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Abstract

Web 2.0 has been growing at a rapid pace empowering end-users with a vast set of

applications dedicated to improve their experience while using the Web. This improvement

comes in the shape of increased personalization that enables the end-users to navigate and

search the Web based on their own needs. One of the key icons of Web 2.0 applications

is mashups; they are essentially Web services that are often created by end-users. They

aggregate and manipulate data from sources around the World Wide Web. Surprisingly,

research related to mashups performance received little attention in research community.

In this dissertation, we provide architectures, protocols, and schemes to enhance mashups

performance and scalability. We provide improvement over mashup execution by defining a

protocol and a set of rules that change the ordinary mashup execution paradigm. Further, we

design caching protocol to utilize data reusability in mashups which results in more efficient

mashup execution. Moreover, we propose a distributed mashup architecture which increases

the scalability of mashup platforms. All the former techniques and protocols are backed up

with a set of experiments proving their effectiveness in transforming mashup execution to a

more efficient and scalable process.

Index words: Web services, Mashup, Personalization, Data reuse, Web 2.0, Feeds,
Caching, Indexing, Distributed, Performance, Scalability
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Chapter 1

Introduction

Our work is targeted towards the new Web 2.0 applications. In this chapter, we define Web

2.0 and we describe the difference between Web 2.0 and the older version of the Web. In

addition, we give a classification of Web 2.0 applications and examples on them.

1.1 Web 2.0

Web 2.0 is the new generation of the World Wide Web, it is mainly associated with appli-

cations that involve information sharing, personalization, collaboration, and user-centered

design [1]. Web 2.0 is a newer more innovated version than Web 1.0, the main difference

between the two versions is the amount of end-user participation. In Web 1.0, end-users

have a more passive role in which they mostly read published content. On the other hand,

end-users role increased in Web 2.0 by having them generate content (end-user generated

content). Web 1.0 is about companies that generate content over the Web and end-users read

that content. In Web 2.0, the focus shifted from companies to end-users by having end-users

generate more portion of Web content. Web 1.0 was popular of its client-server networking

model. Now Web 2.0 is more about peer-to-peer networking model. Web 1.0 relies on HTML

as the building block of Web pages while in Web 2.0, XML intervened in the picture to bring

more semantically enriched content for the Web.

1
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Web 2.0 applications can be classified into social applications, content management applica-

tions, blogging applications, service-oriented applications, podcast applications, social book-

marking applications, video processing applications, audio processing applications, photog-

raphy applications, e-commerce applications, online workspace applications, and feed pro-

cessing applications. Examples of social applications are myspace [2] and facebook [3] where

people connect and collaborate with each other, share documents, images and personal com-

ments. Content management applications are designed to enable people to share information

and knowledge while at the same time enriching this knowledge by enabling them to alter

information, an example of these applications is Wikipedia [4]. Blogging applications give

space for people to express themselves more and to write about their personal opinions and

their daily life activities, an example of these applications is Blogger [5]. Podcast applications

(podcatchers) are those applications that allow you to check a feed of audio/video files list

(podcast) belonging to a specific series, then the files are downloaded by the podcatcher. This

process can be automated such that the podcatcher checks the feed for new updates, and

download any new files; an example of podcatchers is Juice [6]. Social bookmarking appli-

cations allow users to save their bookmarks online for future access, they also allow users

to share bookmarks with each other, an example of social bookmarking applications is Deli-

cious [7]. Audio, video, and photography applications provide a way for users to share images,

audio and video. In addition, users can tag these files, recommend it, or make discussions

about them. Examples of those applications are Pandora [8], Youtube [9], and Flickr [10].

Online workspace applications allow users to arrange their work online, such as online calen-

dars, saving and editing documents online, and online project management, example of this

kind of applications is ZOHO [11]. E-commerce applications mash several information from

different websites to provide users with products from different sources; this helps users to

pick the best deal in one place. An example of this application is KAYAK [12].

Feed processing applications are those applications targeted towards fetching data from

several distributed data sources over the Web, one instance of this category is a group of
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Table 1.1: A classification and examples of Web 2.0 applications
Application Group Examples

Social MySpace, Facebook, LinkedIn, Meetup

Content Management Wikipedia, Wetpaint, Digg, Wikia

Blogging Blogger, Superspace, Blogspot, quackit

Podcast Juice, Podnova, Gigadial, PodcastPickle

Social Bookmarking Delicious, Socialmarker, Diigo, Reddit

Feed Processing Google Reader, kedoya, Yahoo Pipes, Intel MashMaker

Online Workspace ZOHO, Mint, Rememberthemilk, Basecamp

Photography Flickr, Fotoflexer, Picasa, Photobucket

Audio Pandora, Ilike, Live365, emusic

Video Youtube, Joost, Ustream, veodia, Vimeo

e-commerce KAYAK, Woot, Etsy, veodia, Vimeo

applications called feed readers. A feed reader is a Web or desktop application in which

end-users subscribe to feeds, such that the reader periodically checks the feeds for updates;

updates are reflected directly on the reader application interface. In other words, feed readers

provide a way where end-users are kept updated with feeds information which is all collected

in one application. An example of Web readers is Google reader [13]. Other applications go

beyond fetching data by aggregating, manipulating, and filtering this data to deliver the

end-result to end-users. These applications are called mashups, examples of these applica-

tions are Yahoo pipes [14] and Intel MashMaker [15]. Table 1.1 shows a classification and

examples of Web 2.0 applications. This classification is based on [16] and [17].

1.2 Feed Processing Applications

One key category of Web 2.0 is feed processing applications. Feeds are basically sources of

data distributed over the Web and they are represented in two formats, RSS and Atom. RSS



4

Figure 1.1: Example of Yahoo Tennis RSS feed

and Atom feeds are designed as XML-Like files that contain tags describing a set of items;

each item represents a piece of information. Typically, each item has a title, description,

author, and publication date. Although feeds usually refer to RSS and Atom formats, feed

processing applications sometimes can handle other sources such as CSV, XML, JSON. An

example of a feed is listed in Figure 1.1 which represents Yahoo Tennis feed that lists the

latest updates in Tennis news.

Mainly, feeds are consumed by two types of applications, namely, Feed Readers and Mashups.

Feed Readers are Web or desktop applications dedicated to reading feeds, collecting them in

one user interface, and reflecting feed updates on the user interface. The way they work is by

end-users to subscribe for feeds, after that, the feed reader application becomes responsible

of pulling these feeds from their hosts periodically, and displaying updates to end-user. The
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advantage of such an application is first its ability to combine information that interests end-

user in one place which relieves the end-user from visiting several different Websites. Second,

it shows the end-user which feeds are updated and that spares the end-user from the burden

of checking feeds that have not changed. Example of feed readers is Google reader [13].

Although feed readers are useful applications, they fall short when it comes to manipulating

information. Feed readers only provide end-users with a way to read feeds. An application

that overcomes this disadvantage is Mashups. Mashups are Web services created by end-

users, they enable end-users to fetch data from several data sources distributed over the

Web, aggregate, manipulate, and filter this data. Examples of information manipulation in

mashups are aggregation, filtering, sorting, and truncation. An example of mashups is a

mashup that fetches information from Yahoo sports feed, then it filters the feed for Tennis

related items, then the result is sorted. Mashups have several advantages. First, they have

the ability to combine data from several sources in one place. Second, this data can be read

and also manipulated. Third, it offers high degree of personalization by enabling end-users

to refine data based on their own personalized needs. Examples of mashup platforms over

the Web are Yahoo pipes [14] and Intel MashMaker [15].

1.3 Contribution of the dissertation

Since the advent of Web 2.0, there has been increasing importance for Web 2.0 related

applications. Mashups are one of the key categories of Web 2.0 applications. Surprisingly,

performance and scalability of mashups received little attention from research community.

This dissertation investigates mashups performance and scalability issues by exploring chal-

lenges facing mashup execution in mashup platforms. Based on these challenges, we propose

architectures and techniques to ensure efficient and scalable mashup execution. The contri-

butions of this dissertation are pointed out by the following three innovations:
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• We present a model for representing mashups and analyzing their performance; this

model defines mashup platforms, mashups, and their components. Modeling for com-

ponent’s inputs, outputs, and representation is introduced.

• We design operator merging technique and operator reordering rules. Repeated execu-

tion of identical operators leads to deficiency in executing mashups. Detecting identical

operators and merging them are necessary so that identical operators are executed once.

Mashups are not optimized at design time because they are designed by end-users who

are not aware of mashup execution efficiency. Consequently, we provide a set of oper-

ator reordering rules that arrange mashup operators in the most optimized order. Both,

operator merging and operator reordering lead to more efficient mashup execution.

• We provide mashup caching framework that helps in caching results of execution of

parts of mashups. Our caching technique takes into consideration common operators

across mashups so that cached data is chosen carefully to increase the value of our

cache and to make mashup execution more efficient.

• We design a distributed architecture for executing mashups. Ordinary mashup plat-

forms are based on central server architecture which degrades their scalability. By pro-

viding our distributed architecture, we increase the scalability of mashup platforms.

Our architecture is based on an overlay of nodes where a mashup is executed on several

execution nodes. Our system handles failure resiliency issues by replicating nodes and

parts of mashups.

1.4 Organization of the dissertation

In this dissertation, we start by the introduction (Chapter 1) where we define and describe

Web 2.0. At the same time, we discuss several important key categories of Web 2.0 applica-

tions such as feed readers and mashups. In addition, we describe our contributions in this

work. In Chapter 2, we informally define mashups and mashup platforms. In addition, we
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discuss related work in several areas that include a discussion of existing mashup platforms,

Web performance techniques, personalization, Web content caching, Web services caching,

and distributed data processing platforms. Further, we describe motivations and challenges

that mashup platforms are faced with. In Chapter 3, we define a mashup model and nota-

tions that we rely on in the rest of this dissertation. That includes the entities interacting

together in a mashup platform. Also, we show how we represent mashups in our system.

In addition, we propose a novel indexing scheme that aids the access of mashup parts. The

representation scheme and indexing scheme described in this chapter are going to be used

throughout this work. We follow that by Chapter 4 in which we propose new techniques

for improving the efficiency and scalability of mashup execution. Those techniques include

detection of identical components across mashups which helps to avoid unnecessary repet-

itive execution. It also includes an operator reordering scheme that helps in redesigning

mashups to reflect a more optimized mashup workflow. Chapter 5 continues the discussion

on improving the efficiency of mashup platform; this time it is done by proposing a caching

framework in which intermediate mashup execution results are stored locally; this helps in

avoiding executing the same mashup parts in future requests. We design an efficient dynamic

greedy algorithm for selecting data to be cached. In Chapter 6, we propose a cooperative dis-

tributed mashup platform where mashup execution takes part on several distributed nodes.

We also propose an algorithm for placing mashup parts on network nodes such that the cost

of executing mashups is minimized. In Chapter 7, we back up the previous architectures and

techniques with an extensive experimental evaluation that finds out the benefits and costs

of our techniques. We finish with conclusions in Chapter 8.



Chapter 2

Background and Motivation

In this chapter, we define mashups and mashup platforms. In addition, we give examples

of mashups and how they are executed. Further, we discuss related work in the area of

mashups, personalization, and Web 2.0 performance. Furthermore, we describe the challenges

and motivations that led our research towards working in the area of mashups.

2.1 Background

In this section, we informally define mashups and mashup platforms. Conceptually, a mashup

is a Web service created by an end-user to reflect his own personalized needs. The purpose

of a mashup is to fetch data from one or more sources over the Web, process this data based

on end-user needs, and deliver the results to the end-user. Processing data can be in the

form of filtering, truncating, merging, and sorting. All fetching, data processing, and sending

output operations are performed via their corresponding operators. For example, filtering is

performed using a filter operator that specifies the way data should be filtered.

Mashup platforms are those systems that are responsible of hosting mashups. They have

multiple tasks. First, they provide a friendly interface for end-users to design their own

mashups. Second, they receive and host mashups submitted by end-users. Third, they are

responsible of executing mashups and delivering the end-result to end-users. Fourth, they

maintain mashups for future use by end-users. Examples of popular mashup platforms are

Yahoo pipes [14] and Intel MashMaker [15].

An example of a mashup is one that delivers to the end-user sports information coming

from Yahoo Tennis sports and ESPN sports such that information is related to the Tennis

8
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Figure 2.1: Basic representation of a mashup and its components

Figure 2.2: Basic representation of a mashup and its components

player Roger Federer and Basketball team Los Angeles Lakers. As shown in Figure 2.1, this

mashup uses two fetch operators; the first one fetches data from a Yahoo Tennis feed and

the second one fetches data from ESPN sports feed. After that, data is combined using a

union operator. Then, data is filtered based on Title contains Roger Federer or Title contains

Los Angeles Lakers. Finally, the end-result is dispatched to the end-user. A design of this

mashup in Yahoo pipes mashup platform is shown in Figure 2.2.



10

2.2 Related Work

Research in the area of mashups is still in its nascent stages. In this section, we discuss

the current related work in the area of mashups. First, we start by listing work related to

mashup platforms. Second, since our work targets the improvement of a Web 2.0 application,

we review existing approaches for improving performance of Web applications. Third, because

mashups are all about personalization, we discuss related work in the personalization domain.

Fourth, one core part of our work is a caching framework for mashups, therefore, we study

the related work in the caching domain. Fifth, since mashups are conceptually Web services,

we take a closer look at caching for Web services. Sixth, we discuss current distributed data

processing architectures and how they are compared to the distributed mashup architecture

we propose in this work.

2.2.1 Existing Mashup Platforms

The number of mashup platforms and research conducted in the area of mashups is increasing

due to the burst of Web 2.0. Yahoo pipes [14] is the most popular mashup platform on the

Web. It handles different types of data sources including JSON, XML, RSS, Atom. It also

includes different types of operators that facilitate data manipulation. Their platform also

enables end-user to collaborate by reusing each other mashups. MARIO [18] is a recent

mashup editing tool in which mashups are built from tags and executed using a planning

algorithm. DAMIA [19] is a data integration service for situational applications in the enter-

prise domain. Kulathuramaiyer [20] describes a mashup for digital journals which enables

its users to explore digital libraries using semantic-rich meta-data. Subspace [21] adopts the

sandboxing principle to isolate applications into trust layers. Marmite [22] is a mashup tool

implemented as a Firefox plug-in using Java script and XUL, it enables end-users to aggre-

gate and filter data from several Web contents and services. It also has the capability of

directing mashups output to several sources such as websites, text files, or even compliable

source code that can be customized. MashMaker [23] is a mashup Web tool that enables
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end-users to manipulate data from other websites and define their visualized queries over

it, it also provides sharing of mashups as widgets among end-users. Liu et al. [24] provide a

mashup architecture that is based on extension of the Service Oriented Architecture (SOA).

Similar to (provider, broker, and consumer) SOA roles, their system presents roles of (mashup

component builder, mashup server, and mashup consumer), such that these roles interact

together to facilitate data and services composition to end-users through a Web based inter-

face. Karma [25] is another mashup platform that enables end-users to build mashups by

example. Karma authors argue that using widgets as building blocks of mashups is not con-

venient for end-users because as a mashup platform grows, the number of widgets grows

as well and that will confuse the end-user on which widget he needs to perform his task.

Based on that, the authors let end-users extract data they want from websites. The data

is stored behind the scenes as DOM trees and it is visualized to the end-user as tables,

then the end-user can visually work on the data with the help of their system. Their system

allows end-users to fix and integrate data and define rules between attributes of data, these

attributes are stored in the system as XPath rules and the system intelligently applies the

rules on data containing the previous attributes. Smash [26] is a security model that can be

integrated in Web browsers in order to make mashup applications secure. Authors state that

current browsers security models are not appropriate for mashups because mashups require

interaction between different data sources while regular browsers usually disallow such inter-

actions between links coming from different sources. Smash defines a security model so that

scripts coming from different data sources are not allowed to change each other’s data. At the

same time, the model does not allow such scripts to spy on end-user data banks. The model

applies component isolation in mashups while at the same time guaranteeing communication

between components using authenticated communication channels. The model also defines

security rules on which types of interactions are allowed between components. In [27], authors

look at the operational challenges facing mashups. Since mashups combine functionality from

different organizations, difficulties regarding communication and role of each organizational
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part in the mashup may arise. In [28], design principles of enterprise mashups are discussed,

the role of end-users in enterprise mashups is described, and an explanation of why current

service oriented protocols such as SOAP fail in the case of enterprise mashups.

