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ABSTRACT 

The first study estimates variance components for heat stress (HS) for the first three 

lactations using test day models. Repeatability (MREP) and random regression (MRRM) 

models included a random regression on a function of temperature-humidity index. Regular 

genetic variance increased from the first to second parity but slightly declined in the third parity. 

Genetic variance of HS strongly increased with parity. With the MRRM, the variance of the HS 

effect was about half of that of the MREP. 

The second study compares different computing options of preconditioned conjugate 

gradient algorithms for a large scale genetic evaluation using multiple-traits test-day random-

regression models accounting for HS. Preconditioners were: diagonal, block diagonals due to 

traits (BT), block diagonal due to traits and correlated effects (BTCORR), and BT with the 

random effects reparameterized for diagonal (co)variance matrices within traits (BTDIAG). 

When sufficient memory is available, BTCORR was the fastest and the simplest to implement. 
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CHAPTER 1 

INTRODUCTION 

Heat stress is a major issue in the dairy industry because of the large losses it generates. It 

not only impacts milk production but also affects the reproductive performance of the animals.  

 Different approaches have been proposed to manage heat stress in dairy cattle e.g. 

cooling, shading, and nutrition. Assuming substantial additive genetic variation for heat 

tolerance, genetic improvement of animals is another alternative to handle the heat stress.  

Temperature and humidity indexes obtained from public weather data can be used to asses the 

impact of temperature and humidity on an animal’s performance. Genetic evaluations that 

combine these indices with performance records can provide breeding values for heat tolerance 

that could be used for selection purposes. 

 A methodology for a large scale genetic evaluation was developed using repeatability test 

day models in first parity cows. First parity cows have lower production compared to cows of 

later parities, thus multiple-parity cows are expected to be more sensible to heat stress. Random 

regression models can be used to model the genetic and environmental variation during lactation, 

allowing more adjustments due to heat tolerance at different stages of lactation. 

The first objective of this study was to estimate the variance components of milk, fat and 

protein yield with a multiple-parity test day model accounting for heat stress. Models considered 

were repeatability and random regression.  

The second objective was to evaluate different computing options for the national genetic 

evaluation for heat tolerance using a multiple-parity random regression test-day model. 
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CHAPTER 2 

REVIEW OF LITERATURE 

Heat stress  

The production of farm animals is influenced by several environmental factors, including 

the thermal environment. Environmental temperature is affected by air temperature, relative 

humidity, air movement, solar radiation, wind and the thermal environment of animals (Yousef, 

1985), which leads to the concept of “effective ambient temperature” (EAT) that describes the 

combinations of all of them (National Research Council, 1981).  

As homeothermic animals, dairy cattle try to maintain a relatively constant body 

temperature by balancing the heat gained from their metabolism and the environment. Animals 

try to maintain that balance by loosing heat from the body surface by conduction, convection and 

radiation. There is also a continuous loss of heat from the respiratory tract and skin surface. The 

net rate of heat loss depends on the characteristics of the surrounding environment and on the 

resistance to the heat flow of the tissue, skin and its covering (National Research Council, 1981). 

The relationship between animals and their thermal environment leads to the concept of a 

thermo neutral zone (TNZ). It could be defined as “the range of EAT within which the heat from 

maintenance and productive functions of the animal in non stressful situations offsets the heat 

loss to the environment without requiring an increase in rate of metabolic heat production” 

(National Research Council, 1981). Animals experience heat stress when the environmental 

temperature is higher than the animal’s TNZ. At 20oC animals do not experience changes in 

basic metabolic rate, and this is considered the thermo neutral temperature (National Research 



 3

Council, 1981). Any combination of environmental variables that are higher than the temperature 

range for the animal’s TNZ (5-20°C) may result in heat stress.  

Animal response to heat stress 

The general homeostatic responses to thermal stress in mammals include a decrease in 

fecal and urinary water losses, a reduction in feed intake and production, and an increase in 

sweating, respiratory and heart rates. Most of the adjustments made by the cow involve 

dissipating heat to the environment and reducing the production of metabolic heat (Kadzere et 

al., 2002). 

As milk production increases in dairy cattle, the metabolic heat production rises with the 

metabolizing of large amounts of nutrients, which makes the high producing cow more 

vulnerable to high environmental temperatures and humidity than animals that are metabolically 

less active (Kadzere et al., 2002). High producing dairy cows must dissipate large amounts of 

heat produced during the metabolism of high dietary energy used for body maintenance and milk 

synthesis. If the heat production exceeds the capacity of the heat dissipating mechanisms, the 

body temperature will rise. Maintenance of homeothermy is critical to the cow, thus slight 

increases in body temperature will depress feed intake, heat production and subsequently milk 

production (Coppock et al., 1982).   

Heat stress impact on production 

Several studies reported that heat stress in dairy cattle affects production (Maust et al., 

1972, Fuquay, 1981, Bryant et al., 2007b) and reproduction (Ravagnolo and Misztal, 2002, 

Jordan, 2003, Garcia-Ispierto et al., 2007, Morton et al., 2007). Economic losses due to heat 

stress for the U.S. dairy industry are estimated to be between $897 and $1500 million dollars per 

year (St-Pierre et al., 2003). 
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Based on several reviews, Fuquay (1981) concluded that there is an association between 

high environmental temperatures and reductions in both livestock production and reproduction. 

He concluded that for a range of species and different production traits the upper critical 

temperature is around 24 to 27 °C.  

Heat stress is commonly assessed by the temperature-humidity index (THI) (National 

Research Council, 1981). Different combinations of temperature and humidity were proposed. 

National Oceanic and Atmospheric Administration defined the THI index as follows:  

(0.55 0.0055* ) * ( 58)THI T RH T= − − −  (NOAA, 1976) 

where T is the dry bulb temperature in ° F and RH is the relative humidity in percentage. 

Different indexes of temperature and humidity were compared to measure losses in milk 

production due to heat stress for two regions of the U.S. with different climatic profiles 

(Bohmanova et al., 2007). Optimal THI was different in humid and semiarid regions.  

Igono et al. (1992) showed that milk production is lower during heat stress compared to 

non-heat stress periods, and the upper critical values of THI where milk production decreased 

were 64, 72 and 76 for the minimum, mean, and maximum THI, respectively.  

