Thus the relevance of mathematics to students’ lives
was at the heart of his teaching philosophy. For Gary, learning how to ask good questions was

“the heart of learning,” and he worried that he did not provide enough opportunities for students
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to cultivate that skill, which was part of becoming a good problem solver. Gary insisted that
students write and discuss mathematics in precise, “mathematically correct” ways. Gary
commented, “I am very, very, very picky about the language. I will not let them use pronouns,
and they get really mad at me for doing that.” His purpose was to help the students gain a better
command of the language of mathematics, “to be able to make quantitative statements
precisely,” because he believed much of mathematics depended on understanding and using its
language. “The inability to use the technical language correctly, and to speak carefully, hurts the
idea development.”

In Gary’s larger goals for students, he wanted them to be able to learn on their own, “to
look at the world with their eyes open and ask questions, and have reasonable skill at facing an
unknown situation without panic.” To this end, he sought problems from the world and
orchestrated lessons in ways that facilitated “Socratic discussion” and questioning. He believed
that mathematics was “inherently about structure —noticing structure and then utilizing structure
to take advantage.” Still, Gary wanted students to be able to recognize and account for “wiggle”
in the world, the idea that there is some uncertainty associated with everything, and that “your
job is to minimize it, to measure it” and make sense of it.

Gary noted that most of the facts taught in school were useless to students. He believed,
however, that facts were extremely useful when taken as a body of knowledge that illustrated
how to approach thinking. “That’s why we spend our time doing this.” He believed teachers
improved their instruction by teaching courses multiple times and by trying new ideas. He
commented that few problems were “directly importable” into classes, but that in adaptation and
revision, teachers could bring rich problems to their students. Teaching, like modeling, was a

“give and take,” and therefore the teacher must be flexible and adaptable as well.
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When talking about and discussing ideas concerning contextual problems —especially,
mathematical modeling— Gary spoke knowledgeably and confidently. He had worked with
Henry Pollak (a well-known figure in the mathematical modeling world and in mathematics
education in general) through the years and often quoted Pollak’s work. Other colleagues had
also influenced the “modeling” direction Gary had taken as a teacher, and he was surprised at the
emotion he expressed when referencing them—my perception was that he had not realized their
importance in his life until the interview. Always open to new ideas and problems, Gary had
gathered, adapted, and refined a number of modeling problems that he used every year in
particular courses. He believed such problems were motivating for some students and that for
some they provided a concrete link to another idea and thus helped them remember things better.
Cathy

Cathy was an enthusiastic teacher who truly loved the beauty of mathematics. Her eyes
sparkled as she spoke of “cool” mathematics and those teaching moments in which she could see
students “get it.” She loved mathematics and loved teaching it, particularly with the more
advanced and enthusiastic students.

What I love about teaching is—1I love the material. I like the self-containedness of

starting at the beginning, knowing it’s going to end, [and] having a finite amount

of time to make things happen. So if it goes really bad, it ends! If it goes really

well, it’s kind of sad that it ends, but [next year] it starts over again. (B/B

Interview; May 12, 2004)

For Cathy, mathematics learning was about developing new “tools” and mastering
different “techniques” —technological, verbal (words), analytical, numerical, and graphical
(TWANG, her students’ acronym) —and she worked diligently to provide the students with

opportunities to practice and use those tools. In this way, mathematics teaching was a means for

providing students with “toolkits” —a term used by many teachers in her department—that they
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could use to solve problems both in and out of school. Cathy wanted students to motivate their
own study by recognizing the inadequacies of their current toolkit. She organized lessons so that
students would realize that the new task at hand required something they did not know,
something more powerful than the tools they already had, and thus they would deduce what the
new, needed “technique” might be. Central to this organization was a balance between providing
enough information so that students could tackle a given problem and yet withholding enough
information that the problem was challenging and interesting; Cathy wanted students to “figure it
out rather than [her] telling them.”

Most important, and evident in Cathy’s teaching, was her belief that students needed to
have adequate time to learn: time to make mistakes and try again, time to think and reason, time
to try out different tools and select appropriate ones, and time to make connections and
applications. “The only way you get good at [contextual problems] is doing them. And the only
way to get good at them, by doing them, is to get enough time to really just do them wrong, get
some help, [and then] do it right.” Cathy believed that many applications were artificial but still
useful in that they could help students understand mathematics as a body of knowledge related to
the real world. And in this way, applications served to attract students to the theoretical side of
mathematics.

In discussing contextual problems and their role in teaching, Cathy believed such
problems were critical. “I don’t think there is very much need at the high school level to study
math for math’s sake. I think if we can’t tell you why anyone would ever want to do this, then we
shouldn’t be doing it.” She observed that there were exceptions to her comment; for example,
infinite series and limits of functions in calculus. She noted, “I include functions as part of the

real world even if they don’t describe anything real,” explaining that such topics in mathematics
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were objects worth thinking about for their own sake because “eventually functions are used to
describe real things.” In this way, she believed that mathematics could be real and powerful in
the absence of contexts. Finally, Cathy noted that using contextual problems in her teaching was
important. “I think [students] need to keep being tied back to the real world or they lose their
motivation.”
Diane

Diane was a confident teacher who was very dedicated to teaching her students. Her
dedication was fueled by her love of mathematics. She enthusiastically taught a variety of
courses (preferably three different ones each year), including a mathematical modeling course,
and found teaching to be both fun and rewarding. She believed mathematics was a useful subject.
Even if her students did not see its direct relevance to their lives, she sought to instill an
appreciation that would continue to engage and motivate them in further study. Using what she
called interesting and challenging problems, Diane worked toward her goals as a mathematics
teacher:

I wish they would persevere so that when they look at a problem, they won’t just

say, “I can’t do this” and move on to the next problem. That they understand the

value of writing things down and mucking around and making progress. And that

sometimes when you write things down, something good turns out, and

sometimes it doesn’t. But that they can reason and that they don’t want to just be

able to do something, but that they want to understand why. (B/B Interview; May

11, 2004)

Diane spoke of collaborations with colleagues as integral to her work as a teacher and
relied on those collaborations (and interesting applications) for inspiration on ways to

bridge what [students] learn in mathematics and what they learn in their science

classes so that their overall learning experiences are more rich, and they can more

easily take what they learn in one place and apply it someplace else. (B/B
Interview; May 11, 2004)
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Diane very rarely taught “math for the sake of math” and believed that the students
needed to understand how mathematics was useful, even if it was not useful for them. The
students also needed to be able to manipulate symbols, and Diane believed it was a disservice not
to teach those skills regardless of the students’ skills with applications and modeling. She
remarked that students needed to use mathematical language properly and share their ideas in
class discussion. She believed these practices kept the students accountable for their own
learning.

Diane spoke enthusiastically about the use of contextual problems in her teaching. She
believed contextual problems could motivate students and help them see its usefulness.

I think it captures the imagination of the students and keeps them interested, and

they can see some use to it. . . . I think what we try to do is make connections.

And I think applications help us make those connections better, which helps math

hang together better. And I think it also helps the kids make math relate to what

they’re doing in their other subjects . . . to have those “aha” experiences. (B/B

Interview; May 11, 2004)

She elaborated that it was the teacher’s primary job to provide contexts for mathematical
explorations. Students were expected to understand and make interpretations from those
contexts; the teacher could aid students, but not make the interpretations for them. Diane
believed that some mathematics could not be taught in contexts, but that doing so was desirable.
Tom

Tom was a dedicated and hard-working teacher. He spent hours developing problems and
projects for students and sharing ideas with his colleagues. He was always available to help
students and tried to challenge them at all times. For Tom, central to teaching was “posing

problems [or] fairly controlled questions that try to elicit some sort of response.” The teacher

should always have specific goals in mind, and Tom believed that the teacher’s job was to help
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the students figure out the mathematics they needed to accomplish those goals or to develop new
mathematics when necessary. Tom commented,

Oftentimes [students] see mathematics presented as a completed idea already. So

all the decisions have been made, and they don’t recognize that there are all these

points at which you have to make a decision. . . . So, in my teaching, I try to point

those out. That here we have to make a decision, but unfortunately we don’t know

enough right now to make a good decision. But we need to recognize that we’re

making a decision so that if we don’t get things we like, here is a point at which

we can come back and think. (B/B Interview; May 11, 2004)

Tom believed that thinking about, reasoning with, and discussing mathematics were
important for fostering students’ learning, and he sought opportunities to “set them up” and
“push the edge” towards those ends. He held high expectations for students and expected them to
successfully tackle problems they had not been taught to do. He wanted the students to share
their ideas but also to be able to write about the mathematics in correct mathematical forms
including equations, and in terms of what mathematics meant within particular problems or
contexts. Tom’s larger goal for students was “for them to be able to take what they’ve learned
and move forward with it; to be able to use it and to be able to recognize it in different contexts;
to make that transfer.” He acknowledged that such transfer did not happen automatically, and he
worked hard to provide opportunities to help students make such leaps.

Tom held very specific views of applications and modeling and spoke extensively about
their incorporation in his teaching. He had developed a modeling course nearly 15 years earlier
and had found much satisfaction in teaching it. “It’s the first time, and maybe the only time, the
students get a chance to show what they know and what they can do. . . . They really get an
opportunity to create their own mathematical ideas.” Tom also believed that the course prepared

students for formal mathematics and proof since it required them to start with conjectures,

something he felt was missing in most traditional high school mathematics courses.
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When you create a mathematical model, you are making some conjecture. “I think

this is a good representation and I need to convince you that it is. The results I am

drawing from this are valid.” And I think the logic of that is the same kind of

logic in the more formal proof, theorem proof, [except] the conjecture is the

missing piece [in non-modeling courses]. (B/B Interview; May 11, 2004)

In further discussion of contextual problems, Tom noted his belief that such problems
were beneficial because the students could get excited about mathematics, and in open-ended
problems, find solutions that were their own: They could take ownership of the mathematics. He
commented that his goal was for mathematics to make sense to students, “that they can see
where things come from and why they work. . . . I want them to be able to see the mathematics in
a situation and to use it properly.” His job was to put the students in the right settings so that they
could make connections to other mathematics, science, and the world. One way to accomplish
that goal was through contextual problems. Such problems could be challenging for students:
“They don’t do it well initially —you’re always disappointed. But it’s a hard task [for students],
and you don’t get good at it unless you do it.” Tom believed that teaching with such problems
was “very worthwhile.”

Rhonda

For Rhonda, teaching was a privilege and a passion. She had stumbled into the profession
and loved her work. “I enjoy the courses that I’ve been able to teach and look forward to seeing
the kids everyday. You always wish there was more time you could spend [with the kids] rather
than the political things.” Rhonda came to Constantia Ridge during the time in which the
department was moving towards a modeling emphasis in their courses, and she had
enthusiastically joined the effort. She spoke of the freedom within her department to try new

things, and she actively sought rich problems to use in her courses. Modeling and applications

were an ever-present thread in her teaching, and her students always worked in groups except
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during major assessments. Rhonda described her classes as noisy and active with “a questioning
sort of atmosphere rather than a lecturing one.” She believed that students should be actively
engaged in mathematics “so that they feel ownership of what they’ve learned, so it’s not just
something ‘she told me to remember.’”

Rhonda acted as a facilitator or moderator in her courses and worked to ask the “right
questions” so the students could get started and work on their own. She often answered students’
questions with a question and regularly deviated from her plans to pursue questions or
suggestions from students. She believed such deviations were worth the time if they helped the
students learn. Rhonda was interested in students discussing and writing mathematics. She did
not want them to “rehash the math” in their writing. Instead, they were to talk about what they
understood and how they came to that understanding. Rhonda believed strongly that students
should receive credit for doing mathematics regardless of their outcomes; thus she was very
focused on students’ thinking processes as well as their mathematical products. She gave grades
to students “if they explained something to the class, if they asked a good question, [or] if they
were productive when they had time to work on their own.” When asked about her goals in
teaching mathematics, Rhonda commented,

There’s certainly a basic amount of content. But I guess what I really want them

to leave with is the confidence that they can use the math that they have learned,

that they can use math outside the math classroom. [That] they’re confident in

their ability to do that. That they have the technology tools that they have built up.

That they have learned something about modeling skills. That they know how to

ask questions. [And] that they know how to talk about math and write about math.

(B/B Interview; May 4, 2004)

Rhonda held high expectations for her students and believed that if they had really

learned a concept they would be able to use it in other places. In this way, mathematics would be

useful to them, and perhaps they would pursue a technical career after high school. To that end,
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Rhonda used “rich” problems and engaged students in doing experiments, analyzing data, using
calculators, writing solutions, and questioning their assumptions. She believed that such
problems made mathematics seem more useful to students and helped them remember what they
were learning. Besides, they made mathematics more enjoyable. But students needed time to
work with such problems.

If we do all these different things [mathematically], and do it in a context, and do

it a lot—that seems more natural. And it’s just something that they get good at,

which, I guess, is a focus of mine. (B/B Interview; May 4, 2004)

Rhonda also encouraged the use of correct vocabulary in her classes. Allowing students

to use “silly terms” was not useful in her opinion. “We use the words that everybody is going to

understand when [they] leave and are talking about math in other places.”

Teachers’ Beliefs About Mathematics

The teachers who commented on mathematics held different beliefs about it. Hank
believed mathematics was a language that described the world and also the science of patterns.
Gary believed mathematics was inherently about structure and using that structure to understand
things. Cathy believed that mathematics was a source of tools that could aid one in explaining
the world. All of the teachers believed that mathematics was a body of knowledge that included
content, processes and procedures, and skills requiring practice. Mathematics could be useful in
explaining the world and other mathematics. It was complicated and complex, and students
needed time and practice in developing both confidence and proficiency with it.

The teachers also shared the belief that mathematics was powerful. What varied were
their interpretations of how it was powerful. Tom noted,

The power of mathematics is the context-free nature of it. That the quadratic
equation has the same solution regardless of what it’s describing [in the world]...
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that once I get [the problem] into a mathematical form, the mathematics operates
in a context-free environment. That’s its power. (B/B Interview; May 11, 2004)

Likewise, Gary commented,

The difference that math brings is that it focuses on structure much more than

some of the other disciplines are forced to . . . the fact that algebra is

simultaneously a language, and a set of computational rules, means that I can

convert sentences that do not appear to be equivalent. I can convert one into

another and know the equivalence by virtue of the structure of the language I am

dealing with. I couldn’t do that in English. I can’t transpose a sentence, and

restate that sentence, and guarantee that it means the same thing. In math, I can.

That’s a luxury and a burden, but it’s a fact. (B/B Interview; April, 16, 2004)

Still, Gary noted that mathematics allowed for “wiggle room” where interesting things
could happen. Cathy and Hank, unlike Tom and Gary, believed that the power of mathematics
lay in its ability to describe the world—in its potential for explaining real things. Mathematics

allowed one to understand their surroundings, to recognize patterns, and discern changes in those

patterns.

Teachers’ Beliefs About Mathematics Teaching and Learning

The teachers also expressed beliefs about teaching mathematics and how students
learned. The most prevalent belief they held was evident in their goals for mathematics teaching.
All of them spoke of their work as aimed at instilling confidence and perseverance in their
students. Every teacher wanted his or her students to tackle complicated problems and make
mistakes, but also to realize that they could do mathematics. The teachers worried little about
their students remembering every mathematical formula or rule; they were much more concerned
with the students gaining confidence. Thus teaching was about putting the students in settings

where they could develop confidence, struggle and persevere, and be successful.
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These teachers did not believe that teaching could be accomplished in a recipe-like
fashion. One must have goals—for example, teach precise language and specific content— but
one must also be open to following students’ paths and trying new things. The teacher and the
instruction needed to be flexible and adaptable. The students needed to feel ownership of the
mathematics.

These teachers believed that connecting mathematical ideas —across other disciplines
(physics, other sciences, etc.), across topics within the precalculus course, and across topics in
other mathematics courses—was central to teaching. The teachers discussed the potential that
mathematics offered in connecting ideas and believed students needed opportunities to make
those connections. Choosing problems that accomplished this goal and that engaged the students
was important. Students learned mathematics by engaging in problems and struggling. Important
for learning was making mistakes and having time to rethink one’s work and try again. The
teachers believed that students needed multiple opportunities to work with rich problems and that
“real learning” was evident when students could take mathematics and use it in different settings

—in science class, in another mathematics class, or in the world.

Teachers’ Beliefs About Contextual Problems

Selecting Contextual Problems

Central in planning a lesson is the selection of a good problem. A teacher’s instructional
practices are largely dependent on the nature of the problem or topic being explored and the
mathematics to be worked with. All the teachers in this study believed that good contextual
problems were rich mathematically. Such problems allowed for multiple solutions and multiple

solution paths. Good problems were those that students could get started with. Diane commented
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that she selected problems “related to mathematics they can do pretty well and at least make a
start, . . . but I’d like there to be a challenge without it being so frustrating that you lose the
value.”

Cathy believed that it was important for a given contextual problem to be
“understandable.” She commented, “Some problems are too esoteric, [and] the kids can’t wrap
their mind around [it].” As an example, she described a favorite problem about an undershot
waterwheel that she did not use in her teaching, because her students had no concept of how a
waterwheel worked. Cathy thus tried to find contextual problems that the students could
understand and that they were interested in— “it helps if they care.” She also stressed that the
problem needed to be challenging or involve a “kicker in the end.” Otherwise, the problem
would be a waste of the students’ time. She suggested that “the stronger the kid, the more ill-
defined [the problem] should be.” “So, you’ve got to have something in there that’s worth their
time, that they care about the answer one way or the other, or they can just appreciate the beauty
of it.”

Gary believed that good contextual problems needed to first of all be fun, but also rich:
“something that offers the opportunity for more than one path, or if not more than one path,
varying results through that path.” Likewise, Tom stressed that good problems “should be at least
somewhat interesting to the students” and should “lend themselves to a lot of different
approaches. That students don’t have to know a certain piece of mathematics to be able to do it.”
He elaborated,

The main requirement is that it allows for a number of different approaches from

students with different levels of mathematics so that you’re not getting everyone

doing the same thing and getting the same results. What makes [a contextual

problem] interesting for the students is that their solutions are quite different

[from each other] because their models are different. (B/B Interview; May 11,
2004)
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Tom believed that contextual problems yielded different results depending on how they
were posed by the teacher. When the teacher is interested in students learning a particular piece
of mathematics, the problem and its context might be posed so they are “very controlled and very
specific.” At other times, as in the modeling course, the problem is posed as “very open-ended,”
and students are challenged to see what they can do. Thus, the potential of a problem and how
“good” it was depended on how well it was posed and whether it accomplished the goals of the
teacher. Rhonda added that good problems encouraged classroom discussion. Students thought
about contexts and problems differently, and good problems encouraged the students to share
their approaches and ideas with one another.

Finally, good contextual problems were those that allowed for teaching more than one
concept—problems that accomplished many goals. For example, the CO, Problem (described in
chapter 6) was considered a good problem because it (a) was mathematically rich (it involved
aspects of trigonometry, exponentials, sums, linear regression, residuals, graphical
representations, logarithmic re-expression, and so on); (b) was based on a large amount of real
data, yet students could work with it; (c) required students to connect mathematics in ways new
to them; (d) highlighted features of the graphing calculators and gave students practice using that
technology; and (e) provided a context for reviewing other minor mathematical points, like the
importance of data lists being in parallel forms to facilitate comparison.

In sum, the teachers unanimously agreed that it was the teacher’s job to select good
problems for use in instruction. They believed that the teacher should actively seek contextual
problems that could be of use. If they tried a new problem and it proved beneficial to students’
learning, it was shared with colleagues. If it needed adaptation, it was modified and tried again.

If it “flopped,” it was thrown out. All of the teachers (Hank, to a lesser degree) had contextual
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problems they had developed over time and used each year in their classes, but new problems
were continually being developed. Thus their problem sets were always evolving and expanding.
The teachers reported that this innovation—particularly the teachers at Constantia Ridge —kept
them enthusiastic about the mathematics content they taught.