2.2.2 Web Performance

Web performance is an area that has been extensively studied in research. Many factors

affect the performance of Web applications such as delay, bandwidth consumption, relia-

bility, and load balancing. Delay is one of the most important factors because end-users who

use Web applications demand applications with minimum delay. Bandwidth consumption

is an important resource that has to be conserved. Bandwidth consumption and delay are

tied together in a sense that minimizing one of them minimizes the other. Delay results

from communication time and computation time but communication time is most likely the

dominant factor in delay. Caching is used to minimize communication delays and bandwidth

consumption by storing data locally and using it for further end-users request. Caching

schemes [29] [30] [31] [32] can be in the form of edge caching schemes, cache routing schemes,

multicast-based schemes, and directory based schemes. More details about caching tech-

niques is presented in sections 2.2.4 and 2.2.5. Detecting common components is another

way to minimize delays and bandwidth consumption. Many Web applications contain iden-

tical components that are repeatedly executed, if such components are not detected, we end

up with unnecessary execution of identical components. This is extremely important in the

cases where bulks of operations are executed at the same time. Detecting common compo-

nents has been investigated in many systems such as [33] where improvement on flooding

technique is proposed to reduce the number of duplicate messages in peer to peer networks.

It is also used in mobile broadcast systems [34] to eliminate redundant messages. Common

component detection has been used in tree structures. Tree isomorphism for ordered and

unordered rooted trees is discussed in [35] [36]. Detecting common content in XML doc-

ument trees is discussed in [37]. Efficient routing is also used to minimize communication
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delays. efficient routing in peer-to-peer networks is studied in [38] where authors propose

routing algorithms based on number of hops which lead to small lookup paths. Ratnasamy

et al. [39] discuss open problems in DHTs which are mainly used in peer-to-peer systems.

Multicast routing algorithms are surveyed in [40]. Aggregating messages to be sent through

the network is usually a tradeoff between increasing delay and minimizing bandwidth. As

in [41] [42], this happens because usually if the header part of the message is much larger

than the body part, aggregation makes sense because communication saving is higher than

delay overhead. In contrast to the previous case, if the body of the message is much larger

than the header part, then there is not very much saving in data size by aggregation. In

this case, saved communication is less than delay overhead which makes disaggregation a

better choice. One point to mention is that in real time systems, aggregation might not be

adequate because of the stringent time constraints. Data compression is necessary to mini-

mize delays and bandwidth consumption in cases of heavy transmission of data such as in

the case of video transfer. Compression techniques related to image compression, audio com-

pression, video compression, wavelet compression are presented in [43]. Data compression

in text retrieval systems is discussed in [44] where authors provide a transparent layer that

uses Huffman code to apply data compression. Query optimization is also popular for more

efficient Web applications. Ouzzani et al. [45] provide a survey of query optimization on the

Web in addition of research issues in the area of query optimization. Reliability is one of the

important assets of Web applications. The report in [46] investigates and classifies sources

of failure in Web application. Techniques to ensure reliability are proposed in literature such

as [47] [48]. Reliability can also be provided by increasing the availability of the system using

replication. When multiple nodes in a network are replicated, one can serve instead of the

other in cases of failures. Also, replication of resources such as files increases their avail-

ability on the Web. Replication techniques are proposed in [33] [49] [50]. Load balancing is

a criterion that helps to distribute load on processing nodes in a network, it produces better



14

utilization of nodes in addition to minimizing their probability to fail. Many load balancing

techniques are discussed in literature such as [51] [52].

2.2.3 Personalization

Since Web 2.0 is all about end-users, Web 2.0 main feature is the focus of personalizing end-

user experience when using the Web. Personalization is the process of automatic dynamic

customization of Web sites, end-user queries, and end-user related applications based on

their own needs. Personalization challenges are presented in [53] in the context of recom-

mendation systems and Web searching. Recommendation systems are systems that give users

recommendation of products or items of interest to them. It is popular in e-commerce where

personalization comes into picture by recommending items to users based on their personal

interest. Personalization in such a system can be achieved by content-based filtering which

basically captures aspect of items, and it can be achieved by collaborative filtering which

works on the assumption that if user x is interested in a set of items, and user y is interested

in similar set of items, then items by user y can be recommended to user x. In the context

of Web searching, personalization can be achieved by defining end-user profiles, tracing end-

user search activity, and by using semantic Web means such as meta data and taxonomies.

Mobasher et al. [54] specify the elements of Web personalization, namely, modeling of Web

objects (such as pages) and subjects (end-users), categorization of these objects and sub-

jects, matching between those objects and subjects, and deciding what actions are needed

for personalization. According to Srivastava et al. [55], types of Web data that can be used

for personalization are content, usage, structure, and user profiles. A classification of Web

personalization techniques is given in [56] where techniques are classified into the following

groups; user profiling, log analysis, Web usage mining, content management, Web site pub-

lishing, and information acquisition and searching. Datta et al. [57] propose a replacement

for static profiles, they propose the use of dynamic profiles to enhance the personalization of

Web sites. A dynamic profile is information collected for the purpose of predicting the future
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actions of end-users. Authors also provide an architecture that is specifically designed for

e-commerce applications. Using association rules to detect user patterns in his Web activity

is discussed in [58]. Authors provide an efficient data structure for saving the items visited by

users, their data structure is in the form of a sliding window which contains the last n visited

items by users. Authors design an algorithm to use this data structure to produce real-time

recommendations. The same data structure is used to discover association rules between

frequent items. Yoda [59] is a hybrid system that combines content analysis, clustering, and

collaborative filtering features. It also uses recommendation lists by experts such as user

experts. It also uses navigation patterns by users to give better recommendations. Mobasher

et al. [60] define URL clusters which are clusters of URL references computed based on their

appearance patterns in user transactions. In their system, Web server records HTTP requests

performed by users during their sessions, the user sessions and URL clusters are considered

together to compute a set of suggested URLs that users might be interested in. Good et

al. [61] proposes a hybrid system that combines information retrieval(IR) with collaborative

filtering(CB), they achieve that by considering user opinions and ratings in addition to Web

agents (Filterbots) who create profiles for users and generate predictions based on those

profiles. Liu et al. [62] propose an approach for using user profiles and categories to modify

user queries in a way that makes user queries more meaningful and personalized. The user

profile is built based on tracking user navigation history. Sometimes, users might include

new terms in their queries, in such a case, user profiles do not help. Accordingly, authors

use category profiles which are public profiles containing information about categories and

keywords related to all users. If a user is using a new term, then it can be found in the cate-

gory profile and the user query is updated consequently so that the meaning(context) of the

new keyword becomes clear. Henze et al. [63] design a personal Web reader framework which

provides personalized content for individual users. In their work, authors use different ontolo-

gies to bring meta data enrichment to the Web reader. The types of ontologies they use are

domain ontology, user model ontology for user characteristics and preferences, observation
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ontology for describing user observations, and adaptation ontology for describing adaptation

processes. In addition to ontologies, they use personalization services for adaptation from

hypermedia field. The ontologies combined with personalization services help in adaptation

of user Web content and it helps in providing users with recommendations relevant to their

Web content. Cingil et al. [64] propose an approach for using W3C standards to provide

personalization for Web users, they use a client side agent that captures user click stream

and store it in a log coded in XML. The user log size is huge; therefore, authors use XML-QL

queries combined with navigation statistics to build a user profile coded in RDF. In order to

maintain user profile privacy, Web servers can only access user profiles through a Platform

for Privacy Preferences (P3P). Web servers access user profiles to provide Web users with

personalized content based on similarities of interest among users.

2.2.4 Web Content Caching

Web content caching in general has received considerable research attention [29] [30] [31] [32].

A survey of Web caching on the Internet can be found in [30]. Issues such as caching granu-

larity, caching architectures, consistency maintenance and data placement and replacement

strategies have been extensively investigated. Iyengar et al. [29] provide a cache dedicated for

caching dynamic Web pages. Caching dynamic data can be challenging especially when the

dynamic data changes very frequently. Their approach focuses on minimizing CPU time for

servers generating dynamic data rather than minimizing network traffic. They consider the

fact that dynamic Web pages contain data (such as images) which do not change quite often.

Ramaswamy et al. [31] propose a scheme for fragment caching in dynamic Web pages where

they design an architecture and an algorithm for detecting different parts of Web pages (frag-

ments) based on how often a fragment is shared across different pages and also based on the

lifetime characteristics of fragments. Yin et al. [32] discuss cache consistency and invalidation

issues for static and dynamic Web content. In their experiments, they compare server driven

consistency maintenance to pull based approaches. They state that server driven consistency
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protocols are the best in the situation where dynamic data is cached. In this case, server side

invalidation messages is an efficient approach. Various caching techniques are proposed to

optimize several parameters in Web caching. Cache routing schemes are discussed in [65] [66]

where hashing is used to map files to cooperative cache groups. Multicast-based schemes [67]

are proposed where communication and coordination between caches are performed using IP

level multicasting. Directory-based schemes [68] [69] are described where subset of contents

of cooperative caches is stored in every cache. Ninan et al. [70] propose a lease based scheme

called cooperative leasing in which a lease based technique is used to maintain documents

consistency. Gao et al. [71] propose a scheme for edge caching where different levels of object

consistency have been taken into account in order to minimize consistency maintenance costs.

A dynamic scheme for disseminating data is presented in [72] where each data object has its

own dissemination tree which is built based on coherency requirements of caches. Hierarchal

caching techniques are discussed in literature, where multiple levels of caches exist in the

network such that if user request is not satisfied by the first level cache, then the request

is forwarded to the next cache level. An example of hierarchal caching technique is in [67].

Distributed caching is the type of caching where data is cached in multiple distributed caches

such that these caches contain meta data describing the contents of each other cached data.

This way, these caches can cooperate with each other to serve user requests. An example of

distributed caching is the work performed in [69]. A comprehensive analysis between hier-

archal and distributed caching can be found in [73] where several parameters are taken into

consideration during analysis such as cache latency, bandwidth usage, and cache load. Hybrid

caching is a combination between hierarchal and distributed caching. In such an architecture,

caches can cooperate with other caches in the same level (distributed) or in higher or lower

levels (hierarchal). One example of a hybrid caching architecture is [74]. Cache consistency

is one of the most important issues for caching. According to [75], cache consistency schemes

are classified into pull based schemes and push based schemes. In pull based schemes, client

needs to pull data from its origin. Examples of these schemes are using TTL, lease based,
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client periodic polling, and client pulling every time. On the other hand, push based schemes

are the schemes in which the server is responsible of providing client with up-to-date data

to keep their cache consistent.

2.2.5 Web Services Caching

Web services, in general, have been a hot area of research in which aspects such as descrip-

tion, discovery, composition, and efficiency of Web services are addressed [76] [77] [78]. Web

services caching in particular gained interest from research community. WReX [79] is a

caching middleware architecture for caching XML Web services responses. Terry et al. [80]

discuss caching XML Web services for mobile clients. Caching Web services by utilizing

proxy caches is used to minimize communication in mobile ad hoc networks [81]. Dorn et

al. [82] propose a scheme to maintain Web services availability in cases of communication

link interruptions; their scheme utilizes a cache proxy to increase the availability of Web

services. Ramasubramanian et al. [83] explain that WSDL which is used to describe Web

services lacks information to support caching, so authors extend WSDL to include informa-

tion about what operations are cacheable in a way that is transparent to clients and servers.

Challenges on caching Web services in PDAs are discussed in [84] where authors provide a

caching scheme that helps alleviating problems resulting from loss of connectivity and their

scheme is adaptable to bandwidth changes. In their work, they propose dual cache architec-

ture for caching Web services on PDAs. Due to connection problems in wireless connection,

this dual cache architecture utilizes two caches, one local cache at the PDA side and one

service provider cache at the server side. Coordination between the local and the server cache

is needed to ensure the delivery of Web services messages to the client. Devaram et al. [85]

propose caching Web services messages sent by clients. Their idea depends on the principle

that every time a client is requesting a Web service, his request should be transformed into a

SOAP message. If the client requests the same Web service many times, then a considerable

time is wasted on generating the SOAP message payload. Therefore, they propose caching
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the SOAP message payload in a local cache at the client side so that the same SOAP mes-

sage is fetched from the cache and sent to the server whenever the client requests that Web

service. Takase et al. [86] describe a Web service architecture in which caching is used to

cache Web services responses. They state that Web services responses coming from servers

require parsing by XML readers such as DOM, the result of parsing can be in a form of DOM

tree object. This parsing process takes time, so, in their caching architecture, they cache the

post-parsing result (eg. DOM tree object) of Web services responses. This way, Web ser-

vice responses parsing time is avoided. Mahdavi et al. [87] propose a caching mechanism for

Web services in e-business Web applications. Their architecture consists of users requesting

a service from a Web service portal; the portal collaborates with Web service providers to

satisfy user requests. Authors state that Web service providers know the best about which

services responses should be cached. Therefore, Web service providers offer portals a wor-

thiness value that is between zero and one and it indicates how worthy it is to cache a Web

service response. The portal keeps a lookup table that contains cached responses associated

with time stamps. The portal needs to collaborate with service providers to ensure the fresh-

ness of cached Web services responses. Doulkeridis et al. [88] propose a caching protocol for

mobile devices in peer-to-peer network. In this work, authors focus on the problem of service

discovery in a given user device context. The network space is divided into zones where an

administrator is responsible of devices in its zone. Those administrators also cache the list of

service provides based on user context. In other words, when a device sends a query searching

for a service, the query is associated with the device context, such as the device location, and

based on that context, a list of services that satisfies user request are selected. Further, the

user query and its context are cached so that they are used for future requests. However, as

we remarked earlier, most of the existing Web service caching schemes store results at fixed

stages of the Web services, and hence are less effective for the mashup domain.
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2.2.6 Distributed Data Processing Platforms

Several platforms for distributed component execution have been investigated in literature. A

platform for distributed stream processing is proposed in [89] where providers publish streams

and end-users subscribe for those streams. Each stream is processed in several broker nodes

in an overlay network; authors propose a scheme for placing stream processing operators. The

cost metric we propose in Chapter 6 (CoMaP) is more comprehensive than the metric they

use. Also, we handle failure issues in our work while they do not handle it. Another operator

deployment environment is proposed in [90] where deployment is based on DHT routing.

However, as explained in [89], using DHT for selecting nodes where operators are deployed

can lead to bad node selections. This is because DHT focuses on minimizing number of hops

between nodes but not necessarily minimizing delays. Borealis [91] is a distributed stream

processing system, operator deployment in their system does not consider network overlay

changes such as changes in links delay and bandwidth. Medusa [92] is another distributed

stream processing environment that deploys operators in a way to achieve load balancing.

Analysis for node placement in overlay network is investigated in [93], however, they focus

on analysis of placing machines on network infrastructure while CoMaP focuses on mashup

operators placement in overlay network. TAPIDO [94] is a programming model that handles

security for distributed object processing systems such as Web services and mashups. Appli-

cations such as Web services and mashups require service composition and data aggregation

which involve authentication, authorization, delegation, and trust issues. All these security

issues are handled via TAPIDO model which is based on Java remote object model. Bonfils

et al. [95] propose an operator placement model for distributed query processing, they rely on

nodes searching their neighborhood to place operators efficiently in the network, their system

also uses operator switching which enables operators to switch their location to another node

that results in lower cost. Papaemmanouil et al. [96] is a similar work to [95], it depends on

local search within node neighborhood to place operators in the network, in addition they

use a more generic cost function for defining the cost of hosting an operator on a specific
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node, they also use operator replication and partitioning which provides parallel processing

that leads to more efficient query execution. Srivastava et al. [97] propose processing queries

in intermediate nodes such that filter operators are placed on nodes that minimize total

delay.

2.3 Motivations and Challenges

Mashups, while enhancing personalization and end-user participation, also introduce new

scalability and performance challenges. Unfortunately, these issues have received little atten-

tion from the research community. Although there have been some studies on the perfor-

mance of traditional orchestrated Web service processes [98], to our best knowledge, no

studies have studied the performance characteristics of mashup platforms or proposed tech-

niques for improving the same.