Bryant et al. (2007a) found that hot weather conditions under a grazing system reduced 

milk yield, milk solids yield, and fat and protein concentrations in Holstein-Friesians, New 

Zealand Jerseys and their crossbreds. This study also provides evidence that, within each breed, 

cows with high genetic merit were more susceptible to the effects of the environmental heat than 

their counterparts with lower genetic merit.  

There is a lag effect between the onset of high temperature and humidity on milk 

production. While there is a high correlation of rectal temperature and energy intake with THI on 

the current day, milk yield and milk composition have a higher correlation with the weather 
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conditions in the previous two or three days (Maust et al., 1972). In a review of several studies, 

West (2003) arrived to a similar conclusion and suggests that this delay could be related to the 

reduction of feed intake, a delay between intake and utilization of nutrients, or to hormonal 

changes.  

Collier et al. (2006) indicated that the acclimation to heat stress is under endocrine 

control and involves changes in the receptor populations in the target tissues as well as in the 

hormonal secretion rate. Spiers et al. (2004) studied the chain of predictors that range from the 

ambient stress to the animal performance through the thermal strain. They concluded that high 

environmental temperature produced changes in rectal temperature and respiration rate that were 

related to changes in feed intake, which is associated with the changes in milk production. 

Changes in the milk yield are different according to the lactation stage. Cows in mid 

lactation were the most adversely affected, cows in early lactation were the least affected, and 

those in late lactation were intermediately affected (Maust et al., 1972). The authors suggest that 

although cows in early lactation produce the highest milk yield, they have the lowest feed intake 

and are in a negative energy balance, so milk production is supported with the catabolism of 

body fat to replace deficits in energy intake.  

Perera et al. (1986) found that cows in mid lactation were the most adversely affected by 

the summer climate. Under mild conditions of heat stress, Abeni et al. (2007) found that cows in 

the early, mid and late stages of lactation decrease milk yield by 13 %, 24 % and 16.5 % 

respectively. The authors found that despite the moderate effects on milk production due to THI, 

some blood parameters related to energy balance and enzyme activities had significant 

alterations and cows in the middle of lactation had the highest changes in those parameters.  
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High-milk-producing cows are more affected by heat stress compared to lower-milk-

producing cows (Kadzere et al., 2002), and multiple-parity cows are known to be more affected 

by heat stress than first-parity cows (Armstrong, 1994). The heat stress during the dry period also 

affects the milk production in the next lactation, as it was reported in several works (Wolfenson 

et al., 1988, West, 2003, Avendaño-Reyes et al., 2006). 

 Different strategies have been proposed to reduce the heat stress in cattle: physical 

modification of the environment, genetic development of breeds less affected by heat stress, and 

nutritional management (Beede and Collier, 1986). Systems of cooling in housing and milk 

facilities were proposed to alleviate the impact of heat stress on milk production (Armstrong, 

1994, Collier et al., 2006, Smith et al., 2006); while West (1999) reviewed aspects of nutrition 

strategies for the management of heat-stressed cows.  

Genetic studies on heat stress 

Misztal (1999) proposed a model to study the genetic component of heat stress in dairy 

cattle using performance data augmented with public weather information. This model assumes 

that production is unaffected until a certain level of THI, and above that level the production 

declines linearly with increasing THI. If the variation in the slopes contains sizeable genetic 

additive components, selection for heat tolerant animals is possible.  

Ravagnolo et al. (2000) compared different models to study the relationship of milk, fat 

and protein production with climate variables using combinations of temperature and humidity 

from public weather information. They show that public weather data combined in a THI index 

contain useful information to account for the effect of heat stress in milk production traits. In 

addition, on-farm weather data was compared with public information, showing that the public 

weather stations are an accurate source of information (Freitas et al., 2006). 
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Applying such methodology, Ravagnolo and Misztal (2000) showed that the additive 

genetic variability for heat tolerance was important for milk, fat and protein production in first-

parity cows. Moreover, the additive genetic variance at high THI was similar to the additive 

variance in a non-stress situation. The authors concluded that genetic selection for heat stress is 

possible. Given the magnitude of the genetic correlation, combined selection for heat tolerance 

and production can be used. Finocchiario et al. (2005), working with a Mediterranean dairy 

sheep breed, found results that were in agreement with those of Ravagnolo and Misztal (2000).  

Hayes et al. (2003) studied genotype × environment interactions (G×E) on milk 

production traits with environmental descriptors. They found a G×E for THI, where the genetic 

correlation between protein yields at the extreme percentiles of THI was 0.90. The authors argue 

that the little variation found for the genetic additive variance for heat stress can be explained by 

the lack of extreme heat stress conditions.  

A genetic evaluation for heat tolerance using the methodology proposed by Ravagnolo 

and Misztal (2000) was carried out for first-parity U.S. Holstein cows (Bohmanova et al., 

2005b). Estimated breeding values were calculated for approximately 10 million animals using a 

repeatability test-day model with a random regression on THI. Bulls with higher heat tolerances 

had daughters with lower milk yield, higher contents of milk solids, more robust bodies, better 

udders, longer productive lives and higher daughter pregnancy rates.  

Test-day models 

Currently, test-day models have mostly replaced 305 d lactation models in dairy cattle 

genetic evaluations, although this has not occurred in the U.S. thus far. Compared with the 

lactation model in which test day (TD) records are combined to obtain total yield, test-day 

models use each particular record separately. The advantages of TD models are flexibility to 
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accommodate different recording schemes, reduction of the generation interval, and accounting 

for time-dependent effects for each test day (Swalve, 2000). The use of test-day models allows 

the utilization of incomplete lactation records in situations in which a cow has records in 

progress or has been culled, avoiding the use of procedures to extend records (Jensen, 2001). 

Ptak and Schaeffer (1993) introduced the repeatability test-day model, in which the shape 

of the lactation curves are modeled using fixed regression within specific fixed effects (e.g. age-

season groups). In their study, the function of days in milk (DIM) to account for the shape of the 

lactation curve was as in Ali and Schaeffer (1987), although other functions could be used 

(Wilmink, 1987). The repeatability model assumes that TDs are repeated measures of the same 

trait, resulting in a unique genetic additive variance across DIM. This model has been used 

widely due to simplicity and low computational cost (Van Der Werf and Schaeffer, 1997).  

Longitudinal data are usually analyzed with random regression models (Schaeffer, 2004). 

