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Abstract

The use of multimedia-enabled mobile devices such as pocket PC’s, smart cell phones and

PDA’s is increasing by the day and at a rapid pace. Networked environments comprising

of these multimedia-enabled mobile devices are typically resource constrained in terms of

their battery capacity and available bandwidth. Real-time computer vision applications

typically entail the analysis, storage, transmission, and rendering of video data, and are

hence resource-intensive. Consequently, it is very important to develop a content-aware video

encoding scheme that adapts dynamically to and makes efficient use of the available resources.

A Hybrid Multi-Layered Video (HMLV) encoding scheme is proposed which comprises of

content-aware, multi-layer wavelet-based encoding of the image texture and motion, and

a generative sketch-based representation of the object outlines. Each video layer in the

proposed scheme is characterized by a distinct resource consumption profile. Experimental

results on real video data show that the proposed scheme is effective for computer vision

and multimedia applications such as face recognition and activity recognition in resource-

constrained mobile network environments.
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Chapter 1

Hybrid Multi Layered Video

Encoding1

1.1 Introduction

The modern era of mobile computing is characterized by the increasing deployment of broad-

band networks coupled with the simultaneous proliferation of low-cost video capturing and

multimedia-enabled mobile devices, such as pocket PC’s, smart cell phones and PDA’s.

Mobile computing has also triggered a new wave of mobile Internet-scale multimedia appli-

cations such as video surveillance, video conferencing, video chatting and community-based

video sharing, many of which have found their way in practical commercial products. Mobile

network environments, however, are typically resource constrained in terms of the available

bandwidth and battery capacity on the mobile devices. These environments are also charac-

terized by constantly fluctuating bandwidth and decreasing device battery life as a function

of time. Consequently, it is desirable to have a multi-layered (or hierarchical) content-based

1N. K. Aitha, S. M. Bhandarkar: A Hybrid Multi-layered Video Encoding Scheme for Mobile Resource
Constrained Devices, International Workshop on Mobile Multimedia processing in conjunction with ICPR
2010
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video encoding scheme where distinct video layers have different resource consumption char-

acteristics and provide information at varying levels of detail [2].

Traditional multi-layered video encoding scheme such as the MPEG-4 Fine Grained Scal-

ability profile (MPEG-FGS), are based on the progressive truncation of DCT or wavelet co-

efficients [3]. There is an inherent trade-off between the bandwidth and power consumption

requirements of each layer and the visual quality of the resulting video, i.e., the lower the

resource requirements of a video layer, the lower the visual quality of the rendered video

[3]. Note that the conventional MPEG-FGS multi-layered encoding is based primarily on

the spectral characteristics of low-level pixel data. Consequently, in the face of resource

constraints, the quality of the lower layer videos may not be adequate to enable a high-level

computer vision or multimedia application. For a multi-layered video encoding technique to

enable a high-level computer vision or multimedia application, it is imperative that the video

streams corresponding to the lower encoding layers encode enough high-level information to

enable the application at hand while simultaneously satisfying the resource constraints im-

posed by the mobile network environment.

In this paper, a Hybrid Multi-Layered Video (HMLV) encoding scheme is proposed which

comprises of content-aware, multi-layer encoding of texture and motion and a generative

sketch-based representation of the object outlines. Different combinations of the motion-

, texture- and sketch-based representations are shown to result in distinct video states,

each with a characteristic bandwidth and power consumption profile. The proposed encod-

ing scheme is termed as hybrid because its constituent layers exploit texture-, motion- and

contour-based information at both the object level and pixel level. The high-level content

awareness embedded within the proposed HMLV encoding scheme is shown to enable high-

level vision applications more naturally than the traditional multi-layered video encoding

schemes based on low-level pixel data.

A common key feature of computer vision and multimedia applications on mobile devices
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such as smart phones, PDAs and pocket PC’s is video playback. Video playback typically

results in fast depletion of the available battery power on the mobile device. Various hardware

and software optimizations have been proposed to reduce the power consumption during

video playback and rendering [2]. Most of the existing work in this area has concentrated

on reducing the quality of the video, to compensate for battery power consumption.

More recently, Chattopadhyay and Bhandarkar [1] have proposed a content-based multi-

layered video representation scheme for generating different video layers with different power

consumption characteristics. The video representation is divided into two components (i) a

Sketch component, and (ii) a Texture component. The Sketch component has two different

representations i.e., Polyline and Spline. The Texture component comprises of three distinct

levels (in decreasing order of perceptual quality) denoted by Vorg, Vmid and Vbase. A combi-

nation of any of the three Texture levels and the two Sketch levels are used to generate six

distinct levels of video with different resource consumption characteristics.

In this paper, we extend the work in [1] by effectively increasing the number of perceptual

layers in the underlying video representation. This allows for a much finer degree of control

on the underlying resource consumption while ensuring optimal perceptual quality of the

rendered video for the computer vision or multimedia application on hand. The overall goal

is to optimize the performance of the relevant computer vision or multimedia application

within the specified resource constraints. In the proposed HMLV scheme, we retain the

sketch component of the multi-layered video representation described in [1]. We enhance

the texture component described in [1] by using a Gabor Wavelet Transform (GWT)-based

representation for the underlying image texture and by including motion layers. The various

texture layers are generated uniformly via progressive truncation of the GWT coefficients.

The decomposition of the underlying video into motion layers also allows one to order the

objects within the field of view based on their approximate depth from the camera.

The GWT is a special case of the Short-time Fourier Transform and is used to determine
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sinusoidal frequency and phase content of local sections of a signal as it changes over time.