Although mashups are conceptually Web services, several differences exist between them.

First, mashups are designed by end-users. This implies that mashups are highly personalized

based on end-user needs. On the other hand, Web services are designed by Web developers

who create mashups for a certain class of users; this means that Web services are less person-

alized than mashups. Second, since mashups are designed by end-users, mashup platforms

typically host several thousand distinct mashups, whereas the number of distinct Web ser-

vices in a typical Web services portal is relatively small. The frequency of execution of most

individual mashups is expected to be modest (the request rate experienced by the mashup

platforms may still be very high due to the large number of mashups they host). Thus, the

data generated in a mashup platform is orders of magnitude greater than its Web services

counterpart, whereas the opportunity for data reuse is much lower. Third, mashups fetch

data from large numbers of diverse data sources distributed across the Internet. These data

sources vary widely with respect to the characteristics of their data - while some data from

some sources changes very frequently others may remain unchanged for considerable dura-

tions. Furthermore, the data sources exhibit significant heterogeneity with respect to their



22

Table 2.1: Differences between Web services and mashups
Comparison Criteria Web Service Portals Mashup Platforms

Created By Developers End-users
Number of distinct Web services/mashups Several hundred Several thousand
Degree of personalization Limited High
Adherence to design guidelines Strong Weak

Ease of data reuse High Low

Optimized at design time Typical Rare

Data sources Mostly internal Mostly external

popularity, performance and reliability. This implies that the costs of executing mashups

depend upon external conditions upon which the mashup platform has little control. Fourth,

mashups are designed by non-technical end-users who are likely not aware of the efficiency

and performance implications of their design. Hence, mashups are less structured and it is

unrealistic to expect mashups to be optimized from a performance standpoint. On the other

hand, Web services are authored by professional developers; therefore, they are optimized for

performance, and they usually adhere to certain broad guidelines with respect to their overall

structures. One point to mention is that most current mashup platforms are based on cen-

tralized architectures; this increases the probability of system failure. Table 2.1 summarizes

the differences between Web services and mashups.

The previous differences between mashups and Web services imply that special attention

has to be given to mashup platforms in order to improve their performance. In the next

chapter, we lay out notations that will be used throughout this dissertation.



Chapter 3

Model and Notations

In this chapter, we present the definitions and common core that are used throughout this

dissertation. First, we define a mashup model. Second, we design a scheme for representing

mashups. Third, we propose a novel indexing structure that facilitates accessing mashups.

3.1 Mashup Model

In this section, we develop a formal model for mashups. A mashup platform can be thought

of as a system that fetches data from sources that are distributed across the Internet,

processes the fetched data in ways specified by the end-users, and dispatches the pro-

cessed data to the end-users who again are distributed over a wide-area network. MpSet =

{Mp0,Mp1, . . . , MpN−1} represents the mashups existing in the mashup platform at a given

point in time.

The mashup platform includes a set of basic processing operator classes such as filter, sort,

join, truncate, count, location-extraction, reverse, subelement, tail, and unique. For ease of

modeling, we introduce two special operator classes. The fetch operator class corresponds to

the function of retrieving data required for a mashup from an external or an internal source,

and a dispatch operator class represents the function of dispatching the mashup results to the

end user. OpSet = {op0, op1, . . . , opM−1} denotes the set of operator classes available in the

mashup platform. Without loss of generality, operator class opM−2 and opM−1 correspond to

the fetch (represented as fo) and dispatch (do) operator classes, respectively. The rest of the

OpSet elements are data processing operator classes. Each operator class may specify certain

requirements on the number of inputs that are fed into it and the type and formats of these

23
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inputs. Also, each operator class always produces the same type of output. For example, the

sort operator class expects a single table with possibly multiple rows and columns as input,

and produces a table with the same number of rows and columns as output.

Mashups comprise of a set of operator instances chosen from the OpSet operator classes.

Every mashup contains one or more instance of the fetch operator and one instance of dis-

patch operator. Specifically, a mashup is modeled as a tree with each node corresponding

to a mashup operator instance. In this tree, the output of an operator node forms (one

of the) inputs of its parent node. Furthermore, The dispatch operator instance always

forms the root of the tree, and each leaf node corresponds to a fetch operator instances.

{ndl
0, ndl

1, . . . , ndl
Q−1} represents the nodes in the tree of the mashup Mpl, where each node

corresponds to an operator instance from OpSet. We note that while an individual mashup is

modeled as a tree, multiple mashups might share data sources, thus forming directed acyclic

graphs (DAGs). Although some mashups update the original data sources, this dissertation

focuses on those that process data from remote sources rather the ones that update them.

For ease of presentation, in the rest of this dissertation, we refer to an operator instance as

simply operator.

Each operator in OpSet is associated with two functions. The cost function, represented

as CF opj(s0, s1, . . . , sq−1) for operator opj represents the cost of performing the operation.

The parameters s0, s1, . . . , sq−1 represent the sizes of the inputs to the operator opj. The

concept of cost function is generic, and it can be measured in a variety of ways including

latency involved in performing the operation and the computational/communication load

imposed by the operation. Here, we quantify the cost of an operator through its latency. The

output size estimation function, represented as OSF opj(s0, s1, . . . , sq−1) captures size of the

output of the operator opj, where s0, s1, . . . , sq−1 are the sizes of the inputs. The cost value

of a node ndl
i (denoted as CV ndl

i) in the mashup Mpl is the value of the cost function of

the corresponding operator on the specific inputs indicated in the mashup tree. Similarly,
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Figure 3.1: Basic representation of a mashup and its components

the output size value OSV ndl
i of the node ndl

i is output size function of the corresponding

operator evaluated on the inputs specified by the mashup tree.

The total cost of executing the mashup Mpl is the sum of the cost values of all its

operators. Similarly, the output size of mashup Mpl is OSV of its root node.

3.2 Mashup Representation and Indexing

A mashup takes a form of tree structure, such that mashup execution starts at leaf level by

the fetch operators which fetch data from several sources over the Web. Mashup execution

ends at the root level by the dispatch operator which sends result to the end-user. Several

operators in between the root level and the leaf level exist which process data and refine

it based on end-user needs, such as filter and sort operators. Each component in a mashup

has two types of representations, 1) basic representation 2) detailed representation. The

basic representation defines the operator and it is constructed by concatenating the repre-

sentation of its attributes such that the symbol | is used as a separator between attributes.

Consider the mashup in Figure 3.1, the first operator is a fetch operator that pulls data from

sports.yahoo.com; the number 10 in the basic representation is the ID of the data source

sports.yahoo.com. The second operator is a filter operator that filters data coming from

sports.yahoo.com such that topic equals Tennis. The basic representation of this operator
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Figure 3.2: Detailed representation of a mashup and its components

is 15|10|07|30|Tennis where 15 is ID of the filter operator, 10 is the ID of the data source

sports.yahoo.com, 07 is the ID of the attribute topic, 30 is the ID of the operation equals,

and Tennis is the value on which topic values are filtered. The third operator is a truncate

operator which has the basic representation 17|05 where 17 is the ID of the truncate operator

and 5 is the number of items to truncate from the operator’s input.

On the other hand, the detailed representation of an operator is used to reflect the loca-

tion of the operator in its mashup. This is important because we need to preserve the

order of execution of operators. For example, a filter operator basic representation by itself

does not imply anything about its location within its mashup and it does not show when

it is going to be executed. Therefore, the detailed operator representation is formed by

combining the basic representation of the operator with the basic representation of the

operators that precede it. Figure 3.2 contains the same mashup in Figure 3.1 and the

detailed representation of each operator. Since the truncate operator is executed after exe-

cuting a fetch and a filter operations, the detailed representation of the truncate operator

is FetchRep#FilterRep#TruncateRep where FetchRep, FilterRep, and TruncateRep are

substituted by the basic representations of the corresponding operator. The # sign is used as

a separator between operators basic representations. Therefore, the detailed representation

of the truncate operator is 10#15|10|07|30|Tennis#17|05.
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Figure 3.3: Detailed representation of a mashup and its components which include a union
operator

Similar basic and detailed representations are used for the operators employed in our

system, namely, fetch, union, filter, sort, unique, subelement, tail, truncate, count, and

reverse. Unlike other operators, union operators have two inputs representing the two com-

ponents to be combined and that makes its basic and detailed representations a little bit

different than regular operators. Union operator’s basic representation is identical to its

detailed representation. A union operator starts with special character SU: starts a union

block, followed by the first component detailed representation, followed by a special character

MU: comes in the middle between the components to be combined together, followed by the

second component detailed representation, followed by a special character EU: ends a union

block. For example, a union operator that combines two fetch operators fetching data from

sports.yahoo.com and news.google.com is represented as follows, SU |10|MU |11|EU where

10 represents fetching data from sports.yahoo.com and 11 represents fetching data from

news.google.com. Nested union operators are used to form different variations of mashup

structures. Figure 3.3 is a more complex example of a mashup that contains a union oper-

ator; the Figure shows detailed representation of mashup operators.

Since mashups can be shared by multiple end-users, we do not include the dispatch operator

representation. We do this to keep mashup representation general which facilitates sharing

between multiple end-users. A mashup is represented by concatenating the basic representa-
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Figure 3.4: A mashup and how it is stored in the components index

tion of each of its components where the symbol # is used as a separator between operators.

Since we do not include a representation for dispatch operators, a mashup representation

equals to the detailed representation of the operator that is executed right before the dis-

patch operator. Consequently, the mashup representation of the mashup in Figure 3.2 equals

to the truncate operator detailed representation which is 10#15|10|07|30|Tennis#17|05. In

Figure 3.3, the mashup representation equals to the detailed representation of the union

operator.

Since a mashup platform potentially contains large number of distinct mashups, accessing

mashup components is inefficient operation. In order to make the process efficient, we use a

B+ tree index for mashup components indexing. The index keys are component’s detailed

representation. The index keys at the leaf level point to mashup components. Figure 3.4

shows a mashup example and its components stored in the B+ tree components index.

After explaining this core information, we continue our discussion with the first piece of

improvement we propose on mashup platforms, this piece considers detecting repeated

mashup sequences and operator reordering as means of improving mashup platforms effi-

ciency.



Chapter 4

Improving Performance of Mashups Execution

Towards addressing efficiency and scalability issues of mashup platforms, we present the

design and evaluation of AMMORE - an Automative Mashup Merging and Operator

REordering platform. In designing AMMORE, we explicitly consider the fact that mashups

may have been developed by multiple end-users with varying-levels of technical expertise.

In order to overcome this challenge, AMMORE provides the following unique features.

• With the objective of avoiding wasteful repetitive computations, AMMORE efficiently

detects common components (operator sequences) from different mashups, executes

them only once and uses the results in final computations of various mashups. When

mashups are executed without common component detection, the mashup platform

executes every occurrence of common components which is clearly unnecessary. If

common component detection (CCD) is used, some mashups can be merged with other

mashups and that minimizes the number of operators a mashup platform has to exe-

cute. For example, consider having two identical mashups, the two mashups fetch data

from sports.yahoo.com then filter data based on topic equals Tennis. Four operators

exist in these two mashups. Now, if common component detection (CCD) is used, these

two mashups will be merged into one mashup resulting in only two operators. As we

can see, the advantages of common component detection (CCD) are two fold. First,

the number of components needed to represent mashups in the system is minimized

which saves memory space. Second, redundant execution for mashup components is

avoided which in turn minimizes delay of mashup execution.

29
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• AMMORE converts each mashup into its most efficient form by re-ordering the oper-

ators such that the operators that reduce data are executed early-on. Converting

mashups into a pre-specified form also improves the effectiveness of common com-

ponent detection. A mashup execution depends on the order of operators forming that

mashup. Consider two mashups, the first mashup fetches data from sports.yahoo.com

then performs a filter operation followed by a sort operation. The second mashup is

exactly the same as the first one except that the sort operator precedes the filter

operator. The two mashups are equivalent because they generate the same output. If

order of execution of operators is not considered here, then these two mashups would

be treated as two different mashups. Another example of the importance of opera-

tors ordering is related to order of siblings in mashup trees. Sibling nodes in mashups

can be found in only one case which is the case of having a union operator where

siblings are the two inputs of the union operator. Consider two mashups, the first

mashup fetches data from sports.yahoo.com and then combines it with data fetched

from news.google.com. The second mashup performs the same operation but in reverse

order, that is fetching data from news.google.com then combining it with data fetched

from sports.yahoo.com. These two mashups can exist because end-users do not follow

any specific rules when designing mashups. Although these two mashups look different,

they are equivalent. Therefore, the order of siblings for union operators has to be taken

into account in order to detect equivalent mashups sequences.

We have developed a real AMMORE prototype to the purpose of improving the efficiency

and scalability of executing mashups.

4.1 System Architecture

Figure 4.1 shows the components of AMMORE which is co-located with mashup platform in

the mashup server. The Figure illustrates how our system interacts with the mashup platform.

End-users typically design mashups using a mashup editor. Those mashups in addition to
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Figure 4.1: System Architecture showing AMMORE components and mashup platform

existing mashups are inputs for AMMORE. These inputs are taken by AMMORE to apply

operators reordering on them. After that, the reordered mashups are fed to our common

component detector which utilizes the mashup components index described in Section 3.2

to detect common components across mashups. After common components are detected,

they are taken as an input for our mashup merger where common components are merged.

Following mashup merging, the mashup platform executes merged mashups by coordinating

with AMMORE. The mashup platform and AMMORE exchange housekeeping information

to monitor and maintain system performance.

4.2 Common Component Detection

As explained in Section 4.1, mashup operators are represented as strings. As a result, mashup

trees are represented as strings which also means that mashup subtrees are represented as

strings as well. Detecting common components is equivalent to detecting subtrees in mashups.

We are looking to find the longest common operator sequences, because this causes mashup

tree representation to be more compact and saves unnecessary computation when executing

mashups. Since operator sequences are represented as strings, our problem is to find the

longest common substring in mashups string representations.
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4.2.1 Mashup Common Component Definitions

Based on the previous challenges listed in Chapter 2, we describe the following definitions

to make common component detection problem for mashups more concrete. In order to

detect common components across mashups, we need to define the term COMMON for two

mashups.

Mashup platform has a set of mashups {Mp0, Mp1, . . . , MpN−1}. Each mashup Mpl tree

consists of set of nodes {ndl
0, ndl

1, . . . , ndl
Q−1}. Each node corresponds to a specific operator.

Two nodes nd0
x and nd1

y are COMMON across mashups Mp0 and Mp1 if and only if:

- Condition1: Mashup Mp0 contains node nd0
x and mashup Mp1 contains node nd1

y.

- Condition2: Node nd0
x has attribute list AtList − nd0

x = {At
nd0

x
0 ,At

nd0
x

1 , . . . , At
nd0

x
J−1}. Node

nd1
y has attribute list AtList − nd1

y = {At
nd1

y

0 ,At
nd1

y

1 , . . . , At
nd1

y

J−1}, such that At
nd0

x
0 = At

nd1
y

0 ,

At
nd0

x
1 = At

nd1
y

1 , . . . , At
nd0

x
J−1 = At

nd1
y

J−1.

- Condition3: The input for node nd0
x is data sources list DsList − nd0

x = {Ds
nd0

x
0 , Ds

nd0
x

1 ,

. . . , Ds
nd0

x
K−1} and the input for node nd1

y is data sources list DsList− nd1
y = {Ds

nd1
y

0 , Ds
nd1

y

1 ,

. . . , Ds
nd1

y

K−1} such that Ds
nd0

x
0 = Ds

nd1
y

0 , Ds
nd0

x
1 = Ds

nd1
y

1 , . . . , Ds
nd0

x
K−1 = Ds

nd1
y

K−1.

Condition1 and condition2 guarantee that mashups Mp0 and Mp1 contain the same node

while condition 3 makes sure that nodes nd0
x and nd1

y have the same data sources as input. A

list of consecutive nodes in mashup Mp0 CoList−Mp0={nd0
f , nd0

f+1, . . . , nd0
H−1} and a list

of consecutive nodes in mashup Mp1 CoList−Mp1={nd1
z, nd1

z+1, . . . , nd1
R−1} are considered

common if and only if:

- Condition4: nd0
f COMMON nd1

z, nd0
f+1 COMMON nd1

z+1, . . . , nd0
H−1 COMMON nd1

R−1.

