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ABSTRACT 

Cross-habitat movement of energy and other materials can spatially link ecosystems, 

resulting in changes to trophic interactions, ecosystem function and community diversity. Pulses 

of nutrient inputs, like pulses of productivity, may generate reserves of resources that affect 

ecological interactions long after the pulse has subsided. However, spatial linkages between 

ecosystems may be disrupted by temporal discontinuity in transport processes. In order to 

understand these complex ecological properties and model their effects on the landscape, we 

must explore the spatial and temporal variation of phenomena, such as variation in nutrient 

transport (allochthonous inputs). As with seabirds, piscivory by coastal river otters (Lontra 

canadensis) in nearshore coastal areas provide a pathway for nutrient transport between sea 

and land, thus extending the resource shed of the terrestrial community into the ocean. Marine-

derived carbon (C), nitrogen (N), and phosphorus (P) transported by river otters to terrestrial 

latrine sites (specific locations along the shoreline) can be several orders of magnitude higher 

than other nutrient inputs in this system. The following dissertation research represents the 

synthesis component of an NSF funded project, aimed at developing mechanistic models that 

will allow the exploration of potential current landscape response to changes in resource 

availability and otter behavior, as well as forecasting future changes anticipated from climate 

change. Otters choose latrine sites based on specific environmental characteristics. My results 



 
 

suggest Boundary convexity is the strongest environmental characteristic influencing otter 

latrine site selection. Additionally, results from the individual-based model (IBM) overwhelmingly 

indicate otter behavior is almost entirely driven by prey availability. The IBM was able to 

reproduce observed patterns in nutrient transport, facilitated by the behavioral response of 

otters to pelagic fish schools and the subsequent creation of social groups. The inclusion of 

vision, olfaction and memory as viable forms of otter sensing and their quantifiable response to 

these stimuli provide a strong behavioral foundation for the IBM. The conceptual design of this 

IBM is applicable to any ecosystem in which variation is caused by behavior, genetic or 

physiological traits of individuals, and we believe this research provides an excellent working 

example. 
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CHAPTER 1 
 
 

INTRODUCTION AND LITERATURE REVIEW OF COASTAL RIVER OTTER 
 

 

Cross-habitat movement of energy and other materials can spatially link ecosystems (Polis 

et al. 1997, Anderson and Polis 1998, Ben-David et al. 1998, Huxel and McCann 1998, Power 

and Rainey 2000, Nakano and Murakami 2001, Holt 2004) resulting in changes to trophic 

interactions (Polis et al. 2004), ecosystem function and community diversity (Holt 2004). Pulses 

of nutrient inputs, like pulses of productivity, may generate reserves of resources that affect 

ecological interactions long after the pulse has subsided (Sears et al. 2004). However, spatial 

linkages between ecosystems may be disrupted by temporal discontinuity in transport 

processes. In addition, community and ecosystem responses to subsidies may co-vary with 

other temporally variable factors (such as temperature and rainfall). Thus, the ecological 

properties of a defined point in space are marked by both past and present events (Reiners and 

Driese 2001, Meyer et al. 2002, Anderson and Polis 2004). 

 To understand these complex ecological properties and model their effects on the 

landscape, we must explore the spatial and temporal variation of phenomena, such as variation 

in nutrient transport (allochthonous inputs) (Power and Rainey 2000, Thompson et al. 2001). 

When allochthonous inputs are mediated by animal behaviors, spatial and temporal variability in 

nutrient transport are especially high. Dispersal and food availability are major determinants of 

space use by animals, but they are not the sole factors. In fact, population density, demography, 

social interactions and avoidance of predation risk may alter the space use predicted by 

resource patterns alone (Rosenzweig 1981, Hobbs and Hanley 1990, Bernstein et al. 1991, 

Lima and Zollner 1996, Manly et al. 2002). The spatial and temporal variation (topology) of 
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animal-mediated nutrient transport may result in complex emergent community properties and 

increased landscape heterogeneity (i.e., variability in diversity and productivity; Holt 2004). 

Because reductions in biodiversity and landscape heterogeneity may alter the resilience of 

ecosystems to environmental change (Tilman and Downing 1996, Paine et al. 1998, Chapin III 

et al. 2000, Carpenter 2003, Soule et al. 2003), understanding ecological topology is critical. 

Developing mechanistic models explaining this variation will allow us to forecast a range of 

potential ecosystem responses to important human-induced stressors (e.g., climate change, 

resource extraction, habitat alteration).  

 

RIVER OTTER (Lontra canadensis) 

 

The North American river otter is an aquatic member of the weasel family (Mustelidae) 

(Liers 1951, Hall 1981).  In Alaska, river otters are found in both freshwater and marine habitats, 

feeding primarily on fish and crustaceans (Melquist and Hornocker 1983, Larsen 1984, Ben-

David et al. 1998, Blundell et al. 2002a).  River otters are nearly ubiquitous in coastal areas of 

the Gulf of Alaska, including the study area in Prince William Sound, Alaska (PWS; Hall 1981, 

Bowyer et al. 1995).  Coastal river otters are different from inland populations in that they prey 

upon marine fishes and invertebrates inhabiting the nearshore environment (Larsen 1984, 

Stenson et al. 1984, Bowyer et al. 1994, Bowyer et al. 1995, Ben-David et al. 1998).   

River otter display sexual dimorphism in body size with average male size 5% larger than 

female size (Jackson 1961, Lariviére and Walton 1998).  In non-oiled areas of PWS, Duffy et al. 

(1994) found adult male and female otters to average 9.4 and 8.4 kg, respectively.  River otters 

typically reach sexual maturity at age 2 with some female yearlings reaching sexual maturity as 

an exception (Hamilton Jr. and Eadie 1964, Docktor et al. 1987, Bowyer et al. 2003).  Litter size 

most often ranges between 1 to 3 young, but can reach up to 5 offspring (Lariviére and Walton 

1998).  Blundell et al. (2002b) found natal dispersal to have a low probability with sex biased 
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patterns where females dispersed less often, but further than males.  Otters can live up to 13 

years in the wild (Docktor et al. 1987), although the average age of all otters captured in PWS 

was 3.5 years (Bowyer et al. 2003).  Blundell et al. (2004) found the sex ratio of river otter in 

PWS to be approximately 66% male.  This finding is supported by data collected during the 

2006 field season within the same study area (Kaiti Ott, unpublished data).  River otter neither 

hibernate nor migrate (Melquist and Hornocker 1983, Bowyer et al. 2003). 

The abundance of river otters within the study area has been estimated to be between 

0.28 and 0.8 otter per km of coastline (Testa et al. 1994).  This density is lower than estimates 

of the European otter, Lutra lutra, (1.2 otter per km of coast) in coastal areas of Shetland, United 

Kingdom (Kruuk et al. 1989), which may reflect the influence of the Exxon Valdez Oil Spill.  

River otter inhabiting coastal areas of PWS exhibit an atypical social behavior in comparison to 

other mammals (Blundell et al. 2002a, Blundell et al. 2004).  The social structure of river otter 

within the coastal environment consists of large groups of males (Rock et al. 1994, Blundell et 

al. 2002a).  These large groups (3-18 otters) serve to improve foraging efficiency of schooling 

pelagic fish within the nearshore environment (Blundell et al. 2002a, Blundell et al. 2004, Ben-

David et al. 2005).  As the number of pelagic fish schools decrease, group size of male otters 

also decrease (Blundell et al. 2002a).  On the other hand, female otters and a few male otters 

are solitary in their behavior, foraging primarily on intertidal demersal fish, but occasionally 

joining a large group of males to opportunistically forage on pelagic fish (Blundell et al. 2002a). 

As with other mustelids, river otters communicate through scent marking (Lariviére and 

Walton 1998, Ben-David et al. 2005).  Scent marking takes place at specific locations along the 

coast, also known as latrine sites, through feces, urine and anal gland secretions (Blundell et al. 

2002a, Bowyer et al. 2003, Ben-David et al. 2005).  Communication through scent marking 

appears to have two different uses within the social structure of coastal river otters.  Social 

otters appear to use latrine sites for intra-group communication, signaling resource use or 

enabling otters that have become separated from the group to reunite for social foraging (Ben-
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David et al. 2005).  Conversely, solitary otters use latrine site scent marking to indicate territorial 

boundaries and encourage mutual avoidance (Ben-David et al. 2005). 

Use of the coastal landscape by social otters is different than that of solitary otters.  Social 

otter groups are comprised primarily by males while solitary otters are either female or an 

occasional male (Blundell et al. 2002a, Ben-David et al. 2005).  Blundell et al. (2001) found 

male otters to have a home-range of more than twice the size of female otters.  Concurrently, 

male otter home-ranges tended to have a higher proportion of overlap while females had low 

spatial overlap and distinct core areas of use (Blundell et al. 2001).  Social otters tend to visit 

fewer latrine sites than do solitary otters, but social otter latrine sites have a higher frequency of 

use than do solitary otter latrines (Ben-David et al. 2005). 

Because river otters forage in an aquatic environment and use latrine sites exclusively for 

urination and defecation, nutrients are moved in the opposite direction of the typical nutrient-flow 

diagram (i.e. nutrients are typically viewed as flowing „downstream‟ within a watershed).  This 

source of nutrients has been labeled as the resource shed of the terrestrial community (Power 

and Rainey 2000), with the ocean acting as a reservoir of additional nutrients and river otter 

being the transport mechanism for the nutrients.  With this concept in mind, Ben-David et al. 

(2005) estimate the average amount of nitrogen excreted by an otter to be 5.15 g per defecation 

event, with an average of 7.7 events per day.  Regardless of the intensity, the input of marine 

derived nutrients to the coastal landscape at latrine sites is much greater than non-latrine areas.   

 

TERRESTRIAL VEGETATION 

 

The study area has a maritime climate with cool and wet summers followed by winters of 

deep snow accumulation (Ben-David et al. 2001).  The coastal landscape is typically snow-free 

from early May to early November.  The structure of the coastline is primarily steep and rocky 

with some flat, low gradient openings and numerous bays and inlets (Bowyer et al. 1995).  The 
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coastal vegetation is primarily old-growth forest of Sitka spruce (Picea sitchensis) and western 

hemlock (Tsuga heterophylla), having a well-developed under-story comprised of Oplopanax 

horridus, Vaccinium spp., Menziesia ferruginea, and Rubus spp. (Ben-David et al. 2001).  Alder 

(Alnus) is also present and occurs on disturbed sites or near the terrestrial vegetation/intertidal 

zone interface (Bowyer et al. 1995). 

 

NEARSHORE ENVIRONMENT 

 

The nearshore subtidal zone is defined as any marine environment < 20m in depth.  The 

bathymetric gradient of the nearshore environment is highly variable, ranging from near vertical 

to slopes of only a few degrees.  The substrate is also variable, with sizes ranging from large 

boulders to fine sediment.  Therefore, a resulting mosaic of available habitat types has created 

a heterogeneous marine vegetative community.   

The nearshore habitat is the most heavily vegetated portion of this marine environment 

(Dean et al. 2000).  Large tidal fluctuations in this habitat (annual maximum tide of 4.66 m and a 

minimum tide of -1.13 m) (NOAA 2007) greatly affect the vegetative community.  Two kelp 

species (Agarum cribrosum and Laminaria saccharina) dominate rock within sheltered bays and 

less exposed coastline (Dean et al. 1996, Dean et al. 2000).  For rocks existing on exposed 

points, bull kelp, Cereocystis luetkeana, comprise the canopy and Laminaria bongardiana the 

understory (Dean et al. 1996, Dean et al. 2000).  Eelgrass, Zostera marina, dominates softer 

substrate usually found in bays (McRoy 1968, 1970, Dean et al. 1998, Dean et al. 2000).  The 

majority of the intertidal region of the coastline is dominated by Fucus gardneri, interspersed 

with red and green algae (Gilfillan et al. 1995, Stekoll et al. 1996, Dean et al. 2000). 
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NEARSHORE FISHES AND INVERTEBRATES 

 

The nearshore environment also supports a multitude of fish species.  Two groups of prey 

are typically found: demersal, intertidal species and migratory, pelagic species.  The intertidal 

species are primarily comprised of the families Cottidae, Scorpaenidae, Hexagrammidae, 

Cancridae, chiton and clams (Larsen 1984).  These species are non-migratory residents and 

provide a consistent food base to coastal river otter (Blundell et al. 2002a, Mecklenburg et al. 

2002, Ben-David et al. 2005).  Salmonidae, Ammodytidae, Clupeidae, and Gadidae (Larsen 

1984, Ben-David et al. 1998, Blundell et al. 2002a) are the primary migratory, pelagic fish 

species found within the study area.  These schooling pelagic fish species typically enter the 

study area in the beginning of May for spawning and move back out to the open ocean or expire 

(salmon) by November (Blundell et al. 2002a, Mecklenburg et al. 2002).  As otter prey, the 

schooling pelagic fish have a higher energy density than the intertidal-demersal fish (Anthony et 

al. 2000, Blundell et al. 2002a). 

 

STUDY OBJECTIVES 

 

The effect upon the production and composition of the vegetative community through the 

use of latrine sites by coastal river otter behavior differs spatially and temporally via individual 

movements, group membership and association with prey resources (Figure 1.1). In our study 

area located in Prince William Sound, Alaska, differences in vegetative response to river otter 

activity include increased growth of trees (Roe et al. 2010) and increased uptake of marine-

derived nutrients by shrubs and trees (Ben-David et al. 1998, Roe et al. 2010), but because of 

physical disturbance from otter activity, a decrease in shrub density and species specific use of 

nutrients occurred (Roe et al. 2010). As previously described, the frequency of latrine use by 

otters, and the subsequent transport of marine-derived nutrients, is mediated by the availability 

of prey. The behavior of individual otters in response to prey (i.e., cooperative foraging by 
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males, solitary females) and the physical characteristics of the coastal environment affect the 

spatial and temporal patterns at the landscape level. Individual-based models (IBMs) are often 

developed to gain a deeper understanding of system dynamics through individual behavior and 

implemented because classical approaches ignore individual differences and local interactions 

(Grimm and Railsback 2005). Given the current understanding of the relationships between 

otters, their prey, and the physical environment, an appropriate method for modeling the 

system‟s effect on individuals and the individual‟s interaction with the environment, as well as 

with other individuals, is to use an IBM (Grimm and Railsback 2005). 

The following dissertation research represents the synthesis component of an NSF funded 

project designed, “to investigate the effects of spatial and temporal variation in allochthonous 

inputs of C, N, and P by coastal river otters on ecosystem processes, emergent community 

properties, and landscape heterogeneity in the land-margin of PWS” (Ben-David et al. 2004).  In 

the proposal, Ben-David et al. (2004) outlined 5 primary objectives:  

 

1. Quantify the spatial and temporal variability across the landscape in nutrient transports 

(C, N, and P) from sea to land by river otters as a function of otter sociality. 

2. Explore the diversity of soil microorganisms, rates of nutrient cycling, and the creation of 

nutrient pools in the soil in response to spatial and temporal variability in availability of C, N, and 

P given the effects of other temporally variable factors (e.g., temperature, precipitation). 

3. Investigate the degree to which variation in C, N, and P, nutrient cycling, and nutrient 

pools in the soil affect plant biomass, NPP, reproductive output and community composition 

given the effects of other temporally variable factors. 

4. Derive estimates of spatial heterogeneity by extrapolating information from sampled 

latrines to the landscape level. 
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5. Parameterize an individual-based, spatially-explicit model that will simulate changes to 

the terrestrial landscape based on spatial and temporal variation in distributions of schooling 

fish, otter activity, and C, N, and P transport by river otters. 

 

While my colleagues are exploring transport rates, patterns, mechanisms of nutrient 

uptake and consequences for the terrestrial community, my work synthesizes all of these 

components. My research is aimed at developing mechanistic models that will allow the 

exploration of potential current landscape response to changes in resource availability and otter 

behavior as well as forecasting future changes anticipated from climate change.  The following 

chapters build the necessary elements to parameterize the individual-based model, describe the 

model implementation and then assess the model‟s performance. Specifically, Chapter 2 

describes the development of a novel landscape metric, Boundary Convexity, to help describe 

the coastline shape and the associated influence on otter latrine site selection; Chapter 3 

compares different modeling approaches used to assess the likelihood of coastal river otter use 

of the coastal environment, a necessary component to modeling adaptive behavior and 

variability in nutrient deposition; Chapter 4 describes the individual-based model developed to 

measure the spatial and temporal fluxes in nutrient deposition to the nearshore environment by 

river otter through adaptive responses to pelagic fish availability. 

The model system I assemble in this dissertation provides a unique framework for the 

study of ecosystem responses to spatial and temporal variation in nutrient inputs. The strengths 

of the model system, rarely found elsewhere, are (1) the detailed understanding we have of the 

mechanisms that create the variation in nutrient inputs (i.e., the relations between fish 

distributions, otter sociality, and latrine use), and (2) the 14 years of data collected on latrine use 

by otters (since 1990 following the Exxon Valdez oil spill).  Although otters directly influence only 

a small part of the land-margin, indirect effects on the landscape may be large, and include 

propagation across the landscape of genotypes generated on otter latrines (e.g., spruce seeds) 
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or greater plant diversity that could support high diversity of consumers. Regardless, lessons 

learned from this model system are applicable to any ecosystem in which variation is caused by 

the behavior (e.g., migrations, roosting, breeding) or genetic/physiological traits of individuals. 
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Figure 1.1: Conceptual model of otter latrine use in relation to season and prey availability as 

proposed by Ben-David et al. (2004). Abundance and distribution of schooling fish influences 

social behavior in male otters, which use latrines for intra-group communication. Social otters 

use fewer latrines at high frequency; nonsocial otters foraging on demersal fishes visit 

numerous latrines infrequently.  Females join male groups when non-reproductive. Thus, latrine 

use will vary within a season and among years as a function of the abundance of schooling 

fishes and otter demography. 
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CHAPTER 2 
 
 

MEASURING BOUNDARY CONVEXITY AT MULTIPLE SPATIAL SCALES USING A LINEAR 
“MOVING WINDOW” ANALYSIS: AN APPLICATION TO COASTAL RIVER OTTER 

HABITAT SELECTION1 
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ABSTRACT 

 

Landscape metrics have been used to quantify ecological patterns and to evaluate 

relationships between animal presence/abundance and habitat at multiple spatial scales.  

However, many ecological flows occur in linear systems such as streams, or across 

patch/landscape boundaries (ecotones).  Some organisms and flows may depend on the 

boundary shape, but metrics for defining linear boundary characteristics are scarce.  While 

sinuosity and fractal dimension address some elements of shape, they fail to specify the 

dominate shape direction (convexity / concavity).  We propose a method for measuring 

boundary convexity and assess its utility, along with sinuosity and fractal dimension, for 

predicting site selection by coastal river otters.  First, we evaluate the characteristics of 

boundary convexity using a hypothetical boundary.  Second, to compare convexity with other 

linear metrics boundary convexity, sinuosity and fractal dimension were calculated for the 

coastline of a set of islands in Prince William Sound, AK.  Finally, we use logistic regression in 

an information-theoretic framework to assess site selection of river otters as a function of these 

linear metrics.  Boundary convexity, fractal dimension and sinuosity are relatively uncorrelated 

at all scales. Otter latrine sites occurred at significantly more convex locations on the coastline 

than random sites.  Using logistic regression and convexity values at the 100 meter window-

size, 69.5% of the latrine sites were correctly classified.  Coastal terrestrial convexity appears to 

be a promising landscape-scale metric for predicting otter latrine sites.  We suggest that 

boundary convexity may be an important landscape metric for describing species use or 

ecological flows at ecotones. 

 

INTRODUCTION 

 

The use of landscape and patch metrics to measure broad-scale ecological patterns has 

become increasingly more common (Hopkins 2009; Kearns et al. 2005; Turner 1989; Wu 2004), 
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in particular for describing relationships between animals and their habitat (Forester et al. 2007; 

Grober-Dunsmore et al. 2008; Hamer et al. 2006).  Patch shape is often identified as important 

for determining species presence (Heegaard et al. 2007; Taylor et al. 2008), animal density 

(Ewers and Didham 2007), the distribution of organisms within a patch (Haynes and Cronin 

2006) and has been shown to influence the movement of nutrients (Polis and Hurd 1996). Patch 

shape is most often measured as the perimeter-to-area ratio or patch fractal dimension 

(McGarigal et al. 2002; Rempel 2008).  However, some ecological relationships may depend 

more heavily on characteristics of patch boundaries than on whole patch properties (such as 

animal-habitat relationships when “edge” habitat characteristics are important to the species).  

To measure characteristics of boundaries we have largely been limited to the conventional 

whole patch metrics, or relatively simple measures on boundary segments themselves, such as 

sinuosity. In order to improve our understanding of how boundary shape may influence 

ecological processes or animal habitat selection, we need more refined metrics for defining 

boundary shape. One such metric is boundary convexity.  The degree of convexity (or 

concavity) for a defined boundary may be important to organisms or flow under a variety 

conditions much in the same way that topographic concavity (valleys) or convexity (ridges) are 

important to habitat use by elk (Kie et al. 2005) or movement of soil particles (Ruiz et al. 2006).  

However, in an extensive literature search, we have not found an ecological study that has 

substantially dealt with convexity of an ecotone, edge, or boundary as important to ecological 

processes or organism-environment relationships. Here we offer an approach for calculating 

boundary convexity at multiple spatial scales (script available free online; Albeke et al. 2009), 

then we demonstrate the value of boundary convexity for describing habitat selection for coastal 

river otters. 

 Any understanding of animal habitat selection necessitates consideration of spatial 

scale.  Each organism‟s perspective dictates the scale at which it observes the physical world 

(Allen and Hoekstra 1992).  The scale, shape and juxtaposition of landscape patches can affect 
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species abundance and distribution.  For example, McGrath et al. (2003) found a reduced ability 

to discriminate northern goshawk (Accipiter gentilis) nest sites from available habitat as 

landscape scale increased while Mitchell et al. (2001) found that coarser landscape 

characteristics are most important for prediction of migratory bird species breeding habitat.  

Additionally, Nams et al. (2006) found that variables most important for predicting grizzly bear 

(Ursus arctos) habitat selection varied depending on the spatial scale at which the variables 

were averaged.  Thus, investigating the influence of scale in determining (and measuring) how 

organisms respond to their environment has been, and still is, a critical area of research.  This 

work can help tackle scale-related issues of geospatial data analysis in general, and avoid scale 

traps such as ecological fallacy (Robinson 1950) and aggregation effects (King et al. 2004). 

Fractals can be used to represent many kinds of patterns and all spatial scales can be 

represented through self-similarity (Li 2000).  The fractal dimension can be calculated for any 

portion of a patch‟s boundary for any scale.  This value can be used to quantify the complexity 

of the feature at the given scale.  Unfortunately, the fractal dimension will not describe the 

direction of a complex feature relative to the adjacent features.  Our research required a method 

to quantify the shape of a portion of a patch‟s boundary relative to its adjacent features. We 

have developed an approach for calculating boundary convexity, a new landscape metric that 

quantifies the shape of a patch boundary (ecotones, edges or other linear features).  We define 

boundary shape as either convex or concave.  Convexity is considered a pattern metric in 

landscape ecology (Trani and Giles 1999).  The degree of convexity can be unique for any point 

along the patch (or landscape) boundary and will vary with spatial scale. Because of this trait, 

convexity may provide a biologically meaningful measurement describing the use of boundaries 

by wildlife. 

Coastal river otters forage for fish within the intertidal zone of islands located in Prince 

William Sound, Alaska and choose specific locations for their latrines along the coastline (Ben-

David et al. 2005; Ben-David et al. 1998; Bowyer et al. 2003).  This results in the transport of 
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nutrients from the marine environment to the coastal terrestrial community (Ben-David et al. 

1998) which has a significant influence on the vegetation community, both through nutrient 

enrichment and disturbance by river otters (Roe et al. 2010). Otter latrines are used as 

communication tools, with social otters advertising group associations and dominance while 

solitary otters use latrines to facilitate mutual avoidance (Ben-David et al. 2005; Rostain et al. 