Using Contextual Problems Often

The teachers in this study believed that many teachers hesitated to use contextual
problems regularly because they had “tried it once and it didn’t work.” The teachers spoke of the
danger of trying something only once. If one’s goal was for the students to be skilled at tackling
large modeling problems, then they had to be given numerous opportunities to tackle such
problems. Tom and Cathy both stressed that the incorporation of contextual problems had to
happen regularly and often if students were to cultivate an ability to solve them. They cautioned
that inserting such problems “once in a while” would only leave teachers disappointed and
students frustrated. Teachers needed to be patient and persistent in their use of such problems to
provide students ample opportunity to engage with the problems, to make mistakes, and to try
again. Hank and Rhonda also commented that when pursuing one’s goals for students’
perseverance or further development of mathematical language use, one must consciously work
toward that goal every day. They believed it could not be the focus of one’s attention part of the
time or one day a week. If a goal was important, it needed to be addressed daily.

The belief held by these teachers that contextual problems should be used often may
surprise readers since three of the six—Hank, Tom, and Cathy —were not observed teaching
lessons that involved contextual problems, because they did not plan to teach any such lessons
during April and May 2004. The teachers, however, were, in fact, teaching such lessons during

that time but later explained how they reasoned that the lessons would not be appropriate for my
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study. Hank explained that he was only teaching the Advanced Placement (AP) Calculus course
that semester, and since the AP exam was in the first week of May, he planned to alter his
instruction for that month to prepare students for the exam. He planned to return to regular
instruction following the test but was concerned that the students would not be performing at
their potential since they viewed the exam as the end of the year. Tom reported that he only
taught statistics in the spring, a course he defined as “always contextual,” but he commented that
the course was “different enough from ‘traditional mathematics’ that [he thought] it would not be
appropriate [for my study].” And, since there was ample opportunity for me to visit more
traditional courses (precalculus and calculus) taught by the other teachers in his department, he
reported that he would not be teaching any lessons relevant to my study. Cathy was teaching a
precalculus course that was rich with contextual problems, but she noted that in late April and
early May the students were completing a unit on trigonometry and were not doing much “in
context,” by which she meant “modeling some real world phenomena.” She elaborated on the
unit and its lack of contextual problems:

Trig identities are just cool and useful, but they don’t help you model a Ferris

wheel! When we do the unit circle [in the same period of time], again, there isn’t

much reference to physical reality. So during those lean weeks, I keep class

interesting in other ways: by using technology a lot (both calculator and other

software), by sending the whole class to the board to work problems, by making

up games (Jeopardy-like, or the “unit circle race”) that give them some reason to

care. . . . We do have interesting modeling problems in trig (predator/prey, the

swing lab, the Ferris wheels (single and double)), but there are weeks at a time

when we aren’t doing that. (e-mail communication; December 8, 2004)
Cathy was also aware that Rhonda was planning to teach “the swing lab” while I was there to
observe, and she did not think I would be interested in seeing it twice even though she, too,

would be teaching that lesson. Obviously, Tom and Cathy had particular ideas about what I

meant by “contextual problems” and about what would be appropriate for my study. As a result,
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even though they taught with contextual problems during that time, each determined that he or
she would not be teaching a lesson appropriate for my study, as did Hank. So although I did not
formally observe these three teachers teaching with contextual problems, their commitment to
and regular use of such problems supports their belief that contextual problems needed to be

taught often if students (and teachers) were to become successful at working with them.

Closing Comments

Even though teachers’ beliefs were not the focus of this study, research indicates that to
some degree teachers’ practices are influenced by their beliefs and vice versa (Carpenter &
Fennema, 1991; Cooney, 1994; Ernest, 1989; Gamoran, 1994; Leder, Pehkonen, & Torner, 2002;
Raymond, 1997; Thompson, 1992). Therefore, I took teachers’ beliefs to be important in framing
and understanding their practices. This chapter highlighted these teachers’ beliefs about
mathematics, its teaching and learning, and contextual problems. The teachers were excited
about their work as mathematics teachers, and their conversation highlighted their beliefs about
teaching with contextual problems and their thinking about such problems because such
problems were central in their work and because they knew the focus of this study. These
teachers’ beliefs orient the reader to the chapters that follow and provide a foundation for
thinking about the teachers’ notions of terminology (chapter 5) and their instructional practices

(chapter 6).
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CHAPTER 5

TEACHERS’ NOTIONS OF TERMINOLOGY

In this chapter, I describe the teachers’ notions of the terms related to contextual
problems. I also present and discuss the graphic organizer drawn by each teacher. (One teacher,
Diane, did not produce a graphic organizer.) Finally, I synthesize the teachers’ notions of the
three terms and identify the dimensions along which they described the terms. This chapter
addresses the first research question in this study: How do teachers with reputations for using
contextual problems define and relate the terms mathematics in context, applications of

mathematics, and mathematical modeling?

Muddy Waters: Teachers’ Notions of Terminology

Hank’s Notions

Hank began by discussing applications:

A flat-out application—that’s in action, it’s math touching the world. Where
mathematical modeling can touch the world, it doesn’t need to . . . that’s the
backbone, that’s where the most pure logic comes from—in the modeling. I can
see building mathematical models as intellectual exercises, understanding what’s
going on. Yeah. I get a real world, but am I using it? Mathematics in context is
what a lot of textbook authors use as a cheap way out. Let’s learn a lot of math
theory. And on the side, okay, we’ve learned it; let’s actually put it some place
and say, “Okay. Here it is in context. We’ve learned a theory and now here we are
in context.” Whereas application to me says, “I’ve got something that I need to
figure out, and I’'m learning the math to try to go along with it.” . . . Mathematical
modeling could be either end of this. . . . It is the creation of the mathematical
framework. It is the mathematical structure that allows you to understand the
application or allows you to go into context. (B/B Interview; May 19, 2004)
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To bring more clarity to Hank’s notions of the three concepts, I asked him to draw a
graphic organizer relating them. He immediately produced a Venn diagram. A reconstruction of
Hank’s graphic organizer is given in Figure 1. Verbally relating the three phrases proved
challenging for Hank because he felt “that they were all shades of exactly the same thing.” He
was not able to account for all of the overlaps in the diagram (e.g., the small spaces created
outside the intersection of applications, APPS, and mathematics in context, CONTEXT, in the
MODELING oval).

MODELING APPS

Reality—=Math

Arms Race

Interpretation CONTEXT

Translation
«——

Figure 1. Hank’s graphic organizer for mathematics in context, applications of mathematics, and
mathematical modeling.
Note: Arms Race and Min Can are abbreviations for mathematical problems (see p. 88).

Hank pointed to the “massive overlap” in the figure between applications and
mathematics in context as important in his understanding of the two: “One drives the other,” and
they differ only in which one is driving at a particular time. He further clarified that the non-

overlapped part of applications “is [where] reality drives math” but noted that both applications
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and mathematics in context “end up using a lot of the same ideas” since the student is translating
back and forth between the language of the world and the language of mathematics.

You'’re still doing nuts and bolts here [applications outside the overlap], but what

starts it is the reality. Whereas math in context, to me . . . is “I’ve learned the

theory, now I’'m finding a way to use it.” (B/B Interview; May 19, 2004)

In other words, for Hank, math in context meant starting from the theory and “driving into the
common” where the interpretation and translation happens both ways: into mathematics and out
of mathematics.

On the other hand, mathematical modeling intersected applications and mathematics in
context because translation and interpretation with respect to the context or application in the
problem were important in creating a mathematical model. In many respects, however, modeling
stood alone. Hank explained:

You’ve got a situation that needs to build in, and it could have started from reality

and gotten into here [applications outside the overlap]. And then I had to build a

math model, and I’m doing all my translations back and forth [into the

interpretation and translation area of the diagram and out of the modeling area

outside the overlap]. All of this can overlap, but it’s also possible that you could

be doing—there is some translation outside of math, but it doesn’t necessarily

have to tie into reality. And there is some modeling that doesn’t have to deal with

application. (B/B Interview; May 19, 2004)

Clearly for Hank the three terms were in fact “shades of the same thing.”

A striking feature of Hank’s graphic organizer is his self-imposed restriction of these
terms to a mathematical domain. For him, the three terms referred to mathematics; they were
about problems that might or might not incorporate the real world. They were interconnected and
difficult to delineate. Unlike Rhonda’s model (presented below), the three terms did not seem to
have pedagogical implications. Instead, they were about structuring and deriving mathematics:

developing applications from theory, using theory in contexts, or building mathematical models

or frameworks. He offered examples of problems that fit within these various categories and
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chose to include some in his graphic organizer (Arms Race, a modeling problem about the
accumulation of nuclear weapons, and Min Can, an application problem concerning optimization
of volume in canning drinks). His organizer showed movement— translating and interpreting,
moving in and out of the categories seamlessly and constantly. Theory and use were important,
though he was not clear how. Reality could be everywhere but did not have to be; modeling
could just be about pure theory and logic.

In general, Hank’s model exemplified the instability and flexibility of the three
terms — that they overlapped and were “folded” within themselves. Yet Hank thought that they
must somehow be distinct at times; surely a problem could be classified as one or the other. How
could one problem be both? A problem could cross boundaries —be multiple and open—only in
the sense that some of the processes used in solving the problem, interpretation and translation,
were shared. Some shared features were unexplainable; some overlaps held no meaning in the
model. And yet, an overlap model offered Hank flexibility in relating the three terms.

Gary’s Notions

Though Gary talked of mathematics investigations in terms of modeling, he clarified that
“really most of what you see in my classes are applications. . . . We try to do some modeling as
part of that.” He viewed modeling in terms of a process that could be applied to either
application or modeling problems:

When I refer to application, generally speaking, what I am assuming is that the
mathematics is already known, or a body of mathematics is already known, and
the identification of what mathematics is appropriate to bring to bear on a
particular problem is also already known. Minimal understanding is necessary to
start the problem. Modeling, to me, is when you’re faced with a situation, and
maybe there’s not even a question yet or a problem, and you have a situation
you’re trying to understand. And you fiddle with it. And you look at it, and you
fiddle with it in the real world for awhile. . . . I’ve got to figure out what matters
and what doesn’t matter. And none of the decisions I make necessarily are
correct. They’re all subject to “review and come back later and modify.” In
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modeling there’s a give and take, a back and forth. (B/B Interview; April 16,
2004)

Thus, Gary viewed applications and modeling as very different constructs. In the former,
you know the structure, and you apply it to a situation that you know it will work for:

It is going to go one way. I’'m going to look at the context and say, “Oh, I know

the math that goes with that.” I’'m going to patch it over the top and make it fit,

circle the answer and go on to the next problem. (B/B Interview; April 16, 2004)

In the latter, you have a situation and you are trying to create its structure recognizing that you
may need to make modifications and revisions a number of times before finding one that best
describes the given situation:

[Modeling] is really looking at and letting the context inform the mathematics and

letting the math inform the context. And sometimes one will drive, and sometimes

the other will drive. And I think that to me is the distinguishing characteristic of a

model. (B/B Interview; April 16, 2004)

With reference to mathematics in context, Gary commented, “I don’t have a notion of
what I mean by that. . . . I guess I would probably consider it as a super-heading for both of the
other two.” Context, however, is “all the stuff that is not math—all the things that someone who
is not a mathematician would care about.” And for Gary, there was only one context: the world.

Gary also had strong beliefs about the role of the “real world” in these kinds of problems.
He began by explaining his notion of “whimsical” problems that he had learned from Henry
Pollak. Whimsical problems were those in which

the words around [a problem] are realistic. They allow you to envision something

taking place, but it isn’t going to happen. It isn’t reality. It would be something I

would qualify as an application, [though] I would like an application to be more

realistic as well. (B/B Interview; April 16, 2004)

As an example, Gary described a problem in which two people leave two different towns

at the same time driving towards each other, and the task is to find where they meet. It is

whimsical in the sense that it assumes constant speed with no interruptions, no traffic, no traffic
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lights or stops, and so on. It involves real things, but it would never really happen. The closest
problems to reality were modeling problems. Such problems were “big” problems, requiring
multiple days to solve, wherein the situation is “really, real.” It could happen. The task then is to
understand it and explain it—to try to predict it and evaluate it. Gary explained,

The modeling process can produce an explanatory theory if you don’t have one or

it doesn’t hold, or it can look for ways to extend an already existing explanatory

theory and verify it. . . . So you can start with a theory that comes from the real

world side and have it tell you what math ought to happen. Or you can start with

observed mathematical realities and ask, “What do they tell you about the world?”

(B/B Interview; April 16, 2004)

The model you make will not “capture reality,” but it “ought to capture as much as you want to
capture, and you have to decide what your tolerance is. A mathematical model is an idealization;
the world isn’t ideal. Sometimes [your model] just don’t work. . . . All models are wrong; some
are useful.”

A reconstruction of Gary’s graphic organizer relating the three terms—mathematics in
context (Context), applications of mathematics (Appl), and mathematical modeling (Model)—is
given in Figure 2. Gary used two illustrations to make his point. He drew the concentric circle
configuration first in order to explain why such an organization would not work. He explained
that applications are part of the modeling process, but they are not a “kind of modeling” as this
picture implies. It is not that “some models are applications.” Instead, the modeling process is
embodied in the organizer Gary drew on the right in Figure 2 (partly derived from his work with
the ARISE materials (see http://www.comap.com/highschoolprojects/mmow/introduction.html)).
This configuration organizes the processes involved in modeling wherein the problem starts in
the real world (RW), and you decide to explain it in terms of mathematics (Math). So you move

to the right in his illustration and do some calculations (Calc) that then allow you to make some

predictions (Predict) about the situation in the real world. Gary commented that the process did
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RW » Math

Predict Calc
Context <

Model

Figure 2. Gary’s graphic organizer for mathematics in context, applications of mathematics, and
mathematical modeling.

not stop there; next, you must check your predictions against the real world (RW) to see if your
model is reasonable. If it is not, then you may have to repeat various parts of this process again
until you arrive at a model that works within your tolerance.

Gary also explained his notions about applications in terms of this cyclical process. He
thought that applications were represented by the connection between Math and Calc in the
illustration though he acknowledged that they probably had elements of the real world. “It’s a
narrowly formulated problem, very specific, no excess information. You’ve got exactly what you
need . . . typical textbook word problems,” and you do some mathematics to arrive at an answer
or calculation, and you stop. You do not continue in the cycle to predict, nor do you look back at
the real world. Taking the notion of applications one step further, Gary considered mathematics
in context to involve the same work as applications plus the move “a little bit along this path,

probably not much” towards making predictions. In other words, you might connect your
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calculations to the real-world situation, but you would not actually test them to see if they were
reasonable descriptions of the world.

Gary’s relation of the three terms was couched in terms of modeling as a process. He
rejected a configuration that implied they were nested. Yet in his alternate configuration, a
cyclical process, both applications and mathematics in context were “stops” within the larger
process of modeling. The real world served as a beginning or an end, and often both. Actions
were required; they allowed for movement to the next stop. The terms were not hierarchical, yet
some degree of linearity was implied. One moved deliberately and in an orderly way through the
process; there was no path from calculations to the real world or from prediction to
mathematics, and one did not move backwards in the progression. Additionally, the terms were
not about mathematics per se, and they were not pedagogical. Particular problems or examples
were not accounted for in the organizer. The terms were about processes and the ways in which
one solved and resolved problems. They were fixed in a loop with sketchy beginnings but
definite endings.

Cathy’s Notions

When first asked to talk about the three terms, Cathy commented that “for some people
they are just three ways of saying the same thing,” but that was not the case for her. Mathematics
in context was finding mathematics “inside of other things.” Examples she offered included
walking in the woods and finding an excuse to talk about mathematics —often in the context of
parents and children, not in the context of schooling. Applications moved in the opposite
direction; you had some “cool mathematics, and you’re trying to find something to apply it to.”
And mathematical modeling was taking applications “to an extreme.” For her, modeling was a

combination of the other two terms in which you have a “very large complex problem that can be
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visualized mathematically. And it isn’t always obvious.” Yet, modeling differed from the other
two:

Modeling is more driven by the problem. The problem comes to you, and then it’s

your job to decide if you know any math that would model it. And if not, you go

find some new math or you develop new math—that’s where math really gets

happening in the real world. . . . “Math in context” is just making sure kids see

math every time you can find an excuse to talk about it. “Applications of math” is

finding interesting enough problems for the particular topic you’re doing in class.

The “math modeling” is really the real world—it’s real big actual problems that

might or might not succumb to a mathematical model. And the power is, if you

can model it with math well enough, then you have a chance of reaching a

solution. (B/B Interview; May 12, 2004)

In the way Cathy was thinking about the three terms in the above description, she noted
an increase in difficulty and complexity of the problem types as she moved from math in context
to mathematical modeling. She also sensed minor differences in terms of the role of the real
world in each—modeling “really is the world,” applications were the real world being “brought
in,” and math in context was seizing opportunities to “see math out there.” Cathy was adamant
that using these kinds of problems with students was necessary: If the teacher does not take time
to do

some real problems, [students] don’t understand that [mathematics] has a use. It’s

got to happen, it’s got to happen regularly, but it can’t happen with every topic.

[Students] need to keep being tied back to the real world, or they lose their

motivation. And I lose my honesty as a teacher. (B/B Interview; May 12, 2004)

Cathy emphasized: “If we can’t tell [students] why anyone would ever want to do this [in school
or out of school], then we just shouldn’t be [teaching] it.”

Figure 3 is a reconstruction of Cathy’s graphic organizer. Two features of Cathy’s
relation of the three terms are evident. First, the terms were ways of classifying mathematics

problems. Problems could be “typed” and fit into separate categories using these labels. The

terms were distinct and could be defined; they were not overlapping or interwoven in the ways
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Figure 3. Cathy’s graphic organizer for mathematics in context, applications of mathematics,
and mathematical modeling.

that Hank organized them. Second, the relation of these terms to the real world was central in
Cathy’s organizer. Each construct interacted differently with the real world. This interaction was
depicted in both the descriptions Cathy wrote (in the arrowed boxes of her organizer) and in the
placement of the rectangular representations of the terms in the realms of mathematics and the
real world (Figure 3). Mathematics in context was predominately about the world, applications
were predominantly about mathematics, and modeling was equally important in both realms.
Cathy’s written comments also denoted location; the different kinds of problems were worked in
different contexts. Mathematics in context problems took place “in the world,” application

problems occured in “the math class,” and modeling problems could occur in either context. The
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terms were hierarchical in the sense of complexity: mathematics in context was at the bottom of
the organizer and the least complex, whereas modeling was at the top of the hierarchy and most
complex. One might even argue that the shading of each rectangular representation of the term
supported this increase in complexity.

Diane’s Notions

Diane did not produce a graphic organizer, but she did discuss the ways in which she was
thinking about the three terms. Her initial reaction, like Cathy’s interpretation, was that in
moving across the terms from mathematics in context to mathematical modeling, “we’re going
from something that is littler to [something that is] bigger.” Diane spoke of the three terms in
following way:

Modeling is when you have a big, open-ended problem, and you are trying to grab

some mathematics to help explain what’s going on or describe what’s going on.

Applications are, here’s a body of knowledge that directly connects with, [that]

applies to this particular scenario. And then, math in context is closer to

applications. . . . It is at least loosely tied to the real world. (B/B Interview; May

11, 2004)

Later in clarifying her definitions, Diane offered that modeling was a “bigger” concept in
the sense of being more nebulous than the others both in yielding many different answers and
allowing for many different approaches to arrive at those answers. Modeling was more than
teaching students what mathematics to use in various situations. For Diane, those practices were
“applications [of mathematics] to particular scenarios” because the students already knew the
mathematics involved. Modeling required students to develop the mathematics and models; it
involved “students making stuff up themselves” in order to model a phenomenon. The real world
was “the whole point” of modeling. For Diane, applications involved the real world to some

extent, but often they were “more hokey” than modeling problems because the students were

forced to suspend reality to work the problem. Finally, without elaborating on how she was
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thinking about mathematics in context, Diane suggested that the role of the real world in the
three terms increased as one moved from contexts to modeling.