- Condition5: nodes forming CoList − Mp0 appear in the same order as nodes forming

CoList−Mp1.

4.2.2 Common Component Detection Technique (CCD)

This section describes our technique for detecting common components. The technique is

targeted towards finding the longest common components sequences across mashups. The
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Figure 4.2: Two mashups and the result of merging them

longer the sequence, the more components are considered as common across mashups which

leads to more savings. To the best of our knowledge, subtree matching algorithms focus on

matching subtrees of a pair (or a small set) of trees. However, they do not consider situations

where a system would contain large numbers of trees and subtrees. This raises significant

efficiency and scalability issues. Our system consists of potentially large number of mashups

because of the personalization property of Web 2.0. Therefore, we needed an algorithm that

efficiently indexes mashups and utilizes the index for scalable subtree matching.

The input for our algorithm is a set of mashups MpSet = {Mp0,Mp1, . . . , MpN−1} and

the output is a structure of merged mashup trees. This structure reflects mashups taking

into consideration common components. Figure 4.2 is an example of two mashups and the

resulting structure of merging them. Each mashup consists of a set of branches such that

each branch Bri starts with a single fetch operator and ends with the single dispatch oper-

ator. Figure 4.3 shows a flowchart describing the common component detection process. The

algorithm starts by iterating through all mashups in the system. For every mashup, we start

at the beginning of each branch of the mashup. In other words, we start at the fetch operator

in every branch of the mashup tree, if the operator’s representation exists in the components

index, then we move to the next operator (its parent) to check its existence in the components

index, we keep going for the next operator, because we are looking for the longest sequence
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Figure 4.3: Common Component Detection Description

of operators shared across mashups. If the operator’s representation does not exist in the

components index, this means that all subsequent operators in the same branch also do not

exist in the index because as explained in Section 3.2 each operator’s representation includes

the representation of its children. As a result, the operator and all subsequent operators in

the mashup are added to the components index. If no further operators are left in the current

mashup branch, then we move to the next mashup branch and when all operators within all

branches of a single mashup are visited, then we move to the next mashup. The algorithm

stops after iterating over all mashups in mashup set MpSet.

The common component detection process is efficient because each mashup is merged with

existing mashups as the mashup is requested by end-user. The efficiency of common compo-

nent detection also comes from using the components index described in Section 3.2 which
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makes accessing mashup components more efficient process. For the sake of generality, we

described the input of the algorithm as a set of mashups to be merged together. However,

mashups are merged on the fly as they are requested by end-users.

To analyze the complexity of our algorithm, consider the case where a new mashup enters

the system and the number of operators in the mashup tree is m. We need to traverse all

operators in the mashup tree to find out if they exist in our components index. In the worst

case, none of the mashup operators exist in the system. Traversing the mashup tree is of

order O(m). Now, in each traversed operator, we search the B+ tree index once for that

operator, searching B+ tree complexity is O(t ∗ logtn), where t is the degree of the B+ tree

and n is the number of keys in the B+ tree. As a result, the whole algorithm complexity is

O(m ∗ t ∗ logtn) which is of a quadratic complexity.

4.3 Operator Reordering

The objectives of reordering are two fold; (1) Standardize the internal representation of

mashups; two mashups that operate on the same data sources, use same set of operators

and yield same end-results have identical representations. This improves the effectiveness

of common component detection because it increases the probability of detecting common

components; (2) Transform the mashup into a form that is more efficient from performance

standpoint. For example, executing a filter operation before a sort operation is more efficient

than the reverse order of execution.

4.3.1 Commutable Operators

One approach for standardizing mashup representation is to restrict a specific order on

mashup operators such that the semantics of the mashup does not change. This can be

achieved by detecting operators that can be interchanged without modifying mashup end-

result; these operators are called commutable operators. The following operators are consid-

ered to be commutable
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• Sort, filter, reverse, and unique are commutable

• Sub-element and sort are commutable; only when both operate on same attribute

• Sub-element and filter are commutable only when both operate on same attribute

• Sub-element and reverse are commutable

Based on the previous lists of commutable operators, a special order of commutable operators

can be set which is described in the next subsection.

4.3.2 Canonical Form

Our canonical form defines a set of rules that we apply on mashups to make their design

more standard. These rules are analogous to optimizing relational algebra expression trees.

Our canonical form has the following rules. In these rules x → y means that operator x

precedes operator y:

1. Filter → Union

2. Filter → Sort → Reverse → Unique

3. Sub-element → Sort

4. Filter → Sub-element

5. Sub-element → Reverse

6. In any union operator, data sources appear in their lexicographical order.

If a union operator merges contents of data sources sports.yahoo.com and news.google.com,

then news.google.com should appear to the left of sports.yahoo.com after enforcing the canon-

ical form. The reason for making filter operators appear first in the previous rules is that a

filter operator usually refines the data it receives as an input and the resulting output would

usually be less in size than the input, this makes the operators that follow the filter operator

execute faster because the size of their input data becomes smaller.

Figure 4.4 shows an example of a mashup designed by an end-user and its design after

enforcing the canonical form. Canonical form rules are followed to make sure that all mashups
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Figure 4.4: A mashup and its conversion to canonical form

abide to a more strict design structure. By applying the canonical form, we increase the

probability of detecting common components across mashups and at the same time improve

the efficiency of executing mashups. Notice that we cannot rely upon end-users to enforce

canonical form, as they may not have the required expertise. After the end-user completes

designing his mashup, the system enforces the canonical form rules on the mashup.

In this part, we proposed common component detection and canonical form to enhance the

execution of mashups. This is beneficial in cases where data sources involved in mashups are

continuous (eg. streams). In the second piece of our work, we consider the case when data

sources involved in mashups are mostly static or do not change a lot. Towards addressing this

issue, in the next chapter, we propose caching as a mechanism of improving the efficiency of

mashup platforms.



Chapter 5

Caching for Mashups

This chapter explores caching as a mechanism to alleviate the scalability challenges of

mashups. Caching is a proven strategy to boost performance and scalability of Web applica-

tions. For example, Web content delivery and Web services have long adopted caching [99].

Several caching techniques have been specifically developed for Web services [79, 80]. How-

ever, most of these techniques cannot be directly used for mashups. Most Web service caches

store the final results of Web service workflows or at pre-specified stages of the Web service

processes1. We contend that this static caching strategy would not be effective for mashups

due to the inherent differences between mashups and Web service processes. Therefore, inves-

tigating caching techniques for mashups is important, especially in the cases where data

sources do not change quite often.

As Web services are authored by professional developers, it is possible for them to identify

the stages of Web services at which the results should be cached. On the other hand, mashups

are created by individuals with varying degrees of technical expertise, so caching decisions

are left to the mashup platform. Further, data sources for Web services are mostly hosted

on the same machine hosting the Web service itself and that makes caching decision easier.

On the other hand, mashups require data from external sources; mashup platforms have no

control on these data sources.

Because of these traits, mashups demand a more dynamic caching strategy, wherein: (a)

the intermediate results of mashup computations can be stored for future use; (b) the cache

enables the intermediate results of one mashup to be used in another; and (c) the caching

1The cache is explicitly configured to store results at a certain point of the workflow.

38
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decisions are based upon dynamic benefit-cost analysis which takes into account the struc-

tural characteristics of mashups but is also adaptive to the various dynamics of the mashup

platform.

This chapter describes the design and evaluation of MACE (mashup cache) - a server-side

cache framework for the mashup domain. The design of the MACE framework embodies

three original contributions.

• We design a mashup structure-aware scheme for indexing cached data which enables

MACE to efficiently discover whether any of the currently cached data can be reused

in the execution of a newly created mashup.

• We incorporate taxonomy-awareness and provide support for range queries to further

increase reuse of cached data.

• We present a dynamic cache point selection scheme that estimates the benefits and

costs of caching data at different stages of mashup trees. Our approach selects a set

of points that collectively maximize the benefit-to-cost ratio of caching data at those

points.

The previous contributions are introduced in MACE for the purpose of increasing the

efficiency of mashup platforms.

5.1 MACE Architecture

Figure 5.1 illustrates the architecture of the MACE system. The MACE system is co-located

with the mashup platform. However, it is designed such that the mashup platform itself

would require minimal modifications to work in conjunction with MACE.

In order for MACE to select stages at which data will be cached, it continuously observes

the execution of mashups, and collects statistics such as request frequencies, update rates

and cost and output size values at various nodes of the mashups. It then performs cost-

benefit analysis of caching at different nodes of mashups, and chooses a set of nodes that
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Figure 5.1: MACE Architecture

are estimated to yield best benefit-cost ratios. An operator node in a mashup tree that is

chosen for caching by MACE (i.e., the results until that stage of the mashup execution would

be stored) is called a cache point. Any node in the mashup tree except the root of the tree

(corresponding to the dispatch operator) can potentially be chosen as a cache point. This

set of nodes is called the potential cache point set (PcpSet), and individual nodes in this set

are referred to as potential cache points.

MACE also interacts with the mashup editor to obtain newly created mashups. For each new

mashup, the MACE platform analyzes whether any of the cached results can be substituted

for part of the mashup workflow. If so, the mashup is modified so that cached data is re-used,

and only the additional operations required for completing the mashup are performed. The

modified mashup is then provided to the mashup platform for execution. In addition to these

two main features, the MACE platform also incorporates the basic cache functionalities such

as replacement scheme and data consistency mechanism. This chapter focuses on the design

of a dynamic cache point determination technique and mechanism to re-use the cached data

for substituting parts of incoming mashups. The next sections describe these two unique

features of the MACE platform.
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Figure 5.2: Cached Data Reuse in MACE

5.1.1 Cache Indexing for Efficient Data Reuse

Determining points of data reuse in new coming mashups is not a straightforward task.

Notice that a cache point represents the results of computations occurring in a subtree of

the mashup tree. This subtree itself might have one or more branches with fetch operators

at the leaves. The results at a particular cache point Cph can be reused for an incoming

mashup Mpl if and only if the subtree represented by Cph exactly matches a subtree in Mpl.

By exact matching, we mean that a subtree of the incoming mashup has the same structure

as that of the subtree represented by Cph, and parameters of operators in both subtrees are

the same. Since mashup platforms support large numbers of mashups, we need a scalable

mechanism to find out whether one or more subtrees of a new mashup match existing cache

points. MACE includes a novel cache point indexing scheme to address this issue, which is

explained later in this section.

If one or more subtrees of a new mashup Mpl are found to match existing cache points in

the MACE system, Mpl is modified as follows. For each subtree that matches an existing

cache point, the subtree is replaced with a fetch operator that references the cached data

corresponding to the cache point. For example, if an arbitrary subtree Stq of a Mpl, matches
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an existing cache point Cph, Stq is replaced with a fetch operator that refers to the cached

data corresponding to Cph. The modified mashup is then sent to the mashup platform which

executes it. Figure 5.2 illustrates the modification of a new mashup to reuse data available

in the cache. We now explain our mashups representation and indexing scheme that enables

efficient discovery of cache points.

5.1.2 B+ tree Cache Index

Section 5.1.1 described a B+ index that facilitates accessing mashup components. Another

version of this index is used to facilitate searching for cache points. The index nodes’ entries

of the new version of the B+ tree are substrings of mashups detailed string representations.

Those substrings correspond to representations of cache points. They are entered to the

index based on their lexicographical order. In other words, the index in Section 5.1.1 is

used for indexing mashup components (operators), while the new version we use in this

chapter is used for indexing cache points. Consider the following mashup example, Fetch

data source buycars.cars.com, filter data based on model=Honda, sort on price, if we decide

to cache after the filter operator is executed, then 12#15|12|04|30|Honda will be inserted

into the index. But if we decide to cache after the whole mashup execution flow is done, then

12#15|12|04|30|Honda#09|12|06 is inserted into the index.

Figure 5.3 shows the cache index if we decided to cache after both of the previous 2 points.

The numbers in identification strings are IDs of the data sources, operators and attributes

forming a mashup, for example, the filter operation 15|12|04|30|Honda is interpreted as

follows, 15 is the ID of the filter operator, 12 is the data source ID from which attribute 04

is taken, 30 is the ID of the equality operator and Honda is the value on which the attribute

04 is filtered. In the previous identification strings # represents a special character which

works as a separator between operators. Similar to the index described in Section 5.1.1, in

the new index version we use here, each operators’ detailed string representation reflects the

operators which precede it in the mashup workflow.
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Figure 5.3: Mashup representation and cache index

5.2 Range Queries and Taxonomy Awareness

Until now, our design of the indexing scheme is focused on lookups for exact matches.

However, supporting lookups for inexact matches can considerably increase the reuse of

cached data. Consider the case when the cache contains superset of data needed for an

incoming mashup. In this case, the data in the cache can be appropriately filtered and

reused for the new mashup. Unfortunately, looking up for exact matches would fail to even

locate the existence of the superset, thereby precluding the possibility of data reuse. Towards

addressing this issue, we enhance our indexing mechanism to support two specific kinds of

inexact matching, namely, range queries and hierarchical taxonomies. Our strategy relies on

the fact that the keys in the leaf level of the B+ tree index are sorted, which implies that

mashups that are lexicographically close by to one another are stored either in the same

index node or in a nearby node.



44

5.2.1 Supporting Range Queries

Suppose that a new mashup requires data with parameter p being in the range interval [x, y].

With exact matching, if the cache index does not contain the precise range [x, y], a cache

miss occurs and the new mashup is executed end-to-end. Consider the scenario when the

cache contains the results of an earlier mashups that is similar to the new one except that

parameter p is in the range [a, b]. Now the question is whether this data can be reused for

the new mashup? In order to determine this, we need to consider three distinct cases.

First, if x = a and y = b, then this means that range interval [x, y] is fully included within

range interval [a, b] which also means that the result of the new mashup is fully contained

within the result of the existing mashup. In this case, a cache hit is declared and a local

search within the result of the existing mashup is performed to extract the result of the new

mashup. Second, if x = a and y > b or x < a and y = b or x < a and y > b, then the range

interval [x, y] is partially included in the range interval [a, b]. Here, because the result of

the new mashup cannot be completely satisfied by the existing cached mashup result, then a

cache miss is declared and the new mashup is executed end-to-end. It is noteworthy that this

partial inclusion relationship can be useful in two situations. First, the case where partial

results can be extracted from cached data and we query for missing data, then the missing

data and partial results are combined. Second, the case where the new mashup cannot be

executed due to difficulties in communicating with data sources. In such a situation, the

data available in the cache is reused to provide the end-user with a valid but incomplete

result. For example, if we consider the x = a and y > b scenario, the result satisfying the

range interval [x, b] can be provided for the end-user from cached data. Such a result is not

complete, but it is still valid and may be useful to the end-user. Third, if x < a and y < a or

x > b and y > b, then the range [x, y] is totally outside the range [a, b]. In this case, a cache

miss is declared and the new mashup is executed end-to-end.

The inherent capability of the B+ tree structure to lookup range values can be leveraged

for the above purpose. The following example illustrates how this is achieved in the MACE
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framework. Suppose the following mashup result is cached in the system: Fetch data from

buycars.cars.com then filter data based on price < 5000. Based on our mashup string repre-

sentation, this mashup is represented in the cache as 12#15|12|06|32|5000 where the last 4

digits correspond to the value on which data is filtered (5000). Now, suppose an end-user asks

for a new mashup which is described as follows, fetch data from buycars.cars.com then filter

data based on price < 4000, the new mashup is represented as 12#15|12|06|32|4000. This case

represents case 1 where the range interval of the new mashup is fully included within the range

interval of the existing mashup. We can see that the two mashups have some common part

(12#15|12|06|32) in their string representation. Without using range query improvement, a

search for the new mashup representation 12#15|12|06|32|4000 results in a cache miss, this

happens because we make exact matching between index keys and the mashup representa-

tion we are looking for. When using range query awareness, the search process for previous

mashup (12#15|12|06|32|4000) in the tree explores through index levels based on lexicograph-

ical order of keys and eventually arrives at the existing mashup key 12#15|12|06|32|5000.

Now, instead of declaring a cache miss, we detect that this key (12#15|12|06|32|5000) and

the key we are looking for (12#15|12|06|32|4000) represent the same mashup except that the

value on which data is filtered is different. Here, we do not have to execute the new mashup

right from its starting point, instead, we search items that the previous key points to and

then exclude items with price between 4000 and 5000.

