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Abstract

Genomic evaluations could be obtained using a unified methodology that combines phe-

notypic, pedigree and genomic information. A national single-step approach (SSP) for a

comprehensive information (phenotype, pedigree and genotype markers) genetic evaluation

was developed for final score of US Holsteins. Data included final scores recorded from

1955 to 2009 for 6,232,548 Holsteins cows. BovineSNP50 genotypes from the Cooperative

Dairy DNA Repository were available for 6,508 bulls. Analyses used a repeatability animal

model as is currently used for the national US evaluation. Analyses included pedigree and

genomic-based relationships matrices. Full data sets and a subset of records (final scores up

to 2004) were used to estimate the increase in accuracy due to genomic information. Also,

comparisons include a multiple-step approach for genomic selection. The SSP genetic evalu-

ation with the pedigree relationship matrix augmented with genomic information provided

genomic predictions with accuracy and bias comparable to multiple-step procedures.

The implementation of such SSP requires the inverse of a join relationship matrix based on

pedigree and genomic relationships. A second study investigated efficient computing options

for creating relationship matrices based on genomic markers and pedigree information as

well as their inverses. A matrix of incidence of SNP marker information was simulated for a



panel of 40K SNPs. The number of genotyped animals varied from 1,000 to 30,000. Efficient

methods to create the matrices used in the unified approach are presented. Optimizations

can be obtained either by modifications of the existing code or by the use of automatic

optimizations provided by open source or third-party libraries.

The third study evaluated the feasibility and accuracy of multiple trait evaluation for

conception rate (CR) defined as outcomes of all inseminations in US Holsteins using all

available phenotypic, pedigree and genomic information. Genetic evaluations used a national

data set and a multiple trait model. The evaluations were obtained by regular BLUP or by

the SSP, using genomic information. The R2 obtained with the SSP were almost doubled

compared to BLUP. Computing with SSP took 33% more time than with BLUP. A multiple

trait evaluation of CR using the genomic information is possible and advantageous.

Index words: BLUP, genomic selection, SNP, genetic evaluation, computing methods,
relationship matrix
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Chapter 1

Introduction

Traditional genetic evaluations use phenotypic and pedigree information to predict breeding

values of selection candidates for economically important traits. In recent years, the avail-

ability of high-density markers of type single-nucleotide polymorphisms (SNP) and the

cost-effective genotyping has led to the so called genome-wide or genomic selection methods.

Genomic selection can be defined as a form of marked-assisted selection, where dense genetic

markers, covering the whole genome are in linkage disequilibrium with quantitative trait

loci. Results from simulation studies and more recently using field data, have shown that

substantial increases in accuracy could be obtained compared to a regular genetic evaluation

for animals with no records (i.e. young bulls in dairy). This can improve the genetic gain by

reducing the generation interval.

Genomic breeding values usually are obtained by estimating the effect of each of the

genetic makers, and then summing their effect over all the markers. The SNP marker effects

can be estimated with different assumptions regarding the prior distribution of such effects.

Assuming a normal prior distribution with constant variance for each marker effect results in

a method known as GBLUP. Genomic breeding values can also be estimated with a simple

model that includes a genomic relationship matrix derived from genotypes and variances

of the SNP marker effects. Such a matrix includes information on the Mendelian sampling

deviations.

In general, not all animals in a population are genotyped, and multiple breeding values

can be computed. These include: regular estimated breeding values from phenotypic and

pedigree data, and genomic breeding values for the genotyped animals. Genomic evaluations
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are currently calculated with a multiple-step procedure in dairy cattle. A typical evaluation

requires 1) traditional evaluation with an animal model, 2) extraction of pseudo-observations

such as deregressed evaluations or daughter deviations, 3) estimation of genomic effects for

genotyped animals, and possibly 4) combining the genomic index with traditional parent

averages and EBV.

The best approach for genomic evaluations could be by a unified approach, where all

available information (pedigree, phenotypic data and genomic markers) is considered simulta-

neously. This could eliminate a number of assumptions and parameters, and possibly deliver

more accurate genomic evaluations than multiple-step procedures. Therefore, the objective

of these studies are 1) to use a single-step procedure including phenotypic, pedigree and

marker information, for genomic evaluation in a national evaluation setting and to com-

pare its performance to a multiple-step genomic evaluation procedure, 2) to study efficient

computing options to create relationship matrices based on genomic markers and pedigree

information as well as their inverses, 3) to study the feasibility and accuracy of multiple trait

evaluation for a lowly heritable trait such as the outcome of artificial insemination.



Chapter 2

Review of Literature

Traditional genetic evaluations use phenotypic and pedigree information to predict breeding

values of selection candidates for traits of economical importance. In a review, Hill (2008)

showed that the genetic improvement is successful in several domestic species.

In general, genes with known polymorphisms that affect quantitative traits do not add

to selection based on estimated breeding values (EBV) from the pedigree and phenotypic

information (Goddard, 2009). The author presented four reasons supporting his conclusions

based on several studies. First, the traditional selection based on EBV is effective. Second,

there are many genes that affect a trait so the variance explained by each gene is small. Third,

given that traits are controlled by many genes, the estimates of their effects are small and

therefore it is hard to have accurate estimates. Finally, few genes are known to be responsible

for large variation in important traits.

In recent years, the availability of high-density markers of type single-nucleotide poly-

morphisms (SNP) as well as the cost-effective genotyping led to genome-wide or genomic

selection methods (Meuwissen et al., 2001). Genomic selection can be defined as a form of

marked-assisted selection, where dense genetic markers that cover the whole genome are in

linkage disequilibrium with quantitative trait loci (QTL) (Meuwissen et al., 2001).

In humans, results from the International HapMap Consortium identified over 3.1 million

SNPs (Frazer et al., 2007); assays of 500,000 SNPs have currently been used in genome-wide

association (GWAs) studies ( e.g. Weedon et al. (2008)). In cattle, an assay interrogating

approximately 57,000 SNP loci was developed (Van Tassell et al., 2008; Matukumalli et al.,

2009) and is commercially available with the Illumina BovineSNP50 BeadChip (Illumina

3
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Inc., San Diego, CA). A subset of SNPs from this chip were selected and are being used in

a national genomic evaluation of dairy cattle in North America (Wiggans et al., 2009).

Results from simulation studies that considered the SNP information (Meuwissen et al.,

2001; VanRaden, 2008; Solberg et al., 2008; Habier et al., 2007) show that a substantial

increase in accuracy can be obtained compared to a regular genetic evaluation where no

information was available (i.e. young bulls in dairy). Genomic selection increases the realized

genetic gain, reduces the generation interval, and reduces the cost of testing bulls by approx-

imately 90% (Schaeffer, 2006). Konig et al. (2009) found benefits from genomic breeding

programs due to the substantial reduction in the generation interval, to increasing the accu-

racy of estimated breeding values, and to increasing the selection intensity of cow sires.

Several studies using real data were carried out to asses the accuracy of genomic selection

in animal and plant species. These studies involved mice (Legarra et al., 2008; de los Campos

et al., 2009), chickens (Gonzalez-Recio et al., 2009), wheat (de los Campos et al., 2009) and

several other plant species (Lorenzana and Bernardo, 2009). Studies in dairy cattle genomic

selection included several populations: in North America (VanRaden et al., 2009b), Australia

(Hayes et al., 2009c,a), Canada (Van Doormaal et al., 2009), New Zealand (Harris et al.,

2008), Norway (Luan et al., 2009) and Denmark (Su et al., 2010).

Genomic breeding values are usually obtained by estimating the effect of each of the

genetic markers and then summing their effect over all markers (Meuwissen et al., 2001).

The SNP marker effects can be estimated with different assumptions regarding the prior

distribution of such effects (Meuwissen et al., 2001). Meuwissen et al. (2001) defined two

Bayesian methods using different types of prior distribution for the marker variance. The

first method (BayesA) uses an inverted chi-square distribution for the marker variance,

and the second method (BayesB) uses a prior that has a high density of zeros, allowing

some markers to have a null effect. Gianola et al. (2009) discussed theoretical statistical

concepts of the methods presented by Meuwissen et al. (2001) and suggested an alternative

methodology. VanRaden (2008) also presented non-linear models to estimate marker effects,
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which are analogous to BayesA and BayesB of Meuwissen et al. (2001). Different authors

proposed alternative methods to estimate marker effects: semi-parametric methods (Gianola

et al., 2006; Gianola and De los Campos, 2008), Bayesian Lasso (de los Campos et al., 2009)

and variable selection methodology (Verbyla et al., 2009).

Assuming a normal prior distribution with constant variance for marker effects results

in the method known as GBLUP (Meuwissen et al., 2001; Habier et al., 2007; VanRaden,

2008). Genomic breeding values also can be estimated with a simple model that includes a

genomic relationship matrix derived from genotypes and variances of the SNP marker effects

(Nejati-Javaremi et al., 1997; VanRaden, 2008; Habier et al., 2007). Using a realized rela-

tionship matrix, genomic selection will exploit the Mendelian sampling deviations from the

average relationship matrix based on pedigree information (Goddard, 2009). Both methods

are equivalent except for numerical properties (VanRaden, 2007).

Nejati-Javaremi et al. (1997) proposed to use total allelic relationships as an alternative to

pedigree-based relationships. They defined the total allelic identity between two individuals

as:

TAxy =

L∑
l=1

TAl

L
=

L∑
l=1

(

2∑
i=1

2∑
j=1

Ilij

2
)

L

where Ilij is the identity at locus l for the ith allele of the first individual (x) with the jth

allele of the second individual (y) taking the value 1 if both alleles are the same and 0

if not; and L is the number of markers. Using two simulated populations, one population

with random mating and another under selection, they found that breeding values estimated

using relationships based on the marker information were more accurate and resulted in

higher response to selection. The authors concluded that accounting for the identity by state

and for deviations from the average relationships based on pedigree increased accuracy of

the estimated breeding values.
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Genomic relationships (G) could also be created as follows (VanRaden, 2008):

G =
ZZ′

k
,

where Z is an incidence matrix for SNP markers and k is a scaling parameter.

Elements of Z are:

zij =


0− 2pj if homozygous 11

1− 2pj if heterozygous 12 or 21,

2− 2pj if homozygous 22

for animal i and SNP j with allele frequency pj.

Different allele frequencies could be used: estimates from the current or the base popula-

tion, or constant frequency (i.e. pj = 0.5) for each marker (VanRaden, 2008). Pedigree-based

relationships are created with respect to the base population which assume no inbreeding

or selection, so the allele frequency p should be the estimates of the base population (Van-

Raden, 2008). Gengler et al. (2007) presented a method to estimate allele frequencies in the

base population by linear regression of gene content.

The scaling parameter k usually is defined as follows (VanRaden, 2008; Habier et al.,

2007):

k = 2
∑

pj(1− pj),

which assumes a priori independence of SNP effects (Gianola et al., 2009).

Gianola et al. (2009) proposed another scaling parameter that accounts for the random

ascertainment of SNP and their frequencies, which results in:

k =

[
(p0 − q0)2 + 2

(∑
pj(1− pj)
n

)(
α + β + 2

α + β

)]
n,

where p0 = α/(α+β) is the expected allele frequency, q0 = (1− p0); α and β are parameters

of the beta distribution fitting the base allelic frequency, and n is the number of SNP.

Matrices G are sometimes singular or close to singularity (VanRaden, 2008). In order to

facilitate inversion, VanRaden (2008) proposed to use weighted G∗ as:

G∗ = wG + (1− w)A
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where A is the pedigree-based relationship matrix, and w is a weight parameter between 0

and 1. VanRaden (2008) suggested to use a value of w = 0.95. Van Doormaal et al. (2009)

in the Canadian implementation of genomic selection, suggested to use a w = 0.80, in order

to have a polygenic effect of 20% instead of 5%.

Hayes et al. (2009b) used a similar approach as in Nejati-Javaremi et al. (1997) to study

the increase in accuracy by using the realized relationship matrix. Hayes and Goddard (2008)

found that estimated heritability was close to the simulated one with marker-based rela-

tionships compared to regular relationships based on pedigree information. As the number

of markers used to create the relationship matrix increased, the estimate of heritability

approached the true one.

Villanueva et al. (2005) studied benefits of marker-assisted selection for a genetic model

based on a large number of additive loci of small effect. Comparisons were between a regular

BLUP and a BLUP that used an identical-by-descent (IBD) matrix that combined the pedi-

gree and marker information. Extra gains in response were observed by increasing accuracy

from the marker information in genetic relationships.

In a simulation study, Habier et al. (2007) showed that markers can capture the genetic

relationship between genotyped animals and thus affect the accuracy of estimated genomic

breeding values.

Goddard (2009) derived expressions for the accuracy of genomic selection. He showed that

the accuracy of genomic breeding values depends on the LD between the marker and the

QTL and on the accuracy with which the markers effects are estimated. Different accuracies

could be obtained assuming different prior distribution of QTL effects. Assumption of a

normal distribution with a constant variance for all marker effects (GBLUP), results in a

robust method regardless of the true distribution of QTLs. The accuracy of genomic selection

could reach 100% with sufficient data (Goddard, 2009).

When a trait is under the control of many QTL with small effect, Daetwyler (2009,

Chap 2) found that GBLUP results in a more accurate estimation of breeding values com-
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pared with methods which assume a prior distribution of marker effects where a large number

of markers have zero effects (e.g. BayesB Meuwissen et al. (2001)).

Luan et al. (2009) assessed the accuracy of genomic selection in Norwegian Red Cattle.

They observed that GBLUP results in higher accuracies compared with BayesB or with a

mixture model approach for several production and health traits. Their results indicated a

strong relationship between the accuracy and heritability of the trait. Lower accuracy and

greater bias was obtained for traits with low heritability.

Experiences with actual data from dairy cattle (Hayes et al., 2009c; VanRaden et al.,

2009a) indicated that using a large number of markers with equal variance for all markers

is appropriate for most traits. Limiting the number of SNP markers to only those with

large effects resulted in reduced accuracy (Cole et al., 2009). However, little (if any) loss

of accuracy occurred for most dairy cattle traits by assuming equal rather than different

variance for each SNP marker (Cole et al., 2009; VanRaden et al., 2009a). Further, assuming

equal variance allows the use of the same genomic relationship matrix for all traits.

Results from human genome-wide association studies shows that a small fraction of the

total variance is explained by genetic variants (Maher, 2008). Studies done in human height,

which has estimates of heritability around 80-90%, found that the genetic variants only

explain about 5% of the total variance (Weedon et al., 2008). Goldstein (2009) estimated

that the number of SNP that are required to explain 80% of the variation for human height

was about 93,000. In a review study about mapping genes for complex traits in domestic

animals, Goddard and Hayes (2009) arrived at similar conclusions.

Genomic relationships are beneficial in GWA studies (Kang et al., 2010, 2008; Amin et al.,

2007). These authors proposed to use linear mixed models with relationships between indi-

viduals by using the kinship matrix estimated through genomic markers. Using the genetic

relatedness between individual avoids spurious associations (Kang et al., 2010, 2008; Amin

et al., 2007).
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When variances are not equal, e.g., as in BayesA or BayesB of Meuwissen et al. (2001),

or Bayes-Lasso (de los Campos et al., 2009), an equivalent G can be constructed by scaling

contributions from different markers. Weighted genomic relationship matrices were also used

in human studies (Amin et al., 2007; Leutenegger et al., 2003) and by VanRaden (2008). In

such cases weights were defined by the expected variance:

G = ZDZ′

where D is a diagonal matrix with elements: Dii = 1
m[2pi(1−pi)] and m is the number of

genotyped individuals.

Single-step genomic evaluation

In general, not all the animals in a population are genotyped, and evaluations by different

methods can provide different breeding values. Regular estimated breeding values from phe-

notypic and pedigree data are available for all animals, and genomic breeding values can be

obtained for genotyped animals.

Genomic evaluations in dairy cattle are currently calculated with a multiple-step pro-

cedure (Hayes et al., 2009c; VanRaden, 2008). A typical evaluation requires 1) traditional

evaluation with an animal model, 2) extraction of pseudo-observations such as deregressed

evaluations or daughter deviations, 3) estimation of genomic effects for genotyped animals

usually using simple sire models, and possibly 4) combining the genomic index with tradi-

tional parent averages (PA) and EBV (Hayes et al., 2009c; VanRaden et al., 2009b). Those

steps are dependent on many parameters and assumptions. For example, there are several

options for estimating genomic effects (Meuwissen et al., 2001; Gianola et al., 2006; Van-

Raden, 2008; de los Campos et al., 2009).