In recent years, the multichannel GWT has been used for texture analysis and texture rep-

resentation at multiple scales and orientations. The Gabor filter is a linear filter obtained

by computing the GWT coefficients at a specific scale and orientation. A Gabor filter bank

is a collection of Gabor filters at multiple scales and orientations. A set of filtered images is

obtained by convolving the input image with the bank of Gabor filters. Each of these filtered

images represents the input image texture at a certain scale and orientation. The convolu-

tion of an input image with a Gabor filter bank bears close resemblance to the processing

of images within the primary visual cortex [5]. Sahoolizadeh et al.[39] have addressed the

problem of face recognition using Gabor Wavelets and Neural Networks. Hong and Bartels

[7] have addressed the issue of segmentation of remotely sensed LIDAR (light detection and

ranging) data using Gabor wavelets and statistical feature. We show that the GWT repre-

sentation can be used for human activity recognition as well.

Shape and kinematics are two important things to be considered in human movement analysis

[30]. It is difficult to accurately extract kinematics from real videos using current imper-

fect vision techniques. Alternatively, focusing on shape, human action can be regarded as a

temporal process in which human silhouettes continuously change over time. GWT represen-

tation represents the input frame at different orientations and scales which helps is capturing

the change in the dynamic human shape. The proposed HMLV scheme is discussed in detail

in the following sections.

1.2 HMLV Encoding

The input video is decomposed into two components: (i) a Sketch component denoted by

VSKETCH and, (ii) the combined Motion-and-Texture component denoted by VMT . The

VSKETCH component is a Generative Sketch-based Video (GSV) representation where the
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outlines of the objects are represented using sparse parametric curves [1]. The Texture

component in [1] is replaced by a combined Motion-and-Texture component VMT in the

proposed HMLV scheme since the selection of motion layers is strongly coupled with the

process of generating the texture layers via retention (or deletion) of the GWT coefficients for

the chosen motion layers. The VMT component in the proposed HMLV scheme is represented

by four layers, i.e., a base layer video, two intermediate mid-layer videos and the original

video. The combination of the Sketch component and different Motion-and-Texture layer

videos (base, mid-level or the original video) yields distinct video states Γ = (VMT , VSKETCH)

with unique resource utilization characteristics. Figure 1.2 outlines the proposed HMLV

scheme.

1.2.1 Creating Video Component VSKETCH

The sketch video component is generated as discussed in [1]. The sketch based component

VSKETCH essentially represents the outlines of the objects in the video. The video component

VSKETCH represents a video stream as a sequence of sketches, where each sketch in turn is

represented by a sparse set of parametric curves. The VSKETCH component is essentially a

Generative Sketch− based V ideo (GSV) representation which is generated by first dividing

the video into a series of Groups of P ictures (GOPS), in a manner similar to standard

MPEG video encoding [21]. Each GOP consists of N frames ( typically, N = 15 for standard

MPEG/H.264 encoding) where each frame is encoded as follows:

1. The object outlines are extracted in each of the N frames. These outlines are repre-

sented as a sparse set of curves.

2. The curves in each of the N frames are converted to a suitable parametric representa-

tion.
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Figure 1.1: Hybrid Multi-Layered Video Encoding Scheme
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Figure 1.2: The creation of pixel-threads for a video frame (a) The original video frame;
(b) Edges detected in the video frame, and filtered to remove small, spurious edges; (c)
Break-points detected in the edge contours generated in the previous step

3. A temporal consistency criterion is used to remove spurious curves, which occur inter-

mittently in consecutive frames, to remove an undesired flickering effect.

4. Finally, the parametric curves in the N frames of the GOP are encoded in a compact

manner. The first frame of the GOP enumerates the curve parameters in a manner

that is independent of their encoding, analogous to the I-frame in MPEG H.264 video

encoding standard. The remaining N−1 frames in the GOP are encoded using motion

information derived from previous frames, in a manner analogous to the P-frames in

the MPEG H.264 video encoding standard [13].

The GSV encoding scheme is similar the MPEG video encoding standard. The GOP is a well

established construct in the MPEG standard that enables operations such as fast forward,

rewind and frame dropping to be performed on the encoded video stream. Motion vectors

are used in the GSV encoding scheme to reduce temporal redundancy in a manner similar to

MPEG video encoding, where motion vectors are used to describe the translation of frame

blocks relative to their positions in previous frames. The error vector, in the case of the GSV

encoding scheme, has the same form as the encoded representation of the moving object(s)
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in the video. This is analogous to the MPEG video encoding standard, where the encoding

error is represented in the form of macroblocks similar to the macroblock representation of

the moving object(s) in the video.

The parametric curves used to represent the object outlines in each frame are termed as

”pixel − threads”. A pixel-thread is derived from a polyline P[0, N ], which is a continuous

and piecewise linear curve made of N connected segments. A polyline can be parameterized

using a parameter α ∈ R (set of real numbers) such that P(α) refers to a specific position

on the polyline, with P(0) referring to first vertex of the polyline and P(N) referring to its

last vertex. The pixel-threads contain information only about the vertices (or break points)

of the polyline. These break points can be joined by straight line segments (as in the case of

polyline), or by more complex spline-based functions to create smooth curves. The dynamic

nature of pixel-threads is modeled by the processes of birth and evolution of pixel-threads

over time. A detailed description of these processes is presented in [1].

1.2.2 Encoding VMT

Multi-scale representation of the image texture is achieved using GWT coefficients at different

scales and orientations. The generation of different Motion-and-Texture layers is dependent

on two factors, i.e., the number of Motion layers selected and the truncation parameter (β)

for the GWT coefficients (i.e., Texture level) used to represent each Motion layer.