Accordingly, we achieve better utilization out of cache index. As an example of case 2, sup-

pose the new mashup is filtering data based on price < 6000, here the result of the new

mashup is partially included in the existing mashup cached result. Normally, we declare a

cache miss and execute the new mashup from scratch, but if the new mashup execution is

interrupted due to communication problems, then a cache hit is declared and the end-user

is provided with the result of car items cheaper than 5000. One might argue that providing

incomplete result is not accurate. Although this is true, the partial result can satisfy end-user

demands in many cases, here, the end-user might find a suitable car for him.
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Note that when MACE caches mashup results, it may so happen that two results sets (of

two distinct mashups) overlap without anyone of them being a subset of the other. In such a

scenario, we do not make duplicate copies of data that is common to both sets. We maintain

a single copy of the common items but store the pointer at two distinct locations in the

index. This maximizes the utility of the available storage.

5.2.2 Supporting Hierarchical Taxonomies

The range query technique presented in the previous section works well for numeric parame-

ters. However, in many cases, end-users can create mashups that extract general information,

while others might create mashups that extract more specific information with respect to

parameters that are non-numeric. Consider the case when the mashup platform caches the

results of a mashup that extracts all sports related stories from sports.yahoo.com. Now,

suppose another end-user creates a mashup that extracts all stories related to Tennis from

sports.yahoo.com. Clearly, the results of the new mashup are more specific and constitute a

subset of the results of the existing mashup. The previous range query mechanism cannot

be used for this case as the parameter is keyword-based.

We have developed a mechanism to detect these types of generic/specific relationships among

mashups in terms of keyword parameters. The central idea is to build a hierarchical taxonomy

that defines relationship between various keywords or categories. The assumption is that a

keyword at a higher level in the hierarchy subsumes all keywords which reside underneath it.

This hierarchical taxonomy is used to enhance data reuse and minimize cache misses. When

a new mashup is created, our strategy is not to just search the index for earlier mashups

with exactly matching keywords, but also to look for existing mashups that have ancestors

of the keywords in the incoming mashup. Specifically, suppose an existing mashup filters

data based on non-numeric keyword-valued parameter p being equal to X, and suppose this

result is cached. Later, suppose a new mashup which is identical to the existing mashup

except that p equals Y is created. Normally, a cache miss is declared and the new mashup is
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executed end-to-end. However, providing that a hierarchical taxonomy exists, we can use it

to look for a possible relationship between X and Y . If X is an ancestor (direct or indirect

parent) of Y , then the result of new mashup is a subset of the cached result. However, the

cached results cannot be directly used for the new mashup. The cached results have to be

locally filtered to the actual result of the new mashup.

As an example, suppose the cache contains the result of the mashup that fetches data from

sports.yahoo.com, then filter data based on the criterion category = sport. The index has

the key 10#15|10|02|30|sport corresponding to this data in the cache, where sport is the

value on which data is filtered. Now, suppose an end-user creates a mashup to fetch data

from sports.yahoo.com, then filter data based on category = Tennis. The key for the new

mashup is 10#15|10|02|30|tennis, where Tennis is the value on which data is filtered. The

search process for the new mashup in the cache starts by exploring the index until we reach

the level containing the key 10#15|10|02|30|sport. If we are going to use exact matching to

look for the new mashup in the cache, we will end up with a cache miss. Instead, we detect

that the part 10#15|10|02|30 is common between the new mashup and the cached mashup,

so we extract the value on which the cached mashup is filtered (sport) and we extract the

value on which the new mashup is filtered (Tennis), then we consult the taxonomy to look

for a possible relationship between these two keywords. Since Tennis is a child of sport in

the taxonomy, we conclude that the result of the new mashup is contained in the result of

the previously cached mashup. Consequently, the result of the new mashup can be found by

locally filtering the cached data of the first mashup. Figure 5.4 illustrates the above example.

5.3 Dynamic Cache Point Selection

In this section, we describe our dynamic cache point selection technique. We formulate the

dynamic cache point selection as an optimization problem following which we provide efficient

algorithms for cache point selection.
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Figure 5.4: Taxonomy Support in MACE

5.3.1 Problem Formulation

This section formulates the cache point selection as a cost-benefit optimization problem. We

provide two flavors of the cost-benefit optimization problem. The first one models a scenario

wherein the storage-space availability at MACE is unlimited and the second corresponds to

the scenario in which the MACE system has limited storage capacity. We begin by intro-

ducing terminologies and notations that are employed in the problem formulation.

Potential cache point set (PcpSet = {Pcp0, P cp1, . . . , P cpM−1}) represents the unique poten-

tial cache points corresponding to the mashups existing in the MpSet. Recall that every oper-

ator node in a mashup except the root is a potential cache point. The members of PcpSet

are unique in the sense that the potential cache points that represents subtrees which exist

in multiple mashups are included only once. The sum of the cost values of all the descen-

dant nodes of a potential cache point Pcpk including the cost value of Pcpk is called the

cumulative cost value of Pcpk (CCV Pcpk = CV Pcpk +
∑

Pcph∈Descendent(Pcpk)(CV Pcph)).



49

5.3.2 Cost-Benefit Analysis

The benefits of caching the results at a particular potential cache point Pcpk is that the

cached data would be re-used for any future requests of all mashups that Pcpk is part of,

thus avoiding the re-executions of Pcpk and all of its descendant nodes. Let request frequency

of Pcpk (represented as RF Pcpk) denote the number of times Pcpk needs to be executed per

unit time to satisfy user requests if the output of Pcpk is not cached. Note that RF Pcpk

is the total sum of the request frequencies of all the individual mashups that the subtree

under Pcpk is part of. Thus, the benefits per unit time obtained by caching at Pcpk is

RF Pcpk × CCV Pcpk .

Caching at a potential cache point Pcpk involves two distinct costs, namely consistency costs

and storage costs. Consistency costs are the costs involved in maintaining the consistency of

cached data in the face of updates to the data from external sources that are used in com-

puting the output Pcpk. Notice that the data cached at Pcpk becomes invalid, and would

need to be updated anytime the data obtained through any of the fetch operators below

Pcpk changes. Each time the output of Pcpk needs to be re-computed, Pcpk and all of its

descendant nodes need to be re-executed. Thus, the consistency costs per unit time of caching

at Pcpk can be quantified as UF Pcpk × CCV Pcpk , where UF Pcpk represents the sum of the

update frequencies of all the external data sources fetched by the operators below Pcpk.

The storage costs of caching at Pcpk is directly proportional to the size of the output

(OSV Pcpk). However, notice that the storage costs only matter when available storage is

limited. Furthermore, storage costs and consistency costs are inherently different, and cannot

be combined into a single equation in a meaningful way. We model the storage costs as con-

straint rather than optimization criterion.

RF Pcpk ×CCV Pcpk −UF Pcpk ×CCV Pcpk is called the cost-benefit trade-off for Pcpk (repre-

sented as CBT Pcpk). CBT Pcpk quantifies the net cost-savings obtained by caching at Pcpk.

Note that in this formulation of CBT Pcpk , the computational overheads incurred at the time

of serving user requests and those incurred to maintain consistency of cached data, are of
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equal importance. In scenarios where one is more important than the other, the two terms

of CBT Pcpk have to be appropriately weighted to reflect their relative importance.

Scenario 1 −− No storage limitations: As stated earlier, the objective of the dynamic

cache point selection scheme is to select a set of cache points such that the benefit-cost

tradeoff is maximized. Let XPcpk be a {0, 1} variable denoting whether Pcpk is selected as a

cache point (XPcpk is 1 if Pcpk is chosen and 0 otherwise). Therefore, the optimization crite-

rion would be to assign XPcpk values to each potential cache point Pcpk ∈ PcpSet such that

∑
Pcpk∈PcpSet X

Pcpk×CBT Pcpk is maximized. However, notice that the optimization problem,

as it stands, can lead to duplicate-caching (caching same or interdependent data multiple

times thus wasting resources). In order to avoid this, we introduce the following constraint.

For any pair of potential cache points {Pcpk, P cpi} such that Pcpk ∈ Descendant(Pcpi) or

vice-versa, XPcpk + XPcpi ≤ 1.

Scenario 2 −− Limited storage The optimization problem formulation for the limited

storage scenario is similar to the previous case, but the total storage requirements of cached

data should not exceed the storage available in the MACE system. Suppose Sg denote

amount of storage available. The optimization problem can be stated as follows. Assign values

to decision variables {XPcp0 , XPcp1 , . . . , XPcp(M−1)} corresponding to the potential cache

points {Pcp0, P cp1, . . . , P cpM−1} such that
∑

Pcpk∈PcpSet X
Pcpk×CBT Pcpk is maximized while

ensuring that the following constraints are not violated: (1) XPcpk ∈ {0, 1}, ∀Pcpk ∈ PcSet;

(2) ∀{Pcpk, P cpi} such that Pcpk ∈ Descendant(Pcpi)||Pcpi ∈ Descendant(Pcpk), X
Pcpk +

XPcpi ≤ 1; and (3)
∑

Pcpk∈PcSet X
Pcpk × OSF Pcpk(ips) ≤ Sg, where the variable ips repre-

sents the inputs to the operator at Pcpk as specified in the mashups. Notice that this is a

constrained discrete optimization problem solving which requires exhaustive search of the

solution space. In the next section, we present a greedy strategy-based algorithm for this

problem.
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5.3.3 Cache Point Selection Algorithms

First, we consider the scenario wherein storage space is not a constraint. Statistics such

as the request and update frequencies of potential cache points are collected, and the cor-

responding cumulative cost values are calculated. For each mashup in the platform, our

algorithm searches for the best cache point as follows. The algorithm starts searching from

the potential cache point that is shared across many mashups, and at the same time is

located at lower-levels of the mashup tree. This can be achieved by starting at a node that

has the maximum value for SMCount
Height

, where SMCount (sharing mashups count) indicates

the number of mashups that share the potential cache point and Height indicates its height

in the mashup. The rationale for starting the search at such a node is that it is likely to

yield maximum reuse (thereby maximizing the benefits) at low consistency maintenance

costs. Suppose the algorithm starts from the potential cache point Pcpk. The node that is

currently being searched is called the current search point (CSP). We calculate CBTCSP

as RFCSP × CCV CSP − UFCSP × CCV CSP . We then compare the value of CBTCSP to

the CBT value of its ancestor in the mashup and the CBT value of its descendant in the

mashup (if Pcpk has multiple descendants, we consider the sum of their CBT values). If

the CBT value of the ancestor is higher than that of Pcpk, the ancestor is initialized as the

new CSP, and the algorithm continues searching upwards from that point. If, on the other

hand, the descendant node had a higher CBT value, the descendant is initialized as the new

CSP and the algorithm continues searching downwards. If Pcpk has multiple descendants,

the algorithm continues searching downwards from each of them.

The search terminates when we reach one or more nodes such that the CBT values of their

respective descendants and ancestors are lower than their CBT values.2. The potential cache

point(s) at which the search terminates are chosen to be included in the cache point set

(CPSet). This algorithm yields optimal solution to the scenario with no storage limitations.

The algorithm is linear in terms of the number of potential cache points in the platform.

2The search may also terminate when we reach the end of the mashup tree (in either direction)
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We now extend the above algorithm for the limited storage scenario. Recall that discovering

optimal solutions for this scenario requires exhaustive search of the solution space. There-

fore, our objective is to design an efficient algorithm that yields close to optimal solutions.

The algorithm for the limited storage scenario works in two stages. The first stage is exactly

similar to the algorithm described above for the scenario wherein the storage space is not a

limitation. However, the storage requirements for CPSet obtained at this step may exceed

the available storage (Sg). The second stage of the algorithm performs additional level of

pruning as follows. For each cache point Pcpk in the CPSet produced at the end of first step,

it calculates the ratio BCSPcpk = CBT Pcpk

OSV Pcpk
. This ratio quantifies the per-byte cost savings

obtained by caching the results of Pcpk. The cache points are sorted in the descending order

of their BCS values. The algorithm then progressively eliminates the cache points from the

end of this sorted list (i.e., the cache points with the least BCS values are eliminated first)

until the results of the cache points remaining in the CPSet can fit into the available storage.

The rationale for this elimination strategy is to retain cache points that provide maximum

benefits for the amount of storage space they consume. Once the CPSet is computed, the

MACE engine starts storing the outputs of the cache points.

In this chapter and the previous one we proposed two key pieces for improving the effi-

ciency and scalability of mashup platforms; 1) We proposed common component detection

and operators reordering to improve the execution of mashups which use continuous data

sources. 2) We proposed a caching architecture and a caching protocol for enhancing execu-

tion of mashups which use static or less frequently changed data sources. To the best of our

knowledge, current mashup platforms are based on centralized servers which degrades their

scalability and makes them vulnerable because of failures. In the next chapter, we target this

issue by proposing a distributed mashup architecture that is scalable and failure resilient.



Chapter 6

Distributed Mashup Platform

This chapter explores distribution as a mechanism to achieve scalability and performance of

mashups. To the best of our knowledge, most of existing mashup platforms are centralized;

this results in several drawbacks. First, since mashup platforms typically host large numbers

of mashups and experience high mashup request rates, a centralized mashup platform faces

an increasing pressure and might not be able to keep up with increasing amount of end-users

requests which raises a scalability problem. Second, a centralized mashup platform does not

consider the geographical location of end-users and data sources; this implies that some

end-users might observe high delays. Third, having a centralized mashup platform implies

that the centralized server is a single point of failure. The previous three points motivates

the need for a distributed mashup platform where mashup execution takes part on several

cooperative nodes.

Distributing mashup execution requires the collaboration of distributed nodes in an overlay

that faces network dynamics; therefore, we need to handle several challenges in distributing

mashup execution. Since we are designing a distributed system, what type of cooperation

is needed between network nodes? This is important to guarantee a complete and correct

mashup execution. Also, should a mashup be executed on one node or multiple nodes?

Executing a mashup on multiple nodes forms a way of parallel execution. Further, what are

the parameters based on which a node is selected to execute the whole mashup or part of

it? Parameters such as communication links delay, bandwidth and nodes loading should be

considered.

53
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The next challenges are related to handling dynamics of the system; what happens in

the case of changing network parameters? For example, communication links delay and

bandwidth between nodes are changing due to factors such as congestion. Also, node loading

is changing as nodes get more mashups to execute. Therefore, a mashup that is being

executed on some nodes might have to be reassigned to different nodes to adapt to changing

network parameters. Also, what if more than one end-user share the same mashup or part of

it? A mashup execution plan is initially designed based on a number of end-users requesting

it. When more end-users request the same mashup, the mashup execution plan might change

based on the geographical location of the new end-users. Further, what happens if network

nodes fail? Certain recovery method should be applied to make sure system functionality is

not affected?

Towards addressing the previous challenges resulting from having a centralized mashup

platforms, we design a cooperative overlay-based architecture called CoMaP which considers

distribution as a mechanism to enhance the scalability of mashup platforms. In CoMaP,

processing nodes cooperate to execute mashup workflows and a mashup can be executed on

one or more processing node. In designing CoMaP, we make three novel contributions.

• First, we present an efficient cooperative mashup architecture in which multiple nodes

cooperate to execute mashups. Our architecture is distributed and mashup operators

are spread across several nodes. The collaboration between mashup execution nodes is

facilitated by a controller which also plans the execution of individual mashups. We

formally model the system and the components which interact with the system. We

also formally define costs involved in executing mashups in a distributed fashion and we

formally define the distributed mashup execution problem as an optimization problem.

• Second, we introduce a dynamic mashup distribution technique that is sensitive to the

locations of the various data sources of an individual mashup as well as the destinations

of its results. Our technique progressively optimizes the network load in the overlay and

the latency of mashup execution. Our technique depends on a two-stage optimization
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Figure 6.1: CoMaP Architecture

process. First, a cheap cost first stage is used to reach a good distribution decision.

Then, a second stage which is executed periodically is used to reach a close to optimal

distribution decision.

• Third, we handle failure resiliency issues in our architecture through replicating nodes

and replicating parts of mashup workflows. We explain the type of communication and

interaction necessary between overlay nodes to support failure resiliency and we show

the impact of failure resiliency on the system.

We simulated a distributed architecture for mashup execution for the purpose of applying

our techniques in this simulated environment.