From these descriptions, one might guess that if Diane had produced a graphic organizer,
it would have been similar to Cathy’s. Both saw an increase in complexity and in the role of the
real world as one moved from mathematics in context to mathematical modeling, and both
recognized applications as sometimes being artificial or hokey. Both viewed modeling in terms
of large, nebulous problems that involved students in developing mathematics. And both defined
applications as problems wherein students already knew the mathematics and were learning
where it was applied or used in the real world. A difference in the descriptions offered by Diane
and Cathy lay in what they said about mathematics in context. Cathy articulated what that phrase
might mean and situated it in settings outside the school context. Diane connected it to
applications and the real world and offered examples of contexts: mathematics, situations, future
coursework, and so on.

Tom’s Notions

During Tom’s participation in curriculum development initiatives focused on applications
and modeling and during his development of a modeling course, he had devoted time to reading
and studying articles about problems based in applications and modeling. He described how he
defined these terms:

Application problems are problems in which the mathematical model has been

defined for the student, and it illustrates how the mathematics can be used. It is

mathematics in context, but there is no creative modeling on the part of the

student. [Students] may have to creatively use the model that they’re given, but
they don’t have to create anything. The modeling context is where the model is

not given; the purpose of the activity is to create the model. . . . [It could be] a
controlled context, or it could be very open ended. But the creation of the
mathematical representation is the purpose of the activity. . . . An application

activity is after the model has been created: What can we do with it?. .. You can’t
have the application without the model. (B/B Interview; May 11, 2004)
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Not only did Tom describe modeling in terms of a mathematical model or structure, he
also spoke of the “iterative” modeling process wherein “the operating mantra is to create the
simplest version of the situation that still contains the essence of the problem” and to find a
solution that may have to be improved upon by changing the assumptions of the problem and
doing it again. The goal of this process is to “make it better, make it better, make it better—make
it more realistic, make it more realistic” until you are satisfied that it models the “portion of
reality” you are seeking to emphasize.

He described the modeling process as more advanced and more difficult for both the
teacher and the students than working with applications. Because modeling problems are more
open and require creativity and decision-making by the students in pulling together ideas to find
a mathematical representation, the teacher must spend time thinking about the mathematics,
where students may go with it, and what questions will control the problem so that students are
directed toward fruitful outcomes. With applications, the work by the students and the teacher is
more straightforward and thus less demanding on both. When asked about mathematics in
context, Tom commented that he had not thought about the phrase as a descriptor but noted that
he saw applications and modeling “as two prongs coming out of mathematics in context.”

The role of the real world in these kinds of problems was important. “If you’re trying to
describe something in the real world, then you are limited by reality.” Tom explained that
students must always measure their model against reality (i.e., you cannot have infinite
populations, frictionless masses, no air resistance, etc.) and recognize that a model is not reality.
Instead, he described a model as a “caricature of reality”:

You emphasize the nose and the ears and hide the chin. There are things that you

bring out for focus, and you ignore other pieces. So that’s what you’re trying to
do. You’re trying to create a mathematical representation that emphasizes some
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piece that you’re interested in while ignoring some others. . . . Mathematics is not

the real world. It’s a description of some portion of the real world but is always

less than the real world. That always puts some constraints on the kinds of things

that you can do. (B/B Interview; May 11, 2004)

In terms of applications and mathematics in context, Tom did not elaborate on the role of
the real world. But in describing applications he used the example of coffee cooling to room
temperature, obviously a portion of the real world in which we live. To get further insight into

Tom’s ways of defining and relating mathematics in context, applications, and modeling, he was

asked to produce a graphic organizer (see Figure 4).

(Setting)
Mathematics in Context

Model

Applications \

Model

M.C.

Applications

Figure 4. Tom’s graphic organizer for mathematics in context, applications of mathematics, and
mathematical modeling.

In accordance with the structure Tom had described earlier, he drew applications and
modeling as two prongs coming out of mathematics in context— the box that represented the
problem’s setting or situation. Given the setting or situation, Tom noted two possibilities. On the
left, you can have applications wherein the model is already given, and “you can ask questions
about the setting.” Thus he placed model inside the applications box on the left side of his

organizer. On the right, “there’s a situation [and] I develop a model. And the applications are
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really me finding out about the situation.” So, Tom placed mathematics in context (M.C.) inside
his applications box on the right side of his organizer. In essence, he saw applications and
models as embedded within each other but in different ways. Sometimes the model is given, and
you are concerned about its application. And sometimes you have to create the model and then
ask questions of applicability in a setting. “That’s the real difference: whether you’re given the
model.”

In Tom’s organizer, mathematics in context served only as a descriptor for the real world
setting or situation embedded in a problem. Mathematics in context was not part of an iterative
process as in Gary’s model, nor was it a way to type problems as in Cathy’s model. Application
and modeling, however, were ways to classify problems. In the former, the model is given, and
in the latter, the model is to be created. Applications do not stand alone; they are possible only
when you have the model. And applications are the endpoint for all problems derived from a real
setting. The purpose is to learn something about the setting—how the mathematics applies to the
setting. The difference is in whether you are required to create the mathematical model or
whether it is already given. Once you have a model, you can make a statement about context.
The organizer does not highlight anything pedagogical, nor does it illustrate modeling as a
process. It differentiates two problem types and the processes involved in each (whether or not
you have to create the model). It connects all of the terms in some way: Mathematics in context
is connected both to applications and mathematical modeling; applications are connected both to
mathematical modeling (in the left prong) and mathematics in context (in the right prong); and
mathematical modeling is in the midst of movement from mathematics in context to applications

(in the right prong).
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Rhonda’s Notions

When Rhonda was asked about the three terms, she commented that she had never
considered how she might describe them. Yet, she had specific notions about what the terms
modeling and applications might mean, and about teaching content “in a context.”

“In context” makes me think of, “I am learning something new but I want to know

why I am learning it.” So I want to put it into some sort of context . . . because I

don’t want [the math concept] to just be a skill. . . . An application makes me

think of a bigger picture and something where I might use more than one skill.

Well, you often use more than one skill. But it’s something where I use lots of

things that I know, and it’s not necessarily connected to something new. . . . I

don’t think I ever realized this, but [in context] seems more constrained to me.

(B/B Interview; May 4, 2004)

Rhonda explained what she meant by constrained as she drew a graphic organizer of the
three terms later in the interview. But first she defined modeling as a “very big, very open-ended,
almost vague kind of question that you want to answer” that often requires simplifying
assumptions in order to get to mathematics you can work with. In comparison with the other two
terms, Rhonda clarified her view of modeling:

“In context” seems like a single thing where you want to learn this skill, but not

for the sole reason of learning a skill, but because you need it for something. Then

you get to put several of [these] things together in an application, which is still

pretty specific. But then modeling is sort of all over the place. You could solve it

several different ways. It’s not at all clear what you need to do to begin with,

probably. You’ve really got to muck around with it for awhile before you can

figure out what’s going on. (B/B Interview; May 4, 2004)

In further discussion, Rhonda noted that modeling problems were rich and required a
minimum of 90 minutes in class, whereas it would be “boring to do a bunch of applications and
‘in context’ problems in 90 minutes.” She also commented that students needed less guidance
when working with application problems as compared with modeling problems, wherein

deciding which mathematics to use was often the most challenging step. Finally, she discussed

real problems versus realistic problems, pointing out that real problems were those that used real
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data. Real data were either collected by students or located in resources in which others had
published data they had collected. Realistic problems were based on realistic data—data that
were “made up” to reflect a certain mathematical phenomenon like exponential growth. The
solution would be realistic but not real. Real solutions were those that “our science colleagues
would agree with . . . [solutions] that could be replicated.”

Figure 5 is a reconstruction of Rhonda’s graphic organizer relating the three terms.
Rhonda explained its organization:

If we’re talking about “in context,” I generally think about that as being a

particular skill or concept. So this (points to lowest funnel) sort of funnels,

narrowly funnels, into [mathematics in context]. And if we put several of these

skills and things [together], they funnel in a broader way (pointing to the middle-

sized funnel neck) into the applications and the real world problems. Now these

things (points to clouds), the writing, the talking, the technology, the group work,

and the assessment are sort of always throughout. They’re into all of it. And then

all of these things (points to everything in organizer except the phrase

“mathematical modeling”), in a very wide way (points to wide funnel at top of

organizer), funnel up into the model. (CO, Problem Pre-lesson Interview; May 12,

2004)

In accordance with Rhonda’s verbal descriptions, the level of constraint from
mathematics in context to mathematical modeling in her organizer is illustrated in the broadening
of the funnel neck as one progresses upward —the funnels go up in her organizer, even as they
seem to go down. Similarly, the number of skills and concepts involved increases as one funnels
into mathematical modeling. The organizer is predominantly about teaching mathematics. It
depicts a number of pedagogical aspects shared by mathematical modeling, applications of
mathematics, and mathematics in context, as the “clouds” illustrate. The terms are hierarchical in
complexity and breadth of focus. As you funnel up from mathematics in context, the problems

become increasingly complex and broader in scope. Modeling encompasses everything in the

organizer. The terms are not separate or distinct but embedded within bigger, more complex
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mathematical modeling

applications & real-world problems

technology
. >

several skills & concepts
writing about
mathematics

group work

mathematics in context
talking about
mathematics assessment

particular mathematical skill/concept

Note: Q = occurs throughout

Figure 5. Rhonda’s graphic organizer for mathematics in context, applications of mathematics,
and mathematical modeling.

structures. Nothing falls outside of the organizer, and the roles of mathematics and the real world
are not emphasized or evident. The three constructs are about teaching practices and problems.
They are also about a classification of problems based on the number of skills and concepts
involved in solving them. This view is very different from the distinctions made by the other
teachers in their classifications. Tom classified problems according to whether or not the model
was given in advance. Gary classified the problems in terms of the processes involved in solving
them. And Cathy classified problems by the extent to which they incorporated the real world and

by the context in which they were encountered (real world or mathematics class).

107



Synthesis of Teachers’ Notions

In this study, all six teachers were asked the interview question (Appendix A) in the same
way with regard to the sequencing of the three terms, mathematics in context, applications of
mathematics, and mathematical modeling. This ordering was crucial for some teachers, as they
felt the sequence held meaning. For example, Rhonda and Cathy noted that the three were
ordered so that they increased in breadth of focus and complexity. For Gary, the three were
ordered from general to specific (i.e., mathematics in context was a general heading that
encompassed the other two). And similarly Tom structured applications and models as “two
prongs” coming out of mathematics in context. Also important to note is that the teachers did not
necessarily address the terms in the order in which they were given. Four of the six teachers
defined first the term applications of mathematics. Most of the teachers were more confident
with their definitions and explanations of mathematical modeling but chose to address
applications first because of the brevity with which they could describe it. The teachers
unanimously reported that mathematical modeling was the most complex of the three terms and
therefore that explaining and defining it required more time and words. Three teachers (Gary,
Tom, and Diane) sidestepped discussion of the phrase mathematics in context, but Gary and Tom
later incorporated it into their descriptions and accounted for it in their graphic organizers. The
other three teachers tackled the phrase head on, offering their understanding of what it might
mean. In the following paragraphs, teachers’ notions about the three terms are synthesized

according to the order used in the interview question.
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Mathematics in Context

The teachers’ ways of describing mathematics in context were more dissimilar than their
descriptions and definitions of the other two terms. This variation was not surprising since all of
the teachers reported unfamiliarity with the descriptor or phrase. Still, “in context” was
meaningful for the teachers, and even those who avoided lengthy elaboration on what the phrase
might mean could not avoid the use of context in describing the other terms. Tom, Hank, and
Gary associated “in context” with the real-world setting or situation reflected in a particular
problem. But Hank and Rhonda described mathematics in context in ways similar to descriptions
of applications and word problems in the mathematics education literature. For example, Hank
noted that mathematics in context problems were “what a lot of textbook authors use as a cheap
way out” (similar to common descriptions of word problems); and Rhonda noted that the term
was basically a one-step “application” narrowly focused in mathematics. Like Rhonda, Diane
described mathematics in context as closer to applications, related loosely to the real world, but
she did not explain how that was so. Cathy took the phrase “in context” literally and described it
as denoting mathematics “in the world,” where students observe mathematics around them and
take notice of it. Thus, the teachers’ descriptions were varied and often vague perhaps because of
their unfamiliarity with the phrase coupled with the limited ways in which the phrase has been
employed in the literature (most often in reference to a particular curriculum). Even so, the
teachers unanimously discussed context (omitting the word in) in terms of the “setting” or
“situation” in which the problem was embedded. They often discussed context as a way to make
the mathematics seem useful for students. That description meant that sometimes more advanced

mathematics or upcoming assessments (Advanced Placement tests) were themselves contexts.
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Applications of Mathematics

Applications held somewhat similar yet subtly different meanings for the teachers. Gary,
Cathy, Diane, and Tom thought of applications as problems in which the mathematics or a body
of mathematics was already known, or in which the mathematical model was already given, and
the setting or situation in the problem served to illustrate where and how the particular
mathematics could be applied or made to seem useful. Cathy situated such problems in the
mathematics classroom, and like Diane and Rhonda, defined them as “real problems” that held
potential in motivating and captivating students. Rhonda viewed applications as multi-step
problems that required a number of skills and understanding of related concepts to solve. And
Hank viewed applications as starting in reality; one’s charge was to learn the mathematics that
went along with it. He saw “reality [as] driving the mathematics.” In this way, his description
varied from those of the other teachers, who thought the mathematical structure pre-existed its
application. Hank’s description allowed for the creation of new mathematics in light of a need
for something in the real world; the application could exist before the mathematics.

When speaking about applications in terms of reality, the teachers were skeptical about
“how real” such problems were. Gary and Rhonda in particular, commented that many
applications were whimsical or realistic but not real. For Gary the distinction was in whether the
setting or situation embedded in the application could or would really happen; and for Rhonda,
the distinction was in whether the data given in the problem were real data that students (or
someone else) had actually collected, or whether the given data were contrived, made up to
illustrate a particular mathematical concept. Both saw value in such problems but thought the

connections to reality were looser than those made in modeling problems.
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Mathematical Modeling

The teachers used a number of adjectives to describe mathematical modeling (big,
nebulous, complex, vague, open-ended, difficult), and for some teachers modeling was used both
as a referent for a mathematical structure and for an iterative process. In terms of a mathematical
structure, Hank characterized a model as the backbone —the place where pure logic resided. Tom
and Gary clarified that a model was not reality but a representation or caricature of reality. Yet,
for Cathy modeling was really the real world—modeling problems were as close to reality as one
could get. In terms of modeling as a process, the teachers described it as cyclical, iterative,
involved, complex, and time consuming. The process began in reality, from some context
originating in the real world, then moved into a mathematical realm to create a model, and
returned to the context or reality from which one started. In this process it was necessary to ask
questions of the solution: Is our answer intuitive? Does it make sense in terms of the context?
Did our assumptions yield expected results? Not only did this process apply to the solving of
particular modeling problems, but for all of the teachers except Hank, the process also indicated
a way to organize classroom activity. In mathematics class, decisions were made about
assumptions about the real world, a model was created and discussed, questions of the model in
terms of the context were asked, new or different assumptions were made, and the process was
repeated. Thus the modeling process served as both a recipe for solving complex mathematical
problems and as a way to organize mathematics learning. The latter of these two meanings is not

explicated in my reading of the mathematics education literature.
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Dimensions of Descriptions

In this study I found that the teachers’ ways of thinking about and describing the terms
mathematics in context, applications of mathematics, and mathematical modeling were based on
a number of dimensions. The teachers described mathematics in context two ways: as the setting
or situation within a given problem, or as a referent for the place in which one was engaged in
mathematics (“in the world” or “in math class”). Two dimensions were noted: the degree of
reality and the nature and complexity of the mathematics. An application of mathematics was
described along four dimensions: the role and complexity of the mathematics (and whether it was
already known or had to be created), the degree of reality (whimsical or real), its status as a
category for classification of problems, and its purpose in terms of course goals. Mathematical
modeling was classified in two ways: as a mathematical structure representative of “a portion of
reality” and as an iterative, cyclical process. The former was described along three dimensions:
the role of the real world, the nature of the mathematics (“context-free” or “pure logic”), and the
role of the model in the modeling process. The latter was described in two ways (as a recipe for
solving complex problems and as a way to organize classroom activity and learning) along four
dimensions: the role and complexity of the mathematics, the role of the context or setting, the
pedagogical moves involved (questioning assumptions, using technology, etc.), and the time and
activity involved. Some of the dimensions were shared across the terms and used by the teachers
to differentiate between them. Table 3 summarizes the shared dimensions and highlights how
each dimension allows one to make explicit distinctions between the terms.

The dimensions of the descriptions given by the teachers denote attention to different
aspects of each term. The teachers did not simply recite textbook definitions, but discussed the

terms in relation to each other, highlighting dimensions of the terms that differentiated them. For
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Table 3: Shared Dimensions of Teachers’ Descriptions

Mathematics in Applications of Mathematical
Context Mathematics Modeling
Dimensions:
Degree of Reality real: math in the whimsical or realistic, | ., .
really real
world but not real
Complexity of straightforward, some complexity but | nebulous and
Mathematics least complex less than modeling highly complex
Role of Mathematics or | mathematics seen | mathematics and mathematics and
Model in the world model known model unknown
. to help students to help students see to create ‘
Purpose in terms of . how known mathematics or a
see mathematics .. .
Goals . mathematics is used model to explain a
in the world .
(apply it) phenomena
Time and Activity Minimal time and lots of time and

some time and activity

Required activity activity

example, both mathematics in context and mathematical modeling were considered by the
teachers to be directly linked to the real world (see Table 3), but by using another dimension they
were able to differentiate between the terms. Another example comes from the teaching and
research literature. Applications tend to be defined as problems in which previously known
mathematics is applied in a setting or context. These teachers might think of mathematics in
context the same way, but add that what sets the two terms apart is the degree of reality in the
problem and where the problem is being solved (e.g., if the problem is being addressed in math
class, it is most probably an application; if the student encounters the problem while walking in
the woods, he or she is most probably doing mathematics in context, even if the mathematics is

previously known and is being “applied”). In other words, these teachers did not define a term by
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paying attention to only one dimension. It was in looking across dimensions that they began to
differentiate between the terms.