These models are extensions of the repeatability models in which a (co)variance function is used 

to model the variance of traits that change over time. Variations in lactation curves are modeled 

by fixed curves and deviations for these curves by random effects. Generally the random curves 

include the additive genetic and the permanent environment effects.  

Random regression models were initially presented by Henderson, Jr. (1982) and then 

proposed for use in the dairy cattle genetic evaluation by Schaeffer and Dekkers (1994). 

Different functions can be applied to model (co)variances across DIM. Kirkpatrick et al. (1990) 

proposed the use of Legendre Polynomial from the family of orthogonal functions. Another type 

of functions are the splines (White et al., 1999, Druet et al., 2003, Silvestre et al., 2005), which  

were also applied to model growth traits (Bohmanova et al., 2005a, Meyer, 2005, Robbins et al., 

2005, Sanchez et al., 2008). 
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Splines are piecewise polynomial functions of different orders that are fit through control 

points called knots (Wold, 1974). Misztal (2006) studied the properties of random regression 

models using linear splines. Compared with polynomials, linear splines have better numerical 

properties, result in a sparser system of equations, have local effects, and are easy to implement 

and interpret.  

 White et al. (1999) compared cubic splines to model lactation curves with a random 

regression model with a simple function of DIM. They concluded that splines provided more 

flexibility to model lactation curves but at a higher computational cost. Druet et al. (2003) 

compared several functions to model the fixed regression of lactations curves. They found that 

the regression splines were flexible, fit the data well, were relatively insensitive to outliers, and 

yielded smooth curves with a small number of parameters.  

 Estimates from random regression models usually show higher variances at the extremes 

of the lactation compared to multiple trait models (Rekaya et al., 1999). The use of random 

regression for the permanent environment while considering heterogeneous residual variance 

reduced these extreme values, but still some discrepancies were present (Rekaya et al., 1999). 

Pool and Meuwissen (2000) reported that using TD records for complete lactations improved the 

goodness of fit. They suggested that complete lactations should be used to estimate variance 

components. 

 Other authors proposed the use of herd-specific lactations curves to account for higher 

genetic variances at the extremes of lactations. Using data of first parity cows, Gengler and 

Wiggans (2001) found that the variance of herd-year was not negligible at the beginning of the 

lactation. de Roos et al. (2004) worked with data from the first three parities. They found that the 

genetic additive variance was lower in the first 100 d, especially in the second and third lactation 
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and they suggested the usage of herd curves in a random regression model. In agreement with 

previous results, Hammani et al. (2008) reported that herd-year random effect accounted for 

some variation at both the beginning and end of the lactation.  

 Recently, J. Bohmanova (personal communication) compared random regression models 

using either Legendre polynomials or linear splines for milk production traits. She found that the 

model with linear splines gave lower estimates of variances at the extremes of the lactation. 

Based on several criteria for model comparison, the models with linear splines with six knots 

performed the best. 

 Large scale genetic evaluations are routinely performed by iterative methods using the 

preconditioned conjugate gradient algorithm (PCG). A critical point of the PCG algorithm is the 

preconditioner (Lidauer et al., 1999, Strandén and Lidauer, 1999, Tsuruta et al., 2001). Strandén 

et al. (2002) compared different preconditioners for fixed and random effects under single trait 

random regression models. Convergence was improved when the preconditioner included blocks 

due to all of the fixed effects and blocks due to all correlated effects for each animal. However, 

the memory requirements were increased.  The diagonalization of a (co)variance matrix for 

random effects reduced the number of iterations without increasing memory requirements 

(Strandén et al., 2002).  
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CHAPTER 3 

HEAT TOLERANCE IN PRODUCTION TRAITS FOR MULTIPLE LACTATION: 

VARIANCE COMPONENTS1

                                                 
1 I. Aguilar, I. Misztal, and S. Tsuruta. To be submitted to the Journal of Dairy Science 
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ABSTRACT 

Data included 585,119 test-days (TD) in the first to third parities for milk, fat and protein from 

38,608 Holsteins in GA. Daily temperature humidity indices (THI) were available from public 

weather stations. Models included a repeatability test-day model (MREP) with a random 

regression on heat stress index and a test-day random regression model (MRRM) using linear 

splines with four knots and the heat stress index, which was defined as THI over 22°C from the 

3rd day before the TD from the closest weather station to the farm. Knots for splines in the 

MRRM were placed at 5, 50, 200 and 305 days-in-milk (DIM). Random effects were additive 

and permanent environment in the MREP and additive, permanent environment and herd-year in 

the MRRM. Additionally, models included herd test day, age, milking frequency and DIM 

classes as fixed effects. In the MREP and for milk, fat and protein, the phenotypic variance 

increased by 50-60% from the first to second parity and additionally by 12-15% in the third 

parity. The regular genetic variance increased by 30-40% from the first to second parity but 

slightly declined in the third parity for milk and protein. The heat stress variance doubled from 

the first to second parity and additionally increased by 20-100% in the third parity. The genetic 

correlations between parities for the regular animal effect were ≥ 0.84, but they were ≥ 0.96 

between second and third. The genetic correlations among parities for the heat-stress effect were 

between 0.56-0.79. The genetic correlations between regular and heat stress effects across 

parities and traits were between -0.30 and -0.47. With the MRRM, the variance of the heat stress 

effect was about half of that of the MREP. The most negative (~-0.42) genetic correlation for 

milk between regular and heat stress effects was at 50-200 DIM for first and between 200-305 

DIM for the second and third parities. Genetic variance of heat stress strongly increases with 
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each parity. It is inflated with the MREP due to timing of lactations to avoid the peak production 

during heat stress. 

 

INTRODUCTION 

Heat stress in dairy cattle affects production (Maust et al., 1972, Fuquay, 1981, Bryant et 

al., 2007) and reproduction (Ravagnolo and Misztal, 2002, Jordan, 2003, Garcia-Ispierto et al., 

2007). Economic losses due to heat stress for the U.S. dairy industry are estimated to be between 

$897 and $1500 million dollars per year (St-Pierre et al., 2003). Different approaches are used to 

manage heat stress in dairy cattle, including cooling, shading and nutrition (West, 1999, Kadzere 

et al., 2002, West, 2003). 