6.1 CoMaP Architecture

Figure 6.1 illustrates CoMaP’s high-level design architecture. CoMaP is based upon an

overlay of mashup processing nodes MPNs, we refer to this set of nodes as MPNSet =

{MPN0,MPN1, . . . , MPNL−1}. These nodes are distributed across the Internet, and they

collaborate to execute mashup workflows. A mashup controller MR plans the execution of
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each mashup. It also coordinates the activities of various processing nodes involved in the exe-

cution of a mashup. A set of end-users USet = {U0, U1, . . . , UZ−1} interact with CoMaP. Each

of those end-users can design and submit his own mashups to MR using a mashup designer.

Note that each MPN and end-user in CoMaP can tell what its coordinates are by probing

a set of nodes geographically distributed over the Web (Landmarks). Landmarks [100] coop-

erate among each other to deliver coordinates for the node that probed them. We refer to

the set of mashups that MR receives as MpSet = {Mp0,Mp1, . . . , MpN−1}. Operators that

form those mashups are referred to as OpSet = {Op0, Op1, . . . , OpM−1}. The previous enti-

ties are connected with a set of communication links where each communication link LNKe,f

connects node e with node f . Each communication link LNKe,f has a delay DeLNKe,f and

a bandwidth BndLNKe,f .

Each MPN is responsible for executing a set of workflows as determined by MR. An indi-

vidual workflow might correspond to an entire mashup or part of it. A mashup workflow is

essentially a tree of operators. When executing a workflow, one MPN may fetch data from

external sources or it may receive partially processed data from other processing nodes which

would have executed earlier parts of the mashup. The results are dispatched either to the

end-user (if no further processing is needed for the mashup) or to another MPN (if mashup

execution is not yet complete). Executing a mashup on several nodes yields better efficiency

and scalability. For example, if a mashup consists of two fetch operators that fetch data from

two different data sources, then assigning each operator to a different node facilitates parallel

execution.

As indicated in Figure 6.1, each MPN comprises of several components. Mashup workflows

assigned to the processing node are stored in the operator storage, and are indexed by the

operator index. The local scheduler makes the workflow scheduling decisions. The perfor-

mance of each processing node is locally monitored, summary of which is communicated to

the global performance monitor (located at MR) periodically.

End-users interact with the system through MR which they get to know upon joining the
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Figure 6.2: A mashup stored in B+ tree which points to MPNs where operators are deployed

system. The set of interactions include creation and deployment of new mashups and deletion

of existing ones. When an end-user sends a new mashup to MR to be executed, MR first

checks whether the newly created mashup shares operator sequences with existing mashups.

If so, MR modifies the mashup to utilize the results from the existing operator sequences

so that duplicate computations are avoided. The global mashup index aids the detection of

shared mashup operators. This index is similar to the index that we introduced in AMMORE

(Chapter 4) except that the index introduced in AMMORE is based on a centralized archi-

tecture. Therefore, the global index used by each MR is extended from AMMORE index so

that it contains information about where each operator is deployed in the network. Figure 6.2

shows an example of the global operator index.

Once MR is done with shared operators detection, it uses its mashup distribution planner to

decide where (on which execution nodes) an incoming mashup would be executed, and if mul-

tiple nodes are involved in executing a mashup what part each would execute. The mashup

distribution planning considers several factors including the mashup structure, the locations

of the data sources and end-users, and the current performance of the overlay. The global

performance monitor at MR interacts with the local performance monitors at individual
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Figure 6.3: The operator placement problem in CoMap

MPNs, and it maintains a global snapshot of the overlay performance. The global synchro-

nizers coordinate the activities of the MPNs involved in executing a mashup. Figure 6.1

also illustrates a mashup being executed on three MPNs.

Next, we explain our technique for distributing mashup execution and how it can adapt to

network changes.

6.2 Planning Distributed Mashup Execution

This section formally describes the distributed mashup execution problem. After that, we

explain how to plan the deployment of mashup operators in the overlay network and how

they are executed in a distributed fashion.

6.2.1 Problem Statement

Figure 6.3 demonstrates the operator placement problem. We have a plane of mashups and

a plane of network nodes, data sources, and end-users. System cost differs based on where

operators are placed in the overlay network. Therefore, our goal is to place each operator in

a node in the network such that system cost is minimum. Towards solving this problem, we



59

model the distributed mashup execution problem as an optimization problem. In CoMaP,

we consider delay, bandwidth, and nodes load as metrics for computing the cost of executing

operators in different places in the overlay network.

When a certain operator is executed on a given node, the cost of that execution is partitioned

into computation cost and communication cost. Computation cost results from processing

time of executing the operator on the node and communication time results from transmit-

ting operators execution output to the next set of nodes that host the operators coming next

in the mashup workflow. Suppose we have an operator Opm that belongs to mashup Mpn,

created by end-user Uj, and hosted by MPNk. The input of this operator is coming from the

operators which are executed before Opm, we refer to this set of operators as PrvOpSet and

we refer to some operator in this set as Opq. We refer to the output size of Opq as OSq. The

computation cost of Opm deployed on MPNk can be formulated as the summation of the

size of the output data of each operator in PrvOpSet in kilobytes divided by time needed

by MPNk to process each kilobyte of the data PTk. Thus, CompTimem,k =
∑Q−1

q=0
OSq

PTk
.

Once Opm operator finishes execution, it needs to send its output to the MPNs that host

the next set of operators that are expecting input from Opm. We refer to this set of MPNs

as NxtMPNSet and we refer to some MPN in this set as MPNr. Communication time

resulted by operator Opm deployed on MPNk can be formulated as the size of operator Opm

output in kilobytes OSm divided by outgoing communication link bandwidth BndLNKk,r

between MPNk and each MPNr in NxtMPNSet, the result is added to outgoing links

communication delay per unit of data DeLNKk,r between MPNk and each MPNr. There-

fore, CommTimem,k =
∑R−1

r=0 ( OSm

BandLNKk,r
+ DeLNKk,r).

As a result, cost of execution of operator is the combination of computation and com-

munication costs. Notice, that operators are executed multiple times according to their

request rate, so, the total cost for an operator has to be multiplied with the operator’s

request rate RTm. Therefore, cost of executing operator Opm on MPNk becomes Cm,k =

RTm × ((
∑Q−1

q=0
OSq

PTk
) +

∑R−1
r=0 ( OSm

BandLNKk,r
+ DeLNKk,r)).
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System cost results from the combination of 1) Delay resulting from end-users USet sub-

mitting their mashups to Mashup Controller MR 2) Delay resulting from MR performing

operators merging on requested mashups 3) Delay resulting from MR assigning mashup

operators to MPNSet 4) Delay of executing mashup operators OpSet on MPNSet. Cost in

4 can be optimized, therefore, our target in this optimization problem is to place operators

OpSet on MPNSet such that total cost of executing operators is minimum. Let Allocm,k be

a {0,1} variable denoting that operator Opm is deployed on MPNk (Allocm,k = 1), other-

wise, Allocm,k = 0. Therefore, the optimization problem is to assign values to each Allocm,k

variable such that
∑M−1

m=0

∑L−1
k=0 Allocm,k×Cm,k is minimized while ensuring that the following

constraints are not violated: 1) For an operator Opm,
∑L−1

k=0 Allocm,k = 1, this indicates that

Opm is deployed only on one MPN ; 2) LDk <= LdLimitk which indicates that the load of

MPNk should not exceed its maximum allowed load.

A few naive approaches can be used to deploy mashup operators in overlay network, the first

one is ‘Random’ deployment where mashup operators are distributed randomly on MPNs.

Another approach is ‘Destination’ deployment where mashup operators are deployed on

MPNs that are closest to the end-user who requested the mashup. The opposite approach

is ‘Source’ deployment where mashup operators are deployed on MPNs that are closest to

data sources that contribute to these operators. One more approach is the ‘Optimal’ deploy-

ment in which an exhaustive search is performed to deploy operators on MPNs that yield

the minimum cost. The ‘Optimal’ approach is expected to produce the best result but its

running time is exponential due to its exhaustive search nature.

6.2.2 Our Scheme - DIMA

This subsection describes our approach for deploying mashup operators. Our approach is a

two-stage optimization process where initial operator deployment is performed in the first

stage and a migration process takes place in the second stage. We introduce a running

example represented in Figure 6.4 throughout our discussion. In this example, a mashup
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Figure 6.4: A scenario of CoMaP operator placement

consisting of four operators is to be deployed on MPNs. The mashup first uses a fetch

operator (Op1) to pull data from data source DS1, then it uses Op2 to truncate 10 items

from the result of fetching data. Second, the mashup uses a fetch operator (Op3) to fetch

data from data source DS2. Finally, the results of Op2 and Op3 are combined using a union

operator (Op4), and the final result is dispatched to end-user (U1). Figure 6.4 consists of 4

parts representing in-order snapshots of the system. Link delays on the figure represent the

final delay (in seconds) resulting from taking propagation delay, bandwidth, and data source

sizes into consideration. For the sake of clarity in this figure, we assume all MPNs have

the same processing power. One thing to mention is that geographical location of a node is

reflected by its location in the layout. For example, by looking at part 1 of the figure, we
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can see that MPN1 is closer to U1 than MPN2. We can also see that MPN2 is closer to U1

than MPN3 Communication links that contribute to system cost are shaded in grey.

Stage1: Initial Deployment

Mashup Controller MR has information about all MPNs in the system, including load of

MPNs and their coordinates in the network distance graph. Such information is transferred

to MR by MPNs upon joining the network. The load information for MPNs is then updated

as MR deploys mashup operators on MPNs. Once an end-user sends his mashup to MR,

the coordinates for the end-user machine is also sent to MR.

In this stage, when the mashup arrives to MR, MR uses end-user coordinates and MPNs

coordinates to compute Euclidean distance between each pair of end-user and MPN . This

distance is then used to estimate delay of sending data from MPN to end-user. Each operator

is then initially deployed on the MPN that has the minimum delay from the end-user. In

our running example, part 1 of Figure 6.4 shows the initial deployment stage for the four

operators. Notice that delay in this stage is only computed based on coordinates (Euclidean

distance). Here, since MPN1 is geographically closer to U1 than MPN2 and MPN3, all

operators are initially deployed on MPN1.

This initial operator deployment may not always be optimal for the following reasons. First,

this stage depends on Euclidean distances to estimate delays which is not accurate as relying

on current network conditions. In part 1 of our running example, actual link delays do not

comply with geographical location of nodes. This can happen because some nodes reside on

fast links, others might reside on slower links. It can also happen because of congested links.

Second, operator deployment in this stage is based on distances from end-users, if distances

from end-users and data sources are taken into consideration; better deployment decisions

might be achieved. In part 1 of our running example, delays between MPN1 and data sources

DS1 and DS2 are not considered. However, distances from data sources are unknown at this

stage because the coordinates of data sources are not known. The number of data sources on
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the Web is huge, this is why the system cannot store and maintain coordinates of that large

number of data sources. Third, as we will explain in the next subsection, mashup operator

deployment becomes sub-optimal when more end-users share mashups.

The complexity of the initial deployment stage can be analyzed as follows, each operator is

considered for positioning on each MPN , so the complexity is the number of MPNs (L)

multiplied by number of operators (M). So, the complexity is O(L ∗ M). Once the initial

placement of each operator is decided, the entry for that operator in the global mashup index

is updated with the new deployment information that specifies at which MPN the operator

is deployed. Although this initial step may not lead to optimal deployment decision, it is

a good initial step. Next, the optimization process seeks to improve deployment by going

through a migration process.

Stage2: Operator Migration

To minimize system cost, operators should migrate from the MPN on which they are

deployed to a new MPN that leads to a better deployment decision. This migration process

has to be fully distributed to preserve the scalability feature of CoMaP.

Each MPN has to decide if migrating operators to one of its neighbors decreases the total

system cost; the total system cost is not available for MPN nodes due to the distributed

nature of CoMaP. Basically, the total system cost is the summation of operator’s execution

costs all over the network. So, if each MPN minimizes operator execution cost within its

neighborhood, that will eventually decrease the total system cost.

To compute the amount of cost change resulting from migrating operators from MPNi

to MPNj, first, we introduce the cost of a migration state. Each migration step has two

states; CurrentSate and NewState where the CurrentState represents hosting operators

on MPNi (Before migration) and the NewState represents hosting operators on MPNi

in addition to hosting migrated operators on MPNj (After migration). Therefore, we have

two costs; CurrentStateCost and NewStateCost where the cost of each state includes the
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cost of hosting operators in that state; such that the cost of hosting an operator on some

MPN is given as follows, 1) the cost of sending input to MPN by the nodes that host

the children of this operator. 2) The cost of processing the input on MPN . 3) The cost

of sending output by MPN to nodes that host parents of this operator. 4) The cost of

communication between MPN and the end-users sharing the operator which is evaluated

by pinging end-users machines. When MPNi is considering migrating operators to MPNj,

it computes NetB = CurrentStateCost − NewStateCost and it also considers all direct

neighbors MPNj (number of hops=1). After that, operators migrate to the neighbor with

maximum positive NetB value. A positive NetB value indicates that this migration step

leads to minimization of system cost.

Now, we demonstrate this stage in part 2 of our running example, MPN1 is considering

migrating all 4 operators to MPN2. In this case, MPN1 uses ping pong messages to esti-

mate cost of fetching data from DS1 and DS2. Then, it uses ping pong messages to estimate

cost of sending the result to U1. Accordingly, CurrentStateCost = 23. Now, MPN1 asks

its neighbor MPN2 about the cost of hosting the 4 operators on it. Here, MPN2 uses ping

pong messages to estimate the cost of fetching data from DS1 and DS2 plus the cost of

sending result to U1; then MPN2 sends the result back to MPN1. Based on MPN2 feed-

back, MPN1 finds out that NewStateCost = 10. After that, MPN1 calculates the net

benefit (NetB = 13) and decides to migrate all 4 operators to MPN2.

Notice that if no such direct neighbor with NetB > 0 is found, MPNi widens its search

process by looking at indirect neighbors where the number of hops = 2. This increase in

the tested neighborhood helps ‘DIMA’ scheme to avoid local optima. At the same time,

the maximum number of hops we use for the local search process is 3, it is kept low so that

CoMaP efficiency is not degraded. Also, this parameter can be set by the system adminis-

trator.

Part 3 of our running example considers the case when a new user U2 requests the same

mashup which U1 initially requested. Because U1 and U2 share mashups, the previous opera-
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tors deployment which is based on U1 requesting the mashup is not optimal any more. This

happens because communication between MPN2 and U2 results in high delay. Therefore,

migration is needed again. In this example, MPN2 is considering migrating Op3 and Op4

to MPN3 as a target neighbor. MPN2 repeats the same migration steps which results in

NewStateCost = 14, CurrentStateCost = 22, and NetB = 8. As a result, MPN2 decides

that Op3 and Op4 should migrate to MPN3 which is reflected in part 4 of Figure 6.4.

When an operator migrates from MPNi to MPNj, MPNi informs the MPNs on which chil-

dren and parent operators are deployed with such a change. In addition, MPNi informs the

mashup controller about the new change. The mashup controller in turn updates its mashup

index with the new deployment decisions. Therefore, when new requests for mashups arrive

to the mashup controller, the controller is able to consult the up to date mashup index to

find out to which MPNs the mashup execution should be directed.

The migration process is performed periodically to ensure that CoMaP adapts to newly

requested mashups and to changes in the number of end-users sharing operators. Moreover,

the migration process needs to be executed periodically to adapt to changes in network links

delay and bandwidth. Note that communication costs between MPNs is calculated such

that delay and bandwidth values are the actual values of the links in the overlay network.

The complexity of the migration process can be analyzed as follows, each migration hap-

pens within each node locality because each node considers migrating operators to one of

their neighbors. Also, migration occurs on the subtree level, which means that subtrees of

operators are what is in consideration of migration. So, we need to compute the number

of subtrees in a mashup tree. The number of subtrees depends on two variables, namely,

depth of mashup tree and number of branches in mashup tree. Since one fetch operator is

the starting point of any branch in a mashup tree, the number of branches in a mashup

tree equals to the number of fetch operators in that tree. Therefore, the number of subtrees

equals number of branches (b) multiplied by tree depth (d). Now each subtree is considered

for migration to one of the (h) neighbors. So, the total complexity is O(b ∗ d ∗ h).
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Notice that the cost of probing nodes done in the migration process is considered tolerable

for the system because probing only occurs periodically when the migration process is per-

formed. In addition, the migration process happens within each MPN locality which means

that the migration process is performed smoothly without the system functionality being

affected.