The Motion-and-Texture component of the HMLV representation comprises of four dis-

tinct layers denoted by: Vbase, VI1, VI2 and Vorig, where Vbase is the lowest-level layer encoded

using the fewest GWT coefficients for all the Motion layers; Vorig is the highest layer which is

represented using the maximum number of GWT coefficients for all Motion layers resulting

in a video of the highest visual quality; and VI1 and VI2 are the mid-level layers where the

Motion layers that are deemed important are encoded using more GWT coefficients and the

rest using fewer GWT coefficients.
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1.2.3 Generation of Motion Layers

The original video is first processed to extract the different Motion layers, which form the

basis for the generation of the Motion-and-Texture component. For any two successive video

frames, the motion parameters for the Tomasi and Shi feature points [25] are estimated

using an optical flow function [26]. After estimating the motion vectors, an adaptive K -

means clustering technique [20] is used to cluster the motion vectors. Assuming that image

pixels belonging to a single object share similar motion, spatial information is exploited in the

clustering of the motion vectors to generate distinct Motion layers. The background motion

layer is assumed to have constant or zero motion, and the remaining layers to have non-zero

motion. A novel Motion-based Multi-Resolution (MMR) encoding scheme is proposed to

encode distinct Motion layers at varying levels of visual quality.

1.2.4 Motion-based Multi-Resolution (MMR) Encoding Scheme

Each frame is represented by selecting the relevant Motion layers and the GWT coefficient

truncation parameter (β) that is used to encode each Motion layer. The values of β for each

Motion layer is chosen from the set{0.0, 0.5, 0.7, 0.8, 0.9, 1.0}. β signifies the % of energy

in the coefficients to be retained from the encoding when the GWT coefficients are ordered

in descending order of magnitude. A value of 1.0 for β signifies to encode the frame/layer

with all the GWT coefficients where as a value of 0.5 represents to encode the layer/frame

using coefficients which capture the 50% of the energy in the GWT coefficients. The Motion

layer is then encoded with the corresponding number of GWT coefficients. Let Fi be the

Motion-and-Texture frame of the video which is to be combined with the Sketch component

to constitute the final video. Let Mi1,Mi2....Mik be the k Motion layers to be encoded in

frame i. Let Ti1, Ti2....Tik be the k texture levels (based on the β ) for the k motion layers

found in frame i. Then (Mij, Tij) represents the motion layer j of frame i which is encoded
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using the Texture level Tij. The final Motion-and-Texture frame is generated via overlay of

all the Motion layers. i.e.,

Fi =
∑j=k

j=0(Mij, Tij)

where 0 ≤ Tij ≤ 1 is the normalized value for the β.

1.2.5 Generating the Highest (Top-most) Layer Vorig

Using the above MMR encoding scheme, the original video can be generated using all the

GWT coefficients, i.e., Tij = 1,∀i, j. This is tantamount to the encoding of each of the

Motion layers with all the GWT coefficients resulting in full reconstruction of each frame in

the video stream.

1.2.6 Generating the Base Layer Vbase

The lowest-level Motion-and-Texture layer can be generated using very few GWT coefficients

for all the motion layers, i.e., Tij = 0.5,∀i, j. Using only a few GWT coefficients results in

a smoothed reconstruction of the Motion layer, which, when overlayed with the Sketch

component, improves the visual appeal of the frame. Deleting entirely the background

Motion layer in Vbase generates the layer Vbase0 which is deemed to have a lower power

consumption profile than the base layer Vbase.

1.2.7 Generating Intermediate Layers Vmid

Most of the commonly video available encoding techniques are not content-aware, but in

the proposed HMLV encoding scheme the intermediate layers are designed in such a manner

that they represent perfectly the high-level contents of the video and encode the information

accordingly. The two intermediate layers are generated as follows:

(i) Encode the motion layer which is farthest from the camera with zero GWT coefficients and

10



Figure 1.3: Example of the Generation of a Hybrid frame from the Base Layer and Polyline
Sketch (a) Original Frame, (b) Sketch Frame, (c) Motion-and-Texture Frame, (d) HMLV
frame
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Figure 1.4: The change in PSNR and File Size with respect to the GWT parameter

all the other motion layers including background motion layer with the maximum number

of GWT coefficients. (i.e., Ti = 1).

(ii) Encode the motion layer corresponding to the background at a low Texture level (i.e.,

with the fewest GWT coefficients) and all other layers at a high Texture level (i.e., Ti = 1).

1.2.8 Assessment of Visual Quality of VMT

The visual quality of each of the aforementioned video layers comprising of VMT can be

assessed via subjective evaluation, as well as in terms of PSNR values. A quantitative

evaluation of the average PSNR of a sample video with respect to the GWT parameter

is depicted in Figure 1.4. Lower values of the GWT parameter results in corresponding

lower values of the video file size (denoted by filesize). We have empirically observed that

β values in the range of [0.5,0.6] can be used to generate the video layer Vbase resulting

in very small filesize value, albeit at the cost of low visual quality. However, few oriented

and directional information is retained in the video layer Vbase, to the point that the visual

quality of the resulting video improves significantly when the object outlines from the GSV

12



Figure 1.5: Reconstruction of sample frame using progressive truncation of coefficients using
GWT representation (top row) and DCT representation (bottom row)

representation are superimposed on the video layer Vbase.Figure 1.5 shows the sample texture

frame reconstructed using progressive truncation of GWT representation (top row) and DCT

representation (bottom row). The GWT representation provides finer degree of control on

generating more number of texture layers which have different power consumption profiles.

Figure 1.3 shows the hybrid frame with the Motion-and-Texture component Vbase over-

layed with the GSV sketch component. The specific HMLV video state is generated by

overlaying the sketch component VSKETCH over an appropriately chosen layer of VMT . In

the current implementation, the HMLV encoding is done off-line. Consequently, the run

times of various procedures for generating GSV and each of the texture layers are not very

critical. In the next section, it is shown how different combinations of VSKETCH and VMT re-

sult in distinct video states where each video state has a characteristic resource consumption

profile.