The dimensions I identified in the teachers’ descriptions are reflected (to some degree) in
the definitions and descriptions given by mathematics educators (see chapter 2). Recall,
however, that in my review of the literature I highlighted discrepancies in some of the definitions
offered by mathematics educators. These discrepancies led me to question whether teachers’
(and mathematics educators’) notions of the terms might be blurred. In some ways, the teachers
struggled to define and differentiate between the terms—they were often seen as shades of the
same thing. Yet, there were some dimensions along which they began to detect differences. By
focusing on those aspects they were able to bring some clarity to their ways of thinking about the
terms. This was evident in their graphic organizers and in their conversational resolutions. That
is not to say that these teachers’ notions were clear or that they were more articulate than those
offered by mathematics educators. In fact, the teachers’ ways of relating the terms and describing
them were quite informal, sometimes messy, and closely tied to classroom practice. Even so, I
did not perceive that these teachers’ knowledge and practices were affected by the ambiguity of
the terminology. For me, new questions arise: Does the ambiguity of terminology affect the
research or teaching practices of mathematics educators? Could mathematics educators benefit
from thinking along the dimensions noted in the teachers’ descriptions and detectable in some
definitional work of mathematics educators? In chapter 8, I discuss the implications of
mathematics educators beginning to think more explicitly about the three terms as these teachers

did —along multiple dimensions.
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CHAPTER 6

TEACHERS’ INSTRUCTIONAL PRACTICES

This study was about the work that teachers do: teaching, molding, shaping,
educating, liberating, creating, disciplining, organizing, orchestrating, designing,
developing, thinking, speaking, acting, inspiring, motivating, celebrating. How
can such work be theorized? How can it be captured and described and therefore
“inscribed?” All metaphors fail. Words leave me empty. Is it a practice? Is it a
profession? Both? Neither? What are “pedagogical moves” and “instructional
practices”? What is “the art of teaching,” “the science of teaching,” “pedagogical
content knowledge”? What must be focused on? What must be overlooked? How
can you look at everything and see nothing? How can you “see” nothing and find
everything? What gets privileged? Why? (Entry from Researcher’s Log,
September 1, 2004)

9% ¢

This chapter addresses the second research question in this study of teachers with
reputations for using contextual problems: What were these teachers’ instructional practices with
such problems? To inform this question, I observed Gary, Diane, and Rhonda as they taught
lessons they identified as focused on contextual problems. Five contextual problems were
observed across multiple precalculus sections for a total of 16 videotaped class period
observations. To organize this chapter, I describe each of the five problems in the lessons taught
by the teachers. I then zoom back to identify and describe general practices in these teachers’

classrooms, and zoom in to describe their instructional practices with contextual problems.
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Problem and Lesson Descriptions

Bird Problem

Presentation. The first lessons I observed dealt with the Bird Problem. The lessons took
place in Watercliff Academy in April 2004, with Gary teaching. I observed the problem being
taught in lessons in three different precalculus sections for the duration of each lesson, in this
case, two 50-minute periods. Gary presented an adapted version of a problem that had appeared
in the Mathematics Teacher (Keller & Thompson, 1999). The lesson followed the study of
rational functions and was used as a culmination for that topic even though the students had been
working with trigonometry during the previous week. The goal for the lesson was for students to
see an application of rational functions. The problem was concerned with the minimum energy
expenditure of a bird trying to get food out of a shellfish by dropping it onto rocks to break it
open.

To introduce the problem, Gary announced to the class that they would be doing an “in-
class project” and said

Here’s the context we’re thinking about. We have a bird that likes to eat shellfish

and has a problem of opening the shellfish. What we want to do is find out if

there’s a good strategy the bird could use to open the shellfish. So, let me put you

in his place first. If you were a bird, how would you go about opening the
shellfish? (Bird Problem; April 26, 2004)

99 ¢

Students offered a number of possibilities: “let someone else do it,” “use my beak,” “use
my teeth,” “put a rock in my beak and pry [the shellfish] open,” and “drop it on a rock, but that
would be messy.” Gary pursued each of these possibilities in discussion with the students. The
first three suggestions were dismissed because they introduced a competition between the

hardness of the shellfish and the bird’s beak. Two other students then suggested putting the

shellfish on a railroad track or letting a shark bite it. Gary closed this part of the discussion by
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suggesting they pursue the only ‘plausible’ suggestion that had been made: dropping the shell
onto rocks. He then asked the student who introduced the idea to “describe how dropping [the
shellfish] onto rocks might proceed.” She described the bird as diving toward the rocks and
dropping the shell. Several other students added what Gary later called “interesting wrinkles” to
the conversation: wrapping the shellfish in leaves to prevent the fish from “splattering” and being
lost in the rocks, and flying toward a rock wall. Gary pursued these, asking what the
disadvantages of each might be. The students noted that the leaves would “pad” the shellfish and
might therefore make it more difficult to open, and that flying toward a rock wall would be less
efficient than flying in general —besides, if the shellfish “stuck™ to the wall, it would be difficult
for the bird to eat.

Gary latched onto the students” mention of efficiency and asked, “What is the purpose of
dropping the shellfish?”” Several students answered that the purpose was for the bird to eat the
fish inside. Gary asked, “And what is the purpose of eating?” to which students replied,
“Energy.” Gary commented, “Exactly. It shouldn’t cost you more energy to open [the shellfish]
than you get from it. You need to get more out of it than you put into [opening] it.” He
commented that energy expenditure would certainly be important to the bird, then directed the
students back to the idea of dropping the shellfish, and asked them to think about the trajectory
of the bird’s flight, or how it might fly to drop the shellfish. The students discussed “hovering”
and “diving.” Hovering was quickly dismissed, but the students thought that diving would be
most effective for the bird. Gary agreed but said that to “standardize” the experiment the students
would be doing later, they would assume that the bird simply flew horizontally and dropped the
shell. (In other classes, Gary also provided reasons for assuming there was no wind and that the

terminal velocity of the dropped shellfish was unimportant.) To aid students in further
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formulating the problem, Gary asked, “What matters to the bird in terms of efficiency? What
variables?” Two students formulated a question that concerned height (one variable) but not the
number of drops, “What is the lowest height from which the bird can release the shell using the
least energy and crack it open?” In one class, there was a discussion of whether one drop from a
higher height would use less energy than two drops from a lower height, since the bird would
have to “go up and back down” more times in the latter scenario. Gary used this discussion to
bring students to the idea that a rough measure of energy would take into account those
variables: height and number of trips (or drops). After some discussion and reminders by Gary
about what the students had already said, the students identified the variables of importance: the
height from which the shell was dropped (independent variable) and the number of drops
(dependent variable). Reaching this point in the lesson required 20 minutes, 25 minutes, and 15
minutes, respectively, in the three classes observed.

Gary asked the students to visualize individually what the relationship between the two
variables might look like and to sketch a graph. The students’ graphical depictions varied. Some
drew lines with negative slopes, some drew rational function curves, and others drew step-wise
functions. But all agreed that the graph would have both a vertical and a horizontal asymptote.
Gary asked the students to explain the reasoning supporting their graphs, and after much
discussion they decided that there were indeed asymptotes, but that they did not yet know exactly
where. (Students offered persuasive arguments for a vertical asymptote at zero or one.) They also
agreed that the graph should be a rational function. After Gary and the students had created the
skeletal form of a rational function (number of drops =1 + (A/(x — h,))), Gary paired students and
assigned each pair two heights in centimeters from which to drop peanuts. This experiment was

meant to simulate how a bird might drop shellfish. The students recorded the height and the
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number of drops required to break open the shell (split the peanut into halves) for eight trials at
each height. Gary put a table on the board listing all the heights assigned and asked the students
to record the average number of drops for each height on the board when they were finished with
the experiment. As the class period ended, Gary directed the students to “transcribe all the data
off the board” and said that their homework assignment was to come up with the two numbers, A
and h,, based on data from the class. He hinted that part of finding those numbers lay in figuring
out how to get them. He suggested they think of a transformation that would turn the rational
equation into a linear one. Doing so would allow them to do a linear regression (using their
graphing calculators) to find the values of the variables. He referred the students to the problem
handouts he had given them from the Mathematics Teacher (Keller & Thompson, 1999) for
more help.

The next day, Gary and the students worked through the homework assignment, applying
the linear transformation and finding values for A and 4. In this process, the students noticed
that for the height of 90 cm, the number of drops recorded was 1. Using this value would yield
zero in the denominator, so as a class the decision was first made to “fudge” the number to 1.01.
Later they omitted the data points at 90 cm and 70 cm to make their transformation “look better.”

After the students, with some assistance from Gary, linearized the data and found the
equation for the rational function, Gary directed them back to the context of the problem and
reminded them that, in reality, the bird would be “most interested” in minimizing energy
expenditure. He challenged the students, “How do you measure energy if you’ve got these
multiple flights involved?” Gary reminded the students that “originally they said the number of
flights, but they weren’t counting on dropping [the shellfish] 15 times.... What should [we] use

as a measure of energy now?” One student suggested that the energy expenditure could be
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thought of as the product of the height and the number of drops (this idea may have come from
the Mathematics Teacher handouts). Gary asked the student to explain his reasoning (in case he
read it in the handouts) and polled the class to see if they bought the student’s argument. The
class agreed that the argument was reasonable.

Using parts of the equations they had just found, Gary and the students wrote the energy
function and graphed it to find that it had a minimum. They discussed the implications of the
minimum in terms of the context: There was an optimum height from which to drop the shellfish
that minimized the number of drops required and thus the energy expended by the bird. Gary
emphasized that the minimum was “flat,” and therefore that the bird had some margin for error
in the drop height: A drop within a few feet of the optimum drop height would be almost as good
as the optimum. To conclude the lesson, Gary asked the students to complete for homework a
one-page summary of the lesson so that someone who was not there would be able to understand
how to solve the problem, why certain procedures were done (where equations came from and
what they meant), and what the solution meant in the context of the problem: the “punch line.”

As the Bird Problem unfolded in class, one difficulty encountered by the students and
managed by Gary is worth mentioning. At times it was difficult to keep track of the data in the
calculator lists and graphs. Gary had put a table on the chalkboard with the headings x, y, and
1/(y — 1) but did not list values underneath. In addition, Gary stored his data in different lists
from those used by the students, so the students were constantly translating Gary’s instructions
into their own organization. In one class, Gary stored his re-expressed data on top of the raw data
in his list because of insufficient space. Later when he translated the re-expressed data back into

the raw data for his own purposes, some students questioned whether they should be doing the
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same. They quickly realized, however, that it was not necessary for them to do the translation
since they already had the raw data stored in another list.

Reflection. Gary was pleased with how the problem had gone in two of the three classes.
In the third class the problem had been approached well, but the students’ data had been more
“fuzzy” than those of the other two classes. Gary attributed the problem to sloppy data
collection. He was disappointed that students across all the classes had not been able to “come up
with the transformations they needed to get linearization” without heavy reliance on the handouts
and instruction, but he thought that everyone had been engaged and had done “the right things”
once they had direction. In all three classes, much of the discussion had hinged on one or two
students recognizing the processes involved in the problem and explaining it to their classmates.

Gary commented that he felt the time constraint of 2 days—all the time he was willing to
take for this problem since it was simply a wrap-up application lesson—and worried that he had
given too many hints, had been unwilling to pursue students’ side trips outside of the main
discussion, and had not allowed the students to work as independently as he would have liked.
Even so, he valued the time he had taken at the beginning of the lessons to talk with students
about the context, the variables, and the graph. Without that time, Gary believed the students
would not have been as successful as they were. Gary’s biggest regret after having taught the
lesson was in what he believed to be a missed opportunity. He explained,

The idea is that if I look at one measure of energy and you look at another

measure of energy that is double of mine, then the minimum for mine and the

minimum for yours occurs at the same time. They are not the same value, but they

occur with the same parameter choices. And that’s a subtle idea. And I don’t

know that it came up [in all three classes]. (Bird Problem Post-lesson Interview;

April 29, 2004)

Gary did not mention this idea in his goals for the lesson, but he had made a point about it

in one class. From my perspective, this was indeed a missed opportunity for the other classes.
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The idea was subtle, and I did not perceive that the students had grasped it. However, the idea
was a “bonus” in the Bird Problem. It was a reasonable extension for Gary to want to make, and
it was unfortunate that he was not able to do so, but its omission did not affect the success of the
problem in reaching Gary’s goals.

Wind Chime Problem

Presentation. The Wind Chime Problem was the second problem I observed being taught
by Gary (to the same precalculus sections as the Bird Problem). The lessons took place in May
2004 in 50-minute periods over the course of 2 1/2 days. Gary had adapted and developed the
Wind Chime problem over the past 3 years after seeing a similar version presented at the T°
(Teachers Teaching with Technology) International Conference in 2001. The goals for the lesson
were for students to measure the frequencies of sound waves by “banging” on copper pipes, to
explore the relationship between pipe length and pitch, and to use what they learned to build a
wind chime whose notes formed a chord of their choosing. Gary viewed this lesson as an
assessment, a project that pulled together ideas from across the semester— geometric sequences,
power relations, logarithmic re-expression, exponential functions, trigonometric functions,
periodicity, and frequencies —and hoped it would serve as a “wakeup call” before the final
examination.

The first part of this lesson introduced the students to musical chords and chord
frequencies and asked them to find the common ratio for any pair of successive notes given that
the frequencies of the notes of the Western (equal temperament) musical scale form a geometric
sequence. The students were also expected to complete a table of note numbers, note names, and
frequencies for three full octaves and to investigate a chord with at least four notes in it whose

sound they liked. They were asked to list the note names and frequencies in the chord they chose,
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giving the name of the chord if it had one. Over the course of the next two days, the students
collected data using CBL (Calculator Based Laboratory) microphones connected to computers
loaded with the CBL2/TI-InterActive! software (Texas Instruments, 2000-2004; see
http://education.ti.com/educationportal/). Student pairs selected half-inch copper pipes of various
lengths, used different techniques to “bang” them (they often tapped the side of the desk or used
a pencil to tap the pipe), and used microphones to capture the sound waves produced. The
students were expected to produce and save three “good” connected scatterplots of data in TI-
InterActive! for each of three pipe lengths. Next, the students were to use the sound wave graphs
produced by TI-InterActive! to determine the period of the wave and subsequently the frequency
of each note—defined as the reciprocal of the period. The students were to answer questions that
led them to use logarithmic re-expression to write an equation (using the regression package on
their calculator) for their data, to graph the re-expressed data, and to discuss how well their
equation fit their data. Finally, the students were to use their equation to compute the lengths of
pipes they needed for their chosen chord and with Gary’s help build a set of wind chimes the
following week.

Gary first introduced the Wind Chime Problem to students in the last 10 minutes of the
class period the day before I began observation. Gary reported that he had given the students a
handout, briefly described the problem and the tasks it contained, and asked them to complete
three tasks (see the first three sentences of the previous paragraph) that night.

I really didn’t do much by way of introduction. I told them kind of what the

scenario was, kind of an overview of what we were going to be doing. They had

seen the wind chimes [from previous classes] hanging in here all year long. So

they knew that they were there, and that was some sort of project. (Wind Chime
Problem Post-lesson Interview; May 19, 2004)
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In presenting the Wind Chime problem to students in the computer lab the next day, Gary
began with a demonstration of how the CBL equipment was to be connected to the computer and
how the data collection was to be conducted. A student volunteer demonstrated how to hold the
microphone and follow the pipe as Gary held a pipe by a paperclip through a hole near its top
and “banged” it along the desk edge. As TI-InterActive! captured the data, Gary verbally
evaluated the graphs of sound waves, describing why particular graphs were not “good.” Gary
made it clear that the students were trying to capture the hum of the pipe, not the noise made
when hitting the pipe, and thus their graphs should be somewhat smooth wave graphs. He
pointed out all the menu and window options in TI-InterActive! that the students needed to work
with, and explained their goal of making and saving three good graphs for each of three different
pipe lengths. After six iterations of banging the pipe and checking the graph, Gary obtained a
graph with which he was satisfied and demonstrated how the students could capture, label, and
save the graph in a TI-InterActive! worksheet. Gary noted that it might take several attempts to
capture three good graphs for each pipe, so the students should use their time wisely. He
suggested that they start with longer pipes as the graphs would tend to be smoother than for
shorter pipes. With 25 minutes left in the period, the student pairs began their data collection. As
the students worked, Gary circulated around the room, checking their work from the previous
night (he reported later that less than half of the students across the three classes had used a
geometric sequence in their frequency table; most had used an arithmetic sequence) and offering
evaluative comments about the wave graphs they were capturing. Occasionally Gary commented
on how students were banging their pipes or on how they were using their microphones. Some
student pairs asked questions about their graphs, but most worked independently, deciding for

themselves which were good wave graphs and which were not. At the end of the period, none of
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the students was finished with data collection, so work continued the following day in the
computer lab. Gary directed the students to “pick up where they had left off” and said they
should be able to finish data collection and at least find the period and frequency for each graph
by the end of the period. As pairs finished their data collection (25 to 30 minutes into the period)
and began work with the data, difficulties began to surface.

One pair had successfully calculated the period and frequency of one pipe, found the
power relation, and re-expressed it using logarithms. But when they plotted their three data sets,
they reported that the “curve was bending the wrong way.” Gary questioned the pair first on their
calculations and data collection and found no problems with the “mechanical” aspects of their
problem. Next he questioned them to consider other sources of error. With Gary’s help, the pair
hypothesized that frequencies change because pipe length differs—the point of the project—and
perhaps also because the different pipes were not cut from the same “stock.” So with different
pipes of similar lengths, Gary pointed out, variation in material due to “wall thickness, or that
kind of stuff, [would] seem bigger, because the differences you’re trying to measure are
smaller.” Gary indicated that such variation would be negligible given lots of data points, “but
when you have only three points, that’s the pattern. It’s not noise.” The students selected a fourth
pipe whose length differed greatly from the other two they had used and collected more data. In
this iteration, they were able to see the desired pattern in their data.

Another student pair struggled to calculate the period of their wave graphs because they
could not easily identify peaks and valleys. Gary questioned their criteria for selecting the graphs
during data collection and discovered that their criteria had differed from his. They were looking
for smooth connections between points, whereas Gary had been concerned with “clean

periodicity.” Gary challenged them to think about what they were trying to measure and to
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“make sure it’s there before you try to measure it.” This student pair collected further data and
selected their graphs according to Gary’s advice.

Finally, two student pairs working together questioned their equations when they
overheard other groups talking about subtraction and realized they had not been subtracting
anything. It turned out that in “counting” to find the period, they had used the last peak of their
wave as an endpoint but had used zero instead of a measured value on their graph as the starting
point. Without much delay, they were able to rework their equations using correct measures for
the period.

At the end of the second day, Gary asked the students to finish their calculations and the
remaining tasks on the handout for homework (i.e., use logarithmic re-expression to write an
equation for the data, graph the re-expressed data, discuss the fit of the equation to the data, and
compute the lengths of the pipes needed for their wind chimes to produce their chosen chord).
He said that they would have 2 days to do so and that their work was to be accompanied by
typewritten descriptions and explanations of the data collection, their solution process, and their
solutions.

Reflection. Gary had not anticipated the levels of background and group noise in the
computer lab during data collection and was disappointed that most students did not finish their
collection more quickly. (Noise interference had not been so great in the past.) He also reported
that during data collection, he realized there were “good ways and bad ways to hit the pipe. And
it actually takes some practice with it . . . and also a little bit of instruction” for students to get “a
feel for it.” When the students were hitting their pipes too hard, they were getting overtones in
their graphs, which was evident as “a sort of thick looking graph [where one could] see the main

wave, [but] it has these sort of bristles on it as you go along.” In those cases the data were not as
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smooth, and the students had more difficulty getting good graphs. Still, Gary thought the lesson
had been successful in forcing the students to review content from earlier in the year, and he
thought the students had enjoyed the project.

Gary was planning to have the students build their wind chimes during the next week.
They would give him their cut pipes with markings, and he would drill holes and return the pipes
to the students, who would then add the clapper. This process would not be done in class, and
therefore I did not see the completed chimes. Gary reported that he had “one bit of reality [that
he was going to] spring on” the students at the completion of the project. If the students
completed their calculations correctly, the chimes they built would produce the chord they chose
early in the project and worked with in their calculations. Gary noted, however, that “the truth is,
when you’re listening to a wind chime, the tone we’re recording [the hum] isn’t the one that you
really hear the most. You can hear this tone, but what you really hear is the clank.” Thus the
students would have to listen after the clank to hear their chord, provided they chose a wooden
clapper or something similar; metal clappers confounded the problem further.