Misztal (1999) proposed a model to study the genetic component of heat stress in dairy 

cattle using performance data with public weather information. Existence of additive genetic 

variability for heat tolerance was shown to be important for milk, fat and protein production in 

first-parity cows; additive genetic variance at high THI was similar to the additive variance in a 

non stress situation (Ravagnolo and Misztal, 2000). Comparison of on-farm weather data with 

public information has shown that they are accurate sources of information (Freitas et al., 

2006b). A genetic evaluation for heat tolerance using this methodology was carried out for first-

parity U.S. Holstein cows and public weather data (Bohmanova et al., 2005). Estimated breeding 

values were calculated for approximately 10 million animals using a repeatability test-day model 

with a random regression on THI. Bulls with higher heat tolerances have daughters with lower 

milk yield, higher contents of milk solids, more robust bodies, better udders, longer productive 

lives and higher daughter pregnancy rates.  
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Longitudinal data is usually analyzed with random regression models (Schaeffer, 2004). 

Different functions can be applied to model (co)variances across DIM. Splines have been used to 

model such (co)variances either in test day models (White et al., 1999, Torres, 2001, Druet et al., 

2003, Silvestre et al., 2005, Bohmanova et al., 2007) or to model growth traits (Meyer, 2005, 

Robbins et al., 2005, Sanchez et al., 2008). Linear splines are not only simple, but they have 

good numerical properties, local effects and easy interpretations (Misztal, 2006). 

The objective of this study was to estimate variance components for the first three 

lactations for milk, fat and protein yield using test day models that include a random regression 

on a function of THI.  

 

MATERIAL AND METHODS 

Data 

Data were obtained from AIPL USDA and included TD records for milk, fat and protein 

from the first three lactations. Records were from cows registered between 1993 and 2004 in 

Georgia. Edits required lactations with 2 or 3 milkings per day and at least 4 TD; the first TD < 

75 and TD between 5 and 305 DIM. Additional editing required the age at calving to be between 

18 to 35, 28 to 49 and 40 to 63 months for the first, second and third parities respectively. Cows 

were also required to have a valid first lactation. A three generation pedigree file of 68103 

animals was extracted for 38610 cows with records. The data are summarized in Table 3-1 and 

Table 3-2.  

Weather data were obtained from the public weather stations and hourly THI was 

calculated as proposed by Ravagnolo et al. (2000): 

( , ) (1.8 32) (0.55 0.0055 ) (1.8 26)THI t h T RH T= × + − − × × × −  (NOAA, 1976) 
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where T is the temperature in degrees Celsius, and RH is the relative humidity in percentage. 

Herds were matched with the closest weather station and TD records were assigned the average 

daily THI of the third day before the TD. This 3 d lag was suggested in previous studies by 

Bohmanova et al. (2008).  

A function of THI ( ( )f thi ) was created: 

 0
( )

   
Threshold

Threshold Threshold

if THI THI
f THI

if THI THI THI THI
<=⎧

= ⎨ > −⎩
 

 where the value of the was set to 72 as in Ravagnolo et al. (2000). ThresholdTHI

Model 

Two models were applied to estimate variance components for multiple lactations. The 

first model was an extension of the repeatability test-day model (MREP) proposed by 

Ravagnolo and Misztal (2000) to estimate variance components for heat tolerance but considered 

multiple lactations as different traits: 

1: 2: 1: 2:dim ( ) ( )ijklmno in j k l mn mn mn mn ijklmnoy htd age freq a f thi a p f thi p e= + + + + + × + + × +  

where is the test-day milk/fat/protein yield;  is the fixed herd test-day i within parity 

n; di is the fixed DIM class within season (j=1 to 124, 4 seasons and 31 classes for DIM); 

is the fixed calving age class within parity k (k=1 to 22); 

ijklmnoy inhtd

m j

kage lfreq is the fixed milking 

frequency class l (l=1 to 2); is the general random additive genetic effect of animal m in 

parity n; 

1:mna

( )f thi  is the heat stress function for the herd-test day i; is the random additive 

genetic effect of heat tolerance for the animal m in parity n; is the random permanent 

environmental effect of the cow m;  is the random permanent environmental effect of heat 

tolerance of the cow m; and  is the random residual effect. 

2:mna

1:mnp

2:mnp

ijklmnoe
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Let [ ]1: 2:' '  'n na a a=  be vector of genetic additive effects and [ ]1: 2:' '  'n np p p=  the vector of 

random permanent effects for parities n=1 to 3. 

The (co)variance structure was:  

o

o

o

V
⊗⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= ⊗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊗⎣ ⎦ ⎣ ⎦

a A G
p I P
e I R

 

where A is the numerator relationship matrix, and  and  are 6x6 matrices of (co)variances 

for additive and permanent effects respectively. is a diagonal matrix of residual variances 

corresponding to each trait. 

oG oP

oR

 The second model was a multiple trait random regression test-day model on DIM and a 

function of THI (MRRM) with the same effects as before but with a random effect for herd-year. 

Random covariates included the function of THI and for DIM they were modeled with linear 

splines using four knots at 5, 50, 200 and 305 DIM.  

 The (co)variance structure was: 

o

o

o

o

V

⊗⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⊗⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⊗
⎢ ⎥⎢ ⎥ ⊗⎣ ⎦ ⎣ ⎦

A Ga
I Pp

I Hh
I Re

 

where ,  and var( )o =G a var( )o =P p var( )o =H h . All square matrices with dimension n*(t+1) 

(n=parity, t=knots) corresponded to (co)variances for additive, permanent and herd-year effects 

respectively. For our case the matrices had a dimension of 15x15. The MRRM model was 

applied only to milk yield. 
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Analysis 

 Univariate analyses for traits and lactations were performed for all models to get initial 

estimates for multiple trait analyses and were done using AIREMLF90 (Misztal et al., 2002). 

Multiple trait analyses were done using GIBBS2F90, a program that implements Gibbs sampling 

with a joint sampling of random correlated effects and traits (Misztal et al., 2002). A single chain 

of 300,000 samples was run with the first 50,000 samples discarded as burn-in. Additive, 

permanent, herd-year, phenotypic variance and heritability were calculated for each DIM-THI 

combination using the remaining 250,000 samples and posterior mean, high posterior density 

(HPD) and effective sample size were calculated for each parameter. Convergence was denoted 

by graphical inspection of the posterior chain, and by the effective sample size of the parameter 

of interest. 

 

RESULTS AND DISCUSSION  

 Estimates of variance components for univariate analyses of the first lactation milk, fat 

and protein yield are presented in Table 3-3. These estimates were within the range of those 

estimated for different regions of the U.S. (Freitas et al. 2006a) but higher than those previously 

reported for GA by Ravagnolo and Misztal (2000). 