13



1.3 Combining VSKETCH and VMT

In the proposed HMLV scheme, VMT and VSKETCH are obtained independently of each other.

A suitable VMT frame is generated and written to the frame buffer by the video controller.

The Sketch component is extracted subsequently and superimposed on the Motion-and-

Texture frame. The components are processed independently; only the order in which they

are rendered is different. The VMT frame is rendered first followed by the superimposition

of the VSKETCH frame.

Let us suppose that the texture component has L levels of resolution. From our earlier

discussion we can see that we have 5 levels of texture representation, (i.e., L = 5) given

by Vorig, VI1, VI2, Vbase, Vbase0 in the decreasing order of the visual quality and level 0 which

represents the complete absence of the texture component.

Here V 0
MT represents the texture video in the complete absence of the texture.

V L−1
MT corresponds to the original texture layer with highest visual quality.

V j
MT (1 ≤ j ≤ L − 2) are the texture video layers corresponding to the intermediate layers

which have the visual quality between V 0
MT and V L−1

MT . The current state of the HMLV is

represented as:

Γ(texture-level, sketch-level)=(V texture-level
MT , V sketch-level

SKETCH ) (1.1)

such that 0 ≤ texture-level ≤ L−1 and sketch-levelε{no-sketch, polyline-sketch, spline-

sketch}.

The above mentioned state representation allows for various resolution of texture with su-

perimposition of sketch-based representations of varying degree of complexity. For exam-

ple, Γ(0, polyline-sketch) represents the video with only polyline sketch with no texture

(supposed to be the lowest quality video). Γ(L-1, no-sketch) represents the highest quality

14



Figure 1.6: State diagram depicting the state transition rules based on available residual
battery time. The current state transitions to a higher state if the available residual battery
time (Tbattery) is greater than the remaining running time of the video (Tvideo). Similarly, the
current state transitions to a lower state if Tbattery ≤ Tvideo.

texture with no sketch superimposition. Having discussed the representation of the current

state of the HMLV encoding scheme, we evaluate the battery consumption as function of the

quality of the video.

The video states are arranged in a linear order starting with highest quality video and

encoding with the lowest quality towards end. The first state of video is deemed to consume

highest battery power and the lowest video layer is deemed to consume the lowest battery

power. Thus, it is essential to order the different states of the videos in the order of battery

consumption.

Let Battery-time(X, t) be the battery time estimate provided by the operating system

on the playback device t seconds after the video playback has been initiated, where X de-

notes the state of the video during the playback. Let Γ=(Γ1,Γ2, .....Γs) be the S distinct

video states. We define a relation ≤p such that Γi ≤p Γj implies that

Battery-Time(Γi, t) ≥ Battery-Time(Γj, t), t > 0 (1.2)

15



In other words, the states are linearly ordered from left to right such that for any state

(expect for the states Γ(L, no-sketch) and Γ(0, polyline-sketch)) the sketch on its left con-

sumes less power while decoding the entire video whereas the state on its right consumes

more power. The Battery-time(Γ(current-state, t) is estimated using a simple operating

system call, which predicts the remaining battery time based on the current system load.

The experimental results shown in the next section that the HMLV representation states

indeed have different power consumption characteristics.

1.4 Resource Usage Profile

This paper discusses the efficient representation of the motion and texture within a video

frame using motion layers and the β resulting in a simple HMLV encoding framework. In

Figure 1.3, we can observe the generation of a hybrid frame from a Base Layer frame and

Polyline Sketch frame. Figure 1.7 shows different Motion-and-Texture layers associated with

a single frame that are generated using the proposed HMLV encoding scheme, i.e., the base

layer, the intermediate layers and the original layer. We can see that the final visual appeal of

the frame is increased by the overlay of the Sketch component over the base and intermediate

Motion-and-Texture layers. The base layer and the intermediate Motion-and-Texture layers

when overlaid with the Sketch component can be used effectively in video surveillance and

object tracking applications where the finer details of the video are not very useful.

The power consumption profiles for different video states are shown in Figure 1.8. The

overall power consumed during the video playback process is calculated in terms of the

available battery time. It can be seen from the graph that the lower levels of texture take

less battery power than the higher levels. The VSketch layer followed by VBase0 layer (i.e., the

base level texture without the background motion layer) consume the minimum amount of

battery power whereas the original video consumes the maximum amount of battery power
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Figure 1.7: Different Motion-and-Texture Levels (a) Base Layer Vbase0 with Background
Motion Layer Removed (b) Base Layer with β = 0.5 and VSKETCH overlay (c) Intermediate
Layer (d) Original Layer with β = 1.0
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Figure 1.8: Power Consumption Profiles for Different Texture Levels

on the device. All experiments have been performed using a Dell Inspiron 1525 laptop PC

with 2.0GHZ CPU, 2GB RAM, and a 250GB, 5400 rpm hard drive running in battery mode.
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Chapter 2

Evaluation of HMLV encoding1

2.1 HMLV for Mobile Internet-Based Multimedia Ap-

plications

In the proposed HMLV scheme, the various video states (layers) are generated by alter-

ing the visual quality of the encoded video. The video states generated in the proposed

scheme are an approximation to the original MPEG encoded video. This raises a logical

question - Is this approximation good enough? The fact that all the objects discernible in