Advantages of the multistage procedure include no change to the regular evaluation and

simple steps for predicting genomic values for young genotyped animals. Disadvantages are

requirements for parameters in steps 3) and 4) such as prior variances and weights, as well as

the loss of accuracy and biases due to selection. While the model in 1) uses the information
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on all animals and can be multi-trait, the model in 3) is equivalent to a single-trait sire model

for a highly selected set of sires. Incorrect parameters in 3) and 4) can result in unexpected

changes for high reliability bulls. Neuner et al. (2008) claimed that problems associated with

the multi-step procedure reduce its benefits, especially for cows.

Current experiences with genomic evaluations from the multiple-step procedure seem

mixed. Genomic evaluations are more accurate than PA and approach the accuracy of eval-

uations for progeny-tested bulls, but they also seem inflated (VanRaden et al., 2009b). Use

of regression coefficients to measure bias was described by Reverter et al. (1994) and forms

the basis of Method R estimation of variance components. Values of the regression coeffi-

cient different from 1 indicate bias with overestimation (underestimation) for values lower

(greater) than 1.

Inflation of genetic evaluations by genomic information causes top young bulls to have

an unfair advantage over older progeny-tested bulls. Some of the problems with genomic

evaluations may be caused by incorrect parameters and strong assumptions used in multiple-

step procedures. However, effects of those parameters and assumptions are difficult to verify,

particularly in the presence of selection.

A more serious problem in the multi-step method is when pseudo-observations are poorly

defined or of poor quality (e.g., for animals with small progeny numbers), which is often the

case for monogastric species and for beef cattle. Then, genomic predictions may be poor.

Misztal et al. (2009) (see Appendix A) proposed a single-step evaluation in which the

pedigree-based relationship matrix is augmented by contributions from the genomic rela-

tionship matrix. They proposed that the numerator relationship matrix (A) can be modified

to a matrix (H) that includes both pedigree-based relationships and differences between

pedigree-based and genomic-based relationships (A∆) : H = A+A∆. where A∆ is a matrix

that can be stored explicitly and accounts for deviation due to genomic information.

They also suggested a computing procedure (Bi-CGSTAB; van der Vorst (1992)) based on

a non-symmetric system of mixed model equations that was suitable for millions of animals.
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The PCG algorithm (Barrett, 1994), which is implemented in current software for solving

large scale genetic evaluation (Tsuruta et al., 2001), is only applicable to symmetric systems

of equations.

In their examples, they used

H =

A11 A12

A21 G

 = A +

0 0

0 G−A22

 ,
where subscripts 1 and 2 represent ungenotyped and genotyped animals, respectively, and

G is a genomic relationship matrix. In tests, such H did not work because off-diagonals of

H were not functions of G.

Legarra et al. (2009) (see Appendix B) derived a joint relationship matrix based on

pedigree and genomic relationships. They suggested deriving the joint density of u1 and

u2 as p(u1,u2) = p(u1|u2)p(u2). The conditional distribution p(u1|u2) is based on pedigree

through the selection index or multivariate normal properties; p(u2) is based only on genomic

information, possibly from genomic relationships. The covariance of the joint distribution of

u1 and u2 is thus H:

H = A +

A12A
−1
22 0

0 I

I
I

 (G−A22)
[
I I

]A−1
22 A21 0

0 I

 ,
which could be implemented in tests by using computing algorithms such as in Misztal et al.

(2009) with only a few more computations per round of iteration than for traditional eval-

uations. Christensen and Lund (2010) using other derivation arrived to the same expression

as Legarra et al. (2009). Even though the matrix was complex, computations were feasible

even for large data sets.

Computing methods for genomic matrix

VanRaden (2008) presented methods to create genomic relationship matrices. The kernel of

such methods involves the multiplication of the matrix of marker incidence (with dimension
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number of genotyped animals by number of SNP markers) by its transpose. Matrix oper-

ations, and in particular matrix multiplication has been studied in computer science field

and results in the widely used linear algebra kernels called Basic Linear Algebra Subroutines

(BLAS; http://www.netlib.org/blas) (Dongarra et al., 1988, 1990).

Memory hierarchy can be partitioned into two basic types: main and cache. While the

cache memory usually has a capacity of 256 Kbyte to 16 Mbyte, the main memory in current

computer ranges from 1 Gbyte to 128 Gbyte. Processors have fast access to the cache memory

but much slower to the main memory. Accessing large amount of memory, where blocks of

memory are not contiguous and the capacity of the cache memory is exceeded, increases the

computing time due to slow traffic to the main memory.

An optimized version of BLAS subroutines was developed by Whaley and Dongarra

(1998) and an open source of theses libraries are available in the Automatically Tuned Linear

Algebra Software (ATLAS http://math-atlas.sourceforge.net). These optimized libraries

take into account features of a specific processor (memory speed and cache size) in several

subroutines. Third-party libraries like the Intel Math Kernel Library (MKL) also imple-

ments an optimized version of BLAS.

The use of parallel processing is now simplified by hardware, as many computer chips

contain two to eight processors, and by specific software tools for parallelization. Auto-

matic parallelization by OpenMP (http://www.openmp.org) with MKL libraries requires

only appropriate flag option during the compilation. Parallel multiplication can be facilitated

by the open-source optimized subroutine (i.e. ATLAS) combined with OpenMP directives

(Bentz and Kendall, 2005).

Computing methods for numerator relationship matrix

The degree of inbreeding of an individual and the relationship between two individuals

(Wright, 1922) are represented by the numerator relationship matrix (A). Wright (1922)
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developed a path coefficient method to calculate such coefficients. Henderson (1976) pre-

sented a recursive method that is computationally suitable compared to Wright’s path for-

mulas. Colleau (2002) presented an indirect method to calculate relationship coefficients.

His method is based on a decomposition of the numerator relationship matrix, and coeffi-

cients for selected individuals are computed with sequential reading of the pedigree file (see

Appendix A). Relationship coefficients for pairs of individuals can also be obtained using

methods described by Aguilar and Misztal (2008).

Fertility traits

Worldwide declines of fertility in Holsteins creates a need for accurate evaluation of fer-

tility traits. Fertility in dairy can be evaluated on a number of traits (Jamrozik et al., 2005;

Gonzalez-Recio et al., 2005). Typical fertility traits such as Non-Return Rate and Days Open

have their advantages and disadvantages (Huang et al., 2007). A desirable trait is conception

rate (CR) defined as an outcome of individual service (Averill et al., 2004; Huang et al.,

2007). Treating each service separately allows for adjusting specific effects influencing each

service. Kuhn et al. (2008); Kuhn and Hutchison (2008) presented methodology to analyze

individual service records for evaluations of CR in dairy cattle in the US. International eval-

uations for fertility traits of dairy bulls is based on five groups of traits, with CR considered

in several groups (Jorjani, 2007).

Estimates of heritability for CR are low (Tsuruta et al., 2009; Gonzalez-Recio et al., 2006,

2005), and accuracies of estimated breeding values are low. Such accuracies can be improved

by using all available services in each parity. Furthermore, it can be boosted by utilizing the

genomic information (Veerkamp and Beerda, 2007).
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Chapter 3

Hot topic: A unified approach to utilize phenotypic, full pedigree, and

genomic information for genetic evaluation of Holstein final score1

1I. Aguilar, I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta, and T. J. Lawlor. Online Journal
of Dairy Science. 93 (2) : 743–752. Reprinted here with permission of publisher.
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Abstract

The first national single-step, full-information (phenotype, pedigree, and marker genotype)

genetic evaluation was developed for final score of US Holsteins. Data included final scores

recorded from 1955 to 2009 for 6,232,548 Holsteins cows. BovineSNP50 genotypes from the

Cooperative Dairy DNA Repository were available for 6,508 bulls. Three analyses used a

repeatability animal model as currently used for the national US evaluation. The first 2

analyses used final scores recorded up to 2004. The first analysis used only a pedigree-based

relationship matrix. The second analysis used a relationship matrix based on both pedigree

and genomic information (single-step approach). The third analysis used the complete data

set and only the pedigree-based relationship matrix. The fourth analysis used predictions

from the first analysis (final scores up to 2004 and only a pedigree-based relationship matrix)

and prediction using a genomic based matrix to obtain genetic evaluation (multiple-step

approach). Different allele frequencies were tested in construction of the genomic relation-

ship matrix. Coefficients of determination between predictions of young bulls from parent

average, single-step, and multiple-step approaches and their 2009 daughter deviations were

0.24, 0.37 to 0.41, and 0.40, respectively. The highest coefficient of determination for a single-

step approach was observed when using a genomic relationship matrix with assumed allele

frequencies of 0.5. Coefficients for regression of 2009 daughter deviations on parent-average,

single-step, and multiple-step predictions were 0.76, 0.68 to 0.79, and 0.86, respectively,

which indicated some inflation of predictions. The single-step regression coefficient could be

increased up to 0.92 by scaling differences between the genomic and pedigree-based relation-

ship matrices with little loss in accuracy of prediction. One complete evaluation took about

2h of computing time and 2.7 gigabytes of memory. Computing times for single-step anal-

yses were slightly longer (2%) than for pedigree-based analysis. A national single-step genetic

evaluation with the pedigree relationship matrix augmented with genomic information pro-

vided genomic predictions with accuracy and bias comparable to multiple-step procedures
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and could account for any population or data structure. Advantages of single-step evaluations

should increase in the future when animals are pre-selected on genotypes.

(Key words : BLUP, genomic prediction, SNP, genetic evaluation)

Introduction

Genomic evaluations are currently calculated with a multiple-step procedure (Hayes et al.,

2009; VanRaden, 2008) . A typical evaluation requires 1) traditional evaluation with an

animal model, 2) extraction of pseudo-observations such as deregressed evaluations or

daughter deviations (DD), 3) estimation of genomic effects for genotyped animals usually

using simple sire models, and possibly 4) combining the genomic index with traditional

parent averages (PA) and EBV (Hayes et al., 2009; VanRaden et al., 2009b). Those steps

are dependent on many parameters and assumptions. For example, estimation of genomic

effects has several options (Meuwissen et al., 2001; Gianola et al., 2006; VanRaden, 2008;

de los Campos et al., 2009). The SNP marker effects can be estimated with different assump-

tions regarding the prior distribution of such effects. Genomic effects also can be estimated

with a simple model that includes a genomic relationship matrix derived from genotypes

and variances of the SNP marker effects (Nejati-Javaremi et al., 1997). Both methods are

equivalent except for numerical properties (VanRaden, 2007).

Initially, genomic evaluation was tested with simulated data and a variety of assump-

tions (VanRaden, 2008). Experiences with actual data from dairy cattle (Hayes et al., 2009;

VanRaden et al., 2009a) indicated that using a large number of markers with equal variance

for all markers is appropriate for most traits. Limiting the number of SNP markers to only

those with large effects resulted in reduced accuracy (Cole et al., 2009). However, little (if

any) loss of accuracy occurred for most dairy cattle traits by assuming equal rather than

different variance for each SNP marker (Cole et al., 2009; VanRaden et al., 2009a). Further,

assuming equal variance allows the use of the same genomic relationship matrix for all traits.
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Current experiences with genomic evaluations from the multiple-step procedure seem

mixed. Genomic evaluations are more accurate than PA and approach the accuracy of evalua-

tions for progeny-tested bulls, but they also seem inflated (VanRaden et al., 2009b). Although

their inflation is lower than that of current PA, the potentially great utilization of top genom-

ically evaluated young sires increases the importance of high accuracy and minimum bias.

Inflation of genetic evaluations by genomic information causes top young bulls to have an

unfair advantage over older progeny-tested bulls. Some of the problems with genomic evalu-

ations may be caused by incorrect parameters and strong assumptions used in multiple-step

procedures. However, effects of those parameters and assumptions are extremely difficult to

verify, particularly in the presence of selection. An alternative explanation for the mixed

results is that observed regressions and estimated reliabilities are biased downward by selec-

tive genotyping. A more serious problem is when pseudo-observations are poorly defined or

of poor quality (e.g., for animals with small progeny numbers), which is often the case for

monogastric species and for beef cattle.

Misztal et al. (2009) proposed a single-step evaluation in which the pedigree-based rela-

tionship matrix is augmented by contributions from the genomic relationship matrix. They

also suggested a computing procedure based on a nonsymmetric system of mixed model

equations that was suitable for millions of animals. Legarra et al. (2009) derived a joint

relationship matrix based on pedigree and genomic relationships. Even though the matrix

was expense and complex to create, computations were feasible even for large data sets.

The single-step procedure provides a unified framework, eliminates a number of assump-

tions and parameters, and provides the opportunity to calculate more accurate genomic

evaluations than with multiple-step procedures. The objective of this study was to utilize a

single-step procedure for genomic evaluation in a national evaluation setting and compare

its performance to a multiple-step procedure.
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Materials and Methods

Data

Data were US Holstein information for final score used for May 2009 official evaluations

(Sires Summaries, 2009). A total of 10,466,066 records were available for 6,232,548 cows.

Pedigrees were available for 9,100,106 animals. Genotypes for 6,508 bulls were generated

using the Illumina BovineSNP50 BeadChip and DNA from semen contributed by US and

Canadian AI organizations to the Cooperative Dairy DNA Repository; genotypes were pro-

vided by the Animal Improvement Programs Laboratory, ARS, USDA (Beltsville, MD).

Relationship Matrix with Pedigree and Genomic Information

Misztal et al. (2009) suggested that a numerator relationship matrix (A) can be modified

to a matrix (H) that includes both pedigree-based relationships and differences between

pedigree-based and genomic-based relationships (A∆) : H = A + A∆. In their examples,

they used

H =

A11 A12

A21 G

 = A +

0 0

0 G−A22

 ,
where subscripts 1 and 2 represent ungenotyped and genotyped animals, respectively, and

G is a genomic relationship matrix. In tests, such H did not work because off-diagonals

of H were not functions of G. Assume, for example, that no animal in G has records;

then, according to H, the predicted breeding value for genotyped animals (u2) would be

u2|u1 = A21A
−1
11 u1, where u1 is the predicted breeding value for ungenotyped animals, and

G would have no role whatsoever.

Legarra et al. (2009) suggested deriving the joint density of u1 and u2 as p(u1,u2) =

p(u1|u2)p(u2). The conditional distribution p(u1|u2) is based on pedigree through the selec-

tion index or multivariate normal properties; p(u2) is based only on genomic information,

possibly from genomic relationships. The covariance of the joint distribution of u1 and u2 is
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thus H:

H = A +

A12A
−1
22 0

0 I

I
I

 (G−A22)
[
I I

]A−1
22 A21 0

0 I

 ,
which could be implemented in tests by using computing algorithms such as in Misztal

et al. (2009) with only a few more computations per round of iteration than for traditional

evaluations. Convergence was readily obtained for medium-sized data sets (up to 1 million);

however, for larger data sets, convergence was strongly dependent on the type of G used.

An inverse of H that allows for drastically simpler computations (see Appendix C) is

H−1 = A−1 +

0 0

0 G−1 −A−1
22

 ,
where A−1

22 is the inverse of a pedigree-based relationship matrix for genotyped animals

only. This expression has also been independently derived by Christensen and Lund (2009).

However, the new formula introduces a small problem: G is usually singular and, therefore,

is not invertible without additional steps.

Models and Analyses

A repeatability animal model was used for analysis as is currently done for US national

evaluation of Holstein conformation traits (Sires Summaries, 2009). The first 2 analyses

used final scores through 2004 only. The first analysis (Ped04) used only the pedigree-based

relationship matrix; the second analysis (PedGen104) used relationships based on both

pedigree and genomic information in a single-step approach. The third analysis (Ped09)

used the complete data set and only the pedigree-based relationship matrix. The fourth

analysis (PedGenM04) used predictions from Ped04 and a multiple-step approach to obtain

genomic predictions (GP) as described by VanRaden et al. (2009b). Options in the last

analysis were genomic relationship matrix and base allele frequencies. Both PedGen104 and

PedGenM04 assumed equal variances per SNP marker effect.
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”Raw” genomic relationships (Gb) were created as

Gb =
ZZ′

k
,

where Z is an incidence matrix for SNP effects with elements

zij =


0− 2pj if homozygous 11

1− 2pj if heterozygous 12 or 21,

2− 2pj if homozygous 22

for animal i and SNP j with allele frequency pj. Several allele frequencies were used to center

the matrix: 0.5, base population estimated by linear regression of gene content (Gengler et al.,

2007), and current population. The scaling parameter k was defined as

k = 2
∑

pj(1− pj)

(VanRaden, 2008), which assumes a priori independence of SNP effects (Gianola et al., 2009).