2004).  Ben-David et al. (2005) hypothesized that the combination of large intertidal rock (scent 

marking platforms) and the presence of old-growth forest (prevention of scent-mark 

dehydration) provide the greatest influence on otter latrine site selection.  Because appropriate 

scent-marking platforms are often on points (Larsen 1983), and the fact that scent dispersal 

may be facilitated by wind, we hypothesize that coastal shape will be a significant driver of 

latrine site selection.  In particular, we hypothesize that otters are more likely to choose latrine 

sites whose coastline is sinuous (has more points and bays) at broader scales (500-1000 m), 

and more convex at local scales (10-200 m).  The objectives of our study are threefold:  (1) to 

characterize boundary convexity using a hypothetical boundary of known dimensions; (2) to 

calculate boundary convexity of a coastline in Prince William Sound, Alaska, and compare its 

characteristics to sinuosity and fractal dimension; and (3) determine the spatial scale and linear 

metric most appropriate for describing coastal river otter latrine site selection. 

 

METHODS 

Process for quantifying boundary convexity 

 

The boundary convexity measure we propose can be used to quantify the relative 

convexity/concavity for any measure-point along a linear feature (e.g. patch boundary).  Using 

route-events in ArcGISTM (ESRI 2006) to represent the linear boundary feature, the spatial 

location of a given measure-point along the feature can be stored.  The calculation of convexity 

becomes easier if the boundary is simplified.  To simplify the boundary, a three-point circular arc 
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representing the boundary segment is created.  The circular arc uses, in sequential order, the 

start-point (measure-point - (½ * window-size)), measure-point, and end-point (measure-point + 

(½ * window-size)) measures of the boundary segment (Figure 2.1).  The circular arc represents 

the relative shape of the boundary at the measure-point.  The orientation (clockwise or 

counterclockwise) of the circular arc, in relation to the boundary segment, determines whether 

the patch portion is concave or convex (i.e. clockwise = convex).  The degree of convexity is 

determined by obtaining the mid-point of the circular arc, mid-point of the chord connecting the 

start and end points, and finding the chord height between the mid-points (Figure 2.1, Step 5).  

The value quantifying convexity is then a combination of the circular arc orientation (sign is 

positive for convex and negative for concave) and the chord height value described above.  

Boundary convexity can range from 0 to ± ½ the window-size (scale), with 0 indicating a straight 

boundary (on average) at the given scale, a positive value indicating a convex boundary, and a 

negative value indicating a concave boundary.  Because the convexity value is calculated in 

map units (e.g. meters) it may be valuable for defining the relative size of landscape boundary 

features.  However, because scale-independence is a valuable feature of a landscape metric we 

calculate the boundary convexity index (BCI) as:  

BCI =        
⁄   (1) 

where BC is the unscaled convexity value in meters and BCmax is equal to ½ the scale (window-

size). The BCI values are scale-independent and  range between -1.0 and +1.0. Figure 2.2 

demonstrates how BCI values can vary using an example patch boundary. 

With the information gathered to calculate convexity, one can also calculate sinuosity (S): 

  S =     ⁄   (2) 

where TL is the total segment length (i.e. window-size) and EL the Euclidean distance between 

start and end points.  Sinuosity values can range between 1 (straight line) and the total segment 

length and is scale-independent. The Boundary Convexity Tool (BCT, Albeke et al. 2009) can 
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be used to calculate both sinuosity and convexity at multiple window-sizes (scales) and steps 

(positions along the feature). 

The purpose for using route-events is twofold.  First, routed layers allow for easily 

managed references to any location along the linear feature of interest via route measures.  The 

route measures, in turn, allow for easy interpretation of the location (a measure is simply the 

distance in meters from the start of the line), easy manipulation (simple math to move a 

specified distance along the route) and simple & accessible storage of output (event tables). 

Construction of known dimension dataset  

 

We constructed a „saw-toothed‟ shaped line to mimic a portion of a hypothetical patch 

boundary with known dimensions to illustrate the range of convexity values given a range of 

boundary shape conditions.  In the horizontal direction, the peaks and troughs of the 

hypothetical patch boundary (Figures 2.3 & 2.4) are 200 meters apart and the line segment 

connecting these extreme locations is 282.8 meters in length.  First, to demonstrate how 

different locations along a patch‟s boundary can affect boundary convexity, five separate 

locations on the patch boundary and a window-size of 200 meters was used.  The chosen 

measurement points were located at 0% (trough), 25%, 50%, 75% and 100% (peak), of a patch 

boundary line.  Second, to demonstrate how changes in scale affect boundary convexity, four 

different window-sizes were applied to a constant location (at a peak) of the hypothetical patch 

boundary.  The chosen window-sizes were 200, 500, 1000 and 1132 meters (Figure 2.4 A-D).  

The saw-toothed design was used (as opposed to a more “natural” shape) due to the simplicity 

for creation, visualization and interpretation.  Results of analyzing a more curvilinear feature 

would have been similar; however the arcs demonstrating the calculation would have been 

more difficult to see. 
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Comparing Boundary Metrics 

 

In order to characterize the behavior of the boundary convexity metric across a range of 

natural conditions, we compared BCI values to two other metrics commonly used for linear 

features, sinuosity and fractal dimension.  In addition, because statistical analysis of species-

environment relationships often depends on independent predictor variables, we wanted to 

determine whether boundary convexity was a unique metric.  Our test area was a coastline 

(marine-terrestrial boundary) located in southwestern Prince William Sound, Alaska. Coastlines 

in the Knight Island complex (including Disk, Eleanor and Ingot Islands; 147°43‟W, 60°30‟N) 

were digitized using IKONOS 1-meter panchromatic images, at a scale of 1:1,500, creating a 

coastline 245 km in length.  The island polygons were then converted into a route feature class, 

which is required for the BCT (Albeke et al. 2009).  BCI (eq. 1) and sinuosity (eq. 2) were 

calculated for the entire coastline at seven window-sizes, 10, 20, 50, 100, 200, 500 and 1,000 

meters and a step-size (moving-window increment) of 10 meters using the BCT.  Fractal 

dimension was also calculated for each window-size.  To calculate fractal dimension, each 

coastline segment spatial extent was found and the maximum difference between the X 

coordinates and the Y coordinates was stored.  Next, five separate ruler sizes were created by 

taking 1%, 5%, 10%, 20% and 40% of the maximum coordinate difference. The rulers are then 

placed end-to-end along the boundary segment to give a total segment length given the ruler 

size.  The fractal dimension was calculated using the log-log relationship: 

 

   Log(L(s)) = (1-D)Log(s) + b    (3) 

 

where L is the length of the ruler (s) multiplied by the number of rulers needed to measure the 

total boundary segment, 1-D is the slope and D is the fractal dimension (Mandelbrot 1982). 
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Fractal dimension values are scale-independent and can range between 1 (straight line) and 2 

(highly complex line) (Mandelbrot 1982; Turchin 1996). 

For each window-size (scale), BCI, the absolute (or directionless) BCI, sinuosity and 

fractal dimension were compared using Pearson‟s r correlation coefficient to assess similarity 

between the metrics.  All statistical analyses were performed using SAS 9.1 (SAS Institute Inc., 

Cary, NC). 

 

Application to Coastal River Otters 

 

During the summer of 2006, 326 river otter latrine sites were identified along the coastline 

and GPS locations were recorded.  GPS locations were snapped to the island boundaries 

(coastline route features) with Knight Island having 257, Disk Island 23, Eleanor Island 38, and 

Ingot Island 8 latrine locations, respectfully. To determine whether linear metrics, including 

convexity index, sinuosity and fractal dimension, influence otter latrine site selection, 326 

random locations were identified.  Random locations were a minimum of 100 meters from an 

existing latrine or other random location.  

Logistic regression with an information-theoretic approach was used to determine which 

boundary metric (across a range of spatial scales) best fit the data.  Twenty-eight candidate 

models, each consisting of a single variable; BCI, absolute BCI, sinuosity and fractal dimension 

at each of the spatial scales (10, 20, 50, 100, 200, 500, 1000 m), were compared.  Methods 

followed the approach of Anderson et al. (2000).  To test for goodness-of-fit (GOF), the Hosmer-

Lemeshow GOF statistic was calculated for the global model (Hosmer and Lemeshow 2000).  

The global model consisted of the entire set of available variables. 

Akaike‟s Information Criteria (AIC) uses maximum likelihood to estimate the relative model 

fit (Burnham and Anderson 2001).  However, this approach may create biased results for small 

samples size.  Burnham and Anderson (2001) suggest correcting for small sample size:   
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  AICc = -2 ln(L( ̂  | data)) + 2K + (2K(K+1)/(n-K-1)  (4) 

 

 where ln(L( ̂ | data)) is the maximized log-likelihood over the unknown model parameters (θ) 

given the data, and K is the number of parameters in the approximating model. As sample size 

(n) increases, AICc approaches the same AIC value. Models with lower AICc values are deemed 

to be better representations of the process being modeled. Akaike weights were calculated to 

determine the weight of evidence (wi) for each model within the candidate set: 

 

  (5) 

 

  

where        is the       value for the ith model in the set of R candidate models (Burnham 

and Anderson 2001).  The value of wi can range from 0 to 1.  The candidate model with the 

largest wi can be said to be the best approximating model.  

Two methods were used to assess relative precision of the logistic models.  First, a leave-

one-out cross-validation technique was used to determine the expected model error rate 

(Steyerberg et al. 2001).  To perform leave-one-out cross-validation, each sample record is left 

out, while the rest of the records are used to generate a model.  This model is then used to 

predict presence or absence of the latrine for the left out record.  The process is repeated so 

that each record is excluded from model fitting once, allowing for prediction and classification 

error rates to be determined.  Model predictions ≥ 0.5 indicated latrine presence and predictions 

< 0.5 indicated latrine absence.  Secondly, Receiver Operating Characteristic (ROC) plots were 

generated and area under the curve (AUC) was calculated.  

 

wi = 

   (        ⁄ )  

∑   (        ⁄ )

 

   

 



 

45 
 

RESULTS 

Changes in convexity with location 

 

Boundary convexity index (BCI) values range from -1 (concave) to +1 (convex), the 

magnitude of which depends both on the position of the measure-point on the boundary (Figure 

2.3) and on the window-size (Figure 2.4). As the measure-point moves from the trough to the 

peak (with window-size = 200 m and 4 equal steps), the BCI value ranges from -0.70 to -0.17, 

0.0, 0.17, and finally 0.70 (Figure 2.3A-E). In the hypothetical boundary, because of the regular 

geometry, the value of concavity at the trough is equal to and opposite the convexity at the 

peak.  In reality, the maximum convexity will be driven in part by the maximum distance from 

peak to trough (points to bays in case of a coastal boundary), and in part by the window-size.  

 

Changes in convexity with scale 

 

 As window-size (scale) increases from 200 to 500 meters, unscaled boundary convexity 

increases because the 200 m window-size is substantially shorter than the trough to trough 

distance of the hypothetical boundary, whereas the 500 m window-size approaches the trough 

to trough distance (Figure 2.4 A & B).  However, because BCI is scale independent, the values 

are nearly identical.  In this example, the maximum unscaled boundary convexity value would 

be measured when the measure-point is at a peak and the window-size is equal to the 

wavelength, 566 meters, whereas BCI would remain relatively unchanged.  As window-sizes 

increase in scale beyond the wavelength, the convexity values decrease until reaching a value 

of 0 when the window-size (1,132 meters) encompasses the two adjacent peaks to the 

measure-point (Figure 2.4 C & D).  A value of zero will occur whenever the conditions of the 

boundary conspire to create a straight line between the endpoints and the measure-point, 

regardless of intervening boundary complexity. 
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Comparison of Patch Boundary Metrics 

 

Comparisons between BCI, absolute BCI, fractal dimension and sinuosity indicate that 

these linear metrics are relatively uncorrelated for our study area at all scales (Figure 2.5). The 

mean absolute Pearson‟s r was greatest between absolute BCI and sinuosity (µ = 0.45) and 

smallest between BCI and fractal dimension (µ = 0.04; Figure 2.5).  One exception is absolute 

BCI and sinuosity, which are correlated for window-sizes < 200 m (Pearson‟s r > 0.5, Figure 

2.5). This was not unexpected given that both sinuosity and absolute BCI measure aspects of 

line complexity (how much it “meanders” between two points) and ignore shape 

direction.  However, at larger scales, the relationship between absolute BCI and sinuosity 

weakens, seemingly because sinuosity values increase in range at larger scales (Table 2.1). 

We must note here that the sinuosity calculation can produce outlying values (erroneously high) 

when the two end points are very close, but the scale (window-size) is very large, as in the case 

of islands. We excluded these outliers (< 1% of our data) from our analysis.  

The correlation coefficient varied with window-size (scale).  For BCI vs. sinuosity, absolute 

BCI vs. sinuosity, BCI vs. absolute BCI and sinuosity vs. fractal dimension, the correlation 

coefficient decreased as window-size increased (Figure 2.5).  Conversely, as scale increased, 

the correlation between BCI and fractal dimension also increased.  The correlation coefficient 

did not significantly change with scale for absolute BCI vs. fractal dimension. These results 

indicate that boundary convexity is a unique linear metric.   

 

Coastal River Otter Latrine Site Selection 

 

Model selection results indicate that BCI values at the 100 meter window-size best 

approximated latrine presence (Table 2.2).  Additionally, models of BCI at any of the window-

sizes were found to be more parsimonious than any of the other metrics compared in the 



 

47 
 

candidate set (Table 2.2). Because the global model was found to fit the data (no over-

dispersion; Hosmer-Lemeshow GOF, p > 0.05), all candidate models will also fit the data.  

To test the accuracy of the best-fitting models, models with the highest wi for each patch 

boundary metric were assessed using leave-one-out cross-validation.  Overall correct 

classification rate was highest for the model containing BCI at the 100 meter scale (C100), with 

total prediction accuracy equaling 69.5% (Table 2.3).  For each of the three additional models 

tested for accuracy, results demonstrate that total prediction accuracy is not much better than a 

coin-flip (Table 2.3).  This observation is further supported by the relatively low AUC values for 

the three additional models, absolute convexity at 100 meters, sinuosity at 500 meters, and 

fractal dimension at 10 meters (Figure 2.6; Swets 1988).  

 

DISCUSSION 

 

The value of a landscape metric is often specific to the landscape and species 

combination unique to a study area (Ritters et al. 1995).  Li and Wu (2004) suggest that field or 

map based metrics will most often provide the greatest amount of inference because of their 

simplicity and ease of interpretation. Additionally, a landscape metric must be biologically 

meaningful and capture different aspects of spatial pattern (Hargis et al. 1998; Li and Wu 2004; 

Ritters et al. 1995). The boundary convexity index (BCI) meets these criteria for several 

reasons: 1) the metric is easily interpreted (positive or negative value); 2) the metric is scale-

independent; 3) the metric captures different aspects of spatial pattern (i.e. not correlated with 

sinuosity or fractal dimension); 4) the metric is calculated at the „sub-patch‟ scale; and 5) the 

metric was demonstrated to be biologically meaningful to coastal river otters (logistic regression 

analysis). Therefore, we feel that boundary convexity is an important new landscape metric that 

can be applied to any linear feature(s) of interest such as patch or landscape boundaries.  
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The shape of a boundary is specific to each unique location along that boundary and the 

shape is scale dependent.  For example, a segment of coastline viewed using a 100 meter 

frame may appear to be convex.  However, the same location, when viewed at a scale of 1000 

meters, may be concave in shape because the location may be within a larger bay. Thus, for 

any ecological problem, measuring variables at an appropriate scale (or range of scales) will 

require system and/or organism-specific knowledge (Allen and Hoekstra 1992). Measurements 

of boundary convexity performed to expectations when applied to a line with known dimensions.  

Boundary convexity values were consistently concave for troughs and convex for peaks and the 

values were identical in magnitude (with signs reversed) when measured from complementary 

locations on the regular artificial boundary.  These measurements serve to characterize the 

boundary convexity metric and further, to demonstrate the range of values to expect under 

known conditions. However, we caution that comparing boundary convexity values between two 

datasets that have different „reference scales‟ (i.e. 1:1,500 vs. 1:24,000) is not appropriate, even 

if the window-sizes are the same.  This is true also for sinuosity and fractal dimension because 

the degree of generalization of line features from reality can differ greatly depending on the 

scale at which the data was digitized (acquired). 

As mentioned above, the use of the coastline (a patch boundary) by coastal river otters 

within the study area is nearly ubiquitous, yet otter latrine site locations are found only where 

habitat conditions meet certain criteria (Bowyer et al. 2003).  Using the shape (convexity) of the 

surrounding coastline as a variable influencing latrine site selection appears to be a promising 

landscape-scale metric.  The logistic regression analysis supports our hypothesis that river 

otters may be selecting “points” as latrine sites, presumably to facilitate social communication 

via maximum dispersal of scent-marks.  The measurement of boundary convexity for latrine 

sites at multiple scales allowed us to determine the scale at which otters most strongly respond 

to the shape of the coastline.  This result improves our understanding of the scale at which river 

otters are interacting with their environment, and also will allow us to predict nutrient deposition 
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by river otters in unsampled areas based in part on coastal shape.  Using only a single variable 

(BCI at the 100 meter scale), we were able to correctly classify nearly 70% of coastal locations 

as latrines.  While previous attempts to determine habitat variables driving otter latrine site 

selection correctly classified 80% to 87% of locations, these studies measured habitat variables 

intensively at fine scales (Bowyer et al. 2003).  The ability to predict otter latrine locations using 

data derived from satellite imagery will be invaluable for the management of coastal river otters 

and for understanding their role in nutrient transport from sea to land. 

Boundary convexity could be applied to similar ecological questions where species 

depend on ecotones (unique conditions of patch boundaries).  For example, Howell et al. (2007) 

found that brown-headed cowbird (Molothrus ater) use of forest edge varied by landscape 

context.  Highly fragmented forests were used more completely than less fragmented forests.  

Would telemetry locations of female cowbirds demonstrate a relationship with boundary 

convexity?  Taylor et al. (2008) found that the noisy miner (Manorina melanocephala) in 

Victoria, Australia were more likely to occur with edge geometry characteristics that were 

described as „projections‟ and „clumps‟.  Boundary convexity may provide a more quantitatively 

derived metric for describing the habitat use of this avian species.  Other potential ecological 

situations in which boundary convexity could be applied are flying squirrel (Pteromys volans) 

dispersal which can be affected by landscape structure (Selonen and Hanski 2004) and 

arthropod densities that rely on algal wrack and carrion washed ashore on islands located in the 

Gulf of California (Polis and Hurd 1996).   

In conclusion, boundary convexity measures spatial patterns at the sub-patch scale and 

can be used to help explain some ecological processes occurring along patch boundaries. Our 

research demonstrates how boundary convexity can be used to assess animal habitat selection 

based on this pattern. We hope the boundary convexity metric finds wide application, and 

further that the Boundary Convexity Tool (Albeke et al. 2009) will assist in the expanded use of 
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not only boundary convexity, but also other linear metrics in a scalable, moving-window 

framework.  
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Table 2.1:  The mean (SD) and minimum, maximum values for each 

linear metric at each window-size (scale).  For window-sizes greater 

than 100 meters, the maximum sinuosity value has been adjusted by 

removing small islands having perimeters less than or very near the 

window-size (denoted with *). 

Window-

size 

Boundary 

Convexity Index Sinuosity 

Fractal 

Dimension 

10 m 0.032 (0.265)  
-0.804, 0.827 

1.12 (0.19)  
1.00, 3.26 

1.06 (1.32)  
1.00, 1.16 

20 m 0.083 (0.306)  
-0.906, 1.0 

1.24 (0.37)  
1.00, 4.46 

1.07 (0.03) 
1.00, 1.17 

50 m 0.084 (0.314)  
-0.963, 1.0 

1.42 (0.46) 
1.00, 4.56 

1.09 (0.04) 
1.00, 1.21 

100 m 0.092 (0.303)  
-1.0, 0.867 

1.59 (0.62)  
1.01, 8.09 

1.12 (0.05) 
1.01, 1.37 

200 m 0.079 (0.29)  
-0.720, 1.0 

1.85 (1.56)  
1.03, 10.86* 

1.13 (0.05) 
1.03, 1.38 

500 m 0.051 (0.256)  
-0.860, 1.0 

3.10 (7.82)  
1.04, 9.75* 

1.16 (0.06)  
1.01, 1.45 

1000 m 0.044 (0.259)  
-0.777, 0.817 

5.02 (17.52)  
1.08, 10.59* 

1.17 (0.05) 
1.05, 1.37 
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Table 2.2: Summary of model selection statistics 

for the set of candidate models (i) predicting 

presence of otter latrines.  Model descriptions are 

boundary convexity index (C), absolute boundary 

convexity index (AC), sinuosity (S) and fractal 

dimension (FD) followed by the window-size. 

Model  AICc Δ AICc wi 

C100 750.565 0 0.9993 

C200 765.086 14.521 0.0007 

C50 789.712 39.146 0 

C500 802.806 52.241 0 

C1000 816.431 65.865 0 

C20 856.201 105.636 0 

C10 866.632 116.067 0 

AC100 891.434 140.869 0 

S500 892.539 141.974 0 

S1000 895.998 145.432 0 

AC50 896.77 146.205 0 

AC200 900.393 149.827 0 

FD10 902.736 152.17 0 

S200 906.24 155.675 0 

S10 907.376 156.811 0 

FD20 907.617 157.051 0 

AC20 908.016 157.451 0 
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FD200 908.791 158.226 0 

FD50 908.97 158.405 0 

FD1000 909.001 158.436 0 

AC10 909.086 158.521 0 

AC1000 909.263 158.698 0 

AC500 909.474 158.909 0 

S100 909.716 159.15 0 

FD100 909.841 159.275 0 

FD500 909.853 159.287 0 

S20 909.895 159.33 0 

S50 909.901 159.336 0 

 

 

  



 

58 
 

 

Table 2.3: Percent of correctly classified 

observations using the best-fitting model for each 

patch boundary metric and leave-one-out cross-

validation. Model descriptions are boundary 

convexity index (C), absolute boundary convexity 

index (AC), sinuosity (S) and fractal dimension 

(FD) followed by the window-size. 

Model Latrine Random  Total 

C100 69.6% 69.3% 69.5% 

AC100 51.5% 66.0% 58.7% 

S500 19.0% 84.4% 51.7% 

FD10 51.5% 58.9% 55.2% 
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Figure 2.1: The procedure to calculate boundary convexity: 1) Obtain start, measure and end 

points (0%, 50% and 100% of the length) of the boundary segment (Steps 1 & 2); 2) Draw 

circular arc through the three points (Step 3); 3) Determine circular arc orientation (clockwise or 

counterclockwise); 4) Draw a chord between start and end points (Step 4); 5) Obtain the mid-

point of the circular arc and chord (Step 5); 6) Calculate the chord height. For this particular 

example, the boundary convexity value is equal to 15.8 meters, indicating the measure-point is 

convex given a window-size of 100 meters. 
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Figure 2.2: An example of boundary convexity index (BCI) values for a window-size of 50 

meters (A) and 100 meters (B) and a step-size of 20 meters.  Positive values indicate convexity 

while negative values indicate concavity.  Please note the BCI value differences between the 

same measure-points at the two scales (window-sizes).   
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Figure 2.3: An example of how boundary convexity index values change as the measure-point 

(POM) changes using a window-size of 200 meters.  The measure-point begins at a trough of 

the wave (A), 25% of the segment distance (B), 50% of the segment distance (C), 75% of the 

segment distance (D), and ends at a peak of the wave (E). 
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Figure 2.4: An example of how boundary convexity (BC) in meters and boundary convexity 

index (BCI) values change as window-size (scale) increases for the same measure-point 

(POM).  The window-sizes are 200 meters (A), 500 meters (B), 1,000 meters (C), and 1,132 

meters (D).  
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Figure 2.5:  Scatter plots of absolute Pearson‟s r correlation coefficients across all window-sizes 

for each patch boundary metric combination (CS = convexity-sinuosity, ACS = absolute 

convexity-sinuosity, CFD = convexity-fractal dimension, ACFD = absolute convexity-fractal 

dimension, CAC = convexity-absolute convexity, SFD = sinuosity-fractal dimension).  Solid 

symbols indicate significance at the 95% confidence level (p < 0.05) and hollow symbols are not 

significant.  Mean(SD) Pearson‟s r across all window-sizes, trend lines, the associated linear 

equations and R2 values are included. 
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Figure 2.6:  ROC plots demonstrating discriminatory accuracy for otter latrine site selection for 

models: boundary convexity index at 100 meters (A), absolute boundary convexity index at 100 

meters (B), sinuosity at 500 meters (C) and fractal dimension at 10 meters (D); and the 

calculated area under the curve (AUC).   
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CHAPTER 3 

 

LATRINE SITE SELECTION BY COASTAL RIVER OTTERS: A COMPARISON OF 

MODELING ALGORITHMS AND MODEL SELECTION USING AREA UNDER THE CURVE 

(AUC)1 
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ABSTRACT 

 

Wildlife managers and researchers have an increasingly growing number of available 

algorithms from which to develop species distribution models. These approaches use 

environmental variables, coupled with species observation data, to estimate the probability that 

habitat is suitable for a species in a given area. Because different algorithms may behave 

differently across species and datasets, testing multiple approaches to assess the most 

supported environmental variables, as well as the best fitting model, is desirable. Coastal river 

otters inhabiting the nearshore environment in Prince William Sound, AK prey on benthic and 

schooling pelagic fish. The otters transport marine derived nutrients to specific locations along 

the coastline through the use of latrine sites. Latrine sites are chosen based on specific 

environmental characteristics, and developing accurate models to estimate potential latrine 

locations can provide wildlife managers with tools to make informed management decisions. 