In considering the problem for use next year, Gary reported that he wanted to rewrite it so
that the nature of the problem changed. He thought the students were spending too much time
collecting data for a wave, “and they don’t really study the wave they get.” He planned that
student pairs the following year would be asked to collect three good graphs for the frequency of
just one pipe. And instead of stopping there and using the regression package on the calculator or
computer, he would ask them to construct a sinusoidal curve and write an equation to fit the data.
In this way, the students could

superimpose their own wave and let it fit, or not fit, and adjust it so they [could]

get some practice with sinusoidal stuff too. . . . And then we pool all the data from
everybody’s. So everybody would have the same data set to work with when they
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did the re-expression and power function. (Wind Chime Problem Post-lesson
Interview; May 19, 2004)

Foul Shot Problem

Presentation. Diane taught the Foul Shot Problem in May 2004 in one 90-minute
precalculus class period. This was the only problem I observed Diane teach, but fortunately I
observed it being taught in lessons with two different classes. Diane described four goals for this
lesson: (a) to make a point about mathematical modeling, that the mathematics one does is
influenced by the assumptions one makes; (b) to practice making “qualitative graphs,” sketches
of graphs that illustrate proper orientation and “slant” without using actual tick marks or points;
(c) to understand that a problem may have multiple answers that are correct, and (d) to see that
when a solution method does not “work,” one must try something else, the notion of
perseverance.

In using this problem in class, Diane presented the students with a half sheet of paper
with the following problem typed on it:

Imagine that you are sitting in front of the television one Saturday afternoon

watching the Chicago Bulls play the Boston Celtics. The Bulls’ star player drives

to the basket and is fouled. As he stands at the free throw line, the announcer

states that he is hitting 78 percent of his free throws this year. He misses the first

shot but makes the second. Later in the game, the player is fouled for the second

time. As he moves to the free throw line, the announcer states that he has made 76

percent of his free throws so far this year. Can you determine how many free

throws this player has attempted and how many he has made this year?

After students read the problem to themselves, Diane read it aloud and asked students to
work in their groups of four to think about how they were going to solve this problem. As they
worked, she moved from group to group asking questions about their solution ideas. After 15

minutes, she asked a student for his group’s solution process. The group had used ratios and

simple substitution to solve the problem. (Let m = no. of shots made, let a = no. of shots
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attempted. The two equations were m/a = 0.78 and (m + 1)/(a + 2) = 0.76.) The group had found
that a = 26 and m = 20.28. Diane solved their system on the board and arrived at the same
answers. Several students, however, identified a problem. One cannot make 28 hundredths of a
foul shot, so they questioned where that number came from. The class decided that the
announcer had probably rounded his announced percentages. Diane identified that as an
assumption the students had started with and suggested that they needed new assumptions. She
asked the students to identify the range within which the announcer would have rounded the
percentage to 76 or 78 and wrote those inequalities on the board. She pointed out that m and a
were positive integers, so the solutions to the inequalities should be positive integers. After some
discussion, Diane separated the two compound inequalities into four separate inequalities,
simplified them algebraically, and asked the students to graph them “qualitatively” by hand,
without worrying over exact coordinates. Diane then graphed the four lines in Quadrant 1 (since
they were limited to positive integer solutions) and shaded regions according to the inequalities.
She pointed out that the resulting shaded region contained an infinite number of points but that
the only points of interest in this problem were the integers in that region, or the lattice points (if
one visualized graph paper underneath the shaded region). Diane pointed out that visually the
students could not tell where the lattice points were on this graph and asked them to use their
graphing calculators. When Diane asked how the calculator might be helpful, two or three
student groups suggested graphing the lines and looking at the region of interest. Diane pursued
this suggestion and showed that one cannot choose a calculator window that makes that region
visible. With some guidance from Diane, the students realized that they should look in the table
on the graphing calculator for an integer between the y values of the first two lines and the same

integer value between the y values of the second two lines. Diane and the students looked for
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such integers together and identified m = 18 and a = 23 as one possible answer. They verified
this answer by checking the ratios 18/23 and 19/25. Diane challenged the students, in their
groups, to see if there were other answers. The students identified m = 21 and a = 27 as a second
answer. As the period came to a close, Diane pointed out that the key idea to recognize in
working this problem was that “different assumptions yielded different mathematics” and asked
the students to find six more lattice points for homework.

Reflection. Diane remarked that the lesson had been rushed and that she thought the
second class had done much better than the first. The students in the first class spent more time
guessing ordered pairs than finding ratios, and that had slowed their progress. Understanding the
need for an integer value between the y values of the first two lines and the same integer value
between the y values of the second two lines had proved very problematic for both the students
and Diane. The students struggled to see the lattice points on the table, and Diane struggled to
draw the lines so that the students could follow the argument about integers and their locations in
terms of the lines. She talked through this part of the problem more extensively in the second
class, which she thought had facilitated the students’ understanding. Overall, Diane was pleased
with the lesson and pointed to the way in which the context of the problem had forced the
students to change their original assumptions (one cannot make a fraction of a foul shot). She
thought that making this transition and seeing the lattice points were the two turning points in the
problem and essentially that both had gone smoothly.

Swing Problem

Presentation. The Swing Problem was the subject of the first lesson I observed being
taught by Rhonda. This precalculus lesson was taught in May 2004 in one 90-minute class

period. In working the Swing Problem, the students collected data of a person swinging on a
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playground swing and wrote parametric equations that described the horizontal and vertical
positions of the swinger as a function of time. The students then graphed their equations on the
graphing calculator to verify that their equations were correct.

This problem began with Rhonda explaining the task to the students, “You need your
calculator and some paper and a pencil. Our ultimate goal is going to be to try and model what it
looks like for a person to swing on a swing.” She then asked them to think individually about
what an equation and graph of a person swinging might look like. She asked them to sketch their
graph. After 5 minutes, Rhonda took suggestions from the students and sketched a sine wave on
the board, asking students to identify the labels for the axes. Two or three students suggested
“time” for the x-axis and “height from the ground” for the y-axis. One student was thinking about
“position” instead of “time.” Based on that suggestion, another student introduced the word
“parametric” into the conversation. Rhonda pursued this, asking for clarification of how
parametrics might help. With input from four students, Rhonda noted on the board that one could
think about time and vertical position, as well as time and horizontal position. She commented
that students could then graph these as a parametric pair and “see the swinger swinging.” But
first,

You need to think about both things separately. You need to think about what this

vertical height is going to look like over time. You want to think about what this

horizontal displacement and time look like. So you can write those two

independent equations before you write them as a parametric pair. (Swing

Problem; May 5, 2004)

Rhonda suggested that the students try to sketch separate graphs for the two positions to
help them think about the kinds of measurements they would need to collect later. She asked the

students to discuss, in groups of six, their sketches and the measurements they needed to gather

at the swings. She announced that they should assume the swinger goes from rest to steady
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motion (instead of building up to a steady motion), and suggested it would be good to collect
more measurements than needed. Each group nominated a swinger, gathered meter sticks and
stopwatches, and walked outside to the swings. As the groups developed ways to measure the
motion of the swinger, Rhonda moved from group to group checking that all members of the
group agreed on the needed measurements and on how they would be collected. She moderated
disagreements between group members whose opinions differed. One group measured the
maximum height of the swinger by using an indicator (a students’ arm) to mark the height,
removing the swinger from the swing, and extending the swing to the indicator for more accurate
measurement. Other groups collected more approximate measurements. After 15 minutes, the
students returned to the classroom and split into groups of three to write equations that would
model the motion of their swinger.

In the classroom, Rhonda reminded the students that they were expected to turn in their
measurements, their equations, and an explanation of where their numbers came from. They
were also expected to graph their equations in parametric mode on their calculators to see if their
equations indeed modeled a swinger. Rhonda walked around observing the student work and
responding to questions the students had. She never answered a question directly but instead
asked questions of students to help direct or clarify their thinking. The students encountered a
number of difficulties. For example, two groups grappled with whether a sine or cosine function
was more appropriate. And all the groups struggled to find the periods of their functions.

After 30 minutes of group work, Rhonda addressed the class: “Do you think the periods
are the same for [the] horizontal and vertical [motion]?”” Some students answered yes. Others
said no. Rhonda selected two students to participate in an illustration. She asked one student to

call out either “up” or “down,” and the other student to call out either “front” or “back,” as
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Rhonda moved her hand in a swinging motion (tracing a concave up arc in the air). As a result of
this illustration, the students were able to hear the difference in the periods for each motion—the
student chanting “front” and “back” (horizontal motion) did not switch words as often as the
other student (vertical motion). Rhonda allowed the students to continue to work in groups and
encouraged them to consider the illustration in their work. The class ended with one student from
each group of three turning in the group’s paper. None of the groups was able to complete the
assignment, though some had written equations they had not yet tested on the calculator.

Reflection. Rhonda was disappointed that the students did not complete the problem. She
thought they had met some intermediate goals—selected reasonable phenomena to measure and
remembered the mechanical skills, such as incorporating amplitude, shifting graphs, and finding
the period—but had not reached the ultimate goal: modeling their swinger. Rhonda reported that
the data collection had required more time than usual for this problem, which had contributed to
the lack of time for a solution. She also identified two areas of difficulty that had slowed the
students’ progress. First, the students struggled to “interpret from the physical into the
mathematical,” or to “connect the real world to the numerical stuff on paper to get the numbers
to come out right.” Second, all of the students struggled to find the periods for the horizontal and
vertical motion given their data. Part of the difficulty lay in the language and keeping the
motions separated in their thinking. Rhonda noted,

It’s hard when you’re talking about one not to introduce the other one. And it’s

hard to only think “up/down” and then “back/forward” and then, depending on the

words you use, you can make one of the words sort of drift into either category.

So it’s hard to get things right [when talking to each other]. (Swing Problem Post-

lesson Interview; May 5, 2004)

Neither of these struggles surprised Rhonda. She reported that finding the periods was

always what students struggled with the most. And unless students have had multiple

128



opportunities to make interpretations from the physical world into the mathematical world, and
to make mistakes, such interpretations are difficult.

Because the students had worked hard during the entire 90-minute period, Rhonda
decided she would allow time during another class period to complete the problem. I did not
observe that period (because it fell on a day when I was not able to observe the class), but I asked
Rhonda to report on it in our next interview. She had given the students 20 minutes to finish the
problem in class and reported that by the end of that time, most of them were able to show their
swinger swinging on the calculator, and many had written explanations of their equations.

CO, Problem

Presentation. The CO, Problem was the second problem I observed being taught by
Rhonda. She taught the lesson to a precalculus class in May 2004 in one 90-minute period. It was
the same precalculus class in which I had previously observed the Swing Problem. The problem
was used as a culminating activity to pull together exponentials, sums, and trigonometry before
students took their final examination. The problem was centered on finding a mathematical
model (or equation) that fit data of the CO, concentration in the atmosphere collected on a
monthly basis above the island of Mauna Loa in Hawaii. Data were given for each month from
1958 to 1989 and from 1976 to 1995, the yearly averages for the same years, and a dot graph of
the data. The graph showed that the concentration of CO, was generally increasing with time but
that it oscillated between years.

In introducing the problem to the class, Rhonda reminded them that she had linked the
data into their calculators at the end of the previous class and thus they did not need to type them
in manually. She cautioned that the students needed to take detailed notes to keep track of the

data and where things were stored in the calculator, as well as to “think.” She also gave the
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students five handouts with information related to the problem (articles from the Internet about
Mauna Loa and the CO, concentration, the data lists, and the graph) and described the task of
finding a mathematical model.

The programs, that you have, have a lot of data about CO, concentration over

time. So what we are ultimately going to end up doing is try to see if we can fit a

model to this CO, concentration data over a pretty long span of time. (CO,

Problem; May 12, 2004)

Rhonda directed the students to the handouts she had given them, and asked them to
consider what was happening in the given graph of CO, data. After noting that the graph was
both increasing and oscillating, she gave an overview of the information in the handouts and
pointed out that the data in the students’ calculators included measurements for each month, and
averages for each year, for two different time spans. Rhonda then instructed the students to graph
the data from 1956 to 1989 together with the averages for those years. She demonstrated the
steps on a calculator connected to a projector and reminded the students how to call up stored
data and graph them. In addition, she wrote notes on the chalkboard throughout the lesson to
keep track of where data were located and what equations the students were working with. To
begin, the students decided that most likely a sum would model the data. Rhonda asked them to
think about what they might be summing, and together they wrote the general form “y = sin(x) or
cos(x) + toolkit.” After looking at the data, the class— with input from Rhonda—decided to focus
on fitting a model to the averages first, or finding the “toolkit function.” Several students
hypothesized that an exponential might work. Rhonda agreed to try that first and said they could
adjust it later if they needed to. She asked, “If we believe it is exponential, what must we do to
find it?” After hints from Rhonda, the students decided to “log the ys.” Rhonda pursued this idea

with the class and graphed the resulting data. They were satisfied that their graph was linear.

Rhonda suggested that they try a linear regression to make sure. This time the class was not
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convinced that the line fitted the data and suggested that a shift might “fix it” since the calculator
automatically assumed the asymptote was at zero. To decide how much to shift the data, Rhonda
referred the students to the table of data and asked them to make a guess about where the data
were leveling off. Three or four students suggested a shift of 310, and accordingly, Rhonda
subtracted 310 from the y values in the data list, took their natural log, and graphed the new data.
The result was not linear, so the class decided to adjust their shift. First, they tried 314 but
realized they had gone in the wrong direction. Next, they tried 300 and were satisfied. To verify
their choice, Rhonda, together with the students, did a linear regression and looked at the
residuals. Using the line obtained in the linear regression and making the appropriate substitution
for the y given by the calculator (recall y = In(y — 300) with the shift), they found the equation for
the exponential part of the sum. To verify their equation, they graphed it along with the data and
checked the residuals. The students and Rhonda were satisfied with the fit.

After a 10-minute break, the class continued by trying to find the model for the
oscillating part of the graph, that is, the trigonometric part of the sum. After turning off the
equations and lists they had been using on the calculator, they looked at the graph of the
oscillating data along with the equation they found for the exponential part of the sum. Rhonda
pointed out that they did not know the period or amplitude of the oscillating data and that the
entirety of the graph was “data overload.” After discussing the advantages of zooming in on the
function or viewing it in a smaller window, the class chose the latter option. As the students
looked at the data from 1968 to 1972, Rhonda reminded them that to apply a cosine or sine
function they needed the data to be along a horizontal line since, at this point, that was the only
way they knew to work with trigonometric functions. She asked, “ How can we make [the data

points] relative to something horizontal?” A student made a guess and suggested they try inverse
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sine or cosine. Rhonda explained that trigonometric functions did not work in the same way as
exponentials and roots and therefore that taking the inverse would not help. With no further
suggestions from the students, Rhonda recommended they make the data into residuals, and they
did so. From there, the students wrote a general form for the function of the oscillating
curve—with a period of one year—and left space to insert a coefficient and shift later:
__sin(2mx). Using the Trace function on the calculator, Rhonda and the students decided the
coefficient should be 3. And Rhonda announced that the shift should be 1/11. When students
commented that this shift “came out of the blue,” Rhonda explained that a shift of 1/12 made
sense to account for a shift of one month; in putting the data into the calculator lists, however,
the data had been distributed so that 1/11 worked better. Students accepted that explanation and
inserted the coefficient and shift into their equation. Satisfied with their trigonometric function
and their exponential function, the class wrote the equation of the sum, graphed it with the data,
and decided it was a good fit.

Rhonda ended the lesson by asking the students to hypothesize whether the sum equation
they found would fit the other data set (1976 to 1995). Most students thought that it should, so
Rhonda graphed the equation with the data set. For the late 1980s and 1990s, the equation no
longer fit the data— the data were increasing at a slower rate. Rhonda pointed out that for the
CO, concentration in the atmosphere, these results were positive (pollution of the atmosphere
was increasing more slowly than the model predicted), and she suggested that perhaps the part of
the sum they modeled with an exponential function was instead linear.

Reflection. Rhonda and the students worked together throughout the solution of this
problem. Rhonda demonstrated and directed work on the TI-89 graphing calculators and kept

track of data and equations on the board, thus alleviating some of the students’ bookkeeping

132



responsibilities. Rhonda commented that this was not a problem she would expect students to
solve on their own but believed that it “was good for them to see an application of that kind of
sum. It is hard to imagine what it would really be like. But I think this [problem] is one that they
can all understand and believe is real.”

Rhonda remarked that she felt a bit rushed and would have liked more time, but she was
not sure what would be gained by distributing the problem across 2 days. She acknowledged that
the nature of the lesson limited the students’ activities and independence, but she thought the
students had been engaged in, and benefited from, the problem. The problem required that the
students recall particular calculator skills and mathematical content—in particular, sums,
residuals, exponentials, trigonometric functions, linear regression, algebra, and the shifting of
functions —that they had not used for awhile. Rhonda was favorably impressed by how well the
students had responded to the problem and had worked with the mathematics, with the exception
of failing to realize that they needed to make the oscillating data into residuals. She was
disappointed that she had given so many hints about the oscillation, but she commented that this

realization was the most difficult aspect of the problem.

The Problems Classified According to Dimensions

There exists a wealth of applications and modeling problems and materials for use in
mathematics classrooms at various grade levels. These materials range from mere “dressed up”
mathematical problems to “really real” authentic problem situations. The teachers in this study
reported using a variety of problems in their classes —from straightforward applications to
complex modeling problems. The five problems described in this chapter were representative of

these different problem types. I did not ask the teachers to classify the problems, but they offered
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their interpretations nonetheless. The ways in which they described the problems further support
the dimensions I described in chapter 5.

Gary classified the Bird Problem as an application because the students were applying
mathematics that they already knew. He noted, however, that the problem required the students
to recall known mathematics and incorporate it in ways they had not previously done. He also
commented that even though the problem was not a modeling problem — the students were not
creating new mathematics —the problem did incorporate aspects of the modeling process. In the
Bird Problem, the students were required to make some assumptions: the bird would not dive to
increase the speed with which the shellfish hit the rocks, wind would not be a factor, all shellfish
were of the same weight, and so on. The students used the context to think about the
mathematics and the variables that were important for their consideration. They then worked
independently of the context in the mathematical domain to find that an optimal height existed.
Finally, the students interpreted the mathematics in terms of the context and wrote explanations
for how the bird could minimize its energy expenditure. The students did not complete the
modeling process since they did not rethink their assumptions and repeat the process. Still, Gary
felt that their experience with the problem was valuable and that they were learning about
modeling, whether they knew that explicitly or not.

The Wind Chime Problem was classified by Gary as “math in context.” He did not
consider it a modeling problem because the students were given a specific problem to work on.
He did not give them the freedom of, say, “Here’s a bunch of pipes, go do something.” He
specified that they were to capture sound waves, write equations to model them, decide how
frequencies were related to pipe length, and build a wind chime that sounded a particular chord.

As with the Bird Problem, the students were familiar with the mathematics involved, and they
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were learning how it could be used. In my view, this description of the Wind Chime Problem
parallels Gary’s description of the Bird Problem, and he could have easily classified the former
as an application. Recall, however, that Gary viewed applications as somewhat more advanced
than mathematics-in-context problems because in solving an application, one moved closer to
completing one cycle of the modeling process. Thus, I suspect the aspects of the modeling
process embedded in the Bird Problem led him to classify it as an application, whereas the Wind
Chime Problem hardly incorporated the modeling process at all. The students found the equation
that modeled the wave graphs, but the problem did not require them to consider the context,
make simplifying assumptions, or test their equations in terms of the context. Therefore Gary had
classified the Wind Chime Problem as mathematics in context.

Like Gary’s description of the Bird Problem, Diane’s classification of the Foul Shot
Problem was as an application that introduced aspects of modeling. The students were already
familiar with the mathematics involved. Diane had commented to her students that they could
have tackled the problem before they took precalculus and been successful with it. Still, she
preferred to introduce the problem in precalculus because it gave the students the opportunity to
learn a valuable lesson about mathematics and modeling —that is, the assumptions one makes
determines the mathematics one does and the solution one gets. Changing those assumptions
changes the mathematics. The Foul Shot Problem forced the students to think about the context,
recognize that their answers were inadequate, and therefore realize the assumptions they had
started with. Many problems do not force that issue—the students make assumptions but are
often unaware that they are doing so. The Foul Shot Problem brought attention to those

assumptions and required that new ones be made. The mathematics in the problem (already
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known and relatively noncomplex) led to Diane’s classification of it as an application though it
taught a lesson about modeling.