Another scaling parameter has been proposed by Gianola et al. (2009) with

k =

[
(p0 − q0)2 + 2

(∑
pj(1− pj)
n

)(
α + β + 2

α + β

)]
n,

where p0 = α/(α+β) is the expected allele frequency, q0 = (1− p0); α and β are parameters

of the beta distribution fitting the base allelic frequency, and n is the number of SNP. That

modification accounts for random ascertainment of SNP and their frequencies.

Matrices Gb were sometimes singular or close to singularity. In order to facilitate inver-

sion, final analyses used a weighted G as proposed by VanRaden (2008): G = 0.95Gb +

0.05A22 . The weights were not critical, and replacing them with 0.98 and 0.02 caused neg-

ligible differences.

Because GP could be scaled incorrectly, a series of analyses used H−1:

H−1 = A−1 +

0 0

0 λ(G−1 −A−1
22 )

 ,
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where λ scales differences between genomic and pedigree-based information. More exactly

(see Appendix D), λ sets the value of G in H to a new value (G∗):

G∗ =
[
λG−1 + (1− λ)A−1

22 )

]−1

,

thus blending genomic and pedigree information. For λ = 1, G∗ = G; for λ = 0, G∗ = A22

and H = A. In fact, this corresponds to the following prior for genotyped animals:

p (u2|G,A22, λ) = p (u2|G, λ) p (u2|A22, λ) = N (0,G/λ)N (0,A22/ (1− λ))

Comparisons were based on the regressions

DD = µ+ δEBV04 + e

and

EBV09 = µ+ δEBV04 + e

where DD were deregressed evaluations (VanRaden et al., 2009b) from genotyped bulls

without daughter records in 2004 but with daughter records in 2009 that were computed

with complete final score data but without genomic information; EBV09 are breeding values

based on final scores up to 2009 but without genomic information; µ is a mean; δ is a regres-

sion coefficient; EBV04 are breeding values based on final scores up to 2004; and e is residual

error. Breeding values were calculated for 2 sets of genotyped bulls: 1) 2,575 young bulls

with no daughter records in 2004 but with daughter records in 2009 and 2) 3,933 evaluated

bulls with daughter records in 2004. The most accurate method for prediction for young

bulls would have µ close to 0, δ close to 1, and R2 as high as possible.

Both DD and EBV09 regressions were examined to allow more detailed comparison.

Although DD computed through deregressed evaluations allow partial removal of the effect

of PA, the removal is contingent on the accuracy of approximate reliabilities. Also, the goal

of GP is not to predict DD but to predict future breeding values.
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Software

Initial software for the construction of G and the multiple-step evaluation was provided by P.

M. VanRaden (Animal Improvement Programs Laboratory, ARS, USDA, Beltsville, MD).

Additional software for creating G was contributed by B. J. Hayes (Biosciences Research

Division, Department of Primary Industries Victoria, Bundoora, Australia). Software refine-

ment included rearrangements of code in Fortran 95 for efficient matrix multiplication, matrix

inversion, and parallelization. Computation of A22 followed the formulas of Misztal et al.

(2009), which used the algorithm of Colleau (2002). Genetic evaluation was performed by

modified BLUP90IOD (Tsuruta et al., 2001; Misztal et al., 2002), which uses iteration on

data with the preconditioned conjugate gradient algorithm.

Results and Discussion

Precomputation of G and A22 took 650 s and 45 s, respectively, on an Opteron 64-bit

processor with a clock speed of 3.02 GHz and a cache size of 1Mbyte, using one processor;

their inversion took approximately 150 s. Time per 1 preconditioned conjugate gradient

round for PedGen104 was 13 s, which was 2% greater than 1 round for Ped04. Convergence

rates (not shown) for PedGen104 and Ped04 were almost identical. A complete analysis with

PedGen104 took approximately 2 h. Memory requirement for precomputation of G was 2.7

gigabytes.

Table 3.1 shows R2 and δ for regression of 2009 DD and corresponding EBV09 on various

2004 predictions for young bulls. For PA, R2 was 24% with δ of 0.76. The δ showed that PA

overestimated the genetic evaluation with progeny included by 27%. For the multiple-step

approach, R2 increased to 40% and δ to 0.86. The increase in R2 of 16% compared with

PA R2 was slightly higher than the increase of 13% reported by VanRaden et al. (2009b).

VanRaden et al. (2009a) reported a regression coefficient of 0.74. Differences from the results

of VanRaden et al. (2009a,b) were due partly to slightly different data (theirs included
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Canadian evaluations but fewer genotypes and US records) and methodology details (e.g.,

different computation of approximate reliabilities).

For the single-step approaches (Table 3.1), R2 for DD varied between 37 and 41%, and

δ varied between 0.68 and 0.79 depending on G. The highest single-step increase in R2 over

prediction from PA was 1% higher than the multiple-step increase, which indicated that

single-step breeding values were slightly more accurate than those by the multiple-step as

implemented here. The best δ was 0.07 lower than the multiple-step δ, which indicated greater

inflation of prediction for young bulls. The highest single-step R2 and δ (least inflation) were

for G based on equal allele frequencies with extra benefits from modifications by Gianola

et al. (2009). For simplification, subsequent comparisons used the equal allele frequency G

but without the modifications.

R2 obtained using G matrix with equal allele frequency was greater compared with a G

matrix created using base allele frequency. This was in the opposite direction compared with

a similar study (VanRaden et al., 2008). In addition, the latter study reported correlations

of 0.6 between genomic and pedigree based inbreeding coefficients, whereas a correlation of

0.2 using base allele frequencies was found in the current study. Further analyses need to be

done to address such differences.

Results for EBV09 (Table 3.1) generally were similar to those for DD but with a slight

advantage for the multiple-step approach. The δ indicated much greater inflation than for

DD. Inflation on the EBV09 scale is important for producers because their comparisons are

based on EBV and not on DD. It is debatable whether the results with EBV09 are valid

in this case, because they contain information from PA. On the other hand, DD computed

using approximated reliabilities may contain an extra noise.

Parent average was, in general, similar for runs with and without G. Thus, inflation

higher than that in PA could be caused by too much indirect weight on genomic relationships.

Inflation could be lowered by weighting G−1−A−1
22 by λ (see Appendix B). Table 3.2 shows

R2 and δ for DD and EBV09 with such a weighting. As λ decreased from 1.0 to 0.5, R2
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gradually decreased for DD but had an interim maximum for EBV09. At λ = 0.7, EBV09

R2 increased to 51%, which was 1% better than for the multiple-step approach (Table 3.1);

δ also was higher than for the multiple-step approach by 0.01. The δ can be increased to

0.92 with only a slight decrease in R2. Because the primary interest of breeders is to identify

animals with the highest genetic merit, a moderate reduction in bias (i.e., higher δ) would

be preferred to a small increase in overall accuracy (R2).

Accuracy of the single-step approach was dependent on the choice of G and the weighting

placed on the difference between G and A. With the proper choice, accuracy of the single-

step approach was superior to the multiple-step approach. One reason why the choice of G

is critical is that genomic and pedigree relationship matrices should be compatible both in

scale and in structure. The importance of structure can be seen from the decomposition of

the genomic breeding value in Appendix B. The weight of PA relative to genomic information

depends on λ and even more on diagonals of G−1 and A−1
22 . In general, the diagonal of G−1

depends on the genomic relationships and measures the amount of information provided to

individual i by other animals.

The primary influence of the weighting factor (λ) appears to be related to the proportion

of the additive variance explained by the genomic information (Appendix B). Snelling et al.

(2009) found that different numbers of SNP genotypes used for the construction of G resulted

in different decomposition of the additive variance between the genomic and polygenic effects.

Genomic information from the best genotyped bulls would add relationship information for

a number of animals and most likely result in higher additive variance. The Canadian official

genomic evaluation system for Holsteins (Van Doormaal et al., 2009) assumes that only

80% of the additive variance is explained by the SNP information. Other factors behind

the weighting factor may be related to final score as a trait in US Holsteins. For example,

heritability based on records of grade animals is lower than with records on registered animals

(Koduru, 2006). Other issues are preferential treatment of bull dams and the nature of

final score, for which the definition changes over time (Tsuruta et al., 2005). Future studies



33

with more traits and species will clarify the influence of the weighting factor as well as

alternative weighting factors. While our decomposition between the genomic and polygenic

effects involved inverses of the respective matrices, it can also be done on the direct scale,

by assuming that only part of the genetic variance is explained by the genomic information

(Christensen and Lund, 2009).

What G should be is still undetermined. As implemented for this study, G was con-

structed so that linear effects were assumed for SNP genotypes while also collecting informa-

tion about realized relationships (VanRaden, 2008). Other alternatives exist. For example,

matrix K in Gonzalez-Recio et al. (2008) included a similarity index across genotypes. Prob-

abilities for identity by descent can also be used and averaged across loci (Villanueva et al.,

2005).

Use of regression coefficients to measure bias was described by Reverter et al. (1994)

and forms the basis of Method < estimation of variance components. However, the use of

δ to calibrate GP might be problematic. First, it relies on the same set of equations being

used for old and recent evaluations, which was not true for this study; the “old” evaluation

(PedGen104) used H, whereas the “recent” evaluation (Ped09) used A. Second, as seen by

experience from Method <, the estimated regression coefficient has large error and might be

biased, especially by selection (Schenkel and Schaeffer, 2000; Cantet et al., 2000). On the

other hand, little bias and very efficient computations were reported by Druet et al. (2001),

who traced the bias to the use of fixed effects estimated from subsets of the data.

For this study, G was constructed with equal variances assumed for SNP marker effects.

When variances are not equal, e.g., as in Bayes-A or Bayes-B (Meuwissen et al., 2001), an

equivalent G can be constructed by scaling contributions from different markers. Such con-

struction requires precomputing those variances based on genotyped individuals and pseudo-

data.

The generalization of the single-step approach to multiple traits is obvious when G is

identical for each trait. However, separate G matrices for each trait may require single-trait
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analyses. For several traits, the benefits and simplicity of multiple-trait analysis using the

same G may overcome the loss of accuracy from using less than the optimal G for each trait.

The single-step approach to evaluation as described in this study is easy to implement

just by modifying the relationship matrix for current evaluations. Aside from simplification of

genomic evaluation, the procedure is expected to improve evaluations for all ungenotyped ani-

mals. Updated PA and PTA for descendant of genotyped animals are possible using multiple-

step methods with additional calculations (see http://aipl.arsusda.gov/reference/changes/

eval0901.html). Advantages of single-step evaluations should increase in the future when

animals have been pre-selected on genotypes. Traditional evaluations expect that Mendelian

sampling averages 0, but in the future only animals with positive Mendelian sampling may

receive phenotypes.

To demostrate the utility of genomic evaluation, it is necessary to validate them, particu-

lary for young animals. In contrast, in BLUP based on pedigree information, such a validation

is rarely performed and is implicitly replaced by variance component estimation, although

some validation is performed indirectly for analyses used by Interbull MACE evaluations

(Interbull, 2001). With some assumptions, it is possible that the parameters of a single-step

procedure are regular variance components plus weighting factors, either such as proposed

in this study or different. In such a case, the validation steps can be replaced by parameter

estimation, greatly simplifying the use of the genomic information. Ways to estimate values

of weighting factors by REML, MCMC, or other methods remain to be investigated.

Conclusions

Full genomic and pedigree evaluations by the single-step approach were as good as the

multiple-step approach in terms of accuracy and bias. Generalization for complex data

structures or more complicated models are straight forward. Additional computational cost

was small relative to pedigree evaluation. The highest accuracy was obtained with a scaled

genomic relationship matrix created under the assumption of equal allele frequencies. The
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main advantages of the single-step approach are its simplicity and automatic weights for the

various sources of information for the overall breeding value. Moreover, advantages of single-

step evaluations should increase in the future when animals are pre-selected on genotypes.
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Table 3.1: Coefficients of determination (R2) and coefficients (δ) for
regression of 2009 daughter deviations (DD) or corresponding estimated
breeding values (EBV09) for bulls progeny tested from 2005 through 2009
on 2004 predictions obtained by different algorithms.

DD EBV09

Prediction method R2,% δ R2,% δ

Parent average 24 0.76 36 0.79

Multiple-step 40 0.86 50 0.82

Single-stepa

G5 41 0.76 49 0.7

GB 38 0.68 45 0.63

GC 37 0.71 45 0.66

GG – G5 41 0.79 50 0.73

GG – GB 38 0.77 46 0.71

GG – GC 39 0.79 46 0.73

a Assumed allele frequency of 0.5 (G5), base population (GB), current
population (GC), or calculated as in [30] of Gianola et al. (2009) (GG).
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Table 3.2: Coefficients of determination (R2) and coefficients
(δ) for regression of 2009 daughter deviations (DD) or cor-
responding breeding values (EBV09) for bulls progeny tested
from 2005 through 2009 on 2004 predictions from a single-step
approach using an allele frequency of 0.5 and different relative
variances for the genomic matrix (λ).

DD EBV09

λ R2,% δ R2,% δ

1.0 41 0.76 49 0.70

0.9 41 0.81 50 0.76

0.8 41 0.84 51 0.79

0.7 40 0.88 51 0.83

0.6 40 0.90 50 0.85

0.5 39 0.92 50 0.88

0.3 35 0.91 47 0.89



Chapter 4

Efficient computations of genomic relationship matrix and other matrices

used in the single-step evaluation1

1I. Aguilar, I. Misztal, A. Legarra, and S. Tsuruta. To be submitted to Journal of Animal Breeding
and Genetics.
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Abstract

Genomic evaluations could be calculated using a unified procedure that combines phenotypic,

pedigree and genomic information. Implementation of such a procedure requires the inverse

of the relationship matrix based on pedigree and genomic relationships. The objective of this

study was to investigate efficient computing options to create relationship matrices based on

genomic markers and pedigree information as well as their inverses. A matrix of incidence

of SNP maker information was simulated for a panel of 40K SNPs. Number of genotyped

animals varied from 1,000 to 30,000. Kernel of the computation for the genomic relationship

matrix requires a matrix multiplication of the incidence matrix. Methods included a simple

“do” loop, two optimized versions of the loop and specific matrix multiplication subroutine

(DGEMM). Inversion methods were by a generalized inverse algorithm and by LAPACK

subroutines. Useful matrices to implement a unified approach can be computed efficiently.

Optimizations can be either by modifications of existing code or by the use of efficient

automatic optimizations provided by open source or third-party libraries.

(Key words : relationship matrix, genomic selection, computing methods)

Introduction

Genomic evaluations in dairy cattle are currently performed using multiple step procedures

(Hayes et al., 2009; VanRaden et al., 2009). A typical evaluation requires 1) traditional

evaluation with an animal model, 2) extraction of pseudo-observations such as deregressed

evaluations or daughter deviations (DD), 3) estimation of genomic effects for genotyped

animals usually using simple sire models, and possibly 4) combining the genomic index

with traditional parent averages (PA) and breeding values (Hayes et al., 2009; VanRaden

et al., 2009). Genomic effects also can be estimated with a simple model that includes a

genomic relationship matrix derived from genotypes and variances of the SNP marker effects

(Nejati-Javaremi et al., 1997; VanRaden, 2007). Recently, Misztal et al. (2009) proposed
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a single-step evaluation in which the pedigree-based relationship matrix is augmented by

contributions from the genomic relationship matrix. Legarra et al. (2009) derived a joint

relationship matrix based on pedigree and genomic relationships; and Aguilar et al. (2010)

described the inverse for such a matrix. A similar matrix and its inverse were independently

derived by Christensen and Lund (2010). VanRaden (2008) discussed methods to create

genomic relationship matrices. The kernel of such methods involves multiplication of the

matrix of marker incidences (with dimension number of genotyped animals by number of SNP

marker) by its transpose. Matrix operations, are implemented efficiently in many packages;

most of them use linear algebra kernels called Basic Linear Algebra Subroutines (BLAS;

http://www.netlib.org/blas) (Dongarra et al., 1988, 1990). An optimized version of BLAS

subroutines was developed by Whaley and Dongarra (1998) and an open source of these

libraries is available at Automatically Tuned Linear Algebra Software (ATLAS http://math-

atlas.sourceforge.net). These libraries account for features of a specific processor (memory

speed and cache size).

Modifications of current software for genetic evaluations and variance component estima-

tions to implement the unified approach for genomic evaluation (Aguilar et al., 2010) require

inverses of the genomic relationship matrix and the regular relationship matrix for genotyped

animals. The objectives of this research were to present efficient computing options to create

these relationship matrices and their inverses.