Three algorithms (logistic regression, k-nearest neighbor, and maximum entropy) were used to 

predict otter latrine site selection for two separate datasets using environmental variables 

calculated at multiple spatial scales. Variables having the greatest support were identified via 

model selection using area under the curve (AUC) derived from receiver operating characteristic 

(ROC) plots. Boundary convexity was found to be the strongest parameter estimating latrine 

presence for each dataset and algorithm combination. However, the degree of influence for 

each parameter differed between logistic regression and Maxent. Maxent performed 

consistently better in estimating latrine occurrence, for both within-sample and out-of-sample 

datasets, than KNN and logistic regression. Using the best fitting model, the Herring Bay (HB) 

within-sample AUC values were 0.855, 0.824 and 0.785 while the out-of sample values were 

0.713, 0.735, and 0.738 for Maxent, logistic regression and KNN algorithms, respectively. While 

there were no variables at a specific scale that were supported in the top model across all 

algorithms, the top models did not differ significantly from a biological perspective. Thus, 
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managers have multiple options from which to choose to accurately predict otter latrine 

occurrences. 

 

INTRODUCTION 

 

Determining important habitat for animal species is critical for management and 

conservation (Elith et al. 2006; Gillison 1997; Guisan and Zimmermann 2000; Hernandez et al. 

2006; Thuiller 2003).  Although measuring habitat use in the field provides the greatest 

confidence that important areas have been identified, it is often not feasible to survey all areas 

in a landscape (Fielding and Bell 1997; Stockwell and Peterson 2002).  Therefore, estimating 

probability of use with models developed from samples, often limited in geographic extent, must 

be used until surveys can be completed.   

Species distribution modeling and the myriad of available approaches has increased 

significantly in recent history (Elith et al. 2006; Guisan and Thuiller 2005; Guisan and 

Zimmermann 2000; Remm 2004; Wisz et al. 2008). These approaches use environmental 

variables along with observations of species presence (and absence or pseudo-absence) to 

estimate the probability that unsampled areas have suitable conditions for the species to occur.  

Because different algorithms have been shown to behave differently across species and 

datasets (Elith et al. 2006; Graham et al. 2008; McPherson and Jetz 2007; Reese et al. 2005), it 

is desirable to test several algorithms, use multiple validation approaches in order to determine 

the best model, and to look for the best support for environmental variables across different 

modeling algorithms (Pearce and Ferrier 2000b; Stockwell and Peterson 2002). 

Coastal river otters (Lontra canadensis) in Prince William Sound, AK are an important 

meso-predator in nearshore environments (Ben-David et al. 1998; Blundell et al. 2002; Bowyer 

et al. 2003), consuming both benthic prey and schooling pelagic fish (when available) (Cote et 

al. 2008; Larsen 1983; Stenson et al. 1984). Otters then deposit feces and urine at latrines, 
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aiding in the transfer of marine-derived nitrogen to the terrestrial landscape, thereby influencing 

coastal vegetation communities (Ben-David et al. 1998; Roe et al. 2010). River otters exhibit 

high fidelity to latrine sites, returning repeatedly to the same location (Bowyer et al. 1995). River 

otters choose latrine sites based on specific characteristics of the coastal environment (Bowyer 

et al. 2003). Developing the ability to estimate potential latrine site locations using remotely-

sensed data may provide wildlife managers with several useful tools. First assessing the 

potential distribution of otters, and ultimately their abundance, is essential for making informed 

management decisions (Alaska Department of Fish and Game 2009). In addition, estimating 

latrine abundance along a portion of coastline may provide researchers a quantifiable method 

for estimating effects of allochthonous nutrient influx onto the nearshore environment. 

Otter visitation to specific latrine sites is variable through time and depends on the 

demography of the population (i.e., sex ratio), the distribution of prey, and the physical 

characteristics of the shoreline (Ben-David et al. 2005; Bowyer et al. 2003). Previous studies 

have demonstrated at the site-scale, river otters select for steep tidal slope, large intertidal rock, 

high exposure to waves, extensive beds of kelp, and high overstory cover (Ben-David et al. 

2005; Ben-David et al. 1996; Bowyer et al. 2003; Bowyer et al. 1995). Water depth, tidal slope, 

and wave action are correlated with the distribution and abundance of fishes and invertebrates 

(Ben-David et al. 1996; Dean et al. 2000). Large trees provide shelter while root holes and 

crevices serve as dens (Bowyer et al. 1995). In addition, these shaded areas may reduce 

desiccation of scent marks used for communication (Ben-David and others 2005). At larger 

spatial scales, Dubuc et al. (1990) demonstrated that river otters select for more convoluted 

shorelines, which are characterized by productive shallow-water habitats. Also, convoluted 

shorelines offer numerous exposed points that could aid in the long-range dispersion of scent 

which may facilitate social communication (Albeke et al. 2010). The objective of this study is to 

determine the algorithm best estimating coastal river otter latrine site selection for both within-

sample and out-of-sample datasets. We chose to examine three different types of algorithms, a 
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classical parametric method (logistic regression), a nonparametric method (k-nearest neighbor), 

and a machine learning method (maximum entropy). Because an organism‟s perspective 

dictates the scale at which the landscape is viewed (Albeke et al. 2010; Allen and Hoekstra 

1992), environmental variables were calculated at multiple spatial scales. Because both KNN 

and Maxent approaches do not lend themselves to calculation of the Akaike‟s Information 

Criterion (AIC), we use the area under the curve (AUC), derived from receiver operating 

characteristic (ROC) plots to select from a set of candidate models evaluating both the best-

fitting spatial scale for each environmental variable, as well as choose a best-fitting overall 

model. 

 

METHODS 

 

Study Area 

 

The study area is located in the southwestern portion of Prince William Sound (PWS), 

Alaska (60.47 N, 147.75 W) and includes four islands:  Knight Island, Disk Island, Ingot Island 

and Eleanor Island (Figure 3.1), on which 143.6 km of coastline were surveyed for otter latrines 

in 2006. Prince William Sound experiences mild, wet summers and winters that result in heavy 

snow accumulation (Ben-David et al. 2001; Bowyer et al. 1995). The coastal landscape is 

dominated by old-growth forests comprised of western hemlock (Tsuga heterophylla) and Sitka 

spruce (Picea sitchensis), having an understory of Vaccinium spp., rusty menziesia (Menziesia 

ferruginea), Rubus spp., and devil‟s club (Oplopanax horridus) (Ben-David et al. 2001; Bowyer 

et al. 1995). Riparian zones or areas of disturbance are often characterized by alder (Alnus spp) 

(Bowyer et al. 1995). 

The marine environment is highly diverse. Subtidal zones vary with depth and slope with 

some areas characterized by vertical walls while others have shallow slopes of only a few 
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degrees (Dean et al. 2000). Tidal fluctuations range from -1.13 m to 4.66 m (NOAA 2007). 

Marine vegetation communities vary with substrate and exposure to waves and currents. 

Typically, rocky exposed points are inhabited by bull kelp (Cereocystis luetkeana) and split kelp 

(Laminaria bongardiana) while colander weed (Agarum cribrosum) and sugar kelp (Laminaria 

saccharina) inhabit rocky areas within sheltered bays and protected coastline (Dean et al. 2000; 

Dean et al. 1996). Bays with finer substrates support eelgrass (Zostera marina) communities 

(Dean et al. 2000; Dean et al. 1998; McRoy 1968, 1970). Much of the intertidal zone is 

dominated by rock weed (Fucus gardneri) and red and green algae (Dean et al. 2000; Gilfillan et 

al. 1995; Stekoll et al. 1996). 

 

Data Preparation 

 

For the study area, IKONOS® 1-meter panchromatic stereo-pairs and 4-meter 

multispectral satellite imagery were obtained and manipulated to create the necessary datasets 

describing the landscape. First, the coastline was digitized, at a 1:1,500 scale, using the 

panchromatic imagery. Second, using the Leica Photogrammetry Suite (LPS) within ERDAS 

IMAGINE (ERDAS, Inc., Norcross, GA), an existing DOQQ  aerial image was used as a 

reference for creating tie-points linking the two 1-meter panchromatic IKONOS® stereo images 

(GeoEye, Thornton, CO). Because of shading issues related to the date of image capture 

(September 24, 2007), the DEM was incomplete for some north facing areas. To correct this 

problem, the DEM was converted from a raster to a point feature class and additional points 

were manually added to fill areas of missing data. The elevation values for the additional points 

were set at zero and placed outside of the island polygons or was obtained from an existing 2-

arc-second DEM (http://ned.usgs.gov/).  Using the point feature class, a new 10-meter DEM 

was created using the Inverse Distance Weighted (IDW) tool within ArcGIS 9.3.1 (ESRI, 

Redlands, CA).  

http://ned.usgs.gov/
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To perform a supervised classification of landcover types, a 1-meter pan-sharpened image 

was created by combining the 1-meter panchromatic image and the 4-meter multispectral 

image. A set of five landcover classes (alder, conifer, muskeg, rock and water) were chosen. 

Each landcover type was manually digitized, using low-elevation aerial photography and the 1-

meter pan-sharpened image, to create „areas-of-interest‟ (AOI, training polygons) needed to 

perform a supervised classification. The AOI‟s were limited to be within 35 meters of the 

shoreline. This choice was made for two reasons:  1) otter use of the landscape is typically 

limited to areas near the shoreline (Larsen 1983) and 2) verified locations of field-collected 

landcover types only existed within the 35 meter distance. The spectral signatures for each 

landcover type were then created for each AOI. Finally, the ERDAS IMAGINE Classifier tool and 

the Mahalanobis distance algorithm were used to create the classified landcover dataset, with 1-

meter resolution, for the 35 meter area nearest the shoreline. To test the classification error, an 

internal assessment of classification success was performed by obtaining the majority landcover 

class for each AOI. The internal classification error was less than 12%. 

The marine portion of the landscape used by otters was derived from bathymetric 

sounding points. The bathymetric sounding points were obtained from the National Geophysical 

Data Center (NGDC 2007). The points occurred at approximately 30-meter intervals and 

occupied the entire study area, extending to near the coastline. To assist in accurately modeling 

depth, additional point locations obtained from the digitized coastline were included and their 

values set to zero. The Inverse Distance-Weight (IDW) technique was then employed to 

generate a 10-meter interpolated raster of ocean depth. 

 

Dataset Manipulation 

 

All spatial data analyses were performed in ArcGIS 9.3.1. The 10-meter DEM and 

bathymetry datasets were resampled to 5-meter resolution using bilinear interpolation. The 
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increased resolution of these datasets allowed the mean raster value to be calculated using 

zonal statistics (the square cells better fitting the round edges of the zone), thus providing an 

accurate representation of the local variability by calculating a more accurate area-weighted 

mean value for each habitat variable at each buffer-size (see below). The degree of slope was 

calculated for the terrestrial and marine habitats using the resampled DEM and bathymetry 

datasets and the Spatial Analyst extension for ArcGIS. To test for the potential effects of aspect, 

the Area Solar Radiation tool (Spatial Analyst) was used with the resampled DEM as input to 

create a dataset estimating the total incoming solar radiation. We chose to estimate total 

radiation once a week in one-hour intervals for dates occurring between May 15 and August 30, 

2006. With Spatial Analyst and the resampled DEM, a three step hydrologic modeling process 

was used to create a flow accumulation dataset representing the amount of potentially available 

freshwater. First the Fill command was used to remove small imperfections; then the flow 

direction was calculated and used to generate the final flow accumulation dataset.  

 

Landscape Variables 

 

A suite of variables describing the coastal and nearshore landscapes were generated at 

every 10 meter interval along the study area coastline, referred to as point-locations (Table 

3.1).To the best of our ability, the choice of metrics follow that of Bowyer et al. (2003; 1995) and 

Larsen (1983). The difference between this study‟s metrics and previous studies is that all data 

were derived from satellite imagery or bathymetric sounding points instead of collected directly 

at each latrine site in the field.  

Mean coast height, flow accumulation, solar radiation, terrestrial slope, depth and marine 

slope were calculated through a five-step process: 1) Initially, a 30-meter buffer was generated 

for both sides of coastline to represent the areas of highest river otter use (Larsen 1983; Ben-

David unpublished data). The interior portion of the buffer represents the terrestrial landscape 



 

73 
 

and the exterior portion represents the marine landscape (Figure 3.2a); 2) To create the 

terrestrial-only mask, the 30-meter buffer was intersected with the island polygon feature class 

while the marine-only mask was created by using the erase tool; 3) To quantify the landscape 

variables at different spatial scales, a set of four buffer sizes were created for each point 

location having diameter equal to 10, 25, 50 and 100 meters (Figure 3.2b); 4) Each point-

location at each buffer-size was iteratively intersected with the terrestrial-only and marine-only 

masks, creating a masked-polygon representing the area of otter use for each habitat type 

(marine or terrestrial) and scale (Figure 3.2c); 5) Finally, the mean zonal statistic was calculated 

for each masked-polygon for each raster dataset (Albeke and Nibbelink 2009). Using the same 

method as previously described, the percent conifer was iteratively calculated for each masked-

polygon using the Tabulate Area tool and the 1-meter classified landcover dataset.   

Larsen (1983) found that coastal river otter habitat use was most often restricted to convex 

portions of the coastline. To measure this feature of the terrestrial landscape, the boundary 

convexity index was calculated for each point-location (Albeke et al. 2010). The boundary 

convexity tool (Albeke et al. 2009) conducts a linear “moving window” analysis at user-defined 

intervals and window-sizes. For our study we chose an interval of 10 meters and used window-

sizes of 10, 25, 50, and 100 meters (approximately equal to the diameter of the buffer sizes).  

The final landscape variable measures the cost-distance of each point-location to the open 

ocean. The open ocean was defined as the minimum convex polygon (MCP) derived from the 

extent of the digitized coastline (see data preparation section; Figure 3.1). To calculate the cost-

distance, a 5-meter raster having the terrestrial portion of the landscape assigned a value of 

10,000 and the marine portion a value of one, in conjunction with the MCP, was used. The cost-

distance values were calculated using ArcGIS Spatial Analyst‟s Cost Distance tool. The 

calculated values were extracted from the raster for each point-location.  
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Data Collection 

 

A total of 326 individual river otter latrine sites were identified along the study area 

coastline and GPS locations were recorded during the summer of 2006. These locations were 

snapped to the digitized coastline and assigned the nearest point-location. Identification of 

latrine sites within Prince William Sound and surrounding areas is highly accurate (Ben-David 

and Golden 2007). Therefore, we are confident that latrine identification within the study area 

represents an accurate estimate of the number and location of existing otter latrines.  To create 

geographically distinct datasets to facilitate within-sample and out-of-sample model validation, 

the study area was split into two separate groups, labeled Herring Bay (HB) and Lower 

Passage-Eleanor Island (LPEI; Figure 3.1). Thus, HB had 175 and LPEI 151 identified latrines. 

In addition, a set of random locations (175 for HB and 151 for LPEI), were created and placed a 

minimum of 100 meters from an existing latrine or other random location.  

 

Model Comparison 

 

Three modeling algorithms were compared with respect to their ability to discriminate 

between latrine and random sites using both within-sample and out-of-sample validation.  The 

modeling approaches include logistic regression (Pearce and Ferrier 2000b), K-nearest 

neighbor (KNN; Williams et al. 1994), and Maximum Entropy (Maxent; Phillips and Dudík 2008; 

Phillips et al. 2006). Each modeling approach was used to generate the probability of a point-

location being a latrine given the binary response variable. The logistic and KNN models were 

created using SAS 9.1 (SAS Institute Inc., Cary, NC) and Maxent created using the freely 

available tool (Phillips and Dudík 2008; Phillips et al. 2006). The HB dataset was used to 

develop within-sample models and then applied to the LPEI dataset for out-of-sample validation. 

Conversely, the same process was applied using the LPEI dataset for model creation and the 
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HB dataset for out-of-sample validation. The following methodological descriptions apply to 

each modeling approach. 

The formulation of the candidate set of models required a multiple-step process for each 

dataset (HB & LPEI). First, Pearson‟s r correlation coefficients were calculated using SPSS 11.5 

(SPSS Inc., Chicago, IL). Variables having correlation coefficients ≥ 0.5 were removed to avoid 

multicollinearity (Table 3.1).  Next, single variable models were run for each landscape variable 

at each scale (buffer-size).  The area under the curve (AUC), derived from receiver operating 

characteristic (ROC) plots, was then calculated, using SPSS 11.5, to allow for a globally 

consistent comparison between the modeling approaches (Hernandez et al. 2006; Zweig and 

Campbell 1993). The scale having the highest AUC for each landscape variable was retained 

for inclusion in the global model(s) (Table 3.2). The global model, using the logistic regression 

approach only, was tested for model goodness-of-fit using the Hosmer-Lemeshow GOF statistic 

(Hosmer and Lemeshow 2000).  The global model was deemed to be an adequate fit of the 

data if the p-value was ≥0.05.   

The KNN approach requires an optimal number of neighbors be chosen. Prior to 

performing the model selection process for this algorithm, the parameters within the logistic 

regression global model were used to determine the optimal number of neighbors. This was 

accomplished by iteratively testing model accuracy using k = 2 through k= 30. Thus, the 

optimum number of neighbors was determined to be k= 17. 

An information theoretic process was used to find the best fitting model for each modeling 

approach. Initially candidate models were developed a priori for each model type (Burnham and 

Anderson 2001). However, because KNN is nonparametric and Maxent does not output log-

likelihood, Akaike‟s Information Criterion (AIC) cannot be globally used for model selection. 

Instead, AUC was used as the common statistic for assessing the best fitting model. To perform 

model selection from the candidate set, models with higher AUC values were deemed to be 

better representations of the process being modeled.  For models having the same AUC 
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(rounded to the nearest 1/100th), the more simple model was chosen (i.e. fewer parameters). 

To calculate a comparable AUC statistic (as well as confusion matrices, see below) for the 

Maxent algorithm, the same sample locations used for the logistic and KNN approaches were 

extracted from the predicted surface of the Maxent model. This was necessary because the 

default AUC calculated by Maxent is an area-corrected AUC statistic based on a sample of 

10,000 pseudo-absence locations (Phillips et al. 2006). As an additional validation of using AUC 

for model selection, AIC values were for the logistic regression models (Akaike 1973; Burnham 

and Anderson 2002). The AUC and AIC were then plotted and regressed to assess the 

relationship between the two metrics. To correct for differences in AIC values between the two 

datasets, each AIC value was divided by the sample size. 

In addition to AUC values, confusion matrices were created to estimate model accuracy of 

both within and out-of-sample datasets. The probability threshold required for matrix creation 

was chosen by maximizing the function [sensitivity – m(1 – specificity)] where m was held 

constant = 1 for each model (Zweig and Campbell 1993). The confusion matrices were then 

used to calculate model accuracy, sensitivity and specificity using Program R 2.11.1 (Fielding 

and Bell 1997; R Development Core Team 2010). 

 

RESULTS 

 

Model Development 

 

Prior to determining the best scale for each landscape variable, Pearson‟s r correlation 

coefficients were calculated. Three variables were removed because of multicollinearity 

including marine slope, terrestrial slope and solar radiation (Table 3.1). The remaining 

landscape variables, at the 10, 25, 50 and 100 meter scales, were then used in single variable 

models for each dataset and modeling approach. The CostToOcean variable is not scalable and 
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therefore only has one AUC calculated for each model approach and was included in all 

subsequent global models (see below). The best fitting scales varied between the datasets and 

modeling approaches (Table 3.2). For the Herring Bay (HB) dataset, five 10m, one 25m, four 

50m and five 100m variables were the best fitting, while the Lower Passage/Eleanor Island 

(LPEI) dataset had two 10m, three 25m, three 50m and seven 100m variables. Boundary 

convexity was found to be the most influential variable for each dataset and algorithm. The AUC 

values for each best fitting variable ranged between 0.482 (poor discrimination capacity) and 

0.78 (reasonable discrimination capacity; Table 3.2), indicating no single variable was entirely 

adequate for discriminating between latrine and random locations (Pearce and Ferrier 2000a; 

Swets 1988). 

The best fitting variables for the logistic global model, using the HB dataset, includes 

convexity at 50m, CostToOcean, depth at 10m, elevation at 10m, flow accumulation at 100m, 

and percent conifer at 50m. For the LPEI dataset the variables were convexity at 100m, 

CostToOcean, depth at 25m, elevation at 10m, flow accumulation at 100m, and percent conifer 

at 10m. The KNN approach consisted of convexity at 100m, CostToOcean, depth at 25m, 

elevation at 10m, flow accumulation at 100m, and percent conifer at 50m for the HB dataset and 

convexity at 100m, CostToOcean, depth at 50m, elevation at 100m, flow accumulation at 50m, 

and percent conifer at 25m for the LPEI dataset. Lastly, the Maxent global model was 

comprised of convexity at 50m, CostToOcean, depth at 10m, elevation at 10m, flow 

accumulation at 100m, and percent conifer at 100m for the HB dataset and the LPEI dataset 

includes convexity at 100m, CostToOcean, depth at 25m, elevation at 100m, flow accumulation 

at 100m, and percent conifer at 50m. For the logistic approach, two variables with the same 

scale were shared between the datasets while only one variable with the same scale was 

shared for the KNN and Maxent approaches. The lack of correspondence between the variables 

and datasets may indicate a geographic distinction between the two datasets. 
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Model Selection 

 

The logistic global models for both datasets were found to fit the data, for the Hosmer-

Lemeshow GOF statistic was not significant (p > 0.05). Thus, each subsequent candidate 

model, regardless of model approach, was treated as also fitting the data. Logistic model 

selection results, for the HB dataset, indicate convexity at 50m, CostToOcean, depth at 10m, 

elevation at 10m, and percent conifer at 50m to be the best fitting while convexity at 100m, 

CostToOcean, depth at 25m, elevation at 10m, and percent conifer at 10m for the LPEI dataset 

(Table 3.3). For each dataset, the best fitting model did not include flow accumulation at 100m, 

presumably due to the exceptionally poor discriminating capacity of the variable (Table 3.2). 

Using the best fitting logistic model for each dataset, AIC was also calculated. The scatterplot 

between AUC and AIC (adjusted by sample size) indicates a high degree of correspondence 

between AUC and AIC (Figure 3.3). Thus, confirming AUC as a similar model selection statistic 

to AIC for this group of data.   

The best fitting model for KNN was convexity at 100m, CostToOcean, depth at 25m, 

elevation at 10m, and percent conifer at 50m for the HB dataset, behaving similar to the logistic 

approach in which flow accumulation once again was removed from the global model (Table 

3.3). However, for the LPEI dataset only three variables (convexity at 100m, CostToOcean, and 

elevation at 100m) remained in the best fitting model. Maxent model selection found the global 

model to be the best fitting for both datasets.  

Parameter estimates using logistic regression were calculated for both datasets (Table 

3.4). For the HB dataset boundary convexity, mean marine depth and percent conifer were 

positively related to latrines while cost to ocean and mean elevation were negatively related 

(mean depths were measured as meters below sea-level, thus a negative parameter estimate 

indicates a positive response). Boundary convexity was the strongest predictor of latrine 

occurrence (Table 3.4). For every 10m increase in convexity a latrine was 1.64 times more likely 
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to occur. The LPEI dataset parameter estimates are similar to the HB dataset. Boundary 

convexity, mean depth and percent conifer were positively related while mean elevation was 

negatively related. Additionally, boundary convexity was also the strongest predictor of latrine 

occurrence, having a 1.43 greater chance of a latrine being present for every 10m increase in 

convexity. The one difference in parameter estimates between the LPEI and HB datasets is that 

CostToOcean was positively related to latrine presence for the LPEI model. However, the 

influence of this parameter upon either model is relatively small. 