Rhonda classified both of the problems she taught—the CO, Problem and the Swing
Problem —as modeling problems. These classifications were based on the nature of the problems
(to create a model for a situation), the role of the real world (both used real data), the
mathematics involved (complex and required integration in new ways), and the time required in
the solution process. In the CO, Problem, the students were given real data and a graphical
representation, and asked to find an equation that modeled the data. In the Swing Problem, the
students collected their data, worked to write the parametric equations that modeled the swinger,
and tested their model by graphing their equations on the calculator. It should be noted that the
problems involved the production of mathematical models but that the students did not
necessarily use the modeling process. Rhonda, however, organized the lesson on the CO,
Problem so that it mimicked the modeling process.

In summary, the teachers classified the problems in this study differently. Their
classifications were based on a number of dimensions—some pedagogical, some mathematical,
and some contextual. Some dimensions seemed more important than others. For example, the
Bird Problem could easily be characterized as a modeling problem according to Gary’s
descriptions of the problem types, yet the fact that the students already knew the mathematics

relegated it to classification as an application.

The Lessons

Some teachers doubt that a single problem has the potential to engage students for

extended periods of time and to fill 50-minute class periods. Every lesson observed in this study
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was based on a single problem that required at least 90 minutes —some required two 50-minute
periods—and the teachers reported they were rushed to finish three of the five problems. The
lessons were rich in mathematics and rich in technology. Some problems (the Bird Problem,
Wind Chime Problem, and Swing Problem) incorporated simulation, experimentation, and data
collection. The others did not. In four of the five lessons, students worked in either pairs or
“pods” (groups of three or four); in the fifth (the CO, Problem), students were seated in pods but
worked mostly as individuals interacting as a class with the teacher. Questioning, argumentation,
discussion, visualization, reasoning, and verification were central in all of the lessons. And three
of the five problems required that the students write about mathematics and their reasoning.

Each of the problems covered a range of mathematical ideas and content, not just a single
topic. Some problems connected different aspects of mathematical content, some were used as
assessments, and some developed problem-solving processes. Because several problem solutions
relied on the data that students collected, there were often multiple correct answers and different
approaches to a solution. Aspects of modeling could be identified in all of the problems; some
were more focused on model production, and others on the modeling process.

The problems, with the exception of the Foul Shot Problem, required students to
incorporate mathematics content in ways that were unfamiliar. Attention to the context in the
problems varied and seemed most important in the Bird Problem and the Foul Shot Problem.
Finally, the degree to which students worked independently also varied with the problem. Some
lessons (Wind Chime Problem and Swing Problem) were more open, and the students worked
independently for the bulk of the time. Other lessons were very directed (the Bird Problem, Foul
Shot Problem, and CO, Problem), and the teacher’s role was central in the unfolding of the

lesson.
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Classroom Practices

In this section, I zoom back and take a wide-angled look at these teachers’ classrooms to
describe features of their instruction in general. I focus on the practices of both the students and
the teachers, namely their roles in classroom discussion and problem solving.

The teachers in this study took up roles as guides or facilitators. The teachers designed,
adapted, or selected instructional activities; prompted initiating and guiding discussions; and
reformulated or clarified aspects of students’ mathematical contributions. The teachers
maintained an expert role in the classroom but shared that role with students. For example, all of
the teachers were open to students’ suggestions and often pursued tangents and made side trips
while solving a problem if they thought it would facilitate student learning and if they had time.
The knowledge contributed by students was respected and valued. In addition, the teachers
expressed enthusiasm and a passion for mathematics and worked to stimulate and incite passion
in their students.

The teachers in this study had established practices that forced the students to be more
self-reliant. The students could not turn to the teacher for validation of their answers or for direct
answers to their questions. The teachers often answered questions with questions —though,
sometimes leading questions —and forced the students to “figure it out” for themselves. They
were not expected simply to produce correct answers quickly by following prescribed
procedures. In these teachers’ classrooms, the students had other obligations such as explaining
and justifying their solutions, trying to understand the solutions of others, and asking for
explanations or justifications if necessary. The students worked cooperatively in pairs or “pods”

and shared their ideas and misunderstandings openly.
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The teachers and the students alike practiced correcting each other and providing
argumentation for claims. These practices were so natural that, as an outsider, I wondered
whether the students might be offending one another. The students debated each other’s
suggestions, questioned each other’s assumptions, and critiqued each other’s ideas and answers.
The level of maturity with which these negotiations were handled indicated that these
mathematical practices had been well established and that the students were accustomed to such
activity.

In addition, whole-class discussion of solution procedures and problem situations was a
core practice in these teachers’ classrooms. Many class discussions involved mathematical
discourse —conjecturing, justifying, and challenging ideas and solutions. In addition, the whole-
class discussion often involved the interpretation of the situation expressed in the contextual
problem, and explored the reasonableness of the solution processes in light of the given context.
For example, in the Foul Shot Problem, the first transition point in the lesson depended on an
interpretation of the solution as unreasonable in the problem context. In recognizing that one
cannot have a fractional part of a foul shot, one is forced to make new assumptions or
conjectures and to approach the problem from a different perspective. This shift demands a
reinterpretation of the situation expressed in the problem —instead of assuming that the
announcer gave exact percentages, one assumes the percentages were rounded according to
conventional criteria. Such discussions shift attention towards reflection on the solution
processes as well as the solution itself.

Across all of the classes I observed, the teachers required the students to give
explanations with their answers. For example, when his students were working on the Wind

Chime Problem, Gary insisted that they tie their descriptions to the particular characteristics of
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the graph from which they drew their conclusions. Related was an emphasis on using and
understanding the language associated with mathematics. Gary did not permit his students to
speak with pronouns and insisted that their language be precise and accurate. Similarly, Rhonda
and Diane paid attention to their students’ language, making corrections and asking for
clarifications and elaborations as necessary.

Finally, visualization of problem situations and graphs was a common practice in these
classrooms. The teachers asked the students to think by themselves about various aspects of a
problem and how they might solve it. To help the students focus their thoughts, all three teachers
asked for qualitative graphs— graphs that represented the features of an equation (slant,
intercepts, and so on) without being exact. The teachers cited potential benefits of this
activity —improved understanding of graphs and how they relate to features of equations, better

articulation of the dynamics at play in a given problem, and increased “thought time” on task.

Teachers’ Instructional Practices With Contextual Problems

In this section, I zoom in to describe the features of the teachers’ instruction that I
identified as important in shaping the unfolding of contextual lessons—how they (a) adapted and
used problems from other sources, (b) helped the students formulate the problem (by their talk,
and by opening or closing students’ ideas), and (c) balanced time and attention to the context and
the mathematics.

Adaptation of Problems and Problem Formulation

The teachers in this study reported that media sources—newspapers, books, television,
and the Internet— were abundant with data and descriptions that were adaptable as problems and

projects. Practitioner journals were seldom read by these teachers and rarely a source of
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contextual problems. More often, a news report or data set sparked an idea that was developed
and implemented as a problem in the classroom. The problems I observed were derived from a
number of sources. The Bird Problem and the Wind Chime Problem were adaptations of
problems Gary had seen elsewhere. The Bird Problem had appeared in the Mathematics Teacher
(Keller & Thompson, 1999), and the Wind Chime Problem had been motivated by a presentation
he had attended at the T’ International Conference in 2001. The Foul Shot Problem resulted from
an announcement heard by a teacher at Constantia Ridge when watching a Chicago Bulls
basketball game in the mid 1990s, and the other two problems had been developed by the
teachers at Constantia Ridge as part of a curriculum development project.

In the discussion that follows, I make two points about how these teachers used
contextual problems. First, the lesson they taught rarely reflected the problem as it was given in
their textbook or the handouts they used. The teachers had a “big picture” sense of what the
problem was about and the goals they wanted to accomplish. They did not adhere to the problem
as it was presented in the materials; they used the problem as a starting point for their work with
their students and allowed the problem to unfold in ways that were their own. Second, the
opening question in the problem presented to the students was seldom the question they would
be answering. The teachers often orchestrated the lesson so that the students were forced to
formulate the mathematical question and decide what the problem to be solved was. Even when
it seemed that the students had been given the problem from the beginning (the Foul Shot
Problem), that was not the case.

For example, the Bird Problem as it appears in the Mathematics Teacher (in five
handouts that Gary “used”) presents a paragraph about biologists observing the behavior of

crows when dropping mollusks (or whelks), and asks, “Why do crows consistently fly to a height
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of about 5 meters before dropping a whelk onto the rocks below?” The question is followed by a
series of five other questions about the possible flight patterns of crows when dropping mollusks
and the relationship between the number of drops and the height of the drops. As the problem
unfolds in the handouts, the students are directed through the peanut experiment and given the
form for the equation that models the peanut data. They are also given the equation for the linear
re-expression. Without any commentary on why one might be interested in a formula for work or
energy, the formula is given with the appropriate substitutions already made from the earlier
equations, and the students are asked a series of questions related to the formula. The problem
concludes with the students writing a reflection and exploring the conjecture that crows select a
height that minimizes the work needed to break open the whelks. Gary’s implementation
reflected aspects of the published problem but was distinctly different.

Gary introduced the Bird Problem by asking the students to think about how a bird might
open a shellfish. He pursued their ideas and in questioning led them to decide that dropping it
onto rocks would be the best method. Gary then asked the students to think about how a bird
might drop the shellfish. Latching on to a student’s mention of efficiency, Gary led the students
to formulate the mathematical question (though they did not yet know it): Find the optimum
height from which the bird should drop the shellfish that minimizes the energy expenditure of the
bird.

Gary never mentioned the paragraph given on the handouts he used from the
Mathematics Teacher (Keller & Thompson, 1999), and he did not ask the questions presented
there. In his implementation, the students realized that the relationship of importance was that
between the number of drops and the height from which the shellfish was dropped. Gary did not

introduce these variables —the students identified them on their own. Similarly, the students
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relied on their knowledge of mathematics and developed all of the formulas and equations used
in the problem. Through discussion, they decided that a bird would be most interested in energy
expenditure and discussed why. They conjectured how they might quantify energy and looked
for a minimum. They then interpreted the minimum in terms of the context—there was an
optimal height from which the bird could drop the shellfish so that energy expenditure was
minimal. The only aspect of the Bird Problem Gary introduced as presented in the Mathematics
Teacher was the peanut simulation. He led the students to formulate the mathematical problem
for themselves by requiring them to think and conjecture, by questioning their ideas and asking
for clarification, and by asking questions that forced them to pursue an idea or abandon it for a
different one. Gary was adept at opening the problem up to possibility and closing down what he
determined to be nonproductive routes without obviously doing so. The students were in control
and were formulating the problem in their discussion; Gary was also in control but in subtle
ways. As is evidenced, Gary’s implementation of the Bird Problem was very different from its
presentation in the Mathematics Teacher.

With the Foul Shot Problem, the Swing Problem, and the CO, Problem, the teachers
stated the problem from the beginning in terms of the context. Unlike the Bird Problem, the
students spent little time deciding what question to ask of the context. However they were
responsible for deciding how to accomplish the given task. They were required to develop the
mathematics they needed. The teachers assisted by questioning the students and directing their
efforts towards graphical sketches and needed variables but the students formulated the problem.

In the Foul Shot Problem, the student groups went to work immediately to find the
number of shots taken and made by the basketball player. When they thought the problem was

finished (and after discussion guided by Diane’s questions), they realized what the actual
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problem was—finding a range of solutions for the number of shots taken and made. This
realization required a reformulation of the problem by the students and a different solution
strategy. This reformulation was no accident; Diane had planned it. In Diane’s implementation of
this problem, she did not work from a written lesson plan, and to my knowledge the problem is
not published in any text, so I cannot comment specifically on whether or how her
implementation differed from a suggested plan.

In the Swing Problem, Rhonda stated, “Our ultimate goal is going to be to try and model
what it looks like for a person to swing on a swing.” To begin, she simply asked the students to
sketch a graph of a person swinging. A discussion of a proposed sketch in turn prompted a
student to introduce the idea of parametric equations. Rhonda asked for further clarification, and
the mathematical problem was formulated: Write the parametric equations that together will
model a person on a swing. Again, we see that Rhonda allowed the students to develop the
problem by asking them questions and to offer their ideas. Together the students decided what
the problem involved; Rhonda did not have to tell them. Also, in Rhonda’s implementation of
the Swing problem, she did not work from a written lesson plan. The problem appears in a
precalculus textbook used at the school, but she did not implement it in the way described. In the
textbook, the problem provides measurements taken by students on a fieldtrip and states for
students to (presumably as individuals), “Write parametric equations that describe the horizontal
and vertical positions of the swinger as a function of time. Graph the equations.” Rhonda,
however, required that her students work together to formulate that problem by reasoning about
the task. She also required them to decide what measurements they needed and to gather those

measurements. The students were never asked to read the problem in their textbook.
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A similar analysis can be offered for the CO, Problem. The students were given data lists
(on paper and in their calculators) and other background information from the Internet. The
problem appears in their precalculus textbook but was not referred to. The problem in the
textbook presents the scatterplot the students fitted a model to, but also describes that a sum
equation is needed and states that a sinusoidal function will model the oscillating data. The
textbook problem then asks the students to create the function that models the data and answer
questions about it. Rhonda’s implementation differed from the textbook presentation. She gave
the students a graph of the data and stated their task: “To see if we can fit a model to this CO,
concentration data over a pretty long span of time.” She did not tell them the mathematics
needed in their model. In a class discussion Rhonda facilitated, the students put their ideas
together and formulated the problem for themselves.

The Wind Chime Problem was implemented in the most step-wise manner I observed.
The students were given handouts outlining each step in the problem, and they spent their time
putting those steps into action. The students worked independently for much of this problem.
Gary spent little time helping them develop the problem. He had already done so in the handouts
that provided the step-by-step instructions for carrying out the problem.

Balancing the Mathematics and the Context

In using contextual problems in instruction, the teachers attended to the development of
both purely mathematical skills (symbol manipulation, algebraic formulas and computation) and
process skills (modeling, writing, explaining, and justifying). To develop these skills through
contextual problems, the teachers (and the students) had to balance the attention they gave to the
context and to the mathematics. It was the teacher’s task—if this was to be a mathematics

lesson—to see to it that the problem became (or remained) mathematical. Each teacher organized
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the lesson so that it contained all the aspects of the activity considered necessary to develop the
mathematics of interest. If the students were to learn a specific skill or develop a particular
process skill, then the teacher had to make sure that these skills were facilitated by the problem
or taught separately. The teachers had learned to take an application or a phenomenon in the
world and develop rich mathematics out of it. Thus attention to pure mathematics was couched
within contextual problems. Even problems that required heavy consideration of the context
remained mathematical. The lessons were not “fuzzy and warm” opportunities to talk about the
world. They were about mathematics. This focus sometimes resulted in near disregard for the
context altogether.

For example, in the CO, Problem, the students were asked to find an equation that
modeled a given data set. The students were not required to make simplifying assumptions or
consider the context of the problem in order to work with it. Interpretation of the context
happened only at the end of the class period, when the students thought about what a general
increase in CO, concentration across time meant for the environment. Why the CO, data were
oscillating between years was never discussed and was irrelevant in terms of the goals. The
students were able to find a sum equation that modeled the data without thinking about the data
in the real world. Mathematical considerations sufficed and were most important. The teacher
did not spend any class time talking about CO, concentration in the atmosphere or any other
aspect of the world. It was either assumed that students understood the contextual aspects of the
problem, or that these aspects were irrelevant.

Likewise, the Swing Problem required little, if any, consideration of the real world. The
introduction of the problem by the teacher required that the students think about the context but

within a mathematical frame (what the graph of a swinger might look like). There was no
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conversation about swinging in real life. To solve the problem, the students collected their data,
wrote the parametric equations that modeled the swinger, and tested their model by graphing
their equations on the calculator. Certainly their data were real —they collected them
themselves —but in their subsequent work, the students worked exclusively within the realm of
mathematics. They had a sense of how the graph should look, and they knew that swinging
involved both vertical and horizontal motion. Their goal then was to incorporate real numbers
and write the equations to model the combination of those motions. The students paid attention
to the motions of a swinger in their mathematical work, but they did not rely on the context for
interpretations. The swinger was the source of the numbers to be used and provided a visual
image of the dynamics involved in the problem —nothing more.

Teaching the Wind Chime Problem also required little balance between mathematics and
the real world. The problem was about using mathematics. The students were told that the
frequencies of sound waves corresponded to notes in the Western scale and were instructed to
investigate the relationship between pipe length and frequency so they could build a wind chime
that sounded a particular chord. This problem was certainly connected to the world and
contextual in nature; but in working the problem, little attention was given to the context. The
students collected data, focused on the mathematics involved, and built their wind chimes with
no consideration of the context—beyond the connection of frequencies to musical notes. The
teacher did not spend time discussing wind chimes or how they were built.

Balancing attention to context and mathematics was more central in the Bird Problem and
the Foul Shot Problem. The teachers worked hard to balance the amount of time and attention the
students spent in consideration of the different aspects of these problems. They also worked to

keep the problems mathematical. Gary spent half of the class period orchestrating a discussion
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with the students that centered on the context of the Bird Problem. The discussion covered a
range of contextual issues (how to open the shell, how to fly to drop it, the weight of the shell,
terminal velocity, and so on), some that merited pursuit, and others that were dismissed in
conversation. After experimentation and work in the mathematical domain—half of another class
period—more attention was given to the context in consideration of the energy expenditure of
the bird. Yet Gary steered the conversation so that it was mathematical in nature and kept the
problem focused on the mathematics even though it relied heavily on contextual considerations.
Likewise, Diane’s work with the Foul Shot Problem required a balance between the context and
the mathematics. It was in exploring the context that the students were able to develop different
mathematics than they had started with. Thus attention to the context was not a discussion of
basketball and favorite players; it was about mathematics and the assumptions that had to be

reconsidered.

Closing Comments

The teachers in this study were masterful coordinators of lessons based on contextual
problems. They had developed skill at questioning students and facilitating classroom discussion
so that the students were led to formulate the mathematical problem and articulate solution
strategies —an uncommon practice for many high school teachers. Contextual problems were
used regularly and the students had become accustomed to providing explanations, justifying
solution strategies, and using mathematical language. The teachers chose rich problems that
incorporated mathematics in new ways, and allowed the students to pursue multiple paths
(sometimes unhelpful) in the solution process. Careful thought was given to balancing time and

attention to the context and the mathematics of the problem (and the use of technology). In
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chapter 8, I connect these teachers’ practices to the literature in chapter 2 and draw implications
for researchers and professional developers interested in teachers’ practices with contextual

problems.
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CHAPTER 7

ENABLING CONDITIONS

One focus of inquiry in this study was teachers’ instructional practices with contextual
problems. In analyzing the data and writing about the teachers’ instructional practices, I decided
it was insufficient to only describe these teachers’ practices —their work was not as simple as
using contextual problems regularly and balancing time and attention to the context and the
mathematics. Their work was complex. It was no easy task to lead students to formulate the
problem for themselves. It was no easy decision to choose to use multiple class periods to solve
one problem. The contextual problems they selected were mathematically and technologically
complex —more complex than typically used in a precalculus course. I realized that these
teachers” work with contextual problems was not unique only at a classroom level, but also at a
structural level. I became aware that particular conditions were enabling these teachers to make
decisions to use complex contextual problems regularly. I had approached this study with an
underlying question about how U.S. teachers could more widely incorporate contextual problems
into their mathematics teaching. What would it take for that to happen? I did not explicitly seek
to answer that question in this study but had hoped that an inquiry into teachers’ practices would
begin to inform that question. But as the teachers talked in their interviews, they attributed their
work with contextual problems to a number of factors they recognized as important in shaping
their work. I have labeled these factors as enabling conditions and describe them in this chapter:

technology, commitment, community support, and beliefs.
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The Role of Technology

Many technological devices are available today, and many of them are highly relevant for
applications and modeling. In a broad sense these technologies include calculators, computers,
the Internet, and all computational or graphical software as well as all kinds of instruments for
measuring, for performing experiments, and so on. These devices not only provide increased
computational power but also broaden the range of possibilities for approaches to teaching,
learning, and assessment. On the other hand, the use of calculators and computers may also bring
inherent problems and risks.