MPEG-encoded video are also discernible in HMLV encoded video is revealed by the subjec-

tive evidence gathered from human subjects. However, in the interest of objectivity we have

evaluated the proposed HMLV scheme in the context of some important computer vision and

multimedia applications in a resource-constrained mobile Internet environment using quanti-

tative performance metrics i.e, face recognition, human activity recognition. All experiments

were performed using a Dell Inspiron 1525 laptop PC with 2.0GHZ CPU, 2GB RAM, and

a 250GB, 5400 rpm hard drive running in battery mode. In all of the experiments, four

1N. K. Aitha, S. M. Bhandarkar: A Hybrid Multi-Layer Video Encoding Scheme For Computer Vision
applications on Mobile Resource Constrained Devices, To be submitted to IEEE Transactions Circuits and
Systems for Video Technology 2011
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different HMLV layers (HMLV-1, HMLV-10, HMLV-9, HMLV-5) were used, i.e.,HLMV-1 =

(null, spline−sketch) represented as binary silhouettes, HMLV-10 = (Vorg, null), HMLV-9=

(VI1, spline− sketch), HMLV-5 = (Vbase, spline− sketch).

2.2 Human Activity Recognition

For the task of activity recognition, we learn explicit representations for the dynamic shape

manifolds of moving humans. Given a video sequence of moving humans, a lower dimensional

embedding of the movements is captured by Locality Preserving Projection (LPP). The high

dimensional data is projected to lower dimensional space to characterize the spatiotemporal

property of the action, as well as to preserve the geometric structure[27]. The embedded

action trajectories are matched using the median Hausdorff distance similarity measure. The

nearest neighborhood classification is used for action classification. The Human activity

recognition is performed on three levels of HMLV videos generated from the recent dataset

with ten different actions performed by nine different subjects. The accuracy of the human

activity recognition is experimentally verified. The following sections details the manifold

learning, manifold projection and and experimental results for human activity recognition.

2.2.1 Activity Manifold Learning

To learn the complete structure of a activity in a high-dimensional manifold is a formidable

task. Consequently, we use Locality Preserving Projection (LPP) for this goal based on

the following considerations: a) LPP explicitly models the manifold structure by an adja-

cency graph, which yields an efficient subspace learning algorithm to discover the intrinsic

structure of the action space; b) LPP shares some of the data representation properties

of nonlinear techniques such as Locally Linear Embedding (LLE), e.g.,the locality preserv-

ing characteristic; c) the LPP is obtained by finding the optimal linear approximations to
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eigenfunctions of the Laplace Beltrami operator [29]. This linearity naturally leads to low

computation complexity and is, thus, more efficient for practical tasks; and d) although a

few nonlinear methods (e.g., Isomap, LLE) do yield impressive results on some benchmark

artificial datasets, the resulting mappings are defined only for the training data points. How

to evaluate the mapping on a new test data yet remains unclear [33]. In contrast, LPP may

be simply applied to any new data point.

2.2.2 Locality Preserving Projections (LPP)

The problem of linear dimensionality reduction problem can be formalized as follows: Given

a set of high dimensional data points x1, x2, x3, ....xn in Rd, find a transformation matrix A

that maps these n points to a set of low dimensional points y1, y2, y3, ...., yn in Rl ( l << d)

such that yi represents xi. i.e., yi = ATxi

The following is algorithmic procedure for LPP as described in [29]

Constructing the adjacency Graph

Let G denote a graph with n nodes. An edge is inserted between nodes i and j if xi and

xj are proximal. The proximity relation is defined based on ε-neighborhoods (ε ∈ R) i.e., if

‖xi − xj‖2 < ε then xi and xj are neighbors, where the norm is the usual euclidean norm in

Rd or K-nearest neighbors, (K ∈ N) i.e., xi is among the K- nearest neighbors of xj or xj

is among the K- nearest neighbors of xi.

Choosing the edge weights of G

The edge weights evaluate the local structure of the data space. W is a sparse and symmetric

n x n matrix where the element wij denotes the weight of the edge joining nodes i and j.

Note that wij = 0 if there is no edge between nodes i and j. Also two variations for weighting
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the edges can be considered- a. Based on heat Kernel: wij = e−‖xi−xj‖2/t (t ∈ R) b. Binary

Weighting: wij = 1 iff nodes i and j are connected; wij = 0 otherwise.

Eigenmaps

The optimal locality-preserving projection (LPP) the locality can be determined by mini-

mizing the following objective function based on the standard spectral graph theory [29].

min(
∑
i,j

(yi − yj)2wij) (2.1)

The above minimization problem is to ensures that if xi and xj are proximal, then yi and

yj are proximal as well. Let e denote a transformation vector, the objective function can be

modified[29]

1/2
∑
i,j

(yi − yj)2wij = 1/2
∑
i,j

(eTxi − eTxj)2wij

=
∑
i

eTxidiix
T
i e−

∑
i,j

eTxiwijx
T
i e

= eTX(D −W )XT e

= eTXLXT e

where D is a diagonal matrix whose entries are column (or row) sums of the symmetric

weight matrix W , i.e., dij =
∑

iwij, L = D − W is the Laplacian matrix, and X is the

data matrix [x1, x2, ....., xn]. Matrix D provides a natural measure on the data points, i.e.,

the larger the value of dii (corresponding to yi), the more ”important” yi is. Therefore, a

constraint is imposed [29] as follows:
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yTDy = 1⇒ eTXDXT e = 1. (2.2)

Accordingly, the minimization problem reduces to determining the optimal value of e:

arg( min
eTXDXT e=1

eTXLXT e = 1) (2.3)

The solution to the minimization problem in equation (2.3) is tantamount to the solution of

the generalized eigenvalue and eigenvector problem

XLXT e = λXDXT e (2.4)

Let the column vectors e0, e1, ...el−1 be the solutions of equation (2.4), ordered according

to their eigenvalues λ0 < λ1 < λ2 < ....λl−1. Thus, the embedding of each data point is

represented by

yi = ETxi (2.5)

Where E represents the embedding function E = [e0, e1.....el − 1]. The obtained pro-

jections are actually the optimal linear approximation to the eigenfunctions of the Laplace

Beltrami operator on the manifold[29]. For more details on the justification of LPP we refer

the interested reader to [29].