In the next section, we discuss failure resiliency which is an important quality for cooperative

distributed information systems.

6.3 Failure Resiliency

The sources of failure in CoMaP could come from 1) Failure of Mashup Controller (MR) or

2) Failure of Mashup Processing Nodes (MPNs). Failure of a mashup controller is handled

by replicating it which helps to avoid a single point of failure in the system. Among those

controllers, one of them is the main controller and the other replicas are secondary con-

trollers. All mashup controllers are identical to one another in terms of system information

they posses and each one of them plays the same role in terms of receiving and handling

end-user requests. However, the main controller plays slightly different role than secondary

controllers in failure resiliency process. All mashup controllers are chosen to be distributed

geographically in the network such that each controller serves the end-users closer to it.

To guarantee correct functionality of CoMaP, certain interaction between controllers is

needed. For example, detecting shared operators requires that each controller knows about

all operators in all mashups sent by end-users. Therefore, when one controller receives a

mashup from an end-user, it directly sends the mashup information to all other controllers.

This way, detecting shared operators becomes identical in all controller nodes. However,

when a mashup is sent to a controller, that controller is the only one responsible of directing

the execution of that mashup.

Another type of communication is needed between controllers in the case of controller failure.
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Basically, each controller has one identical list of nodes which specifies three pieces of infor-

mation. First, who is currently the main controller? Second, what is the current set of

secondary controllers? Third, what is the set of candidate nodes that can be replacements

of secondary controllers? The main controller exchange heart beat messages with secondary

controllers to ensure they are still alive. If the main controller did not receive a reply from one

of the secondary controllers, it assumes it failed and responds by performing the following

operations. First, it uses the candidate set to assign a new secondary controller. Second, its

current state is duplicated on to the new secondary controller so that it can start operating.

Third, it notifies all other secondary controllers about the failure of the old controller and

the existence of the new replacement.

Failure of the main controller is handled as follows, in case secondary controllers do not

receive heart beat messages from the main controller, they assume it failed. Here, the current

set of secondary controllers is used to recover from such a failure. Basically, what happens

is that the current set of secondary controllers is ordered such that the first controller in

the list has the responsibility of replacing the main controller when it fails. In this case,

the previously mentioned secondary controller (new main controller) performs the following

operations. First, it eliminates itself from the current secondary controllers list. Second, it

propagates the change in this list to all other controllers. Third, it announces itself as the new

main controller to all other secondary controllers. The introduction of coordinator replicas

causes one change on ‘DIMA’ operator deployment. When an operator migrates from MPNi

to another MPN , MPNi contacts the coordinator in its area to inform it about operator

migration. That coordinator in turn distributes the information to all other coordinators.

So far, we discussed failure within controllers, now, we discuss failure of Mashup Processing

Nodes (MPNs). MPNs exchange heart beat messages with direct neighbors, if one MPN

did not receive a reply from one of the neighbors, it assumes failure of that neighbor and

reports the failure to the controller in its area. Once the controller receives the failure noti-

fication, it reallocates the operators which used to be hosted by the failed MPN to a new
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MPN . This new allocation is propagated to the main controller and all secondary controllers.

Moreover, if failure occurred to one of the mashup processing nodes (MPNs), then the effect

of this failure is alleviated by replicating operators. If one MPN hosting an operator fails,

then the operator can still be accessed through its replica. Since a huge number of operators

exist in CoMaP, we cannot replicate each one of them. So, we select a percentage of the

most overloaded MPNs in the system and we replicate their operators. This percentage

is selected by the system administrator based on observed system performance. When one

MPN replicates an operator to another MPN , it also informs the controller in its area of

the replication process, and that controller propagates this change to all other controllers.

After proposing the technical contributions of this dissertation, we continue in the next

chapter with a comprehensive experiments that show the benefits and overhead of using our

architectures and protocols.



Chapter 7

Experiments and Results

The goals of our experiments are as follows, (1) evaluating the impact of common compo-

nent detection on mashup execution; (2) evaluating the effect of operator reordering on the

performance of mashup execution; (3) studying the impact of MACE’s dynamic cache point

selection on the performance of the mashup platform; 4) evaluating the benefits and over-

heads of the proposed cache point indexing scheme; 5) testing the impact of range queries and

taxonomy awareness support on our system; 6) evaluating ‘DIMA’ approach by showing its

effect on the performance of CoMaP distributed mashup processing platform; 7) discussing

the effect of applying failure resiliency on CoMaP. Goals 1 and 2 are demonstrated in Sec-

tion 7.1. Goals 3, 4, and 5 are discussed in Section 7.2. Goals 6 and 7 are investigated in

Section 7.3.

7.1 Mashup Performance Evaluation

The goals of this section’s experiments are two fold; (1) evaluating the impact of common

component detection on mashup execution; (2) evaluating the effect of operator reordering

on the performance of mashup execution. First, we describe our prototype, and then we

describe our experimental setup. After that, we analyze common component detection and

operator reordering schemes.

69
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7.1.1 Prototype Development

In our AMMORE prototype implementation, we used a package called ROME [101] as the

base of implementing our own feed processing operators. ROME is a package designed specif-

ically to handle basic manipulation of Atom and RSS feeds. In our prototype, mashups are

described in sets and enter the system as XML files. These XML files contain all mashups,

their operators, and their attributes. Data sources information such as URL and popularity

are embedded within fetch operators. We have not designed a visual interface for our plat-

form, so end-users send their mashup files to our mashup server who is responsible of parsing

the file, executing its mashups, and sending results to end-users.

7.1.2 Experimental Setup

AMMORE implementation contains one server which hosts a mashup platform, this mashup

platform hosts mashups that fetch data from several data sources distributed across the

Web. In our experiments, the most popular 1500 data sources in Syndic8 [102] were used

for building mashups. Syndic8 is a repository for RSS and Atom feeds. The mean value

for latency to extract data from data sources is 0.6 seconds and the average number of

items in these sources is 21 items. The average number of fetch operators per mashup is

2 and the average number of operators per mashup varies from 5 to 20 operators. The

number of subscriptions to a data source is representative of its popularity which is also

extracted from Syndic8. Data processing operators are distributed randomly on mashups.

We perform our experiments with several mashup sets that consist of 2000-10000 mashups. In

the following experiments, regular execution corresponds to executing every single component

of the input mashup set. Also, the term delay refers to the delay of executing the mashup

set in milliseconds.
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Figure 7.1: feeds popularity compared to Zipf distribution
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Figure 7.2: feed size compared to Zipf distribution

7.1.3 Feeds Characteristics and Trends

In this subsection, we state trends in the distribution of feeds over the Web. Finding these

trends provides realistic information that can be used by researchers interested in Web 2.0.

Feeds in this experiment are the most 1500 popular feeds on Syndic8. Figure 7.1 represents

feed popularity as measured by the number of subscriptions it has on Syndic8. Popularity

is compared to a Zipf distribution with α (exponent value) = 0.9. Results show that feeds

popularity on the Web closely resembles the Zipf distribution. Similarly, Figure 7.2 indicates
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Figure 7.3: A plot of feeds data size and feeds popularity
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Figure 7.4: Delay of mashups execution when number of mashups is variable

that the feed sizes also resemble a Zipfian distribution with α = 0.9. The relationship between

feed popularity and feed size is represented in Figure 7.3 which shows that most feeds have

small data sizes and low popularity.

7.1.4 Common Component Detection Results

Executing mashups without common component detection requires the mashup platform to

execute every operator in every mashup which is time consuming. In Figure 7.4, 5 operators

are used in each mashup and in Figure 7.5, 2000 mashups are used. For both experiments,
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Figure 7.5: Delay of mashups execution when number of operators is variable

feeds are distributed on mashups based on a Zipf distribution with α = 0.9. The standard

deviations in Figure 7.4 are in the range [1.1, 1.5]. The standard deviations in Figure 7.5 are

in the range [0.9, 1.5]. Both figures show that executing mashups with common component

detection results in less delay because a subset of operators are detected as common across

mashups.Accordingly, these common components are executed only once for each occurrence

in all mashups. As a result, delay is minimized.

Figure 7.4 also shows that delay increases as the number of mashups increases. This is because

more operators exist in the system which causes total mashup execution time to increase.

The same behavior appears in Figure 7.5 because the number of operators is increasing which

accordingly increases the time for executing mashups.

In Figure 7.6 we show the throughput of the system in terms of number of mashups exe-

cuted per second. We can see that using common component detection increases the number

of mashups executed per second. The standard deviations in Figure 7.6 are in the range [0.9,

1.5].

In Figure 7.7, the standard deviations are in the range [0.8, 1.3]. In this figure, we repeat the

experiment in Figure 7.4, but we distribute feeds on mashups according to uniform distribu-

tion. The Figure shows that our technique is less effective in this case because selecting feeds
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Figure 7.6: Throughput of the system in terms of number of mashups executed per second

500 1000 1500 2000
0.5

1

1.5

2

2.5
x 10

6

Number of mashups

D
el

ay
 (m

s)

 

 

Regular mashup execution
CCD mashup execution

Figure 7.7: Delay of mashups execution when number of mashups is variable

randomly minimizes the probability of finding identical feeds across mashups which conse-

quently hurts the common component detection process. However, as indicated by Figure 7.1,

feed popularity on the Web resembles a Zipf distribution which increases the probability of

our technique to find common feeds across mashups because few feeds have very high popu-

larity and they are repeated extensively across mashups. The rest of experiments use a Zipf

distribution for distributing feeds on mashups.

Merge percentage of common component detection (CCD) is plotted in Figure 7.8. We can

notice that merge percentage increases as more mashups enter the system. The increase in
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Figure 7.8: Merge percentage when using CCD

number of mashups creates a richer pool of components which can be a potential for detecting

common components across mashups. On the other hand, the merge percentage decreases as

number of operators per mashup increases, this happens because mashup depth increases.

Recall that one of the conditions for two sequences of components to be considered common

is that the operators in these sequences must appear in the same order. When mashups depth

increases, depth of sequences of operators increases which accordingly decreases possibility

of finding identical sequences of operators. In other words, detecting common sequences of

operators consisting of only two operators is more likely to happen than detecting sequences

of operators consisting of 8 operators.

In Figure 7.9 we notice that merging cost increases as the number of mashups increases

which is a direct consequence of increasing number of operators in the system, but it is

considered very small compared to delay savings. The standard deviations in Figure 7.9 are

in the range [1.2, 1.4]. One point to mention here is that we expect the throughput of the

system to increase with increasing concurrent end-user requests when CCD is used; this is

because using common component detection decreases the total time needed for executing

mashups.



76

4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

x 10
4

Number of mashups

M
er

ge
 C

os
t (

m
s)

 

 

5   operators per mashup
10 operators per mashup
15 operators per mashup
20 operators per mashup

Figure 7.9: CCD Merge Cost when using different number of mashups and operators
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Figure 7.10: Delay of mashups execution when CCD is used with and without canonical form

7.1.5 Operator Reordering Results

The goal of having the canonical form is to transform mashups, so they are structured

in a specific form. Doing this is expected to increase the effectiveness of common compo-

nent detection. In Figure 7.10, 5 operators are used per mashup and the Figure shows that

delay of mashup execution decreases when CCD with canonical form is used as opposed to

the case when only CCD is used. This happens because as Figure 7.11 shows, merge per-

centage increases when canonical form is used along with CCD because having operators
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Figure 7.11: CCD Merge percentage when CCD and canonical form are used together

appear in a specific order in mashup trees implies that we have higher probability of having

more operator sequences detected as common across mashups. One point to mention is that

when the number of mashups increases, the merge percentage also increases because a richer

pool of mashups exists as more mashups enter the system. When number of operators per

mashup increases, the merge percentage decreases because mashup depth increases; when

mashup depth increases, longer sequences of operators exist. The probability of detecting

common operators in long operator sequences is lower than doing the same in shorter oper-

ator sequences. The standard deviations in Figure 7.10 are in the range [1.0, 1.4].

The experiment in Table 7.1 is performed on 2000 mashups and the standard deviations are in

the range [0.9, 1.2]. One thing the table shows is the delay of executing our mashup set when

our system applies common component detection (CCD) only. It also shows the same when

our system applies common component detection (CCD) in addition to operators reordering

(Canonical Form). We can notice that the delay in the later case is smaller than the delay

in the earlier case. This behavior is an indication of the effect of operators reordering in

standardizing mashups structure which increases the probability of detecting common com-

ponents across mashups, and that in turn minimizes delay of executing mashups. Column 4

in the same table shows the delay of applying canonical form on our mashup set; this delay
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Table 7.1: Delay (in milliseconds) of applying canonical form compared to its savings

Number of With CCD With CCD Canonical

Operators Only plus Canonical Delay

5 2,596,498 2,550,254 16
10 3,135,249 3,043,486 22
15 3,701,486 3,544,296 29
20 4,267,846 4,053,295 42

is very low compared to delay savings of executing mashups. The explanation of this is that

canonical form is applied separately on each mashup which is a fairly low overhead task.

Notice that as number of operators per mashup increases, the delay of executing mashups

and applying canonical form increase as well. Having more operators in the system causes

common component detection and canonical form to take more time to conclude.

7.2 Mashup Caching Evaluation

Our experimental study in this section has three objectives: 1) Study the impact of MACE’s

dynamic cache point selection on the performance of the mashup platform. 2) Evaluate the

benefits and overheads of the proposed cache point indexing scheme. 3) Test the impact

of range queries and taxonomy awareness support on our system. First, we describe the

experimental setup.

7.2.1 Experimental Setup

Our experimental setup simulates a mashup environment with a mashup server, 80 data

sources and 100000 end-users spread out on the Internet. The mashup server in our setup is,

to a considerable extent, based upon the Yahoo Pipes environment [14]. Similar to Yahoo
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pipes, our mashup platform contains 10 distinct operators namely, filter, sort, join, trun-

cate, count, location-extraction, reverse, subelement, tail, and unique. End-users continu-

ously create mashups which are executed on the mashup server. The mashup server executes

the mashup and disseminates the results to the end-user.

We use two datasets for our experiments – a real dataset and a synthetic dataset. In the real

dataset, we build our mashup to closely reflect reality. In this dataset, we have 5000 mashups

which pull data from 80 real data sources over the Web. These data sources are extracted

from syndic8 [102] feeds repository. When a mashup is executed, an actual connection to

data sources is made to fetch data and the communication time needed to fetch data is

measured. We also implemented a set of operators so that they process the real fetched data

and therefore their execution time is also measured. In our real mashup set, the mean value

for latency to extract data from data sources is 0.6 seconds and the average number of items

in these sources is 21 items. The number of subscriptions to a data source is representative

of its popularity. Recall from Figure 7.1 that feeds popularity closely resembles a Zipfian

distribution with α = 0.9.

Our synthetic dataset contains simulated operators where the execution time for each of

these operators is estimated by performing a number of experiments on Yahoo pipes wherein

we evaluated the latencies and output sizes of individual operators on XML feeds with sizes

varying from 100 KB to 3 MB. As a result, we have realistic cost functions and output size

functions. The number of distinct mashups existing at the platform in the synthetic dataset

varies with the experiment, and it ranges from 1000 to 5000. The mean value for latency

to extract data from data sources is 15 seconds and the average number of items in these

sources is 536 items. For our synthetic dataset, the network topology is based upon the mea-

surement by DIMES [103] on the actual Internet in 2008. We use BRITE [104] and BRITE

extension [105] to transform DIMES data into a more convenient form. Our topology has

378444 nodes.
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7.2.2 Evaluation of the Dynamic Cache Point Selection Scheme

In the first set of experiments, we quantify the performance benefits of the dynamic cache

point selection scheme. The dynamic cache point selection scheme is compared to two other

schemes: End-results caching wherein only the end-results of the mashups are cached, and

No caching wherein the mashup platform does not employ any type of caching. These three

schemes are compared with respect to the total cost incurred by the mashup platform in

serving the end-user requests. For an individual mashup, the cost is quantified as the asso-

ciated computational latency at the mashup platform.