The relationship of latrine occurrence to the parameters follows the patterns previously 

measured at the site-specific scale (Bowyer et al. 2003; Bowyer et al. 1995). For example, 

Bowyer et al. (1995) found otter latrine site selection to be positively related to old-growth forest 

and steeper tidal slopes and were negatively related to steep vegetated slopes. Regardless of 

the dataset, the logistic regression analyses follow the same relationships, having a positive 

relationship with percent conifer (old-growth) and mean depth (tidal slope) and negatively 

related with mean elevation (vegetated slope). Thus, providing confidence that variables derived 

from satellite imagery can measure characteristics of the nearshore environment similar to field 

collected data. 

The Maxent algorithm differed with logistic regression in ranking the most influential 

variables for estimating latrine occurrence. For both datasets boundary convexity, mean depth 

and mean elevation were the top three contributors to the model (Table 3.5). Boundary 

convexity, similar to the logistic regression results, was the most influential parameter 

contributing 58% for the HB model and 62% for the LPEI model. One noticeable difference 

between Maxent and logistic regression was the percent contribution of percent conifer for the 

HB dataset. Percent conifer was the second strongest parameter for logistic regression (Table 

3.4), but was ranked fifth by Maxent (Table 3.5, 6.2% contribution). 
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Model Accuracy 

 

The best fitting model for each dataset and approach were used to predict the probability 

of a point-location as a latrine site for both within-sample and out-of-sample data. ROC plots 

were then used to find the optimal mix of false-positive and false-negative results for each 

model/dataset combination (Zweig and Campbell 1993). The threshold values obtained from the 

ROC plot analysis (Table 3.6) were then used to create confusion matrices. Using the confusion 

matrices, model accuracy, sensitivity and specificity were calculated for each algorithm, as well 

as AUC (Table 3.7). For every model comparison metric, within-sample values were better than 

out-of-sample values. Maxent had the highest within-sample metric values for the HB dataset 

and the highest specificity and AUC for the LPEI dataset. KNN accounted for the remaining 

highest LPEI within-sample metric values. Conversely, KNN had the highest out-of-sample 

metric values for the HB dataset, except for sensitivity (logistic), and Maxent the highest out-of-

sample metric values for LPEI.  

The difference between within-sample and out-of-sample values was calculated for each 

metric (Table 3.8). KNN had the smallest amount of difference for every metric within the HB 

dataset, indicating the algorithm estimated otter latrine sites more consistently between the 

datasets than logistic regression and Maxent, but not necessarily more accurately. For LPEI, 

Maxent had the smallest difference in accuracy and sensitivity and logistic regression the 

smallest difference in specificity and AUC. Concurrently, Maxent also has the smallest mean 

difference in accuracy and sensitivity and logistic regression the smallest mean difference in 

specificity and AUC. The average rank (1, 2 or 3) across all metrics was calculated.  The mean 

rank for the Maxent algorithm was 1.5, 2.1 for KNN and 2.3 for logistic (Table 3.8). Thus, of the 

algorithms compared, Maxent was more consistent in estimating latrine occurrence than KNN 

and logistic regression. 
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DISCUSSION 

 

A pressing wildlife management need is the ability to estimate coastal river otter 

abundance for Prince William Sound, AK and surrounding coastline. This research has 

demonstrated that it is possible to predict otter latrine sites along coastlines, with nearly 80% 

accuracy, using landscape variables derived from satellite imagery. The discriminatory success 

of the models could then potentially be used to estimate otter abundance, creating a potentially 

powerful management tool (Nielsen et al. 2005). For example, using data from this NSF 

research project, there are 326 latrines and an estimated 62 resident otters (Ott et al. in Prep), 

giving an occupation rate of 0.19 otters/latrine. Using the HB Maxent model to predict latrines 

for HB and LPEI, 343 latrine sites were estimated. Using the previously stated rate, one could 

infer that approximately 65 otters occupied the 143.6 km of coastline within the study area. Of 

course, one should use caution assuming a consistent relationship far outside the area in which 

the model was parameterized. However the Maxent model showed relatively good transferability 

between our study areas.  

Maxent performed more consistently across the range of within and out-of-sample 

datasets when compared to the other two algorithms. The AUC for the Maxent models were 

higher for three out of the four datasets. This result is not unexpected as Maxent exhibits 

additivity to the contribution of each variable and predicted pixel (Phillips et al. 2006).  

The model development and selection processes provided an interesting story in relation 

to spatial scale, geographic location and algorithm type. Not a single variable at a single scale 

occurred in all of the algorithms for both datasets. Previous analyses using data from this 

particular study (Albeke et al. 2010) as well as other research (McGrath et al. 2003; Mitchell et 

al. 2001; Nams et al. 2006), have demonstrated the importance of scale in understanding 

animal habitat selection. This research indicates that our interpretation of an animal‟s response 

to an environmental variable is directly influenced by the chosen algorithm. For example, Albeke 
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et.al (2010) found that coastal river otters respond most strongly to boundary convexity at the 

100m scale using logistic regression.  However, in this study, even though the same convexity 

values were used, Maxent and logistic regression both found the strongest support (AUC) for 

convexity at the 50m scale when using the HB dataset. The LPEI dataset had convexity at 

100m chosen for all three algorithms. Although the scales differ, they do not invalidate the 

previously reported result because the dataset used within Albeke et al. (2010) included the 

entire study area whereas this study split the dataset into two areas. Secondly, the biological 

relevance between boundary convexity measured at 50m versus 100m may not necessarily be 

significant. However, the finding does demonstrate the nuance involved with species distribution 

modeling, and the necessity of putting seemingly different results into a biological context to 

evaluate whether the difference observed is meaningful.  

The results of this modeling exercise also support prior work demonstrating that with 

modeling approaches, „one size does not fit all‟ (Guisan and Zimmermann 2000). The 

geographic range of the study area (Figure 3.1) is small compared to the distribution of river 

otter in coastal Alaska. However, not only did variables differ in the „best‟ scale for each 

algorithm, the global models for each algorithm differed between datasets. Additionally, as is 

most often the case, each algorithm was less accurate when applied to the out-of-sample 

dataset. In fact, using Landis and Koch‟s (1977) strength of agreement scale, virtually every 

algorithm‟s strength would be considered „moderate‟ for within-sample and only „fair‟ for out-of-

sample. Thus, the question remains as to the „generality‟ of the tested models to provide 

„precise‟ predictions to coastal areas within Prince William Sound, AK and beyond (Guisan and 

Zimmermann 2000; Levins 1966).  

Several steps may be taken to help better understand the performance of each algorithm, 

and assist in making the most informed management decisions as possible. Given the high ratio 

of non-latrine to latrine sites, a Monte-Carlo approach to selection of random sites and/or 

increasing the number of random sites, in which multiple models are run using different sets of 
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random sites, may provide a better understanding of the performance for the logistic and KNN 

algorithms within this model system. Finally, adopting an Adaptive Resource Management 

(ARM) approach may provide the necessary framework for determining which approach to apply 

to future study areas by making predictions of the new coastline and then quantifying algorithm 

accuracy through monitoring (Lancia et al. 1996). 

Several hurdles exist to applying the ARM approach using the developed models. Most 

notably will be the „grain‟ of the landscape data (Allen and Hoekstra 1992). For this study, 

access to high resolution imagery (IKONOS 1m) was available, which allowed for the digitization 

of a highly accurate coastline and interpolation of a 5m DEM. McGrath et al. (2003), Mitchell et 

al. (2001) and Nams et al. (2006) all found that varying scales of data affected the accuracy of 

habitat use models by wildlife. If the landscape variables for areas outside of this study are not 

derived from data collected at the same scale, then applying the algorithms developed with this 

research would be inappropriate. With that said, because each of the landscape variables was 

derived from satellite imagery, and the strongest predictor variable (convexity) can be calculated 

using only a coastline file, there is good potential for applying these models to other areas. 
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Table 3.1: Description of landscape metrics that potentially may influence 

latrine site selection by coastal river otters. 

Variable Definition Units 

Convexity  Convexity  index =  scale 

independent metric measuring 

maximum protrusion (+) or depth (-) 

of coast defined by a smooth arc 

through the three points of the 

coastline defined by the window 

size and measurement point 

(Albeke et al. 2010). 

Meters 

CostToOcean  Cost-path analysis of marine 

distance from point-location to 

nearest intersection with minimum-

convex boundary of study area. 

Num. of cells 

Depth Mean depth within the marine buffer Meters 

Elevation Mean elevation with the terrestrial 

buffer. 

Meters 

Flow Accumulation Mean number of accumulated 

raster cells, based on a watershed 

analysis using a digital elevation 

model, within the terrestrial buffer. 

Num. of cells 

Percent Conifer Proportion of coniferous forest 

within the terrestrial buffer. 

Percent area 

Marine Slope † Mean degree slope within the 

marine buffer 

Degrees 

Solar Radiation † Mean total amount of incoming 

solar radiation, based on the DEM, 

within the terrestrial buffer. 

Watt hours/m2 

Terrestrial Slope † Mean degree slope within the 

terrestrial buffer. 

Degrees 

† indicates parameter removed because of multicollinearity 
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Table 3.2: AUC values for single-variable models to subsequently be included in model selection (* indicates use in global 

model for each approach). Please note the CostToOcean variable is not scalable. The values are placed in the 10m columns 

for convenience. 

 Scale (radius in meters) 

Study Group 10m 25m 50m 100m 

Herring Bay (HB) LR KNN ME LR KNN ME LR KNN ME LR KNN ME 

Convexity 0.645 0.627 0.636 0.688 0.665 0.693 0.738* 0.742 0.716* 0.727 0.751* 0.687 
Depth 0.701* 0.684 0.658* 0.699 0.685* 0.647 0.654 0.655 0.601 0.615 0.636 0.572 
Elevation 0.591* 0.630* 0.614* 0.578 0.628 0.612 0.567 0.655 0.601 0.551 0.636 0.534 
CostToOcean 0.585* 0.580* 0.559* - - - - - - - - - 
Percent Conifer 0.524 0.476 0.544 0.523 0.516 0.546 0.564* 0.594* 0.574 0.555 0.547 0.590* 
Flow Accumulation 0.408 0.522 0.583 0.431 0.565 0.552 0.437 0.583 0.587 0.482* 0.625* 0.617* 

             
Lower Passage-
Eleanor Island 
(LPEI) 

            

Convexity 0.687 0.688 0.703 0.718 0.709 0.725 0.725 0.717 0.726 0.779* 0.772* 0.780* 
Depth 0.636 0.642 0.645 0.642* 0.635 0.659* 0.626 0.652* 0.634 0.578 0.577 0.579 
Elevation 0.631* 0.625 0.631 0.627 0.644 0.656 0.619 0.652 0.663 0.602 0.690* 0.678* 
CostToOcean 0.624* 0.702* 0.675* - - - - - - - - - 
Percent Conifer 0.539* 0.510 0.576 0.520 0.624* 0.574 0.524 0.590 0.625* 0.539 0.601 0.610 
Flow Accumulation 0.618 0.601 0.639 0.639 0.662 0.639 0.640 0.669* 0.651 0.670* 0.653 0.675* 
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Table 3.3: Model selection using Area Under the Curve (AUC). The least complex models 

having AUC values rounded to the nearest 1/100 for each approach was deemed the best 

fitting model. † indicates the global model. 

HB Dataset AUC 

Logistic 

 Convex50m CostToOcean Depth10m Elev10m PctConf50m 0.817 

Convex50m CostToOcean Depth10m Elev10m FlowAcc100m PctConf50m † 0.824 

Convex50m CostToOcean Depth10m Elev10m 0.789 

Convex50m Depth10m PctConf50m 0.777 

Convex50m CostToOcean Depth10m  0.776 

Convex50m Depth10m Elev10m 0.772 

Convex50m Depth10m  0.762 

Convex50m CostToOcean Elev10m  0.755 

  KNN 

 Convex100m CostToOcean Depth25m Elev10m PctConf50m 0.785 

Convex100m CostToOcean Depth25m Elev10m  0.764 

Convex100m Depth25m PctConf50m 0.753 

Convex100m CostToOcean Depth25m  0.753 

Convex100m Depth25m Elev10m 0.751 

Convex100m Depth25m 0.745 

Convex100m CostToOcean Elev10m 0.734 

Convex100m CostToOcean Depth25m Elev10m FlowAcc100m PctConf50m  † 0.607 

  Maxent 

 Convex50m CostToOcean Depth10m Elev10m FlowAcc100m PctConf100m † 0.855 

Convex50m CostToOcean Depth10m Elev10m PctConf100m 0.840 

Convex50m CostToOcean Depth10m Elev10m 0.821 

Convex50m Depth10m Elev10m 0.799 

Convex50m CostToOcean Depth10m  0.797 

Convex50m Depth10m PctConf100m 0.793 

Convex50m Depth10m  0.780 

Convex50m CostToOcean Elev10m  0.776 

  

LPEI Dataset  

Logistic 

 Convex100m CostToOcean Depth25m Elev10m PctConf10m 0.817 

Convex100m CostToOcean Depth25m Elev10m FlowAcc100m PctConf10m † 0.818 

Convex100m CostToOcean Depth25m Elev10m 0.811 

Convex100m CostToOcean Elev10m 0.809 

Convex100m Depth25m Elev10m 0.806 
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Convex100m Depth25m PctConf10m 0.789 

Convex100m CostToOcean Depth25m 0.787 

Convex100m Depth25m 0.777 

  KNN 

 Convex100m CostToOcean Elev100m 0.846 

Convex100m CostToOcean Depth50m Elev100m 0.848 

Convex100m CostToOcean Depth50m Elev100m PctConf25m 0.834 

Convex100m CostToOcean Depth50m Elev100m FlowAcc50m PctConf25m † 0.833 

Convex100m Depth50m Elev100m 0.818 

Convex100m CostToOcean Depth50m 0.814 

Convex100m Depth50m 0.784 

Convex100m Depth50m PctConf25m 0.782 

  Maxent 

 Convex100m CostToOcean Depth25m Elev100m FlowAcc100m PctConf50m † 0.866 

Convex100m CostToOcean Depth25m Elev100m PctConf50m 0.862 

Convex100m CostToOcean Elev100m 0.845 

Convex100m CostToOcean Depth25m Elev100m 0.842 

Convex100m Depth25m Elev100m 0.826 

Convex100m Depth25m PctConf50m 0.807 

Convex100m CostToOcean Depth25m 0.805 

Convex100m Depth25m 0.782 
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Table 3.4: Parameter estimates for the best-fitting logistic regression model. The estimates and 

95% CI were scaled by the magnitude of the assumed effect to standardize interpretation of 

each variable.   

Parameter Estimate (SE) 

Unit 

Change 

Scaled 

Estimate 

Scaled 

Odds 

Ratio 

Scaled 95% CI 

Lower Upper 

HB Dataset       

Intercept -1.2046 (0.5595) 

 

-1.205 

 

-2.301 -0.108 

Convex50m 0.0496 (0.0103) 10 0.496 1.643 0.295 0.697 

CostToOcean -0.0003 (0.0001) 100 -0.026 0.974 -0.040 -0.013 

Depth10m -0.1874 (0.0514) 1 -0.187 0.829 -0.288 -0.087 

Elev10m -0.0432 (0.0108) 1 -0.043 0.958 -0.064 -0.022 

PctConf50m 0.0348 (0.0074) 10 0.348 1.416 0.203 0.493 

       

LPEI Dataset       

Intercept -1.1617 (0.5125)  -1.162  -2.166 -0.157 

Convex100m 0.0354 (0.0062) 10 0.354 1.425 0.233 0.476 

CostToOcean 0.0003 (0.0001) 100 0.026 1.026 0.007 0.044 

Depth25m -0.1049 (0.0531) 1 -0.105 0.900 -0.209 -0.001 

Elev10m -0.0232 (0.0073) 1 -0.023 0.977 -0.038 -0.009 

PctConf50m 0.0075 (0.0038) 10 0.075 1.077 0.000 0.149 
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Table 3.5: Estimates of relative contribution 

of each environmental variable to the Maxent 

model. For comparison, the rank of variable 

importance derived from the log-odds of the 

best fitting logistic regression model is 

included (Table 4). 

Parameter 

Percent 

contribution 

Logistic 

Rank 

HB Dataset   

Convex50m 58 1 

Depth10m 17.9 3 

Elev10m 8.3 4 

CostToOcean 6.5 5 

PctConf100m 6.2 2 

FlowAcc100m 3.2 - 

 

  

LPEI Dataset   

Convex100m 61.9 1 

Depth25m 16.6 2 

Elev100m 9.5 5 

Pctconf50m 6 3 

CostToOcean 4 4 

FlowAcc100m 2.1 - 
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Table 3.6: Threshold values derived from ROC curves for each best fitting model and 

dataset. 

 

 

 

 

 

 

 

 

 

  

 

HB Dataset LPEI Dataset 

 

Within-sample Out-of-sample Within-sample Out-of-sample 

Logistic 0.520 0.600 0.469 0.508 

KNN  0.474 0.500 0.471 0.676 

Maxent 0.404 0.374 0.296 0.393 
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Table 3.7: Model comparison metrics for each dataset derived from the confusion 

matrices. 

Model/Metric HB Dataset LPEI Dataset 

 

Within-sample Out-of-sample Within-Sample Out-of-sample 

Logistic 

    Accuracy 0.757 0.689 0.772 0.643 

Sensitivity 0.765 0.702 0.753 0.606 

Specificity 0.750 0.677 0.793 0.719 

AUC 0.824 0.735 0.817 0.685 

KNN 

    Accuracy 0.731 0.705 0.791 0.631 

Sensitivity 0.710 0.678 0.772 0.620 

Specificity 0.758 0.742 0.814 0.646 

AUC 0.785 0.738 0.846 0.644 

Maxent 

    Accuracy 0.786 0.695 0.772 0.700 

Sensitivity 0.781 0.679 0.720 0.668 

Specificity 0.791 0.715 0.853 0.747 

AUC 0.855 0.713 0.866 0.716 
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Table 3.8: Calculated difference between within-sample and out-of-sample 

metric values measuring classification accuracy. 

 

Accuracy Sensitivity Specificity AUC 

Logistic (HB) 0.068 0.063 0.073 0.089 

KNN (HB) 0.026 0.032 0.016 0.047 

Maxent (HB) 0.090 0.102 0.075 0.142 

Logistic (LPEI) 0.129 0.147 0.074 0.132 

KNN (LPEI) 0.160 0.152 0.169 0.202 

Maxent (LPEI) 0.072 0.052 0.107 0.150 

     Logistic (Mean) 0.099 0.105 0.073 0.110 

KNN (Mean) 0.093 0.092 0.092 0.124 

Maxent (Mean) 0.081 0.077 0.091 0.146 
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Figure 3.1: Study area with the two geographic datasets (Herring Bay-HB, and Lower 

Passage/Eleanor Island-LPEI) differentiated by color. 
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Figure 3.2: Masked buffer process. For example, a 30m of the coastline representing the 

terrestrial or marine portion of the environment (A), then a point-buffer of a given radius is 

created (B) and intersected with the 30m marine portion of the nearshore environment (C). 
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Figure 3.3: Scatterplot of AUC and AIC values for both datasets and the corresponding 

regression line. AIC values were obtained from the logistic regression analysis. The raw AIC 

values were divided by the sample number to create a comparable metric between the datasets. 

Regression line equation and associated R2 also included. 
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CHAPTER 4 

 

MODELING BEHAVIOR OF COASTAL RIVER OTTER (LONTRA CANADENSIS) IN 

RESPONSE TO PREY AVAILABILITY IN PRINCE WILLIAM SOUND, ALASKA:  A 

SPATIALLY-EXPLICIT INDIVIDUAL-BASED APPROACH1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1Shannon E. Albeke, Nathan P. Nibbelink, and Merav Ben-David. To be submitted to 

Ecological Monographs 
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ABSTRACT 

 

The transport of nutrients between sea and land by coastal river otters is an important 

process affecting the productivity of nearshore terrestrial vegetation. The social behavior of 

otters is directly associated with the presence of schooling pelagic fish. Social otters 

cooperatively forage on fish schools and use latrine sites to communicate group associations 

and dominance. Conversely, solitary otters feed primarily on intertidal fish and use latrines to 

communicate mutual avoidance. This behavioral mechanism creates variable nutrient 

deposition rates to the nearshore environment. To increase our understanding of system 

processes, a spatially-explicit individual-based model (IBM) was developed to investigate 

landscape-level effects of spatial and temporal variation in nutrient transport by coastal river 

otter. The IBM simulated behavioral responses by otters based on variability in abundance, 

spatial location and timing of schooling fish, coupled with the relative habitat quality of the 

nearshore environment. Additionally, a sensitivity analysis was performed to determine which 

processes (i.e. parameters) most affected otter behavior and subsequent nutrient deposition. A 

set of nine simulation experiments were completed, each having 10 replicates. Results from the 

IBM overwhelmingly indicate otter behavior is almost entirely driven by prey availability. Of the 

six measured response variables (daily fecal counts, defecation rate, hours of activity, fish 

school forage success, social groups, and coastline use), five of the twenty-four possible 

variable combinations experienced noticeable variation. The response variables were always 

significantly different for simulation experiment R03 (no schools), and the behavioral response 

was always to the detriment of otter fitness. The spatial pattern of fecal deposition was 

heterogeneous across the coastal landscape, mimicking the observed variation recorded during 

the 2006 and 2007 sample periods. The IBM was able to reproduce observed patterns in 

nutrient transport, facilitated by the behavioral response of otters to pelagic fish schools and the 

subsequent creation of social groups. The inclusion of vision, olfaction and memory as viable 
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forms of otter sensing and their quantifiable response to these stimuli provide a strong 

behavioral foundation for the IBM.  

 

INTRODUCTION 

 

As with seabirds (Anderson and Polis 1998, Hobson et al. 1999, Mulder and Keall 2001), 

piscivory by coastal river otters (Lontra canadensis) in nearshore coastal areas provide a 

pathway for nutrient transport between sea and land (Ben-David et al. 1998), thus extending the 

resource shed of the terrestrial community into the ocean (Power and Rainey 2000). Marine-

derived carbon (C), nitrogen (N), and phosphorus (P) transported by river otters to terrestrial 

latrine sites (specific locations along the shoreline) can be several orders of magnitude higher 

than other nutrient inputs in this system (Giblin et al. 1991, Lilleskov et al. 2001).  

In Prince William Sound (PWS), Alaska, social otters use latrine sites as communication 

tools, advertising group associations and dominance (Rostain et al. 2004, Ben-David et al. 

2005). Predominantly male, social otters that forage cooperatively on schooling pelagic fish in 

the nearshore environment (Blundell et al. 2002a) use fewer latrines at high frequency. In 

contrast, nonsocial otters (mostly females and some males) tend to feed on intertidal/benthic 

fishes and visit numerous latrine sites with low frequency (Ben-David et al. 2005). This 

behavioral mechanism, determined by otter demography and the distribution of pelagic fishes in 

the nearshore environment, creates variation in nutrient transport from sea to land. The effect of 

spatial and temporal variation in allochthonous inputs of C, N, and P on the nearshore 

ecosystem and the emergent landscape heterogeneity in PWS is not well understood. To 

increase our understanding of system processes, Ben-David et al. (2005) proposed a need to 

develop a spatially explicit individual-based model of otter behavior which will identify the 

important factors underlying the subsequent variation in nutrient transport to the terrestrial 

community. 
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Individuals are the building blocks of inherently complex ecological systems (Grimm and 

Railsback 2005), and provide a natural scale at which to make measurements of ecological 

interactions (Pascual and Levin 1999). Railsback (2001) has stated that modeling individuals 

may be an easier task than modeling populations because individuals are more limited in their 

range of responses and their behavioral response may be more predictable than a population 

response. Individuals respond to internal changes and the external environment by seeking 

„fitness‟ through adaptive behavior (Grimm and Railsback 2005). From these behaviors, system 

level properties emerge (Grimm 1999, Railsback 2001, Grimm and Railsback 2005). These 

characteristics comprise the foundation of individual-based modeling. 