Table 3-4 presents parameters for a test-day model with random regression on THI for 

multiple parities. Phenotypic variances increase with parities for milk, fat and protein; the 

increase is 50-60% from first to second parity and 2-15% from second to third parity.  

Non heat-stress additive genetic variances, hereinafter denoted by “generic”, increased by 

30-40% from the first to second parity but slightly decreased in the third parity for milk and 

protein. Additive variance for heat stress increased approximately 100% from the first to the 
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second parity for milk, fat and protein. However, from second to third parity milk increased by 

20%; and fat and protein increased approximately 100%. Genetic (co)variances between the 

generic additive and the heat stress component were negative for all cases, resulting in genetic 

correlations in the range of -0.30 to -0.50.  

 Figures 3-1, 3-2 and 3-3 show the posterior mean estimates and 95% HPD of the total 

additive variance as a function of THI for different lactations and milk fat and protein. A larger 

additive variance was observed for all parities and traits with higher values of THI but also with 

a higher SE. Patterns of the curves were similar across lactations but had larger increases for 

high THI.  

Heritability estimates are presented in Figures 3-4, 3-5 and 3-6 for milk, fat and protein 

respectively. All estimates ranged from 0.10 to 0.24. For the first and second parity heritabilities 

first decreased and then increased with increasing THI. The decrease is due to a negative 

correlation between regular and heat stress components.  

 Correlations between lactations (Table 3-4) for generic additive effect (intercept) for 

milk, fat and protein were positive and high (greater than 0.84). More specifically, these 

correlations were 0.96 or higher between the second and third parity. Genetic correlations 

between lactations for additive heat tolerance were also high but lower than 0.80, indicating 

either differences in heat tolerances between multiple parities or a wider HPD.  

Posterior means of additive (co)variance and genetic correlations for random regression 

of the model (knots and THI) are presented in Table 3-5, and the curves at different THI and 

DIM are shown in Figure 3-7. The additive variance for the first parity increases with DIM, 

whereas for the second and third parity the variances have a typical U-shape with higher values 
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at the extremes. On average, the generic additive variances for MRRM were higher in later 

parities, as in the MREP, despite the higher estimates at high DIM.  

 Negative correlations between the generic additive effect and heat stress were found for 

all lactations except at the beginning of the third parity (0.10). Differences in correlations were 

present at different stages of the lactation within and between parities. In the first parity the most 

negative correlation was around 50 DIM (-0.45) but for the later parities the most negative 

correlations were at DIM 200. 

 The additive genetic variances for heat stress were about half of the estimates from the 

repeatability model. This suggests that lactations are managed to avoid the maximum production 

during the hottest period and that MREP does not account for that timing. These components 

also have lower genetic correlations between different parities compared to estimates from the 

MREP model. 

 Curves for permanent and herd-year variances at different THI and DIM are shown in 

Figure 3-8 and Figure 3-9 respectively. Permanent variances were greater than additive and have 

a U-shape across DIM. Herd-year variances account for less variation during lactations except at 

the beginning of the lactations and somewhat at the end of the second and third parity. This is in 

agreement with studies that include the random herd-year curves to account for environmental 

variation due to herds (de Roos et al., 2004, Hammami et al., 2008). 

 Heritability estimates at different values of DIM and THI are presented in Figure 3-10. 

They ranged between 0.10 to 0.25, 0.13 to 0.28 and 0.08 to 0.25 for the first, second and third 

parity respectively. They were lower at the beginning of the lactation but increased with DIM 

and THI  
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CONCLUSIONS 

 Genetic parameters for heat tolerance were estimated for a multiple-parity test-day model 

with repeatability and random regression models. In both cases additive genetic effects for heat 

stress strongly increase with parity. The variances for heat tolerance from the random regression 

model were lower due to a better adjustment of the non-heat stress genetic additive variances 

across DIM, which in its absence resulted in inflated variances under the MREP. 
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Table 3-1: Means and SD of milk yield, fat and protein in the first three lactations 

 

 Milk (kg) Fat (kg*100) Protein (kg*100) 
Lactation Mean SD Mean SD Mean SD

1 27.5 7.0 94.8 27.7 85.7 20.4
2 31.6 9.4 109.3 36.3 97.5 26.3
3 33.0 10.1 114.8 39.5 100.7 28.1
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Table 3-2: Number of test-day records, cows and herd-test-day classes per lactation 

 Lactation 
 1 2 3

Test day records 350,623 160,262 74,834
Number of cows 38,608 17,549 8,210
Number of herd-test-day 16,467 13,043 10,156
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Table 3-3: Variance components for the first lactation with the repeatability model 

Parameter1 Milk (kg) Fat (kg*100) Protein (kg*100) 

1 2p pσ

1 2p pσ
2
1p

 -0.519 -6.345 -5.300 

2
1aσ  5.5 74.0 42.2 

1 2a aσ
2
2a

 -0.178 -1.827 -1.302 
σ  0.028 0.219 0.174 

2
1pσ  12.0 133.0 101.0 

σ  0.111 0.699 0.942 
2
eσ  13.1 310.0 127.8 

1 2a aσ
2
1pσ

 
 

 

1 2
1aσ = variance for general additive effect; 

= permanent variance for generic effect; 
= additive covariance between generic and heat tolerance effect 

= permanent covariance between generic and heat tolerance effect 

2
2aσ additive variance for heat tolerance 

2
2pσ permanent variance for heat tolerance 
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Table 3-4: Variance component estimates for the first, second, and third parities for milk, fat and protein using a multiple 

trait repeatability test-day model 

 
Parameter1 Milk  Fat (kg*100)  Protein (kg*100) 
 12 2 3 1 2 3  1 2 3 

2
1aσ  5.634 7.539 6.534 73.970 93.928 108.970  42.538 56.786 52.155 

2
2aσ  0.037 0.072 0.089 0.370 0.749 1.417  0.217 0.478 1.078 

1 2a aσ  -0.209 -0.282 -0.358 -2.031 -2.401 -3.790  -1.318 -1.884 -3.742 
2
eσ  12.844 19.410 22.651 308.724 522.248 603.354  125.714 190.522 215.294 