Tom, Cathy, and Rhonda explicitly mentioned that technology had allowed for the use of
more complex problems in their teaching. Using the regression packages on the calculators and
the graphing features, students could work with large data sets to understand phenomena in the
world. Graphing calculators minimized the amount of time taken to input data (via linking
capabilities) and to draw graphs. These savings allowed more time for students to think about the
mathematics and to make sense of what the mathematics was doing. Technology played a central
role in all five of the observed lessons.

In the Bird Problem, the students used the graphing calculators to (a) input the data
gathered in the peanut simulation, (b) study the graph of the data, (c) linearize the data and re-
express them, and (d) study the graph of the re-expressed data to locate the minimum. Using
technology allowed the students to complete the problem in 2 days, and instead of focusing on
graphing the data and trying to re-express them by hand —a complicated task —the students were
able to focus on the linearization and what the re-expressed data meant in the problem. Using the
calculators was not, however, unproblematic. Recall that Gary taught this lesson and did not

have list space available in his calculator for all of the data. There was some confusion for
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students about where different data were stored and why Gary was translating them.
Additionally, the nature of the data—a 1 in the data set gave a 0 in the denominator— gave the
students calculator errors whose cause they did not initially recognize.

In the Wind Chime Problem, the students used their graphing calculators, the CBL unit
and sound probe (microphone), and computers with TI-InterActive! software. The CBL unit
allowed the students to capture the sound waves produced when banging their pipes. The TI-
InterActive! software interpreted the wave data inputted into the computer through the CBL unit
and stored them in a tabular and graphical form. The software also allowed the students to select
and save data in a word-processing program. Thus students could, in one place, display their
tables and graphs, label their data, and write sentences explaining the data and their reasoning.
Finally, the students used their calculators to find the period and amplitude of their wave graphs.
The students did not encounter very many technology obstacles. One group accidentally forgot to
change a setting in TI-InterActive! and on one occasion collected sound data that the software
interpreted as temperature. Gary informed the students that they could still use the data but that
they should write notes explaining the units assigned by the software.

The Foul Shot Problem and the Swing Problem used technology minimally in
comparison with the other three problems. In the Foul Shot Problem, the students wrote
equations and solved them, made new assumptions, wrote new equations in terms of inequalities,
simplified those equations, and graphed them by hand. When the students suggested graphing the
lines on the calculator (TI-89) to locate the lattice points, they learned that the technology was
limited—it was impossible to see the region between the graphed lines, much less the lattice
points in the calculator window. Still they used the table of values in the calculator to locate the

solutions to the problem. In the Swing Problem, the students used their graphing calculators to
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calculate the periods and amplitudes in the model they were developing, and used the graphing
features to “check” their equations. As with the Foul Shot Problem, the students mostly worked
the problem on paper.

Finally, technology was central in the CO, Problem. The graphing calculator was in hand
for the duration of the 90-minute problem. Students first linked their calculators and shared the
data, thus saving time inputting them. Once students had the data, they were able to graph the
different data sets, single out portions of the data to look at, apply techniques of linear regression
and look at residuals, trace their graphs to locate important values, and so on. The success of this
problem hinged on students’ adeptness with the calculators and their understanding of calculator
functions. Rhonda paid careful attention to the location and organization of data and helped
students keep track of their work. She worked through the whole problem with the students,
reminding them of calculator functions and demonstrating the calculator work. Her guidance
eliminated a number of technological problems that could have developed if students had been
working on their own. Still, some students encountered difficulties (oddities in their graphs
because of calculator settings), and Rhonda offered immediate assistance to get them back on
track.

The Wind Chime problem incorporated a number of technologies, whereas the other
problems mostly relied on the students’ work with graphing calculators. Using technology
allowed the students to tackle complex problems in a reasonable amount of time (one or two
class periods) and work with mathematics they would not have been able to do otherwise. They
were able to focus on what the mathematics was doing and pay less attention to how to do the
mathematics. In particular, with the CO, Problem, technology enabled the students to find a

mathematical model for a large and complicated data set. There were data for every month from
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1958 to 1995 (with an overlap of data from 1976 to 1989) and averages for every year. The data
trend was increasing over time while oscillating between years. Without the use of technology,
the problem would have been too involved and too complicated for use in a precalculus course.
Thus, technology enabled the teachers to introduce more complex mathematics than such courses

usually contain.

Commitment to Contextual Problems

Teaching applications and modeling activities is always time consuming because
attention has to be paid to several crucial phases of the modeling process, including work on
extra-mathematical matters. Applications and modeling components of general mathematical
curricula have to compete with other components of the curriculum; in particular, work on pure
mathematics. Thus I briefly describe the commitment of these teachers to use contextual
problems and how they balanced attention, time, and effort between applications and modeling
activities and other mathematical activities in their classroom.

Though I observed lessons taught by only three of the six teachers in this study, all
discussed how they incorporated contextual problems into their classes and balanced attention
between those problems and the mathematics content and skills they were required to teach.
Gary and Hank taught at Watercliff Academy and worked under the expectations that all students
would perform well on standardized tests (SAT and Advanced Placement exams) and would be
accepted into universities upon completion of high school. Working within those expectations,
Gary and Hank had stopped offering a modeling course so that students could take calculus-

based courses. The perception of the administration at Watercliff was that universities valued
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calculus more than modeling. Still, Gary and Hank were committed to teaching with contextual
problems.

Gary reported teaching three large modeling problems each year. These problems
required 2 to 3 days of class time—the Suez Canal problem (taught in the fall and not observed
in this study), the Bird Problem, and the Wind Chime Problem. He also reported assigning two
or three other large contextual problems each semester and discussed some examples he had used
in the past. The students were expected to complete these problems on their own over the course
of 1 or 2 weeks. Hank did not report using large amounts of class time on contextual projects, but
reported assigning six to eight such projects to students each semester and, in the interview,
challenged me to think about some of them. He reported that his projects were somewhat less
involved than those given by Gary, but they connected the mathematics being learned to the
world.

Tom, Diane, Cathy, and Rhonda taught at Constantia Ridge in a department with the
philosophy that precalculus (and other mathematics, as much as possible) should be taught by
beginning with a situation and developing the mathematics from it. Thus attention, time, and
effort toward applications and modeling activities were highly valued and expected. The school
expected the students to perform well on standardized tests and hoped they would pursue degrees
in technical fields like engineering, mathematics, and the sciences after high school. The
mathematics teachers viewed the use of contextual problems as facilitating those expectations
and hopes. By being exposed to applications of mathematics, students would see mathematics as
useful and meaningful and would perhaps pursue its further study. The teachers were also
confident that through engagement in rich problems, the students would develop the mathematics

necessary to be successful on standardized tests and in college. Finally, Tom and Diane taught a
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modeling course in which students were given a setting and the freedom to choose a question to
ask of the setting and pursue it. The focus of this course was for students to gain experience with
using mathematics to model aspects of the world—modeling as a process.

All of the teachers in this study held a “big picture” philosophy of teaching mathematics.
Their focus was broad and centered on where students would be at the end of the school year or
the end of high school. They worried less about the day-to-day pressures of standardized testing
and curriculum guides. Instead, while building a classroom culture that fostered students’ skills
with reasoning, problem solving, questioning, explaining, and writing mathematics through
engagement in rich contextual (or modeling) problems, they trusted that their students would
succeed.

Applications and modeling activities inevitably compete with pure mathematical
activities for time and attention in courses. The teachers in this study, however, valued such
problems and were therefore willing to organize their classes so that applications and modeling
were central in their work. They made these arrangements, with some exception, in spite of
curriculum guidelines and content requirements within the school. They were confident that
applications and modeling problems enhanced students’ understanding of pure mathematics
content and were therefore necessary and worthwhile components of their teaching. Using 2 to 3
days on one problem was acceptable if the problem was rich and provided an opportunity for the
students to connect mathematics concepts to each other and to the real world. In addition, a
commitment to such problems over time enabled the teachers to incorporate contextual problems
more regularly because with repeated exposure, the students gained skill in working with such
problems and became more willing to engage with and solve them. Teachers’ instructional

practices with contextual problems were also refined and improved over time as they interacted
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with different groups of students (and teachers in workshops and at conferences) to work through

the problems.

Community Support

The teachers in this study (with the exception of Hank and Cathy, who began in the
1990s) began to implement ideas of applications and modeling in their teaching in the mid to late
1980s and have sustained that implementation over the years. How was this possible? As I talked
with the teachers, I noted one thing: Their work with applications and modeling was sustained by
their participation in communities that valued such work. The teachers were constantly
referencing their colleagues as sources of motivation and as integral in shaping the teachers they
had become. Gary and Tom referred to ongoing friendships they had formed in the mathematics
education community at large through participation in the Woodrow Wilson Institutes in the
1980s to 1990s and other such events. They reported that they continued to collaborate with
many of those same people on various projects and that those collaborations were central to their
daily work as teachers. Gary expressed great emotion when describing the friendships formed
and expressed gratitude for the opportunities he had been given. He felt honored to have been
able to work with Henry Pollak and other talented mathematicians, mathematics educators, and
teachers. Gary’s participation in the mathematics education community outside his school had
been very influential in his teaching. The community at Watercliff was also important, but it had
not shaped his career in the same ways as the external community.

Hank had begun teaching in the 1990s at Watercliff Academy with Gary and reported
that the shift in his teaching towards the inclusion of contextual problems had happened during

his time at that school. He could not pinpoint whether the influence had come from his previous
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department head, his co-teaching of the modeling course with Gary, or his own reading and
development as a teacher, but he viewed his colleagues and community as sources of
encouragement and growth.

Tom spoke about the communities in which he was involved outside of school and cited
that work as very influential in his daily practice. He, however, felt very fortunate to also have
the department support at Constantia Ridge. He commented, “It’s essential to have a
community” in which everyone works as “coequals.” Tom added that being part of two
communities —one external to his school and one internal —allowed for two different kinds of
collaborations. The internal community’s work focused on what was happening in their
school—on the philosophy of the department, their commitment to particular kinds of teaching,
and their day-to-day activity. The external community served a different purpose. Most of Tom’s
work outside of Constantia Ridge involved work on curriculum projects or serving on
committees. He recognized that many teachers, particularly those “who have come to the
Woodrow Wilson things or gone to Exeter [Phillips Exeter Academy’s summer workshop], have
developed a stronger affiliation with that external community than [with] their internal
[community] —I have the luxury of having both.”

Diane, Cathy, and Rhonda also spoke about their participation in both an internal and
external mathematics education community. Often they led workshops, gave presentations, and
worked with teachers. They found this work exciting and rewarding. They reported learning
from each other and from the teachers with whom they worked. In addition, they (along with
Tom) spoke of the community within their department at Constantia Ridge as one of collegiality
and innovation. The teachers at Constantia Ridge had been fortunate enough to develop a

precalculus and calculus curriculum together. That experience had served two purposes: to bring
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them together as a community and to develop a shared philosophy in the department that drove
all of their work. The teachers were continually developing new problems, observing each
other’s teaching and offering critiques, and exploring new mathematics. Working within a
structure that valued the use of applications and modeling problems and that provided
opportunities for collaboration toward such use, these teachers had been able to sustain their
commitment to this collaboration for almost twenty years.

From the conversations with the teachers in this study, I concluded that participation in
communities played a role in helping teachers sustain curriculum initiatives. And community
involvement must extend beyond the gates of one’s school. The teachers at Constantia Ridge had
developed a strong internal community with shared philosophies and ongoing innovation in
terms of applications and modeling activities. Yet they reported that their work outside of the
school also played a central role in their development as teachers. Sharing their work with others
led to self-renewal and encouragement— others were interested in what they were doing and that
was exciting. At Watercliff Academy, the internal community was not as strong. Teachers met
two to three times per year to discuss testing and curriculum, but a collaborative atmosphere had
not been established. Thus, Gary relied on collaborations outside his school for support. Hank
hardly spoke of collaborations internal or external to his school, yet commented that in his
attendance of state and national meetings, he always latched on to some idea he could use in his

classroom.

Teachers’ Beliefs

In chapter 4, I described the beliefs held by all six teachers’ concerning mathematics, its

teaching and learning, and contextual problems. These teachers’ beliefs are important for
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consideration in conceptualizing the enabling conditions of these teachers’ practices with
contextual problems. For example, because these teachers believed that students should struggle
with mathematics, make mistakes, and try a different approach, the teachers were willing to use
multiple days for the solving of one problem. These teachers also believed that students were
capable of working with difficult contextual problems and therefore waited for them to formulate
the problem and figure out the mathematics needed to solve it. The teachers did not give this
information freely. In addition, these teachers were comfortable using class time to let students
think and struggle, so much so that students’ questions were often answered with questions. And
that these teachers were continually seeking new problems and contexts with which the students
could engage in mathematics supported their belief that it was the teacher’s responsibility to
connect the mathematics being taught to the world.

The teachers also held strong beliefs about the power of contextual problems for reaching
more general curriculum goals and for motivating and engaging students. In part, these beliefs
enabled the teachers to make decisions about using contextual problems, using them regularly,
and remaining committed to them even when it was difficult for students, or when the
administration was not completely supportive. An example of the latter was illustrated by Gary
and Hank’s commitment to teaching with contextual problems after the modeling course was
replaced by a calculus-based course. In addition, their beliefs that such problems were important
helped sustain their commitment to such problems despite the low level of community support
internally at their school. At Constantia Ridge, the teachers’ beliefs about the importance of
teaching with contextual problems had led to a departmental philosophy that supported those

beliefs and encouraged their work with such problems. Their beliefs and shared philosophy
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encouraged and strengthened their collaborative internal community and inspired their

involvement in an external community.

Closing Comments

Many of the instructional practices with contextual problems observed in the teachers in
this study were atypical, as were some of their beliefs. Part of what allowed for such practices
and beliefs were what I have labeled enabling conditions. The facilities of technology had
allowed these teachers to introduce more complex mathematics in earlier courses, and also
allowed students to engage in interpreting and understanding mathematical ideas before
understanding the mechanical aspects. The students were able to use mathematics to model real-
world phenomena, and in the process, motivation for the study of particular mathematics was
induced. The process was further facilitated by the teachers’ commitment to teaching with such
problems in spite of curricular guidelines, student difficulties, and time constraints. In addition,
teachers’ involvement in communities, both internal and external to their school, enabled them to
find support for their efforts. The community also served as a source of professional
development and self-renewal for these teachers by introducing them to new ideas, problems,
contexts, technological improvements, and so on. In this way, community involvement was not
only inspirational and motivational but also educational. Finally, these teachers’ beliefs were part
of what enabled them to teach with contextual problems on a regular basis. Their beliefs also
supported other enabling conditions—Ilike their commitment to using such problems and their
willingness to be involved in the mathematics education community at large. In chapter 8, I use

the enabling conditions identified in this chapter to draw implications for mathematics educators
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seeking to prepare teachers to work with contextual problems. I argue that these conditions are

important for consideration in that preparatory work.
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CHAPTER 8

CONCLUSION

It’s not what we read, but what we remember, that makes us learned. It’s not what
we intend, but what we do, that makes us useful. It’s not a few faint wishes, but a
lifelong struggle, that makes us valiant. Henry Ward Beecher

Summary and Reflection

The incorporation of contextual problems in mathematics teaching is recommended and
encouraged (NCTM, 1989, 2000), but few researchers have studied teachers’ practices with such
problems. The purpose of this study, therefore, was to investigate high school teachers’ notions

of terminology associated with contextual problems—mathematics in context, applications of

mathematics, and mathematical modeling— and their instructional practices with such problems.
In this study, I focused on the practices of six teachers with reputations for using contextual
problems on a near-daily basis. As part of that investigation, teachers’ beliefs about mathematics,
its teaching and learning, and contextual problems were described and used to situate the
teachers’ practices. The significance of the study lies in its contribution towards a better
understanding of how teachers teach with contextual problems—in particular, how they adapted
the problems, helped students formulate the mathematical question, and balanced time and
attention to the context and the mathematics.

The participants in this study were six secondary teachers—two in a private school and
four at a public school of mathematics and science. The teachers were selected based on

recommendations from university professors and on their presentations at a conference focused
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on secondary mathematics teaching. All participants met a range of criteria including more than
10 years of teaching experience, a reputation for teaching with contextual problems, and
advanced degrees in mathematics. All six participants were interviewed, and three were observed
teaching lessons they selected and identified as incorporating contextual problems. The data
from the interviews and observations were analyzed using constant comparative techniques
associated with grounded theory methodology (Glaser, 2002; Glaser & Strauss, 1967).

The findings in this study addressed two independent research questions:

1. How do teachers with reputations for using contextual problems on a near daily

basis define and relate the terms mathematics in context, applications of
mathematics, and mathematical modeling?

2. What are these teachers’ instructional practices with contextual problems?

Relating the Findings to the Research Questions

Ernest (1989) and Raymond (1997) have proposed that to understand teachers’
knowledge and practices, one must consider their beliefs about mathematics, and its
teaching and learning. Thus, in answering the research questions, I first investigated these
teachers’ beliefs and presented them in chapter 4. Specifically, I asked: What beliefs
about mathematics and its teaching and learning do these teachers hold? What beliefs
about the nature and role of applications, modeling, and contextual problems do these
teachers hold? I noted that these teachers held various beliefs about mathematics and its
teaching and learning. They shared beliefs about selecting contextual problems, however,
using them often and allowing students to struggle when solving such problems. This
finding has implications for the further study of teachers’ beliefs as it relates to their
teaching of contextual problems. The sample of teachers in this study held differing

beliefs about mathematics and its role in the curriculum, yet their classroom practices and
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beliefs about students’ engagement with contextual problems were strikingly similar.
Perhaps consideration of how this configuration of beliefs (and others) affects practice
could provide further insight into teachers’ work with contextual problems.

The first research question was then addressed in chapter 5, where I described the ways in
which these teachers thought about and defined the terms mathematics in context, applications of
mathematics, and mathematical modeling. I offered an analysis of the graphic organizers drawn
by the teachers relating the terms and identified the shared dimensions along which the teachers
described them. I noted that the teachers’ notions of the terms were at times fuzzy, but when
taking into account multiple dimensions of each term they were able to make distinctions
between them. I also offered that the teachers’ practices seemed unaffected by the ambiguity
associated with the three terms. In fact, even when faced with unfamiliar terms (e.g.,
mathematics in context), the teachers did not express concern about whether the descriptions they
offered were “right” or “wrong.” They were more interested in knowing how their colleagues
had answered the question; they were concerned about having and maintaining a shared
philosophy and understanding within their department. In fact, the teachers at one school asked
for a copy of my interview guide so the questions could be the central topics of their
mathematics team retreat in the upcoming summer.

These findings lead me to question whether there is a need for consensus on the
definitions of the three terms and whether the dimensions I identified in the teachers’
descriptions might benefit mathematics educators conceptions of the terms. Recall that I
identified discrepancies in some of the definitions being put forth by mathematics educators
(chapter 2) and argued that perhaps the language and associations surrounding the terms had

muddied conversation and understanding among both mathematics teachers and researchers in
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mathematics education. The six teachers in this study, however, were able to make distinctions
between the terms and reconcile for themselves how the terms might or might not be related
despite their ambiguity. Thinking about the terms along multiple dimensions proved useful in
this reconciliation. Perhaps these same dimensions, which are detectable in some of the
descriptions given for the three terms in the research literature, warrant more explicit attention
from mathematics educators. The literature cited in chapters 1 and 2 suggests that authors often
select definitions that work best for their purposes but may fail to consider the different roles that
definitions play. They may also fail to realize how the definition they put forth— whether
informal, formal, or extended (McLeod & McLeod, 2002) —overlaps with or confuses other
definitions of the same or a similar term. As a result, researchers may be unable to determine the
degree to which another’s research informs their own. Perhaps consensus on definitions is not
necessary —different definitions serve different purposes —but maybe explicit attention to multi-
dimensional definitions, rather than one-dimensional definitions, could resolve some of the
ambiguity currently associated with the three terms of focus in this study.