Individual-based models (IBM) have been used since the 1970‟s (Grimm 1999), and are 

simulation models that treat individuals as unique and discrete entities. These discrete entities 

have at least one property, in addition to age, that changes during the cycle of the model  

(Grimm 1999). IBMs are often developed to gain a deeper understanding of system dynamics 

through individual behavior and implemented because classical approaches ignore individual 

differences and local interactions (Grimm and Railsback 2005). Spatially explicit IBMs 

incorporate population dynamics within heterogeneous landscapes by specifying the explicit 

location of objects (organism, population, habitat patch) and their spatial relationship to other 

landscape features (Dunning Jr. et al. 1995). 

Individual-based models have several advantages. First, IBMs allow researchers to 

consider aspects of a system typically ignored in analytical models, including variability among 

individuals, local interactions, complete life cycles, and adaptive behavior to internal and 

external stimuli (Grimm et al. 2006). Additionally, an IBM allows for the testing of a theory under 

many different conditions, an attribute typically not available in natural systems (Grimm and 

Railsback 2005). This attribute is desirable given the myriad of potential climate change 

scenarios.  
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The objective of this research is to investigate landscape-level effects of spatial and 

temporal variation in nutrient transport by coastal river otters via a spatially explicit, individual-

based model. We hypothesize that the arrangement and availability of high quality prey (pelagic 

fish schools) will result in differing patterns of deposition to the coastal landscape. As otters 

forage, communication of located sources of pelagic fish to other otters through feces will create 

a variable pattern of deposition across the landscape. First, to test the sensitivity of the model to 

variations in parameterization, a set of six simulation scenarios testing three model parameters 

will be compared with the baseline simulation scenario. Each of these scenarios will use an 

„informed‟ pelagic fish model. To test the response of otters to variation in pelagic fish 

availability, two additional simulation scenarios, one randomly placing pelagic fish within the 

landscape network and the other removing pelagic fish entirely from the model, will be run. The 

response of individual otters to prey availability and the resulting pattern of fecal deposition will 

be tested against observed data.  

 

BIOLOGICAL BACKGROUND 

 

Study Area 

 

The study area is located in the southwestern portion of Prince William Sound (PWS), 

Alaska and includes four islands:  Knight Island (60.47 N, 147.75 W), Disk Island (60.49 N, 

147.65 W), Ingot Island (60.53 N, 147.64 W) and Eleanor Island (60.55 N, 147.59 W) (Figure 

4.2). The study area is approximately 240 km2, encompassing 245 km of coastline. The study 

area has a maritime climate with cool and wet summers followed by winters of deep snow 

accumulation (Ben-David et al. 2005). The coastal landscape is typically snow-free from early 

May to early November. The structure of the coastline is primarily steep and rocky with some 

flat, low gradient beaches and numerous bays and inlets (Bowyer et al. 1995). The coastal 
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vegetation is primarily old-growth forest of Sitka spruce (Picea sitchensis) and western hemlock 

(Tsuga heterophylla), with a well-developed under-story layer comprised of Oplopanax horridus, 

Vaccinium spp., Menziesia ferruginea, and Rubus spp. (Ben-David et al. 1998).  

The bathymetric gradient of the nearshore environment is highly variable, ranging from 

near vertical to slopes of only a few degrees. The substrate is also variable with sizes ranging 

from large boulders to fine sediment (Bowyer et al. 2003). Large tidal fluctuations in this habitat 

(annual maximum tide of 4.66 m and a minimum tide of -1.13 m) (NOAA 2007) greatly affect the 

vegetative community. Two kelp species (Agarum cribrosum and Laminaria saccharina) 

dominate rock within sheltered bays and less exposed coastline (Dean et al. 1996, Dean et al. 

2000). On exposed points, bull kelp, Cereocystis luetkeana, comprises the canopy and 

Laminaria bongardiana the understory (Dean et al. 1996, Dean et al. 2000). Eelgrass, Zostera 

marina, dominates softer substrate usually found in inner bays (McRoy 1968, 1970, Dean et al. 

1998, Dean et al. 2000). The majority of the intertidal region of the coastline is dominated by 

Fucus gardneri, interspersed with red and green algae (Gilfillan et al. 1995, Stekoll et al. 1996, 

Dean et al. 2000). 

The nearshore environment supports a diverse fish community. The community can be 

described as two distinct groups: resident intertidal-demersal species and migratory pelagic 

species. The intertidal species primarily belong to the families Cottidae, Scorpaenidae, 

Hexagrammidae, Cancridae, together with invertebrates such as mussels (Mytilus trossulus), 

crabs (Metacarcinus gracilis, M. magister and others), chiton (Tonicella lineata) and clams 

(Pelecypoda) (Larsen 1984, Boehm et al. 2004). These species are a ubiquitous, non-migratory 

prey base for coastal river otter (Dean et al. 2000, Blundell et al. 2002a, Mecklenburg et al. 

2002, Ben-David et al. 2005).  Salmonidae, Ammodytidae, Clupeidae, and Gadidae comprise 

the pelagic fish species using the study area for spawning (Larsen 1984, Blundell et al. 2002a). 

These schooling pelagic fish species typically migrate into the study area in early May and 

return to the open ocean or expire (salmon) by November (Brown et al. 1999, Blundell et al. 
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2002a, Brown 2002, Mecklenburg et al. 2002). As otter prey, the schooling pelagic fish have a 

higher energy density than the intertidal-demersal fish (Anthony et al. 2000, Blundell et al. 

2002a). 

Coastal River Otter 

 

The North American river otter (Lontra canadensis) is an aquatic member of the weasel 

family (Liers 1951, Hall 1981) and neither hibernates nor migrates (Melquist and Hornocker 

1983, Bowyer et al. 2003).River otters are nearly ubiquitous in coastal areas of the Gulf of 

Alaska, including the study area (Hall 1981, Bowyer et al. 1995) and prey upon marine fishes 

and invertebrates inhabiting the nearshore environment (Larsen 1984, Stenson et al. 1984, 

Bowyer et al. 1994, Bowyer et al. 1995, Ben-David et al. 1998). Blundell et al. (2004) found the 

sex ratio of river otter in PWS to be approximately 66% male. This finding is supported by 

additional data collected within the study area (Ott et al. in Prep). River otter abundance within 

the study area has been estimated to be between 0.28 and 0.8 otter per km of coastline (Testa 

et al. 1994). This estimate is similar to recent abundance estimates of 0.442 otters/km derived 

by Ott et al. (in Prep). 

River otters inhabiting coastal areas of PWS exhibit an atypical social behavior in 

comparison to other mammals (Blundell et al. 2002a, Blundell et al. 2004). In this system river 

otters occur in large groups of males (Rock et al. 1994, Blundell et al. 2002a). These 

aggregations (3-18 otters) facilitate foraging efficiency on schooling pelagic fish within the 

nearshore environment (Blundell et al. 2002a, Blundell et al. 2004, Ben-David et al. 2005). As 

the number of pelagic fish schools decrease, so does group size (Blundell et al. 2002a). In 

contrast, female otters and some males remain solitary year round, foraging primarily on 

intertidal-demersal fish, but occasionally joining a male group to opportunistically forage on 

pelagic fish (Blundell et al. 2002a).   
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Similar to other mustelids, river otters communicate through scent-marking (Lariviére and 

Walton 1998, Ben-David et al. 2005).Scent-marking through feces, urine and anal gland 

secretions occurs at specific locations along the coast, known as latrine sites (Blundell et al. 

2002a, Bowyer et al. 2003, Ben-David et al. 2005, Guertin et al. 2010). Communication through 

scent marking appears to have two different functions: social otters use latrine sites for intra-

group communication, signaling resource use and facilitating group cohesion (Ben-David et al. 

2005); solitary otters use latrine site scent marking to indicate territorial boundaries and 

encourage mutual avoidance (Ben-David et al. 2005). 

Blundell et al. (2001) found that male otters occupy a home-range of more than twice the 

size of female otters. Concurrently, male otter home-ranges tended to have a higher proportion 

of overlap while females had low spatial overlap and distinct core areas of use (Blundell et al. 

2001). In addition, social otters (largely males) tend to visit fewer latrine sites than do solitary 

otters, but social otter latrine sites have a higher frequency of use than do solitary otter latrines 

(Ben-David et al. 2005). 

Because river otters forage in an aquatic environment and use latrine sites exclusively for 

urination and defecation, nutrients are transported in the opposite direction of the typical 

downstream nutrient-flow within a watershed. This nutrient transport extends the resource shed 

of the terrestrial community into the ocean (Power and Rainey 2000). With this concept in mind, 

Ben-David et al. (2005) estimate that on average the input of marine derived nutrients to the 

coastal landscape at latrine sites is much greater than non-latrine areas. 

Data Collection   

 

In May 2006, 326 otter latrines were identified along the 144 km of shoreline surveyed 

within the study area. Point-locations were recorded at the entrance to each latrine site using a 

Garmin 12xl GPS unit. The identified latrines account for over 95% of existing sites within the 

study area (Ben-David and Golden 2007). All other sites in the study area were classified as 
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non-latrine. During the summer months (May – August) of 2006 and 2007, otter feces were 

counted on 100 of these latrines using a stratified random approach. The stratification was 

based on island (Knight, Disk, Ingot and Eleanor) and the initial (2006) fecal counts (<100 

representing low use and >100 representing high use). For example, because 54% of all sites 

occurred in Herring Bay on Knight Island, 54 sites were monitored for fecal deposition in that 

location. Of these 54 sites, 21 were high-use latrines, in accordance with the 39% occurrence of 

high use sites in the entire study area. Each fecal deposit was recorded and marked with glitter 

(Glitterex Corp., Cranford, NJ) to avoid duplicate counts on subsequent surveys. Each latrine 

was sampled 9 times in 2006 and 5 times in 2007.   

THE MODEL 

 

The individual-based model description follows the „Overview‟, „Design concepts‟ and 

„Details‟ (ODD) protocol proposed by Grimm et al. (2006). The IBM was developed using 

Microsoft Visual Studio 2010 TM and Visual Basic.NET v4.0. All random values from statistical 

distributions were obtained using Program R via the statconnDCOM interface (Heiberger and 

Neuwirth 2009, R Development Core Team 2010). Microsoft Access TM was used to store all 

model input and output. 

4.1. Overview 

4.1.1 Purpose 

 

The individual-based model (IBM) was designed to simulate the behavior of coastal river 

otter in response to changes in prey availability within the study area using a spatially-explicit 

approach.  Several processes directly affect the behavior of otters and the subsequent 

variability in fecal deposition along the coastline, including prey availability, abiotic habitat 

structure and unique social behaviors facilitating communication. The IBM aims to shed light on 
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these processes and ascertain which process most influences otter behavior and the 

subsequent consequences for the nearshore environment. 

4.1.2 State variables and scales 

 

Individual otter variables are age, sex, activity-state (active or resting), number of hours in 

current activity-state, defecation-state (defecated or not), number of hours since defecating, 

satiation-state (fed on pelagic fish school or not), and spatial location. For females only, the 

central point along the landscape network „edge‟ of the individual‟s 50% core home range, as 

well as the habitat encompassed by the home range, are also included as static state variables 

in the model. The model is constructed to hourly track the activity of each individual for a period 

of 92 days (2208 hours), beginning on May 15, 2006 and ending August 15, 2006, matching the 

timeframe of field collected data. Otter movements were restricted to a landscape network 

comprised of 245 km of coastline and an additional 80 km of „virtual lines‟ (Figure 4.2; Section 

4.4) (Vuilleumier and Metzger 2006). All movement distances and home range sizes are 

measured in meters. 

The landscape network has three state variables assigned to each point-location, the 

abiotic habitat quality (likelihood of being an otter latrine), a radial-extent scaling factor, and 

potential pelagic fish spawning habitat. Using the variable and model selection approach 

described in Chapter 3, Maximum Entropy (Maxent) was used to estimate the probability of use 

of each point-location as a latrine site (MEP) (Phillips et al. 2006, Phillips and Dudík 2008). The 

Maxent model was developed using the entire study area dataset. The variables used for the 

Maxent model include convexity of the shoreline within 50m, distance to open ocean, mean 

depth within a 10m radius, mean elevation within 10m, mean flow accumulation within a 100m 

radius and percent area having coniferous vegetation within 50m. These variables were chosen 

to follow the abiotic conditions known to affect otter latrine site selection (Larsen 1983, Bowyer 

et al. 1995, Bowyer et al. 2003, Ben-David et al. 2005, Albeke et al. 2010). 
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The radial-extent scaling factor was required to accurately represent female home-range 

size (Section 4.3). Because the landscape network was highly connected (i.e. island coastlines 

connected to themselves, etc.), a randomly drawn home-range size, if applied as a radius (½ 

the home-range size) onto the network, would encompass a greater extent of habitat than 

expected. The extent of occupied habitat exceeding the randomly drawn value varied for each 

10m location along the coastline, referred to as a point-location. To account for this 

phenomenon, the actual extent of habitat was calculated for each point-location at seven 

different radii (100, 500, 1000, 2000, 4000, 6000, and 10,000 meters). The ratio between the 

expected and actual network distances was calculated and an exponential curve was fit for each 

point-location. The estimated parameters were then used to scale the randomly drawn home-

range value, given the point-location of the female otter (Section 4.3). 

The most common pelagic fish occurring in the study area were Pacific herring (Clupea 

pallasi), Pacific capelin (Mallotus villosus) and sand lance (Ammodytes hexapterus) (Blundell et 

al. 2002a). These fish species become available to otters during seasonal spawning migrations 

to the nearshore environments (Robards et al. 1999, Norcross et al. 2001, Brown 2002). The 

preferred spawning habitats of these fishes are typically shallow coastline areas, sheltered from 

heavy wave action and contain submerged marine vegetation (Haegele and Schweigert 1985). 

Pacific herring most commonly choose spawning areas < 10m in depth (Haegele and 

Schweigert 1985, Hay et al. 2009). However, depths of < 3m have been suggested as most 

preferable by herring (Bargmann 1998). Additionally, sand lance tend to spawn in fine-grained 

substrate at depths of approximately 1.55m (Penttila 2007). Thus, using the depth at 25m 

variable (see Chapter 3), point-locations having a value ≥ -3.04m were included as potential 

spawning habitat for pelagic fish during simulations (8,108 out of 24,520 locations). 

The temporal scale for fish schools was treated slightly differently than the scale of otters. 

Fish schools were randomly placed onto the network for each simulated hour. The assignment 

of school locations was restricted to the point-locations meeting the depth requirement (unless 
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otherwise specified). However, the number of schools available during a given time step was 

calculated at the beginning of each 24 hour period (i.e. once per day) and held static for the 

entire day. 

4.1.3 Process overview and scheduling 

 

The model simulates individual otter movement and behavior through foraging, 

recuperation and olfactory communication processes (Figure 4.1). The model begins at 

midnight, May 15, 2006, with each otter having predetermined states (Section 4.3). During a 

given time step, the activity-state of each otter was assessed. The majority of simulated 

behaviors occur for otters that are currently active. Active otter‟s foraging behavior is influenced 

by the presence of otter feces and/or fish schools. The completed foraging event is followed by 

defecation behavior that is driven by the defecation-state, satiation-state and spatial location of 

the individual. The maintenance of an individual‟s current activity-state is driven by the hours 

within the current activity-state and the satiation-state. Recuperating otters (i.e. resting at a 

static location) assess the maintenance of their current state and proceed with defecation 

behavior if switching to the active-state. The simulation process repeats every hour for a total of 

2208 hours (i.e. 92 days) until 12:00am on August 16th, 2006 is reached.  

The placement of pelagic fish schools along the coastline also occurs on an hourly basis. 

Each fish school is randomly placed at an available unique point-location and remains there 

only for the given time step. The timing and random placement reflect the dynamic movement of 

the pelagic fish schools within the 1-hour window (Brown et al. 1999). The number of fish 

schools is calculated at 12:00am for each day of the simulation. This value is held constant for 

the 24-hour period. 
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4.2. Design concepts 

 

4.2.1 Emergence  

 

There are two system-level patterns that emerge from the otter behavior model. The first, 

and primary objective of this modeling exercise, is to assess the spatio-temporal distribution of 

fecal deposits by otters. The resulting patterns will describe if the simulated nutrient deposition 

by otters are randomly occurring, creating homogenous nutrient input to the coastal 

environment, or if a heterogeneous pattern arises. A heterogeneous distribution pattern of 

nutrient deposition would create an influx of nutrients to specific locations along the coastline 

and influence landscape heterogeneity (Ben-David et al. 2005, Roe et al. 2010).  

The social behavior of coastal river otters has been well documented (Testa et al. 1994, 

Blundell et al. 2000, Blundell et al. 2002a, Ben-David et al. 2005). Social otters use scent-

markings to communicate group association while solitary otters mark territorial boundaries 

(Ben-David et al. 2005). Thus, a second emergent pattern may arise from otter defecation 

behavior and communication through scent (feces) markings. The aggregation of virtual otters 

into social groups because of food dispersion would follow field observed social behavior and 

potentially explain some the heterogeneous fecal deposition patterns observed through field 

collected data. 

4.2.2 Adaptation 

 

The model allows for each otter, while in an active-state, to directly adapt to their current 

surroundings. First, foraging otters use a 50m visual-sense to locate fish schools and/or best 

available habitat conditions. This relatively short distance was chosen because otters are 

adapted to forage underwater, and are therefore nearsighted (Chapman and Feldhamer 1982). 

If a fish school is located, the otter stops moving along the network to feed on the school for the 

remainder of the time step. In addition to using sight, male otters use olfaction to detect potential 
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prey availability. While traversing the landscape network on a foraging excursion, males have 

the chance to detect scent-markings left by other otters. If a scent-marking is detected, the male 

chooses to move in the direction of the detected scent in hopes of finding high quality prey. 

4.2.3 Fitness 

 

The defecation behavior of each otter is directly related to the type of prey consumed. 

Pelagic fish have higher lipid content, providing greater caloric value than demersal fish 

(Anthony et al. 2000). Additionally, the schooling behavior of pelagic fish provides a greater 

density of prey per unit area. Therefore, otters locating and feeding on a fish school increase 

their own fitness and potentially that of other nearby foraging otters. The individual otter locating 

a fish school gains additional energy per hour of foraging and increases the likelihood of 

reaching satiation. A more satiated otter is less likely to be in an active-state; thus hypothetically 

reducing the risk of predation (mortality is not included in this model) or injury through foraging 

excursions. Concurrently, an otter feeding on a fish school is more likely to defecate after 

feeding. The defecation behavior of the individual otter, coupled with other males‟ attraction to 

scent-markings, increases the likelihood of multiple otters congregating in the location of the 

located fish school. A group of otters have higher efficiency in capturing pelagic fish than solitary 

otters through cooperative foraging (Blundell et al. 2002a).  

4.2.4 Prediction 

 

As was described in Section 4.2.2, otters use detection of scent-markings as an indicator 

of high-quality prey availability (Kruuk et al. 1991). The assumption, and subsequent prediction, 

made by each otter is that if a cohort defecates, pelagic fish schools must be nearby. 

4.2.5 Sensing  

 

Each otter uses three separate types of sense: olfactory, visual and memory. The male 

otter uses olfaction to imperfectly detect scent-markings from other otters (see eq. 6). The otter 
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can smell a scent-marking up to 1km from its current location. This type of sense directly 

influences the choice of movement direction along the landscape network. The otter continually 

uses its visual sense during foraging excursions. It was assumed an otter would be acutely 

aware of the biotic and abiotic conditions within 50m of its current location, allowing the otter to 

sense nearby fish schools and the highest quality habitat. Finally, otters were assumed to have 

perfect memory of the local habitat. M. Ben-David has observed (unpublished data; personal 

observation) telemetered otters foraging on pelagic fish schools. In these observations, upon 

completion of the feeding, the otters often travelled long distances to a preferred latrine site 

usually with a well-established den to rest. Thus, a virtual otter transitioning from active-state to 

inactive-state will choose the point-location on the network having the highest habitat score 

(probability of being a latrine; MEP) within 1km of its current location.  

4.2.6 Interaction 

 

Individual otters are assumed to cooperatively forage during active-state interactions. It is 

possible for two otters to cross paths and not forage together, but only if a fish school is not 

present. Female otters were assigned exclusive 50% core home-ranges during model 

initialization (Blundell et al. 2000). However, during foraging excursions females can cross into 

another female otter‟s core area without repercussion.  

4.2.7 Stochasticity  

 

Stochasticity was introduced into the model through four separate otter-specific processes 

and the behavioral parameters were expressed as probabilities or drawn from empirical 

statistical distributions:  

1. The movement distance for an individual foraging excursion was randomly drawn from 

a truncated normal distribution (distance > 0) using a mean (SD) derived from 8 

telemetered otters within the study area (Table 4.1; M. Ben-David unpublished data). M. 
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Ben-David and colleagues measured the behaviors of otters to the nearest second, for 

a 24 hour period for a full summer in 1991.  

 

2. At each landscape network node, the next path chosen by a male otter was first 

assessed through the detection of scent-markings. For the nearest fecal deposit to the 

otter‟s current location, a Bernoulli trial was conducted to determine if the scent was 

detected. The probability of successful detection was derived from a pair of equations 

combining the effect of distance and age of the fecal deposit (see eq. 6, 7). If no scent 

was detected, the next movement-path was randomly drawn from all possible paths, 

excluding the previously traveled path. 

 

3. Having a successful defecation event by an otter was determined using a Bernoulli trial 

in which the probability was derived using a set of equations using the number of hours 

since the previous defecation event (mean (SD)) and the habitat quality of the currently 

occupied point-location as parameters (MEP; see eq. 2, 3).  

 

4. For an otter currently in the active-state, the transition probability is derived from the 

mean (SD) of the timed otter behavior from the data collected for 8 telemetered otters in 

1991 (M. Ben-David unpublished data; see eq. 4) and tested using a Bernoulli trial. 

 

5. The final stochastic process occurs when or an otter currently in the inactive-state. The 

probability of transitioning to the active-state is derived from the mean (SD) of the timed 

otter behavior from the data collected for 8 telemetered otters in 1991 (M. Ben-David 

unpublished data; see eq.5) and tested using a Bernoulli trial. 
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An additional stochastic process is the random placement of fish schools onto available 

point-locations. To perform this operation, the list of available point-locations was obtained with 

all having equal weight. Each fish school is placed onto the network, without replacement of the 

point-location, for each time step. 

4.2.8 Collectives 

 

Otters are known to create social groups to facilitate foraging success (Blundell et al. 

2002a, Ben-David et al. 2005). This behavior is not explicitly represented within the model. 

However, the use of scent-markings as an adaptive behavior by male otters may produce social 

collectives of otters through emergent behavior (Sections 4.2.1 – 4.2.3). 

4.2.9 Observation  

 

All data output were stored within five MS Access database tables. The „tblOtter‟ table 

stores otter specific information, including the otter‟s age, gender and randomly assigned home 

range size (female only). The table „tblOtter‟ relates to tables „tblStateValues,‟ and 

„xrefHomeRange‟. The table „xrefHomeRange‟ stores the route events describing each female‟s 

50% core home range that cannot overlap with another female. The individual information for 

each otter state-values (time step, spatial location, activity-state, hours of activity-state, 

defecation-state, hours since defecating, and satiation-state) are stored in the „tblStateValues‟ 

table. The spatial location and time step of each fecal deposition event is tracked in 

„tblPoopTracker‟, while the timing and location of each fish school is managed in 

„tblFishSchools‟ table.  

The capture of information at the finest temporal scale allows for the synthesis of model 

results at hourly, daily, monthly or the entire study period time-scales. The temporal scales can 

be used to assess otter behavior for individuals, groups or the entire population. The information 

contained within the database can be used to perform multiple analyses. Fecal deposition rates 
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and the spatial configuration can be described for the landscape network. On an individual 

basis, defecation frequency, active-state frequency, satiation-state frequency and social 

grouping patterns can be extracted from the data.  

4.3. Initialization 

 

Portions of the landscape network were initially attributed as either within or outside the 

study area (Section 4.4). The study area comprised 58% of the total available coastline within 

the landscape network. Thus, estimates of otter demographic parameters within the study area 

were extrapolated to the entire landscape network. 