Corr   1 1a  0.86 0.91  0.88 0.96   0.84 0.89 
Corr   2 1a   0.96   0.97    0.98 
Corr   1 2a  0.72 0.79  0.71 0.61   0.56 0.75 
Corr   2 2a   0.75   0.68    0.75 
Corr  1 2a a -0.46 -0.38 -0.47 -0.39 -0.39 -0.30  -0.43 -0.36 -0.50 

1 2a aσ = additive covariance between non heat stress and heat tolerance effect; 2
eσ  residual variance; Corr a1 non heat stress genetic 

correlations between lactations; Corr a2  heat stress genetic correlations between lactations, Corr a1a2 genetic correlations between 
non heat stress and heat tolerance effects within lactation 

1 2
2a

2
1aσ = variance for general additive effect; σ additive variance for heat tolerance 

2 Lactation number 
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Figure 3-1: Posterior means and 95% HPD intervals for additive variance for milk in the 

first, second and third parities using the repeatability model for different values of THI  
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Figure 3-2: Posterior means and 95% HPD intervals for additive variance for fat in the 

first, second and third parities using the repeatability model for different values of THI 
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Figure 3-3: Posterior means and 95% HPD intervals for additive variance for protein in 

the first, second and third parities using the repeatability model for different values of THI 
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Figure 3-4: Posterior means and 95% HPD intervals for heritability estimates for milk in 

the first, second and third parities using the repeatability model for different values of THI 
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Figure 3-5: Posterior means and 95% HPD intervals for heritability estimates for fat in the 

first, second and third parities using the repeatability model for different values of THI 

 



 

 

Figure 3-6: Posterior means and 95% HPD intervals for heritability estimates for protein 

in the first, second and third parities using repeatability model for different values of THI  

 40

 



 Parity 
 First  Second  Third 
 52 50 200 305 THI  5 50 200 305 THI  5 50 200 305 THI 
5 3.961 0.64 0.41 0.32 -0.25  8.73 0.74 0.47 0.37 -0.17  5.98 0.55 0.44 0.23 0.10 
50 2.98 5.46 0.85 0.62 -0.45  6.39 8.50 0.70 0.51 -0.31  4.07 9.27 0.63 0.18 -0.21 
200 2.03 4.99 6.28 0.84 -0.40  3.87 5.70 7.89 0.84 -0.43  3.24 5.83 9.24 0.76 -0.41 
305 1.81 4.19 6.02 8.27 -0.27  4.47 5.96 9.56 16.35 -0.39  2.27 2.21 9.19 15.64 -0.37 
THI -0.07 -0.14 -0.13 -0.10 0.02  -0.10 -0.18 -0.23 -0.30 0.04  0.06 -0.17 -0.34 -0.40 0.07 

41

Table 3-5: Additive (co)variances and genetic correlations between knots and THI for milk in the first, second, and third 

parities 

1 variances on diagonal and bold, genetic correlations above diagonal, and co-variances below diagonal  
2  values correspond to the four knot position at DIM 
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Figure 3-7: Posterior means and 95% HPD intervals for additive variance for milk in the 

first, second and third parities using a random regression model at different values of THI 
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Figure 3-8: Posterior means and 95% HPD intervals for permanent variance for milk in 

the first, second and third parities using a random regression model at different values of 

THI 
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Figure 3-9: Posterior means and 95% HPD intervals for herd-year variance for milk in the 

first, second and third parities using a random regression model at different values of THI 
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Figure 3-10: Posterior means and 95% HPD intervals for heritability estimates for the milk 

in first, second and third parities using a random regression model at different values of 

THI 
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CHAPTER 4 

COMPUTING OPTIONS FOR MULTIPLE-TRAIT TEST-DAY RANDOM REGRESSION 

MODELS WHILE ACCOUNTING FOR HEAT TOLERANCE2

                                                 
2 I. Aguilar, S. Tsuruta and I. Misztal. To be submitted to the Journal of Dairy Science 
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ABSTRACT 

Data included 90,242,799 test day records from 5,402,484 Holsteins in first three parities. The 

total number of animals in the pedigree file was 9,326,754. Additionally, daily temperature 

humidity indexes (THI) from 202 weather stations were available. The fixed effects in the model 

included herd test day, age at calving, milking frequency and days in milk classes (DIM). 

Random effects were additive, permanent environment and herd-year. These effects were fit as 

random regressions. Covariates included linear splines with four knots at 5, 50, 200, and 305 

DIM and a function of THI of the third day before the test day. THI were obtained from the 

closest weather station to the farm. The first three lactations were used as separate traits, 

resulting in 15 by 15 (co)variance matrices for each random effect. Mixed model equations were 

solved using an iteration on data program with a preconditioned conjugate gradient algorithm. 

Several preconditioners were used and included diagonal (D), block diagonal due to traits (BT) 

and block diagonal due to traits and correlated effects (BTCORR). One run included BT with a 

“diagonalized” model in which the random effects were reparameterized for diagonal 

(co)variance matrices among traits (BTDIAG). Memory requirements were 8.7 Gbytes for D, 

10.4 Gbytes for BT and BTDIAG, and 24.3 Gbytes for BTCORR. Computing times (rounds) 

were 14 d (952) for D, 10.7 d (706) for BT, 7.7 d (494) for BTDIAG and 4.6 d (289) for 

BTCORR. The convergence pattern was strongly influenced by the choice of fixed effects. When 

sufficient memory is available, the option BTCORR is the fastest and simplest to implement; the 

next efficient method, BTDIAG, requires additional steps for diagonalization and back-

diagonalization. 
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INTRODUCTION 

Heat stress in dairy cattle affects production (Maust et al., 1972, Fuquay, 1981, Bryant et 

al., 2007) and reproduction (Ravagnolo and Misztal, 2002, Jordan, 2003, Garcia-Ispierto et al., 

2007). Economic losses due to heat stress for the U.S. dairy industry are estimated to be between 

$897 and $1500 million dollars per year (St-Pierre et al., 2003). Different approaches are used to 

manage heat stress in dairy cattle including, cooling, shading and nutrition (West, 1999, Kadzere 

et al., 2002, West, 2003). 

Misztal (1999) proposed a model to study the genetic component of heat stress in dairy 

cattle using performance data combined with public weather information. Existence of additive 

genetic variability for heat tolerance was shown to be important for milk, fat and protein 

production in first-parity cows (Ravagnolo and Misztal, 2000). A study by Aguilar et al. (2008) 

demonstrated that the effect of heat stress on production is greater in later parities. 