Besides the dimensions, I identified a distinction in the teachers’ notions that seems
unarticulated in the literature—the idea of using the modeling process itself as a way of
structuring and organizing classroom activity and learning. Typically, modeling, when thought of
as a pedagogical move, involves modeling an activity, repeating the activity with students, and
then asking students to do the activity on their own. The teachers in this study however spoke of
the (mathematical) modeling process as a form of classroom organization. Students were given a
problem; as a class, particular assumptions were made and discussed; mathematical activity was
engaged in without consideration of the context (technology was often used); a model was

created; questions of the model and assumptions were made in terms of the context; new or
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different assumptions were made; and the lesson and process continued. In essence, the teachers
used the modeling process to shape the organization of their lessons, and not just in solving
problems. This practice might provide a new way for thinking about classroom activity and
organization as mathematics educators work with teachers seeking to teach with contextual
problems.

The central focus of the second question—teachers’ instructional practices—was
addressed in chapter 6. In investigating these teachers’ practices with contextual problems, I
found that on the surface their practices were not very different from those one might expect of
many teachers. Many reform-oriented teachers use technology, act as facilitators, and negotiate a
classroom culture that involves students in questioning, reasoning, and argumentation. What
differed was these teachers’ commitment to contextual problems and modeling, and their
practices specific to such problems. They valued students’ engagement with such problems and
therefore adjusted their curriculum to allow for their inclusion. For these teachers, knowledge
was continuously recreated, recycled, and shared by teachers and students. Thus, they were not
dependent on state curriculum frameworks or textbooks to decide what and how to teach. I
identified three practices of these teachers’ instruction as important in shaping the unfolding of
contextual lessons: how they (a) adapted and used problems from other sources, (b) helped the
students formulate the mathematical problem (by their talk, and by opening or closing students’
ideas), and (c) balanced time and attention to the context and the mathematics.

First, these teachers were adept at adapting problems and modifying them in action. As
students made suggestions and shaped the direction of the lesson, the teachers were able to
negotiate their goals in view of the new direction while maintaining a vision of how the problem

might unfold and where it would lead students. The teachers were proficient at giving the
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students ownership of the problem and their work with it. Yet the teachers accomplished the
goals they had set for the problem. The teachers were not rigidly tied to the organization and
presentation of the problems as they were laid out in textbooks or articles. Even problems the
teachers had developed themselves were presented in ways that resembled their original forms,
but were significantly different. These adaptations, in part, facilitated the second practice I
identified — their ability with leading students to formulate the mathematical problem.

When introducing a lesson, it is typical for the teacher to tell the students the
mathematical goal of the lesson detailing the mathematics needed to accomplish that goal. Yet
these teachers refrained from that practice. They gave the students a task (e.g., model a swinger
in a swing) but it was the responsibility of the students to realize the mathematics involved in
completing that task. Finally, I noted that these teachers masterfully balanced time and attention
to the context and the mathematics. They devoted class time to the discussion of the contextual
features as well as the mathematical features of the problems. They also balanced the teaching of
contextual problems with the teaching of more straightforward computational problems. These
findings invite researchers to consider a number of important questions: How might we instill
these practices in teachers? What levels of comfort and what skills are necessary for a teacher to
do this work? How can teachers foster students in taking the responsibility of formulating the
problem? What are the advantages for students who formulate the problems for themselves? Are
there disadvantages? By focusing on these three practices specific to teaching with contextual
problems, in addition to the general teaching practices of these teachers, we can begin to parse
out skills and knowledge important for successful teaching with contextual problems.

Finally, in chapter 7, I described four enabling conditions that allowed these teachers to

do the work described in chapter 6. These teachers’ practices with contextual problems were
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unique and complex. And their work was unique not only at a classroom level (i.e., their
practices with contextual problems) but also at a structural level. Particular conditions were
important for enabling these teachers to make decisions to use complex contextual problems
regularly. The first enabling condition was the introduction of technology—namely, graphing
calculators and computer software—into the mathematics curriculum. Technology allowed the
teachers to introduce complex mathematics in earlier courses. The second and third conditions
were their commitment to such problems and their involvement in communities both internal and
external to their school. Finally, I made the claim that these teachers’ beliefs as described in
chapter 4 could be considered as enabling conditions, as well as supports for the other enabling
conditions. Furthermore, the enabling conditions could be classified into two groups. The
teachers’ commitment and beliefs could be thought of as internal conditions—perhaps not easily
changed, motivated, or inspired. The introduction of technology and the teachers’ involvement in
communities could be considered as external conditions—those that could be affected by
intervention from mathematics educators. Classifying the enabling conditions in this way
provides a way for mathematics educators to begin to think about how they can best serve

teachers in their work with contextual problems.

Significance of the Study

Teachers’ Notions of Terminology

Describing these teachers’ notions of the three terms and how they were related was
important for two reasons. First, without an understanding of how teachers and mathematics
educators are thinking about and using the terms, we cannot begin to clarify the meanings and

understand how different descriptions and definitions affect research and practice. If
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mathematics educators are not using definitions of terms in a consistent manner so that research
can accumulate and inform further study, then the result is pockets of knowledge that may or
may not be contributing in significant ways. The teachers in this study did not offer textbook
definitions of the terms. They articulated their versions of how the terms were related or not, and
I was able to identify a number of shared dimensions along which they considered and
differentiated the terms. In the literature reviewed in chapters 1 and 2, explicit attention was not
given to these dimensions, although they can be identified in some of the definitions found in the
literature. I propose that mathematics educators can gain from giving attention to how they are
defining and using the terms mathematics in context, applications of mathematics, and
mathematical modeling. One gain would be more explicit and articulated notions of how these
terms are related, and how research on one of these concepts informs research on other related
concepts. By considering each term along each dimension identified in these teachers’
conversations, and perhaps other dimensions not articulated in this study, mathematics educators
can begin to more easily differentiate between the terms and more readily recognize their blurred
boundaries. As a result, mathematics educators could more readily see how research on
contextual problems is related, and our knowledge could accumulate.

Second, discussing how teachers (and researchers in mathematics education) think about
and use these terms provides insights into the philosophies with which they approach their
practices, whether teaching or research. The teachers in this study were not interested in
“correct” definitions and descriptions of the terms. They were interested in how different
descriptions might affect their philosophies of teaching, mathematics, and learning. Perhaps as
researchers and teachers in mathematics education, we too should be concerned with shared

philosophies as well as precision in our employment of terminology. Muddy notions about
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terminology may result in muddied philosophies and incoherent goals for teaching with
contextual problems.

Given the array of literature describing terms such as mathematics in context,
applications of mathematics, mathematical modeling, the real world, and reality, it is not
surprising that teachers and mathematics educators have various notions of what these terms
might mean. The questions we must begin to ask should take into consideration whether and how
different ways of organizing and defining the terms matter in practice. If the terms are defined in
a particular way, what might that mean for teaching practices and curriculum design? What
might change if they were defined differently? How is real described in our schools and in our
mathematics classrooms? Who decides what is real? And in making that decision, who is
privileged and who is marginalized? Some researchers are beginning to make strides in these
directions, but much work is yet to be done.

Other questions for consideration ask whether teachers should be expected to have clear
notions of these ideas, or if that is even possible. Should the theories and concepts developed by
researchers and other mathematics educators be clear to practicing teachers? Can they ever be
clear to anyone? Exactly how much should be clear, and how much is irrelevant for practice? I
believe that teachers are more proficient in the classroom and in implementing curricular ideas if
they have a shared understanding of what the curriculum is about and how it was designed. The
teachers in this study had a clear understanding of what they meant by modeling and
applications, and that understanding was part of a shared departmental philosophy —at least at
Constantia Ridge. Certainly differences were evident in their descriptions, but each held a “big
picture” philosophy concerning the teaching of contextual problems and what that looked like.

This philosophy motivated and sustained their teaching with such problems.
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Teachers’ Instructional Practices and Enabling Conditions

Teachers’ instructional practices with contextual problems warrant continued
investigation, and this study has contributed to that process. First, my research informs our
general understanding of the relations between the structures and conditions of schooling and
teachers’ instructional practices. Specifically, in this study I identified enabling conditions that
allowed these teachers to engage in their work with contextual problems. I also identified three
instructional practices specific to that work. For mathematics educators interested in preparing
teachers in the United States (and around the world) to more broadly and commonly use
contextual problems in their teaching, much can be learned from my study. For example, part of
what allowed the teachers in this study to do their work appeared to depend on their access to
and ability with technology, their commitment to using contextual problems even when doing so
was not supported by their administration or was absent from their textbooks, their involvement
in a community that supported that work even if it was outside their school, and their beliefs
about teaching with contextual problems and how students learn mathematics through such
problems. This finding points to key (external and internal) conditions that facilitate teachers’
work with contextual problems. To prepare teachers for this work, mathematics educators must
attend to these —and perhaps other—conditions. The finding also raises questions about teacher
induction and support. What happens when teachers enter a closed community? How can
communities be built so that teachers are doing authentic work together and developing a shared
philosophy? What kinds of materials and professional opportunities support teachers who seek to
use contextual problems in their instruction?

Another question raised by this part of the study is related to the fact that the teachers all

chose precalculus lessons for observation. One must ask whether the nature of precalculus

1772



courses is itself an enabling condition. Precalculus is one of the few high school mathematics
courses that does not require a high stakes test be passed upon completion of the course. In
addition, it is a course typically taught to sophomores or juniors and is therefore early in the
sequence of courses a student will take. As such, the course is low-pressure for both the teacher
and the students —it is not considered central in preparing students for standardized exams
important for college admission. Perhaps this condition enables teachers to devote more time to
teaching with contextual problems and fostering students’ work with them. Teaching a course
that necessitates more accountability might diminish teachers’ efforts with contextual problems.
Investigation into teachers’ instructional practices with contextual problems in other mathematics
courses warrants further investigation.

Second, the findings of this study contribute to the field by beginning a conversation
about teacher preparation and students’ role in learning. How can we prepare teachers to use
contextual problems in their teaching? This study suggests that in addition to the enabling
conditions, teachers need to engage in particular practices to facilitate students’ learning. They
must be adept at questioning students, must allow students to struggle and think (exhibiting
patience), and must be knowledgeable in both mathematics and pedagogy. These skills are not
easily developed. Many teachers think it is their job to remove struggle and challenge from
students’ studies of mathematics. The teacher must “help” the student by giving hints, or the
teacher must organize his or her lessons and select problems so that students struggle little —after
all, students may become frustrated and disengage. The practices of the teachers in this study
challenged these ideas about the teacher’s role in the classroom. The teachers provided a site of
struggle for students and set up a classroom culture that involved elements of risk and discomfort

for both themselves and their students. Yet they were successful —the students were learning
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complex mathematics and its uses in the world, and the teachers were gaining proficiency and
recognition as teachers. Perhaps these practices could be reconceptualized as aspects of
pedagogical content knowledge that can be developed and taught to teachers. How might that
knowledge be obtained? What beliefs must teachers hold before they can allow students to
struggle, perhaps for days, with one problem? How can we as mathematics educators facilitate
teachers in developing this skill?

Third, the findings have important policy implications for those working in education,
especially for those concerned with curriculum development and teacher education. What should
be included in the curriculum and how can a spirit of innovation be developed in teachers? What
is the role of curriculum guidelines, and how might they address the use of contextual problems?
Should use of contextual problems be mandated or recommended at all? When is too much?
What is not enough? These debates have already begun among mathematicians and mathematics
educators. Perhaps teachers and policy makers should be more involved in this conversation.

Fourth, research such as this should continue to be undertaken because mathematics
remains one of the key areas of study within our formal educational institutions. It also continues
to be a domain within which students’ abilities are measured and judged and used as part of both
selection and allocation processes within and between schools. In other words, mathematics
remains a gatekeeper; and in further study of teachers’ practices, we can begin to recognize ways
in which mathematics can be made more meaningful for all.

Finally, more and more national and international mathematics assessments (e.g.,
Program for International Student Assessment, Trends in International Mathematics and Science
Study) incorporate realistic tasks that may or may not be equally accessible to students of

different cultural, social-class, and economic backgrounds (Cooper & Dunne, 2000). Research
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into the pedagogy and the cultural practices of the classrooms in which students are studying
mathematics can contribute to a better understanding of students’ performance on such

assessments.

Limitations and Future Research

One of the major limitations of these findings comes from the lack in diversity in and the
representativeness of the participant group. Although this group consisted of secondary
mathematics teachers from two schools, neither the teachers, the mathematics departments, nor
the schools were at all typical of the United States. Even the department and teachers at the
public school were not representative of those at other public schools. The teachers were highly
qualified, all with a master’s degree or higher, and the department had been involved in a
curriculum development project in the late 1980s that had resulted in a strong departmental
community with a shared teaching philosophy. In addition, the way in which the teachers were
selected for the study resulted in a set of participants who had been involved in many similar
workshop and curriculum experiences. They shared common ideas about teaching with
contextual problems and mathematical modeling. Their common history limits any
generalization of the finding that involvement in a community is a condition that enables
teachers to use contextual problems regularly and well. Future research should explore the
instructional practices of public school teachers and take into consideration the conditions that
enable or disable that work.

Another line of research should investigate the potential for creating for other schools the
enabling conditions identified in these schools and departments. What additional conditions

might need to be satisfied for public school teachers to use contextual problems regularly and
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powerfully? How can involvement in communities be promoted so that teachers’ participation
yields positive outcomes?

A second limitation of the study was that I was unable to gather observational data on the
instructional practices of all six participants. Though the three unobserved teachers were
teaching with such problems during the time of data collection, they had their own reasons for
declining to participate in the observational phase. Further, the data on the three teachers who
were observed are limited to some degree because the data were gathered near the end of the
school year. The students in the classes observed were already accustomed to working with
contextual problems, and the teachers had learned how to facilitate the activities so that they
were productive. Future research might explore teachers’ instructional practices longitudinally to
see how they develop a classroom culture in which students are comfortable tackling nebulous
open-ended, contextual problems with little guidance from the teacher. How might that culture
be developed in other classrooms? Do teachers’ practices differ according to the time of year; for

example, is there much more guidance early in the year?

Conclusion
In teaching with contextual problems, the teacher may question students’ suggestions for
solutions, scrutinize answers as openly as possible, utter objections, and propose ways of
symbolizing the different solutions and contexts, as well as encourage symbolic representation of
the reasoning process and so on.
Mathematics is not only a matter of right or wrong, it can also be correct but
inappropriate or even abused. It is the teacher’s responsibility to establish this

insight in pupils by systematically providing the relevant questions in the
common mathematical activity. (van Oers, 1996, p. 105)
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Through communication between students and teachers, a pool of shared knowledge, strategies,
and experiences can be built up. That is precisely what the teachers in this study had done. As 1
have suggested, much can be learned from these teachers and their practices with contextual
problems.

In addition, students need opportunities to use mathematics, to choose methods, to
change and adapt methods, to discuss and negotiate directions with other students, to interact
with systems in the environment (Greeno, 1991), and generally they need to become attuned to
constraints and affordances that are represented in other situations. These teachers provided their
students such opportunities and used contextual problems as the means for facilitating students’
learning. Many teachers might hesitate to use such complex and nebulous problems with their
students, but the work of these teachers demonstrates that students can be successful with such
problems when given a chance, and when sufficiently supported. Moreover, in a classroom
where contextual problems are a regular part of activity, students need not ask, “When am I ever

going to use this?” They already know the answer.
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APPENDIX A
BACKGROUND AND BELIEFS INTERVIEW PROTOCOL
[Ask for resume or curriculum vita]

Ethnographic Information

* Tell me about this school. How would you describe it to someone who has never been
here?

*  Who makes curriculum decisions in your school or district? Have you ever had any
input?

Teaching Information

* Have you always been a teacher?

*  Why did you become a teacher? Why a mathematics teacher?

* In what schools have you taught in your career? How long were you there?

* How many years have you taught high school?

* How many years have you taught mathematics?

*  What mathematics courses have you taught and for how many years?

* How would you describe yourself as a teacher?

* How is a typical day in your classroom organized? What kinds of things did you do as a
teacher?

* What are the school’s expectations for students in mathematics?

* Can you describe your goals for mathematics and mathematics teaching?

* Have you attended in-services or workshops about teaching with contexts or
mathematical modeling? What kinds of activities did you do at these workshops?

* Have you read any research or articles about teaching with contexts or mathematical
modeling? Can you talk about what you read? Does anything particular stand out in your
memory?

* Are there any other specific things about your teaching career or mathematics you would
like to share with me? (This can be anything you feel it is important for me to know.)

Ideas of mathematics in context

* What does the phrase mathematics in context mean for you? Are there many contexts?
Examples of contexts?

*  What does the phrase applications of mathematics mean to you? How is this related to
your definition of mathematics in context?

* Talk about the idea of mathematical modeling. What does this mean to you?
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* How are the phrases mathematics in context, applications of mathematics, and
mathematical modeling related?

* How does the “real world” play into those three (if at all)?

* Discuss your thoughts on teaching mathematics in context. Worthwhile? Not? Important?
Not? Should we do it?

* Tell me about how this curriculum addresses the idea of mathematics in context. What
about applications? Models?

* Has a student ever said “Mr./Mrs. X, when will I ever use this?”” Can you tell me about a
time like that? How did you respond?

* React to the following statements.

It is the teacher’s job to understand, interpret, and provide contexts for the mathematical
topics students explore.

All mathematics should be taught in contexts.
Mathematics is relevant to students only when it is presented contextually.
Mathematics is only motivating for students when it is presented contextually.

Mathematics should never be taught in context. Students should learn the rules and
procedures in school and discover its applications through their lived experiences.

Extra questions added during course of study:
Can you talk about the importance of community?

Can you draw a graphic organizer to show how you think about mathematics in context,
applications of mathematics, and mathematical modeling and how they are related or not related?

In the phrase, mathematics in context, what does the word context mean to you?

How do you design problems? Where do you find problems? How are they developed? Can you
talk through this process?

What do you think makes a problem “good?”
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APPENDIX B
PRE-LESSON AND POST-LESSON INTERVIEW PROTOCOL
Sample of Questions Usually Asked

Pre-lesson Interview

What are your goals for the lesson?

What came just before this lesson in your curriculum? What comes next?

What will you be doing during the lesson? What will the students be doing?

Are any aspects of this lesson particularly difficult for students?

Will any aspect of this lesson be new for students (experimentation, technology, mathematics)?
Is there anything else I need to know about this lesson?

Post-lesson Interview

Talk about how you felt the lesson went? Confusions? Contexts? Math?
Restate the goals of the lesson and talk about if those goals were met.

Given what you know about students and how they do on this problem, when students became
confused about/by the problem, do you think it had anything to do with the context or the
mathematics?

Across the classes, a lot of students’ experiential knowledge came into play in discussing the
problem. You always addressed their comments and discussed them but how do you decide what
to pursue further in the model? Is it predetermined by the project itself? Or...?

What was your goal in having students draw a graph/think about plan before they did the
experiment/explored?

As the problem progressed, the context was stripped away—pure mathematics was manipulated
and worked on—and then later they returned to the context. As you think about this and other
lessons you’ve used, can you compare your progression and talk about the unfolding of
contextual or modeling lessons?
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