4.3.1 Otters 

 

The density of otters within the study area was previously estimated to range between 

0.28 to 0.8 otters/km of coastline (40-115 otters; (Testa et al. 1994). Recent abundance 

estimates, conducted by Ott et.al. (in Prep), are within previous estimates and have a 95% CI 

equal to 55-78 otters. To begin each simulation, a value was randomly drawn from a uniform 

distribution bounded by Ott et.al. (in Prep) 95% CI, representing the number of otters within the 

study area. The total number of otters assigned the out-of-area coastline was calculated by 

multiplying the random density by 1.708, rounded to the nearest integer, and the sample area 

number subtracted from the total.  

The state of each otter was also determined prior to the simulation. First, each otter was 

assigned a gender based on an average M:F ratio (69% male) derived from previous studies 

(Chapman and Feldhamer 1982, Lariviére and Walton 1998, Blundell et al. 2004, Ott et al. in 

Prep). The age of each otter was randomly assigned by drawing values from a list, without 

replacement, calculated by the equation: 

 

Ni = T * (0.3703 * Exp(-0.314 * i ))   (1) 
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where Ni is the number of otters at age i given the proportion of total number of otters (T) at age 

i. The equation was derived from age frequency distributions found in Chapman and Feldhamer 

(1982).  

The activity-state was assigned using a Bernoulli trial with the probability of being „Active‟ 

calculated as the ratio of average hours Active:Inactive (1.43:11.69), which was equal to 0.122 

(M. Ben-David unpublished data). The number of hours at the current activity-state was 

randomly assigned using a uniform distribution bounded by 0 and the upper 95% CI for each 

activity-state, rounded to the nearest integer. The upper 95% CI for „Active‟ was 1.88 hours and 

15.32 hours for „Inactive‟ (Table 4.1; M. Ben-David unpublished data). Ormseth and Ben-David 

(2000) found captive otters to defecate, on average once every 4.865 hours (used raw-data). 

Thus, the number of hours since last defecating was randomly drawn from a uniform distribution 

bounded by 0 and 5. 

The final initialization step for each otter was the placement onto the landscape network. 

This step was performed separately for the study area and out-of-area portions of the landscape 

network. Point-locations were filtered to include only habitat values > 0.464 (MEP). This optimal 

threshold value for the MEP was chosen using methods described in Chapter 3.  Males were 

randomly assigned a point-location within the landscape network and potential overlap of 

locations was allowed. On the other hand, the placement of females onto the landscape network 

required the individual be first assigned a core home range size. Blundell et al. (2000) estimated 

mean 50% core female home range to be 4km (SD= 2) of coastline. Using these parameter 

values, the home range was randomly drawn from a truncated normal distribution (value > 0). 

Next, a random point-location was chosen and the home range size was adjusted using the 

radial-scale adjustment equation (Section 4.1.2) for the unique point-location. Next, the home 

range extent was placed onto the network by dividing the adjusted value in half and radiating 

out in all available paths for the remaining distance (e.g. 100m home range would be 50m in 

both directions). Previous studies have indicated that female 50% core home ranges do not 
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overlap (Blundell et al. 2000, Gorman et al. 2006). Thus, if any portion of the generated home 

range overlapped with an existing female otter, a new point-location was randomly chosen and 

the process repeated until all females were placed onto the landscape network.  

4.3.2 Pelagic Fish Schools 

 

The timing of the spawning migration of pelagic fish to the nearshore environment varies 

annually by species and magnitude (Haegele and Schweigert 1985, Brown et al. 1999, Robards 

et al. 1999, Blundell et al. 2002a, Brown 2002). Because pelagic fish schools have been shown 

to play an integral role in otter behavior (Blundell et al. 2002a, Ben-David et al. 2005), 

accounting for the timing and abundance of fish schools is important. In this model, we do not 

differentiate between fish school species. Rather the presence of a fish school was deemed 

most important.  

Using georeferenced, aerially identified fish school data provided by Ben-David et al. 

(2005), the number of fish schools within 100m of the coastline, during a one-day period, were 

counted for years 1996-1999. The minimum (40) and maximum (98) number of schools became 

the bounds for a uniform distribution used to set the maximum number of schools that could be 

available during a simulation. The timing of fish schools entering the simulation is explained by 

eq. 8.  

4.4. Input 

 

The coastline portion of the landscape network was digitized from IKONOS® 1-meter 

panchromatic satellite imagery at a 1:1,500 scale, resulting in 245.3 km of coastline (Figure 4.2). 

An additional 80.3 km of „virtual lines‟ were appended to the network (Figure 4.2) (Vuilleumier 

and Metzger 2006) to act as travel corridors connecting individual islands, or the same island 

having a large bay, to each other. The virtual lines were constructed through a multiple step 

process. First, Thiessen polygons were created using the 10m point-locations (see Chapter 3). 
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The polygons were then converted into a line feature class. For approximately every 5 km of 

coastline, the line connecting two islands or a bay was retained and the excess removed. The 

remaining virtual lines were slightly modified to create a straight-line having only two vertices 

connecting the coastline(s). The Network Analyst extension within ArcGIS 9.3.1 (ESRI, 

Redlands, CA) was used to identify network nodes and populate the adjacency table describing 

the connectivity of network edges. 

4.5. Submodels 

 

For each submodel, please review Table 4.1 for parameter values used for each statistical 

distribution.  

4.5.1 Defecation 

 

The probability of an otter defecating during a given time step is driven by three factors, 

hours since previous defecation event, habitat quality (MEP), and satiation-state. Using the 

equation: 

 

 P(de) =        )  )      (2) 

 

where the probability of a defecation event (de) was equal to the cumulative probability of a 

normal function (cdf) given the hours since the previous defecation (hr) raised to the hth (eq. 3) 

power and multiplied by the satiation-state (s). The cdf was parameterized using data obtained 

from Ormseth and Ben-David (2000) and the satiation-state was equal to 2 if the otter had fed 

on a fish school and 1 otherwise. The hth power is equal to: 

 

          )         (3) 
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For otters having fed on a fish school (s = 2), the probability of a defecation event doubles. 

The value of P(de) was used as the probability of successfully experiencing a defecation event  

using a Bernoulli trial. For instances when the satiation-state (s) increased P(de) to become > 1, 

the value was set equal to 1. 

4.5.2 Active-to-Inactive 

 

The probability of an otter transitioning from an active state to an inactive state is 

calculated by obtaining the cumulative probability of a normal function given the hours of being 

in the active-state (cdf(hr)) and the satiation-state (s): 

 

 P(ai) =       )   ⁄    (4) 

 

The cdf was parameterized using the unpublished telemetry data collected by M. Ben-

David. It was assumed that an otter having fed on higher quality prey would be more satiated 

and require less foraging effort. Thus, the satiation-state was equal to 2 if the otter had fed on a 

fish school and 1 otherwise. The probability of successfully transitioning to the inactive-state 

was tested using a Bernoulli trial. The satiation-state will be reset to indicate the otter has not 

fed on a fish school during the following time step if the otter chooses to remain active. 

4.5.3 Inactive-to-Active 

 

The probability of an otter transitioning from an inactive state to an active state is 

calculated by obtaining the cumulative probability of a normal function given the hours of being 

in the inactive-state (cdf(hr)) and the satiation-state (s): 

 

 P(ia) =       )   ⁄    (5) 
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The cdf was parameterized using the unpublished telemetry data collected by M. Ben-

David. It was assumed that an otter having fed on higher quality prey would be more satiated 

and be more apt to remain inactive. Thus, the satiation-state was equal to 1 if the otter had fed 

on a fish school and 2 otherwise. The probability of successfully transitioning to the active-state 

was tested using a Bernoulli trial. The satiation-state remains constant for the entirety of the 

otter‟s resting period and will be reset to indicate the otter has not fed on a fish school once 

transitioning to the active-state occurs. 

4.5.4 Male Movement - Scent Detection 

 

The movement of males within the landscape network is influenced by the detection of 

scent-markings. The probability of an otter detecting a scent-mark is driven by the distance 

between the otter and scent-mark and the age (hours) of the scent-mark. It was assumed that a 

male otter could detect another otter‟s scent-mark from a distance up to 1km. This assumption 

is represented by the equation: 

 

        )              )   (6) 

 

where the probability of detecting a scent-mark (P(scent)) is negatively related to the distance 

between the scent-mark and the otter (m), in meters, and the age (D; eq. 7). Ott et al. (in Prep) 

and Guertin et al. (2010) have indicated viable otter fecal samples must not be older than 24 

hours because of weathering and desiccation. Therefore, to model the effect of desiccation 

reducing the amount of „scent‟ available for detection, the equation: 

 

              )   (7) 
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estimates fecal desiccation (D) as positively related to the number of hours (hr) the scent-mark 

has been exposed to the environment. In the simulations, fecal deposits older than 12 hours 

were removed as possible candidates for detection. The value of eq. 6 was used as the 

probability of successfully detecting the scent-mark in a Bernoulli trial.  It is important to note 

that male otters beginning their foraging excursion will seek (olfaction) scent-markings within 

1km of their location in all possible directions. However, for subsequent olfaction events (at 

network nodes) the otter can only sense in the forward direction, not backward. Additionally, 

only the scent-mark having the shortest distance to the otter‟s current location was tested for 

detection. Finally, for the current time step, all scent-marks occurring along the path traveled by 

the otter were removed from the list of available fecal deposits for the individual otter. If an otter 

did not detect a scent-mark, a random direction was chosen from a uniform distribution of all 

possible paths, excluding the previously traveled path (i.e. cannot move backwards, only 

forward). 

4.5.5 Female Movement - Core Home Range 

 

For female otters, scent-detection is not included as part of their behavior. Instead, the 

movement of female otters is random when occurring within the 50% core home range. The 

direction is randomly chosen from a uniform distribution of all possible paths, excluding the 

previously traveled path. However, if a movement direction and distance results in the female 

reaching a node or point-location outside the 50% core area, the following movement direction 

will be toward the central point-location of the home range.  

4.5.6 Fish School Timing  

 

As previously described in Section 4.3.2, the timing of pelagic fish school spawning 

migrations vary. To account for this timing, a meta-analysis was conducted using two separate 

studies. The first study was conducted in Prince William Sound over an eight year period 
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beginning in 1923 (Rounsefell and Dahlgren 1931). The study quantified the number of „barrels 

of herring‟ captured by commercial fisherman. The barrels were summed for each date-range 

across all years and the maximum number of barrels recorded. Next, the percent of the 

maximum number of barrels was calculated for each date-range. The mid-point of the date-

range was used as the measurement date. Concurrently, the number of herring schools was 

interpreted from fig.1 (Brown et al. 1999, Blundell et al. 2002a) using the 1st and 15th of each 

month as the day of measurement. Performing the same calculation, the percent of the 

maximum was calculated for each date. The data were combined by calculating the average 

percent of the maximum for each Julian date. These data were then fit with a 5th order 

polynomial regression:  

 

                                                          

          (8) 

 

estimating the percent of the maximum number of fish schools (Fs) for a given day (J). Thus, for 

the given Julian day within the simulation, the number of pelagic fish schools available is 

calculated as: 

 

    )           (9) 

 

where Fmax is the maximum number of randomly drawn fish schools (Section 4.3.2). 
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METHODS 

Simulations 

 

Each simulation was run using an hourly time step, beginning at 12:00am May 15, 2006 

and running to 12:00am August 16th, 2006. A total of nine separate simulation scenarios were 

conducted (Table 4.2). The amount of run-time for each simulation ranged between 12 and 20 

hours to complete. Thus, each simulation scenario was limited to ten replications. Parameter 

values were held constant for the entire simulation given the conditions of the scenario being 

tested (Table 4.2).  

Sensitivity Analysis 

 

To estimate the relative importance of model parameters on simulated otter behavior, a 

sensitivity analysis was conducted. The analysis was completed for three separate parameters, 

requiring 6 simulation scenarios having different parameterization (Table 4.2). The three 

parameters include foraging movement distance, hours between defecation events, and hours 

in the active-state. For each parameter, the mean was adjusted positively or negatively: 

 

        (10) 

 

where the adjusted mean (Μ) is equal to the product of the baseline mean (μ) and the adjuster 

(s). The adjuster was equal to 0.9 for the negative and 1.1 for the positive adjustment. The 

following equation was used to adjust the standard deviation: 

 

          (11) 

 

where the adjusted standard deviation (SD) is equal to the adjusted mean (M) multiplied by the 

coefficient of variation (CV) of the baseline values. 
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Schooling Fish Scenarios 

 

It is known that otters can successfully forage on demersal, as well as pelagic fish, in the 

nearshore environment (Larsen 1984, Ben-David et al. 1998). Thus, determining the effect of 

schooling fish on otter behavior, either through fecal deposition rates or social group formation, 

is a pressing question. To approach this question, three scenarios were compared to test how 

the presence of schooling fish may influence otter behavior. The baseline model (R01) uses an 

informed fish school model in which only point-locations having a depth ≥ -3.04 meters were 

available for spawning habitat. The second scenario (R02) uses random placement of the fish 

schools onto the landscape network (all point-locations available), and the third scenario (R03) 

removed schooling fish entirely from the simulation. To test the similarity between each of these 

scenarios (including R04-R09), a correspondence analysis was completed using SAS 9.2 (SAS 

Institute, Inc., Cary, NC). For each point-location and simulation, the mean fecal counts were 

compared for similarity and the coordinates for the first two dimensions captured. 

Data Analysis 

Sensitivity Analysis 

 

The data from each replicated simulation scenario were compiled into a single database. 

Data were stored for each otter and fish school for each simulated hour. To account for 

variability, data were initially summarized for each replication and then for the entire simulation 

scenario. Tornado diagrams were created to demonstrate the sensitivity of the response 

variables to changes in parameter values. The diagrams display the range of mean response 

values and their associated 95% confidence intervals (CI). The vertical axis represents the 

mean response value of R01 (baseline). The following sections describe the process used to 

summarize the five response variables for use within the tornado diagram. 

1 – Daily Fecal Counts 
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The number of fecal deposits was summed for each model replication („tblPoopTracker‟). 

Then the mean (SD) feces calculated for the entire simulation and 95% CI (n = 10). The mean 

(SD) value was then divided by the total number of days to produce the mean number of feces 

per simulated day. 

2 - Defecation Rate 

 

The defecation rate of otters was calculated as the proportion of hours each individual 

experienced a defecation event during the simulation („tblStateValues‟). The mean (SD) 

proportion was then calculated, by gender, for the entire simulation and 95% CI (n = 10). To 

calculate the average number of defecation events per day, the mean proportion was multiplied 

by the total number of hours (2209) and then divided by the total number of days (92). 

3 - Hours of activity 

 

The number of hours in the active-state was summed for each otter and replication. Next, 

the mean number of active-state hours for each replication, by gender, was calculated. Finally, 

the mean (SD) number of hours for each simulation, by gender, and 95% CI (n = 10) was 

calculated. 

4 - Fish school forage success 

 

Obtaining the number of occurrences in which an otter successfully located a fish school 

required iterating through each record of „tblStateValues‟ and extracting only records in which 

the otter was active and the first record after transitioning from active-state to inactive-state. 

This data subset was then used to calculate the mean number of fish school encounter events 

by gender and replication. The mean number of fish school encounters, by gender, was then 

divided by the mean hours of activity to produce a mean (SD) proportion of active-state fish 

school forage success with 95% CI (n = 10) for the simulation. As an additional measurement of 
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the effect of fish schools, the proportion of defecation events having pelagic fish was calculated 

as: 

 

                 
                                  )              )

                 )             )
 (12) 

 

where the proportion of active-state hours in which a fish school was successfully located is 

divided by the proportion of total hours (2209) having a defecation event. 

5 - Social group creation 

 

The analysis of social group creation was performed by two separate types of analyses. 

The first analysis required the creation of a behavioral adjacency table. Using an iterative 

process within a replicated simulation, a data row was written for each otter within 50m of the 

current otter for each time step. Next, a list of unique otter-to-otter interactions was created for 

each replicated simulation. Using the unique interaction list, the number of otters that interacted 

(were part of a group) with the current otter was counted. Finally, the average number of otter 

interactions, by gender, was calculated for each replication, then the mean (SD) was calculated 

for the entire simulation with 95% CI (n = 10).  

The second otter group analysis required iterating through each record of the adjacency 

table to determine group association for each time step and replicated simulation (i.e. which 

unique otters where found within 50m of each other). Next, the total number of otters, the total 

number of groups and the average number of otters within a group were calculated for each 

time step of each replication. These data were then averaged for each day (24 hour period) and 

replication. To finish, the mean (SD) per day number of otters, number of groups and number of 

otters per group and 95% CI (n = 92) were calculated for each simulation. 
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6 - Coastline Use 

 

The total amount of coastline used by each individual otter was calculated for each 

replicated simulation by obtaining the difference between the minimum and maximum route 

measures for each occupied network edge. The differences were then summed for each 

individual and the mean kilometers of use, for each gender, was calculated for each replication. 

To finish, the mean (SD) amount of total habitat used was calculated for each gender and 

simulation. 

Comparison to Observed 

 

Simulation R01 (baseline), R02 (random schools) and R03 (no schools) was compared to 

the field collected data to validate the IBM for accuracy. Data were compared to determine 

similarity at the landscape and site specific scales. The observed data were collected at 100 of 

the 326 available latrines sites within the study area. A total of nine sampling events occurred 

between May 27 and August 15, 2006 and five sampling events occurred between June 10 and 

August 7, 2007. The total number of feces collected was summed for all sites, excluding the 

number collected on the first sampling event. This exclusion was made because the number of 

days between the collection of the feces and the actual deposition could not be determined. The 

number of feces per day was then calculated by dividing the number of feces (8,475) by the 

number of days (2006 = 80, 2007 = 58). This defecation rate was then compared with results 

from the simulations.  

One issue with comparing simulated to observed fecal counts is that a single latrine 

observed in the field may encompass many point-locations within the landscape network. To 

account for the discrepancy in size (i.e. area), point-locations were manually assigned to each 

latrine site. This process resulted in 861 point-locations being assigned to the 100 latrine sites. 

The mean number of fecal deposits for each point-location was then summed for each matching 

latrine site. A correspondence analysis was run to test for similarity between the two years of 
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observed data and the three schooling fish scenarios (R01, R02 and R03) and the coordinates 

for the first two dimensions captured and plotted. 

To assess the spatial heterogeneity, histograms were plotted for the observed and mean 

simulated fecal counts. Point-locations having < 50 feces were withheld from the analysis to 

reduce noise and small-value bias. Additionally, a one-tailed paired t-test and Pearson‟s r 

correlation coefficients were performed to compare the observed and mean simulated fecal 

counts for the same point-locations (n = 100) to ascertain spatial realism. 

 

RESULTS 

 

Simulation scenarios were successfully completed for nine separate parameterizations, 

each having 10 replicates. Each simulation replicate required approximately 15 hours to 

complete. The data from each simulation scenario were captured within an Access database 

with a total of 34,118,297 total records held in storage using nine databases.  

Model Sensitivity 

1 – Daily Fecal Counts 

 

The mean feces/day was somewhat sensitive to variation in hours between defecation 

events (R06 & R07) and hours in the active-state (R08 & R09), whereas movement distance 

(R04 & R05) was not an influential parameter (Figure 4.3). For example, the difference between 

R09 and R01 is 36 feces/day (Table 4.3). Thus, for the entire period of the model (92 days), an 

additional 3,312 feces would be deposited onto the coastline, a 12% increase. The mean 

feces/day for R01 was equal to 294. Assuming that each feces contains 5.15 g of N (Ben-David 

et al. 2005), an average of 1,514.1 g of N are deposited daily onto the study area coastline.  
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2 - Defecation Rate 

 

The mean defecation rate was insensitive to the movement distance (R04 & R05) and 

hours in the active-state (R08 & R09) parameters and only slightly sensitive to changes in the 

hours between defecation (R06 & R07; Table 4.4; Figure 4.4). The number of defecation 

events/day was similar between genders and each simulation, averaging 4.25 events/day 

(Table 4.5). The estimated deposition rates were less than the 7.7 defecations/day reported 

from captive studies (Ormseth and Ben-David 2000, Ben-David et al. 2005). 

3 - Hours of activity 

 

The mean hours of active-state were insensitive to changes in the parameters (Figure 

4.5). The mean hours of female active-state were 798 for scenarios using the informed fish 

model (Table 4.6). Male hours of active-state were not significantly less than females, averaging 

773 for the scenarios.  

4 - Fish school forage success 

 

Similar to the hours of active-state, the mean percent of active-state hours for which an 

otter located a fish school was insensitive to changes in the parameters (Figure 4.6), and there 

was not a significant difference between scenarios for each gender (Table 4.7). The proportion 

of feces containing pelagic fish was greatest for simulations R01 and R09 and lowest for R06 

(Table 4.8). Similar to the frequency of fish school encounters, male otters consistently had 

higher proportions of feces containing pelagic fish than females. The mean proportion of feces 

containing pelagic fish for R01 (baseline) was 36.6%, nearly identical to the 39.9% of field 

collected otter feces that contained pelagic fish (Ben-David et al. 2005).  

5 - Social group creation 

 

The mean number of otter interactions, for males and females, was not significantly 

different between simulation scenarios (Figure 4.7). Regardless of the scenario, males, on 
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average, interacted with 57% more individuals than females (Table 4.9). Using scenario R01 

(baseline), the mean (SD) percent of time each individual spent in a social group, as well as the 

percent of that time spent with each gender was calculated (Table 4.10). Males spent 

significantly more time (49%) in groups than females (40%). Of the 40% time spent in social 

groups, females spent 80% of their time interacting with males, while males in social groups 

interacted with other males 74% of the time (Table 4.10). These interaction rates are similar to 

other findings in which females occurred in mixed-gender groups 77.8% and males 37.5% of the 

time (Blundell et al. 2002a). 

The mean daily proportion of the total otter population participating in group behavior was 

insensitive to changes in the parameters (Figure 4.8), averaging 41.8% of the total population 

(Table 4.11). A significantly greater number of individual groups were observed when otters 

were allowed to spend more time in the active-state (R09, Figure 4.9), indicating some model 

sensitivity to this parameter (Table 4.11). The maximum group size ranged between 11 and 14 

otters for the simulation scenarios (Table 4.11). The mean group size for R01 did increase as 

fish schools became more abundant (Figure 4.10), following the similar pattern found by 

Blundell et al. (2002a). The mean number of otters/group was insensitive to changes in the 

parameters (Figure 4.11). 

6 - Coastline Use 

 

The mean kilometers of total coastline used by otters did not significantly vary between 

genders for any of the simulation scenarios (Table 4.12). Male otters used significantly more 

habitat than did female otters. This is an expected result because the female movement rules 

(Submodels 4.5.5) preclude individuals from forging in an unrestrained manner. However, male 

otters did experience some model sensitivity to changes in the movement distance parameter 

(Figure 4.12). This result is not surprising, for if an individual can move farther distances, the 

more likely they are to have used previously unused habitat, and vice-verse.  
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Schooling Fish Scenarios 

1 – Daily Fecal Counts 

 

The mean feces/day was statistically similar between scenarios R01 and R02 while 

scenario R03 (no schools) was statistically different (Table 4.3). Mean feces/day was most 

sensitive to the absence of fish schools, with otters defecating at a significantly higher rate than 

when fish schools are present (Figure 4.3). At least initially, the rate of N deposition would 

increase to 1,987.9 g of N (31.3% increase) if fish schools were not available as prey items 

compared to the baseline amount of 1,514.1 g of N. 

2 - Defecation Rate 

 

The mean defecation rate, for both males and females, was greatly influenced by the 

absence of fish schools (Figure 4.4). For simulation scenario R01 (baseline), female defecation 

rate was higher than males (Table 4.4). In contrast, male defecation rates for models R02 

(random schools) and R03 (no schools) were higher than females. The number of defecation 

events/day was similar between genders for scenarios R01 and R02 (Table 4.5). However, for 

R03 each otter experienced an additional defecation event/day, on average. 

3 - Hours of activity 

 

Otters experienced a significantly higher number of hours in active-state when fish schools 

were excluded from the model (R03). Conversely, random fish schools (R02) significantly 

reduced the number of active-state hours for females, but not significantly for males when 

compared to R01 (Table 4.6). Interestingly, R02 was the only scenario in which male activity 

hours exceeded those of females. Thus indicating the defense of core home range habitat by 

female otters restricts their ability to locate pelagic fish schools as efficiently as male otters. 

Additionally, the amount of variation in active-state hours experienced by R03 otters was 
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remarkably minimal and consistent between genders (Table 4.6). This result further elucidates 

the observation that female behavior restricts their ability to locate fish schools. 