Materials and Methods

The inverse of the relationship matrix based on both pedigree and genomic information

(Aguilar et al., 2010) is:

H−1 = A−1 +

 0 0

0 G−1 − A−1
22


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where A−1 is the inverse of the numerator relationship matrix, G−1 is the inverse of the

genomic relationship matrix and A−1
22 is the inverse of the relationship matrix based on pedi-

gree information corresponding to the genotyped animals. Modifications of current software

for genetic evaluation (Tsuruta et al., 2001; Misztal et al., 2002) to use H−1 require the

inclusion of G−1 and A−1
22 .

The genomic relationship matrix (G) was created by simulation. A matrix of incidences

of SNP maker information (Z) was simulated for a panel of 40K SNPs, with values corre-

sponding to gene content of the second allele (0, 1 and 2). Number of genotyped animals

varied from 1,000 to 30,000. Pedigree-based relationship matrix (A22) was constructed using

a pedigree dataset of 9,100,106 US Holsteins provided by Holstein USA Inc. (Brattleboro,

VT).

Following VanRaden (2008) the genomic relationships (G) were created as

G =
ZZ′

k
,

where Z is an incidence matrix for SNP effects with elements

zij =


0− 2pj if homozygous 11

1− 2pj if heterozygous 12 or 21,

2− 2pj if homozygous 22

for animal i and SNP j with allele frequency pj = 0.5 for all SNP markers. The scaling

parameter k was defined as

k = 2
∑

pj(1− pj)

Memory hierarchy

Memory hierarchy can be partitioned into two types: main and cache. While the cache

memory has a capacity of 256 Kbyte to 16 Mbyte, the main memory can support 128

Gbytes. One processor has fast access to the cache memory but much slower access to the

main memory. Accessing large amount of memory, where block of memory are not contiguous
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and exceeding the capacity of the cache memory, will increase the computing time due to

slow access to the main memory.

Methods

Computations of ZZ′/k were performed in Fortran 95 by several methods (Figure 4.1). The

first method (ORIG) was a simple three“do” loops, centering the matrix Z through indirect

memory access, and performing the scaling by k after each element of Gij was computed. The

second method (OPTM) was a modification to optimize the indirect memory access. The

matrix Z was centered once at the beginning of the process, outside of the main loop. In the

third method (OPTML), loops were reorganized and the scaling operation was performed

outside of the main loop. Having separate operations for matrix multiplication and scaling

allows using general subroutines to compute ZZ′. Also, matrix multiplications of the form

ZZ′ were computed by the original BLAS subroutine DGEMM, and by their optimized

versions as in ATLAS or in the Intel Math Kernel Library (MKL)

Two methods were used to create the pedigree relationship matrix for genotyped animals

(A22). The first method was the tabular method and the second was based formulas presented

in Misztal et al. (2009), which use the algorithm of Colleau (2002).

Matrix inversion was performed by a converted Fortran 95 code of a generalized inverse

algorithm from the BLUPF90 package (Misztal et al., 2002) and by the LU factorization

using the DGETRF/DGETRI subroutines from LAPACK (Anderson et al., 1990). Such

subroutines are available either in ATLAS or in MKL libraries.

Computations

All programs were run on an Opteron 64-bit processor with a clock speed of 3.02 GHz and a

cache size of 1 Mbyte. Some programs were also run on a Xeon 64-bit processor with a clock

speed of 3.5 GHz and a cache size of 6 Mbyte. Initial software for the construction of G and

for the tabular method was provided by P. M. VanRaden (Animal Improvement Programs
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Laboratory, ARS, USDA, Beltsville, MD). Programs were written in Fortran 95 and compiled

by Intel Fortran Compiler with option -O3. Automatic uses of parallelization using OpenMP

(http://www.openmp.org) were obtained using MKL libraries with appropriate flag option

during compilation.

Results and discussion

Timing using the alternative loop codes are presented in Table 4.1. The original method was

10 times slower on the Opteron system because of lower cache memory and different memory

system. Large improvement was achieved with the OPTM on the Opteron but not on the

Xeon system. An alternative explanation is that the Intel compiler was efficient in optimizing

codes on Xeon but not on Opteron systems. Almost 4 times speedup was obtained on both

computers with the code optimized for memory and loop rearrangement.

Different algorithms to perform the matrix multiplication were tested with the Opteron

system. Figure 4.2 shows the computing time for the modified code for memory access

and loop ordering, the BLAS subroutine for matrix multiplication (DGEMM), and its opti-

mized version as in ATLAS libraries. Performance of the original DGEMM deteriorated with

increase of the number of individuals. The optimized ATLAS-DGEMM subroutine was the

fastest. The performance of the optimized code for memory and loops ordering shows a trend

similar to ATLAS-DGEMM, but is slightly slower .

Multiplication of large matrices requires optimization to fully utilize the cache memory.

This operation requires fine tuning for specific system architectures. Simple modifications

to optimize indirect memory access were successful in reducing the run time. Also, a simple

rearrangement of the codes, splitting task and avoiding the use of static variables within the

loops allows the compiler to do an automatic optimization (e.g. vectorization of “do” loops

operations). Speed-ups were from 4 to 15 times, depending on the processor. However, code

generation obtained by ATLAS-DGEMM run faster with no additional programming.
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The use of parallel processing is now simplified by hardware, as many computer chips

contain two to eight processors, and by specific software tools for parallelization. Optimized

implementation of DGEMM in MKL allows parallel processing. Figure 4.3 shows the results

of the optimized implementation of DGEMM in the MKL using up to 4 processors. The

speedup with 3 processors and 5000 genotyped animals was 2.93, which was close to an

ideal one. Matrix multiplication can be parallelized by the open source optimized DGEMM

subroutine (i.e. ATLAS) combined with OpenMP directives (Bentz and Kendall, 2005).

Actual time to create the genomic relationship matrix for 50K SNPs and 30,000 animals

with DGEMM as implemented in MKL and using 3 processors was 79 min. The operation

required 30 Gbytes of memory.

Creating the relationship matrix based on pedigree information for 6,500 genotyped ani-

mals using the tabular method required 311 s and 12.1 Gbyte of memory. The same compu-

tation with the Colleau method (2002) required 45 s and 322 Mbytes. The tabular method

requires storage for a dense matrix for all genotyped animals and their ancestors (approxi-

mately 57,000 individuals for 6,500 genotyped animals) while the Colleau method needs only

a few vectors with dimension equal to the number of genotyped animals. Memory require-

ments for the tabular method can be reduced by splitting the pedigree file in several groups,

but at the cost of additional computations (VanRaden, personal communication, 2009).

Computing time of inversion for different number of genotyped animals are in Figure

4.4. For the largest matrix (30,000 animals) the inversion took approximately 13 h with the

generalized inversion method, but only 3.4 h using the optimized version of LAPACK.

Further reduction in computing time could be obtained by parallel processing using

OpenMP directives. Speedups for up to 4 processors are plotted in the Figure 4.5 using

the optimized version of LAPACK as implemented in MKL. With four processors was used

for the inversion of the largest matrix took approximately 1 h.
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Conclusion

We presented methods for efficient construction of matrices required for the implementa-

tion of the single-step genomic evaluation. Optimizations were attained by modifications of

existing codes, using efficient automatic optimization provided as open source or by commer-

cial libraries. With all the optimizations building the genomic relationship matrix for 30,000

animals with 40K SNPs each took about 1 h, and similar time was necessary to obtain the

inverse.
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Table 4.1: Computing time (m) for alternatives codes for construction of the G matrixaon
different machines.

Algorithms

Processor Cache Original Memory optimized Memory & loop optimized

Xeon 3.5 GHz 6 Mbyte 24 26 7

Opteron 3.02 GHz 1 Mbyte 265 59 17

a using 6,500 animals and 40K SNP markers.
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Multiple trait genomic evaluation of conception rate in Holsteins1
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Abstract

This study evaluated the feasibility and accuracy of multiple trait evaluation for concep-

tion rate (CR) defined as outcomes of all available inseminations in US Holsteins using all

available phenotypic, pedigree and genomic information.

Genetic parameters of CR in the first three parities were estimated with data from New

York State. Heritability estimates were around 2% and genetic correlations > 0.73. Genetic

evaluations used the national data set and a multiple trait model. The evaluations were

performed by regular BLUP or by a single-step approach (SSP), which utilized the genomic

information. R2 obtained with the single-step approach were almost the double of those

achieved with BLUP. Computing the single-step approach took 33% more time than with

BLUP. A multiple trait evaluation of conception rate using the genomic information is pos-

sible and advantageous.

(Key words : BLUP, genomic selection, fertility, genetic evaluation)

Introduction

Worldwide declines of fertility in Holsteins creates a need for accurate evaluation of fertility

traits. Fertility in dairy cattle can be evaluated based on a number of traits (Jamrozik et al.,

2005; Gonzalez-Recio et al., 2005). Typical fertility traits such as Non-Return Rate and

Days Open have their advantages and disadvantages (Huang et al., 2007). A desirable trait

is conception rate (CR) which is defined as an outcome of individual services (Averill et al.,

2004; Huang et al., 2007). Treating each service separately allows for adjusting specific effects

that influence each service.

Because of low heritability of CR (Tsuruta et al., 2009; Gonzalez-Recio et al., 2006, 2005),

accuracies of bull estimated breeding values (EBV) for CR are usually low. Such accuracy

can be improved using all available services in each parity. Furthermore, it can be boosted by

utilizing the genomic information (Veerkamp and Beerda, 2007). Even though records from
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later parities come too late for young bulls, that information is useful for better prediction

in the genomic analysis.

The simplest but most efficient way to utilize the genomic information is a single-step

approach (Aguilar et al., 2010). In this approach, genomic information is used to improve

relationship information and no changes to the model are required. The goals of this study

were to estimate genetic parameters of CR in the first three parities, run a national evaluation

with and without the genomic information, and estimate gains of accuracy from the genomic

information.

Material and methods

Data

Holstein service records for the first three parities were obtained from the Animal Improve-

ment Programs Laboratory, ARS, USDA (Beltsville, MD). Records from calvings registered

between 2003 and 2009 were used. Information prior to 2002 was scarce. Data editing fol-

lowed criteria presented by Kuhn et al. (2008). Only AI services were used and DIM at

inseminations were required to be between 30 and 365 d. Success of insemination was deter-

mined through all reproductive events (heat detection, natural service, AI and pregnancy

diagnostic), as well as the presence of the next calving. Service sires were restricted to Hol-

steins. Variance components were estimated using records from New York State. All available

insemination records were used in the national genetic evaluation. A summary of both data

sets is in Table 5.1.

Model

Conception rates in the first three parities were considered as correlated traits. Parameter

estimation and prediction of EBVs were obtained using a multiple-trait linear model. In

some analysis single trait linear models were used for the first parity service records. Fixed

effects in the model included contemporary group defined by herd-year of calving, month of
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service, age at calving, and days to service after calving. Random effects were service sire (s),

additive genetic (a), permanent environmental (p) and residual (e) effects. The (co)variance

structure was :

var



a

p

s

e


=



G⊗A 0 0 0

0 P⊗ I 0 0

0 0 S⊗ I 0

0 0 0 R⊗ I


where A is the numerator relationship matrix; G, P and S are 3 x 3 (co)variance matrices

for additive genetic, permanent and service sire respectively; I are identity matrices and R

is a 3 x 3 diagonal matrix of residual variances.

Variance components

Parameters were estimated the GIBBS2F90 program (Misztal et al., 2002) via a Bayesian

approach using Gibbs sampling. Genomic data was not included for variance component

estimation. Of a total of 100,000 samples, the first 10,000 were discarded as a burn-in, and

every 10th sample was retained to calculate posterior means and standard deviations.

Genetic evaluation

Genetic evaluations were computed using a modified BLUP90IOD (Tsuruta et al., 2001;

Aguilar et al., 2010). Approximate accuracies were calculated using ACCF90 (Misztal et al.,

2002). Deregressed evaluations (DD) were obtained from EBVs and approximate accuracies

(VanRaden et al., 2009). A subset of records up to 2005 was used to assess the accuracy of

prediction of breeding values. Two sets of EBV were obtained. The first set used a genetic

evaluation with the regular numerator relationship matrix (PA). The second set used a

modified relationship matrix that accounts for genomic relationships and predicts EBVs

with a single-step approach (SSP) (Misztal et al., 2009). In SSP the numerator relationship
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matrix (A) was replaced by the H matrix with the following inverse (Aguilar et al., 2010;

Christensen and Lund, 2010):

H−1 = A−1 +

 0 0

0 G−1 − A−1
22


where H is a modified relationship matrix incorporating genomic information as described

by Legarra et al. (2009), G is a genomic relationship matrix (VanRaden, 2008) and A22 is

the pedigree-based relationship matrix for genotyped animals.

The genomic relationship matrix (G) were created as:

G =
ZZ′

k
,

where Z is an incidence matrix for SNP effects with elements

zij =


0− 2pj if homozygous 11

1− 2pj if heterozygous 12 or 21,

2− 2pj if homozygous 22

for animal i and SNP j with allele frequency pj = 0.5 for all SNPs markers. The scaling

parameter k was defined as

k = 2
∑

pj(1− pj)

Predictions from the two methods were compared by the regressions:

DD = µ+ δEBV05 + e

where DD were deregressed evaluations from 154 genotyped bulls without daughter

records in 2005 but with daughter records in 2009 that were computed with complete data but

without genomic information; µ is a mean; δ is a regression coefficient; EBV05 are breeding

values based on insemination records up to 2005; and e is residual error. EBV05 were either

PA (PA05) or based on SSP (SSP − EBV05).
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Results and discussion

Table 5.2 contains estimates of genetic parameters in the first three parities. Heritability

estimates for each parity were close to 2%, and genetic correlations among parities were high

(0.7-0.9).

Results of the genetic evaluations for bulls with no daughters in 2005 and at least 50

daughters in 2009 are presented in Table 5.3. The R2 obtained with PA in 2005 were low,

probably because only 3 years of data were available and the heritability of CR is low.

Few service records were available prior to 2003. Luan et al. (2009) assessed the accuracy

of genomic selection in Norwegian Red Cattle and observed a strong relationship between

accuracy and heritability of the trait; traits with low heritability had EBV with lower accu-

racy and greater bias. The R2 obtained with EBV in 2005 and the genomic information were

higher than the regular EBV based on pedigree relationship. Thus, the genomic information

doubled R2. Coefficients of regression (δ) were lower in PA compared with SSP, indicating

little bias in predictions with genomic predictions.

To investigate increases in accuracy due to the use of three parities, the analyses were

repeated for first parity service records only. Results for CR in first parity comparing SSP

and PA using single trait or multiple trait models are in Table 5.4. Use of first parity records

only result in lower R2 and δ. Adding a genomic-based relationship matrix or using multiple

parity with pedigree-based relationship, increased the accuracy of estimated breeding values

for CR in the first parity by 3 times. Moreover, an additional increment in accuracy was

obtained using all available information (genomic markers and multiple parities). A simple

repeatability model with service records from several parities could also be applied. This

topic remains to be addressed in further studies.

Eight years of data from 2003 to 2009 were sufficient to generate accurate predictions

for many bulls but was insufficient to test the accuracy via the methodology used in other

studies (VanRaden et al., 2009). A better assessment would be based on accuracies of EBV,

however, such method with the SSP and genomic information requires further research. One
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source of information about the increased accuracy using genomic information is obtained

by analyzing the diagonals of the inverse of the pedigree-based (A) and genomic based (G)

relationship matrix. While diagonal elements of A−1 for bulls are close to 2 + n/2, where n

is the number of daughters, the corresponding elements of G−1 are 2 + x/2 where x > n. In

that case, x−n may be regarded as the additional number of daughters equivalent from the

genomic information.

Initial computing with BLUP took 1.5 hrs. Computing with the added genomic infor-

mation via SSP increased the time to 2 hrs. Computing with multiple-trait models and the

genomic information is therefore realistic.

Conclusion

Multiple trait genetic evaluation for conception rate using outcomes of all available insemi-

nations is technically possible. Large improvement in accuracy is possible using the genomic

information and computation with the single-step approach is straightforward. More accu-

rate assessment of such an improvement would require either records over a longer period of

time or a different methodology for comparisons.

Acknowledgments

This study was partially funded by the Holstein Association USA Inc. and by AFRI grants

2009-65205-05665 and 2010-65205-20366 from the USDA NIFA Animal Genome Program.

The authors thank G. R. Wiggans from AIPL for providing phenotypic and pedigree data

and the Cooperative Dairy DNA Repository (Beltsville, MD) for providing genotypic data.