2.2.3 Representations of Visual Inputs

Thus foreground layer or the motion (activity) layer from the HMLV video state represents

the effective feature space for the human activity recognition. The basic assumption here

is that the motion (activity) layer in the any of the HMLV video states is known, i.e., the

video sequence of Region of Interest (ROI) (i.e., human performing action) can be obtained
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from the original video. Considering that establishing correspondences between landmarks

on the foreground is not always feasible because of the temporal changes in topology and

self-occlusions, the foreground sequences are directly used as visual inputs for subspace

learning. The different feature space considered here are the Discrete Cosine Transform

(DCT) coefficients, raw foreground images, and HMLV activity layer of video states HMLV-

1 (represented as binary silhouettes), HMLV-5, HMLV-9, and HMLV-10. (i.e., HMLV-1 =

(null, spline− sketch) HMLV-10 = (Vorg, null), HMLV-9= (VI1, spline− sketch), HMLV-5

= (Vbase, spline− sketch))

2.2.4 Subspace Learning

The original image representations (foreground layer representation) are both noisy and

expensive to analyze, so LPP is used to embed activities into a lower dimensional subspace

for more compact representation. Consider c action classes (i.e., different actions) where

each class represents a video sequence from a foreground activity layer denoting a specific

human actions. Each frame with a resolution of M×N , is converted into an d− dimensional (

d = M×N) vector v in a raster-scan manner. For GWT representation, for each frame the d

GWT coefficients(d=Number of GWT coefficients) of that Foreground layer are considered.

Let vi,j be the jth input frame in the ith class and Ni the number of input frames in the ith

class. The total number of training samples is given by Nt = N1 + N2 + N3....Nc, and the

whole training data can be represented by

X = [v1,1, v1,2......, v1,N1, v2,1......vc,Nc]

= [x1,x2,x3, .....xNt]

where each column of X is an d−dimensional data point. For each action class, multiple

sequences may be freely added to the training data without altering the following training
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process.

To construct an affinity matrix W , the neighborhood of each point is directly determined

by its K- nearest neighbor points based on the distance measured in the input space. To

measure the distance between two data points xi and xj, we compute the cosine of the angle

between the two vectors

Si,j = cos(xi,xj) =
xi.xj

(|xi|.|xj|)
. (2.6)

The ε neighborhood is not used to construct the adjacency graph because it is difficult

to choose an appropriate value of ε for real world problems. To avoid selection of an extra

parameter ( i.e., for heat kernel-based distance measure) in the learning process, we used

simple 0-1 weighting scheme to set the weight of the edge in the adjacency graph, i.e.,

wi,j =

1, the nodes i and j are connected

0, otherwise
(2.7)

we solve for the ”eigenmapping” problem in equation (2.4) to obtain the embedding function

E. The embedding results of the original data is given by Y = ETX. Each data point v

is embedded into a point p in the lower-dimensional subspace. Accordingly, the sequential

movement of a certain action is accordingly mapped into a trajectory in a lower-dimensional

parameter space.

2.2.5 Activity Classification

Activity classification can be solved through measuring motion similarities between the refer-

ence motion patterns and test samples in the low-dimensional embedding space. Assume the

two action sequences are respectively mapped to l× T matrices - A1(l× T1) and A2(l× T2),

where l is the reduced dimensionality, and T1 and T2 are the durations of these complete

activities respectively. Note that the same activities can have different temporal durations
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Figure 2.1: Examples of sample images of actions. From top to bottom: bend, jack, jump,
pjump, run, walk, skip, side, wave1, wave2
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due to speed changes (but have same trajectory in 3D space), and different activities may

have significantly different temporal durations. We use the median Hausdorff distance to

measure the motion similarity between the two lower-dimensional curves. Before computing

the similarity measure, each column vector p in the matrices A1 and A2 is normalized, i.e.,

p = p/‖p‖.

Median Hausdorff Distance

A distance measure that can handle the changes in duration and temporal shifts is ideal for

measuring the motion similarity of two activities. The Hausdorff distance measure provides a

means of determining the resemblance of one point set to another, by examining the fraction

of points in one set that lie near the other set (and vice versa). A variant of the Hausdorff

measure is called the median Hausdorff distance measure and is based on the computation

of the median of the minimum distance between the data points in one set from those in the

other set as follows:

S(A1, A2) = mediani(minj(‖A1(i)− A2(j)‖)) (2.8)

Since the Hausdorff distance measure is oriented, to ensure symmetry, final distance is

modified to

MHD(A1, A2) = S(A1, A2) + S(A2, A1) (2.9)

where MHD(A1, A2) denotes the median Hausdorff distances between sets A1 and A2. The

smaller the distance measure, the more similar are the two activities. Computing the median

rather than the mean, makes the MHD measure robust to the presence of outliers in the

input data.
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Classifier

The activity classification is performed using a nearest-neighbor classifier. Let T represent

a test action sequence and Ri represent the ith reference action sequence, test action as the

class c that can minimize the similarity distance between the test sequence and all reference

patterns, i.e.,

c = argi minMHD(T,Ri) (2.10)

where MHD is the median Hausdorff distance measure.