4 - Fish school forage success 

 

Both genders experienced a higher fish school encounter frequency when school 

placement was random (R02; Table 4.7).  Additionally, scenario R02 had females locate fish 

schools more frequently than males, with the opposite occurring for R01. Also females 

encountered fish schools significantly more often with random school placement than the 

informed fish school scenario (Table 4.7), and feces containing pelagic fish were greater (Table 

4.8). 

5 - Social group creation 

 

The presence of pelagic fish schools greatly affected the creation and composition of 

social otter groups within the simulation scenarios. Male and female otters encountered a 

significantly higher number of other individuals when fish schools were absent (R03, Table 4.9). 

This result can be attributed to male otters becoming increasingly nomadic in search of high 

quality prey. The process is controlled by male movement because females were required to 

defend their home range while males were free to roam the entire landscape network. 

In the absence of schools (R03), the number of otters participating in group behavior 

decreased by 25% when compared to R01 (Table 4.11). Concurrently, the mean number of 

groups declined with the absence of fish schools (Figure 4.9). Scenarios in which fish schools 

were either random or absent (R02, R03), there were significantly fewer otters/group than if the 

informed fish school model was applied (Figure 4.11). This pattern follows the previous tests for 

the no school scenario (R03), but the result for R02 (random school) was unexpected because 

the proportion of the population and the number of groups were similar to the informed fish 

school model (R01). This phenomenon may be explained by the observation that otters in R02 
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were less often in the active-state (Table 4.6) and found pelagic fish more frequently (Table 

4.8). Therefore the individuals probably experienced shorter foraging excursions which limited 

the formation of larger social groups because fish schools were more available. 

6 - Coastline Use 

 

Male otters used more of the coastline habitat when schooling fish were absent (R03) then 

when fish schools were present (R01 & R02). The increase in coastline use for R03 (no 

schools) can be explained by males being more active because high quality prey was not 

available (Table 4.6), which encouraged nomadic behavior as a behavioral response. As 

previously stated, female use of the coastline was constant throughout the simulation scenarios 

(Table 4.12). 

Comparison to Observed 

 

The observed rate of fecal deposition was 345.4 feces/day during 2006 and 365.6 

feces/day in 2007. All simulations averaged less than the 2006 observed rate for point-locations 

within the study area except for R03 (Figure 4.13).  The rates were significantly less for R01 and 

R02, resulting in a potential loss of 24,164 g of N reaching the nearshore environment when 

compared to the 2006 deposition rate. Additionally, during 2007 the fecal counts were classified 

as occurring either on rock (no chance for assimilation by plants) or within a vegetated area. 

Only 71% of the total fecal deposits occurred within the vegetated area. Thus, the estimated 

loss of nitrogen to the nearshore environment may be even greater.    

The spatial configuration of fecal deposits for the simulation scenarios were compared 

using Correspondence Analysis. The test compared total fecal counts for each point-location for 

similarity between simulation scenarios (Figure 4.14). The results demonstrate a high 

correspondence between simulations using the informed fish model, indicating spatial similarity 

in fecal deposition between scenarios (R01 and R04-R09). Conversely, R02 and R03 were 
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dissimilar from the other simulations. For the x-axis, as values increase from negative to 

positive, the average number of otters within each social group increases (Model Sensitivity 5). 

As values increase along the y-axis, the defecation rate decreases and fish school locations 

increase (see Section Model Sensitivity 2 and 4).  

The Maxent model was used to estimate the relative habitat quality (MEP) for each point-

location. Using a threshold value of 0.464, 30% of the available point-locations were classified 

as a „Latrine‟ (Table 4.13). Concurrently, using the manually chosen point-locations for the 100 

latrine sites (861 point-locations) for reference, a total of 2,807 (extrapolated to the 326 total 

latrines) out of a possible 14,370 point-locations were estimated to be used as part of a latrine 

within the study area, equaling 19.5% of the study area coastline. The percent of classified 

point-locations, 30%, is similar to the amount of observed coastline used by otters within the 

study area (19.5%). This result provides confidence that the landscape network did not greatly 

over- or under-estimate the habitat available to otters. 

Otters are assumed to only use latrine sites for defecation and urination (Bowyer et al. 

1995, Ben-David et al. 1998). For scenario R01 (baseline), 97% of the total feces occurred on 

point-locations classified as a latrine (Table 4.13). Of this 97%, 73% of the feces occurred at 2% 

of the point-locations. This result may indicate certain locations are intensely used, 

hypothetically by social otters, while the remaining locations less intensely by solitary individuals 

or smaller, transient groups (Ben-David et al. 2005). Pearson‟s r correlation coefficients were 

calculated for R01-R03 and the habitat quality (MEP). For point-locations having > 0 feces, the 

correlation between habitat and fecal deposition was relatively low, having 0.212, 0.219 and 

0.227 correlation coefficients for R01-R03, respectively. Each correlation was significant, but the 

low values indicate that habitat quality is not the determining factor driving fecal deposition.  

The spatial pattern of fecal deposition observed for simulation scenarios R01-R03 can be 

found in Figures 4.15, 4.16 and 4.17, respectively. Spatial variability in fecal deposition was also 

observed during the 2006 and 2007 sample periods (Figures 4.18 and 4.19). The relative 
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similarity between the observed and simulated fecal deposition provides evidence that the 

emergent patterns from the simulations visually mimic the observed patterns. However, the 

spatial realism of the model did not match the observed data. 

The total amount of observed feces for each latrine, by sample year, was compared to the 

summed fecal deposits of the associated point-locations using a paired t-test. The mean 

difference for all possible combinations of observation year and simulation scenarios R01-R03 

was found to be significantly different (p < 0.0001). These results indicate the simulated otters 

were defecating in areas different than the observed latrines. To visually display the differences 

in deposition, Figures 4.18 and 4.19 represent the observed distribution of feces while Figures 

4.20, 4.21 and 4.22 are the summed feces for the same point-locations as observed latrines. 

The most noticeable difference is the higher quantity of observed defecation compared to the 

three simulation scenarios. The three simulation scenarios appear to be quite similar to each 

other. A Correspondence Analysis was conducted to test the similarity between the five groups 

of data (Figure 4.23). The three sets of simulation data appear to correspond well to each other, 

indicating consistent otter behavior at these specific point-locations between scenarios. 

However, both sets of observed data appear to be disparate from all other tested data, 

demonstrating a high degree of temporal variability in the observed data. One can infer from the 

previously described Correspondence Analysis (Figure 4.14) that during 2006 more fish schools 

may have been available than during 2007 and that the number of individuals per social group 

were relatively similar. 

 

DISCUSSION 

 

The individual-based modeling approach is grounded in the belief that adaptive behaviors 

of individuals emerge as patterns at the system level (Grimm and Railsback 2005). To facilitate 

the expansion of IBMs in ecological theory, Uchmański and Grimm (1996) proposed four criteria 

for a model to be considered an IBM:  1) the degree to which an individual‟s life cycle is 
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reflected; 2) the dynamics of individual resource use are explicitly represented; 3) real or integer 

numbers are used to represent population size; and 4) the extent to which variability between 

same age individuals is considered. We believe that the IBM described within this text meet 

these criteria: 1) although individual mortality is not explicitly addressed, each individual‟s daily 

life cycle is accounted for on an hourly basis. An individual uses stochastic rules, based on 

previous experience and states, to determine whether to forage or rest; 2) each individual may 

have the opportunity to locate and prey upon pelagic fish schools, and in turn improve fitness. 

Concurrently, pelagic fish schools are dynamically interacting with the physical environment 

instead of behaving in a static manner; 3) pelagic fish school densities are accounted for using 

real numbers and seasonal models. Otter density is estimated from a known distribution of the 

study area and; 4) each individual experiences both temporal and spatial variability throughout 

the modeling process. The variability may occur through spatial location (habitat quality), prey 

availability, interaction with other individuals, and unique hourly experiences influencing 

decisions that affect current and future state-values. 

Sensitivity Analysis 

 

The objective of a sensitivity analysis is to quantify the response of the IBM output to 

variation in model parameters (Grimm and Railsback 2005). When using the informed fish 

school model, the IBM was relatively insensitive to variation of the three adjusted parameters 

(Table 4.2). Of the six measured response variables (daily fecal counts, defecation rate, hours 

of activity, fish school forage success, social groups, and coastline use), five parameterization 

adjustments caused noticeable variation in a response variable. The mean number of feces/day 

increased under two different parameterization scenarios, simulation scenario R06 (decrease in 

hours between defecation events) and R09 (increase in active-state hours). For example, the 

increase in fecal deposition from R09 led to an additional 12%, or 3,312 feces (17,057 g N) 

reaching the nearshore environment (Table 4.3). This amount of potential N reaching the 
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nearshore environment is significant given the relatively meager atmospheric N deposition rate 

of 0.01-0.2 g N/m2/y (Ben-David et al. 2005). Ormseth and Ben-David (2000) did find active 

otters to have an increased passage rate of consumed prey. Thus, the model response parallels 

known otter behavior. 

 The number of social groups was sensitive to variation in the mean number of active-state 

hours (R09; Figure 4.9, Table 4.11). When compared to the baseline model (R01), an increase 

in activity induced a response of nearly three additional social groups/day. The consequence of 

such a response is unclear because of the relative insensitivity of other response variables to 

change in this parameter. But, an increase in the total number of groups may indicate greater 

success in locating pelagic fish schools through cooperative foraging and an in-kind increase in 

latrine visitation rates (Blundell et al. 2002a, Ben-David et al. 2005). 

Two additional sensitive response variables were the proportion of time defecating and 

mean km coastline used. Defecation time was sensitive to changes in the mean number of 

hours between defecation events (Figure 4.4, Table 4.4). Even though the fecal deposition 

rate‟s response was greater than the other parameters, the change resulted in only a 0.3 

feces/day/otter increase, or 27.6 total feces/otter, when the parameter value was decreased by 

10% (Table 4.5). The second variable is mean coastline use, which was sensitive to increased 

movement distance for male otters (R05). Male otters were not restricted in their ability to 

traverse the coastal landscape. Increasing the distance that can be covered during a foraging 

excursion is bound to increase the likelihood of crossing previously unused habitat, thereby 

increasing total amount of coastline used. 

Fish School Scenarios 

 

Blundell et al. (2002a) and Ben-David et al. (1998, 2005) describe the role of cooperative 

forging on pelagic fish schools and the subsequent, gender specific behavioral response. 

Results from the IBM overwhelmingly indicate otter behavior is driven by prey availability 
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(Figures 4.3 – 4.12). In general, the presence of fish schools, regardless if the informed or 

random fish model was used, was the dominant factor influencing otter behavior. The response 

variables were always significantly different for simulation scenario R03 (no schools), and the 

behavioral response was always to increase time spent foraging. For example, otters in R03 

were in the active-state, on average, 415 hours more than otters in R01 (Table 4.6). 

Concurrently, male otters used an additional 41.5 km of coastline in scenario R03 when 

compared to males in R01 (Table 4.12). Therefore, in conditions in which fish schools are 

lacking, river otters need to spend more time foraging for less valuable prey items, thereby 

potentially increasing both energy expenditure and predation risk.  

The number of feces reaching the nearshore environment for R03 increased by 92 

feces/day when compared to R01 (Table 4.3). The higher rate of fecal deposition may decrease 

if the abundance of demersal fish decreased, thus decreasing otter abundance through limited 

resource availability (Kruuk et al. 1991). Otter behavior was more subtly affected when fish 

schools were randomly placed (R02) than when removed entirely.  

The defecation rate decreased while forage success simultaneously increased when fish 

school locations were not restricted to specific spawning areas (R02). The variation in response 

was statistically significant for female otters when compared to R01. This result has several 

implications. First, by increasing the spatial distribution of fish schools, individual otters were 

more likely to experience forage success. Specifically, females experienced significantly more 

success in locating fish schools than when these prey are patchily distributed. Having an 

increase in the availability of higher quality prey because they were more uniformly dispersed 

decreased the risk of predation or injury, realized through reduced hours in the active-state and 

no difference in the amount of habitat use (Tables 4.6, 4.7, & 4.12). Interestingly, the reduction 

in defecation rate did not reduce the amount of feces reaching the nearshore environment 

(Table 4.3). This behavioral pattern may be explained by the fact that even though individuals 

successfully feeding on fish schools are going to recuperate (rest) for longer periods, they are 
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also more likely to defecate when consuming the higher quality food. Thus, no net loss or gain 

in fecal quantity. 

A second, but highly related response to a more homogenous distribution of fish schools is 

the decrease in the number of otters per social group (Figure 4.11). With increased forage 

success and less activity, individuals appear to be less likely to form larger groups. This pattern 

occurs because fish schools were easier to randomly locate during forage excursions than when 

the schools are patchily distributed.  

Comparison to Observed 

 

The true test of an IBM is how well the system level patterns are reproduced (Grimm and 

Railsback 2005). A series of comparisons were made to test the IBM‟s ability to reproduce 

observed patterns and behavior, and the similarities between the observed and reproduced 

patterns are encouraging. The results of simulation scenario R01 (baseline) fell within the range 

of published (or recently measured) values for several characteristics including home range 

sizes (habitat use), social group behavior, and forage success. The simulation results were also 

compared to the observed frequency and pattern of fecal deposition from our recent field study.  

The mean (SD) km of coastline use from R01, for both genders, are greater than the 

reported coastline 95% Adaptive Kernel estimates by Blundell et al. (2000) (Table 4.12). 

Estimated habitat use (100% home range) is 53% greater than Kernel estimates of Blundell et 

al. (2000) for females and 89% greater for males. However, 95% confidence intervals do 

overlap with observed values for both genders. Secondly, estimates from the simulation 

scenarios are measuring total use of the coastline, not 95% of each individual‟s location points, 

which potentially could include outliers, as shown by the 95% confidence intervals which are 

greater than ½ of the mean value (Table 4.12). Although the measurement of home range within 

linear systems may be less sensitive to autocorrelation (Blundell et al. 2001), great care must be 
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taken if estimates of home range are to be calculated for the simulated otter population because 

the vastness of having hourly locations may swamp a statistical model.  

Emergent social behaviors obtained from the baseline simulation (R01) appear to match 

previously measured patterns. Mean group size increased as pelagic fish abundance increased 

(Figure 4.10), corresponding to a similar pattern observed by Blundell et al. (2002a). The mean 

group size of 2.5 otters/group, as well as the maximum group size of 14, is also similar to 

previous observations (Blundell et al. 2002a, Blundell et al. 2004, Ben-David et al. 2005).  

Social group formation from R01 corresponds well to observed data in several ways. First, 

Blundell et al. (2002a) found males to be in social groups for approximately 55% of their 

telemetry locations and females 26%. Simulation results estimated males to be in a group 49%, 

and females 40% of the time. Higher incidence of female group behavior in the model, relative 

to field observations (40% vs. 26%), may have several explanations. One explanation may be 

the difference between imperfect detection and measurement in the field while perfect detection 

was obtained within the simulation models (i.e. each simulated hour of behavior was recorded 

with perfect detection). In addition, the number of telemetered otters within the study area (F: n 

= 9, M: n = 32), although significant, is measurably fewer than the number of otters within the 

simulations (mean = 107). Additionally, all otters in R01 were part of a group for at least one 

time step. In fact, the minimum number of time steps for any otter was 86 (4% of total time). 

Thus providing further evidence that perfect detection within the simulation model may be 

increasing the simulation values when compared to observed data. 

Social group composition was also similar to that observed in prior studies. Blundell et al. 

(2002a) found males occurred in mixed-gender groups 37.5% of the time while 77.8% of the 

time females occurred in mixed-gender groups. The IBM estimated, with remarkable similarity, 

males to occur in mixed-gender groups 26% while females 80% of the time. This pattern is 

supported by the fact that males are more nomadic (Blundell et al. 2002b), have larger home 
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ranges (Blundell et al. 2000) and occur in greater densities than females (Chapman and 

Feldhamer 1982, Lariviére and Walton 1998, Blundell et al. 2004, Ott et al. in Prep).   

The frequency of foraging excursions in the location fish schools was higher for males 

than females (Table 4.7). This result is similar to Blundell et al. (2002a) which found 43% of 

males and 32% of females switched their diet to pelagic fish. Along these same lines, previous 

studies measured the presence of schooling fishes in 39.9% of otter feces (Ben-David et al. 

2005). Results for model R01 estimated the mean proportion of pelagic-feces to be 38.1% for 

males and 35% for females (Table 4.8). Once again, demonstrating a high correspondence to 

observed patterns. However, one significant divergence from observed data is the rate of 

defecation. Captive otter studies have estimated otters defecate 7.7 times/day (Ben-David et al. 

2000, Ormseth and Ben-David 2000, Ben-David et al. 2005) whereas R01 defecation rate was 

4.2 times/day. The most plausible explanation for this difference is that the studies were 

conducted on otters in captivity, were fed to satiation and were more than likely not experiencing 

the caloric demands of inhabiting the coastal environment. 

Spatial Patterns 

 

The field collected data were compiled to provide an estimated rate of fecal deposition 

reaching the nearshore environment. The observed rate of fecal deposition was 345.4 feces/day 

during 2006 and 365.6 feces/day in 2007. The simulated rate of fecal counts for R01 (baseline) 

was 294 feces/day, significantly less than either of the observed rates. The only simulation to 

include the 2006 fecal rate within the 95% CI was R09, a model having an increased amount of 

time in the active-state (Figure 4.13). Given that the active-state parameter was derived from a 

dataset consisting of only 8 otters, as well as the active-state parameter having relatively little 

effect on the other response variables (except for number of groups), these results may indicate 

model R09 is a better fit to observed data than R01. 
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The spatial pattern of fecal deposition by the simulations, regardless of the schooling fish 

scenario, is heterogeneous across the coastal landscape (Figures 4.15, 4.16 and 4.17), which 

mimics the observed variation recorded during the 2006 and 2007 sample periods (Figures 4.18 

and 4.19). The maps display the range of high-use and lower-use areas. This similarity provides 

evidence that the IBM is replicating adaptive traits employed by otters as well as using a 

representative landscape to influence their behavior. However, as previously stated, the explicit 

spatial deposition pattern from model results did not match observed data.  

Ben-David et al. (2005) and Blundell et al. (2002a) hypothesize that social otters may be 

found less frequently near latrines than nonsocial otters. Our model may support this idea. As 

previously described, otter socialness is highly influenced by prey availability. The location of 

fish schools may be driving defecation to occur on areas not as high in habitat quality simply 

because the resource was nearby. This is evidenced by the low correlation coefficients between 

fecal counts and the habitat quality (MEP). Another causal factor may be the model-induced 

„memory‟ of otters (Model Section 4.2.5). Having perfect memory of the point-location having the 

highest value within 1 km of the current location may be somewhat unrealistic and may require 

some form of stochasticity be added to the point-location selection process.   

The comparison between observed site-specific and simulated fecal counts using both the 

paired t-test and Correspondence Analysis show the lack of spatial „realism‟ of the IBM. 

However, the lack of correspondence between the two years of observed data provides 

evidence of the highly variable nature of otter behavior (Figure 4.23). Since otter behavior is 

highly influenced by pelagic fish, factors influencing pelagic fish may have a cascading effect. 

The Correspondence Analysis axes indicate that in 2006 the otters may have encountered a 

higher frequency of pelagic fish schools than in 2007. Sea-surface temperatures do influence 

the seasonal timing of pelagic fish schools (Brown et al. 1999). The mean sea-surface 

temperature in Prince William Sound was significantly higher in June 2006 than in June 2007 

(Figure 4.24; http://www.ndbc.noaa.gov/). Brown et al. (1999) indicate that as water temperature 

Figure%204.24
http://www.ndbc.noaa.gov/
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increases to approximately 10 C, the number of schooling pelagic fish near the surface also 

increase (interpreted from figure 1). The earlier increase in sea temperature may have 

increased the availability of schooling fish for otter consumption during 2006. 

One potential explanation for the difference in observed and simulated fecal counts at 

known latrines can be seen in Figure 4.25. In this example there are two observed latrines that 

had high amounts of fecal deposition. However, for HB001 and HB004, the R01 simulation only 

had 13 and 17 feces, respectively. Instead R01 simulated otter defecation to occur at a location 

very nearby, of similar habitat quality (from a statistical standpoint) and at a similar defecation 

rate to that observed in the field. In this case, the preferred location by the otters happened to 

occur at a latrine that was not sampled for feces during the study. Thus, it is important to note 

that even though the spatial realism of the IBM is not precise, the frequency of fecal deposition 

is similar between observed and simulated values (Figure 4.26), indicating the model is 

simulating otter defecation behavior with relative accuracy.  

Potential Improvements 

 

The complexity of otter behavior represented by this IBM has effectively reproduced 

observed patterns at both the population and landscape scales. However, the complexity also 

created long model run-times (12-20 hours), making it difficult to assess the accuracy of 

parameter estimates. Essentially, the previously described model analysis is merely a review of 

parameter estimate accuracy. Of the parameters tested, it appears that the initial active-state 

value may have been underestimated because R09 proved to be the best fit to the observed 

fecal deposition rate. 

Several of the choices during model development may have influenced the results. One 

such choice involves olfaction influencing male foraging behavior. Male otters were able to 

sense the presence of fecal deposits and make a prediction that a fish school would be nearby. 

The assumption that all feces are the same may need to be revisited because feces containing 
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no pelagic fish may indicate resource depletion instead of resource abundance (Kruuk et al. 

1991). Similarly, female movement rules were simplified to be random as long as they occurred 

within their 50% core home range; otherwise they were „drawn‟ back toward the center of their 

territory. The behavioral consistency between genders would have increased if females, instead 

of making random movements were to have used olfactory cues. However, the effect of this 

choice on model results appears to be negligible. 

The effect of pelagic fish on otter behavior has been fully described, but pelagic fish are 

not the only prey source. The density of demersal fish can also affect otter behavior (Ben-David 

et al. 2005). The IBM did not account for the density and distribution of demersal fish explicitly 

because we assumed that benthic resources are uniformly distributed, thus unlikely to affect the 

variability in nutrient deposition. Instead, the marine abiotic conditions were included as 

variables within the Maxent model predicting otter latrine use (habitat quality). Dean et al. (2000) 

found differences in the distribution and abundance of benthic fish given characteristics of the 

marine environment. It may be an enlightening exercise to develop a model using only terrestrial 

variables for the otter latrine selection model and couple it with a demersal fish habitat model, 

thus providing a method to assess if the impact of varying demersal fish availability will have 

similar effects on otter behavior as pelagic fish. Additionally, this approach may allow for fish 

density to become a parameter, a necessity if the IBM is to be used to forecast nutrient 

transport given potential climatic changes because pelagic fish may become less abundant and 

predation pressure will shift to demersal fish. Finally, it is imperative to test additional 

parameters for their influence on model output. Ideally, an additional 16 scenarios would be 

tested and model sensitivity calculated.  

 

Conclusion 

 

The IBM provides a first step in modeling individual otter behavior and their role in 

expanding the resource shed for the nearshore environment (Ben-David et al. 1998, Power and 



 

150 
 

Rainey 2000, Ben-David et al. 2005). By reproducing coastal river otter behavior from prior 

studies in an IBM, we were able to reproduce broad scale patterns in quantity and variability in 

nutrient transport, facilitated by the behavioral response of otters to pelagic fish schools and the 

subsequent creation of social groups. The inclusion of vision, olfaction and memory as viable 

forms of otter sensing and their quantifiable response to these stimuli provide a strong 

behavioral foundation for the IBM. Although the baseline parameterization (R01) may not be 

perfect, results provide strong evidence that we can represent patterns of latrine use and 

nutrient deposition and may be able to model potential consequences of changes to schooling 

fish populations as a result of climate and human factors. 
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Table 4.1: Model parameters, the associated values, and the distribution type used for 

initialization or stochastic processes. 

Parameter Value Distribution Description 

Model 

Initialization 

   

Density 55 – 78 Uniform Minimum - Maximum 95% CI from 

density estimates (Ott et al. in Prep). 

Fish Schools 40 – 98 Uniform Minimum - Maximum number of fish 

schools (Ben-David et al. 2005). 

Gender Ratio 0.69 - Percent of males in the population 

(Chapman and Feldhamer 1982; 

Lariviére and Walton 1998). 

Female 50% 

Core Home 

Range 

4(2) Normal Mean (SD), in km, of female 50% Core 

Home Range (Blundell et al. 2000). 

Habitat Quality 

Threshold 

0.464 - Maximum Entropy optimal threshold 

value of logistic probability predicting 

otter latrine site (Chapter 3). 