A genetic evaluation for heat tolerance using the methodology proposed by Ravagnolo 

and Misztal (2000) was carried out for first-parity U.S. Holstein cows by Bohmanova et al. 

(2005). Estimated breeding values were calculated for approximately 10 million animals using a 

repeatability test-day model with a random regression on THI. Bulls with a higher heat tolerance 

had daughters with lower milk yield, higher content of milk solids, more robust bodies, better 

udders, longer productive lives and higher daughter pregnancy rates.  

Large scale genetic evaluations are routinely performed by iterative methods using the 

preconditioned conjugate gradient algorithm (PCG). A critical point of the PCG algorithm is the 

preconditioner (Lidauer et al., 1999, Strandén and Lidauer, 1999, Tsuruta et al., 2001). Strandén 

et al. (2002) compared different preconditioners for fixed and random effects under single trait 

random regression models. Convergence was improved when the preconditioner included blocks 
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due to all of the fixed effects and with blocks due to all correlated effects for each animal. 

However, the memory requirements were increased.  The diagonalization of the (co)variance 

matrix for random effects reduced the number of iterations without increasing memory 

requirements. Compared to Cholesky decomposition, eigenvalues decomposition of  the 

(co)variance matrix for random effects showed a slightly better performance under PCG 

(Strandén et al., 2002).  

The objective of this study is to compare different computing options for PCG algorithms 

for a large scale genetic evaluation using multiple-traits test-day random-regression models and 

accounting for heat tolerance. 

 

MATERIAL AND METHODS 

Data 

TD records of U.S. Holsteins with the first three parity records between 1993 and 2004 

were obtained from AIPL USDA. Edits required lactations with 2 or 3 milkings per day and at 

least 4 TD; the first TD < 75 DIM and TD between 5 and 305 DIM. Additional editing required 

the age at calving to be between 18 to 35, 28 to 49 and 40 to 63 months for the first, second and 

third parities respectively. Cows were also required to have a valid first lactation. The two data 

sets used were the national data (ND) corresponding to 9,326,754 cows and a subset of 38,608 

cows from Georgia (GA). A summary of both datasets is presented in Table 4-1. 

Additionally, the weather data were taken from 202 public weather stations. Hourly THI 

was calculated as proposed by Ravagnolo et al. (2000): 

( , ) (1.8 32) (0.55 0.0055 ) (1.8 26)THI t h T RH T= × + − − × × × −  (NOAA, 1976) 
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where T is temperature in degrees Celsius, and RH is relative humidity in percentage. Herds were 

matched to the closest weather station and TD records were assigned the average daily THI of 

the third day before the TD. This 3 d lag was suggested in previous studies by Bohmanova et al. 

(2008). 

A function of THI ( ( )thiϕ ) was created:  

 0
( )

   
Threshold

Threshold Threshold

if THI THI
THI

if THI THI THI THI
ϕ

<=⎧
= ⎨ > −⎩

 

where the value of the was set to 72 as in Ravagnolo et al. (2000). ThresholdTHI

Model 

The following multiple trait random regression model was used for the genetic 

evaluation: 

4

5
1

4

5
1

4

5
1

( ) ( )

( ) ( )

( ) ( )

ijklt i

q qjt jt
q

q qjt jt
q

q qkt kt ijklt
q
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dim a thi a

dim p thi p

dim h thi h e

α ϕ

α ϕ

α ϕ

=

=

=

=

+ +

+ +

+ +

∑

∑

∑ +

 

where the fixed effects included herd test day, age at calving, milking frequency and days in milk 

classes (DIM) and the random effects included additive (a ), permanent environment ( ) and 

herd-year (h ). Random effects were fitted as random regression. Covariates included linear 

splines with four knots at 5, 50, 200 and 305 DIM and the function of THI. The first three 

lactations were used as separate traits. 

p



 51

The (co)variance structure was: 

o

o

o

o

V

⊗⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⊗⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⊗
⎢ ⎥⎢ ⎥ ⊗⎣ ⎦ ⎣ ⎦

A Ga
I Pp

I Hh
I Re

 

where , and  were 15x15 (co)variance matrices for additive, permanent and herd-year 

effects respectively, and was a 3x3 diagonal matrix of residual variance corresponding to 

each trait. Genetics parameters were from a previous study (Aguilar et al., 2008). 

oG oP oH

oR

 Solutions for mixed model equations were computed using BLUP90IOD (Tsuruta et al., 

2001). This program implements iteration on data with a preconditioned conjugated gradient 

algorithm. Several preconditioners were used: diagonal (D), block diagonal due to traits (BT) 

and block diagonal due to traits and correlated effects (BTCORR). BT runs were implemented 

with the regular (co)variance matrix and a “diagonalized” model in which the random effects 

were reparameterized for diagonal (co)variance matrices within traits (BTDIAG). The converge 

criterion (C) was based on the relative adjusted right-hand side and the iterations were stopped 

when C < 10-12. 

Diagonalization 

(Co)variance matrices for a multiple trait random regression model can be diagonalized. 

Consider a single trait model, and let a random regression for a particular effect (e.g. random 

additive effect for animal j) be equal to  while it’s (co)variance is  , 

where α  is the vector of covariates and 

1
'

n

i ij j
i

aα
=

=∑ α a ( )var j = 0a G

ja is the vector of animal effect j, both with dimension n 

(number of covariates). The (co)variance matrix  could be decomposed in eigenvectors ( ) 

and eigenvalues ( ):   

0G V

D =0G VDV'
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The random regression terms could be reparameterized as follows: 

* *
j j jα'a = α'VV'a = α' a  

where:  ;  *α = V'α *
j ja = V'a  and ( )var =*

ja D  correspond to a diagonal matrix. 

Now consider multiple trait random regression:  

 ,  
1 1

'
t n

ik ikj j
i k

aα
= =

=∑ ∑ α a

where t is the number of traits and n the number of covariates. 