In the first experiment, we compare the three schemes as the mean of the request rates

of all mashups varies from 20 requests per unit time to 100 requests per unit time. The

total number of mashups at the server is 5000 (therefore, the cumulative request rate at the

mashup server varies from 10, 000 and 500, 000). In the synthetic dataset, a Zipfian distribu-

tion with α = 0.9 is used to model the popularity variations among the individual mashups,

while in the real dataset, popularity variations among individual mashups is extracted from

syndic8 feeds repository. The mean of the update frequencies of the data sources (henceforth

referred to as update frequency) is set to 60. This experiment is conducted on the synthetic

dataset. The cache is assumed to have enough storage to hold the results (intermediate or

final) of all mashups. Thus, we use the dynamic cache point selection algorithm for the no-

storage limitations scenario. Figure 7.12 shows the total costs per unit time for the results

of the experiments. As the results indicate, the cost incurred by the MACE’s dynamic cache

point is lower than the other two schemes throughout the simulated request rate range. The

cost incurred by the End-results caching scheme is essentially constant as requests are served

using cached data not requiring additional computations. In End-results caching, costs are

mainly due to re-calculation of the cached results when one or more inputs used in a mashup

changes1. At very low request rates, the costs of no-caching scenario are comparable to those

1First-time mashup executions also contribute towards the total costs in End-results caching
but these costs are comparatively very small.
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Figure 7.12: Total cost when request frequency is variable

20 40 60 80 100
2

4

6

8

10

12

14

16
x 10

6

Update Frequencies

C
os

t

 

 

No Caching
End−Results Caching
MACE

Figure 7.13: Total cost when update frequency is variable

of the MACE system. However, the costs of no-caching scenario rises quickly with increasing

request rates. It is to be noted here that although the costs of the dynamic cache point selec-

tion scheme increases with increasing request rates, it does not rise indefinitely; its curve

becomes flat once upon reaching the End-results caching cost levels.

In the second experiment (Figure 7.13) which is also conducted on the synthetic dataset, we

study effect of update frequencies of data sources on the performances of the three schemes.

The setup is very similar to that of the previous one except that the mean mashup request

rate is fixed at 60 requests per unit time whereas the update frequency of all data sources is
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Figure 7.14: Total cost in the cases of synthetic and real data when request frequency is
variable

varied from 20 to 100 per unit time. Again, we see that the MACE system yields significantly

better performance than the other two schemes. However, in this experiment, the costs of

the no-caching scenario remain constant. This is because, there is no cached data that needs

to be recomputed when the input data changes.

In the third experiment, we aim to compare the results of experiments of the synthetic

dataset with the results obtained from the real dataset. So, we measure the total cost per

unit time required for executing our mashup set in both cases. First, we fix update rate to

60 updates per unit time and we vary request rate in the range of 20 to 100 requests per unit

time. After that we fix request rate to 60 requests per unit time and we vary update rate in

the range of 20 to 100 updates per unit time. In Figures 7.14 and 7.15, ”R” refers to real

dataset and ”S” refers to synthetic dataset, these two figures show that the patterns we have

for the real dataset are similar to the patterns we have for the synthetic dataset, the only

thing different is the scale of cost values. The cost values for real data set in Figures 7.14

and 7.15 reflect the real world and make our experiments more realistic.

The better performance of the dynamic cache point selection scheme is essentially due to its

ability to adapt to the changing update and request frequencies by moving the cache point

to upper or lower levels of the tree. Figure 7.16 demonstrates this phenomenon by plotting
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Figure 7.15: Total cost in the cases of synthetic and real data when update frequency is
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Figure 7.16: Level of Cache Points when update frequency is variable

the average level of the cache points as the update frequency varies from 20 to 100. The

mean mashup request rate remains constant at 60. As the results indicate, as the update

rate increases, MACE selects cache points that are located at lower-levels of the tree thereby

reducing the costs of recomputing the cached results. The End-results caching, on the other

hand, always caches at the same level (just before the dispatch operator).

In the next experiment, we use our synthetic dataset to evaluate the three scenarios when

the storage available at the caches is limited. In this experiment, we fix the total request
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Figure 7.18: Total index access time when request frequency is variable

rate at 60 and update frequency at 180. The storage availability is varied from 10% to 100%

of the storage needed for caching entire result set for the particular caching strategy. Least

Recently Used cache replacement is employed for all schemes. As Figure 7.17 demonstrates,

MACE results in better performance by selecting cache points that provide higher per-byte

cost savings.
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Figure 7.19: Total index access time when mashup depth is variable

7.2.3 Cache Index Analysis

In the second set of experiments, we use our synthetic dataset to study the scalability and

performance of MACE’s indexing mechanism by measuring the average latency involved in

accessing a cache point stored in the B+ tree index. In the first experiment in this set, we

evaluate the effects of request rate on the index access time. The mashup server has 5000

mashups with each mashup having 11 operators. The update frequency of all data sources is

held constant at 60. As Figure 7.18 shows, index access time decreases as request frequency

increases. This is due to two factors. First, when request frequency increases, MACE tends

to select cache points near the roots of the respective mashup trees. As we move closer to the

root, the width of the tree shrinks and the number of cache points in the index decreases.

Second, MACE analyzes a new mashup starting from its root and goes down the tree looking

for matching cache points. At high request frequencies, the cache points are closer to the

root, and hence the search for matching cache points concludes faster. This result shows an

important strength of our indexing scheme - it responds faster when the request rates are

higher thereby improving the mashup platform’s scalability.

Next, we study the effect of the mashup depth on index access time. The server again

contains 5000 mashups. The mean mashup request rate and the update frequency are both
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set to 60. Figure 7.19 shows the index access times when the depth of the mashups is varied

from 5 to 20. Initially, the index access time increases linearly with mashup depth. The

reason for this behavior is that probability of selecting cache points from lower levels of the

tree increases as the mashup depth increases, and hence the search for matching cache points

takes more time to conclude. However, the index access time becomes flat when the mashup

depth reaches around 15.

7.2.4 Evaluation of Range Queries and Taxonomy awareness

In this experiment which is conducted on the real dataset, we study the effect of using

partial matching on cache index utilization. The mashup server has 5000 mashups with

each mashup having 11 operators. The update frequency of all data sources is held constant

at 60. Figure 7.20 shows that using support for range queries decreases the total cost for

executing mashups by 9 percent. This effect happens because cache index hit rate increases

as Figure 7.21 shows. In the case where range queries are not supported, an index search

might result in a cache miss. On the other hand, when range queries are supported, the

probability of having a cache hit from searching the index increases. For the experiment

of range queries, wherever we have a filter operator that filters data based on a numeric

attribute, we use a numeric value between 1000 and 5000 upon which data is filtered (e.g;

price < 3000).

The numeric value is selected randomly from the range 1000− 5000.

The effect of taxonomy awareness is shown in Figure 7.22 where we notice that the total

cost for executing mashups decreases when taxonomy awareness is used. This also occurs

because of the increase in cache index hit rate which is shown in Figure 7.23. An index lookup

might result in a cache miss when taxonomy awareness is not used, but when it is used, the

probability of having cache hits increases. We build our taxonomy by extracting keywords

from Google search-based keyword tool [106]. This tool classifies the keywords people search

for and put it in categories. The tool enables its users to search for keywords as well as
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Figure 7.21: The effect of range queries support on index hit rate

download keywords categories and keyword lists as CSV files. When we build our mashups,

wherever a filter operator is used, a random keyword or category name from the taxonomy

is used as the parameter upon which data is filtered.

We believe that the percentage of improvement resulted from using the feature of range

queries and taxonomy awareness is affected by the following. First, such a feature can only

be applied to a subset of the operators that can be used to build mashups.

For example, range queries support can be used for filter, truncate, and tail operators, but

it cannot be used for fetch, reverse, and unique operators. Second, the number of keywords
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end-users can choose from and the number of numeric values the end-users can use in their

operators is high; therefore, the possibility of detecting operators where range query and

taxonomy support can be used is low. Further improvement can be reached by considering

the patterns end-users follow for selecting keywords and selecting numeric values in different

domains. For example, if more end-users are interested in car prices below 5000, this can be an

indication that most of end-user mashups related to filtering car results might contain price

< 5000. The same principle is applied to taxonomy awareness, if end-users care most about
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food, then more mashups are expected to use keywords related to food domain. Incorporating

end-user patterns in building mashups is expected to produce more realistic results.

7.3 Distributed Mashup Execution Evaluation

We use simulation to perform our experiments. The goal of experiments is to evaluate

‘DIMA’ approach by showing its effect on CoMaP performance. Also, we discuss the effect

of applying failure resiliency on our system.

7.3.1 Experimental Setup

CoMaP environment simulates several operators which is similar to Yahoo pipes, these opera-

tors are Fetch, Filter, Sort, Union, Truncate, Tail, Sub-Element, Reverse, Unique, and Count.

Our system consists of 4 mashup controllers, 100 data sources, 100 end-users, and a number

of MPNs varying from 1000 to 4000. The total number of mashups requested by end-users

varies from 1000 to 10000 where mashups request rate varies from 5 to 65 requests per unit

time. The data sources are extracted from syndic8 [102] which is a repository for RSS and

Atom feeds, the popularity distribution of data sources is also extracted from syndic8 where

the number of subscriptions for a data source reflects its popularity. The number of operators

per mashup varies from 10 to 40 where two of these operators are fetch operators and their

data sources are selected based on data sources popularity, the rest of operators are selected

randomly. Data source sizes vary from 1000 KB to 10000 KB. Our overlay topology is the

Internet topology in 2008 measured by DIMES [103]. The number of nodes we use from this

topology varies from 1204 to 4204.

7.3.2 System Evaluation

System cost in CoMaP is measured based on two factors, first, the average delay per mashup

resulting from deploying and executing mashups operators, second, the average network

usage per mashup which is defined as the average number of bytes transferred within the
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Figure 7.24: Average delay per mashup when number of operators varies
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Figure 7.25: Average network usage per mashup when number of operators varies

network caused by executing mashups. The ‘DIMA’ approach is compared to ‘Random’,

‘Source’, ‘Destination’, and ‘Optimal’ approaches. In all experiments we vary one parameter

and keep the others constant. Unless mentioned, the constant values for number of mashups,

number of operators, mashup request rate, data source size, and number of MPNs are 1000

mashup, 10 operators per mashup, 25 requests per unit time, 1000 KB, and 2000 MPNs,

respectively.
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Figure 7.26: The throughput of the system in terms of number of mashups executed per
second
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Figure 7.27: Average delay per mashup when data source size varies

In the first experiment we vary number of operators in CoMaP from 10 to 40 and we

measure delay and network usage for the different schemes; Figures 7.24 and 7.25 show that

‘Random’ scheme leads to high delays and high network usage and it is the worst among all

schemes because it does not follow any kind of heuristics to deploy operators. The ‘Source’

and ‘Destination’ schemes lead to lower delay and network usage than the ‘Random’

deployment. The results of the ‘Source’ and ‘Destination’ schemes might vary depending

on how many end-users share operators. The ‘Optimal’ scheme generates the lowest delay
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Figure 7.28: Average network usage per mashup when data source size varies

and network usage which is expected because of the exhaustive search performed by this

scheme. This scheme is not practical because it requires long exhaustive search. ‘DIMA’

approach beats ‘Random’, ‘Source’, and ‘Destination’ approaches in terms of delay and

network usage. This better performance is the result of a more dynamic two-stage opti-

mization scheme that depends on distances from data sources and end-users at the same

time, and it depends on operator migration which keeps CoMaP adapting to changes in

network links delay and bandwidth and to changes in number of end-users sharing operators.

Notice that ‘DIMA’ performance is also close to the ‘Optimal’ approach which proves its

effectiveness. Figures 7.24 and 7.25 also show that the gap between each scheme and the

‘Optimal’ scheme widens as more operators are used in mashups, this occurs because as

more operators are used, more delay results normally from executing those operators. This

delay is minimum in ‘DIMA’; because it uses migration to find better deployment options

while migration is not used by the other schemes causing their delay of executing operators

to increase rapidly. In Figure 7.26 we show the throughput of the system in terms of number

of mashups executed per second. We can see that ‘DIMA’ approach executes more mashups

per second than the other approaches except the ‘Optimal’ approach.

We performed another experiment where sizes of data sources varies from 1000 KB to
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Figure 7.29: Average delay per mashup when number of MPNs varies
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Figure 7.30: Average network usage per mashup when number of MPNs varies

10000 KB, as figures 7.27 and 7.28 show, the system cost increases for all schemes as data

source sizes increase, this is due to increasing computation and communication costs resulted

from increasing volume of data. In the next experiment, we vary number of MPNs in the

network from 1000 to 4000 and measure delay and network usage. The results are plotted

in Figures 7.29 and 7.30. The important point to take from these two figures is that the gap

between ‘DIMA’ scheme and ‘Optimal’ scheme increases because as more MPNs are used,

the search space size increases which adds more challenge for the ‘DIMA’ scheme to find

close to optimal deployment decisions.
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Figure 7.31: Average delay per mashup in different execution periods

We conducted an experiment to evaluate the effect of migration on system cost where

we measure delay and network usage in three different periods of system execution. In the

first period, mashups are requested, ‘DIMA’ initial operator placement is executed (stage

1), and mashups are executed. The second period continues mashup execution without

further requested mashups. The third period is when ‘DIMA’ migration process (stage

2) starts and no further mashups are requested. As captured in Figures 7.31 and 7.32,

delay and network usage increase when more mashups are requested in the first period, the

system then stabilizes on the highest costs in the second period when no more mashups

are requested, then delay and network usage drop significantly when the migration process

starts. This cycle continues through the life time of CoMaP.

In the next experiment, we measure the overhead of enforcing failure resiliency in CoMaP.

In Figure 7.33, failure probability is set to 20 percent, one mashup controller fails, number

of mashups is set to 1, 000. The replication percentage varies between 10 percent and 70

percent which reflects the percentage of nodes their operators gets replicated. The figure

shows the total overhead needed to maintain state of the system when applying failure

resiliency. The overhead is measured in terms of network usage in kilobytes resulting from
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Figure 7.33: Total overhead of applying failure resiliency when replication percentage is
variable

exchanged messages due to failure resiliency and replications. The state of the system

includes keeping mashups information on mashup controllers identical. It also includes the

cost of communication between controllers in case one of them fails. It also includes the

communication between MPNs and controllers in case of replicating operators and failed

MPNs. We notice that the overhead increases as replication percentage increases, this

happens because more operators are replicated and therefore more communication occurs

between MPNs and controllers. The system faces this kind of overhead only when the
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system is initialized with replicas, during a failure, and when replicating operators. Other

than these times, the system does not deal with this overhead.

The previous set of experiments show the effectiveness of the ‘DIMA’ scheme in reaching

operator deployment decisions leading to low network delay and usage. Despite of the over-

head of applying failure resiliency in CoMaP, using it decreases the failure probability of

CoMaP by avoiding single point of failures.



Chapter 8

Conclusions

Mashups, while providing improved Web personalization, pose new scalability and perfor-

mance challenges. Traditional Web service performance schemes are not effective for mashup

domain due to its unique characteristics. In this dissertation, we proposed common com-

ponent detection scheme which is used to reduce delay resulting from executing repeated

mashup components. We also presented the use of a canonical form which increases the prob-

ability of detecting common mashup components and at the same time transforms mashups

into an optimized form from efficiency stand point. In addition, we introduced a dynamic

caching framework for mashups. This caching framework includes a dynamic mashup cache

point selection scheme which maximizes the benefit of mashup caching. Finally, since most

of the current mashup platforms are centralized, we designed a dynamic cooperative overlay-

based mashup platform. This platform incorporates several novel features. First, we presented

a scalable and efficient architecture comprising of a multitude of cooperative mashup pro-

cessing nodes and a set of mashup controllers. Second, we introduced a dynamic mashup

distribution technique that is sensitive to the relative locations of the sources and the desti-

nations of a mashup, and optimizes data flow within the overlay. Third, we described how we

enforce failure resiliency feature in our system. Load balancing is an important feature to be

applied in our system as a future work. We conducted thorough and extensive experiments

to study the benefits and costs of our architectures and schemes. Our experimental study

demonstrated that our architectures and schemes yield improved system performance and

scalability.
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