References

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., and Lawlor, T. J. (2010).

Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information

for genetic evaluation of Holstein final score. J. Dairy Sci., 93(2):743–752.



64

Averill, T. A., Rekaya, R., and Weigel, K. (2004). Genetic analysis of male and female

fertility using longitudinal binary data. J. Dairy Sci., 87(11):3947–3952.

Christensen, O. and Lund, M. (2010). Genomic prediction when some animals are not

genotyped. Genet. Sel. Evol., 42(1):2.

Gonzalez-Recio, O., Alenda, R., Chang, Y. M., Weigel, K. A., and Gianola, D. (2006). Selec-

tion for female fertility using censored fertility traits and investigation of the relationship

with milk production. J. Dairy Sci., 89(11):4438–4444.

Gonzalez-Recio, O., Chang, Y. M., Gianola, D., and Weigel, K. A. (2005). Number of

inseminations to conception in Holstein cows using censored records and time-dependent

covariates. J. Dairy Sci., 88(10):3655–3662.

Huang, C., Misztal, I., Tsuruta, S., and Lawlor, T. J. (2007). Methodology of evaluation for

female fertility. Interbull Bull., 37:156–160.

Jamrozik, J., Fatehi, J., Kistemaker, G. J., and Schaeffer, L. R. (2005). Estimates of genetic

parameters for Canadian Holstein female reproduction traits. J. Dairy Sci., 88(6):2199–

2208.

Kuhn, M. T., Hutchison, J. L., and Norman, H. D. (2008). Modeling nuisance variables for

prediction of service sire fertility. J. Dairy Sci., 91(7):2823–2835.

Legarra, A., Aguilar, I., and Misztal, I. (2009). A relationship matrix including full pedigree

and genomic information. J. Dairy Sci., 92(9):4656–4663.

Luan, T., Woolliams, J. A., Lien, S., Kent, M., Svendsen, M., and Meuwissen, T. H. E. (2009).

The accuracy of genomic selection in Norwegian Red cattle assessed by cross-validation.

Genetics, 183(3):1119–1126.



65

Misztal, I., Legarra, A., and Aguilar, I. (2009). Computing procedures for genetic evaluation

including phenotypic, full pedigree, and genomic information. J. Dairy Sci., 92(9):4648–

4655.

Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., and Lee, D. (2002). BLUPF90

and related programs (BGF90). In 7th World Congress on Genetics Applied to Livestock

Production, Montpellier, France.

Tsuruta, S., Misztal, I., Huang, C., and Lawlor, T. J. (2009). Bivariate analysis of conception

rates and test-day milk yields in Holsteins using a threshold-linear model with random

regressions. J. Dairy Sci., 92(6):2922–2930.

Tsuruta, S., Misztal, I., and Stranden, I. (2001). Use of the preconditioned conjugate gradient

algorithm as a generic solver for mixed-model equations in animal breeding applications.

J. Anim Sci., 79(5):1166–1172.

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci.,

91(11):4414–4423.

VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D.,

Taylor, J. F., and Schenkel, F. S. (2009). Invited review: Reliability of genomic predictions

for North American Holstein bulls. J. Dairy Sci., 92(1):16–24.

Veerkamp, R. F. and Beerda, B. (2007). Genetics and genomics to improve fertility in high

producing dairy cows. Theriogenology, 68:S266–S273.



66

Table 5.1: Descriptive summary of national and New York data by parity.

National New York State

1a 2 3 1 2 3

Insemination records 3,025,115 2,033,086 945,870 165,159 116,494 55,038

Herd-Year 14,581 14,322 12,203 862 855 745

Cows 1,186,451 790,354 380,776 67,083 46,248 22,634

Conception Rate (%) 33.0 31.0 30.7 35.4 32.8 33.2

Pedigree Animals 2,489,119 132,623

a Number of parity.
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Table 5.2: Estimates of posterior mean and standard
deviations for genetic parameters for conception rate in
the first three paritiesa .

CR 1b CR 2 CR 3

CR 1 0.018 ± 0.002 0.877 ± 0.045 0.732 ±0.047

CR 2 0.288 ± 0.083 0.022 ± 0.002 0.808 ±0.103

CR 3 0.162 ± 0.084 0.326 ± 0.07 0.016 ±0.005

a Heritability estimates ± SD on the diagonal, genetic
and permanent correlations above and below the
diagonal, respectively.

b CR 1, CR 2 and CR 3, conception rate in first, second
and third parity respectively.
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Table 5.3: Coefficients of determination (R2) and coefficients
of regression (δ) of daughter deviation on estimated breeding
values using single-step approach (SSP − EBV05) or parent
average (PA05).

SSP − EBV05 PA05

Traits R2 δ R2 δ

CR 1a 0.15 0.84 0.07 0.72

CR 2 0.13 0.81 0.06 0.66

CR 3 0.10 0.96 0.05 0.82

a CR 1, CR 2 and CR 3, conception rate in first, second and
third parity respectively.



69

Table 5.4: Coefficients of determination (R2) and coefficients
of regression (δ) of daughter deviation on estimated breeding
values using single-step approach (SSP − EBV05) or parent
average (PA05) for first parity conception rate using single trait
or multiple trait analysis.

SSP − EBV05 PA05

Model R2 δ R2 δ

Single Trait 0.07 0.86 0.02 0.57

Multiple Trait 0.15 0.84 0.07 0.72



Chapter 6

Conclusions

Genomic evaluation by the single-step approach is as accurate as the multiple-step approach.

Generalization for complex data structures or more complicated models is straightforward.

Additional computational costs are small relatively to a regular BLUP evaluation. The

highest accuracy was obtained with a scaled genomic relationship matrix created under

the assumption of equal allele frequencies. Main advantages of the single-step approach are

simplicity and automatic weights for the various sources of information. Advantages of single-

step evaluations should increase in the future when animals are pre-selected on genotypes.

Efficient methods to create the matrices used in the single-step genetic evaluations are

presented. Optimizations were performed by modifications of the existing code, by automatic

optimization in open source software or using commercial libraries. With all the optimiza-

tions, the construction of the genomic relationship matrix for 30,000 animals with 40K SNPs

took about 1 h, and similar time was necessary to obtain the inverse.

Multiple-trait genetic evaluation for conception rate using outcomes of all available insem-

inations is technically possible. Large improvement in accuracy is possible using genomic

information and computation with the single-step approach is straightforward. More accu-

rate assessment of such an improvement would require either records over a longer period of

time or a different methodology for assessment of accuracy.
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Appendix A

Computing procedures for genetic evaluation including phenotypic, full

pedigree and genomic information1

1I. Misztal, A. Legarra, and I. Aguilar. Online Journal of Dairy Science. 92 (9) : 4648–4655.
Reprinted here with permission of publisher.
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  Computing procedures for genetic evaluation including 
phenotypic, full pedigree, and genomic information 
  I.   misztal ,*1  a.   Legarra ,† and  I.   aguilar *‡
   * Department of animal and Dairy Science, University of georgia, athens 30602 
   † institut National de la recherche agronomique (iNra), Ur631 Saga, BP 52627, 32326 Castanet-tolosan, France 
   ‡ instituto Nacional de investigación agropecuaria, las Brujas 90200, Uruguay  

  aBStraCt 
  Currently, genomic evaluations use multiple-step 

procedures, which are prone to biases and errors. A 
single-step procedure may be applicable when genomic 
predictions can be obtained by modifying the numera-
tor relationship matrix A to H = A + AΔ, where 
AΔ includes deviations from expected relationships. 
However, the traditional mixed model equations require 
H−1, which is usually difficult to obtain for large pedi-
grees. The computations with H are feasible when the 
mixed model equations are expressed in an alternate 
form that also applies for singular H and when those 
equations are solved by the conjugate gradient tech-
niques. Then the only computations involving H are 
in the form of Aq or AΔq, where q is a vector. The 
alternative equations have a nonsymmetric left-hand 
side. Computing AΔq is inexpensive when the number 
of nonzeros in AΔ is small, and the product Aq can 
be calculated efficiently in linear time using an indi-
rect algorithm. Generalizations to more complicated 
models are proposed. The data included 10.2 million 
final scores on 6.2 million Holsteins and were analyzed 
by a repeatability model. Comparisons involved the 
regular and the alternative equations. The model for 
the second case included simulated AΔ. Solutions were 
obtained by the preconditioned conjugate gradient al-
gorithm, which works only with symmetric matrices, 
and by the bi-conjugate gradient stabilized algorithm, 
which also works with nonsymmetric matrices. The 
convergence rate associated with the nonsymmetric 
solvers was slightly better than that with the symmetric 
solver for the original equations, although the time per 
round was twice as much for the nonsymmetric solvers. 
The convergence rate associated with the alternative 
equations ranged from 2 times lower without AΔ to 
3 times lower for the largest simulated AΔ. When the 
information attributable to genomics can be expressed 
as modifications to the numerator relationship matrix, 

the proposed methodology may allow the upgrading 
of an existing evaluation to incorporate the genomic 
information. 
  Key words:    best linear unbiased predictor ,  genomic 
selection ,  single nucleotide polymorphism ,  genetic 
evaluation 

  IntrODuCtIOn 

  Availability of dense molecular markers of type SNP 
led to the recent introduction of the genome-wide or 
genomic selection evaluation models. Those models are 
most often based on the simultaneous estimation of 
SNP marker effects a. Differences among methods are 
mostly on the a priori distribution of marker effects a
(Meuwissen et al., 2001; Gianola et al., 2006). Efficient 
procedures exist for the computation of a, even for large 
data sets (Legarra and Misztal, 2008). 

  The genomic evaluation is currently implemented as 
a multistep procedure. For example, an implementa-
tion for US dairy cattle (VanRaden, 2008; VanRaden 
et al., 2009) requires 3 steps: a) regular evaluation by 
the animal model, b) estimation of genomic effects for 
a relatively small number of genotyped animals, and c) 
estimation of genomic breeding values by a selection 
index. The elements in the index include a parent aver-
age or PTA from step a), genomic solutions from step 
b), and a parent average or PTA computed based on 
genotyped ancestors. Weights in the index are functions 
of heritability and accuracy. The marker-assisted selec-
tion program in France simultaneously fits QTL and 
polygenic effects, with weights depending on associated 
variance components (Guillaume et al., 2008). 

  Advantages of the multistage procedure include no 
change to the regular evaluations and simple steps for 
predicting genomic values for young genotyped ani-
mals. Disadvantages are requirements for parameters 
in steps b) and c) such as prior variances and weights, 
and loss of accuracy and biases attributable to selec-
tion. Whereas the model in a) uses the information 
on all animals and can be multitrait, the model in b) 
is equivalent to a single-trait sire model for a highly 
selected set of sires. Incorrect parameters in b) and 
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c) can result in unexpected changes for high-reliability 
bulls. Neuner et al. (2008) claimed that problems asso-
ciated with the multistep procedure reduce its benefits, 
especially for cows.

VanRaden (2008) investigated 2 options for step b): 
“nonlinear,” based on estimating effects attributable 
to SNP markers with a prior mixture distribution for 
those effects, and “linear,” based on prior normal dis-
tribution for SNP markers. The latter is equivalent to 
using mixed model equations with a genomic relation-
ship matrix. For most dairy traits, predictions based on 
the estimation of marker effects with nonlinear predic-
tions were practically equivalent to linear predictions 
and thus to predictions with BLUP using a genomic 
relationship matrix (Cole et al., 2009; VanRaden et al., 
2009). Therefore, using the genomic relationship matrix 
results in little or no loss of accuracy.

One way to simplify the multistep procedure is by 
incorporating the genomic information into step a), 
resulting in a single-step procedure. This could be ac-
complished by modifying the numerator relationship 
matrix A in that evaluation to include the genomic 
information. Such modifications are presented and dis-
cussed by Legarra et al. (2009) in a companion paper.

Assume that such a modification is known and that 
it involves relatively few elements of A. The mixed 
model equations require A−1, which is very easy to cre-
ate for large populations because of its sparsity and 
its special structure (Henderson, 1976). However, ob-
taining the inverse of the modified matrix is likely to 
be impossible in general for large populations. This is 
not only because the cost of inversion is high, but also 
because A is dense and thus too large to store for large 
pedigrees. Thus, an approach using a modified A is 
of little value unless a feasible computing approach is 
available. The purpose of this study is to develop an ef-
ficient computing strategy to obtain solutions to mixed 
model equations in which the numerator relationship 
matrix is modified by a known matrix accounting for 
the genomic information.

MATERIALS AND METHODS

Assume regular mixed model equations as used in a 
traditional genetic evaluation, for simplicity with only 
a single random effect:

y = Xb + Zu + e,

where y is a vector of records, b is a vector of fixed 
effects, and u is a vector of animal effects. Under a 
polygenic infinitesimal model of inheritance, 
var 2u A( ) = sα , where A is the numerator relationship 

matrix based on pedigree. Furthermore, var 2e I( ) = se , 
and X and Z are appropriate incidence matrices.

Assume that the numerator relationship can be modi-
fied to account for genomic information:

H = A + AΔ,

where AΔ is a matrix that can be stored explicitly, and 
H is the new modified matrix. In the simplest case, a 
genomic relationship matrix G replaces the numera-
tor relationship matrix for the genotyped animals. Let 
indices 1 and 2 refer to ungenotyped and genotyped 
animals, respectively. Then 
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Legarra et al. (2009) proposed several H based on 
the partition of animals into several groups, including 
ungenotyped and genotyped animals. Although their 
different H are more complex than in the simple case, 
most quantities can be computed efficiently without any 
steps involving large matrix multiplications. Therefore, 
for simplicity of presentations, the following computing 
formulas assume the simple case above.

Solving Algorithm

Assume that G and A22 are available. Temporarily 
assume that H is positive definite. The regular mixed 
model equations are
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LHS w = RHS

using the usual notation, where LHS and RHS are the 

left- and right-hand side, and w = b uˆ ˆ .¢ ¢é
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Assume that the system of equations is solved us-
ing an algorithm that does not require the elements of 
LHS explicitly but only its product by a vector, say 
LHS q, as in the preconditioned conjugate gradient 
(PCG) iteration on data (Tsuruta et al., 2001). Then

	 LHS q
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However, H−1 can be computed only for small popu-
lations; furthermore, H might be singular or close to 
singularity. Henderson (1984, 1985) and Harville (1976) 
described an unsymmetric set of mixed model equa-
tions in which only H, not necessarily of full rank, is 
required:
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or

LHSMw = RHSM.

For that set,
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The new formulas do not include H−1 but include 
AΔc2, Ac2, AΔr2, and Ar2. For the simplistic H, the 
first term can be computed directly at a low cost. The 
second term can also be computed inexpensively fol-
lowing the algorithm by Colleau (2002; see Appendix 
A), which uses only the pedigree information and is 
completed in the amount of time proportional to the 
number of animals. The same algorithm also can be 
used to compute Ar2. Selected elements of A can be 
computed recursively, for example, by using the algo-
rithm by Aguilar and Misztal (2008).

More Complicated Models

Assume a multiple trait model, possibly with effects 
such as random regression or maternal. The regular 
mixed model equations for such models can be pre-
sented as
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where parts not listed (…) are due to effects other 
than ˆ.u  By expanding the unsymmetric model by Hen-
derson (1984) to multiple traits, the quantities needed 
for the iterations become
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where quantities c1 and r1 are now associated with all 
effects other than the additive.

Nonsymmetric Solvers

The presented system of equations is nonsymmetric 
and the matrix H may be semipositive definite. The 
PCG algorithm (Barrett et al., 1994) is applicable only 
to symmetric systems of equations. Therefore, it is 
important to find a suitable conjugate-gradient type al-
gorithm and ensure that it would converge even with a 
poorly conditioned H. Barrett et al. (1994) and Van der 
Vorst (2003) reviewed and presented several algorithms 
for solving the linear systems of equations. Based on 
their studies, the standard algorithm for solving sparse 
systems with nonsymmetric LHS is bi-conjugate gradi-
ent stabilized (Bi-CGSTAB; Van der Vorst, 1992; see 
Appendix B). This algorithm requires 2 LHS times a 
vector products per round as opposed to just one with 
PCG. When that product uses the majority of the com-
puting time, Bi-CGSTAB is about twice as expensive 
as PCG per round of iteration.

Choice of Preconditioners

In initial tests (results not reported), Bi-CGSTAB 
converged very quickly with the unsymmetric equations 
for small models, but not for large ones. This was traced 
to large off-diagonal elements of the unsymmetric equa-
tions. The standard way in conjugate-gradient types 
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of algorithms to improve convergence is by choice of a 
preconditioner M, which approximates LHS but is eas-
ily invertible (Van der Vorst, 2003). Then the system of 
equations solved is equivalent to

M−1LHS w = M−1RHS,

which has better numerical properties than the original 
system. The preconditioner is never used explicitly, but 
only in multiplications with a vector.