The (co)variance matrix sorted by traits is as follows: 

( )var j

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

11 1t

0

t1 tt

G G
a G

G G
 

where  is a (co)variance matrix of the n random regressions for the ith trait of the j animal, 

and  is the (co)variance matrix for n random regressions between i and i’ traits for the j 

animal. Furthermore  could be decomposed in eigenvectors ( ) and eigenvalues ( ):  

iiG

'iiG

iiG iiV iiD

ii ii ii iiG = V D V'  

and the reparameterized random regression becomes: 

  for 1,       i ii ii ii i t=
j

* *α V V' a = α' a     
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The (co)variance matrix structure for  results in the following:  *a

  

*
1 11 1

*

11 1 11 11 1

1 11

11 11 11 11 11 11 1

1 11

'
var var

'

' var( ) 'cov( , )

'cov( , ) ' var( )

' ' '

' '

t tt t

t tt

tt t tt t tt

t tt

tt t tt tt tt t

a V a

a V a

V a V V a a V

V a a V V a V

V V D V V V G V

V G V V V D V

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥=⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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=

11 11 1

1 11

'

'

'

t tt

t tt

tt t tt

V

D V G V

V G V D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Solutions after the transformation can be back transformed to the original scale by 

. This diagonalization also applies to the permanent and herd-year random effects. ij i ij
*a = Va

 

RESULTS AND DISCUSSION  

Table 4-2 shows the memory and time requirements to compute the solutions of the 

multiple-trait random regression model with the different preconditioners for the national data. 

The use of blocks increases memory requirements due to the storage of preconditioners. The 

maximum requirement corresponds to BTCORR, where storage for the preconditioner matrix 

(15x15, half stored) is needed for each level of the random effect (e.g. number of animals in the 

pedigree file) and is three times bigger than with the simple preconditioner (D).  

The number of iterations required to reach convergence was considerably affected by the 

usage of block diagonal preconditioners. Using BT reduced the number of iterations compared 
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with D, but the reduction was bigger when random correlated effects and traits were considered 

as the preconditioner (BTCORR). Simulations using (co)variance matrices with different values 

for genetic correlations show that in scenarios with higher genetic correlations the use of a block 

diagonal preconditioner improves convergence. For random regression models with Legendre 

polynomials, which have lower correlations between covariates, a simpler diagonal 

preconditioner is necessary (Strandén et al., 2002). In our case, the reduction in the number of 

iterations of the random regression model could be related to the use of linear splines as a 

random regression function, which had intermediate to high genetic correlations between knots 

within and across parities.  

The reparameterized model using a partial diagonalization for random correlated effects 

gives a compromise between memory and time requirements. It was not as efficient as BTCORR 

but had less than a half of the memory requirements. The memory requirements for BTDIAG are 

the same as that of the BT, and the number of iterations is reduced by 30%. Additional steps are 

required to implement this option for diagonalization and back-diagonalization of solutions to the 

original scale. 

The convergence criterion for BTCORR (Figure 4-1) showed a high fluctuation 

compared with the other options. In order to study this behavior, different options were tested 

using the GA dataset. The options included the following models: 1) only the herd-test-day as the 

fixed effect, 2) herd-test-day and age as fixed effects and 3) the original model but with the 

whole block for all fixed effects in the preconditioner. In all these models, random effects were 

as in the original model and the preconditioner was BTCORR. Plots of convergence are in Figure 

4-2. No fluctuations in convergence for BTCORR were present under the model with only one 

fixed effect; however, the inclusion of another fixed effect resembled the pattern with the full 
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model. Moreover, using the complete block for fixed effects as preconditioner eliminated such 

fluctuations, but such a model can not be implemented with the national data due to the large 

number of levels of fixed effects (herd-test-day). No benefit was found if the block for the fixed 

effects was for all effects except herd-test-day (results not shown). 

 

CONCLUSIONS 

A large scale genetic evaluation using a multiple-trait random-regression model 

accounting for heat tolerance can be run in a reasonable time. More time could be saved by 

optimizing the code and using parallel processing. The convergence criterion for BTCORR 

shows a high fluctuation that requires either a moving average or a strict stopping criterion. The 

convergence pattern is strongly influenced by the choice of fixed effects. When sufficient 

memory is available, the option BTCORR is the fastest and simplest to implement; the next 

efficient method, BTDIAG, requires additional steps for diagonalization and back-

diagonalization 
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 National Georgia 
 1 2 3 1 2 3 

Test day records 49,351,124 26,856,302 14,035,373 350,023 160,262 74,834 
Number of Cows 5,402,484 2,932,915 1,537,959 38,608 17,549 8.210 
Number Herd-Test day 2,603,783 2,153,285 1,749,619 16,467 13,043 10,156 
Milk yield (kg) 29.5 34.6 36.2 27.5 31.6 33.0 
Milk SD (kg) 7.3 9.9 10.7 7.0 7.0 10.1 
Number of animals pedigree 9,326,754 68,096 
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Table 4-1: Summary information for the national and Georgia data by lactations  
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Table 4-2: Memory requirement, number of rounds and CPU time for genetic evaluation of 

national data using different preconditioners  

 Preconditioner 
 D1 BT BTDIAG BTCORR 
Memory (Gb) 8.7 10.4 10.4 24.3 
Rounds 952 706 494 289 
CPU time (hs)  336 257 186 110 
Days 14 10.7 7.8 4.6 
1 D = Diagonal, BT = Block diagonal due to traits, BTDIAG = Block diagonal due to traits with 
“diagonalized” (co)variance matrix for random regression, BTCORR = Block diagonal due to 
trait and random regression 
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Figure 4-1: Convergence with different preconditioners for genetic evaluation using the 

national data 
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Figure 4-2: The influence of fixed effects on convergence with the preconditioner as block 

diagonal due to traits and correlated effects using GA data 
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CHAPTER 5 

CONCLUSIONS 

The additive genetic variance for heat tolerance increased with parity for milk production 

traits. It doubled from the first to second parity, and there was an additional increase from the 

second to the third parity. Genetic correlations for the heat stress effect between parities ranged 

from 0.56 to 0.79. The genetic correlations between regular and heat stress effects across parities 

and traits were between -0.30 and -0.47.  

With the random regression model, the variances of the heat stress effect were about half 

of those obtained with the repeatability model. Under the repeatability model, the variances of 

the heat stress effect were inflated perhaps due to the timing of lactations to avoid the peak 

production during the heat stress periods.  

The choice of preconditioners used in PCG algorithms to carry out the genetic evaluation 

strongly affected the convergence rate. Preconditioners based on blocks due to traits and random 

correlated effects were the fastest and simplest to implement when sufficient memory was 

available. The next most efficient method included block diagonal preconditioners where 

correlated random effects were reparameterized for diagonal (co)variance matrices among traits. 

Although the last option required less memory, additional steps for diagonalization and back-

diagonalization are needed. 
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