2.2.6 Experimental Results

In this paper we used the dataset reported in [35], is reasonably sized (in terms of the number

of subjects, actions and videos), compare to other concurrent action databases available in

public domain. It consists of 90 low-resolution videos (180 x 144, 25 fps) of nine different

people, each performing 10 different natural actions. These actions include bending (bend),

jumping jack (jack), running (run), Walking (walk), jumping-forward-on-two-legs (jump),

jumping-in-place-on-two-legs (pjump), galloping sideways (side), waving-one-hand (wave1),

waving-two-hands (wave2). These actions are either periodic (e.g. run and walk) or non-

periodic actions (e.g., bend), and either stationary (e.g., wave1 and wave2) or non-stationary

motions along both horizontal (e.g., side) and vertical (e.g., jack). Sample frames from

different action videos can be seen in the Figure 2.1 In this dataset different people were

asked to perform same action which provides more realistic data.

Representation of Visual Inputs

For the effective representation of the input sequences, the foreground masks from the activity

layer are directly considered as the inputs for activity recognition. Discrete Cosine Trans-

form (DCT) coefficients, Raw foreground images, and HMLV-1 (represented as binary sil-
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houettes) HMLV-5, HMLV-9, and HMLV-10 layers (i.e., HMLV-10 = (Vorg, null), HMLV-9=

(VI1, spline−sketch), HMLV-5 = (Vbase, spline−sketch), HMLV-1 = (null, spline−sketch))

of the videos are considered as the inputs for activity recognition.

Traditional multi-layered scheme such as MPEG-4 Fine Grained Scalability profile (MPEG-

FGS), are based on progressive truncation of DCT or wavelet coefficents[3]. For the com-

pletion sake, we choose to evaluate the activity recognition by encoding the activity layer

with the DCT coefficients. As we have discussed in the assesment of the visual quality sec-

tion, GWT provides finer degree of control in generating more number of texture layers with

different power consumption profiles. We used all of the DCT coefficients of the activity

texture layer as one of the input vectors for evaluation.

Data Processing

There are 90 videos of 9 people performing 10 different actions. All the action videos except

the one for the bend contains more than one action sequence. Two complete cycles of

the action are considered starting from the mid portion of the video for each of the action

sequences. There total of 171 sequences (9 x 2 x 9 + 9 x 1) i.e., each person has one sequence

of bend and 2 sequences of a complete cycle of all other actions. Each of the action sequence

frame is normalized to same dimension (64 × 48 pixels) properly centered, and converted

into a 3072-dimensional vector. A considerable number of visual input vectors are used for

the subspace learning phase.

Experimental Setup

The classifier determines which class a given measurement belongs to using the nearest-

neighbor criterion. From the training samples considered, we compute an overall unbiased

estimate of the true recognition accuracy using the leave-one-out cross validation method.In

each iteration of the cross validation procedure we omit one action sequence performed by
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Figure 2.2: Activity classification on different video layers using median Hausdorff distance-
based similarity measure
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Figure 2.3: Recognition rates with reduced dimensions

a certain subject. Considering the fact that the repeated performances of the same action

performed by the same subject vary only slightly, the repeat action sequence performed by

the same subject is also removed, while all other action sequences are retained. The training

is performed on all the retained action sequences, and the omitted sequence is classified. If

the omitted sequence is classified correctly then we can conclude that multiple instances of

the same action sequence performed by different subjects correlate significantly with each

other.
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Figure 2.4: Change of classification rates with different values of K (nearest neighbors con-
sidered for learning lower dimensional embedding)

32



Results and Analysis

The video states HMLV-1, HMLV-5, HMLV-9, and HMLV-10 (i.e., HMLV-10 = (Vorg, null),

HMLV-9= (VI1, spline−sketch), HMLV-5 = (Vbase, spline−sketch), HMLV-1 = (null, spline−

sketch)) are considered for the experiments including the raw and HMLV-1 (binary). From

Figure 2.2, we can conclude that all the HMLV video states under consideration i.e., HMLV-

1, HMLV-5, HMLV-9, and HMLV-10 perform well in the context of activity recognition.

However, HMLV-10 performs the best for activity recognition followed by HMLV-9 and

HMLV-5. This is because that the highest layer encodes a greater number of GWT co-

efficients and thus can capture the change in the human shape during the activity being

performed. The activity recognition performed using the HMLV-10 layer is equivalent to the

activity recognition using the raw image and binary silhouettes since HMLV-10 layer encodes

all of underlying dynamic shape information. Using HMLV-10 video state the recognition

rates are higher than those obtained with the other HMLV video states i.e., HMLV-5 and

HMLV-9. This behavior is expected as some of the Gabor coefficients are dropped in the

lower lower layers. The β values for HMLV-5, HMLV-9 and HMLV-10 are 0.5, 0.8 and 1.0

respectively. The activity recognition depends on the extent of the human shape information

retained in the video sequences. Although there is a huge difference between the quality of

the videos corresponding to HMLV-5 and HMLV-10, the activity recognition rates are not

significantly different. The raw and binary silhouettes video sequences are also seem to yield

close to 100% classification. The DCT representation of the texture layer also yields the

classification results close to that of the HMLV-10, but the GWT representation gives the

finer degree of control in generating more number of texture layers.

From Figure 2.3, we can see that the reduced dimensionality of the manifold embedding

does not make huge difference on the activity classification rate beyond 10 dimensions. Once

again, the HMLV-10 video state yields better results than the other HMLV video states.

The selection of the value K (nearest neighbors considered for learning lower dimensional
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embedding) also does not impact the performance which is evident from Figure 2.4. Overall

lowest correct classification rate for 20 dimensions and any value of K is 94.44% (for the

HMLV-5 video state). This shows that the HMLV encoding is well suited for activity recog-

nition on mobile resource-constrained devices. The activity recognition method is easy to

implement and can be used for activity recognition using any of the HMLV video states on

mobile resource-constrained devices.