Assuming a diagonal preconditioner,
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the LHS for regular equations after preconditioning is
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The symmetry can be partially restored with a modi-
fied preconditioner:
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When the genomic information is missing (AΔ = 0), 
the preconditioned left-hand side of the unsymmetric 
system of equations is the same as with the precondi-
tioned regular equations. With the genomic informa-
tion, the off-diagonal elements are likely to be small for 
small AΔ. The cost of the extra preconditioning is low 
because the product D2A

−1q, where q is a vector, can 
be done sequentially as D2(A

−1q).

Data

The data set included 10.5 million final scores on 
6.2 million Holsteins as used for the recent genetic 
evaluation by the Holstein Association. Analyses were 

by a repeatability animal model. Two sets of mixed 
model equations were considered: regular and unsym-
metric. For the second set, the genomic information 
was simulated for 5,000 randomly chosen animals as 
random numbers from the uniform distribution from 0 
to b, where b was set to 0.0, 0.01, 0.03, and 0.05. For b 
= 0 there was no adjustment (AΔ = 0). Only positive 
adjustments were included to avoid some elements of 
H being negative. Solving algorithms were PCG (for 
the regular equations only) and Bi-CGSTAB. The first 
algorithm used a diagonal preconditioner. The second 
algorithm used the modified preconditioner because no 
convergence was achieved with the diagonal precondi-
tioner. In all cases, the stopping criterion was set at 
10−12. Computing was by the regular and modified 
program BLUP90IOD (Tsuruta et al., 2001) and was 
carried out on an Opteron system running at 3 GHz.

RESULTS AND DISCUSSION

The purpose of testing with the simulated genomic 
changes was to evaluate the computing feasibility of the 
method, and especially the robustness of the computing 
methodology. The results presented for the unsymmet-
ric equations are only with the modified preconditioner. 
The Bi-CGSTAB diverged with the regular precondi-
tioner and large data sets although it converged with 
small data sets. This is because products of A were 
very large for rows corresponding to popular bulls as 
all elements of A are positive; those products with A−1 
are small because of cancellations; a contribution to a 
parent by a progeny in A−1 is proportional to [… 1.0 
… −0.5 … −0.5 …], which sums to 0.

Table 1 shows the number of rounds and computing 
time with PCG and Bi-CGSTAB for the regular and 
unsymmetric equations and with varying magnitudes 
of simulated changes. For the regular equations, Bi-
CGSTAB was slightly faster but took twice the comput-
ing time (26 vs. 13 s). Figure 1 shows the convergence 
pattern for the regular equations. Whereas the pattern 
for PCG shows small fluctuations, the pattern for Bi-
CGSTAB has more abrupt changes. Some differences 
in the number of rounds to convergence may be due 
to differences in the convergence criteria. However, the 
differences in solutions were very small (correlations 
>0.99999).

For the unsymmetric equations with no simulated 
changes, the number of rounds approximately doubled 
and the computing time increased by 30% (from 26 
to 34 s). Adding small simulated changes (b = 0.01) 
increased the computing time per round by 10% (from 
34 to 37 s) and slightly deteriorated convergence. The 
number of rounds increased by about 30% when chang-
es were increased to b = 0.03 and again by 10% when 
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changes were increased by b = 0.05. Figure 2 shows the 
convergence pattern for the modified equations and b 
= 0.0 and 0.03. Much larger fluctuations than with the 
regular equations were observed, which may have been 
due to a more complex preconditioner. For a multiple-
trait random regression model, Aguilar et al. (2008) 
observed much larger fluctuations in the convergence 
pattern with a block-diagonal preconditioner as com-
pared with a diagonal one.

Additional computations will be necessary in practi-
cal applications of the method with the real genomic 
relationship matrix. For simple H, additional steps in-
clude the multiplications of G-A22 and A by a vector. 
The last one can be done efficiently using the algorithm 
of Colleau (2002) in linear time (see Appendix A). The 
cost of this algorithm is equal to scanning the pedi-
gree file twice and is small, especially with pedigrees in 
memory. Legarra et al. (2009) presented formulas for 
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Table 1. The number of rounds (computing time per round in seconds) for different computing algorithms and 
different magnitudes of modification to the numerator relationship matrix 

Solving algorithm1

Equation

Regular

Unsymmetric2

b = 0 b = 0.01 b = 0.03 b = 0.05

PCG 189 (13.1) — — — —
Bi-CGSTAB 166 (26.0) 318 (34.0) 369 (37.3) 477 (37.1) 520 (37.4)

1PCG = preconditioned conjugate gradient; Bi-CGSTAB = bi-conjugate gradient stabilized.
2Changes in relationships simulated from uniform (0, b) distribution for 5,000 randomly selected animals.

Figure 1. Convergence rate for the preconditioned conjugate gradient (PCG) and bi-conjugate gradient stabilized (Bi-CGSTAB) algorithms 
with the symmetric system of equations.
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more realistic H and also computing details for a prod-
uct of that H by a vector. With such a product, the 
only components that cannot be computed in linear but 
rather in quadratic time (matrix-vector multiplication) 
are those corresponding to G and possibly those due 
to A22. If A22 needs to be available explicitly, it can be 
computed by the method of Aguilar and Misztal (2008). 
When applied to 17 million Holsteins, that method 
calculated about 80,000 inbreeding coefficients/s. As-
suming that computing one relationship costs no more 
than computing one inbreeding coefficient, on average, 
the computation of A22 for 20,000 animals would take 
40 min. Alternatively, A22 can be computed by the re-
peated applications of the algorithm of Colleau (2002), 
in which the vector to multiply by would contain one 
1.0 and zeros elsewhere.

When the number of genotyped animals is very high, 
say >50,000, storage and computations with matrix G 
and possibly A22 can be quite involving. A few choices 
may be applicable. First, some computations may eas-
ily be done in parallel. Current computers routinely 

include 4 processors (cores) per processor module, and 
computers with 4 modules are readily available. Second, 
some elements in AΔ may be very small or unimport-
ant and could be neglected. Neglecting small elements 
in the computation of sparse inverse for the purpose 
of calculating accuracies reduced the computations by 
50 times while retaining high precision (Thompson et 
al., 1994). Finally, genotypes of some animals may be 
unimportant and do not have to be included.

In summary, we have demonstrated that mixed 
model equations with small modifications to the nu-
merator relationship matrix can be solved efficiently by 
conjugate-gradient type algorithms. Only a few modi-
fications may be required for existing programs using 
the PCG algorithm.
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APPENDIX A

Below we show how to create a product Aq, where A 
is the numerator relationship matrix and q is a vector. 
The recurrence equation for the additive effect is

a = Pa + ϕ,

where a is a vector of animals ordered from oldest to 
youngest, ϕ is a diagonal matrix of Mendelian sam-
plings, and P is a matrix relating animals to their par-
ents; this matrix has at most 2 elements per row, both 
equal to 0.5. Following Quaas (1988),

Var(a) = A = (I − P)−1D(I − P)−1′,

where D = var(ϕ). Colleau (2002) showed that the 
product of A by a vector, for example,

v = Aq = (I − P)−1D(I − P)−1′q = (I − P)−1D 
[(I − P)−1′q],

can be solved in linear time. In particular, quantities r 
= (I − P)−1′q and v = (I − P)−1Dr can be obtained 
by solving (I − P)′r = q and (I − P)v = Dr, each one 
in a single sweep because (I − P) is triangular. The 
scalar formulas are

ri = ri + qi; rsi = rsi + ri/2; rdi = rdi + ri/2; i = n, ..., 1

vi = diri + (vsi + vdi)/2, i = 1, ..., n,

where si and di are positions of the sire and dam of 
animal i, respectively.

The Colleau (2002) algorithm can be used to com-
pute products of sections of matrices. For instance, 
the products below show how to compute A12q, A22q, 
A21q, or A22q:

	
A A
A A

q
0

A q
A q

A11 12

21 22
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21

11
é

ë

ê
ê
ê

ù

û
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ú
ú
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ù
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ù
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0
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APPENDIX B

The pseudo-program below implements the Bi-CG-
STAB (Van der Vorst, 1992) for a system of equations 
Ax = b with M being a preconditioner. The major 
expenses in the algorithm are products of A by a vec-
tor, possibly followed by products of M−1, but only if 
M is of complex structure.
 
Compute r(0) = b − Ax(0) for some initial guess 
x(0) 

Choose  r r r (for example, = ( )0 ) 
for i = 1, 2, … 

  ri 1
i 1

r r-
-( )= ¢

  
  if ri 1-  = 0 method fails 
  if i = 1 
  p(i) = r(i−1)  
else 

  bi 1
i 1

i 2

i 1

i 1
-

-

-

-

-

=
æ

è
ççççç

ö

ø

÷÷÷÷÷

æ

è
ççççç

ö

ø

÷÷÷÷÷

r

r

a

w
 

  p r p( ) ( ) ( ) ( )i i i
i

i

i
= + -( )- -

-
-

-

1 1
1

1

1
b w υυ  

 endif 

 solve M- ( )=1p̂ p
i  

 υ i
Ap( ) = ˆ 

 a i
i 1

1
r

=
¢

-

( )
r

 υυ
 

 g r
i 1

i
i

= -
-( ) ( )a υυ  

 check norm of g; if small enough: set 

x x p
i i 1

i
( ) -( )= +a ˆ and stop 

 solve Mg gˆ =  
 t Ag= ˆ 

 ωi
t g
t t

=
¢
¢
 

 x x p g
i i 1

i i
( ) -( )= + +a wˆ ˆ 

 r g t
i

i
( ) = -w  

 check for convergence; continue if necessary  
 for continuation it is necessary that wi ≠ 0 
end 
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Appendix B

A Relationship Matrix Including Full Pedigree and Genomic Information1

1A. Legarra, I. Aguilar and I. Misztal. Online Journal of Dairy Science. 92 (9) : 4656–4663.
Reprinted here with permission of publisher.
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  a relationship matrix including full pedigree and genomic information 
  a.   Legarra ,*1  I.   aguilar ,†‡ and  I.   misztal †
   * iNra, Ur631 Saga, BP 52627, 32326 Castanet-tolosan, France 
   † Department of animal and Dairy Science, University of georgia, athens 30602 
   ‡ instituto Nacional de investigación agropecuaria, las Brujas, Uruguay 

  aBStraCt 

  Dense molecular markers are being used in genetic 
evaluation for parts of the population. This requires 
a two-step procedure where pseudo-data (for instance, 
daughter yield deviations) are computed from full re-
cords and pedigree data and later used for genomic 
evaluation. This results in bias and loss of information. 
One way to incorporate the genomic information into 
a full genetic evaluation is by modifying the numera-
tor relationship matrix. A naive proposal is to substi-
tute the relationships of genotyped animals with the 
genomic relationship matrix. However, this results in 
incoherencies because the genomic relationship matrix 
includes information on relationships among ancestors 
and descendants. In other words, using the pedigree-de-
rived covariance between genotyped and ungenotyped 
individuals, with the pretense that genomic information 
does not exist, leads to inconsistencies. It is proposed to 
condition the genetic value of ungenotyped animals on 
the genetic value of genotyped animals via the selection 
index (e.g., pedigree information), and then use the 
genomic relationship matrix for the latter. This results 
in a joint distribution of genotyped and ungenotyped 
genetic values, with a pedigree-genomic relationship 
matrix H. In this matrix, genomic information is 
transmitted to the covariances among all ungenotyped 
individuals. The matrix is (semi)positive definite by 
construction, which is not the case for the naive ap-
proach. Numerical examples and alternative expressions 
are discussed. Matrix H is suitable for iteration on data 
algorithms that multiply a vector times a matrix, such 
as preconditioned conjugated gradients. 
  Key words:    genetic evaluation ,  genomic selection , 
 relationship matrix ,  mixed model 

  IntrODuCtIOn 

  Availability of dense molecular markers of type SNP 
has lead to the recent introduction of the so-called 
genome-wide or genomic selection evaluation models. 
Most such models are based on variants of simultaneous 
genome-wide association analysis, in which marker or 
haplotype effects (a) are estimated. Differences among 
methods are mostly on the a priori distribution of a
(e.g., Meuwissen et al., 2001; Gianola et al., 2006). 

  Although these methods are very promising for ani-
mal breeding, genotyping is not feasible for an entire 
population because of its high cost or logistical con-
straints (i.e., culled, slaughtered, or foreign animals). 
This is of importance, for example, for foreign bulls for 
which no genotyping is possible. Animals that are geno-
typed include prospective and old males, and possibly 
prospective mothers of future candidates (e.g., embryo 
transfer dams). 

  As not all animals can be genotyped, a 2- or 3-step pro-
cedure has to be followed; first, a regular genetic evalu-
ation is run; then, corrected phenotypes or pseudo-data 
are used in the second step, where the marker-assisted 
selection model is effectively applied (Guillaume et al., 
2008; VanRaden et al., 2009). These phenotypes are 
daughter yield deviations (DYD) and yield deviations 
(YD) for dairy cattle. 

  After computation of pseudo-data, genomic or 
marker-assisted predictions can be obtained by either 
simultaneously fitting polygenic and QTL effects 
(Guillaume et al., 2008), or by computing the genomic 
prediction and combining it with estimated breeding 
values from the animal model (VanRaden et al., 2009). 
Genomic predictions can be obtained either by esti-
mating a effects caused by markers or by using mixed 
model equations with a genomic relationship matrix G
(VanRaden, 2008). This assumes that a priori marker 
effects are normally distributed with a common vari-
ance. Although the assumption is arguable, positing a 
more complicated prior distribution resulted in little 
gain in practice (VanRaden et al., 2009). On the other 
hand, the genomic relationship matrix is simple to in-
terpret and handle. 
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Advantages of the multistage system include no 
change to the regular evaluations and simple steps for 
predicting genomic values for young genotyped animals. 
Disadvantages include weighting parameters, such as 
variance components (Guillaume et al., 2008) or selec-
tion index coefficients (VanRaden et al., 2009), and loss 
of information. Furthermore, the extension to multiple 
traits is not obvious and tracing back anomalies in a 
two-step procedure might become very complicated.

As for the loss of information, several problems exist 
in the use of DYD and YD. These problems are weights 
(caused by different amount of information in the origi-
nal data set), bias (caused by selection, for example), 
accuracy (for animals in small herds), and collinearity 
(for example, the YD of two cows in the same herd). As 
for the bias, if genomic selection is used, the expecta-
tion of Mendelian sampling in selected animals is not 
zero (Party and Ducrocq, 2009).

These problems may offset the benefit of marker-
assisted selection, particularly for cows (Neuner et al., 
2008, 2009). Also, in other species (sheep, swine, beef 
cattle) or traits (e.g., maternal traits, calving ease) 
DYD are more difficult to compute or even to define, 
or they might be poorly estimated—for example, if the 
contemporary groups are small.

One simplification of the current strategy would be 
to perform a joint evaluation using all phenotypic, 
pedigree, and genomic information. A possibility is to 
impute markers in ungenotyped animals via marker 
and pedigree information (i.e., linkage analysis) and 
estimate marker effects once imputation is done. How-
ever, in order to get a “best” predictor (in the sense of 
Henderson (1984), i.e., the conditional expectation), the 
incertitude in marker imputation, which is very high for 
most ungenotyped individuals, has to be accounted for 
via integration over the posterior distribution of marker 
imputations and marker effects. This can be achieved 
for example by peeling or Markov chain Monte Carlo 
(Abraham et al., 2007). However, this is unfeasible for a 
data set of even medium size when there are many loci 
or when many markers are missing, and particularly in 
the presence of loops, which are common in livestock 
pedigrees.

Another possibility is to use the same methodology as 
in the current evaluation (i.e., Henderson’s mixed model 
equations) except that the relationship matrix A needs 
to be modified to include the genomic information. The 
purpose of this study is to provide such a relationship 
matrix, based on transmissions from genotyped animals 
to their offspring, or selection indexes from genotyped 
to ungenotyped animals. This will blend complemen-
tary information from recorded pedigree and molecular 
markers. Computational methods for such a modified 

numerator relationship matrix, even if complex, can be 
found in Misztal et al. (2009).