Activity 

Threshold 

0.122 Bernoulli Probability of otter being in active-state 

(ratio of mean Active:Inactive hours; M. 

Ben-David unpublished data). 

Active Upper CI 1.88 Uniform Upper 95% CI value of mean active-

state hours (M. Ben-David unpublished 

data). 

Inactive Upper 

CI 

15.32 Uniform Upper 95% CI value of mean inactive-

state hours (M. Ben-David unpublished 

data). 

Run-time    

Movement 

Distance 

941(1731) Normal Mean (SD), in meters, of 8 telemetered 

otters (M. Ben-David unpublished 

data). 

Hours Between 

Defecating 

4.865(1.825) Normal Mean (SD) hours between defecation 

events for captive otters in a 24hr 

period (Ormseth and Ben-David 2000). 

Hours in Active-

state 

1.433 (1.393) Normal Mean (SD) hours of continuous activity 

of 8 telemetered otters (M. Ben-David 
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unpublished data). 

Hours in 

Inactive-state 

11.692 (8.286) Normal Mean (SD) hours of continuous 

inactivity of 8 telemetered otters (M. 

Ben-David unpublished data). 

Scent Distance 

Decay Rate 

-0.003 Bernoulli Parameter estimate in negative 

exponential equation (eq. 6) calculating 

probability of detecting scent-mark 

given a distance. 

Feces 

Desiccation Rate 

0.1 Bernoulli Parameter estimate in exponential 

equation (eq. 6) calculating expected 

amount of desiccation (unitless value) 

given the age, in hours, of the fecal 

deposit. 

Visual 

Perception 

Distance 

50 - Assumed visual distance, in meters, at 

which the otter is acutely aware of the 

biotic and abiotic conditions of its 

surroundings. 

Memory 

Perception 

Distance 

1000 - Assumed memory distance, in meters, 

at which the otter can perfectly recall 

the best (MEP) available habitat. 

Active/Inactive - 

Satiation Scaler 

2 Bernoulli A scaling factor that increases (if 

Active) or decreases (if Inactive) the 

probability that an otter will switch 

activity-states if it has foraged on a 

school of fish (see eqs. 4, 5). 

Defecation - 

Satiation Scaler 

2 Bernoulli A scaling factor to increase the 

probability of a defecation event if the 

otter has foraged on a school of fish 

(see eq. 2). 
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Table 4.2: Simulation scenario parameter values. Parameter values were not modified 

from Table 4.1 unless otherwise stated. 

Scenario 

Fish 

Schools Adjusted parameter 

Parameter 

value 

Adjustment 

R01 Informed None - None 

R02 Random None - None 

R03 No schools None - None 

R04 Informed Movement Distance 847 (1558) -10% 

R05 Informed Movement Distance 1035 (1904) +10% 

R06 Informed Hours Between 

Defecating 

4.379 (1.643) -10% 

R07 Informed Hours Between 

Defecating 

5.352 (2.008) +10% 

R08 Informed Hours in Active-state 1.29 (1.254) -10% 

R09 Informed Hours in Active-state 1.576 (1.532) +10% 
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Table 4.3: Mean (SD) feces/day for each 

simulation scenario. 95% confidence intervals 

were calculated having n = 10. 

Model Mean (SD)  CI95 

R01 294.43 (36.59) 22.68 

R02 295.83 (30.33) 18.80 

R03 385.97 (29.58) 18.33 

R04 310.60 (37.25) 23.09 

R05 305.54 (28.28) 17.53 

R06 317.32 (33.63) 20.85 

R07 293.42 (27.42) 16.99 

R08 303.31 (32.71) 20.27 

R09 330.19 (32.74) 20.30 
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Table 4.4: Mean (SD) defecation rate measured as the ratio 

between the number of hours an otter experienced a defecation 

event and the total number of simulated hours. 95% confidence 

intervals were calculated having n=10. 

 

Female Male 

Model Mean (SD) CI95 Mean (SD) CI95 

R01 0.175 (0.004) 0.003 0.173 (0.005) 0.003 

R02 0.167 (0.006) 0.004 0.170 (0.006) 0.004 

R03 0.221 (0.002) 0.001 0.223 (0.001) 0.000 

R04 0.177 (0.005) 0.003 0.176 (0.005) 0.003 

R05 0.178 (0.004) 0.002 0.176 (0.005) 0.003 

R06 0.185 (0.005) 0.003 0.183 (0.006) 0.004 

R07 0.172 (0.007) 0.005 0.171 (0.007) 0.005 

R08 0.175 (0.004) 0.003 0.175 (0.004) 0.002 

R09 0.175 (0.005) 0.003 0.173 (0.006) 0.004 
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Table 4.5: Mean defecation events/day/otter for 

each simulation scenario. Values were derived 

from Table 4.4 by multiplying the ratio and the 

total number of hours (2209) and dividing by 

days (92). 

Model Female Male 

R01 4.21 4.15 

R02 4.02 4.08 

R03 5.32 5.36 

R04 4.24 4.24 

R05 4.26 4.24 

R06 4.45 4.40 

R07 4.14 4.10 

R08 4.21 4.21 

R09 4.21 4.15 
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Table 4.6: Mean (SD) hours in active-state for each simulation 

scenario. 95% confidence intervals were calculated having n = 10. 

 

Female Male 

Model Mean (SD) CI95 Mean (SD) CI95 

R01 780.63 (39.36) 24.39 749.91 (46.91) 29.07 

R02 715.17 (55.16) 34.19 729.24 (57.76) 35.80 

R03 1182.91 (2.62) 1.62 1182.65 (3.17) 1.97 

R04 800.25 (41.67) 25.83 782.19 (45.75) 28.35 

R05 806.27 (35.58) 22.05 784.35 (41.32) 25.61 

R06 810.07 (43.70) 27.09 784.31 (46.63) 28.90 

R07 813.16 (61.59) 38.18 785.21 (66.06) 40.95 

R08 771.70 (32.32) 20.04 755.28 (32.46) 20.12 

R09 801.52 (44.13) 27.35 769.30 (52.63) 32.62 
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Table 4.7: Mean (SD) proportion of time an otter encountered a fish 

school while in active-state.95% confidence intervals were calculated 

having n = 10. 

 

Female Male 

Model Mean (SD) CI95 Mean (SD) CI95 

R01 0.174 (0.027) 0.017 0.194 (0.033) 0.020 

R02 0.219 (0.044) 0.027 0.209 (0.043) 0.027 

R03 0.000 (0.000) 0.000 0.000 (0.000) 0.000 

R04 0.161 (0.024) 0.015 0.172 (0.029) 0.018 

R05 0.156 (0.022) 0.013 0.169 (0.027) 0.017 

R06 0.155 (0.026) 0.016 0.170 (0.031) 0.019 

R07 0.154 (0.037) 0.023 0.172 (0.043) 0.026 

R08 0.170 (0.023) 0.014 0.180 (0.022) 0.014 

R09 0.170 (0.029) 0.018 0.189 (0.037) 0.023 
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Table 4.8: Mean ratio of feces containing 

pelagic fish (see eq 12).  

 

Female Male 

Model Mean ratio Mean ratio 

R01 0.350 0.381 

R02 0.424 0.405 

R03 0.000 0.000 

R04 0.329 0.344 

R05 0.320 0.341 

R06 0.307 0.330 

R07 0.329 0.358 

R08 0.338 0.351 

R09 0.352 0.380 
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Table 4.9: Mean (SD) number of individual otter interactions 

for each gender and simulation scenario. 95% confidence 

intervals were calculated having n = 10. 

 

Female Male 

Model Mean (SD) CI95 Mean (SD) CI95 

R01 34.24 (4.14) 2.56 53.86 (6.46) 4.00 

R02 36.26 (4.44) 2.75 56.63 (6.66) 4.13 

R03 47.14 (3.55) 2.20 73.87 (5.26) 3.26 

R04 33.69 (4.09) 2.54 53.01 (6.13) 3.80 

R05 37.83 (3.92) 2.43 59.08 (6.59) 4.08 

R06 35.39 (3.91) 2.42 56.13 (5.70) 3.53 

R07 34.98 (3.38) 2.10 55.03 (5.53) 3.43 

R08 35.54 (4.13) 2.56 55.47 (6.63) 4.11 

R09 38.42 (4.77) 2.96 61.18 (7.53) 4.67 
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Table 4.10: Mean (SD) percent of time an otter was within a 

social group and the percent of that time spent with each 

gender for simulation scenario R01 (baseline). 

Gender 

% Time in 

Group 

% with 

Female 

% with 

Male 

Female 40% (3%) 20% (2%) 80% (2%) 

Male 49% (4%) 26% (2%) 74% (2%) 
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Table 4.11: The daily mean (SD) social group composition of active otters. Also included 

are the mean number of fish schools, mean number of total otters, the proportion of 

otters in social groups, and the maximum group size for each simulation scenario (n = 

92). 

Model 

Total in 

Groups  

Mean 

(SD) 

Num. 

Groups  

Mean (SD) 

Otters in 

Group 

Mean (SD) 

Mean 

Num. 

Schools 

Mean 

Total 

Otters 

% Total 

in 

Groups 

Max. 

Group 

Size 

R01 

44.70 

(4.36) 

17.82 

(1.25) 

2.51 

(0.08) 51.17 106.80 41.85 14 

R02 

47.25 

(3.90) 

19.25 

(1.30) 

2.46 

(0.05) 49.08 112.20 42.11 13 

R03 

33.39 

(0.79) 

14.05 

(0.27) 

2.38 

(0.04) 1.00 110.40 30.24 11 

R04 

46.53 

(4.43) 

18.60 

(1.27) 

2.50 

(0.08) 48.35 111.80 41.62 13 

R05 

44.22 

(4.08) 

17.76 

(1.19) 

2.49 

(0.08) 38.13 107.80 41.02 13 

R06 

44.34 

(4.29) 

17.76 

(1.26) 

2.50 

(0.08) 42.57 108.00 41.05 12 

R07 

43.96 

(4.21) 

17.67 

(1.22) 

2.49 

(0.08) 42.90 107.40 40.94 11 

R08 

46.34 

(4.26) 

18.37 

(1.17) 

2.53 

(0.09) 47.05 109.20 42.44 12 

R09 

51.87 

(4.72) 

20.55 

(1.44) 

2.53 

(0.07) 49.21 119.50 43.40 12 
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Table 4.12: The mean (SD) of total km of coastline habitat used by 

individual otters for each simulation scenario. 95% confidence intervals 

were calculated having n = 10. For the confidence interval for Blundell 

et al. 2000 was calculated with females n = 9 and males n = 20. 

 

Female Male 

Model Mean (SD) CI95 Mean (SD) CI95 

R01 22.9 (1.9) 14.2 113.5 (9.0) 70.3 

R02 23.1 (1.5) 14.3 116.6 (7.8) 72.3 

R03 24.9 (1.0) 15.4 154.9 (5.1) 96.0 

R04 22.9 (1.8) 14.2 105.8 (3.8) 65.6 

R05 25.3 (1.9) 15.7 124.4 (8.3) 77.1 

R06 23.7 (1.5) 14.7 116.8 (4.1) 72.4 

R07 24.9 (1.4) 15.4 116.0 (7.5) 71.9 

R08 24.6 (1.4) 15.2 114.1 (6.1) 70.7 

R09 23.7 (1.6) 14.7 115.0 (8.7) 71.3 

Blundell et 

al. (2000) 15.0 (7.0) 4.6 60.0 (51.0) 22.4 
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Table 4.13: Fecal deposition amount and frequency for simulation scenario R01 

(baseline). Point-locations having a Maxent probability ≥ 0.464 were classified as 

latrines. The number of feces is the summed average (10 replications) for each point-

location.  

Classification 

Type 

Fecal 

Range 

Num. 

Feces 

Num. 

Points 

Within 

Type % 

Feces 

Within 

Type % 

Points 

Total 

% 

Feces 

Total 

% 

Points 

Latrine <=20 7398 7090 18% 97% 18% 29% 

Latrine 20-50 2397 75 6% 1% 6% 0% 

Latrine >=50 30436 147 76% 2% 73% 1% 

        

Non-Latrine <=20 1337 17207 98% 100% 3% 70% 

Non-Latrine 20-50 25 1 2% 0% 0% 0% 

Non-Latrine >=50 0 0 0% 0% 0% 0% 

Totals 

 

41592 24520 

  

100% 100% 
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Figure 4.1: Flow diagram describing model steps and decisions.
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Figure 4.2: Map depicting the entire landscape network including the extent of the study area 

coastline, the additional outside area and the virtual lines connecting islands and bays. 
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Figure 4.3: Model sensitivity of mean feces/day as the response variable. The vertical axis 

represents the mean value for R01 (294 feces/day; baseline). Please see Table 4.2 for 

parameter adjustments and Table 4.3 for measured values. 
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Figure 4.4: Model sensitivity of mean proportion of time defecating, by gender, as the response 

variable. The defecation rate was measured as the ratio between the number of hours an otter 

experienced a defecation event and the total number of simulated hours. The vertical axis 

represents the mean value for R01 (baseline) of both genders (0.174). Please see Table 4.2 for 

parameter adjustments and Table 4.4 for measured values.  
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Figure 4.5: Model sensitivity of mean hours of activity-state as the response variable. The 

vertical axis represents the mean value for R01 (baseline) of both genders (765). Please see 

Table 4.2 for parameter adjustments and Table 4.6 for measured values. 
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Figure 4.6: Model sensitivity of mean proportion of active-state hours in which a fish school was 

located as the response variable. The vertical axis represents the mean value for R01 (baseline) 

of both genders (0.183). Please see Table 4.2 for parameter adjustments and Table 4.7 for 

measured values. 
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Figure 4.7: Mean and 95% confidence intervals of the number of interactions with individual 

otters for each simulation scenario. 
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Figure 4.8: Model sensitivity of mean proportion of total population participating in group 

activities as the response. The vertical axis represents the mean value for R01 (0.419; 

baseline). Please see Table 4.2 for parameter adjustments and Table 4.10 for measured values. 

The 95% confidence intervals were calculated having n = 92. 
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Figure 4.9: Model sensitivity of mean number of groups as the response. The vertical axis 

represents the mean value for R01 (17.82; baseline). Please see Table 4.2 for parameter 

adjustments and Table 4.10 for measured values. The 95% confidence intervals were 

calculated having n = 92. 
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Figure 4.10: Modeled otter group size and number of pelagic fish schools. 
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Figure 4.11: Model sensitivity of mean number of individuals within a group as the response. 

The vertical axis represents the mean value for R01 (2.51). Please see Table 4.2 for parameter 

adjustments and Table 4.10 for measured values. The 95% confidence intervals were 

calculated having n = 92. 
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Figure 4.12: Model sensitivity of the mean total coastline use by individual otters. The vertical 

axis represents the mean R01 (baseline) value for male otters only (113.5). The minimal 

variability of female coastline use led to the choice of using the mean male value. Please see 

Table 4.2 for parameter adjustments and Table 4.11 for measured values. The 95% confidence 

intervals were calculated having n = 10. 
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Figure 4.13: Mean (95% CI) feces/day for each simulation scenario (n = 10). The y-intercept of 

the x-axis is the estimated rate of fecal deposition for the 2006 sampling effort (345 feces/day). 

For reference, the estimated fecal deposition rate for 2007 was 366 feces/day. 
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Figure 4.14: A scatterplot of the first two dimensions of a Correspondence Analysis between 

each simulation scenario. The spatial pattern of fecal deposition for scenarios using the 

informed schools (R01, R04-R09) model were more similar to each other than to R02 (random 

schools) or R03 (no schools). Scenarios R02 and R03 were dissimilar in their spatial fecal 

deposition pattern along the coastline. 
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Figure 4.15: Locations of fecal deposition for simulation scenario R01 (baseline) for the entire 

landscape network. The study area coastline is highlighted in blue. Only locations having ≥ 50 

feces are displayed. 
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Figure 4.16: Locations of fecal deposition for simulation scenario R02 (random schools) for the 

entire landscape network. The study area coastline is highlighted in blue. Only locations having 

≥ 50 feces are displayed. 
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Figure 4.17: Locations of fecal deposition for simulation scenario R03 (no schools) for the entire 

landscape network. The study area coastline is highlighted in blue. Only locations having ≥ 50 

feces are displayed. 
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Figure 4.18: Observed fecal deposition for 2006 collected at 100 latrine sites within the study 

area. 
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Figure 4.19: Observed fecal deposition for 2007 collected at 100 latrine sites within the study 

area. 
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Figure 4.20: Summed fecal deposition for simulation R01 (baseline) occurring at the same 100 

latrine locations as the study area. 
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Figure 4.21: Summed fecal deposition for simulation R02 (random schools) occurring at the 

same 100 latrine locations as the study area. 
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Figure 4.22: Summed fecal deposition for simulation R03 (no schools) occurring at the same 

100 latrine locations as the study area. 
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Figure 4.23: A scatterplot of the first two dimensions of a Correspondence Analysis between 

observed feces at the 100 latrines sites and the simulated deposition for the associated point-

locations of simulation scenarios R01 (baseline), R02 (random schools) and R03 (no schools). 

The axes labels were inferred from the simulation results (see Figure 4.14) and applied to this 

analysis. For the corresponding point-locations, the simulation scenarios were similar to each 

other in the amount of fecal deposition reaching those locations. The observed feces also 

differed between years and simulation scenarios, demonstrating the high degree of spatial and 

temporal variability in marine derived nutrients reaching the coastal environment. 
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Figure 4.24: Mean (95% confidence intervals) monthly sea-surface temperatures for buoy 

46060 located in Prince William Sound, AK (http://www.ndbc.noaa.gov). 

 

  

http://www.ndbc.noaa.gov/
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Figure 4.25: A comparison of two latrine sites and simulation results from experiment R01. 

Latrine sites HB001 and HB004 have relatively high amounts of feces, but the simulated 

amounts were equal to 13 and 17, respectively. In turn, the simulated deposition (the red circle) 

is nearby and has a similar deposition rate and habitat quality. 
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Figure 4.26: Histogram of otter fecal deposition amounts for (A) the 2006 observed data (n = 

100), (B) scenario R01 (n = 147; baseline), (C) scenario R02 (n = 154; random schools), and 

(D) scenario R03 (n = 178; no schools). Note for the simulation scenarios, frequencies only 

include point-locations having fecal counts ≥ 50. 
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CHAPTER 5  

 

CONCLUSIONS AND FUTURE RESEARCH CONSIDERATIONS 

 

The abundance of new theoretical and empirical work aimed at addressing major 

ecological issues has been fostered by advances in methodologies and technologies, as well as 

increased funding (Thompson et al. 2001). However, Thompson et al. (2001) suggest more 

progress is necessary to develop a unified understanding of ecological interactions and their 

associated spatial and temporal scales. Specifically, Thompson et al. (2001) state, “Even our 

understanding of food webs generally lacks spatio-temporal context, strongly limiting our ability 

to explain their origin, maintenance and consequences. We suggest building an ecological 

topology that addresses these needs.” This research has taken the necessary steps to apply 

this suggestion at a landscape scale. 

The development of a new scale-independent, landscape metric (boundary convexity) to 

describe the shape of the coastline is an important step in relating the physical characteristics of 

the landscape to the ecological processes driven by animal behavior. This methodological and 

technological advance provides a metric at finer spatial scales than were previously available. In 

turn, boundary convexity was the most important abiotic variable in models describing otter 

latrine site selection in Prince William Sound, AK. The development of a spatially transferable 

model, based on remotely sensed information, is an important contribution to wildlife managers. 

Having the methods and tools to develop predictive models of latrine density may provide useful 

scenarios for otter management. Additionally, this research demonstrated the ability to use 

remotely sensed data to predict otter latrine usage with nearly the same amount of accuracy as 

models using site-specific information (Bowyer et al. 2003; Bowyer et al. 1995). The coupling of 
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a robust habitat-use model and 17 years of otter behavior data has afforded the development of 

an IBM capable of reproducing observed patterns at the system level.  

The IBM performed well in reproducing otter-specific behavior, including cooperative 

foraging through social group organization and spatial heterogeneity of nutrient deposition. 

Similar to Ben-David et al. (2005) and Blundell et al. (2002), the resulting patterns were heavily 

influenced by the presence of schooling pelagic fish. These results are compelling for two 

reasons. First, as is always the case, the knowledge and understanding of the system was 

incomplete (Starfield 1997). However, by taking a common-sense, heuristic approach (Grimm 

and Railsback 2005; Starfield et al. 1993), the problem of determining the dominant 

mechanism(s) driving the observed pattern of nutrient deposition, in light of incomplete 

information, was effectively addressed. The primary example being that information regarding 

the timing, abundance and location of pelagic fish schools was relatively depauperate, yet 

measured otter behavior was similar to observed patterns. Second, the relatively good fit of the 

IBM to observed patterns provide confidence in the mechanisms and methods used to develop 

this model. This result, coupled with the increased understanding of the spatial and temporal 

effects prey availability impose on otter behavior, creates a strong foundation in which 

expanding the model to include additional spatial and temporal domains can be undertaken 

(Thompson et al. 2001).  

The importance of understanding the potential shift in nutrient deposition to the nearshore 

environment is grounded by the fact that the species diversity of flora in Prince William Sound is 

limited because of recent glaciation and harsh environmental conditions (Heusser 1983; Pärtel 

et al. 2007). Increased fertilization by otter fecal deposition increased in plant growth and 

diversity (Ben-David et al. 1998; Roe et al. 2010). The opposite effect may occur if nutrients are 

removed or the pathways are disrupted (Polis and Hurd 1996; Power and Rainey 2000), 

potentially reducing ecosystem resilience (Chapin III et al. 2000). 
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The Gulf of Alaska (GOA) has experienced significant warming in the past few decades 

(Freeland et al. 1997; Wiles et al. 1998). The increased temperatures may be leading to 

decreases in ice cover, increases in sea surface temperatures and variable nutrient fluxes, all 

potentially causing declines in primary productivity (Freeland et al. 1997; Whitney et al. 1998). 

The change in primary productivity may cause shifts in pelagic fish abundance and demersal 

fish species composition (Anderson et al. 1997; Anderson and Piatt 1999; Polovina et al. 1995). 

Cascading up the food-chain, the decline in prey has been accompanied by declines in marine 

mammals and seabirds (Loughlin 1998; Piatt and Anderson 1996). These findings provide a 

basis from which to test additional hypotheses and forecast future scenarios involving coastal 

river otter, prey availability, nutrient transport and the resulting patterns upon the landscape. 

Sea surface temperatures (SSTs) play an important role in zooplankton production 

(Mackas et al. 1998) and the timing of pelagic fish spawn (Brown et al. 1999; Brown 2002; 

Norcross et al. 2001; Penttila 2007). With SSTs increasing (Cane et al. 1997), future research 

may need to focus on the potential effect of temporal fluctuations in SSTs on pelagic fish timing 

and availability to coastal river otters. To accomplish this research, the IBM‟s spatial and 

temporal scales could be modified through the calculation of summary statistics to parameterize 

an additional IBM having a larger time step (i.e. days or weeks). The temporal simplification 

would allow for models to be conducted across an annual time step and facilitate forecasting 

behavioral response across multiple years of simulation. Additional parameters would be 

required, such as individual otter survival, reproductive success and annual SST variation for a 

given climate scenario. In relation to SST variation, a model of pelagic fish response to SST, as 

well as the response to predation pressure by otters on demersal fish, would be necessary. The 

temporally expanded IBM would be similar to the model (Figure 1.1) proposed by Ben-David et 

al. (2004). The ability to accurately develop an IBM forecasting potential behavioral and 

associated terrestrial response to changes in SSTs is enhanced by the study area.  
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The study area has many advantages for expanding the spatial and temporal domains of 

the model system. First, a great amount of data has been collected during the 17 years since 

the Exxon Valdez Oil Spill (EVOS) (Alaska Department of Environmental Conservation 1993), 

providing both temporal context and diverse types of information. Also, data collection will 

continue as part of the EVOS settlement. Secondly, aside from EVOS and commercial fishing, 

Prince William Sound is relatively undisturbed. Thus, monitoring the nutrient pathways and the 

effect of broad-scale processes on the coastal landscape can be accomplished with fewer 

anthropogenic influences confounding measurements. The conceptual design of this IBM is 

applicable to any ecosystem in which variation is caused by behavior, genetic or physiological 

traits of individuals, and we believe this research provides an excellent working example. 
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