2.3 Face Recognition using Eigenfaces

The HMLV scheme was also evaluated in the context of face recognition performed using the

well known Eigenfaces approach [36]. The eigenfaces are essentially eigenvectors that are

derived from the covariance matrix of the probability distribution of the high-dimensional

vector space of human faces (with known identity) that are stored in a database. The

eigenfaces constitute a basis set of the ”standardized faces”, derived from the training set

of human faces in the database via principal component analysis(PCA). The training set of

human faces is used to estimate the mean vector and covariance matrix of the probability

distribution of the high dimensional vector space of human faces stored in the database

under varying conditions, i.e., at different times, under varying illumination, varying facial

expressions and varying facial details. Each human face in the database can be expressed

as a unique linear combination of these Eigenfaces. An unknown face is also expressed

as a linear combination of these Eigenfaces. The Eigenface coefficients of the unknown

face are compared with those of each of the faces in the database by computing Euclidean

distance in the vector space spanned by the eigenfaces. The Eigenfaces approach based

is essentially an appearance-based face recognition method. In our implementation of the

face recognition system, the ORL database [38] is used for training and testing purposes.

The database contains gray scale images scaled to 32 × 32 pixels with frontal profiles of 40
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Figure 2.5: Sample faces images from ORL database

subjects with 10 different images per subject. For some subjects, the images were taken at

different times, and under varying conditions of ambient lighting, facial expressions (open /

closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images

were taken against a dark homogeneous background with the subjects in an upright, frontal

position (with tolerance for some side movement). Figure 2.5 shows the sample face images

of 4 subjects used in the Eigenfaces algorithm. The graph in Figure 2.6 compares the face

recognition rate for each of the HMLV layers under consideration, i.e., HMLV-5, HMLV-9,

and HMLV-10. The recognition accuracy was tested for varying number of eigenfaces used

in the recognition process. All the training images were generated from the same HMLV

video layers for the respective testing purposes. As it can be seen from the graph, the

recognition accuracy decreases slightly in the case of video layer HMLV-5 whereas there is

no major difference in recognition accuracy between the layers HMLV-9 and HMLV-10. This

is expected since HMLV-5 encodes fewer GWT coefficients and hence less directional and

oriented texture information than HMLV-9 and HMLV-10.

The above experimental results of the above face recognition experiments based on the
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Figure 2.6: Comparison of Recognition rate vs number of Eigenfaces for different HMLV
encoded video layers

Eigenfaces approach using HMLV-encoded videos shows that the proposed HMLV encoding

scheme is well suited for face recognition and similar computer vision tasks in resource-

constrained environment. These resource-constrained environments are characterized typi-

cally by limited available battery capacity and bandwidth on mobile client devices.

2.4 Conclusions

A new wave in the mobile Internet-based multimedia applications has been triggered by

the increasing deployment of broadband networks and simultaneous proliferation of low-cost

video capturing multimedia-enabled mobile devices. These mobile networked environments

are typically resource constrained in terms of available bandwidth and battery capacity
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on mobile devices. Multimedia applications that typically entails analysis, transmission,

storage and rendering of video data are resource-intensive. Since the available bandwidth in

the mobile Internet is constantly changing and the battery life of a mobile video capturing

and rendering device decreases with time, it is desirable to have a video representation

scheme that adapts dynamically to the available resources. To this end, this paper presents

an integrated Hybrid Multi-Layered Video representation framework for contour-, motion-

and texture-based encoding using object outline sketches, motion layers and GWT coefficient

truncation parameters (β). The earlier HLV encoding scheme [1] generated only three texture

levels Vorig, Vmid and Vbase resulting in six distinct HLV encoding levels, whereas the proposed

HMLV encoding technique generates five Motion-and-Texture levels - the original layer,

two intermediate layers and a two base layers. This results in a more fine-grained HMLV

representation which make more efficient use of the available resources. This is very much

evident from the power consumption profiles of different HMLV layers.

The proposed HMLV encoding scheme is shown to be effective for mobile Internet based

multimedia applications such as face recognition and human activity recognition on resource-

constrained mobile devices. The texture representation using progressive truncation of GWT

coefficients gives the finer degree of control in generating texture layers which have different

power consumption profiles. Our current experiments are limited to a single, potentially

mobile device, i.e., a Dell Inspiron 1525 laptop PC with 2.0GHZ CPU, 2GB RAM, and a

250GB, 5400 rpm hard drive running in battery mode. We intend to include other types

of mobile devices such as PDAs, iPhones and pocket-PCs in our future experiments. Our

current experiments are also limited to the measurement of resource (battery power and

bandwidth) consumption on the mobile end-user device on which the video is decoded and

rendered. In our future work, we intend to investigate end-to-end computer vision systems

and multimedia systems implemented in a mobile environment. This would involve a detailed

study of both, resource consumption issues and mobile networking issues in each stage of the
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computer vision system or multimedia system dealing with acquisition, encoding, storage,

indexing, retrieval, transmission, decoding and rendering of the video data.

We also plan to perform a thorough quality 461 of the proposed HMLV encoding scheme

based on an extensive survey of a significant user population. In such a survey, the users

would be required to provide qualitative feedback on their viewing experience for the different

HMLV states and compare their viewing experience with HMLV-encoded video to that with

conventional MPEG-encoded video. The aforementioned survey would serve to ascertain

the superiority of the proposed HMLV encoding scheme to the conventional MPEG encoding

standard. In the current implementation, the HMLV encoding is done off-line. Consequently,

the run times of the various procedures for generating the GSV and each of the texture layers

Vorg, VI1, VI2 and Vbase, Vbase0 are not very critical. Future work will focus on enabling real-

time HMLV encoding.
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