METHODS

Covariance Matrix of Breeding Values  
Including Genomic Information

Let u be a vector of genetic effects. Under a poly-
genic infinitesimal model of inheritance, Var ,u A( ) = su

2  
where A is the numerator relationship matrix based on 
pedigree. Consider three types of animals in u: 1) 
ungenotyped ancestors with breeding values u1; 2) 
genotyped animals, with breeding values u2 (no ances-
tor is genotyped and phantom parents can be generated 
if necessary); and 3) ungenotyped animals with breed-
ing values u3, which might descend from either one of 
the three types of animals. A particular case is one in 
which ungenotyped animals are ancestors and progeny 
of genotyped animals—for example, a bull dam daugh-
ter of another bull. They are arbitrarily put in group 1. 
Then A can be partitioned as follows:

	 A
A A A
A A A
A A A

=

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

11 12 13

21 22 23

33 32 33

.	

Let u2 = Za, Z being an incidence matrix and a the 
effects of markers. Matrix Z is centered by allele fre-
quencies (VanRaden, 2008). Then 

Var ,u ZZ
ZZ

G2
2 2 2( ) = ¢ =

¢
=s s sa u uk

 where k is twice the 

sum of heterozygosities of the markers (VanRaden, 
2008).

In some implementations, matrix G can be seen as an 
“improved” matrix of relationships (Amin et al., 2007). 
Villanueva et al. (2005) and Visscher et al. (2006) 
propose to use a realized matrix of transmissions from 
parents to offspring in the data, averaging across all 
positions in the genome; this proposal is impractical in 
a general manner as genotypes are needed over entire 
families. VanRaden (2008) discussed how the expecta-
tion of G above is A, the regular numerator relation-
ship matrix, and that G represents observed, rather 
than average, relationships. Therefore, it accounts for 
Mendelian samplings (i.e., it can distinguish full-sibs) 
and unknown or far relationships. The gain by using G 
has been shown (González-Recio et al., 2008; Legarra 
et al., 2008; VanRaden et al., 2009). In principle, the 
additive variance using G is identical to that using A 
(Habier et al., 2007).
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There is no need for G to have a particular genetic 
interpretation in terms of relationships. For example, 
using the reproducing kernel Hilbert spaces equations 
of González-Recio et al. (2008), Var ,u K2

2( ) = sa  where 
K is a matrix with “distances” among individuals. Ma-
trix K can be scaled to K* so that Var u K2

2( ) = *su by 
equating the expectation for the sum of squares of u2 in 
the data following polygenic and the reproducing kernel 
Hilbert spaces models. The expected sum of squares is, 
respectively (polygenic vs. reproducible kernel  
Hilbert spaces): E tr uu u A2 2 22

2¢( ) = ( )s  and 

E tr tr uu u K K2 2
2 2¢( ) = ( ) = ( )s sa * , where tr is the trace 

operator. In absence of inbreeding, tr(A22) = 1 and 
thus K* = K/tr(K). Note that matrix K is also cen-
tered, and pseudo-inbreeding coefficients can be ex-
tracted from the diagonal of K*. Of course, by using a 
reproducing kernel Hilbert spaces model any “genea-
logical” intuition is lost.

In the following, and for simplicity of notation, it will 
be assumed that su

2 1= .
Plug-in G. A simple way to use G is to plug it into 

A; this results in the following modified A:

	 A
A A A
A G A
A A A

A G Ag=
11 12 13

21 23

33 32 33

22

0 0 0

0 0

0 0 0

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

= + -

éé

ë

ê
ê
ê
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ê

ù

û

ú
ú
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ú

,	 [1]

where A22 has been simply replaced by G. A proposal 
by Gianola and De los Campos (2008) to come up with 
predictions of ungenotyped animals from predictions of 
genotyped ones is to use A G u12

1
2

- ˆ . Their proposal re-
duces thus to a selection index by making the assump-
tion that the covariance among individuals is described 
by Ag.

Matrix Ag is simple to use but not properly con-
structed. The use of G potentially modifies covariances 
in ancestors and descendants of genotyped animals. For 
example, assume two full-sibs in the genotyped animals 
whose genomic relationship is 0.6. By using Ag, it is as-
sumed that average relationship among their daughters 
is 0.25, whereas in fact it is 0.3.

It can be verified by small numerical examples that 
Ag is indefinite (i.e., some eigenvalues are negative 
and some positive); the reason is that it is not based 
in an underlying linear model leading to a matrix 
crossproduct of the type T’T plus a diagonal matrix, 
like the numerator relationship matrix (Quaas, 1988) or 
the marker-assisted BLUP (Fernando and Grossman, 
1989). Therefore, the statistical background is ill-de-
fined (Searle, 1971; Harville, 1976). A correct statistical 
inference can only be made if the covariance matrix is 

positive or semi-positive definite. Matrix Ag might lead 
to correct inferences if the matrix is reasonable and 
numerical errors are not big. This ought to be checked 
by simulations.

Modification for Progeny. For this different ap-
proach, consider the descendants of genotyped animals. 
Following the decomposition of A (i.e., Quaas, 1988), let 
P be a matrix containing expected transmissions from 
ancestors to offspring, that is, with values of 0.5 in the 
son-dam and son-sire cells. Then u = Pu + φ, where φ 
is a vector of Mendelian samplings and founder effects 
(Quaas, 1988). The variance of φ is indicated as D.

In this particular group of animals:

	 u P P P
u
u
u

3 31 32 33

1

2

3

3= é
ëê
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ûú
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ê
ê
ê
ê
ê

ù

û

ú
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ú
ú
ú

+j .	

Then

	 u T P u P u3 33 32 2 31 1 3= + +( )j ,	

which can be seen as a regression equation, and where 
T33 = (I − P33)

−1 (Quaas, 1988).
Then 

	
Var u T P GP P A P P A P

P A P D
3 33 32 32 31 11 31 32 21 31

31 12 32 3

( ) = ¢ + ¢ + ¢(
+ ¢ + ) ¢¢T33

	

	 Cov ,u u = T P A P A A3 1 33 31 11 32 21 31( ) +( ) = 	

	 Cov ,u u = T P G P A3 2 33 32 31 12( ) +( )	

Then the covariance matrix becomes:

	

A

A
A G

A T P G P A T P A P P GP D

p

symm

=

+ ¢ + ¢ +( )

11

21

31 33 32 31 12 33 31 11 31 32 32 3
¢¢

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
úT33

.
	

		  [2]

Variance caused by Mendelian sampling in D3 is  
related to inbreeding in the founders 
Var ,j s( ) = - +( )( )( )1 2 4 2/ /F Fs d u  where Fs and Fd are 

inbreeding coefficients of sire and dam; this can be ex-
tracted from the diagonal of G if needed. Otherwise, 
D3 is the same as in classical methods. Assuming that 
D3 is equivalent in both cases (i.e., parents are not in-
bred), Ap can be formed by appropriately modifying 
A:
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	 A A G A

T P G A T P G A P T
p

symm

= + -

-( ) -( ) ¢ ¢
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0
22

33 32 22 33 31 22 31 33êê

ù

û

ú
ú
ú
ú
ú

.	

Again, matrix Ap might not be fully coherent (and 
indeed might be indefinite) because matrix G also in-
cludes information about the ancestors of genotyped 
animals. For example, two genotyped animals, say A 
and B, that have no relationship in the numerator re-
lationship matrix A might show some relationship in 
G, because of a common, unrecorded, ancestor. Thus, 
a relationship can be posited between the ancestors of 
A and B. Matrix Ap would work if all founders were 
genotyped (e.g., in a nucleus scheme); in this case, the 
system is fully coherent. For practical purposes, Ap 
might be reasonable because most information for sire 
evaluation is contained in the progeny, and not in the 
ancestors.

Modification for the Whole Pedigree. There is no 
distinction between ancestors or progeny of genotyped 
animals in this method; animals in 1 are ungenotyped, 
whereas animals in 2 are genotyped.

Then A
A A
A A

=
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ù

û

ú
ú
ú

11 12

21 22

 with inverse A
A A

A A
- =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1
11 12

21 22
.

Based on selection index theory and properties of the 
normal distribution, conditionally on pedigree (Sorens-
en and Gianola, 2002, p. 254; Gelman et al., 2004, p. 
86), the distribution of breeding values of ungenotyped 
animals, conditioned on breeding values of genotyped 
animals, is:

	 p Nu u A A u A A A A1 2 12 22
1

2 11 12 22
1

21( ) = -( )- -, 	 [3]

(which is the best predictor if we assume normality), 
or,

	
u u u A A u

A A A A A

1 1 2 12 22
1

2

11 12 22
1

21
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E e e
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,

Var .
	

This can be seen just as a regression equation. Now 
substitute u2 = Za. Then

	 u A A Za1 12 22
1= +- e	

so that

	 Var .u A A GA A A A A A1 12 22
1

22
1

21 11 12 22
1

21( ) = + -- - - 	

This can be reduced to

	 Var u A A A G A A A1 11 12 22
1

22 22
1

21( ) = + -( )- - 	

	 Var u ZZ G2( ) = ¢ =/  andk 	

	 Cov , .u u A A G1 2 12 22
1( ) = - 	

Note that A A A A12 22
1 11

1
12-

-
= -( ) . This might be conve-

nient for computation as A11 and A12 are sparse and 
simpler to create, following Henderson’s rules, than A12 
and A22.

Let us now call H the covariance matrix of breeding 
values including genomic information. This is:
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Matrix H is identical to Ap if all founders are 
genotyped, because in that case A12 = T1P12A22. By 
construction, this matrix is semipositive or positive 
definite, which implies that the statistical background 
is sound (e.g., Harville, 1976). It is possible to come 
up with rules for inverting H, in the lines of Wang et 
al. (1995). However, H−1 might be difficult to invert 
because full positive definiteness of G is not guaran-
teed and therefore their inverse (which is needed to get 
H−1) might not exist, or might be very ill-conditioned. 
Positive-definitiveness of H is not necessary for predic-
tion (Harville, 1976; Henderson, 1984). Two alterna-
tive expressions for H that might be computationally 
convenient are:

	H
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Computational Suggestions. An outline of some 
ideas for solving mixed model equations for big data 
sets will be shown here including matrix H (similar al-
gorithms can be conceived for Ap and Ag), whereas the 
companion paper by Misztal et al. (2009) gives more 
details and examples. Henderson (1984, 1985) gave ex-
pressions for the computation of the mixed model equa-
tions without use of the inverse of the relationship 
matrix. These expressions are valid for singular matri-
ces (Harville, 1976), which might be the case for G as 
it was in our experience (unpublished). For the  
random effects the equation is: 
HZ R Z I u Wu HZ R y¢ +é
ëê

ù
ûú

= = ¢- -1 1ˆ ˆ .

This equation can be solved, in methods such as pre-
conditioned conjugated gradients, by repeatedly multi-
plying matrix W times the current guess of u. This 
requires computing the product Hq, where q is a vec-
tor. This is feasible using [6]. Whereas G is created 
explicitly, only A−1 can be created efficiently; A22 can 
be created from pedigree by computing single elements 
of the A matrix using recursive (Aguilar and Misztal, 
2008) or indirect (Colleau, 2002) algorithms. For large 
data files, matrix G can be computed in parallel or 
even using iteration on data on genotype files. It will be 
assumed that A22 and G can be computed and stored 
in core. First, Aq can be computed by Colleau’s (2002) 
indirect algorithm by reading twice the pedigree file 
without explicitly creating A. This algorithm works by 
reading a pedigree twice. The other part is a product of 
the form NQRSVq. This product can be computed as 
N(Q(R(S(V(q))))). The only difficult parts are the 
computations of s A A t= -

22
1

21 1, where t1 is a vector of 
size equal to the number of ungenotyped animals, and 
its symmetric product of the form A A12 22

1- . The product 
p = A21t1 can be found as follows. Let be the product 
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, whose result y is 

needed. Now let A* be the ordered relationship matrix 
(parents before offspring), and x a vector containing 
the reordered elements in t1 and zero otherwise (i.e., 
the values in x corresponding to animals in A22 are 
zero). Then, the product A*x can be computed by 
solving the system of equations A*−1y* = x by Col-
leau’s algorithm and rearranging y* into z and y.

The product s A p= -
22

1  can be computed directly if 
A22

1-  has been previously computed; or done by solving 
A22s = p if it has not. Both operations have quadratic 
cost on the number of genotyped animals, say n. Even 
if A22 cannot be stored, solving A22s = p can in prin-
ciple be done by an iterative solver and repeated use of 
the Colleau’s algorithm to compute the successive 
products A22s. The opposite (multiplication followed 

by indirect algorithm) strategy can be applied in com-
puting the product with N. Product by S will involve 
n2 operations. If G is smaller than Z, products can be 
computed as s = Gp = Z(Z′p)/k at a cost of 3nm (m 
being the number of markers). Overall, one iteration of 
the full algorithm involves reading the pedigree file 6 
times, plus a number of operations being several times 
n2 or 3nm. For example, for 10 million animals in pedi-
gree and n = 10,000 genotyped individuals, computing 
time per iteration will be roughly proportional to n2. 
Thus, solving the mixed model equations may be fea-
sible even for large pedigrees. More detailed explana-
tions on the algorithms and preliminary studies of their 
performances can be found in the companion paper by 
Misztal et al. (2009).

Example

Consider the pedigree in Figure 1. Animals 1 to 8 are 
unrelated founders, whereas animals 9 to 12 are geno-
typed. As an example, let G be a matrix with 1 on the 
diagonal and 0.7 otherwise (i.e., all animals are related 
although their founders are supposedly unrelated). The 
regular numerator relationship matrix A is in Table 
1; only a slight modification is needed to get Ag (not 
shown). The modified Ap, for progeny, is in Table 2, 
and the pedigree modified H is in Table 3. Even for this 
small example, Ap is indefinite, whereas H is positive 
definite.

It can be seen that in the latter, the relationships 
among genotyped individuals are projected backward 
and forward. The backward projection implies, for ex-
ample, that parents of 9 and 10 are related, and 1 and 
2 are not. In fact other possibilities exist (for example, 
that 2 and 3 were related but not 1 and 4), but the se-
lection index gives a parsimonious solution. This is not 
the case in Ap, where there is no backward projection. 
The nonexistence of this backward projection makes 
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Figure 1. Example pedigree. Genotyped animals are in bold.
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Ap for 1 to 12 indefinite, as the covariance structure it 
defines is ill-posed.

Also, in comparison to A, it can be seen that inbreed-
ing coefficients appear in descendants of genotyped 
animals as these are related.

DISCUSSION
The system in [6] might also be expressed as if the 

overall genetic value was the sum of 2 different genetic 
values: the one in the infinitesimal model plus a differ-
ence whose covariance matrix is G − A22. In the naive 
approach, this difference is not correctly accounted for 
in the relatives. If G = A22 (which will not happen in 
practice), matrices A and H are identical as expected. 
Further, this shows that genetic variance in the popula-
tion is the same on average (i.e., there is no artificial 
inflation). These are of course desirable properties.

The proposed matrix H is based on selection index 
principles or, equivalently, in assumptions of A being 
multivariate normal. Conditioning on breeding values 
of genotyped animals in [3] allowed us to develop a full 
multivariate distribution H. Thus, matrix H has been 
constructed from the joint density p(u1,u2) = p(u1|u2)
p(u2), where p(u2) is obtained from genomic data. This 
distribution includes desirable aspects well known in 
genetic evaluation: the fact that sons inherit half their 
parents (as in the descendants of genotyped animals) 
and the notion of selection index (which is included in 
BLUP). So, these aspects are indeed used in the 2-step 
evaluation.

It is hard to envision other possibilities as it is not 
simple to come up with an underlying model and set up 
a probability distribution. For example, the “intuitive” 
expression ˆ | ˆ ˆu u A G u2 1 12

1
1= -  follows the logic of a se-
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Table 1. Numerator relationship matrix A for the pedigree in Figure 11 

1.00 0.50 0.25 0.13 0.13
1.00 0.50 0.25 0.13 0.13

1.00 0.50 0.25 0.13 0.13
1.00 0.50 0.25 0.50 0.38 0.13

1.00 0.50 0.25 0.25 0.13 0.13
1.00 0.50 0.25 0.25 0.13 0.13

1.00 0.50 0.25 0.13
1.00 0.50 0.25 0.13

0.50 0.50 1.00 0.50 0.25 0.25
0.50 0.50 1.00 0.50 0.25 0.38 0.25

0.50 0.50 1.00 0.50 0.50 0.25 0.25
0.50 0.50 1.00 0.50 0.25

0.25 0.25 0.25 0.25 0.50 0.50 1.00 0.13 0.56 0.50
0.25 0.25 0.25 0.25 0.50 0.50 1.00 0.25 0.13 0.50

0.50 0.25 0.25 0.25 0.50 0.13 0.25 1.00 0.56 0.19
0.13 0.13 0.13 0.38 0.13 0.13 0.25 0.38 0.25 0.56 0.13 0.56 1.06 0.34
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.25 0.25 0.25 0.25 0.50 0.50 0.19 0.34 1.00

1Cells with 0 are empty to show the pattern. Coefficients for genotyped animals are in bold. Matrix Ag is obtained by setting the out-of-diagonal 
coefficients of genotyped animals to 0.7.

Table 2. Modified relationship matrix Ap including genomic information for genotyped animals and their progeny for the pedigree in  
Figure 11 

1.00 0.50 0.25 0.13 0.13
1.00 0.50 0.25 0.13 0.13

1.00 0.50 0.25 0.13 0.13
1.00 0.50 0.25 0.50 0.38 0.13

1.00 0.50 0.25 0.25 0.13 0.13
1.00 0.50 0.25 0.25 0.13 0.13

1.00 0.50 0.25 0.13
1.00 0.50 0.25 0.13

0.50 0.50 1.00 0.70 0.70 0.70 0.85 0.70 0.35 0.60 0.78
0.50 0.50 0.70 1.00 0.70 0.70 0.85 0.70 0.60 0.73 0.78

0.50 0.50 0.70 0.70 1.00 0.70 0.70 0.85 0.50 0.60 0.78
0.50 0.50 0.70 0.70 0.70 1.00 0.70 0.85 0.35 0.53 0.78

0.25 0.25 0.25 0.25 0.85 0.85 0.70 0.70 1.35 0.70 0.48 0.91 1.03
0.25 0.25 0.25 0.25 0.70 0.70 0.85 0.85 0.70 1.35 0.43 0.56 1.03

0.50 0.25 0.25 0.35 0.60 0.50 0.35 0.48 0.43 1.00 0.74 0.45
0.13 0.13 0.13 0.38 0.13 0.13 0.60 0.73 0.60 0.53 0.91 0.56 0.74 1.33 0.74
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.78 0.78 0.78 0.78 1.03 1.03 0.45 0.74 1.53

1Cells with 0 are empty to show the pattern. Coefficients for genotyped animals are in bold.
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lection index (or a multivariate normal distribution), 
but the covariances of u1 and u2 do not account for G 
as they should. It is not coherent to use G to derive 
Var(u2) and not to derive Cov(u1,u2). These covari-
ances can be derived for descendants using the trans-
mission vectors P and T as shown above, including G 
in the expression; however, it is more difficult to come 
up with a similar expression for ancestors. The selec-
tion index used as a conditional distribution overcomes 
this problem and accounts for G to generate the covari-
ance of u1 and u2. This resulted in a parsimonious in-
clusion of all information (full pedigree and genomic 
relationships).

All of these assumptions are actually applied in the 
2- or 3-step procedure for genomic selection mentioned 
previously, but as we discussed, information is lost by 
doing the steps procedure. A full relationship matrix 
would allow a joint evaluation and all the informa-
tion would be accounted for automatically. We have 
also sketched how computations could be feasible in 
practice. Some aspects, like computation of reliabilities, 
deserve further research.

ACKNOWLEDGMENTS

Discussions with P. VanRaden (USDA, Beltsville, 
MD), C. Robert-Granié (INRA), and S. Neuner (Ba-
varian State Research Center for Agriculture) are 
gratefully acknowledged. Thanks to D. Gianola and 
G. De los Campos (University of Wisconsin-Madison) 
for sharing the unpublished article with us. Also ac-
knowledged is the encouragement to pursue this study 
by T. Lawlor (Holstein Association) and the financial 
support by the Holstein Association (I. Misztal and I. 
Aguilar) and to the EADGENE network of excellence 
and ANR project AMASGEN (Legarra). A visit of A. 

Legarra to the University of Georgia was financed by 
Maison de Relations Internationales (INRA) and the 
Holstein Association of America. Two reviewers made 
very constructive comments.

REFERENCES

Abraham, K. J., L. R. Totir, and R. L. Fernando. 2007. Improved 
techniques for sampling complex pedigrees with the Gibbs sampler.  
Genet. Sel. Evol.  39:27–38.

Aguilar, I., and I. Misztal. 2008. Recursive algorithm for inbreeding 
coefficients assuming non-zero inbreeding of unknown parents.  J. 
Dairy Sci.  91:1669–1672.

Amin, N., C. M. van Duijn, and Y. S. Aulchenko. 2007. A genomic 
background based method for association analysis in related 
individuals.  PLoS One  2:e1274.

Colleau, J. J. 2002. An indirect approach to the extensive calculation 
of relationship coefficients.  Genet. Sel. Evol.  34:409–421.

Fernando, R. L., and M. Grossman. 1989. Marker assisted prediction 
using best linear unbiased prediction.  Genet. Sel. Evol.  21:467–
477.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian 
Data Analysis. Chapman and Hall/CRC, Boca Raton, FL.

Gianola, D., and G. De los Campos. 2008. Inferring genetic values for 
quantitative traits non-parametrically.  Genet. Res.  90:525–540.

Gianola, D., R. L. Fernando, and A. Stella. 2006. Genomic-assisted 
prediction of genetic value with semiparametric procedures.  
Genetics  173:1761–1776.

González-Recio, O., D. Gianola, N. Long, K. A. Weigel, G. J. M. Rosa, 
and S. Avendaño. 2008. Nonparametric methods for incorporating 
genomic information into genetic evaluations: An application to 
mortality in broilers.  Genetics  178:2305–2313.

Guillaume, F., S. Fritz, D. Boichard, and T. Druet. 2008. Short 
communication: correlations of marker-assisted breeding values 
with progeny-test breeding values for eight hundred ninety-nine 
French Holstein bulls.  J. Dairy Sci.  91:2520–2522.

Habier, D., R. L. Fernando, and J. C. M. Dekkers. 2007. The impact 
of genetic relationship information on genome-assisted breeding 
values.  Genetics  177:2389–2397.

Harville, D. 1976. Extension of the Gauss-Markov theorem to include 
the estimation of random effects.  Ann. Stat.  4:384–395.

Henderson, C. R. 1984. Applications of Linear Models in Animal 
Breeding. University of Guelph, Guelph, Canada.

Henderson, C. R. 1985. Best linear unbiased prediction using 
relationship matrices derived from selected base populations.  J. 
Dairy Sci.  68:443–448.

Journal of Dairy Science Vol. 92 No. 9, 2009

Legarra et al.4662

Table 3. Modified relationship matrix H including genomic information for genotyped animals and all relatives for the pedigree in Figure 11 

1.00 0.18 0.18 0.18 0.18 0.18 0.18 0.50 0.35 0.35 0.35 0.43 0.35 0.26 0.34 0.39
1.00 0.18 0.18 0.18 0.18 0.18 0.18 0.50 0.35 0.35 0.35 0.43 0.35 0.26 0.34 0.39

0.18 0.18 1.00 0.18 0.18 0.18 0.18 0.35 0.50 0.35 0.35 0.43 0.35 0.18 0.30 0.39
0.18 0.18 1.00 0.18 0.18 0.18 0.18 0.35 0.50 0.35 0.35 0.43 0.35 0.68 0.55 0.39
0.18 0.18 0.18 0.18 1.00 0.18 0.18 0.35 0.35 0.50 0.35 0.35 0.43 0.34 0.34 0.39
0.18 0.18 0.18 0.18 1.00 0.18 0.18 0.35 0.35 0.50 0.35 0.35 0.43 0.34 0.34 0.39
0.18 0.18 0.18 0.18 0.18 0.18 1.00 0.35 0.35 0.35 0.50 0.35 0.43 0.26 0.31 0.39
0.18 0.18 0.18 0.18 0.18 0.18 1.00 0.35 0.35 0.35 0.50 0.35 0.43 0.26 0.31 0.39
0.50 0.50 0.35 0.35 0.35 0.35 0.35 0.35 1.00 0.70 0.70 0.70 0.85 0.70 0.53 0.69 0.78
0.35 0.35 0.50 0.50 0.35 0.35 0.35 0.35 0.70 1.00 0.70 0.70 0.85 0.70 0.60 0.73 0.78
0.35 0.35 0.35 0.35 0.50 0.50 0.35 0.35 0.70 0.70 1.00 0.70 0.70 0.85 0.68 0.69 0.78
0.35 0.35 0.35 0.35 0.35 0.35 0.50 0.50 0.70 0.70 0.70 1.00 0.70 0.85 0.53 0.61 0.78
0.43 0.43 0.43 0.43 0.35 0.35 0.35 0.35 0.85 0.85 0.70 0.70 1.35 0.70 0.56 0.96 1.03
0.35 0.35 0.35 0.35 0.43 0.43 0.43 0.43 0.70 0.70 0.85 0.85 0.70 1.35 0.60 0.65 1.03
0.26 0.26 0.18 0.68 0.34 0.34 0.26 0.26 0.53 0.60 0.68 0.53 0.56 0.60 1.18 0.87 0.58
0.34 0.34 0.30 0.55 0.34 0.34 0.31 0.31 0.69 0.73 0.69 0.61 0.96 0.65 0.87 1.41 0.80
0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.78 0.78 0.78 0.78 1.03 1.03 0.58 0.80 1.53

1Cells with 0 are empty to show the pattern. Coefficients for genotyped animals are in bold.

87



Legarra, A., C. Robert-Granié, E. Manfredi, and J. M. Elsen. 2008. 
Performance of genomic selection in mice.  Genetics  180:611–
618.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction 
of total genetic value using genome-wide dense marker maps.  
Genetics  157:1819–1829.

Misztal, I., A. Legarra, and I. Aguilar. 2009. Computing procedures for 
genetic evaluation including phenotypic, full pedigree and genomic 
information. J. Dairy Sci. 92:4648–4655.

Neuner, S., C. Edel, R. Emmerling, G. Thaller, and K.-U. Götz. 2009. 
Precision of genetic parameters and breeding values estimated 
in marker assisted BLUP genetic evaluation.  Genet. Sel. Evol.  
41:26.

Neuner, S., R. Emmerling, G. Thaller, and K.-U. Götz. 2008. Strategies 
for estimating genetic parameters in marker-assisted best linear 
unbiased predictor models in dairy cattle.  J. Dairy Sci.  91:4344–
4354.

Party, C., and V. Ducrocq. 2009. Bias due to genomic selection. 
Interbull Bull. 39. Uppsala, Sweden.

Quaas, R. L. 1988. Additive genetic model with groups and 
relationships.  J. Dairy Sci.  71:1338–1345.

Searle, S. R. Linear Models. 1971. John Wiley, New York, NY.
Sorensen, D. A., and D. Gianola. 2002. Likelihood, Bayesian, and 

MCMC Methods in Quantitative Genetics. Springer-Verlag, New 
York, NY.

VanRaden, P. M. 2008. Efficient methods to compute genomic 
predictions.  J. Dairy Sci.  91:4414–4423.

VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, 
R. D. Schnabel, J. F. Taylor, and F. S. Schenkel. 2009. Invited 
review: Reliability of genomic predictions for North American 
Holstein bulls.  J. Dairy Sci.  92:16–24.

Villanueva, B., R. Pong-Wong, J. Fernández, and M. A. Toro. 2005. 
Benefits from marker-assisted selection under an additive polygenic 
genetic model.  J. Anim. Sci.  83:1747–1752.

Visscher, P. M., S. E. Medland, M. A. R. Ferreira, K. I. Morley, G. 
Zhu, B. K. Cornes, G. W. Montgomery, and N. G. Martin. 2006. 
Assumption-free estimation of heritability from genome-wide 
identity-by-descent sharing between full siblings.  PLoS Genet.  
2:e41.

Wang, T., R. L. Fernando, S. Vanderbeek, M. Grossman, and J. A. M. 
Van Arendonk. 1995. Covariance between relatives for a marked 
quantitative trait locus.  Genet. Sel. Evol.  27:251–274.

4663JOINT PEDIGREE AND GENOMIC RELATIONSHIP MATRIX

Journal of Dairy Science Vol. 92 No. 9, 2009

88



Appendix C

Derivation of the inverse for the combined relationship matrix1

Let the inverse of the numerator relationship matrix (A) be:

A−1 =

A11 A12

A21 A22

 ,
where animals are partitioned into 2 groups with group 2 denoting genotyped animals. To

derive an inverse for the combined relationship matrix of Legarra et al. (2009), using the

properties of the inverse of partitioned matrix, useful identities from A−1A = I are:

A11A11 + A12A21 = I, (C1)

A21A12 + A22A22 = I, (C2)

A11A12 + A12A22 = 0, (C3)

A21A11 + A22A21 = 0, and (C4)

(
A11 −A12A

−1
22 A21

)
= A11 (C5)

using (C1) through (C4) and multiplying the whole-population matrix

1Developed by D. L. Johnson (Livestock Improvement Corp., Hamilton, New Zealand)
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H = A +

 A12A
−1
22 (G−A22)A−1

22 A21 A12A
−1
22 (G−A22)

(G−A22)A−1
22 A21 G−A22


by

H−1 = A−1 +

 0 0

0 G−1 −A−1
22


gives H−1H = I.

A direct approach to getting H−1 comes from the distribution function. Based on the

conditional distribution

u1|u2 ∼ N(A12A
−1
22 u2,A11 −A12A

−1
22 A21)

and (C1) through (C5), the full distribution can be written as

p(u1,u2) = p(u1,u2|u2)p(u2)

= p(u1|u2)p(u2)

∝ exp[− 0.5 (u1 −A12A
−1
22 u2)′A11(u1 −A12A

−1
22 u2)] exp[ − 0.5u′2G

−1u2]

= exp

−0.5
[
u′1 u′2

] A11 −A11A12A
−1
22

−A−1
22 A21A

11 G−1 + A−1
22 A21A

11A12A
−1
22

 u1

u2


= exp

−0.5
[
u′1 u′2

] A11 A1 2

A21 G−1 + A22 −A−1
22

 u1

u2


(C6)

The matrix in (C6) is the inverse of the variance matrix of the full distribution. Therefore

H−1 = A−1 +

 0 0

0 G−1 −A−1
22

 .



Appendix D

Decomposition of joint predictions

To illustrate the role of λ and decomposition of joint predictions in PA, genomic prediction

(GP), and pedigree prediction from the subset of genotyped relatives (PP22), consider, H−1

after including λ:

H−1 =

 A11 A12

A21 A22 + λ(G−1+A−1
22 )

 . (D1)

Denote H−1 as {hij}, G−1 as {gij}, and A−1
22 as {aij22}. Consider the equation for breeding

value ui of individual i without records or progeny, in the spirit of VanRaden and Wiggans

(1991); k indicates genotyped individuals (in A22), and j indicates all individuals (in A):

∑
j

hijuj= 0

and

λ
∑
k

gikuk + (1− λ)
∑
k

aik22uk +
∑
j

aijuj −
∑
k

aik22uk = λ
∑
k

gikuk − λ
∑
k

aik22uk +
∑
j

aijuj = 0

Thus, for λ = 0, only contributions from pedigree relationships remain. Consider more

specifically young animal i without records or progeny. The equation with inbreeding ignored

is

−us − ud + 2ui + λ
∑
j

(gij − aij22)uj = 0,

where s and d correspond to sire and dam, respectively. Then
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ui =

us + ud + λ
∑

j, j 6=i

(aij22 − gij)uj

2 + λ(gii − aii22)

=

(
us + ud

2

)(
2

2 + λ(gii − aii22)

)
+

 λ
∑

j, j 6=i

aij22uj

2 + λ(gii − aii22)

−
 λ

∑
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gijuj

2 + λ(gii − aii22)


= 2(w)PA+ λ(w) giiGP − λ(w)aii22PP22,

(D2)

where

PA =

(
us + ud

2

)
,

GP =

−
∑
j,j 6=i

gijuj

gii
,

and

PP22 =

−
∑
j,j 6=i

aij22u
j

aii22

,

that is, parent average, genomic prediction, and subset pedigree prediction, with weights

summing to one. These are the same sources of information as in VanRaden et al. (2009)

except that they are estimated jointly. Note that PP22 might be different from PA because

1) both parents might not be genotyped and 2) only the subset of genotyped animals is

considered if PP22 is computed independently (as in PedGenM04). If λ = 0, only PA remains;

if λ = 1, then weighting of the 3 sources of information depends on the elements aii = 2, gii,

and aii22, which measures the precision of the 3 information sources relative to other breeding

values. That approach is similar to the reliabilities used to combine the 3 information in

VanRaden et al. (2009).


